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Résumé

La présente étude s’intéresse aux écoulements que génèrent elles-mêmes des précipitations, i.e. des
écoulements qui émergent suite à la sédimentation de particules denses solides (flocons) ou liquides
(gouttes), inertes ou réactives (changement de phase). Cette thèse est spécifiquement motivée par
deux phénomènes géophysiques.

Lors de sa formation il y a 4,5 milliards d’années, la Terre a subi des impacts violents avec d’autres
planètes telluriques. Lorsqu’ils étaient assez grands, ces impacteurs ont fait fondre le manteau terrestre
en un océan de magma. Leur noyau de métal liquide a alors été projeté dans cet océan et a éclaté
en gouttelettes, conduisant à la chute d’un nuage de gouttes de métal liquide qui a longtemps été
modélisée comme une pluie de fer.

Aujourd’hui même, le lent refroidissement de Ganymède – un satellite naturel de Jupiter – con-
duirait à la solidification de son noyau métallique depuis la périphérie. Il en résulterait la formation
de flocons solides de fer pur, plus denses que le métal liquide, qui chutent donc par gravité comme une
neige de fer. Mais ces cristaux refondent en profondeur à cause des hautes températures. La neige fon-
due poursuit alors sa chute vers le centre de Ganymède, nourrissant une convection compositionnelle
vraisemblablement à l’origine d’une dynamo.

Dès le départ de cette thèse, la flottabilité était identifiée comme principal moteur de ces écoulements,
et la nature particulaire du forçage comme ingrédient central de leur complexité. Faisant fi des détails
morphologiques des flocons, et de la dynamique de fragmentation et coalescence des gouttes, cette
étude démarre au chapitre 1 par l’analyse expérimentale du couplage entre un fluide immobile et
des nuages de particules sédimentant collectivement en son sein. Le choix de l’écoulement canon-
ique de thermique turbulent a révélé les spécificités induites par la nature particulaire du forçage
: un découplage gravitaire entre la turbulence et les particules, et un taux de croissance accru des
nuages, présentant un maximum pour une taille précise des particules. Au-delà des interprétations
fondées sur la phénoménologie classique des écoulements turbulents chargés en particules, les simula-
tions eulériennes en two-way coupling du chapitre 2 révèlent que la turbulence n’est pas essentielle à
l’optimum de croissance des nuages. Des simulations laminaires reproduisent en effet nos observations,
qui sont dues à la déformation de la structure interne du nuage, dont la circulation est diminuée par
la dérive gravitaire des particules, augmentant ainsi la capacité d’entrâınement du nuage à grande
échelle. Les expériences du premier chapitre ont également été menées avec une rotation de fond
comme modèle de rotation planétaire. Celle-ci interrompt la croissance des nuages lorsque la force
de Coriolis devient comparable à leur inertie : ils s’enroulent alors en colonnes tourbillonnaires. Le
chapitre 3 révèle que cette dynamique réduit la dilution des nuages, atténuant l’efficacité d’équilibrage
chimique entre gouttes de métal et océan de magma suite à un impact planétaire, d’autant plus que
la planète tourne rapidement et que les éléments chimiques en jeu sont sidérophiles.

Le 4e chapitre ajoute alors le changement de phase : en tamisant continûment des grains de sucre
au-dessus d’une cuve d’eau, leur dissolution assure la formation d’eau sucrée qui plonge en profondeur
par flottabilité, fournissant un analogue de la neige de fer fondue. La microphysique de la suspen-
sion de grains contrôle une richesse de comportements, s’étendant du panache turbulent à la lente
émergence d’un écoulement laminaire à grande échelle, dû aux forçages cumulés des sillages de grains.
En guise d’ouverture, sont abordées dans le chapitre 5 les implications de ces expériences sur la tran-
sition sédimentation-convection et sur le forçage possible d’une dynamo par neige de fer.

Mots clés: Ecoulements diphasiques, sédimentation de particules, changement de phase, dissolution,
fluides tournants, noyaux planétaires, accrétion
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Abstract

The present study focuses on flows that are generated by precipitations, i.e. that emerge following
the settling of dense particles, whether they be solid (snow flakes) or liquid (drops), inert or reactive
(due to phase change). This thesis is specifically motivated by two geophysical phenomena. 4,5 billion
years ago, during its formation, the Earth experienced violent impacts with other rocky planets. When
sufficiently large, those impactors released enough energy to melt the rocky mantle of the Earth and
form a magma ocean. As their metal core was thrown in this ocean, it shattered intro drops, leading
to the fall of a cloud of liquid metal drops that has long been modelled as an ”iron rain”.

Presently, the secular cooling of Ganymede – a natural satellite of Jupiter – is likely responsible
for the solidification of its metal core from the periphery inward. This would lead to the formation of
solid iron snow flakes that are denser than the ambient liquid metal, hence that would fall like an ”iron
snow” due to gravity. But if these crystals reach excessive temperatures, they remelt. The resulting
molten iron snow keeps sinking downward, nourishing a compositional convection that likely feeds a
planetary dynamo.

Since the start of this PhD, it was identified that buoyancy is the main force driving those geo-
physical flows, and that the particulate nature of the buoyancy forcing is a key ingredient of their
complexity. Disregarding morphological details about the snow flakes, as well as the specific dynamics
of fragmentation-coalescence of drops, this study begins in chapter 2 with an experimental analy-
sis of the coupling between a still fluid and a cloud of particles that settle collectively in this fluid.
Comparing particle clouds with the canonical turbulent thermal reveals the specificities induced by
the particulate nature of the buoyant material : a gravitational decoupling of the particles from the
turbulence they initially generate, and an enhanced growth rate of the clouds that is maximum for a
specific particle size.

Going beyond classical interpretations based on the well-known phenomenology of particle-laden
turbulent flows, the 3D two-way coupled Eulerian simulations of Chapter 2 show that turbulence is
not essential to the optimum growth of particle clouds. Indeed, laminar simulations recover our ob-
servations, which are due to the disruption of the cloud inner structure, whose circulation is weakened
by the particles’ gravitational drift, therefore enhancing the cloud growth. To model planetary rota-
tion, the experiments of the first chapter were also performed on a spin table to include background
rotation. The latter interrupts the growth of clouds when the Coriolis force becomes commensurate
with their inertia: the clouds then roll up as vortical columns. Chapter 3 reveals that this dynamics
reduces the clouds’ dilution, diminishing the chemical equilibration efficiency between metal drops
and a magma ocean, all the more as the planet rotates faster and as the chemical elements involved
in the mass transfers are more siderophilic.

The 4th chapter adds a new ingredient: phase change. As sugar grains are continuously sieved
above a water tank, their dissolution leads to the formation of sugary water that sinks down the tank
due to its negative buoyancy, mimicking the behaviour of the molten iron snow. The microphysics of
the suspension of sugar grains controls a wealth of behaviours, ranging from lazy turbulent plumes
to the slow onset of a laminar large-scale flow, due to the cumulative forcing by successive wakes
of large sugar grains. Some implications of these experiments are finally discussed in Chapter 5 on
the transition from settling iron snow to compositional convection, considering the possibility of an
iron-snow-driven dynamo in the core of small rocky planets.

Key words: Two-phase flows, particle settling, phase change, dissolution, rotating fluids, planetary
cores, accretion
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***
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***
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à l’IRPHE ait été ma première année de thèse plutôt que les suivantes, car faute de maturité je
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Introduction

The present work is a journey in a tiny yet fascinating fraction of the world of particle-laden
flows. It revolves around the behaviour of a collection of melting-or-dissolving particles that
settle in a fluid, to try to understand the coupled dynamics of the emerging fluid motions and
of the particles themselves. As a typical example: some grains of sugar that are dropped in
water. Despite the apparent banality of this everyday-life situation, this problem proves of
fantastic wealth for the physicist, and an exciting analog to study precipitation-driven flows
like rain and snow in the atmosphere... and even in planetary cores !

When considering particle-laden flows, a first complexity comes from the difficulty to accu-
rately model the physics of the interaction between a flow and the particles it contains. This
explains persistent challenges even to model systems where the particles are considered of neg-
ligible influence on the flow, like the dispersion of pollutants (figure 1a) or spray (figure 1b) in
the atmosphere. The size, shape, isotropy, density, surface roughness, porosity of particles are
some of many parameters that affect their evolution at the individual scale. As an example,
the porosity of marine aggregates (figure 1c) enables them to retain some of the fluid that
surrounds them while settling. This would partly explain why they decelerate when reaching
the density jump of the ‘pycnocline’ in the ocean, due to the need for this retained lighter fluid
to be renewed by diffusion before sedimentation can resume (Prairie et al., 2015; Magnaudet
and Mercier, 2020).

Another inherent complexity of particle-laden flows arises when the influence of particles on
the fluid is taken into account, because then particles can interact hydrodynamically. Even for
suspensions of particles that evolve with negligible inertia in a Stokes flow, the long-range inter-
actions of particles cannot be described by a simple pairwise summation (Guazzelli and Hinch,
2011). When particles have more inertia, the flow around them loses its fore-aft Stokes-flow
symmetry, adding complexity to the microstructure of the suspension (Guazzelli and Morris,
2011) i.e., to the relative arrangement of neighbouring particles at the particle scale. The
additional ingredient of gravity brings in sedimentation that is unfortunately coupled to the
particles’ inertia in experiments, unless gravity is compensated by an opposing acceleration of
the experiment, or thanks to external forces like magnetism. Sedimentation biases the motion
of the particles along the direction of gravity, resulting in a more complex microstructure that
becomes anisotropic (Climent and Magnaudet, 1999).

These elements mean that the flow at the particle scale can have an impact on the whole
suspension, with paramount consequences for supra-particle-scale flows. In this thesis, we
are interested in particle clouds or suspensions that settle, meaning particles drift downward
within the fluid. As they do so, each particle drags some fluid in its vicinity. Depending on the
interparticle distance, the wakes of dragged fluid might be too far to influence one another (if

21
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 1: (a) Dispersion of radioactive particles in the atmosphere eight days after the Fukushima
nuclear accident (extracted from fig. 1 in Lujanienė et al. (2012)). (b) Formation of spray due to
breaking waves (Bradley Beach, United States, public domain). (c) In situ micrograph of marine snow
aggregates (from figure 2 in Kiørboe (2001)). (d) Dispersion and fall of drops produced by a sprinkler
(Kirsten Strough, public domain). (e) Drop of flame retardant by an air tanker (The Pioneer Fire,
Boise National Forest, Idaho, 2016, public domain). (f) Volcanic plume of the Sarychev Peak erupting
on the Matua Island on June 12th (NASA, public domain, via Wikimedia Commons). (g) Avalanche
(Irstea, CC BY-SA 4.0, via Wikimedia Commons).

https://www.rawpixel.com/image/3301648/free-photo-image-waves-public-domain-animal-beach
https://www.rawpixel.com/image/3260842/free-photo-image-water-agriculture-field
https://www.rawpixel.com/image/3388261/free-photo-image-air-spray-airplane-airtanker
https://www.rawpixel.com/image/3388261/free-photo-image-air-spray-airplane-airtanker
http://chamorrobible.org/gpw/gpw-200906.htm
https://creativecommons.org/licenses/by-sa/4.0/deed.fr
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particles are extremely distant) or conversely combine and therefore lead to the formation of
flow structures that are larger than the particle scale (Monchaux and Dejoan, 2017). It means
the microstructure of the suspension/cloud plays a decisive role in driving a flow at a micro-to-
macro scale, with a multiplicity of length scales and timescales – an observation that is central
to the present work and that will be discussed in Chapter 4. Many examples of macroscopic
sedimentation-driven flows can be found in the literature, like the settling drops of a sprinkler
(figure 1d) or the flame retardant dropped by an air tanker (figure 1e), turbidity currents
(Ouillon et al., 2019), volcanic clouds (Carazzo and Jellinek, 2012) (figure 1f), bubble curtains,
landslides (Fritz et al., 2009) or avalanches (figure 1g). The variety of scales between large
flow structures and individual particles is especially challenging in atmospheric, oceanographic
and geophysical flows due to the orders of magnitude that separate them, and that result in
very broad ranges of dynamical numbers – a conclusion that holds whether particles force the
flow (e.g., avalanches) or not (e.g., pollutants dispersed by the winds), whether the flow itself
be turbulent hence multiscale (although planktons migrate in the ocean which is a turbulent
environment, at their own scale they observe a Stokesian world), or not.

Another exciting source of richness in the present work is the presence of phase change in
the dynamics of these particles that force the fluid motions, due to the additional couplings
it brings in. This thesis focuses on melting and dissolution that enforce a transition from a
buoyant particle-laden mixture to a one-phase buoyant fluid. Before it ends drawing the system
towards more familiar one-phase buoyant behaviours, this transition is massively constrained by
the particulate nature of the buoyancy forcing since the mass or heat transfers are inherently
associated with the boundary layers that develop at the surface of particles. The details of
the flow and its heterogeneity at the particle scale become more decisive than ever with the
introduction of delays or even blocking effects like saturation: this is classically illustrated by
the persistence of sprays whose drops may survive over unexpectedly large timescales due to
saturation of water vapour (Pal et al., 2021; Stiehl et al., 2022). The considerable sensitivity of
the rates of heat-or-mass transfer with the size of particles is another crucial point that creates
a strong asymmetry between two flows of identical macroscopic properties yet with differing
microstructures (Houze Jr, 2014).

Superb examples of all these points that have guided my intuition all along this PhD are
localised events of rain pouring from a cloud, as illustrated in figures 2a-2b. Such flows are
essentially driven by the settling of hydrometeors. When substantial amounts of rain fall to the
ground, the flow can be violent and develop as a downburst, a downward current of air that hits
the ground and spreads radially outward with large wind velocities. An interesting distinction
is that of wet versus dry downbursts: these violent downdrafts have been distinguished because
the former are driven by large rates of precipitation, whereas the latter are typically driven by
the evaporation of drops that increases the air density through evaporative cooling (Srivastava,
1985, 1987). This twofold forcing of the flow through the settling of drops and their cold vapour
is an inspiring analog to keep in mind throughout the following pages.
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(a) (b)

Figure 2: (a) Rain on mount Evans in Evergreen, Colorado (Greg Younger, CC BY-SA 2.0). (b)
Hail shaft (Famartin, CC BY-SA 4.0, via Wikimedia Commons).

1 Two geophysical motivations

This PhD was motivated by two geophysical flows that are introduced before presenting the
organisation of the manuscript.

1.1 Metal-silicate mixing during planet formation

The Earth is a very dynamical thermal machine whose efficiency is still today largely con-
strained by the initial composition and temperature it had at the end of accretion. Convection
in the mantle has been decisive in shaping continents and controlling their motion through plate
tectonics, while convection in the core is the source that presently sustains our global magnetic
field, of paramount importance for our planet’s habitability. These motions are notably driven
by the release of heat in space, hence they are constrained by the amount of heat that accu-
mulated in the Earth during its accretion, by the distribution of radioactive elements in the
planet, and by the differentiation i.e. the core-mantle separation that redistributed heat and
chemical elements. The initial composition of both the core and the mantle is also paramount
as it influences their density, rheology, and it controls the existence of compositional convection
in the Earth core that feeds the magnetic field.

To better understand the present state of the Earth, what can we learn about its initial
thermo-chemical state? Numerical simulations in the field of astrophysics have shown that
4.5 Gyrs ago, rocky planets formed by accretion during different stages of planetary impacts
between bodies that were finally as large as Mars or the Earth. Radiochronometry indicates
that accretion occurred over 10 − 100 Myrs. At a late stage of accretion, planetary embryos
were already differentiated into a liquid metal core and an outer silicate mantle, as sketched
in figure 3. Collisions between large impactors released enough energy to melt the rocks into
magma in the mantle of both the target planet and the impactor (see the red region in figure
3). The dense metal core of the impactor was accelerated into this liquid magma and due to its

https://www.flickr.com/photos/gregor_y/17948778
https://commons.wikimedia.org/wiki/File:2020-08-13_19_38_14_A_rain_shaft_partially_illuminated_by_a_sun_beam_next_to_developing_cumulonimbus_clouds_viewed_from_the_Franklin_Farm_Village_Shopping_Center_in_the_Franklin_Farm_section_of_Oak_Hill,_Fairfax_County,_Virginia.jpg
https://creativecommons.org/licenses/by-sa/4.0


Contents 25

large inertia, it shattered into drops that fell as a cloud towards the centre of the Earth. How
they sedimented in the magma ocean and possibly in the core determined how they contributed
to the growth of the latter. In addition, the chemical and thermal transfers between the drops
and the ambient controlled the initial temperature and composition of both the core and the
mantle, with consequences on their respective convection.

Figure 3: Sketch of a planetary impact between a target planet and an impactor. Upon contact, the
considerable energy released melts the mantle (in brown) which becomes ‘magma’ in which the core of
the impactor (moving downward in time) bursts into drops.

Not only are these considerations interesting to understand the initial state of the Earth,
but they are also crucial to interpret present-day geochemical data that can be collected from
meteorites and mantle rocks. Indeed, the composition of the core and the mantle today depends
on the partitioning i.e. the distribution of chemical elements like Ni, Si, Co, Pb... between the
core and the mantle. This distribution is controlled by partition coefficients that are functions
of past conditions of pressure and temperature at the time of chemical equilibration i.e. at
the time when metal and silicates were in chemical interaction (Rudge et al., 2010). However,
the connection between the composition measured today and these past conditions can only
be drawn if the efficiency of chemical equilibration between metal and silicates is known at the
time of chemical transfers between metal and silicates (Rudge et al., 2010; Wade and Wood,
2005).

This efficiency of chemical equilibration has been modelled and refined over the years. Three
categories of models have been proposed. The first model of iron rain (Rubie et al., 2003)
envisaged the rapid emulsification of the metal core of the impactor into drops that sank down
a magma ocean as a collection of isolated drops falling vertically. The second model of Dahl and
Stevenson (2010) considered that the whole volume of metal fell as a unique volume that was
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eroded by hydrodynamical instabilities at its boundary. The third model considered that the
core of the impactor sank down with sufficient inertia for the flow in and around the metal to be
turbulent, favouring its deformation and eventual fragmentation while sinking as a drop-laden
turbulent thermal that entrains silicates down the magma ocean (Deguen et al., 2014).

So far, the effect of planetary rotation on metal-silicate equilibration has been largely disre-
garded, despite the strong rotation rate of the proto-Earth that has been suggested by impact
simulations (Ćuk and Stewart, 2012). Does rotation affect the evolution of the sinking clouds
of iron drops ? Under which conditions ? How much can it modify the efficiency of chemical
equilibration?

1.2 Iron snow in the core of small rocky planets

Some small rocky planets have evidenced signs of a global magnetic field of internal origin.
It is notably the case of Ganymede, a natural satellite of Jupiter which we also refer to as a
‘rocky planet’ for simplicity. This observation has intrigued the scientific community because
the usual processes that generate magnetic fields in large rocky planets seem impossible on
Ganymede. Why is that ?

The planet of reference for magnetic field production is the Earth, whose magnetic field is
produced by dynamo. This process describes how the motion of an electrically conducting fluid
can produce a magnetic field. Such a fluid is found at the centre of rocky planets as the liquid
metal of their iron-rich core. The coupling between magnetism and fluid motions leads to the
presence of electrical currents that feed the magnetic field, but which are constantly subject to
ohmic dissipation. As a result, dynamo action can be sustained only as long as the inertia of
the flow is sufficiently large compared to ohmic dissipation, which translates as a condition on
the magnetic Reynolds number

Rem =
UL

ηm
� 1 , (1)

where U and L are respectively the characteristic velocity scale and length scale of the flow, and
ηm is the magnetic diffusivity. This necessary yet insufficient requirement places constraints
on the vigour of the flow. Then, a burning question when observing a magnetic field that is
dynamo-generated is: What are the properties of the fluid motions that drive the dynamo?

Apart from mechanical forcings like tides and precession that are not considered in this work
(see section 5 in the recent review by Landeau et al. (2022)), three contributions are usually
mentioned that participate in sustaining the Earth’s magnetic field: thermal convection due to
the concentration of heat at the centre of the planet, that is released at the core periphery in
the overlying mantle; crystallisation of the core at the centre, made possible by the existence
of large pressures and the slow secular cooling of the Earth, that leads to a chemical separation
between pure iron (that solidifies on the solid inner core) and lighter elements that rise in the
liquid outer core, feeding a compositional convection; latent heat release during crystallisation,
that warms the fluid near the inner core, hence boosting the thermal convection. These three
elements have proven important in driving the Earth dynamo.

The second ingredient is of particular interest. To understand why, a very schematical de-
scription is given here, that is refined at the end of the manuscript. Schematically, the location
for core crystallisation is determined by the competition between temperature (large tempera-
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tures favour the presence of liquid rather than solid metal) and pressure (large pressures have
the opposite influence). The Earth can be called a ‘large rocky planet’ because pressure over-
comes the influence of temperature at the centre, hence the presence of a solid inner core. On
a ‘small rocky planet’ like Ganymede, temperature is expected to counterbalance the influence
of pressure, to such an extent that the core may not crystallise at the centre. What’s more,
Ganymede’s core is expected to be thermally stably stratified because the thermal gradient
is subadiabatic, making thermal convection inoperative in the core. Then, where could fluid
motions originate from ? What flow nourishes Ganymede’s magnetic field?

CONVECTION

MANTLE

Figure 4: Sketch of the scenario of iron snow in the metal core of a small rocky planet. Pure
iron flakes (in white) crystallise anywhere in the snow zone – where the temperature lies between the
liquidus and solidus of the Fe-FeS mixture – and settle because they are denser than the ambient. When
crystalling, they release light sulfur-rich fluid that rises due to its positive buoyancy (white wakes behind
snow flakes). At the bottom of the snow zone, crystals remelt; the molten snow nourishes convective
overturns in the deeper convective region.

A likely scenario is iron snow, that is sketched in figure 4. This scenario can be summarised
like so: At the end of its formation, Ganymede’s core was so hot that it was entirely molten.
As it cooled down, the first location where the temperature became lower than the liquidus
was the periphery of the metal core. There, the metal began solidifying. Ganymede’s core
is schematically a mixture of iron Fe and iron sulphide FeS at pressures around 6 − 10 GPa.
Therefore, crystallisation leads to the growth of pure iron crystals (white snow flakes in figure
4), while lighter sulfur-rich fluid is released by exsolution (white undulating plumes in figure
4). The iron snow flakes being denser than the Fe-FeS mixture, they settle due to gravity,
whereas the light sulfur-rich fluid rises because it is lighter than the ambient, likely building
a stratification in the zone of crystallisation. The chemical separation leads to the continuous
settling of pure iron snow flakes in the region where the temperature is below the liquidus:
this is the phenomenon of iron snow. As snow flakes keep falling towards larger and larger
temperatures, they ultimately reach a region where the temperature is above the liquidus due
to insufficient core cooling. There, snow flakes remelt. This delineates the bottom of the snow
zone. Below, remelting of snow flakes produces a molten iron-rich fluid layer that is much more
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concentrated in iron than the ambient. Consequently, the dense molten iron-rich fluid layer
cannot accumulate at the bottom of the snow zone: it keeps sinking deep in the core, and
nourishes a compositional convection, as sketched by convective loops of white molten snow in
figure 4.

The ability of snow flakes to produce fluid motions when they settle remains to be clarified.
Models of thermal evolution of Ganymede in Hauck II et al. (2006) have estimated a buoyancy
flux from the sole consideration of the rate of solidification of iron flakes, with no consideration
about their downward sedimentation. Hauck II et al. (2006) then used scaling laws from the
literature on fully-fluid buoyancy-driven rotating convection to determine the typical zonal
velocities that this flux may nourish. The underlying assumption that a buoyancy flux of
particles produces the same flow as a buoyancy flux of fluid is daring and needs to be proven
for the specific regime of iron snow. Other authors (Zhan and Schubert, 2012) considered that
the dense snow flakes weight on the ambient fluid as a continuous field of buoyancy. The latter
was advected by a pure advection-diffusion equation that was identical to that which is usually
employed for the advection of temperature. There again, the specific influence of the particulate
nature of the buoyancy forcing was disregarded. Also, both approaches disregarded the stable
chemical stratification of the snow zone that results from the exsolution and rise of the sulfur-
rich residual liquid during crystallisation, and that is usually assumed strong enough to prevent
vertical fluid motions in the snow zone (Rückriemen et al., 2015, 2018; Christensen, 2015). As
a result, some scepticism remained about the ability of snow flakes to nourish motions in the
snow zone, and future investigation was called for (Rückriemen et al., 2015).

Compositional convection, nourished by the mass flux of remelting snow flakes, has been
considered a plausible candidate to generate the magnetic field (Rückriemen et al., 2015, 2018;
Christensen, 2015). The mass flux of snow flakes is controlled by their volume fraction and
size, themselves controlled by the process of crystallisation, the size of the snow zone and its
thermodynamical properties. Unfortunately, none of these quantities is known with exactitude,
and no data are available about the mode of crystallisation, where it might happen, whether
supercooling is involved, etc. Therefore, the buoyancy flux nourishing compositional convection
is poorly constrained. The most recent models of iron snow are steady and one-dimensional
i.e. they assume quasi-steadiness and uniformity in directions that are orthogonal to gravity
(Rückriemen et al., 2015, 2018). Yet, most phenomena at stake in this scenario are fundamen-
tally unsteady and they are sources of heterogeneities.

This PhD was therefore motivated by the will to better understand the fluid motions driven
by iron snow flakes and their remelting. Some driving questions were: Can snow flakes behave
collectively i.e. can their settling produce macroscopic fluid motions beyond the scale of an
individual flake ? How do planetary rotation and stratification alter their settling ? What
sizes of snow flakes are to be expected ? How daring is the approximation of instantaneous
uniform melting ? Does remelting of snow flakes lead to a uniform buoyancy flux nourishing
the compositional convection ?
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2 Organisation of the manuscript

Gaining understanding on the physics described above has required to split the journey in
simple successive steps, each being the basis to investigate the next one. This progression in
complexity naturally corresponds to the progression of the chapters in this manuscript, that
have been oriented by the following questions:

1. What flows can be induced by settling particles?

2. What is the influence of the particle size in these buoyant particle-laden flows?

3. What is the minimum physics describing these flows?

4. How does background rotation modify the dynamics of settling particle clouds?

5. How does phase change alter the forcing of fluid motions?

The present work is organised as follows:

• Since the start of this PhD, it was identified that buoyancy is the main force driving
those geophysical flows, and that the particulate nature of the buoyancy forcing is a
key ingredient of their complexity. Yet, it has not been taken into account up to now.
Chapters 1 to 3 focus on clouds of non-reative particles that settle in a fluid, with the aim
to gain understanding on the coupling between the clouds dynamics and the flow that
emerges.

– Chapter 1 presents laboratory experiments of clouds of glass spheres settling in a
water tank. The canonical configuration of a turbulent thermal, i.e. a localised
instantaneous release, enables to assess the specificities induced by the particulate
nature of the buoyant material, and the role of the particles’ size. A first series
of experiments performed in a non-rotating water tank shows that particle clouds
do not follow the universal growth predicted for turbulent thermals. To assess how
planetary rotation might affect particle clouds, a second series is performed with the
whole experimental setup mounted on a spin table. These experiments show that
rotation eventually imposes a transformation of particle clouds into vortical columns.

– Chapter 2 digs deeper in the dynamics of particle clouds when background rotation
is absent. Thanks to Eulerian two-way coupled numerical simulations, the physics of
the fluid-particle interaction is reduced to its minimum to understand why particle
clouds behave differently than one-phase turbulent thermals.

– Chapter 3 analyses how the transition of particle clouds to the regime of vortical
column affects the efficiency of chemical equilibration between metal and silicates
after a planetary impact.

• Chapters 4 and 5 consider the additional ingredient of phase-change in plumes of reactive
particles.

– Chapter 4 is directly motivated by the remelting of iron snow flakes in planetary
cores. It presents an analog experiment where sugar grains are continuously sieved
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above a water tank, their dissolution feeding a plume of sugary water that sinks
due to its negative buoyancy, mimicking the behaviour of the molten iron snow.
The mass rate and size of sugar grains are varied with the aim to characterise the
structure and dynamics of the compositional convection that appears, its coupling
with sugar grains, and how the flow affects the settling and phase transition of sugar
grains.

– Chapter 5 finally opens on some preliminary implications of the experiments of
Chapter 4 on the remelting of iron snow flakes and how it nourishes compositional
convection.
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Chapitre 1

Effects of particle size and background
rotation on the settling of particle
clouds

Summary
We experimentally investigate the behaviour of instantaneous localised releases of
heavy particles falling as turbulent clouds in quiescent water, both with and without
background rotation. We present the results of 514 systematic experiments for no
rotation and for three rotation rates Ω = 5, 10, 20 rpm, and for the size of particles in
the range 5 µm to 1 mm, exploring four decades of the Rouse number R ∈ [6×10−4, 4]
which quantifies the inertia of particles. In the canonical framework of turbulent ther-
mals described by Morton et al., [Proc. R. Soc. A: Math. Phys. Sci. 234, 1 (1956)],
we compare particle clouds with salt-water thermals to highlight specificities due to
the particulate nature of the turbulence forcing. In the absence of rotation, particle
clouds initially behave as salty thermals with a modulation of their entrainment ca-
pacity, which is optimally enhanced for a finite inertia R ' 0.3 due to particulate
effects. However this regime of turbulence is limited in time due to the inertial decou-
pling between turbulent eddies and particles. For the three values of Ω explored here,
the particulate enhancement of entrainment is inhibited. Moreover the cloud’s expan-
sion is interrupted when the Coriolis force overcomes its inertia, forcing the cloud to
transform into vortical columnar flows which considerably increase the residence time
of particles.

1.1 Introduction

Interactions between a fluid and solid particles can take many forms. In granular media of
maximum packing fraction, particles constrain the fluid motion. Conversely, in configurations
of vanishingly small concentrations, particles are seemingly isolated and the fluid tends to
constrain the motion of the particles. The continuous transition between these end-members

33
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(Andreotti et al., 2012) and the influence of other particle properties like their size and density
offer a vast spectrum of interactions and phenomena (see Brandt and Coletti (2022) for a
review), which notably manifest in landslides (Fritz et al., 2009), the transport of sediments
in rivers (Abramian et al., 2019), the performance of agricultural sprays (Lake, 1977), or the
formation of planets in protoplanetary disks (Meheut et al., 2012).

When the size of particles, their volume fraction and the particle-to-fluid density anomaly are
low, the fluid governs the motion of particles whose feedback on the flow is negligible, a situation
called one-way coupling (Balachandar and Eaton, 2010). Many studies have considered the one-
way coupling between particles and pre-established idealised isotropic turbulent flows whose
properties are well controlled (Brandt and Coletti, 2022), evidencing that turbulence is a source
of non-uniformities in the field of particle concentration (e.g. Aliseda et al., 2002; Yoshimoto
and Goto, 2007; Salazar et al., 2008) and that turbulence alters the velocity and trajectory of
settling particles (e.g. Maxey, 1987; Good et al., 2014).

Although these studies have brought substantial light on the interactions between the fluid
and particles, in several situations the feedback of particles on the fluid has a non-negligible
impact on the flow (Monchaux and Dejoan, 2017) – a situation referred to as two-way coupling
(Balachandar and Eaton, 2010). This is especially true when the flow is nourished by the
particles, as in downdrafts which can be accompanied by intense rainfalls and are accelerated
by the evaporation of droplets (Kruger, 2020), or when the flow is produced by the particles
themselves e.g., in turbidity currents (Ouillon et al., 2019; Necker et al., 2002). The initial
motivation of the present study fits in this latter framework: past studies suggest that the
magnetic field of small telluric planets and moons like Mercury or Ganymede results from the
fluid motions generated by iron snow flakes settling into liquid metal – a phenomenon called
iron snow (Rückriemen et al., 2015). As a first step to understand this phenomenon, this study
focuses on the instantaneous release of heavy particles falling as a cloud in water.

The motion of buoyant clouds has been widely studied by releasing a finite volume of denser
miscible fluid (often salt water) in fresh water, which almost immediately becomes turbulent.
A decisive aspect of the dynamics of these clouds is the efficiency of turbulence to entrain
ambient fluid at the cloud interface. Entrainment is actually key to modelling numerous struc-
tures like gravity currents (Ouillon et al., 2019; Necker et al., 2002), wildfire plumes (Paugam
et al., 2016), moist convection cells (Yano, 2014) or heat plumes in ventilated spaces (Linden,
1999). By a simple modelling of entrainment through a single scalar coefficient, Morton et al.
(1956) developed in 1956 the turbulent thermal model, which has proved a successful model
of finite releases of buoyant fluid in a multitude of contexts (Turner, 1986), even for finite
buoyant releases made of immiscible fluid (Landeau et al., 2014) and bubbles (Peñas et al.,
2021) generated from different initial conditions. Similarly, past experiments on finite releases
of heavy particles have shown that after an initial regime of acceleration, the dynamics of such
clouds can be described with the turbulent thermal model (Rahimipour and Wilkinson, 1992;
Bush et al., 2003; Lai et al., 2013, 2016). To the best of our knowledge, no specific influence
of the particulate nature of the turbulence forcing has been observed on this initial dynamics.
Yet, particles have proved capable of modulating turbulence in controlled turbulent flows (see
Balachandar and Eaton (2010) for a review) as well as in recent experiments on particle-laden
plumes (i.e. continuous injections of buoyancy), whose entrainment efficiency was altered by
particles when they crossed the plume interface (McConnochie et al., 2021). The absence of
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any such observation for instantaneous releases calls for systematic experiments to determine
whether the particulate nature of the turbulence forcing can alter the entrainment efficiency
of particle clouds with respect to miscible turbulent thermals. To do so, we investigate the
role of particle inertia by covering a large range of particles’ sizes from a regime dominated by
the fluid motions (when particles have a low inertia) to a regime dominated by the inertia of
particles.

Motivated by the influence of planetary rotation during iron snow, we also investigate the
influence of background rotation on the clouds’ dynamics. Various experimental studies exist
on plumes in a rotating ambient (Fernando et al., 1998; Goodman et al., 2004; Frank et al.,
2017, 2021; Sutherland et al., 2021). Some recent studies brought substantial light on their
particular behaviour due to the solid body rotation, both for bubble-laden (Frank et al., 2021)
and miscible plumes (Sutherland et al., 2021). These studies can qualitatively guide the analysis
of thermals in a rotating ambient, but while plumes tend to reach a permanent regime, thermals
are inherently transient so that scaling laws inevitably differ. A few experimental studies exist
for instantaneous buoyant releases that are miscible with water (Ayotte and Fernando, 1994;
Helfrich, 1994), but to the best of our knowledge, no such experiments have been conducted
with particle clouds.

In this work, we present the results of 514 experiments performed by systematically varying
the size of particles and the angular velocity of the background rotation. The experimental
apparatus and governing dimensionless numbers are introduced in section 1.2. Section 1.3
analyses the behaviour of particle clouds in a still environment, starting from the reference
saltwater thermals in the canonical framework of Morton et al. (1956) in section 1.3.1. The
evolution of clouds is analysed by distinguishing two dynamical regimes, and we observe specific
effects resulting from the particulate nature of the turbulence forcing when clouds behave as
turbulent thermals. Section 1.4 analyses the additional influence of background rotation. Again
distinguishing two regimes, we observe that rotation inhibits most of the particulate effects
observed without rotation, and considerably increases the residence time of particles when they
fall. In section 1.5, main results are summed up and final remarks are made. Lists of all
experiments (table 1.2) and all notations (table 1.3) can be found in appendixes.

1.2 Experimental apparatus

1.2.1 Experimental setup

The apparatus is illustrated in figure 3.1. The experiments are performed in a Plexiglas tank of
height 100 cm and cross-section area 42×42 cm2 containing approximately 160 L of fresh water
(ρf = 998 kg.m−3, ν = 10−6 m2.s−1). The tank is filled long before the experiments to ensure
that water is at room temperature, i.e. 22 ◦C on average. The tank is fixed in the middle of a
rotating table whose angular velocity Ω varies from 0 (no rotation) to 20 rotations per minute
(rpm). A lid is placed on top of the tank to limit air motions above the free surface during
the experiments. A hole at the centre of the lid enables to insert a cylinder of inner diameter
Dcyl = 3.2 cm to release the buoyant material.

Clouds are either made of salt water, or a mixture of 26.1 mL of fresh water and a fixed mass
m0 = 1.0 g of spherical glass beads of density ρp = 2500 kg.m−3 and a mean radius rp ranging
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(a)

(b)

Figure 1.1: (a) Schematic of the experimental apparatus; see main text for additional details. (b)
Turbulent cloud falling with rhodamine. Dotted gray lines highlight the edges of the two filter holders.
Particles (respectively, rhodamine) are visible through the filter located on the left-hand side (respec-
tively, right-hand side).

from 2.5 µm to 500 µm (see discussion in section 1.2.3). In all cases, the buoyancy introduced
into the system is the same. Adding fresh water to particles has two motivations. First, in air,
small particles tend to cluster because of electrostatic interactions which are easily removed by
placing particles in water with a small amount of soap (typically one drop for 20 cl of water).
Secondly, if particles fall from air into water, we observe that they entrain some air with them,
form clusters, and expell air only gradually as ascending bubbles which are detrimental for the
detection of particles and might affect the particle dynamics of interest here. These effects
are therefore avoided; the reader is referred to Zhao et al. (2014) for more information about
clouds containing such initial clumps of particles. After the cylinder’s bottom nozzle has been
sealed by a latex membrane which is stretched and taped onto the cylinder itself, the buoyant
material is poured into the cylinder. Water in the cylinder always occupies a volume rising at
a height H0 = 3.3 cm above the latex membrane.

Initially there is no relative motion between water and the tank (either water and the tank
are motionless, or they are in solid body rotation with the rotating table). At t = 0 the
experiment starts by rupturing the latex membrane with a needle, releasing the content of the
cylinder; see figure 1.2 for an illustration. The 1-mm-thick tip of the needle is sharpened to
ensure an efficient and fast rupturing of the latex membrane in less than 0.02s according to the
videos recorded. Once the membrane retracts, particles are observed to fall out of the cylinder
because of their weight. For most particle sizes, the downward acceleration of particles quickly
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Figure 1.2: Rupturing (first frame) of the latex membrane, releasing rhodamine and glass beads whose
diameter is in the range 90− 150 µm. Photographs are recorded by a single monochrome camera with
no filter. Particles are sufficiently large to be distinguished from the continuous field of rhodamine.
The cylinder being transparent, the needle and recirculation of rhodamine are visible on the last two
photographs.

transmits to the fluid, the buoyant material rolls up and the cloud almost immediately becomes
turbulent.

Visualisations are performed in a vertical laser sheet with half-angle of divergence 30◦, using
a Powell lens and a laser of wavelength 532 nm with a power of 1 W or 1.5 W depending on
the series of experiments (Laser Quantum 532 nm CW laser 2 W). Since particles and water
have different motions, two identical PointGrey cameras are synchronised and record the same
experiment with two different filters. The first camera has a green filter (band-pass filter from
Edmund Optics, CWL 532 nm, FWHM 10 nm) to record the motion of glass beads which
reflect and refract the laser beam, while the second camera has an orange filter (high-pass filter
above 570 nm). By colouring the fluid inside the cylinder with rhodamine, the second camera
records the motion of the turbulent eddies which appear in orange in the laser sheet because
of the fluorescence of rhodamine. In doing so, there is no overlap of information between the
two cameras. Both of them save images in a format 960× 600 pixels, corresponding to a field
of view whose size is 45 cm in depth and 28 cm in width. Cameras are synchronised, recording
images at 50 frames per second (fps). To minimise effects of parallax, they are placed as close
as possible to one another, and as far as possible from the laser sheet. A calibration grid was
placed in the plane of the laser sheet and photographed by both cameras. This enables to define
a coordinate system for each of the two cameras, and to dewarp images so that synchronous
photographs can be sumperimposed using Python’s library OpenCV.

1.2.2 Initial conditions of release

The initial release of particles is notably controlled by the effective density of the fluid within
the cylinder, which depends on the volume fraction in particles. Two initial volume fractions
can be imposed. Either particles are stirred in the cylinder to form a suspension in water before
rupturing the membrane, and in that case the initial release is said to be dilute. Otherwise,
particles are left to settle before the experiment so that they form a compact layer at the bottom
of the cylinder, directly lying on the latex membrane, and in that case the initial release is said
to be compact.
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Since larger particles settle faster, only particles with rp ≤ 30 µm could be maintained
in suspension prior to puncturing the membrane. This is why to compare particle clouds
of different particle sizes, experiments have been performed with a compact release for all
particle ranges. Then, additionally, experiments have been performed with a dilute release
when feasible. The motivation for these dilute releases is twofold: it enables to assess the effect
of this initial condition on the cloud development, and it enables to compare the behaviour of
particles with respect to salt water clouds, for which salt is always dilute in the whole volume
of water within the cylinder.

Then, we want to consider a quasi-instantaneous release of particles, but the smallest ones
can take up to 7 min to settle over the depth of the cylinder. Hence, the mass excess m0 = 1 g
needs to be expelled from the cylinder. Yet, we are interested in the flow generated only by
the glass beads settling. A compromise consists in immersing the cylinder on the last 2.2 cm
of the 3.3 cm-high volume of water. Once the membrane is ruptured, the resulting hydrostatic
imbalance with the ambient fluid leads to a downward acceleration of the buoyant mixture
which is released on a much shorter time scale, at first order independent from the beads’ mean
radius and the dilute or compact initial conditions.

In order to assess the robustness of our protocol, let us determine the depth beyond which
this initial momentum has a negligible influence on the cloud evolution. When the buoyant
material comes out of the cylinder, friction on the inner walls of the cylinder as well as shear
on the sides of the buoyant fluid both generate circulation, forcing the buoyant fluid to roll up.
The initial acceleration of all the fluid in the cylinder due to the hydrostatic imbalance actually
adds some more circulation, which levels the difference between compact and dilute releases:
in fact, we observe that for both dilute and compact releases in the range rp ≤ 30 µm, all
clouds initially roll up and end up approximately spherical with typical size Dcyl at a depth of
order 1-2Dcyl. For a buoyant cloud with initial momentum, the Morton length (Morton, 1959;
Turner, 1986) quantifies the distance beyond which the cloud buoyancy predominates over the
initial momentum. For our experiments, the Morton length can be expressed [see equation
(A.15) in Deguen et al. (2011)]

lM =

[
(ρ0/ρf )

2U2
refD

3
cyl

g(ρ0/ρf − 1)

]1/4

, (1.1)

with g = 9.81 m.s−2. The initial cloud density ρ0 relevant for its dynamics is computed once
the cloud has rolled up as a sphere of radius Dcyl hence ρ0 = ρf + (1 − ρf/ρp)m0/(4πD

3
cyl/3).

Then, the typical cloud velocity Uref is prescribed by the cloud size and reduced gravity as

Uref =

√
g

(
1− ρf

ρ0

)
Dcyl, (1.2)

which is the same for all experiments. We find that lM ' Dcyl. Hence, after the cloud has
rolled up and travelled a distance lM , corresponding to a total distance of order 2-3Dcyl, the
influence of the initial momentum can be neglected.
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1.2.3 Particle distributions

Particles are provided by Sigmund Lindner (SiLibeads) in sets of polydisperse distributions. For
every set of particles, a Gaussian is fitted on the histogram of the distribution of particles’ radii.
This provides the average radius rp of the set of particles, as well as the standard deviation
σp with respect to rp. The ratio S = σp/rp is a measure of the polydispersity of a given set
of particles. The average radius rp and the ratio S are listed in table 1.1 for polydisperse,
monodisperse and bidisperse particle sets.

Monodisperse sets are obtained due to sieves, each of them corresponding to a given size
which truncates the Gaussian. The distribution obtained is integrated to compute the resulting
mean radius. The characteristic deviation σp is computed simply as the difference in radius
between rp and the cutoff value of the sieve.

Bidisperse sets are obtained by mixing together a percentage p of the total mass m0 = 1 g
from the monodisperse set 90− 100 µm, and a percentage 1− p of m0 from the monodisperse
set 140 − 150 µm. The characteristic deviation σp is computed as the difference between the
resulting average radius rp, and the average radius of the monodisperse set whose percentage
(p or 1− p) is the largest.
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1.2.4 Dimensionless numbers

In the present study, particles are considered to interact only through hydrodynamic inter-
actions. This assumption is based on three arguments: particles of size rp ≥ 2.5 µm are
non-Brownian at temperatures around 290-300K (Andreotti et al., 2012); soap was used during
experiments to avoid physico-chemical interactions; finally, collisions are expected to play little
part in the cloud dynamics except during the phase of acceleration when particles are released
from a compact layer in the cylinder. Hence, particles interact by inducing a velocity pertur-
bation on other particles with a magnitude decreasing with distance, or by wake interactions.

Thus, the following dimensional quantities describe the dynamics of the clouds and the
particles they are laden with: gravity g, the fluid density ρf and kinematic viscosity ν, the
particles’ density ρp, the total mass of particles m0, the average radius of particles rp, the stan-
dard deviation σp of the supposedly Gaussian distribution of particles’ radii, and finally the
diameter of the cylinder Dcyl. The tank angular velocity is not included yet; effects of rotation
are discussed in section 1.4. The tank dimensions are not considered, assuming they are large
enough not to influence the dynamics.

These parameters enable us to define the terminal settling velocity ws of a single particle
for the two following end members. Very small particles have a negligible particulate Reynolds
number Rep = 2rpws/ν � 1 and therefore move in a Stokes flow. Assuming sphericity, the
balance between their buoyancy and the linear Stokes drag leads to defining

wStokes
s =

2gr2
p(ρp − ρf )
9νρf

∝ r2
p. (1.3)

As for large particles characterised by a large particle Reynolds number Rep � 1, the balance
between their buoyancy and a quadratic drag law leads to

wNewton
s =

√
8g(ρp − ρf )

3Cdρf
rp ∝

√
rp, (1.4)

with Cd the drag coefficient, approximately constant and equal to 0.445 for a sphere in the
range Rep ∈ [750, 3.5× 105] (see Crowe et al., 2011). Several empirical expressions exist in the
literature to capture the smooth transition from regime (4.3) to regime (4.33) when rp increases.
For particulate Reynolds numbers lower than ∼800 as is the case here, a classical equation is
provided by the Schiller-Naumann correction to the Stokes velocity (Crowe et al., 2011):

ws =
wStokes
s

1 + 0.15Re0.687
p

. (1.5)

Finally, the eight quantities listed above involve three dimensions, thus according to the
Vaschy-Buckingham theorem, five dimensionless numbers are defined as listed below:

S =
σp
rp

; Np =
3m0

4πr3
pρp

; Π =
rp
Dcyl

; Rep =
2rpws
ν

; R =
ws
Uref

. (1.6)

The ratio S quantifies the dispersity of particle distributions. The total number of particles
Np plays an important part in the particles’ interactions, and governs the initial fall. The ratio
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Π is typically adequate to characterise the influence of the velocity perturbations induced by
a single particle at initial times when the cloud size is of order Dcyl (Subramanian and Koch,
2008; Pignatel et al., 2011). The particulate Reynolds number Rep compares advection and
molecular diffusion in the flow produced around a particle as it settles. Finally, particles and
water have different motions since particles have inertia, as quantified by their Rouse number
R which compares the inertia of a particle (through its terminal velocity ws) and that of the
cloud which sustains that particle. Since the reference fluid velocity Uref is the same for all
experiments (equation (3.1)), in this study the Rouse number varies only with the particles’ ra-
dius: the larger the particle, the larger its inertia, the larger the Rouse number. Dimensionless
numbers for each set of beads are listed in table 1.1, and appendix 1.A additionally provides a
complete list of the experiments performed.

1.3 Particle clouds in a still environment

1.3.1 The turbulent thermal as a one-phase reference

In this section, we focus on the release of salt water clouds in fresh water, and interpret our
results in the framework of Morton et al. (1956) (the paper hereafter abbreviated as MTT56),
whose equations have proved applicable in a multitude of contexts (see section 3.1), highlighting
the role of attractor of the model of turbulent thermal. We then use this purely fluid case to
highlight and understand any specificity due to the particulate nature of the turbulence forcing
in the next sections.

(a) (b)

Figure 1.3: (a) Salt-water cloud falling in still, fresh water. The time lapse between frames is 1.6s,
and all photographs are 45cm high. (b) Pixel-by-pixel standard deviation of light intensity during the
same experiment, over 8.0s.

The robustness of MTT56 comes from its integral description of the main physics of the
thermal as well as the small number of hypotheses required. The shape of the thermal is
expected to play little part on its dynamics, and it is approximated by a sphere of radius r(t)
and uniform density ρ(t) so that describing the thermal evolution only requires three variables:
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r(t), ρ(t), and the vertical velocity ż(t) = dz/dt whose integration leads to the thermal position
in depth z(t). Knowing the thermal velocity, these quantities can alternatively be computed as
functions of z: r(z), ρ(z), ż(z).

Figure 1.3 shows the evolution of a salt-water thermal of excess mass m0 = 1g released in the
same condition as any particle cloud. We observe that the turbulent cloud radius grows linearly
with depth. This is captured by MTT56 through the entrainment hypothesis. The turbulence
developing inside the cloud is considered responsible for a uniform inflow of ambient fluid into
the spherical thermal – a process called entrainment – with a characteristic inflow velocity ve.
The entrainment hypothesis states that this velocity is proportional to the sole characteristic
velocity scale of the system, the thermal vertical velocity ż, so that the entrainment velocity
reads

ve = αż, (1.7)

with α a positive constant called the coefficient of entrainment. From this model, the mass of
the thermal increases in time due to the uniform entrainment of ambient fluid over the thermal’s
surface. Neglecting any detrainment, i.e. any outflow of buoyant material which would be lost
in the wake (or stem) behind the thermal, the mass anomaly m0 remains constant within the
cloud. Finally the evolution of the cloud’s momentum is mainly driven by the constant buoyancy
force m0g, and mitigated by a quadratic drag term. The resulting equations of evolution are





d

dt

[
4

3
πr3ρ

]
= 4πr2veρf = 4πr2αżρf (1.8a)

d

dt

[
4

3
πr3(ρ− ρf )

]
=
dm0

dt
= 0 (1.8b)

d

dt

[
4

3
πr3ρż

]
= m0g − 1

2
ρf ż

2πr2CD (1.8c)

with CD a drag coefficient. Combining the equations of conservation of mass (1.8a) and mass
excess (1.8b) immediately yields ṙ = αż which shows that α directly quantifies the constant
growth rate of the thermal in depth with α = dr/dz. Figure 1.3 confirms the linear growth
of the turbulent thermal in depth with snapshots (figure 1.3a) and with the pixel-by-pixel
standard deviation of light intensity captured by the camera over 8.0 s of the cloud fall (figure
1.3b). Knowing the couple (r, ρ) at a given depth z0 enables to compute (r, ρ) at any depth z
from the sole knowledge of α and conservation of m0. Finally, integration of the whole model
shows that the cloud decelerates as it entrains ambient fluid. With no specific assumption
on CD, self-similar solutions can be found at large times, which scale like (see Escudier and
Maxworthy, 1973)

{
r ∼ z ∼ t1/2, (1.9a)

ż ∼ z−1 ∼ t−1/2, (1.9b)

In the present context, particle clouds follow this regime only after an initial phase of acceler-
ation and beyond the Morton length [equation (1.1)].



44Chapitre 1. Effects of particle size and background rotation on the settling of particle clouds

(a) R = 6.00× 10−4, ∆t = 2.5s (b)

(c) R = 7.57× 10−2, ∆t = 3s (d)

(e) R = 0.406, ∆t = 2s (f)

(g) R = 3.70, ∆t = 0.5s (h)

Figure 1.4: (a,c,e,g): Particle clouds falling for different Rouse numbers R in the absence of back-
ground rotation. The height of all snapshots is 45cm and the time lapse between two successive snap-
shots ∆t is indicated in each subtitle. (b,d,f,h): Pixel-by-pixel standard deviation of all photographs
taken during the experiment on the same row, of respective durations (b) 20s, (d) 28s, (f) 16s, (h)
3.4s. Bright dots in the background correspond to remaining particles from previous experiments which
have no influence during experiments.
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1.3.2 Thermal regime: specificities of particle-induced entrainment

The broad behaviour of particle clouds is now compared to the reference one-phase turbulent
thermals. Figure 1.4 presents snapshots of particle clouds for four different Rouse numbers. At
low Rouse numbers, clouds clearly appear to decelerate and linearly grow in depth, in much
the same way as salt-water thermals. Yet, for large Rouse numbers, defining a coefficient of
entrainment due to the cloud growth hardly seems feasible since the particle cloud spreads
little during its fall. This observation is confirmed by the pixel-by-pixel standard deviation of
light intensity computed over the fall of a cloud of Rouse number R = 3.70 (see figure 1.4h),
as opposed to similar visualisations for R ≤ 0.406 (see figure 1.4b). Note as well that for
R = 3.70, particles are observed to mostly fall vertically without swirling in eddies, as visible
due to the particle trajectories in figure 1.4h.

0 2 4 6 8

t [s]

0.02

0.03

0.04

0.05

0.06
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Figure 1.5: For a cloud of Rouse number R = 0.308, the main graph shows in dark solid line
( ) the average cloud front velocity up to t ' 9s after which the noise is too large. This velocity
is computed from second order finite differences of the cloud front position zf (t), itself shown in
inset ( ). The gray shaded area corresponds to the standard deviation due to averaging of zf (t)
from different realisations of the same experiment. On both curves are represented the model for the
thermal regime ( ) and the model of constant front velocity ( ).

These last observations emphasise a transition in the cloud dynamics which is due to a sepa-
ration between particles and turbulent eddies, hereafter simply referred to as separation, which
interrupts the turbulence forcing. This transition is confirmed by analysing the kinematics of
the cloud front whose depth is denoted zf (measuring techniques are described in Appendix
1.C). To do so, for a given Rouse number, the curves zf (t) from different realisations of the
same experiment are averaged. Then, the resulting curve is filtered with a moving average to
reduce noise, and the velocity żf is computed. Finally, two laws can be fitted on zf (t): either
we fit zf = C

√
t− t0 for the thermal regime where t0 and C are arbitrary constants, or we fit

an affine law on zf (t) which is adequate after separation has happened. Figure 1.5 shows that
after an initial duration of acceleration of the cloud front up to 2.5s, the latter decelerates in the
thermal regime (see red dashed curves in the range 2.5s-5.2s). This highlights the relevance of
the analogy between particle clouds and turbulent thermals described by MTT56, as previously
verified in the literature (e.g. Rahimipour and Wilkinson, 1992; Bush et al., 2003; Deguen et al.,
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2011). However, after some time, the cloud front velocity becomes constant; see blue dashed
curves in figure 1.5 after 5.2s. This transition is due to separation, which is further discussed
in section 1.3.3. We now exclusively focus on the cloud evolution before separation.

As mentioned in section 1.3.1, one of the main features of turbulent thermals is their ability
to efficiently entrain surrounding fluid. According to the literature, thermals typically entrain
with an average entrainment coefficient α = 0.25 ± 0.10 (Deguen et al., 2011; Landeau et al.,
2014), whose variability is due to the sensitivity of turbulence to initial conditions, and also to
the dependence of α on the experimental configuration. The coefficient of entrainment of all
clouds is measured following the procedure described in Appendix 1.D.1. Figure 1.6 shows the
entrainment capacity of particle clouds for all Rouse numbers, with respect to the reference
of salty thermals whose measured entrainment coefficient is in our case αsalt = 0.18 ± 0.02,
which lies in the usual range. Note the drastic decrease of the entrainment coefficient for Rouse
numbers above '0.3. This drop is directly due to particles of large Rouse number quickly
separating from turbulent eddies, resulting in a short-lived turbulence forcing and therefore a
low entrainment rate (see section 1.3.3). Most importantly for the rest of this study, two regions
are distinguished: clouds in the range R ≤ 1 go through the self-similar thermal regime, unlike
those in the range R > 1 (see the gray shaded area in figure 1.6) in which case α is still
measured but does not have the same meaning (see Appendix 1.D.1).

Then, considering clouds in the range R ≤ 1, two main observations can be made. The
first observation is that, in the thermal regime, particle clouds entrain more than salt water
clouds using the same experimental apparatus, and for the same mass excess. The second
observation is that this enhanced entrainment capacity operates most efficiently in a range of
Rouse numbers centered on R ' 0.3, since α/αsalt → 1 when the Rouse number vanishes to
zero, and α/αsalt → 0 when the Rouse number largely exceeds 0.3.
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Figure 1.6: Entrainment capacity of particle clouds with respect to the reference case αsalt = 0.18.
Symbols are listed in table 1.1. Red hatchings correspond to the errorbar for salt water whose Rouse
number virtually corresponds to R = 0. The gray shaded area highlights clouds which do not go through
the thermal regime.

This enhanced entrainment of particle-laden thermals compared to salt-water thermals is
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now interpreted in the light of past results on inertial particles. Particles of very large R hardly
respond to modifications of the flow around them because of their large inertia (Yoshimoto and
Goto, 2007), hence they tend to settle vertically, whatever the flow direction around them. On
the opposite, particles of vanishingly small R act as passive tracers in the fluid – salt water
corresponding to the asymptotic case R = 0. In the intermediate range where we observe that
α > αsalt, particles of finite inertia follow the fluid, yet they also gravitationally slip with respect
to the fluid in their vicinity (Nitsche and Batchelor, 1997). This gravitational slip is typically
modelled by a vertical terminal velocity ws which adds up to the local fluid velocity for particles
of low inertia (Balachandar and Eaton, 2010; Nasab and Garaud, 2021). Consequently, through
drag, such particles can accelerate the fluid and modify its streamlines so that the fluid follows
the particles due to two-way coupling (Balachandar and Eaton, 2010; Monchaux and Dejoan,
2017). A single particle may be too small to efficiently modify the flow around it, however the
more concentrated the particles, the more efficient their forcing (Balachandar and Eaton, 2010;
Monchaux and Dejoan, 2017; Nasab and Garaud, 2021).

In our experiments two effects are observed which modify the concentration of particles
inside the clouds. First, particles preferentially concentrate on the edges of eddies because their
density is larger than that of the ambient. This effect of preferential concentration or inertial
clustering is notably due to pressure effects centrifuging dense particles outside of eddies (see
Brandt and Coletti, 2022, for further details). It can be derived from theory (see Balachandar
and Eaton, 2010; McConnochie et al., 2021) and has been evidenced in numerous experimental
(Aliseda et al., 2002) and numerical (Nasab and Garaud, 2021; Yoshimoto and Goto, 2007)
past studies. Second, particles preferentially settle on the side of eddies that moves with a
downward velocity (parallel to +~g). This effect of fast-tracking or preferential sweeping has
been evidenced in numerical simulations (Maxey, 1987; Wang and Maxey, 1993), experiments
(Aliseda et al., 2002), and recently atmospheric flows (Li et al., 2021).

The combination of both phenomena is shown in figure 1.7a. In this snapshot, the particle
cloud has led to the formation of a vortex ring, whose cross-section evidences two vortical
structures, centered on the toroidal vortex core. Many particles settle on the edges of these two
vortices, and particles almost exclusively sweep on the downgoing side. Together, preferential
concentration and preferential sweeping lead particles to fall on the inner sides of these eddies
without rolling upwards with the fluid on the other side. Hence, the work of the buoyancy force
exerted on particles is always positive, and no turbulent kinetic energy needs to be converted
into potential energy to lift particles on the outer ascending side of those eddies. This enhances
the efficiency of the particulate forcing and consequently the entrainment rate of particle clouds
compared to salt-water thermals. Additionally, both phenomena increase the local effective
density of the fluid on the downgoing side of eddies where eddies are being forced by particles,
and they also enhance the gravitational slip of particle clusters with respect to the fluid; see in
particular (Aliseda et al., 2002). This enhances the capacity of concentrated particles to impose
their own trajectory to the fluid and force the turbulent flow through two-way coupling, as we
initially observe during the cloud acceleration for all R. All in all, figure 1.7c illustrates the
ability of particles to modify the flow and force a new eddy through two-way coupling. On
the first photograph particles aim at separating from a vortex, yet one observes the formation
of an additional eddy on the following frames. This is likely due to the large concentration
and fast downward velocity of the particles sweeping along the former vortex. This enhances
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(a)

(b)

(c)

Figure 1.7: (a) Particles (R = 0.304) preferentially fall along the down-going sides of eddies (image
height: 24.0cm). (b) Schematic of the situation photographed in (a), with particles going downward
(see dark arrows) without rolling upward on the up-going sides of eddies (see red dashed arrows which
are crossed out). (c) Illustration of the ability of particles (R = 0.308) to force a new eddy (cen-
tred on the white circle) after they separate from a former one which vanishes (centred on the red
circle). Each image is a pixel-by-pixel moving standard deviation of light intensity over 0.3s. The
time interval between frames is ∆t = 1.4s and their height is 20.7cm. See the supplemental material
Rouse0p308 0RPM.avi for an animation showing a particle cloud of Rouse number R = 0.308 falling
in a still ambient.
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entrainment and makes it longer-lasting.
Our observations of the enhancement of entrainment by particles contrast with the study of

McConnochie et al. (2021) who studied particle-laden turbulent plumes whose buoyancy was
due to two agents: particles as well as a difference in salinity. They observed that particles
modify the entrainment coefficient only when they settle in the direction opposite to the plume
fluid buoyancy flux. This modification was interpreted as being due to particle clusters crossing
the plume interface and interacting with it, which requires particles to settle opposing the fluid
buoyancy flux. The fact that, in the present study, particles modify the entrainment coefficient
as they fall down with the turbulent thermal, might be due to the very distinct nature of
a plume and a thermal: once the former reaches a steady state, particles evolve in a pre-
established stream, while the particles of a thermal evolve in a fundamentally unsteady flow
which develops because of their forcing. This distinction between plumes and thermals in the
context of particle-laden flows remains to be fully explored.

1.3.3 Separation

(a) R = 7.57× 10−2 (b) R = 0.308 (c) R = 1.48

Figure 1.8: Separation between glass beads (in gray/white) and rhodamine (in orange) for three
different Rouse numbers, for the same front depth.

To visualise separation, rhodamine was added to water in the cylinder of injection for a few
experiments, and snapshots can be visualised in figure 1.8. For R = 7.57× 10−2 no separation
is visible between particles (in gray/white) and rhodamine (in orange) over the depth of our
set-up. On the opposite for large particles of Rouse number R = 1.48, separation quickly takes
place even above z ' 10 cm, and the rapid increase of the distance between rhodamine and
particles emphasizes this process. Separation is a gradual phenomenon though, as evidenced by
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particles of intermediate Rouse number R = 0.308 which are still separating in the snapshot in
figure 1.8b. This process can be understood by the fact that when the thermal velocity becomes
lower than the particles’ settling velocity ws, the rms velocity in the cloud (which scales like
ve = αż) becomes unable to sustain particles in eddies (e.g. Rahimipour and Wilkinson, 1992;
Bush et al., 2003). Hence they separate at a depth zsep which is defined by ż(zsep) = ws. From
this definition of separation, and from the self-similar behaviour ż ∼ z−1 of MTT56 [equation
(1.9b)], the distance of separation is expected to scale like R−1, and we now attempt to verify
this scaling experimentally.

Appendix 1.D.2 presents the protocol to measure the depth of separation zsep between tur-
bulent eddies and particles. Essentially, when particles separate from eddies, the patterns made
by their trajectories transition from curved and randomly oriented (due to particles whirling
inside eddies) to mostly straight and vertical; this enables to measure zsep. Figure 1.9 shows the
depth of separation as measured in experiments, and the associated forced-fit curve following
a law zsep ∝ R−1. The curve confirms the decrease of zsep with a larger particle size under
the trend zsep ∝ R−1 provided by MTT56 in the thermal regime, which is also consistent with
previous results in the literature (see the scaling laws in Wang et al., 2014).
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Figure 1.9: Depth of separation of particles from eddies. The gray shaded area corresponds to the
range R > 1 (see figure 1.6) containing clouds which never behave as turbulent thermals. The dark
solid line corresponds to the scaling zsep ∝ R−1 obtained from the equations of Morton.

As soon as separation starts, the turbulent thermal has a decreasing mass excess which
eventually vanishes to zero. After that, particles fall in a quiescent fluid. Hence, particle clouds
can rigorously be considered as turbulent thermals only as long as particles have not separated
yet. This has led previous authors (Rahimipour and Wilkinson, 1992; Bush et al., 2003; Lai
et al., 2016) to distinguish mainly three regimes in the cloud’s evolution: (i) the acceleration
regime, (ii) the self-similar turbulent thermal regime of MTT56, and (iii) the swarm regime in
which particles settle (mostly) vertically in a quiescent fluid, while the turbulent eddies are left
behind particles and viscously decay. This latter regime is analysed in section 1.3.4. For now,
we focus on the formation of the swarm during separation.

All swarms change morphology during their fall. The swarms which originate from a tur-
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bulent thermal are shaped both by particles and by turbulent eddies over the course of sepa-
ration. This results in a variety of possible swarm morphologies. Monodisperse (figure 1.10a)
and polydisperse (figure 1.10b) swarms are illustrated in figure 1.10. We observe that monodis-
perse clouds produce thin swarms which are concentrated in particles and therefore very bright
on the camera. Conversely, polydisperse clouds produce swarms of larger height σz, which
keeps increasing in time because of the difference in settling velocities between the smallest
and largest particles. Consequently, the brightness of these polydisperse swarms decreases in
time (compare the brightness of the three snapshots in figure 1.10b). Finally bidisperse swarms
evidence a gradual splitting between two particle fronts (not shown here), due to the bimodal
distribution of particle sizes.

(a) R = 0.814, S = 0.07 (b) R = 0.696, S = 0.23

Figure 1.10: Morphology of swarms for a monodisperse (a) or polydisperse (b) distribution of parti-
cles. Colours are used to superimpose snapshots of a swarm at different times. Both photographs are
24.4cm-high, and the time delay between snapshots is (a) 1.6s., (b) 2.0s.

The role of turbulent eddies in shaping the swarm during separation can be visualised in
the Supplemental Material [Still-ambient-particles-and-rhodamine.avi (see the case R = 0.31)
and Rouse0p406 STD 0RPM.avi ]. Particles initially swirl within the turbulent thermal, until
separation starts, as can be assessed from the vertical motion of particles at the cloud front.
Then, two regions can be distinguished. On one hand, particles ahead of eddies have separated
and fall vertically at a constant velocity żf,s which is the (front) velocity of the swarm (hence
the subscript s), of order ws. On the other hand, particles in the eddies keep swirling and fall
faster than żf,s, say at a velocity

żp,e = żf,s + u(t), (1.10)

with u(t) > 0 the velocity excess. The width of the swarm is equal to that of the turbulent
region which feeds it with particles. During separation the turbulent cloud keeps growing so
that particles are gradually shed outwards in the swarm (see figures 1.10a-1.10b).

From these observations, we can propose a model of swarm formation in the framework of
MTT56. The description hereafter is for a cloud transitioning from thermal to swarm regime
(R ≤ 1), but it is also valid for a cloud which directly accelerates to the swarm regime (R >
1) if one cancels the velocity że(t) of eddies in equations (1.11) and (1.12). New notations
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are introduced to rigorously distinguish the behaviours of eddies, particles within eddies, and
particles which have separated from eddies.

During separation, consider that turbulent eddies fall with velocity że(t) (see the left column
in figure 1.11) and, for simplicity, assume that they remain in the same self-similar regime
despite the loss of particles. This notably implies that α remains constant during separation.
Then, the radii of both the patch of turbulent eddies and the nascent swarm increase at a rate

σ̇x(t) = αże(t). (1.11)

All particle sets are polydisperse to some extent. Hence, consider a cloud of minimum
(respectively maximum) Rouse number Rmin (respectively Rmax). The difference between the
maximum and minimum settling velocities reads ∆ws = ws(Rmax) − ws(Rmin) > 0. Since the
depth of separation zsep ∝ R−1 decreases with R, the cloud’s largest particles separate first,
with a velocity ws(Rmax) in the reference frame of the laboratory (see the left column in figure
1.11). Meanwhile, smaller particles keep falling through turbulent eddies. Assuming that the
drag and buoyancy of these smaller particles are balanced, their upper rear front falls with
velocity ws(Rmin) in the reference frame of eddies (right column in figure 1.11). Since eddies
fall at velocity że(t) with respect to the laboratory, it means that the smaller particles fall at
velocity że(t) +ws(Rmin) in the reference frame of the laboratory. Hence, the vertical extent of
the particle cloud detected by the cloud-tracking algorithm varies with a rate

σ̇z(t) = ws(Rmax)− (że(t) + ws(Rmin)) = ∆ws − że(t). (1.12)

Let us finally turn to the transfer of particles from eddies to the swarm. We just concluded
that in the reference frame of the laboratory, the velocity of the smallest particles inside the
turbulent eddies is że(t) + ws(Rmin). For the sake of simplicity, we adopt the definition żp,e =
że(t) + ws(Rmin). Since the largest particles separate first, we expect the swarm front to fall
with a velocity żf,s = ws(Rmax). Combining these expressions of żp,e and żf,s with equation
(1.10), we find u(t) = że(t) −∆ws. Consequently the volume flux jp(t) = φ(t)u(t) of particles
shed in the emerging swarm is

jp(t) = φ(t)[że(t)−∆ws] = −φ(t)σ̇z(t). (1.13)

In equation (1.13), φ(t) = Np[rp/r(t)]
3 is the supposedly uniform particle volume fraction within

turbulent eddies, with Np the total number of particles in the cloud, rp their radius and r(t)
the radius of the supposedly spherical cloud in the framework of MTT56. The whole process
of swarm formation is sketched in figure 1.11.

The expressions of σ̇x(t), σ̇z(t) and jp(t) are controlled by the velocity of eddies że(t) which
cannot instantaneously vanish as soon as particles reach the depth zsep(Rmax). Neglecting poly-
dispersity for now (∆ws = 0), the fact that eddies keep falling explains why the particle cloud is
necessarily contracted (σ̇z < 0) and thus particles are compacted (jp > 0) from the thermal to
the swarm: this explains why monodisperse swarms have a large aspect ratio σx/σz even though
they originate from an approximately spherical cloud. During separation, eddies keep widening
(σ̇x > 0) so that particles are gradually shed outward and behind former particles. As a result
the swarm takes a bowl shape (see figure 1.10 and Wang et al., 2014, for a clear numerical
illustration). However, polydispersity acts against the cloud contraction, and therefore against
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Figure 1.11: Sketch of the process of cloud contraction and compaction of particles during separation
for że(t) > ∆ws.

the compaction of particles. Once separation is over, in the swarm regime the volume flux jp
loses meaning, the cloud keeps a constant lateral extension (σ̇x = 0), and it grows vertically at
a constant rate σ̇z = ∆ws exclusively governed by polydispersity (see below, section 1.3.4).

This simple description captures the evolution of large polydisperse clouds whose particles
do seem to keep the entrainment active during separation; see the Supplemental Material Still-
ambient-particles-and-rhodamine.avi for R = 0.308. It also captures the evolution of particle
clouds which never go through the thermal regime for R > 1 (see discussion in section 1.3.4).
To sum up, the larger R, the lower the depth of separation, hence the thermal at the start of
contraction so the more efficient contraction; a lower depth of separation also implies that the
thermal has a smaller size, and so does the swarm. Polydispersity, however, acts to increase
the swarm height, hence monodisperse swarms are the thinnest (see figure 1.10).

Note that the role of R in shaping clouds is not straightforward: the dependency of σ̇z(t)
and jp(t) with R is not explicit in equations (1.12)-(1.13). One can easily show that φ(t) is
independent of R for a spherical cloud of constant m0, and the velocity difference ∆ws is not
a function of the mean settling velocity ws. The role of R is only implicit in the velocity of
eddies że(t): since during separation the eddies are expected to fall at velocity ż(zsep) = ws(R),
at first order we have że(t) ' ż(zsep) = ws(R) during separation. Consequently, for a given
velocity difference ∆ws, a cloud of larger particles experiences a larger że(t) during separation
and compacts more than a cloud of smaller particles (see the expression of σ̇z in equation
(1.13)). This trend is consistent with the observation of our clouds in experiments.

1.3.4 Swarm regime

Swarms are produced in different ways depending on the size of particles. Particles in the
range R ≤ 1 initially accelerate, then transition to the thermal regime and finally separate
as a swarm. On the opposite, particles in the range R > 1 directly transition from their
initial acceleration to the swarm regime, which is characterised by a constant fall velocity. This
distinction introduced in figure 1.6 is confirmed in figure 1.12a, which complements the previous
figure 1.5 with the kinematics of a cloud directly accelerating to the swarm regime; see blue
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dashed curves for R = 1.48.
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Figure 1.12: (a) Kinematics of two clouds of different Rouse numbers. ( ) Average cloud front
position in time with the standard deviation due to averaging indicated in gray shaded area; ( )
fit of thermal regime; ( ) fit of swarm regime. (b)  Average cloud front velocity żf,s during the
swarm phase;  maximum cloud front velocity żf,max; ( ) line of equation żf = ws. The red arrow
shows the measured value for the asymptotic limit R → 0 corresponding to salty thermals, and the
gray shaded area corresponds to clouds which never behave as a turbulent thermal.

Recall that particles are expected to separate from eddies at their terminal velocity so that
the constant swarm velocity żf,s should be of order ws. Particles having R < 0.2 separate too
deep in the tank for the swarm regime to be analysed. For other clouds, the constant velocity żf,s

is measured and visible in figure 1.12b in dark symbols. Up to a constant offset of order O(1),
measurements prove to be reasonably close to the reference value ws in dark solid line, all the
more as R is larger. The fact that swarms of smaller particles fall faster than ws is interpreted
as a consequence of the capacity of numerous smaller particles to drag fluid downward with
them through their hydrodynamical interactions by displacing fluid (Yamamoto et al., 2015;
Pignatel et al., 2011), whereas fewer larger particles behave individually and modify only the
flow close to themselves in a small wake (Subramanian and Koch, 2008).

The maximum cloud front velocity żf,max measured during every experiment is also computed
and shown with red symbols in figure 1.12b. As R increases, the velocities żf,s and żf,max get
closer. This is due to the reduced duration of the thermal regime, which is ultimately shut off,
leading clouds of large Rouse number to directly accelerate to reach their maximum velocity as
a single particle would, hence żf,max ' ws.

1.4 Particle clouds in a rotating environment

1.4.1 Formation of a columnar flow

From the previous section, we can expect – as the following section will confirm – that clouds
containing particles of vanishingly small Rouse number behave similarly as salt-water clouds,
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(a) Ω = 0rpm (b)

(c) Ω = 5rpm (d)

(e) Ω = 10rpm (f)

(g) Ω = 20rpm (h)

Figure 1.13: (a,c,e,g): Salt water clouds for varying Ω. The time lapse between snapshots is always
1.6s, and photographs are always 45cm-high. When observable, the depth zf,col where the cloud be-
comes columnar is indicated by a white arrow. (b,d,f,h): Pixel-by-pixel average of light intensity of all
photographs taken during the experiment on the same row, of respective duration (b) 8.3s, (d) 9.1s,
(f) 9.8s, (h) 7.8s.
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and the larger R the larger the discrepancy between their behaviours. Therefore, we start by
analysing the influence of rotation on salt-water clouds.

In figure 1.13, the most striking observation is that rotation interrupts entrainment at some
depth zf,col, marking a transition from a regime of expanding cloud to a vortical columnar
flow of constant radial extension for z ≥ zf,col (see white arrows in figures 1.13c and 1.13e;
the transition is also visible in a video in the Supplemental Material [SaltWater 10RPM.avi ]).
Initially the cloud inertia is large, hence as long as the cloud is expanding, one may neglect the
influence of rotation and consider that the cloud follows the model of MTT56: the cloud grows
and decelerates due to the entrainment of ambient fluid, gradually reducing the cloud inertia.
Simultaneously, entrainment enables the ambient fluid in solid body rotation to gradually pen-
etrate through the turbulent thermal and increase its total kinetic momentum. The transition
is expected to happen when the Coriolis force predominates over the cloud inertia (Ayotte and
Fernando, 1994; Helfrich, 1994; Fernando et al., 1998). This can be quantified with a Rossby
number based on the inflow of ambient fluid at the thermal interface. There, the entrained
fluid is subject to the Coriolis force 2Ωve with ve the entrainment velocity [equation (1.7)], and
its inertia reads (żf/r)ve, leading to

Ro(z) =
żf

2Ωr
. (1.14)

The front velocity żf is used rather than ż because the front is easily traceable from videos,
and more meaningful due to a modification of the residence time of particles when Ω > 0, as
discussed in section 1.4.4.
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Figure 1.14: Transitional Rossby number Rocol computed at depth z ≥ zf,col. The inset validates
the scaling Rocol ' ws/ΩDcyl in the range R > 1 (gray shaded area) corresponding to clouds which
are columnar due to particles falling as swarms. Colour code: ( ) Ω = 5rpm, ( ) Ω = 10rpm, ( )
Ω = 20rpm.

The transition is expected when the Rossby number is of order unity. For simplicity and
up to a constant factor, we will consider Rocol = Ro(zf,col) = 1 as the condition of transition to
a vortical columnar flow. To test this condition, we compute the transitional Rossby number
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from the automatic cloud-tracking algorithm of Appendix 1.C. The depth of transition is defined
due a change in the clouds’ kinematics, from an initial phase of deceleration when z < zf,col

to a phase of constant velocity when z > zf,col (see section 1.4.4). Then, measurements of the
Rossby number żf (z)/2Ωσx(z) are approximately constant for z ≥ zf,col, hence the values of
this Rossby number are averaged for z ≥ zf,col where noise is low enough. Results are shown
in figure 1.14 in ordinate, as a function of R. For any given Ω, measurements confirm that
Rocol ' 1 within the uncertainty margin of experiments in the range R ≤ 1. Therefore, in a
rotating environment, this range of Rouse numbers corresponds to clouds whose particles fall
in a vortical columnar flow below zf,col.

Before transition Ro(z) > 1 so inertia predominates over the Coriolis force, and if one
neglects rotation, clouds are expected to behave as turbulent thermals. According to this
simple picture, which is rigorously applicable when Ro(z) � 1, the condition Rocol = 1 yields
zf,col ∼ Ω−1/2. Although we lack additional values of Ω to quantitatively confirm this scaling, it
is compatible with our present measurements made for three different values of Ω > 0, and was
already verified in past experiments with one-phase thermals (see Ayotte and Fernando, 1994;
Helfrich, 1994). Thus, the faster the spinning, the lower the depth of transition, as observed in
figure 1.13.

In figure 1.14, in the range R > 1 the transitional Rossby number Rocol is larger than unity.
This is because such clouds are columnar not due to rotation, but because particles behave as
swarms. Hence particles fall with a constant velocity of order ws and clouds hardly grow so
their diameter is approximately equal to Dcyl. Consequently Rocol ' ws/ΩDcyl, as confirmed
by the inset of figure 1.14.

1.4.2 Thermal regime with background rotation: entrainment lev-
elling

Let us focus on the evolution of clouds before the transition to a vortical columnar flow. As
long as Ro(z) > 1 and after a phase of acceleration, the cloud is considered to evolve as a
turbulent thermal which entrains ambient fluid and grows linearly in depth. The entrainment
capacity of all particle clouds is compared to the reference of salt water thermals in figure 1.15.
This entrainment capacity is not presented for Ω = 20 rpm because at such rotation rate, the
depth of transition zf,col is too low for the entrainment rate to be measurable above zf,col.

At both Ω = 5 rpm (figure 1.15a) and Ω = 10 rpm (figure 1.15b), the entrainment coefficient
suddenly drops for R > 1 as previously seen for Ω = 0 rpm. This is again due to particles
decoupling from the fluid due to their inertia. Most interestingly, in the range R ≤ 1 figures
1.15a and 1.15b show that R hardly has any influence on α/αsalt, and the entrainment capacity
α is levelled to a value close to αsalt. This contrasts with observations at Ω = 0 in figure 1.6.
In other words, because of rotation, particulate effects appear to be inoperative, hence particle
clouds entrain approximately as much as their salt-water counterparts, as evidenced by the
overlap of most data points with the errorbar of αsalt in red hatchings.

It may come as a surprise that rotation suppresses any local maximum value of α/αsalt in the
range z < zf,col even though Ro(z < zf,col) > 1 i.e. inertia predominates over the Coriolis force.
In a still environment, we observe an enhancement of the entrainment rate for R ' 0.3 where
particles concentrate, especially in the peripheral eddies of the particle cloud (see figure 1.7).
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Figure 1.15: Entrainment capacity of particle clouds for different Rouse numbers at (a) Ω = 5rpm
and (b) Ω = 10rpm. For further information on colours and symbols, see figure 1.6.

At the particles’ scale, the Coriolis force has a negligible dynamical influence (it is three to four
orders of magnitude lower than the particles’ inertia), so the disappearance of the enhancement
of α is necessarily due to the influence of the Coriolis force on the fluid. This influence acts
before z = zf,col, because the condition Ro(zf,col) = 1 holds for a transition of the entire
cloud, i.e. when rotation starts to fully govern the cloud dynamics. Conversely, the particulate
effects at stake are rather localised at the interface between the cloud and the ambient fluid,
where the entrainment flux affects the flow as soon as the inflow starts. Consequently, rotation
is expected to have a non-negligible influence on the outer shell of the cloud for a Rossby
number Ro(z) larger than unity (i.e. before zf,col is reached) by modifying the structure of the
flow and gradually tilting vortices along ~ez. Such modifications likely prevent particles from
concentrating and sweeping on the downward sides of eddies, thus switching particulate effects
off. Because in our experiments at Ω ≥ 5 rpm, the Rossby number never exceeds 6 when
R ≤ 1, clouds are never sufficiently inertial for their interface to be unaffected by rotation
(as pointed out by Frank et al. (2017); Fabregat Tomàs et al. (2017) in the case of continuous
injections of buoyancy, rotation modifies a plume’s dynamics even for modest Rossby numbers;
furthermore, rotation eventually influences any plume as long as its injection is long enough,
due to the conservation of angular momentum, see Frank et al. (2017)). Although the study
of Sutherland et al. (2021) bears upon the behaviour of plumes in background rotation, it
inspired our reflections on the transition to vortical columnar flows and we refer the reader
to this study for additional information on the flow that develops with a starting plume in
background rotation. Further investigation on the behaviour of particles and the structure of
the flow close to the interface requires additional visualisations of particles in horizontal planes
and quantification of the velocity field, which is beyond the scope of the present study.

Another ingredient which may act to inhibit particulate effects is the centrifugal force. In
fact, although this force is negligible compared to gravity (the ratio rΩ2/g is only of order
10−1 for the largest rotation rate Ω = 20rpm and for r = 7Dcyl which corresponds to the
maximum radial distance to the axis of rotation), depending on the value of Ω we observe that
the centrifugal force due to the rotating table is comparable with the centrifugal force exerted
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on particles when they swirl in eddies at 0rpm. Hence, the centrifugal force due to Ω > 0 may
switch off preferential concentration as well as preferential sweeping, so that particles cannot
concentrate to force the flow through two-way coupling.

1.4.3 Swarm regime

Figure 1.16a illustrates the influence of rotation due to the overlay of integral images for dif-
ferent rotation rates and identical Rouse numbers: the faster the rotation, the narrower the
column (see also the Supplemental Material Rouse0p406 0-5-10RPM.avi), which is consistent
with past observations for miscible thermals (Ayotte and Fernando, 1994; Helfrich, 1994) and
bubble-laden plumes (Frank et al., 2021). To confirm this observation, we perform quantitative
measurements of the width of columns through the quantity σx,∞. For a given experiment,
it corresponds to the average value of σx(z) (the cloud width detected by the cloud-tracking
algorithm; see appendix 1.C) after it becomes approximately constant. Figure 1.16b confirms
that the larger Ω, the narrower the column. For Ω = 20 rpm, the column half width is ap-
proximately σx,∞ = Dcyl/2 because zf,col is so low that the cloud has no time to grow through
turbulent entrainment before becoming columnar, so it remains as large as the cylinder of in-
jection. Similarly, all clouds in the range R > 1 never grow as a thermal and therefore have a
width σx,∞ = Dcyl/2.

The decreasing column width with increasing Ω can be explained from geometrical argu-
ments. Before transition when Ro(z) > 1, for simplicity one may assume that clouds behave
as self-similar turbulent thermals. Then, from the scalings (1.9a)-(1.9b) of MTT56, the width
of a cloud should scale like ∼ Ω−1/2 when zf = zf,col, as argued and verified by Ayotte and
Fernando (1994); Helfrich (1994). Our experiments are performed for three different values of
Ω > 0 which is insufficient to quantitatively confirm this scaling, yet we note that it is com-
patible with our present measurements, using σx,∞ as a measurement of the cloud radius at
z = zf,col. In other words, as Ω increases, the condition Ro(z) = 1 is reached at lower depths
hence columns are narrower.

A remark should be made on the fact that the constant width of columns is a robust ob-
servation for low Rouse numbers, but for large Rouse numbers it is an approximation whose
accuracy is quantified by the error bars in figure 1.16b. In fact, for the largest Rouse numbers,
particles ultimately fall as swarms. In the absence of background rotation, the latter slowly
expand along their fall. In fact, Subramanian and Koch (2008) in the range Rep � 1, and
later Daniel et al. (2009) in the range Rep ∈[93-425], showed that hydrodynamical interactions
between particles result in a growth of swarms as σx ∼ t1/3. Because of the variability between
several realisations, and due to our limited field of view after separation happens, our measure-
ments do not enable us to discriminate between a sublinear or linear evolution of σx in depth
for the swarm regime. Hence, we compute indicative constant values of the growth rate of
swarms dσx/dz obtained from linear regressions in the range z > zsep if Ω = 0, and we perform
the same analysis in the range zf > zf,col when Ω > 0. Results are shown in figure 1.17 for
clouds which slightly grow indeed, behaving as swarms. In the range R > 1, we observe that
the more inertial the particles, the more the curves collapse on the dark symbols for Ω = 0,
indicating that particles are less and less sensitive to rotation due to their decoupling from the
fluid. In the range R ≤ 1, the minimum Rouse number for which dσx/dz > 0 is measurable
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Figure 1.16: (a) Overlay of colourised images of height 37.8cm, corresponding to pixel-by-pixel
standard deviations of light intensity of three different experiments of Rouse number R = 0.168 at
0rpm (blue), 5rpm (cyan) and 20rpm (white). (b) Dimensionless width of the rotating columns in the
range z ≥ zf,col as a function of R. Arrows and their errorbars correspond to values for salty thermals.
Colour code: ( ) Ω = 5rpm, ( ) Ω = 10rpm, ( ) Ω = 20rpm.

tends to increase with Ω; additionally, for a given Rouse number, the larger Ω the more dσx/dz
differs from the reference values in a still environment. Both of these observations are due to
the larger azimuthal inertia of the fluid and the increasing stiffening of radial motions when Ω
increases, which require a larger particle inertia to be overcome.
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Figure 1.17: Lateral growth rate of clouds which behave as swarms and thus slightly grow in depth.
Measurements are performed with least squares linear regressions on σx(z), i.e. assuming that dσx/dz
is constant.

1.4.4 Kinematics and residence time

The influence of rotation on a cloud front velocity is now assessed. The front velocity is
observed to be approximately constant below the depth zf,col. Since we can hardly distinguish
between particles which fall in a vortical columnar flow, and swarms which are decoupled from
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the fluid, in both cases the constant velocity for z > zf,col is denoted żf,s to be consistent
with notations used for clouds in a still environment, and we talk about a swarm regime.
This velocity is determined from a linear fit of zf (t) as illustrated in figure 1.18a. Results for
the velocities are shown in figure 1.18b. In the range R > 1, the influence of Ω noticeably
decreases with increasing R and curves collapse on the Ω = 0 curve. This is due to particles
being more and more insensitive to the swirling flow, especially as Ω is lower. In the range
R ≤ 1, the larger the rotation rate, the larger the front velocity (see also the Supplemental
Material Rouse0p406 0-5-10RPM.avi). This trend is mainly interpreted through the reduction
of the column radius r ' σx,∞ (see figure 1.16b) which, in turn, increases the particle volume
fraction φ = 3m0/4πρpr

3. From a macroscopic point of view, this results in a larger effective
cloud density ρ = φρp + (1 − φ)ρf , enhancing the cloud velocity through the reduced gravity
g(ρ/ρf − 1).

It should be mentioned that fitting an affine model on the average curve zf (t) is at odds
with past measurements which seem in agreement with the scaling zf (t) ∼ t1/2 proposed by
Ayotte and Fernando (1994) and Helfrich (1994). There seems to be no physical reason for
columnar clouds to keep decelerating as turbulent thermals following the law zf (t) ∼ t1/2 after
the turbulent entrainment and lateral cloud growth are interrupted by rotation, thus cancelling
the mixing drag. Conversely, the previous arguments are consistent with a constant cloud front
velocity. Yet, we still note a subtle decrease of the clouds’ velocity in time for the lowest Rouse
numbers. This slight decrease is ultimately expected since a lot of the buoyant material remains
in suspension behind the cloud front, to such an extent that the cloud front gradually thins
out (see figure 1.13) thus reducing the front effective density and velocity. We expect the front
deceleration to depend on the rate of detrainment of buoyant material in the columnar cloud
wake, which cannot be measured from our planar visualisations.

Further understanding can come from analysing how particles distribute and settle in colum-
nar clouds. Figure 1.19 combines snapshots and Hovmöller diagrams of the light intensity
obtained for every image of an experiment after averaging the values of all pixels along every
row. For very large Rouse numbers (see figures 1.19j-l), particles decouple from the fluid due to
their inertia and fall as swarms with a constant velocity. For lower Rouse numbers (see figures
1.19a-i), compared to clouds falling in a still environment, the Hovmöller diagrams confirm
that due to rotation, the cloud front velocity is approximately constant and detrainment is en-
hanced since the residence time of particles at any depth is visibly increased. On the Hovmöller
diagrams, the fast concentrated frontal blob falling with constant velocity corresponds to the
cloud. Conversely, the slow dilute region where particles settle on a much larger time scale on
average corresponds to the stem of detrained particles (see respectively red and white regions
in figures 1.19g-h). Furthermore, images with rhodamine confirm that the frontal blob corre-
sponds to the turbulent cloud initially dyed with rhodamine, since this blob drags rhodamine
down the tank (see figure 1.19i in particular). Thus, detrainment is enhanced by rotation; in
addition, we observe that the frontal blob laterally shrinks as it falls in the tank. These obser-
vations might result from the interaction between the rotating ambient and the turbulent cloud
at its interface, where the cloud seems to be gradually peeled off by a strong shear, thereby
switching off particulate effects. Further investigation would require additional observation in
a horizontal plane, as well as measurements of the fluid velocity field.
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Figure 1.18: (a) Examples of the determination of the constant front velocity during the swarm
regime. Solid lines correspond to zf (t) averaged over all realisations, and shaded areas correspond to
uncertainty margins, which are extremely small for large Rouse numbers. Colours vary with the Rouse
number, and the curves are horizontally shifted for Ω = 10 rpm and Ω = 20 rpm for clarity. The
linear fits are shown as dotted blue lines in the time ranges that minimise the error. (b) Evolution of
the cloud front velocity in the swarm regime for various angular velocities of the rotating table. Arrows
and their errorbars correspond to values for salty thermals.

1.5 Summary and conclusion

Instantaneous releases of a buoyant material in still water behave differently if the material
is salt water or heavy particles. Particle clouds initially behave as turbulent thermals, and
the difference manifests through an increase of their entrainment capacity compared to salty
clouds, with a maximum of enhancement for a finite inertia corresponding to R ' 0.3 (figure
1.6). The origin of this enhancement likely stems from particulate effects which have already
been observed in canonical turbulent flows, mainly preferential concentration and preferential
sweeping. A second difference is due to a transition from the thermal regime to the swarm
regime because particles decouple from turbulent eddies due to their inertia and eventually
separate from them.

Adding background rotation, the particulate enhancement of entrainment is inhibited (figure
1.15), likely due to the influence of the Coriolis force on the inflow of entrained fluid at the cloud
interface. When the Coriolis force predominates on the dynamics of the whole cloud (Ro ≤ 1),
the latter transitions to a regime of vortical columnar flow (figure 1.14). Together with the
decoupling of particles from the flow (separation), this transition adds a new limitation on the
duration of turbulence. The model of Morton et al. (1956) appears like an efficient framework
to anticipate the different regimes experienced by the particle clouds throughout their fall.

Polydisperse, bidisperse and monodisperse particle sets were used to assess the role of poly-
dispersity in the clouds dynamics. It appears that polydispersity plays little part in turbulent
clouds and vortical columnar flows. It essentially modifies the morphology of swarms during
and after separation (section 1.3.3).
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Figure 1.19: Left and middle columns respectively correspond to the Hovmöller diagrams of the
horizontally-averaged light intensity of clouds falling respectively at 0rpm and 10rpm. Every row
corresponds to a different Rouse number as indicated on the left-hand side. Right column: snapshots
of particles falling with rhodamine at 10rpm.
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It is worth mentioning that the inhibition of the enhancement of entrainment due to back-
ground rotation is likely due to the fact that the clouds’ inertia is not large enough for them
to be completely insensitive to rotation. Increasing their initial inertia by releasing a larger
mass excess m0 could enable to observe a range of depths where rotation leaves them un-
affected. Additional measurements for other (lower) values of Ω would also be beneficial to
extract quantitative scalings with the rotation speed Ω.

Some open questions remain. According to the literature on particle-laden turbulent flows
(e.g. Balachandar and Eaton, 2010; Monchaux and Dejoan, 2017) we expect inertial effects to
be optimal when the ratio of the settling velocity ws over the local flow velocity within the
cloud is of order one – in other words when a local Rouse number is of order unity. For our
smallest particles, this velocity ratio remains small because the clouds never fall deep enough
to decelerate until this local Rouse number becomes of order unity. The entrainment rates of
turbulent thermals and our clouds are constant before separation. Yet, if α varies on a length
scale larger than our field of view (so that its variation could not be assessed), one can imagine
that in a larger tank, these clouds would experience a further increase of α when the local
Rouse number gets close to unity. This hypothesis cannot be ruled out without additional
experiments at a larger scale.

Further work on such particle clouds requires to quantify the flow produced by particles
through PIV in a vertical laser sheet. Additional visualisations of the glass beads and of PIV
particles in horizontal planes would prove enlightening to understand the structure of clouds
in the presence of background rotation. It could clarify the mechanism through which the
influence of rotation gradually contaminates an entire cloud from its periphery to its entirety,
following similar work on plumes (Sutherland et al., 2021). To this end, we would also benefit
from experiments at a larger scale with a larger mass excess m0 to better separate scales and
dynamical regimes.
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1.A List of experiments

Table 1.2 lists the number of experiments processed for each couple (Ω,R). Numbers tend to
be higher when particles are more sensitive to initial conditions, or when measurements are
very sensitive to noise because of the considerable dilution of particles when the cloud falls.
Numbers also vary because some experiments were not processed, because clouds occasionally
went out of the laser sheet, or pieces of latex membrane fell with clouds in the laser sheet,
introducing a bias in measurements.
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Ω

R Salt
water

6.00
×10−4

7.57
×10−2 #

7.57
×10−2  

0.308 0.696 1.48 2.73 3.70

0 rpm 6 5 16 8 5 6 5 4 10

5 rpm 12 0 19 7 15 10 10 5 5

10 rpm 13 0 21 6 15 9 11 10 5

20 rpm 17 0 18 3 12 15 15 5 9

Ω

R
0.168 0.406 0.814 4.13 0.210 0.255 0.304 0.354

0 rpm 8 5 6 6 6 3 2 4

5 rpm 9 14 9 5 4 4 4 4

10 rpm 10 5 5 5 5 7 5 5

20 rpm 5 6 5 5 6 5 5 5

Table 1.2: Number of experiments which are processed for each couple (Ω,R). For R = 6.00× 10−4,
experiments were conducted only to determine the entrainment coefficient of clouds at 0rpm (see section
1.3.1).

1.B List of notations

Table 1.3 lists the notations used in this study for reference.



66Chapitre 1. Effects of particle size and background rotation on the settling of particle clouds

Defined in Variable Description
Section 3.2.1 ρf Density of ambient fluid
Section 3.2.1 ν Viscosity of ambient fluid
Section 3.2.1 Ω Angular velocity of the rotating table
Section 3.2.1 Dcyl Diameter of the cylinder
Section 3.2.1 m0 Total mass excess (1g)
Section 3.2.1 ρp Density of the glass beads
Section 3.2.1 rp Mean radius of a particle set
Section 3.2.1 H0 Water height above the latex membrane
Section 1.2.2 lM Morton length
Section 1.2.2 g Acceleration of gravity
Section 1.2.2 ρ0 Initial cloud density
Section 1.2.2 Uref Reference velocity of clouds
Section 1.2.3 σp Standard deviation of a distribution of particles’ radii
Section 1.2.3 S Dimensionless number quantifying polydispersity
Section 1.2.3 p A percentage to define bidisperse particle sets
Section 3.2.2 ws Terminal velocity of a single particle
Section 3.2.2 Rep Particulate Reynolds number
Section 3.2.2 wStokes

s Stokes terminal velocity
Section 3.2.2 wNewton

s Newton’s terminal velocity
Section 3.2.2 Cd Drag coefficient of a spherical particle
Section 3.2.2 Np Total number of particles in a cloud
Section 3.2.2 Π Dimensionless average radius of a particle set
Section 3.2.2 R Rouse number
Section 1.3.1 r Radius of a spherical thermal
Section 1.3.1 ρ Density of a uniform spherical thermal
Section 1.3.1 z Vertical position of the centre of mass of a uniform spherical thermal
Section 1.3.1 ż Vertical velocity of the centre of mass of a thermal; by extension in

experiments, vertical velocity of the barycentre of particles within a cloud
Section 1.3.1 ve Entrainment velocity
Section 1.3.1 α Coefficient of entrainment
Section 1.3.1 CD Drag coefficient of a spherical thermal
Section 1.3.2 zf Depth of a cloud’s front
Section 1.3.2 żf Vertical velocity of a cloud’s front
Section 1.3.2 αsalt Entrainment coefficient of salt water thermals
Section 1.3.3 zsep Depth of separation between particles and eddies
Section 1.3.3 σx Radius of a cloud computed as a standard deviation
Section 1.3.3 σz Height of a cloud computed as a standard deviation
Section 1.3.3 żf,s Constant vertical front velocity in the swarm or vortical columnar regimes
Section 1.3.3 żp,e During separation: vertical velocity of particles still present inside eddies
Section 1.3.3 u(t) During separation: velocity excess of swirling particles wrt separated particles
Section 1.3.3 że During separation: vertical velocity of eddies
Section 1.3.3 σ̇x Growth rate of the cloud radius
Section 1.3.3 σ̇z Growth rate of the cloud height
Section 1.3.3 Rmin Rouse number of the smallest particles within a cloud
Section 1.3.3 Rmax Rouse number of the largest particles within a cloud
Section 1.3.3 ∆ws Difference of terminal velocities between the largest and smallest particles
Section 1.3.3 jp During separation: volume flux of particles shed in the emerging swarm
Section 1.3.3 φ Particles’ volume fraction
Section 1.3.4 żf,max Maximum cloud front velocity
Section 1.4.1 zf,col Depth of transition from a thermal to a vortical columnar flow
Section 1.4.1 Ro(z) Cloud Rossby number
Section 1.4.1 Rocol Rossby number computed at the depth zf,col
Section 1.4.3 σx,∞ (Possibly asymptotically) constant radius of a vortical columnar cloud
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Defined in Variable Description
Appendix 1.C N0 Otsu’s method: number of pixels in class 0
Appendix 1.C N1 Otsu’s method: number of pixels in class 1
Appendix 1.C I0 Otsu’s method: average intensity in class 0
Appendix 1.C I1 Otsu’s method: average intensity in class 1
Appendix 1.C δ∗ Cloud-tracking: interparticle distance where a cloud has low concentration
Appendix 1.C ∆∗ Cloud-tracking: interparticle distance outside of clouds
Appendix 1.C Ithr Cloud-tracking: threshold intensity to binarise images
Appendix 1.C σ Cloud-tracking: size of the Gaussian kernel defining a hull around a cloud
Appendix 1.D N∗ A number of snapshots to compute standard deviations of light intensity
Appendix 1.D Σsep Expanded uncertainty on the value of zsep

Table 1.3: List of variables, the section in which they are defined, and a short description.

1.C Measurements from the automatic cloud tracking

Several quantities are computed from an automatic processing of videos of falling glass beads
(visualised by the camera with a green filter). This processing consists of an automatic detection
of the particle cloud as follows. The signal received by the camera is never a flat field, even
before cloud launching at t = 0: this means that inhomogeneities are always present in the light
intensity, even in the absence of particle cloud. To correct them, a background photograph is
always saved at t < 0. Then, all photographs of the cloud at t > 0 are divided by this
initial background image, so that pixels without particles should have a value of 1, while
pixels with particles should have larger values of relative light intensity. The aim, then, is
to define a threshold on light intensity to binarise the image. This threshold should be time-
dependent since the cloud keeps diluting so that its average light intensity keeps decreasing. An
appropriate binarisation therefore depends on the histogram of each photograph, and Otsu’s
method (Otsu, 1979) is adopted to process experiments. It consists in an optimisation algorithm
which maximises the inter-class variance between the two resulting levels of intensity (denoted
0 or 1), the inter-class variance being proportional to N0N1(I0 − I1)2 with Ni≤1 the number of
pixels in the level i, and Ii≤1 the average intensity in the level i. The second image in figure
1.20 shows the binarisation of the first image using Otsu’s method to define the threshold.

A first limitation of this naive binarisation is that the tank is only emptied after several
experiments, so that the background image usually contains some of the smallest particles from
previous experiments which settle very slowly and behave as isolated tracers (see the background
around the cloud in the second image in figure 1.20). These isolated particles pollute the field
of view, which makes it necessary to define a criterion to distinguish the falling cloud on one
hand, and old remaining particles on the other hand. Otherwise, a naive binarisation either
detects the cloud and remaining particles (if the threshold is too low), or does not detect all the
particles within the cloud (if the threshold is too large). Regions of high particle concentration
are always very bright and easily detected. The main issue is to distinguish between regions of
the cloud with low concentration, and detrimental particles from past experiments, since both
of these appear in dark shades of gray.

A solution to this problem lies in the interparticle distance. Small particles from past
experiments are far away from one another, with a typical interparticle distance ∆∗. Particles
falling with the cloud in regions of low concentration have a typical interparticle distance
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Figure 1.20: Illustration of the automatic cloud tracking. From left to right, the first image is the
ratio of a raw image over a background image taken when no cloud is visible; the second image is a
raw binarisation of the first image; the third image shows how to discriminate between the cloud (in
the Gaussian hull) and old remaining particles; the last image corresponds to the final result i.e. the
restriction of the second image to the Gaussian hull.

δ∗ < ∆∗ (first image in figure 1.20). Then, the idea is to perform a naive binarisation with a
threshold of intensity denoted Ithr (second image in figure 1.20), then blur the result with a
Gaussian kernel of size σ which verifies δ∗ < σ < ∆∗. In doing so, regions of low concentration
in the cloud will connect because δ∗ < σ, which means that blurred particles now overlap,
resulting in a signal which is above the threshold Ithr. On the opposite, isolated particles from
past experiments do not overlap after blurring the image since σ < ∆∗, hence their signal is
lost in noise below Ithr. Then, the resulting blurred image is binarised with the same threshold
Ithr as before, creating a “Gaussian hull” which only contains regions of both large intensity
compared to Ithr, and whose interparticle distance is small compared to σ; see the third image
in figure 1.20. To finish with, the final result is the initial naive binarisation of faw images
restricted to the Gaussian hull only (fourth image in figure 1.20). As observed in figure 1.20,
the Gaussian hull is able to capture some particles in regions of low concentration in the vicinity
of the brightest regions, and gets rid of most particles in the background.

Once finally binarised, images are used to compute several quantities: the cloud front po-
sition zf (t) is that of the lowermost white pixel; the coordinates x(t) and z(t) of the cloud
centroid are computed as averages of the coordinates of all white pixels; the cloud vertical
σz(t) and lateral σx(t) dimensions are computed as standard deviations of white pixels with
respect to the centroid. Errorbars on these quantities correspond to a confidence interval of
95% around the mean value, computed as 1.96 times the uncertainty obtained by averaging
results of several realisations of an experiment, and from least squares regressions if any.
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1.D Measurements from raw images

1.D.1 Coefficient of entrainment

The coefficient of entrainment α quantifies the growth rate of clouds, measured as the slope
described by the edges of clouds as they fall in the water tank. The simplest and most robust
way of quantifying this slope is by using all the photographs of a movie, as well as two integral
images computed with the macro ZProject of ImageJ: the average and the pixel-by-pixel stan-
dard deviation of light intensity over the entire cloud fall (see figure 1.21). With these three
visualisations, the cloud edges are tracked, the slope α = dr/dz is determined by hand in each
case, and we retain the mean value of the three methods for each realisation of an experiment.
Finally we compute α and its error bar respectively as the mean and standard deviation of all
the realisations of a given set (R,Ω).

(a) R = 0 (b) R = 7.57× 10−2 (c) R = 0.406

(d) R = 0.814 (e) R = 2.73

Figure 1.21: For five Rouse numbers, images show a moving standard deviation of the light intensity
during a typical experiment. Before separation, the angle of opening of clouds can be compared to the
angle predicted from the average coefficient of entrainment α(R), shown by a thick solid white line.

The slope α is determined over the distance where the cloud grows linearly, before separation
and before transition to a vortical columnar flow. When a cloud never grows linearly (because
particles are so large that the Rouse number R is above unity), an indicative value of α is
measured: it corresponds to the initial growth rate of the cloud after rupturing the membrane,
in the phase of acceleration of the cloud (see figure 1.21e).
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1.D.2 Depth of separation

Experimentally, the depth of separation can be measured in two different ways. For the first
one, the overlay of images from both cameras enables to compute the surface area of overlap
between rhodamine and particles, both regions being defined from the cloud-tracking algorithm
presented in appendix 1.C. Initially both regions are superimposed. Their overlap gradually
shrinks in time or depth, evidencing an inflexion point which is considered as defining separa-
tion. Depending on experiments, the inflexion point may not be well defined. In that case the
asymptotic states of complete overlap and nil overlap are detected, and separation is consid-
ered to happen at mid-time. This first method presents the advantage of being quantitative,
but only a few experiments were performed with rhodamine. The second method is based on
the trajectories of particles. Moving standard deviations are performed over a chosen number
N∗ of snapshots (typically 30), which enables to observe the trajectory of individual particles
over the N∗ snapshots at 50 fps (see an example in figure 1.7a). When particles separate from
eddies, the patterns made by their trajectories transition from curved and randomly oriented
(due to particles whirling inside eddies) to mostly straight and vertical. When half the visible
particles have a vertical trajectory, separation is considered to occur. The difficulty to assess
the proportion of particles having transitioned affects the determination of the depth of sepa-
ration zsep. This is accounted for by expanded uncertainties Σsep: they are measured in such a
way that for z lower than zsep − Σsep almost all particles swirl in eddies, and for z larger than
zsep + Σsep almost all particles have a vertical trajectory.

The two methods to identify separation were both implemented for the same series of particle
clouds of average Rouse number R = 0.308; the difference between their respective mean value
of zsep corresponded to a low relative error of 2.1%, which was considered satisfactory enough
to validate the use of the second approach for all experiments.



Chapitre 2

Two-way coupling Eulerian numerical
simulations of particle clouds settling
in a quiescent fluid

Summary
To get a deeper understanding of our laboratory experiments [Kriaa et al., Phys.
Rev. Fluids 7(12) 124302 (2022)], we numerically model settling clouds produced by
localised instantaneous releases of heavy particles in a quiescent fluid. By modelling
particles as a field of mass concentration in an equilibrium Eulerian approach, our two-
way coupling simulations recover our original experimental observation of a maximum
growth rate for clouds laden with particles of finite Rouse number R ≈ 0.22, where
R is the ratio of the individual particle settling velocity to the typical cloud velocity
based on its initial radius and total buoyancy. Consistent with the literature on
buoyant vortex rings, our clouds verify the relation α ∝ Γ−2

∞ between the clouds’
growth rate α as firstly defined by Morton et al., [Proc. R. Soc. A: Math. Phys. Sci.
234, 1 (1956)] and their eventually constant circulation Γ∞. As the Rouse number
approaches R ≈ 0.22, the baroclinic forcing of the circulation reduces down to a
minimum, thus optimising the cloud growth rate α. This analysis highlights the role
of the mean flow in the enhanced entrainment of ambient fluid by negatively buoyant
clouds. Our results also validate, on the basis of direct comparison with experimental
results, the use of a one-fluid two-way coupling numerical model to simulate particle
clouds in the limit of weak particle inertia.

2.1 Introduction

The present study follows up on a series of 514 systematic laboratory experiments presented
in Kriaa et al. (2022) (Chapter 1) which focus on the evolution of instantaneously-released
particle-laden clouds settling from rest in initially quiescent water, under the sole action of
their buoyancy. By varying the size of particles yet keeping an identical buoyancy for all clouds,

71
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the latter proved to grow linearly in depth, with a growth rate α that reaches a maximum for
a finite particle inertia R ' 0.3 ± 0.1, where the Rouse number R = ws/Uref is the ratio
of the terminal velocity of an isolated particle ws over the reference fall velocity Uref of the
cloud due to the sole action of its buoyancy. This new observation was unexpected because
the theory of turbulent thermals (Morton et al., 1956), commonly used to model such clouds,
predicts that all clouds should grow similarly as a salt-water cloud of identical buoyancy. Yet,
our measurements revealed that the particle inertia can increase the growth rate by up to
75%. Our experiments did not enable us to answer some remaining questions: Through which
mechanism do particle clouds entrain more than salt-water clouds of identical buoyancy? In
particular, does the particle inertia alter the mean flow around the cloud or does it modulate
the intensity of the turbulence that develops inside the cloud? The aim of the present study is
to gain understanding on these questions thanks to complementary numerical simulations. The
numerical approach to be adopted should capture the macroscopic physics of particle clouds as
observed in our experiments, yet with the minimum ingredients to keep a low numerical cost,
with a motivation to later apply the method to a planetary-scale multiphase flow called ‘iron
snow’ (Rückriemen et al., 2015).

When the size of particles, their volume fraction and the particle-to-fluid density anomaly are
low, the fluid governs the motion of particles whose feedback on the flow is negligible, a situation
called one-way coupling (Balachandar and Eaton, 2010). Many studies have considered the
one-way coupling between particles and fluid motions (e.g. Brandt and Coletti, 2022; Good
et al., 2014; Yoshimoto and Goto, 2007; Goto and Vassilicos, 2008; Falkinhoff et al., 2020)
and evidenced that inertia is a source of non-uniformities in the field of particle concentration
(Maxey, 1987): despite the incompressibility of the fluid phase, inertia allows the disperse
phase to be compressible. Maxey (1987) showed that very small particles behave as passive
tracers due to their low inertia; conversely, large particles are insensitive to local modifications
of the flow due to their large response time (see also Yoshimoto and Goto, 2007; Ghosh et al.,
2005). Due to this low-pass ‘inertial filtering’ of timescales, dense particles of intermediate
size partly decouple from fluid motions. For some finite inertia they have been observed to
optimally couple with the surrounding flow and concentrate in some specific regions. This
phenomenon of ‘preferential concentration’ (Maxey, 1987; Aliseda et al., 2002; Yoshimoto and
Goto, 2007; Salazar et al., 2008; Toschi and Bodenschatz, 2009; Falkinhoff et al., 2020) leads to
the accumulation of small particles in regions of large strain rate or equivalently of low vorticity
(Maxey, 1987), possibly due to centrifuging of particles outside of vortices (Falkinhoff et al.,
2020; Brandt and Coletti, 2022), while larger dense particles rather concentrate in regions of
vanishing fluid acceleration (Bec et al., 2006; Goto and Vassilicos, 2008).

With the addition of gravity, another heterogeneity originates from the tendency of heavy
particles to fall on the side of downward velocity of eddies (Wang and Maxey, 1993), which
can be grasped by simple advective arguments even in laminar flows (e.g. Nielsen, 1993). This
phenomenon of ‘fast tracking’ or ‘preferential sweeping’ is also optimum for a finite particle
inertia (Wang and Maxey, 1993); it has been observed in 2D periodic laminar vortices (Maxey
and Corrsin, 1986) and in turbulent flows (e.g. Good et al., 2014; Falkinhoff et al., 2020; Hassaini
and Coletti, 2022; Elghobashi and Truesdell, 1993; Bosse et al., 2006). Additionally, due to
their inertia, falling particles lag behind fluid motions so their trajectories are biased in the
direction of gravity. As particles cross upwelling and downwelling regions, they spend more
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time in upwelling regions, increasing their sensitivity to velocity variations in these upwellings.
This ‘loitering’ (Nielsen, 1993) is a third example of preferential sampling of the flow.

All these phenomena of preferential sampling determine the distribution of particles in time
and space. This observation is paramount if the flow is altered by the feedback of particles on
the fluid, a situation referred to as two-way coupling (Balachandar and Eaton, 2010). Inclusion
of this feedback in numerical simulations has proved to be essential as it further modifies
the structure of particle-laden flows even in well-controlled idealised isotropic turbulent flows
(Monchaux and Dejoan, 2017; Hassaini and Coletti, 2022; Elghobashi and Truesdell, 1993;
Bosse et al., 2006), especially in the presence of gravity which breaks the flow isotropy. As
an example, experiments (Aliseda et al., 2002) and simulations (Monchaux and Dejoan, 2017;
Bosse et al., 2006) have shown that the non-linear modification of the settling velocity due to
preferential concentration and preferential sweeping is further favoured by two-way coupling
since clusters of particles drag fluid with them as they sweep downward, producing downward
acceleration of the fluid which enhances the fluid velocity and therefore the particle settling
velocity. Most importantly, even in the presence of low mass loadings, the feedback of particles
on the fluid is essential if the flow is driven by the particles themselves, e.g. in downdrafts
(Kruger, 2020), turbidity currents (Ouillon et al., 2019; Necker et al., 2002), and presumably
iron snow (Rückriemen et al., 2015). The present work fits in this framework: in our experiments
(Kriaa et al., 2022) particles were released from rest in quiescent water, hence all fluid motions
resulted from the drag exerted by particles on water during their fall.

Thus, in this study we adopt an equilibrium Eulerian approach (Balachandar and Eaton,
2010) to model our settling particle clouds at reasonably low numerical cost, while still account-
ing for the two essential ingredients of (i) the feedback of particles on the fluid through a drag
term which forces the flow, and (ii) a differential motion between water and settling particles
through a gravitational drift, a formalism already used in the literature to model particle-laden
flows (Fabregat Tomàs et al., 2017; Boffetta et al., 2007; Reali et al., 2017; Lemus et al., 2021;
Chou and Shao, 2016). The latter effect is quantified by a Rouse number which is about
R = 0.3 for the optimum growth rate in experiments, and which lies below unity for most of
our clouds. Our experiments therefore fit in the range of validity of the equilibrium Eulerian
model, as pointed out by Boffetta et al. (2007). Note however that we extend our analysis up
to R ' 3 as in our experiments. Boffetta et al. (2007) showed that such particles have so much
inertia that they undergo the ‘sling effect’ i.e. particles tend to converge and thereby form
caustics, so that the continuum modelling of particle motions through a unique velocity field
locally breaks down. Yet, our results using the equilibrium Eulerian formalism up to R ' 3
show good agreement with our experiments, supporting the fact that if the sling effect plays
any part in experiments, it still has no strong statistical signature on the macroscopic quantities
we measured in experiments and reproduce numerically here.

The paper is organised as follows. Section 2.2 introduces the equations of motion to model
particles as a field of mass concentration verifying an advection-diffusion equation and forcing
the flow through a drag term. Section 2.3 presents the numerical setup of the three-dimensional
numerical simulations. Then, section 2.4 presents the two main regimes of cloud settling; it
notably evidences the same maximum of the cloud growth rate α as observed in our experiments
(Kriaa et al., 2022). Section 2.5 is devoted to the analysis of this effect, showing that particles
with a Rouse number close to the optimum impose a weaker baroclinic forcing of the clouds’
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circulation, resulting in an enhanced growth rate according to the theory of buoyant vortex
rings. Further discussion and concluding remarks are presented in section 2.6. Appendix
2.A provides details on the robustness of the numerical simulations, and appendix 2.B gives
numerical results for particle clouds of larger Reynolds number than those presented in the core
of this study.

2.2 Equations of motion

If a particle has finite inertia and is not neutrally buoyant, it moves with a velocity vp which
is different from that of the fluid v in its vicinity, and the particle acceleration verifies its own
momentum equation. This momentum equation for a small spherical particle was established
in 1983 by Maxey and Riley (1983) under the assumptions that the particle of radius rp is
much smaller than the characteristic macroscopic length scale L of the flow, that the particle
Reynolds number based on the slip velocity of the particle is much lower than unity (so the
disturbance flow due to the particle can be considered a Stokes flow), and that the diffusive
timescale r2

p/ν is much lower than the advective timescale L/U0 (ν being the kinematic viscosity
of the fluid and U0 a characteristic velocity scale of the flow). With these assumptions, the
leading terms boil down to the particle acceleration, its buoyancy and the Stokes drag exerted
by the fluid. Furthermore, in the equilibrium Eulerian formalism, assuming that all particles
have very small inertia (limit of vanishingly small Stokes number i.e. vanishing particle response
time compared to the timescale of the flow at the particle scale), the particle acceleration can
be neglected (Balachandar and Eaton, 2010) so that the particle velocity is solely prescribed
by the balance between buoyancy and drag (Berk and Coletti, 2021; Falkinhoff et al., 2020).
This balance yields

vp = v + wsez , (2.1)

as derived in Nasab and Garaud (2021), where v is the fluid velocity, vp is the particle velocity,
ws is the terminal velocity of the particle in quiescent fluid and ez = g/||g|| is aligned with the
gravity field g. In the present study we use this approximation to the momentum equation even
for particles with non negligible inertia, and try to assess the accuracy of this approach. To
keep a moderate numerical cost, as in previous studies of particle-laden flows (Fabregat Tomàs
et al., 2017; Boffetta et al., 2007; Magnani et al., 2021; Jacobs et al., 2015; Reali et al., 2017;
Lemus et al., 2021; Chou and Shao, 2016) we model particles as a continuum with a field of
concentration C (mass of particles per unit volume) that is advected at the velocity vp, hence,
mass conservation reads

∂tC + vp · ∇C = 0 . (2.2)

In practice, such modelling neglects particle dispersion at the particle scale. In fact, even
in dilute suspensions for which collisions are negligible, and even in the absence of Brownian
motions, particles induce long-range perturbations, particle-wake interactions and collective-
settling effects in the fluid depending on their particulate Reynolds number (e.g. Guazzelli
and Morris, 2011; Subramanian and Koch, 2008; Pignatel et al., 2011; Daniel et al., 2009).
These perturbations lead to a dispersion which has been analysed analytically (Koch, 1994),
numerically (Ladd, 1993) and experimentally (Ham and Homsy, 1988; Nicolai and Guazzelli,
1995; Martin et al., 1994; Xue et al., 1992; Lee et al., 1992), and which can be approximated
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by a diffusive process. Together with other ingredients such as concentration gradients and
shear (Davis, 1996), these effects are referred to as a hydrodynamic diffusion (Guazzelli and
Hinch, 2011). They are often approximated at a macroscopic level by a term of diffusion in
the mass conservation above (Elghobashi, 1994; Martin et al., 1994; Nasab and Garaud, 2021;
Lee et al., 1992). In addition, including a diffusive term in the mass conservation equation
is necessary to prevent the formation of caustics in the field of particle concentration, which
would lead to numerical instabilities in the current Eulerian framework (Magnani et al., 2021).
By introducing the effective particle diffusivity κp, and using equation (2.1), the new equation
of mass conservation reads

∂tC + v · ∇C = κp∇2C − ws
∂C
∂z
, (2.3)

where the last term accounts for the gravitational drift of particles.
Fluid motions are constrained by the condition of incompressibility

∇ · v = 0, (2.4)

which also prescribes the incompressibility of the field of concentration using equation (2.1).
The fluid velocity v verifies the Navier-Stokes equation for a Newtonian fluid

∂v

∂t
+ v · ∇v = − 1

ρf
∇p+ ν∇2v +

1

ρf
fdrag, (2.5)

where ρf is the fluid density, p is the pressure field including the hydrostatic contribution, ν is
the constant fluid kinematic viscosity, and fdrag is the average drag force exerted by particles
on the fluid per unit volume. This drag term in equation (2.5) describes how particles force
the flow: the field of concentration and the fluid are now two-way coupled. The present model
is derived for supposedly spherical particles of vanishingly small Reynolds number, hence they
fall in the Stokes regime with a settling velocity

wStokes
s =

2gr2
p(ρp − ρf )
9νρf

, (2.6)

with ρp the density of a spherical particle of radius rp, and g = ||g|| corresponds to grav-
ity. Then, using equation (2.1), the Stokes drag exerted by the fluid on a particle reads
−6πρfνrpw

Stokes
s ez. Summation on all the particles in the unit volume requires to multiply

this individual acceleration by the number of particles per unit volume i.e. 3C/4πr3
pρp. Using

Newton’s third law, the drag force reads

fdrag = C ρp − ρf
ρp

g . (2.7)

The previous equations are non-dimensionalised using the length scale Dcyl which corre-
sponds to the diameter of the vertical cylinder that was initially containing the particles in our
water tank experiments (Kriaa et al., 2022, see Chapter 1). This cylinder was immersed at the
top of our tank and closed by an elastic membrane, until this membrane was ruptured at t = 0
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to instantly release the particles. As for the velocity scale, we use the characteristic velocity
that clouds can build up when accelerating from rest which is

Uref =

√
g

(
1− ρf

ρ0

)
Dcyl , (2.8)

where ρ0 = ρf + (1 − ρf/ρp)m0/(4πD
3
cyl/3) is the typical initial effective density of particle

clouds (see Chapter 1 for details). Time t, pressure p and concentration C are respectively
non-dimensionalised by the advective timescale Dcyl/Uref, the characteristic dynamic pressure
ρfU

2
ref, and the fluid density ρf . With the dimensionless variables, equation (2.4) is unmodified

while mass conservation now reads

∂tC + v · ∇C =
1

Pe
∇2C −R∂C

∂z︸ ︷︷ ︸
gravitational drift

, (2.9)

where Pe = UrefDcyl/κp is the Péclet number, and R = ws/Uref is the Rouse number which
characterises the gravitational drift of particles. When R � 1 particles hardly drift with
respect to the fluid and tend to follow fluid motions, whereas particles having R � 1 largely
decouple by vertical settling so their trajectories largely differ from those of fluid particles in
their vicinity. Using equation (4.4), similar non-dimensionalisation of equation (2.5) leads to

∂v

∂t
+ v · ∇v = −∇p+

1

Re
∇2v +RiCez︸ ︷︷ ︸

drag term

, (2.10)

where Re = UrefDcyl/ν is the Reynolds number and Ri = gDcyl(1−ρf/ρp)/U2
ref is the Richardson

number which boils down to a ratio of density contrasts Ri = (1− ρf/ρp)/(1− ρf/ρ0) for our
specific choice of Uref used to non-dimensionalise the equations.

2.3 Numerical setup

The numerical setup aims at reproducing the experimental conditions for the generation of our
particle clouds (Kriaa et al., 2022, Chapter 1), released with no initial velocity from the top
centre of a tank of still water. Every particle cloud is composed of m0 = 1 g of spherical glass
beads with a mean radius rp chosen in the range 5 µm−1 mm, as well as some water, sometimes
dyed with rhodamine. All this material is initially contained in a cylinder of diameter Dcyl =
3.2 cm partially immersed in water and sealed by a latex membrane. When an experiment
starts, the membrane is ruptured by a needle, it quickly retracts and lets particles settle from
rest in the tank with the dyed fluid. Visualisations are performed in a vertical green laser sheet
with two cameras: the one with a green filter records the motion of particles only, while the
camera with an orange filter records only motions of turbulent eddies dyed with rhodamine,
see figure 2.1a for an illustration. Some reference clouds without particle inertia contained
an identical mass excess m0 = 1 g of salt water and were generated in the same way. Their
dynamics is characterised by a Rouse number R = 0. Experiments were performed in a tank
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of depth 1 m with horizontal square cross section of 42× 42 cm2 surface area; the side walls of
the tank were considered far enough from particle clouds to have a negligible influence on the
settling of particles. In the present simulations, the computational domain represents a cube
of volume 1 m3 with side length Ldomain = 31.25Dcyl. Figure 2.1b shows a numerical analog of
our experimental clouds in a simulation having R = 0.221 at time t = 34.

(a) (b)

Figure 2.1: (a) Visualisation of an experimental particle cloud in a vertical laser sheet with particles
in grey (set of polydisperse particles of Rouse number R = 0.308 ± 0.080) and dye (rhodamine) in
orange. (b) Numerical analog in the plane y = 0 of the previous photograph with a grey field of
concentration C modelling particles and an orange tracer concentration Ctracer modelling dye (cloud of
Reynolds number Re = 1183 as in the experiment (a), with a fixed Rouse number R = 0.221). The
larger vertical spread of particles in (a) compared to (b) is due to the polydispersity of the former,
whereas simulations are performed for monodisperse particle clouds (for further details, see Kriaa
et al., 2022, Chapter 1). The coordinates x and z in (b) are non-dimensionalised by Dcyl (see section
2.2).

To model the instantaneous release of particles from the cylinder, the field of concentration
is initialised in a narrow cylindrical region of diameter Dcyl, horizontally centred and localised
at distance 1.5Dcyl below the top of the computational domain. In experiments particles rested
at the bottom of the cylinder on the latex membrane as a very thin layer of height Hcompact.
To smooth the initial concentration gradients that are required to model the initial layer, the
field of concentration is initialised in a cylindrical region of height 10Hcompact, and the lateral
and vertical edges of this cylindrical region are smoothed by a hyperbolic tangent with typical
length scale Hcompact. The factor 10 on the initial height of the pile of particles is expected
to have negligible influence: indeed, our experiments showed that varying the height of the
pile of particles from Hcompact to 40Hcompact had negligible impact on the dynamics we aim
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to model here (for further details, see Kriaa et al., 2022, Chapter 1). To compensate for the
errors introduced the hyperbolic tangent smoothing, the exact mass of particles is enforced
(in dimensional form, m0 = 1 g) by an appropriate rescaling. The uniform fluid is initially
motionless, save for a cylindrical envelope around particles at time t = 0 in which the velocity
field is perturbed by a random uniform infinitesimal noise.

A passive tracer is implemented to mimic rhodamine in simulations. This tracer is initialised
exactly like the concentration C and satisfies equation (2.9) with its own Rouse numberR = 0 so
it does not drift vertically as particles do. Importantly, unlike the field of particle concentration
C, the passive tracer does not force any flow (it is absent of equation (2.10)).

On all walls, the velocity field satisfies no slip boundary conditions, while the concentration
C and the passive tracer satisfy no-flux Neumann boundary conditions.

Equations (2.4), (2.9) and (2.10) are integrated in three dimensions with the solver Basilisk
(Popinet, 2009) that is second-order accurate in space and time, using a time-splitting pressure-
correction discretisation of the Navier-Stokes equation (2.10). The second-order advection
scheme of Bell et al. (1989) is used for equation (2.10) and for the two advection terms in equa-
tion (2.9). The concentration gradient ∂C/∂z is computed with the generalised minmod slope
limiter to reduce spurious oscillations due to sharp concentration gradients at initial times, with
negligible impact on our numerical measurements (see appendix 2.A). Due to the large scale
separation between the domain size and the initial cloud size (Ldomain = 31.25Dcyl), an adaptive
mesh refinement is adopted. This octree mesh is made of hierarchically organised cubic cells,
each refinement of a cell corresponding to a division of this cell in 8 identical cubes. This
refinement is based on local values of the concentration C and on the local viscous dissipation,
see an illustration in figure 2.2a. The smallest mesh cell has a size fixed to Ldomain/1024 while
the largest mesh cell has a size Ldomain/128.

Our main focus is to analyse the influence of gravitational settling on the evolution of
particle clouds by varying the Rouse number from R = 0 to R = 3.03. Consequently, with a
fixed density ρp = 2500 kg/m3 for all particles (the density of the fluid is ρf = 1000 kg/m3),
the Richardson number Ri = 138 does not vary between simulations, and the same conclusion
holds for Re and Pe. These last two numbers are equal because we assume ν = κp as a first
approximation. The value Re = 454 is chosen by following this conservative estimate: if the
particle clouds were highly inertial and if their turbulence was homogeneous and isotropic with a
fully-developed energy cascade from the integral cloud scale of order ∼ 3Dcyl to the Kolmogorov
scale, then the latter would have a size 3DcylRe

−3/4. By prescribing that this smallest length
scale should have a size Ldomain/1024, this prescribes the value of Re = (Ldomain/3072Dcyl)

−4/3 =
454. This calculation is conservative as no flow structure reaches such a small length scale in
our simulations. In fact, the transient cloud formation does not permit the development of
an energy cascade down to the Kolmogorov scale. Instead, the clouds we model are close to
laminar, with a predominating coherent structure of size ∼ 3Dcyl, confirming that all length
scales are appropriately resolved. An example of the fields obtained is shown in figure 2.2b. For
completeness, additional simulations at Re = 1183 (which is the Reynolds number of particle
clouds in our experiments Kriaa et al., 2022) are presented in appendix 2.B which show similar
results as those presented in the core of the present analysis.

http://basilisk.fr/src/utils.h
http://basilisk.fr/src/utils.h
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(a) (b)

Figure 2.2: (a) Adaptive mesh refinement on the field of concentration C for R = 0.221 in the
plane y = 0 at time t = 35. (b) Bird’s eye view of the 3D structure of C(x, y, z, t = 33.75) for
R = 0.221 in blue-red colours (colorbar and opacity in the bottom left-hand corner). Streamlines show
the toroidal velocity field, with blue-red colours for the velocity magnitude ||v|| (colorbar in the top
left-hand corner).

2.4 Regimes of cloud settling

2.4.1 Overview

Figure 2.3 shows snapshots as well as an average image of the field of concentration C(x, y =
0, z, t) in a vertical cross section of the computational domain. They faithfully account for all
the qualitative morphological features observed in our experiments (see figure 1.4 in Chapter
1). Particle clouds initially grow as they propagate downward. For the lowest Rouse numbers
this regime of growth and dilution lasts over the entire fall of the cloud. For intermediate Rouse
numbers, this regime is more prominent (see figure 2.3c), yet this growth gradually vanishes
and stops (see in particular average images in figures 2.3d, 2.3e). This transition is due to
separation of the field of concentration from eddies, which is why the field of concentration
deforms less and less, and settles more and more vertically.

The cloud evolution can be quantified by tracking the vertical position zf (t) of its front,
defined as the lowermost position of the iso-contour of concentration C(x, y, z, t) = 10−8 (this
low value ensures that measurements are independent of the specific threshold), and by tracking
the vertical position z(t) of the centre of mass, defined as the weighted average of the vertical
coordinate z in the whole computational domain as z(t) =

∫
V
zCdV/

∫
V
CdV . Figure 2.4 shows

the evolution of these two positions in time; for all figures we use dashed lines if R > 0.221 and
solid lines otherwise, with grey shades diverging from the thick darkest line of R = 0.221. For
low Rouse numbers (R < 1), after a short phase of acceleration, the positions zf (t) and z(t)
evidence a concave evolution revealing the cloud deceleration. For intermediate Rouse numbers,
a smooth transition occurs that leads to a regime of constant settling velocity when particles
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Figure 2.3: Each row shows snapshots of the field of concentration C(t, x, z) in the plane y = 0 for a
different Rouse number, as well as the average of 40 snapshots taken with a constant timestep ∆t = 1
over the fall.
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Figure 2.4: For several Rouse numbers, evolution in time of the vertical position of (a) the centre of
mass of particles, and of (b) the cloud front. Lines are dashed if R > 0.221 and solid otherwise.

separate from fluid motions and settle in quiescent liquid. For the largest Rouse numbers
(R > 1), clouds almost immediately transition from the regime of acceleration to the regime of
constant settling velocity. The literature (Rahimipour and Wilkinson, 1992; Bush et al., 2003;
Lai et al., 2016; Kriaa et al., 2022) distinguishes between the first regime of turbulent thermal,
or equivalently of buoyant vortex ring, and the second regime of swarm. All these observations
are consistent with our experimental observations, which were obtained by tracking the front
of the light intensity reflected by the glass spheres in time, which is analogous to zf here. In
the next sections, the two regimes of buoyant vortex ring and swarm are described separately.

2.4.2 Buoyant vortex ring regime (aka thermal regime)

Due to the lower cloud Reynolds number in numerical simulations than in experiments (see
appendix 2.B for results at higher Reynolds number), numerical results evidence clear buoyant
vortex rings whose toroidal structure is less apparent in our more turbulent thermals in the
laboratory. Yet, several studies have shown that turbulent thermals (i.e. instantaneous releases
of a finite volume of buoyant fluid with no initial momentum) are formed like buoyant vortex
rings (Pottebaum and Gharib, 2004; Gharib et al., 1998), and have a very similar structure
(Bond and Johari, 2005; Lherm, 2021; Lecoanet and Jeevanjee, 2019; McKim et al., 2020) and
dynamics (Turner and Taylor, 1957; Landeau et al., 2014), to such an extent that thermals
have been considered as buoyant vortex rings whose circulation is fully determined by their
buoyancy (Bond and Johari, 2010; Zhao et al., 2013). Consistently, turbulent thermals at the
cap of starting plumes (Turner, 1962), immiscible thermals (Landeau et al., 2014) and settling
particle clouds (Ruggaber, 2000; Lai et al., 2013; Moghadaripour et al., 2017) have all been
successfully modelled as vortex rings. In fact, different models of turbulent thermals (for exam-
ple Morton et al., 1956; Scorer, 1957) and models of buoyant vortex rings (Turner and Taylor,
1957; McKim et al., 2020; Nikulin, 2014) lead to the same scalings after the transient formation
of these structures. Given the morphology of clouds in figure 2.3, we present the essential equa-
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tions governing the evolution of buoyant vortex rings, which will prove enlightening to analyse
the clouds’ growth.

When buoyant particles start settling, the cloud initially rolls up as a buoyant vortex ring.
After a transient, one observes that vorticity concentrates inside a toroidal core. It is often
assumed, and appropriate in our simulations as we shall see, that the vortex ring is sufficiently
thin-cored to guarantee the absence of any buoyant material along the vortex centreline (axis
of symmetry of the vortex ring, parallel to ez and passing through the centre of symmetry
of the torus), and that no vorticity diffuses through this line, leading to the conclusion that
the circulation Γ of the vortex ring remains constant after the short transient of spin-up (see
equation 4 in reference McKim et al., 2020), as verified in numerical simulations for a cloud
Reynolds number of 630 and 6300 (McKim et al., 2020). Consequently, the initial spin-up of
the vortex is paramount because it sets the ultimately constant value of the circulation which
plays a key role in determining the cloud growth rate.

The impulse of a thin-cored vortex ring of radius R under the Boussinesq approximation
reads πρfΓR

2 (McKim et al., 2020; Turner and Taylor, 1957). This impulse varies in time due
to buoyancy which is the sole external force, hence we have

d

dt

[
πρfΓR

2
]

= m0g , (2.11)

from which it is clear that in the absence of buoyancy, the impulse would be constant hence the
vortex ring would keep a constant radius, as verified in the literature (Didden, 1979; Gharib
et al., 1998) for vortex rings of Reynolds number up to 104 (Didden, 1979). Assuming a constant
circulation, the previous equation simplifies to

R2(t)−R2(t = 0) =
m0g

πρfΓ
t . (2.12)
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Figure 2.5: Time evolution of the increment of square radius compensated with time [σ2
h(t)−σ2

h(t =
0)]/t, measured in simulations for several Rouse numbers. Lines are dashed if R > 0.221 and solid
otherwise.

To verify this scaling, the cloud radius is measured in numerical simulations with the quan-
tity σh, which is the horizontal standard deviation of the particles’ spatial distribution with
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respect to the cloud centre of mass

σh(t) =

√∫
C(x′, y′, z′, t)(x′2 + y′2)∫

C(x′, y′, z′, t) , (2.13)

where the origin of coordinates (x′, y′, z′) corresponds to the cloud centre of mass, and integrals
are computed in the whole computational domain. From this definition, the scaling (2.12)
is verified in figure 2.5: aside from slight oscillations, clouds of low Rouse number (R ≤
0.221) eventually grow as σh ∼ t1/2 as evidenced by the plateau of the compensated quantity
[σ2
h− σ2

h(t = 0)]/t. Conversely, clouds with large Rouse numbers (R > 0.221) grow slower than
σh ∼ t1/2 so the quantity [σ2

h − σ2
h(t = 0)]/t eventually decreases in time, meaning that these

clouds do not follow the scaling (2.12). Note that according to equation (2.12), the plateaus in
figure 2.5 are inversely proportional to the circulation Γ, suggesting the existence of a minimum
of circulation for intermediate Rouse numbers close to R = 0.221; this observation will receive
considerable attention in section 2.5.
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Figure 2.6: (a) Evolution of the clouds’ radius σh along depth. Lines are dashed if R > 0.221 and
solid otherwise. (b) Growth rate α computed in the range z < 0.45Ldomain, divided by the reference
value αsalt of a salt-water cloud i.e. of a cloud with no particle settling (R = 0).

The clouds’ growth is generally analysed along depth z rather than in time. Figure 2.6a
shows the evolution of the radius σh(z) for all clouds. For R � 1 clouds tend to grow linearly
in depth after a short transient. For R = 0.221 a noticeable decrease of the slope dσh/dz is
visible at depth z = 10, as already observable in figure 2.3c, which is due to the transition to
the swarm regime. For large Rouse numbers, typically above unity, it is manifest that the slope
dσh/dz is never constant, it keeps decreasing as clouds fall deeper.

More importantly, figure 2.6a shows that the growth rate dσh/dz(z) tends to be maximum
for an intermediate Rouse number close to R = 0.221. To compare this growth rate with
the entrainment rate measured in our experiments over a 45cm-deep field of view, the value
of dσh/dz(z) is computed in simulations, then averaged in the range z < 0.45Ldomain. The
resulting average value is denoted α and results are shown in figure 2.6b. Consistently with our
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experiments (see figure 1.6 in Chapter 1), we observe an asymptote towards a constant growth
rate as R → 0, a local maximum for a finite Rouse number which lies in the range R ' 0.3±0.1
determined from experiments, and a clear decrease of the growth rate as R increases beyond
R = 0.3. The maximum amplitude of the enhancement α(R = 0.221)/αsalt = 3.20 ± 0.83 is
larger than the value found in experiments α(R ' 0.3)/αsalt = 1.75 ± 0.30. This is likely due
to the difference of cloud Reynolds number between experiments (Re = 1183) and simulations
(Re = 454). In appendix 2.B, numerical results for clouds of Reynolds number Re = 1183
yield α(R = 0.221)/αsalt = 2.20 ± 0.42 as a new maximum, which is in agreement with our
experiments. The important point here is that the present Eulerian approach is capable of
reproducing the physical effect we observed in laboratory experiments.

We now turn to the swarm regime before analysing the role of the gravitational drift in
enhancing the growth rate α in Section 2.5.

2.4.3 Swarm regime

During the gradual transition from the buoyant vortex ring to the swarm regime, particles
increasingly decouple from fluid motions. This gradual decoupling is analysed thanks to the
concentration Ctracer of the passive tracer, which is implemented in four additional simulations
of Rouse numbers R = 0.100, 0.221, 0.498, 0.885. As a wish to perform similar processings as
in our experiments where the flow was visualised in a vertical laser sheet, the decoupling is
illustrated with space-time diagrams in figures 2.7a-2.7d after averaging the fields C and Ctracer

along x in the plane y = 0 (this averaging process is made explicit with the brackets 〈·〉x).
The space-time diagrams reveal that increasing R leads to a faster separation between the field
〈C〉x (in blue-red colours) and the passive tracer 〈Ctracer〉x (in yellow-red contours) which is left
behind particles. By construction, the sole ingredient responsible for this decoupling is the
gravitational drift in equation (2.9) which only concerns the field C, not the passive tracer.

A quantification of the decoupling between C and Ctracer is possible by defining a correlation
coefficient which computes the overlap between C and Ctracer as a percentage of the total region
occupied by these two fields. In practice, minimum thresholds are applied on the fields, whose
values ensure the convergence of the correlation coefficient. As in figure 2.7, the correlation
coefficient is computed in the plane y = 0 (denoted Oxz below) as

CC,Ctracer(t) =

∫
Oxz

ξ1(t)dxdz∫
Oxz

ξ2(t)dxdz
, (2.14)

where the booleans (ξ1(t), ξ2(t)) are defined as

ξ1(t) =

{
1, if C(t) > C1(t) and Ctracer(t) > C2(t)

0, otherwise
; ξ2(t) =

{
1, if C(t) > C1(t) or Ctracer(t) > C2(t)

0, otherwise
,

(2.15)
with C1(t) = max{C(t)}×10−4, C2(t) = max{Ctracer(t)}×10−4. The time evolution of CC,Ctracer(t)
is shown in figure 2.8a for the same four simulations as above. The correlation coefficient is
initially equal to unity because both fields of concentration are identical. Then, the correla-
tion coefficient decreases as particles gradually shift away from the passive tracer due to the
gravitational drift, all the faster as the Rouse number is larger. Finally figure 2.8b confirms
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Figure 2.7: Hovmöller diagrams for four increasing Rouse numbers showing the gradual decoupling
in the plane y = 0 between the field of concentration 〈C〉x (in blue-red colours) and the passive tracer
〈Ctracer〉x (in yellow-red contours). The values shown for both concentrations are horizontal averages
along x in the plane y = 0 at each time step.

that the settling velocity of swarms approaches a constant value after separation, equal to the
individual settling velocity which is equal to the Rouse number R in our dimensionless units
(see inlet in figure 2.8b). Figure 2.6a already showed that the growth rate of swarms starts
reducing after separation (the concave deflection of σh(z) is most visible for R = 0.221), so
swarms ultimately fall with constant velocity, retaining a bowl shape without deforming, as
shown by the snapshots in figure 2.3e for R = 3.03.

2.5 Role of the Rouse number on the enhanced growth

rate

The linear growth in depth of buoyant clouds is usually described as resulting from entrainment
of ambient fluid into the cloud, leading to its growth and dilution, and consequently its deceler-
ation through mixing drag. One reference to describe the process of entrainment for turbulent
thermals is the model of Morton et al. (1956). It is based on the entrainment hypothesis which
states that the inflow velocity at the interface of the turbulent thermal is proportional to the
vertical velocity of the cloud’s centre of mass; this inflow velocity is considered to be produced
by turbulent motions.

Yet, our observation of a maximum growth rate α even for moderate Reynolds numbers
(Re = 454 here) suggests that the enhanced entrainment due to the finite gravitational drift
finds an origin in the large-scale buoyancy-induced mean flow (which, in the case of turbulent
particle clouds, is obtained by an average over realisations) rather than in turbulent fluctuations.
Actually, this question of the origin of entrainment in turbulent flows has long been debated:
does it originate from the large-scale mean flow incorporating ambient fluid into the turbulent
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Figure 2.8: (a) Time evolution of the correlation coefficient CC,Ctracer(t) between particle and passive
tracer concentrations for R ∈ {0.100, 0.221, 0.498, 0.885}, from top to bottom. (b) Evolution in depth
of the vertical velocity of the clouds’ centre of mass for all simulations. Lines are dashed if R > 0.221
and solid otherwise. The inset shows the normalised velocity ż/R as a function of time t only for
clouds verifying R ≥ 0.221.

region through ‘engulfment’? Or from small-scale fluctuations and diffusive processes which
mix the ambient material in the turbulent structure close to its interface through ‘nibbling’?
While Mathew and Basu (2002) observed that mixing in a cylindrical turbulent jet seemed to be
driven by nibbling close to the jet interface, Townsend (1950) showed that large-scale eddies of
increasing intensity produce more energy in the turbulent wake past a cylinder and consequently
favour a larger growth rate of this wake, suggesting that the mean flow drives entrainment
through engulfment. Discriminating between engulfment and nibbling can be complex because
large and small scales may be insufficiently separated at moderate Reynolds numbers, and
because fluxes at both scales can be connected through some relationships (Mathew and Basu,
2002). For example, in Odier et al. (2012), Reynolds stresses at the mixing interface of a gravity
current are modelled based on Prandtl mixing length theory, thus enabling, through the use
of a large-scale quantity based on the mean flow, the description of entrainment in the mixing
layer by fundamentally local fluxes.

Importantly, the reason for this ambiguity is that both processes contribute to entrainment,
as evidenced by Fox (1970) who derived the equations of evolution of a self-similar plume while
considering the equation of conservation of energy, hence lifting the constraint of modelling
entrainment to guarantee a closure of the equations. In doing so, he showed that entrainment
depends both on the Reynolds stress and on a contribution from the mean flow due to buoy-
ancy. This was confirmed by van Reeuwijk and Craske (2015) who carried this analysis further
and showed that a third contribution comes from possible deviations from self-similarity in the
streamwise direction. By analysing data from the literature, van Reeuwijk and Craske (2015)
showed that the term of turbulence production due to shear hardly varies between a pure jet
and a pure plume, even though plumes have a larger growth rate than jets. Hence this last
difference between jets and plumes is attributed to the contribution of the mean flow due to
buoyancy, as later confirmed by van Reeuwijk et al. (2016) in Direct Numerical Simulations.
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These conclusions about entrainment apply similarly for plumes and thermals, as pointed out
by Landeau et al. (2014). From the model of Morton et al. (1956), Landeau et al. (2014) proved
experimentally that the growth rate of an immiscible thermal verifies a linear relationship with
respect to the thermal’s Richardson number, which is exactly analogous to the entrainment
model of Priestley and Ball (1955) for plumes, see van Reeuwijk and Craske (2015) for details.
Consistently with these conclusions, Lecoanet and Jeevanjee (2019) showed that turbulence
only enhances entrainment by 20% between turbulent thermals of Reynolds number 630 and
6300, whereas an artificial sudden shut off of buoyancy during the same numerical simulations
drastically reduces the entrainment rate of turbulent thermals (McKim et al., 2020), highlight-
ing the driving role of buoyancy in entrainment.

Consequently, in the present section we focus on mean flow azimuthally-averaged quantities
to try to understand the optimum growth rate of particle clouds for a Rouse number around
R ' 0.22. Past studies have shown that in the absence of buoyancy, the circulation of a vortex
ring generated from a nozzle increases from zero to a constant value during the transient rolling-
up of the viscous boundary layer in the nozzle (Didden, 1979), with this constant circulation
increasing as the ratio of the nozzle length over its diameter increases. When the vortex ring is
buoyant, buoyancy provides a new contribution to the total circulation, which was fully derived
by McKim et al. (2020) for a thin-cored Boussinesq vortex ring, yielding the following scaling
for the growth rate α (see Nikulin (2014); Bond and Johari (2005) but also Turner and Taylor
(1957); Lecoanet and Jeevanjee (2019); Scorer (1957) for turbulent thermals)

α ∝ m0g

ρfΓ2
∞
, (2.16)

with a proportionality constant accounting for the cloud added mass and its morphology
(McKim et al., 2020), and with Γ∞ the asymptotically constant value of the circulation. The
key result here is that since all clouds undergo the same buoyancy force m0g in our simulations,
their growth rate α is dictated by Γ∞ only. Consequently, vortex rings of lower circulation
should have a larger growth rate – crudely speaking, they should entrain more, as consistently
observed in Bond and Johari (2005); Landeau et al. (2014).

To verify this scaling, the vortex ring circulation is computed a posteriori for several snap-
shots after (i) interpolating the mesh on a regular cartesian grid, (ii) averaging the azimuthal
vorticity ωθ along the azimuth eθ in radial and vertical bins (when ambiguity is possible, we de-
note azimuthally-averaged quantities with an overline such as ωθ), (iii) integrating the resulting
average azimuthal vorticity over the whole radial extent and in the range z ∈ [0.3, Ldomain−0.3]
(top and bottom walls are removed from this range to avoid integration of vorticity near those
boundaries). Results are shown in figure 2.9a. We verify that the circulation produced by the
particle clouds ultimately reaches a plateau, except when R � 1 i.e. for clouds which are not
expected to behave as buoyant vortex rings due to separation. From previous sections, figure
2.9a already suggests that the circulation Γ∞ is all the lower as the cloud grows faster; this is
confirmed in figure 2.9b where the scaling α ∝ Γ−2 of equation (2.16) is in excellent agreement
with the best fit (see the solid dark line in figure 2.9b) of measurements of the circulation when
the cloud centre of mass is at mid-depth in the computational domain i.e. with the definition
Γ∞ ≡ Γ(z = Ldomain/2).
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Figure 2.9: (a) Time evolution of the axisymmetric circulation in the whole computational domain.
Lines are dashed if R > 0.221 and solid otherwise. (b) Correlation between the growth rate α averaged
over the range z < 0.45Ldomain, and measurements of Γ∞. The solid dark line is the linear least square
fit of ln(α) vs. ln(Γ∞).

Another remarkable observation is the modification of the structure of the vortical core
when increasing the Rouse number, as illustrated in figure 2.10. When R = 4.28× 10−2 (figure
2.10a) the vortex core is neatly defined, centered around a maximum of azimuthal vorticity
whose structure is at first order isotropic in a plane (er, ez) of fixed azimuth. Conversely when
R = 0.221 (figure 2.10c), the vortex core is made up of sheets of vorticity of alternate sign and
varying intensity which occupy a much larger region than observed for R = 4.28× 10−2 at the
same depth. Let us show that as R gets closer to 0.221 the vortical core induces circulation
farther and farther away, thus expanding the region of entrainment through the toroidal mean
flow. After defining the core centroid as the barycentre of the azimuthal vorticity, the following
normalised circulation is computed

Γ∗(r) =
1

πr2

∫ 2π

0

∫ r

0

< ωθ >θ r
′dr′dθ, (2.17)

where (r′, r, θ) here correspond to polar coordinates centered on the core centroid. The size of
the vortex core is defined as argmax{Γ∗(r)} i.e. as the radial distance from the core centroid
where the circulation Γ∗(r) is maximum. Consistently, figure 2.11a shows that this circulation
Γ∗ spreads further away from the core centroid when R = 0.221, meaning that this vortex ring
induces velocity farther away, therefore incorporating more ambient fluid within the particle
cloud, hence the latter grows faster. This trend is even clearer in figure 2.11b where the core
size is computed at the same depth Ldomain/2 for all clouds: one verifies that the core extension
is maximum when the Rouse number is closest to R = 0.221.

The key question is then: How come vortex rings have a wider core and a lower circulation
when the particle Rouse number is closer to 0.221? The vortex circulation is only produced
during a short initial transient, mainly by the baroclinic torque as long as its contribution
along the vortex centreline is non-negligible. As soon as the buoyant material has spun up
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Figure 2.10: Each row shows snapshots of the azimuthally-averaged vorticity ωθ in blue-red colours,
and the azimuthally-averaged concentration C with dashed contours in yellow-red shades (see colorbars
on the left-hand side). Each snapshot is visualised in the plane (r, z) in the range 3 < z < 22 and
0 < r =

√
x2 + y2 < 10.
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Figure 2.11: (a) Time evolution of the size of the vortical core for all clouds. Lines are dashed if
R > 0.221 and solid otherwise. (b) Size of the core at depth z = Ldomain/2 for all clouds. The dark
arrow corresponds to the value for R = 0.

and widened sufficiently, one can define a closed contour encircling the core where no vorticity
diffuses and no buoyant material is present, so that circulation is conserved (e.g. McKim et al.,
2020). The vorticity equation along the azimuth eθ reads

Dωθ
Dt

=
ωθvr
r︸︷︷︸

stretching

+

baroclinic torque︷ ︸︸ ︷
g′

ρf

∂C
∂r

+ ν

[
1

r

∂

∂r

(
r
∂ωθ
∂r

)
+
∂2ωθ
∂z2

]

︸ ︷︷ ︸
diffusion

, (2.18)

which shows that azimuthal vorticity is produced by vortex stretching, the baroclinic torque and
diffusion of vorticity. The quantity ωθvr is at first order symmetrical around the vortex core,
so for a thin-cored vortex ring having a radius much larger than the vortex core, the stretching
term should be vanishingly small, as previously argued by other authors (McKim et al., 2020).
Then, if diffusion is assumed negligible, most forcing is expected to originate from the baroclinic
torque. This is especially true at initial times when the stretching and diffusion terms vanish
while the baroclinic torque remains finite. The baroclinic torque is therefore the leading source
of circulation at initial times (McKim et al., 2020). To verify this, the dimensionless baroclinic
torque Ri∂rC along eθ is first averaged along the azimuth (the resulting axisymmetric torque is
denoted Ri∂rC). Then the axisymmetric torque is integrated in the plane (er, ez) and integrated
in time until t = 10 when we observe that the torque has vanished for all simulations. Results
are shown in figure 2.12. We verify that Rouse numbers close to R = 0.221, which correspond
to the largest growth rate α (figure 2.6b) and lowest circulation (figure 2.9a), also correspond
to the lowest baroclinic forcing. This observation is robust: integrating the baroclinic torque
in time even just up to t = 1 modifies the value of the integrated torque, but leaves the curve
in figure 2.12 unchanged. As an indication, the errorbars in figure 2.12 show the little influence
of integrating the baroclinic torque up to t = 8 or t = 10 which respectively correspond to the
lower and upper bound of errorbars.
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The picture that emerges from these results is the following: under the assumption that
baroclinicity is the leading forcing of the vortex rings’ circulation, the maximum of entrainment
capacity of particle clouds with a Rouse number close to R = 0.221 seems to be due to the
gravitational drift and two-way coupling of particles with the fluid which reduces the baroclinic
torque, thus reducing the cloud circulation. Since all clouds undergo an identical buoyancy
force m0g, these same clouds have a larger growth rate α as predicted by equation (2.16).
Similar results have been obtained at a larger Reynolds number Re = 1183 (see Appendix B),
in good agreement with experiments. Note however that the role played by fluctuations in the
limit of very large Reynolds numbers remains to be explored and might have an influence on
our conclusions derived from moderate Reynolds numbers only.
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Figure 2.12: Results of time and volume integration up until t = 10 of the axisymmetric baroclinic
torque as a function of the Rouse number.

2.6 Concluding discussion

The previous section showed that the gravitational drift modifies the distribution in space and
time of the field of particle concentration C(x, y, z, t) compared to that of a passive tracer. This
modification alters the forcing by the drag force, minimises the baroclinic torque and concurs to
a maximum growth rate α for a Rouse number around R = 0.221. All these modifications are
observed at moderate Reynolds numbers and notably quantified by the azimuthally-averaged
circulation and baroclinic torque; this is consistent with the literature pointing towards the lead-
ing role of the mean flow and buoyancy in controlling entrainment and the growth of thermals
(see section 2.5). A key conclusion is that the present Eulerian two-way coupling numerical
simulations successfully reproduce our experimental observation of a maximum growth rate
α/αsalt of particle clouds for a Rouse number R ≈ 0.22 lying within the experimental range
R ' 0.3 ± 0.1. While results at Re = 454 yield a maximum growth rate slightly above the
experimental value α(R ' 0.3)/αsalt = 1.75 ± 0.30, results at Re = 1183 lie in the experi-
mental range within uncertainty margins. A systematic study with varying Reynolds numbers
might clarify whether the mechanism identified in this paper persists in the presence of intense
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turbulent fluctuations.

Our results raise a new question: How does the gravitational drift of particles contribute
to reducing the baroclinic forcing ? Some light could be shed on this matter by analysing the
properties of the flow induced by a canonical laminar vortex ring while the field of concentration
drifts radially outward until separation, but the evolution of the structure of the vortex core
in figure 2.10 suggests that the feedback of particles on the vortex ring itself probably plays a
non-negligible part. Furthermore, even though the robust agreement between our experiments
and the present results supports the responsibility of the mean flow in the maximisation of
α for a finite Rouse number, it remains to be investigated whether other physical ingredients
could be at play in experiments, in particular velocity fluctuations due to turbulence at much
higher Reynolds numbers than considered here.

In the present numerical simulations, fluctuations are very low compared to the mean flow
due to the low Reynolds number Re = 454 at the scale of the particle cloud. Our experiments,
on the opposite, were characterised by a Reynolds number Re = 1183. Even though this value
is too low to have a well-developed turbulent flow with a clear separation of scales between the
integral cloud scale and the scale of the smallest dissipative eddies, our experimental clouds
evidenced some more fluctuations than in numerical simulations. On one hand, these may
modify the cloud circulation during its transient increase, hence during a limited amount of
time. On the other hand, after this transient, entrainment can be increased by the term of
production of turbulent kinetic energy (TKE), as shown by van Reeuwijk and Craske (2015) in
their entrainment relations. This production term may differ for one-phase turbulent thermals
vs. particle-laden turbulent thermals due to turbulence modulation by particles (Brandt and
Coletti, 2022), as observed in simulations (Bosse et al., 2006; Elghobashi and Truesdell, 1993)
and experiments (Hassaini and Coletti, 2022; Berk and Coletti, 2021). These studies notably
showed a redistribution of energy from small to large wave numbers known as ‘pivoting’, which
may favour nibbling-like entrainment at small scales rather than engulfment by the mean flow.
Consequently, the possible enhancement of α by fluctuations in a more vigorous turbulent
flow cannot be ruled out, calling for further investigation with a dedicated larger experimental
setup and numerical simulations with a clear separation of scales. Answering these questions
also probably requires a more advanced model such as a two-fluids approach where the particles
have their own velocity field (e.g. Nasab and Garaud, 2021; Magnani et al., 2021; Nakamura
et al., 2020), or a point-force Lagrangian model (e.g. Chou and Shao, 2016; Yamamoto et al.,
2015; Climent and Magnaudet, 1999; Mazzitelli and Lohse, 2009).
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2.A Robustness of numerical measurements

We verified that numerical measurements of key quantities are invariant with respect to three
numerical parameters: (i) the Schmidt number Sc = ν/κp, (ii) the size hmin of the finest mesh
cell and (iii) the numerical scheme implemented to compute the concentration gradient. For all
simulations presented in the core of this study, the concentration gradient was computed with
the generalised minmod slope limiter, which reads along the direction ez

(
∂C
∂z

)

i

' 1

∆z
max

{
0,min

(
θ(Ci+1 − Ci), θ(Ci − Ci−1),

Ci+1 − Ci−1

2

)}
, (2.19)

with ∆z the size of a mesh cell in the direction ez, θ a scalar ranging between 1 (the most
dissipative scheme) and 2 (the least dissipative scheme), and Cj∈N is the evaluation of C in a
mesh cell j along the direction ez. The default value θ = 1.3 of Basilisk was adopted. We
verified that adopting a second-order centered scheme

(
∂C
∂z

)

i

=
Ci+1 − Ci−1

2∆z
(2.20)

does not alter our measurements. Results are presented in table 2.1, providing the average and
standard deviation of (a) the growth rate α, (b) the cloud vertical velocity ż and (c) the work
of the drag term

∫
Cvz responsible for the transfer of energy from particles to the fluid during

the cloud fall. These three quantities are averaged when the cloud position verifies z(t) <
0.45Ldomain, which is the range we analysed with our experiments (Kriaa et al., 2022, Chapter
1). Reported values evidence little to negligible impact of the three numerical parameters on
average measurements of α, ż and

∫
Cvz.

http://basilisk.fr/src/utils.h
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2.B Key results for clouds of Reynolds number Re = 1183
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Figure 2.13: Field of concentration C in the plane y = 0 averaged over up to 20 snapshots taken
with a constant timestep ∆t = 2.5 over the cloud fall for clouds of Reynolds number Re = 1183.

For completeness, we briefly present numerical results for clouds of Reynolds number Re =
1183 as in our experiments (Kriaa et al., 2022, Chapter 1). Figure 2.13 shows time averages
in the plane y = 0 of the field of concentration C for a set of clouds with varying Rouse
numbers. More fluctuations do appear at low Rouse numbers (figures 2.13a-2.13c), whereas
clouds of large Rouse numbers still evidence a thin bowl shape due to rapid particle separation
from fluid motions (figures 2.13d, 2.13e). Importantly, these images show the existence of a
maximum growth rate as R → 0.221, as quantitatively confirmed by figure 2.14, similarly as
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in section 2.4.2 and consistently with our experiments (Kriaa et al., 2022, Chapter 1). The
maximum amplitude of the enhancement α(R = 0.221)/αsalt = 2.20 ± 0.42 is lower than
the one measured for Re = 454 in section 2.4.2, and in good agreement with the maximum
measured in experiments α(R ' 0.3)/αsalt = 1.75± 0.30. A systematic study as a function of
the Reynolds number might clarify what determines the amplitude of the optimum α/αsalt, but
this is beyond the scope of the present work which focuses on the origin of this amplification,
and on the capacity of the numerical model to reproduce it.
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Figure 2.14: Growth rate α computed in the range z < 0.45Ldomain, divided by the reference value
αsalt of a salt-water cloud i.e. of a cloud with no particle settling (R = 0). The Reynolds number is
Re = 1183.



Chapitre 3

Influence of planetary rotation on
metal-silicate mixing and equilibration
in a magma ocean

This chapter is a work that has been led in collaboration with Maylis Landeau from IPGP, Paris

Summary
At a late stage of its accretion, the Earth experienced high-energy planetary impacts.
Following each collision, the metal core of the impactor sank into molten silicate
magma oceans. The efficiency of chemical equilibration between these silicates and
the metal core controlled the composition of the Earth interior and left a signature
on geochemical and isotopic data. These data constrain the timing, pressure and
temperature of Earth formation, but their interpretation strongly depends on the effi-
ciency of metal-silicate mixing and equilibration. We investigate the role of planetary
rotation on the dynamics of the sinking metal and on its chemical equilibration us-
ing laboratory experiments of particle clouds settling in a rotating fluid. Our clouds
initially sink as spherical turbulent thermals, but after a critical depth, rotation be-
comes important and they transition to a vortical columnar flow aligned with the
rotation axis. In contrast with a thermal that grows in all directions, this vortical
column grows vertically but keeps a constant horizontal extent. The slower dilution in
vortical columns reduces chemical equilibration compared to previous estimates that
neglect planetary rotation. Applied to Earth formation, our results predict that rota-
tion strongly affects the fall of metal in the magma ocean for impactor cores smaller
than 200 km in radius on a proto-Earth that rotates twice faster than today. On a
fast-spinning proto-Earth, rotation becomes important for impactor cores up to 600
km in radius. We find that rotation significantly affects the degree of equilibration for
highly siderophile elements with partition coefficients larger than 103. In this case, the
degree of equilibration decreases by up to a factor 2 compared to previous estimates
that neglect the effect of rotation.
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3.1 Introduction

The present-day rocky planets of the solar system were formed 4.5 Gyrs ago (Patterson et al.,
1955) by a series of impacts between planetary bodies. Moon-to-Mars-sized planetary embryos
collided to form planets in 10−100 Myrs (Chambers, 2004). This timing is confirmed by Hf-W
radiochronometry which suggests that the Earth and the Moon were formed within the first
100 Myrs (Kleine et al., 2002; Rudge et al., 2010) of the solar system. At this time, planetary
embryos were already differentiated into a liquid metal core and an outer silicate mantle (Kleine
et al., 2002). During impacts, some of the metal core of impactors was mixed with silicates of
the target planet, enabling thermal and chemical transfers. This mixing controlled the initial
temperature and composition of rocky planets which determined the initial rheology of the
mantle and the emergence of plate tectonics (Bercovici and Ricard, 2014), the time when a
solid inner core started to grow (Labrosse, 2015), or the driving of an early dynamo in the
Earth’s core by exsolution of light elements (Badro et al., 2018).

Accretion of rocky planets goes through several successive stages involving ever larger im-
pactors. The size of impactors varies from small kilometre-sized bodies to proto-planets as
large as Mars or the Earth (Tonks and Melosh, 1993; Canup and Asphaug, 2001; Ćuk and
Stewart, 2012; Canup, 2012). When the target embryo is the size of Mars or larger, the energy
released during the impact is sufficient for shock waves to melt the silicate mantle much beyond
the impact area (Brian Tonks and Jay Melosh, 1992; Nakajima et al., 2021). Previous studies
(Tonks and Melosh, 1993; Nakajima et al., 2021) showed that a Mars-sized impactor hitting
the Earth at a velocity larger than 11 km/s produces enough melt to uniformly cover the Earth
surface down to a depth of 1000 km or more. The smaller the impactor or the target, the
lower the volume of molten silicates produced by the shock in the target planet (Brian Tonks
and Jay Melosh, 1992; Tonks and Melosh, 1993). Yet a series of small impactors may release
sufficient energy to melt silicates at large depths, especially if the target surface is blanketed
by a steam atmosphere (Abe and Matsui, 1985) reducing heat losses to space. Finally, during
the first million years of accretion, radioactive elements like 26Al (Dodds et al., 2021) released
enough energy to melt the entire mantle of the target planet. In the following, we consider
that any combination of the former ingredients enables the existence of a deep magma ocean,
in which the impactor core sinks after an impact.

The fall of the impactor core in the magma ocean is strongly conditioned by the outcome
of the impact. Numerical simulations are valuable tools to investigate the dynamics of impacts
with various impactor sizes, impact angles or impact velocities (e.g., Ćuk and Stewart, 2012;
Nakajima et al., 2021; Maas et al., 2021). Yet, evaluating chemical transfers requires to resolve
mixing and diffusive processes at the metal-silicate interface. The length scale for chemical
diffusion during the fall of metal in a magma ocean, which typically lasts a few hours, is on
the order of 1 cm (Dahl and Stevenson, 2010). Unfortunately, numerical simulations are only
able to resolve length scales which are typically 7 orders of magnitude larger than this diffusive
length scale. Landeau et al. (2021) and Lherm et al. (2022) recently investigated the phase of
mixing by impacts using laboratory experiments with miscible fluids, approaching dynamical
regimes of planetary collisions. These experiments evidenced substantial mixing down to small
scales during the impact stage, increasing the volume of silicates mixed and equilibrated with
the impactor metal. They also suggest that much of the impactor kinetic energy is imparted
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to the silicates during impact, so that metal from the impactor starts sinking with negligible
velocity (see Fig. 3 and Fig. 7a in Landeau et al., 2021).

One of the key parameters controlling chemical transfers is the surface area of the metal-
silicate interface per unit mass of metal. Past studies have investigated metal-silicate mixing
through mainly two modelling approaches. The first approach considered that, after impact,
the impactor core quickly emulsified into millimetre-to-centimetre-sized spherical drops, which
settle downward. This so-called iron rain model (Rubie et al., 2003) has been refined by several
analytical and numerical studies, which incorporated subtle aspects of the drops dynamics and
diffusive transfers (Ichikawa et al., 2010; Ulvrová et al., 2011; Qaddah et al., 2019; Maas et al.,
2021).

While emulsification during impact remains to be investigated, fluid mechanics experiments
showed that breakup happens after a descent of a few initial radii of the sinking core (Landeau
et al., 2014; Wacheul and Le Bars, 2018). These experiments showed that drops do not settle
individually as an iron rain. Instead they favoured a second modelling approach. As the
impactor core falls in the magma ocean, it forms a turbulent cloud that entrains silicates at
a rate proportional to the cloud surface area and downward velocity, with a proportionality
constant α = 0.25 ± 0.10 called the coefficient of entrainment (Morton et al., 1956). This
entrainment dilutes the metal within the cloud, which therefore decelerates while its radius r
increases linearly in depth z at a rate dr/dz = α. In this model the cloud is called a turbulent
thermal; it accurately accounts for stirring between miscible (Morton et al., 1956; Deguen et al.,
2014; Landeau et al., 2021), immiscible (Landeau et al., 2014; Wacheul and Le Bars, 2018; Lherm
and Deguen, 2018) and particle-laden fluids (Deguen et al., 2011; Kriaa et al., 2022). Thus,
this model predicts stirring before and after the core breaks up into droplets (Deguen et al.,
2014; Wacheul and Le Bars, 2018). A major consequence for chemical transfers is that metal
equilibrates only with the finite volume of silicates that is entrained in the cloud. Yet, these
previous studies have ignored the effect of planetary rotation on metal-silicate equilibration
(Dahl and Stevenson, 2010), despite the strong rotation rate of the proto-Earth that has been
suggested by impact simulations (Ćuk and Stewart, 2012).

This neglect likely originates from considering the earliest models for metal-silicate mixing.
In the iron-rain scenario (Rubie et al., 2003; Ichikawa et al., 2010; Ulvrová et al., 2011; Qaddah
et al., 2019) metal drops of ∼ 1 cm in radius fall in the magma ocean at a velocity of ∼
0.2 − 0.5 m/s, meaning that they settle in 10 to 100 days at the bottom of a 1000 km-deep
magma ocean. Although this timescale is much longer than the length of day, the size of such
drops is too small for planetary rotation to influence their dynamics. The strength of rotation
is quantified by the ratio of inertial forces over the Coriolis force, the so-called Rossby number,
which is on the order of 105 for an individual drop. This high value suggests that rotation is
negligible at the scale of a drop. To estimate the effect of rotation at larger length scales, one
can assume that an entire impactor core of 100 to 1000 km in radius falls as a whole under
the buoyancy force. The resulting sinking velocity is on the order of 1 km/s, meaning that the
impactor core reaches the bottom of the ocean in a few hours (Dahl and Stevenson, 2010). This
fall time is now too short compared to the length of day for rotation to be important. The
corresponding Rossby number is indeed larger than 10. However, this latter estimate entirely
neglects the formation of a turbulent cloud of metal and silicates. Previous fluid mechanics
experiments have found that the large-scale flow in a thermal or a particle-laden cloud is
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easily affected by rotation (Ayotte and Fernando, 1994; Helfrich, 1994; Kriaa et al., 2022). In
the present study, we show that planetary rotation affects the fall of metal-silicate clouds in
magma oceans because the clouds grow with depth by turbulent entrainment, which enhances
the magnitude of the Coriolis force, and they also decelerate, which reduces the magnitude of
inertial forces.

The influence of planetary rotation on the fate of the impactor core has recently been
investigated with numerical simulations by Maas et al. (2021) for a few scenarios of impacts
on Earth in a global magma ocean. These simulations showed that planetary rotation, and the
latitude of the impact point, do affect the dispersion and settling of iron drops in the magma
ocean. However, because of the high numerical cost, the smallest drop size is 100 m in these
simulations. In addition, the authors do not quantify the effect of rotation on the turbulent
mixing in a metal-silicate cloud.

In the present study we focus on the scenario of an impact at the pole, with gravity and
rotation aligned, and we model the post-impact flow using our recent laboratory experiments of
rotating particle clouds (Kriaa et al., 2022, and Chapter 1). We quantify the role of planetary
rotation varying the angular velocity and gravity of the target planet, the drop size and the
impactor size.

Section 3.2 introduces the experimental framework for modelling the post-impact flow using
particle-laden clouds settling in a water tank in solid body rotation. Section 3.3 summarises
the key features of the dynamical regimes of these clouds on the basis of the results presented
in Chapter 1. We show that clouds initially behave as turbulent thermals, but transform into
vortical columns aligned with the axis of rotation when the thermal’s Rossby number becomes
lower than unity. This columnar flow is modelled in section 3.4, and its consequences on
the dilution of metal in silicates is presented in section 3.5. Section 3.6 then considers the
implications of these results on the efficiency of chemical transfers between metal and silicates.
We discuss the limitations of our work and we suggest ideas for future investigations in section
3.7.

3.2 Experimental modelling

3.2.1 Experimental setup

We summarise the essential elements about the experimental setup of our experiments of settling
particle clouds, which are presented with more details in Chapter 1. The apparatus is illustrated
in figure 3.1. The experiments are performed in a Plexiglas tank of height 90 cm and cross-
section area 42× 42 cm2 containing 160 L of fresh water which is our analogue for the magma
ocean (ρf = 998 kg.m−3, ν = 10−6 m2.s−1). The tank is fixed in the middle of a rotating
table whose angular velocity Ω varies from 0 (no rotation) to 20 rotations per minute (rpm).
A lid is placed on top of the tank with a hole at the centre. Placed in this hole, a cylinder of
inner diameter Dcyl = 3.2 cm contains the buoyant material. The cylinder’s bottom nozzle is
sealed by a latex membrane, which is stretched and taped onto the cylinder. We then pour the
buoyant material into the cylinder.

The released fluid is either made of salt water, which stands as a particle-free reference,
or it is composed of a mixture of 26.1 mL of fresh water and a fixed mass m0 = 1.0 g of
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(1) (2)

Figure 3.1: Schematic representation of the experimental apparatus, and examples of images of (1)
the glass beads using a green filter and (2) the released water volume using an orange filter.

spherical glass beads of density ρp = 2500 kg.m−3. The mean radius rp of the beads ranges
from 2.6 µm to 524.5 µm (see table 3.1). In all the experiments the total mass excess introduced
into the system is the same. In this setup, the ambient water in the tank is an analogue for the
silicate magma ocean and the released particles are analogues for the drops of liquid metal, as
previously proposed by Deguen et al. (2011).

The ambient water and the tank are either both motionless or in solid-body rotation. At
t = 0 the experiment starts by rupturing the latex membrane with a needle, releasing the
content of the cylinder. Once the membrane retracts, the particles fall out of the cylinder
because of their weight. For most particle sizes, the downward acceleration of the particles
quickly transmits to the fluid, the buoyant material rolls up and the cloud becomes turbulent
after a distance of about 1Dcyl.

The typical cloud velocity at a depth 1− 2Dcyl reads

Uref =

√
g

(
1− ρf

ρ0

)
Dcyl, (3.1)

with g = 9.81 m.s−2 and ρ0 the initial cloud density once it has rolled up as a sphere of typical
radius Dcyl, hence

ρ0 = ρf +

(
1− ρf

ρp

)
3m0

4πD3
cyl

. (3.2)

Note that the values of ρ0 and Uref are respectively fixed to 1033 kg/m3 and 3.7 cm/s for all
experiments.

Visualisations are performed in a vertical laser sheet (532 nm). Since particles and water
have different motions, two identical black-and-white cameras are synchronised and record at
50 fps the same experiment with two different filters. The first camera has a green filter to record
the motion of glass beads, which reflect and refract the laser beam, while the second camera
has an orange filter. By colouring the fluid inside the cylinder with a fluorescent dye called
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rhodamine, the second camera records the motion of the released water volume which appears
in orange in the laser sheet. Both of them record the same field of view of size 45 cm× 28 cm.

rp (µm) 2.6 29.9 45.7 51.8 57.8 63.9 64.4

R 6.00× 10−4 7.57× 10−2 0.168 0.210 0.255 0.304 0.308

Rep 1.16× 10−4 0.167 0.567 0.805 1.09 1.44 1.47

rp (µm) 70.0 76.1 108.1 120.8 192.4 339.8 465.9 524.5

R 0.354 0.406 0.696 0.814 1.48 2.73 3.70 4.13

Rep 1.84 2.29 5.57 7.28 21.1 68.8 128 160

Table 3.1: Properties of the particle-laden experiments used in this study. The numbers R and Rep
are defined below in equation (3.4). More details can be found in Chapter 1.

3.2.2 Governing dimensionless numbers

The motion of particles is characterised by their settling velocity ws. To compute ws we use
the model proposed by Samuel (2012)

ws =
20νf
rp

[√
1 +

(ρp − ρf )gr3
p

45ρfν2
f

− 1

]
, (3.3)

where νf is the kinematic viscosity of the ambient fluid, ρf is the density of the ambient fluid,
rp is the radius of a particle of density ρp, and g is gravity. The two following dimensionless
numbers characterise the motion of particles

Rep =
2rpws
νf

; R =
ws
Uref

. (3.4)

The particulate Reynolds number Rep compares inertial and viscous forces at the scale of a
settling particle, and hence, it controls the flow behind the particle. The Rouse number R
– usually used for sediment transport (de Leeuw et al., 2020) and previously used to study
metal-silicates mixing in experiments (Deguen et al., 2011) – compares the settling speed of a
particle ws and that of the cloud Uref. Since the reference fluid velocity Uref is the same for
all experiments (equation (3.1)), the Rouse number only varies with the particles’ radius: the
larger the particle, the larger the Rouse number. As particles get smaller and smaller, their
Rouse number goes to 0 so their gravitational drift due to settling vanishes, hence they behave
more and more as salt water, which corresponds to the asymptote R = 0. Conversely when
their Rouse number is larger than unity, the settling speed of particles is so large that the
motions of water and particles are decoupled. Our experiments explore the transition between
these end members.

Finally, a key parameter is the angular velocity Ω of the tank, whose influence on the flow
is quantified by the depth-dependent Rossby number

Ro(z) =
żf (z)

2Ωr(z)
, (3.5)
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where żf (z) is the vertical velocity of the front of a spherical particle cloud with radius r(z)
at depth z. The Rossby number is the ratio of the cloud inertia over the Coriolis force. In
experiments Ro(z = 0) > 1, so that particle clouds are initially weakly influenced by rotation.
However, the Rossby number decreases as the cloud falls, and rotation starts affecting the
dynamics when the Rossby number becomes equal to unity.

3.3 Dynamical regimes in particle-cloud experiments

Along with past studies in the literature (Rahimipour and Wilkinson, 1992; Bush et al., 2003;
Lai et al., 2016), our experiments (Kriaa et al., 2022) showed that, throughout their evolution
in depth, particle clouds experience transitions in dynamical regimes. This section recalls the
essential features of these regimes.

3.3.1 Transition from turbulent thermals to swarms

3.3.1.1 Regime of turbulent thermal

In our experiments, particle clouds start their motion in the same way as salt water clouds:
they form a so-called thermal, which is a finite volume of buoyant fluid whose motion is entirely
governed by its total buoyancy. Our thermals quickly become turbulent during a short phase
of acceleration at depths . 1− 2Dcyl. Subsequently, turbulence entrains ambient fluid into the
clouds and hence leads to their growth with depth. Because of this progressive entrainment
and dilution, the clouds eventually decelerate. Entrainment can be modelled by assuming that
the inflow velocity ve of ambient fluid entrained into the thermal is proportional to the vertical
velocity ż of the turbulent thermal (Morton et al., 1956). In a uniform ambient fluid, this model
predicts that the cloud radius r is proportional to the cloud depth z so that r = r0 + αz, with
r0 the initial cloud radius and α = 0.25± 0.1 the entrainment coefficient (Deguen et al., 2011;
Landeau et al., 2014).

3.3.1.2 Transition to a swarm: separation of released fluid and particles

Figure 3.2 shows that after some depth, particles rain out of the turbulent cloud, a pro-
cess referred to as ‘separation’. This separation has already been observed in the literature
(Rahimipour and Wilkinson, 1992; Bush et al., 2003; Deguen et al., 2011). When a turbulent
thermal develops, it initially accelerates and reaches a maximum velocity ∼ Uref that is larger
than the individual settling velocity ws of particles. Consequently, particles are forced to swirl
inside the fast turbulent eddies. However, as the turbulent thermal grows in size, it decelerates.
When its velocity eventually becomes lower than the settling velocity ws, eddies are not vigor-
ous enough to sustain the particles which rain out of the cloud. Separation happens when the
cloud velocity approaches the individual settling velocity of particles i.e. ż(zsep) ' ws where
zsep is the depth of separation. After separation, particles fall as a swarm: the cloud vertical
velocity is constant and approximately equal to ws, and the swarm keeps an approximately
constant horizontal extent.
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(a) R = 0.308 (b) R = 1.48

Figure 3.2: Snapshots showing the gradual separation between particles (in white) and the released
fresh water (in orange), all the faster as the Rouse number R increases from (a) to (b). Time intervals
∆t between snapshots are (a) ∆t = 3.0s and (b) ∆t = 1.2s.

To predict separation, we use a local Rouse numberR∗(z) that compares the settling velocity
ws of a particle with the local cloud velocity ż(z) at depth z, i.e.

R∗(z) =
ws
ż(z)

. (3.6)

When R∗(z) < 1, eddies are vigorous enough to sustain particles so the cloud behaves as
a thermal. Conversely, when R∗(z) > 1, particles fall as a swarm. Our own experimental
measurements (Kriaa et al., 2022, and Chapter 1) as well as past studies (Deguen et al., 2011;
Wang et al., 2014) validated this criterion of separation. In equation (3.6), the velocity ż(z)
is estimated following the model of Escudier and Maxworthy (1973) for a turbulent thermal in
which buoyancy is the sole volume force. Neglecting added mass as suggested by Bush et al.
(2003); Deguen et al. (2011), we obtain

ż(z) =

√
gDcyl

2α

(
ρ0

ρf
− 1

)
×

√
1
2
((1 + αz)4 − 1) + αz

2
( ρ0
ρf
− 1)

(1 + αz)3 + ρ0
ρf
− 1

, (3.7)

where z = 2z/Dcyl. The transition R∗(z) = 1 is shown in figure 3.3 with a solid red line in the
plane (R, z): clouds behave as a thermal in the red region below this line, and fall as a rain
otherwise. Note that the initial velocity of any cloud is ż(z = 0) = 0 so that R∗(z = 0) = ∞;
it takes a short falling distance before the Rouse number R∗(z) is lower than 1, which explains
the slight curvature of the red solid line around R ' 1 and z/Dcyl & 0 in figure 3.3. When
particles are too large (R > 1.15 in figure 3.3), the cloud velocity ż(z) is never larger than ws
and particles always fall as a swarm (see Kriaa et al. (2022) and Chapter 1 for more details).

3.3.2 Transition to vortical columns

3.3.2.1 Onset of the columnar flow

Our experiments showed that rotation interrupts the growth of the thermal at some depth zcol,
marking a transition from the regime of turbulent thermal to a vortical column of constant
radial extension for z ≥ zcol. This transition is visible when comparing the linear growth of
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Vortical column

Thermal

Swarm

Figure 3.3: Regime diagram up to z/Dcyl = 14.1 which is the depth of our field of view. Background
colours indicate the different regimes: red stands for turbulent thermals, green stands for swarms, and
light blue stands for vortical columns. Transitions correspond to R∗(z) = 1 ( ), Ro(zcol) = 1 ( )
for Ω = 5 rpm.

a thermal in the absence of rotation (figure 3.4a) with the constant width of the cloud when
Ω = 5 rpm (figure 3.4b). Integrated photographs in figure 3.4c further evidence the constant
width of the cloud below some depth when Ω = 5 rpm in orange. Initially the cloud inertia
is large compared to rotation (Ro(z) > 1) and the cloud behaves as a non-rotating thermal
(Morton et al., 1956): it grows linearly with depth (regime above the orange arrow in figure
3.4c or for zf < 22 cm in figure 3.5a). Equation (3.5) predicts that, as the cloud radius r
increases and its velocity decreases with depth, the local Rossby number decreases. When
Ro(z) = 1, the Coriolis force becomes comparable to the cloud inertia and hence, the flow
transitions towards a regime influenced by rotation. This criterion of transition is illustrated
with an example in figure 3.5a at depths zf > 22 cm and we verify it for different particle radii
rp and rotation rates Ω in figure 3.5b. These results are consistent with past measurements in
the literature for salt-water thermals falling in a rotating ambient (Ayotte and Fernando, 1994;
Helfrich, 1994; Fernando et al., 1998). All these studies consistently show that the constant
width of the column is the diameter of the turbulent thermal at depth zcol (as visible in figures
3.4c and 3.5a; see also figures 1.16 and 1.13 in Chapter 1). The transition to a vortical column
is shown in figure 3.3 (solid blue line) assuming the transition from a thermal to a vortical
column occurs when Ro(zcol) = 1.

We also observe that vortical columns penetrate through the solid body rotation with a
constant front velocity. This explains why Ro(z) remains close to 1 when z > zcol in figure
3.5a (see figures 1.18a, 1.18b and 1.19 in Chapter 1 for more details). In addition, the vortical
column is made of two different regions: (1) a frontal region (see the red circles in figure 3.4b),
that we will assume spherical for simplicity, which corresponds to the former turbulent thermal
and which no longer grows due to entrainment; (2) a columnar wake of particles detrained from
the frontal sphere, which settle much slower than the frontal sphere (see figure 1.19 in Chapter
1).
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Figure 3.4: Transition from the regime of turbulent thermal to the regime of vortical column. (a)
Snapshots of a buoyant cloud of salt-water (rp = 0) in the thermal regime (Ω = 0, the time lapse
between snapshots is 1s). (b) Snapshots of a buoyant cloud of small particles (rp = 29.9 µm) in
the vortical regime (Ω = 5 rpm, the time lapse between snapshots is 1.7s). The red circles indicate
the location of the frontal sphere; the dotted red lines show the growth of the thermal in (a) and the
constant width of the vortical column in (b); the top cylinder has a diameter Dcyl = 3.2 cm in (a) and
(b). (c) Overlay of two integral images (pixel-by-pixel standard deviation of light intensity during the
cloud fall) for particle clouds with rp = 64.4 µm respectively at 0rpm (grey shades in the background)
and 5rpm (orange shades). The arrow indicates the typical depth of transition to the vortical regime.

3.3.2.2 Comparison with previous studies on columnar rotating flows

When a rotating flow is dominated by the Coriolis force and the pressure gradient, these forces
impose a geostrophic balance. Under these conditions, the flow is invariant along the rotation
axis and forms columnar structures, the so-called Taylor columns (Taylor, 1922; Maxworthy,
1970).

The vortical columns we observe in our experiments when Ro(z) < 1 are reminiscent of
Taylor columns. Our experiments are consistent with past studies on the dynamics of such
columns. The constant speed at the column front agrees with a drag force proportional to the
falling speed and balancing the buoyancy force. Similar dynamics were predicted for an object
falling along the axis of rotation in a bounded or unbounded domain (Maxworthy, 1970; Moore
et al., 1969; Vedensky and Ungarish, 1994). In the latter case the constant cloud velocity reads
ż∞ ∝ (ρ/ρf−1)g/Ω (see Stewartson, 1952; Moore et al., 1969; Bush et al., 1995). As the object
moves along the vertical axis, it stretches vortex tubes downstream and generates a converging
flow and a cyclonic swirl in a Taylor column behind the object. In this column, the amplitude
of the swirling flow vswirl ∼ ż∞ (Bush et al., 1995).

Note that these results hold for Ro � 1. When the cloud Rossby number is on the order
of unity, the vertical extent of the Taylor column decreases (Maxworthy, 1970; Minkov et al.,
2002). Minkov et al. (2002) showed that the column behaves as if it were in an unbounded
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Figure 3.5: (a) Rossby number Ro and experimental measure of the cloud radius σx (see section
1.C for details about the measurement of σx) as a function of the position of the cloud front. In this
experiment Ω = 5 rpm and rp = 29.9 µm. The transition to the vortical regime occurs at the depth
shown by the vertical dotted line where Ro = 1 and the cloud radius becomes constant (see Chapter 1
for details on measurements). (b) Average Rossby number after transition to the vortical regime for
all rotation rates and particle sizes; adapted from figure 1.14 in Chapter 1.

domain as long as inertial waves do not have enough time to propagate away from the moving
cloud and reflect back to it, consistently with the interpretation of Greenspan (1968). Since our
particle clouds verify Ro(z ≥ zcol) = 1, the waves having the largest group velocity propagate
as fast as the cloud falls. Consequently, these waves cannot propagate the information before
the cloud reaches the bottom of the domain. This suggests that these clouds behave as if they
were in an unbounded domain, falling with a velocity that scales like ż∞ ∝ (ρ/ρf − 1)g/Ω.

In the light of these elements, together with the observations drawn in section 3.3.2, we
model a vortical column using the following assumptions. We consider that particle clouds
penetrate through the ambient as a leading frontal sphere of constant radius rcol and with
constant velocity żf . We also neglect the effect of the walls. We assume that particles are
gradually detrained behind the frontal sphere, nourishing a cylindrical vortical column. The
typical swirl velocity in the column is equal to the velocity of the frontal sphere żf , so that
vertical motions stir the particles in the columnar flow. For simplicity we will assume that these
motions are vigorous enough to homogenise the particle concentration in the vortical column.
The next section presents a model of column growth that is consistent with these key points.

3.4 Model of column growth through detrainment

Based on the above experimental observations, we now derive a minimalist model for the
evolution of a particle cloud in the presence of rotation. Figure 3.6 provides an illustration of
this model. The cloud initially grows as a turbulent thermal (A). At depth zcol, Ro = 1 and the
thermal transitions to a frontal sphere of constant radius and speed (B). Particles are detrained
behind the falling sphere and into a swirling column (B). After some distance, the sphere has
detrained all its particles in the swirling column (C). Eventually, particles will fall down to the
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bottom of the tank, possibly before the kinetic enegy of the column dissipates viscously (D).
Particles can drag the fluid with them along their fall, or decouple from it, as we have seen
in experiments. Which of these two configurations occurs depends on subtle hydrodynamical
interactions between particles that enable the interstitial fluid between them to be dragged
downward. These aspects require further investigation, as discussed in section 3.7. In this
study, we speculate that particles drag a negligible amount of fluid when they decouple from
the swirling column. Consequently, they rain out in quiescent liquid.

Figure 3.6: Sketch of the cloud evolution. (A) The cloud initially grows as a turbulent thermal
until Ro(z) = 1; (B) then the frontal sphere falls with constant speed while detraining particles in the
swirling column; (C) all particles are detrained in the column of depth 2rcol/3β and swirl with the
fluid; (D) ultimately, because of gravitational drift (i.e. settling) and viscous dissipation, particles rain
out of the column until reaching the bottom where they accumulate.

By analogy with models of entrainment (Morton et al., 1956), the detrainment (Taylor and
Baker, 1991; de Rooy et al., 2013) of particles into the columnar wake is modelled through
a single coefficient of detrainment β which is analogous to the coefficient of entrainment α
(Baines, 2001; de Rooy and Siebesma, 2008). The coefficient of detrainment β is the ratio of
the outward velocity transporting particles out of the spherical frontal blob, over the downward
velocity of the cloud. The mass conservation of particles then reads

d

dt

[
4

3
πr3

colφρp

]
=

4

3
πr3

colρp
dφ

dt
= −2πr2

colβżfφρp, (3.8)

where the only unknown φ(t) is the particle volume fraction within the frontal sphere of down-
ward velocity żf and radius rcol. The term (βżf ) is the detrainment velocity taking particles out
of the cloud. The factor 2πr2

col on the right-hand side indicates that detrainment is considered
to happen only on the upper half of the frontal sphere. Taking t = 0 when the cloud is at depth
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zcol, the solution of this Ordinary Differential Equation (ODE) reads

φ(t) = φ(t = 0) exp

[
− t

τβ

]
⇐⇒ φ(z) = φ(zcol) exp

[
−3β(z − zcol)

2rcol

]
, (3.9)

where

τβ =
2rcol

3βżf
(3.10)

the characteristic duration of detrainment. Hence the column completes detrainment in a time
of order τβ. Since the column front moves with constant velocity żf , the column height after
complete detrainment is of order żfτβ = 2rcol/3β and the depth of complete detrainment

zβ = zcol +
2rcol

3β
. (3.11)

Particles are always detrained in the column behind the frontal sphere, hence β > 0. The
maximum value for β is determined with a geometrical argument. During a time dt, the
frontal sphere detrains buoyant material in a volume 2πr2

colβżfdt; in the meantime the column
grows by a volume πr2

colżfdt; equating them yields β = 1/2 as an upper bound. With this
value, a frontal sphere of volume 4πr3

col/3 typically detrains its particles in an identical volume
πr2

col(4rcol/3) = 4πr3
col/3 (see equation (3.11) for β = 1/2), meaning the sphere only adapts its

shape to become a cylinder of radius rcol and depth 4rcol/3.

The range 0 < β < 1/2 corresponds to the sketch in figure 3.6. Particles are detrained in a
column of large depth-to-radius ratio. In this case, the volume of metal and silicates detrained
by the frontal sphere is lower than the volume gained by the vortical column. This implies
that the volume of the column is complemented by ambient fluid through entrainment, likely
in the near wake of the frontal sphere where the flow converges towards the column (see section
3.3.2.2). Additionally, since the frontal sphere keeps a constant volume while detraining both
fluid and particles, the sphere also entrains new ambient fluid that compensates the detrained
volume.

In our experiments, we observe that detrainment of the frontal sphere ends at depths in the
range [45− 90] cm. Since our columns had a typical width rcol ' 2Dcyl, equation (3.11) yields
β ∈ [0.05 − 0.12], a range that is consistent with typical values quantifying entrainment for
turbulent jets and plumes (e.g. van Reeuwijk and Craske, 2015; Turner, 1986; Wang and Law,
2002; Carlotti and Hunt, 2017). A larger β value translates into a weaker effect of rotation. In
this study, we aim at demonstrating that rotation can affect metal-silicate equilibration after
an impact. To be conservative, we therefore use the end-member value β = 0.12 in what follows.

According to equation (3.9), the column is nourished by the frontal sphere with a mass flux
of detrained particles that decays exponentially in depth. Yet, our visualisations in a vertical
laser sheet evidence no stratification in the vortical column. This observation suggests that the
buoyant material substantially stirred by turbulent motions in the column. To keep our model
as simple as possible, we assume that stirring is sufficient behind the frontal sphere to neglect
heterogeneities within the vortical column, so that its concentration is uniform.
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3.5 Dynamical regimes in a magma ocean

In this section, we apply our experimental results to the fall of liquid metal into a magma
ocean following a planetary impact. We use the following notations (see a list in table 3.2):
the densities of metal ρm and silicates ρs, their respective kinematic viscosities (νm and νs) and
mass diffusivities (κm and κs), the angular velocity Ω of the target planet, the radius Rt of
the target planet, the radius R of the impactor, and fm the volume fraction of metal within
the impactor; we use the value fm = 0.16 that corresponds to the same core fraction as in the
present-day Earth. The acceleration of gravity g is assumed uniform in the magma ocean (see
Fig. 5b in Olson, 2015).

Quantity Notation Value Reference

Density of metal ρm 7800 kg.m−3 [1]

Density of silicates ρs 3500 kg.m−3 [2]

Kinematic viscosity of metal νm 1.28× 10−6 m2.s−1 [1]

Kinematic viscosity of silicates νs 1.43× 10−5 m2.s−1 [3]

Mass diffusivity of metal κm 10−8 m2.s−1 [1,4]

Mass diffusivity of silicates κs 10−8 m2.s−1 [1,4]

Metal volume fraction in the impactor fm 0.16 [5]

Radius of the target planet Rt 6371 km [6]

Angular velocity of the target planet Ω 2Ω⊕ − 5Ω⊕ -

Radius of the impactor R < Rt -

Acceleration of gravity g 0.25g⊕ − 2g⊕ -

Table 3.2: Governing quantities in the context of metal-silicate mixing following a planetary impact.
The last three lines give ranges for the parameters that are varied, with Ω⊕ = 7.3× 10−5 rad.s−1 and
g⊕ = 9.81 m.s−2. References correspond to: [1] Lherm and Deguen (2018); [2] Qaddah et al. (2019);
[3] Karki and Stixrude (2010); [4] Deguen et al. (2014); [5] Landeau et al. (2021); [6] Kono (2010).

Both Ω and g are varied in the next sections; the subscript ⊕ denotes the values on Earth
today. The constant entrainment coefficient is fixed to α = 0.25 (Deguen et al., 2014; Landeau
et al., 2021).

Finally, during an impact the metal of the impactor mixes with silicates from the target
planet so that the metal dilutes in a larger volume, with an effective radius r0 (Landeau et al.,
2021). In all that follows, we assume that impactors approach the target planet at the escape
velocity and we account for mixing during an impact using the scaling law from Landeau et al.
(2021). Past studies have shown that the impactor core behaves as a turbulent thermal of radius
r0 immediately after an impact (Wacheul and Le Bars, 2018; Deguen et al., 2014; Landeau et al.,
2021).

For simplicity we consider that the cloud contains spherical drops from the very start of its
fall. The experiments of Landeau et al. (2021) suggest that, after an impact, the impactor core
fragments after less than 7.5 times its initial radius (see figure 14 in Landeau et al., 2021). For
such breakup lengths, Deguen et al. (2014) predict that the drop size is less than 4 mm (see
their figure 7 and the discussion in section 8). As this is only an order of magnitude estimate,
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we chose to explore a wide range of rp values in what follows, with a particular focus on the
case rp = O(10−3) m.

3.5.1 Three cases of reference for the Earth

(a) R = 300 km

Vortical column

Thermal

Swarm

(b) R = 200 km

Vortical column

Thermal

Swarm

(c) R = 50 km

Vortical column

Thermal

Swarm

Iron rain

Figure 3.7: Evolution of a cloud of metal drops after an impact on Earth by an impactor with a
radius R equal to (a) 300 km, (b) 200 km or (c) 50 km. We fix Rt = 6371 km, g = g⊕ and Ω = 2Ω⊕,
where g⊕ = 9.81 m.s−2 and Ω⊕ = 7.3×10−5 rad.s−1 are values for the present-day Earth. Transitions
correspond to R∗(z) = 1 ( ), Ro(zcol) = 1 ( ), z = zβ ( ) for β = 0.12. As in figure 3.3,
the red background stands for turbulent thermals, the light green stands for swarms, and the light blue
stands for vortical columns. Additionally, the deep blue for z > zβ stands for the regime of iron rain.

Figure 3.7 shows a regime diagram for three different impactors, respectively of radius
R = 300 km, 200 km and 50 km impacting a planet with the same gravity as the Earth
(g = g⊕) and spinning twice faster than the present Earth (Ω = 2Ω⊕). Such rotation rates in
the early Earth are suggested by estimates of the tidal dissipation of the Earth-Moon system
(Touma and Wisdom, 1994; Daher et al., 2021).

We first focus on the case of small particle radius < 10 m. As the impactor radius R
decreases from 300 km (figure 3.7a) to 50 km (figure 3.7c), the transition from a thermal to
a vortical column happens at a lower depth, from zcol = 1.95 × 106 m to zcol = 2.88 × 105 m
respectively (solid blue line in figure 3.7). This observation is paramount: assuming a magma
ocean with a depth & 1000−1500 km (Siebert et al., 2012; Fischer et al., 2015), a giant impactor
with R > 1000 km is little affected by planetary rotation and never transitions to a vortical
column (figure 3.7a). However, small impactors with R < 200 km transition to vortical columns
before reaching the bottom of the magma ocean (figures 3.7b-3.7c). In this case, rotation affects
the flow and may therefore affect the efficiency of chemical equilibration.

If the magma ocean is sufficiently deep for detrainment to complete, the same clouds of
small particles transition from the vortical regime to the regime of iron rain. How does this
transition happen? After detrainment, iron drops swirl with the fluid inside the wake at most
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until viscosity has fully dissipated the swirl. Let us show that in practice, iron drops rain out of
the vortical column before the swirl is dissipated. While iron drops are spiralling azimuthally,
they keep settling downwards because of gravity with velocity ws, as can be derived from the
momentum equation of an individual drop. The time required for the topmost drops to settle
down to the bottom of the vortical column is the ratio of the column height over the settling
velocity ws. This timescale is compared to the timescale of viscous dissipation r2

col/νs of the
vortical column, and to the shorter timescale Ω−1Ek−1/2 that should be taken into account
if Ekman pumping develops in the magma ocean (Greenspan, 1968), with Ek = νs/Ωz

2
ocean

the Ekman number based on the depth zocean of the magma ocean. For millimiter-sized drops
that will be the main focus of the next sections, and for all possible sizes of R < Rt hitting
a planet of gravity g = g⊕ and angular velocity Ω = 2Ω⊕, the settling timescale is 4-5 orders
of magnitude lower than Ω−1Ek−1/2 which is itself 2-3 orders of magnitude lower than r2

col/νs.
Therefore iron drops are expected to rain out of the wake before the swirl is dissipated. This
conclusion also held in our experiments (Kriaa et al., 2022, and Chapter 1): our slowest particles
(R = 7.57 × 10−2) settled over the column height in about 2.5 min which was an order of
magnitude lower than Ω−1Ek−1/2, hence we observed that particles rained out of the vortical
column before the dissipation of the swirl. In this situation, we call ‘iron rain’ the regime in
dark blue in figure 3.7c, when drops settle after detrainment from a vortical column.

The transition to iron rain is only visible for the smallest impactor in figure 3.7c. This is
because the larger the impactor, the wider the vortical column (rcol) and the deeper the depth
zcol, hence the deeper the depth of complete detrainment zcol + 2rcol/3β = zβ. This depth turns
out to be deeper than the present-day core-mantle boundary for R ≥ 200 km.

In figure 3.7a, drops larger than rp = 1.25 km fall too fast for a turbulent thermal to sustain
them: the cloud behaves as a swarm from the very start of its fall (light green region). Drops
in the range rp ∈ [0.82, 1.25] km initially fall as a turbulent thermal (red background) but
eventually rain out as a swarm before rotation affects the dynamics (transition from red to
light green). However, metal drops in a magma ocean are likely smaller than 0.82 km in radius
(Deguen et al., 2014; Landeau et al., 2014). Thus, in what follows we focus on smaller particles.

3.5.2 Regimes for a cloud of millimetre-sized drops

Figure 3.8a shows the different regimes experienced by a falling cloud of millimetre-sized drops
for various impactor-to-target radius ratios R/Rt up to a depth corresponding to the present-
day core-mantle boundary in Earth. As in previous figures, the solid blue line marks the depth
zcol where clouds transition to a vortical column for Ω = 2Ω⊕ and g = g⊕, and the dashed dark
line marks the transition to the regime of iron rain. We observe that the larger the impactor-
to-target radius ratio R/Rt, the larger the initial buoyancy of the cloud of droplets, the larger
the cloud inertia, hence the deeper the transition from the thermal to the vortical column.

When R/Rt ≤ 4.99×10−3 (left of the red solid line), impactors have so little initial buoyancy
that their Rossby number is never larger than unity. Consequently they experience the influence
of background rotation from the very start of their fall. This scenario is consistent with the
numerical simulation of a polar impact by Maas et al. (2021).

Conversely, impactors in the range R/Rt ≥ 0.19 reach the core-mantle boundary before ever
transitioning to the regime of vortical column. Such clouds always behave as turbulent thermals.
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Figure 3.8: (a) Dynamical regimes of a cloud of millimetre-sized drops for various impactor-to-target
radius ratios for Ω = 2Ω⊕. Transitions correspond to the depth zcol ( ) and the depth of complete
detrainment zβ for β = 0.12 ( ). Clouds in the range R/Rt ≤ 4.99 × 10−3 verify zcol = 0 because
their Rossby number remains below unity at all depths; they are separated from other clouds by the
vertical solid red line ( ). (b) Influence of gravity on the transition from a thermal to a vortical
column at z = zcol; the angular velocity is Ω = 2Ω⊕. (c) Influence of the angular velocity on the same
transition; the gravity is g = g⊕.

Gravity g and the angular velocity Ω of the target planet are important parameters affecting
the transition from the thermal to the swirling column stage. Their respective influence is
illustrated in figure 3.8b and figure 3.8c. For a given impactor-to-target radius ratio, the larger
gravity the deeper the depth of transition zcol. As g increases, the cloud velocity increases during
its phase of acceleration. It therefore takes a larger cloud radius rcol = r0 +αzcol for the Coriolis
force to overcome the cloud inertia and verify the condition Ro = 1. Thus, the transition to a
vortical column is delayed deeper in the magma ocean. Figure 3.8c shows that the faster the
background rotation Ω, the shallower the depth zcol. This is straightforward from the definition
of the Rossby number Ro ∝ Ω−1: for a given impactor on a target planet of given gravity, the
larger the angular velocity Ω the earlier the Coriolis force overcomes the cloud inertia to verify
Ro = 1, hence zcol decreases. Consistently, when g decreases and Ω increases, larger and larger
impactors are subject to the influence of rotation from the very start of their fall at depth
z = 0 (figures 3.8b and 3.8c). On a fast-spinning Earth with Ω > 5Ω⊕ as proposed by Ćuk and
Stewart (2012), rotation affects the flow even for large impactors with R > 1000 km.

3.6 Implications for mixing and equilibration after a plan-

etary impact

3.6.1 Definitions of mixing and equilibration efficiency

As a cloud of metal drops falls in the magma ocean, the metal phase is stirred with silicates.
This favours chemical transfers between the two phases. The present section models this equi-
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libration between metal and silicates on the basis of previous studies (Deguen et al., 2014;
Landeau et al., 2021), but including the effect of rotation and the regime of swirling columns.

We quantify mass transfers using the equilibration efficiency (Deguen et al., 2014; Landeau
et al., 2021). This quantity compares the very initial state when no mass transfer has happened
yet, to a state of thermodynamical equilibrium between the metal phase of the impactor and
a given mass of silicates. For a chemical element i (e.g. tungsten), the equilibration efficiency
is the ratio of the mass Mi of i transferred between these two states, over the maximum mass
Mi,max that could be transferred if (1) the metal was diluted in an infinite volume of silicates and
(2) all the metal of the impactor fully equilibrated. Consequently the equilibration efficiency
reads (Deguen et al., 2014)

Ei(z) =
Mi(z)

Mi,max

=
mm(z)|ceq

m(z)− c0
m|

Mi,max

, (3.12)

with mm(z) the mass of metal that equilibrates, c0
m the initial mass concentration of element i

in the metal, and ceq
m(z) the concentration of i in the metal when thermodynamical equilibrium

is reached. In the following the quantity Ei(z) will simply be referred to as the ‘efficiency’.
From its definition, the efficiency is a ‘state function’ in the sense that it only depends on

both the initial and final states of metal and silicates, not on the thermodynamic path that
connects these states. Thus, the efficiency (3.12) quantifies chemical transfers provided that a
thermodynamical equilibrium is reached by metal and silicates during the cloud fall, and that
the cloud is uniform in composition. These conditions are assumed in our next calculations
and discussed in Appendix 3.A.

3.6.1.1 Efficiency of turbulent thermals

In the case of turbulent thermals, previous studies (Deguen et al., 2014) have already established
that the equilibration efficiency reads

E th
i (z) =

k

1 + Di

∆th(z)

, (3.13)

where the quantity ∆th(z) is the metal dilution, defined as the ratio of the mass of silicates over
the mass of metal contained in the thermal (Deguen et al., 2014). The dilution increases with
depth as

∆th(z) =
ρs
ρm

[(
r0 + αz

R

)3
1

fm
− 1

]
, (3.14)

with ρs the density of silicates, ρm the density of metal, r0 the initial thermal radius, α the
coefficient of entrainment, z the cloud depth, R the radius of the impactor, and fm the volume
fraction of metal in the impactor.

In equation (3.13), the superscript ‘th’ distinguishes between the general notation Ei(z) and
the efficiency E th

i (z) of turbulent thermals specifically, since this latter efficiency serves as a
reference for mass transfers. In equation (3.13), k is the mass fraction of impactor core that
equilibrates chemically. Its value can be lower than unity, for example if the liquid metal is not
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vigorously stretched by the turbulence, which would allow some fraction of the impactor core to
keep its initial composition. Based on the conclusions of Deguen et al. (2014), we will consider
that the entire impactor core equilibrates with silicates, hence we set k = 1 in our estimates of
the efficiency. In equation (3.13), Di is the partition coefficient of element i, that is to say the
ratio between the concentration (in weight %) of i in the metal to the concentration of i in the
silicates, both considered at thermodynamical equilibrium.

3.6.1.2 Efficiency of vortical columns

Equation (3.13) also applies to the columnar regime after substituting the general notation Ei(z)
for Ecol

i (z), and replacing the metal dilution of a thermal ∆th(z) by its equivalent expression
∆col(z) in the regime of vortical column:

Ecol
i (z) =

k

1 + Di

∆col(z)

, (3.15)

where we assume k = 1 as before. The mass of metal involved in chemical transfers is unchanged
in this regime, however the mass of silicates now includes those present in the frontal sphere
and those present in the wake, so that the metal dilution reads

∆col(z) =
ρs
ρm

[(
r0 + αzcol

R

)3
1

fm
− 1

]

︸ ︷︷ ︸
∆th(zcol)

+
3ρs
4ρm

(z − zcol)r
2
col

fmR3
, (3.16)

which is applicable for zcol ≤ z ≤ zβ. In equation (3.16) the terms on the right-hand side
respectively correspond to the metal dilution ∆th(zcol) of a turbulent thermal at the depth zcol,
and to the metal dilution within the vortical column.

3.6.1.3 Efficiency of an iron rain

As soon as metal drops have separated from silicates, one can no longer define a volume of
silicates that would accompany the metal drops and mix with them during their fall. Instead,
drops cross an ever-renewed volume of silicates and deposit (or absorb) some element i in the
quiescent magma ocean, thus modifying the profile of concentration of i with respect to its
initially uniform value c0

s. Therefore no metal dilution is defined in this regime. Mass transfers
are quantified by the evolution of the concentration in element i within the metal drops. Since
mass transfers are transient during this regime of iron rain, no equilibrium concentration is
reached in the drops, so the equilibration efficiency now reads

E rain
i (z) =

Mi(z)

Mi,max

=
mm(z)|cm(z)− c0

m|
Mi,max

, (3.17)

where the superscript ‘eq’ has been removed from the concentration cm(z) in the metal drops.
Modelling of transfers between a settling spherical drop and the surrounding ambient liquid
has been investigated in several studies (Wacheul and Le Bars, 2018; Qaddah et al., 2019;
Samuel, 2012; Ulvrová et al., 2011; Lherm and Deguen, 2018). From mass conservation and
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after modelling the diffusive flux at the metal-silicates interface, these studies show that the
concentration in element i varies exponentially in depth to reach the equilibrium concentration
Dic

0
s on a characteristic length scale leq called the ‘equilibration length scale’. For a spherical

drop, Lherm and Deguen (2018) established that this length scale reads (see their equation 36
and appendix C)

leq ∼ ws
r2
pDi

6κs
Pe−1/2

(
1 +

1

Di

√
κs
κm

)
, (3.18)

with Pe = rpws/κs. With this, one can establish the expression of the efficiency in the iron
rain regime, as detailed in appendix 3.C. The final expression of the efficiency reads

E rain
i (z) = 1 + [Ei(zβ)− 1] exp

(
−z − zβ

leq

)
. (3.19)

which is applicable for z > zβ. Consistently, the efficiency is continuous at depth zβ, and it
evolves towards a state of complete mass transfer when z goes to infinity since Ei(z) −→

z→∞
1.

Interestingly, in the thermal and vortical column regimes, the size of drops only influenced the
depth of transition from one regime to another. However in the present regime of iron rain, the
drop size explicitly determines the efficiency E rain

i (z) through leq, whose value is 42.5 m when
rp = 10−3 m.

To minimise notations, in the following the efficiency is always denoted with the general
notation Ei(z) defined as

Ei(z) =





E th
i (z), if z < zcol

Ecol
i (z), if zcol ≤ z ≤ zβ

E rain
i (z), if z > zβ

. (3.20)

Similarly the metal dilution is denoted under the general form ∆(z), which corresponds to
∆th(z) in the thermal regime and to ∆col(z) in the columnar regime.

3.6.2 Dilution and mixing

Focusing on mixing in thermals and vortical columns, the metal dilution ∆(z) is computed at
any depth for all drop sizes. Past studies which neglected the influence of planetary rotation
showed that particles are expected to remain in a turbulent thermal from the start to the end of
their fall in the magma ocean (Deguen et al., 2011, 2014; Landeau et al., 2021). Consequently
the metal dilution ∆(z) is compared to the value ∆th(z) which would be experienced by the
cloud if planetary rotation had no influence on its dynamics. Results are shown in figure 3.9.
By definition, ∆(z)/∆th(z) = 1 where clouds behave as turbulent thermals.

In figure 3.9, we observe that dilution reduces in the columnar regime. This originates from
the slower growth of vortical columns compared to thermals: along a depth increment dz, the
ratio of the volume increment of a turbulent thermal of radius r over the volume increment of
a column of radius rcol is 4α(r/rcol)

2 ' (r/rcol)
2. So the deeper the vortical column, the larger

the deviation between ∆(z) and ∆th(z).
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Figure 3.9: Evolution of the ratio of metal dilution ∆(z)/∆th(z) along depth z in the magma ocean
for the three reference cases of figure 3.7, where ∆ is the mass of equilibrated silicates divided by the
mass of impactor metal and ∆th is the value of ∆ for a pure thermal i.e. in the absence of rotation.
Transitions correspond to R∗(z) = 1 ( ), Ro(zcol) = 1 ( ), z = zβ ( ) for β = 0.12.

3.6.3 Efficiency of clouds made of millimetre-sized drops

The equilibration efficiency Ei(z) computed from equations (3.13)-(3.20) is shown in figure 3.10a
for an impactor of radius R = 50 km falling onto Earth. The value of the equilibration efficiency
at the surface of the planet (z/Rt = 0) is positive because we account for the dilution occurring
during the impact (Landeau et al., 2021). It also varies with Di consistently with equation
(3.13): the lower the partition coefficient Di, i.e. the less siderophile the element i, the larger
the efficiency E th

i (z = 0).

As the cloud of drops falls deeper in the magma ocean, it dilutes more and more so the
efficiency always increases with depth. Once the cloud goes beyond the depth zcol (vertical solid
blue line), it transitions to the regime of vortical columns, which is less efficient than turbulent
thermals at diluting the metal drops. Hence, at a given depth, the slope of the curve Ei(z)
is smaller than that of thermals (dotted lines) until the cloud reaches the depth of complete
detrainment zβ.

Importantly, the final value of the equilibration efficiency is that recorded at the bottom
of the magma ocean. If a cloud reaches the bottom of the magma ocean while it is in the
vortical regime, then accounting for planetary rotation leads to a decrease in the equilibration
efficiency. This is even clearer in figure 3.10b which compares the efficiency Ei(z) of a cloud
in the vortical regime with the reference value E th

i of a turbulent thermal at the same depth.
The efficiency is always reduced in the vortical regime (Ei(z)/E th

i (z) < 1) and the discrepancy
between the actual efficiency Ei(z) and that of a thermal reaches 50% at depth z = 0.26Rt for
highly siderophile elements with Di = 104.

When z > zβ (on the right of the vertical dashed dark line in figure 3.10a), the regime of
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Figure 3.10: Evolution of the efficiency for an impactor of radius R = 50 km hitting the planet Earth
(Rt = 6371 km, Ω = 2Ω⊕, g = g⊕, β = 0.12). (a) Solid curves show the efficiency Ei(z), while thin
transparent dotted lines show the evolution of Eth

i (z) for reference. Vertical lines indicate the depth
zcol ( ) and the depth zβ ( ). The next two figures show the evolution of the ratio Ei(z)/Eth

i (z)
(b) in the vortical regime and (c) in the iron rain regime. The size of drops is fixed to rp = 10−3 m.

iron rain ensures a rapid equilibration and Ei(z) quickly reaches unity. Figure 3.10c shows that
the ratio Ei(z)/E th

i (z) becomes larger than unity for most partition coefficients: despite the
reduction of equilibration in the vortical regime, mass transfers are so efficient in the regime of
iron rain that this delay is caught up and Ei becomes larger than E th

i .

The previous conclusions are generalised in figures 3.11a-3.11c, which show the evolution
of the efficiency Ei(z) along depth for various impactor-to-target radius ratios R/Rt. For all
impactors, the efficiency slowly increases with depth until z = zβ, where the iron rain regime
abruptly leads to Ei = 1. Figures 3.11d-3.11f show the ratio Ei(z)/E th

i (z) as a function of depth.
Expectedly, the ratio is equal to unity at depths z ≤ zcol in the thermal regime. Then, the ratio
lowers in the vortical regime until the depth zβ. Finally, equilibration is so fast in the iron rain
regime that the ratio Ei(z)/E th

i (z) becomes larger than unity for z > zβ, all the more so as Di

is larger. Consequently, modelling clouds as turbulent thermals at all depths is all the more
inaccurate as elements are more siderophile. This is especially true for the largest impactors
that transition to iron rain in figure 3.11f, where the efficiency Ei(z) largely overshoots E th

i (z)
for z > zβ. Note that this dependency with respect to the size of the impactor is not due to
the iron rain regime (the equilibration length leq is independent of the impactor size R/Rt) but
to the lower efficiency E th

i (z) of turbulent thermals produced by larger impactors.

Results for a target planet spinning faster at Ω = 4Ω⊕ (figure 3.12) highlight that vortical
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Figure 3.11: Equilibration efficiency Ei (a-c) and ratio Ei/E thi (d-f) as a function of impactor size
and magma ocean depth for partition coefficients Di = 102 (a and d), Di = 103 (b and e) and Di = 104

(c and f), on a planet spinning at Ω = 2Ω⊕. The size of drops is fixed to rp = 10−3 m. The solid blue
line denotes zcol, the black-and-white dashed line denotes the depth zβ, and the solid red line separates
the impactors that are influenced by rotation in the aftermath of the impact (on the left-hand side)
from those that are affected by rotation deeper in the mantle (on the right-hand side).
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Figure 3.12: Equilibration efficiency Ei (a-c) and ratio Ei/E thi (d-f) as a function of impactor size
and magma ocean depth, for Di ∈ {102, 103, 104} on a planet that is now spinning at Ω = 4Ω⊕. Regime
boundaries as in figure 3.11.

columns form at lower depths when rotation is stronger. As a result the efficiency Ei(z) is lower
than in figure 3.11 when the cloud reaches the depth z = zβ, hence the discrepancy between
Ei(z) and E th

i (z) is exacerbated.

This conclusion, however, only holds for impactors verifying zcol > 0 on the right-hand side
of the vertical red line in figures 3.11 and 3.12. In fact, clouds verifying zcol = 0 are unaffected
by any further increase of Ω, as illustrated in figure 3.13a. As long as Ω is sufficiently low (on
the left-hand side of the vertical red line), a faster spinning reduces both zcol and zβ and thus
the efficiency Ei(zβ). Conversely, when Ω is above the critical value Ωc indicated by the vertical
red line, impactors verify zcol = 0 and we observe that the efficiency becomes independent of
Ω. Indeed, the efficiency of vortical columns only depends on the metal dilution (see equation
(3.27)) which becomes independent of Ω when zcol = 0 (see equation (3.16)).

For a given impactor radius R, all angular velocities above the critical threshold Ωc have an
identical influence on the cloud evolution and on metal-silicate mixing. This critical threshold
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is measured for several values of the gravity g and shown in figure 3.13b as a function of the
impactor radius R/Rt. The increase of Ωc with R when R < 0.33Rt originates from larger
impactors having more buoyancy and hence inertia. Thus, a larger angular velocity is required
to guarantee that this inertia does not overcome the Coriolis force. Yet this intuitive result is not
trivial since both żf (z) and r(z), which enter the definition of the Rossby number (3.5), increase
with R/Rt. In the range R/Rt ≤ 0.33, the ratio żf (z)/r(z) increases with R/Rt, and hence
the critical angular velocity Ωc increases with R/Rt. Conversely, in the range R/Rt ≥ 0.33,
the critical angular velocity Ωc is a decreasing function of R/Rt because of the decrease of
żf (z)/r(z) with increasing R/Rt.
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Figure 3.13: (a) Influence of the angular velocity Ω on the transitions between dynamical regimes
(from thermal to vortical column zcol ( ), from vortical column to iron rain zβ ( ), critical
angular velocity Ωc at which the thermal regime disappears and the flow is influenced by rotation
in the aftermath of the impact ( )) and on the evolution of the efficiency Ei(z) with depth. (b)
Evolution of the critical angular velocity Ωc as a function of impactor size and for various values of
g. For both figures, the size of the metal drops is rp = 10−3 m.

3.7 Discussion and concluding remarks

Accounting for planetary rotation reconciles the existing models of a turbulent thermal and an
iron rain, which appeared to be in contradiction (figures 3.6 and 3.7). Our results suggest that,
after each impact, a turbulent thermal of metal and silicates sinks in the magma ocean, but
transitions first to a swirling column strongly influenced by rotation, and then to a rain of iron
drops. The transition from a thermal to a swirling column occurs at a critical depth zcol, at
which the inertia of the cloud equals the Coriolis force, meaning that the Rossby number Ro
(3.5) equals unity. In this regime, a vortical column grows by detrainment of metal drops from
a drop-laden frontal sphere to a swirling wake. This regime ends when detrainment completes
(figure 3.6). At depths larger than zβ, we predict that metal drops rain out from the column
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into an iron rain.

These effects of rotation on the dynamics of the cloud of metal drops have consequences on
their chemical equilibration with silicates. At depths larger than zcol but smaller than zβ, the
equilibration happens in a swirling column and is limited by the mass of silicates entrained in
this column. Indeed the entrainment of ambient silicates is reduced in this regime compared to
that in turbulent thermals. Thus, the regime of vortical columns is characterised by a reduced
metal dilution ∆(z) compared to the dilution ∆th(z) of a reference turbulent thermal at the
same depth (figure 3.9). We therefore predict an equilibration efficiency that is lower than
previous estimates that neglect planetary rotation. Conversely, at depth larger than zβ, during
the regime of iron rain, metal drops interact with a continuously-renewed volume of silicates.
Thanks to this renewal of silicates, chemical transfers are efficient and full equilibration is
reached at a typical depth zβ + leq with leq the equilibration length scale on the order of 100 m.

In the first two regimes of turbulent thermal and vortical column, metal equilibrates with
a volume of silicates and hence dilution is the key parameter controlling the efficiency. The
efficiency decreases with the impactor size in both regimes (figures 3.11a-3.11c and 3.12a-3.12c),
and it increases with decreasing angular velocities Ω in the vortical regime (see figure 3.13a
when Ω < Ωc). In the regime of iron rain involving a continuously-renewed volume of silicates,
the decisive quantity affecting mass transfers is the equilibration length scale leq (equation
(3.18)).

These results show that the depth of the magma ocean and how it compares with the three
depths zcol, zβ and zβ + leq controls the efficiency of chemical equilibration.

The above conclusions are based on strong assumptions. When metal drops rain out of the
vortical column, they may partly entrain some contaminated silicates. This ability of particles to
drag the interstitial fluid that separates them has been investigated in the literature; it depends
on the interparticle distance and how it compares with a critical distance of hydrodynamical
interaction (Harada et al., 2012; Yamamoto et al., 2015) that is a function of the dynamics of the
flow past the particles (Subramanian and Koch, 2008; Daniel et al., 2009; Guazzelli and Hinch,
2011). These effects lack understanding and have therefore been neglected in the present work.
Additional experiments of suspensions should be led that control the interparticle distance,
as well as the size and settling velocity of particles, exploring different ratios of the particle
inertia over viscous dissipation – the so-called particle Reynolds number. Such experiments
would improve our ability to account for a partial drag of silicates by the iron drops. This
effect would lead to a smoother evolution of the efficiency Ei(z) at depths z > zβ. In addition,
we have neglected the flow caused by the difference in composition between the silicates in the
vortical column and the surrounding magma ocean. This could lead to the vertical displacement
of the column within the ocean. Finally, we have assumed that the convective motions in the
magma ocean are much weaker than the flows in the thermal and vortical column. However,
convective motions will certainly affect the long-term fate of the vortical column.

The present work focuses on the dynamical regimes and the equilibration of a cloud of metal
drops falling parallel to the rotation axis of the target planet. This corresponds to a scenario
of an impact near the poles. Investigation of the effect of rotation at different latitudes as in
Maas et al. (2021) would be beneficial. The misalignment between ~g and ~Ω might affect the
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turbulent stirring of metal drops, and their dispersion and equilibration in the mantle. To tackle
the misalignment between ~g and ~Ω, experiments could be performed using an off-centered tank
on a rotating table and the centrifugal force to mimic inclined gravity. However, the range of
accessible angles could be limited, so numerical simulations would be well-suited to investigate
this. Simulations could also incorporate the heating during the impact. If the metal cloud
is warmer, we expect that an upward buoyancy force of thermal origin will reduce the cloud
inertia and therefore favour a transition to the columnar regime at a lower depth.

Additional experiments at faster rotation rates or starting with releases of lower buoyancy
would be beneficial to model small impactors on a fast-spinning planet whose dynamics is
constrained by planetary rotation at the top of the magma ocean (zcol = 0). They could
be complemented by new experiments investigating the role of planetary rotation during the
phase of impact and crater collapse, and how dilution by entrainment of already rotating fluid
plays any part in the cloud dynamics and onset of settling. Together, they could improve the
modelling of the critical condition Ω ≥ Ωc for the onset of vortical columns at the very surface
of the planet. As regards the vortical regime, additional experiments at larger scale with larger
initial cloud buoyancy or lower rotation rates would be beneficial to better constrain the process
of detrainment and the subsequent raining out of metal drops, and how it may be influenced
by Ekman pumping if the latter develops before raining out from the swirling motions.
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3.A Thermodynamical equilibrium and uniformity in the

flow

As stated in section 3.6.1, the efficiency quantifies mass transfers under the assumptions that a
thermodynamical equilibrium is reached by metal and silicates during the cloud fall, and that
the cloud is uniform in concentration.

The first requirement translates as a condition τχ � 2r/ż where τχ is the timescale of
chemical transfers and 2r/ż is the advective timescale i.e. the typical timescale for the variation
of the macroscopic cloud properties (such as its density and radius): this condition means
that chemical transfers should complete long before the cloud properties vary to ensure a
thermodynamical equilibrium is reached at any depth of the cloud fall. The timescale τχ is
provided by Deguen et al. (2014) in their equation (22)

τχ ∝
(2r)2

κsc
Sc−1/2Re−1/2We−3/5, (3.21)

and we verify that the requirement τχ � 2r/ż is met for all scenarios explored in figure 3.8a
almost immediately (for the impactors that are influenced by rotation immediately in the
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aftermath of the impact, we find 2r/żτχ > 1 as soon as z ≥ 0.9 km i.e. z/zβ ≥ 2 × 10−3 ; for
the other impactors, we find 2r/żτχ > 1 as soon as z/zcol ≥ 5× 10−3).

The second requirement translates as a condition τK � τχ with τK a timescale of dissipation
of heterogeneities within the cloud. This condition means that as chemical transfers proceed
forward, heterogeneities are smoothed out by turbulence much faster, so that the cloud can
be considered homogeneous during mass transfers. While the literature contains evidences of
heterogeneities within turbulent thermals (Lherm, 2021), past studies in a variety of contexts
have proved the robustness and accuracy of predictions based on the assumption of homo-
geneity within the turbulent thermal (Deguen et al., 2014; Landeau et al., 2021; Ayotte and
Fernando, 1994; Helfrich, 1994; Fernando et al., 1998; Morton et al., 1956; Turner, 1986) and
in particle clouds (Deguen et al., 2011; Kriaa et al., 2022; Landeau et al., 2014). This can
be verified by computing the timescale of homogenisation based on local velocity gradients.
Deguen et al. (2014) have shown that the turbulence that develops inside turbulent thermals
can be modelled as a homogeneous isotropic turbulence at first order. Hence the timescale of
local homogenisation is the Kolmogorov timescale based on the cloud radius and entrainment
velocity

τK =

√
νr

α3ż3
, (3.22)

which does verify the condition τK � τχ for all impactors and all depths in the general config-
uration of figure 3.8a (β = 0.12, Ω = 2Ω⊕, g = g⊕, rp = 10−3 m).

As regards the vortical regime, renewal of the metal volume fraction φ(z) within the frontal
sphere happens on a timescale τβ. We assume that turbulence is little altered in the frontal
sphere whose Reynolds number remains constant, consequently the timescale of homogenisation
τK is unaltered, and so is the timescale of chemical transfers τχ. Then, we verify that the
condition τK � τχ is verified for all impactors at all depths. As for the condition τχ � τβ, it is
verified by all vortical columns of figure 3.8a having zcol > 0. For the other clouds in the range
R/Rt ≤ 4.99× 10−3, in the worst case we find τβ/τχ > 1 as soon as z/zβ ≥ 1× 10−4.

Finally, consider the regime of swarm with iron raining out of the vortical column. In
this regime homogeneity is guaranteed: indeed, as a first approximation, metal drops fall
individually and cross quiescent unpolluted fluid whose concentration all around each drop is
still the initial silicate concentration of the magma ocean c0

s. However, a thermodynamical
equilibrium can only be reached after the drops have travelled a distance long enough to have
completed mass transfers with the ambient, thus reaching the ideal equilibrium described by
Mi,max. We show in appendix 3.C how to quantify a transient mixing efficiency before this
ultimate thermodynamical equilibrium is reached.

3.B Equilibration efficiency of a uniform mixture of metal

and silicates

To quantify the mass transfer of an element i between metal and silicates, consider some mass
of metal mm(z) and some mass of silicates ms(z) that are sufficiently uniformly mixed to be at
thermodynamical equilibrium at a given depth z (right-hand side of equation (3.23)), and the
initial state of both masses when metal is isolated with a concentration c0

m, and when silicates
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are isolated with a concentration c0
s (left-hand side of equation (3.23)). Mass conservation

between these two states reads

mm(z)c0
m +ms(z)c0

s = mm(z)ceq
m(z) +ms(z)ceq

s (z). (3.23)

In equation (3.23), the masses mm(z) and ms(z) are those involved in chemical transfers when
either a turbulent thermal or a vortical column (i.e. the combination of a frontal sphere and its
wake) is at depth z. The mass concentration ceq

m(z) (respectively ceq
s (z)) is the concentration

of i in the metal (respectively in silicates) when thermodynamical equilibrium is reached. The
condition of thermodynamical equilibrium imposes that ceq

s (z) = ceq
m(z)/Di. Using this con-

straint of equilibrium in equation (3.23) and isolating the equilibrium concentration of metal
ceq
m(z) yields

ceq
m(z) =

mm(z)c0
m +ms(z)c0

s

mm(z) +ms(z)/Di

(3.24)

The equilibration efficiency quantifies the net mass transfer of element from the very initial
state (at impact) to the state of equilibrium ceq

m(z) so that

Ei(z) =
mm(z)|ceq

m(z)− c0
m|

Mi,max

, (3.25)

withMi,max = m0|c0
m−Dic

0
s|. By subtracting c0

m from both sides in equation (3.24), and using
equation (3.25), we readily obtain

Ei(z) =
mm(z)ms(z)

m0

1

ms(z) +Dimm(z)
. (3.26)

This last equation can be rearranged to take the exact same form as the efficiency of a turbulent
thermal expressed by Deguen et al. (2014),

Ei(z) =
k(z)

1 + Di

∆(z)

, (3.27)

with k(z) = mm(z)/m0 and ∆(z) = ms(z)/mm(z) is the metal dilution. Importantly, equation
(3.27) is valid for any uniform structure containing a mass mm(z) of metal and a mass ms(z)
of silicates. Therefore, it applies for turbulent thermals with ∆(z) = ∆th(z) and the equation
(3.13) is recovered. It also applies for a vortical column with ∆(z) = ∆col(z) and the equation
(3.15) is recovered.

3.C Equilibration efficiency for a swarm in the regime

of iron rain

Mass transfers in the regime of iron rain are characterised by an exponential evolution of the
concentration in element i in depth, on a characteristic length scale leq provided in equation
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(3.18) (see Lherm and Deguen, 2018). The mass concentration cm(z) in element i in the metal
phase varies to reach the equilibrium concentration Dic

0
s and verifies

cm(z)−Dic
0
s = [cm(zβ)−Dic

0
s] exp

(
−z − zβ

leq

)
, (3.28)

which applies for z ≥ zβ. Then it follows that

m0[cm(z)− c0
m]

Mi,max

=
m0

Mi,max

[Dic
0
s − c0

m] +
m0

Mi,max

[cm(z)−Dic
0
s] (3.29)

=
m0

Mi,max

[Dic
0
s − c0

m] +
m0

Mi,max

[cm(zβ)−Dic
0
s] exp

(
−z − zβ

leq

)

=
m0

Mi,max

[Dic
0
s − c0

m]

[
1− exp

(
−z − zβ

leq

)]
+ (3.30)

m0

Mi,max

[cm(zβ)− c0
m] exp

(
−z − zβ

leq

)

From the definitions of Mi,max and of the equilibration efficiency in equation (3.17), the latter
finally reads

Ei(z) = 1 + [Ei(zβ)− 1] exp

(
−z − zβ

leq

)
. (3.31)

Under the present form, equation (3.31) applies for clouds that transition from the regime of
vortical column to the swarm regime. Yet, it can be generalised: the position zβ can be replaced
with z = 0 for a cloud behaving as a swarm immediately after impact, and it can be replaced
with the depth of separation where R∗(z) = 1 for a cloud transitioning from the thermal regime
to the swarm regime without ever behaving as a vortical column.
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Chapitre 4

Plumes of settling and dissolving sugar
grains

Summary
As an analog of snow-driven flows, we present experiments of settling and dissolving
grains of sugar that are continuously sieved above water with various mass fluxes and
sizes of sugar grains. Through drag and dissolution, particles force a central plume
whose inner structure is analysed in a laser sheet thanks to PIV measurements and
the use of home-made fluorescent sugar to track the negatively buoyant sugary water.
The size of grains controls a wealth of behaviours, from a laminar plume that gains
intensity over a long transient when forced by the rectilinear fall of large grains, to a
turbulent lazy plume that emerges faster when forced by fast-dissolving small grains.
This transition is determined by the enhanced forcing imposed by smaller grains, and
their ability to nourish a Rayleigh-Taylor-like instability at the plume onset. In the
quasi-steady state, the combination of settling and advection of sugar by the flow
controls the dilution of the buoyant material, which in turn feedbacks on the flow to
select the plume velocity. The coupling of this velocity with the Lagrangian evolution
of a settling and dissolving grain sets the depth of complete dissolution in the plume.

4.1 Introduction

Our interest is in buoyancy-driven flows laden with reactive particles that initially force the
flow by their sedimentation, but ultimately change phase by dissolution, thus imparting their
buoyancy to the fluid. Our laboratory experiments consist of sugar grains that are continuously
sieved above a water tank; as they settle and dissolve in a plume, they produce negatively
buoyant sugary water that sinks in the tank, and we analyse both solid and fluid motions.
What is the impact of this transition from a dispersed forcing to a continuous field of buoyancy
in the fluid?

In a particle-laden flow, large particles of large inertia are insensitive to local modifications of
the flow due to their considerable response time (Maxey, 1987; Ghosh et al., 2005; Yoshimoto
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and Goto, 2007). This low-pass ‘inertial filtering’ results in a decoupling of particles from
fluid motions. In addition, the present study focuses on flows driven by the sedimentation of
buoyant particles, so the same particles have settling velocities that are much larger than the
fluid velocities. As a result, they settle in the direction of gravity irrespective of fluid motions
(e.g. Balachandar and Eaton, 2010, and see Chapter 1). Conversely, tiny particles of negligible
inertia and settling velocity move like passive tracers (Maxey, 1987): they are fully coupled
to the fluid motions and are advected by the flow like a scalar field (Balachandar and Eaton,
2010). Consequently, for an identical global buoyancy, settling-driven flows forced by particles
of different sizes can be very different (see Chapters 1 and 2).

Beyond these limiting cases, the particles’ inertia and settling velocity control their dis-
persion in the flow, with consequences on the heterogeneity of the buoyancy forcing. Dense
particles of finite inertia preferentially concentrate on the periphery of eddies in zones of large
strain rate (Maxey, 1987; Aliseda et al., 2002; Yoshimoto and Goto, 2007; Salazar et al., 2008;
Toschi and Bodenschatz, 2009; Falkinhoff et al., 2020); due to settling, they preferentially fall
on the eddy side of downward velocity (Maxey and Corrsin, 1986; Wang and Maxey, 1993;
Nielsen, 1993; Elghobashi and Truesdell, 1993; Bosse et al., 2006; Good et al., 2014; Falkinhoff
et al., 2020; Hassaini and Coletti, 2022); when they fall in an upwelling region, the latter de-
lays their progression so particles sample these upwelling regions for a longer time, resulting
in a ‘loitering’ that affects their dynamics (Nielsen, 1993). These examples of mechanisms of
preferential sampling modify the distribution of particles in space and time, thus imprinting
the influence of the particles’ inertia and settling on the field of concentration (see Chapters 1
and 2).

For an identical buoyancy flux, the particulate nature of the buoyancy forcing has an impact
on the flow. This has manifested as a modification of the entrainment rate of plumes and
thermals for pointwise injections of buoyant particles (McConnochie et al., 2021; Kriaa et al.,
2022, and Chapter 1). This has also been shown in experiments or simulations where particles
are injected from, or settle over, a line source (when the flow is 2D) or a large surface area
(when the flow is 3D). Compared to the injection of buoyant fluid (Friedl et al., 1999; Kaye
and Hunt, 2009), the buoyancy flux is not the sole ingredient controlling a particle-driven flow:
experiments of settling particles (Mizukami et al., 1992; Carey, 1997; Carazzo and Jellinek,
2012; Jacobs et al., 2015; Lemus et al., 2021; Magnani et al., 2021; Zürner et al., 2023) or rising
bubbles (Kimura, 1988; Climent and Magnaudet, 1999) have shown that the settling velocity
conditions the development of buoyancy-driven instabilities and controls the structure of the
flow (Murai and Matsumoto, 1998; Iga and Kimura, 2007).

Finally, the heterogeneity of the particle concentration due to preferential sampling effects
results in a heterogeneous concentration of solute during dissolution. Additionally, the disso-
lution rate depends on the grains’ size (Ranz and Marshall, 1952; Kerr, 1995). Consequently,
despite the transition of the flow from particle-driven to solute-driven, we show that the final
dynamics of a solutal plume is still marked by the dynamics that particles had prior to their
full dissolution.

We present the results of our experiments on sugary plumes in which we vary the mass rate
and the size of the sugar grains at the source. Section 4.2 presents the experimental setup.
Section 4.3 introduces three reference cases of sugar plumes that enable to identify in section
4.4 the essential ingredients that force the flow. Section 4.5 then focuses on the onset of the flow
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below the water free surface and how it constrains the plume structure. Section 4.6 analyses
the transient and the quasi-steady regimes of the sugary plumes, providing a description of
the flow that enables to predict in section 4.7 the evolution of sugar grains before they fully
dissolve. Section 4.8 offers some final remarks. Appendixes 4.A and 4.B give details about the
experimental setup and processing techniques.

4.2 Experimental setup

Experiments are performed by continuously sieving sugar above a cylindrical water tank of
height 38.5 cm and diameter 28.5 cm containing 24.5 L of initially fresh water (ρ0 = 1000 kg.m−3,
ν = 10−6 m2.s−1). The tank is filled long before the experiments to ensure that water is at
room temperature, i.e. 22◦C on average. A sieve of radius Rsieve = 8.25 cm is placed above
the water free surface, with a distance of 8.15 cm between the latter and the bottom of the
sieve. The latter is held by a ring that is screwed to a magnetised rod which oscillates back and
forth thanks to a motor which is controlled by a computer to adapt the amplitude, velocity,
frequency or functional form of oscillation (sine wave or triangle).

When ordinary sugar falls in water, only small changes of refractive index can be seen after
dissolution. To visualise sugary water, we decided to put fluorescent colouring in sugar by
cooking our own. No matter whether dyed sugar or ordinary sugar is used, grains must be
crushed to obtain very small sizes, which then imposes to sort all the grains by sieving. During
this procedure, and most of all during an experiment, sieves tend to clog while they oscillate,
which complexifies the calibration of the mass rate. All these aspects are detailed in Appendix
4.A. Important points are that a new calibration is performed for each experiment, and that
the size of grains is constrained by the size of the sieves that are used to separate them; their
average radii are listed in table 4.1.

Range of diameters (µm) 56-125 125-140 140-180 180-224 224-450 450-1000

Average radius rp (µm) 45.25 66.25 80 101 168.5 362.5

Rep 0.226 0.671 1.13 2.12 7.66 41.6

Table 4.1: Average radius of sugar grains and particle Reynolds number Rep = rpws/ν based on their
settling velocity ws, depending on the range of diameters they belong to.

The visualisations are performed in a vertical laser sheet (see figure 4.1a) with half-angle of
divergence 30◦, using a Powell lens and a laser of wavelength 532 nm with a power of 450 mW
(Laser Quantum 532 nm CW laser 2 W). When ordinary sugar grains are sieved, they reflect
and refract the laser beam so they appear in green. Consequently their motions are recorded by
a PointGrey camera equipped with a green filter (band-pass filter from Edmund Optics, CWL
532 nm, FWHM 10 nm) with a frame rate of 50 fps.

Alternatively, when dyed sugar grains are used, they appear orange due to their fluorescence.
Importantly, the presence of the coloured molecules inside the sugar ensures that throughout
the whole process of dissolution, these molecules are released in water, that is why sugary water
also appears in orange in the laser sheet. The motions of both dyed sugar grains and sugary
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(a) (b) (c)

Figure 4.1: Three configurations for recording experiments. (a) Ordinary sugar is sieved and recorded
by the camera with a green filter. (b) Dyed sugar is sieved in the same laser sheet and recorded by
the camera with an orange filter. (c) Ordinary sugar is sieved while the tank is seeded with orange
PIV particles. The camera with green filter records the motions of sugar grains, while the camera with
orange filter records the motions of orange tracers.

water are recorded at 50 fps by another identical camera that is equipped with an orange filter
(high-pass filter above 570 nm), see figure 4.1b.

Finally, to quantify the velocity field in water, the two cameras are synchronised, again at
50 fps. The first camera with a green filter records the motions of ordinary sugar grains, while
the second camera with an orange filter records the motions of orange PIV particles (see figures
4.1c and 4.2).

4.3 Core physical ingredients: focus on three represen-

tative cases

4.3.1 Rectilinear precipitation of large sugar grains

Figure 4.3 shows snapshots of 363 µm-sized dyed sugar grains settling in quiescent water when
sieving with a mass rate ṁ = 0.052 g/s, i.e. typically 163 sugar grains per second. Streaks of
rhodamine evidence the vertical settling of these grains, which is the most characteristic feature
of this category of experiments. At large times, weak horizontal deviations of these wakes of
rhodamine can be seen at the top of the tank due to the formation of a local converging flow.
Deviations of sugar grains are even weaker: they are almost insensitive to horizontal fluid
velocities. This is because they partly decouple from fluid motions due to settling. Under the
widely used assumption that the particle inertia can be neglected, and considering the motion
of a sugar grain on a timescale much lower than the dissolution timescale, the momentum
equation of a single supposedly spherical sugar grain of radius rp reduces to a balance between
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Figure 4.2: Photograph of the experimental setup before an experiment corresponding to the sketch
in figure 4.1c. The orange tracers are clearly visible in the water tank; they are recorded by the camera
on the right-hand side that is equipped with an orange filter. The laser beam emitted by the laser is
visible as a green triangle due to the presence of some dust in the room. The bright green circle above
the tank is the bottom of the sieve that lies on two rods to oscillate horizontally.

its buoyancy and drag:

vp(xp, t) = v(xp, t) +ws(rp)ez︸ ︷︷ ︸
gravitational drift

, with ez = g/g. (4.1)

This equation means that the grain velocity vp(xp, t) is equal to the local fluid velocity v(xp, t)
with the addition of a gravitational drift along the direction of gravity at the terminal velocity
ws(rp). The latter is parameterised as (Crowe et al., 2011)

ws =
wStokes
s

1 + 0.15Re0.687
p

, (4.2)

where Rep = wsrp/ν is the particle Reynolds number and

wStokes
s =

2gr2
p(ρp − ρ0)

9νρ0

(4.3)

is the Stokes velocity. In equation (4.3), g is gravity, ρp is the density of sugar, ρ0 is the density
of clear water and ν is its kinematic viscosity (we neglect the change in density and viscosity
associated with dissolved sugar, see section 4.7.3 below for further discussions). The values of
these quantities are listed in table 4.2. The vertical settling and the resistance of large grains
to the horizontal convergence is a consequence of their large settling velocity that predominates
over the fluid velocity.

Together with the continuous stochastic deposition of additional sugar wakes in the flow, the
convergence ultimately leads to the overlap of these dyed wakes, which implies an enhancement
of the local negative buoyancy which accelerates the downward fluid motions. The latter gain
intensity during a transient which eventually leads to a quasi-steady flow – these two stages
are separately analysed for all experiments in sections 4.6.2 and 4.6.3. Importantly, the last
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Figure 4.3: Three snapshots of dyed sugar grains of mean initial radius rp = 363 µm sieved with an
average mass rate ṁ = 0.052 g/s. The total height is 38 cm and the time interval between snapshots
is 6 s.

snapshot in figure 4.3 still preserves a layered structure of vertical wakes, evidencing the laminar
and essentially irrotational nature of the plume that develops.

Quantity Notation Value Reference

Density of sucrose ρp 1590 kg.m−3 [1]

Density of saturated sugary water ρsat 1450 kg.m−3 [2]

Mass concentration at saturation Csat 968 kg.m−3 [2]

Diffusivity of sucrose in water κ 0.5× 10−9 m2.s−1 [3,4]

Density of clear water ρ0 1000 kg.m−3 -

Gravity g 9.81 m.s−2 -

Kinematic viscosity of water ν 10−6 m2.s−1 -

Table 4.2: Main properties of sugar and sugary water. References correspond to: [1] Hancock and
Zografi (1997); [2] Cohen et al. (2020); [3] Linder et al. (1976); [4] Price et al. (2016).

4.3.2 Lazy plume of fast-dissolving small grains

Figure 4.4 shows snapshots of 45 µm-sized dyed sugar grains sieved with a mass rate ṁ =
0.120 g/s, i.e. about 1.9 × 105 grains per second. Photographs evidence a strikingly different
onset of solutal convection compared to the previous section, with the development of sugar-
laden mushrooms underlying the free surface. This localised interfacial instability is identified
as a Rayleigh-Taylor-like instability forced by the excess density of the sugary layer located just
below the free surface.
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As the sugary mushrooms grow, they coalesce and gradually converge to form a plume, in
a similar way as observed for 3D one-phase plumes (Friedl et al., 1999) and for 2D bubble
plumes (Mudde, 2005). The constriction of the flow is characteristic of lazy plumes which have
a deficit of momentum flux at the source compared to a pure plume of identical volume flux and
buoyancy flux (Hunt and Kaye, 2005). This necking phenomenon enhances the local buoyancy
by concentrating sugar grains and dissolved sugar, and it accelerates the flow by continuity,
leading to an increase of the plume momentum flux and thus its transition to the state of a
pure plume (Hunt and Kaye, 2005).

The lazy plume that develops is laden with convoluted patches of sugary water which are
due to the presence of numerous eddies of varying sizes, evidencing the (moderately) turbulent
nature of the flow. The rapid vortical onset of the flow stands in stark contrast with the delayed
onset observed in the previous section for large grains (see figure 4.3). Also, in figure 4.4 no
sugar grain is visible because grains are very small and their signal is lost in the brightness of
the dyed sugary water. Yet, these grains dissolve at a finite depth which can be measured in
the absence of rhodamine when using ordinary sugar, as we shall see later. As for all regimes,
we observe that the flow eventually reaches a quasi-steady state with a central turbulent plume
and upward recirculations on the sides.

Figure 4.4: Six snapshots of dyed sugar grains of mean initial radius rp = 45 µm sieved with an
average mass rate ṁ = 0.120 g/s. The total height is 38 cm and the time interval between snapshots
is 10 s.

4.3.3 Grains of intermediate size

Experiments with grains of intermediate size are more representative of the general evolution of
the flow in experiments, and combine observations made with small and large grains. Snapshots
in figure 4.5 for grains of radius rp = 101 µm sieved with a mass rate ṁ = 0.115 g/s (i.e.
typically 1.7 × 104 grains per second) show that grains initially just settle vertically in water
(first snapshot): apart from variations of light intensity due to light scattering at the scale
of sugar grains, the precipitation is uniform and its front is flat. Yet, ultimately a Rayleigh-
Taylor-like instability emerges (second snapshot) whose mushrooms grow and coalesce (third
snapshot) until converging to form a central downward plume (fourth and fifth snapshots).
Lastly, the plume reaches quasi-steadiness at the centre of recirculation cells.

Interesting features emerge when looking at sugar grains which are sufficiently large and
bright to be visible even in the plume of dyed sugar. Unlike the largest grains of section 4.3.1,
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Figure 4.5: Five snapshots of dyed sugar grains of mean initial radius rp = 101 µm sieved with an
average mass rate ṁ = 0.115 g/s. The total height is 23 cm and the time interval between snapshots
is 5.2 s.

the present grains are sufficiently small to be carried along by the lazy plume. Yet, they prove
to have sufficient inertia and gravitational drift to have vertically-biased trajectories and to
partly decouple from fluid motions by raining out of the region of flow convergence below the
free surface: while the dissolved sugar converges with a convex profile within the plume (see
the red dashed line in the fourth snapshot), large sugar grains converge along a cone outside of
the solute (see the blue dotted line in the fourth snapshot of figure 4.5).

The visual texture of the plume is also intermediate between previous observations. It
combines the smooth variations of light intensity due to dissolved sugar as well as some bright
dots of large sugar grains which dissolve sufficiently deep to be visible at finite depth. Some
regions are layered due to the vertical wakes of sugar grains, suggesting the flow is locally
laminar. At the same time, the last snapshot in figure 4.5 shows shear instabilities that induce
fluctuations at larger depths, possibly leading to turbulence if the flow is sufficiently vigorous.

All in all, figures 4.3 to 4.5 suggest that the Rayleigh-Taylor-like instability or the shear
instabilities are responsible for the transition of the flow to turbulence. However, as the plume
develops, it carries buoyant material downward and dilutes the incoming flux of sugar grains,
thus reducing the local buoyancy and inertia that force the instabilities. This dilution explains
why the transition to turbulence may initially take place at a shallow depth, and yet be delayed
further downstream once downward fluid motions have developed.

4.4 Influence of the grain size on three local forcings

We just saw that large grains fall ahead of fluid motions and deposit their buoyancy along
vertical paths that largely constrain the resulting laminar flow; conversely, small grains are
rapidly invisible in the vortical turbulent flow they force – hence a transition from a particle-
driven and settling-constrained flow to a fluid-like behaviour. As a first step to understand this
transition, we present three ingredients that account for an enhanced local forcing of the flow
when the size of grains decreases.

4.4.1 Collective drag

The first ingredient is the ability of particles to drag fluid downward when they settle. While
an individual grain essentially drags fluid in its wake, a collection of multiple grains acts like a
local negative buoyancy at a mesoscopic scale. This can be explicitly captured by averaging the
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drag force of all grains in a unit volume, which yields the volumetric drag force (see Chapter
2)

fdrag(x, t) = [ρp − ρ(x, t)]φ(x, t)g , (4.4)

where φ(x, t) is the local volume fraction of grains, ρp is the density of a sugar grain and
ρ(x, t) ≥ ρ0 is the local density of sugary water. Because equation (4.4) is derived by modelling
particles as a continuum, any information about the radius of particles is lost: drag only depends
on the volume fraction. Yet, a simple laboratory experiment immediately shows that the volume
of fluid dragged by two settling particles and the velocity it acquires depend on their spacing:
when they are too distant, the two particles only drag fluid in their respective isolated wake,
whereas the interstitial fluid remains motionless. Similarly, experiments with particle clouds of
identical volume fraction reveal that the larger the particles, the less efficient their forcing of
fluid motions (see Chapter 1). The contrast between the actual influence of rp on drag and the
equation (4.4) is due to the mathematical requirement underlying this equation: the averaging
procedure that leads to equation (4.4) is only appropriate when the number density ∼ φr−3

p of
particles is sufficiently large for the averaged quantity (here, drag) to be representative at the
mesoscopic scale (Chou and Shao, 2016). A mathematically equivalent condition is that the
interparticle distance

linter ∝ rpφ
−1/3 (4.5)

of a uniform suspension should be sufficiently small for the hydrodynamic perturbations of
neighbouring grains to overlap, enabling them to collectively drag the interstitial fluid, as
concluded in past experimental (Harada et al., 2012) and numerical (Yamamoto et al., 2015)
studies. These conclusions are further supported by several studies which show that despite
their fundamentally long-range hydrodynamical interactions, the perturbations induced by par-
ticles with negligible (Subramanian and Koch, 2008; Guazzelli and Morris, 2011; Pignatel et al.,
2011) or finite inertia (Koch, 1993; Daniel et al., 2009) extend only up to some typical length
scales that are finite. Since the interparticle distance increases linearly with rp, the downward
fluid motions induced by the largest grains tend to remain localised behind each of them in
wakes, as consistently observed with PIV particles during experiments; it is the cumulated
influence of several wakes over time that leads to an eventual macroscopic flow. Conversely,
for a given injection mass rate, small grains being closer to one another, they are expected to
drag the fluid more efficiently. In reference to hydrodynamical interactions that lead grains to
behave fluid-like (Harada et al., 2012), we refer to this behaviour as ‘collectivity’. It is a key
ingredient driving fluid motions and in particular the onset of a Rayleigh-Taylor-like instability,
because the latter is fundamentally an instability of fluids and therefore its emergence requires
the growing sugary layer to behave as such.

4.4.2 Gravitational drift

The second ingredient responsible for the discrepancy between the experiments with large grains
and those with small grains is the gravitational drift in equation (4.1). As aforementioned,
as soon as the interparticle distance is sufficiently small to model the drag of particles as a
continuous forcing due to a field of volume fraction, grains of all sizes impose the same forcing.
Suppose that particles are sufficiently small and concentrated for this continuum description
to apply. Then, it means that the field φ(x, t) exerts an identical drag at a position x and at
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a specific time t. Yet, due to the particle settling, the advection of the volume fraction φ(x, t)
reads

∂tφ+ v · ∇φ = −ws
∂φ

∂z
, (4.6)

where κ and C are respectively the diffusivity and the mass concentration of sugar in water.
The right-hand side of equation (4.6) is a term of gravitational drift due to equation (4.1)
which causes a partial decoupling between the volume fraction and the fluid parcels moving
with the fluid velocity v. Thus, forcing of a quiescent fluid parcel at position x is expected to
be less efficient when ws increases due to a faster decoupling – see the numerical simulations of
Chapter 2.

4.4.3 Dissolution

The third ingredient that strictly contributes to a transition from a particle-driven flow to a
fluid-like flow is dissolution, which is faster for smaller grains. Dissolution is quantified by the
diffusive mass flux from a supposedly spherical sugar grain to the fluid which reads

Φ = −κ∇C · n (4.7)

with n the normal to the grain-fluid interface pointing in the direction of the fluid. The
concentration gradient scales like the ratio of the concentration contrast between the bulk fluid
and the concentration at the interface, over the thickness of the diffusive boundary layer that
develops at the surface of each grain. Settling causes a local advection around a grain with
a slip velocity −ws(rp)ez (equation (4.1)) that enhances the diffusive mass flux. To account
for this effect, the boundary layer thickness must be parameterised. To do so, we first assume
a linear relation between sugar concentration and density (Philippi et al., 2019; Pegler and
Wykes, 2020; Cohen et al., 2020)

C(x, t) =
ρ(x, t)− ρ0

ρsat − ρ0

Csat, (4.8)

with ρ(x, t) the local fluid density, ρ0 the fluid density in the absence of solute, and ρsat and Csat

respectively the density and concentration of water at saturation. Any latent heat absorption
during dissolution is neglected as the past literature has shown it is negligible for the dissolution
of sucrose in water (Pegler and Wykes, 2020). Then, assuming the grain remains spherical while
it dissolves (which effectively assumes that the dissolution flux is uniform) and using equations
(4.7) and (4.8), mass conservation reads d(4πr3

pρp/3)/dt = −4πr2
pΦ, or after simplications,

−ṙp︸︷︷︸
recession speed

= k
Csat

ρp

ρi(t)− ρ(t)

ρsat − ρ0

, (4.9)

where k is the coefficient of mass transfer averaged over the whole surface area of the sugar
grain. Two parameterisations are considered depending on the particle Reynolds number Rep =
rpws/ν. When Rep � 1, we apply the parameterisation by Ranz and Marshall (1952), while the
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parameterisation by Levich (1962) applies when Rep � 1 (Ulvrová et al., 2011). In practice,
we impose a transition of k from the former law to the latter as follows

k =
κ

2rp
Sh, with Sh =

{
2 + 0.6Sc1/3Re

1/2
p , if Rep ≥ 1

2 + 0.64Sc1/3Re
1/3
p , if Rep < 1

(4.10)

where the Schmidt number Sc = κ/ν is the ratio of the diffusivity of sugar in water, over
the kinematic viscosity of water. The mass transfer coefficient k, whose dimensionless form is
called the Sherwood number Sh, has the dimension of a velocity (in m/s) and parameterises
the size of the diffusive boundary layer. In equation (4.10) the mass flux is driven both by
advection, and by diffusion whose harmonic solution around a sphere in a steady regime yields
the exact flux κ/rp (Epstein and Plesset, 1950), hence an acceleration of mass transfers with
the grain curvature (Pegler and Wykes, 2020). In addition, the last fraction on the right-hand
side of equation (4.9) recovers the expected delay of dissolution when the density contrast
between the ambient and the concentration at the grain interface is lowered (Liu et al., 1996).
Note in particular that dissolution can no longer proceed when the ambient is saturated (i.e.
ρ(t) = ρsat) since the inequality ρsat ≥ ρi(t) ≥ ρ(t) then imposes that ρi(t) = ρsat hence ṙp = 0.
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Figure 4.6: (a) Contributions to the mass transfer coefficient k computed assuming the ambient
fluid is clear (ρ(t) = ρ0). The dark line shows the diffusive contribution κ/rp, the blue line shows
the advective contribution k − κ/rp, and the red line shows the full coefficient k. (b) Evolution of the
ratio k/rp that controls the total mass transfer due to a collection of grains of radius rp and uniform
volume fraction. In both graphs, the lines are continuous when the parameterisation of Levich (1962)
applies (Rep < 1); they are dashed when the parameterisation of Ranz and Marshall (1952) applies
(Rep ≥ 1).

At this stage, determination of the recession speed of the grain-fluid interface only requires
knowledge of the fluid density ρi(t) at this interface. As widely assumed in the literature
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(e.g. Pegler and Wykes, 2020), we consider that ρi(t) = ρsat at all times. Finally, under the
assumption that a sugar grain is falling in fresh water (ρ = ρ0), the recession speed can be
computed analytically: it now only depends on the mass transfer coefficient k whose evolution
with rp is shown by the red line in figure 4.6a. Although larger grains settle faster thus
increasing the advective contribution to mass transfers in equation (4.10) (see the blue line
in figure 4.6a), smaller grains have a larger curvature hence the diffusive flux around these
grains is more intense (see the dark line in figure 4.6a). These two competing effects lead to a
non-monotonic variation of the mass transfer coefficient as the size rp increases. Consequently,
the mass transfer coefficient is larger for smaller grains but its variations are limited.

Yet, the previous sections showed that smaller grains of sugar seem to impart their buoyancy
to the fluid faster than larger grains. This faster transfer is actually due to the larger surface
area of reaction that is in contact with water when rp is lower. In fact, in a unit volume of
fluid with volume fraction φ, the mass of sugar that dissolves per unit time is the integral of
equation (4.9) over the surface area of one grain, multiplied by the number of grains in the unit
volume. This total mass rate reads

dmtot

dt
∝ φ

4
3
πr3

p︸ ︷︷ ︸
number of grains per unit volume

4πr2
pρp|ṙp| ∝

k

rp
, (4.11)

which is valid under the assumption that saturation effects can be neglected (such effects
likely depend on the radius rp since smaller particles are closer to each other). According
to this equation, the total mass flux dmtot/dt increases as rp is lowered (figure 4.6b) due
to the surface-to-volume ratio being proportional to r−1

p . The conclusion is consistent with
observations: smaller sugar grains impart their buoyancy to water faster. This transfer is an
actual transition from a particle-driven and settling-constrained flow to a buoyancy-driven fluid
motion, favouring in particular the development of the Rayleigh-Taylor-like instability.

4.5 Onset of the flow: transition from grains to large

scales

The previous section established that reducing the size of grains improves local forcings of fluid
motions and favours a transition towards a more fluid-like behaviour. Now, what controls the
plume formation, and why are some plumes turbulent and others laminar? The present section
considers the combined action of the grain size rp and the mass rate ṁ on the densification
of the cylindrical sugar-laden layer that develops at early times below the air-water interface,
which is the key phenomenon driving the sugary plumes.

4.5.1 Regimes of onset

The initial Rayleigh-Taylor-driven growth is a common observation for the onset of turbulent
plumes from a large area source of buoyancy. Figures 4.3, 4.4 and 4.5 in the previous section
showed that the initiation of convection critically depends on the size of sugar grains for a fixed



Chapitre 4. Plumes of settling and dissolving sugar grains 141

(a) (b) (c)

Figure 4.7: Three regimes of onset of the flow. (a) Regime of pure sedimentation with no visible
instability (rp = 363 µm, ṁ = 0.052 g/s; the snapshot is 22 cm-large along the horizontal). (b)
Transition from an initial regime of pure settling to the development of the Rayleigh-Taylor-like in-
stability (rp = 101 µm, ṁ = 0.115 g/s; the time lapse between snapshots is 1.2 s and the snapshots
are 23 cm-large along the horizontal). (c) Immediate development of sugary mushrooms due to the
Rayleigh-Taylor-like instability (rp = 45 µm, ṁ = 0.23 g/s; the time lapse between snapshots is 0.59 s
and the snapshots are 16 cm-large along the horizontal).

mass rate. A visual inspection of all experiments reveals that the onset of convection falls into
one of three main groups, here ordered by decreasing radius:

(G1) grains settle vertically and no Rayleigh-Taylor-like instability is ever observed over the
depth of our tank (rp ≥ 169 µm, see figure 4.7a); whether the instability could eventually
emerge at larger length scales is an open question,

(G2) grains first settle vertically before Rayleigh-Taylor-like mushrooms appear (80µm ≤ rp ≤
101 µm, see figure 4.7b),

(G3) convection starts immediately with a Rayleigh-Taylor-like instability and no visible phase
of grain settling (rp ≤ 66 µm, see figure 4.7c).

The key contribution to the transition (G1→G2→G3) is the densification of the initial sugar-
laden layer at the top of the tank. At first order, this forcing does not require a distinction
of the contributions of sedimentation on one hand and dissolution on the other hand: the
Rayleigh-Taylor-like instability is driven by the density contrast across the lower interface of
the sugary layer, here corresponding to the Atwood number

A ≡ ρeff − ρ0

ρeff + ρ0

, (4.12)

where ρeff > ρ0 is the effective density that accounts for the total mass of sugar in the top
layer. A canonical linear Rayleigh-Taylor instability growing at an interface between two semi-
infinite layers of different yet uniform densities, with gravity pointing in the direction of the
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lightest layer, and damped by viscosity as in the present case, leads to the selection of a mode
of maximum growth rate (Alqatari et al., 2020; Magnani et al., 2021)

σmax =
√
Agkmax + (νk2

max)2 − νk2
max , (4.13)

with wavenumber (Plesset and Whipple, 1974; Mikaelian, 1993; Magnani et al., 2021)

kmax =

(Ag
8ν2

)1/3

. (4.14)

As shown by equation (4.13), the larger the Atwood number i.e. the more concentrated the
initial sugary layer, the faster the growth of the instability. The present context slightly differs
from the canonical configuration. Because the sugary layer develops just below the water free
surface, it may feel the influence of confinement. Alqatari et al. (2020) have shown that the
most unstable mode is kmax only when the dense layer is thicker than 2π/kmax. Otherwise,
the present confinement stabilises the system and modifies the wavelength of the instability
which now scales like the thickness of the sugary layer. Another difference is that the present
instability is forced by a dispersed phase rather than a dense fluid. Yet the forcing conditions
and the phenomenology are similar, as previously observed in the literature (Kimura, 1988;
Climent and Magnaudet, 1999; Mezui et al., 2022; Caballina et al., 2003; Mudde, 2005). An
example can be found in the study by Kimura (1988) who injected bubbles at the bottom of a
2D cell (40×8×2 cm3) in experiments. They observed that the positively buoyant bubble-laden
layer near the bottom developed a Rayleigh-Taylor-like instability whose mushrooms grew all
the faster as bubbles accumulated more in this unstable layer, which is consistent with an
increase of the bubble volume fraction in this layer. A quantification of the instability onset
from equations (4.12) -(4.14) is given in the next section.

Consider now the transition (G3→G2). Several studies in the literature have focused on the
forcing of a Rayleigh-Taylor instability by settling particles in horizontally periodic numerical
domains with a suspension of particles overlying a layer of clear fluid (Magnani et al., 2021;
Chou and Shao, 2016). They showed that the initial growth rate of the instability is reduced by
the settling of particles, all the more so as particles settle faster, in agreement with the linear
stability analysis of Burns and Meiburg (2012) in two dimensions. These latter authors showed
that during the growth of the particle-laden mushrooms, particles advect vorticity away from
the interface which results in a smearing of the vorticity profile at the interface, thus damping
the instability all the more efficiently as the settling velocity increases. These observations
contribute to the transition (G3→G2) when rp increases.

Finally, the transition (G2→G1) is due to the impossibility for excessively large grains to
force the Rayleigh-Taylor-like instability because sugary mushrooms have not enough time to
grow before sugar grains decouple from them. The instability therefore develops if the sugary
mushrooms grow faster than particles rain out of them, a criterion that holds for particle-laden
Rayleigh-Taylor-like instabilities (Carey, 1997; Jacobs et al., 2015; Lemus et al., 2021) and that
is similar to the case of solutal convection (Berhanu et al., 2021) where the onset of convection
happens when fluctuations grow faster than the unsteady base state. Thus, of two sugary layers
of identical effective density hence identical growth rate σmax, the one with larger grains is less
prone to destabilise.
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4.5.2 Onset through a Rayleigh-Taylor-like instability

We now quantify the onset of the Rayleigh-Taylor-like instability. Despite the non-ideal exper-
imental conditions of grains penetrating through the air-water interface with small yet visible
perturbations of this interface during sieving, the core competition between the destabilising
buoyancy and the stabilising viscosity captures the essence of the instability. Our first-order
estimate is based on the maximum growth rate of the actual Rayleigh-Taylor instability in
equation (4.13) with the wavenumber given by equation (4.14). The instability is expected
to emerge (Carey, 1997; Jacobs et al., 2015; Lemus et al., 2021) provided that the inverse
growth rate σ−1

max is comparable to or lower than the settling time over the scale of mushrooms
2π/kmaxws, i.e.

ws ≤
2πσmax

kmax

. (4.15)

In the following, we simply call the case of equality the ‘marginal stability’1 at the onset of
the flow, which we aim to characterise in the parameter space (ṁ, rp). The effective density
of the sugary layer is given by assuming a uniform dilution of the total mass of sugar sieved
since the start of the experiment in the sugary layer, whose surface area is πR2

sieve and whose
depth corresponds at first order to the distance travelled by the first grains sieved with constant
velocity ws, so that

ρeff = ρ0 +
ṁ

πR2
sievews

, (4.16)

which leads to the expression of the Atwood number

A =
ρeff − ρ0

ρeff + ρ0

=

[
1 +

2ρ0πR
2
sievews
ṁ

]−1

. (4.17)

Equation (4.17) shows that the larger the mass rate the denser the sugary layer and hence
the more likely the emergence of an instability; this is due to an increase of the total mass
contained in the sugary layer, irrespective of its volume. In addition to this effect, the same
consequence holds when the settling velocity reduces, which is now due to a lower height and
therefore lower volume of the sugary layer. Finally, a second effect of the settling velocity is
that, for an identical Atwood number, a lower settling velocity further favours the growth of the
instability because raining out of sugary mushrooms is slower, in agreement with the criterion
in equation (4.15).

The solid dark line in figure 4.8 shows the curve of marginal stability in the parameter space
(ṁ, rp). The region of instability is shaded below this line, whereas the region above is stable and
will not lead to the formation of mushrooms according to equation (4.15). It can be compared
with experimental measurements shown as coloured symbols: dark squares are experiments
which never lead to the Rayleigh-Taylor-like instability (G1), green circles are experiments
with a delayed onset of the instability after a phase of settling (G2), and red diamonds are
experiments with immediate formation of mushrooms (G3). The curve of marginal stability

1The description is willingly kept simple for the sole onset of the flow. We expect the instability to emerge if
it grows faster than the background density evolves due to sedimentation. Even when the criterion (4.15) is not
verified, the fluid is unstable, but it evolves slower than the background of settling grains. Thus, the instability
may emerge at later times but with a growth rate that is different from equation (4.13).
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Figure 4.8: Parameter space (ṁ, rp) grouping experiments according to the phenomenology observed
at the onset of convection: � experiments of group G1 evidence no instability and particles only
settle; • experiments of group G2 evidence an initial vertical settling of grains before the onset of the
Rayleigh-Taylor-like instability; � experiments of group G3 evidence an immediate formation of sugary
mushrooms. The solid dark line is the curve of marginal instability from equation (4.15).

proves consistent: experiments of category (G3) lie in the shaded region. Some experiments of
category (G2) lie in this same region near the marginal curve, suggesting that some reduction
of the growth rate, either due to settling or to confinement (see the discussion in section 4.5.1),
is already active in this region.

Most experiments of group (G2) lie above the marginal curve. Their delayed destabilisation
is due to the fact that initially, grains settle too fast for the instability to grow as estimated
with equations (4.15)-(4.17). But the estimate (4.17) neglects the fact that the continuous
addition of new grains gradually increases the concentration of dissolved sugar since the latter
barely moves before the instability onset. As a result, for a constant mass rate and hence a
presumably constant volume fraction φ, the concentration of dissolved sugar increases in time,
hence the effective density increases as well, favouring the emergence of the instability after a
phase of settling.

4.5.3 Critical size decoupling from the starting plume

As previously observed in other contexts of two-phase (Caballina et al., 2003) and one-phase
starting plumes (see figure 4 in Friedl et al., 1999), the acceleration of our sugary plumes
eventually leads them to a phase of propagation with constant velocity. Balancing the leading
contributions of inertia and buoyancy, the fluid velocity is expected to scale like the square
root of buoyancy multiplied by the typical plume width, at first order given by the radius
at injection Rsieve, as verified in the literature for bubble plumes (Caballina et al., 2003) and
bubble columns (Mezui et al., 2022). From equation (4.16), this constant free-fall velocity reads

Uonset =

[
ρeff − ρ0

ρ0

gRsieve

]1/2

=

[
ṁg

πRsievewsρ0

]1/2

. (4.18)
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We are interested in comparing this reference velocity with the settling velocity of our sugar
grains under the form of an initial Rouse number

R0 ≡
ws
Uonset

=

[
w3
sπRsieveρ0

ṁg

]1/2

. (4.19)

The Rouse numberR0 characterises the coupling of sugar grains with the starting plume: grains
accompany the starting plume while it sinks when R0 < 1, whereas grains verifying R0 > 1
fall ahead of the starting plume because they settle faster than its characteristic velocity. The
iso-contour R0 = 1 is shown as a dashed line in figure 4.9 in the parameter space (ṁ, rp):
grains in the range rp > 200 µm are expected to fall ahead of the sugar plume, as consistently
observed in our experiments.
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30

100

600

R
ad

iu
s
r p

(µ
m

)

R0 = 1

10−2

10−1

100

101

R
0

Figure 4.9: Initial Rouse number in the parameter space (ṁ, rp). The dashed dark line indicates the
transition between the grains that settle faster than the starting plume characteristic velocity (R0 > 1)
and those that settle slower (R0 < 1). The dotted blue line delineates the region of collectivity (L < 10
below) and the region where grains behave individually (L > 10 above). The solid dark line is the curve
of marginal stability of the Rayleigh-Taylor-like instability (see figure 4.8).

Some nuances are neglected in this first order reasoning. As long as the plume has not
finished accelerating, its downward velocity is still lower than the estimate Uonset, so the actual
Rouse number is larger than the estimate R0. Therefore, grains even slightly smaller than
predicted in figure 4.9 might decouple from the starting plume. Note however that grains that
lie just above the isocontour R0 = 1 tend to fall ahead of the plume only temporarily: these
grains decelerate due to dissolution while the plume is accelerating, hence the latter catches up
with these grains, as already visible in the first three snapshots of figure 4.5.

4.5.4 Collective vs. individual forcing

So far equations (4.16) to (4.19) have been derived from a field theory which, as discussed in
section 4.3.2, may poorly describe the behaviour of particles that behave individually when their
interparticle distance is larger than a critical threshold. Arguments in section 4.4.1 showed that
if particles have an individual behaviour, the Rayleigh-Taylor-like instability may not emerge
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even if the effective density of the sugary layer is sufficiently large for a fully fluid sugary layer
of identical Atwood number to be unstable to the Rayleigh-Taylor-like instability. Then, is
the region of transition from red to dark symbols in figure 4.8 only due to an insufficient At-
wood number of the sugary layer, or is it due to a transition from a collective to an individual
behaviour of sugar grains that are too decoupled from the flow to produce a fluid-like instabil-
ity? Answering this question requires to quantify the transition from collective to individual
behaviour by defining the critical interparticle distance over which particles are capable of in-
teracting. This critical distance linter,c is sought in the structure of the flow produced in the
vicinity of an individual particle settling in a quiescent fluid with velocity ws, namely the radius
of disturbance of the flow due to the presence of a particle having a differential motion compared
to the fluid. This length scale is computed as the distance from the particle where advection
and diffusion balance out; for low particulate Reynolds numbers it is the inertial screening
length ν/ws (Subramanian and Koch, 2008; Guazzelli and Morris, 2011; Pignatel et al., 2011)
whereas for small yet finite particulate Reynolds numbers it corresponds to the particle radius
rp (Koch, 1993; Daniel et al., 2009). For our largest particle Reynolds numbers, particles may
have laminar wakes whose typical size is also given by the particle size rp. Therefore, the critical
interparticle distance is estimated as

∀rp, linter,c = max

{
ν

ws
, rp

}
, (4.20)

and particles are expected to behave individually if their interparticle distance is larger than
linter,c, typically by a factor O(10) to be conservative. The estimate of this threshold has been
validated in previous experiments (Tsuji et al., 1982) where spheres of large particle Reynolds
numbers (Rep ∼ 102−103) could interact hydrodynamically up until linter ∼ 10rp, in agreement
with the estimate 10linter,c for this regime of large particle Reynolds numbers.

Now through collectivity, the densification of the sugary layer is again a key phenomenon
controlling the onset of convection. From the expression of the effective volume fraction

φeff =
ṁ

πR2
sievewsρp

, (4.21)

equations (4.5) and (4.21) can be combined to estimate the interparticle distance. Then, the
dimensionless interparticle distance

L =
linter

linter,c

. (4.22)

is calculated in the whole parameter space to quantify collective (L � 10) and invidual
(L � 10) behaviours. Figure 4.9 shows that experiments of group (G2) lie in the region
of transition, typically in the range L ' 5 − 15 which includes the curve of marginal stability
for the Rayleigh-Taylor instability. Therefore, the transition from (G1) to (G3) and the tran-
sition from individuality to collectivity overlap in the parameter space, which makes us unable
to disentangle them as the radius is decreased for a fixed mass flux.

Of course the previous computation of L is a crude estimate, especially as it neglects the fact
that sugar grains are always dissolving in the sugary layer, hence their interparticle distance
may vary little but their critical length scale of interaction linter,c is expected to vary as their
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size decreases, in a non-monotonic way (with decreasing rp, the distance linter,c decreases as
long as Rep > 1 and then increases if Rep < 1). Accounting for this evolution in time and
space then requires to model grains that are sieved at different times, which cross different
solute concentrations along their fall, experience different fluid velocities as the plume builds
up velocity during the transient, and therefore reach a certain depth with different sizes and
relative motion. This is beyond the scope of this Chapter, and additional discussions can be
found in Chapter 5 and in the Conclusion and future lines of work; the present calculations
essentially guide the interpretations of measurements in the next sections.

4.5.5 Transition to large scales

Figure 4.9 shows that green circles (i.e. experiments for which the Rayleigh-Taylor-like instabil-
ity emerges after a phase of settling) are delineated by the solid dark curve of marginal stability
for the Rayleigh-Taylor-like instability, and by the dashed curve of equation R0 = 1. They also
lie in the region of transition from individual to collective behaviour2. Beyond confirming the
role of the local forcings in the transition from particle-driven to fluid-like behaviour, it high-
lights their role in the transition from small to large hydrodynamical structures, in two different
ways.

Consider first a fixed mass rate while the size of grains is reduced. The action of drag is
longer-lasting because grains drift slower. Additionnally, reducing the size of grains reduces
the inter-grain distance, hence their efficiency to drag the interstitial fluid is enhanced by
collectivity. That is why reducing the grain size favours a transition from a localised grain-
scale forcing to a volumetric forcing, as shown in figure 4.10a. This space-time diagram is a
stack of the horizontal profiles of light intensity recorded at the front of the sugary layer when
being tracked in time and depth (see explanations in appendix 4.B.1). The top of the graph
shows tiny grain-scale filaments that coalesce and eventually organise as one large macroscale.
This coarsening is initially due to the fact that many length scales are unstable when the sugary
layer grows, including large ones of small growth rate whose emergence is therefore delayed;
eventually, the coarsening is due to the formation of the lazy plume in which small grains are
advected.

Consider now some large grains (R0 > 1) sieved with a low mass rate. The first grains
settle vertically in almost perfectly still water (see how localised the sugary wakes are in figures
4.10b-4.10c). From an Eulerian viewpoint in the fluid, the forcing imposed by their drag is only
temporary and random in space. The forcing imposed by their sugary wake is also random
in space, but it lasts in time. As sugary lamellae diffuse towards one another, their buoyancy
decreases (thus reducing the buoyancy forcing) but the inter-lamellae spacing decreases (thus
favouring a forcing at a larger scale). That is why after a long delay, slow fluid motions
set in even when grains are large and the mass rate is low – and also because new wakes are
stochastically deposited as long as sieving keeps going. If the mass rate is enhanced, the number
of lamellae deposited per unit time increases, thus reducing the inter-lamellae spacing and the
delay before the interstitial fluid starts moving. This transition from an isolated to a volumetric

2The fact that all transitions are close in the parameter space (ṁ, rp) is due to the values of the experimental
parameters g, Rsieve, ν and rp and ṁ. For example, figure 4.9 shows that larger mass fluxes would separate the
solid dark line of stability from the dotted blue line of isovalue L = 10.
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(a) rp = 101 µm, ṁ = 0.12 g/s
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(b) rp = 169 µm, ṁ = 0.15 g/s
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(c) rp = 363 µm, ṁ = 0.52 g/s
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Figure 4.10: When tracking the front position of a plume of dyed sugar during the transient, at
any time, the profile of light intensity can be extracted at the plume front. The figures (a) to (c) are
space-time diagrams that stack such horizontal profiles in time from the start of an experiment (at
the top of the diagrams) to the end of the transient (at the bottom of the diagrams). Blue regions are
devoid of sugar, while red regions are concentrated in solid or dissolved sugar. See Appendix 4.B.1 for
details about the processing. Radii and mass rates are specified above each diagram.

forcing favours again a transition from the small grain scale to larger hydrodynamical structures.
In our experiments, this macroscopic motion happens after a long time lag, after several grains
have hit the bottom of the tank (see figure 4.3), so we effectively observe a transition in time
from small-scale wakes that are distributed in the tank but which move individually, to a large-
scale plume formed by the combination of lamellae. Note that dissolution is not key to this
transition, which we recover when sieving glass spheres instead of sugar grains, and which has
previously been observed in bubble-laden flows (Mazzitelli and Lohse, 2009).

4.6 Characterisation of the flow

4.6.1 Overview with dyed sugar

To provide a synthetic view of the characteristic features of the flow when varying parameters
(ṁ, rp), figure 4.11 presents space-time diagrams of the light intensity recorded during the
fall of dyed sugar. These profiles are obtained by a horizontal average of the light intensity
captured by the camera at different times, before stacking them as Hovmoller diagrams. For
sufficiently small sizes of grains, all diagrams evidence a concave downward sinking of the
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buoyant material due to the growth of the sugary layer, whose front position is anticipated
to increase quadratically in time for the non-linear growth of a Rayleigh-Taylor instability
(Magnani et al., 2021; Boffetta and Mazzino, 2017). Then, the concavity evens out around a
depth z = 0.1 m and leads to a downward fall with apparent constant velocity. For a given size
of small grains, increasing the mass rate shortens the time required for the front of the buoyant
material to reach the bottom of tank (compare the abscissas of figures 4.11b and 4.11c). By
contrast, the transient plunging of sugar in experiments having rp = 363 µm shows no sharp
front (figure 4.12a). This observation is due to the fact that sugar does not accumulate in the
top sugary layer when sugar grains are too large. Consequently, large grains fall in isolation,
no bright concentrated region falls as a whole, so no sharp front of well-defined trajectory is
visible in the space-time diagrams.
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(b) ṁ = 0.037 g/s, rp = 101 µm
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(c) ṁ = 0.12 g/s, rp = 101 µm
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Figure 4.11: Space-time diagrams of the horizontally averaged light intensity recorded during the fall
of small grains of dyed sugar. The mass rate and grain size are specified above each diagram. Note
the difference of ordinates for each diagram. The colorbar is common for all graphs.

The texture of the space-time diagrams provides additional information. In figure 4.11a for
rp = 80 µm, one can follow the detachment and downward sinking of some successive turbulent
puffs of buoyant material (grains or solute) which accelerate at depths z ≤ 0.1 m and are
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(a) ṁ = 0.05 g/s, rp = 363 µm
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Figure 4.12: (a) Space-time diagram of the horizontally averaged light intensity recorded during the
fall of large grains of dyed sugar. The mass rate and grain size are specified above the diagram. The
small-scale structures of this diagram are highlighted in (b) (see the text for processing details).

advected with constant velocity at larger depths. Conversely for rp = 101 µm (figures 4.11b
and 4.11c), the diagrams are smooth with no puffs since the plumes are more laminar.

Because large grains decouple from fluid motions, different structures must be distinguished
in figure 4.12a. To highlight the trajectories of solid grains, a Gaussian filter of 2-pixels-wide
standard deviation has been applied three times to figure 4.12a, and then subtracted to get
figure 4.12b. The dark steep stripes reveal the rapid fall of large grains. Their straightness
implies that dissolution little affects their settling velocity over the distance ∼ 0.3 m, and
the constant slope of the stripes from the start to the end of the experiment shows that fluid
motions have little influence on the grains (see section 4.5.3). Figure 4.12a also contains blurred
shapes of vertical extension ∼ 0.1 m that fall in the tank at much lower velocity than the large
grains. These large-scale structures correspond to collections of wakes of sugar that gradually
fall coherently due to the continuous drag and deposition of new wakes by the falling grains.
These fluid motions are slow and delayed compared to the fast fall of sugar grains.

These observations prefigure a net contrast between the fluid velocities and the fall velocity
of sugar grains when rp is large. The following sections present results from experiments
performed with ordinary white sugar detected by the camera with a green filter, while the fluid
motions are quantified by PIV thanks to the camera with an orange filter (see the setup in
figures 4.1c and 4.2). The downward propagation of fluid motions during the transient is first
described before analysing the quasi-steady regime that ensues.

4.6.2 Top-down propagation of fluid motions in the transient

This section focuses on the emergence of the flow during the transient: except when rp =
363 µm, it is characterised by the propagation of fluid motions that emerge below the free
surface and which propagate downward in the tank. We distinguish the propagation of these
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fluid motions from the sinking of sugar grains or solute. Note our convention of notations:
v is reserved for a fluid velocity measured from PIV, whether it be horizontal vx or vertical
vz; a time derivative ż of the z-position is reserved for Lagrangian velocities when tracking
the propagation of a structure, whether it be solid grains, dissolved sugar, or a region of fluid
motions.

Figure 4.13 shows the time evolution of vertical profiles of the horizontally averaged vertical
velocity magnitude 〈|vz|〉x for three different radii. When sieving starts at t = 0, dark blue
levels are due to the absence of any initial fluid motion; after a certain delay, fluid motions
appear at the top of the tank, they gradually intensify, and sink downward until reaching the
bottom of the field of view. Due to the non-penetration of the fluid at the top free surface and
the bottom wall, vertical velocities vanish near these boundaries.

Figures 4.13a to 4.13c immediately reveal the decrease of the typical fluid velocities during
the transient and in the quasi-steady regime when rp increases. This observation is consistent
with the dilution of the buoyant material when ws increases (equations (4.16) and (4.18)), with
the lower efficiency of the three local forcings as rp increases (section 4.4) and with the favoured
decoupling of larger grains from the starting plume (section 4.5.3). Time fluctuations in figure
4.13a are due to the turbulent nature of the plume when rp = 45 µm, by contrast with the
more laminar plumes when rp ≥ 169 µm in figures 4.13b and 4.13c.
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Figure 4.13: Space-time diagrams of vertical profiles of the horizontally averaged magnitude of the
vertical fluid velocity 〈|vz|〉x. From left to right, the three panels show the influence of increasing the
particle size in three experiments of comparable mass rates, namely (a) ṁ = 0.59 g/s, (b) ṁ = 0.57 g/s,
(c) ṁ = 0.64 g/s. The colorbar is common for the three graphs. The black and white dotted curves
show the maximum depth where solid grains are still visible. The red and white dotted lines show the
convergence of isocontours of the space-time diagrams.

The influence of the mass rate on the transient sinking of the flow is visible in figure 4.14
for rp = 101 µm and rp = 169 µm. Both cases confirm that the flow is more vigorous and
the transient shorter as the mass rate increases. All six diagrams evidence that a vigorous
transient almost systematically develops (see the large fluid velocities in figures 4.14a to 4.14f
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respectively before t is equal to 35s, 30s, 25s, 35s, 30s, 30s), and then relaxes to a somewhat
quieter quasi-steady regime.
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(d) ṁ = 0.32 g/s, rp = 169 µm
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(e) ṁ = 0.57 g/s, rp = 169 µm

0 10 20 30

t (s)

0.0

0.1

0.2

0.3

z
(m

)

(f) ṁ = 0.80 g/s, rp = 169 µm
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Figure 4.14: Space-time diagrams of vertical profiles of the horizontally-averaged magnitude of the
vertical fluid velocity 〈|vz|〉x. Experiments in figures (a) to (c) correspond to increasing mass rates for
rp = 101 µm. Experiments in figures (d) to (e) correspond to increasing mass rates for rp = 169 µm.
The colorbar is common for all diagrams. See the caption of figure 4.13 for the dashed curves.

4.6.2.1 Propagation of the plume front

The existence of a violent transient before a quasi-steady regime has already been observed
in experiments of inert particles continuously sieved in water (Zürner et al., 2023), and it is
reminiscent of downbursts in atmospheric flows (e.g. Srivastava, 1985, 1987). These studies
observed that the fluid motions initially developped through the propagation of a front. This
observation is recovered in the present experiments for sufficiently small grains (figures 4.11,
4.13a and 4.14a-4.14c). However, fluid motions propagate less and less as a front as the grains
decouple more from the starting plume due to a large Rouse number R0 � 1 (figures 4.12 and
4.14d-4.14f).
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To be quantitative, we define the front of the downward-propagating fluid motions as the
curve along which different iso-contours of velocity converge in the space-time diagrams of
〈|vz|〉x (see Appendix 4.B.2 for more details), as shown by the red and white dash-dotted lines
in figures 4.13 and 4.14. We want to compare this front position to the maximum depth sugar
where grains complete their dissolution. To this end, the same procedure is implemented on
Hovmoller diagrams of the light intensity visualised when filming the sugar grains (photographs
taken by the camera of green filter). The resulting black and white dotted curves in figures
4.13 and 4.14 correspond to the front of the precipitation layer which is the zone where sugar
grains are still visible before complete dissolution.

In figures 4.14a-4.14c, the little time lag between the front of the precipitation layer (black
and white dashed line) and the front of fluid motions (red and white dash-dotted line) is due to
small grains falling together with the plume front. Conversely, a time lag appears when sieving
large grains: grains fall before the emergence of fluid motions (see figures 4.14d-4.14f). This
time lag is a measure of the delayed onset of fluid motions that require an accumulation of
stochastic forcings of several grains and the deposition of several sugary wakes before a plume
develops. This delay is maximum for the largest grains, and no front of fluid motions can be
defined due to the absence of a proper convergence of the iso-contours.
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Figure 4.15: Average sinking velocity of the front of the starting plume for all experiments where a
front of fluid motions can be defined (rp ≤ 169 µm).

The red and white curves have been computed for all experiments and we observe that the
sinking front always propagates with an approximately constant velocity after a few centimeters
below the region of flow convergence and acceleration near the free surface (see figures 4.36a-
4.36c in Appendix 4.B.2). An affine law is fitted on each of these trajectories; its slope provides
the constant propagation velocity żsinking of the front in figure 4.15. The latter confirms that
the sinking is faster when the mass rate increases, and shows little influence of the particle size.

4.6.2.2 Time before the quasi-steady regime

Figure 4.15 suggests that the duration of the transient is essentially controlled by the mass
rate. To confirm it, we search for a definition of the time tQS elapsed before the quasi-steady
regime is reached. The quasi-steadiness of the velocity field can be assessed from the PDF of
the vertical fluid velocities as shown in figure 4.16. The ultimately invariant shape of the PDF
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is one possible criterion for the time of quasi-steadiness (see the horizontal dashed line). Yet,
a close inspection of experiments shows that this criterion is accurate only at large mass rates,
probably because the PDF integrates so much information in the laser sheet that it can reach
steadiness before the front of the sugary plume hits the bottom of the tank. Conversely when
the mass rate is low, the time when the plume reaches the bottom wall is a good estimate of
the end of the transient, as assessed from the evolution of the average kinetic energy within
the plume (not shown here). This time is defined with no ambiguity by visualising large sugar
grains hitting the bottom wall, or by visualising changes in the refractive index due to the
presence of density gradients once the front of the plume reaches the reflection of the laser
sheet on the bottom wall. Then, we adopt a conservative definition of tQS: it is the maximum
between the time of quasi-steadiness of the PDF of vertical fluid velocities, and the time for
the plume to hit the bottom wall.
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Figure 4.16: Probability Density Function (PDF) of vertical fluid velocities vz in the laser sheet, at
each time from the start of an experiment (bottom of the diagram) to the end (top of the diagram). For
this example, rp = 45 µm and ṁ = 0.09 g/s. The horizontal dashed line corresponds to the time when
the PDF reaches quasi-steadiness (for details about the dark line and about processing, see Appendix
4.B.3).

Figure 4.17a confirms that the duration of the transient is essentially controlled by the mass
rate. However, larger grains lead to a larger time lag between their fall and the downward
propagation of the starting plume. This is shown in figure 4.17b which compares tQS with the
characteristic time of sedimentation over the height of the tank. When grains are large (rp ≥
169 µm), steadiness is reached after the first grains have hit the bottom of the tank. Conversely,
the plume enables small grains to reach the bottom of the tank before the sedimentation
timescale since tQS < Htank/ws.

The relevance of the timescale tQS is also confirmed by figure 4.17c since the time elapsed
before the vertical kinetic energy becomes maximum (at the end of the violent transient) is ap-
proximately equal to tQS with an additional shift of about 3 s, leading to a maximum discrepancy
of 40% between the two timescales. The maximum vertical kinetic energy Ekz,max = max(Ekz)
is shown in figure 4.17d where we observe that this energy expectedly increases with the mass
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rate. More importantly, we note that the intensity of the ‘downburst-like’ transient is con-
siderably reduced for the largest grains, confirming their slow and inefficient forcing of fluid
motions.
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Figure 4.17: Characterisation of the end of the transient. (a) Time elapsed before the quasi-steady
regime is reached, and (b) is normalised using the sedimentation timescale Htank/ws over the height
of the tank Htank. (c) Comparison of the timescale tQS with the time elapsed before the vertical kinetic
energy is maximum. The solid dark line is the first bisector. (d) Maximum vertical kinetic energy.
The colorbar is common for all figures.

4.6.3 Quasi-steady flow

This section focuses on the quasi-steady flow. Quantities are now time-independent because
data are averaged in time. We focus on the flow inside the central plume, whose typical
structure is shown with an example in figure 4.18a. The plume is the region that concentrates
downward fluid velocities near the centre of the tank. To get rid of the influence of the upward
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recirculations, the plume centreline xc,plume(z) is defined at all heights as the centroid of the
downward fluid velocities ṽz = max(vz, 0) along the horizontal direction (see the thick white
line in figure 4.18a). Then, the plume radius is defined as a weighted standard deviation with
respect to the plume centreline

σx,plume(z) = γ

√∫
ṽz(x− xc,plume)2dx∫

ṽzdx
, (4.23)

with γ a constant of order unity. In our experiments we empirically set γ = 3/2 as a compromise
for the plume radius to include most of the downward fluid motions without extending as far
as the regions of recirculations (see the black and white dashed lines in figure 4.18a). The
plume is defined at all heights as the region where |x − xc,plume| ≤ σx,plume(z). Note that in
all our experiments, we have found that the plume width barely varies with depth: it slightly
fluctuates around a constant value, as visible in figure 4.18b.
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Figure 4.18: Plume structure for an experiment of properties rp = 45 µm, ṁ = 0.09 g/s. (a)
Time-averaged plume structure during the quasi-steady regime. The time-averaged vertical fluid veloc-
ities 〈vz〉t are normalised by the maximum fluid velocity at every height z. The top convergence and
bottom divergence have been cropped to focus on the region of the plume that is least influenced by the
boundaries. (b) Superimposition of the profiles of normalised time-averaged positive vertical velocity
ṽz = max(vz, 0) at each depth. The solid dark lines show the average edges 〈x − xc,plume ± σx,plume〉z
of the plume, and shaded regions extend at a distance of 1 standard deviation on each side of these
averages.

The vertical velocity is averaged over the whole plume and results are shown for all exper-
iments in figure 4.19. Scattering is due to turbulence in the flow and to the sensitivity of the
plume to the recirculations that tend to constrain the plume orientation and deflect it from
the vertical. Nevertheless, measurements show clear trends: fluid motions are more vigorous
when the mass rate is larger, and conversely tend to weaken as the grain size increases. This
is consistent with previous sections (e.g. figure 4.13), and in particular with the analysis of
the onset of the flow. However, the velocity Uonset (4.18) is not an appropriate estimate for
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the plume velocity because it depends excessively on the grain size: Uonset ∝ w
−1/2
s which gets

infinitely large for vanishingly small grains. This inconsistency originates from the assumption
that the cylindrical sugar-laden layer dilutes in a volume growing with a velocity ws, which
only holds before fluid motions appear. Afterwards, fluid motions dilute grains and dissolved
sugar by advecting them away from the free surface; this reduces both the plume buoyancy and
the fluid inertia, which we assume to be in balance in the quasi-steady regime.
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Figure 4.19: Average vertical velocity in the plume.

To refine our estimate of the plume velocity, let us denote Uplume the constant velocity that is
expected in the plume by balancing the fluid inertia and the plume effective buoyancy. Assume
that the radius of the plume is constant and equal to Rsieve as a first order estimate. During any
time lapse ∆t, the mass ṁ∆t that is sieved dilutes in a volume of plume πR2

sieve(Uplume +ws)∆t
due to the combined transport of sugar by the settling of grains and the advection by the flow.
Note that we neglect the side fluxes associated with the global recirculation. Therefore, the
effective density is now expected to scale as

ρeff,QS = ρ0 +
ṁ

πR2
sieve(Uplume + ws)

. (4.24)

Following the reasoning of section 4.5.3, equation (4.18) now reads

Uplume =

[
ρeff,QS − ρ0

ρ0

gRsieve

]1/2

=

[
ṁg

πRsieve(Uplume + ws)ρ0

]1/2

. (4.25)

Terms can be recast in the previous equation and we have to solve for Uplume(ṁ, ws) in the
following cubic equation

U3
plume + U2

plumews =
ṁg

πRsieveρ0

. (4.26)

The two asymptotes are informative. When the settling velocity is very large compared to
the plume velocity, only the term of leading order U2

plumews is considered on the left-hand
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side of equation (4.26) so we recover the expression of Uonset in equation (4.18). In the limit of
vanishing settling velocities, grains are so small that they behave as tracers, so the fluid velocity
Utracers should be independent of ws; it is indeed the case when simplifying equation (4.26) for
ws � Uplume, which yields

Utracers =

(
ṁg

πRsieveρ0

)1/3

. (4.27)

Equation (4.27) is the typical velocity that can be expected from the sole knowledge of the
plume buoyancy flux and the typical radius at the section of injection (Friedl et al., 1999; Ca-
ballina et al., 2003). Since Utracers is independent of the particle size, it solves the problem of
the divergence of Uonset in the limit of vanishing settling velocities.
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100

101

v z
,p

lu
m

e/
U

p
lu

m
e

102

6× 101

2× 102

3× 102

R
ad

iu
s
r p

(µ
m

)

Figure 4.20: (a) Evolution of the characteristic plume velocity Uplume in the parameter space. White
lines are logarithmically equispaced isocontours. The red line corresponds to the isovalue ws/Uplume =
1, and the dark line corresponds to the isovalue ws/Uonset = 1. (b) Measurements of the average plume
velocity normalised by Uplume.

For all experiments, the exact real root of equation (4.26) is found using the library Numpy
in Python, and results are shown in figure 4.20a. The values of Uplume are consistent with the
fluid velocities measured in experiments and evidence the expected trends: they increase as
sugar grains are smaller and as the mass flux increases. The velocity Uplume depends less and
less on rp as the grain size vanishes, as expected from the expression of Utracers in equation
(4.27). Although Uonset is generally different from Uplume, the isovalues ws/Uplume = 1 (red
solid line) and ws/Uonset = 1 (dark solid line) are very close; this means the critical grain size
decoupling from the fluid motions during the quasi-steady regime is extremely close to the
critical size that decouples from the starting plume as estimated in section 4.5.3 with Uonset

instead of Uplume.
The accuracy of the prediction Uplume is confirmed by rescaling the measurements of the

plume velocities in figure 4.20b. All data points lie near unity, with only a few measurements
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that depart from unity by a factor ∼ 2. This good agreement raises a question: In the quasi-
steady regime, once the flow has developed in the plume, could it be that the specificities of small
versus large grains average out, since we observe that they have little influence on the average
plume velocity? Indeed, fluid velocities are essentially controlled by the balance between the
inertia and the buoyancy which dilutes in the downward stream. The question remains open,
but note that this last observation may only hold for the average downward plume velocity,
since previous sections showed that discrepancies between small and large grains do remain
in the quasi-steady regime, in particular the turbulent nature of the flow when rp is small,
compared to the laminar nature of the flow when rp is large.

4.7 Precipitation layer: coupling between grains and the

flow

The present section focuses on the motion of the solid grains to analyse their coupling with the
fluid motions, firstly during the transient growth of the precipitation layer (abbreviated PL in
subscripts, corresponding to the region of the flow where solid grains are present), and secondly
in the quasi-steady regime. The experimental data analysed in this section are obtained with
ordinary white sugar (setups in figures 4.1a and 4.1c).

4.7.1 Transient sinking of sugar grains

(a) ṁ = 0.20 g/s

(b) ṁ = 0.59 g/s

Figure 4.21: Snapshots of the precipitation layer with an identical grain size rp = 45 µm. The mass
rate increases from (a) to (b) (see captions above each subfigure). Intervals between snapshots are (a)
∆t = 4 s, (b) ∆t = 3 s, and the width of every snapshot is (a) 16 cm and (b) 18 cm.

The evolution of the precipitation layer for small (rp = 45 µm), medium (rp = 101 µm)
and large (rp = 169 µm) grains is illustrated respectively in figures 4.21, 4.22 and 4.23. The
successive snapshots in figure 4.21 show that during the transient, the first sugar grains that
fall in the tank propagate downward in quiescent water (first snapshot of figures 4.21a-4.21b).
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(a) ṁ = 0.10 g/s

(b) ṁ = 0.71 g/s

Figure 4.22: Snapshots of the precipitation with an identical grain size rp = 101 µm. The mass
rate increases from (a) to (b) (see captions above each subfigure). Intervals between snapshots are (a)
∆t = 3 s, (b) ∆t = 4 s, and the width of every snapshot is 17 cm for (a) and (b).

(a) ṁ = 0.21 g/s

(b) ṁ = 0.84 g/s

Figure 4.23: Snapshots of the precipitation with an identical grain size rp = 169 µm. The mass
rate increases from (a) to (b) (see captions above each subfigure). Intervals between snapshots are (a)
∆t = 3.5 s, (b) ∆t = 4 s, and the width of every snapshot is 16 cm for (a) and (b).
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As they accelerate to reach their terminal velocity, they also dissolve; every new grain that is
sieved falls in the wake of some previous ones until the influence of the sugary layer is sufficient
to push the underlying fluid downward and towards the sides. This forces a recirculation on the
periphery that leads to the roll-up of the precipitation layer (second snapshot of figure 4.21b).
Then, a constriction propagates radially inward, favouring the downward acceleration of fluid
motions. The latter carry sugar grains towards larger depths until the fluid motions reach a
quasi-steady state: the precipitation layer has reached its equilibrium depth, which is a growing
function of ṁ (see figures 4.21 to 4.23).
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Figure 4.24: Space-time diagrams of the horizontally-averaged light intensity from low values in blue
to large values in red. From left to right, the three panels show the influence of increasing the particle
size in three experiments of comparable mass rates, namely (a) ṁ = 0.59 g/s, (b) ṁ = 0.57 g/s, (c)
ṁ = 0.64 g/s. The black and white dotted curves show the bottom of the precipitation layer.

How fast does the precipitation layer form? To quantify the sinking velocity of the precip-
itation layer, the light intensity of each photograph is averaged horizontally and the resulting
vertical profiles are stacked in time to build space-time diagrams.

First, the influence of the grain size for a comparable mass rate is shown in figure 4.24.
When laden with small grains (rp = 45 µm in figure 4.24a), the precipitation layer initially
accelerates before sinking with a constant velocity; the subsequent quasi-steady regime shows
oscillations due to successive turbulent puffs of grains that never reach the bottom of the tank.
When grains are sufficiently large to decouple from the starting plume (rp = 169 µm in figure
4.24b and rp = 363 µm in figure 4.24c), they fall ahead of the plume cap hence no clear
phase of acceleration appears. Such large grains fall with an approximately constant velocity,
down to the bottom of the tank when the mass rate is large, as seen in figures 4.24b-4.24c for
ṁ ' 0.6 g/s. Again, oscillations in light intensity mark the existence of puffs of sugar grains
in the quasi-steady regime.

Second, the influence of the mass rate is shown in figures 4.25a-4.25c for rp = 101 µm and in
figures 4.25d-4.25f for rp = 169 µm. The larger the mass rate, the larger the volume fraction in
the precipitation layer hence the larger the horizontally-averaged light intensity. Also, a larger
mass rate leads to a larger effective buoyancy in the plume, hence a shorter transient and a
flow that is more vigorous and more fluctuating.
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(a) ṁ = 0.18 g/s, rp = 101 µm
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(b) ṁ = 0.36 g/s, rp = 101 µm
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(c) ṁ = 0.71 g/s, rp = 101 µm
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(d) ṁ = 0.32 g/s, rp = 169 µm
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(e) ṁ = 0.57 g/s, rp = 169 µm
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(f) ṁ = 0.80 g/s, rp = 169 µm
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Figure 4.25: Space-time diagrams of horizontally-averaged light intensity from low values in blue to
large values in red. Radii (rp) and mass rates (ṁ) are specified above each diagram. The black and
white dotted curves show the bottom of the precipitation layer.

The convergence of iso-contours of light intensity in the space-time diagrams enables to
define the front of the precipitation layer, as shown by a black-and-white dashed line in figures
4.24 and 4.25. In the present section, we focus on the sinking of the precipitation layer in the
transient, which ends when the front position of the precipitation layer no longer increases in
time but only fluctuates around a constant value. Figures 4.25a-4.25c show that the precip-
itation layer sinks with a low initial velocity in the first ten centimetres before accelerating.
In the second phase the slope of the black-and-white dashed line is comparable to that of the
puffs of grains in the quasi-steady regime, suggesting that this slope is characteristic of the fluid
motions in the plume once quasi-steadiness is reached. Since our interest is presently on the
transient, we analyse the initial low sinking velocity before the change of slope.

This sinking velocity of the precipitation layer is denoted żPL. It is measured by fitting
a linear law on the dashed curve for each experiment, and results are shown in figure 4.26a.
The sinking velocity of sufficiently small grains (rp < 169 µm) increases essentially with the
mass rate with little influence of the grain size. Conversely, for a fixed mass rate the radius
rp noticeably modifies the sinking velocity when rp ≥ 169 µm, with sudden jumps when rp
varies from 101 µm to 169 µm, and then from 169 µm to 363 µm. These jumps are due to
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Figure 4.26: (a) Sinking velocity żPL of the precipitation layer as detected from Hovmoller diagrams.
The same data are rescaled in the inset whose ordinate is the ratio żPL/ws: for rp ≥ 169 µm, data
collapse on the dashed black curve of equation żPL/ws = 1. (b) Comparison of the sinking velocity
żPL with the sum of the settling velocity ws and the measured fluid velocity within the plume during
the quasi-steady regime vz,plume. The colorbar for radii applies for both figures.

the gravitational decoupling between the starting plume and these large sugar grains whose
settling velocity is much larger than the fluid velocities. This is shown by the inset of figure
4.26a whose ordinate is the rescaled velocity żPL/ws: unlike smaller grains, those in the range
rp ≥ 169 µm verify żPL/ws ' 1.

This last conclusion means that the influence of the plume velocities is almost negligible
for large grains (rp ≥ 169 µm). Yet, the fluid velocities are not perfectly negligible. Figure
4.26a shows that the larger the mass rate, the larger the plume velocity vz,plume, the faster the
grains fall since their velocity reads vp = vz,plume + ws (see equation (4.1)). This is confirmed
in figure 4.26b which shows the normalised velocity żsinking/(vz,plume + ws) for all experiments
that included PIV measurements. As expected, the rescaled velocities are of order unity and
major jumps due to the particle size have now disappeared. We still observe a departure from
unity by a factor ∼ 1/2. A key aspect that likely contributes to this departure is the fact
that during the transient, the plume velocity is still developping, so the use of the steady-state
velocity vz,plume in the normalisation is an anticipation that overestimates the role of advection
in carrying grains faster downstream.

A slight increase of the normalised velocity żPL/(vz,plume +ws) is still observable as the mass
flux increases, especially for small grains. This remaining trend can originate from different
physical aspects that have been neglected so far, which we discuss in section 4.7.3.

4.7.2 Equilibrium depth

As mentioned in the previous section, the transient is considered to cease when the front
position of the precipitation layer no longer increases and instead fluctuates around a constant
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value. This front position is therefore averaged over the whole quasi-steady regime, and the
resulting measurements of the equilibrium depth z∞PL are shown in figure 4.27. Grains with
a size rp = 363 µm always hit the bottom of the tank before full dissolution. Consequently,
measurements for this size are irrelevant and not shown.
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Figure 4.27: Equilibrium depth of the precipitation layer for all experiments performed with ordinary
white sugar.

For rp < 363 µm, figure 4.27 shows that for a fixed mass flux, the larger the grains the
deeper the equilibrium depth. This can be captured from simple arguments. Consider the fall
of a supposedly spherical and isolated grain of initial size rp0 in clear motionless water. Let us
assume that at any time, the buoyancy and drag of the grain are in balance so that the grain
falls at its terminal velocity ws(t) = ws(rp(t)). The time evolution of the grain can be solved
numerically by integrating the two following equations

{
ṙp = −k(t)Csat

ρp
, (4.28a)

żp = ws(rp(t)), (4.28b)

where zp is the time-dependent vertical position of the grain centre of mass, and equation
(4.28a) follows from the mass balance in equation (4.9) after assuming that the concentration
at the grain interface is the saturation concentration so that ρi = ρsat (see section 4.4.3 for
additional details). These equations show that during an infinitesimal timestep dt the size of
the grain reduces because of dissolution (equation (4.28a)), thus resulting in a reduction of the
grain terminal velocity (equation (4.28b)).

Appendix 4.C gives analytical solutions for the time tmax and depth zmax of complete dis-
solution when Rep � 1 or Rep � 1, where Rep is based on the initial grain radius. In general,
solutions of equations (4.28a)-(4.28b) are obtained by numerical integration with the initial
conditions (rp, zp) = (rp0, 0) at t = 0. Measurements of the equilibrium depth of the precipita-
tion layer z∞PL are compared with the numerical solutions zmax in figure 4.28a. Almost all data
points lie above unity, meaning sugar grains fall deeper than the depth zmax. Additionally the
smaller the grains, the farther away they fall compared to zmax, even more so as the mass rate
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increases. These observations are due to the downward fluid motions that carry sugar grains
deep in the tank and enhance their maximum depth of dissolution. This effect is even more
pronounced for smaller grains due to the large contrast between their small settling velocity
and the large fluid velocity.

To account for this effect, we need to take into account the advection by the plume velocity.
According to equation (4.1), this advection can be taken into account by adding a constant
plume velocity on the right-hand side of equation (4.28b). Therefore, any grain is expected
to travel a distance which is the sum of the advection by the plume, and the distance zmax

of complete dissolution which the grain travels by gravitational drift with respect to the fluid.
Figure 4.28b compares the measurements z∞PL with the prediction zmax + Uplumetmax, and show
that the latter is reasonable since the results rescale around unity. Note, however, a remaining
trend of increase of the rescaled depth z∞PL/(zmax + Uplumetmax) with ṁ for small grains rp <
169 µm. This suggests that some remaining physics has not been accounted for, as already
evoked when discussing figure 4.26b. This additional physics is discussed in the next section.
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Figure 4.28: (a) Comparison between the measured equilibrium depth of the precipitation layer z∞PL

and the numerical value zmax of the maximum distance travelled by an isolated grain settling in clear
still water. (b) Comparison between z∞PL and the prediction zmax+Uplumetmax. The colorbar is common
for all graphs; the size rp is implicitly the initial grain radius rp0 that is used to compute zmax and
tmax.

4.7.3 Processes at the grain scale

The remaining increase of the sinking velocity żsinking/(vz,plume + ws) (figure 4.26b) and of
the equilibrium depth z∞PL/(zmax + Uplumetmax) (figure 4.28b) with the mass rate ṁ could be
due to processes that we have observed at the scale of individual sugar grains. Because we
lack technical means to perform quantitative measurements, we present observations whose
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interpretations are for now essentially speculations and which require analyses beyond the
scope of the present study to arrive to a conclusion.

Figure 4.29: Free-fall of a few sugar grains dropped with a spoon in distilled water at room tem-
perature. The horizontal width of every snapshot is 835 µm and the delay between two snapshots is
66.7 ms.

For very large mass rates, small sugar grains with a low Rouse number follow the vigorous
eddies of the turbulent flow. For a sufficiently vigorous turbulence, if their Rouse number
is not too small they may preferentially concentrate in certain regions, favouring clustering
(e.g. Yoshimoto and Goto, 2007; Salazar et al., 2008) which may enhance the downward fall
of the grains (e.g. Aliseda et al., 2002; Ghosh et al., 2005; Brandt and Coletti, 2022). Indeed,
clustering has been observed in experiments even in the absence of turbulence when we dropped
only a few grains in still water (figure 4.29); it remains an open question to determine whether
the corrugated surface of the grains and their dissolution favour some kind of sticking between
them. Another aspect of importance is the concentration in dissolved sugar which is maximum
for the smallest grains and the largest mass rates, because both elements increase the total
dissolution rate dmtot/dt ∝ ṁk/rp (see equation (4.11) and the increase of the effective density
at the plume source with increasing ṁ and decreasing ws in equation (4.16)). This increases the
plume concentration (or equivalently its density ρ(z)) that surrounds sugar grains; therefore it
slows down their dissolution since ṙp ∝ (ρsat − ρ) (see equation (4.9) with ρi = ρsat).

Another key effect is that, because sugary water is negatively buoyant, the dissolved sugar
at the edge of a grain and in its wake tends to accompany it during its fall. This is confirmed
by sub-millimiter observations of isolated grains of sugar dissolving in still water which show
that the capsule of dissolved sugar falls even after the solid grain has fully dissolved, see figure
4.30. This capsule of buoyant fluid has its own inertia and is forced by its own buoyancy, hence
it favours a faster fall of the solid grain in its interior during dissolution. These interpretations
and observations are consistent with the work of Kerr (1995) who analysed the dissolution of
spherical particles of NaCl in water. The larger concentration of solute in this capsule delays
dissolution by an effect of saturation, and the larger fluid viscosity inside the capsule might also
reduce the contribution of advection to mass transfers. For large mass fluxes ṁ and low radii
rp, the plume has a large concentration of solute that lowers the density contrast (ρsat − ρ).
This likely reduces the diffusive flux that dilutes the capsule, enhancing its persistence and
therefore its ability to shelter the grain and carry it over large distances.
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Figure 4.30: Fall of the residual capsule produced by the dissolution of a sugar grain falling in hot
water at 42.1◦C. The many small grey dots correspond to impurities in water. The horizontal width
of every snapshot is 415 µm and the delay between two snapshots is 200 ms.

4.8 Final remarks

The key observation of this study is probably the paramount influence of the size of sugar grains
on the flow they force. The inefficient forcing of laminar plumes by large grains (section 4.3.1)
is an undeniable evidence that for a given input of potential energy, the size rp controls the
macroscopic evolution of the whole system of sugar grains, solute and fluid motions, even at
large times when the flow reaches quasi steadiness. The experience gained from the experiments
and simulations of the previous Chapters 1 and 2 has been crucial to shed light on the enhanced
efficiency of small grains to force the flow through drag. All this proves that, as long as grains
have not fully dissolved, the particulate nature of the buoyant material strongly constrains the
forcing and the concentration of solute in the plume. Even more striking, we observed that
the particulate nature of the forcing imprints a persistent trace on the flow even below the
precipitation layer, since its structure is directly conditioned by the initial size of grains. It
remains to be verified with sugar grains smaller than 45 µm if this influence of rp ultimately
disappears when the size of grains is reduced typically down to 10 µm or less (see the isocontours
in figure 4.20a).

The average plume velocity Uplume in the quasi-steady regime is only a function of the effec-
tive volume fraction of sugar, which corresponds to the ratio (ρeff,QS−ρ0)/ρp = ṁ/πR2

sieve(Uplume+
ws)ρp (see equations (4.24)-(4.25)). This expression suggests that the average quasi-steady
plume velocity only depends on ws, by an effect of dilution that modifies the effective volume
fraction. Because ws and rp could be decoupled, additional experiments where the size of grains
and the settling velocity could be modified independently could confirm this conclusion and
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provide additional insight on the forcing of the flow by the grains.

This last effective volume fraction (ρeff,QS− ρ0)/ρp was derived for the quasi-steady regime;
the one derived for the onset of the flow is φeff ∝ ṁ/ws (equation (4.21)). Both of them de-
pend on ws, whereas the time tQS to reach the quasi-steady regime is only a function of the
mass rate (figure 4.17a). An important consequence is that the time tQS shows no correlation
with these volume fractions. What exactly controls the duration of the transient? The influ-
ence of dissolution could play a role in setting the fluid in motion. Accounting for it during
the transient would require a time-dependent and possibly depth-dependent volume fraction,
which then calls for a more sophisticated modeling of the plume from the very start, including
effects of constriction that may explain some of the remaining increase observed in figure 4.28b.
But even in the absence of dissolution, sieving inert particles leads to a delayed onset of the
steady regime. What controls the gradual emergence of larger and larger length scales in the
experiments with the largest sugar grains? This emergence is likely controlled by the spacing
between grains (how much do they influence one another?), by the time lapse between the fall
of two grains at the same location (does the motion induced by the drag of the first grain
vanish before the second grain falls?), by the amount of solute deposited by grains, and by how
much the sugary wakes diffuse towards one another to combine and thus distribute the forcing
in an effectively larger volume. See further discussion in the Conclusion and future lines of work.

A knotty question is: What is exactly the influence of dissolution in our experiments? This
question is especially motivated by the striking similarity between our flows and downbursts
– violent downward currents of air generated below clouds by precipitation and latent heat
absorption due to melting or sublimation of ice, or due to the evaporation of raindrops. These
flows also combine sedimentation and phase change, they propagate as fronts, are all the more
vigorous as particles are smaller, and intensify when the mass flux of hydrometeors increases
(Kamburova and Ludlam, 1966; Harris, 1977; Srivastava, 1985, 1987). These studies insist on
the role of phase change in driving the flow (Srivastava, 1985, 1987). They showed that the
fall of ice crystals induces more vigorous downward motions than the fall of water drops; this
was interpreted as being due to the slow settling of ice particles that absorb latent heat in a
shallow region, whereas fast-falling drops absorb latent heat in a deeper region, thus leading to
a comparatively lower temperature anomaly Srivastava (1987). We have performed experiments
by sieving glass spheres that have several similarities with our experiments on sugary plumes
– hence, how much does dissolution play a part? Can we discriminate between the roles of
hydrodynamics and phase change in out experiments?

Some first remarks can be made from our experiments. Grains shrink as they sink, hence
their dynamics changes: the particle Reynolds number and the Rouse number keep decreasing
so the flow is necessarily more and more fluid-like, less and less settling-constrained as we con-
sider a slice of plume that is deeper. Such a transition cannot exist if all particles are inert.
This difference might go unnoticed without an accurate quantitative comparison because of the
finite depth of our water tank. In a deep ambient, however, inert particles will never lose their
minimum settling velocity ws with respect to the fluid in their vicinity, and settling will always
constrain the flow to be vertically biased due to finite-Rouse-number effects; conversely, all
sugar grains will inevitably dissolve, guaranteeing a transition to a fluid-like behaviour. Large
particles will remain insensitive to minute perturbations at large depths whereas the solute
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produced by large grains will mix with the ambient and diffuse, so that a difference between
inert and reactive particles is anticipated to be visible at a large scale. This calls for future
experiments in a larger tank, with reference experiments using inert particles that have the
same size and density as sugar grains to quantitatively compare the trajectories of particles
and the fluid velocities.
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4.A Experimental setup and calibration

4.A.1 Cooking fluorescent sugar

To visualise the motions of the negatively buoyant sugary water, we home-cook our sugar by
adding rhodamine B in sucrose.

We prepare the sugar in a chemistry room under an extractor fan. A precise mass of sugar
is mixed with a precise small amount of water in a frying pan at room temperature. Both are
stirred until the sugary water is homogeneous. Then, heating is turned on while the sugary
water is regularly stirred. The presence of water favours a homogeneous heating of the mixture.
After approximately 20 min, water starts boiling. Due to regular stirring, this phase can last up
to 10 min before all the water has evaporated. Then, heat can rise up in the absence of water
and reach a temperature of about 155◦C. At that moment, the sugar turns brown. A precise
mass of rhodamine is then added with no delay and vigorously stirred to reach homogeneity
as fast as possible in about 30 s. The dyed sugar is then quickly spread on parchment paper
where it cools until reaching ambient temperature. It was found that rather than letting the
sugar spill as a sheet on the baking paper, spreading it with a spatula leads to the rapid growth
of large air bubbles in the sugar over a duration of a few seconds. This foamy form of sugar
seemed to cool faster, and most of all was simpler to crush and blend with a mixer to reduce
sugar to tiny grains no larger than 1 mm in diameter.

4.A.2 Sorting sizes of grains and clogging

Whether experiments be performed with dyed sugar or ordinary sucrose with no colouring, the
stage of blending leads to an extremely polydisperse collection of sugar grains that require sort-
ing. This is performed by automatically sieving sugar grains with sieves having different mesh
sizes, in a closed cardboard box to avoid unwanted propagation of the very small sugar grains
in the air due to vigorous sieving. Sieving starts with the sieve of largest mesh (1000 µm), down
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to the sieve of mesh size 56 µm. Some grains are shown in figure 4.31a, and all the different
ranges of sizes are summed up in table 4.1. Each of them is characterised by an average radius
rp which is computed as the arithmetic mean of the minimum and maximum radii of this range.

(a)

(b) (c) (d)

Figure 4.31: (a) Some sugar grains of diameters in the ranges (from left to right): ≤ 125, 125−140,
140− 180, 180− 224, 224− 1000, ≥ 1000 (in microns). (b) Clogging of a sieve by medium dyed sugar
grains. (c) Clogging of a sieve by small grains of ordinary sugar after a few experiments is essentially
concentrated in the centre of the sieve, while after many experiments (d) the whole sieve is clogged. No
specific trend is observed as to where clogging starts, it depends on humidity, the total mass of grains,
their size and the sieve used.

Sieving of large grains is fast because very small grains quickly fall through the much larger
mesh so little clogging is observed. As the process goes on, the difference between the mesh
size and the diameter of any grain that should fall through the mesh gets smaller and smaller.
Consequently more and more clogging is observed as illustrated in figures 4.31b-4.31d.

Such clogging is expected because it is inherently due to the filtering process that sorts the
grains of sugar. Unfortunately, clogging also happens when sieving sugar during experiments,
despite the use of a sieve whose mesh is immediately larger than the grain size (e.g. when using
the sieve of size 224 µm with grains in the range 180− 224 µm) or even larger (e.g. when using
the same sieve for grains in the range 140− 180 µm). This means that although grains passed
through this very mesh during the sorting procedure, clogging is still possible. We believe it is
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due to several grains falling through the same hole at the same time and ending up one leaning
against the other. With their own weight and the pressure exerted by the overlying grains, the
hole can remain jammed until a vibration of the sieve manages to separate these two grains.
Experience shows that the most efficient way to unclog a sieve so is by hitting it shortly with
a tool, enabling all grains to jump vertically in the sieve which is then unclogged.

Another complexity that is specific for sugar is its interaction with moisture in the ambient.
Experience shows that the pattern of clogging in figure 4.31c is partly due to humidity: when
this sieve is hit by a tool, the white region at the center preserves this convoluted shape,
suggesting that humidity fixed some of the sugar on the metal mesh. This inference was
confirmed by experiments performed on different days with varying ambient humidity: the
more humid the air, the faster clogging of the sieves.

These observations raise the question of the best way of sieving sugar grains. Although
vertical oscillations would limit the problem of clogging, they introduce another undesired
phenomenon of heterogeneous migration of sugar grains. This phenomenon sometimes recalls
the classical accumulation of grains in the antinodes of stationary Chladni-like vibration modes,
and some other times it evidences an unsteady dynamic migration in the sieve. Due to the
complexity to control such motions, horizontal sieving was preferred. To limit the influence
of clogging and to avoid again some effects of migrations of grains, sieving should be with a
sufficient amplitude (typically above 1 mm) to guarantee that grains either roll over the mesh or
slide against it, which seems to favour a homogeneous sieving. At the same time, the amplitude
should not be too large (typically below 1 cm) to guarantee that the sugar grains, after falling
in the air, land on the water free surface in a circular region. This is also to mitigate the fact
that excessive amplitudes lead to a heterogeneous sieving because in that case, most grains are
expelled when the motion of the sieve reaches an extremum along the horizontal, so few grains
are sieved at the center.

Since the mass rate of sieved sugar depended on the total mass of grains in the sieve, and
most of all because ambient humidity could not be controlled, no calibration of the mass rate
was observed to be reliable from one day to another. Consequently, the next section describes
the calibration procedure that is implemented for every experiment.

4.A.3 In-situ calibration

Since the mass rate continuously decreases in time, any representative measurement of the mass
rate should be obtained on a sufficiently small timescale for the mass rate to be considered
approximately constant during the time of sieving.

Calibration is performed right above the water tank. A rigid A2 sheet of paper is placed
horizontally between the top of the tank and the bottom of the sieve (see figure 4.32) to make
sure that no sugar is lost in water during the calibration. Then, all the sugar grains of a given
range are poured on top of the sieve and gently spread to get an approximately uniform covering
of the sieve. The few sugar grains that fell through the sieve in the meantime are collected with
the paper sheet, which is then rolled as a funnel to pour them back into the sieve; the aim here
is to guarantee that the total mass of sugar that oscillates remains constant.

The oscillations are parameterised depending on the mass rate that is aimed for: the larger
the velocities of the sieve, the larger the mass rate. Since the fall of sugar grains is correlated
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Figure 4.32: During calibration, sugar is collected on a horizontal rigid A2 paper sheet before being
poured on a scale to get a measure of the mass rate.

to the period of oscillation, the latter should never be too large to guarantee that it can be
neglected compared to the characteristic timescales of the flow, so that the mass rate of sugar
grains contacting the water free surface can be considered continuous.

Once parameters are chosen, sieving is first performed over a duration of 5 s as controlled
by a timer. The sugar that has been sieved is collected and weighed. This provides an estimate
of the mass rate during the first 5 s of sieving: see the first data point in the calibration curve
of figure 4.33. The procedure can be repeated through several successive 5 s-long iterations.
The resulting calibration curve (figure 4.33)shows a decrease of the mass rate over the total
cumulative duration of sieving. Experience shows that the decay scales as a power law ṁ ∝ t−α

with α ≥ 1 a coefficient that varies from an experiment to another due to the size of grains, their
total mass, the parameters of oscillations and the humidity. An approximately constant mass
rate can be obtained when α > 1 if the calibration is iterated many times, since then the slope
of the power law becomes small, see figure 4.33. For small mass rates such a long calibration is
not an issue. However when the targeted mass rate is large, it should be anticipated that the
initial mass rate should be extremely larger than the targeted value to make up for clogging
over the course of the calibration.

Once the mass rate gets close to the targeted value, the A2 paper sheet is removed from
above the tank and an experiment can be performed. Depending on the wish to analyse the
transient or the quasi-steady regime, the typical duration of sieving during an experiment varies
from 10s to at most 2min. As soon as an experiment is finished, the calibration procedure starts
again with successive iterations. The final curve of calibration is therefore a decreasing mass
rate as a function of the total time of sieving since the very start of the calibration, with a
10s-long to 2min-long blank corresponding to the experiment. Experience shows that the mass
rates measured before and after the experiment almost always align along a power law ṁ ∝ t−α

where the value of α ≥ 1 is now definitive based on all the measurements performed before and
after the experiment. The power law that is fitted on the measurements enables to compute a
mean mass rate for each experiment.

Figure 4.34 shows the mean mass rate and grain radius of all experiments. The vertical
error bars range from the minimum to the maximum size of grains in a given set of table 4.1.
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Figure 4.33: Calibration curve for three successive experiments (shown by the red arrows). The curve
shows the mass rate measured on a scale during iterative runs of 5 s as a function of the cumulative
time of sieving. The large gaps where the red arrows are located correspond to the duration of sieving
during experiments (of order ∼ 30 s), not to the duration of an experiment (∼ 5 min) nor the delay
between two experiments (∼ 30 min).

Horizontal error bars range from the maximum mass rate at the start of an experiment, to the
minimum mass rate at the end of an experiment.

Different colors appear for the following reason. When starting a calibration, the mass rate
decreases as a power law. If this power law remains the same even after an experiment (see the
three examples of figure 4.33), the power law is used to compute the mean mass rates, and data
points are shown in red. However, in many cases the power law transitions to a different law
after some time. In that case, we fit experimental data with the law that best fits the 5 measured
mass rates before the experiment, and the 5 measurements after the experiment. When this
law is linear, data points appear in blue. For two experiments, this law is exponential; the
corresponding points are in magenta. When the calibration could not be fitted by any law
because of noise, or when the sieve was accidentally unclogged a few measurements after the
experiment, the mass rate was calculated as the mean between the last measurement before the
experiment, and the first measurement after the experiment. Corresponding data points are
shown in dark in figure 4.34. Finally, some experiments were too complex to calibrate with a
curve; after verifying that sieving was uniform and the mass rate was approximately constant,
the mean mass rate was measured by computing the difference between the total mass of sugar
in the sieve before and after the experiment; these data points are shown in green.

4.B Processing methods

4.B.1 Profiles of intensity along the trajectory of the plume front

This processing is only applied for experiments with dyed sugar. The successive steps are:

1. Detect the front position of the starting plume in space-time diagrams as those in figures
4.11 and 4.12 (see Appendix 4.B.2 for this method); this provides measurements of the
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Figure 4.34: Average radius and mass rate of all experiments. For the colors of the different exper-
iments, and for a description of the range spanned by the errorbars, please refer to the text.

front position in time.

2. Fit a parabola on these measurements.

3. The measurements on which the parabola is fitted integrate contributions from several
large grains or several sugary mushrooms, depending on the experiment considered. Not
all of them have the same size and depth. To capture all of them on the intensity profile,
the light intensity is integrated in a window spanning through the whole width of the
photographs and with a vertical extent that is adapted to best capture all structures: the
window extends 1 cm above the plume front and 1.5 cm below. This larger extension
below the front enables to capture occasional large grains that settle ahead of others for
short amounts of times. In this window, the light intensity is averaged along the vertical
direction z.

The final results are the space-time diagrams in figure 4.10.

4.B.2 Convergence of isocontours in space-time diagrams

Space-time diagrams show a transition between regions of large light intensity (where sugar
grains reflect the laser sheet, or where dyed sugar is present) and dark regions. The aim is to
find this transition. Space-time diagrams of the smallest or the largest grain sizes are so different
that an automatic algorithm of detection of contours can work for the former, not for the latter.
To apply a same processing for all experiments, the following method was implemented.

On a given space-time diagram, a total of 50 equispaced isocontours are considered. Each
isocontour delineates a different region of the space-time diagram: the contour of lowest inten-
sity encircles the largest region, and the larger the isocontour intensity, the smaller this region.
For very low intensities, changing isocontour results in a considerable change of the total surface
area that is encircled. At larger intensities however, increasing the isocontour value from one
to the next leads to very little modification of the region that is encircled. Consistently, the
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Figure 4.35: Processing of the experiment whose space-time diagram is shown in figure 4.25a. Evo-
lution of the surface area encircled by an isocontour as a function of the intensity of the corresponding
isocontour. The isocontour intensity is normalised by the difference between the maximum and mini-
mum values in the space-time diagram.

surface area of the encircled region – calculated as the number of pixels in this region – tran-
sitions from a regime where it depends hugely on the isocontour intensity, to a regime where
it depends little on this intensity: this transition is visible at an abscissa ∼ 0.12 in figure 4.35.
The isocontour we seek for, separating dark regions from regions of large light intensity, is given
by the abscissa where the change of slope operates, because isocontours with an intensity equal
or slightly larger than this value converge on the space-time diagram.

This technique has notably been applied to detect the downward propagation of fluid mo-
tions in experiments (e.g. in figures 4.13-4.14). This has enabled to extract the propagation of
fluid motions in figure 4.36. In the range z ∈ [5 cm, 33 cm], the trajectories of the sinking fronts
are essentially linear, so each of these profiles has been fitted with a first-order polynomial to
extract its slope, that corresponds to a velocity point in figure 4.15.

4.B.3 Quasi-steadiness of the PDF of vertical velocity

From a statistical viewpoint, the PDF in figure 4.16 shows that the downward fluid velocities
gain in intensity during the transient, possibly reach a maximum at the end of the transient,
then plateau in the quasi-steady regime, before eventually vanishing after sieving is stopped.
Therefore, apart from the violent end of the transient, the permanent regime corresponds to a
time window where the downward velocities are maximum. Consequently, a time of steadiness
is defined from the PDF of the vertical velocity like so:

1. Detect numbers above 10 on the side of positive (downward) velocity vz in the PDF.

2. At each time i.e. for a fixed ordinate, extract the maximum value of vz that verifies the
previous condition. The final result is a velocity curve max(vz(t)) as a function of time.

3. Time-average the velocity curve with a moving average to reduce noise. This smoothed
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Figure 4.36: Downward propagation of fluid motions as detected from the convergence of isocontours
in space-time diagrams like those in figures 4.13-4.14. Each panel evidences a faster propagation when
increasing the mass rate for a fixed particle size. The time origin t = 0 corresponds to the start of
sieving.

curve which we here denote 〈max(vz(t))〉t corresponds to the dark curve overlayed on the
PDF in figure 4.16 near the value vz = 0.04 m/s.

4. The maximum of 〈max(vz(t))〉t corresponds to the peak velocity at the end of the tran-
sient. To get rid of it, we define the start of the permanent regime as the earliest time
when the dark curve 〈max(vz(t))〉t is equal to or larger than 80% of this peak value. This
time is shown by the white dashed line in figure 4.16, and the curve 〈max(vz(t))〉t is shown
only above the threshold of 80% of the peak value.

4.C Time and depth of complete dissolution

The time and depth of complete dissolution of an isolated spherical grain settling in still wa-
ter are found by integrating equations (4.28a)-(4.28b) numerically. Analytical solutions are
available for the two limiting cases Rep � 1 and Rep � 1.

For grains of vanishingly small particle Reynolds number Rep � 1, the terminal velocity can
be simplified as the Stokes velocity and the advective contribution to the mass flux in equation
(4.10) can be neglected, so that the coefficient of mass transfer simply reads k = κ/rp in the
limit Rep � 1. In that case the integration of equation (4.28a) is straightforward and shows
that the radius of the grain varies as

r2
p(t) =

Rep�1
r2
p0 −

2Csatκ

ρp
t, (4.29)

which corresponds to the well-known ‘d2-law’ which originates from the r−1
p dependency of the

diffusive mass flux around a sphere (Epstein and Plesset, 1950). Isolating for t in equation
(4.29) and taking rp = 0 immediately leads to the time of complete dissolution

tmax =
Rep�1

ρp
2Csatκ

r2
p0 ∝ r2

p0. (4.30)
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This last expression shows that larger grains have a larger ‘lifetime’ for two reasons: first because
they have more material to dissolve, and second because their dissolution rate |ṙp| is lower.
Indeed, tmax ∝ rp0/|ṙp|(t = 0) which is the typical lifetime of a grain estimated by assuming its
whole volume dissolves with the initial recession velocity |ṙp|(t = 0). This contributes to smaller
grains reaching lower depths during their shorter lifetime. This conclusion is exacerbated by
the slower settling velocity of smaller grains. To show it, we use the expression of the Stokes
velocity in equation (4.3) and inject equation (4.29) into equation (4.28b). This enables to
compute the distance zp(t) travelled at time t by a grain initially at position zp(t = 0) = 0:

zp(t) =
Rep�1

wStokes
s (rp0)t

(
1− Csat

ρp

t

r2
p0/κ

)
. (4.31)

Equation (4.31) shows that in the diffusive regime (Rep � 1) grains initially fall with an
approximately constant Stokes velocity based on their initial radius rp0, but they gradually
decelerate and disappear at a finite depth when t = tmax. This maximum depth is obtained by
substituting t in equation (4.31) with tmax in equation (4.30):

zmax =
Rep�1

ρp
4Csatκ

wStokes
s (rp0)r2

p0 ∝ r4
p0. (4.32)

All in all, equation (4.32) confirms that smaller grains complete their dissolution at shallower
depths, because they have less material, because their dissolution rate is larger, and because
they fall slower.

For grains of very large particle Reynolds number, the terminal velocity can be simplified
as the Newton velocity

wNewton
s =

√
8g(ρp − ρ0)

3Cdρ0

rp , (4.33)

and the diffusive contribution to the mass flux in equation (4.10) can be neglected, so that

the coefficient of mass transfer reads k = 0.3κr−1
p Re

1/2
p Sc1/3. During dissolution, the particle

Reynolds number continuously decreases so that a gradual transition from the Newton regime to
the Stokes regime is inevitable; a numerical integration of equations (4.28a)-(4.28b) shows that
all grains verifying Rep(t = 0) & 5 spend the majority of their lifetime having Rep(t) > 1 hence
the gradual transition to the Stokes regime will prove of negligible influence on the calculations
made for those large grains. Under these assumptions, the integration of equation (4.28a) is
straightforward and shows that the radius of the grain varies as

r5/4
p (t) =

Rep�1
r

5/4
p0 −

3Csatκ
1/2Sc−1/6

8ρp

(
8g(ρp − ρ0)

3Cdρ0

)1/4

︸ ︷︷ ︸
Π

t. (4.34)

Isolating for t in equation (4.34) and taking rp = 0 immediately leads to

tmax =
Rep�1

r
5/4
p0

Π
∝ r

5/4
p0 . (4.35)
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This last expression shows again that larger grains have a larger lifetime; since they also fall
faster, larger grains complete their dissolution at a larger depth. To show it, we use the
expression of the Newton velocity in equation (4.33) and inject equation (4.34) into equation
(4.28b). This enables to compute the distance zp(t) travelled at time t by a grain initially at
position zp(t = 0) = 0:

zp(t) =
Rep�1

wNewton
s (rp0)

5r
5/4
p0

7Π


1−

(
1− Π

r
5/4
p0

t

)7/5

 . (4.36)

Equation (4.36) shows that grains initially fall with the Newton velocity wNewton
s (rp0) before

decelerating and disappearing at a finite depth when t = tmax. Substituting t in equation (4.36)
with tmax in equation (4.35) yields

zmax =
Rep�1

wNewton
s (rp0)

5r
5/4
p0

7Π
∝ r

7/4
p0 . (4.37)
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Figure 4.37: (a) Time before full dissolution of a grain of initial size rp0 in clear water. (b) Distance
travelled by a grain settling in clear still water up until its full dissolution. (c) Fraction of the ‘lifetime’
of a grain that the latter spends with a particle Reynolds number above unity.

The asymptotes of the Stokes regime and Newton regime are compared with numerical
solutions of equations (4.28a)-(4.28b). Time integration is performed with a simple forward
Euler method as long as the radius rp(t) is strictly positive i.e. until the grain has fully dissolved,
at which point the time tmax and position zmax of complete dissolution are computed. Figure
4.37a shows numerical values of tmax as circles; they consistently transition from the asymptote
of the Stokes regime (4.30) for small initial radii to the asymptote of the Newton regime (4.35)
for large initial radii. Similarly, the numerical values of zmax consistently transition from the
former asymptote to the latter in figure 4.37b. The good agreement between the asymptote
of the Newton regime and the numerical values confirms that grains verifying Rep(t = 0)� 1
spend a negligible amount of time in the Stokes regime, as quantitatively assessed in figure 4.37c
where all grains above rp0 = 200 µm (corresponding to Rep(t = 0) > 5) spend the majority of
their lifetime with a particle Reynolds number above unity.



Chapitre 5

Ganymede’s iron snow: focus on the
remelting of snow flakes

Summary
Observations of Ganymede’s surface and measurements of its mass, low axial moment
of inertia, and equatorial magnetic field, suggest that this moon is composed of three
layers: an icy shell, a rocky mantle and a metal core. Ganymede’s magnetic dipole is
so intense that it likely originates from a dynamo located in its iron-rich core. The
latter is subadiabatic so the fluid motions feeding the dynamo likely originate from
heterogeneities of composition. Here, we suppose the core bulk composition is on the
iron-rich side of the eutectic in the binary phase diagram of Fe-FeS. Consequently,
the core evolves according to the scenario of iron snow (see Introduction). Past
studies (Rückriemen et al., 2015, 2018) shed light on this phenomenon from the sole
consideration of the thermal evolution of Ganymede, without considering the specific
influence of the particulate nature of the buoyancy forcing when snow flakes settle
and then melt. We use the results of Chapter 4 to model the settling and remelting
of snow flakes in plumes at the bottom of the snow zone. We align with previous
studies to determine the boundary conditions of our model. We then analyse the role
of the particulate nature of the buoyant material by varying the size of snow flakes,
the radius of the plumes, and the mass flux of snow flakes coming from the snow
zone. Snow flakes of radius rp . 10 µm have little influence on the plume velocity
and follow the fluid motions. Larger flakes modify the plume velocity, but decouple
from the plume when rp > 100 µm. Varying rp from 10 µm to 1 m leads to orders-
of-magnitude differences on the plume velocity, the volume fraction of grains and the
concentration of molten snow. Since remelting accelerates as the flakes shrink, most
of the molten snow is produced when they complete their remelting, down to 29 km
below the snow zone for 1 m-large snow flakes, which represents 33% of the size of
our snow zone.
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5.1 Crystallisation of Ganymede’s core in the literature

5.1.1 Structure of Ganymede

5.1.1.1 A three-layered icy moon

Ganymede is the largest of the four natural Galilean satellites of Jupiter, which are, in order of
distance from Jupiter: Io, Europa, Ganymede and Callisto. A lot of information about these
satellites comes from the Galileo mission that made its first pass close to Ganymede in January
1996 (Kivelson et al., 2002).

By measuring Ganymede’s mass and average radius 2631.2± 1.7 km, the average density of
the moon was found to be equal to 1942.0±4.8 kg/m3 (Schubert et al., 2004). Like Europa and
Callisto, Ganymede shows the presence of water ice at its surface, as observed by spectroscopy
from the Earth (Calvin et al., 1995). This evidence and the low bulk density of Ganymede
suggest that the moon has experienced a differentiation between ice on one hand, and metal
and rocks on the other hand (Schubert et al., 1981, 2004) with approximately 60% of the mass
which corresponds to rocks and the rest to ice (Anderson et al., 1996).

Further information on the interior of the moon is obtained by analysing its gravity field. Af-
ter decomposition of the gravitational potential in spherical harmonics, Doppler radio tracking
measurements enabled to determine Ganymede’s gravitational quadrupole. Under the assump-
tions of hydrostatic equilibrium and sphericity of the moon, knowledge of the quadrupole and
of Ganymede’s mass MG enabled to determine its dimensionless moment of inertia C/(MGR

2
G)

with RG its radius. For a homogeneous sphere the value of the dimensionless moment of inertia
is 2/5; a lower (respectively larger) value indicates that mass is more concentrated at the centre
(respectively at the periphery) of the planet (Schubert et al., 2004). Ganymede’s dimensionless
moment of inertia was found the lowest of all satellites and rocky planets in the solar system
(Anderson et al., 1996), equal to 0.3115± 0.0028 (Schubert et al., 2004). Compared to the ref-
erence 2/5 of a homogeneous body, this very low value (Anderson et al., 1996) was interpreted
as a sign of further differentiation in three layers (from the centre to the periphery: metal, rock
and ice, see Kuskov and Kronrod (2001); Sohl et al. (2002)) which might have been favoured
by past tidal heating (Turcotte and Schubert, 2002) and by radiogenic heating that could have
melted the metal and rocks of Ganymede (Schubert et al., 2004).

An additional strong argument in favour of a deep layer of partially or fully molten metal
in Ganymede comes from its magnetic field. The Galileo mission revealed an intense dipolar
magnetic field in its vicinity (Kivelson et al., 1996), with a slight 4◦ tilt with respect to the
rotation axis (Kivelson et al., 2002), and of strength 719 nT at the equator. This value is much
larger than the locally uniform jovian field of strength 100 nT; additionally, this local magnetic
field is clearly delimited by a magnetopause and it converges towards the centre of Ganymede,
strongly suggesting that it originates from Ganymede’s interior (Kivelson et al., 1996). We
discuss the properties and possible origins of this magnetic field in the next section.

5.1.1.2 Origin of Ganymede’s magnetic field

A priori, three mechanisms could account for the generation of Ganymede’s intrinsic magnetic
field.

https://solarsystem.nasa.gov/missions/galileo/overview/
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The first mechanism is remanent magnetisation or remanence. It would impose constraints
on the location of the source: the source cannot be too deep since its temperature cannot
exceed the Curie temperature, and it must be located in the rocky layer of the moon. Under
these considerations, Schubert et al. (1996) showed that a 300 km-deep layer of rocks could
be ferromagnetic in Ganymede at the top of the rocky layer. The question is then: could this
layer produce a magnetic field as intense as that of Ganymede ? Although this possibility
cannot be ruled out (Kivelson et al., 1996), it remains unlikely due to the implausibly large
amounts of magnetite required (Scott et al., 2002), and due to the large external field required
for the remanent magnetisation to be sufficiently intense (Schubert et al., 1996; Kivelson et al.,
1996), much above the present-day jovian magnetic field. A paleomagnetic field originating
from a primordial deep dynamo in Ganymede could have led to a sufficient remanence, but
this paleomagnetic field should have been 15 times larger than the present-day jovian field or
even larger (Crary and Bagenal, 1998; Schubert et al., 2004). As a consequence, remanence is
considered unlikely for the generation of Ganymede’s magnetic field.

The second mechanism of magnetic field production is magnetic induction. This corre-
sponds to the induction of a perturbative magnetic field due to the movement of an electrically
conducting fluid that is embedded in an external magnetic field – here, the one of Jupiter. This
scenario only requires the presence of such a fluid layer in Ganymede because, unlike dynamo,
induction is subject to no threshold on the magnetic Reynolds number for the perturbative
magnetic field to be generated (see the Introduction). Essentially two electrically-conducting
fluid layers may exist in Ganymede: deep in the satellite in the partially or fully molten metal
core, and likely in a sub-surface ocean of salty water. Nonetheless, authors have argued that
the magnetic fields that can be produced at a global scale by induction cannot exceed much the
external field that feeds them (Schubert et al., 1996, 2004; Kivelson et al., 2002). Therefore,
although the next paragraphs will show that induction can be the origin of the quadrupole
component of Ganymede’s magnetic field, this mechanism is considered inappropriate to ex-
plain the 719 nT dipole which is too large compared to the 100 nT jovian field in the vicinity
of Ganymede.

The third mechanism is dynamo, which is the preferred candidate to explain the origin of
Ganymede’s dipole at least. Again, this dynamo may originate from any of the two electrically-
conducting fluid layers mentioned above. Taking the typical electrical conductivity of salt water
and considering a typical thickness of several hundreds of kilometers for the subsurface ocean,
Schubert et al. (1996) showed that, for a dynamo to meet the requirement Rem > 10 in a salty
subsurface ocean, the values of flow velocity would need to reach the order of 1 m.s−1. This
was deemed implausibly large by comparison with the typical velocity 10−4 m.s−1 in the Earth
core. Although this comparison does not rule out the possible existence of these motions, it
was concluded that the dynamo most likely originates from a layer of liquid metal in the core of
the satellite, again supporting the differentiation of Ganymede in three layers, and it imposes
that at least a fraction of the metal core should still be molten today.

5.1.1.3 Structure and composition of Ganymede

To determine the structure of a satellite made of three supposedly uniform layers with spherical
symmetry, there exist five unknowns: the density of each layer (ρc for the core, ρmant for the
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mantle, ρice for the outer icy shell, part of which can be liquid), the radius rc separating the core
and the mantle, and the radius rmant separating the mantle from the icy shell. The satellite’s
structure should comply with three geodetic constraints (Schubert et al., 2004; Hauck II et al.,
2006; Sohl et al., 2002)

1. the average density ρG = 3MG/4πR
3
G = 1942 kg/m3,

2. the radius RG = 2631 km,

3. the dimensionless axial moment of inertia C/MGR
2
G = 0.3115.

The radius RG imposes the available range of values for rc and rmant. Then, the definition
of the satellite’s density provides a first equation relating the size and density of each spherical
shell as (Schubert et al., 2004)

ρG = ρice + (ρc − ρmant)

(
rc
RG

)3

+ (ρmant − ρice)

(
rmant

RG

)3

. (5.1)

An additional similar equation can be obtained from the definition of the axial moment of
inertia (Schubert et al., 2004; Kuskov and Kronrod, 2001) which yields

ρG
C

MGR2
G

=
2

5

[
ρice + (ρc − ρmant)

(
rc
RG

)5

+ (ρmant − ρice)

(
rmant

RG

)5
]
. (5.2)

These two equations and the three constraints hereabove are insufficient to determine a unique
structure for Ganymede due to large uncertainties on the five unknowns (Anderson et al., 1996).
If only one or two of the five unknowns are fixed to values that are deemed relevant from the
literature, a number of models can be obtained, which must be sorted owing to their compati-
bility with the geodetic constraints and other cosmochemical considerations (see the discussion
of figure 13.4 in Schubert et al. (2004)). If three unknowns are fixed, then the whole structure
of the planet is determined from equations (5.1)-(5.2). The typical structures presented by Sohl
et al. (2002) have a fixed ice density in the range 950 − 1300 kg/m3, a mantle whose density
is chosen close to that of olivine (ρmant = 3222 kg/m3) because this mineral is dominant in
the upper mantle of the Earth (Schubert et al., 2004), and a core density varying typically
between 5000 kg/m3 (eutectic composition) and 8000 kg/m3 (pure iron). They obtain typically
rc/RG ∈ [1/3, 1/4] and rmant ∼ 0.65RG (see three examples in figure 5.1). Of course, such re-
sults are essentially guiding values since they depend on the initial choice of the ice and mantle
compositions (Schubert et al., 2004), and results are highly sensitive due to the high powers on
the radii in equations (5.1)-(5.2).

A close inspection of the core composition is required to discuss the possibility of a dynamo.
Little is known with exactitude about this composition because of the scarcity of available
measurements. Due to the constraints on Ganymede’s moment of inertia and on the origin of
its magnetic field in a deep electrical conductor, the presence of an iron-rich core in Ganymede
is not debated. The presence of lighter elements and their proportion is, however, more complex
to settle. A common starting guess for the bulk composition of a body is that of the protosolar
nebula, i.e. the solar composition, because it is preserved in bodies that have not experienced
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(a) (b)

Figure 5.1: Profiles of (a) density, (b) pressure and gravity for three possible structures of Ganymede:
a pure iron core (bold curve), a pure iron sulphide core (thin line) and a 50-50wt% composition
(semibold line). Figures (a) and (b) respectively correspond to figures 9 and 10 of Sohl et al. (2002)
whose notation Rp corresponds to Ganymede’s radius which is denoted RG in this manuscript.

mineral alteration or metamorphism (Robert and Bousquet, 2013). Sulfur being abundant in
the protosolar nebula (Canup and Righter, 2000) and siderophilic, it has been considered a
good candidate for a lighter element in iron-rich planetary cores (Breuer et al., 2015) amongst
which Ganymede (Hauck II et al., 2006) (see figure 1 in Hirose et al., 2013). Although many
more light elements could be plausible candidates (Hirose et al., 2013), Breuer et al. (2015)
remarked that most experimental and theoretical studies on the thermochemistry at the core
pressures and temperatures have focused on the iron-and-sulfur system. Such a simple system
has also been commonly considered a good approximation of the core chemistry given the few
constraints available to refine the composition.

The question is then: What is the proportion of sulfur in Ganymede’s core? The answer to
this question is decisive for the whole scenario of core crystallisation which is discussed in the
next section.

5.1.2 Regimes of crystallisation in an Fe-FeS core

5.1.2.1 Thermochemistry of the Fe-FeS system

At the typical pressures of Ganymede’s core, the iron-sulfur system is eutectic as shown by
the binary phase diagrams in figure 5.2a which correspond to figure 2 in Fei et al. (1997). The
liquidus that separates the region of fully liquid state (very top of each diagram) from the regions
containing both solid and liquid (circular sectors labelled Fe+L and FeS+L) admits a minimum
at the eutectic composition xS,e which is paramount for the core crystallisation. To understand
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why, consider a sample of liquid that is initially at a very large temperature with a composition
lying on the iron-rich side of the eutectic (xS < xS,e, situation of the star A in figure 5.2b).
Keeping the pressure constant, as the sample is cooled down it gradually approaches the liquidus
where the first crystal of solid appears (star B). For the present binary diagram with xS < xS,e,
this crystal is made of pure iron Fe(s) (grey circle), while the composition of the liquid follows
the liquidus (yellow circle). As the sample is cooled further down, it now lies in a region where
the solid and liquid coexist (star C). Again the composition of any new solid crystal is pure
iron Fe(s); as for the liquid, its composition is given by the abscissa of the intersection between
the liquidus and the sample temperature along the horizontal (see the horizontal dotted line).
Therefore, as the sample cools down, the liquid gets richer in light element because of depletion
of iron which goes into the solid phase due to solidification. When the sample temperature
reaches the eutectic temperature, the composition of the last drop of liquid is the eutectic
composition. Further down, two solids are present: pure iron on one hand whose first crystal
appeared when the sample temperature first contacted the liquidus, and FeS(s) whose first
crystal appears once the sample temperature reaches the eutectic temperature.

(a) (b)

Figure 5.2: (a) Binary phase diagrams of the Fe-FeS system at pressures of 1 GPa, 10 GPa and
14 GPa. These diagrams are extracted from figure 2 in Fei et al. (1997). (b) Evolution of a system
that is cooled from situation A to situation C on the iron-rich side of the eutectic, with sketches of the
solid-melt separation.

Consider now a sample at a very large temperature with a composition lying on the sulfur-
rich side of the eutectic. As the system cools down, the first crystal of solid that appears
is FeS(s) when the sample temperature contacts the liquidus; then FeS(s) keeps crystallising
while the residual liquid gets richer in iron. Once the eutectic temperature is reached, the first
crystal of Fe(s) appears, and for a sub-eutectic temperature, the two solids Fe(s) and FeS(s)
are present.
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Finally, consider a sample that is initially at a very large temperature with a eutectic
composition. As the sample cools down, no solidication happens before the eutectic composition
is reached. At that point, both Fe(s) and FeS(s) crystallise while the residual liquid keeps a
eutectic composition. Indeed, the composition for which an initially hot and fully liquid mixture
of Fe-FeS solidifies the latest is the eutectic composition; additionally, solidification of a eutectic
mixture leaves the liquid composition (and density) unmodified.

5.1.2.2 Iron snow or iron sulphide crystallisation?

In the light of these elements, the comparison between the core composition and the eutectic
composition appears decisive. If the core is on the iron-rich side of the eutectic, and if there
exists a region of the core with super-eutectic temperature yet sufficiently cold for crystals to
form, then crystals are made of pure iron Fe(s) whereas the liquid contains sulfur. Consequently,
the crystals are denser than the fluid, so they settle towards the centre of the core: this is the
phenomenon of iron snow. Since the residual liquid is itself enriched in sulfur, it is lighter than
the ambient and it rises towards the CMB.

Alternatively, if the core crystallises on the sulfur-rich side of the eutectic, the crystals that
appear are FeS(s), whose concentration in sulfur is at most xS = 36.5wt%. Whether the density
of these crystals is lighter or denser than the ambient fluid depends on the composition of the
liquid and is uncertain (Rückriemen et al., 2018); several studies assume that the crystals are
lighter than the ambient (Breuer et al., 2015). In that case the crystals rise towards the CMB;
since the residual liquid is more concentrated in iron than the ambient, it is denser so it sinks
towards the centre of the core.

These considerations evidence the key role of the proportion of sulfur in Ganymede’s core.
Unfortunately, the latter is very poorly constrained. In models of the structure of Ganymede,
varying the amount of sulfur in the core implies a variation of the core radius rc, but due
to the wide range of compatible values for rc, the range of acceptable values for the sulfur
concentration remains large. Other considerations like the link between this concentration
and the heat flux coming out from the core hardly provide more constraint. By analysing the
reaction of water with material of chondritic chemistry at 1.5GPa and temperatures in the range
300−800◦C, Scott et al. (2002) tried to reproduce the conditions of accretion and differentation,
during which silicates were expected to react with aqueous material in Ganymede. Pyrrhotite, a
mineral composed of iron and sulfur, was the sole dense iron-rich phase they obtained, which led
them to conclude that the core of Ganymede is likely on the sulfur-rich side of the eutectic. Yet,
Breuer et al. (2015) remark that this suggestion based on the chemistry of type I carbonaceous
chondrite (CI) cannot be validated since the oxidation state of Ganymede remains unknown.
In addition, the pressures considered are those expected at the base of the icy layer (Scott
et al., 2002), much lower than those deep in Ganymede; hence depending on the history of
metal-silicate mixing, equilibration might have been very different as metal sank down towards
larger pressures and temperatures – see chapter 3.

For simplicity and brevity, the rest of this presentation focuses on the configuration of iron
snow. Most of the physics that is described and analysed in the next sections can be adapted
to other geophysical flows that involve crystallisation, sedimentation and melting, including
FeS(s) formation in planetary cores.
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5.1.2.3 Iron snow: top-down crystallisation above convection

Under the assumption that the core composition is on the iron-rich side of the eutectic, the next
key aspect is to determine where crystallisation happens. The familiar situation that happens
on Earth corresponds to iron crystals forming at the centre of the core: the solid crystals form
a solid inner core that grows while the light residual liquid rises towards the CMB, possibly
driving a compositional convection. However, thermochemistry tells us that in Ganymede’s
core, a sub-eutectic sulfur concentration xS leads to core crystallisation close to the CMB. This
conclusion is not trivial. It is the result of several laboratory studies that analysed the different
phases in the Fe-S system at high pressure and temperature (e.g. Fei et al., 1995, 1997, 2000),
sometimes overlapping with the relevant values expected in Ganymede’s core.

Schematically, Ganymede was very hot after differentiation with a temperature above the
core liquidus at all depths; since then, it has cooled down with a very slow rate 0.01 K/Myr
(Hauck II et al., 2006). Therefore, the location where crystallisation starts corresponds to
the depth where the liquidus and the core temperature first cross. Little is known about
the thermal state of Ganymede’s core; if it is vigorously convecting, the temperature profile
might be adiabatic, otherwise it should be subadiabatic, and no result enables to quantify to
what extent. An adiabatic profile is commonly adopted and conveniently assumed to enable
modelling of the core temperature (Rückriemen et al., 2015, 2018). The adiabat depends on
the thermal conductivity, the thermal expansivity and the specific heat capacity of the liquid
metal, the former two being very poorly constrained (Breuer et al., 2015; Rückriemen et al.,
2015, 2018).

The liquidus temperature depends both on pressure and composition. Often, the evolution
of the eutectic temperature is analysed as a reference, since the liquidus temperature of other
compositions can then be obtained by interpolation between the eutectic and the pure-iron end
member when experimental data are unavailable. For example, Hauck II et al. (2006) used a
linear interpolation (see their figure 3) which likely underestimates the liquidus temperature
since the latter is usually a concave function of sulfur composition – see figure 5.2a. Rivoldini
and collaborators (Rivoldini et al., 2011; Dumberry and Rivoldini, 2015) obtained a decreasing
eutectic temperature as a function of pressure down to 14 GPa (figure 2 in Rivoldini et al., 2011)
i.e. for the whole range 6 − 10 GPa expected in Ganymede’s core (Rückriemen et al. (2015),
see figure 5.1b). This trend is also the one visible in the three binary diagrams of figure 5.2a.
However, more measurements from additional studies show that at pressures 6 − 10 GPa the
eutectic temperature is non-monotonic with pressure, as shown in figure 5.3a extracted from
Chudinovskikh and Boehler (2007). Buono and Walker (2011) fitted the eutectic temperature
as a function of pressure (in the range 1− 10 GPa) and sulfur concentration, and the resulting
correlation was used by Rückriemen et al. (2015, 2018) for their models. All these studies lead
to the same conclusion: either because the liquidus temperature decreases in depth or because
it increases with a steeper gradient than the core temperature, core crystallisation is expected
to start at the CMB in Ganymede. This start of crystallisation is illustrated by some of the
results of Rückriemen et al. (2018) in figure 5.3b: the liquidus (dashed line) and adiabat (solid
line) initially cross at the CMB, as shown for four values of the sulfur concentration.

As crystals grow, the fluid released is more concentrated in sulfur. Since the snow zone
is more and more depleted in iron, its average sulfur concentration increases. As visible in
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(a) (b)

Figure 5.3: (a) Evolution of the eutectic composition and temperature of the system Fe-FeS as a
function of pressure. Figure extracted from Chudinovskikh and Boehler (2007). (b) Evolution of the
liquidus (dashed lines) and adiabat (solid line) in Ganymede’s core (the ordinate is the dimensionless
radial coordinate starting from the core centre r = 0 to the CMB when r = Rc) for four different sulfur
compositions xS ∈ {1, 5, 10, 15} wt%. Figure extracted from Rückriemen et al. (2018).

figure 5.2b, it means the liquidus temperature in the snow zone should be lower than in the
absence of crystallisation. Therefore, as the core temperature keeps decreasing due to secular
cooling, the liquidus follows the core temperature due to the local enrichment in sulfur. If the
system evolves on the edge of a thermodynamic equilibrium, crystallisation keeps going while
the liquidus and core temperature are colinear (see figure 5 in Rückriemen et al., 2015). If
supercooling is taken into account, the core temperature can be lower than the liquidus; this
out-of-equilibrium configuration is disregarded in this presentation.

Consider now the bottom of the snow zone at the crossing point of the liquidus and the
core temperature. Just below the snow zone, the core temperature is still above the liquidus,
that is why iron flakes remelt. During remelting, the fluid is enriched in iron so the liquidus
temperature is now larger than in the absence of remelting. Again, this reduces the gap between
the local core temperature and the liquidus. The liquidus ultimately increases up to the local
core temperature, guaranteeing the downward progression of the snow zone due to the gradual
shift of the liquidus.

Note however that the dense molten snow produced by the remelting snow flakes cannot
accumulate at the lower boundary of the snow zone because this fluid is more concentrated
in iron than the underlying fluid, hence it is denser. As a consequence, this dense molten
snow should sink in the deeper core. This sinking has been assumed to feed a compositional
convection at the core scale (Christensen, 2015; Rückriemen et al., 2015, 2018).

Since a dynamo action requires motions of the electrically conducting liquid metal, both
the fall of snow flakes (Hauck II et al., 2006) and the compositional convection (Christensen,
2015; Rückriemen et al., 2015, 2018) have been considered as plausible candidates nourishing
the dynamo. Neglecting the stratification of the snow zone, and disregarding crystallisation,
the previous Chapters can provide insights on the flows that can be forced by settling particles
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in this layer, whether they settle as transient particle clouds (see Chapters 1 and 2) or quasi-
steady plumes (see Chapter 4). We choose in this chapter to focus on the remelting of snow
flakes, so the next section presents key results of numerical models from the literature that do
not resolve the snow zone and only consider the compositional convection as the source of the
magnetic field.

5.1.3 Iron snow from reference models of Ganymede’s thermal evo-
lution

Our calculations on the evolution of snow flakes in Ganymede are based on the results of the
model of Rückriemen et al. (2015, 2018), so we recall the main elements of their model.

Rückriemen et al. (2015) model the thermal evolution of Ganymede’s core in a 1D model
along the radial coordinate, while varying three control parameters that are poorly constrained
by the literature: the thermal conductivity of the core, the heat flux going out of the CMB, and
the initial bulk sulfur concentration in the core. The snow zone is assumed both thermally and
compositionally stratified, therefore its evolution is solved with a heat conduction equation, from
the CMB down to the depth where the core temperature crosses the liquidus. The boundary
conditions are the imposed heat flux at the CMB, and the temperature at the bottom of the
snow zone.

To determine this latter temperature, the conservation of energy is solved in the deeper
convective core. Because convection is assumed sufficiently vigorous, the temperature profile is
imposed as adiabatic in this region, with a continuous temperature at the bottom of the snow
zone. Rückriemen et al. (2015) assume that the snow zone prescribes the thermal evolution of
the deeper core. Therefore, they assume that if the convective heat flux right below the snow
zone is larger than the conductive heat flux right above this interface, then this excess heat
remains in the convective zone, advected downward by convective motions.

The equations of evolution of temperature in both layers depend on the rate of solidification
in the snow zone, because solidification releases latent heat in the snow zone, whereas remelting
(which is also related to the rate of solidification) absorbs latent heat in the convective zone.
The system is assumed to evolve in a limit of small supercooling, so that the mass fraction of
iron at a given time and depth in the snow zone is given by the lever rule applied to the binary
phase diagram. The time evolution of this mass fraction gives the rate of crystallisation.

They estimate that crystallisation, settling and remelting all last much shorter than the
1 Myr-timestep they use in their numerical model, so they assume that the integral of the rate
of solidification in the snow zone is equal to the total rate of remelting during each timestep.
The conversion of the mass flux of molten snow into heat is calculated with parameters at the
bottom of the snow zone because remelting is supposed so fast that snow flakes remelt very
close to this interface. Estimates about the crystallisation and settling of snow flakes are based
on the assumption that crystals would have a typical size rp = 10 µm, that they would settle
as spheres with the Stokes velocity, and that supercooling could be of order 0.01 K below the
liquidus in the snow zone.

Finally, they consider that dynamo is possible if the magnetic Reynolds number Rem is
larger than 100. The number Rem is proportional to the root-mean-square velocity, which
Rückriemen et al. (2015) estimate from a scaling law of Aubert et al. (2009). The latter
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depends on the rotation rate of the planet, the size and density of the convective zone, and the
total dissipation of the dynamo, which is equal to the product of the total mass anomaly flux
multiplied by the average difference of the gravitational potential.

The next sections present a model that draws some first conclusions on the remelting of
snow flakes in an iron-rich core with a snow zone spanning through 10% of the core thickness
and which delivers a mass flux of order 1000 kg.s−1, these values corresponding to typical results
of Rückriemen et al. (2015).

Quantity Notation Value Reference

Radius of Ganymede RG 2631.2± 1.7 km [1]

Mass of Ganymede MG 1481.7× 1020 kg [2]

Axial moment of inertia C/MGR
2
G 0.3115± 0.0028 [1]

Angular velocity of Ganymede ΩG 1.02× 10−5 rad.s−1 [3]

Average density of Ganymede ρG 1942.0± 4.8 kg.m−3 [1]

Core thermal expansivity αc 9× 10−5 K−1 [4]

Core specific heat capacity cp,c 800 J.K−1.kg−1 [4]

Magnetic diffusivity ηm 1 m2.s−1 [5,6]

Kinematic viscosity of the bulk core νc 2.22× 10−6 m2.s−1 [7]

Specific entropy of fusion of pure iron ∆Sfus 136 J.kg−1.K−1 [4]

Latent heat of fusion of pure iron Lfus ∆Sfus × TLiq(z) J.kg−1 [4]

Heat conductivity of pure solid iron kFe 55 W.m−1.K−1 [5]

Thermal diffusivity of liquid iron κth 10−6 m2.s−1 [5]

Table 5.1: Values adopted to model the structure of Ganymede with concentric uniform spherical
shells, and the remelting of snow flakes. References correspond to: [1] Schubert et al. (2004); [2] Sohl
et al. (2002); [3] Olson et al. (2017); [4] Rückriemen et al. (2018); [5] Rückriemen et al. (2015); [6]
Pozzo et al. (2014); [7] Dobson et al. (2000).

5.2 A simple three-layers model of Ganymede

To model plumes of snow flakes in Ganymede’s core, we need to know the core size, as well as its
profiles of density, pressure, temperature and gravity along the radial direction r. We therefore
propose a simple model of Ganymede based on those of Sohl et al. (2002). Our present aim is
only to get relevant orders of magnitude of all thermodynamical properties to get first-order
estimates about the remelting of iron snow flakes.

The starting point is the equations for the mean density (5.1) and axial moment of inertia
(5.2) of Ganymede. Isolating for ρc − ρmant in equation (5.1) on one hand, and subtracting
equation (5.2) from equation (5.1) on the other hand, after substitution of ρc − ρmant the core
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radius reads
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from which the core density is immediately obtained from equation (5.1)
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The gravity field inside Ganymede is readily obtained from Gauss’s theorem and reads
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Lastly, the pressure field is computed under the assumption of hydrostatic equilibrium:

3P (r)

4πG
=





3P (rc)
4πG

+ ρ2
c(r

2
c − r2)/2, if r < rc

3P (rmant)
4πG

+ Πmantρmant(r
−1 − r−1

mant) + ρ2
mant(r

2
mant − r2)/2, if rc ≤ r < rmant

Πiceρice(r
−1 −R−1

G ) + ρ2
ice(R

2
G − r2)/2. if rmant ≤ r ≤ RG

(5.7)
Typical values adopted for the calculations are reported in table 5.1. Notations are illustrated
in figure 5.4, which shows an intermediate precipitation layer (abbreviated PL) between the
snow zone and the convective zone: this is the zone where snow flakes have started remelting
but not yet finished. The presence of such a zone is neglected in previous models based on
instantaneous melting.

Equations (5.3) to (5.7) enable to relate pressure, density and the radial position; the
core temperature is the final requirement to have a full description of the core. Rückriemen
et al. (2018) have shown that thermal convection may have happened in the early history of
Ganymede. If vigorous enough, this convection might have led to an adiabatic temperature
profile in Ganymede’s core. This phase of thermal convection was short-lived according to their
model, lasting about a few Myr as shown by their figure 7d. As discussed in their section 5.2,
the time lapse between the end of thermal convection and the onset of iron snow controls how
subadiabatic the core heat flux might be when core crystallisation starts. Due to the lack of
data and to keep all considerations simple, we align with the model of Rückriemen et al. (2018)
and adopt an adiabatic temperature profile in Ganymede’s core as a first estimate. Therefore
we model the core with the following adiabatic temperature profile

T (r) = TPL exp

[
− αc
cp,c

2

3
πGρc(r

2 − r2
PL)

]
(5.8)
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Figure 5.4: Structure of Ganymede with the constant densities of the three main layers (proportions
are not respected). On the left-hand side, radii indicate interfaces between different regions. On the
right-hand side the vertical coordinate z is used to describe profiles in the precipitation layer.

where TPL is the temperature at the bottom of the snow zone i.e. at the top of the pre-
cipitation layer, αc is the core thermal expansivity, cp,c is the core specific heat capacity,
G = 6.67 × 10−11 N.m2.kg−2, ρc is the uniform core density and rPL is the radial position
of the top of the precipitation layer (see figure 5.4). We also adopt the same model of liquidus
TLiq as Rückriemen et al. (2018) which originates from the study of Buono and Walker (2011)
(see their equation 29); its evolution with pressure and sulfur composition is shown in figure
5.5. In reference to the nominal case in Rückriemen et al. (2018), the value of sulfur mass
fraction 10.93 wt% is adopted to compute the liquidus.
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Figure 5.5: Evolution of the liquidus temperature TLiq with pressure and the sulfur mass fraction xS.
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Quantity Notation Value Reference

Sulfur mass fraction xS 10.93 wt% [1]

Ice density ρice 1215 kg.m−3 [1]

Mantle density ρmant 3300 kg.m−3 [1]

CMB position rmant 1770 km [1]

Core density ρc 5843 kg.m−3 Equation (5.4)

Core radius rc 871 km Equation (5.3)

Top of the precipitation layer rPL 0.9rc [2]

Total mass rate in the core - 103 kg.s−1 [2]

Mass flux ṁ′′ 1.29× 10−10 kg.m−2.s−1 deduced from [2]

Density of solid iron ρFe ρc + 1000 kg.m−3 [2]

Table 5.2: Nominal values for the structure of Ganymede and the scenario of core crystallisation.
References correspond to: [1] Rückriemen et al. (2018); [2] Rückriemen et al. (2015).

The core density depends severely on small variations of the ice density, the mantle density
or the radius rmant due to the high powers in equations (5.3)-(5.4). Rather than tuning the
values of ρice, ρmant and rmant, we decided to impose these three quantities with values taken
from the literature, namely ρice = 1215 kg.m−3, ρmant = 3300 kg.m−3, rmant = 1770 km and
xS = 10.93 wt% (see references in table 5.2). Figure 5.6a shows the final nominal structure,
which is very similar to those obtained by Sohl et al. (2002) visible in figure 5.1. The core radius
is rc = 871 km and the core density is ρc = 5843 kg.m−3 which fits in the range of core densities
obtained in the literature (e.g. Rückriemen et al. (2018); Sohl et al. (2002); Breuer et al. (2015);
Zhan and Schubert (2012)). Figure 5.6b shows the evolution of the core adiabat (dashed dark
line) and the core liquidus (dashed blue line) as a function of the radial coordinate. The curves
have been calculated under the assumption that crystallisation is just starting at the CMB i.e.
rPL = rc, which is why they cross at the very top of the iron core. It is important to note that
the temperature contrast T (z)−TLiq(z) increases with depth: this means that an isolated snow
flake should remelt faster and faster as it sinks deeper in the precipitation layer.

Having an estimate of the gravity field and the temperature contrast T (z)−TLiq(z) was the
motivation for the present simple model, since they govern the settling and remelting of snow
flakes. This ensures that the results obtained in the next sections are representative of the
conditions in Ganymede’s core. Yet, some subtle effects have not been included. For example,
the liquidus and adiabat depend on the sulfur mass fraction, which we take into account:
additional curves in figure 5.6b show that an increase of the sulfur mass fraction increases the
temperature contrast at all depths. However, we did not take into account the fact that xS
and ρc are coupled: cores that are more sulfur-rich have a lower density. A consequence is that
these cores are larger to verify the geodetic constraints. More sophisticated parameterisations
exist that account for such effects (Rückriemen et al., 2015, 2018); these elements are beyond
the scope of this chapter, and the reader is referred to those studies for more details.
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Figure 5.6: (a) Nominal structure of Ganymede when imposing ρice = 1215 kg.m−3, rmant = 1770 km
and xS = 10.93 wt%. With the present model, varying the sulfur mass fraction does not modify the
core density hence the gravity and pressure fields remain the same. Varying xS modifies the core
liquidus (blue lines) and the core adiabat (dark lines), as shown for r ≤ rc in (b) as a function of the
radial position r. Lines correspond to xS = 5 wt% ( ), xS = 10.93 wt% ( ), xS = 15 wt% ( ).

5.3 Modelling steady precipitation-driven plumes

To model plumes that are forced by the precipitation of snow flakes, we start from the results
obtained in experiments of settling and dissolving grains of sugar in Chapter 4. The sugary
plumes reached a quasi-steady regime characterised by a constant velocity for a constant plume
radius Rplume. Essential elements of the model are recalled here (see section 4.6.3 for more
details). The characteristic plume velocity Uplume is obtained by balancing the plume inertia
with its buoyancy, leading to the following cubic equation

U3
plume + U2

plumews =
ṁ′′Rplumeg

ρc
, (5.9)

where ṁ′′ is the mass of snow flakes injected in the plume from the bottom of the snow zone per
unit time (hence the dot) and per unit surface area (hence the double prime). The exact real
root of equation (5.9) is found for any value of ṁ′′, Rplume and ws using the library Numpy in
Python. Note that the plume velocity depends both on the mass flux and on the plume radius,
but only through the product ṁ′′Rplume. Therefore, as a single snow flake falls, its evolution
in depth and time only depends on the latter product. However, when it comes to quantifying
the concentration of grains through a volume fraction φ, or the mass concentration C of molten
snow in the plume, the respective roles of ṁ′′ and Rplume will prove different.

Iron is present not only in snow flakes and in molten snow, but also in the ambient liquid.
For the sake of brevity we call ‘iron’ only this iron that specifically originates from the iron
flakes formed in the snow zone, and that gradually becomes liquid due to phase change in the
precipitation layer. The ambient is simply referred to as liquid metal. The coordinate z is used
to denote depth from the source of the plume z = 0 to increasing depths towards the centre of
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the core (see figure 5.4). At the source, all the iron is in solid form with a volume fraction that
reads

φ(z = 0) =
ṁ′′

ρFe(Uplume + ws)
, (5.10)

with ρFe the density of a snow flake.
The nominal conditions of precipitation are chosen such that the total mass of iron flakes

melting per unit time is equal to 1000 kg/s while the top of the precipitation layer is at a radius
rPL = 0.9rc. These values are chosen from results of the model of Rückriemen et al. (2015) (see
their figure 6). For the nominal structure of Ganymede, the value rc = 871 km implies that the
total mass rate converts into a mass flux per unit surface area ṁ′′ = 1.29× 10−10 kg.m−2.s−1.
All the nominal values are listed in table 5.2. Unless specified, the default values of ṁ′′ and
rPL are the nominal values.

The plume velocity Uplume and the volume fraction of iron flakes at the plume source φ(z = 0)
are shown in figures 5.7a and 5.7b respectively. In figure 5.7a, the plume velocity increases when
snow flakes get smaller and when the plume radius Rplume increases, as expected from equation
(5.9). At vanishingly small sizes of snow flakes, the plume velocity is independent of their radius
rp because each snow flake moves as a tracer, hence the plume velocity is only constrained by
the size of the plume (and the incoming mass flux). However as soon as rp reaches about 30 µm,
the size of snow flakes already alters the flow. The influence of the size rp is also visible in
figure 5.7b where an increase of the radius rp quickly leads to a decrease of the flake volume
fraction φ(z = 0). More striking is the decorrelation of the volume fraction φ(z = 0) from the
plume velocity when the size of flakes is above the thin solid line of equation Uplume = ws. This
is due to the decoupling of these flakes that fall faster than the plume velocity, as can be seen
in equation (5.10) (see section 4.5.3).

Chapter 4 established a link between the presence of turbulence in the plume, and the
development of a Rayleigh-Taylor-like instability due to sufficient plume buoyancy (section
4.5.2). At the plume source, the plume density excess is quantified by the source Atwood
number

A =
φ(z = 0)ρFe

2ρc + φ(z = 0)ρFe
=

[
1 +

2ρc(Uplume + ws)

ṁ′′

]−1

, (5.11)

where ρFe and ρc are respectively the density of a snow flake and the density of the ambient,
and ws is the settling velocity of a snow flake. The Atwood number controls the maximum
growth rate σmax of the Rayleigh-Taylor-like instability

σmax =
√
Agkmax + (νck2

max)2 − νck2
max, where kmax =

(Ag
8ν2

c

)1/3

. (5.12)

The condition for the onset of the inverse growth rate σmax should be larger than the turnover
time 2π/kmaxws, i.e.

ws ≤
2πσmax

kmax

. (5.13)

This condition is evaluated at the plume source with g(z = 0) in equation (5.12) and the curve
of marginal stability is shown as a dashed line in figures 5.7a-5.7e. The dotted line shows when
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Figure 5.7: Source conditions of several plumes for the nominal parameters. (a) Plume velocity, (b)
volume fraction of snow flakes, (c) plume Reynolds number, (d) plume Rossby number, (e) magnetic
Reynolds number based on the radius of the precipitation layer rPL. In each diagram white lines are
logarithmically equispaced isocontours, the thin solid line corresponds to Uplume = ws, the dashed line
corresponds to the threshold of Rayleigh-Taylor-like instability, and the dotted line corresponds to the
transition from collectivity (below this line) to individual settling (above this line).
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the interparticle distance between snow flakes linter = rpφ(z = 0)−1/3 is equal to 10 times the
characteristic distance of hydrodynamical interaction between grains linter,c = max{νc/ws, rp}
(section 4.5.4). Below the dotted line, snow flakes behave collectively, while above this line
they behave individually. Because all the thresholds in solid, dashed or dotted lines are around
rp ' 100 µm, we can conclude that when snow flakes are larger than this typical radius, they
force a laminar plume (ws > 2πσmax/kmax: no onset of the Rayleigh-Taylor-like instability, see
section 4.5.2), likely with delay due to their individual behaviour (linter > linter,c, see section
4.5.4), and with a non-negligible decoupling from the flow (ws > Uplume, see section 4.5.3).

Larger plume velocities and plume radii both enhance the plume inertia. The latter is
compared to molecular diffusion with a Reynolds number Replume, and to the magnitude of the
Coriolis force with a Rossby number Roplume. We assume that the velocity components that
are orthogonal to Ganymede’s rotation axis scale like αUplume with α ≤ 1, so that the Coriolis
force is proportional to αΩGUplume. The definitions of Replume and Roplume are

Replume =
UplumeRplume

νc
; Roplume =

Uplume

2ΩGRplumeα
, (5.14)

where νc is the kinematic viscosity of iron and ΩG the angular velocity of Ganymede, see table
5.1. In the following we discard the coefficient α by assuming α = 1, which effectively means
that the Rossby number Roplume is computed as a lower bound. These two numbers are shown
in figures 5.7c and 5.7d respectively. Despite low plume velocities of order 10−5−10−4 m/s, the
large radius and low viscosity of the liquid metal enable the plume Reynolds number to reach
large values that may favour a transition of the flow to turbulence. However, the large plume
inertia is mostly due to its large radius since the plume velocities are low. As a result, plumes
are characterised by low Rossby numbers (see figure 5.7d). Although Roplume is calculated as
a lower bound, plumes are likely subject to planetary rotation. The influence of rotation is
nevertheless neglected for now; it will be discussed in the final discussion.

Finally, the assembly of plumes in the whole core below the precipitation layer will collab-
orate to generate dynamo-capable motions at the core scale. We can thus define a magnetic
Reynolds number based on the magnetic diffusivity ηm (see table 5.1) and depth rPL of the
convective zone plus precipitation layer

Rem,core =
UplumerPL

ηm
, (5.15)

whose values are shown in figure 5.7e. The large values of Rem,core compared to ∼ 10 are
consistent with the fact that the nominal scenario (ṁ′′ = 1.29 × 10−10kg.m−2.s−1, rPL =
0.9rc) corresponds to a simulation that successfully evidenced dynamo action from the iron-
snow-induced compositional convection in Ganymede’s deeper core (see figure 6 in Rückriemen
et al., 2015). Note however that the correspondence between the present model and that of
Rückriemen et al. (2015) is not straightforward. These authors model the melting of the snow
flakes as an instantaneous process at the position zPL = 0, which formally corresponds to
the limit of small particle radius rp → 0. Hence their model lies in that region where the
plume velocity is independent of the size of flakes. Additionally, their model supposes that
the influx of buoyancy is uniform at depth zPL, while the present model introduces the typical
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length scale Rplume of heterogeneity that controls the flow velocity. How their estimate of
the flow velocity compares with the present plume velocity Uplume is therefore uncertain. As
numerous elements could cause heterogeneities (see the final discussion) and therefore lead to
the formation of several plumes of finite size Rplume, the maps in figure 5.7 show that orders-
of-magnitude differences can be obtained for the same nominal scenario when considering the
influence of rp and Rplume.

5.4 Remelting in monodisperse plumes

5.4.1 Melting of a single iron flake

For simplicity, snow flakes are assumed spherical, with a uniform density ρFe and a radius rp.
Following Rückriemen et al. (2015) and Hauck II et al. (2006), we define the density of snow
flakes as ρFe = ρc + 1000 kg.m−3 (table 5.2). The melting rate of snow flakes is governed by
the Stefan condition (Batchelor et al., 2000; Huguet et al., 2020) which reads

LfusρFeṙp = kFe
TLiq(z)− T0

rp︸ ︷︷ ︸
inner gradient

−ρccp,c k(T (z)− TLiq(z))︸ ︷︷ ︸
outer gradient

, (5.16)

where Lfus = ∆Sfus×TLiq(z) is the latent heat of fusion of pure iron that varies with the liquidus
temperature, ∆Sfus = 136 J.kg−1.K−1 is the specific entropy of fusion of pure iron, and kFe is
the heat conductivity of pure solid iron (see reference values in table 5.1). The quantity ṙp is
the Lagrangian time derivative of the particle radius; its absolute value |ṙp| is the melting rate.

The first term on the right-hand side is the heat flux at the solid-liquid interface on the
solid side. For simplicity, the temperature profile inside snow flakes is always assumed linear,
varying from the melt temperature TLiq(z) at the interface to the temperature T0 at the centre
of the snow flake. Although this is just an approximation of the inner heat flux at the surface
of a snow flake, this assumption has proven reasonable in experiments of large melting and
dissolving spheres settling in a warm ambient (Huguet et al., 2020). Two end-members can be
considered for T0: either diffusion is very fast in snow flakes so that T0 ' TLiq(z) at all depths,
in which case this term vanishes; or the temperature T0 is a constant. The experiments of
Huguet et al. (2020) proved to be reasonably described by this second end member, where T0

was the initial temperature of their particles. The inner gradient proves of little consequence
since it is much lower than the outer gradient. For the sake of brevity, only results for the first
end member T0 ' TLiq(z) are presented.

The second term on the right-hand side of equation (5.16) is the outer heat flux at the surface
of the snow flake. It is parameterised as for the dissolution of sugar (section 4.4.3): this heat
flux is driven by the temperature contrast between the ambient T (z) and the liquidus TLiq(z),
and by both diffusion and advection. Due to the analogy between heat and mass transfers
(Clift et al., 2005; Bird et al., 2006), like Huguet et al. (2020) we use the parameterisation of
Zhang and Xu (2003) that is valid over a wide range of particle Reynolds number

k =
κth
2rp

Nu, with Nu = 1 + (1 +RepPr)
1/3

(
1 +

0.096Re
1/3
p

1 + 7Re−2
p

)
(5.17)
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In equation (5.17) the quantities κth and Pr respectively correspond to the thermal diffusivity of
liquid iron, and the Prandtl number of liquid iron Pr = νc/κth. The particle Reynolds number
is defined as Rep = 2rpws/νc where rp is the flake’s radius, ws its settling velocity, and νc the
kinematic viscosity of the core. The Nusselt number Nu quantifies the enhancement of heat
transfers due to convection, compared to the reference of purely conductive transfers. Figure
5.8 shows the diffusive and advective contributions to the heat transfer coefficient. Importantly,
note that this coefficient always decreases with rp so that smaller flakes melt faster if all other
parameters are considered constant.
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Figure 5.8: Contributions to the heat transfer coefficient k as parameterised by equation (5.17).

5.4.2 Modelling a plume of snow flakes

Snow flakes are considered to settle and remelt in a plume of constant width and velocity, based
on the model of steady precipitation-driven plume of section 5.3. The radius of snow flakes
decreases in depth because they remelt; under the assumption that the flow is steady, all snow
flakes experience the same history of melting from the source to the finite depth of melting, so
that all snow flakes at a given depth have the same radius rp(z).

Due to gravitational drift, snow flakes fall with a velocity Uplume +ws(z) that varies in depth
due to the reduction of rp(z). Using the model of Samuel (2012), the settling velocity reads

ws(z) =
20νc
rp(z)

[√
1 +

(ρFe − ρc)grp(z)3

45ρcν2
c

− 1

]
. (5.18)

This expression ensures a transition from the Newton regime to the Stokes regime as the particle
Reynolds number decreases. Note that the density contrast ρFe−ρc is fixed because we neglect
any feedback from the varying plume density.

Melting leads to a reduction of the volume of snow flakes, as quantified by their volume
fraction φ(z), and it is responsible for the presence of molten iron snow in the plume, whose
mass concentration C(z) is related to the plume density through a constitutive equation which



Chapitre 5. Ganymede’s iron snow: focus on the remelting of snow flakes 199

we assume is known. Therefore, ρ(z) is completely determined by the knowledge of C(z), so
that the evolution of snow flakes is described by three unknowns: the radius rp(z), the volume
fraction φ(z) and the mass concentration C(z).

The profile rp(z) is obtained by Lagrangian integration of the equation of motion of a single
grain

żp = Uplume + ws(z) (5.19)

with the equation (5.17) of heat transfer. The volume fraction and the mass concentration
must verify the conservation of the total mass of iron – both in solid and molten form. In
the absence of any source term and since the flow is steady, conservation of mass reduces to a
balance between the flux of iron coming in a slice of plume from the top, and the flux of iron
going out through the bottom of this slice. This balance reads

∂

∂z


{φρFe(Uplume + ws)︸ ︷︷ ︸

flux of solid

+ (1− φ)CUplume︸ ︷︷ ︸
flux of solute

}


 = 0 . (5.20)

The mass transferred from the solid phase to the molten phase is given by the spherical
shell of iron 4πr2

p|ṙp|dtρFe that melts around each snow flake during a time increment dt,
and that must be integrated over the surface of the total number of snow flakes in the slice
πR2

plumedzφ/(4πr
3
p/3). Under the assumption of steady flow, the total mass of molten iron in

a plume slice remains constant, so this source term balances the fluxes of molten iron coming
in from the top and out through the bottom. After simplification by R2

plume, our last equation
reads

∂

∂z
[(1− φ)CUplume] =

3φρFe|ṙp|
rp︸ ︷︷ ︸

total melting rate

, (5.21)

where |ṙp| is given at all depths by equation (5.16). In the following, the right-hand side of
equation (5.21) is called the total melting rate, because it originates from the integration of the
melting rate |ṙp| over the surface area of all snow flakes in a unit volume, so it quantifies the
rate of phase change for an entire section of the plume.

Combining equations (5.20) and (5.21) yields

∂

∂z
[φ(Uplume + ws)] = −3φ|ṙp|

rp
(5.22)

that is integrated numerically with a forward Euler method to determine φ(z) since rp(z) and
the associated field of settling velocity are directly determined by Lagrangian integration of the
equation of melting along the trajectory of a snow flake. Then, equation (5.20) directly yields
the mass concentration as

C(z) =
[φρFe(Uplume + ws)]

0
z

(1− φ(z))Uplume

, (5.23)

where we define the notation [Q]0z = Q(0) − Q(z). The previous equations can be integrated
with the following boundary conditions at the plume source
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rp(z = 0) = rp0 , (5.24)

ws(z = 0) = ws(rp0) , (5.25)

φ(z = 0) =
ṁ′′

ρFe(Uplume + ws(z = 0))
. (5.26)

Note that the initial size of snow flakes is now denoted rp0 to clearly distinguish it from their
size at depth z > 0. Unless specified, the parameters used to obtain the results presented in
the next sections all correspond to the nominal configuration of Ganymede (table 5.2).

5.4.3 Settling and melting at the individual scale

This section focuses on settling and remelting from the point of view of an individual snow
flake of initial size rp0 that is transported by a plume of radius Rplume = 10 m.

Figure 5.9a shows the trajectory of snow flakes of radius between 10 µm and 1 m, up until
they completely remelt: flakes that are initially larger fall faster. Anticipating this observation
is not immediate because the increase of ws(z = 0) with rp0 competes with the decrease of the
plume velocity Uplume with rp0 (figure 5.7a). With the present parameters, this competition
leads to an increase of the initial fall velocity Uplume + ws(z = 0) with rp0 (figure 5.9b). This
trend is preserved at all depths despite the shrinking of snow flakes due to melting (figure 5.9c)
because ws(z) is a growing function of rp(z). Finally, snow flakes complete melting at a time
tmax and a depth z∞PL. The inset of figure 5.9d shows that the depth of remelting increases
monotonically with rp0, which is due both to the monotonic increase of Uplume + ws(z) and to
the monotonic decrease of |ṙp|(z) with rp0 (figure 5.9e).

Figure 5.9d shows that the time of complete remelting tmax varies non-monotonically with
the initial flake size. Since curves do not cross in figure 5.9c, and since the heat transfer
coefficient k(z) decreases monotonically with rp(z), the intermediate decrease of tmax is of
thermal origin, driven by the increase of the temperature contrast T (z)/TLiq(z)− 1 with depth
(see figure 5.6b) to which the melting rate |ṙp|(z) is proportional (the presence of TLiq(z) at the
denominator is due to the term of latent heat of fusion in equation (5.16)). In figure 5.9e, all
curves of melting rate increase with depth both due to the shrinking of snow flakes and due to
the temperature increase; time integration of the melting rate all along these curves determines
the lifetime tmax of a snow flake.

Apart from this observation about tmax, all observations are monotonic in z and rp(z) (see
how curves are sorted in figure 5.9c). This monotony considerably simplifies interpretations; it
is due to the monotonic variations of ws(z) and |ṙp|(z) with rp(z), which is itself a monotonic
function of z. However, it should be borne in mind that the monotonous variations we observe
are conditioned by the initial increase of Uplume +ws(z = 0) with rp0; for another configuration
of Ganymede, this velocity could be a decreasing function of rp0, which could reverse some
trends.
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Figure 5.9: Evolution of a monodisperse plume for various initial flake sizes rp0 shown as a colorscale
given in (a) and valid for all subfigures. Diagrams show the evolution of various quantities from the
top of the precipitation layer to the maximum depth where grains have completely remelted, hence
the interruption of each curve at its maximum depth. (a) Trajectory of grains in depth with time in
logarithmic scale; the inset is the same graph with time in linear scale. (b) Fall velocity of a flake
advected by the plume. (c) Decrease of the flake radius due to melting. (d) Time tmax of completion of
melting as a function of the initial flake radius rp0; the inset shows the depth where melting completes
as a function of rp0. (e) Melting rate of a grain.

5.4.4 Mesoscopic description in plumes

We begin by analysing how profiles of volume fraction and concentration vary in depth, before
analysing the role of the initial flake size rp0. All the parameters of this section are those of the
previous section 5.4.3.

During their fall, snow flakes both slow down and shrink. The former effect contributes to
a compaction of snow flakes that favours an increase of the volume fraction φ with depth (see
the term Uplume + ws in equation (5.22)), whereas remelting reduces the volume occupied by
the solid phase in a given slice of plume, all the faster as rp(z) reduces, favouring a decrease of
the volume fraction with depth (see the numerator and denominator of the right-hand side of
equation (5.22)). This second contribution predominates since the volume fraction decreases
with depth for all initial radii rp0 in figure 5.10a.

The concentration of molten snow increases with depth (figure 5.10b), which is a result of
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Figure 5.10: Evolution of (a) the volume fraction of snow flakes, (b) the mass concentration of
molten snow (the abscissa is in linear scale in the main graph, in logarithmic scale in the inset), and
(c) the total melting rate, for various initial flake radii rp0.

a competition between two ingredients. The decrease of the solid volume fraction φ(z) dilutes
the molten snow (left-hand side of equation (5.21)) whereas the combined decrease of φ(z) and
rp(z) enhances the total melting rate 3φρp|ṙp|/rp (figure 5.10c) that is the source term for C(z)
(right-hand side of equation (5.21)). This latter enhancement predominates over dilution for
the present set of parameters.

The influence of the initial flake size is shown by the different colours of curves in figure
5.10. The volume fraction of smaller flakes is initially larger as previously seen in figure 5.7b.
However, their volume fraction decreases the fastest because the heat transfer coefficient k
is a decreasing function of rp(z), and due to the larger surface area of the interface between
snow flakes and the ambient (figure 5.10c). As a consequence, and because they settle slower,
smaller flakes melt at shallower depths so at any given depth the concentration C(z) is larger
for smaller flakes (see the inset of figure 5.10b). However, most of the remelting of snow flakes
happens at the end of their trajectory (see the main graph of figure 5.10b) because this is where
they become very small hence the coefficient of heat transfer k becomes very large (see figure
5.8). Therefore, it is not surprising to observe that all plumes transition from particle-laden
to solute-laden near the depth of complete remelting z∞PL, but the plumes with the smallest
flakes dilute less so their concentration is several orders of magnitude larger than in plumes
laden with large snow flakes. What is surprising, however, is that the maximum concentration
ever reached in the plume is a growing function of rp0. Since the total melting rate is lower
for larger flakes, this observation is due to larger flakes falling deeper where the temperature
contrast T (z)/TLiq(z)− 1 is larger, thus accelerating melting.

The plume velocity contributes to diluting the molten snow, while the mass rate controls
the total surface area dissolving in a plume slice, so both should play a role in determining the
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profiles of volume fraction and concentration. Their effects are therefore discussed in the next
two sections.

5.4.5 Influence of the plume radius

The influence of the plume radius Rplume is shown in figure 5.11. The initial size of flakes is now
fixed to the value rp0 = 10 µm that is usually considered in the literature (Rückriemen et al.,
2015, 2018). Figure 5.11a shows that snow flakes complete their remelting at a larger depth and
fall faster when Rplume increases due to the larger plume velocity (see also the inset of figure
5.11c). At a fixed depth z, when Rplume increases the snow flakes have spent less time remelting
hence their size rp(z) is larger so the melting rate |ṙp|(z) is lower (figure 5.11b). Considering
now the remelting of snow flakes up until completion, when the plume radius increases snow
flakes travel deeper in the core where the liquid is warmer, thus their total time of remelting
tmax decreases (figure 5.11c).

The volume fraction decreases with depth as in the previous section (figure 5.11d). The
larger the plume radius, the deeper flakes are advected, the deeper they remelt hence the deeper
the volume fraction vanishes. Importantly, the initial volume fraction is lower when the plume
radius is larger due to the dilution of snow flakes by the flow. In addition, we just saw that
|ṙp|(z) (respectively rp(z)) decreases (respectively increases) with Rplume. Consequently, the
evolution of all three quantities rp(z), φ(z) and |ṙp|(z) concurs to the decrease of the total
melting rate 3φρFe|ṙp|/rp when Rplume increases (figure 5.11e). As a consequence, the mass
concentration of molten snow decreases with increasing plume radius (figure 5.11f).

5.4.6 Influence of the mass flux

The influence of the mass flux is shown in figures 5.12a-5.12f. A quick comparison of the
Lagrangian evolution of snow flakes between figures 5.11a-5.11c and figures 5.12a-5.12c shows
that increasing Rplume or ṁ′′ has a similar influence on the evolution of snow flakes: they fall
faster, remelt deeper where the ambient is warmer, hence they complete remelting in a shorter
amount of time. This is expected since the trajectories of snow flakes are only influenced by
the plume velocity that depends on the product ṁ′′Rplume. However, the picture is different
concerning concentrations in the plume. For a fixed plume size, a larger volume of snow flakes
is injected at the plume source when ṁ′′ is increased, favouring a larger initial volume fraction
φ(z = 0); conversely, increasing ṁ′′ also increases the plume velocity Uplume that dilutes snow
flakes, favouring a lower initial volume fraction. The former effect proves to overcome the latter,
as visible in figure 5.12d. Then, the volume fraction decreases with depth, vanishing all the
deeper as ṁ′′ increases due to larger plume velocities.

The variation of the total melting rate (figure 5.12e) essentially decreases with depth because
it is proportional to φ(z), (although it varies non-monotonically, with a noticeable competing
influence of rp(z) and |ṙp|(z) at shallow depths). Consequently, larger mass fluxes lead to larger
total melting rates at a given depth (figure 5.12e) and therefore to larger mass concentrations
of molten snow C(z) (figure 5.12f).

The last two sections have shown that the plume radius is an inhibitor of remelting due to



204 Chapitre 5. Ganymede’s iron snow: focus on the remelting of snow flakes

(a)

10−9 10−7 10−5 10−3

Time ΩGt

10−5

10−4

10−3

10−2

10−1

D
ep

th
z

(m
)

101

102

103

104

105

R
p

lu
m

e
(m

)

0.000 0.005

10−4

10−2

(b)

10−10 10−8 10−6

Melting rate |ṙp| (m.s−1)
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Figure 5.11: Influence of the plume radius on snow flakes with initial radius rp0 = 10 µm. The
plume radius is shown as a colorscale provided in (a) and used in all other subplots. (a) Trajectory of
snow flakes with a time scale that is logarithmic in the main diagram, linear in the inset. (b) Melting
rate at the solid-liquid interface. (c) Time of completion of melting as a function of Rplume; the inset
shows the depth where melting completes as a function of Rplume. (d) Volume fraction of snow flakes.
(e) Total melting rate. (f) Mass concentration of molten snow.

deeper advection of snow flakes and dilution of the buoyant material, whereas the mass rate
increases the concentration of the plume in snow flakes even more than it accelerates dilution,
so that the total melting rate gets enhanced and the concentrations of molten snow are higher.
Note however that these two effects have weaker influences than the size of grains on the profiles
of concentration and volume fraction. These results confirm the key role of the flake size in
precipitation below the snow zone.

5.5 Discussion

The present model of plume was willingly adapted to the results obtained by Rückriemen et al.
(2015, 2018) to align with their assumptions and assess the consequences of the remelting of
snow flakes in a plume. We now propose a revision of some assumptions and draw some key
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0.00

0.02

0.04

0.06

0.08

0.10

D
ep

th
z

(m
)

(c)

10−10 10−8
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Figure 5.12: Influence of the mass flux (colorscale shown in (a)) on snow flakes with initial radius
rp = 10 µm falling in a 10 m-large plume. (a) Trajectory of snow flakes with a time scale that is
logarithmic in the main diagram, linear in the inset. (b) Melting rate at the solid-liquid interface. (c)
Time of completion of melting as a function of ṁ′′; the inset shows the depth where melting completes
as a function of ṁ′′. (d) Volume fraction of snow flakes. (e) Total melting rate. (f) Mass concentration
of molten snow.

conclusions.

5.5.1 Depth of injection of molten snow

The model of Rückriemen et al. (2015, 2018) is one-dimensional so the snow zone and the
remelting of snow flakes are homogeneous in space. Additionally, they estimate that remelting
takes much shorter than their 1 Myr-timestep and therefore model remelting as an instanta-
neous process. Due to the assumption of fast remelting, they also assume that all crystals
melt at a negligible distance from the bottom of the snow zone. This distance of remelting
can be quantified with the present model depending on the size of crystals and on the plume
velocity. Results are shown in figure 5.13a for various plume radii, in the nominal configuration
ṁ′′ = 1.29 × 10−10 kg.m−2.s−1. The largest snow flakes (rp = 1 m) reach a maximum depth
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of 29 km, which represents 3.3% of the thickness of the convective zone (rPL) and 33% of the
depth of the snow zone (rc − rPL). The graphs of the last three sections have shown that this
is a non-negligible distance over which snow flakes and molten snow are diluted: neglecting the
whole phenomenon of phase change could lead to orders-of-magnitude errors on the concentra-
tion of molten snow hence on the material properties of the fluid, and on the velocities that are
expected in the convective zone.
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Figure 5.13: (a) Maximum depth of remelting for various monodisperse plumes of varying plume
radius Rplume and initial flake size rp0. (b) Results of section 5.4.3 for the nominal configuration
and Rplume = 10 m, showing in dark (•) the depth of decoupling of snow flakes from the plume as a
function of their initial radius rp0, and in red (•) the depth where the volume fraction of snow flakes
vanishes.

The results of figure 5.13a only show where snow flakes complete their remelting; it does
not clearly show that the molten snow is produced at such large depths, and the depth z∞PL

could be of little importance. Let us show it is not.
Snow flakes remelt over large distances, but the profiles of concentration, volume fraction

and melting rates have shown that phase change usually takes place over a short distance at the
end of the trajectory of snow flakes, when their size decreases sufficiently for the melting rates to
be the largest. It means molten snow is not uniformly produced up until snow flakes disappear,
and it is effectively injected at the depth where most of the phase change occurs. Then, what is
the effective depth of injection of molten snow – hereafter referred to as the ‘injection depth’?
This can be quantified by computing where the amount of solute (1−φ)C suddenly increases in
depth. Alternatively, a simpler definition is the depth where the volume fraction of snow flakes
vanishes. Mathematically, this depth is the integral of the volume fraction in z, normalised by
the initial volume fraction, as shown with red circles in figure 5.13b for the results of section
5.4.3 (nominal configuration with Rplume = 10 m). Expectedly, flakes of larger initial size inject
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molten snow deeper in the core because they remelt deeper. The correlation between figures
5.13a and 5.13b confirms that, because molten snow is mostly generated at the end of the flakes’
trajectory, the depth z∞PL is an important quantifier of where the compositional convection is
the most actively nourished by molten snow.

When molten snow and snow flakes fall, they nourish compositional convection which can
be highly heterogeneous and constrained by rotation as we saw in section 5.3. How does it
affect the settling of snow flakes and therefore their remelting? To answer this question, dark
circles in figure 5.13b show the depth where the settling velocity of snow flakes becomes equal
to the plume velocity. Above this depth, the settling velocity is larger than the plume velocity
so snow flakes are decoupled from fluid motions. If the Rouse number is below unity much
above the injection depth, it means snow flakes were following fluid motions before remelting.
Conversely, if the unit Rouse number is reached close to the injection depth, it means snow
flakes were decoupled from fluid motions while they were settling in the plume, and they just
reached the threshold ws(z) = Uplume at the final stage of their remelting when they shrank
fast. Results show that below rp0 = 50 µm, snow flakes are sufficiently small to follow fluid
motions when they reach the depth of injection of molten snow, whereas those in the range
rp0 > 50 µm were decoupled from fluid motions. This observation is crucial: however complex
the fluid motions might be in the zone of compositional convection, since their characteristic
velocity is at most Uplume, snow flakes in the range rp0 > 50 µm might be able to cross through
these motions, and thus actually remelt at the injection depth, without being carried away by
the flow. How much they would deviate from the direction of gravity while crossing through
Taylor-column-like structures depends on how much ws is large compared to Uplume. What
would happen to the molten snow remains an open question. Another unknown is the influence
of the time lag required for large snow flakes to force the flow through drag, as observed in our
experiments of sugary plumes (see figure 4.17b in section 4.6.3 of Chapter 4 for example), and
how it compares with characteristic timescales of the convective motions.

5.5.2 Sizes of crystals

The result z∞PL/rPL ' 3.3% in the previous section holds for 1 m-large snow flakes i.e. the
largest size investigated in this chapter. The burning question is: What size of crystals is
expected in Ganymede’s core? Let us assume like previous authors (Rückriemen et al., 2015,
2018) that crystallisation happens in the bulk of the snow zone. As in Rückriemen et al. (2015,
2018), nucleation is assumed to happen with an arbitrary supercooling of 0.01 K, although
data are severely lacking on this matter. Knowing the size rp0 of snow flakes at the top of the
precipitation layer, the equations of settling and phase change can be integrated backward in
time in order to determine at what radial position such crystals must have formed in the snow
zone. Implicitly, this integration relies on the assumption that melting and solidification are
symmetric. This is just an approximation: curvature breaks this symmetry (Langer, 1980), and
the realistic formation of crystals of complex geometries involves processes like some microscopic
rearrangements of atoms (Kurz and Fisher, 1998; Houze Jr, 2014) that are irreversible. Yet,
under the simplistic assumption that snow flakes are spherical, we believe that such a calculation
can give some insight for the following discussion. Equations are integrated up until the radius
rp(z) vanishes to zero, and this defines the radial position of nucleation rnuc. Results are shown
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with a dark curve in figure 5.14a. All snow flakes with a size below rp = 2.6 cm must have
nucleated somewhere between the top (rc) and the bottom (rPL) of the snow zone. According
to this calculation, larger snow flakes cannot have grown by individual crystallisation from an
initial size rp = 0 and reached the precipitation layer with rp0 ≥ 2.6 cm: indeed, even if they
formed at the CMB, they would need to start settling with an initial size rp(r = rc) > 0.27 cm
that is shown by the red curve in figure 5.14a.
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Figure 5.14: (a) The solid dark line shows where a snow flake of given size rp0 at the bottom of the
snow zone (0 in ordinate) must have nucleated to have grown to such a size while settling. Above a
critical size, the snow flake cannot have nucleated in the snow zone; therefore the red line shows the
size that the nucleus should have at the top of the snow zone for this crystal to reach a size rp0 at
the bottom of the snow zone. (b) Maximum size that a single snow flake can have at a given radial
position in the snow zone when nucleating from rp = 0.

This observation implies that crystals of size rp0 > 2.6 cm cannot form by individual
crystallisation in the bulk of a 87 km-thick snow zone with 0.01 K supercooling and with
ρFe = ρc + 1000 kg.m−3. Yet, the presence of such crystals cannot be excluded. First, because
the present estimate is conservative since we have neglected the fact that supercooling usually
leads crystals to start solidifying from a non-zero initial size (e.g. Houze Jr, 2014; Huguet et al.,
2018b). Second, because some assumptions have been made that are very strong: (i) the snow
zone is motionless; (ii) crystallisation happens in the bulk with supercooling; (iii) crystallisation
is uniform and statistically steady; (iv) crystals do not interact; (v) crystals are monodisperse.
These assumptions are commented below.

(i) The snow zone is motionless. The stable chemical and thermal stratification of the
snow zone is the main ingredient that favours little motion in the snow zone appart from inertia-
gravity waves. Experiments with glass spheres during this PhD and in preceding experiments
of Valentin Dorel and Ludovic Huguet in IRPHE (summer 2020) have shown that particles
can ‘swim’ in inertial and internal waves when their settling velocity couples adequately with
the phase or the group velocity of these waves. This might induce heterogeneities and maybe
additional motions in the snow zone. The strength of the stratification depends on its ability
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to resist these motions and the convective overshoots at its lower end – Christensen (2015)
calculated that overshoots would typically be 2.5 km-high in Ganymede’s core –, on how suba-
diabatic the snow zone is, and on the rate of crystallisation since the release of light sulfur-rich
fluid strengthens the stratification.

(ii) Crystallisation happens in the bulk with supercooling. The existence of fluid
motions in the snow zone could favour a mode of bulk crystallisation due to local perturbations
that would trigger crystallisation in the supercooled metastable liquid. Due to the unreasonable
degrees of supercooling that are required for crystallisation without condensation nuclei (the
so-called homogeneous nucleation), the presence of such nuclei is paramount for crystallisation
to be volumetric (Houze Jr, 2014). It is unclear what these condensation nuclei could be in a
planetary core, what their concentration could be, and whether they would have an appropriate
wettability and crystal lattice to enable pure iron to crystallise on their surface (Houze Jr,
2014). The possibility of volumetric crystallisation remains to be proven. Another option is the
crystallisation of snow flakes at the CMB, which is discussed along with the assumption (v).

(iii) Crystallisation is uniform and statistically steady. The fluid motions mentioned
when discussing (i) favour the formation of heterogeneities that make a uniform crystallisa-
tion unlikely. Crystallisation has little chance to be steady because a supercooled system is
metastable: the assumption of a constant supercooling cannot hold if the kinetics of crys-
tallisation is faster than the secular cooling of Ganymede (0.01 K/Myr). If crystallisation is
assumed to be steady in the bulk, some resulting open questions are: Are condensation nuclei
continuously renewed? If so, how are they, where do they originate from?

(iv) Crystals do not interact. Although flake-flake interactions have been disregarded
in the literature, they are extremely likely. The various particle-laden flows investigated in this
manuscript provide numerous illustrations of particle-particle interactions at several different
particle Reynolds numbers even just through hydrodynamics, even in a quiescent fluid – for
example with drafting-kissing-tumbling interactions when two particles settle one in front of the
other. The presence of velocity gradients generates relative velocities between snow flakes hence
it further favours flake-flake interactions (Ghosh et al., 2005). These remarks are important
because mechanisms of stochastic collection have proven decisive for the growth of hydrometeors
in the Earth atmosphere (Falkovich et al., 2002; Houze Jr, 2014). We have seen that the volume
fraction of snow flakes is φ(z = 0) ∼ 10−10 at the top of the precipitation layer, which is
detrimental for crystal-crystal interactions, but these values are obtained if crystallisation is
uniform and steady. If instead the mass flux ṁ′′ = 1.29 × 10−10 kg.m−2.s−1 is a time average
of episodic and heterogeneous puffs of concentrated snow flakes, and since debris of large snow
flakes are likely condensation sites for others (Rees Jones and Wells, 2018), collisions and
collection of snow flakes might be possible. Then, these snow flakes would grow much larger
than estimated until now (e.g. Houze Jr, 2014).

(v) Crystals are monodisperse. Lastly, a crucial point is that the distribution of snow
flakes cannot be monodisperse if crystallisation is possible in the bulk. This conclusion can
be drawn from figure 5.14a. Consider an arbitrary radius rp0 < 2.6 cm at the bottom of the
snow zone, and assume the distribution is monodisperse: then, the solid dark line shows the
position where every single crystal must nucleate. A consequence of this unrealistic scenario
would be that crystallisation is absent in the upper part of the snow zone, although it is the
region evacuating heat out of the core. Instead, figure 5.14a should be read as such: the solid
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dark line shows the fraction of the snow zone (below the line) where crystals of size ≤ rp0
originate from. Importantly, crystals of size rp0 < 10−3 m only form very near the bottom of
the snow zone and therefore account for just a tiny fraction (in volume of the snow zone) of
the crystallisation inside the snow zone.

Under the assumption of bulk uniform crystallisation, nucleation happens anywhere in the
snow zone, so at a given depth many crystal sizes are found, with the largest crystals originating
from the CMB. The latter set an upper bound for the radius of crystals at a given depth.
This upper bound is shown in figure 5.14b: this size is nil at the CMB where the largest
crystals nucleate, and it grows up to rp ' 0.5 cm within 10% of the thickness of the snow
zone. This dark curve gives a hint of how polydisperse the snow zone is for a bulk uniform
steady crystallisation with no flake-flake interactions. Adding interactions should exacerbate
this conclusion. Similarly, the solid-liquid interface of the CMB is a wide nucleation site that
is not subject to the constraint of settling during crystallisation. There, crystals might grow
much larger than the present estimates before detaching from the CMB, beyond kilometers
Huguet et al. (2018a,b); Neufeld et al. (2019). The detachment of such huge blocks would be
another source of substantial fluid motions and heterogeneities in the snow zone. Coming back
to (iv), even in the absence of heterogeneities and fluid motions, polydispersity is a source of
differential settling between fast-falling large flakes and slowly-falling small flakes, favouring
mechanisms of collection that positively feedback on polydispersity and differential settling.

5.5.3 Implications of polydispersity for remelting

There are two main reasons for remelting snow flakes to be polydisperse at a given depth. The
first one is discussed above: crystallisation of snow flakes at different depths necessarily leads
to a polydisperse distribution at the top of the precipitation layer.

The second reason is due to the coupling between remelting flakes and the plume, that
has been neglected so far. To illustrate this point, let us simplify the problem: consider
a monodisperse distribution that starts remelting at depth z = 0 in a motionless ambient.
Consider a series of successive timesteps dt. During the first timestep, snow flakes settle and
remelt. Because the fluid is motionless, they have left solute behind them, so that the fluid
is now denser with C(z = 0+) > 0. During the second timestep, new snow flakes settle in the
dense fluid with a lower density ratio ρFe/ρ(z = 0+)− 1 and a lower melting rate |ṙp|(z = 0+)
because both quantities decrease with the plume concentration. These two effects compete in
determining how snow flakes evolve: snow flakes are larger than in the absence of feedback
from the concentration, thus increasing their settling velocity, but the reduced density ratio
conversely slows them down. If flakes fall faster, they catch up some smaller grains at larger
depth: the distribution becomes polydisperse. Similarly, if snow flakes fall slower, they might
be caught up by the flakes of the next timestep.

Since the distribution of snow flakes is necessarily polydisperse, a key question is: How
reliable are results of monodisperse models to represent iron snow ? The results of monodis-
perse plumes provide the fundamental elements to understand polydisperse distributions, but
summing these results over several sizes of snow flakes is not possible. Indeed, the field of con-
centration C(z) is determined by all sizes of flakes, and it feedbacks on all of them. Similarly,
the plume velocity Uplume depends on the radius of snow flakes, and it feedbacks on all of them.
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Consequently, a simple summation on rp is only valid when disregarding flake-flake interactions,
the plume velocity and the feedback of the fluid on snow flakes. Further insight would require
a dedicated method that can resolve the system’s polydispersity, which is beyond the scope of
the present work. Preliminary considerations and work on this aspect are briefly presented in
the Conclusion and future lines of work.

5.6 Final remarks and open questions

The present estimates on the distance of remelting of snow flakes are based on the assumptions
that they are monodisperse and that they fall in a plume.

To gain insight on the role of polydispersity, new experiments of sugary plumes could be
designed with a larger number of sieves to precisely control the polydispersity of sugar grains
at the source. Key questions are: Is the mean radius sufficient to predict the evolution of snow
flakes? Of the flow? If not, how many new moments of the distribution should be known? The
shape of the distribution could be willingly modified to vary from Gaussian to bimodal, as can
spontaneously emerge by processes of stochastic collection in clouds (e.g. Houze Jr, 2014).

Even if we assume that snow flakes instantly remelt with a uniform flux at the bottom of
the snow zone, the molten snow would nourish a Rayleigh-Taylor instability that is a source of
heterogeneity parallel to the lower interface of the snow zone, and that nourishes a compositional
convection that is at best statistically homogeneous along this direction. Along with other
sources of heterogeneity, like the existence of typically 2.5 km-high convective overshoots at the
bottom of the snow zone (Christensen, 2015), these elements favour the formation of plumes,
but what controls their dynamics? Better constraints on the plume formation could be obtained
by additional experiments of sugary plumes in a larger tank (see the final remarks in section
4.8). The influence of the source radius could be quantified by changing the size of the sieve,
ideally reaching very large surface areas. A key question here is: When the surface area of the
source is very large, does the flow evolve to a unique large length scale, or does it destabilise and
generate several plumes ? If several plumes develop, what sets their length scale? Experiments
of Iga and Kimura (2007) with a uniform flux of bubbles injected at the bottom of a square
24 cm× 24 cm water tank have shown that the bubble-driven convection leads to irregular 3D
patterns that do not reach a steady state. Although experiments with a very large sieve over
a very wide tank would be beneficial, such experiments would be very challenging due to their
daunting complexity and the difficulty to control perturbations of the water free surface when
sugar grains land on water.

The influence of planetary rotation should also be investigated, as suggested by the low
plume Rossby numbers in figure 5.7d. Previous authors Tao et al. (2013) have shown that
background rotation can delay the onset of a Rayleigh-Taylor instability. Then, how does
rotation constrain the size of plumes ? The answer might depend on the latitude. Indeed,
plumes near the pole would be parallel to the rotation axis, so that the Coriolis force would
have a low magnitude due to small horizontal velocities. Conversely, near the equator the
plumes would be orthogonal to the rotation axis so we expect the Coriolis force to have a
major influence on their dynamics – in fact preventing them from falling – as quantified by
the conservative estimate Roplume (5.14). If the length scale of deflection of these plumes is
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controlled by a balance between their inertia and the Coriolis force, equatorial plumes are
expected to deflect at a distance in the range 10−4 − 10−1Rplume. Polar plumes can easily
be studied in experiments, but plumes at lower latitudes would require an off-centered tank
to modify the angle between gravity and the rotation axis. Of course, insight can be gained
from numerical simulations. If snow flakes are considered to melt instantly, or if they are
monodisperse and not too decoupled from the flow (see the Conclusion and future lines of
work), an equilibrium-Eulerian approach as in chapter 2 can be used. Otherwise, finer models
might be required like Lagrangian point-particle approaches, or for a small number of particles,
simulations that fully resolve the flow, even at the particle scale (Balachandar and Eaton, 2010).



Conclusion and future lines of work

6.1 Main results

This PhD was motivated by particle-driven flows in two contexts: the iron snow driven by the
cooling of small planetary cores, and the metal-silicate mixing following a planetary impact.
After past studies that were led in the team (Wacheul and Le Bars, 2018; Qaddah et al.,
2019; Huguet et al., 2020), the new ingredients of interest for this PhD were the influence of
the collective behaviour of particles on their dynamics, on the flow they can force, and how
planetary rotation affects them. The main results are summarised here.

1. An instantaneous localised release of glass spheres settling in water initially grows linearly
with depth; after a short acceleration phase, the cloud decelerates; when the cloud velocity
becomes lower than the settling velocity of an individual particle, the glass spheres rain
out of the cloud. The initial growth of the cloud fits in the theory of one-phase turbulent
thermals, according to which clouds of identical initial size and buoyancy should evolve
identically. Yet, we showed that varying the radius of the glass spheres modifies the
growth rate of particle clouds – the so-called entrainment rate α. Particle-laden thermals
grow faster than their one-phase salty counterparts, with an optimum for a given size
of particles, quantified by the dimensionless settling velocity of particles – the so-called
Rouse number R – which equals R ∼ 0.3 at the maximum growth rate.

2. The observation of an enhanced growth rate of particle clouds compared to their salty
counterparts proved consistent with classical interpretations based on the well-known
phenomenology of particle-laden turbulent flows. Yet, a closer investigation with 3D two-
way coupled Eulerian simulations shows that turbulence is not key to this phenomenon.
Laminar simulations recover this maximum entrainment in buoyant vortex rings, which
is controlled by how particles arrange in the vortex, disrupt its structure and weaken its
circulation, thus enhancing the cloud growth.

3. The presence of a background solid-body rotation modifies the clouds’ evolution in ex-
periments. As they decelerate and grow, they lose inertia and are increasingly influenced
by rotation. The clouds’ growth ceases as soon as the Coriolis force becomes comparable
to their inertia i.e. when the Rossby number equals unity. The clouds subsequently prop-
agate downward with constant radius and velocity while detraining particles in a regime
of vortical column that is aligned with the rotation axis.

213
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4. After a planetary impact, the metal of the impactor falls down a magma ocean in the form
of a turbulent thermal made of silicates and iron drops. Compared to past studies that
neglect the influence of planetary rotation, the volume of silicates entrained by this cloud
is reduced in the vortical regime. This reduces the dilution of metal drops in silicates,
and therefore lowers the efficiency of chemical equilibration. If the magma ocean is deep
enough, iron drops may rain out of the column and complete their equilibration through
the so-called regime of ‘iron rain’. The depth of the magma ocean controls the final
efficiency of chemical equilibration.

5. The continuous sieving of sugar grains above water forces buoyant plumes that reach a
quasi-steady state. Very small grains dissolve close to the surface in a short amount of
time, and nourish a turbulent plume. For such grains, no specific influence of the sugar
grains is detected. As the grain size increases, particulate effects set in: grains decouple
from fluid motions and have vertically-biased trajectories. This leads to a dilution of
buoyancy that nourishes a slower and increasingly laminar flow. The largest grains rain
vertically and quickly hit the bottom of the tank, but it takes much longer for a large-scale
laminar flow to emerge. The steady flow is controlled by the interplay between buoyancy
and inertia, while the evolution of a grain is controlled by its dissolution and settling with
respect to the downward stream.

6. These latter results were applied to draw preliminary conclusions on the remelting of
snow flakes in Ganymede. So far, the literature proposed 10µm as an estimate of the
size of snow flakes. We find that snow flakes of that size or smaller have little influence
on the convective velocities in the deeper core. Conversely, larger flakes modify these
convective velocities, but as soon as their size exceeds ∼ 50− 100µm, they decouple from
the flow so that most of their evolution is controlled by their settling. Since the remelting
of a snow flake accelerates as the snow flake shrinks, most remelting happens at the end
of the flake’s trajectory. Snow flakes below ∼ 50 − 100µm follow the flow, so the fluid
motions control the depth where molten snow is produced. Conversely, grains larger than
∼ 50 − 100µm decouple from fluid motions and may therefore manage to cross through
flow structures to inject molten snow down to 29 km below the snow zone when snow
flakes are 1 m-large.

6.2 A few prospects and open questions

In the conclusion of each chapter can be found guidelines for future investigations that are
specifically in the continuity of this chapter. My choice here is to present some main ideas
that could guide new projects to improve our understanding about the global challenges of this
work.

6.2.1 Background rotation and tilted gravity

The results of Chapter 5 show that rotation can largely affect some plumes of melting snow
flakes in Ganymede, with a likely dependence on the latitude. This calls for experiments of
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sugary plumes on a spin table with various angles between gravity and the rotation axis by
varying the distance between the tank and the centre of the spin table – see an illustration in
figure 6.15. The mass rate and size of grains could be varied, along with the angular velocity
of the table and the distance between its centre and the position of the tank. Note that the
angular velocity would set the magnitude of the Coriolis force, whereas the position of the tank
would set the centrifugal force which controls the average direction of gravity where the tank
is located. The homogeneity of the direction of effective gravity on the scale of the experiment
would be controlled by the size of the tank. The magnitude of the centrifugal force could not
be tuned without modifying the effective direction of gravity. Numerical simulations could offer
more flexibility on this aspect, but their cost could be detrimental – see the following elements
of discussion.

Figure 6.15: Figure extracted from fig. 1 in Sheremet (2004). A tank is attached to the rightmost
tip of a spin table that rotates around the vertical axis. The combination of gravity along the vertical
and the centrifugal force along the horizontal results in an effective gravity that is inclined with an
angle α with respect to the vertical. See Sheremet (2004) for additional details.

6.2.2 Persistent challenges for numerical simulations

The numerical modelling of the reactive particle-laden flows of the present work is extremely
challenging because of their multiscale and multiphysics nature. Experiments are a solution only
up to their own limitations, some of which are the visualisation and flow-sensing techniques, the
size of the experimental setup, the vertical gravity, the non-spherical geometry, the limited range
of available particle sizes, densities, shapes, melting-or-dissolution rates, the limited number of
fluids that can transport them, etc. Numerical simulations and experiments should therefore
work hand in hand to gain understanding on these flows. This requires to solve persistent
challenges for numerical modelling.

A first key ingredient that makes the cost of numerical simulations prohibitive is the contrast
between the macroscale (∼ 106 m) and the particle scale (∼ 10−6 m). This ingredient is
problematic because the flows of interest are nourished by a buoyancy flux that explicitly
depends on particulate properties like their size, density, and actually more when particles are
not assumed spherical: porosity, anisotropy, surface roughness are some of many factors that
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affect the orientation and settling velocity of complex particles (Heymsfield and Westbrook,
2010; Voth and Soldati, 2017; Sheikh et al., 2020; Li et al., 2021).

The dependence of the buoyancy flux on the particulate properties is true for inert particles
due to the need to describe, at the very least, their sedimentation. It is even more true for
reactive particles due to the need to account for the transfer of buoyancy from the particulate
phase to the fluid through phase change, with a melting rate that is an explicit function of the
particle size. This diversity of length scales is accompanied by a wide range of timescales to
be solved, especially in the geophysical context. For example, the remelting of snow flakes in
Ganymede must be analysed at the scale of seconds, but the fluid motions they nourish are
analysed over billions of years in Rückriemen et al. (2015, 2018).

A second problematic ingredient is the dilution of particles. The agreement between the
simulations in Chapter 2 and the experiments of Chapter 1 has shown the adequacy of the
Eulerian two-way coupled formalism to model our particle-laden clouds with volume fractions of
order φ ∼ 10−3−10−4. However, according to the most recent models of iron snow (Rückriemen
et al., 2015, 2018), snow flakes are expected to settle in a very dilute regime (φ ∼ 10−10) for
which an Eulerian description of particles as a field continuous field of concentration is expected
to be inaccurate in the context of particle-driven flows due to the insufficient number of particles
per unit volume to model them as a continuum (Chou and Shao, 2016). But this last conclusion
is usually drawn on systems that exhibit no such huge separation of timescales as mentioned
above. The experiments of sugary plumes have shown that the largest sugar grains were much
too distant to collectively drag the interstitial fluid from the very start of the transient, but
after some time, the cumulative drag and deposition of solute by many successive grains did
produce a flow at a large scale. It means the continuum approach might be inaccurate at
small timescales, but it might capture the forcing by particles when used on timescales that
are larger than the sedimentation time, when averaging the forcing not only over the number
of particles present in a unit volume at a given moment, but also over time. This is especially
important as this regime is very likely for iron snow. In addition, Rückriemen et al. (2015)
legitimately pointed out that a billions-of-years-long model of thermal evolution of Ganymede
cannot resolve the timescales of crystallisation, settling and melting of the snow flakes.

All this suggests new approaches using multiscale numerical methods. The fluid motions
could be solved on a large timescale, which would appear as a steady input from the point of
view of the fast dynamics of snow flakes. The evolution of the flakes, on the opposite, would be
solved on a short timescale, which should provide an output that is finally used to update the
slowly-evolving fluid motions. However, these methods face their own challenges in terms of
numerical cost, of how different the fast and slow timescales should be, and how the coupling
should be performed to guarantee convergence (Kevrekidis and Samaey, 2009; Tong et al.,
2019). Thus, such approaches would need to be benchmarked. This could be performed with
experiments that would be sufficiently long and with a large separation of scales between the
particle scale and the macroscale of the flow.

A third issue for numerical simulations is polydispersity. Consider a monodisperse particle-
laden flow. In addition to the usual Navier-Stokes equations, the Eulerian formalism in Chapter
2 requires to solve a modified advection-diffusion equation for particles whose dynamics is simple
enough because of their low inertia and settling velocity. Now, if particles get larger, their
feedback on the fluid gets more complex; solving for their own momentum equation becomes
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mandatory, thus largely increasing the numerical cost. But things get even worse if particles
of different sizes are present: each new size settles with its own velocity, so the cost increases
dramatically with polydispersity. Chapter 4 showed that a given mass rate of our smallest
sugar grains produces a very different flow compared to that forced by the same mass rate of
our largest grains. Thus, it can be expected that the transient formation of a polydisperse
plume, and possibly its permanent regime (if it exists), depend on the size distribution of the
grains that are sieved.

To what extent? How important is polydispersity? What is the minimum physics for
numerical solutions to accurately model particle-driven flows ? Is it possible to circumvent
the issue of dilution by averaging the particulate forcing in time? How can the flow and the
evolution of particles be solved on different timescales while remaining coupled? The following
discussion proposes ideas that are aimed at both gaining insight into the physics of particle-
laden flows, and offering benchmarks to choose, validate and control numerical models.

6.2.3 Influence of the particle scale on the macroscale

Plumes of inert particles

Can our approach of modelling particles as a settling volume fraction be suitable for both the
transient and the permanent regimes, or possibly just for the latter?

This question is raised because of two observations. First, experiments of sugary plumes have
shown that the transient depends crucially on the particle size and not just on a volume fraction;
yet, all experiments eventually show a steady plume whose average velocity is controlled only by
the effective volume fraction of grains. Second, in Equilibrium-Eulerian simulations like those of
Chapter 2, the particles decouple from the ambient due to the drift term that is proportional to
the vertical gradient of concentration ∂C/∂z in equation (2.9); this gradient is non-zero during
the transient, but in the permanent regime it might reduce and possibly become negligible
before other terms. Of course, if the transient cannot be captured by the Eulerian approach,
one may wonder whether it can converge to a reliable permanent regime (assuming one exists).

In the context of a presumably quasi-steady iron snow, it would be beneficial to perform
new Equilibrium-Eulerian simulations and new experiments of sedimentation of inert particles
in a large tank. In experiments, particles should be sieved with a constant mass rate to impose
their volume fraction, since it drives the flow in the simulations. To improve the steadiness of
the mass flux and hopefully avoid an in-situ calibration for every experiment, the mechanism
of sieving should be modified to allow for vigorous vertical shaking of a large mass of particles
in a sieve with a lid (see figure 6.16).

Starting with monodisperse particles, the permanent regime of such inert plumes has already
been studied experimentally by Zürner et al. (2023). Their experiments could be used as
benchmarks to be compared with Equilibrium-Eulerian simulations. Analysing the transient
formation of such plumes could also shed light on the transition of the flow from the particle
scale to a larger scale. Then, new experiments could be performed with a bidisperse distribution
of particles to enable their comparison with new simulations that would track two fields of
concentration, one for each size of particles. Finally, additional experiments of polydisperse
plumes could show whether polydispersity strongly alters the flow, how it affects the relative
motions of particles, and if it modifies the ability of the plume to reach steadiness.
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Figure 6.16: Plume of inert particles, injected by vertical shaking of a closed sieve above a large-
scale water tank. Fluid velocities could be measured by seeding the tank with orange PIV particles (not
shown for the sake of visibility).

Moving forward on these issues would enable to use numerical simulations and experiments
jointly to answer the burning questions: Does the large-scale flow (the macrophysics) funda-
mentally depend on the physics at the particle scale (the microphysics)? Two quantities are
included in the Eulerian simulations: the volume fraction φ (it is proportional to the mass con-
centration C) and the settling velocity ws. Are these quantities sufficient to predict the flow?
Our experiments of sugary plumes do not enable us to answer this question: when varying
the size of grains, we also varied their settling velocity, which in turn modified the effective
volume fraction. To reach a conclusion, these new experiments should vary particle properties
like their size, density, and interparticle distance while keeping φ and ws constant. Note that
the interparticle distance cannot be finely imposed in plumes; the next experiments propose a
method to accurately impose its value when studying the interaction of a few particles.

Controlled interactions between particles or solute lamellae

What is the fundamental process of the transition of the flow from the particle scale to a larger
scale?

To get further insight beyond global statistics, fine analyses could be performed at the
particle scale. Figure 6.17a illustrates a first setup to conduct experiments with dyed sugar
grains that deposit lamellae in water before they hit the bottom of a tank and sit there (step
A). Since lamellae are negatively buoyant, they are expected to eventually fall in the liquid;
of course, the motion of an isolated lamella should be investigated first. In the case of several
lamellae, if they are not too buoyant, they may diffuse towards one another (step B) before
falling under their own buoyancy. This diffusion reduces the inter-lamellae spacing and therefore
favours their collective drag of the interstitial fluid, favouring the emergence of larger scales in
the field of buoyancy. Finally, if lamellae diffuse sufficiently fast compared to the emergence of
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fluid motions, step C shows that they will overlap. In that case, they form a macro-object whose
buoyancy is reduced because of diffusion (see the attenuation of orange colouring in the sketch)
but whose length scale is increased. These successive steps control an eventual transition of the
field of buoyancy from the particle scale to a macroscopic scale, that is expected to eventually
force a flow at a macroscopic scale as well. The size of each lamella, its concentration, the fluid
viscosity, the diffusivity of the solute and the spacing between lamellae are expected to control
the transition from the scale of isolated lamellae to a macroscale.

(a) (b)

Figure 6.17: (a) First setup: interaction of sugary lamellae in water after their deposition by settling
sugar grains. (b) Second setup: interaction of lamellae that have been dragged down during the fall of
inert particles from a top layer of fresh water containing rhodamine down to a bottom layer of salty
transparent water.

Preliminary experiments have been performed with a second setup shown in figure 6.17b. A
beaker contained a two-layered system with salt-water at the bottom and fresh water containing
a uniform concentration of rhodamine B on top. The density jump was meant to have a sharp
interface between transparent salt-water and dyed fresh water. A LED panel was placed behind
the beaker. After placing a sieve filled with glass spheres above the beaker, the sieve was gently
hit. A few particles settled in the dyed water and eventually crossed the density jump, dragging
rhodamine in their wake as lamellae that could interact, in a similar way as in the first setup
of figure 6.17a.

These experiments investigate the interaction of lamellae that move due to their buoyancy.
The experiments of the first setup should also be performed in a third configuration where
particles are inert to avoid any density variation in the fluid. The aim now is to analyse how
the wakes of particles can move the inter-wake fluid just through hydrodynamics. To do so,
PIV measurements could be used with a small-scale resolution to record localised and slow fluid
motions.

All these experiments should first be performed by releasing only two particles before in-
creasing their number. The interparticle distance should be carefully controlled by replacing
the sieve with another dedicated system. Additionally, the trajectories of particles ought to
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be controlled. Depending on their particle Reynolds number and on the density profile, they
may experience undesired complex behaviours (Camassa et al., 2022; Magnaudet and Mercier,
2020) when crossing a density interface like the one in figure 6.17b, especially if they are not
spherical (Mrokowska, 2018). Consequently, a complementary setup would consist in placing
a row of telescopic teeth underwater (see figure 6.18 for an illustration). The teeth would be
fixed at the bottom of the tank, and they would initially be extended (situation A in figure
6.18) before quickly retracting at the start of an experiment (situation B in figure 6.18). The
interaction between the teeth’s wakes could be quantified by PIV measurements (as in the
third setup); alternatively, retracting the teeth accross an interface between dyed water and
transparent water would enable to analyse the interaction of lamellae through Laser-Induced
Fluorescence (see the configuration B that is sketched in figure 6.18).

Figure 6.18: A row of telescopic teeth is fixed at the bottom of a water tank. The teeth are initially
extended high in the tank (A), before retracting them to analyse the interaction between their wakes (B).
In the present sketch, the teeth drag dyed water downward, enabling to analyse the wakes’ interactions
with LIF.

A last question is: In the regime of dilute large sugar grains falling far from one another,
how much are the eventual laminar plumes driven by the cumulative influence of successive
wakes and lamellae, rather than by their interactions at a fixed time?

To begin with, a single particle, reactive or inert, can be dropped in still water at a fixed
location. Then, this can be reproduced iteratively with a fixed period Titer between two iter-
ations. With inert particles, if Titer is much larger than the timescale of viscous dissipation
of the wakes, all iterations are expected to be identical. With sugar grains, the deposition of
a buoyant lamella will necessarily lead to the emergence of a downward motion so successive
iterations are not identical. This experiment can finally be extended by dropping 2 or more
particles, distributed on a chosen surface area with a controlled interparticle distance, so as
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to get closer to the experimental conditions of the sugary plumes of the new experiments of
plumes driven by inert particles (figure 6.16).

6.2.4 Accounting for polydispersity

How reliable are results of monodisperse experiments or simulations? What is the impact of
polydispersity on the generation of fluid motions by particles? How could it be quantified?

To get some first insight on the consequences of polydispersity, a formalism of ‘bin equations’
could be used (Houze Jr, 2014). We here describe equations modelling the time-evolution of
a distribution of sugar grains of various sizes. Assuming horizontal uniformity, the grains are
described in a phase space (rp, z, t) by a number density N (rp, z, t) in units of number of grains
per unit volume and per unit size of grains. Only the situation of a motionless and initially
clear ambient is considered. Sugar grains enter the domain from the top, as they do at the start
of our experiments. They evolve towards larger depths z because they settle with a velocity ws,
and they evolve towards smaller radii rp because they dissolve with a velocity |ṙp|. These fluxes
are responsible for time variations of the distribution N (rp, z, t), and the mass concentration
of solute C(z, t) is nourished by the dissolution at the surface of all grains of all possible sizes.
These considerations translate mathematically as

∂N
∂t

= −∂Nws
∂z

+
∂N|ṙp|
∂rp

, (6.27)

∂C
∂t

(z, t) =

∫

R+

4πr2
p|ṙp|(rp, z, t)N (rp, z, t)ρpdrp . (6.28)

Equation (6.27) is the conservation of the number of grains, and equation (6.28) is the mass
transfer from solids to solute. These equations are accompanied by boundary and initial con-
ditions

C(z, t = 0) = 0 , (6.29)

∂Nws
∂z

(rp, z = 0, t) = jN ,0(rp) , (6.30)

∂N|ṙp|
∂rp

(rp = rp,max, z, t) = 0 , (6.31)

where jN ,0(rp) is the flux of grains imposed at the plume source, and rp,max ≡ argmax(N0) is
the size of the largest grain in jN ,0(rp) which is always finite. Equation (6.29) imposes that the
ambient is initially clear of solute, equation (6.30) controls the distribution of grains coming in
through the plume, and equation (6.31) guarantees that no grain enter the phase space from
the boundary rp = rp,max. Figure 6.19a illustrates the time evolution of several possible sizes
with a sketch.

Preliminary results have evidenced some core qualitative effects of polydispersity. The
evolution of an initially Gaussian injection of average grain radius rp = 80 µm is shown in
figure 6.19b. The distribution evolves towards larger depths and smaller radii respectively
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Figure 6.19: (a) Evolution of a polydisperse system fed by a flux jN ,0(rp) at the top of the domain,
whose grains evolve towards larger depths and lower radii due to phase change. (b) Time evolution of
the isovalue N (rp, z, t) = 1011 in the phase space (rp, z), for a Gaussian injection of average radius
80 µm, standard deviation 3 µm and mass rate ṁ = 0.1 g/s at the source (the resolution is 1 µm in
rp and 10−2 cm in z, the timestep is dt = 9.8× 10−4 s).

due to settling and dissolution. We found (not shown here) that the moments of order ≤ 2
of the distribution N get closer and closer to a steady state. Yet, no permanent regime is
reached. This is expected: no flow is presently modeled since no advection terms are present
in equations (6.27)-(6.28), hence the concentration of sugar in the domain necessarily increases
monotonically. This delays dissolution by an effect of saturation, and modifies the settling
velocity of the grains because it modifies the ambient density and therefore the grains’ buoyancy.
These effects can compensate; their interplay can be a source of polydispersity at a given
depth, depending on the concentration of solute and how the settling velocity ws(rp) and the
dissolution rate |ṙp|(rp) vary with rp. Additional simulations (not shown here) with different
initial distributions of identical average radius and variance led to different results. For the
same average and variance, an enrichment of the distribution in larger grains enables sugar to
dissolve deeper due to the larger settling velocity and slower dissolution of these large grains.
Consequently, the concentration profile C(z, t) reaches deeper in the tank, which means the
precipitation layer is deeper. Although qualitative and preliminary, these observations suggest
that the mean size and variance at the source might be insufficient to accurately predict the
development of the sugar-laden layer at the top of the computational domain. Higher-order
moments of the distributions might be required for an improved modeling. We expect this
conclusion to be exacerbated if instead of being unimodal at the source, the distribution is for
example bimodal. In that case, depending on the amplitude of each of the two modes, the
average radius may not be representative of the evolution of N in time and depth.

If the distributions cannot be resolved due to a large numerical cost, a key question is: What
closure should be proposed when integrating the equations (6.27)-(6.28) to formulate a so-called
‘bulk model’ based on a finite number of moments (Houze Jr, 2014)?
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Future work could quantify, for example, how much the depth of the sugary layer depends
on the low-order moments of the initial distribution. Idealised experiments could control the
initial distribution of sugar grains at the source and estimate its evolution with depth thanks
to dedicated visualisations of grains in a narrow tank to prevent too many grains from masking
the field of view if they fall in the foreground. The comparison of experiments and simulations
would ideally help improving our understanding of the role of polydispersity in precipitation-
driven flows, and how finely it should be modelled.

6.2.5 Quantifying the role of phase change

Reactive versus inert plumes

Are the fluid motions forced by reactive plumes due to the hydrodynamical forcing by particles,
or due to the solute produced by phase change ? How much does the latter contribute to the
forcing?

Because of the complexity of these structures, an unambiguous answer requires new exper-
iments. The aim is to use a combination of (i) a fluid of predilection, (ii) some inert particles,
(iii) some other particles of identical size and density that dissolve or melt in the chosen fluid.
This would guarantee that the hydrodynamics of all particles are identical as long as phase
change does not occur. Any difference between an inert and a reactive plume would thus be
due to phase change. Note however that the role of phase change is twofold: by reducing the size
of grains, it lowers their inertia and decoupling from the fluid motions; by reinjecting buoyancy
in a dissolved form, it guarantees a transition of the flow to a fluid-like behaviour, and it mod-
ifies the ability of buoyancy to diffuse in the flow, with a transition from the hydrodynamical
diffusion of sugar grains to the mass diffusivity of sugary water.

Melting/dissolution at the particle scale

How does the capsule of buoyant solute that accompanies dissolving sugar grains along their fall
modify their settling velocity and dissolution rate? What is the maximum distance travelled by
this capsule? How much does it contribute to forcing the flow, both before and after a grain has
fully dissolved?

Here, insight could be gained by considering different reactive particles that melt or dissolve
in a liquid, some with a negatively buoyant solute, some with a positively buoyant solute, and
finally others with a neutrally buoyant solute. The concentration of the ambient could be varied
to modify the rate of phase change, and the size of grains could be varied to modify the particles’
Reynolds number. The procedure of cooking dyed sugar could be calibrated to quantitatively
measure the concentration of the sugar grains. When dye cannot be introduced in the particles,
Schlieren could be used to track changes of refractive index. Numerical simulations of a single
particle could be especially valuable on these aspects to control the buoyancy of the solute and
to track concentrations in the ambient.

A fundamental question for all parameterisations is: How different are the settling and
dissolution/melting of a spherical particle versus an actual crystal? How reliable are results
based on the assumption that particles are spherical?
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Several references show that crystallisation can develop instabilities that lead to an anistropic
growth of the crystal which results in distinct patterns, as typically observed for snow flakes
(e.g. Langer, 1980; Houze Jr, 2014; Kurz and Fisher, 1998). For our experiments with sugar, we
observed that particles are not spherical but have a smooth surface and an aspect ratio of order
unity. This likely explains the reasonable agreement between our measurements and theoretical
considerations that assumed the sugar grains spherical. For crystals however, a tree-like struc-
ture would make them porous. Just due to geometry, this could lead to a discrepancy between
their assumed size and mass. In addition, despite an apparent large size, they may retain fluid
– either their own melt/solute, or the ambient liquid – and therefore have a modified buoyancy
compared to predictions based on the assumption of particles being spherical, as illustrated by
the example of marine snow in the Introduction.

Phase change in planetary cores

What is the regime of crystallisation in planetary cores? Can crystals form in the bulk? How
supercooled should the core be for their nucleation?

The questions about crystallisation in planetary cores remain numerous. Past studies in
multiple contexts have shown that homogeneous nucleation is extremely unlikely due to the
considerable amounts of supercooling it demands (Houze Jr, 2014; Huguet et al., 2018b), and
that conversely, heterogeneous nucleation on nuclei is much more likely. According to Avrami
(1939), ‘the existence of [condensation nuclei] is so well established that to ignore it in a
theory of the kinetics of phase transformation is to open the way to gross discrepancy with the
experimental data’. Yet, due to the huge dependence of the rate of nucleation on temperature
(Huguet et al., 2018b), large rates of supercooling might still be required for crystallisation,
especially if the nuclei have a poor wettability and an inadequate crystalline structure (Houze Jr,
2014; Huguet et al., 2018b). The CMB offers a large surface area on which to nucleate, but is it
an adequate nucleation site for iron snow flakes? Experiments of crystallisation in a supercooled
liquid could help gaining insight on these issues. When the bulk is supercooled, if a solid surface
is present, do crystals always nucleate on this surface? If not, what are the requirements for bulk
crystallisation, in terms of surface condition of the substrate, amount of supercooling, purity
of the fluid...? Once crystallisation starts, is it catastrophic or slow, localised or widespread?
During crystallisation, how does the degree of supercooling evolve?

If results do exist in the literature on crystallisation at the particle scale, a lot remains to
be known, and little exists on these challenging and exciting questions to model crystallisation
of a large-scale system.

New horizons

The present work can be opened to broader horizons, starting with atmospheric flows. Through
condensate loading and evaporative cooling (Zuidema et al., 2017), precipitation-induced down-
drafts are known to carry cold air below the cloud level, forming regions of low temperature
named cold pools (Tompkins, 2001) that play a key role in the organisation of clouds as aggre-
gates (Muller et al., 2022), which ‘remains one of the largest sources of uncertainty in climate
models and thus for reliable projections of climate change’ (Beniston, 2013). Indeed, when the
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downdrafts reach the ground, they create diverging currents named gust fronts. These currents
redistribute moisture as they spread (Lochbihler et al., 2021), lift the surrounding air and favour
the formation of secondary updrafts (Zuidema et al., 2017; Tompkins, 2001), contributing to
convective self-aggregation and organisation (Lochbihler et al., 2021; Muller et al., 2022).

The study of reactive particle-laden flows is also crucial for many phenomena that develop
on Earth – from the formation and dynamics of aerosols (Spada et al., 2013; Veron, 2015)
that remains a source of uncertainty in climate modelling (Beniston, 2013; Veron, 2015), to the
formation of frazil ice by katabatic winds (Thompson et al., 2020), the transport of microplastics
in river sediments (He et al., 2021), the formation of patterns by erosion or dissolution in the
environment (Philippi et al., 2019; Cohen et al., 2020), the deposition of volcanic ash-fall layers
following an explosive volcanic eruption (Carey, 1997), etc.

Beyond our planet, the flows investigated in this work open a window on a wealth of phe-
nomena that remain to be investigated. The phenomenon of iron snow is one of several possible
scenarios for the crystallisation of Ganymede’s core, that remain to be explored with the as-
sistance of upcoming measurements by the space mission JUICE. Other planets are thought
to be concerned by such phenomena of precipitation by chemical separation, like the Moon
in the past and Mars in the future (Breuer et al., 2015), Mercury at present (Dumberry and
Rivoldini, 2015) as could be confirmed with new measurements by the ongoing BepiColombo
mission, or Jupiter through the phenomenon of helium rain (Brygoo et al., 2021). At larger
scales than planets, further understanding of particle-laden flows could help modelling the cou-
pling between gas, dust and turbulence in protoplanetary disks, and how it contributes to early
stages of planetary accretion Chambers (2010).





Bibliographie

Y. Abe and T. Matsui. The formation of an impact-generated H2O atmosphere and its impli-
cations for the early thermal history of the Earth. Journal of Geophysical Research: Solid
Earth, 90(S02):C545–C559, 1985.

A. Abramian, O. Devauchelle, G. Seizilles, and E. Lajeunesse. Boltzmann Distribution of
Sediment Transport. Physical Review Letters, 123(1):014501, July 2019.

A. Aliseda, A. Cartellier, F. Hainaux, and J. C. Lasheras. Effect of preferential concentration
on the settling velocity of heavy particles in homogeneous isotropic turbulence. Journal of
Fluid Mechanics, 468:77–105, Oct. 2002.

S. Alqatari, T. E. Videbæk, S. R. Nagel, A. E. Hosoi, and I. Bischofberger. Confinement-induced
stabilization of the Rayleigh-Taylor instability and transition to the unconfined limit. Science
Advances, 6(47):eabd6605, Nov. 2020.

J. D. Anderson, E. L. Lau, W. L. Sjogren, G. Schubert, and W. B. Moore. Gravitational
constraints on the internal structure of Ganymede. Nature, 384(6609):541–543, Dec. 1996.

B. Andreotti, Y. Forterre, and O. Pouliquen. Les milieux granulaires - Entre fluide et solide.
EDP Sciences, Dec. 2012. ISBN 978-2-7598-0925-7.

J. Aubert, S. Labrosse, and C. Poitou. Modelling the palaeo-evolution of the geodynamo.
Geophysical Journal International, 179(3):1414–1428, Dec. 2009.

M. Avrami. Kinetics of Phase Change. I General Theory. The Journal of Chemical Physics, 7
(12):1103–1112, Dec. 1939.

B. A. Ayotte and H. J. S. Fernando. The Motion of a Turbulent Thermal in the Presence of
Background Rotation. Journal of the Atmospheric Sciences, 51(13):1989–1994, July 1994.

J. Badro, J. Aubert, K. Hirose, R. Nomura, I. Blanchard, S. Borensztajn, and J. Siebert.
Magnesium Partitioning Between Earth’s Mantle and Core and its Potential to Drive an
Early Exsolution Geodynamo. Geophysical Research Letters, 45(24):13,240–13,248, 2018.

P. G. Baines. Mixing in flows down gentle slopes into stratified environments. Journal of Fluid
Mechanics, 443:237–270, Sept. 2001.

S. Balachandar and J. K. Eaton. Turbulent Dispersed Multiphase Flow. Annual Review of
Fluid Mechanics, 42(1):111–133, 2010.

227



228 Bibliographie

G. K. Batchelor, H. K. Moffatt, and M. G. Worster, editors. Perspectives in Fluid Dynamics: A
Collective Introduction to Current Research. Cambridge University Press, Cambridge, 2000.
ISBN 978-0-521-78061-2.

J. Bec, L. Biferale, G. Boffetta, A. Celani, M. Cencini, A. Lanotte, S. Musacchio, and F. Toschi.
Acceleration statistics of heavy particles in turbulence. Journal of Fluid Mechanics, 550:349–
358, Mar. 2006.

J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method for the incompressible
navier-stokes equations. Journal of Computational Physics, 85(2):257–283, Dec. 1989.

M. Beniston. Grand challenges in climate research. Frontiers in Environmental Science, 1,
2013.

D. Bercovici and Y. Ricard. Plate tectonics, damage and inheritance. Nature, 508(7497):
513–516, Apr. 2014.

M. Berhanu, J. Philippi, S. Courrech du Pont, and J. Derr. Solutal convection instability caused
by dissolution. Physics of Fluids, 33(7):076604, July 2021.

T. Berk and F. Coletti. Dynamics of small heavy particles in homogeneous turbulence: A
Lagrangian experimental study. Journal of Fluid Mechanics, 917:A47, June 2021.

R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. John Wiley & Sons,
Dec. 2006. ISBN 978-0-470-11539-8.

G. Boffetta and A. Mazzino. Incompressible Rayleigh–Taylor Turbulence. Annual Review of
Fluid Mechanics, 49(1):119–143, 2017.

G. Boffetta, A. Celani, F. D. Lillo, and S. Musacchio. The Eulerian description of dilute
collisionless suspension. Europhysics Letters, 78(1):14001, Mar. 2007.

D. Bond and H. Johari. Effects of initial geometry on the development of thermals. Experiments
in Fluids, 39(3):591–601, Sept. 2005.

D. Bond and H. Johari. Impact of buoyancy on vortex ring development in the near field.
Experiments in Fluids, 48(5):737–745, May 2010.

T. Bosse, L. Kleiser, and E. Meiburg. Small particles in homogeneous turbulence: Settling
velocity enhancement by two-way coupling. Physics of Fluids, 18(2):027102, Feb. 2006.

L. Brandt and F. Coletti. Particle-Laden Turbulence: Progress and Perspectives. Annual
Review of Fluid Mechanics, 54(1):159–189, 2022.

D. Breuer, T. Rückriemen, and T. Spohn. Iron snow, crystal floats, and inner-core growth:
Modes of core solidification and implications for dynamos in terrestrial planets and moons.
Progress in Earth and Planetary Science, 2(1):39, Nov. 2015.

W. Brian Tonks and H. Jay Melosh. Core formation by giant impacts. Icarus, 100(2):326–346,
Dec. 1992.



Bibliographie 229

S. Brygoo, P. Loubeyre, M. Millot, J. R. Rygg, P. M. Celliers, J. H. Eggert, R. Jeanloz, and
G. W. Collins. Evidence of hydrogen-helium immiscibility at Jupiter-interior conditions.
Nature, 593(7860):517–521, May 2021.

A. S. Buono and D. Walker. The Fe-rich liquidus in the Fe–FeS system from 1bar to 10GPa.
Geochimica et Cosmochimica Acta, 75(8):2072–2087, Apr. 2011.

P. Burns and E. Meiburg. Sediment-laden fresh water above salt water: Linear stability analysis.
Journal of Fluid Mechanics, 691:279–314, Jan. 2012.

J. W. M. Bush, H. A. Stone, and J. Bloxham. Axial drop motion in rotating fluids. Journal of
Fluid Mechanics, 282:247–278, Jan. 1995.

J. W. M. Bush, B. A. Thurber, and F. Blanchette. Particle clouds in homogeneous and stratified
environments. Journal of Fluid Mechanics, 489:29–54, July 2003.
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V. Lherm and R. Deguen. Small-scale metal/silicate equilibration during core formation: The
Influence of stretching enhanced diffusion on mixing. Journal of Geophysical Research: Solid
Earth, 123(12):10,496–10,516, 2018.

V. Lherm, R. Deguen, T. Alboussière, and M. Landeau. Rayleigh–Taylor instability in impact
cratering experiments. Journal of Fluid Mechanics, 937:A20, Apr. 2022.

J. Li, A. Abraham, M. Guala, and J. Hong. Evidence of preferential sweeping during snow
settling in atmospheric turbulence. Journal of Fluid Mechanics, 928, Dec. 2021.

P. F. Linden. The Fluid Mechanics of Natural Ventilation. Annual Review of Fluid Mechanics,
31(1):201–238, 1999.

P. W. Linder, L. R. Nassimbeni, A. Polson, and A. L. Rodgers. The diffusion coefficient of
sucrose in water. A physical chemistry experiment. Journal of Chemical Education, 53(5):
330, May 1976.



Bibliographie 237

Y. Liu, L. Ning, and R. E. Ecke. Dynamics of surface patterning in salt-crystal dissolution.
Physical Review E, 53(6):R5572–R5575, June 1996.

K. Lochbihler, G. Lenderink, and A. P. Siebesma. Cold pool dynamics shape the response of
extreme rainfall events to climate change. Journal of Advances in Modeling Earth Systems,
13(2):e2020MS002306, 2021.
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M. Nakajima, G. J. Golabek, K. Wünnemann, D. C. Rubie, C. Burger, H. J. Melosh, S. A.
Jacobson, L. Manske, and S. D. Hull. Scaling laws for the geometry of an impact-induced
magma ocean. Earth and Planetary Science Letters, 568:116983, Aug. 2021.



Bibliographie 239

K. Nakamura, H. N. Yoshikawa, Y. Tasaka, and Y. Murai. Linear stability analysis of bubble-
induced convection in a horizontal liquid layer. Physical Review E, 102(5):053102, Nov. 2020.

S. Nasab and P. Garaud. Preferential concentration by mechanically driven turbulence in the
two-fluid formalism. Physical Review Fluids, 6(10):104303, Oct. 2021.
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