
HAL Id: tel-04523273
https://hal.science/tel-04523273v1

Submitted on 27 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Causal Investigations in Interactive Semantics
Pierre Clairambault

To cite this version:
Pierre Clairambault. Causal Investigations in Interactive Semantics. Computer Science and Game
Theory [cs.GT]. Aix-Marseile Université, 2024. �tel-04523273�

https://hal.science/tel-04523273v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Causal Investigations in Interactive Semantics

q

3uu~ �)q

F}}� y��"

q

E||� y��"
tt

x��!

ff

� $$,

tt
F}}�

ff
E||�

tt tt ff

Mémoire présenté par

Pierre Clairambault

en vue d’obtenir

l’Habilitation à Diriger des Recherches
(Informatique)

le 21 février 2024 devant le jury composé de:

Dan Ghica Huawei, University of Birmingham Rapporteur
Delia Kesner IRIF, Université Paris Cité Examinatrice
Ugo Dal Lago University of Bologna Examinateur
Damiano Mazza CNRS, LIPN, Université Paris Nord Président
Guy McCusker University of Bath Rapporteur
Paul-André Melliès CNRS, IRIF, Université Paris Cité Rapporteur
Laurent Regnier Aix-Marseille Université Examinateur

Remerciements

Tout d’abord, merci à tous mes collaborateurs passés sur ce formidable thème des jeux
concurrents. Merci à Glynn pour m’avoir fait découvrir les structures d’événements et
avoir accompagné mes premiers pas dans cette belle direction de recherche. Merci à
Simon C.: nos séances de travail sur les jeux concurrents fins et l’innocence parallèle
resteront parmismes plus beaux souvenirs de collaboration scientifique. Merci à Aurore
pour m’avoir accompagné sur les traces de Herbrand. Merci à Hugo pour une touche
de probabilité, et pour m’avoir convaincu que les bicatégories, c’est après tout peut-être
pas complètement inutile. Merci à Marc d’avoir insisté pour faire du quantique, menant
à, à mon avis, une des plus belles applications des jeux concurrents. Merci à Lison et
Lionel grâce à qui j’ai enfin pû comprendre le développement de Taylor (c’est de la
sémantique des jeux). Merci à Simon F., grâce à qui on peut maintenant faire des jeux
concurrents fins sans jeux concurrents.
Merci à tous les collègues de l’équipe Plume du LIP de m’avoir patiemment écouté

parler de structures d’événements pendant toutes ces années, et en particulier Colin
qui ne pouvait pas s’enfuir puisque nous partagions le même bureau. Merci à tous
les collègues marseillais, du LIS et de l’I2M, d’avoir pris le relais, de m’avoir si bien
acceuilli lors de mon arrivée à Marseille, et de contribuer à un cadre de vie et de travail
exceptionnel – en particulier Raphaëlle, qui a brillamment pris la suite de Colin.
Merci à Dan, Guy et Paul-André d’avoir accepté de rapporter ce travail, malgré son

volume déraisonnable: vous êtes sûrement les trois chercheurs dont le travail a le plus
influencé ma vision scientifique, et je vous suis reconnaissant de votre relecture appro-
fondie dema contribution. Merci à Delia, Ugo et Damiano d’avoir bien voulu être mem-
bres de ce jury, et merci à Laurent de m’avoir guidé dans cette aventure de l’habilitation.
Merci à tous ceux que j’oublie et qui regrettent de ne pas trouver leur nom ici.
Et pour tout le reste, merci à Marie-Laure.

1

Résumé

La sémantique des jeux est un cadre mathématique puissant pour raisonner de façon
compositionnelle sur les programmes. Contrairement aux méthodes plus classiques de
sémantique dénotationnelle, elle ne voit pas les programmes simplement comme des
fonctions mathématiques prenant une valeur en entrée et rendant une valeur en sortie,
mais comme des processus dynamiques et interactifs. Elle capture de façon composi-
tionnelle le flot de contrôle même pour des programmes disposants de primitives cal-
culatoires complexes: ordre supérieur, état mutable, opérateurs de contrôle, etc.
Mais la sémantique des jeux n’est pas une théorie mathématique: c’est plus une con-

stellation de modèles disparates sans réel liant autre que le folklore de quelques experts
du domaine. L’un de ces modèles disparates est celui des jeux concurrents, qui hérite
des jeux concurrents d’Abramsky et Melliès et des jeux asynchrones de Melliès. Dans
sa formulation récente proposée par Rideau etWinskel, ce modèle est basé sur les struc-
tures d’événements, un modèle de concurrence vraie qui évite de supposer l’existence
d’une horloge globale et représente plutôt les programmes par leur structure causale.
Bien entendu, les jeux concurrents permettent de modéliser la programmation con-

currente. Mais dans ce manuscrit, je montre que plus qu’un modèle comme un autre,
leur expressivité permet de mettre en avant des structures implicites dans plusieurs
autres modèles de la littérature pour des langages concurrents, ou pas. Ce faisant, sur
les traces de la vision d’Abramsky et Melliès, ils permettent une synthèse jusqu’alors
absente et contribuent à faire de la sémantique des jeux une théorie mathématique.
Concrètement, ce manuscrit commence en Partie I par une introduction détaillée à

différentes sémantiques des jeux traditionnelles à pointeurs: d’abord pour le langage
fonctionnel paradigmatique PCF, son extension IA avec mémoire mutable, puis le mod-
èle de jeux non alternants pour son extension concurrente IA�. En Partie II, je donne
une présentation complète des jeux concurrents et de leur extension avec symétrie. En
partie III, je relie les jeux concurrents aux différents modèles de la Partie I – mais aussi
d’autres, tels que le modèle relationnel – via des foncteurs préservant l’interprétation.
Finalement, en Partie IV, je passe en revue d’autres développements en jeux concur-
rents, et conclus sur des problèmes ouverts et perspectives futures.

2

Abstract

Game Semantics is a powerful mathematical framework to reason compositionally on
programs. In contrast to other more classical methods in denotational semantics, game
semantics sees programs not merely as mathematical functions taking inputs (which
may be functions themselves) and producing outputs, but rather, sees them as dynamic
and interactive processes. It captures compositionally the control flow even for pro-
grams with complex computational primitives such as higher-order, mutable state, con-
trol operators, etc.
However, game semantics is not amathematical theory: rather, it is a loose collection

of separated technical settings, sometimes only loosely connected by the folklore of
a handful of experts. One of those technical setting is concurrent games, inheriting
from the concurrent games of Abramsky and Melliès and from Melliès’ asynchronous
games. In its recent technical set-up proposed by Rideau and Winskel, this model is
based on event structures, a true concurrencymodel that avoids assuming the existence
of a global clock, representing instead programs via their causal structure.
Of course, concurrent games can handle the semantics of concurrent programs. But

in this monograph, I show that more than yet another new model, their expressivity re-
veals structures implicitly present in several other models from the literature, for concur-
rent languages, or not. In doing so, walking in the footsteps of Abramsky and Melliès’
vision, they give us the means for a synthesis between various games or other denota-
tional models, bringing game semantics one step closer to a mathematical theory.
Concretely, this monograph starts in Part I with a detailed introduction to several tra-

ditional pointer game semantics: first for the paradigmatic purely functional language
PCF, its extension IA with mutable state, and the non-alternating variant for its con-
current extension IA�. In Part II, I give a complete presentation of concurrent games
and their extension with symmetry. In Part III, I link concurrent games to the different
gamesmodels introduced in Part I – but also other models, such as the relational model –
via interpretation-preserving functors. Finally, in Part IV, I survey other developments
in concurrent games, and I conclude with some open problems and perspectives.

3

Contents

1 Introduction 12
1.1 Operational Semantics . 12
1.2 Toward a Mathematical Semantics 13
1.3 The Next 700 Denotational Semantics 16
1.4 Full Abstraction and Intentional Intensionality 17
1.5 Plays Considered Harmful . 18
1.6 A Case for Causal Game Semantics 21
1.7 Contributions and Outline . 23

2 General Preliminaries 26
2.1 Mathematical Language . 26
2.2 IA� and its Fragments . 27

2.2.1 Syntax of IA� . 28
2.2.2 Operational Semantics of IA� 30
2.2.3 Expressiveness of IA� . 30

2.3 Generalities on Semantics . 34

I Pointer Game Semantics 37

3 First Steps in Game Semantics 41
3.1 Executions, Plays, and Strategies . 41

3.1.1 Dialogues, Plays, and Simple Games 41
3.1.2 Replication and Thread Indexing 44
3.1.3 Pointer Games . 45

3.2 Carving Out Innocent Strategies . 48
3.2.1 The Strategies of PCF . 48
3.2.2 Well-Bracketing . 50
3.2.3 Visibility and Innocence . 52
3.2.4 Finite Definability and Full Abstraction 54

3.3 Non-Innocence and Effects . 57
3.3.1 Non-Local State . 57
3.3.2 Higher-Order State . 58
3.3.3 The “Semantic Cube” . 59

4

CONTENTS 5

3.4 An Alternative to Pointers: Copy Indices 63
3.5 Conclusions and Historical Notes . 66

4 The Category of Alternating Strategies 67
4.1 The Ambient Cartesian Closed Category ⇵-Strat 67

4.1.1 More Arena Constructions 67
4.1.2 Composition of Strategies 68
4.1.3 A Category of Arenas and Strategies 72
4.1.4 Cartesian Closed Structure 74
4.1.5 Recursion . 76

4.2 Interpretation of IA . 76
4.2.1 Interpretation of PCF . 77
4.2.2 Interpretation of State . 77

4.3 Complements on Alternating Strategies 82
4.3.1 Complements on Single-Threadedness 82
4.3.2 Factorization and Definability 84
4.3.3 Summary of Results . 85

4.4 Conclusions and Historical Notes . 85
5 Non-Alternating Game Semantics 87

5.1 Concurrency and Non-Alternation 87
5.1.1 Non-Alternating Plays . 87
5.1.2 Non-Alternating Strategies 90
5.1.3 Single-Threadedness . 92
5.1.4 Full Abstraction for IA� . 93

5.2 The Ambiant Cartesian Closed Category ↺-Strat 96
5.2.1 Constructing ↺-Strat . 96
5.2.2 Cartesian Closed Structure 98
5.2.3 Recursion . 99

5.3 Interpretation of IA� . 100
5.3.1 Interpretation of PCF� . 100
5.3.2 Interpretation of State . 102
5.3.3 Summary of Results . 103

5.4 Conclusions and Historical Notes . 103

II Thin Concurrent Games 104

6 Basic Concurrent Games 107
6.1 Games and Strategies as Event Structures 107

6.1.1 Basic Intuitions on Concurrent Strategies 107
6.1.2 Formalizing Concurrent Strategies 109
6.1.3 Basic Properties of Event Structures and Maps 113

6.2 Composition of Prestrategies . 118
6.2.1 Interaction of prestrategies 119
6.2.2 Composition of prestrategies 127

CONTENTS 6

6.2.3 The associator . 129
6.3 Composition of Strategies . 131

6.3.1 Composition of Strategies 131
6.3.2 Strategies and +-covered configurations 132
6.3.3 Composition and +-coveredness 133

6.4 The Bicategory CG . 135
6.4.1 Copycat . 135
6.4.2 Copycat and Strategies . 137
6.4.3 Horizontal Composition and Bicategorical Structure 138
6.4.4 Characterization of Strategies 139

6.5 Conclusions and Historical Notes . 140
7 Thin Concurrent Games 142

7.1 Symmetry in Games and Strategies 142
7.1.1 Event Structures with Symmetry 143
7.1.2 Saturated Games with Symmetry 146
7.1.3 Thin Concurrent Games . 149
7.1.4 Constructions on Thin Concurrent Games 152

7.2 Mediating Between Strategies . 155
7.2.1 A Zoology of Morphisms and Equivalences 155
7.2.2 A Study of Positive Morphisms 157
7.2.3 All Equivalences Coincide 160
7.2.4 Constructing Positive Morphisms 162

7.3 Composition and Copycat . 164
7.3.1 Interactions with Symmetry 165
7.3.2 Composition with Symmetry 168
7.3.3 Copycat . 171

7.4 The Bicategory TCG . 174
7.4.1 Synchronization up to Symmetry 176
7.4.2 Horizontal Composition . 179
7.4.3 Bicatorical Laws . 181
7.4.4 A ∼-category . 185

7.5 History and Related Work . 186
8 Constructing Games and Strategies 188

8.1 A Compact closed ∼-Category . 189
8.1.1 A bifunctor . 189
8.1.2 Lifting Maps to Strategies 191
8.1.3 Compact Closed Structure 192

8.2 Negative Winning Games . 194
8.2.1 Relative Seely categories . 195
8.2.2 Playing Board Games . 196
8.2.3 Negative Winning Strategies 201
8.2.4 Symmetric Monoidal Structure 202
8.2.5 Cartesian Product of Strict −-Boards 204
8.2.6 Relative Closure . 205

CONTENTS 7

8.3 Non-Linear Structure . 208
8.3.1 The Resource Modality . 208
8.3.2 Recursion . 215

8.4 History and Related Work . 217

III Disentangling Parallelism and State 219

9 The Causal Semantics of IA� and its Unfolding 222
9.1 Interpretation of IA� . 222

9.1.1 Interpretation of PCF� . 222
9.1.2 Semantics of state . 226
9.1.3 Discussion on the Interpretation 229

9.2 Unfolding Causal to Non-Alternating Strategies 233
9.2.1 A First Unfolding . 233
9.2.2 Mixed Boards and Pointifixion 235
9.2.3 Unfoldings of a Causal Strategy 240

9.3 _-Strat and Full Abstraction . 242
9.3.1 Unfolding the Categorical Structure 242
9.3.2 Unfolding the Interpretation of IA� 247

9.4 History and Related Work . 248
10 Parallel Innocence 249

10.1 Defining Parallel Innocence . 250
10.1.1 Causal Determinism . 250
10.1.2 Pre-innocence . 253
10.1.3 Visibility . 254

10.2 Composition of Visibility . 256
10.2.1 Justifiers in causal strategies 256
10.2.2 Justifiers in interactions . 257
10.2.3 Views of gccs . 257
10.2.4 The Relative Seely ∼-Category NTCG-Vis 259

10.3 Composition of Innocence . 259
10.3.1 The “forking lemma” . 260
10.3.2 Stability of pre-innocence 261
10.3.3 The Relative Seely Category NTCG-Inn 262
10.3.4 Complement: the “Bang Lemma” 263

10.4 Relational Collapse . 265
10.4.1 Stopping Positions and Witnesses 265
10.4.2 Composition and Deadlocks 267
10.4.3 The Deadlock-Free Lemma 269
10.4.4 A Relative Seely ∼-Functor 273

10.5 Globularity . 278
10.5.1 Motivation and Definition 278
10.5.2 Composition of Globularity 280

10.6 History and Related Work . 281

CONTENTS 8

11 Sequentiality 282
11.1 Sequentiality . 283

11.1.1 Definition of Sequentiality 283
11.1.2 Categorical Structure . 286
11.1.3 A Relative Seely ∼-Category 290
11.1.4 _-Seq and Interpretation of IA 291

11.2 The Alternating Unfolding . 292
11.2.1 Alternating Unfolding on a Mixed Board 292
11.2.2 Alternating Unfoldings of Sequential Strategies 295
11.2.3 Unfolding the Basic Categorical Structure 297
11.2.4 Unfolding the Interpretation of IA 299

11.3 Sequential Innocence . 301
11.3.1 Causal Analysis of Sequential Innocence 301
11.3.2 The Unfolding Preserves Innocence 304
11.3.3 Sequential Globularity . 306
11.3.4 Intensional Full Abstraction 307

11.4 History and Related Work . 308
12 Finite Definability for PCF� 309

12.1 Meager Form . 310
12.1.1 Updating Mixed Boards . 311
12.1.2 Meager Innocent Strategies 313
12.1.3 The Meager Form of Sequential Globularity 321
12.1.4 Finite Tests Suffice . 322

12.2 Factorization . 323
12.2.1 The Flow Substrategy . 324
12.2.2 The Argument Substrategies 326
12.2.3 Recomposition . 330

12.3 Finite Definability and Full Abstraction 333
12.3.1 First-Order Definability . 333
12.3.2 Positional First-Order Definability 334
12.3.3 Finite Globular Definability 337
12.3.4 Intensional Full Abstraction 338

IV Other Developments and Openings 339

13 Further Work 341
13.1 Effects and Concurrency . 341

13.1.1 Non-canonical causal presentation 343
13.1.2 Non-angelic concurrent games 343
13.1.3 Resource-tracking concurrent games 345

13.2 Quantitative Concurrent Games . 346
13.2.1 Probabilistic PCF . 347
13.2.2 Quantum strategies . 349

13.3 Quantitative Relational Collapses . 352

CONTENTS 9

13.3.1 Counting witnesses and quantitative collapse 352
13.3.2 Generalized species of structure 355

13.4 Game Semantics as Taylor Expansion 357
13.4.1 Pointer concurrent games and positional injectivity 357
13.4.2 Isogmentations and the resource calculus 359
13.4.3 Taylor expansion, extensional resource terms 360

13.5 Operational Concurrent Games . 360
13.6 Miscellaneous . 363

13.6.1 Full Abstraction for Parallel-Or 363
13.6.2 A Semantic Proof of Herbrand’s Theorem 366
13.6.3 Revisiting Games Models of MALL 368

14 Conclusions 370
14.1 The Work Done so Far . 370
14.2 Open Problems . 371

14.2.1 Non-deterministic parallel innocence 371
14.2.2 Proper determinism . 373
14.2.3 All well-bracketings . 374
14.2.4 Observing causality . 374

14.3 Perspectives and Future Directions 375

V Appendices 393

A Complements on Relative Seely Categories 394
A.1 Definition and Kleisli Category . 395
A.2 Relative Seely Functors . 396

Preface

This document is my HDR – “Habilitation à Diriger les Recherches”. As such, its
principal aim is to motivate and present the heart of my research work so far.
Of course, I was not the only one in this adventure, this is the product of collaborations

with a number of people. Firstly with Glynn Winskel: I started working with Glynn
during my postdoc in Cambridge from September 2011 to September 2013, and our
collaboration kept going strong long after that. My work owes a lot to him; many results
presented here may not exist at all if not for his encouragements and insights.
Secondly, almost of my further work in this direction is collaborative, and was car-

ried out with PhD students. First with Simon Castellan (2014 – 2017), with whom we
constructed thin concurrent games and parallel innocence. This forms the core of the
material that I have chosen to present in this monograph, though I believe the presenta-
tion has since then significantly gained in maturity. Then, with Aurore Alcolei (2016 –
2019) and Marc de Visme (2017 – 2020). Though the work done with them will not be
covered therein, this document does greatly benefit from the intuitions gained with them
– their work will be mentioned in the outline of further work in Chapter 13. Finally, the
story currently continues with Lison Blondeau-Patissier (2021 – 2024).
No research is done in a vacuum and this work, as usual, stands on the shoulders of

giants. First and foremost, the giants include the pioneers of game semantics: Martin
Hyland and Luke Ong; Samson Abramsky, Radha Jagadeesan and Pasquale Malacaria;
Hanno Nickau; and Thierry Coquand. Beyond those, the giants also include those who
realized the strength of game semantics as a means to represent computational effects,
for instance Guy McCusker, Jim Laird, Dan Ghica and Andrzej Murawski. And finally,
the giants include those who kept deciphering the foundations of game semantics and
maintained the sometimes thinning connection with linear logic: for instance, Pierre-
Louis Curien, Laurent Regnier and Paul-André Melliès. The present work builds on
their inheritance (and surely that of many others), and to an extent is a synthesis of their
ideas. It is not at all obvious that such a synthesis was possible: it was first foreseen
by Paul-André Melliès that this was possible, building on techniques from concurrency
theory, and to a large extent this was the intent behind his line of work on asynchronous
games. This line of work, which for simplicity (and although it can be slightly mislead-
ing) I will often refer to as concurrent games, inherits Paul-André’s vision. Many of
our technical steps parallels his, with the hindsight provided by 15 more years of work.

10

CONTENTS 11

Beyond presenting this work, this document has two further objectives:
Firstly, I intend it as an entry point to my work on concurrent games. The technical

underpinning of concurrent games is fairly elaborate: event structures are much more
mathematically demanding than sequential structures (traces, trees, etc). The founda-
tions are spread over a number of papers, written over the years. These papers rely on
definitions and notations that are not quite consistent with each other, as our concep-
tual understanding progressed over time. In this manuscript, I present a complete and
detailed construction of Thin Concurrent Games, a bicategory of concurrent strategies
which plays a pivotal role in my further work – this is the purpose of Part II. I also
present in Part III a detailed presentation of two developments at the core of the theory
of Thin Concurrent Games, which I will introduce and motivate in Section 1.7.
Secondly, I needed an introduction to game semantics for programming languages,

beyond merely concurrent games. In part, this is because I needed a precise set of def-
initions to refer to for the work presented in Part III. But beyond that, over the years
I had come to dread the question “Where can I find a good introduction to game se-
mantics”? While good introductory texts do exist, I felt that none gave a satisfactory
answer. Indeed, many were written in the late 90s or earlier 00s and are not very modern
or up-to-date. Others give a good survey, focusing on intuitions, but do not offer pre-
cise technical definitions; or they do offer a technical introduction, but to one particular
technical setting, ignoring the wider picture. Hence, Part I is the result of my attempt
at an accessible introduction to game semantics for programming languages.

Chapter 1

Introduction

Attempts to formally prove properties of the execution of programs (e.g functional cor-
rectness, safety, termination, etc) must rest on formal semantics turning the execution
into a well-specified mathematical object. This is the main purpose of the field of se-
mantics of programming languages, for which a reference textbook is [Winskel, 1993].

1.1 Operational Semantics
Typically, this is done via the methodology of operational semantics: by means of for-
mal rules operating on syntax, showing how the source code is transformed throughout
computation. For instance, assuming we have a value n for every n ∈ ℕ, the rules

e1 ⇝ e′1
e1 + e2 ⇝ e′1 + e2

e2 ⇝ e′2
n + e2 ⇝ n + e′2 n + m⇝ n + m

inductively define an evaluation relation ⇝ between additive arithmetic expressions,
specifying the operational behaviour of the sum: here, it has a left-to-right evaluation
strategy: given a sum expression e1 + e2, we first evaluate e1 to a value n – which may
take many steps – then evaluate e2 to a value m. Once both operands are values, the
expression n + m is rewritten to n + m. For instance, we have the reduction sequence

(2 + 3) + (7 + (1 + 2))⇝ 5 + (7 + (1 + 2)) ⇝ 5 + (7 + 3)⇝ 5 + 10 ⇝ 15 ,

omitting the underlining. Each step above is justified by a derivation, e.g.

1 + 2 ⇝ 3

7 + (1 + 2)⇝ 7 + 3

5 + (7 + (1 + 2)) ⇝ 5 + (7 + 3)

12

CHAPTER 1. INTRODUCTION 13

for the second step. This would be usually called a small-step operational semantics;
big-step semantics also exist, where where one axiomatises directly the evaluation rela-
tion e ⇓ n of an expression to a value. More generally, there is a large body of literature
studying variations of operational semantics; including a mathematical theory of oper-
ational semantics initiated by Turi and Plotkin [Turi and Plotkin, 1997].
Operational semantics is a powerful methodology for formal semantics of program-

ming languages. It is very robust to the addition of syntactic constructs or program-
ming features, and has proved capable of handling realistic programming languages.
As it builds on simple inductive structures, it is amenable to mechanization in a proof
assistant – as powerfully illustrated in the celebrated CompCert project by Leroy et
al [Leroy, 2009, Krebbers et al., 2014]. However, operational semantics also has some
drawbacks. By design, it is very much tied to syntax. More importantly, most frame-
works are exclusively designed to reason on complete programs, operating in a closed
world. They are ill-equipped to reason about open programs, that may include free
variables or appeal to external libraries, and consequently are not compositional1.

1.2 Toward a Mathematical Semantics
Another approach to the formal semantics of programs is that of denotational se-
mantics, initiated by Scott and Strachey under the name of mathematical semantics
[Scott and Strachey, 1971]. Following the methodology of denotational semantics, any
programM is sent to a mathematical object JMK, its meaning or denotation. It is usu-
ally an invariant of evaluation, in the sense that ifM ⇝ M ′, then JMK = JM ′K. Thus
a closed program of ground type is typically sent directly to the value it returns, if any,
giving no insight on the evaluation process itself (at least explicitely). In contrast with
operational semantics, denotational semantics focuses on open programs. To those it
also gives a proper meaning, often as a function, as in the example below:

Jx + (x + 5)K ∶ ℕ → ℕ
n → 2n + 5

In contrast with operational semantics, compositionality is at the core of the method-
ology of denotational semantics. A denotation is assigned to each syntactic construct,
and the denotation of the program is obtained by replacing modularly each piece of
syntax by its denotation, as illustrated by the computation below:

Jx + (x + 5)K(n) = J+K(JxK(n), Jx + 5K(n))
= J+K(n, J+K(JxK(n), J5K(n)))
= J+K(n, J+K(n, 5))
= J+K(n, n + 5)
= 2n + 5

1There are, of course, formalisms for compositional operational semantics, used for instance to make
CompCert compositional [Stewart et al., 2015]. By and large, those put into play structures strongly related to
denotational semantics; for instance [Stewart et al., 2015] acknowledge similarity withGhica and Tzevelekos’
system-level game semantics [Ghica and Tzevelekos, 2012].

CHAPTER 1. INTRODUCTION 14

where J+K ∶ ℕ2 → ℕ is the usual arithmetical addition operation.
The traditional core of denotational semantics is domain theory, in which types are

represented by certain posets satisfying completeness properties useful to represent in-
finite data and partial computation, and open or higher-order programs are represented
as (continuous) functions. But this traditional approach to denotational semantics has
limitations, the focus on representing programs as functions being in tension with com-
putational effects such as non-deterministic choice, probabilistic choice, references, ex-
ceptions, etc (though many of those effects can be accommodated via adequate monads
[Moggi, 1991]). The modern understanding of denotational semantics is often taken
more generally to mean a compositional interpretation of programs, usually structured
categorically (typically as a cartesian closed category [Lambek and Scott, 1988]). In
this wider understanding, denotational semantics may be regarded as the art of reason-
ing compositionally about program behaviour, which is of paramount importance for
the purpose of having formal semantic techniques that scale [O’Hearn, 2015].
Over the years, a wealth of denotational models have appeared for programming lan-

guages, according to which programs are represented as other structures than functions.
For instance, in the relational model [Girard, 1988], we have

Jx + (x + 5)K ⊆ ℳf (ℕ) × ℕ
= {([n, m], n + m + 5) ∣ n, m ∈ ℕ}

whereℳf (X) is the set of finite multisets of elements ofX – in this semantics, we record
that we may obtain value n+m+ 5 provided we have two successful evaluations of the
argument, one yielding value n, the other yielding value m. In contrast to the functional
models mentioned earlier, this one is quantitative: we see in the interpretation that the
program makes two calls to its argument, an information lost in domain semantics.

We also account for the behaviour of the program against a potentially non-deterministic
environment: for instance, while in functional semantics the program x xor x will re-
turn ff for any value of x (writing tt and ff the two boolean values), we have

([tt, ff], tt) ∈ Jx xor xK

in relational semantics, accounting for an execution of x xor x in the context of a non-
deterministic x. Note that here, [tt, ff] = [ff , tt]. There is no sense in which an element
of the multiset may be unambiguously assigned to an occurrence of x – we do not know
if the program returns tt because the first x returned tt and the second ff , or the other
way around. We can enrich the model to account for the fact that ([tt, ff], tt) is realized
by these two executions, by assigning a weight to every point of the relational model

Jx xor xK([tt, ff], tt) = 2

and obtain in this way a weighted relational model [Laird et al., 2013], in which two
terms of PCF are sent to the same representation iff they cannot be distinguished by
PCF with probabilistic choice [Ehrhard et al., 2018]!
But the above still forgets much about the program, for instance it tells us nothing

about the behaviour of the program under a stateful execution environment. For that,

CHAPTER 1. INTRODUCTION 15

we must yet again move up in the intensionality ladder, into the realm of game seman-
tics [Hyland and Ong, 2000, Abramsky et al., 2000], and record the behaviour of the
program over time as illustrated in the diagram below

Jx xor xK ∶ x ∶ B ⊢ B
q−

q+

tt−

q+

ff−

tt+

breaking the symmetry between the two calls by explicitely showing them over time.
There are multiple ways to enrich denotational models with time, leading to many

mathematical settings for game semantics: for instance, one can interpret a PCF pro-
gram inAbramsky andMcCusker’smodel [Abramsky and McCusker, 1996]which char-
acterizes programs undistinguishable with ground state, in Berry and Curien’s sequen-
tial algorithms which characterize indistinguishability in the presence of control op-
erators [Cartwright et al., 1994], in Murawski’s model for indistinguishability by state
and control [Murawski, 2007], in Ghica and Murawski’s model for indistinguishability
by shared state and concurrency [Ghica and Murawski, 2008]. . .That is just the tip of
the iceberg, and only listing game semantics models. Overall, a term of PCF can be
interpreted into maybe a dozen different denotational models, sometimes similar and
sometimes different, each recording a different aspect of its interactive behaviour2.

In our tour of denotational models we should certainly also mention bicategorical
models such as generalized species of structure [Fiore et al., 2008] or Melliès’ tem-
plate games [Melliès, 2019a], which assign to each point of the interpretation of a type
in the relational model a set (or a category) of witnesses, presenting the different exe-
cutions realizing that point – so rather than merely stating Jx xor xK([tt, ff], tt) = 2, the
interpretation would yield a particular two-element set. Finally, all these developments
phrased explicitely as denotational models fit into a more general landscape of tools and
methods to approximate program behaviour (including idempotent or non-idempotent
intersection types, resource or differential calculi, the Taylor expansion of programs,
etc). There is an impressive breadth here: denotational semantics go way beyond the
somewhat boring formalization of the “intended” denotation of a term as an official
mathematical function, it is in fact the quite varied art of extracting compositional in-
formation from programs, and of reasoning about program identity.

2Game semantics models, along with others such as Girard’s geometry of interaction [Girard, 1989], are
often collectively referred to as interactive semantics. But this might be a misnomer: in reality, all the above
semantics are interactive semantics in the sense that they all collect information about the interactive or
compositional behaviour of the program, as opposed to the mechanics of its evaluation.

CHAPTER 1. INTRODUCTION 16

1.3 The Next 700 Denotational Semantics
It is fascinating that so many subtly different compositional accounts can be given, even
if one considers only a single computational object such as PCF. What is also striking,
is that there are comparatively surprisingly few results formally relating all these dif-
ferent models – even though many of those largely rely on similar intuitions, notably
inherited from Linear Logic [Girard, 1987]. One explanation is that the community has
focused more on building new models, taming new languages and effects, than on link-
ing existing models. There is also a social aspect, individual researchers sticking with
their favourite tools and methods. But besides those reasons, it remains true that such
connections have in the past proved much more elusive than anticipated.
This is well-illustrated by the relational collapse of game semantics: we introduced

above game semantics as relational semantics plus time, so it is only natural to attempt
to send game semantics to the relational model by simply forgetting time:

x ∶ B ⊢ B
q−

q+

tt−

q+

ff−

tt+

⇝ ([tt, ff], tt)

but this almost simple-minded idea hides two major conceptual hurdles: firstly, the
traditional notion of plays in game semantics has time too wired in, and does not sup-
port an adequate notion of position. Secondly, composition of strategies also involves
time; two interacting strategies may agree on a common position but not on a com-
mon trajectory, preventing synchronization. Understanding this prompted the work
of many researchers, spanning over two decades [Baillot et al., 1997b, Melliès, 2005,
Boudes, 2009, Calderon and McCusker, 2010, Clairambault and Paquet, 2021].
There are a few landmark results relating different models, such as Ehrhard’s exten-

sional collapse theorem [Ehrhard, 2012], which links the qualitative and quantitative
views of resource replication. But by and large, a lot of seemingly simple questions
turn out to hide a surprising amount of conceptual and technical depth3.

Despite this relative rarity of actual formal connections, experts in the field do have
a strong intuition as to what all these models record, and where they intuitively stand in
relation to each other. After all, intuitively all those models are not independent: they
all refer to, and present a part of, the interactive behaviour of the program. Over time,
the working semanticist builds up an intuition of this full interactive behaviour, through
the lens of their favourite technical tools. This “full interactive behaviour” is, arguably,

3As a more recent example, generalized species of structure are often presented – as we did above – as
refining the weighted relational model, replacing mere cardinality information by an explicit of witnesses.
This suggests that the coefficients computed by the weighted relational model are simply the cardinal of the
set of witnesses computed by generalized species; but that is simply not true! (see Section 13.3).

CHAPTER 1. INTRODUCTION 17

the actual object of study of our field. In a scientific meeting on denotational semantics,
there might be some talks about relational models, vectorial semantics, game semantics,
Taylor expansion, categorical models, and others; but in essence, all these talks are
about this common “full interactive behaviour”. Yet the “full interactive behaviour”
is not a formal object. It is intuitively there, but it seems that it can only be accessed
indirectly through the various models – one cannot look at it in the eye.
But what if one could, at least to an extent? If nothing else, this would be a precious

help in understanding rigorously how the models relate to each other, transporting re-
sults, etc. It would be a cornerstone of a unified theory of denotational semantics.

1.4 Full Abstraction and Intentional Intensionality
Of course, a model presenting the “full intensional behaviour” would be by nature ex-
tremely intensional4, and representing the intensional behaviour of programs has not
been the historical focus of denotational semantics. Instead, the driving question has
long been that of full abstraction: the problem of capturing observational equivalence.

Let us make things a bit more precise. Informally, two programs M and N in a
fixed language are observationally equivalent if their behaviour cannot be separated
within : there is no context C[] – a program of with a hole – such that, for instance,
C[M] converges while C[N] diverges. In other words, within ,M and N are com-
pletely interchangeable. In that case, we writeM ≃ N . In many ways, observational
equivalence appears to be the “ideal” semantic equivalence between programs; with im-
plications in both theory and practice (for instance, one could hope that an optimization
pass in a compiler replaces a program with an optimized, but observationally equiva-
lent, variant). But observational equivalence is hard to establish, due to the infinitary
universal quantification on contexts. Accordingly, the driving question in denotational
semantics has long be to seek characterizations of observational equivalence: an inter-
pretation J−K is fully abstract when we haveM ≃ N iff JMK = JNK.
In the 90s, much research on denotational semantics was driven by the full abstraction

problem, of building a fully abstract model for the purely functional language PCF. This
was not a practical question, but rather a quest to understand higher-order sequentiality.
As an extensional solution remained elusive, this prompted the development of game se-
mantics for PCF [Hyland and Ong, 2000, Abramsky et al., 2000, Nickau, 1994]: rather
than to find conditions for functions to be sequentially computable, the idea became to
find conditions for certain sequential interactive processes called strategies to compute
functions; in other words, to find conditions on strategies to represent the interactive be-
haviour of purely functional programs. In Hyland-Ong games [Hyland and Ong, 2000],
two were necessary: innocence and well-bracketing. It is debatable whether this did
solve the full abstraction problem for PCF5, but game semantics had a much better sur-

4Meaning, recording information about the dynamics of programs, which might not be observable by the
execution environment – as opposed to the extensional behaviour, i.e. input/output.

5Nowadays, it seems that the consensus is that it did not: the additional intensional behaviour carried by
strategies is eliminated by an undecidable quotient. On the other hand, it appears that we cannot do better:
there is no effectively presentable fully abstract model for PCF, because observational equivalence in PCF is

CHAPTER 1. INTRODUCTION 18

prise in store: in the subsequent years, it quickly turned out that lifting innocence gave
a model of PCF plus local references of ground type [Abramsky and McCusker, 1996,
McCusker, 2003], lifting well-bracketing gave a model of PCF plus call∕cc, while lift-
ing both gave a model of PCF with those two effects combined [Murawski, 2007], all
fully abstract and effectively presentable! In other words, we had one single semantic
framework for all combinations of state and control, with each condition on strategies
corresponding to (the absence of) a certain effect. This was not missed by the com-
munity, eventually acknowledged by the 2017 Alonzo Church Award for Outstanding
Contributions to Logic and Computation awarded to the authors of the three full ab-
straction for PCF papers, with the following excerpt from the announcement6.

“Game semantics has changed the landscape of programming language se-
mantics by giving a unified view of the denotational universes of many
different languages. This is a remarkable achievement that was not previ-
ously thought to be within reach.”

To explain this success, we argue that what game semantics has stumbled upon here
while seeking full abstraction for PCF, is a glimpse of this “full interactive behaviour”
– at least in a world where everything is sequential deterministic. This made it possible
to understand computational effects in terms of their induced intensional behaviour, and
to present four fully abstract models, which could otherwise have appeared completely
independent from each other, as four projections of this interactive behaviour.
Of course, game semantics did not stop at the sequential deterministic picture out-

lined above: there are also fully abstract models for non-deterministic programming
languages [Harmer, 1999], probabilistic [Danos and Harmer, 2000] or concurrent lan-
guages [Laird, 2001b, Ghica and Murawski, 2008] among others; but they are defined
by separate, seemingly incompatible sets of definitions, and they no longer fit in a uni-
fied framework as above. For instance the models for non-deterministic or probabilistic
computation do not support a notion of innocence eliminating state; there is no clear
path to a probabilistic extension of the game semantics of concurrent computation, etc.

So why do we get this appealing unified picture for sequential deterministic compu-
tation, only to lose it immediately after? Where does this come from?

1.5 Plays Considered Harmful
We argue that the limitation causing this is hidden in the very basic definition:
Definition 1.5.1. ConsiderA a game, inducing a set of movesMA and playsPA ⊆ M∗

A.
A strategy on A is a non-empty, prefix-closed � ⊆ PA, subject to further conditions.

This seems natural: the interpretation of a type specifies the valid executions, the
plays of the game; and � lists the paths that the strategy is prepared to take.
undecidable even with finite basic datatypes and without recursion [Loader, 2001].

6https://eatcs.org/index.php/component/content/article/1-news/
2473-the-2017-alonzo-church-award

https://eatcs.org/index.php/component/content/article/1-news/2473-the-2017-alonzo-church-award
https://eatcs.org/index.php/component/content/article/1-news/2473-the-2017-alonzo-church-award

CHAPTER 1. INTRODUCTION 19

But this choice of representation has a cost.

Bounding Opponent’s behaviour. When setting up a game semantics, one must usu-
ally start by specifying the plays. Plays form the basic backbone of a game semantics –
strategies are formed out of plays, composition starts with operations on plays, etc.
This may not sound like much, but this choice of plays is perhaps the aspect that keeps

the most game semantics settings apart and incompatible. Should plays be alternating?
Or just locally alternating, as in AJM games? Should they be well-bracketed? Visi-
ble? Or even innocent? Some developments carry easily from one choice to another,
for instance, essentially the same well-bracketed innocent strategies can be defined on
many of those options. But in general, this choice has heavy consequences: it essen-
tially specifies the computational effect available to the ambient environment. Picking
a notion of plays is picking a computational universe, it is choosing the programming
language that the rest of the world is written in. If a program was interpreted in a model
based on well-bracketed plays, we can say nothing about its execution against call∕cc.
If a program was interpreted in a model based on alternating plays, then we can say
nothing about its execution in a concurrent environment.
Should we just adopt once and for all the most general available setting, say based on

non-alternating plays? That may be appealing in principle, but many key constructions
in game semantics (such as the notion of P-view) only make sense for restricted plays.

Losing the branching structure. A play describes a single interactive execution, in
isolation from all the other ways in which history could have unfolded. A strategy is a
set of such plays, with an induced tree structure, that may branch. If the first moves that
differ are Opponent moves, this simply corresponds to different evaluation choices by
the execution environment. In contrast, if the first moves that differ are Player moves,
then this witnesses a non-deterministic choice by the program. For instance, the plays

B
q−

tt+
,

B
q−

ff+

together inform a strategy coin ∶ B implementing non-deterministic choice.
But the point where branches of the tree of plays separate is only the point where a

non-deterministic choice becomes observable, not necessarily where the choice actually
happens! For instance, the two terms (for U a unit type with only one value)

x ∶ U ⊢ if coin then x; tt else x; ff ∶ B , x ∶ U ⊢ x; coin ∶ B

allow exactly the same plays, which are all the prefixes of the one below:
x ∶ U ⊢ B

q−

q+

✓−

b+

CHAPTER 1. INTRODUCTION 20

In reality, for the first program, at q+ the coin has already landed and the result is
already determined, but we cannot see that. This has a number of consequences: firstly,
being unable to see the point of non-deterministic branching means that we are stuck
with an angelic view of non-determinism, where if coin then x else⊥ is equivalent to
x and the possibility of divergence (with ⊥ a looping primitive) is ignored7.

Secondly, while this missing branching information turns out unnecessary to ob-
tain a fully abstract model for a higher-order language with non-deterministic choice
[Harmer and McCusker, 1999], this model no longer fits into a unified landscape as in
the sequential deterministic case. In particular, attempting to ban state by a naive ex-
tension of innocence fails [Harmer, 2004]. Intuitively, innocence works by identifying
a well-behaved fragment within the model that looks like syntax; but syntax does recall
the branching information (as illustrated by the two terms above) while strategies as
sets of plays cannot. There is no evident way to ban state in Harmer and McCusker’s
model [Harmer and McCusker, 1999] and obtain full abstraction for non-deterministic
PCF; in this monograph we say that non-determinism and state are entangled.

While non-determinism is one possible branching structure, there are other “branch-
ing effects” that similarly change the very geometry of execution: two main examples
are probabilistic choice and parallelism. As in the non-deterministic case, probabilistic
choice and state are entangled in [Danos and Harmer, 2000], while parallelism and state
are entangled in [Ghica and Murawski, 2008]; in either case there is no clear notion of
innocence banning state while still allowing probabilistic choice and parallelism.
Prior to the line of work reported here, it had already appeared that adopting no-

tions of strategies with explicit branching information, one could indeed obtain a notion
of non-deterministic innocence which as desired captures a non-deterministic syntax
[Castellan et al., 2014, Tsukada and Ong, 2015]. So it seems that extending the unified
picture offered by game semantics beyond the sequential deterministic world is possible
in principle, providedwe replace plays with adequatemathematical objects giving a true
account of various branching structures – we shall see later on that such a mathematical
setting may be provided by event structures [Winskel, 1986].

Losing positions. Games are incredibly widespread beyond semantics; but on the sur-
face their basic definitions often look rather different from Definition 1.5.1. Typically
(say e.g. in parity games [Arnold and Niwiński, 2001] – or more generally, in games
used in verification), a game is a graph of positions, which are split into Player and
Opponent transitions. A play is a path in the graph starting in some initial position,
and a strategy is a function that to any path ending in a Player position may associate
a Player transition. A crucial notion is that of a positional strategy, whose behaviour
does not depend on the whole play but only on the current position.
Curiously, this notion of position is missing from the very basic definitions of tradi-

tional game semantics, where instead the fundamental object is that of plays. While we
7Information about must-convergence can be retained by additionally recording divergences, as in

[Harmer and McCusker, 1999] – but this does not extend to more elaborate resolutions of non-determinism,
such as bisimulation or fair-testing equivalences.

CHAPTER 1. INTRODUCTION 21

may a posteriori observe that the two plays
B ⊗ B
q−

tt+

q−

tt+

B ⊗ B
q−

tt+

q−

tt+

(1.1)

reach the same state, i.e. the same set of moves where the two booleans have been
evaluated and both have returned tt, the strategies used in semantics are typically not
positional, and positional strategies are not stable under composition.
This is more than a peculiarity – at least if one hopes to link game semantics to other

denotational models, since as hinted at in Section 1.3, positions are the key notion to es-
tablish a link with the relational model. Alternative, positional foundations for game se-
mantics have existed for a while, such as the graph games of [Hyland and Schalk, 2002]
and the asynchronous games of [Melliès, 2004a]. But by and large, they have not been
developed beyond models of fragments of linear logic.

1.6 A Case for Causal Game Semantics
But if we are to remove plays, by what should they be replaced?
At first sight, removing plays from game semantics sounds a bit like removing malt

from brewing, or removing wool from knitting. Of course committing to a notion of
plays will constrain what you may do with them, but you have to live with that, after all
plays are the basic material with which the game semanticist builds.
However, there is an alternative: causal game semantics. The developments pre-

sented in this monograph result from a paradigm shift: rather by presenting computa-
tional events in sequence, as they could be observed by a specific environment – however
powerful it may be, we propose to organize them causally: one event appears before
another only if this is imposed by a causal dependency, typically internal to the program.

Recovering positions. For instance, the pair (tt, tt) would be represented by:
B ⊗ B

q−

_���

q−

_���
tt+ tt+

where below the first line that presents the two type components, we show theHasse dia-
gram of a partial order, read from top to bottom. In each type component, the program
is prepared to return tt, under the unique cause that Opponent starts computation by
playing q−. The comparison with the two diagrams of (1.1) is clear: we have removed
time and the induced necessity of a choice for Opponent’s scheduling. The diagram

CHAPTER 1. INTRODUCTION 22

only describes what actions the program is prepared to take, and under which condi-
tions. The positions are easily accessible as certain down-closed (so up-closed in the
diagram) sets of observable events; and we should see in the course of the monograph
that this allows for a crisp link with relational semantics.

Recovering the branching structure(s). Adopting such partial orders allows us to
record explicitly parallel branching information. The following diagram represents a
strategy evaluating its free variables of unit typeU (admitting only one value) in parallel

x ∶ U, y ∶ U ⊢ U

q−
(ppw

0tt|q+
_���

q+
_���

✓−

� ''.

✓−

� ##+
✓+

where the branching on the second line with the two q+ is not a non-deterministic choice
(although it might lead to a non-deterministic choice if that parallelism is resolved by a
scheduler), but a parallel branching: the events corresponding to the two threads for x
and y are, as far as the intention of the program is concerned, causally independent.
A warning: this diagram does not mean that the program enforces the independence

of x and y, it does not mean that the evaluation of x and y will be independent once
the context for x and y is known. It only means that the program does not itself impose
causal constraints between the two threads. It is possible that the calls to x and y trigger
the access to a shared resource, making them interfere. But this interference is then due
to the interaction of the program with its environment, not to the program itself.
Much of concurrency theory is based on interleavings: an execution of two processes

in parallel P ∥ Q is formalized by considering all interleavings of executions of P and
Q, hence reducing concurrency to non-determinism by integrating the non-determinism
from the scheduler. According to that interpretation, the program above looks non-
deterministic as either x or y may be called first in a sequential execution. In contrast,
for us (following the so-called truly concurrent approach to concurrency theory), this
program is considered deterministic: all schedulings eventually reach the same state.
But if that is so, and if branching is parallelism, how can we express actual non-

deterministic choice? We do so by adding a conflict relation, shown as a wiggly line
B
q−

<yy� � ��&
tt+ ff+

indicating that the two moves are incompatible, and cannot both occur in a single ex-
ecution. Altogether, the partial order and the conflict relation form an event structure
[Winskel, 1986], a well-established notion in concurrency theory.

CHAPTER 1. INTRODUCTION 23

Lifting constraints on Opponent. Those causal structures, which we call concurrent
strategies, are developed in Part II. By design, concurrent strategies do not put any
constraint on Opponent’s behaviour: unlike all play-based game semantics, concurrent
strategies do not record how a program is observed by a fixed environment, but only
what observable actions the program is prepared to take, and under which conditions.
The purpose of concurrent games is to record very intensional information on the

interactive behaviour of programs; information that is typically not observable, how-
ever strong the environment may be. In that, it is at odds with much of the earlier work
on game semantics for programming languages, which focuses on obtaining full ab-
straction results and as such, on capturing the information about program behaviour
that is observable by specific programming features. In adopting concurrent games, we
exchange that for a crisp description of the full interactive behaviour of the programs
from which all other denotational interpretations can, at least in principle, be obtained
as certain projections – a claim that we shall aim to substantiate in this monograph.
Despite our overarching point about the necessity of capturing the full interactive be-

haviour, somewill surely question the point of a semantics not designed to reason on ob-
servational equivalence, and recording interactive behaviour that is unobservable, even
by a wildly powerful environment. To those, we oppose the following question: is it re-
ally reasonable to consider that a programmay only interact with an environment written
in a single programming language, with a fixed observational power? This “fixed world
hypothesis”, followed in much of denotational semantics, is in tension with the hetero-
geneous and distributed nature of modern software. Like any denotational semantics,
game semantics is by nature modular with respect to program construction. But the
fixed world hypothesis makes it lessmodular in another direction, that of programming
language extensions.
One also couldwonder if historywill remember the full abstraction results as themost

important contribution of game semantics. Arguably, there are already signs that prob-
ably not. In the recent past, a few developments have been proposed by groups with-
out prior knowledge and experience in game semantics, but leveraging ideas or tech-
niques for game semantics [Stewart et al., 2015, Xia et al., 2020, Chappe et al., 2023,
Koenig and Shao, 2020, Vale et al., 2023]. By and large they are motivated by the need
for more compositional structures in program certification – they need game semantics
for its compositional description of interactive execution, not its full abstraction results!

Thus it seems healthy to part with the “fixedworld hypothesis” – but it would be better
if that did not mean throwing away decades of work and developments in denotational
semantics, and the myriad of results and techniques developed. This is, we claim, what
concurrent games may eventually achieve, and this monograph contributes some steps.

1.7 Contributions and Outline
In our “concurrent games” line of work, quite a few developments fit into that general
line; we survey a few of those at the end of this monograph, in Chapter 13. To form the
heart of this document, we had to select a precious few contributions:

CHAPTER 1. INTRODUCTION 24

Concurrent games. In the published literature, the technical construction of our “con-
current games” framework spans quite a few papers. We first build on Rideau and
Winskel’s original set of definitions for a bicategory where both games and strategies
are event structures [Rideau and Winskel, 2011]. Our work is based on an extension
of this bicategory with symmetry, a framework called thin concurrent games, that first
appeared (without details and proofs) in a conference paper [Castellan et al., 2015] and
then detailed in [Castellan et al., 2019], though depending on an earlier reconstruction
of the basic bicategory of concurrent games in [Castellan et al., 2017a]. This makes
the chain of dependencies of specific results and lemmas a bit challenging to track,
especially given that the notations and terminology have matured over time.
Thus the first contribution of this monograph is a complete, self-contained and hope-

fully pedagogical presentation of thin concurrent games. It comprises a new presenta-
tion of the basic bicategory CG without symmetry, the central bicategory TCG of thin
concurrent games; and the description of a number of additional constructions useful
to define the define and study the interpretation of programming languages.

Disentangling parallelism and state. We use the above to give a causal version
of one of the most expressive games models out there: Ghica and Murawski’s non-
alternating games, fully abstract for Idealized Concurrent Algol – a concurrent higher-
order language with (local) ground state references [Ghica and Murawski, 2008].
In fact, ICA may be regarded as PCF enriched with two programming features: par-

allelism adds the ability to perform computations in parallel, a priori with no interac-
tion or side-channel communication; and state is given by ground state local references
(and semaphores). We regard concurrency not as a primitive computing feature, but as
a phenomenon emerging from the combination of parallelism and state. Hence rather
than ICA, we call the language Idealized Parallel Algol (IA�), i.e. Idealized Algol plusparallelism – but it is indeed a concurrent language.
Resting on TCG we construct _-Strat, a cartesian closed category in which we

describe an interpretation of IA�. On strategies in _-Strat, we introduce two condi-
tions: sequentiality, and globularity, which induce two sub-cartesian closed categories
-Glob (supporting the interpretation of parallelism, but not state) and-Seq (sup-
porting the interpretation of state, but not parallelism), and a third sub-cartesian closed
category _-SeqGlob (supporting the interpretation of PCF only) where the two con-
ditions are required. We construct interpretation-preserving functors:

_-Strat → ↺-Strat (Theorem 9.3.8)
_-Seq → ⇵-Strat (Theorem 11.2.18)

_-SeqGlob → ⇵-InnWB (Theorem 11.3.10)
where ↺-Strat, ⇵-Strat and ⇵-InnWB are the reference fully abstract models for
IA�, IA and PCF respectively, phrased in terms of traditional game semantics – so that
-Strat,-Seq and_-SeqGlob are also fully abstract. Finally, we prove a new finite
definability result for_-Glob with respect to PCF plus parallelism.
Altogether, these results disentangle parallelism and state, in the sense above.

CHAPTER 1. INTRODUCTION 25

Relational collapse. Setting up the tools required for this is quite the journey. A
particularly significant step encountered along the way is that visibility, one of the con-
stituents of globularity, ensures that the composition of strategies induces no deadlocks
so that we have an interpretation-preserving functor to the relational model (Corol-
lary 10.4.15) – a modern account of the link between game semantics with the relational
model, in line with our motto of bridging denotational models.

A uniform presentation of pointer games. Of course, a challenge in constructing
the interpretation-preserving functors above to traditional games models, is that they
refer to models constructed in a number of different papers, working with different no-
tations, definitions that differ in subtle but significant ways. . .To achieve our goals, it
was necessary to first recast the various games models of interest, which we attempted
to do in an introductive and pedagogical way.

Outline. In the next chapter, we introduce a few mathematical conventions and nota-
tions used throughout the monograph.
Part I contains our introduction to pointer games. It focuses on alternating pointer

games, covering innocence, well-bracketing, the full abstraction results for PCF and
Idealized Algol. Then, it also presents non-alternating pointer games and the fully ab-
stract model for IA�. We mention a few other topics along the way: e.g. the semantic
cube, and the alternative approach to uniformity via copy indices.
Part II contains our detailed construction of concurrent games. We start with the basic

bicategory CG, then add symmetry to obtain thin concurrent games (TCG). Finally,
we construct additional structure aiming for (essentially) a cartesian closed category, as
required by the interpretation of (call-by-name) programming languages.
Part III contains all the developments required to disentangle parallelism and state.

It contains the interpretation of IA�, the developments of sequentiality and globularity
alongwith all the proofs of stability under composition. It contains all our interpretation-
preserving functors, including that to the relational model. Finally, it contains a proof
of finite definability for globular strategies.
Part IV surveys other developments in concurrent games fitting in our general pattern

of bridging denotational models; as well as perspectives and open problems.
Finally, Part V contains some appendices.

Chapter 2

General Preliminaries

In this first technical chapter, we introduce some preliminaries to the preliminaries:
first, we fix some of the general notations and conventions used in this monograph.
Then, we introduce our programming languages of interest. Finally, we will recall def-
initions for a few of the basic denotational semantics concepts used later on.

2.1 Mathematical Language
To start off, let us introduce a few notations that we will use throughout this monograph.

Sets. If X is a set, then we write (X) for the powerset of X, i.e. the set comprising
all subsets of X. If X and Y are sets, we write X + Y for the tagged disjoint union of
X and Y , defined as X + Y = {(1, x) ∣ x ∈ X} ∪ {(2, y) ∣ y ∈ Y }. We are careful to
distinguish this with X ⊎ Y which is the usual set-theoretic union, when it is known or
assumed to be disjoint – for instance, we may write X + Y = {1} ×X ⊎ {2} × Y .

Sequences. If X is a set, then X∗ denotes the set of words or finite sequences of
elements of X. We write " ∈ X∗ for the empty sequence, and ⊑ denotes the prefix
ordering on finite sequences.

Functions. If X and Y are sets, we write f ∶ X → Y to mean that f is a function
from X to Y (if X and Y are understood from the context to be objects in a specific
category , this might mean that f is a morphism of fromX to Y instead). Likewise,
we write f ∶ X ⇀ Y to mean that f is a partial function fromX to Y . In both cases, we
write the application of f to x ∈ X as f (x) or sometimes simply as fx. If f ∶ X → Y
is a bijection, we write f ∶ X ≃ Y .

Categories. We assume familiarity with the basic notions of category theory and cat-
egorical logic. Wewrite Set for the category of sets and functions. If is a category, we

26

CHAPTER 2. GENERAL PRELIMINARIES 27

write 0 for its set of objects; ifA andB are objects of , we write (A,B) for the set of
morphisms from A to B. If f ∈ (A,B) is an isomorphism, we write f ∶ A ≅ B. For
an isomorphism in Set, we tend to prefer the term bijection and the notation f ∶ A ≃ B,
but use isomorphism and write f ∶ A ≅ B in the presence of further structure – for
instance if A and B are partial orders, and f is an order-isomorphism.
We write ⊤ for the terminal object of , if it exists. If is a cartesian category, then

we write A&B for the cartesian product of A and B. We write �A ∶ A&B → A and
�B ∶ A&B → B for the two projections, and ⟨f, g⟩ ∶ X → A&B for the pairing of
f ∶ X → A and g ∶ X → B. We will also use n-ary versions of these constructions.
If is cartesian closed, we writeA⇒ B for the arrow object ofA and B and evA,B ∶

(A ⇒ A)&A → B for the evaluation morphism. If ℎ ∶ X × A → B, we write
Λ(ℎ) ∶ X → A⇒ B for its currying.

Common abbreviations. We shall use the following abbreviations in the text: iff for
“if and only if”, lhs for “left hand side”, rhs for “right hand side”, s.t. for “such that”
and w.r.t. for “with respect to”.

2.2 IA� and its Fragments
The contributions of this monograph are not about a programming language in particu-
lar: we view them as methodological contributions in denotational semantics, that may
apply, in principle, to a variety of languages – the past body of work on game semantics
has indeed proved that the insights gained when studying programming features in a
specific setting could, to a large extent, be transported to other settings (e.g. the notion
of innocence, originally intended to ban state in a call-by-name language, turned out to
apply just as well to ban state in a call-by-value language [Honda and Yoshida, 1999].
But we do need to fix target programming languages to illustrate our game semantics

constributions, and to serve as target for our technical developments. For that, we settled
on Idealized Parallel Algol (IA�), a call-by-name concurrent higher-order programming
language with ground local references. The main reason we adopted IA� is because
among the languages that are well-studied in game semantics, this is one of the most
expressive. Removing parallelism and/or state allows one to recover languages that
are also very well-studied, though the corresponding models do not fit in a uniform
semantic picture. If we want to prove full abstraction for the different fragments of IA�,it “suffices” to relate to the existing fully abstract models, saving us some work.
The core of IA� is PCF, the prototypal higher-order sequential language introduced

by Plotkin [Plotkin, 1977]: a call-by-name simply-typed �-calculus with booleans, nat-
ural numbers and their combinators, plus recursion. We consider two extensions of
PCF: firstly, Idealized Algol (IA) is PCF extended with shared state, under the form
of (mainly) ground type local references. Secondly, Parallel PCF (PCF�) extends PCFwith a primitive for pure parallel evaluation, without communication. IA�, obtained byputting all these together, is rather complex: in particular it is a concurrent language,
as the combination of parallelism and shared memory induce racy behaviour.

CHAPTER 2. GENERAL PRELIMINARIES 28

In the rest of this section, we introduce formally the syntax of IA� and its fragments.
A disclaimer: IA� and its fragments are not claimed to be realistic or in any way faithful
to actual programming languages; nor dowe think that realistic programming languages
should be inspired by IA�. It is a toy language, whose only purpose is to put together
certain programming aspects in a controlled environment where they can be studied
in isolation; like a physicist studying properties of matter in a vacuum. Likewise, the
reader should not see this work as a “study of the semantics of IA�” or its fragments.
Again, our contribution is semantic and methodological, IA� being merely a way to
illustrate it and provide a target that is challenging but achievable.

2.2.1 Syntax of IA�
Types. The types of IA� are the following, highlighting types relative to state.

A,B ∶∶= U ∣ B ∣ ℕ ∣ A → B PCF
∣ V ∣ S +state

Above, U is a unit type with only one value, and B and ℕ are types for booleans
and natural numbers. In the presence of state, V is a type for references storing natural
numbers, while S is for semaphores. We refer to U,B and ℕ as ground types, and use
X,Y to range over those. Let us now give the term constructions and typing rules.

Terms and typing. We define the terms of the language directly via typing rules.
Contexts are lists x1 ∶ A1,… , xn ∶ An. Typing judgments have form Γ ⊢ M ∶ A

with Γ a context and A a type. In addition to Figure 2.1, we consider present an ex-
change rule letting us permute the order of variable declarations in contexts. The elimi-
nator rules for basic datatypes are restricted to eliminate only to ground types – general
eliminators are defined as syntactic sugar: e.g. a conditional to V may be obtained as

Γ ⊢ M ∶ B Γ ⊢ N1 ∶ V Γ ⊢ N2 ∶ V
Γ ⊢ mkvar (�x. ifM (N1∶=x) (N2∶=x)) (ifM !N1 !N2) ∶ V

The bad variable and bad semaphore constructsmkvar andmksem are a common
occurrence in the game semantical literature. While a “good” reference is tied to amem-
ory location, many game models also comprise so-called “bad variables” inhabiting V
but not behaving as actual variables. Full abstraction results in the concerned games
models [Abramsky and McCusker, 1996, Ghica and Murawski, 2008] require a corre-
sponding syntactic construct mkvar allowing one to form bad variables by appending
arbitrary read and write methods1. The same holds for semaphores.

1A very nice result by McCusker is that in fact, the fully abstract games model for IA is also fully abstract
without bad variables [McCusker, 2003]!

CHAPTER 2. GENERAL PRELIMINARIES 29

PCF

Γ ⊢ skip ∶ U Γ ⊢ tt ∶ B Γ ⊢ ff ∶ B Γ ⊢ n ∶ ℕ Γ, x ∶ A ⊢ x ∶ A

Γ, x ∶ A ⊢ M ∶ B

Γ ⊢ �xA.M ∶ A→ B

Γ ⊢ M ∶ A→ B Γ ⊢ N ∶ A

Γ ⊢ M N ∶ B

Γ ⊢ M ∶ U Γ ⊢ N ∶ X
Γ ⊢ M ; N ∶ X

Γ ⊢ M ∶ B Γ ⊢ N1 ∶ X Γ ⊢ N2 ∶ X
Γ ⊢ ifMN1N2 ∶ X

Γ ⊢ M ∶ ℕ
Γ ⊢ succM ∶ ℕ

Γ ⊢ M ∶ ℕ
Γ ⊢ predM ∶ ℕ

Γ ⊢ M ∶ ℕ
Γ ⊢ iszeroM ∶ B

Γ, x ∶ X ⊢ M ∶ Y Γ ⊢ N ∶ X
Γ ⊢ let x = N inM ∶ Y

Γ ⊢ M ∶ A → A

Γ ⊢ M ∶ A

+state

Γ, x ∶ V ⊢ M ∶ X
Γ ⊢ newref x∶=n inM ∶ X

Γ ⊢ M ∶ V Γ ⊢ N ∶ ℕ
Γ ⊢ M∶=N ∶ U

Γ ⊢ M ∶ V
Γ ⊢!M ∶ ℕ

Γ, x ∶ S ⊢ M ∶ X
Γ ⊢ newsem x∶=n inM ∶ X

Γ ⊢ M ∶ S
Γ ⊢ grabM ∶ U

Γ ⊢ N ∶ S
Γ ⊢ releaseN ∶ U

Γ ⊢ M ∶ ℕ → U Γ ⊢ N ∶ ℕ
Γ ⊢ mkvarMN ∶ V

Γ ⊢ M ∶ U Γ ⊢ N ∶ U
Γ ⊢ mksemMN ∶ S

+parallelism

Γ, x1 ∶ X, x2 ∶ X ⊢ M ∶ Y Γ ⊢ N1 ∶ X Γ ⊢ N2 ∶ X

Γ ⊢ let
(

x1 = N1
x2 = N2

)

inM ∶ Y

Figure 2.1: Typing rules for IA�

CHAPTER 2. GENERAL PRELIMINARIES 30

2.2.2 Operational Semantics of IA�
In this monograph, we shall not refer explicitly to the operational semantics for IA�,as we will only interact with those through already established denotational models.
However, for the sake of completeness, we include here the definition.
We refer to constants of ground type as values; we use v to range over those, and

n, b or c to range over values of respective types ℕ,B or U. We give a small-step oper-
ational semantics, following [Ghica and Murawski, 2008]. We fix a countable set of
memory locations. A store is a partial map s ∶ ⇀ ℕ with finite domain where ℕ
stands, overloading notations, for natural numbers. A configuration is a term together
with a store, formally a pair ⟨M, s⟩ where s is a store with dom(s) = {l1,… ,ln} and
Σ ⊢ M ∶ A with Σ = l1 ∶ V ,… ,li ∶ V ,li+1 ∶ S,… ,ln ∶ S.

Execution is formalized via reductions between configurations, with shape
⟨M, s⟩ ⇝ ⟨M ′, s′⟩

where dom(s) = dom(s′); we write⇝∗ for the reflexive transitive closure. If ⊢ M ∶ X,
we write M ⇓ v if ⟨M, ∅⟩ ⇝∗

⟨v, ∅⟩ for some value v or simply M ⇓ leaving v
implicit. We give in Figure 2.2 the reduction rules; separated in basic rules listing the
basic cases, and the context rules specifying the next available redexes. For rules not
interacting with the state, we omit the state component – it is simply left unchanged by
stateless basic reductions, and propagated upwards by stateless context rules.

2.2.3 Expressiveness of IA�
We shall illustrate the expressiveness of the language via its fragments.

The core language: PCF. Introduced in [Plotkin, 1977], PCF is the paradigmatic
(call-by-name) language for higher-order recursive computation.
PCF is of course Turing-complete, and may be used to program any (higher-order)

computable function. For instance, the Ackermann function may be defined with
 (�Aℕ→ℕ→ℕnℕmℕ. if (iszero n) (succm) (iter (A (pred n))m))

with iter = �fℕ→ℕxℕ. (�Iℕ→ℕnℕ. if (iszero n) x (f (I (pred n)))); showing how we
can use recursion on higher-order functions in PCF. We define additional combinators
in PCF that will eventually be used in the monograph. First, there is a divergence

Γ ⊢ ⊥A ∶ A

for any typeA, defined as any looping program, for instance via ⊥A = A (�xA. x). We
also add syntactic sugar for an equality test for all ground types, with rule

Γ ⊢ M ∶ X Γ ⊢ N ∶ X
Γ ⊢ M =X N ∶ B

CHAPTER 2. GENERAL PRELIMINARIES 31

Basic red. for PCF
(�xA.M)N ⇝ M[N∕x]

skip; N ⇝ N
if ttMN ⇝ M
if ffMN ⇝ N

succ n ⇝ n + 1
pred 0 ⇝ 0

pred (n + 1) ⇝ n
iszero 0 ⇝ tt

iszero (n + 1) ⇝ ff
M ⇝ M (M)

let x = v inM ⇝ M[v∕x]

Basic reductions for state
newref x in v ⇝ v
newsem x in v ⇝ v

(mkvarMN)∶=n ⇝ M n
!(mkvarMN) ⇝ N

grab(mksemMN) ⇝ M
release(mksemMN) ⇝ N

Interfering reductions
⟨!l, s ⊎ {l → n}⟩ ⇝ ⟨n, s ⊎ {l → n}⟩

⟨l∶=n, s ⊎ {l → _}⟩ ⇝ ⟨skip, s ⊎ {l → n}⟩
⟨grab(l), s ⊎ {l → 0}⟩ ⇝ ⟨skip, s ⊎ {l → 1}⟩

⟨release(l), s ⊎ {l → n}⟩ ⇝ ⟨skip, s ⊎ {l → 0}⟩ (n > 0)

Basic reduction for parallelism
let

(

x1 = v1
x2 = v2

)

inM ⇝ M[v1∕x1, v2∕x2]

Stateless context rules
M ⇝M ′

MN ⇝M ′N

M ⇝M ′

ifMN1N2 ⇝ ifM ′N1N2

M ⇝M ′

succM ⇝ succM ′

M ⇝M ′

!M ⇝ !M ′

M ⇝M ′

iszeroM ⇝ iszeroM ′

N ⇝ N ′

M∶=N ⇝M∶=N ′

M ⇝M ′

grab(M)⇝ grab(M ′)

M ⇝M ′

release(M)⇝ release(M ′)

M ⇝M ′

M∶=v⇝M ′∶=v

N ⇝ N ′

let x = N inM ⇝ let x = N ′ inM

N1 ⇝ N ′
1

let
(

x1 = N1
x2 = N2

)

inM ⇝ let
(

x1 = N ′
1

x2 = N2

)

inM

N2 ⇝ N ′
2

let
(

x1 = N1
x2 = N2

)

inM ⇝ let
(

x1 = N1
x2 = N ′

2

)

inM

Stateful context rules
⟨M[l∕x], s ⊎ {l → n}⟩ ⇝ ⟨M ′[l∕x], s′ ⊎ {l → n′}⟩

⟨newref x∶=n inM, s⟩ ⇝ ⟨newref x∶=n′ inM ′, s′⟩
(l ∈ f resh)

⟨M[l∕x], s ⊎ {l → n}⟩ ⇝ ⟨M ′[l∕x], s′ ⊎ {l → n′}⟩

⟨newsem x∶=n inM, s⟩ ⇝ ⟨newsem x∶=n′ inM ′, s′⟩
(l ∈ f resh)

Figure 2.2: Operational semantics of IA�

CHAPTER 2. GENERAL PRELIMINARIES 32

returning tt iff the two terms yield the same value. ForX = U we may defineM =U Nsimply asM ; N ; tt. Likewise, we setM =B N as ifMN (if N ff tt), and Γ ⊢ M =ℕ
N ∶ B similarly, with the obvious recursive program.

Next we introduce a n-ary case construct branching on all values of ground types. If
V = {v1,… , vn} is a finite set of values of ground type X, we set

caseM of
v1 → N1
v2 → N2
…
vn → Nn

def
=

let x = M in
if x =X v1 thenN1

else if x =X v2 thenN2
…

else if x =X vn thenNn
else⊥

of type Y in context Γ if Γ ⊢ M ∶ X and Γ ⊢ Ni ∶ Y for all 1 ≤ i ≤ n.
This makes crucial use of the let construct, ensuring thatM is evaluated only once.

Note that the historical presentation of PCF has no let construct; however including it
makes for a more complete language of study with some control over the evaluation
order, and also allows for a neater correspondence with the game semantics.

Idealized Algol. Idealized Algol, or IA for short, corresponds in Figure 2.1 to PCF+
state. It is used in the game semantics community (starting with the seminal paper
[Abramsky and McCusker, 1996]) as the (call-by-name) paradigmatic programming lan-
guage with ground type references: one can store an integer (though nothing much
would change if one could store other finite datatypes), but one cannot store a function,
or a reference. IA subsumes PCF, so all the programs and syntactic sugar mentioned
above may still be defined here. But IA also supports imperative programming, e.g.

�nℕ.newref r in
newref i in
r∶=1;
i∶=n;
while (not (iszero !i))do
r∶=(!i) ∗ (!r);
i∶=pred (!i)

done;
!r

wherewhileM doN done is syntactic sugar for (�x. ifM (N ; x) skip); and not and
the arithmetic operation ∗ are defined in the obvious way.
Beyond first-order imperative programming, IA supports a combination of higher-

order and state letting us write programs such as the following strictness test

�fU→U.newref r in f (r∶=1);
if (iszero (!r)) ff tt

∶ (U → U)→ B

CHAPTER 2. GENERAL PRELIMINARIES 33

replying ff when applied to a constant function, and tt if the function calls its argument.
Our presentation of IA differs from the historical one in two inessential ways. First,

as for PCF the let construct is usually missing from IA. But our let evaluates only terms
of ground type, which is definable2 in IA by letting let x =M inN be sugar for

newref r in r∶=M ; (�x.N) (!r) ,

illustrating an important aspect of IA references: they store values and not computa-
tions, so an expression r ∶=M must evaluateM fully before storing the value.
The second inessential difference is that our version of IA includes semaphores –

which we need, because they are inavoidable to get full abstraction in the presence of
parallelism also. For sequential IA, semaphores of course are definable via:

newsem s inM = newref s inM
grabM = if (iszero !M) (M∶=1)⊥

releaseM = if (iszero !M)⊥ (M∶=0) ,

which is fine only because IA is sequential: if a program attemps to grab a semaphore
which is not free (or dually, to release a semaphore which is free), then computation
will hang as there is no other thread to free the semaphore while the program waits.

Parallel PCF. Parallel PCF, or PCF� for short, corresponds in Figure 2.1 to PCF +
parallelism. To PCF it adds mere parallel computation. This is made official by the
operational semantics of Figure 2.2, which will indeed evaluate both branches of a par-
allel let in parallel. But keep in mind that this parallelism is not observable as there
is no primitive in PCF� allowing one to observe the evaluation order. Because of that,
giving denotational semantics to PCF� in isolation is a fairly trivial endeavour: any
denotational semantics for standard PCF will do, interpreting the parallel let as

let x1 =M1 in (let x2 =M2 inN) ,

but in this monograph we do not wish one denotational semantics for each fragment of
IA�, we want all fragments to be interpreted in the same denotational universe!

Idealized Parallel Algol. Idealized Parallel Algol, or IA� for short, corresponds in
Figure 2.1 to PCF + parallelism + state. It is used in the game semantics community
[Ghica and Murawski, 2008] as the (call-by-name) paradigmatic higher-order concur-
rent programming language with shared memory and semaphores.
To IA, our version of IA� adds parallelism, under the form of

Γ, x1 ∶ X, x2 ∶ X ⊢ M ∶ Y Γ ⊢ N1 ∶ X Γ ⊢ N2 ∶ X

Γ ⊢ let
(

x1 = N1
x2 = N2

)

inM ∶ Y

2Up to observational equivalent; interestingly the two do not have the same causal behaviour!

CHAPTER 2. GENERAL PRELIMINARIES 34

a parallel let operation which evaluates N1 and N2 independently. We refer to this as
parallelism and not concurrency because this let only adds parallel evaluation; in our
view concurrency emerges from parallel computation plus shared resources.
The usual presentation of IA� instead has a parallel composition operator

Γ ⊢ M ∶ U Γ ⊢ N ∶ U
Γ ⊢ M ∥ N ∶ U

which may be defined as syntactic sugar, viaM ∥ N = let
(

x = M
y = N

)

in skip.
In this work, we adopt the parallel let rather thanmerely parallel composition because

we also consider parallelism without shared state; but without state M ∥ N is not a
relevant construction as M,N produce no value and can only communicate with the
ambiant program via the shared memory. Again, this is not a significant change with
respect to the usual formulation of IA�, as the same behaviour may be obtained with

let
(

x1 = N1
x2 = N2

)

inM = newref r1, r2 in (r1∶=N1) ∥ (r2∶=N2);

(�x1x2.M) (!r1) (!r2)

if ∥ is primitive rather than the parallel let.
IA� is a very expressive language. The most impactful thing to notice is that the

combination of parallelism and shared state make it non-deterministic: one can define

⊢ choice = newref r in let
(

x = (r∶= 1)
y = !r

)

in iszero y ∶ B

exploiting a race in the memory to generate non-deterministic behaviour.

2.3 Generalities on Semantics
Finally, we include some reminders and settle on some terminology and notations re-
garding observational equivalence, and denotational semantics. In this section, we use
 as the ambiant programming language – it can refer to PCF, IA, PCF�, or IA�.

Observational equivalence. A -context for the judgment Γ ⊢ A is a term C[] of
 with a hole written [], such that for any Γ ⊢ M ∶ A in , we have ⊢ C[M] ∶ U
obtained by the (non capture-avoiding) substitution of [] withM .
Two terms Γ ⊢ M,N ∶ A of are -observationally equivalent iff
M ≃ N ⇔ for all C[] a -context for Γ ⊢ A, (C[M] ⇓ ⇔ C[N] ⇓)

We omit when it is clear from the context. Observational equivalence is usually
regarded as the canonical equivalence on programs: -observationally equivalent pro-
grams are intercheangeable as long as the evaluation context is in .

CHAPTER 2. GENERAL PRELIMINARIES 35

Denotational semantics. Observational equivalence is ultimately an operational no-
tion of program identity; it rests on the evaluation relationM ⇓, itself defined via the
operational semantics. An alternative to study program identity is given by denotational
semantics, embedding programs in a syntax-independent mathematical universe.

Denotational semantics is usually formulated categorically: the language is inter-
preted in a category equipped with sufficient structure. More precisely, a denotational
semantics in consists in several components. First, there is an interpretation function

J−K ∶ Types → 0

for types – this usually exploits the categorical structure, with e.g. JA → BK = JAK ⇒
JBK resting on a cartesian closed structure. This interpretation is extended to

J−K ∶ Contexts → 0

an interpretation of contexts, defined simply via JΓK =˘
(xi∶Ai)∈ΓJAiK. Now, we have

J−K ∶ Terms(Γ ⊢ A)→ (JΓK, JAK)

the interpretation of terms, defined by structural induction on the typing rules of –
for the simply-typed �-calculus this interpretation typically follows a cartesian closed
structure on , while the primitives of (e.g. natural numbers, booleans, manipulations
of state, etc) are interpreted by well-chosen morphisms in . By a denotational model
of , we mean a category along with the interpretation function J−K – sometimes
focusing on and leaving the latter implicit.
In this monograph, we assume the reader is familiar with basic categorical logic, in-

cluding the interpretation of the simply-typed �-calculus in a cartesian closed category.
For details, the reader is referred to [Lambek and Scott, 1988].

Adequacy and full abstraction. A denotational model should reflect the operational
evaluation. We say that an interpretation in a model is computationally adequate,
or simply adequate for short, if for all ⊢ M ∶ X a closed term of ground type,

M ⇓ v ⇔ JMK = JvK ,

i.e. the denotational model faithfully predicts the evaluation of a program to a value. For
general reasons, an adequate model is automatically soundwith respect to observational
equivalence, i.e. if JMK = JNK thenM ≃ N ; it is fully abstract if the converse also
holds: ifM ≃ N then we actually have JMK = JNK.

Intensional full abstraction. Given a denotational model , we may replay in the
syntactic definition of observational equivalence: we fix an object for observations,
typically JUK (still written U to alleviate notations). An observation on A is then any

� ∈ (A,U)

CHAPTER 2. GENERAL PRELIMINARIES 36

playing the role of -contexts: f, g ∈ (A,B) are observationally equivalent iff3

f ≃ g ⇔ for all � ∈ (A⇒ B,U), �◦f = �◦g
like syntactic observational equivalence. Quotienting by this yields a newmodel, and
 is intensionally fully abstract when this quotiented model is fully abstract.

The term “intensional full abstraction” was originally proposed by Abramsky, Ja-
gadeesan andMalacaria [Abramsky et al., 2000] to better describe the “full abstraction”
results for PCF. Intensional full abstraction is not full abstraction: it is full abstraction
of the quotiented model, but this quotiented model is usually not very useful as it is ob-
tained non-constructively – in particular, a model constructed in this way rarely helps
directly in reasoning on observation equivalence.
In contrast, intensional full abstraction keeps the focus on the model pre-quotient

(which, at least in the case of game semantics, turned out to be more important). There
we understand it as meaning that the “intensional behaviour” of morphisms of cap-
tures that of , or at least is sufficiently close that the morphisms of have the same
distinguishing power as contexts of through the interpretation – there is no “abstrac-
tion leaks”. Interestingly, it is in that sense that the term “full abstraction” is often
understood in compilation – see e.g. [New et al., 2016].

In this monograph, we try to be careful in distinguishing full abstraction from inten-
sional full abstraction, though we might occasionally slip and omit intensional.

3This definition is adequate when (⊤,U) has only two elements, for convergence and divergence. In some
settings such as in concurrent games, this must be adapted to match syntactic observational equivalence.

Part I

Pointer Game Semantics

37

38

39

Introduction to Part I

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

◦
•

Figure 2.3: As a low-pressure systemmoves in from the west, we can expect widespread
pointer showers to develop by Chapter 3, and these showers are likely to continue on
and off throughout Part I.

40

The first part of this monograph is an introduction to “pointer game semantics”, a
phrasing intended to include both the traditional (sequential deterministic) Hyland-Ong
games [Hyland and Ong, 2000], and the non-alternating games by Ghica and Muraski
[Ghica and Murawski, 2008], which of course have much in common with the former.
There are two pedagogical difficulties when learning game semantics. The first is

coming up with an intuition as to what plays and strategies represent in relation with
the interactive behaviour of the program – the operational meaning of well-bracketing,
innocence, etc. Understanding this is not enough to work with game semantics, but it
suffices to see the scientific value and role of game semantics. The second difficulty is
understanding the denotational machinery: the composition of strategies, the cartesian
closed structure, etc. We organized our introduction to pointer games addressing these
two difficulties separately, so that a reader wanting to get the point of game semantics
without mastering the combinatorics of the categorical structure can do so.
Accordingly, Chapter 3 introduces pointer games and its main notions and achieve-

ments, independently of the mechanics of the interpretation of programs. The content is
technical and mathematically precise, but omits the definition of the interpretation and
the corresponding categorical structure. The chapter starts by introducing the basic intu-
itions behind game semantics, at first without committing to any particular technical set-
ting, then motivates and introduces the main concepts of pointer games: arenas, plays
with pointers, strategies, etc; resting on operational intuitions. Still relying on opera-
tional intuitions, we show how certain patterns in plays witness the use of computational
effects such as state or control, and use this to motivate the notions of well-bracketing
and innocence, and showcase the associated full abstraction results. Finally, wemention
an alternative to pointers, copy indices, as in AJM games [Abramsky et al., 2000].
Then, Chapter 4 addresses the denotational interpretation of programs. We define

the composition of strategies, constructing a cartesian closed category ⇵-Strat. We
define the interpretation of IA in ⇵-Strat, and wrap up with a few complements.
Finally, Chapter 5 introduces non-alternating pointer games in the sense of Ghica

and Murawski [Ghica and Murawski, 2008]. The exposition roughly following the pat-
tern of the previous two chapters: first we define non-alternating strategies and illustrate
how they capture the interactive behaviour of programs of IA�; then we build the cor-
responding cartesian closed category ↺-Strat, and define the interpretation of IA�.

Chapter 3

First Steps in Game Semantics

In this first chapter, we give an introduction to game semantics – focusing in particular
on so-called HO orHyland-Ong games1 [Hyland and Ong, 2000] presenting a selection
of developments and landmark historical results. The presentation is technical, in that
we give mathematically precise definitions and statements. However, we focus on oper-
ational intuitions, (temporarilly) remaining elusive on the main source of complexity in
game semantics: the categorical structure and denotational definition of the interpreta-
tion of programs. This, in turn, shall be the topic of Chapter 4 – so altogether, Chapters
3 and 4 give an introduction to sequential alternating game semantics.
Of course, as an introduction to game semantics, this presentation is far from com-

plete. Many developments in game semantics do not fit in the framework presented here;
we also focus on semantics of programming languages and essentially omit the works
on logics and proof systems, on the other side of the Curry-Howard correspondence.

3.1 Executions, Plays, and Strategies
This section aims to convey some intuitions, and tomotivate and gradually put into place
our choices of mathematical formalizations for the basic ingredients of game semantics.

3.1.1 Dialogues, Plays, and Simple Games
Game Semantics is designed as a way to give a clean mathematical description of
the behaviour of open programs, as a back-and-forth interaction with an unspecified
execution environment. More precisely, a program is interpreted as an aggregate of all

1Those are often called Hyland-Ong/Nickau or HON games, also acknowledging Nickau, who came up
independently with a model of PCF [Nickau, 1994] that is essentially the same as Hyland and Ong’s. That is
fair, but then one should also acknowledge the work of Coquand, who also proposed independently definitions
having much in common with those [Coquand, 1995] (though not for PCF). Rather than the cumbersome
HONC games, we prefer to stick with HO games, which is well-recognized in the community and refers to
the specific set of technical definitions introduced by Hyland and Ong.

41

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 42

x ∶ ℕ, y ∶ ℕ ⊢ ℕ
q−

q+
12−

q+
30−

42+

Figure 3.1: First-order

f ∶ ℕ→ ℕ, x ∶ ℕ⊢ ℕ
q−

q+

q−

q+

50−
50+

42−
42+

Figure 3.2: Higher-order

x ∶ ℕ ⊢ ℕ
q−

q+

12−

q+

30−

42+

Figure 3.3: Repetition

its possible interactive behaviour with an execution environment. This is formalized as
a two-player game between Player – which plays for the program under scrutiny; and
Opponent – which plays the execution environment. Execution unfolds as those two
players exchange moves, each of which represents an observable computational event.

First-order. As a first example, let us consider the following open PCF program:
x ∶ ℕ, y ∶ ℕ ⊢ x + y ∶ ℕ

For the sake of this discussion, we assume that the addition is computed on a left-
to-right basis. From the point of view of standard operational semantics, there is no
computation to perform here: the program is in normal form. Game semantics start
where usual operational semantics stop, by asking the environment the value of x. One
may then imagine a dialogue between the program and its environment, as follows:

O ∶ “What is the value of x + y?”
P ∶ “Evaluation is stuck: what is the value of x?”
O ∶ “The value of x is 12.”
P ∶ “Evaluation is stuck: what is the value of y?”
O ∶ “The value of y is 30.”
P ∶ “The value of x + y is 42.”

In game semantics, such a sequence is called a play, and is typically drawn in a di-
agram as in Figure 3.1. By convention, we assign to Player the positive polarity +,
and to Opponent the negative polarity −. In this diagram and all game semantics di-
agrams to come, we label moves with their polarity. The flow of time is from top to
bottom, and each column corresponds to a component of the interface of the program
with its environment. Variable calls are represented with the symbol qwhich stands for
“Questions”. All other moves correspond to returns, and are called “Answers”.

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 43

This dialogue is one possible interaction between our program of interest and an
execution environment; there are countably many of those, for each values for x and y.
Such interactions only display the events observable by the environment: the program
(x + 0) + y has exactly the same plays as x + y, the internal computation is ignored.

Higher-order. Let us now consider another example:
f ∶ ℕ → ℕ, x ∶ ℕ ⊢ f (x) ∶ ℕ

One could expect Player to first prompt the environment for an actual function f from
integers to integers. It is a central feature of game semantics that we instead have:

O ∶ “What is the value of f (x)?”
P ∶ “Evaluation is stuck: what is the output value of f?”
O ∶ “What is the input value of f?”
P ∶ “Evaluation is stuck: what is the value of x?”
O ∶ “The value of x is 50.”
P ∶ “The input value of f is 50.”
O ∶ “The output value of f is 42.”
P ∶ “The value of f (x) is 42.”

which, in the usual style of game semantics, would appear as in Figure 3.2: we interact
with f in a lazy fashion, never fully grasping the infinite object behind. In this way,
game semantics reduces higher-order evaluation to an exchange of first-order tokens.

Simple games. But what are, formally, the plays of Figures 3.1 and 3.2?
In traditional game semantics, each type (or typing judgment) yields by interpretation

a game whose rules describe the valid open executions on the interface given by that
type. Exact formalizations vary wildly in the literature and we will see several of those
in this monograph; as a stepping stone we first present what must be the simplest notion
of game considered in the game semantics literature, simple games [Hyland, 1997]:
Definition 3.1.1. A simple game comprisesA = (|A|, polA,PA)with |A| a set ofmoves,
polA ∶ |A| → {−,+} a polarity function, and PA ⊆ |A|∗ a set of plays such that:

non-empty: " ∈ PA,prefix-closed: for all s ∈ PA, for all s′ ⊑ s, we have s′ ∈ PA,alternating: for all s = s1… sn, for all 1 ≤ i ≤ n − 1, polA(si) ≠ polA(si+1),negative: for all s = s1… sn, if n ≥ 1 then polA(s1) = −.

For instance, a game B for the booleans would have |B| = {q, tt, ff}, with polB(q) =
−, polB(tt) = polB(ff) = +, and PB = {",q,qtt,qff}. As above, we shall often write
moves with their polarities, as in |B| = {q−, tt+, ff+} and PB = {",q−,q−tt+,q−ff+}.However do keep in mind that this is merely for convenience: polarities are given by
polA, and not intrinsic to moves, i.e. to the elements of |A|.
A programM ∶ A is then interpreted as a strategy for Player on the game for A:

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 44

Definition 3.1.2. A strategy � ∶ A on simple game A is a subset � ⊆ PA satisfying:

non-empty: " ∈ �,
prefix-closed: for all s ∈ �, if s′ ⊑ s, then s′ ∈ �,

receptive: for all s ∈ �, if sa− ∈ PA, then sa− ∈ �,deterministic: for all sa+1 , sa
+
2 ∈ �, we have a1 = a2.

A strategy aggregates all executions that the program is prepared to make against any
execution environment; prescribing, in each state, the next observable action. When
presented an Opponent-ending play sa− ∈ PA, a strategy � ∶ A checks whether sa−
appears in �; and if so, if there is some extension sa−b+. If that is the case, � plays b+.
For instance, the strategy for the constant tt would be given by the set:

{",q−,q−tt+} ∶ B .

Simple games are appealing; they seem to capture exactly the intuitions so far, with-
out useless mathematical arabesque. But their expressiveness is limited in various ways,
making them seldom used in game semantics. We review next a major constraint, play-
ing a central role in the design of essentially all game semantics formalisms.

3.1.2 Replication and Thread Indexing
We consider the term x ∶ ℕ ⊢ x + x ∶ ℕ; whose game semantics admits:

O ∶ “What is the value of x + x?”
P ∶ “Evaluation is stuck: what is the value of x?”
O ∶ “The value of x is 12.”
P ∶ “Evaluation is stuck: what is the value of x?”
O ∶ “The value of x is 30.”
P ∶ “The value of x + x is 42.”

drawn in game semantics style in Figure 3.3. This illustrates an important aspect of
game semantics: it is quantitative, in that it replays separately each variable call. This
may seem redundant but it is not: if the execution environment is non-deterministic or
has access to state, then the two calls to x may obtain different values.

This does, however, ask the question of how this repetition is managed. Of course,
the definition of simple games does not forbid simply repeating the same move. For
instance, one could redefine the simple game for booleans as having the same set of
moves and polarities as above, but plays given by the recursive definition:

PB ∶∶= " ∣ q− ∣ q−tt+PB ∣ q−ff+PB ,

but this idea quickly fails as we climb the type-theoretic ladder. Consider the term:
f ∶ B → B → B ⊢ f (f tt ff) tt ∶ B

and the play in Figure 3.4. On the right, we illustrate each position with an indica-
tive, informal description of the corresponding operational state. Intuitively, Opponent

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 45

f ∶ B → B → B ⊢ B
q− f (f tt ff) tt

q+ f (f tt ff) tt
q− f (f tt ff) tt

q+ f (f tt ff) tt
q− ?

Figure 3.4: Ambiguity without thread-indexing

moves are requests to evaluate a certain subterm; so at Opponent moves we highlight the
subterm currently being evaluated. Likewise, Player questions correspond to variable
calls; so at Player moves we underline the corresponding variable occurrence.
On the first line, the initial Opponent move q− prompts the evaluation of the whole

term – so the whole term f (f ttff) tt is highlighted. In call-by-name, this prompts a
Player question q+ corresponding to requesting an output for the first occurrence of f ,
which is therefore underlined in the second line. In our example, Opponent then plays
q− in the column corresponding to the first argument of f – so the first occurrence of
f requests an evaluation of its first argument, highlighted in the third line. Yet again,
the highlighted sub-term starts with an occurrence of f , so the next Player move, on
the fourth line, is a move q+ asking an output for f , seemingly identical to the move on
the second line – but the variable occurrence underlined is not the same.
Now, in our example, the next move is an Opponent move corresponding to f calling

its second argument. But which occurrence of f? We have seen two of those, on the
second and fourth lines! As this last q− reacts to the q+ in the fourth line, it is natural to
expect that it refers to it so that the operational state is f (f tt ff) tt. But in a sufficiently
expressive language, it is also possible to find an environment in which the Opponent
asks to evaluate the first occurrence of f , i.e. in which case the operational state is
f (f tt ff) tt! Because there are two copies of the move q+ calling to f , Opponent has,
intuitively, two available copies of the move q− requesting the evaluation of the second
argument of f ; and without further structure, we cannot disambiguate2.

The literature proposes two ways to solve this: pointers, or copy indices.

3.1.3 Pointer Games
The most widely used solution to this problem, used in particular in Hyland-Ong games
[Hyland and Ong, 2000], is to enrich plays with pointers providing exactly the missing
information. For instance, we show in Figure 3.5 two plays with pointers disambiguat-

2To be precise, the usual arrow construction of simple games [Hyland, 1997] enforces a property called
local alternation that only allows one of these options. But the phenomenon does occur at third-order, or in
game semantics not enforcing local alternation such as that for higher-order state [Abramsky et al., 1998].

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 46

f ∶ B → B → B ⊢ B
q− f (f tt ff) tt

q+ f (f tt ff) tt
q− f (f tt ff) tt

q+ f (f tt ff) tt
q− f (f tt ff) tt

f ∶ B → B → B ⊢ B
q− f (f tt ff) tt

q+ f (f tt ff) tt
q− f (f tt ff) tt

q+ f (f tt ff) tt
q− f (f tt ff) tt

Figure 3.5: Two plays with pointers disambiguating Figure 3.4.

ing Figure 3.4. On the left hand side, Player is next to play ff+ while on the right hand
side, Player is to play tt+. Pointers provide the missing thread indexing.
Adding pointers to plays require reworking the notion of game, which must now

specify which pointers are allowed. This is achieved by switching to arenas:
Definition 3.1.3. An arena comprises A = (|A|, polA,≤A) with |A| a countable set of
moves, polA ∶ |A| → {−,+} a polarity function, ≤A a causality partial order, s.t.:

forestial: for all a1, a2, a ∈ |A|, if a1, a2 ≤A a, then a1 ≤A a2 or a2 ≤A a1,well-founded: there is no infinite descending a1 >A a2 >A a3 >A … ,
negative: if a ∈ |A| is minimal for ≤A, then polA(a) = −,alternating: for all a1, a2 ∈ |A|, if a1 _A a2, then polA(a1) ≠ polA(a2),

where a1 _A a2 means a1 <A a2 and a1 ≤A a ≤A a2 implies a = a1 or a = a2.
This shall be completed (with Question/Answer labelling) in Definition 3.2.4.

We call_A the immediate causality relation on A. Historically it has been written
⊢A in Hyland-Ong games, and called the enabling relation [Hyland and Ong, 2000];
but in this monograph we prefer to consider the partial order ≤A as primitive.
The arena for the typing judgment f ∶ B → B → B ⊢ B appears in Figure 3.6.

We have annotated the type to highlight the correspondence between components of
the arena and ground type occurrences. Usually these annotations are not present in
diagrams for arenas or plays, but the same information is conveyed by displaying the
type, and placing each move under the corresponding type component.
Both simple games and arenas are forests; but should be read differently: while in

simple games an execution amounts to exploring a branch of the forest, an arena sim-
ply presents the set of observable computational events along with their hierarchical
dependencies. For instance, in Figure 3.6, Opponent may start computation with q−4 .This enables three moves: tt+4 and ff+4 , as Player may implement a constant function
answering without evaluating its arguments. And, q+3 if Player wishes to evaluate f . In
turn, this lets Opponent return tt−3 or ff−3 , or evaluate one of its arguments – and so on.

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 47

A =

(B1 → B2 → B3) ⊢ B4

q−4

q+3 tt+4 ff+4

q−1 q−2 tt−4 ff−4

tt+1 ff−1 tt+2 ff+2

Figure 3.6: The arena for the sequent f ∶ B → B → B ⊢ B

Clearly, executions will not be merely walks on this tree: typically a function evalu-
ates some of its arguments, possibly several times, then returns a value. Accordingly,
executions may hop around branches of the arena, as captured formally by:
Definition 3.1.4. A pointing sequence on arena A is s = s1… sn ∈ |A|∗, where each
si may come with a pointer to some sj with j < i. It is legal if it satisfies:

justified: if si points to sj , then sj _A si,initialized: if si has no pointer, then it is minimal in A.

A (alternating) legal play on A is a legal pointing sequence which is:

alternating: for all 1 ≤ i ≤ n − 1, polA(si) ≠ polA(si+1),

We write ⇵- ↶Plays(A) for the set of alternating legal plays on A.

For instance, the following is an alternating legal play in the arena of Figure 3.6:
q−4 q+3oo q−1oo q+3
ww

q−2gg (3.1)
but it is not usually drawn like that: instead it is drawn from top to bottom instead of left
to right, pointers are represented via dotted lines and without arrow heads (as they must
always go back in time), and the indices 1, 2, 3, 4 are omitted, the same information
being conveyed by placing moves under the corresponding type component. Following
this convention, the alternating legal play above is drawn as in Figure 3.5 on the rhs.
For the rest of this chapter, unless specified otherwise, by play we always mean al-

ternating legal play. The arguably heavy notation ⇵- ↶Plays(A) invites an explanation:
say that a play s ∈ ⇵- ↶Plays(A) is in state O if it has even length, i.e. it is Opponent’s
turn to play. Likewise, an odd-length play is in state P . The two arrows ⇵ suggest
alternation as the control alternates between two states O and P , while the arrow ↶
evokes pointers as in (3.1). This is the first instance of a scheme followed throughout
this monograph for different kinds of plays – alternating or not; pointing or not.
We introduce some notations on plays. We use s, t, u, v to range over plays, and " for

the empty play. We write ⊑ for the prefix ordering on plays, which includes compati-
bility with pointers. We often extend plays by juxtaposing moves as in sab where it is

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 48

understood that s is a play and a, b are moves, leaving their possible pointer implicit.
When writing equalities such as sab = t, it is understood that pointers are required to
coincide as well. If s is a play, we write it s1… sn and refer to si for individual moves.
If si points to sj (with j < i), we call sj the justifier of si.
Plays with pointers are a powerful formalism, but one drawback is that unlike in

simple games, they are no longer simply strings of moves. The reader may notice that
they are referred to in english, as in “sj points to si” rather than via a specific rigorous
representation, e.g. conveyed by a partial function from indices to indices. Debatable
as it is, this is the standard practice in Hyland-Ong games – manipulations on plays with
pointers are always cumbersome, but can quickly become unwieldy especially if done
formally, as pointers must be constantly reindexed or reassigned3.

We can define strategies on an arena, similarly to Definition 3.1.2:
Definition 3.1.5. For A an arena, an alternating strategy � ∶ A, or ⇵-strategy for
short, is a set � ⊆ ⇵- ↶Plays(A) satisfying the following conditions:

non-empty: � ∈ � ,
prefix-closed: ∀s ⊑ t ∈ �, s ∈ � ,

receptive: ∀s ∈ �, sa− ∈ ⇵- ↶Plays(A) ⇐⇒ sa− ∈ � ,
deterministic: ∀sa−b+1 , sa

−b+2 ∈ �, sab1 = sab2

We refer to an alternating strategy simply as a strategy when it causes no confusion.

Copy indices. We are due for a discussion on the other main solution to the thread
indexing problem, copy indices. But we prefer to postpone this to Section 3.4, and
instead we carry on with the construction of pointer game semantics.

3.2 Carving Out Innocent Strategies
Now that we know how to play, we may explore the model and examine its computa-
tional meaning – starting from PCF, the core of all languages used in this monograph.

3.2.1 The Strategies of PCF
Interpretation of types. Following Section 2.2, we consider in this monograph a
version of PCFwith one constructor⇒ for the function space, and three base types (U,B
and ℕ). Accordingly, there are three basic arenas U,B and N, described in Figures 3.7,
3.8 and 3.9 respectively – ignoring for now the annotation of moves with and .

In light of the discussion above, these arenas should be rather self-explanatory: Op-
ponent prompts computation with the initial move q−, and Player answers with a value.
One important common point is that all three are well-opened:

3There have been proposals for a more rigorous handling of pointers, notably resting on nominal sets in
[Gabbay and Ghica, 2012]. The issue does not appear in AJM games, where pointers are absent altogether –
though this absence limits the expressiveness of AJM games. In the model proposed later in this monograph,
concurrent games, the issue is avoided as pointers are present, but derived rather primitive.

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 49

q−,

✓+,

Figure 3.7: U

q−,

tt+, ff+,

Figure 3.8: B

q−,

0+, 1+, 2+, …

Figure 3.9: N

Definition 3.2.1. An arena A is well-opened if and only if it has exactly one minimal
move, called the initial move of A, and written init(A).

In fact, arenas arising as the interpretation of types of PCF will always be well-
opened. This lets us describe an easy construction for the arrow of two arenas.
Definition 3.2.2. Consider A1, A2 arenas with A2 well-opened.

Then, the (well-opened) arrow arena A1 ⇒ A2 is defined via components:

moves: |A1 ⇒ A2| = |A1| + |A2|causality: (i, a) ≤A1⇒A2 (j, a
′) ⇔ (i = j & a ≤Ai a

′) ∨ (i = 2 & a = init(A2))
polarities: polA1⇒A2 (i, a) = (−1)ipolAi (a) .

In A ⇒ B, the two arenas are first put side by side, with polarities reversed in A (so
that Player and Opponent exchange roles). Then, A is set to depend on the initial move
ofB. This means that once the initial move is played inA ⇒ B, Player has two choices:
either to play in B (ignoring A), or to play some minimal move in A.
Altogether, this yields an interpretation of types of PCF as arenas, via

JA → BK = JAK⇒ JBK

with JUK = U, JBK = B and JℕK = N. The reader is invited to check that for instance,
J(B → B → B)→ BK is indeed the arena shown in Figure 3.6.

Interpretation of terms. For each term ⊢ M ∶ A, there is a strategy
JMK ∶ JAK ,

its interpretation – it is computed by induction on M following the methodology of
denotational semantics, via a cartesian closed category of arenas and strategies. This
will appear in due course but we postpone it for now: it takes a while to set up this
machinery, which is not needed to build up an intuition for what game semantics do.
Though the strategy of a term is computed denotationally, an experienced game se-

manticist will be able to directly list its plays, without going through the intricate def-
inition of the interpretation. This is because plays are executions: rather than denota-
tionally, they can be obtained directly from the term by operational means4. This is

4Thoughmaking this formal is not easy, and has been the topic of an active line of work around operational
game semantics [Danos et al., 1996, Jaber, 2015, Ghica and Tzevelekos, 2012, Levy and Staton, 2014].

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 50

(B → B → U) → B
q− �fB→B→U. f ((f ff ff); tt) ff ; tt

q+ �fB→B→U. f ((f ff ff); tt) ff ; tt
q− �fB→B→U. f ((f ff ff); tt) ff ; tt

q+ �fB→B→U. f ((f ff ff); tt) ff ; tt
q− �fB→B→U. f ((f ff ff); tt) ff ; tt
ff+ �fB→B→U. f ((f ff ff); tt) ff ; tt

✓− �fB→B→U. f ((f ff ff); tt) ff ; tt
tt+ �fB→B→U. f ((f ff ff); tt) ff ; tt

q− �fB→B→U. f ((f ff ff); tt) ff ; tt
ff+ �fB→B→U. f ((f ff ff); tt) ff ; tt

✓− �fB→B→U. f ((f ff ff); tt) ff ; tt
tt+ �fB→B→U. f ((f ff ff); tt) ff ; tt

Figure 3.10: Illustration of the operational content of game semantics

illustrated in Figure 3.10. As before, Opponent moves trigger the evaluation of a sub-
term, which is highlighted. The following Player move then corresponds to the head
(i.e. leftmost) variable occurrence (or constant) of the subterm being evaluated. The
pointers from Player moves correspond to the stage where the variable in head position
was abstracted, or to the function call being returned by the value in head position.
The standard way of stating that the model reflects computation is:

Proposition 3.2.3. The interpretation is computationally adequate for PCF:
For each ⊢ M ∶ X, we haveM⇓ iff JMK has an answer to the initial move.

Plays give a mathematically, syntax-independent notion of interactive execution. In
principle, a play may be realized by many different programs, but are all plays realizable
by some program? By a program from PCF, or from a more expressive language?

3.2.2 Well-Bracketing
For instance, is the following play a possible execution of a term?

(U → U) → B
q− �fU→U. f M

q+ �fU→U. f M
q− �fU→U. f M

tt+ �fU→U. tt

We argue informally why this cannot be an execution in PCF. The first action of
the term is to ask its argument, so within PCF it must have the form �fU→U. f M ; we

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 51

annotate the figure with the corresponding operational state as in Figure 3.10. In the
last line, tt at toplevel indicates the overall computation has terminated to tt. This is
confusing, since in the third line, only the argument of f was under evaluation. How
can evaluating the argument of f cause the whole computation to terminate?

Nevertheless, this play is indeed a realistic execution, for the term
�fU→U. callcc (�kB→U. f (k tt); ⊥) ∶ (U → U)→ B

where callcc is the call-with-current-continuation primitive originating in Scheme, and
which famously may be typed with Peirce’s law [Griffin, 1990]. We shall not need the
precise operational semantics of callcc, but informally callccM immediately callsM ,
feeding it a special function k, the “continuation”. When the continuation is called with
value v, callcc interruptsM and returns v at toplevel, breaking the call stack discipline.
Can the play above be realised without callcc (or some other analogous control oper-

ator)? We can show that the answer is no, by capturing those plays that “respect the call
stack discipline”, and refining the whole interpretation to show that the interpretation
of terms only yields such plays. This is the goal of the notion of well-bracketing.

First we enrich arenas:
Definition 3.2.4. A Question/Answer labeling on arena A is a function

�A ∶ |A| → {,}

which satisfies the following conditions:

question-opening: if a ∈ |A| is minimal, then �A(a) = ,
answer-closing: if �A(a) = , then a is maximal for ≤A,

Questions intuitively correspond to variable calls, while Answers correspond to re-
turns. From now on, we assume that all arenas have a Question/Answer labeling. For
basic arenas U,B and N, the labelling is as indicated in Figures 3.7, 3.8 and 3.9: the
initial Opponent move is a Question, and the different values are Answers. This is ex-
tended to the arrow arena with �A⇒B(1, a) = �A(a) and �A⇒B(2, b) = �B(b).

If s ∈ ⇵- ↶Plays(A) and si is an answer, it cannot be minimal inA by question-opening.
Its antecedent in A appears in s as some sj with j < i, and is a question by answer-
closing. We say that si answers sj . If a question in s has an answer in s we say it is
answered in s. The last unanswered question of s, if any, is the pending question.

We now capture executions respecting the call stack discipline:
Definition 3.2.5. Consider A an arena, and s ∈ ⇵- ↶Plays(A) an alternating legal play.
It is well-bracketed if for all prefix ta ⊑ s, a answers the pending question of t.

All plays encountered in the monograph until now are well-bracketed, with the ex-
ception of the example at the beginning of Section 3.2.2. We can then define:
Definition 3.2.6. Let � ∶ A be a strategy on A.

It is well-bracketed iff for all sa+ ∈ �, if s is well-bracketed then so is sa.

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 52

(B → U) → U
q− �fB→U. f (let x =!r in r∶= 1; (x > 0)) r → 0

q+ �fB→U. f (let x =!r in r∶= 1; (x > 0)) r → 0
q− �fB→U. f (let x =!r in r∶= 1; (x > 0)) r → 0
ff+ �fB→U. f ff r → 1
q− �fB→U. f (let x =!r in r∶= 1; (x > 0)) r → 1
tt+ �fB→U. f tt r → 1

Figure 3.11: A play for a strategy with references

Thus, a well-bracketed strategy is never the first to break the call stack discipline.
We shall see that all the operations on strategies used in the interpretation of PCF

(notably, composition) preserve well-bracketing. In the execution at the start of Section
3.2.2, Player is the first to break well-bracketing; so this execution cannot occur in a
well-bracketed strategy, and is therefore – as expected – unrealizable in PCF.

3.2.3 Visibility and Innocence
Likewise, is this play a possible execution of a term?

(B → U) → U
q− �fB→U. f M

q+ �fB→U. f M
q− �fB→U. f M
ff+ �fB→U. f ff
q− �fB→U. f M
tt+ �fB→U. f tt

This also seems unfeasible in PCF. Again, on the rhs we show, assuming a term
realising this play, its corresponding operational states. At the third and fifth moves,
the same subterm is being evaluated; yet we get two distinct answers. In an extension
of PCFwith a primitive> for non-deterministic choice, this play would be realisable by
�fB→U. f (tt > ff). But does it make computational sense in a deterministic language?
Once more, the answer is yes: the play above describes a valid execution of the term

�fB→U.newref r in f (let x =!r in r ∶= 1; (x > 0)) ∶ (B → U)→ U

in IA (see Section 2.2), i.e. PCF extended with references: newref r inM allocates a
reference r initialized to 0. We show in Figure 3.11 an operational description.
Yet, again, this play cannot be realised in PCF. To show this, we give a version of

innocence [Hyland and Ong, 2000], formalizing that without state, independent evalua-
tions of the same subtermmust yield the same response. The first step is a mathematical
way to state that two Opponent-ending plays “evaluate the same subterm”, like the two
prefixes of the play of Figure 3.11 terminating with a q− on the left.

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 53

(U → U) → U
q−

q+
q−

q+
q−
✓+

Figure 3.12: A non P-visible play

The operation computing (a mathematical notion of) “current subterm” is:
Definition 3.2.7. Let s ∈ ⇵- ↶Plays(A). Its P-view is the subsequence defined by:

⌜"⌝ = "
⌜sa+⌝ = ⌜s⌝a+

⌜sa+1 s
′a−2 ⌝ = ⌜s⌝a+1 a

−
2 if a2 points to a1,

⌜sa−2 ⌝ = a−2 if a2 is minimal,

where pointers are preserved if their target remains in the subsequence.

We take the immediate prefix for P -ending plays and follow the pointer forO-ending
plays. For instance, the prefixes of length 3 and 5 of the play on Figure 3.11 have the
same P-view, capturing that they correspond to the same subterm. This is a fundamental
definition – really, one of the cornerstones of HO games [Hyland and Ong, 2000].
But in order to use this definition it better be a well-defined operation on plays, which

is not yet the case: for instance, in Figure 3.12 we gray out moves not selected in com-
puting the P-view of s ∈ ⇵- ↶Plays(A) for A = J(U → U) → UK. The subsequence of
⌜s⌝ in black is an alternating sequence of moves as needed, but it does not contain the
justifier of ✓+. So ✓+ has no justifier in ⌜s⌝, which means that ⌜s⌝ ∉ ⇵- ↶Plays(A) as
✓+ is not minimal in A. Accordingly, we focus on those plays where ⌜−⌝ is defined:
Definition 3.2.8. A play s ∈ ⇵- ↶Plays(A) is P-visible if ∀t ⊑ s, ⌜t⌝ ∈ ⇵- ↶Plays(A).
Likewise, a strategy � ∶ A is P-visible (or just visible) iff all its plays are P-visible.
We write Vis(A) for the set of P-visible strategies on arena A.

So, “computing P-views never drops pointers”, or “Player always points in the P-
view”. On P-visible s ∈ ⇵- ↶Plays(A), the P-view always yields a (P-visible) play. We
now define innocent strategies as those that behave the same in any situation where the
same subterm is being evaluated, i.e. whose behaviour only depends on the P-view:
Definition 3.2.9. A P -visible strategy � ∶ A is innocent if it satisfies:

innocence: for all sa+ ∈ � and t ∈ �, if ⌜s⌝ = ⌜t⌝ then ta+ ∈ � with ⌜sa⌝ = ⌜ta⌝.

We write Inn(A) for the set of innocent strategies on arena A.

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 54

The clause ⌜sa⌝ = ⌜ta⌝ serves to ensure that a has the “same” justifier in s and
in t. Again we shall see that innocence is preserved by all operations involved in the
interpretation of PCF so that any term of PCF is interpreted by an innocent strategy.
The play at the beginning of Figure 3.2.3 contains a direct failure of innocence –

hence, it cannot appear in an innocent strategy and thus cannot be realised in PCF.

O-visibility. Whenever a condition constrains the behaviour of Player, one may con-
sider the dual concerning Opponent. As a short digression we consider O-visibility,
which will be technically helpful later on in this chapter. First we define:
Definition 3.2.10. Let s ∈ ⇵- ↶Plays(A). Its O-view is the subsequence defined by:

⌞"⌟ = "
⌞sa−⌟ = ⌞s⌟a−

⌞sa−1 s
′a+2 ⌟ = ⌞s⌟a−1 a

+
2 if a2 points to a1,

where pointers are preserved if their target remains in the subsequence.

The definitionmirrors that of the P-view, with onemissing clause for the initial move:
this mirrors an assymmetry in the definition of arenas/plays, where initial moves must
always be negative. As for P-views, this operation is well-defined only for:
Definition 3.2.11. A play s ∈ ⇵- ↶Plays(A) is O-visible if ∀t ⊑ s, ⌞t⌟ ∈ ⇵- ↶Plays(A).

O-visibility captures those plays where the external environment acts in a P-visible
way, i.e. does not have access to effects that break P-visibility, see Section 3.3.3. We
say that s ∈ ⇵- ↶Plays(A) is visible when it is both P-visible and O-visible.
One can also apply the same principle to innocence and defineO-innocence capturing

these plays where Opponent acts innocently, but this turns out less useful.

3.2.4 Finite Definability and Full Abstraction
At this point, via well-bracketing and innocence we have effectively eliminated all PCF
non-definable behaviour. The theorem making this formal is called finite definability;
we show the main steps of its proof as well as how it entails intensional full abstraction.

Meager innocent strategies. We have used the P-view operation as a mathematical
attempt to capture the “current subterm” of a term reached in a play. Accordingly, it
makes sense to attempt recovering syntax by examining those plays obtained by ⌜−⌝.
Clearly, for any P-visible s ∈ ⇵- ↶Plays(A), we have ⌜⌜s⌝⌝ = ⌜s⌝, so the plays obtained
by ⌜−⌝ are exactly those invariant under ⌜−⌝, easily characterized as those P-visible
plays where Opponent always points to the previous move – call these the P-views.
Following this discussion, it should be no surprise that the P-views are the key to

reconstructing a term from a strategy. If � ∶ A is P-visible, we define
⌜⌜�⌝⌝ = {⌜s⌝ ∣ s ∈ �}

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 55

the set of P-views of �. If � is innocent, it is a simple fact that ⌜⌜�⌝⌝ ⊆ �. Moreover,
� can then be recovered as the set of P-visible plays s such that for all t ⊑ s, we have
⌜t⌝ ∈ ⌜⌜�⌝⌝. Thus, sets of P-views are an equivalent representation of innocent strategies.

It is informative to examine those sets of P-views matching innocent strategies:
Definition 3.2.12. A meager innocent strategy on A is a set V of P-views on A, s.t.:

non-empty: " ∈ V ,
prefix-closed: for all s ∈ V and t ⊑ s, then t ∈ V

receptive: for all s ∈ V , if sa− is a P-view then sa ∈ V ,
deterministic: for all sa+1 , sa

+
2 ∈ V we have sa1 = sa2.

Finally, V is well-bracketed if all its plays are well-bracketed.
We write Meager(A) for the set of meager strategies on arena A.

From the above and routine verification, we obtain:
Proposition 3.2.13. Consider A an arena. Then we obtain a bijection:

⌜⌜−⌝⌝ ∶ Inn(A) ≃ Meager(A) ,

and moreover � is well-bracketed iff ⌜⌜�⌝⌝ is.

Proof. The only subtlety is that is ⌜⌜�⌝⌝ is well-bracketed, then � is well-bracketed. This
follows from the preliminary observation, proved by induction on s, that if s is well-
bracketed then its pending question (if any) always appears in the P-view ⌜s⌝.

In a certain sense, meager innocent strategies are syntax – or at least, each finite
meager innocent strategy may be equivalently written in the syntax of PCF:

Finite definability. Let us say that an innocent strategy � ∶ A is finite if the corre-
sponding meager strategy ⌜⌜�⌝⌝ has finitely many even-length plays. The size of finite �
is then the cardinal of the set of s ∈ ⌜⌜�⌝⌝ of even length.
Theorem 3.2.14. Let A be a PCF type, and � ∶ JAK be finite well-bracketed innocent.
Then, there is a PCF term ⊢ M ∶ A s.t. JMK = �.

Sketch. For more details than this sketch, see [Hyland and Ong, 2000].
W.l.o.g., the type A has the form A1 → ⋯ → An → X where for each 1 ≤ i ≤ n,

Ai = Ai,1 → ⋯→ Ai,pi → Xi .

We reason by induction on the size of �. If � has no reaction to the (unique) minimal
q− in X (i.e. � = {",q−}), any diverging term will do. Otherwise, by determinism
there is exactly one move a+ s.t. q−a+ ∈ �. If a+ is an answer v+ on X, thenM is the
matching constant. Otherwise, a+ is the initial q+i0 in some Ai0 . The situation is

A1 → … → (Ai,1 → … → Ai,pi → Xi) → … → An → X
q−

q+i0
q−i0,1 q−i0,pi0

v−

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 56

with, in grey, the possible extended P-views. For each, there is a residual substrategy.
We extract those – first, if q+i0 immediately returns. For each value v in Xi, we form

⌜⌜�v⌝⌝ = {q−s ∣ q−q+i0v
−s ∈ ⌜�⌝} ,

ameager innocent strategy on JAK of size strictly lesser than �. By IH there is⊢ Mv ∶ Awith JMvK = �v. As � is finite, there are finite many v s.t. �v is non-diverging.Alternatively, for all 1 ≤ j ≤ pi0 , we consider P-views q−q+i0q−i0,js ∈ ⌜⌜�⌝⌝ where asa P-view, s answers neither q+i0 , nor q− by well-bracketing. Such a P-view yields

q−i0,js ∈ ⇵- ↶Plays(JA1 →⋯ → An → Ai0,jK)

a P-view where moves in s formerly depending on q− in JAK are set to depend on q−i0,j .Considering all such P-views generates a meager innocent strategy of size strictly lesser
than �, hence by induction hypothesis there is ⊢ Mi0,j ∶ A1 → ⋯ → An → Ai0,j s.t.
JMi0,jK = �i0,j . Finally, with all this data we may form ⊢ M ∶ A as

�xA11 … xAnn . case xi0 (Mi0,1 x1 … xn)… (Mi0,pi0
x1 … xn) of

v1 →Mv1
…

vp →Mvp

where p is such that every �vi with i > p is diverging. We get, as needed JMK = �.
This final statement is conceptually straightforward (if one has access to the definition

of the interpretation, which we save for the next chapter), but technically challenging
as reasoning concretely on the categorical definition of the interpretation and on the
(forthcoming) composition of strategies is unwieldy. In the author’s opinion, there is
still room for improvement in finding a conceptually clean, fully detailed and human-
readable proof of this that makes it as easy technically as it is conceptually.
Here, case is the syntax introduced in Section 2.2, involving the let construct. With-

out that, simply iterating if constructs would yield a strategy that re-computes
xi0 (Mi0,1 x1 … xn)… (Mi0,pi0

x1 … xn)

each time it matches it against a value. This is what is done in [Hyland and Ong, 2000]
as the historical presentation of PCF does not include a let construct. This yields a term
that is not quite �, but is nonetheless observationally equivalent.

We conclude this discussion on definability with the statement:
Conjecture 3.2.15 (Intensional Universality). Consider a PCF type A. For any com-
putable well-bracketed innocent � ∶ JAK, there is ⊢ M ∶ A s.t. JMK = �.

Hyland and Ong [Hyland and Ong, 2000] prove universality up to contextual equiva-
lence (with a similar independent result in AJM games [Abramsky et al., 2000]). Their

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 57

construction fails to achieve intensional universality because their version of PCF lacks
a “let” construct, making them unable to avoid repeated computation. There is strong
confidence that their construction yields intensional universality in the presence of let
(intensional universality does hold in call-by-value [Murawski and Tzevelekos, 2013]),
but as far as we know the details have not been properly checked.

Intensional Full Abstraction. Recall from Section 2.3 that a model is intensionally
fully abstract for a language when its observational quotient is fully abstract.
The famous full abstraction for PCF follows by a fairly typical argument, once one

has an adequate model with sufficient definability properties.
Theorem3.2.16 (Intensional Full Abstraction for PCF). Innocent well-bracketed strate-
gies form an intensionally fully abstract model for PCF.

Sketch. Consider ⊢ M,N ∶ A observationally equivalent, and assume JMK and JNK
are not, i.e. there is a test � which distinguishes them. One may easily prove (see
[Hyland and Ong, 2000]) that it suffices to consider � finite. By Theorem 3.2.14, � is
defined by a PCF term, which we present as a context C[−]. By Proposition 3.2.3, it
then follows that C[−] distinguishesM andN , contradiction.
We have seen that by imposing well-bracketing and innocence, we have successfully

banned all non PCF-definable behaviour. But dually, are references and control opera-
tors complete, are they sufficient to express unrestricted strategies?

3.3 Non-Innocence and Effects
Though Hyland-Ong games were originally designed as a model of plain PCF, what
is in hindsight one of their most striking feature is that a crisp description of a few
computational effects already hide in the definitions seen so far.

3.3.1 Non-Local State
As before, we start the discusion by looking at an example:

B

q−

tt+

q−

ff+

Clearly, this play is not realizable in PCF since it breaks innocence. But unlike the
play of Section 3.2.3, it is not realizable either in IA, the extension of PCF with local
state. Indeed, if this is to be realized by a deterministic program, some state must be

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 58

shared – or some information must flow – between the two calls. In contrast, a closed
termwith access to local statemay initialize variables only once computation has begun,
and thus seperate calls cannot enjoy any shared state.
Concretely, an hypothetical ⊢ bad ∶ B acting as above would break �-equivalence:

(�x. if x x x)bad

should evaluate to ff , as all calls are routed to bad. Yet, if bad bad bad should evaluate
to tt: we now have three separate instances of bad, so only the first call matters. In this
monograph we deem this pathological: we are concerned with call-by-name languages,
which must hence enjoy the call-by-name equational theory, including �-equivalence.
We ban bad via the notion of single-threadedness: a single-threaded strategy only

depends on the current thread, so that it cannot pass information between distinct in-
stances. For the next definition, in a play s ∈ ⇵- ↶Plays(A), we say that si is hereditarily
justified by sj (with j < i) if following the pointers from si eventually hits sj . If sj isinitial, we say that sj is the (necessarily unique) initial hereditary justifier of si.
Definition 3.3.1. Consider A an arena, and s ∈ ⇵- ↶Plays(A).
The current thread of non-empty s, written ⌈s⌉, is the subsequence of s comprising

all moves with the same initial hereditary justifier as the last move of s; and ⌈"⌉ = ".

The definition of single-threaded strategies then mimics that of innocent strategies:
Definition 3.3.2. Consider � ∶ A any strategy. It is single-threaded if it satisfies:

well-threaded: for all sa+ ⊑ t ∈ �, the justifier of a appears in ⌈s⌉,
single-threaded: for all sa+, t ∈ �, if ⌈s⌉ = ⌈t⌉ then ta+ ∈ � with ⌈sa⌉ = ⌈ta⌉.

This bans pathological strategies such as bad. On the other hand, single-threadedness
is preserved under all operations involved in the interpretation of IA so that the inter-
pretation of any term of IA yields a single-threaded strategy.

3.3.2 Higher-Order State
Finally, for our last example, consider the following play:
(((U → A → U) → A → U) → U

q− �F . F (�xy.M)N
q+ �F . F (�xy.M)N

q− �F . F (�xy.M)N
q+ �F . F (�xy. x)N

q− �F . F (�xy.M)N
q+ �F . F (�xy.M) y

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 59

As shown in the indicative term on the right hand side, and following the intuitions
on the operational content of game semantics so far, the last Player move corresponds
to calling variable y. But how can that make sense, since y is not even in the scope!

Yet, again, this play is computationally meaningful – it witnesses higher-order state:
�F .newrefA r inF (�xy. r∶=y; x) (!r)

Though we borrow the notation from IA, this must be read completely differently.
Here A can be an arbitrary type, i.e. potentially a function. Whereas in IA, references
store values, here they store computations; so that when the reference is read, the control
flow jumps accordingly, giving control to arbitrary program phrases.
Higher-order state is a sensible programming feature, found in the wild in call-by-

value languages such as ML. In call-by-value game semantics, a games model with
morphisms set to comprise all well-bracketed single-threaded strategies is fully abstract
model for a version of ML with higher-order store [Abramsky et al., 1998]. Semantic
investigations have also been conducted in call-by-name [Laird, 2002, Goyet, 2013],
but this is somewhat less natural from a programming language point of view. Either
way, we leave higher-order state out of the scope of this monograph.
So how should one get rid of (the behaviours generated by) higher-order state? With-

out higher-order state, only information can flow through shared state, not control. So
Player can only pass control (i.e. call variables) within the scope, i.e. the current syn-
tactic branches. The same sentence, translated in game semantics terminology along
the dictionary elaborated so far, reads: Player can only point within the P-view. But we
have already seen this: this is P-visibility (Definition 3.2.8). So P-visibility, originally
imposed as a preliminary construction just to make P-views well-defined, is actually
also the condition we need to allow ground state but ban higher-order state!
P-visibility is preserved by all constructions used in the interpretation of IA (includ-

ing ground type references), while the play above clearly is not P-visible.

3.3.3 The “Semantic Cube”
It is striking that almost, if not all, strategies in Hyland-Ong games correspond to ex-
isting programming features, for a framework originally designed for plain PCF only!
From now on we assume that all strategies are single-threaded and P-visible, the canvas
for the celebrated “semantic cube” that we shall present now.

Idealized Algol. Well-bracketed strategies support an adequate interpretation of IA:
Proposition 3.3.3. There is an interpretation J−K sending types of IA to arenas, and
terms ⊢ M ∶ A to well-bracketed, single-threaded, P-visible JMK ∶ A.

Moreover, for all ⊢ M ∶ U,M ⇓ iff in JMK, the initial move has an answer.

The interpretation of IA will be detailed in Section 4.2.
It turns out that well-bracketed strategies support “only” the interpretation of IA: we

have a finite definability property similar to Theorem 3.2.14. We state:

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 60

Theorem 3.3.4. Consider A an IA type.
For any � ∶ JAK visible, well-bracketed, single-threaded, and finite (i.e. with finitely

many even-length plays) there is ⊢ M ∶ A a term of IA such that JMK = �.

We shall not give the detailed proof of this as their statement relies on the composi-
tional structure, but the key arguments appear in Section 4.3.2.
As for PCF, from those definability properties follow:

Theorem 3.3.5 (Intensional Full Abstraction for IA). P-visible well-bracketed single-
threaded strategies form an intensionally fully abstract model for IA.

The reasoning for that is the same as for Theorem 3.2.16.
Recall that intensional full abstraction means that the observational quotient of the

model is fully abstract; in other words, visible well-bracketed single-threaded strate-
gies have the same distinguishing power as terms of IA. As for PCF this makes the
quotiented fully abstract model hard to reason with, but for IA something much more
interesting happens: we can characterize concretely observational equivalence.

Complete plays. This is achievable by understanding which parts of a P-visible, well-
bracketed strategy can be explored by a P-visible, well-bracketedOpponent – and among
those, which lead to an observable result at toplevel. This is done via:
Definition 3.3.6. Consider A an arena. A play s ∈ ⇵- ↶Plays(A) is complete iff it is
well-bracketed, O-visible, P -visible, and every question has an answer.

If � ∶ A, we write comp(�) for the set of its complete plays. Complete plays indeed
characterize observational equivalence for P-visible well-bracketed strategies:
Proposition 3.3.7. Consider �, � ∶ A two P-visible, well-bracketed strategies. Then,

� ≃ � ⇔ comp(�) = comp(�) .

Again we omit the (rather simple) details which rely on the compositional structure
introduced in the next chapter only, but the idea is the following. If a strategy � ∶ A ⇒ U
distinguishes � and �, then it is straightforward to read from that a complete play in one
but not the other. Reciprocally, if s is a complete play in � but not in �, then q−s✓+
(with adequate pointers) is a play in A ⇒ U. The set of all prefixes of q−s✓+, closed
under receptivity, is then a valid strategy that distinguishes � and �.

From Proposition 3.3.7 and Theorem 3.3.5, it shall be clear that we get:
Theorem 3.3.8. Consider A a type, and ⊢ M,N ∶ A two terms of IA. Then,

M ≃ N ⇔ comp(JMK) = comp(JNK) .

This entails that the fully abstract model is effectively presentable: it can be phrased as
a computable function into an effective domain [Plotkin, 1981]; concretely this means
that observational equality is decidable between finite strategies (those with finitely

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 61

many even-length plays; forming the compact elements of the domain of strategies).
This is remarkable: in the theory of programming languages, situations like that where
one has a concrete characterization of observational equivalence, are rare!
This comes from the ability to write a context C[−] reproducing one complete play

s and only s; so that C[M] ⇓ is exactly equivalent to s ∈ JMK. This is impossible for
an innocent context, because if an innocent strategy includes one play, it also includes
all plays with the same P-views. In fact, we know that the observational quotient in the
model of PCF cannot be characterized concretely, because of Loader’s result that the
(unique) fully abstract model of PCF is not effectively presentable [Loader, 2001].

Full abstraction with control. We now drop well-bracketing. We also consider tem-
porarily the extensions CIA and CPCF respectively of IA and PCF with

callccA,B ∶ ((A→ B)→ A)→ A ,

a control operator with behaviour described informally in Section 3.2.2. We shall not
cover its behaviour or interpretation in detail as it plays no role in this monograph be-
yond painting the big picture. But we do mention two main results, first for CIA:
Theorem 3.3.9. Visible single-threaded strategies form a fully abstract model for CIA.
Moreover, if ⊢ M,N ∶ A are two terms of CIA, then

M ≃ N ⇔ O-vis(JMK) = O-vis(JNK) ,

with O-vis(�) the set of O-visible plays of a strategy �.

This is proved again via an adequate definability result. This theorem was surely
known long before it was published5 in [Murawski, 2007]. Here again, the fully abstract
model is also effectively presentable. Note that contexts from CIA can observe more
than contexts from IA: callcc lets us observe plays that cannot be completed, and hence
would never have led to an observable behaviour within IA.

Finally, we mention one last fully abstract model:
Theorem 3.3.10. Visible innocent strategies form a fully abstract model for CPCF.

This is due to [Laird, 1997], proved again via an adequate definability property. In
this case also, the fully abstract model is effectively presentable, but not as concretely
as above: instead, one shows that equality between compact elements is decidable, by
reducing equivalence checking to a finite number of tests. The fully abstract model can
also be described concretely – and in fact was described concretely, before even the
fully abstract games model for PCF were developed [Cartwright et al., 1994]!

The “semantic cube”. We have, so far, seen the following full abstraction results:
5Murawski uses a different primitive for control, but the difference is superficial within IA.

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 62
u

wwwww
v

CPCF
+ state // CIA

PCF

+ control
OO

+ state
// IA

+ control
OO

}

�����
~

=

GinnOO

- well-bracketing

G//
- innocence

OO

- well-bracketing

Ginn,wb Gwb
//

- innocence

Figure 3.13: The Semantic Cube

Theorem 3.3.11 (Semantic Cube). We have four intensional full abstraction results:

G is fully abstract for PCF + state + control
G + innocence is fully abstract for PCF + control

G + well-bracketing is fully abstract for PCF + state
G + innocence + well-bracketing is fully abstract for PCF

where G denotes the model formed of visible, single-threaded strategies.

This “Semantic Cube”, drawn in Figure 14.2, expresses that the conditions on strate-
gies capture the behaviour generated by certain computational effects; or rather the
absence of certain effects. The achievement is noteworthy, as it is famously difficult to
combine semantic accounts of effects. But independently of purely semantic purposes,
this gives us a microscope to study behaviourally interactions between effects in pro-
gramming languages. We demonstrate this with the following orthogonality property6
between state and control which nicely illustrates the strength of game semantics. We
only state it as a conjecture, because it relies on intensional universality for PCF.
Conjecture 3.3.12. Let ⊢ M ∶ A a term of CIA with A a PCF type. Assume that

(1) M ≃ N1 whereN1 does not use callcc,
(2) M ≃ N2 whereN2 does not use newref ,

then there is ⊢ N ∶ A in pure PCF such thatM ≃ N .

Proof. We have N1 ≃ N2. By Theorem 3.3.9, they have the same O-visible plays.
The P-views of JN2K are O-visible, so they must be in JN1K, so they must be well-
bracketed. But JN2K is innocent, so if its P-views are well-bracketed, then it must be
well-bracketed (Proposition 3.2.13). Summing up, JN2K is an innocent well-bracketed
strategy. But it is also computable, since the interpretation is computable. Hence, by
Conjecture 3.2.15, there is ⊢ N ∶ A in pure PCF such that JNK = JN2K. In particular,
it has the same O-visible plays asM , henceM ≃ N by Theorem 3.3.9 again.

We finish this section with two concluding notes.
Firstly, game semantics has the reputation that its full abstraction results are unsatis-

factory, because they consist in constraining strategies until they are essentially syntax,
6We learnt of it from a talk by Paul Levy in 2014 [Levy, 2014].

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 63

followed by the same quotient that one could have done already in the syntax. This
criticism holds for PCF, and even then seems short-sighted: without the fully abstract
model for PCF, we would not have the semantic cube. But furthermore, beyond PCF,
all fully abstract models in the semantic cube can be effectively presented!

Secondly, unfortunately the semantic cube holds only for sequential deterministic
languages. Beyond that we still have models (we shall see one in Chapter 5), but they
do not fit in the same unified landscape as the cube above. What can be done about
that? This is one of the leading questions behind this monograph.

3.4 An Alternative to Pointers: Copy Indices
As the final section of this chapter, we briefly present an alternative to the use of point-
ers for thread indexing: copy indices, used in particular in the other major family of
traditional game semantics models, called AJM games for Abramsky, Jagadeesan and
Malacaria [Abramsky et al., 2000]. We do this, on the one hand, to account for the large
part of the game semantics literature that depends on it; and on the other hand, to help
prepare the reader for concurrent games, which use copy indices.
The idea of copy indices is that rather than explicitly authorizing repetitions (and

adding pointers to disambiguate the relationships between copies), we keep the invariant
that each move must appear at most once in a play. So as to allow players to perform
duplications, we create explicit copies of duplicable moves, which are kept apart by
adjoining to each a unique identifier, a natural number called a copy index.
Copy indices must be added by an explicit construction on games. To that end, games

with copy indices typically follow linear logic [Girard, 1987] and decompose the arrow
construction in two steps A ⇒ B = !A ⊸ B. Here, ⊸ is a linear or affine arrow that
does not allow replication of the argument; and !A is the bang construction from linear
logic, which creates countably many copies of a game by adjoins copy indices:
Definition 3.4.1. Consider A a simple game. Then, the simple game !A has:

| !A| = ℕ × |A|
pol!A(i, a) = polA(a)

P!A = {s ∈ | !A|∗ ∣ s alternating, ∀i ∈ ℕ, s ↾ i ∈ PA}

where s ↾ i ∈ |A|∗ is the obvious operation only keeping moves of the form (i, a).

From here and throughout this monograph, we adopt the convention that copy indices
are typeset in grey: this helps in easily distinguishing them from other indices, and is
in line with the intuition that though their presence is needed to give copies an identity,
their precise value is in general irrelevant. Now we have, for instance:

PI!B ∶∶= " ∣ q
−
i ∣ q

−
i tt

+
i P

I⊎{i}
!B ∣ q−i ff

+
i P

I⊎{i}
!B i ∉ I

and P!B = P∅!B; so plays in !B is any sequence of plays in B, each with a copy index, in
any order but such that each copy index is used at most once.

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 64

f ∶ B → B → B ⊢ B
q− f (f tt ff) tt

q+0 f (f tt ff) tt
q−0,0 f (f tt ff) tt

q+1 f (f tt ff) tt
q−1,0 f (f tt ff) tt

f ∶ B → B → B ⊢ B
q− f (f tt ff) tt

q+0 f (f tt ff) tt
q−0,0 f (f tt ff) tt

q+1 f (f tt ff) tt
q−0,0 f (f tt ff) tt

Figure 3.14: Two plays with copy indices disambiguating Figure 3.3.

As mentioned above, the usual call-by-name arrow is defined in linear logic by “Gi-
rard’s translation”. Accordingly, the interpretation of types include an occurrence of !
each time we cross the left of an arrow. Now, we saw that each move corresponds to a
precise occurrence of a ground type in the type/typing judgment; so in the scope of a
fixed number of !. Accordingly, each move carries a sequence of copy indices, once for
each ambiant ! – by convention, we write first the copy index for the outermost !.
With this convention, the two plays corresponding to Figure 3.5 may be drawn7 with

copy indices in Figure 3.14. This shows how copy indices carry implicitely the hierar-
chical relationship between moves expressed by pointers. Yet, plays are still straight-
forward sequences of moves, without unwieldy additional structure.
But if the information expressed by pointers can be recovered on mere plays with

such a small technical overhead, why bother with pointers at all? In fact, we have yet
to see the main subtlety – and technical hurdle – arising from copy indices.

Equality up to copy indices. The issue is that there are now many more strategies,
as when playing a positive move, Player may seemingly arbitrarily choose a copy index
– which does not seem to carry any relevant computational information.
In fact, this has the concrete consequence that simple games with replication as in

Definition 3.4.1 fail to be a model of the simply-typed �-calculus. Indeed we have
x ∶ B ⊢ (�f . f x x) (�yz. y) ≅� (�f . f x x) (�yz. z) ∶ B (3.2)

yet, following the usual definition of the interpretation (which we shall not present right
now), the left hand side calls x with copy index 0 while the right hand side calls x with
copy index 1. Copy indices trace back which occurrence of xwas selected in �f . f x x,
but remembering this is incompatible with �-equivalence.
To address this, AJM games add to simple games an equivalence relation on plays:
7Again, the play on the right hand side is not accepted by the usual definitions of simple games or AJM

games as it is not locally alternating. But it is nevertheless illustrative of the real phenomenon.

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 65

Definition 3.4.2. AnAJMgame comprises a simple gameA = (|A|, polA,PA), together
with an equivalence relation ≅A on PA satisfying the following conditions:

(1) if s1… sn ≅A t1… tp, then n = p and for all 1 ≤ i ≤ n, polA(si) = polA(ti),(2) if s1… sn ≅A t1… tn, then for all 1 ≤ i ≤ n, s1… si ≅A t1… ti,(3) if s ≅A t and sa ∈ PA, then there is tb ∈ PA such that sa ≅A tb.

We think of the equivalence relation ≅A as formalizing reindexings, i.e. we have
s ≅A t iff s and t are the same play, but with a different choice of copy indices. For
ground types such as B the equivalence relation is restricted to reflexive pairs, but:
Definition 3.4.3. ConsiderA an AJM game. We set !A following Definition 3.4.1, plus:

s1… sn ≅!A t1… tn ⇔ there is a permutation � ∶ ℕ ≃ ℕ such that
{

for all 1 ≤ i ≤ n, if si = (k, a) then ti = (�(k), a′),
and for all k ∈ ℕ, s ↾ k ≅A t ↾ �(k).

In other words, an equivalence s ≅!A t follows a global reindexing on copy indices
introduced by ! , and local reindexings on each individual copy.
These reindexings on plays induce a partial equivalence relation on strategies:

Definition 3.4.4. Consider A an AJM game.
For �, � ∶ A strategies on the underlying simple game, we write � ≈ � iff:

→-simulation: ∀sa+ ∈ �, t ∈ �, s ≅A t ⇐⇒ ∃b+, tb+ ∈ � & sa+ ≅A tb+
←-simulation: ∀s ∈ �, tb+ ∈ �, s ≅A t ⇐⇒ ∃a+, sa+ ∈ � & sa+ ≅A tb+
→-receptive: ∀sa− ∈ �, t ∈ �, sa− ≅A tb− ⇐⇒ tb− ∈ �
←-receptive: ∀s ∈ �, tb− ∈ �, sa− ≅A tb− ⇐⇒ sa− ∈ �

We say that � ∶ A is uniform iff � ≈ �.

This allows us to consider equal strategies behaving the same up to their choice of
copy indices – for instance, it identifies the two strategies corresponding to the terms
of (3.2). But it does more: it select the uniform strategies, which are unable to observe
the copy indices chosen by Opponent; i.e. with respect to which ≈ is a congruence.

When setting up a game semantics based on copy indices, the idea is that one only
considers strategies which are uniform, and those are considered up to ≈.

Pointers or Copy Indices? In designing a game semantics supporting replication,
one must use one or the other of these two structures. Which one should be chosen?
Beyond thread indexing, pointers also import into plays relevant semantical struc-

tures. In Hyland-Ong games, pointers are key to defining P-visibility and innocence
[Hyland and Ong, 2000], the conditions that eventually gave rise to the semantic cube.
On the other hand, pointers are hard to manipulate in a rigorous yet unobtrusive way.
In contrast, the AJM model has simpler plays, and enjoys a clean linear decompo-

sition in the sense of Linear Logic [Girard, 1987]. However, terms are interpreted as

CHAPTER 3. FIRST STEPS IN GAME SEMANTICS 66

≈-equivalence classes rather than concrete strategies and all constructions come with a
sometimes challenging proof obligation that it preserves ≈. Conditions which rely on
pointers such as visibility and innocence are beyond reach without further structure.
Much of the literature in game semantics for programming languages has been devel-

oped based on pointers and Hyland-Ong games. However, in this monograph, we shall
see that concurrent games are based on copy indices. This is for two reasons: firstly,
their finer intensional structure seems to require it. Secondly, despite using copy in-
dices and unlike in AJM games, the pointers of Hyland-Ong games which have proved
so fruitful in studying program behaviour are retained as derived structures.

3.5 Conclusions and Historical Notes
Much of the basic definitions presented in this chapter originate (though with minor
variations) in Hyland and Ong’s original paper [Hyland and Ong, 2000], including the
definitions of visibility, of innocence and of well-bracketing (on plays). The realization
that lifting these constraints yielded fully abstract models for richer languages came
very quickly: full abstraction for IA is due to [Abramsky and McCusker, 1996], full
abstraction for CPCF is due to Laird in [Laird, 1997]. To our knowledge, the full ab-
straction result for the missing corner of the cube (CIA) was only developed in detail
significantly later byMurawski [Murawski, 2007] – though it was certainly well-known.
It might seem confusing that apart from this latter paper, all the works cited here,

which build on Hyland and Ong’s framework, date from before the publication of the
original Hyland andOng paper. In fact, though theHyland andOng paper was published
only in 2000, preliminary versions of it circulated from the earlier 90s8, in parallel with
versions of the AJM model. These developments, and announcements by the two com-
peting groups, were closely followed by the broader denotational semantics community,
feeling that the resolution of the problem of “full abstraction for PCF” was close.

In hindsight, rather than the full abstraction result for PCF per se, what had the most
impact was definitely the nice surprised thatmany different effects could be captured in a
unified framework; justifying the 2017 Alonzo Church Award awarded to the founders
of game semantics. Game semantics has since then grown to a broad topic; and this
monograph shall cover some of its most recent developments.

8The workshop celebrating the 25 years of game semantics was held in 2018 as part of the federated logic
conference (FLoC), which places the birth of game semantics – somewhat arbitrarily – in 1993.

Chapter 4

The Category of Alternating
Strategies

In this chapter, we continue our introduction to sequential game semantics, filling the
gap left open in the previous chapter: the compositional structure. We show how to
compose alternating strategies, forming a cartesian closed category⇵-Strat. Then, we
define the interpretation of IA into ⇵-Strat, and conclude with some complements.

4.1 The Ambient Cartesian Closed Category ⇵-Strat
We organize arenas and P-visible strategies into a cartesian closed category ⇵-Strat.
Its objects will be arenas, already presented in Section 3.1.3. But the cartesian structure
requires more arena constructions beyond the well-opened case shown in Chapter 3.

4.1.1 More Arena Constructions
We start with the product arena, used for interpreting contexts:
Definition 4.1.1. Consider A1, A2 arenas. Their product A1&A2 has components:

moves: |A1&A2| = |A1| + |A2|causality: (i, a) ≤A1&A2 (j, a
′) ⇔ i = j & a ≤Ai a

′

polarities: polA1&A2 (i, a) = polAi (a) ,
∕-labeling: �A1&A2 (i, a) = �Ai (a) ,

generalizing to an n-ary construction &i∈IAi in the obvious way (for I a finite set).

This construction puts arenasA1 andA2 side-by-side, without interaction –Opponentmay start evaluation in either component. Like a forest is formed of trees, any arena is
– up to isomorphism – a product of well-opened arenas:

67

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 68

U ⇒ U & U

q− q−

q+ q+ ✓+ ✓+

✓− ✓−

Figure 4.1: The arena U ⇒ (U&U)

Lemma 4.1.2. Consider A an arena.
Then there is (Ai)i∈I of well-opened arenas, unique up to iso, s.t. A ≅ &i∈IAi.

Here, an isomorphism of arenas is any forest-isomorphism preserving polarities and
∕-labeling – likewise, two families (Ai)i∈I and (Bj)j∈J are isomorphic if there is
a bijection � ∶ I ≃ J and for each i ∈ I , an isomorphism Ai ≅ B�(i).
Recall that in Definition 3.2.2, we defined the arrow A ⇒ B of two arenas A and B

with B well-opened. Building a cartesian closed category requires us to extend A⇒ B
to the case whereB may not be well-opened. However,A ⇒ − shall be the right adjoint
to A × −, and so must preserve products; so we know that we must have:

A⇒ (B × C) ≅ (A⇒ B) × (A ⇒ C) ,

and via Lemma 4.1.2 we may take that as a definition:
Definition 4.1.3. For A, B = &i∈IBi any two arenas, we set:

A ⇒ B =
¯
i∈I

A ⇒ Bi .

This has the effect of creating one copy of A for each minimal move in B1 – in
particular, ifB is the empty arena, then so isA⇒ B. In Figure 4.1 we show an example
illustrating the arrow construction on non well-opened arenas.

4.1.2 Composition of Strategies
Restrictions. We first require notations for restrictions of plays of an arena to a sub-
component. We will actually define the restriction of a play along an embedding:
Definition 4.1.4. Consider A,B arenas.
An embedding f ∶ A → B is any injection f ∶ |A| → |B|.
1This definition is equivalent to the original one [Hyland and Ong, 2000]. One may alternatively avoid the

duplication of A by considering arenas to be directed acyclic graphs rather than forests, and having minimal
moves ofA depend on all the minimal moves in B: this is done for instance in [Harmer, 2004]. This is fine in
the sense that the two constructions generate the same set of plays (see Definition 3.1.4), but arenas then no
longer characterize types up to isomorphism, and the connection with thin concurrent games is blurred out.

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 69

We use embeddings to address specific components inside arenas: for instance, there
is a canonical embedding A → A × B, etc. The embeddings we use in practice satisfy
many additional properties, but it is not useful to require them explicitely.
We can restrict a play along an embedding:

Definition 4.1.5. Consider A,B arenas, f ∶ A → B, and s a pointing sequence on B.
The restriction of s along f , denoted by s ↾ f , has moves the sequence defined by

" ↾ f = "
sb ↾ f = (s ↾ f)a if b = f (a),
sb ↾ f = s ↾ f otherwise.

Moreover, in s ↾ f , si points to sj iff there is a sequence of pointers

… sj … ⋅ … ⋅ … ⋅ … ⋅ … si

in s, with all intermediary points not selected in s ↾ j.

The restriction s ↾ f is a pointing sequence on A, but there is no guarantee that it is
a legal play on A, even if s ∈ ⇵- ↶Plays(B). However, that will often be the case when
using this notion. This overly general definition has two use cases in practice:
Firstly, situations like restrictions along the canonical embeddingA → A×B, where

the transitive clause for pointers is not used at all. For s ∈ ⇵- ↶Plays(A × B), we write
s ↾ A ∈ ⇵- ↶Plays(A) for the restriction along the (implicit) canonical embedding, which
the reader should always be able to disambiguate easily. Secondly, situations like re-
strictions along the canonical embedding A ⇒ C → (A ⇒ B) ⇒ C . In that case
we write s ↾ A,C , which may not always be a valid play on A ⇒ C (it may not be
alternating). As here, in general we never explicitely specify the embedding used in the
restriction, but it should hopefully always be clear from the context.

Interactions. Consider � ∶ A ⇒ B and � ∶ B ⇒ C two strategies. Observe that �
and � have dual perspectives on the polarities in B: when � plays a Player move in B,
it is an Opponent move for �, and reciprocally. The first step in defining composition,
is to plug � and �, letting them synchronize on B: this is called the parallel interaction
of � and �. Then we hide the synchronized events, leaving a strategy on A⇒ C .
We first focus on parallel interaction. An interaction between � and �, resulting of

the synchronization of plays of � and �, is a pointing sequence that spans A,B and C:
Definition 4.1.6. Consider A,B and C arenas.
An interaction on A,B, C is a legal pointing sequence u on (A⇒ B)⇒ C s.t.:

left-legal: u ↾ A,B ∈ ⇵- ↶Plays(A⇒ B),
right-legal: u ↾ B,C ∈ ⇵- ↶Plays(B ⇒ C),
outer-legal: u ↾ A,C ∈ ⇵- ↶Plays(A ⇒ C).

We write I(A,B, C) the set of all interactions on A,B, C .

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 70

Figure 4.2: State diagram for sequential interactions

In interactions, moves in A,C are said to be visible while moves in B are hidden or
synchronized. Onemay regard an interaction u ∈ I(A,B, C) as involving three players:
player l plays in A,B; player r plays on B,C . Finally, the external Opponent plays
Opponent on A,C , i.e. plays moves that have negative polarity on A ⇒ C . Positive
moves in A ⇒ C may be due to l or r; we say that they are due to the global Player,
which we think of as l and r working together as a team.
The conditions outer-legal, left-legal and right-legal have a strong impact on how

interactionsmay unfold. Indeed, recall from belowDefinition 3.1.4 that each alternating
play has a state: O if it is Opponent’s turn to play (if the play has even length), and P
otherwise. The three conditions of Definition 4.1.6 involve three restrictions

u ↾ A,B ∈ ⇵- ↶Plays(A⇒ B),
u ↾ B,C ∈ ⇵- ↶Plays(B ⇒ C),
u ↾ A,C ∈ ⇵- ↶Plays(A ⇒ C)

for u ↾ A,C ∈ ⇵- ↶Plays(A ⇒ C). Accordingly, where the polarity state of a play is
summarized by a single letter O or P , the polarity state of an interaction is summed up
by three letters, keeping track of the state of these three restrictions, in order. There are
strong constraints as to how we can jump between these states: for instance, in state
OOO no move can be played in B, as no polarity in B can simultaneously satisfy the
two constraints that the next move should be an Opponent move in both A ⇒ B and
B ⇒ C . Overall, it is fairly easy to show that only three states are reachable from the
empty interaction: OOO, OPP , and POP ; and the possible transitions between those
are cleanly summarized in the state diagram for interactions in Figure 4.2.
We are often interested by interactions ending with a visible move from the global

Player (which yield even-length plays of the composition). Those always have the shape
e−(b… b)e+… e−(b… b)e+ ,

i.e. sequences of synchronized moves in b sandwiched by a pair of visible moves from
the external Opponent, and global Player – this immediately follows from the diagram.

Composition. It is now time to define the composition of two strategies:
Definition 4.1.7. Consider � ∶ A⇒ B and � ∶ B ⇒ C two strategies.

An interaction between � and � is any u ∈ I(A,B, C) such that u ↾ A,B ∈ � and

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 71

I(U, U ⇒ U, U ⇒ U)
q−

qr

ql

qr

ql

q+,r
✓−

✓r

q+,l
✓−

✓l

✓r

q+,l
✓−

✓l

✓+,r

Figure 4.3: u ∈ Jx ∶ U ⊢ �y. y; x ∶ U → UK ∥ Jf ∶ U → U ⊢ �x. f (f x) ∶ U → UK.

u ↾ B,C ∈ �. We write � ∥ � for the set of all interactions between � and �.
We may then define the composition � ⊙ � = {u ↾ A,C ∣ u ∈ � ∥ �} ∶ A ⇒ C .

The process that to an interaction u ∈ � ∥ � associates u ↾ A,C ∈ � ⊙ � is called
hiding, hence completing the parallel interaction plus hiding paradigm. If s ∈ � ⊙ �,
we call any u ∈ � ∥ � such that s = u ↾ A,C a witness for s.

We give in Figure 4.3 an example interaction between two innocent strategies. In
the diagram, moves are annotated with the player responsible: − if it is the external
Opponent, + if it is the global Player, and then l or r. This interaction is a witness to
the play of the composition keeping the moves in black only.
When composing alternating strategies, the following property is crucial:

Lemma 4.1.8 (Unique witness). Consider � ∶ A⇒ B and � ∶ B ⇒ C strategies.
For all s ∈ � ⊙ �, there is a unique u ∈ � ∥ � such that u ↾ A,C = s.

Proof. Direct via the state diagram for interactions and determinism of � and �.
The next proposition states that composition is well-defined; and that all the condi-

tions on strategies introduced in the previous chapter are stable under composition.
Proposition 4.1.9. Take � ∶ A ⇒ B, � ∶ B ⇒ C strategies as in Definition 3.1.5.

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 72

Then, � ⊙ � ∶ A ⇒ C is a strategy in the sense of Definition 3.1.5. Moreover,

if � and � are P-visible, then so is � ⊙ �,
if � and � are well-bracketed, then so is � ⊙ �,
if � and � are single-threaded, then so is � ⊙ �,
if � and � are innocent, then so is � ⊙ �.

Proof. For Definition 3.1.5, non-empty and prefix-closed are clear, while receptive and
determinism are direct via Lemma 4.1.8 and the state diagram of interactions.
For some of the further conditions, the proof of stability under composition can be

fairly elaborate – we omit them, but give references. Composition of P-visibility is
proved e.g. in [Clairambault, 2010, Proposition 2.2.6]; composition of well-bracketing
is proved e.g. in [Clairambault, 2010, Proposition 2.3.3]; for single-threadedness, it
follows fromHarmer’s theorem [Harmer, 1999, Proposition 3.5.5] that those are exactly
the comonoid morphisms; and finally, a nice detailed proof of stability of innocence
under composition appears in [Harmer, 2004, Proposition 3.3.2].

4.1.3 A Category of Arenas and Strategies
We now provide the categorical structure. Though we shall not give details for any of
the required proofs, we shall still review the main arguments and provide references.

Associativity. For associativity, one first introduces the set I(A,B, C,D) of ternary
interactions: those legal pointing sequences u on ((A ⇒ B)⇒ C)⇒ D such that

u ↾ A,B ∈ ⇵- ↶Plays(A⇒ B) ,
u ↾ B,C ∈ ⇵- ↶Plays(B ⇒ C) ,
u ↾ C,D ∈ ⇵- ↶Plays(C ⇒ D) ,
u ↾ A,D ∈ ⇵- ↶Plays(A⇒ D) .

The key argument is the so-called “zipping lemma” ([Harmer, 2004, Lemma 2.6.1]):
Lemma 4.1.10. Consider u ∈ I(A,C,D) and v ∈ I(A,B, C) s.t. u ↾ A,C = v ↾ A,C .

There is a unique w ∈ I(A,B, C,D) s.t. w ↾ A,C,D = u, w ↾ A,B, C = v.

This is proved by induction on u. As the name suggests, the idea is to “zip” u and v
together, using subsequences from v to provide the moves in B missing from u. There
is also a mirror lemma zipping u ∈ I(A,B,D) and v ∈ I(B,C,D).
Associativity of composition follows:

Proposition 4.1.11. Consider � ∶ A⇒ B, � ∶ B ⇒ C and � ∶ C ⇒ D.
Then, � ⊙ (� ⊙ �) = (� ⊙ �)⊙ �.

Proof. Consider s ∈ � ⊙ (� ⊙ �). By definition, there is a witness u ∈ (� ⊙ �) ∥ �, i.e.
u ∈ I(A,C,D) s.t. u ↾ A,C ∈ � ⊙ �, u ↾ C,D ∈ �, and u ↾ A,D ∈ ⇵- ↶Plays(A ⇒ D).
By definition of composition again, there is v ∈ � ∥ � s.t. v ↾ A,C = u ↾ A,C . By the

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 73

zipping lemma, we can findw ∈ I(A,B, C,D) s.t. w ↾ A,C = v andw ↾ A,C,D = u;
and w ↾ A,B ∈ �,w ↾ B,C ∈ � and w ↾ C,D ∈ �.

One can then show that w ↾ B,D is alternating (this follows from a state diagram
for ternary interactions extending that for interactions in Section 4.1.2). Hence w ↾
B,C,D ∈ � ∥ �, hence w ↾ B,D ∈ � ⊙ �. Since we also have w ↾ A,B ∈ �, we have
w ↾ A,B,D ∈ � ∥ (� ⊙ �), so w ↾ A,D ∈ (� ⊙ �)⊙ � as required.

The other inclusion is symmetric, using the mirror zipping lemma.

Identities. Identities in game semantics are given by copycat strategies.
The intuitive behaviour of copycat is very simple: it copies whatever move Opponent

plays on either side, to the matching Player move on the other side, maintaining the
invariant that we have the same play on A on both sides. More concretely:
Definition 4.1.12. Consider A any arena.
A copycat play on A is any P-visible s ∈ ⇵- ↶Plays(A1 ⇒ A2) which is:

balanced: ∀ta+ ⊑ s, ta ↾ A1 = ta ↾ A2 ,

and we define cc A ∶ A ⇒ A as the set of copycat plays on A.

Copycat is a strategy: most conditions are direct, save for determinism that is a bit
subtle. The issue is easy tomiss as we tend to leave themanagement of pointers implicit:
by balanced, an initial move on the left hand side can only immediately follow an initial
move on the right hand side. But its pointer is not uniquely determined by balanced: if
there are several initial moves on the right hand side, each can receive the pointer in a
way compatible with balanced. This is however banned by the P-visible requirement,
as in that case only the previous move appears in the P-view.
Copycat is indeed an identity for composition:

Lemma 4.1.13. Consider � ∶ A ⇒ B any strategy. Then, cc B ⊙ � = � ⊙ cc A = �.

Proof. By receptive, it suffices to prove the equality for even-length plays, i.e. Player-
ending plays. Consider s ∈ cc B ⊙ � with even length – write cc B ∶ B1 ⇒ B2 – and
consider its witness u ∈ � ∥ cc B . By the state diagram for interactions, u is in state
OOO, therefore u ↾ B1, B2 is in state OO and is Player-ending, so u ↾ B1 = u ↾ B2. Itfollows that u ↾ A,B1 = u ↾ A,B2 = s, but u ↾ A,B1 ∈ �, hence s ∈ �.Reciprocally, from s ∈ � with even length it is direct to construct by induction on s
an interaction u ∈ � ∥ cc B such that u ↾ A,B1 = u ↾ A,B2 = s, so that s ∈ cc B ⊙ � as
required. Symmetrically, we have � ⊙ cc A = � as well.
We conclude from all of the above:

Corollary 4.1.14. There is a category⇵-Strat (respectively⇵-WB,⇵-Inn,⇵-InnWB)
with arenas as objects, and as morphisms from A to B all P-visible single-threaded
strategies (respectively all P-visible well-bracketed strategies, all innocent strategies,
all innocent well-bracketed strategies) on A⇒ B.

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 74

4.1.4 Cartesian Closed Structure
Next, we show that ⇵-Strat, ⇵-WB, ⇵-Inn and ⇵-InnWB are cartesian closed.

Cartesian structure. The empty arena 1 is terminal in all four categories: for all
arena A, A ⇒ 1 = 1, inhabited with a unique, empty, strategy. The product of A and B
was defined in Definition 4.1.1. For arenas A,B, the two projections

�A ∶ A × B ⇒ A , �B ∶ A × B ⇒ B

are the copycat strategies defined with the obvious adaptation of Definition 4.1.12.
To define the pairing, we prove:

Lemma 4.1.15. Consider Γ, A, B arenas, and � ∶ Γ⇒ A, � ∶ Γ⇒ B single-threaded.
There exists a unique (necessarily) single-threaded strategy

⟨�, �⟩ ∶ Γ⇒ A × B

comprising all s ∈ ⇵- ↶Plays(Γ⇒ A × B) such that for all t ⊑ s, ⌈t⌉ ∈ � or ⌈t⌉ ∈ �.

Proof. Analogously to innocent strategies and P-views, single-threaded strategies are
uniquely determined by their set of threads, see e.g. [Harmer, 2004, Section 2.8].
Notice, in this definition, the implicit renaming of ⌈t⌉ ∈ ⇵- ↶Plays(Γ ⇒ A × B) to

⇵- ↶Plays(Γ⇒ A) or ⇵- ↶Plays(Γ⇒ B) depending whether the initial move is in A or B.
This data satisfies the required equations for cartesian products:

Lemma 4.1.16. Consider � ∶ Γ⇒ A, � ∶ Γ⇒ B, and � ∶ Δ⇒ Γ single-threaded.
Then, the following equations hold:

�A ⊙ ⟨�, �⟩ = �
�B ⊙ ⟨�, �⟩ = �

⟨�A, �B⟩ = cc A×B
⟨�, �⟩⊙ � = ⟨� ⊙ �, � ⊙ �⟩ .

Proof. The first two equations are direct variations of Lemma 4.1.13. The third is di-
rect from the definition, and the fourth immediate on threads, using again that single-
threaded strategies are uniquely determined by their sets of threads.
From the equations above, the following fact follows immediately.

Corollary 4.1.17. The categories ⇵-Strat, ⇵-WB and ⇵-Inn are cartesian.

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 75

Cartesian closed structure. Now, we describe the cartesian closure.
For any two arenas A and B, we have already defined their arrow A⇒ B. We have:

Lemma 4.1.18. Consider Γ, A, and B three arenas. Then we have

ΞΓ,A,B ∶ (Γ × A)⇒ B ≅ Γ⇒ (A ⇒ B)

an isomorphism of arenas, i.e. a bijection preserving and reflecting all structure.

Proof. Straightforward from the definition.
Up to renaming, Γ×A⇒ B and Γ ⇒ A⇒ B are the same. Thus this means that the

currying of � ∶ Γ × A⇒ B can be described by applying ΞΓ,A,B move-by-move:
Lemma 4.1.19. Consider Γ, A and B three arenas. Then, there is a bijection

ΛΓ,A,B ∶ ⇵-Strat(Γ × A,B) ≃ ⇵-Strat(Γ, A⇒ B)

preserving and reflecting innocence, and preserving composition in the sense that

ΛΓ,A,B(�)⊙ = ΛΔ,A,B(� ⊙ (× A)) (4.1)
for all � ∈ ⇵-Strat(Γ × A,B) and ∈ ⇵-Strat(Δ,Γ).

Proof. A routine manipulation on interactions.
In turn, this bijection lets us define the evaluation strategy simply as

evA,B = Λ−1A,A,B(cc A⇒B) ∈ ⇵-Strat((A ⇒ B) × A,B)

and from the above, it becomes routine to prove cartesian closure:
Proposition 4.1.20. ⇵-Strat, ⇵-WB, ⇵-Inn and ⇵-InnWB are cartesian closed.

Proof. We need the two equalities for the universal property of cartesian closure, for
� ∈ ⇵-Strat(Γ × A,B), ∈ ⇵-Strat(Δ,Γ) and � ∈ ⇵-Strat(Γ, A⇒ B):

evA,B ⊙ (Λ(�) × A) = � (4.2)
Λ(evA,B ⊙ (� × A)) = � , (4.3)

but those follow from elementary computation using definition of evA,B , (4.1), neutral-ity of copycat for composition and the fact that Λ is a bijection.
SinceΛ(−) preserves and reflects innocence andwell-bracketing, the cartesian closed

structure automatically holds for our four categories of interest.

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 76

Internal language. This cartesian closed structure allows us to use notations from the
�-calculus to manipulate strategies: these may be unfolded to primitive operations of
cartesian closed categories in the standardway [Lambek and Scott, 1988]. For instance,
the application of � ∈ ⇵-Strat(Γ, A⇒ B) to � ∈ ⇵-Strat(Γ, A) unfolds to

� � = evA,B ⊙ ⟨�, �⟩ ,

likewise we will sometimes in the sequel use �-abstraction on expressions for strategies.

4.1.5 Recursion
To handle recursion we must provide a fixpoint operator, i.e. an innocent strategy

A ∶ (A ⇒ A)⇒ A

for each arena A such that for every � ∈ ⇵-Strat(Γ, A⇒ A), we have
A � = � (A �)

a fixpoint equation. It is solved as usual in denotational semantics, by constructing Aas a least upper bound for an adequate order on strategies – the following is direct:
Proposition 4.1.21. For arenas A and B, ⇵-Strat(A,B), ⇵-WB(A,B), ⇵-Inn(A,B)
and ⇵-InnWB(A,B) are partially ordered by inclusion, yieling pointed dcpos.
All operations on strategies involved in the cartesian closed structure are continuous,

making ⇵-Strat, ⇵-WB, ⇵-Inn and ⇵-InnWB enriched over pointed dcpos.

Using this, we can obtain the fixpoint operator as the least upper bound of
F ∶ ⇵-Strat(A ⇒ A,A) → ⇵-Strat(A⇒ A,A)

� → �fA⇒A. f (� f)

which unfolds to the following, for⊥ the minimal strategy just closed under receptivity:
A =

⋃

n∈ℕ
F n(⊥) ∈ ⇵-Strat(A ⇒ A,A) (4.4)

satisfying A = F A by construction – we may then prove the fixpoint equation:
A � = F (A) �

= (�fA⇒A. f (A f)) �
= � (A �)

using �-equivalence on the �-calculus notation [Lambek and Scott, 1988].

4.2 Interpretation of IA
Following [Lambek and Scott, 1988], the cartesian closed structure developed above
yields an interpretation of the simply-typed �-calculus; we also showed the interpreta-
tion of the fixpoint combinator. In order to obtain the interpretation of PCF and IA, it
remains to provide strategies matching the primitives of our programming languages.

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 77

4.2.1 Interpretation of PCF
Let us focus first on the purely functional primitives, i.e. on the interpretation of PCF.

Interpretation of types. First of all, to every type A we associate an arena: this is
done exactly as in Section 3.2.1, by setting JBK = B, JℕK = N and JUK = U the arenas
of 3.8, 3.9 and 3.7 respectively. Arrow types are interpreted as JA → BK = JAK⇒ JBK
using the arrow arena construction of Definition 4.1.3, yielding

JAK ∈ ⇵-Strat
an arena for every type A of PCF. This is extended to contexts by

Jx1 ∶ A1,… , xn ∶ AnK =
¯
1≤i≤n

JAiK .

Interpretation of terms. The general methodology of the interpretation of terms is
that of the interpretation of a simply-typed �-calculus in a cartesian closed category.
This means that a term2 Γ ⊢ M ∶ A gets interpreted as a morphism in ⇵-Strat:

JMK ∈ ⇵-Strat(JΓK, JAK) .

The primitives for the simply-typed �-calculus are covered by the cartesian closed
structure of ⇵-Strat (see [Lambek and Scott, 1988] for details). For recursion, we set

JMK = JAK ⊙ JMK

for Γ ⊢ M ∶ A → A, using the strategy A of (5.2). It remains to provide interpreta-
tions for all the additional combinators that PCF adds to the simply-typed �-calculus.
First of all, all constants are interpreted by the obvious strategy directly returning the
corresponding value. In Figure 4.4, we show the typical plays of strategies for sequen-
tial composition, conditionals, successor, and zero test; while Figure 4.6 shows typical
plays for the predecessor, and Figure 4.7 shows the typical plays for the let binding
strategy. Using these strategies, the strategy is obtained by the clauses in Figure 4.5.

4.2.2 Interpretation of State
We complete the interpretation to provide semantics for full IA.

Interpretation of types. Before we describe the interpretation of stateful primitives,
we must provide arenas for the two additional types V and S that IA adds to PCF.
Intuitively, these arenas describe the interface through which a program may interact

with a reference or a semaphore. For instance, a reference may be written to; or read
from – a semaphore may be grabbed and released. It is convenient to split the arena

2Or really, a typing derivation – but type annotations in PCF ensure that each term has a unique derivation.

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 78

seq ∶ (U & U) ⇒ U
q−

q+
✓−

q+
✓−

✓+

if ∶ (B & X & X) ⇒ X
q−

q+
tt−

q+
v−

v+

if ∶ (B & X & X) ⇒ X
q−

q+
ff−

q+
v−

v+

succ ∶ N ⇒ N
q−

q+
n−

(n + 1)+

iszero ∶ N ⇒ B
q−

q+
0−

tt+

iszero ∶ N ⇒ B
q−

q+
(n + 1)−

ff+

Figure 4.4: Typical plays of basic strategies for PCF

JM ; NK = seq⊙ ⟨JMK, JNK⟩
JifMN1N2K = if ⊙ ⟨JMK, JN1K, JN2K⟩

JsuccMK = succ⊙ JMK
JpredMK = pred⊙ JMK
JiszeroMK = iszero⊙ JMK

Jlet x = N inMK = letX,Y ⊙ ⟨JNK,Λ(JMK)⟩

Figure 4.5: Basic interpretation clauses

pred∶ N ⇒ N
q−

q+
0−

0+

pred∶ N ⇒ N
q−

q+
(n + 1)−

n+

Figure 4.6: Strategy for pred

(X & (X ⇒ Y)) ⇒ Y
q−

q+
v−

q+

q−
v+

q−
v+

q−
v+

…
w−

w+

Figure 4.7: Typical plays for letX,Y

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 79

w0−, w1−, … wn−, …

✓+, ✓+, ✓+,

Figure 4.8: Vw

r−,

0+, 1+, 2+, …

Figure 4.9: Vr

g−, rl−,

✓+, ✓+,

Figure 4.10: S

for references in two: Vw describes the protocol for writing to the memory, and Vr for
reading from the memory. Formally, these and S for semaphores are defined by:

Vw =
¯
n∈ℕ

U , Vr = N , S = U&U (4.5)

with moves renamed as illustrated in Figures 4.8, 4.9 and 4.10; hopefully making the
intention behind the moves self-explanatory. Finally, we pair writing and reading with

V = Vw&Vr ,

and JV K = V, JSK = S completes the interpretation of all IA types.

Queries. Next, we must provide strategies for the primitives corresponding to state:
manipulation and declaration of variables and semaphores. The usual methodology in
game semantics is to separate these primitives in two categories. On the one hand, we
have the primitives performing queries to the state: assignment, dereferenciation, grab
and release. Those are viewed as not inherently stateful, as they simply propagate the
operations made by the program to the central memory. On the other hand, reference
and semaphore declaration actually introduce the stateful behaviour.
We start with the former, by providing the interpretation of assignment, dereferenci-

ation, grab and release. This is done via the four following clauses:
JM ∶= NK = assign⊙ ⟨JNK, JMK⟩

J!MK = deref ⊙ JMK
Jgrab(M)K = grab⊙ JMK

Jrelease(M)K = release⊙ JMK

using the strategies of Figures 4.11, 4.12, 4.13, and 4.14. For the most part those are
simply copycat strategies – or more precisely, following (4.5), projections. In particular
we insist that they are innocent strategies: they are not responsible for the side effect,
as their role is simply to forward queries to the actual memory.

Declaration of references. Now, we must provide the interpretation for the declara-
tion of new references, performing the actual side effect.
The memory cell implements the stateful behaviour: it acknowledges the write re-

quests; when queried with a read request it outputs the value provided with the latest

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 80

(ℕ & V) ⇒ U
q−

q+
n−

wn+
✓−

✓+

Figure 4.11: assign

V ⇒ ℕ
q−

r+
n−

n+

Figure 4.12: deref

S ⇒ U
q−

g+
✓−

✓+

Figure 4.13: grab

S ⇒ U
q−

rl+

✓−

✓+

Figure 4.14: release

write. At first ignoring pointers, it seems natural to first capture this behaviour as a
language (as in, a set of words) called cell, on moves of V . Hence we define:

celln ∶∶= " ∣ wk−✓+cellk ∣ r−n+celln

and we define cell as the prefix language of cell0 (matching the fact that new references
are initialized to 0). This definition omits pointers, but they are easily reinstated: Op-
ponent moves are initial, while Player moves point to the previous move.
It is tempting to take cell ∶ V, and for x ∶ V ⊢ M ∶ A a term of IA, to define

Jnewref x inMK = JMK⊙ cell ,

however we run into an issue: cell is not a strategy, since it is not single-threaded. But
actually, of course it cannot be single-threaded: single-threadedness ensures that each
call is independent, whereas the very nature of cell forces it to link the different queries!
To make the definition above single-threaded, we seek to define instead

newrX ∶ (V ⇒ X)⇒ X ,

ensuring that all variable queries belong to the same thread. Fixing X for now, we set
newrtn ∶∶= " ∣ wk−✓+newrtk ∣ r−n+newrtn ∣ v−1 v

+
2 newrtn

and set newrt as the prefix language of q−2 q+1 newrt0, where the annotations 1 and 2
help distinguish components, writing (V ⇒ X1) ⇒ X2. To cell, newrt adds two initial
questions q−2 and q+1 and is prepared at any point to propagate an answer v−1 for q+1 to
the corresponding answer v+2 for q−2 – this does not necessarily end the play, and it may
happen several times as Opponent may not be well-bracketed. Finally, these plays lack
pointers – but they are uniquely determined so as to make the plays P -visible.
This defines newrt, a set of threads; the corresponding single-threaded strategy is:

Proposition 4.2.1. Consider X a basic arena, i.e. one of U,B, and N.
Then, there is a unique single-threaded strategy

newrX ∶ (V ⇒ X)⇒ X

such that for all s ∈ newrX, we have ⌈s⌉ ∈ newrtX.

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 81

Jnewref x∶=n inMK = newrX ⊙ Λ(JMK) ∈ ⇵-Strat(JΓK, JAK)
Jnewsem x∶=n inMK = newsX ⊙ Λ(JMK) ∈ ⇵-Strat(JΓK, JAK) .

Figure 4.15: Interpretation of reference and semaphore declaration

After each Opponent move, there is exactly one active thread: namely, that where
Opponent just moved. The single-threaded strategy newrX then simply plays as newrtXin the active thread, ignoring other threads and never switching between them. Opera-
tionally, this corresponds to the fact that state in IA is local: each execution of the new
reference operation is linked to a separate, dynamically allocated memory cell.
Finally, the interpretation of newref is given in Figure 4.15 for Γ, x ∶ V ⊢ M ∶ X.

Declaration of semaphores. Now, we perform the same construction for semaphores.
The definition is analogous and semaphores are not particularly interesting in a sequen-
tial language, so we offer fewer details. The semaphore cell is defined first via:

lock0 ∶∶= " ∣ g−✓+lock1 ∣ rl−
lockn+1 ∶∶= " ∣ rl−✓+lock0 ∣ g− ,

setting lock as the prefix language of lock0 – pointers are redundant. Observe that in a
sequential language, attemping to grab a semaphore that is not free results in divergence;
likewise attempting to release a semaphore that is already free yields divergence.
Again, that is not single-threaded. For the actual single-threaded strategy, we set

newst0 ∶∶= " ∣ g−✓+newst1 ∣ v−1 v
+
2 newst0 ∣ rl

−

newstn+1 ∶∶= " ∣ rl−✓+newst0 ∣ v−1 v
+
2 newstn+1 ∣ g

−

and set newstX as the prefix language of newst0, where the subscripts 1 and 2 help
distinguish components on (S ⇒ X1)⇒ X2. Finally, as for references, we set:
Proposition 4.2.2. Consider X a basic arena, i.e. one of U,B, and N.
Then, there is a unique single-threaded strategy

newsX ∶ (V ⇒ X)⇒ X

such that for all s ∈ newsX, we have ⌈s⌉ ∈ newstX.

Finally, the interpretation of newsem is given in Figure 4.15 for Γ, x ∶ S ⊢ M ∶ X.
This almost concludes the interpretation of IA, but two final constructions remain.

Bad variables and semaphores. Indeed, recall from Section 2.2.1 that IA includes
Γ ⊢ M ∶ ℕ → U Γ ⊢ N ∶ ℕ

Γ ⊢ mkvarMN ∶ V
Γ ⊢ M ∶ U Γ ⊢ N ∶ U
Γ ⊢ mksemMN ∶ S

the so-called bad variable and bad semaphore constructs.

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 82

Bad variables and semaphores are not sensible programming primitives, they are here
by necessity for definability. Indeed, up to isomorphism V is defined as (&n∈ℕU)&N,and strategies inhabiting it may not be linked with actual memory cells: they may be
formed by pairing arbitrary “write” and “read” methods. Thus, to obtain a finite defin-
ability result, one must include such pairings should be formable in the syntax 3.

Through the isomorphisms V ≅ (&n∈ℕU)&N and S ≅ U&U, the interpretation is:
JmkvarMNK = ⟨⟨JMK n ∣ n ∈ ℕ⟩, JNK⟩ , JmksemMNK = ⟨JMK, JNK⟩ ,

which are the final two clauses of the interpretation of IA.

4.3 Complements on Alternating Strategies
In this section, we introduce a few complements on the results and constructions of this
chapter. Those may be skipped on first reading; they are intended either as a reference,
or because they are referred to further along in this monograph.

4.3.1 Complements on Single-Threadedness
First of all, we have introduced in Section 3.3.1 the notion of single-threaded strategies,
as a way to enforce that distinct initial moves generate separated copies of the strategy,
which may not communicate or share any state. Here we give some complements.
Here we focus on the concept of threads:

Definition 4.3.1. An alternating thread on arena A is t ∈ ⇵- ↶Plays(A) with at most one
initial move; write ⇵- ↶Plays∙(A) for the set of alternating threads on A.

We mean to make formal that if � ∶ A is single-threaded, then it is determined by its
set of threads – so it should be equivalently described by a thread-strategy:
Definition 4.3.2. For A an arena, an alternating thread-strategy � ∶ A is a set � ⊆
⇵- ↶Plays∙(A) satisfying the following conditions:

non-empty: � ∈ � ,
prefix-closed: ∀s ⊑ t ∈ �, s ∈ � ,

receptive: ∀s ∈ �, sa− ∈ ⇵- ↶Plays∙(A) ⇐⇒ sa− ∈ � ,
deterministic: ∀sa−b+1 , sa

−b+2 ∈ �, sab1 = sab2 ,

and it is additionally well-bracketed if it satisfies

well-bracketing: for all ta+ ∈ �, if t is well-bracketed then so is ta.
3A definability result without bad variables can be obtained by switching to nominal games

[Tzevelekos, 2009], where nominal techniques are employed to attach reference cells to actual memory lo-
cations, but the setting gets more complicated. It must also be mentioned that though finite definability fails
for IA without bad variables, full abstraction still holds as proved by McCusker [McCusker, 2003]

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 83

This is, of course, the same conditions as for Definition 3.1.5, except than they are
taken within ⇵- ↶Plays∙(A) rather than ⇵- ↶Plays(A). Clearly, if � ∶ A is an alternating
strategy (single-threaded or not), then � ∩⇵- ↶Plays∙(A) is a thread-strategy.

Reciprocally, we construct a single-threaded strategy from a thread-strategy on A:
Proposition 4.3.3. Consider � a thread-strategy on arena A.
Then, constructing the set �! comprising all plays s ∈ ⇵- ↶Plays(A) which satisfy

threaded-correct: for all ta+ ⊑ s, we have ⌈ta+⌉ ∈ �,

it follows that �! is a single-threaded strategy on A.

Proof. First, the conditions non-empty, prefix-closed and receptive are clear from the
definition. For the rest, we first observe that any s ∈ �! is well-threaded, in the sense
that for all ta−b+ ⊑ s, b points within ⌈sa−⌉. Indeed, for each initial move si in s, wehave s ↾ i, comprising the moves of s hereditarily justified by si, a thread which by
condition thread-correct must be in � thus, in particular, alternating. For each t ⊑ s we
may define t ↾ i a prefix of s ↾ i. Since each t ↾ i is alternating, it is immediate by in-
duction that for t ⊑ s of even length, all t ↾ i have even length, while if t has odd length,
exactly one i0 is such that t ↾ i0 has odd length. But then, considering ta−b+ ⊑ s, at ta−the only thread with odd length must be ⌈ta−⌉, which b+ must extend so as to satisfy
our invariant; thus b+ must indeed point within ⌈sa−⌉.
We prove further conditions. For deterministic, if sa−b+1 , sa−b+2 ∈ �!, then we

have that ⌈sa−b+1 ⌉, ⌈sa−b+2 ⌉ ∈ �, but by our observation above those have the form
ta−b+1 , ta

−b+2 ∈ � for ta− = ⌈sa−⌉. Hence ta−b+1 = ta−b+2 by determinism of �, from
which follows sa−b+1 = sa−b+2 . Finally, conditions well-threaded and single-threaded
of Definition 3.3.2 follow directly from our observation above.
Any thread-strategy yields a single-threaded strategy, but reciprocally all single-

threaded strategies have this form, as we show now:
Proposition 4.3.4. Consider � ∶ A a single-threaded strategy. Then, the set

⌈⌈�⌉⌉ = {⌈s⌉ ∣ s ∈ �} = � ∩⇵- ↶Plays∙(�)

is a thread-strategy on A, such that � = ⌈⌈�⌉⌉!.

Proof. It is direct that if � ∶ A is single-threaded, then ⌈⌈�⌉⌉ = � ∩ ⇵- ↶Plays∙(A); fromwhich it is easy that ⌈⌈�⌉⌉ satisfies the conditions of Definition 4.3.2.
Now, we prove that � = ⌈⌈�⌉⌉!. For ⊆, consider s ∈ � and ta+ ⊑ s. Since ta+ ∈ �,

we have ⌈ta+⌉ ∈ ⌈⌈�⌉⌉ by definition, hence s ∈ ⌈⌈�⌉⌉!. For ⊇, consider s ∈ ⌈⌈�⌉⌉!. It is
then direct to prove by induction on s that s ∈ �: for negative extensions, this follows
from receptivity, for positive extensions from single-threaded.

Thus altogether, this gives single-threaded alternating strategies two representations:
as a single-threaded set of plays with many initial moves, or as a set of threads. This
exactly reflects the two presentations of innocent strategies, as sets of plays or as sets
of P-views, that was described in Section 3.2.4. We observe a useful consequence:

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 84

Corollary 4.3.5. Consider �, � ∶ A single-threaded strategies.
If � and � have the same threads, then they are equal.

Proof. Straightforward from Proposition 4.3.4.

Further conditions. Finally, we show how this correspondence preserves the further
conditions we considered on alternating strategies. Observe first that the notions of
well-bracketing and P-visibility, respectively introduced in Definitions 3.2.6 and 3.2.8,
are conditions on plays and as such transparently apply to thread-strategies. Then:
Lemma 4.3.6. Consider � ∶ A a thread-strategy. Then:

(1) �! is well-bracketed iff � is well-bracketed,
(2) �! is P-visible iff � is P-visible.

Proof. (1) Only if. Straightforward since � ⊆ �!. If. We show by induction on s that
for all s ∈ �!, the pending question is always in the current thread – the result follows.
(2) Only if. As above, follows from � ⊆ �!. If. Follows from the easy observation

that the P-view is always contained within the current thread.

4.3.2 Factorization and Definability
With the details of the interpretation in place, we revisit some of the properties of the
semantics presented in Chapter 3, providing key steps of the definability proof.

Innocent definability. First of all, recall that all finite innocent well-bracketed strate-
gies are definable within PCF (Theorem 3.2.14). But this result only concerns PCF
types – we must first generalize it to all IA types, including references and semaphores:
Theorem 4.3.7. Let A be an IA type, and � ∶ JAK be finite well-bracketed innocent.

There is an IA term ⊢ M ∶ A, without newref or newsem, s.t. JMK = �.

Proof. Direct variation of Theorem 3.2.14, crucially using mkvar and mksem.

Factorization. Thus, extending types from PCF to IA does not affect the innocent
definability result. But how can it be generalized to non-innocent strategies?
For IA, the main argument is a factorization result [Abramsky and McCusker, 1996]:

Proposition 4.3.8. Consider an arena A = A1 ⇒ … ⇒ An ⇒ X, and � ∶ A visible,
well-bracketed, single-threaded. Then there is an innocent Inn(�) ∶ V ⇒ A such that

newrA ⊙ Inn(�) = �

for newrA obtained from newrX via the cartesian closed structure in the obvious way.
Moreover, if � is finite (resp. computable), then so is Inn(�).

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 85

Sketch. As an innocent strategy, Inn(�) can only depend on the P-view and hence can-
not act as �, which depends on the full play. But the idea is that Inn(�) can access the
full play indirectly, by maintaining in the reference (an encoding of) the full play. More
precisely, each time it receives an Opponent move a−, Inn(�) first reads the reference
and obtains (the encoding of) a play s ∈ �. Assuming sa−b+ ∈ �, Player stores (the
encoding of) sa−b+ in the reference, then plays b+.
This provides the missing argument for finite definability (and hence intensional full

abstraction) for IA: if JAK = A1 ⇒ … ⇒ An ⇒ X and � ∶ JAK is a finite visible,
well-bracketed and single-threaded strategy, then one first obtains a finite innocent and
well-bracketed Inn(�) ∶ V ⇒ JAK by Proposition 4.3.8. By Theorem 4.3.7, there is
⊢ M ∶ V → A in IA such that JMK = Inn(�), but then, as required,

J�x1… xn.newref r inM x1… xn rK = � ∶ JAK

concluding the proof of finite definability for IA – note that if Theorem 4.3.7 is extended
to a universality result as is expected following Conjecture 3.2.15, we get that every
computable P-visible well-bracketed single-threaded strategy in IA is definable.

4.3.3 Summary of Results
Now that we have introduced the proper categories supporting the interpretations un-
derlying Chapter 3, we restate for future reference the main theorems of that chapter
with proper reference to the target categories of the interpretations:
Proposition 4.3.9. There is a computationally adequate interpretation of IA in⇵-Strat.

Proof. First stated as Proposition 4.3.9.
Theorem 4.3.10. The interpretation of Proposition 4.3.9 refines into an interpretation
of PCF in ⇵-InnWB, which is intensionally fully abstract.

Proof. First stated as Theorem 3.2.16.
Theorem 4.3.11. The interpretation of Proposition 4.3.9 refines into an interpretation
of IA in ⇵-WB, which is intensionally fully abstract.

Proof. First stated as Theorem 3.3.5.

4.4 Conclusions and Historical Notes
The compositional setting presented here is robust to a number of variations: for in-
stance, determinism can be relaxed, obtaining an intensionally fully abstract model
for an extension of IA with non-deterministic choice4 [Harmer and McCusker, 1999].
Non-deterministic strategies can additionally be weighted by probabilities, yielding
a model intensionally fully abstract for an extension of IA with probabilistic choice

4That is not the case with AJM games – determinism is crucial in the way AJM games handle uniformity.

CHAPTER 4. THE CATEGORY OF ALTERNATING STRATEGIES 86

[Danos and Harmer, 2000]. However, neither of these two extensions support a notion
of innocence banning state: they do not restrict to intensionally fully abstract models
for either non-deterministic or probabilistic PCF. Among other things, this is what this
monograph aims to solve, as motivated in the introduction.
Beyond those non-deterministic and probabilistic extensions, this alternating com-

positional setting presented here has seen so many extensions and applications that it
would be a daunting task to attempt to survey them exhaustively, and we leave this be-
yond the scope of this short conclusion. Many extensions keep the general structure of
plays and strategies, changing mostly the arenas: a crucial example of that is game se-
mantics for call-by-value [Abramsky and McCusker, 1997, Honda and Yoshida, 1999],
or for polarized versions of linear logic [Laurent, 2002]. Other extensions build on the
present compositional mechanism, but bring additional structure to moves and/or plays,
such as names [Tzevelekos, 2009] or exception pointers [Laird, 2001a].
A more drastic change is to abandon alternation in order to model concurrent com-

putation [Laird, 2001b, Ghica and Murawski, 2008], but this does affect rather deeply
the compositional machinery presented in this chapter: we present this next.

Chapter 5

Non-Alternating Game
Semantics

In this chapter, we continue our introduction to game semantics by presenting the non-
alternating version of the games model seen so far. The chapter roughly follows the
outline of the previous two chapters: first, we introduce non-alternating plays and strate-
gies appealing to operational intuitions in the style of Chapter 3. Then, we introduce
the category ↺-Strat, describe the interpretation of IA�, and prove its properties.

The constructions of this chapter mostly follow [Ghica and Murawski, 2008].

5.1 Concurrency and Non-Alternation
Thus, let us start again from the intuitions described in Section 3.1, representing inter-
active executions as plays, and ask ourselves the following question: how should plays
be amended if execution is no longer sequential, but becomes concurrent?

5.1.1 Non-Alternating Plays
Non-alternation. As a first, example, consider the following programM from PCF�

x ∶ ℕ, y ∶ ℕ ⊢ let
(

x1 = x
x2 = y

)

in x1 + x2 ∶ ℕ ,

which evaluates x and y in parallel, then returns their sum. Or more precisely, the
intention of the program is to evaluate x and y in parallel, but really the execution order
depends on the scheduler. It may still be the case that x is evaluated before y, as in the
first example of Section 3.1.1. Or, perhaps, the scheduler will evaluate y before x. Or

87

CHAPTER 5. NON-ALTERNATING GAME SEMANTICS 88

(U → U → U) → ℕ
q− �f .newref r in f (r ∶= 1) (r ∶= 2); !r r → 0

q+ �f .newref r in f (r ∶= 1) (r ∶= 2); !r r → 0
q− �f .newref r in f (r ∶= 1) (r ∶= 2); !r r → 0

q− �f .newref r in f (r ∶= 1) (r ∶= 2); !r r → 0
✓+ �f .newref r in f (skip) (r ∶= 2); !r r → 1

✓+ �f .newref r in f (skip) (skip); !r r → 2
✓− �f .newref r in f (skip) (skip); !r r → 2

2 �f .newref r in f (skip) (skip); 2 r → 2

Figure 5.1: Operational content of a non-alternating play

they might indeed be evaluated simultaneously, so we must account for the dialogue
O ∶ “What is the return value?”
P ∶ “What is the value of x?”
P ∶ “What is the value of y?”
O ∶ “The value of x is 12.”
O ∶ “The value of y is 30.”
P ∶ “The value of x + y is 42.”

where the evaluation request for y does not wait for the return value for x.
This naturally brings us to the following variation over Definition 3.1.4:

Definition 5.1.1. A non-alternating pre-play on A is a legal pointing sequence on A.
We write ↺-Pre ↶Plays(A) for the set of non-alternating pre-plays on A.

This is simply Definition 3.1.4 without the condition alternating. In other words,
non-alternating pre-play is a synonym for legal pointing string, though we prefer to
keep the names separate for conceptual clarity.

Plays and executions. Non-alternating pre-plays are represented with the same con-
ventions as alternating plays. As for alternating plays, the non-alternating pre-plays of
a term may be thought of operationally, as illustrated in Figure 5.1.
This example also shows that even for programs which do not use parallel evaluation

as a primitive, the switch from alternating plays to non-alternating plays is impactful:
plays may also describe executions where it is Opponent who first plays concurrently. In
Figure 5.1, Opponent, playing for the argument f ∶ U → U → U, simultaneously calls
its two arguments. This triggers a race, as the two write requests are being evaluated
simultaneously, yielding a non-deterministic result. So in non-alternating games, terms
from IA – a deterministic language – may still have non-deterministic behaviour.
Figure 5.1 is misleading in one respect: it makes it seem like the Player move ✓+

coincideswith the memory update. In reality, it is an acknowledgment for which we can
only know for sure that it comes after the memory update: the message may stay stuck

CHAPTER 5. NON-ALTERNATING GAME SEMANTICS 89

(U → U → U) → ℕ
q− �f .newref r in f (r ∶= 1) (r ∶= 2); !r r → 0

q+ �f .newref r in f (r ∶= 1) (r ∶= 2); !r r → 0
q− �f .newref r in f (r ∶= 1) (r ∶= 2); !r r → 0

q− �f .newref r in f (r ∶= 1) (r ∶= 2); !r r → 0
�f .newref r in f (r ∶= 1) (r ∶= 2); !r r → 2
�f .newref r in f (r ∶= 1) (r ∶= 2); !r r → 1

✓+ �f .newref r in f (skip) (r ∶= 2); !r r → 1
✓+ �f .newref r in f (skip) (skip); !r r → 1

✓− �f .newref r in f (skip) (skip); !r r → 1
2 �f .newref r in f (skip) (skip); 1 r → 1

Figure 5.2: Alternative result

in a buffer for a while. The behaviour in Figure 5.2, with exactly the same play until
the final result, is just as possible. The consequence of this is that the order in which
consecutive acknowledgments arrive is not representative of the order in whichmemory
operations are handled: it is irrelevant and cannot influence subsequent behaviour.

Well-bracketing. As in sequential games, constructing the games model will require
us to introduce a notion of well-bracketing. In our presentation of sequential games,
plays were not well-bracketed; instead well-bracketing was a property of strategies1.
Here we make the opposite choice and impose it directly on plays: defining cleanly
non-alternating strategies for the primitives of IA� without well-bracketing becomes
very challenging, as we are overwhelmed by the number of plays.
As in the alternating case, non well-bracketed plays allow behaviours typical of con-

trol operators such as callcc – with the new addition of parallel versions, such as the
fork operator onB that answers tt and ff in parallel, see [Castellan, 2015]. As in the al-
ternating case, these behaviours must be banned via an adequate condition. By analogy
we still call it well-bracketing, though this is a bit of a misnomer: for instance,

q− q− tt+ tt+

is a perfectly acceptable play for the constant tt, though the third move does not answer
the pending question. Intuitively, this play is an interleaving of two evaluations of tt
progressing independently. While each, taken independently, is indeed well-bracketed
in the sense of alternating game semantics, this is blurred out in their interleaving – the
notion of “pending question” does not make sense anymore.
Thus we must constrain the interplay between questions and answers differently:

Definition 5.1.2. Consider A an arena, and s a non-alternating pre-play.
1For modeling IA, both choices are possible, but our discussion on the semantic cube in Section 3.3.3

requires non well-bracketed plays as doing otherwise is incompatible with the interpretation of callcc.

CHAPTER 5. NON-ALTERNATING GAME SEMANTICS 90

(U → U) → (U → U) → U
q−

q+

q−

q+

q−
✓+

Figure 5.3: Logical well-bracketing is weaker than well-bracketing

We say that s is logically well-bracketed iff it satisfies the conditions:

fork: for t q t′ m ⊑ s, q is unanswered in t′.
join: for t q t′ a ⊑ s, all questions justified by q are answered in t′.

By answer-closing of Definition 3.2.4, moves labelled q are necessarily questions
in this definition. Rather than chronological, the constraint is logical; it is about the
hierarchical relationship between functions and arguments. Fork means that if a call
returns, it can neither return again nor investigate its arguments anymore; join means
that a call cannot return if there are un-terminated argument calls currently running.
For s ∈ ⇵- ↶Plays(A) alternating, if s is well-bracketed (in the sense of Definition

3.2.5) then it is logically well-bracketed (in the sense of Definition 5.1.2. However, the
converse does not hold as illustrated by Figure 5.3. We may then define:
Definition 5.1.3. A non-alternating play on A is a (logically) well-bracketed non-
alternating pre-play on A. We write ↺- ↶Plays(A) for alternating legal plays on A.

Recall that the set of alternating legal plays on A was written ⇵- ↶Plays(A), where ⇵
evokes the transition between states O and P, depending on whose turn it is. Here, ↺
evokes the fact that there is only one state, where both players can potentially play.
It is a puzzling fact that logical well-bracketing may replace chronological well-

bracketing in alternating strategies also, and still get intensional full abstraction for IA
(but not definability), despite the example in Figure 5.3. This boils down to the fact that
logically well-bracketed complete plays (i.e. P- and O-visible, and all questions have an
answer) are automatically well-bracketed – so e.g. Figure 5.3 cannot be completed.

5.1.2 Non-Alternating Strategies
Now, for strategies, which conditions of Definition 3.1.5 survive? Non-empty, prefix-
closed and receptive still make sense. However deterministic is unreasonable, firstly
because of the non-determinism introduced by the scheduler’s choices, and secondly
because a non-deterministic choice may be defined in IA� (see choice in Section 2.2.3).

CHAPTER 5. NON-ALTERNATING GAME SEMANTICS 91

U → U → U
q− �xU. �yU. x ∥ y

q+ �xU. �yU. x ∥ y

q+ �xU. �yU. x ∥ y

Figure 5.4: Two consecutive P -moves

U → U → U
q− �xU. �yU. x ∥ y

q+ �xU. �yU. x ∥ y

q+ �xU. �yU. x ∥ y

Figure 5.5: The other order

(U → U) → U → U
q− �fx. f ⊥ ∥ x

q+ �fx. f ⊥ ∥ x

q+ �fx. f ⊥ ∥ x

q− �fx. f ⊥ ∥ x

Figure 5.6: Two exchangeable moves

(U → U) → U → U
q− �fx. f ⊥ ∥ x

q+ �fx. f ⊥ ∥ x

q− �fx. f ⊥ ∥ x
q+ �fx. f ⊥ ∥ x

Figure 5.7: The other order

As a first approximation of non-alternating strategies, we set:
Definition 5.1.4. Consider A an arena.

A non-alternating prestrategy � ∶ A is a set � ⊆↺- ↶Plays(A) satisfying:

non-empty: � ∈ � ,
prefix-closed: ∀s ⊑ t ∈ �, s ∈ � .

Though receptive still makes sense, it is more useful technically to let prestrategies
not be receptive, and impose receptivity only later on in Definition 5.1.5.

Saturation. Perhaps less obvious is the fact that we need a new condition.
We already mentioned that in a non-alternating play, part of the order in which moves

appear is irrelevant. Imagine a program features consecutive Player moves:
…m+1m

+
2⋯ ∈↺- ↶Plays(A) .

Since the play is non-alternating, according to our operational intuition this means
that two threads are currently under execution. So we are as in Figure 5.4, which illus-
trates that: (1) Player has no control over the order in which the two positive moves ap-
pear, which is the scheduler’s prerogative; and (2) if the positive moves are exchanged,
we reach nevertheless the same program state. So the order of two contiguous Player
moves is irrelevant, they can be exchanged without affecting the future of the execution.

CHAPTER 5. NON-ALTERNATING GAME SEMANTICS 92

A symmetric situation is that of two consecutive Opponent moves, in which case,
likewise their order is irrelevant and they can be exchanged without affecting the future
of execution. Finally, consider a program in IA� with a play of the form

…m+1m
−
2⋯ ∈↺- ↶Plays(A)

where m2 is not justified by m1. In that case we are as in Figure 5.6 and the positive
m1 can always be postponed until after the negative m2, reaching the same program
state, and thus not affecting the future computation. But finally, one cannot always
postpone an Opponent move after a Player move: the Player move may actually depend
on the Opponent move. Overall, the relevant information in s ∈ ↺- ↶Plays(A) is only
that which survives permutations as described above; and accordingly we shall require
that non-alternating strategies should be saturated under those.

Integrating this condition, the definition of non-alternating strategies becomes:
Definition 5.1.5. Consider A an arena.

A non-alternating strategy � ∶ A, or ↺-strategy for short, is a prestrategy s.t.:

receptive: ∀s ∈ �, sa− ∈↺- ↶Plays(A) ⇐⇒ sa− ∈ � ,
courteous: for sabt ∈ � with pol(a) = + or pol(b) = −,

then if sbat ∈↺- ↶Plays(A), sbat ∈ � as well.

where it is understood that sabt and sbat have the same pointers.

The earliest appearance of such a saturation that we are aware of is by Selinger
[Selinger, 1997]. It seemed to have first appeared in game semantics in [Laird, 2001b],
and was called saturation in [Ghica and Murawski, 2008]. We refer to it as courtesy,
a terminology imported from [Melliès and Mimram, 2007]: this is for compatibility
with the terminology in the forthcoming concurrent games, where the same behaviour
is imposed causally rather than by a saturation condition.
It is notable that non-alternating game semantics is obtained “only” by changing the

nature of plays: the arenas, representing types, will remain the same.

5.1.3 Single-Threadedness
Are all non-alternating strategies sensible w.r.t. IA�?
It is clear that it is not the case: the same phenomenon as in Section 3.3.1 occurs. As

in the alternating case, we must impose a condition ensuring that the state is local, in
that no information flows between distinct instances of the program. By analogy with
the alternating case, we call this single-threadedness. But we must warn the reader
that this by no means implies that our strategies can only have a single “thread” as in
concurrent programming! Single-threadednessmeans that each initial move spawns an
independent copy of this program, even if that program is multi-threaded.
But single-threadedness cannot be imported transparently from alternating strategies.

Though the current thread (Definition 3.3.1) seemingly still makes sense, Player may

CHAPTER 5. NON-ALTERNATING GAME SEMANTICS 93

have control over several threads simultaneously, as in the play on B displayed below
q− q− tt+ tt+

which will belong to the strategy for the constant tt. The last move fails condition well-
threaded of Definition 3.3.2 even though tt does behave independently on all copies.
So we have to approach the issue a bit differently. First, define:

Definition 5.1.6. A non-alternating thread on arena A is t ∈↺- ↶Plays(A) with at most
one initial move; write ↺- ↶Plays∙(A) for the set of non-alternating threads on A.

Single-threaded behaviour is defined first via single threads, which invites:
Definition 5.1.7. Consider A an arena.

A thread-strategy � ∶ A is a set � ⊆↺- ↶Plays∙(A) satisfying:

receptive: ∀s ∈ �, sa− ∈↺- ↶Plays∙(A) ⇐⇒ sa− ∈ � ,

as well as non-empty, prefix-closed and courteous as in Definitions 5.1.4 and 5.1.5.
As in Definition 5.1.4, a thread-prestrategy is a prestrategy � ⊆↺- ↶Plays∙(A).

Note that unlike in Definition 5.1.4, receptive must be restricted to threads.
Given a thread-strategy � ∶ A, a full non-alternating strategy may be defined by

interleaving copies of �. Given s, t ∈ ↺- ↶Plays(A), s ⊔ t ⊆ ↺- ↶Plays(A) denotes the set
of interleavings of s and t. IfX, Y ⊆↺- ↶Plays(A), X ⊔Y is defined as the union of all
s ⊔ t, for s ∈ X and t ∈ Y . Finally, if X ⊆↺- ↶Plays(A), we set

X(0) = {"}
X(n+1) = X ⊔X(n)

and X! ⊆↺- ↶Plays(A), the iterated interleaving of X, is X! = ∪n∈ℕX(n). We have:
Definition 5.1.8. Consider A an arena, and � ∶ A a non-alternating strategy on A.
We say that � is single-threaded if there is � ∶ A a thread-strategy such that � = �!.

In that case � is uniquely determined, as it must be the set of threads in �. If � ∶ A
is a non-alternating strategy on A, write �∙ for its set of threads – � is single-threaded
iff � = (�∙)!. It also directly follows from Definition 5.1.8 that we have:
Lemma 5.1.9. Consider �, � ∶ A single-threaded non-alternating strategies.
Then, � = � if and only if �∙ = �∙.

5.1.4 Full Abstraction for IA�
As we shall spell out in Section 5.2, arenas and single-threaded non-alternating strate-
gies form a cartesian closed category ↺-Strat which supports the interpretation of
IA�. More precisely, types and contexts are interpreted as arenas exactly as in Chapter
4 (IA� brings no new type), and a term Γ ⊢ M ∶ A is interpreted as a morphism

JMK ∈↺-Strat(JΓK, JAK) .

CHAPTER 5. NON-ALTERNATING GAME SEMANTICS 94

((U → U) → U) → U
q− �f . f (�x. x) ∥ f ⊥

q+ �f . f (�x. x) ∥ f ⊥

q− �f . f (�x. x) ∥ f ⊥

q+ �f . f (�x. x) ∥ f ⊥

q− �f . f (�x. x) ∥ f ⊥

q+ �f . f (�x. x) ∥ f ⊥

Figure 5.8: A realizable non P-visible play

U1 → (U2 → U3) → U4 → U5
q−5

q+1
q+3

✓−1
q−2

q+4
✓−4

✓+2

q−5

q+1 q+3 q+4

✓−1

 ��)

) 118

q−2

4 55?

✓−4
4uu�

✓+2

Figure 5.9: Example of definability of plays in IA�

Realizing plays. But do we have more than IA�? It is natural to expect that the answer
is yes: in the alternating setting, P-visibility is required to ban higher-order references
(see Section 3.3.2), and we have not imposed any such condition here.
But P-visibility is not adequate: strategies from IA� will not satisfy it, even though

we only have ground type references. Figure 5.8 illustrates why: several threads in
parallel may cause executions which are undistinguishable, viewed from the outside,
from a non-local control flow due to a higher-order reference. In Figure 5.8, one cannot
observe that the occurrence of the last move after the next-to-last is entirely coincidental,
in that the two moves really belong to completely independent threads.
This phenomenon is general: given a play s, it is fairly easy to produce a term that

can realize s, though typically along with many other plays. We can do this via a purely
parallel term that simply mimics the hierarchical dependencies imposed by justification
pointers. For instance, for s on the left hand side of Figure 5.9, one obtains the term

�xU1fU2→U3yU4 . (x ∥ f skip ∥ y); ⊥ . (5.1)

CHAPTER 5. NON-ALTERNATING GAME SEMANTICS 95

Definability. Now, can we produce a term that realizes exactly s, and not more? Not
in the strictest sense, since strategies interpreting terms will always be sets of plays
satisfying Definition 5.1.5. But there is always a smallest strategy containing s:
Lemma 5.1.10. Consider � ∶ A a thread-prestrategy.

Then, there is a unique least (for inclusion) thread-strategy �̂ ∶ A s.t. � ⊆ �̂. Its
plays are deduced from � by applying receptive and courteous from Definition 5.1.5.

Regarding s ∈↺- ↶Plays∙(A) as a thread-prestrategy implicitely by prefix-closure, we
have ŝ ∶ A its saturation, a thread-strategy, and ŝ! ∶ A a single-threaded strategy.
The saturation process generates many plays, which are however succinctly summa-

rized via a causal dependency between moves: a move depends on another when they
cannot be permuted by courtesy. This happens if one points to the other; or for a Player
move appearing after an Opponent move in s. It is helpful conceptually to represent
these constraints via a diagram on moves, and this is done on the rhs of Figure 5.9: we
draw the dependency due to pointers as dotted lines (read from top to bottom), and the
dependency from negative moves to positive moves as arrows_. The resulting object
is close to a concurrent strategy in the sense of Part II – by design, ŝ comprises exactly
the plays that are linearizations of this diagram (with pointers following dotted lines).
Now, we observe that in our example, the purely parallel term of (5.1) captures ex-

actly the static/dotted dependencies on the rhs of Figure 5.9. To capture ŝ, we must also
account for the arrows_, and this is done by exploiting the memory. For that we define
two helper functions. IfM ∶ V , we write set(M) ∶ U forM∶=1, and test(M) ∶ U for
if (iszero !M)⊥ skip which converges iff !M is non-zero. Then:

�xU1fU2→U3yU4 .

⎛

⎜

⎜

⎜

⎝

(

x;
set(✓−1)

)

∥

⎛

⎜

⎜

⎜

⎝

f (set(q−2);
test(✓−4);
grab(✓+2);
skip)

⎞

⎟

⎟

⎟

⎠

∥

⎛

⎜

⎜

⎜

⎝

test(✓−1);
test(q−2);
y;
set(✓−4)

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

; ⊥

borrows the shape of (5.1), additionally signaling the _-links through memory (we
omit reference and semaphore creations wrapping the term). We use one fresh reference
(initialized to 0) for each Opponent move, which gets set to 1 when the Opponent move
occurs. Finally, we must ensure that Opponent replications does not cause a duplication
of Player moves by prompting re-evaluation of the corresponding subterms, so that we
only obtain linearizations of the diagram on the right hand side of Figure 5.9. For that
we add semaphores which are grabbed, but never released.
Done systematically for arbitrary plays [Ghica and Murawski, 2008], we get:

Proposition 5.1.11. Consider A an arena, and s ∈↺- ↶Plays∙(A).
Then, there is a term ⊢ M ∶ A of IA� such that JMK = ŝ!.

From this, it is deduced in [Ghica and Murawski, 2008] that we have:
Theorem 5.1.12. Arenas and single-threaded strategies form an intensionally fully ab-
stract model for IA�. Moreover, given Γ ⊢ M,N ∶ A, we have

M ≃ N ⇔ comp(JMK) = comp(JNK) ,

CHAPTER 5. NON-ALTERNATING GAME SEMANTICS 96

where comp(�) is the set of non-alternating complete plays, i.e. non-alternating plays
such that all questions have an answer.

5.2 The Ambiant Cartesian Closed Category↺-Strat
As in the alternating case, we now focus on the compositional construction of non-
alternating strategies from terms, starting with the categorical structure.

5.2.1 Constructing↺-Strat
As for alternating strategies, anon-alternating strategy fromA toB is a non-alternating
strategy on A ⇒ B. The composition of non-alternating strategies largely follows the
same route as for alternating strategies in Section 4.1.2, with a few minor changes.

Interactions. Consider � ∶ A ⇒ B and � ∶ B ⇒ C non-alternating strategies. As in
Section 4.1.2, we start with an appropriate notion of interactions:
Definition 5.2.1. Consider A,B and C arenas.
A non-alternating interaction onA,B, C is a legal pointing sequence on (A ⇒ B)⇒

C satisfying the conditions fork and join of Definition 5.1.2.
We write↺-I(A,B, C) the set of all non-alternating interactions on A,B, C .

It is useful to compare with Definition 4.1.6 in the alternating case: the conditions
outer-legal, left-legal and right-legal, which amount to all restrictions being alternating,
become unnecessary: all restrictions are automatically valid non-alternating plays.
We use the same terminology and conventions as in the alternating case (notably

regarding the polarities of moves, see below Definition 4.1.6) for non-alternating in-
teractions. However, the state diagram of Figure 4.2 disappears. Just as plays, non-
alternating interactions have no well-defined state, and both players can play anywhere
at any time provided themove they play is justified and compatible withwell-bracketing.

Composition. We now define composition, first for prestrategies:
Definition 5.2.2. Consider � ∶ A⇒ B and � ∶ B ⇒ C non-alternating prestrategies.

An interaction between � and � is any u ∈↺-I(A,B, C) such that u ↾ A,B ∈ � and
u ↾ B,C ∈ �. We write � ∥ � for the set of all interactions between � and �.
We may then define the composition � ⊙ � = {u ↾ A,C ∣ u ∈ � ∥ �} ∶ A ⇒ C .

As in the alternating case, if s ∈ �⊙� then by definition theremust be some u ∈ � ∥ �
such that s = u ↾ A,C , called a witness for s. However, unlike in the alternating case,
the witness is no longer unique. Composition is associative:
Proposition 5.2.3. Consider � ∶ A ⇒ B, � ∶ B ⇒ C and � ∶ C ⇒ D prestrategies.

Then, (� ⊙ �)⊙ � = � ⊙ (� ⊙ �).

Proof. Same proof as in the alternating case: one defines the set IA(A,B, C,D) of
ternary interactions as comprising well-bracketed legal pointing sequence on ((A ⇒

CHAPTER 5. NON-ALTERNATING GAME SEMANTICS 97

B) ⇒ C) ⇒ D. Then, one proves a “zipping lemma” with almost the same statement
as Lemma 4.1.10 – with only the uniqueness clause missing – and the proof follows
transparently as in Proposition 4.1.11 (uniqueness of witness is not needed).
Note that associativity holds already for composition of prestrategies, without relying

on receptivity or courtesy. However, we will need these conditions shortly.
We mention the following preservation proposition [Ghica and Murawski, 2008]:

Proposition 5.2.4. Consider � ∶ A ⇒ B and � ∶ B ⇒ C prestrategies. Then:

if � and � are strategies, then so is � ⊙ �,
if � and � are single-threaded, then so is � ⊙ �.

Copycat. Composition of non-alternating strategies is as direct as in the alternating
case – perhaps simpler, as interactions are “wilder”, not having to follow the rigid struc-
ture imposed by alternation and the state diagram. But non-alternation also means that
identities cannot be as simple as in Definition 4.1.12: copycat must handle Opponent
moves arriving in bulk, possibly before earlier Opponent moves are propagated.
Nevertheless, the non-alternating copycat can be succinctly defined by:

Definition 5.2.5. Consider A any arena, and cc ∙A the set of threads of cc A.
The non-alternating copycat on A, written↺- cc A, is simply defined as ĉc ∙A

!
.

So ↺- cc A is the smallest non-alternating strategy including the alternating copycat.
Despite the overload of notations, we will often still refer to the non-alternating copycat
simply with cc A – hopefully, the context should always be sufficient to disambiguate. We
shall reserve↺- cc A for when we need to be extra explicit. Likewise, we shall use⇵- cc Afor the alternating copycat, when we feel it is useful to emphasize that this is not↺- cc A.
This definition is succinct but not so explicit, so we illustrate it with a play of the

non-alternating copycat in Figure 5.2.1. As long as Opponent “plays in turn”, copycat
remains alternating. But if Opponent plays several moves in a row – before the previous
ones can be propagated – then copycat maintains a buffer of moves to be forwarded and
plays them (not necessarily in the same order as they arrived), attempting to restore the
same state between the right hand side and the left hand side.
As required, the non-alternating copycat is neutral for composition with respect to

non-alternating strategies. In fact, we have the following proposition:
Proposition 5.2.6. Consider A,B arenas, and � ∶ A ⇒ B a prestrategy.

Then, � is a non-alternating strategy iff ↺- cc B ⊙ � = � ⊙↺- cc A = �.

Proof. Direct adaptation of [Ghica and Murawski, 2008, Lemma 16].
It follows that we have:

Corollary 5.2.7. There is a category ↺-Strat with arenas as objects, and as mor-
phisms from A to B all single-threaded strategies on A ⇒ B.

CHAPTER 5. NON-ALTERNATING GAME SEMANTICS 98

((U → U) → U) → (U → U) → U
q−

q+

q−

q+

q−

q−

q+

q−

q+

q+

Figure 5.10: An example play of the non-alternating copycat

5.2.2 Cartesian Closed Structure
The cartesian closed structure essentially follows that of ⇵-Strat.

Cartesian structure. On objects, the cartesian structure is defined as in⇵-Strat: the
empty arena 1 with no moves is a terminal object, and the product of two arenas A and
B is A × B as defined in Definition 4.1.1. For arenas A,B, the projections

↺-�A ∶ A × B ⇒ A , ↺-�B ∶ A × B ⇒ B

are the copycat strategies defined with the obvious adaptation of Definition 5.2.5.
To define the pairing, we prove:

Lemma 5.2.8. Consider Γ, A, B arenas, and � ∶ Γ ⇒ A, � ∶ Γ ⇒ B single-threaded
non-alternating strategies. Then, there exists a single-threaded non-alternating

⟨�, �⟩ ∶ Γ⇒ A × B ,

whose set of threads is (up to relabeling) the disjoint union of the threads of � and �.

Proof. Straightforward by definition of single-threaded non-alternating strategies.
Again, this data satisfies the required equations for cartesian products:

Lemma 5.2.9. Consider � ∶ Γ⇒ A, � ∶ Γ⇒ B, and � ∶ Δ⇒ Γ single-threaded.
Then, the following equations hold:

↺-�A ⊙ ⟨�, �⟩ = �
↺-�B ⊙ ⟨�, �⟩ = �
⟨↺-�A,↺-�B⟩ = ↺- cc A×B

⟨�, �⟩⊙ � = ⟨� ⊙ �, � ⊙ �⟩ .

CHAPTER 5. NON-ALTERNATING GAME SEMANTICS 99

Proof. The first two equalities are a variation of Proposition 5.2.6, first proved for
threads and extended to strategies via Lemma 5.1.9. The last two are direct on threads
and generalized by Lemma 5.1.9.
It follows from these equations that we have the desired structure:

Corollary 5.2.10. The category ↺-Strat is cartesian.

Cartesian closed structure. Now, we describe the cartesian closure.
On arenas, A ⇒ B is of course the same construction as for alternating strategies.

We have seen in Lemma 4.1.18 that there is an isomorphism of arenas
ΞΓ,A,B ∶ (Γ × A)⇒ B ≅ Γ⇒ (A ⇒ B)

which, as in the alternating case, immediately yields a bijection:
Lemma 5.2.11. Consider Γ, A and B three arenas. Then, there is a bijection

ΛΓ,A,B ∶ ↺-Strat(Γ × A,B) ≃ ↺-Strat(Γ, A⇒ B)

preserving composition in the sense that

ΛΓ,A,B(�)⊙ = ΛΔ,A,B(� ⊙ (× A))

for all � ∈↺-Strat(Γ × A,B) and ∈↺-Strat(Δ,Γ).

Proof. A routine manipulation on interactions.
In turn, this bijection lets us define the evaluation strategy simply as

↺-evA,B = Λ−1A,A,B(↺- cc A⇒B) ∈ ↺-Strat((A ⇒ B) × A,B)

and from the above, it becomes routine to prove cartesian closure:
Proposition 5.2.12. The category ↺-Strat is cartesian closed.

Proof. As for Proposition 4.1.20.

5.2.3 Recursion
As for alternating strategies, non-alternating strategies are partially ordered by inclu-
sion. This partial order is preserved by all operations, yielding:
Proposition 5.2.13. For any two arenas A and B,↺-Strat(A,B) is partially ordered
by inclusion, yielding a pointed dcpo. All operations on strategies involved in the carte-
sian closed structure are continuous, making ↺-Strat enriched over pointed dcpos.

Proof. Direct verifications.

CHAPTER 5. NON-ALTERNATING GAME SEMANTICS 100

As in the alternating case, we define
F ∶ ↺-Strat(A ⇒ A,A) → ↺-Strat(A ⇒ A,A)

� → �fA⇒A. f (� f)

a continuous operation whose least fixed point
↺-A =

⋃

n∈ℕ
F n(⊥) ∈ ↺-Strat(A ⇒ A,A) (5.2)

satisfies↺-A = F ↺-A by construction and provides the interpretation of recursion.

5.3 Interpretation of IA�
5.3.1 Interpretation of PCF�
First of all, types and contexts of PCF are interpreted exactly as in ⇵-Strat.
For terms, any Γ ⊢ M ∶ A gets interpreted as a morphism

JMK ∈↺-Strat(JΓK, JAK) .

As for ⇵-Strat, the primitives for the simply-typed �-calculus and for recursion are
interpreted using the structure above. It remains to provide interpretations for all the
additional combinators that PCF adds to the simply-typed �-calculus.

PCF. Constants are interpreted by single-threaded strategies returning directly the cor-
responding value – due to non-alternation, this means they have plays such as

q− ✓+ q− q− q− ✓+ q− ✓+ ✓+ ✓+

for skip ∶ U, interleaving various calls in an asynchronous fashion – the generating
thread-strategy is simpler to describe, with only one maximal play q−✓+.

The interpretation of PCF is obtained via the same clauses as in alternating games, in
Figure 4.5. This uses single-threaded non-alternating strategies seq, if , succ, iszero and
predwhose thread-strategies are exhaustively presented as comprising prefixes of plays
of the form displayed in Figures 4.4 and 4.6. Non-alternation does not induce additional
plays, because we required that non-alternating plays should be well-bracketed thus
Opponent can answer at most once. The strategy let comprises more plays than its
alternating version in Figure 4.7. We omit however its definition, obtained as an obvious
simplification of the new operation that PCF� adds to PCF: the parallel let.

PCF�. To complete the interpretation of PCF�, we need a single-threaded strategy
pletX,Y ∶ X ⇒ X ⇒ (X ⇒ X ⇒ Y)⇒ Y

for the parallel let. Intuitively, its behaviour is simple enough: upon being called, plet
will interrogate its first two arguments in parallel. Upon receiving two values, it will

CHAPTER 5. NON-ALTERNATING GAME SEMANTICS 101

X ⇒ X ⇒ (X ⇒ X ⇒ Y) ⇒ Y
q−

q+

q+
v−

w−

q+

q−
v+

q−

q−

q−
w+

v+

w+

u−

u+

Figure 5.11: Typical play of pletX,Y.

interrogate its function argument and provide it the two values. We show one of its typ-
ical plays, in Figure 5.11. It acts in two subsequent stages: first the parallel evaluation
of arguments, and then the call to the functional argument with the memoized values.
To define pletX,Y formally, we define sets of pointing sequences for these two stages.

Annotating types as X1 ⇒ X2 ⇒ (X ⇒ X ⇒ Y)⇒ Y, for v and w values of X, we set
forcev,w ∶∶= q+1 v

−
1 q

+
2w

−
2 ∣ q

+
2w

−
2 q

+
1 v

−
1 ∣ q

+
1 q

+
2 v

−
1w

−
2

∣ q+1 q
+
2w

−
2 v

−
1 ∣ q

+
2 q

+
1 v

−
1w

−
2 ∣ q

+
2 q

+
1w

−
2 v

−
1

where it is understood that v−1 points to q+1 and w−2 points to q+2 .
Next, for the second stagewe define another set of pointing sequences, written evalv,w.Its elements are obtained by first considering the threads in the strategy

�xX. �yX. �fX⇒X⇒Y. f vw ∶ X ⇒ X ⇒ (X ⇒ X ⇒ Y)⇒ Y ,

defined exploiting the cartesian closed structure of ↺-Strat and the corresponding
internal language. From such threads, elements of evalv,w are obtained by removing
the initial question. Finally, we form the set of pointing sequences

preletX,Y =
⋃

v,w
q− ⋅ forcev,w ⋅ evalv,w

CHAPTER 5. NON-ALTERNATING GAME SEMANTICS 102

completed into a set of plays by reinstating the missing pointers in the unique possible
way, with missing pointers assigned to the initial move q−. Finally, the non-alternating
thread-strategy for pletX,Y is obtained as interleavings of all prefixes of preletX,Y.
Altogether, we obtain pletX,Y ∶ X ⇒ X ⇒ (X ⇒ X ⇒ Y)⇒ Y and we complete the

interpretation of PCF� by adding to Figure 4.4 the additional clause

JΓ ⊢ let
(

x1 = N1
x2 = N2

)

inM ∶ Y K = pletX,Y ⊙! ⟨JN1K, JN2K,Λ!(Λ!(JMK))⟩

5.3.2 Interpretation of State
The types V and S are interpreted by the same arenas as in Section 4.2.2.

Queries. As in the alternating case, we set the interpretation of queries as
JM∶=NK = assign⊙ ⟨JNK, JMK⟩

J!MK = deref ⊙ JMK
Jgrab(M)K = grab⊙ JMK

Jrelease(M)K = release⊙ JMK

using the single-threaded non-alternating strategies with threads as in Figures 4.11,
4.12, 4.13, and 4.14 – the same basic plays as in the alternating case.

Declaration. Now, we must provide the interpretation for the declaration of new ref-
erences and semaphores. For that, we need non-alternating versions of the strategies
for reference and semaphore declaration introduced in Section 4.2.2.
Rather than going again through the concrete definition of these strategies, we set

↺-newrX = n̂ewr∙X
!
, ↺-newsX = n̂ews∙X

!

via the saturation process of Lemma 5.1.10, and use those in:
Jnewref x∶=n inMK = ↺-newrX ⊙ Λ(JMK) ∈ ↺-Strat(JΓK, JAK)
Jnewsem x∶=n inMK = ↺-newsX ⊙ Λ(JMK) ∈ ↺-Strat(JΓK, JAK) .

Bad variables and semaphores. As in the alternating case, through the isomorphisms
V ≅ (&n∈ℕU)&N and S ≅ U&U, the interpretation is:
JmkvarMNK = ⟨⟨JMK n ∣ n ∈ ℕ⟩, JNK⟩ , JmksemMNK = ⟨JMK, JNK⟩ ,

which concludes the interpretation of IA�.

CHAPTER 5. NON-ALTERNATING GAME SEMANTICS 103

5.3.3 Summary of Results
This concludes the construction of the cartesian closed category ↺-Strat, as well as
the interpretation of IA�. As in the alternating case, we conclude the technical content
of this chapter by summing up a few key results for future reference.
Proposition 5.3.1. There is an adequate interpretation of IA� in ↺-Strat.

Proof. The interpretation is as described in its chapter. Computational adequacy cor-
responds to the particular case of Theorem 5.1.12 instantiated on ground type.
Theorem 5.3.2. The interpretation of Proposition 5.3.1 refines into an interpretation
of IA in↺-Strat, which is intensionally fully abstract.

Proof. First stated as Theorem 5.1.12.

5.4 Conclusions and Historical Notes
The first to consider a non-alternating version of play-based game semantics was Laird,
who proposed a fully abstract model for a message-passing language called Idealized
CSP [Laird, 2001b]. This model had much in common with the one presented here,
however plays are equipped with additional “concurrency pointers”, which explicitly
mark the different threads acting in a non-alternating plays. Ghica and Murawski’s
model was first published in 2004 [Ghica and Murawski, 2004], in conference format.
It is strongly related to the non-alternating games of Melliès and Mimram published
soon after [Melliès and Mimram, 2007], which contains the definition of a category of
games and linear non-alternating strategies, alongwith an adequate notion of innocence.
Just like in the alternating case in the presence of state, non-alternating games form

an effectively presentable fully abstract model, which lead to decision algorithms for
observational equivalence – though for very restricted languages: first bounding the
number of threads via a type system [Ghica et al., 2006] so that strategies are repre-
sentable as finite automata, and more recently via other finitary restrictions that allow a
representation of non-alternating strategies via more elaborate notions of data automata
[Dixon et al., 2021a, Dixon et al., 2021b].
It is noteworthy, in the definability process outlined in Proposition 5.1.11, that it

seems we really need semaphores in order to capture a single play. Murawski explored
what happened without semaphores [Murawski, 2010]; he proved that then strategies
are closed under a stuttering behaviour that affect observational equivalence. This
shows that, perhaps surprisingly, semaphores are not definable just via references up
to observational equivalence – another of those very results which illustrates well the
strength of game semantics.
This concludes the preliminary part. One of the purposes of the rest of this mono-

graph will be to construct and explore_-Strat, a causal version of ↺-Strat.

Part II

Thin Concurrent Games

104

Introduction to Part II

q

3uu~ �)q

F}}� y��"

q

E||� y��"
tt

x��!

ff

� $$,

tt
F}}�

ff
E||�

tt tt ff

Figure 5.12: To survive pointer showers, remember to bring your parallel-or umbrella!

Now that we have spent significant time building up a background on traditional play-
based game semantics, let us forget it all and start from scratch!
Concurrent games reject the premise that there exists a global clock; instead relying

on a causal presentation of program behaviour. This idea was pioneered by Abramsky
andMelliès [Abramsky and Melliès, 1999], and its consequences were mainly explored
by Melliès in his sequence of insightful papers on asynchronous games [Melliès, 2003,
Melliès, 2004a,Melliès, 2004b,Melliès, 2005,Melliès and Mimram, 2007]. Inheriting
from this, the definitions on which we build were first proposed by Rideau and Winskel
[Rideau and Winskel, 2011], also building on other work [Faggian and Hyland, 2002,
Curien and Faggian, 2005, Faggian and Piccolo, 2009] inspired by ludics – we rediect
to Section 6.5 for a longer discussion on the history of these notions.
While thin concurrent games share much conceptually with the game semantics of

Part I, they build on a completely different – and more sophisticated – technical basis:
the theory of event structures. This enhances their expressiveness, but with the cost of
an involved technical development, for two reasons.

105

106

Firstly, event structures are more elaborate than the usual objects used in game se-
mantics, such as sequences of moves. Manipulating them rigorously is more complex
than for plays, involving a demanding – but (perhaps subjectively) rather elegant – in-
frastructure involving significant mathematical engineering and ingenuity.
Secondly, we cannot get away with some of the usual informal practice of traditional

game semantics. Indeed, researchers in game semantics have sometimes adopted a
somewhat informal mathematical style – the strategy does this, if Opponent plays this
then the strategy reacts by playing that, etc. While this has been criticized, it is true that
such phrasings in the literature can usually be unambiguously made formal if needed
(though in practice this is rarely done); but this is thanks to the fact that themathematical
objects involved are rather simple and closely follow their natural language description.
So it is both the curse and the blessing of concurrent games that when strategies are
event structures, such informal descriptions are no longer reasonable.
So, we must prepare the reader for a long mathematical development, in part because

of the complexity of our strategies, because the development is carried out with more
mathematical precision than is the standard in many game semantics texts, but also
because we have taken the space to make the development as pedagogical as possible.
The purpose of Part II is the construction of so-called “thin concurrent games” along

with the categorical structure needed to interpret the simply-typed �-calculus, leaving
for Part III the interpretation of IA� and its fragments. We consider that the key con-
tribution of Part II is the bicategory TCG, a setting for strategies-as-event-structures
able to handle symmetry and the interchangeability of moves as required for copy in-
dices and uniformity (in the sense of Section 3.4). We arrive there in two stages: first,
in Chapter 6 we develop the bicategory CG of concurrent games without symmetry;
then Chapter 7 introduces TCG, a conservative extension of CG equipping it to handle
symmetry. Finally, TCG is only a bicategory and as such does not yet have the further
categorical structure required to handle the interpretation of programming language;
for that, in Chapter 8 we construct NTCG, essentially a model of intuitionistic linear
logic with an exponential ! so that the Kleisli category NTCG! is cartesian closed.

Chapter 6

Basic Concurrent Games

In this chapter, relying on the intuitions introduced previously for traditional game se-
mantics, we introduce the bicategoryCG, the foundation for concurrent games on event
structures. We do this for pedagogical reasons: CG is only a stepping stone, as it does
not yet support the exponential (!) – this will require the addition of symmetry in Chapter
7. But it seems better to first construct CG separately, so as to give the proper spotlight
to quite a few new conceptual ideas, instead of introducing everything simultaneously.
CG is a non-deterministic extension of Melliès and Mimram’s non-alternating asyn-

chronous games [Melliès and Mimram, 2007]; it was first introduced by Rideau and
Winskel in [Rideau and Winskel, 2011] (see also [Castellan et al., 2017a]). The pre-
sentation given here is new, exploiting insights obtained over the years, from our expe-
rience of working with concurrent games.

6.1 Games and Strategies as Event Structures
6.1.1 Basic Intuitions on Concurrent Strategies
Parallelism. In the beginning of Section 5.1.1, we motivated non-alternating strate-
gies by considering the plays in a parallel implementation of the arithmetic sum

x ∶ ℕ, y ∶ ℕ ⊢ let
(

x1 = x
x2 = y

)

in x1 + x2 ∶ ℕ ,

which we argued required to account for all the orders in which the evaluations of x and
y could be performed by the scheduler. Rather than writing down all these interleavings,

107

CHAPTER 6. BASIC CONCURRENT GAMES 108

an alternative could be to write – naively for now – a diagram of the form:
x ∶ ℕ, y ∶ ℕ ⊢ ℕ

q−
(ppw

0tt|q+
_���

q+
_���

12−

� ''.
30−

� ##+42+

the Hasse diagram of a partial order in which the two sub-computations occur in in-
dependent branches. As for sequential plays in game semantics, this diagram is read
from top to bottom: first, Opponent initiates computation with q−. But then, there are
two follow-ups: the two occurrences of q+, prompting the evaluation of the two argu-
ments. Despite them being in the same row, they are not thought of as simultaneous.
Instead they are independent: there is no well-defined ordering between them. Concur-
rent strategies display explicitely this independence, whereas the non-alternating game
semantics of Chapter 5 would convey it implicitely by allowing all interleavings.
In a diagram as above, the vertical axis no longer represents time. Instead, the partial

order is thought of as expressing causality: in order to observe the two occurrences of
q+, we must have seen q−. In order to observe (this occurrence of) the answer 42, we
must have seen the two arguments converge with values 12 and 30.

Non-determinism. In such diagrams, the branching structure indicates parallelism,
not non-determinism. But then, how is non-determinism going to be represented?
Our answer is to mark branchings that correspond to non-deterministic choice:

B

q−
H~~� w��!

tt+ ff+

In this diagram, which represents the non-deterministic choice of a boolean, tt+ and
ff+ are linked with a wiggly line indicating conflict: only one of them can be seen in
a given execution. This marks that the branching is a non-deterministic rather than a
parallel branching. Such situations with these two branching structures are captured by
the mathematical notion of an event structure, introduced formally in Section 6.1.2.

Concurrent strategies explicitely display all non-deterministic choices, even when

CHAPTER 6. BASIC CONCURRENT GAMES 109

they do not yet yield visibly different behaviours. For instance, in the diagram
(B → B) → B

q−

)qqx
1tt}q+

*qqx

q+

*qqxq−
_���

q−
_���

tt+ ff+

(6.1)

corresponding e.g. to the term �fB→B. (f tt)> (f ff) for > a non-deterministic choice
operator, the two conflicting occurrences of q+ correspond to the same observable be-
haviour, but they should be kept separate because they have distinct futures. In general,
concurrent strategies remember all non-deterministic choices even when they lead to
no observable difference: tt > tt will not yield the same concurrent strategy as tt.

Causality. Though we have motivated the use of partial order models for representing
strategies by examples from parallel and non-deterministic computation, we shall see
throughout this monograph that it has a deep impact even for pure sequential determin-
istic computation. As an example, the term �f . f tt ff admits the causal behaviour

(B → B → B) → B

q−
2uu}q+

(ppw
2uu}q−

_���
q−

_���
tt+ ff+

where it is apparent that the two branches where Opponent explores the two arguments
are causally independent from each other. In fact, in that case the tree structure coin-
cides with the tree of P-views as described in Section 3.2.4, exposing its causal nature.

6.1.2 Formalizing Concurrent Strategies
Such diagrams as above, mixing causal dependency and conflict, are certain event struc-
tures – the partial order model at the core of concurrent games.

Event structures. We first define event structures1:
Definition 6.1.1. An event structure (es) is a triple E = (|E|,≤E , #E), where |E| is a
(countable) set of events, ≤E is a partial order called causal dependency and #E is an

1In the literature, those event structures are called prime event structures with binary conflict.

CHAPTER 6. BASIC CONCURRENT GAMES 110

irreflexive symmetric binary relation on |E| called conflict, satisfying:

finite causes: ∀e ∈ E, [e]E = {e′ ∈ E ∣ e′ ≤E e} is finite,conflict inheritance: ∀e1 #E e2, ∀e2 ≤E e′2, e1 #E e
′
2 .

A given event has only finitely many causes: this fundamental axiom means that
any event can appear in a finite execution. Conflict inheritance is sometimes called the
vendetta axiom: conflicts transfer to children, and to their children, and so on for ever. It
ensures that two non-conflicting events can always appear together in a finite execution
(as the causal dependencies of non-conflict events must be non-conflicting).
The diagrams appearing earlier in this section may be read as event structures. For

E an event structure, the immediate causal dependency_E is defined as e_E e′ if
e <E e′ with no event in between: for all e′′ ∈ E, e ≤E e′′ ≤E e′ we have e = e′′
or e′′ = e′. Likewise, the immediate conflict e E e′ means that e #E e′ and the
conflict is not inherited: if e′′ <E e, ¬(e′′ #E e′) and if e′′ <E e′, ¬(e #E e′′). These
two notations are intensively used, in particular when drawing event structures. For
instance, in the diagram (6.1), tt+ and ff+ are in conflict (as they depend on conflicting
events), but not in immediate conflict – so they are not linked with a wiggly line.
The most fundamental definition on an event structure is configurations – one may

regard an event structure as a concrete representation of its set of configurations:
Definition 6.1.2. A (finite) configuration of event structure E is a finite x ⊆ |E| s.t.:

down-closed: ∀e ∈ x, ∀e′ ∈ E, e′ ≤E e ⇐⇒ e′ ∈ x
consistent: ∀e, e′ ∈ x, ¬(e #E e′) .

We write C (E) for the set of finite configurations on E.

Configurations are the states of an event structure: conflict-free finite sets of events
with all causal dependencies satisfied. Though a configuration is merely a set, it inherits
a partial order which is often drawn in pictures from that of the ambiant event structure.
The set C (E) is naturally ordered by inclusion; it is the domain of configurations.

Configurations are typically ranged over by variables x, y, z. For x, y ∈ C (E), we
write x−⊂y if x is immediately below y in the inclusion order, i.e. there is e ∈ E such
that e ∉ x and y = x ∪ {e} – we also write x ⊢E e and say that x enables e.

Games. Before we formalize strategies, let us look at games.
As for arenas, our games present observable computational events, along with their

dependencies and conflict. In spirit, the way this is done is very close to the arenas of
Chapter 3. For instance, the games representing respectively B and U are:

B =
q−

tt+ ff+
U =

q−

✓+
(6.2)

where the first is to be compared with the arena for booleans in traditional arena games
in Figure 3.8. It is the same, except that the two answers are conflicting: unlike in

CHAPTER 6. BASIC CONCURRENT GAMES 111

traditional game semantics, concurrent games are inherently linear (or rather, affine) and
a questionmay be by default answered at most once. This hints at a deeper difference: in
Figure 3.8, the initial question may appear arbitrarily many times in a play. In contrast,
the intention here is that a given move can be played at most once: an execution such
as at the beginning of Section 3.3.1 would make sense not on B but on its “bang”

!B =
q−0 q−1 q−2

…
tt+0 ff+0 tt+1 ff+1 tt+2 ff+2

(6.3)

involving copy indices as in AJM games (see Section 3.4) – but we push this operation
aside until Chapter 7, as developing it properly also requires a model in which one can
express that all copies are interchangeable, which plain event structures cannot do.
Games feature causal dependency and conflict, hence are also event structures:

Definition 6.1.3. A game is an es A = (|A|,≤A, #A) with a polarity function

polA ∶ |A| → {−,+} .

The polarity function simply indicates whether a given move is due to Player (+) or
Opponent (−). Though games are event structures, we draw them with specific con-
ventions: in particular, as in (6.2) and following our earlier convention for arenas, im-
mediate causal dependency in games is drawn with dotted lines rather than with the
usual symbol_. Having distinct notations for immediate causal dependency in games
and strategies will allow us later on to have diagrams with two immediate dependencies
superimposed, from a game and from a strategy.
In practice, games in the sense of Definition 6.1.3 are way too wild for our purposes.

The games arising from the interpretation of types will have a very specific shape: they
are negative (Opponent starts), alternating (immediate causal links are always between
different players), forestial (there is no causal merge) and conflict is local (between two
moves with the same predecessor, if any). But for the sake of economy, we shall impose
such conditions only when they become technically required.

Prestrategies. If both strategies and games are to be event structures, what does it
mean that an event structure “plays” on another event structure? It is natural to model
such a situation as an event structure (the strategy) labeled by an event structure (the
game), where the labelling function should be a map of event structures:
Definition 6.1.4. Consider E, F two es. A map of event structures f ∶ E → F is

f ∶ |E| → |F |

a function on events satisfying the further two conditions below:

configuration-preserving: for all x ∈ C (E), fx ∈ C (F),
locally injective: for all e1, e2 ∈ x ∈ C (E), if fe1 = fe2 then e1 = e2.

CHAPTER 6. BASIC CONCURRENT GAMES 112

This is a kind of simulation map. It transports valid states into valid states while
preserving atomicity: within a configuration x ∈ C (E), local injectivity ensures that
f induces a bijection f ∶ x ≃ fx; adding an event to x must add an event to fx. We
shall review a few basic properties of maps of event structures in Section 6.1.3, but for
now they let us introduce a first approximation of strategies-as-event-structures:
Definition 6.1.5. A prestrategy on game A is a tuple � = (|�|,≤� , #� ,)�) where

)� ∶ � → A

is a map of event structures.

Observe that here � is a plain event structures, not assumed equipped with a po-
larity function. Nevertheless, there is an induced notion of polarity on �, obtained as
pol�(s) = polA()�(s)) – we shall use this implicitly from now on.
In contrast with Definition 3.1.2, a prestrategy is not a collection of standalone ex-

ecutions (plays), but one global object, an event structure �, aggregating all possible
executions. The events in |�| are not events of the game: they are internal to the pre-
strategy, only linked to the game via the display map)� .
For instance, we may have a prestrategy (in fact, a strategy) on U:

�

∙1
B{{� |��#∙2 ∙3

)�
→

U

q−

✓+
also written

U

q−
D||� z��"

✓+ ✓+

with the obvious mapping)�(∙1) = q− and)�(∙2) =)�(∙3) = ✓+. We generally
prefer drawing (pre)strategies as on the right hand side, which retains all the relevant
information, only omitting the names of events in � (i.e. ∙1, ∙2, ∙3) 2.

Strategies. The definition of prestrategies ignores polarities, thus not all prestrategies
are computationally sensible – we need conditions analogous to Definition 5.1.5:
Definition 6.1.6. A prestrategy � on game A is a strategy if it satisfies:

courteous: for all s1 _� s2, if pol(s1) = + or pol(s2) = − then)�(s1)_A)�(s2),receptive: for all x ∈ C (�), for all)�(x) ⊢A a−,
there is a unique x ⊢� s such that)�(s) = a−,

We write � ∶ A to mean that � is a strategy on game A.

Receptive forces strategies to acknowledge uniquely any possible move by Opponent.
Finally, courtesy gets two birds with one stone. Firstly, it forbids causal links of the form
s1 _� s−2 which are not in the game – a strategy cannot force Opponent to wait before
playing a move available in the game. Secondly, it also forbids causal links of the form
s+1 _� s+2 not in the game. This is to be understood as an asynchrony requirement:

2This diagram exploits our convention to write immediate causal links differently in games and strategies.

CHAPTER 6. BASIC CONCURRENT GAMES 113

while a program may play two positive moves in a row, it cannot control in which order
those will reach the Opponent; the moves are thought of as propagating independently
in an asynchronous medium (say, the internet), so that their order may change.
This completes our first notion of concurrent strategy.

Mediating between strategies. Hopefully, it is apparent to the reader why strategies
are formalized as certain maps)� ∶ � → A, with � built on a set of events separated
from A. However, this also means that equations between strategies should not be ex-
pected to hold up to equality – otherwise the two maps of event structures

�

∙1
B{{� |��#∙2 ∙3

)�
→

U

q−

✓+

)�
←

�

∙a
B{{� |��#∙b ∙c

(6.4)

would denote different strategies, though they only differ via the name they assign
events. To account for that, we shall compare strategies via the following morphisms:
Definition 6.1.7. Consider � and � two (pre)strategies on a game A.

A morphism from � to �, written f ∶ � ⇒ � , is a map of es f ∶ � → � satisfying:

compatibility with display maps:)�◦f =)� ,rigidity: for all s ≤� t, we have fs ≤� ft.

An isomorphism of strategies f ∶ � ≅ � is simply an invertible morphism. We
sometimes write � ≅ � for the mere existence of an isomorphism between � and �.

We assume rigidity here as it simplifies some proofs, notably later on in the presence
of symmetry. Our next goal is to organize concurrent strategies into a bicategory CG;
but for that we will need a bit of the basic theory on event structures.

6.1.3 Basic Properties of Event Structures and Maps
First, event structures and their maps (as in Definition 6.1.4) form a category ES. For
E an event structure, we often write e ∈ E as an alias for e ∈ E. If e ∈ E,

[e]E = {e′ ∈ E ∣ e′ ≤E e}

is the set of causal dependencies of e. It is an easy exercise to prove that [e]E ∈ C (E)– we shall use that fact without mentioning it. We say that x ∈ C (E) is a prime
configuration iff it has a top element, or equivalently if it is x = [e]E for some e ∈ E.
It is clear that events of E are in one-to-one correspondence with prime configurations.

Compatibility with the order. Event structures are posets, so one may expect their
maps to preserve the order. But this is not at all the intention, maps of event structures
are not meant to be monotone. The following is a perfectly acceptable map:

1 � ,,22 ←→ 1 2

CHAPTER 6. BASIC CONCURRENT GAMES 114

sending two events in causal dependency to causally independent moves. Thus causality
is not preserved, but we do have a property in the other direction:
Lemma 6.1.8. Consider f ∶ E → F a map of event structures.

Then, for all e, e′ ∈ x ∈ C (E), if fe ≤F fe′ then e ≤E e′.

Proof. Since e′ ∈ E, we have [e′]E ∈ C (E), hence f [e′]E ∈ C (F) since f preserves
configurations. But by construction, fe′ ∈ f [e′]E . Since f [e′]E ∈ C (F), it is in
particular down-closed. Hence, since fe ≤F fe′, we must have fe ∈ f [e′]E . But
this means that there is some e′′ ∈ [e′]E such that fe′′ = fe – in other words, there
is e′′ ≤E e′ such that fe′′ = fe. Now, we remark that we have e′ ∈ x, so as x is
down-closed, we must have e′′ ∈ x as well. Thus e, e′′ ∈ x have the same image by f ,
thus e = e′′ by local injectivity. Hence, we have proved that e ≤E e′ as required.

Recall that we have defined prestrategies as maps)� ∶ � → A. For � ∶ A, the
lemma above means that if s, s′ ∈ x ∈ C (�), if)�s ≤A)�s′ then s ≤� s′ – in other
words, any “static” causal dependency imposed by the game must be respected by the
strategy as well. But causality is reflected only within configurations: the map

1
_���

1′

2
←→

1
_���
2

is valid, though we have f1′ ≤ f2 but ¬(1′ ≤ 2) as they are in conflict.
The maps of event structures that are monotone are called rigid. In that case:

Lemma 6.1.9. Consider f ∶ E → F a rigid map of event structures.
Then, f preserves immediate causality.

Proof. Left as an exercise to the reader.
Rigid maps f ∶ E → F are too constrained to be interesting as strategies, but they

are useful as a sort of inclusions of E within F , collapsing non-deterministic branches.
The morphisms between strategies, as defined in Definition 6.1.7, are rigid maps.
In Definition 6.1.7 we encountered for the first time the isomorphisms in the category

of event structures, as induced by Definition 6.1.4. It is worth pointing out explicitly
that such isomorphisms of event structures (and thus, isomorphisms of strategies) are
simply renamings of the events, preserving and reflecting all structure:
Lemma 6.1.10. Consider E, F event structures, f ∶ E → F an isomorphism of es.

Then, f is a bijection between events, satisfying the following two properties:

(1) for all e, e′ ∈ E, e ≤E e′ iff f (e) ≤F f (e′),(2) for all e, e′ ∈ E, e #E e′ iff f (e) #F f (e′).

Proof. Left as an exercise to the reader.
Reciprocally, bijections satisfying properties (1) and (2) above are obviously isomor-

phisms of event structures – clearly, the two strategies of (6.4) are isomorphic.

CHAPTER 6. BASIC CONCURRENT GAMES 115

Mapification. The above shows that a map of es f ∶ E → F should not be viewed
as a map of posets; instead it should be seen as a concrete presentation of

f ∶ C (E)→ C (F)

a monotone function between the generated domains of configurations (the sets of con-
figurations, ordered by inclusion). In fact, we will often reason on event structures via
their domains of configurations; likewise we shall build maps of event structures via
their action on configurations – we call the lemma below the “mapification” lemma,
letting us build maps of event structures from functions on configurations:
Lemma 6.1.11. Consider f ∶ C (E)→ C (F) preserving unions and cardinality.
Then, there is a unique map of es f̂ ∶ E → F s.t. for all x ∈ C (E), f̂ (x) = f (x).

Proof. Existence. As f preserves unions it is monotone. As it preserves cardinality, it
preserves ∅ and −⊂ . The key point is that it preserves covering squares:

x
a
−⊂ y

b

−⊂ −⊂ b
u

a
−⊂ v

for a ≠ b. Indeed as f preserves −⊂ , f (x) b
′

−←⊂f (y) and f (x) a
′

−←⊂f (u). But also f (v) =
f (y ∪ u) = f (y) ∪ f (u) since f preserves unions, thus f (v) = f (x) ∪ {a′, b′}. Hence,

f (x)
a′
−⊂ f (y)

b′

−⊂ −⊂ b′

f (u)
a′
−⊂ f (v)

Now, we are in position to define f̂ . Given e ∈ E, write
[e)E = {e′ ∈ E ∣ e′ <E e}

its set of strict causal dependencies, which is automatically a configuration. Of course,

[e)E
e
−←⊂ [e]E

so that f [e)E
e′
−←⊂f [e]E for some e′ ∈ F – set f̂ (e) = e′. Now, for any x e

−←⊂y, we have

[e)E
e1
−⊂ x1

e2
−⊂ x2

e3
−⊂ x3 … xn−1

en
−⊂ x

e

−⊂ −⊂ −⊂ −⊂ −⊂ −⊂ e

[e]E
e1
−⊂ y1

e2
−⊂ y2

e3
−⊂ y3 … yn−1

en
−⊂ y

CHAPTER 6. BASIC CONCURRENT GAMES 116

a tiling of covering squares, which are all preserved by f , implying fx f̂ (e)−←⊂fy. But now,
for any x ∈ C (E), one may reach it in C (E) adding events one by one, i.e. there is

∅ = x0
e1
−⊂ x1

e2
−⊂ … xn−1

en
−⊂ xn = x

a covering chain in E obtained as any linearization of x according to ≤E . But then

∅ = f (x0)
f̂ (e1)
−⊂ f (x1)

f̂ (e2)
−⊂ … f (xn−1)

f̂ (en)
−⊂ f (xn) = f (x)

from the observation above. But this means that f (x) = f̂ (x), the latter defined by the
direct image. It immediately follows that f̂ is a map of event structures: as it coincides
with f of configuration it must preserve configurations, and a failure of local injectivity
would immediately contradict the fact that f preserves cardinality.
Uniqueness. For ℎ ∶ E → F s.t. ℎ(x) = f (x) for all x ∈ C (E), then if e ∈ E,

f ([e)E)
ℎ(e)
−⊂ f ([e]E)

so that ℎ(e) = f̂ (e) as required, concluding the proof.
Of course, reciprocally, if f ∶ E → F is a map of event structures then f ∶ C (E)→

C (F) must preserve cardinality and unions as it is defined as a direct image. It follows
that to test equality of maps of es, it suffices to evaluate them on configurations:
Lemma 6.1.12. Consider f, g ∶ E → F maps of event structures.
If for all x ∈ C (E) we have f (x) = g(x), then f = g.

Proof. Obvious by the uniqueness clause of Lemma 6.1.11.
Another particularly useful consequence of the mapification lemma is:

Proposition 6.1.13. Consider E, F two es, and f ∶ C (E) ≅ C (F) an order-iso.
Then, there is a unique f̂ ∶ E ≅ F an iso in ES s.t. for all x ∈ C (E), f̂ (x) = f (x).

Proof. Firstly, f preserves unions as it is an order-isomorphisms and unions are least
upper bounds inC (E). Secondly, as f is a bijection preserving and reflecting inclusion,
it must preserve −⊂ and thus preserves cardinality. Hence, by Lemma 6.1.11 there is
f̂ ∶ E → F a map of event structures such that for all x ∈ C (E), f̂ (x) = f (x). The
same argument applies to f−1, yielding an inverse to f by Lemma 6.1.12.
Paired with Lemma 6.1.10, we see that given two event structuresE and F , an order-

iso between the domains of configurationsC (E) andC (F) induces a concrete renaming
between E and F , a bijection between events preserving and reflecting all structure.
In the future, this will provide our main tool to establish isomorphisms between event
structures: by exhibiting an order-isomorphism between the domains of configurations.

CHAPTER 6. BASIC CONCURRENT GAMES 117

Parallel composition. Next we introduce the parallel composition of event structures,
an operation which shall play a central role throughout the development.
Definition 6.1.14. Consider E1 and E2 two event structures.

Their simple parallel composition, written E1 ∥ E2, has components:

events: |E1 ∥ E2| = |E1| + |E2| ,causality: (i, e) ≤E1∥E2 (j, e
′) ⇔ i = j & e ≤Ei e

′ ,
conflict: (i, e) #E1∥E2 (j, e

′) ⇔ i = j & e #Ei e
′ .

This simply puts the two event structures side by side, with no interaction. We shall
also apply this construction to configurations: if x1 ∈ C (E1) and x2 ∈ C (E2), then
x1 ∥ x2 ∈ C (E1 ∥ E2) is defined as the same tagged disjoint union as above, i.e.
x1 ∥ x2 = x1 + x2. Moreover, all configurations on E1 ∥ E2 have this form:
Lemma 6.1.15. Consider E1 and E2 two event structures. Then, we have

(− ∥ −) ∶ C (E1) × C (E2) ≅ C (E1 ∥ E2)

an order-isomorphism, with the order on C (E1) × C (E2) set as the product order.

Proof. Straightforward.
Along this isomorphism, all configurations of E1 ∥ E2 are uniquely written as pairs

– accordingly, we shall often write x1 ∥ x2 ∈ C (E1 ∥ E2) for arbitrary configurations
on a parallel composition. Note that up to isomorphism, E1 ∥ E2 is the unique eventstructure whose domain of configurations is order-isomorphic to C (E1) ×C (E2) – thisimmediately follows from Lemma 6.1.15 and Proposition 6.1.13.

Basic properties of strategies. To put our preliminaries into play, we mention a few
facts on strategies. The proofs are relatively elementary with the ingredients introduced
so far. We omit them, but invite the reader to work them out as exercises.
Recall that if � ∶ A is a prestrategy on game A, then events of � inherit a polarity

from A via pol�(s) = polA()�(s)). Our first lemma states two properties of strategies
in the particular case where the game A is forestial and alternating (which is almost
always the case when interpreting types of programming languages).
Lemma 6.1.16. Consider a game A forestial and alternating as in Definition 3.1.3.
Then, we have the following properties:

(1) � is alternating: if s1 _� s2, then pol�(s1) ≠ pol�(s2).(2) consider s1, s2 ∈ x ∈ C (�) such that pol�(s1) = + or pol�(s2) = −.
Then s1 _� s2 iff)�s1 _A)�s2.

Thus for such games, the causal structure of strategies is very much constrained: it is
alternating, and only immediate causal links a−1 _A a+2 in the game may be postponed
by the strategy. In general and even without alternation, a strategy may only introduce
new immediate conflicts (with respect to the game) between positive events:

CHAPTER 6. BASIC CONCURRENT GAMES 118

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B ⊸ U ⊢ N

q−
5vv�

q+
/ss{

_���
q−

F}}� y��"
✓−

	 ��(
tt+ ff+ 0+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊛

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B ⊸ U

q−
+rryq+

E||� y��"
tt−

� &&-
ff−

� &&-✓+ ✓+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B ⊸ U ⊢ N

q−
*qqxq,rrzqH~~� w��!

tt
� $$,

ff
� $$,✓

� %%,
✓

� &&-0+ 0+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Figure 6.1: Example of an interaction and composition

Lemma 6.1.17. Consider A a game, and � ∶ A a strategy.
If s1 � s2 with pol�(s1) = − or pol�(s2) = −, then)�(s1) A)�(s2) as well.

Now, we move to the composition of (pre)strategies.

6.2 Composition of Prestrategies
Before we can phrase composition, we must define strategies between games. As in
sequential games, a strategy from a game A to a game B is a strategy that plays on A
and B in parallel, except that the polarities in A are reversed.

Strategies between games. If A is a game, its dual A⟂ has the same components as
A, except for polA⟂ = −polA. The simple parallel composition of Definition 6.1.14
extends to games with polA∥B(1, a) = polA(a) and polA∥B(2, b) = polB(b). Finally, the
hom-game A ⊢ B is defined as A⟂ ∥ B – by Lemma 6.1.15 we have an order-iso

(− ⊢ −) ∶ C (A) × C (B) ≅ C (A ⊢ B) ,

andwe oftenwrite configurations ofA ⊢ B as xA ⊢ xB for xA ∈ C (A) and xB ∈ C (B).
Now if A and B are games, a strategy from A to B is simply defined as a strategy

on A ⊢ B – the same definition applies to prestrategies.

Towards composition. Now, consider two strategies � ∶ A ⊢ B and � ∶ B ⊢ C that
we wish to compose, forming a composite strategy � ⊙ � ∶ A ⊢ C .
Intuitively, the computation of � ⊙ � proceeds in two steps. First, we form the in-

teraction � ⊛ �; an event structure displayed to A ∥ B ∥ C . The interaction has three
kinds of events: those displayed to A are directly imported from �, those displayed to
C come from � , while those in B are thought of synchronizations between events of
� and events of � whose display on B match. The causality of � ⊛ � is obtained as
(the transitive closure) of the causal dependencies imposed by � and by � . Figure 6.1

CHAPTER 6. BASIC CONCURRENT GAMES 119

displays the interaction of two strategies3, and again the conflict is that imported from
the two strategies. In Figure 6.1 on the right hand side, the synchronized events are
grayed out while those in the outer interface remain in black – those are called visible.
The composition � ⊙ � is obtained from � ⊛ � by keeping the visible events only.
This intuition is quite natural, but rather hard to capture formally in a way that is both

mathematically rigorous and a tractable basis for further developments – much more so
than the composition of sequential strategies as in Part I, which is already non-trivial.
And while our forthcoming development of composition will indeed follow the route
above, it has been crucial in working with concurrent games that the composition of
strategies may be characterized almost relationally, via the proposition:
Proposition 6.2.1. ConsiderA,B, C games, and � ∶ A ⊢ B and � ∶ B ⊢ C strategies.
Then there is a strategy � ⊙ � ∶ A ⊢ C , unique up to iso, s.t. there are order-isos:

(−⊙ −) ∶ {(x� , x�) ∈ C+(�) × C+(�) ∣ causally compatible} ≃ C+(� ⊙ �)

such that for x� ∈ C+(�) and x� ∈ C+(�) causally compatible,

)�⊙�(x� ⊙ x�) = x�A ⊢ x
�
C

where we write)�x� = x�A ⊢ x
�
B and)�x� = x�B ⊢ x

�
C .

Here, C+(−) denotes the restriction of configurations to those that are +-covered,
i.e. whose maximal events are positive – without trailing Opponent moves. Likewise,
causally compatible refers to a notion that we shall introduce soon: intuitively, x� ∈
C (�) and x� ∈ C (�) are causally compatible if they reach the same state in B (i.e.
x�B = x�B), and their synchronization induces no deadlocks. These two notions will
be covered in depth soon, but the message for now is that for most purposes, we can
ignore the concrete definition of � and � and treat its (+-covered) configurations simply
as certain pairs of (+-covered) configurations of � and � . In addition, this completely
captures the composition of � and � – there is one strategy (up to iso) whose +-covered
configurations are such causally compatible pairs, and it is � ⊙ �.
Although noticed somewhat late (say around 2020), this proposition has become cen-

tral in recent developments in concurrent games, as it lets us reason on the composition
of strategies while leaving encapsulated the rather elaborate concrete definition. For
most purposes, this is all you need to know about composition!
However, this still leaves us with the task of proving it, and thus to construct the

composition concretely – first the interaction, and then its hiding. In the present section
we focus on prestrategies, while Section 6.3 contains the extension to strategies.

6.2.1 Interaction of prestrategies
The next goal is to define interactions of prestrategies. But before that, we define for-
mally the notion of causal compatibility appearing in Proposition 6.2.1.

3The game B ⊸ U is defined only in Section 7.1.4, and likewise for other forthcoming examples; hopefully
this is not an obstacle to understanding. Though do note that in such examples, the game can be read from
the diagram by only keeping dotted lines and ignoring immediate causal links_.

CHAPTER 6. BASIC CONCURRENT GAMES 120

U ⊸ U

q−
/ss{q+

_���
✓−

� ##+
✓+

vs

(U ⊸ U) ⊢ ℕ

q−
0tt|q+

0tt|
_���

q−
_���

� ''.

✓−

� ##+
✓+ 1+

Figure 6.2: Matching, secured

U ⊸ U

q−
/ss{q+

_���
✓−

� ##+
✓+

vs

(U ⊸ U) ⊢ ℕ

q−
0tt|q+

0tt|
_���

q−
_���

✓−

� ##+/ss{
✓+ 0+

Figure 6.3: Matching, non-secured

Causally compatible pairs. Let us fix � ∶ A ⊢ B and � ∶ B ⊢ C prestrategies. For
configurations x� ∈ C (�), x� ∈ C (�), as a convention we write their display as

)�(x�) = x�A ∥ x
�
B ∈ C (A ⊢ B) ,)� (x�) = x�B ∥ x

�
C ∈ C (B ⊢ C) ,

this convention will be used silently from now on.
First, we capture when x� ∈ C (�) and x� ∈ C (�) may successfully synchronise:

Definition 6.2.2. Two configurations x� ∈ C (�) and x� ∈ C (�) are causally compat-
ible if (1) they are matching: x�B = x

�
B = xB; and (2) if the composite bijection

'[x� , x�] ∶ x� ∥ x�C
)�∥x�C≃ x�A ∥ xB ∥ x

�
C

x�A∥)
−1
�

≃ x�A ∥ x
� ,

using local injectivity of)� and)� , is secured, in the sense that the relation

(m, n) ⊲ (m′, n′) ⇔ m <�∥C m
′ ∨ n <A∥� n

′ ,

defined on (the graph of) '[x� , x�] from the causal constraints of � and � , is acyclic.

Two matching x� ∈ C (�), x� ∈ C (�) agree on the state reached in B; and this
induces a synchronization between the events matching in B. But this is not enough to
capture a sensible notion of execution: some matching pairs might not be reachable,
in the sense that � and � impose incompatible constraints as to the order in which the
state should be reached. To illustrate this we show in Figures 6.2 and 6.3 two attempted
synchronizations between configurations of the strategy on the left hand side of Figure
7.6 and that for the identity �xU. x. In both cases, the configurations are matching.
In Figure 6.2, the synchronization is successful and yields a causally compatible pair.
However, in Figure 6.3 the induced bijection is not secured: the two strategies impose
opposite constraints as to the order in which the two ✓ moves are to be played.
This disambiguates the statement of Proposition 6.2.1 – we want an event structure

�⊙� whose (+-covered) configurations correspond to (+-covered) causally compatible
pairs. Its construction involves several steps, starting with the interaction.

Interactions. Given� ∶ A ⊢ B and � ∶ B ⊢ C wemean to construct their interaction
� ⊛ �. An interaction is not quite a strategy, because it involves events in B that have
no clear polarity. Accordingly, it is convenient to define a variation:

CHAPTER 6. BASIC CONCURRENT GAMES 121

Definition 6.2.3. An interaction onA,B, C is an event structure � = (|�|,≤�, #�)with

) ∶ |�| → |A ∥ B ∥ C|

a display map subject to the following conditions:

rule-abiding: for all x ∈ C (�),)(x) ∈ C (A ∥ B ∥ C),
locally injective: for all s1, s2 ∈ x ∈ C (�), if)(s1) =)(s2) then s1 = s2.

i.e.) ∶ �→ A ∥ B ∥ C is a map of event structures.
In other words an interaction on A,B, C is a prestrategy on A ∥ B ∥ C , but it is

conceptually clearer to keep the notions separate. Now we must define the interaction,
written �⊛�, of � and �; but what should be its events? Intuitively, each event of �⊛�
arises as the synchronization of an event in � ∥ C and one in A ∥ � – note the padding
out so that both � ∥ C and A ∥ � cover A ∥ B ∥ C .
But it is not that simple, as can be observed in Figure 6.1, showing an interaction

� ⊛ � of � ∶ B ⊸ U and � ∶ B ⊸ U ⊢ N. The two final events 0+ of � ⊛ � are
two unsynchronized versions of the same event in � . Yet they are different: they have
different causal histories, following the earlier non-deterministic choice in � . This has
to do with an important property of the model we already mentioned: it retains the
non-deterministic branching point – any event carries its entire causal history.
A pair of synchronized events with a causal history is a prime secured bijection:

Prime secured bijections. If x� ∈ C (�) and x� ∈ C (�) are causally compatible,
from Definition 6.2.2 we know that the relation on the graph of '[x� , x�] defined as

(m, n) ⊲ (m′, n′) ⇔ m <�∥C m
′ ∨ n <A∥� n

′ ,

is acyclic, so its reflexive transitive closure yields a partial order ≤'[x� ,x�]. We define:
Definition 6.2.4. A secured bijection between � ∶ A ⊢ B and � ∶ B ⊢ C is any partial
order '[x� , x�], for x� ∈ C (�) and x� ∈ C (�) causally compatible.

We writeℬ(�, �) for the set of secured bijections between � and � .

We shall be particularly interested in those secured bijections with a top element:
Definition 6.2.5. We say ' ∈ℬ(�, �) is prime if ≤' has a top top(') = (m, n).
We writeℬ⊤(�, �) for the set of prime secured bijections between � and � .

So we regard ' ∈ ℬ⊤(�, �) with top(') = (m, n) as the synchronized pair (m, n)
together with a causal explanation for that synchronization. Those will provide the
events of the interaction. To proceed, we will need the lemma:
Lemma 6.2.6. Consider x� , y� ∈ C (�), x� , y� ∈ C (�). Then, we have:

(1) If x� , x� caus. comp., y� , y� caus. comp., x� ∪ y� ∈ C (�) and x� ∪ y� ∈ C (�),
then x� ∪ y� and x� ∪ y� are causally compatible.

(2) If x� ∪ y� ∈ C (�) and x� ∪ y� ∈ C (�) are causally compatible,
if x� , x� matching and y� , y� matching, then they are causally compatible,

and in both cases, we have '[x� ∪ y� , x� ∪ y�] = '[x� , x�] ∪ '[y� , y�].

CHAPTER 6. BASIC CONCURRENT GAMES 122

Proof. Straightforward by local injectivity of)� and)� .
We are now in position to form an event structure:

Proposition 6.2.7. The tuple (|� ⊛ �|,≤�⊛� , #�⊛�) defined with

events: |� ⊛ �| = {'[x� , x�] ∣ prime, for x� , x� causally compatible}
causality: � ≤�⊛� ⇔ � ⊆
conflict: ¬(� #�⊛�) ⇔ ∃x� , x� causally compatible, �, ⊆ '[x� , x�].

forms an event structure. Moreover, there are monotone functions

��,� ∶ C (� ⊛ �) → ℬ(�, �)
x → ∪x

�̄�,� ∶ ℬ(�, �) → C (� ⊛ �)
' → { ∈ℬ⊤(�, �) ∣ ⊆ '}

forming an order-isomorphism, with both sets ordered by inclusion.

Proof. The conditions for an event structure are easily checked. It is immediate that
�̄�,� is well-formed, for ��,� it follows from Lemma 6.2.6; both maps are monotone
with respect to inclusion. Next we observe that for all ' ∈ℬ(�, �), we have

' = ∪{ ∈ℬ⊤(�, �) ∣ ⊆ '} ;

indeed if (m, n) ∈ ' we set = [(m, n)]' the set of all pairs (m′, n′) ∈ ' such that
(m′, n′) ≤' (m, n) (recall from above Definition 6.2.4 that causal compatibility endows
the graph of any secured bijection with a partial order); by construction, ∈ℬ⊤(�, �)
and ⊆ ', hence (m, n) ∈ ∪{ ∈ ℬ⊤(�, �) ∣ ⊆ '} – the other inclusion is direct.
Altogether, this shows that ��,�◦�̄�,� ' = ' for all ' ∈ℬ(�, �) a secured bijection.
Now considerX ∈ C (�⊛�) along with '[x� , x�] ∈ �̄�,�◦��,� X, and take (m, n) =

top('[x� , x�]). By definition, (m, n) ∈ ∪X, but this means that there is ∈ X such
that (m, n) ∈ . But then it follows from local injectivity that '[x� , x�] ⊆ , hence
'[x� , x�] ∈ X as X is down-closed. The other inclusion is straightforward.

We have now constructed an event structure with configurations order-isomorphic to
the secured bijections between � and � . But furthermore:
Proposition 6.2.8. There is an order-isomorphism

(−⊛ −) ∶ {(x� , x�) ∈ C (�) × C (�) ∣ causally compatible} ≃ C (� ⊛ �) ,

with causally compatible pairs ordered by pairwise inclusion.

Proof. By definition,ℬ(�, �) is in order-isomorphism with the set of causally compat-
ible pairs (x� , x�). We conclude by composition with that of Proposition 6.2.7.

CHAPTER 6. BASIC CONCURRENT GAMES 123

This is starting to look like Proposition 6.2.1. In the sequel, we will almost always
reason on C (� ⊛ �) via this correspondence, and routinely write any configuration
x ∈ C (�⊛�) as x� ⊛x� ∈ C (�⊛�), without mentioning the use of this proposition.
In passing, let us mention a few lemmas. Firstly, using the mapification lemma will

require us to have information on the cardinal of configurations of the interaction:
Lemma 6.2.9. Consider x� ⊛ x� ∈ C (� ⊛ �).
Then, card(x� ⊛ x�) = card(x�A) + card(x�B) + card(x�C).

Proof. Straightforward from the Propositions 6.2.7 and 6.2.8.
Similarly, we need compatibility of configurations of the interation with unions:

Lemma 6.2.10. Consider x� , y� ∈ C (�) and x� , y� ∈ C (�) satisfying either of the
conditions of Lemma 6.2.6. Then, we have the equality:

(x� ∪ y�)⊛ (x� ∪ y�) = (x� ⊛ x�) ∪ (y� ⊛ y�) .

Proof. By Lemma 6.2.6, accross the order-isomorphism of Proposition 6.2.7.

The interaction pullback. As an important aside, we have:
Lemma 6.2.11. There are maps of event structures Π� and Π� making the diagram

� ⊛ �
Π�
zz

Π�
$$

� ∥ C

)�∥C $$

A ∥ �

A∥)�{{
A ∥ B ∥ C

a pullback in the category of event structures and their maps. Moreover, for any x� ⊛
x� ∈ C (� ⊛ �), we have Π� (x� ⊛ x�) = x� ∥ x�C and Π� (x� ⊛ x�) = x�A ∥ x

� .

Proof. We first define the projection maps, as
Π� ∶ � ⊛ � → � ∥ C

' → �1(top('))
Π� ∶ � ⊛ � → A ∥ �

' → �2(top(')) ,

and check the two conditions for these to be maps of event structures. For rule-abiding,
consider x ∈ C (� ⊛ �). By Proposition 6.2.7, ∪x ∈ℬ(�, �). But furthermore,

∪x ∶ Π�x ≃ Π�x . (6.5)
Indeed, if m ∈ Π�x there is some ' ∈ x such that m = �1(top(')), but then clearly

m ∈ dom(∪x). Reciprocally, if m ∈ dom(∪x), this means there is ' ∈ x such that
(m, n) ∈ ' for some n. But then, considering the set defined as

[(m, n)]' = {(m′, n′) ∈ ' ∣ (m′, n′) ≤' (m, n)} ,

CHAPTER 6. BASIC CONCURRENT GAMES 124

one can check that [(m, n)]' ∈ ℬ⊤(�, �), and [(m, n)]' ⊆ ' by construction, so
[(m, n)]' ∈ x as x is down-closed. But so, m = Π�[(m, n)]' so m ∈ Π� x as required.
It also follows that Π�x ∈ C (� ∥ C), and using (6.5) and Proposition 6.2.7,

Π� (x� ⊛ x�) = Π� (�̄�,� '[x� , x�])
= dom(∪(�̄�,� '[x� , x�]))
= dom('[x� , x�])

which is x� ∥ x�C – and likewise, Π� (x� ⊛ x�) = x�A ∥ x� ∈ C (A ∥ �). For local
injectivity, assume that ', ∈ x are such that Π�' = Π� , write it m. But ', ⊆
∪x ∈ℬ(�, �), and there is a unique n such that (m, n) ∈ ∪x as it is a bijection. But we
must have ' = [(m, n)]∪x and likewise for , so ' = .That the diagram commutes and satisfies the universal property of the diagram is
routine, using the above alongwith Lemma 6.1.11 (the conditions formapification come
from Lemmas 6.2.9 and 6.2.10) and Proposition 6.2.7.
In fact, the category ES of event structures and their maps has all pullbacks. The

construction of � ⊛ � given here closely follows the construction of pullbacks in ES,
which in turn is a restriction of the usual synchronizing product of event structures. So
this is old technology here, essentially the same used byWinskel in the early 80s to give
semantics to parallel composition of CCS processes [Winskel, 1982].
In the sequel we shall not exploit the universal property of this pullback, but we

will often refer to its projections: after this section we shall often treat the interaction
construction as a black box. The projections will be our main device to read back an
event p ∈ � ⊛ � as a synchronization of Π�p ∈ � ∥ C and Π�p ∈ A ∥ � .

Finally, we have seen that configurations of the interaction correspond to secured bi-
jections. But the connection is even tighter: both configurations and secured bijections
are partially ordered sets, and it will be important for later on to keep in mind that this
correspondence is, locally, an order-isomorphism. This is expressed by:
Lemma 6.2.12. Consider x� ∈ C (�) and x� ∈ C (�) causally compatible.

Then, there is an order-isomorphism �[x� , x�] ∶ x� ⊛ x� ≅ '[x� , x�] such that

x� ⊛ x�
Π�
yy

Π�
%%

�[x� ,x�]

��

x� ∥ x�C x�A ∥ x
�

'[x� , x�]
�1
ee

�2
99

commutes, in the category of finite sets and bijections. Moreover, this assignment is
monotone, in the sense that if x� ⊆ y� and x� ⊆ y� , then �[x� , x�] ⊆ �[y� , y�].

Proof. We set the order-isomorphism �[x� , x�] as follows:
�[x� , x�] ∶ x� ⊛ x� → '[x� , x�]

 → top() ,

it is a direct that this defines an order-iso, and that this assignment is monotone.

CHAPTER 6. BASIC CONCURRENT GAMES 125

The interaction. At last, this provides us with the ingredients for the interaction.
Proposition 6.2.13. There is an interaction � ⊛ �, unique up to iso, s.t. there is

(−⊛ −) ∶ {(x� , x�) ∈ C (�) × C (�) ∣ x� , x� causally compatible} ≃ C (� ⊛ �)

an order-iso s.t.)�⊛�(x� ⊛ x�) = x�A ∥ xB ∥ x
�
C for all x� , x� causally compatible.

Proof. Existence. The event structure � ⊛ � is defined in Lemma 6.2.11, with display
map)�⊛� ∶ �⊛� → A ∥ B ∥ C defined as either way around the square. The order-iso
for configurations comes from Proposition 6.2.8.
Uniqueness. Immediate from the order-isos, by Lemma 6.1.12.
Here, an isomorphism of interactions simply means an isomorphism of event struc-

tures commuting with the display maps. The construction of �⊛� is elaborate – there is
no going around it; but fortunately, Proposition 6.2.13 packages most of what we need
about the interaction, and may often be used as a black box. It is suspiciously close
to Proposition 6.2.1, which may be surprising since this is not composition but inter-
action, without hiding. We shall see that the restriction to +-covered configurations in
Proposition 6.2.1 does a lot to span the distance between interaction and composition.

Structure of causality. Proposition 6.2.13 gives a neat state-based description of the
interaction, putting the focus on configurations. This is sufficient for many purposes,
but it is sometimes necessary to reason on individual events of the interaction.
As explained before, any event p ∈ � ⊛ � may be regarded as a synchronization

between its projections Π�p ∈ � ∥ C and Π�p ∈ A ∥ � , along with a causal history forthis synchronization. These projections help us classify every p ∈ � ⊛ � into:
(1) Π�(p) = (1, s) with s ∈ �, and Π� (p) = (1, a) with a ∈ A,
(2) Π�(p) = (1, s) with s ∈ �, and Π� (p) = (2, t) with t ∈ � ,
(3) Π�(p) = (2, c) with c ∈ C , and Π� (p) = (2, t) with t ∈ � .

In case (1), the only relevant projection is Π�(p) = (1, s) as Π� (p) =)�(s). We write
p� = s and p� is undefined, and we say that p occurs in A. In case (3), the relevant
projection is Π� (p) = (2, t) as Π�(p) =)� (t). We write p� = t and p� is undefined, and
p occurs in C . Finally, in case (2) the two projections Π�(p) = (1, s) and Π� (p) = (2, t)are relevant, but we must have)�(s) = (2, b) and)� (t) = (1, b) for some b ∈ B. We
write p� = s, p� = t, we say that p occurs in B. If p occurs in A or C we also say that
it is visible, while if it occurs in B it is synchronized or invisible.
Immediate causal links between events of � ⊛ � must originate from � or �:

Lemma 6.2.14. Consider p, p′ ∈ � ⊛ �, and assume p_�⊛� p′.
Then p� _� p′� or p� _� p′� , where p� , p� are defined whenever used.

Proof. Consider x� ⊛x� ∈ C (�⊛�) such that p, p′ ∈ x� ⊛x� . Write top(p) = (m, n)
and top(p′) = (m′, n′). By Lemma 6.2.12, we have an immediate causal link

(m, n)_'[x� ,x�] (m′, n′) ,

CHAPTER 6. BASIC CONCURRENT GAMES 126

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B ⊸ U ⊢ N

q−
5vv�

q+
/ss{

_���
q−

F}}� y��"
✓−

	 ��(
tt+ ff+ 0+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊛

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B ⊸ U

q−
+rryq+

E||� y��"
tt−

� &&-
ff−

� &&-✓+ ✓+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B ⊸ U ⊢ N
q−*qqxqr

*qqxqlB{{� }��$
ttr

� &&-
ffr

� &&-✓l

� &&-
✓l

� &&-0r 0r

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Figure 6.4: Example of an interaction with polarity information

which easily implies, by definition of ≤'[x� ,x�], that m_�∥C m′ or n_A∥� n′.If m _�∥C m′, then either m = (1, s), m′ = (1, s′) and s _� s′ with s = p� and
s′ = p′� defined as required; or, m = (2, c) and m′ = (2, c′) with c _C c′. In that case,
n = (2, t) and n′ = (2, t′) and t = p� and t′ = p′� defined. Moreover, c _C c′ implies
)� (t) _B⊢C)� (t′), so t <� t′ by Lemma 6.1.8. If this causal link was not immediate,
this would directly contradict (m, n)_'[x� ,x�] (m′, n′) – so p� _� p′� as required.
For � and � strategies, we can track down the responsible of a move via a polarity

analysis. Events of � ⊛ � cannot sensibly be assigned a polarity in {−,+}, as � and �
disagree on B. A more useful polarity is pol�⊛� ∶ |� ⊛ �| → {−,l,r} set as:

pol�⊛�(p) = l if p� is defined and pol�(p�) = +,
pol�⊛�(p) = r if p� is defined and pol� (p�) = +,
pol�⊛�(p) = − otherwise.

We show in Figure 6.4 a version of Figure 6.1 with those polarities. Then:
Lemma 6.2.15. If � ∶ A ⊢ B and � ∶ B ⊢ C are strategies and p_�⊛� p′, then

(1) if pol�⊛�(p′) = l, then p� _� p′� ,(2) if pol�⊛�(p′) = r, then p� _� p′� ,(3) if pol�⊛�(p′) = −, then)�⊛�(p)_A∥B∥C)�⊛�(p′)

where again, p� , p′� , p� and p
′
� are defined whenever used.

Proof. (1) By Lemma 6.2.14, p� , p′� defined and p� _� p′� and we are done; or
p� , p′� defined and p� _� p′� . Since pol�⊛�(p′) = l, pol� (p′�) = −. By courteous,
)� (p�) _B⊢C)� (p′�); hence m occurs in B and)�(p�) _A⊢B)�(p′�). By Lemma
6.1.8, p� <� p′� , and it is direct that the causality must be immediate. (2) is symmetric.
(3) Assume p′ occurs in A, the other case is symmetric. In that case only p′� is de-

fined, so Lemma 6.2.14 entails that p� is defined and p� _� p′� . But pol�(p′�) = −, soby courtesy)�(p�)_A⊢B)�(p′�), from which the conclusion follows.
Next, we perform the hiding and introduce the composition of prestrategies.

CHAPTER 6. BASIC CONCURRENT GAMES 127

6.2.2 Composition of prestrategies
Hiding. Composition consists simply in removing all synchronized events:
Definition 6.2.16. The composition of � ∶ A ⊢ B and � ∶ B ⊢ C comprises:

|� ⊙ �| = {p ∈ � ⊛ � ∣ p occurs in A or C} ,
p1 ≤�⊙� p2 ⇔ p1 ≤�⊛� p2 ,
p1 #�⊙� p2 ⇔ p1 #�⊛� p2 .

with display map)�⊙� ∶ |� ⊙ �| → |A ⊢ C| obtained as restriction of)�⊛� .

It is straightforward that � ⊙ � is an event structure. In Figure 6.4, the composition
simply keeps the events in black. This means that it has two conflicting positive events,
both corresponding to 0+: the model records the point of non-deterministic branching
even when it brings no observable difference.
Though this does not appear in pictures, we insist that events of � ⊙ � are certain

events of � ⊛ �. Thus an event of the composition always carries a unique causal
explanation: itself, regarded as an event of the interaction � ⊛ �. Accordingly, we set:
Definition 6.2.17. Consider x ∈ C (� ⊙ �). Its interaction witness is defined as

[x]�⊛� = {p ∈ � ⊛ � ∣ ∃p′ ∈ x, p ≤�⊛� p′} ∈ C (� ⊛ �)

its down-closure in � ⊛ �.

This entails – and it shall play a crucial role in the development – that configurations
of the composition are in one-to-one correspondence with those configurations of the
interaction whose maximal events are visible. From this idea, we get:
Proposition 6.2.18. There is an order-isomorphism

(−⊙ −) ∶ {(x� , x�) ∈ C (�) × C (�) ∣ x� , x� minimal caus. comp.} ≃ C (� ⊙ �)
where x� , x� minimal means that the maximal elements of '[x� , x�] occur in A or C .

Proof. We decompose the order-isomorphism in two steps.
As a first step, we note that the isomorphism of Proposition 6.2.13 refines to:
(−⊛ −) ∶ {(x� , x�) ∈ C (�) × C (�) ∣ x� , x� min. caus. comp.} ≃ C v(� ⊛ �)

where C v(� ⊛ �) refers to configurations whose maximal events are visible, i.e. occur
in A or C – this is clear by Lemma 6.2.12. Next, we have the order-iso formed with:

C v(� ⊛ �) → C (� ⊙ �)
x → x ∩ V

C (� ⊙ �) → C v(� ⊛ �)
x → [x]�⊛�

where V denotes visible events – it is straightforward that this defines an order-iso.

CHAPTER 6. BASIC CONCURRENT GAMES 128

This shows how even through the hiding operation, configurations of the composition
can still be regarded as certain pairs of configurations of the compound strategies. We
are certainly starting to get close to our target statement of Proposition 6.2.1.
Note that the operation from left to right is well-defined even if x� ∈ C (�) and

x� ∈ C (�) are causally compatible but not minimal causally compatible. In that case
we shall still write x�⊙x� = (x�⊛x�)∩V ∈ C (�⊙�), even though x� and x� cannot
necessarily be recovered if the interaction has some maximal synchronized events.
The next lemma states a simple property of this construction, useful for reference:

Lemma 6.2.19. For x� ∈ C (�) and x� ∈ C (�) minimal causally compatible, we have

x� ⊙ x� = (x� ⊛ x�) ∩ V x� ⊛ x� = [x� ⊙ x�]�⊛� ,

where V is the set of visible events.

Proof. By def. of x� ⊙ x� through the order-iso C v(� ⊛ �) ≃ C (� ⊙ �) above.
It will also be useful later on that this is compatible with unions:

Lemma 6.2.20. Consider x� , y� ∈ C (�) and x� , y� ∈ C (�) satisfying either of the
conditions of Lemma 6.2.6. Then, we have the equality:

(x� ⊙ x�) ∪ (y� ⊙ y�) = (x� ∪ y�)⊙ (x� ∪ y�) .

Proof. By Lemma 6.2.10, we have (x� ∪ y�)⊛ (x� ∪ y�) = (x� ⊛x�) ∪ (y� ⊛y�), thus
(x� ∪ y�)⊙ (x� ∪ y�) = (x� ⊙ x�) ∪ (y� ⊙ y�) by restricting to visible events.
Finally, we relate immediate causality in the interaction and composition:

Lemma 6.2.21. Consider p, p′ ∈ � ⊙ �. If p_�⊙� p′, then we have

p_�⊛� q1 _�⊛� …_�⊛� qn _�⊛� p
′

for some q1,… , qn ∈ � ⊛ � synchronized.

Proof. Straightforward by definition.
We wrap up with the main proposition for composition of prestrategies:

Proposition 6.2.22. Consider � ∶ A ⊢ B and � ∶ B ⊢ C prestrategies.
Then there is a prestrategy � ⊙ �, unique up to iso, s.t. there is an order-iso:

(−⊙ −) ∶ {(x� , x�) ∈ C (�) × C (�) ∣ x� , x� min. caus. comp.} ≃ C (� ⊙ �)

s.t. for all x� ∈ C (�), x� ∈ C (�) min. caus. comp.,)�⊙�(x� ⊙ x�) = x�A ⊢ x
�
C .

CHAPTER 6. BASIC CONCURRENT GAMES 129

()� ∥ C ∥ D)(m) ⊲� ()� ∥ C ∥ D)(m′) where m <�∥C∥D m′ (m,m′ ∈ x� ∥ xC ∥ xD),
(A ∥)� ∥ D)(m) ⊲� (A ∥)� ∥ D)(m′) where m <A∥�∥D m′ (m,m′ ∈ xA ∥ x� ∥ xD),
(A ∥ B ∥)�)(m) ⊲� (A ∥ B ∥)�)(m′) where m <A∥B∥� m′ (m,m′ ∈ xA ∥ xB ∥ x�),

Figure 6.5: Ternary causal compatibility

Proof. Existence. The event structure, alongwith the displaymap on events, are defined
in Definition 6.2.16, with order-isomorphism defined in Proposition 6.2.18. We must
check that)�⊙� is a map of event structures. By Proposition 6.2.13,)�⊛�(x� ⊛ x�) =
x�A ∥ xB ∥ x

�
C , hence by definition of)�⊙� ,)�⊙�(x� ⊙ x�) = x�A ⊢ x

�
C . Now as)�⊛�is a map of event structures, it induces a bijection between x� ⊛x� and x�A ∥ xB ∥ x�C ,which by definition of � ⊙ � restricts to a bijection between x� ⊙ x� and x�A ⊢ x�C , so

card(x� ⊙ x�) = card(x�A) + card(x�C)

ensuring that)�⊙� preserves cardinal. By Lemma 6.2.20 it follows that it also preserves
unions, and hence forms a map of event structures by Lemma 6.1.11.
Uniqueness up to strong iso is straightforward by Lemma 6.1.12.

6.2.3 The associator
We have defined the composition of prestrategies; not yet that of strategies, as we have
not yet established that composition preserves receptivity and courtesy. Before doing
that we shall study associativity of composition, as it turns out that it holds indepen-
dently of the additional conditions for strategies. Thus fix now prestrategies � ∶ A ⊢ B,
� ∶ B ⊢ C and � ∶ C ⊢ D. We aim to show that composition is associative up to iso-
morphism, i.e. that there is an isomorphism of prestrategies, called the associator:

a�,� ,� ∶ (�⊙ �)⊙ � ≅ �⊙ (� ⊙ �) .

Proposition 6.2.22 makes associativity seem almost trivial: as configurations of the
composition are identified to certain pairs of configurations, mapping (� ⊙ �) ⊙ � to
�⊙(�⊙�) is only amatter of sending (x�⊙x�)⊙x� to x�⊙(x�⊙x�), i.e. by associativity
of the set-theoretic cartesian product – as for associativity for the composition of spans.
But as Proposition 6.2.22 makes formal, composition of strategies is composition of
spans, plus deadlocks, captured by the causal compatibility constraint; and we must
also prove that causal compatibility is compatible with associativity.
For this, it is cleaner to introduce causally compatible triples:

Definition 6.2.23. Consider x� ∈ C (�), x� ∈ C (�) and x� ∈ C (�). We set conditions:

matching: if x�B = x
�
B = xB and x�C = x

�
C = xC ,causally compatible: if they are matching and the relation ⊲ = ⊲� ∪ ⊲� ∪ ⊲�

on xA ∥ xB ∥ xC ∥ xD defined in Figure 6.5, is acyclic.
minimal: if events maximal for ⊲∗ occur in A or D.

CHAPTER 6. BASIC CONCURRENT GAMES 130

where)�x� = xA ∥ x�B ,)�x
� = x�B ∥ x

�
C , and)�x

� = x�C ∥ xD.

Crucially, ternary causal compatibility is equivalent to the two skewed versions:
Lemma 6.2.24. For x� ∈ C (�), x� ∈ C (�), x� ∈ C (�), the following are equivalent:

(1) x� , x� , x� are minimal causally compatible,
(2) x� , x� are min. caus. comp. and x� ⊙ x� , x� are min. caus. comp.,
(3) x� , x� are min. caus. comp. and x� , x� ⊙ x� are min. caus. comp.

Proof. (1)⇒ (2). For x� , x� causally compatible, a cycle in '[x� , x�] routinely corre-
sponds to a cycle in xA ∥ xB ∥ xC for the relation ⊲� ∪ ⊲� defined as:

()� ∥ C)(m) ⊲� ()� ∥ C)(m′) where m <�∥C m′ (m,m′ ∈ x� ∥ xC),
(A ∥)�)(m) ⊲� (A ∥)�)(m′) where m <A∥� m′ (m,m′ ∈ xA ∥ x�)

which immediately transports to a cycle in ⊲ on xA ∥ xB ∥ xC ∥ xD, contradiction.For minimality, consider m maximal in xA ∥ xB ∥ xC for ⊲� ∪ ⊲� ; assume, seeking
a contradiction, that it is in B. Then this event considered in xA ∥ xB ∥ xC ∥ xD, stilldenoted by m by abuse of notation, cannot be maximal for ⊲ by minimality. Thus there
is m ⊲ n for n in xA ∥ xB ∥ xC ∥ xD. But by construction of ⊲, n must be in A,B, C
and m (⊲� ∪ ⊲�) n in xA ∥ xB ∥ xC , contradiction. Hence, x� , x� minimal.

For x�⊙x� , x� causally compatible, a cycle in '[x�⊙x� , x�] corresponds to a cycle
in xA ∥ xC ∥ xD for the relation ⊲�⊙� ∪ ⊲� obtained as above. But this immediately
gives a cycle in xA ∥ xB ∥ xC ∥ xD for (⊲� ∪ ⊲�)∗∪ ⊲�, which gives a cycle in
xA ∥ xB ∥ xC ∥ xD for ⊲, contradiction. For minimality, an event m maximal for ⊲�,�and ⊲� cannot be in C: otherwise there is n in A,D such that m ⊲∗ n, but then it is
straightforward that m (⊲�,� ∪ ⊲�)∗ n, contradicting its maximality.
(2)⇒ (1). Consider a cycle m1 ⊲ ⋯ ⊲ mk ⊲ m1. If the cycle remains in A,B, C , we

get a contradiction to x� , x� causally compatible. Otherwise, removing all moves in B,
we get a cycle in (⊲�,� ∪ ⊲�) hence a contradiction to x� ⊙x� , x� causally compatible.
For minimality, consider mmaximal for ⊲∗. By minimality of x� , x� it is not in B, and
by minimality of x� ⊙ x� , x� it cannot be in C; hence it is in A or D.
(1) ⇒ (3), (3)⇒ (1). Symmetric to the two implications above.
Altogether, this gives us all the ingredients required for the associator:

Proposition 6.2.25. Consider � ∶ A ⊢ B, � ∶ B ⊢ C and � ∶ C ⊢ D prestrategies.
Then there is a unique isomorphism, the associator:

a�,� ,� ∶ (�⊙ �)⊙ � ≅ �⊙ (� ⊙ �) ,

s.t. for all x� , x� , x� min. caus. comp., a�,� ,�((x� ⊙ x�)⊙ x�) = x� ⊙ (x� ⊙ x�).

Proof. The two clauses serve as the definition of the action of a�,� ,� on configurations,
via Proposition 6.2.22 and Lemma 6.2.24. Compatibility with display maps is from the
description of the display map of composition in Proposition 6.2.22. To lift this to a
map, we observe that preservation of cardinal is clear by local injectivity and preserva-
tion of display maps, and preservation of unions follows from Lemma 6.2.20. Finally,
the same arguments holds for the inverse, therefore forming an isomorphism.

CHAPTER 6. BASIC CONCURRENT GAMES 131

Composition of prestrategies is associative, but there does not seem to be an identity
turning it into a (bi)category – the obvious candidate, the copycat strategy that we shall
see later on, is only neutral for composition with respect to strategies.

6.3 Composition of Strategies
Now we focus on strategies, i.e. those prestrategies satisfying the additional conditions
of Definition 6.1.6. In this section, we aim in particular to prove Proposition 6.2.1.

6.3.1 Composition of Strategies
Thus, we now turn to the composition of strategies. Our first objective is to establish
that they are indeed stable under composition.
Proposition 6.3.1. Consider � ∶ A ⊢ B and � ∶ B ⊢ C strategies.
Then, � ⊙ � ∶ A ⊢ C is a strategy.

Proof. By Proposition 6.2.22, we have � ⊙ � ∶ A ⊢ C a prestrategy.
Courteous. Let p_�⊙� p′ s.t. pol(p) = + or pol(p′) = −. By Lemma 6.2.21,

p_�⊛� q1 _�⊛� …_�⊛� qn _�⊛� p
′

for some q1,… , qn ∈ � ⊛ � synchronized.
We show that in fact n = 0 and p _�⊛� p′. If pol(p) = +, then pol�⊛�(q1) ∈

{l,r} – assume w.l.o.g. that it is l. Then by Lemma 6.2.15, p� , (q1)� are defined and
p� _� (q1)� . But by courtesy, this entails)�(p�) _A⊢B)�((q1)�), impossible for q1synchronized. Hence n = 0, and p _�⊛� p′. If pol(p′) = −, then again by Lemma
6.2.15,)�⊛�(qn)_A∥B∥C)�⊛�(p′), contradicting qn synchronized, so p_�⊛� p′.Now, by Lemma 6.2.14, p� _� p′� or p� _� p′� , say w.l.o.g. the former. But then
)�(p�)_A⊢B)�(p′�), from which)�⊙�(p)_A⊢C)�⊙�(p′) follows.
Receptive. Consider x� ⊙x� ∈ C (� ⊙ �), and)�⊙�(x� ⊙x�) = x�A ∥ x�C ⊢A⊢C c−,assuming w.l.o.g. it is in C . For existence, by receptivity of � we have x� ⊢� t such that

)� (t) = c. Writing y� = x� ⊎{t}, it is direct that x� , y� is minimal causally compatible,
and x� ⊙ x� −⊂y� ⊙ x� provides the required extension, via Proposition 6.2.22. For
uniqueness, assume x� ⊙ x� −⊂z� ⊙ z� via some event p such that)�⊙�(p) = c−. So,

x� ⊛ x� ⊆ u� ⊛ u�
p
−←⊂z� ⊛ z�

where x� ⊛x� ⊆ u� ⊛u� adds a setX of synchronized events, such that for all q ∈ X,
q ≤�⊛� p. But for any q _�⊛� p, we have q in C by Lemma 6.2.15, so X is empty.
As p is in C , this entails x� = u� = z� and x� = u� −⊂z� . So z� = x� ⊎ {t′} such that
x� ⊢� t′ and)� (t′) = c, so t = t′ by receptive for �; hence y� ⊙ x� = z� ⊙ z� .
We have a well-defined composition operation for strategies, but we have not yet

arrived at the claimed Proposition 6.2.1. For that, it still remains to investigate the
effect of ignoring the trailing Opponent moves, restricting to +-covered configurations.

CHAPTER 6. BASIC CONCURRENT GAMES 132

6.3.2 Strategies and +-covered configurations
In traditional alternating game semantics, strategies can be defined in two different
ways: as done in Definition 3.1.2 by taking plays finishing by moves of arbitrary polar-
ity, but requiring a receptivity property for strategies; or – as is more standard – by only
considering even-length plays in strategies, that is, plays ending with Player moves. For
concurrent strategies, a similar effect can be obtained via +-covered configurations:
Definition 6.3.2. Consider� ∶ A a (pre)strategy on gameA. A configuration x ∈ C (�)
is +-covered if for any s ∈ x such that s is ≤�-maximal in x, pol�(s) = +.

We write C+(�) for the +-maximal configurations of �.

We shall see that it suffices to compare strategies on their +-covered configurations.
To show this, it is convenient to rely not on the original definition of strategies in Defi-
nition 6.1.6, but on the following more “big-step” characterization:
Proposition 6.3.3. Consider � ∶ A a prestrategy on game A. Then it is a strategy iff

−-discrete opfibration: for all x� ∈ C (�), for all)�(x�) ⊆− yA ∈ C (A),
there exists a unique x� ⊆ y� ∈ C (�) s.t.)�(y�) = yA.

+-discrete fibration: for all x� ∈ C (�), for all)�(x�) ⊇+ yA ∈ C (A),
there exists a unique x� ⊇ y� ∈ C (�) s.t.)�(y�) = yA.

where x ⊆p y (for p ∈ {−,+}) means x ⊆ y and polA(y ⧵ x) ⊆ {p}.

Proof. −-discrete opfibration. Existence is clear by repeated applications of receptive.
For uniqueness, consider x� ⊆ y� , z� ∈ C (�) s.t.)�(y�) =)�(z�) = yA. Take
m1 ∈ y� ⧵ x� and m2 ∈ z� ⧵ x� s.t.)�(m1) =)�(m2), w.l.o.g. assume that for any
m′1 <� m1 and m′2 <� m2,)�(m′1) =)�(m′2) implies m′1 = m′2. By courteous, m1 and
m2 have the same immediate causal dependencies, so m1 = m2 by receptive.
+-discrete fibration. Existence follows by repeated applications of courtesy, which

entails that events in x� ∈ C (�) displaying to maximal positive events in)�(x�) must
be maximal in x� . Uniqueness is clear by locally injective.

In the sequel, we shall only use this direction. So for the sake of economy, for the
other direction we simply refer to [Castellan et al., 2017a, Lemma 3.13].
This was first noticed by Winskel in [Winskel, 2013b], in seeking a connection be-

tween concurrent strategies as profunctors – indeed, by the lemma above, it also follows
that strategies are also characterized by the discrete fibration property for the composite
partial order ⊑A = ⊇−⊆+, the so-called “Scott order”, which informs a link with pro-
functors. In this monograph, we shall merely use the −-discrete opfibration property.
Relying on that, we refine the mapification lemma in the following way4:
Lemma 6.3.4. Consider �, � ∶ A two strategies. Assume there is a function

f ∶ C+(�)→ C+(�)

compatible with display maps and preserving unions. Then, there is a unique morphism
of strategies f̂ ∶ � ⇒ � such that for all x ∈ C+(�), f̂ x = f x.

4Thanks to Victor Blanchi for discovering this nice lemma!

CHAPTER 6. BASIC CONCURRENT GAMES 133

Proof. Uniqueness. Consider g, ℎ two such extensions, and consider x ∈ C (�). Re-
moving trailing events from x, there is a unique y ∈ C+(�) such that y ⊆− x. By
hypothesis, g(y) = ℎ(y) = f (y). Since g, ℎ are maps of event structures and preserve
display maps, they must preserve inclusion and polarities of these inclusions, so that

f (y) ⊆− g(x), ℎ(x)

but)�g(x) =)�ℎ(x) by pres. of display maps, so g(x) = ℎ(x) by −-discrete opfibration
of Proposition 6.3.3. So g(x) = ℎ(x) for all x ∈ C (�), so g = ℎ by Lemma 6.1.12.
Existence. We first extend f to all configurations: if x ∈ C (�), as above we consider

the unique y ∈ C+(�) such that y ⊆− x obtained by removing trailing negative events
in x; as f preserves display maps we have)�f (y) =)�y ⊆−)�x. By −-discrete
opfibration of Proposition 6.3.3, there is a unique z ∈ C (�) such that f (y) ⊆− z and
)� (z) =)�(x); we set f (x) = z. So defined, f ∶ C (�)→ C (�) automatically preserves
display maps and hence preserves cardinal (as)� and)� , as maps of event structures,
are locally injective). By uniqueness in −-discrete opfibration of Proposition 6.3.3, it
is easy to prove that f preserves unions. Hence by Lemma 6.1.11, it extends to a map
of event structures in a unique way, concluding the proof.
Rigidity. We prove that any map of event structures ℎ ∶ � → � such that)�◦ℎ =

)� and that sends +-covered configurations to +-covered configurations, is rigid. We
actually show that if s1 _� s2, then ℎ(s1) <� ℎ(s2), which entails rigidity. If pol(s1) =
+ or pol(s2) = −, then)�s1 _A)�s2 by courteous, and thus f (s1) ≤� f (s2) byLemma 6.1.8 – so that f (s1) <� f (s2) by local injectivity. It remains to consider
the case where pol(s1) = − and pol(s2) = +. In that case, as [s2]� ∈ C+(�), we
have ℎ([s2]�) ∈ C+(�) as well. Now, observe that s1 is maximal in [s2)� , otherwisecontradicting s1 _� s2. Hence writing x = [s2]� ⧵ {s1, s2}, y = [s2]� ⧵ {s2}, we have
x−⊂y−⊂ [s2]� in C (�). This is sent to � via ℎ to the covering sequence in C (�)

ℎ(x)
ℎ(s1)
−←⊂ ℎ(y)

ℎ(s2)
−←⊂ ℎ([s2]�) ,

which shows in particular that only ℎ(s2) can possibly depend on ℎ(s1)within ℎ([s2]�).Hence if ¬(ℎ(s1) <� ℎ(s2)), it immediately follows that ℎ(s1) is maximal in ℎ([s2]�).But ℎ(s1) is negative, contradicting that ℎ([s2]�) is+-covered; thus ℎ(s1) <� ℎ(s2).
It is striking that the rigidity condition on morphisms is automatic, and follows from

the fact that the map of event structures preserves +-covered configurations!
This lemma will be used often, in two particular situations: firstly, to show that two

morphisms of strategies coincide, it suffices to show that they coincide on +-covered
configurations; secondly, in order to prove � and � isomorphic, it suffices to produce
an order-iso between C+(�) and C+(�) compatible with display maps (observing that
the supremum of two +-covered configurations in C+(�), if it exists, is their union).

6.3.3 Composition and +-coveredness
Clearly +-covered configurations are important, in that morphisms between strategies
are entirely determined by their action on +-covered configurations. Next we show that

CHAPTER 6. BASIC CONCURRENT GAMES 134

additionally, +-covered configurations interact very well with composition. Let us fix
for now � ∶ A ⊢ B and � ∶ B ⊢ C two strategies, and investigate their composition.

The first step is to remark that +-coverdness makes minimality redundant:
Lemma 6.3.5. Consider x� ∈ C+(�) and x� ∈ C+(�) causally compatible.

Then, x� and x� are minimal causally compatible.
Proof. Seeking a contradiction, assume there is a maximal event of '[x� , x�] in B,
necessarily of the form ((1, s), (2, t)) for s ∈ x� and t ∈ x� necessarily both maximal.
But necessarily one of them is negative, contradicting +-coveredness of x� and x� .
Besides, the resulting configurations of the composition are automatically+-covered:

Lemma 6.3.6. Consider x� ∈ C+(�) and x� ∈ C+(�) causally compatible.
Then, x� ⊙ x� ∈ C+(� ⊙ �).

Proof. First, x� , x� is minimal causally compatible by Lemma 6.3.5.
Consider m ∈ x� ⊙ x� maximal. This means that m is also maximal in x� ⊛ x� =

[x� ⊙ x�]�⊛� , so corresponds to some pair maximal in '[x� , x�] via Lemma 6.2.12.
Since x� , x� is minimal causally compatible, this pair is in A or C – say w.l.o.g. in C ,
so it has the form ((2, c), (2, t)) for t ∈ x� . Necessarily, t is maximal in x� , so is positive
since x� ∈ C+(�). Hence, m is positive as well.
So causally compatible +-covered x� ∈ C+(�) and x� ∈ C+(�) are minimal, and

their composition yields x� ⊙ x� ∈ C+(� ⊙ �) +-covered. We prove the converse:
Lemma 6.3.7. Consider x� ∈ C (�) and x� ∈ C (�) minimal causally compatible.

If x� ⊙ x� ∈ C+(� ⊙ �) is +-covered, so are x� ∈ C+(�) and x� ∈ C+(�).

Proof. Consider s ∈ x� maximal. Necessarily, there is p ∈ x� ⊛ x� such that p� = s.If p is maximal in x� ⊛ x� , by Lemma 6.2.19 we have x� ⊛ x� = [x� ⊙ x�]�⊛� , so pmust be visible and maximal in x� ⊙x� , hence positive by hypothesis, and s is positive.
Otherwise, there is some p_�⊛� q. By Lemma 6.2.14, p� _� q� or p� _� q� . Theformer contradicts maximality of p� = s, so p� _� q� . If s is positive, we are done.Otherwise, p� is positive, so q� is also in B by courteous, and)� (p�) <B⊢C)� (q�).Then q� is also defined, and by Lemma 6.1.8, p� < q� , contradicting maximality of s.

The symmetric reasoning shows any t ∈ x� maximal in x� is positive.
We can now finally deduce our characterization of the composition of strategies:

Proposition 6.2.1. ConsiderA,B, C games, and � ∶ A ⊢ B and � ∶ B ⊢ C strategies.
Then there is a strategy � ⊙ � ∶ A ⊢ C , unique up to iso, s.t. there are order-isos:

(−⊙ −) ∶ {(x� , x�) ∈ C+(�) × C+(�) ∣ causally compatible} ≃ C+(� ⊙ �)

such that for x� ∈ C+(�) and x� ∈ C+(�) causally compatible,

)�⊙�(x� ⊙ x�) = x�A ⊢ x
�
C

where we write)�x� = x�A ⊢ x
�
B and)�x� = x�B ⊢ x

�
C .

CHAPTER 6. BASIC CONCURRENT GAMES 135

(U ⊸ U) ⊸ U ⊢ (U ⊸ U) ⊸ U

q−
%oouq+

2uu}
_���

q−

� ((/

✓−

� ((/q+
3uu~

_���
✓+

q−
&oov

✓−

&oovq+ ✓+

Figure 6.6: The copycat strategy on (U ⊸ U) ⊸ U

Proof. Existence. The composition exists by Proposition 6.2.22, and is a strategy by
Proposition 6.3.1. The isos are restrictions of those of Proposition 6.2.22. By Lemma
6.3.5, causally compatible x� ∈ C+(�) and x� ∈ C+(�) are automatically minimal,
and by Lemma 6.3.6, x� ⊙ x� ∈ C+(� ⊙ �) is +-covered. Reciprocally, if x� ⊙ x� ∈
C+(� ⊙ �) is +-covered, then by Lemma 6.3.7, so are x� ∈ C+(�) and x� ∈ C+(�).

Uniqueness. By Lemma 6.3.4.
This concludes our study of composition of prestrategies and strategies. In the next

section, we show that games and strategies may be organized into a bicategory CG.

6.4 The Bicategory CG
The bicategory will have: as objects, games, as morphisms from A to B, the strategies
on A ⊢ B, and as 2-cells, the morphisms of strategies. We have already seen above
the composition of strategies and the unitors, 2-cells witnessing associativity of com-
position. It remains to construct identities, 2-cells witness identity laws, definition of
horizontal composition of 2-cells; after which we must establish the coherence laws.

6.4.1 Copycat
First we define copycat strategies, which will provide identities.

Definition. Copycat, illustrated in Figure 6.6, is an asynchronous forwarder: it sends
each negative event on A ⊢ A to the matching positive event on the other side.
We start with the components of copycat, postponing the verification of conditions.

CHAPTER 6. BASIC CONCURRENT GAMES 136

Definition 6.4.1. For any game A, we set cc A ∶ A ⊢ A with components:

events: | cc A| = |A| + |A|
causality: ≤ ccA = ({((1, a), (1, a′)) ∣ a ≤A a′}⊎

{((2, a), (2, a′)) ∣ a ≤A a′}⊎
{((1, a), (2, a)) ∣ polA(a) = +}⊎
{((2, a), (1, a)) ∣ polA(a) = −})∗conflict: # ccA = {(e1, e2) ∣ ∃e′1 ≤ ccA e2, e

′
2 ≤ ccA e2, e

′
1 #A⊢A e

′
2}

where (−)∗ is the transitive closure; and) ccA ∶ | cc A| → |A ⊢ A| the identity function.

Copycat is often a challenging landmark in setting up a game semantics, and here it
is no exception: it is not obvious at all that it satisfies all the required conditions! We
shall slowly examine various aspects of this definition, for a fixed game A.

The event structure cc A. We first focus on the basic structure of cc A.
Lemma 6.4.2. Consider A a game. Then, (| cc A|,≤A, #A) is an event structure.
Moreover, C (cc A) = {x ∥ y ∣ x, y ∈ C (A), x ∩ y ⊆+ x & x ∩ y ⊆− y}.

Proof. Immediate verifications, omitted.
It will be useful to understand exactly what are the immediate causal links of cc A:

Lemma 6.4.3. Consider A a game, and (i, a), (j, a′) ∈ cc A. Then (i, a)_ ccA (j, a
′) iff

(1) i = j, a_A a′, and (pol ccA (i, a) = + or pol ccA (j, a
′) = −), or

(2) i ≠ j, a = a′, pol ccA (i, a) = − and pol ccA (j, a
′) = +.

This is a direct verification. We also include a direct consequence of this:
Lemma 6.4.4. Consider A a game. Then, C+(cc A) = {x ∥ x ∣ x ∈ C (A)}.

Proof. ⊇. Clear by Lemma 6.4.2.
⊆. Consider x ∥ y ∈ C+(cc A); by Lemma 6.4.2, we have x, y ∈ C (A)with x∩y ⊆+ x

and x ∩ y ⊆− y. Suppose one of these inclusions is strict; for instance with a ∈ y such
that a ∉ x (the other case is symmetric). Necessarily, polA(a) = −. If a is maximal in
y, then (2, a) is maximal in x ∥ y by Lemma 6.4.3 since a ∉ x. But polA⊢A(2, a) = −,contradicting that x ∥ y is +-covered. Otherwise, there is a′ ∈ y such that a _A a′.
Now if polA(a′) = +, we must have a′ ∈ x, so a ∈ x as x ∈ C (A), contradiction. So,
polA(a′) = −. By iterating this reasoning, we find a′′ ∈ y⧵x negative and maximal for
A; and by the reasoning above (2, a′′) is negative maximal in x ∥ y, contradiction.
This lemma above will play an important role in this monograph: it shows that

when restricting to+-covered configurations (which is always possible when comparing
strategies, by Lemma 6.3.4), copycat behaves as the identity relation. For x ∈ C (A),
we write cc x = x ⊢ x ∈ C+(cc A) for the corresponding +-covered configuration.

Next, we show that copycat indeed is a well-formed strategy.

CHAPTER 6. BASIC CONCURRENT GAMES 137

Proposition 6.4.5. For any game A, we have cc A ∶ A ⊢ A a strategy.

Proof. By Lemma 6.4.2, cc A is an event structure. It is direct that) ccA is a map of event
structures. Courteous follows fromLemma 6.4.3, and receptive fromLemma 6.4.2.

In the sequel, we shall mostly reason on copycat via the characterization of its +-
covered configurations in Lemma 6.4.4, showing that it acts as an identity relation.

6.4.2 Copycat and Strategies
Now, we show that copycat indeed is neutral for composition with respect to strategies.

The unitors. To define the unitor isomorphisms, from our existing tools, the only
thing left to prove is that synchronizations with copycat never induce any deadlock.
For this – and for later on in this monograph – we introduce the following lemma:
Lemma 6.4.6. Take � ∶ A ⊢ B, � ∶ B ⊢ C , and x� ∈ C (�), x� ∈ C (�) matching.

Consider the relation ⊲� ∪ ⊲� on xA ∥ xB ∥ xC defined with

()� ∥ C)(m) ⊲� ()� ∥ C)(m′) where m <�∥C m′ (m,m′ ∈ x� ∥ xC),
(A ∥)�)(m) ⊲� (A ∥)�)(m′) where m <A∥� m′ (m,m′ ∈ xA ∥ x�)

writing)�(x�) = xA ∥ xB and)� (x�) = xB ∥ xC .
Then, x� , x� are causally compatible iff ⊲� ∪ ⊲� has no cycle within xB .

Proof. If. First, notice that ⊲ has no direct link between xA and xC . The crux of the
argument is that ifm ⊲ m′ with one of them inA, thenm ⊲� m′: indeed if they are bothin A, then by definition either m ⊲� m′ and we are done, or m <A∥B∥C m′ and m ⊲� m′follows from Lemma 6.1.8. Likewise, if m ⊲ m′ with one of them in C , then m ⊲� m′.We proceed with the proof. First, it is a simple reformulation of the definition that
x� , x� are causally compatible iff ⊲ = ⊲� ∪ ⊲� is acyclic. If there is a cycle in ⊲, itmust pass throughB: otherwise it still entirely inA or C . But by the observation above,
this yields a cycle in ⊲� or ⊲� , contradiction. So the cycle passes through B. Then, for

mB ⊲ nA1 ⊲ ⋯ ⊲ nAk ⊲ (m
′)B ,

again by the observation above all those links are in⊲� , hencemB ⊲� (m′)B . Likewise,all sections of the cycle inC may be removed symmetrically, yielding a cycle in xB .
We now focus on the interactions of a strategy with copycat. In particular, the core

of the next lemma is that no deadlocks can arise from the interaction of a strategy with
copycat, so that all matching pairs of+-covered configurations are causally compatible.
Lemma 6.4.7. Consider � ∶ A ⊢ B a strategy, and x� ∈ C+(�), x cc B ∈ C+(cc B).
Then, x� , x ccB are causally compatible iff x ccB = cc x�B , for)�(x

�) = x�A ∥ x
�
B .

CHAPTER 6. BASIC CONCURRENT GAMES 138

Proof. If. Write)�(x�) = xA ∥ xB , and seeking a contradiction, consider a cycle in
xA ∥ xlB ∥ x

r
B – using l,r for disambiguation – in the relation ⊲� ∪ ⊲ ccB defined as:

()� ∥ B)(m) ⊲� ()� ∥ B)(m′) where m <�∥B m′ (m,m′ ∈ x� ∥ xrB)
(A ∥) ccB)(m) ⊲ ccB (A ∥) cc B)(m

′) where m <A∥ ccB m
′ (m,m′ ∈ xA ∥ xlB ∥ xrB),

by Lemma 6.4.6we can assume that the cycle is entirely in xlB . Now, it is straightforward
from the definition of cc B that if m ⊲ ccB m

′ with m,m′ in xlB , then m <A∥B∥B m′ so that
m ⊲� m′ by Lemma 6.1.8. Thus, this yields a cycle in ⊲� , contradiction.

Only if. Immediate from the definition and Lemma 6.4.4.
Clearly, the symmetric lemma holds, with a symmetric proof:

Lemma 6.4.8. Consider � ∶ A ⊢ B a strategy, and x ccA ∈ C+(cc A), x� ∈ C+(�).
Then, x ccA , x� are causally compatible iff x ccA = cc x�A , for)�(x

�) = x�A ∥ x
�
B .

This completes the ingredients needed to define the unitors:
Proposition 6.4.9. Consider � ∶ A ⊢ B a strategy.
Then there are unique isomorphisms of strategies, the unitors:

l� ∶ cc B ⊙ � ≅ � r� ∶ � ⊙ cc A ≅ �

such that for all x� ∈ C+(�), we have l�(cc x�B ⊙ x
�) = x� and r�(x� ⊙ cc x�A) = x

� .

Proof. Configurations and symmetries of cc B⊙� and�⊙ cc A have this shape by Lemmas
6.4.7 and 6.4.8. These assignments on configurations are order-isos and compatible
with display maps, thus extend to an isomorphism of strategies by Lemma 6.3.4.

6.4.3 Horizontal Composition and Bicategorical Structure
The missing piece is the horizontal composition of 2-cells, handled by:
Proposition 6.4.10. Consider �,�′ ∶ A ⊢ B and � , � ′ ∶ B ⊢ C strategies, and
f ∶ � ⇒ �′, g ∶ � ⇒ � ′ morphisms of strategies.
There is a unique morphism of strategies, the horizontal composition of f and g,

g ⊙ f ∶ � ⊙ � ⇒ � ′ ⊙ �′ ,

such that (g ⊙ f)(x� ⊙ x�) = g(x�)⊙ f (x�) for all x� ⊙ x� ∈ C+(� ⊙ �).

Proof. Uniqueness. Obvious from Lemma 6.3.4.
Existence. Consider x�⊙x� ∈ C+(�⊙�). As f and g preserve display maps, f (x�)

and g(x�) are matching. As f and g are rigid, and by Lemma 6.1.8, they induce order-
isos f ∶ x� ≅ f (x�) and g ∶ x� ≅ g(x�), so f (x�) and g(x�) are still +-covered, and
causally compatible. So the action on +-covered configurations x� ⊙ x� ∈ C+(� ⊙ �)
given above is well-defined. It obviously preserves display maps and preserves unions
by Lemma 6.2.20, hence it lifts to a morphism of strategies by Lemma 6.2.20.

CHAPTER 6. BASIC CONCURRENT GAMES 139

We are now in position to conclude with the bicategorical structure:
Theorem 6.4.11. There is CG, a bicategory with: objects, all games,morphisms from
A to B, strategies on A ⊢ B, and 2-cells, morphisms of strategies.
Proof. Identities are copycat strategies, composition is composition of strategies. As-
sociators are defined in Section 6.2.3, unitors in Section 6.4.2. The laws are obtained
by checking them pointwise on +-covered configurations and concluding by Lemma
6.3.4; for instance, naturality of the left unitor is established very simply, via:

l�◦(id⊙ f)(cc x�B ⊙ x
�) = l�(cc x�B ⊙ f (x

�))

= f (x�)
= f◦l�(cc x�B ⊙ x

�)

for f ∶ � ⇒ �′ ∶ A ⊢ B a morphism of strategies, and x� ∈ C+(�).
There is, of course, much more to the structure of CG. In particular it is a compact

closed bicategory, and may be used as a model for a linear programming language. But
we shall not investigate this structure further, and will do it instead for TCG.

6.4.4 Characterization of Strategies
Before adding symmetry into the picture, we prove an additional property on copycat.
Namely, it allows a neat characterization of strategies among prestrategies:
Proposition 6.4.12. Consider � ∶ A ⊢ B a prestrategy.

Then, � is a strategy iff cc B ⊙ � ⊙ cc A ≅ �.

Proof. If. It suffices to prove that cc B⊙�⊙ cc A is automatically receptive and courteous.
For courteous, consider p _ cc B⊙�⊙ ccA p

′ such that pol(p) = + or pol(p′) = −, say
first it is the former. Necessarily p occurs in A or B, say w.l.o.g. that it is in B. Up to
iso we consider p_ ccB⊙�′ p

′, for �′ = � ⊙ cc A. By Lemma 6.2.21 we have
p_ cc B⊛�′ q1 _ ccB⊛�′ …_ ccB⊛�′ qn _ ccB⊛�′ p

′

with q1,… , qn synchronized. By Lemma 6.2.14, we must have p ccB _ cc B (q1) ccB – as
p� does not exist. But as p is positive, this implies) cc B (p ccB) _B⊢B) ccB ((q1) ccB),contradicting q1 synchronized, so p _ ccB⊛�′ p

′ and p ccB _ ccB p′ccB , which entails
) ccB (p ccB) _B⊢B) ccB (p

′
ccB
) so that) ccB⊙�′ (p) _A⊢B) ccB⊙�′ (p

′) as required. All the
other cases are symmetric, so that) ccB⊙�⊙ ccA (p)_A⊢B) cc B⊙� ccA (p

′) as required.
For receptive, consider z ∈ C (cc B ⊙ � ⊙ cc A) with) ccB⊙�⊙ ccA (z) ⊢A⊢B b

−, w.l.o.g.
assume b occurs in B, and consider again z, which by Proposition 6.2.22 we may write
as z = (xB ∥ yB)⊙ x�′ ∈ C (cc B ⊙ �′) with �′ = � ⊙ cc A, with) ccB⊙�′ (z) = x

�′
A ∥ yB .So by hypothesis, we have yB ⊢B b−. Then it is immediate that xB ∥ (yB ∪ {b}) arestill minimal causally compatible, so that by Proposition 6.2.22 we have

(xB ∥ yB)⊙ x�
′ p
−←⊂ (xB ∥ (yB ∪ {b}))⊙ x�

′

CHAPTER 6. BASIC CONCURRENT GAMES 140

for some (xB ∥ yB) ⊙ x�′ ⊢ cc B⊙�′ p such that) ccB⊙�′ (p) = b. Uniqueness is straight-
forward via Proposition 6.2.22 and definition of) ccB⊙�′ .
Receptive and courteous are clearly invariant under strong iso, so � is a strategy.
Only if. By bicategorical laws for CG.
Thus strategies are exactly those prestrategies invariant under compositionwith copy-

cat, i.e. robust when accessed under asynchronous delay. Conceptually, this vindi-
cates the definition of strategies. Technically, it occasionally provides a convenient
way to prove that certain prestrategies are actually strategies. This result appeared
as the main theorem in Rideau and Winskel’s original paper on concurrent strategies
[Rideau and Winskel, 2011]. A result in the same spirit already appeared in Ghica and
Murawski’s interleaving concurrent games model [Ghica and Murawski, 2008].

6.5 Conclusions and Historical Notes
Concurrent games were initiated by Abramsky and Melliès’ seminal fully complete
model for MALL [Abramsky and Melliès, 1999]. There, strategies are certain stable
closure operators on dI-domains: intuitively, a strategy-as-closure-operator closes the
current position under all available Player moves, played in some unspecified order.
Concurrent games were originally presented as a way to circumvent the so-called Blass
problem, i.e. the non-associativity of composition in Blass’ model of linear logic, di-
agnosed in [Abramsky, 2003] as due to an excess of sequentiality.

Asynchronous Games. Following this, Melliès led a research programme on asyn-
chronous games [Melliès, 2003, Melliès, 2004a, Melliès, 2004b, Melliès, 2005]. Mel-
liès’ goal was to reproduce and extend the success of concurrent games in a language
closer to more standard (sequential) game semantics; as well as put the spotlight on the
causal structures that lurk behind the traditional notion of innocence. Asynchronous
games are based on Mazurkiewicz traces: plays are alternating but related by homo-
topy tiles expressing causal independence between parts of computation. Plays up to
homotopy give rise to a notion of positions compatible with the positions of the original
concurrent games. Based on alternating asynchronous games, Melliès was able to pro-
vide a fully complete model of full propositional linear logic [Melliès, 2005], showing
that what made this possible already for closure operators was not in fact concurrency,
but positionality – see [Clairambault, 2023] for a recent retelling of this story.
Later, Melliès and Mimram developed basic non-alternating asynchronous games

[Melliès and Mimram, 2007]. While non-alternating asynchronous strategies are non-
deterministic as sets of plays, they satisfy conditions ensuring that they are essentially
deterministic up to the choice of the scheduler – in particular, it follows a posteriori
from the conditions that the set of possible executions is the set of linearizations of
a causality partial order: provided the external Opponent plays in the same way, all
execution paths will ultimately reach the same state.

CHAPTER 6. BASIC CONCURRENT GAMES 141

Strategies as Partial Orders. Independently, a notion of strategies-as-partial-orders
emerged from Girard’s Ludics [Girard, 2001]. Indeed, designs (strategies in Ludics)
may be seen as a linear version of Hyland-Ong strategies [Faggian and Hyland, 2002],
presented following their causal structure rather than the traditional chronologically
ordered plays. This inspired Ludics Nets, or L-nets [Faggian and Maurel, 2005]: a no-
tion of strategies-as-graph, aiming at a concurrent generalization of designs (see also
[Curien and Faggian, 2005] for links with more standard strategies via proof nets). In-
spired by this line of work and ideas fromHyland, Faggian and Piccolo introduced a cat-
egory of strategies-as-partial-orders [Faggian and Piccolo, 2009], which lands close to
Mimram andMelliès’ non-alternating asychronous strategies – but whereas in Mimram
and Melliès’ work the causal partial order is derived, here it is primitive.

Strategies as Event Structures. Rideau and Winskel then introduced the bicate-
gory CG [Rideau and Winskel, 2011] that we developed in this chapter: as for Fag-
gian and Piccolo, strategies in CG are explicitly partially ordered, but they additionally
have a fibred structure letting them harmonously handle non-determinism with explicit
branching information – this is analogous to other fibred approaches to non-determinism
in game semantics [Eberhart et al., 2017, Jacq and Melliès, 2018]. At the same time,
Winskel was starting a research project “ECSYM”, seeking a concurrent generaliza-
tion of domain theory – the main inspirations were the non-deterministic extension of
domain theory given by spans of event structures [Saunders-Evans and Winskel, 2006]
and event structures with symmetry [Winskel, 2007]. But ECSYM soon focused on
games and strategies and was the cradle for the first steps of the present developments.
From now on, unless specified otherwise and until the end of this document, we

shall use the term concurrent games to refer specifically to this latter framework CG –
keeping in mind all its precursors and the intellectual history behind it.

Chapter 7

Thin Concurrent Games

The main limitation of CG is that it is inherently restricted to speaking about systems
with linear resource usage. Indeed, games as in Definition 6.1.3 do not support the bang
construction from linear logic. Of course, one can define inCG a construction on games
taking countably many copies as illustrated in (6.3), but this operation is incomplete:
analogously to categorifications of the relational model (generalized species of structure
[Fiore et al., 2008] or template games [Melliès, 2019b]) where states form a groupoid,
we need to add additional structure to games, expressing which events are “morally the
same” by specifying the admissible permutations between events.
Intuitively, the roadmap for building concurrent games with symmetry is to follow the

same recipe as for CG, but replacing event structures (and their maps) with Winskel’s
event structures with symmetry [Winskel, 2007] – which add to event structures pre-
cisely the ability to express these missing permutations. But while developing this, it
turned out far more subtle than initially anticipated. With respect to this anticipated
roadmap, the main surprise of TCG is a rediscovery of phenomenon first noticed by
Melliès in the setting of asynchronous games: that a causal, deterministic account of
uniformity required to split symmetries into two, the positive symmetries due to Player,
and the negative symmetries due to Opponent [Melliès, 2003].
In this chapter, we will review a few of the subtleties and arising design choices. Then

we shall focus on constructing Thin Concurrent Games, under the form of a bicategory
TCG. We must hence ask the reader to brace for another rather technical journey. Like
CG, the construction of TCG is not easy. But like CG, we did our best to engineer its
construction in such a way that one can use it later on while leaving most combinatorial
details and low-level definitions nicely encapsulated.

7.1 Symmetry in Games and Strategies
In this section, we introduce the basic definitions for games and strategies in the pres-
ence of symmetry, leaving for later the compositional structure. Before that, we start

142

CHAPTER 7. THIN CONCURRENT GAMES 143

with a few preliminaries on event structures with symmetry.

7.1.1 Event Structures with Symmetry
In order to motivate the definition of event structures with symmetry, we start with the
key construction that introduces symmetry in games arising from the interpretation of
types or linear logic formulas: the bang – making formal the illustration of (6.3).
Definition 7.1.1. Consider A a game. Then, we define the bang !A with:

events: | !A| = ℕ × |A|
causality: (i, a1) ≤!A (j, a2) ⇔ i = j ∧ a1 ≤A a2conflict: (i, a1) #!A (j, a2) ⇔ i = j ∧ a1 #A a2polarities: pol!A(i, a) = polA(a) .

Following the methodology of linear logic, the construction !A injects a non-linear
behaviour into an otherwise linear setting – one may define the usual, non-linear arrow
via A → B = !A ⊸ B. To achieve that, the definition above follows the intuition from
AJM games (see Section 3.4) that !A consists in countably many independent copies of
the game A, kept apart via integers referred to as copy indices.
It will be useful to adopt specific notations for configurations of !A. First:

Definition 7.1.2. ConsiderA a game. We write Fam(A) for the set of all families (xi)i∈I
where I ⊆f ℕ is a finite set of integers, and xi ∈ C (A) with xi ≠ ∅ for all i ∈ I .
We call elements of Fam(A) simply families on A.

The set Fam(A) is partially ordered by (xi)i∈I ≤ (yj)j∈J iff I ⊆ J and xi ⊆ yi forall i ∈ I . Families on A are useful in that they correspond to configurations of !A – the
proof of this proposition is straightforward, but observe that it crucially relies on the
hypothesis that the configurations appearing in families are non-empty.
Proposition 7.1.3. Consider A a game. Then, the function

Fam(A) → C (!A)
(xi)i∈I →

∑

i∈I xi =
⨄

i∈I{i} × xi

is an order-isomorphism – we often write [xi ∣ i ∈ I] ∈ C (!A) for (xi)i∈I ∈ Fam(A).

Copy indices are special with respect to other constructions producing new moves.
They keep distinct copies apart, but in principle the behaviour of strategies should not
depend on the specific integers used: their exact value should not matter, which we
express with our convention introduced in Section 3.4 to often write them down in
grey. But we need a formal way to express that they are indeed interchangeable:
Definition 7.1.4. Consider A a game, and x, y ∈ C (!A). A plain reindexing � ∶ x ≅A
y is a bijection � ∶ x ≃ y such that there is � ∶ I ≃ J a permutation satisfying

�(i, a) = (�(i), a)

for all (i, a) ∈ !A.

CHAPTER 7. THIN CONCURRENT GAMES 144

A plain reindexing links two configurations x, y ∈ C (!A) which only differ via copy
indices for the bang. We need more than an equivalence relation: to express that strate-
gies are “invariant under reindexings”, we need an explicit bijection rather than the
mere information that two configurations can be reindexed to each other. Indeed, while
in AJM games an equivalence s ≅A t induces, chronologically, a 1-to-1 matching be-
tween the events of s and those of t, an equivalence relation does not suffice anymore for
configurations, which are only partially ordered – hence explicit bijections are required.
Plain reindexings only change copy indices coming from the external !, but in general

reindexings may affect copy indices coming from deep within the type. Thus a type
should not be interpreted only with a game, but with a “game with a set of allowed
reindexings” – but to what mathematical structure does that correspond?

Isomorphism families. It is an isomorphism family on an event structure:
Definition 7.1.5. An isomorphism family on event structure E is a set S (E) of bijec-
tions between configurations of E, satisfying the additional conditions:

groupoid: S (E) contains identities; is closed under composition and inverse.
restriction: for all � ∶ x ≃ y ∈ S (E) and x ⊇ x′ ∈ C (E),

there is a (necessarily) unique � ⊇ �′ ∈ S (E) s.t. �′ ∶ x′ ≃ y′.
extension: for all � ∶ x ≃ y ∈ S (E), x ⊆ x′ ∈ C (E),

there is a (not necessarily unique) � ⊆ �′ ∈ S (E) s.t. �′ ∶ x′ ≃ y′.

The pair (E,S (E)) is called an event structure with symmetry (ess).

We regard isomorphism families as proof-relevant equivalence relations: they convey
which configurations are interchangeable, witnessed by an explicit bijection.
If E is an ess, we call the elements of S (E) symmetries. We write � ∶ x ≅E y

to mean that � ∶ x ≃ y is a bijection such that � ∈ S (E), and write x = dom(�)
and y = cod(�). We also write x ≅E y to mean that there is a symmetry � such that
� ∶ x ≅E y, this yields an equivalence relation on configurations.
It is an easy exercise to prove that symmetries are automatically order-isomorphisms:

Lemma 7.1.6. Consider E an ess, and � ∶ x ≅E y a symmetry.
Then, for all e1, e2 ∈ x, we have e1 ≤E e2 iff �(e1) ≤E �(e2).

Proof. Left as an exercise to the reader.

Maps with symmetry. If event structures are equipped with an isomorphism family,
we must adjust the notion of maps of event structures so that symmetry is preserved:
Definition 7.1.7. ConsiderE andF two ess, and f ∶ E → F a map of event structures.
We say that f preserves symmetry if for all � ∈ S (E), we have f� ∈ S (F), where

f� = {(fe, fe′) ∣ (e, e′) ∈ �} .

Then f is amap of event structures with symmetry – we write ESS for the category.

CHAPTER 7. THIN CONCURRENT GAMES 145

It is immediate that f� may also be expressed as the composition

fx
f−1
≃ x

�
≃ y

f
≃ fy

obtained by exploiting local injectivity of f ; the above then asks that this composition
of bijections should be in S (F) – this observation will be used silently from now on.

In concurrent games with symmetry, both games and strategies will be certain event
structures with symmetry, and the display map of a strategy will have to preserve sym-
metry. As for plain maps of event structures, maps of event structures with symmetry
may be characterized through their action on configurations and symmetries:
Lemma 7.1.8. Consider E and F two ess, and f ∶ E → F a map of event structures.

Then f preserves symmetry iff there is a (necessarily unique) function

f̃ ∶ S (E)→ S (F)

commuting with dom and cod, i.e. dom◦f̃ = f◦dom and cod◦f̃ = f◦cod.

Proof. Consider � ∶ x ≅E y. By Lemma 7.1.6, � is an order-iso, so we get

∅ = �0
(e1,e′1)
−⊂ �1

(e2,e′2)
−⊂ �2 −⊂ … −⊂�n−1

(en,e′n)
−⊂ �n = � (7.1)

by following any covering chain of x or y. By commutation with dom and cod, it is
immediate by induction on i that for all 0 ≤ i ≤ n, f̃ �i = f �i; in particular f̃ � = f �.
This shows uniqueness of f̃ as it must be the action of f on symmetries as specified
in Definition 7.1.7. But this means that f sends symmetries to symmetries, thus it
preserves symmetry as required.
Altogether, we get a symmetry-aware version of the mapification lemma:

Lemma 7.1.9. Consider E, F two ess, and a function f ∶ C (E)→ C (F).
If f preserves unions, cardinality, and there is a function f̃ ∶ S (E)→ S (F) s.t.

dom◦f̃ = f◦dom , cod◦f̃ = f◦cod ,

then there exists a unique map of ess f̂ ∶ E → F s.t. for all x ∈ C (E), f̂ (x) = f (x).

Proof. By Lemma 6.1.11, there is f̂ ∶ E → F a unique map of event structures. By
Lemma 7.1.8 it preserves symmetry, which concludes the proof.
Observe that by Lemma 7.1.8 the map f̃ , if it exists, is necessarily unique as it must

coincide with the action of f̂ (the map of event structures) on symmetries as specified
by Definition 7.1.7. In the sequel, when applying Lemma 7.1.9, we shall sometimes
accordingly omit the definition of f̃ , when we feel its explicit description is not helpful.

CHAPTER 7. THIN CONCURRENT GAMES 146

Maps up to Symmetry. For now, symmetry on event structures puts a new obligation
on maps, which must now preserve it. We shall now see that it also provides us with a
new equivalence relation on maps, which may coincide up to symmetry only:
Definition 7.1.10. Consider E, F ess, and f, g ∶ E → F maps of ess.

We say that f and g are symmetric, written f ∼ g, if the composite bijection

f x
f−1
≃ x

g
≃ g x

written ⟨f, g⟩x and obtained via local injectivity of f and g, is in S (F).

Symmetry between maps will be extremely important in the sequel: it allows us to
identify maps that are the same only up to reindexing, which will be essential in the
construction of models of linear logic. For symmetry to play that role, it must of course
be preserved by all constructions on maps. In particular:
Proposition 7.1.11. The category ESS, equipped with symmetry on homsets, is en-
riched over equivalence relations. In particular, composition preserves ∼.

Proof. Straightforward, using that maps preserve symmetry.

7.1.2 Saturated Games with Symmetry
There are several ways to extend concurrent games in the presence of symmetry. Though
this will not be our final word, we first sketch an approach we call “saturated” or “fat”
– mathematically, it is easier, but suffers from significant drawbacks.

Games with symmetry. The motto leading to saturated concurrent games is to sim-
ply follow the same recipe as in Section 6.1.2, but building on ESS rather than ES.
Accordingly, we first simply add symmetry to Definition 6.1.3:
Definition 7.1.12. A game with symmetry (gws) is an essA = (|A|,≤A, #A,S (A))with

polA ∶ |A| → {−,+}

a polarity function such that for all � ∶ x ≅A y and a ∈ x, polA(a) = polA(�(a)).

We are not far removed from traditional, sequential notions of games with symmetry
from the literature. In particular, the above is a natural concurrent generalization of
AJM games – the link can be easily made by first recovering alternating plays:
Definition 7.1.13. An alternating play on gws A is a sequence s = s1… sn which is:

valid: ∀1 ≤ i ≤ n, {s1,… , si} ∈ C (A) ,non-repetitive: ∀1 ≤ i, j ≤ n, si = sj ⇐⇒ i = j ,
alternating: ∀1 ≤ i ≤ n − 1, polA(si) ≠ polA(si+1) ,negative: if n ≥ 1, then polA(s1) = −.

We write ⇵-Plays(A) for the set of alternating plays on A.

CHAPTER 7. THIN CONCURRENT GAMES 147

It is clear that if A is a gws, then the tuple (|A|, polA,⇵-Plays(A)) forms a simple
game in the sense of Definition 3.1.1. To obtain an AJM game, it remains to define:
Definition 7.1.14. Let A be a gws and s, t ∈ ⇵-Plays(A).
We say s and t are symmetric, written s ≅A t, if s and t have the same length, and

�js,t = {(si, ti) ∣ 1 ≤ i ≤ j} ∶ {s1,… , sj} ≅A {t1,… , tj}

is a symmetry in S (A) for all 1 ≤ j ≤ n; writing s = s1… sn and t = t1… tn.

As expected, we then have the AJM “unfolding” of a game with symmetry:
Proposition 7.1.15. For any gws A, (|A|, polA,⇵-Plays(A),≅A) is an AJM game.

Proof. That ≅A is an equivalence relation follows directly from the groupoid condition
on event structures with symmetry. There are three more conditions to check.
For (1), consider s1… sn ≅A t1… tp. By definition, n = p and

�ns,t = {(si, ti) ∣ 1 ≤ i ≤ n} ∶ {s1,… , sn} ≅A {t1,… , tn}

is a symmetry in S (A). So for all 1 ≤ i ≤ n, polA(si) = polA(�ns,t(si)) = polA(ti).Likewise, (2) is immediate from the definition.
For (3), consider s = s1… sn ≅ t1… tn = t with sa ∈ ⇵-Plays(A). By definition,

�ns,t = {(si, ti) ∣ 1 ≤ i ≤ n} ∶ {s1,… , sn} ≅A {t1,… , tn}

is a symmetry in S (A). By hypothesis, x = {s1,… , sn} ∈ C (A) extends to x′ =
x ⊎ {a} ∈ C (A). Therefore, by condition extension, writing y = {t1,… , tn}, there issome y ⊆ y′ ∈ C (A) and an extension �ns,t ⊆ �′ ∈ S (A) such that �′ ∶ x′ ≅A y′. But
�′ is a bijection, so we must have y′ = y ⊎ {�′(a)}, which we write b = �′(a). It is then
immediate that tb ∈ ⇵-Plays(A) with sa ≅A tb as required.

For the expert reader, we mention that this unfolding does not respect the usual AJM
game constructions as an alternating play on a parallel composition A ∥ B (though we
have not yet defined this in the presence of symmetry) might not be locally alternating
on A and B – this is analogous to the situation in Hyland-Ong games.

Saturated strategies. Following the same motto as before, a concurrent prestrategy
with symmetry on gws A should simply add symmetry to Definition 6.1.5, i.e. should
consist in a tuple � = (|�|,≤� , #� ,S (�),)�) where (|�|,≤� , #� ,S (�)) is an ess, and

)� ∶ � → A

preserves symmetry. But while a good first step, this is not yet a working notion of
(pre)strategy with symmetry: for instance, it accepts a prestrategy as in Figure 7.1,
playing on !N, andwhich simply outputs the copy index used byOpponent to interrogate
the natural number1. This breaks uniformity: as in AJM games (see Section 3.4), in

1Though the q−i are to be symmetric in the game, nothing forces them to be symmetric in �.

CHAPTER 7. THIN CONCURRENT GAMES 148

q−0
_���

q−1
_���

q−2
_���

…

0+0 1+1 2+2

Figure 7.1: An invalid prestrategy with symmetry on !N

order to satisfy the expected laws of a model of linear logic we must ensure that the
behaviour of strategies should not depend on Opponent’s choice of copy indices.
In saturated concurrent games, uniformity is achieved by a enforcing isofibration:

Definition 7.1.16. Consider A a gws. A saturated prestrategy on A is a tuple � =
(|�|,≤� , #� ,)�) where (|�|,≤� , #�) is an ess,)� ∶ � → A is a map of ess, and s.t.:

isofibration: for all x� ∈ C (�), for all � ∶ yA ≅A)�x� ,
there is a unique ' ∶ y� ≅� x� such that)�' = �.

This removes the behaviour of Figure 7.1 – or rather, it forces there to also be
q−i

4uu�
_���
 ��) � &&-0+i 1+i 2+i 3+i …

a countable non-deterministic choice letting the strategy pick a random natural number
in reaction to any copy index (although the diagram only displays conflicts between
contiguous numbers, it is meant that all natural numbers are pairwise conflicting). In
effect, isofibration enforces uniformity by ensuring that the behaviour of a strategy is
invariant under the addition of noise, non-deterministically scrambling all copy indices.

The impact of saturation. Isofibration is a rather neat conditionmathematically speak-
ing, but it is computationally more debatable. To see the issue, consider

!B ⊢ !B
q−i+rryq+i

✓−i � %%,
✓+i

a typical configuration of the copycat strategy on !U, anticipating on some definitions
to come. As in AJM games, in symmetry-free concurrent games, copycat is a simple
deterministic strategy merely copying Opponent moves from one side to the other.
But, it does not satisfy isofibration: indeed, that would force copycat to also include

configurations featuring reindexing, as in Figure 7.2 but with all choices of copy indices.
This “saturated copycat” would be a non-deterministic strategy, as illustrated by Figure

CHAPTER 7. THIN CONCURRENT GAMES 149

!U ⊢ !U
q−0+rryq+12

✓−12 � %%,
✓+0

Figure 7.2: Reindexing

!U ⊢ !U
q−0

*qqx
4uu�

q+0 q+1

Figure 7.3: Local conflict

!U ⊢ !U
q−0

*qqx

q−1
*qqxq+0 q+0

Figure 7.4: Non-local conflict

7.3, as a copy index can be propagated to any copy index on the other side but must
be propagated only once. The emerging patterns of conflict can be quite complex: for
instance, Figure 7.4 illustrates that by local injectivity, two threads independently com-
ing up with the same index must confict, even though they should be computationally
independent if the strategies are to satisfy something like single-threadedness.
Saturated concurrent games ensure uniformity by adding non-deterministic noise.

All the non-deterministic choices arising in saturated copycat yield symmetric moves,
so it is in principle possible to express that the saturated copycat is deterministic “up to
symmetry”, but it is quite technical and the model loses part of the concrete appeal of
CG. We now explore an alternative: thin concurrent games.

7.1.3 Thin Concurrent Games
We wish to construct an alternative setting for strategies with symmetry, that avoids
isofibration and instead recognizes the old – deterministic – copycat as uniform. In what
sense is the deterministic copycat uniform? Well, as in AJM games: in the diagram

!U ⊢ !U
q−0'ppwq+0

if Opponent reindexes their move to q−1 , there is a uniquematching Player reindexing of
q+0 to q+1 so that we get a configuration symmetric to the original. It is this unique Player
reindexing that must be captured for thin games. The solution is dual to saturation: in
saturated games, all reindexings are allowed, giving rise to a non-deterministic choice.
In contrast in thin games, only one canonical reindexing is allowed; conflicts are actual,
computationallymeaningful non-deterministic choices and not artifacts from symmetry.
But what is an “Opponent reindexing”, and a “Player reindexing”? Our first step will

be to refine games with symmetry to include chosen symmetries that capture this.

Thin Concurrent Games. We start with the definition:
Definition 7.1.17. A thin concurrent game (tcg) is a gwsA = (|A|,≤A, #A, polA,S (A))

CHAPTER 7. THIN CONCURRENT GAMES 150

!B ⊢ !B

q+0 q−0

✓−0 ✓+0

≅−

!B ⊢ !B

q+0 q−1

✓−0 ✓+1

≅+

!B ⊢ !B

q+1 q−1

✓−1 ✓+1

Figure 7.5: Positive and negative symmetries

with isomorphism families S+(A),S−(A) s.t. S+(A) ⊆ S (A), S−(A) ⊆ S (A), s.t.

orthogonality: for all � ∈ S (A), if � ∈ S+(A) ∩ S−(A), then � = idx for x ∈ C (A),
−-receptivity: if � ∈ S−(A) and � ⊆− �′ ∈ S (A), then �′ ∈ S−(A),
+-receptivity: if � ∈ S+(A) and � ⊆+ �′ ∈ S (A), then �′ ∈ S+(A),

where � ⊆p �′ means that � ⊆ �′ adding only (pairs of) events of polarity p.

Symmetries in S+(A) are called positive symmetries, and intuitively correspond to
reindexing only positive events. If � ∶ x ≅A y is positive, we also write � ∶ x ≅+A y.Likewise, symmetries in S−(A) are the negative symmetries, corresponding to rein-
dexing only negative events, and we write � ∶ x ≅−A y if � is negative.
Orthogonality means that if a symmetry reindexes only Player moves and only Op-

ponent moves, it must be an identity symmetry. A negative symmetry that extends in
S (A) with negative events must remain negative, and symmetrically.
We show in Figure 7.5 examples of positive and negative symmetries. It looks like

the first should not be negative, as we rename ✓+0 to ✓+1 . However, this index is only a
repetition of 0 in q−0 : it originates in the ! on the rhs of ⊢, which is attached to q−.
This split of symmetries between positive and negative symmetries is the core of thin

concurrent games. This simple definition has the following pleasant consequence:
Lemma 7.1.18. Consider A a tcg, and � ∶ x ≅A y a symmetry.
Then there are unique z ∈ C (A), �− ∶ x ≅−A z and �+ ∶ z ≅+A y s.t. � = �+◦�−.

Proof. Existence. By induction on the size (i.e. cardinality) of �. If � = ∅, it is clear.
Take � ∶ x ≅A y factoring as � = �+◦�− for �− ∶ x ≅−A z, �+ ∶ z ≅+A y, and assume

� ⊎ {(a, b)} ∶ x ⊎ {a} ≅A y ⊎ {b} .

Since symmetries preserve polarity, polA(a) = polA(b) – say w.l.o.g. it is positive,
the other case is symmetric. Then, by extension on S−(A), there is some extension

�− ⊎ {(a, c)} ∶ x ⊎ {a} ≅−A z ⊎ {c}

for some c a negative event. But then, by groupoid laws for S (A) we have
(� ⊎ {(a, b)})◦(�− ⊎ {(a, c)})−1 ∶ z ⊎ {c} ≅A y ⊎ {b}

CHAPTER 7. THIN CONCURRENT GAMES 151

which extends �+ with {(c, b)}, so by +-receptivity, �+ ⊎ {(c, b)} ∈ S+(A) as required.
Uniqueness. Now, assume there is an alternative factorization � = '+◦'− for

'− ∶ x ≅−A z
′ '+ ∶ z′ ≅+A y ,

then we have '−◦(�−)−1 = ('+)−1◦�+ ∶ z ≅A z; but the former is negative and the
latter positive, so those compositions must be the identity by orthogonality.
This is illustrated in Figure 7.5. Intuitively, any reindexing may be obtained by first

reindexing Opponent moves, then reindexing Player moves, in a unique way. Obviously,
by groupoid laws we can deduce the dual positive-negative factorization.

Thin concurrent strategies. Now, we define thin concurrent strategies on a tcg A.
As before, we give the definition in two stages. First, we define prestrategies:

Definition 7.1.19. A prestrategy on tcg A comprises an ess (|�|,≤� , #� ,S (�)) with

) ∶ � → A

a map of event structures with symmetry called the display map, subject to:

∼-receptive: for � ∶ x ≅� y, and extensions x ⊢� s−1 ,)(�) ⊢S (A) ()(s
−
1), a

−
2),

there is a unique s−2 ∈ � s.t. � ⊢S (�) (s−1 , s
−
2) and)(s

−
2) = a

−
2 ,thin: for � ∈ S (�), if)�� ∈ S+(A), then � = idx for some x ∈ C (�).

where for ∈ S (A), ⊢S (A) (a1, a2) iff (a1, a2) ∉ and ⊎ {(a1, a2)} ∈ S (A).

We call this a prestrategy, keeping the same terminology as without symmetry – this
should not cause confusion: if the tcg is merely a game (meaning, its symmetries are
all identities), these additional conditions vacuously hold. We may still sometimes say
thin (pre)strategy, to insist on the presence of these additional conditions.
As without symmetry, prestrategies are not yet adequate as strategies, but they do

capture uniformity with respect to symmetry. In particular, ∼-receptivity forces � to
internally consider as symmetric any negative moves symmetric in the game, e.g.

{q−0 } ≅
−
!B {q

−
1 } ⇐⇒ {q−0 } ≅� {q

−
1 }

for � ∶ !B (provided � has unique events matching q−0 ,q−1 referred to here by the same
name). Then, the extension axiom of isomorphism families on S (�) ensure there is

{q−0 } ≅� {q−1 }

⊆
+

x

⇐⇒

{q−0 } ≅� {q−1 }

⊆
+

⊆
+

x ≅� y

then thin ensures that this extension is unique; another such extension y′ yields
� ∶ y ≅� y′

CHAPTER 7. THIN CONCURRENT GAMES 152

(U ⊸ U) ⊸ N

q−

0tt|q+

/ss{
_���

q−
I��� v��

� ''.

✓−

7ww� � ��' � %%,✓+ ✓+ 1+ 0+

!(!B ⊸ B) ⊸ B

q−
'ppwq+0

8ww� � ��''ppwq−0,i
_���

tt−0
_���

ff−0
_���

tt+0,i q+1
L��	 s���(ppw

q+1
K��	 s���&oovq−1,j

_���

q−1,k
_���

tt−1 ff−1
� ''.

tt−1
� ''.

ff−1

tt+1,j ff+1,k tt+ tt+

Figure 7.6: Two thin concurrent strategies

obtained by going back and forth via x. But then, displaying to the game yields
id{q−1 } ⊆+)��

but id{q−1 } ∈ S+(!B) by groupoid laws, so that)� � ∈ S+(!B) by +-receptivity of
positive symmetries. But then by thin, � must be an identity bijection. Together, those
conditions ∼-receptivity, extension, thin are a powerful way to ensure uniformity of �.
Strategies are obtained by adding the same conditions as in Definition 6.1.6:

Definition 7.1.20. A prestrategy � on tcg A is a strategy if it satisfies:

courteous: for all s1 _� s2, if pol(s1) = + or pol(s2) = − then)�(s1)_A)�(s2),receptive: for all x ∈ C (�), for all)�(x) ⊢A a−,
there is a unique x ⊢� s− such that)�(s) = a,

We write � ∶ A to mean that � is a strategy on game A.

As an illustration, we show in Figure 7.6 two examples of concurrent strategies. On
the left hand side, the strategy is displayed exhaustively – its symmetries are all reduced
to identities. On the right hand side, the representation is symbolic: Opponent may ask
arbitrarily many times the moves q−0,i,q−1,j and q−1,k. Symmetries are not represented in
the diagram, but would be all bijections between configurations preserving and reflect-
ing_, and only changing copy indices i, j and k. This strategy is that for the term

�fB→B. if (f tt)
(if (f tt)⊥ tt)
(if (f ff) tt ⊥)

with respect to the interpretation given in Section 9.1. The left hand side strategy is the
affine version of one definable with state, as shall be seen in Section 9.1.

7.1.4 Constructions on Thin Concurrent Games
We start with the basic tcgs from which all others will be defined. The empty tcg,
written 1, has no events. The tcgs matching ground types are U,B and N respectively

CHAPTER 7. THIN CONCURRENT GAMES 153

q−

✓+

Figure 7.7: U

q−

tt+ ff+

Figure 7.8: B

q−

0+ 1+ 2+ …

Figure 7.9: N

displayed in Figures 7.7, 7.8 and 7.9 – in all three cases, all symmetries are identities.

Basic constructions. First, we introduce the simple parallel composition. In this con-
structions, tcgs A1 and A2 are simply put side by side with all components inherited:
Definition 7.1.21. Consider two tcgs A1 and A2.

Then, we define their simple parallel composition A1 ∥ A2 as:

events: |A1 ∥ A2| = |A1| + |A2|causality: (i, a) ≤A1∥A2 (j, a
′) ⇔ i = j & a ≤Ai a

′

conflict: (i, a) #A1∥A2 (j, a
′) ⇔ i = j & a #Ai a

′ ,
symmetry: � ∈ S (A1 ∥ A2) ⇔ ∃�i ∈ S (Ai), � = �1 ∥ �2 ,polarities: polA1∥A2 (i, a) = polAi (a)pos. symmetries: �1 ∥ �2 ∈ S+(A1 ∥ A2) ⇔ �1 ∈ S+(A1) & �2 ∈ S+(A2)neg. symmetries: �1 ∥ �2 ∈ S−(A1 ∥ A2) ⇔ �1 ∈ S−(A1) & �2 ∈ S−(A2) .

where, if �i ∶ xi ≅Ai yi for i ∈ {1, 2}, we set (�1 ∥ �2)(i, e) = (i, �i(e)).

It is direct by construction that all conditions of tcgs are satisfied. Note that only
taking the first four components into account, this definition also applies to plain ess.
Recall that Section 6.1.3 that configurations x ∈ C (A ∥ B) are exactly those of the

form x = xA ∥ xB = xA + xB where xA ∈ C (A) and xB ∈ C (B). We now have
additional analogous decompositions for symmetries:
Lemma 7.1.22. Consider A and B ess. Then, there are order-isomorphisms

(− ∥ −) ∶ C (A) × C (B) ≅ C (A ∥ B)
(− ∥ −) ∶ S (A) × S (B) ≅ S (A ∥ B)
(− ∥ −) ∶ S−(A) × S−(B) ≅ S−(A ∥ B)
(− ∥ −) ∶ S+(A) × S+(B) ≅ S+(A ∥ B)

which commute with dom and cod, in the sense that for all �A ∈ S (A) and �B ∈ S (B),

dom(�A ∥ �B) = dom(�A) ∥ dom(�B) ,
cod(�A ∥ �B) = cod(�A) ∥ cod(�B) .

Proof. Straightforward with �A ∥ �B comprising all ((1, a), (1, a′)) for (a, a′) ∈ �A and
((2, b), (2, b′)) for (b, b′) ∈ �B; and all sets ordered by componentwise inclusion.

CHAPTER 7. THIN CONCURRENT GAMES 154

From now on, we shall routinely decompose symmetries as above. Next, we intro-
duce the other elementary operation on tcgs, the dual:
Definition 7.1.23. Consider A a tcg. Its dual A⟂ has all components as for A except:

polA⟂ (a) = −polA(a) , (a ∈ A)
S+(A⟂) = S−(A) ,
S−(A⟂) = S+(A) .

It is clear by construction that ifA is a tcg, then so isA⟂. As for plain games, ifA and
B are tcgs then we setA ⊢ B to beA⟂ ∥ B. Clearly, the order-isomorphisms of Lemma
7.1.22 adapt smoothly to this construction, and let us e.g. write any symmetry onA ⊢ B
as �A ⊢ �B ∶ xA ⊢ xB ≅A⊢B yA ⊢ yB for �A ∶ xA ≅A yA and �B ∶ xB ≅B yB .

Constructions for PCF types. In this chapter, we shall not yet detail the interpreta-
tion of programming languages. Nevertheless, we introduce here the two additional
constructions required to interpret PCF types, so that as to make precise the games in
the examples appearing so far. For the remaining constructions on tcgs, see Chapter 8.
The first construction is the linear arrow applied to tcgs with a structural constraint:

Definition 7.1.24. We define the following conditions on a thin concurrent game A:

negative: for all a ∈ min(A), we have polA(a) = −,well-opened: A is negative, and there is exactly one a ∈ min(A).

where min(A) is the set of minimal events in A.

As it turns out, the interpretation of PCF types only yields well-opened tcgs, whose
unique minimal events is the initial move by Opponent, prompting computation.

To interpret the arrow type, we first define the linear arrow. Intuitively, in game
semantics, strategies from A to B are defined to play on A and B simultaneously, with
however the polarity on A reversed to reflect its contravariance. This suggests using
A ⊢ B as arrow type – and we shall see indeed that strategies from A to B do play on
this compound game. But as in the traditional games introduced in Part I, types should
yield negative games (at least as long as we are considering call-by-name languages);
while A ⊢ B is not negative unless A is empty. So we set:
Definition 7.1.25. Consider A a negative tcg, and B a well-opened tcg.
Their linear arrow A ⊸ B has all components set as A ⊢ B except for:

causality: ≤A⊸B = ≤A⊢B ⊎ {((2, b0), (1, a)) ∣ a ∈ A}

writing min(B) = {b0}, yielding a well-opened tcg.

This corrects the non-negativity of A ⊢ B, by forcing the missing dependency.
Finally, as for AJM games, the last missing component of the arrow tcg is the expo-

nential operation from linear logic; which finally has a non-trivial action on symmetry:

CHAPTER 7. THIN CONCURRENT GAMES 155

Definition 7.1.26. Consider A a negative tcg. Then, we define the bang !A with:

events: | !A| = ℕ × |A|
causality: (i, a1) ≤!A (j, a2) ⇔ i = j ∧ a1 ≤A a2conflict: (i, a1) #!A (j, a2) ⇔ i = j ∧ a1 #A a2symmetries: � ∈ S (!A) ⇔ ∃� ∶ ℕ ≃ ℕ, ∃(�n)n∈ℕ ∈ S (A)ℕ

∀(i, a) ∈ dom(�), �(i, a) = (�(i), �i(a))polarities: pol!A(i, a) = polA(a)pos. symmetries: � ∈ S+(!A) ⇔ ∃(�n)n∈ℕ ∈ S+(A)ℕ ,
∀(i, a) ∈ dom(�), �(i, a) = (i, �i(a))neg. symmetries: � ∈ S−(!A) ⇔ ∃� ∶ ℕ ≃ ℕ, ∃(�n)n∈ℕ ∈ S−(A)ℕ ,
∀(i, a) ∈ dom(�), �(i, a) = (�(i), �i(a))

This yields a negative tcg !A.

Positive and negative symmetries for the bang were illustrated in Figure 7.5. We skip
the routine verification that this defines a tcg, but it is worth observing that this depends
on negative. If⊖⊕ is a game with two independent events with the indicated polarities,
then !(⊖⊕) is not a tcg: the positive symmetry ⊕0 ≅+ ⊕0 extends with (⊕1, ⊕2) to a
valid symmetry, so by +-receptivity it should be a positive symmetry – but it is not2.
Here, we keep our convention to write copy indices in grey. With only the first four

clauses, this also applies to define the bang !E of a plain ess E – notice then the sim-
ilarity between the definition of symmetries and Definition 3.4.3. But for a tcg, the
definitions of positive and negative symmetries are asymmetric: as the bang applies to
negative tcgs, the permutation � must be understood as reindexing Opponent moves –
accordingly, it is arbitrary for S−(!A) but restricted to the identity for S+(!A).

Altogether, this lets us interpret any PCF type as a well-opened tcg, with JUK = U,
JBK = B, JℕK = N, and JA → BK = !JAK ⊸ JBK – we stop there for now.

7.2 Mediating Between Strategies
In Chapter 6, we have seen that (plain) concurrent games and strategies naturally orga-
nized themselves into a bicategory, where strategies are related by certain morphisms
(Definition 6.1.7) – the corresponding isomorphisms provide an adequate equivalence
on strategies. As in CG, strategies on thin concurrent games are to be compared via
adequate notions of morphisms. But unlike in CG, there are quite a few candidates for
those morphisms and generated equivalences; hence we start by exploring the options.

7.2.1 A Zoology of Morphisms and Equivalences
Morphisms between strategies. It is natural to first relate strategies with the same
morphisms, importing Definition 6.1.7, simply replacing morphisms of event structures

2The bang in thin concurrent games behaves well only in situations where one deals with polarized games,
i.e. all games are either positive or negative: no games have minimal events of mixed polarity. In the rare
situations where one needs a bang on non-polarized games [Baillot et al., 1997a, Melliès, 2019b], saturated
concurrent games should be used instead – in that case the reader is referred to [Castellan et al., 2014].

CHAPTER 7. THIN CONCURRENT GAMES 156

with morphisms of event structures with symmetry – we call those strong morphisms.
Definition 7.2.1. Consider � and � two (pre)strategies on a tcg A.

A strong morphism from � to �, is a map of ess f ∶ � → � satisfying:

compatibility with display maps:)�◦f =)� ,rigidity: for all s ≤� t, we have fs ≤� ft.

The associated strong isomorphism between (pre)strategies, is written f ∶ � ≅ � .
The induced equivalence relation is a useful equivalence between strategies, understood
as � and � behaving in exactly the same way – including the choice of copy indices –
up to renaming of internal events. With this definition, one can replay Chapter 6 based
on tcgs and obtain a bicategory of tcgs, strategies, and strong morphisms.
However, strong morphisms miss the point of symmetry, which is to identify strate-

gies that only differ in their choice of copy indices. For instance, we wish to identify
!U ⊢ U

q−*qqxq+0
✓−0 � &&-✓+

and
!U ⊢ U

q−*qqxq+1
✓−1 � &&-✓+

which are two candidates for the dereliction strategy on U. The dereliction must choose
a copy index, but it should not matter at all which one is selected – being able to perform
such identifications is vital in order to get the expected laws for the exponential (!).
To address that, we weaken the commutation property, using Definition 7.1.10:

Definition 7.2.2. Consider �, � ∶ A two (pre)strategies.
A weak morphism from � to � is a map of ess f ∶ � → � such that

weak commutation:)�◦f ∼)� ,rigidity: for all s ≤� t, we have fs ≤� ft.

As announced, this authorizes reindexings, of both Player and Opponent moves.
But intuitively, we wish to relate strategies by only letting Player change their in-
dices. In tcgs, this might be achieved by appealing to the two positive and negative
sub-symmetries. This is done by first considering a refinement of Definition 7.1.10:
Definition 7.2.3. Consider E an ess, A a tcg, and f, g ∶ E → A maps of ess. Then
f, g are positively symmetric, written f ∼+ g, iff ∀x ∈ C (E), ⟨f, g⟩x ∈ S+(A).

Intuitively, two parallel maps that target a tcg are positively symmetric if they only
differ by a reindexing of Player moves. This induces a final notion of morphism:
Definition 7.2.4. Consider �, � ∶ A two (pre)strategies.

A positive morphism from � to � , written f ∶ � ⇒ � , is a map f ∶ � → � s.t.:

positive commutation:)�◦f ∼+)� ,rigidity: for all s ≤� t, we have fs ≤� ft.

CHAPTER 7. THIN CONCURRENT GAMES 157

Altogether we have three notions of mediating maps between (pre)strategies: strong
morphisms, weak morphisms and positive morphisms. In the end, positive morphisms
will turn out to be the most important; but they will all play a role in the development.

Equivalences. This zoology gets even more abundant when looking at the induced
equivalences (ignoring strong isomorphism, as it does not support reindexing). Indeed,
considering f ∶ � → � and g ∶ � → �, we can require them to be inverses on the nose;
or up to symmetry, i.e. g◦f ∼ id� and f◦g ∼ id� . This means we have four options:

weak equivalence:)�◦f ∼)�)�◦g ∼)� g◦f ∼ id� f◦g ∼ id�
positive equivalence:)�◦f ∼+)�)�◦g ∼+)� g◦f ∼ id� f◦g ∼ id�
weak isomorphism:)�◦f ∼)�)�◦g ∼)� g◦f = id� f◦g = id�

positive isomorphism:)�◦f ∼+)�)�◦g ∼+)� g◦f = id� f◦g = id� .

Fortunately, we shall see that they all end up inducing the same equivalence relation
on (pre)strategies, which we call thin equivalence and write � ≈ � . This is thanks to
some important properties of positive morphisms, that we explore now.

7.2.2 A Study of Positive Morphisms
We aim to prove that these equivalences actually coincide. On our way there, we shall
develop a few properties of thin concurrent strategies that have proved crucial.

Strictification of positive equivalence. Our first step here is an easy consequence
of thin that illustrates very well what that condition achieves: the observation that a
positive equivalence actually already is an isomorphism.
Lemma 7.2.5. Consider �, � ∶ A (pre)strategies on tcg A.
Any positive equivalence (f ∶ � ⇒ � , g ∶ � ⇒ �) is a positive isomorphism.

Proof. From the hypotheses, we get g◦f ∼ id� , meaning
⟨g◦f, id�⟩x = {(g(fs), s) ∣ s ∈ x} ∈ S (�)

for all x ∈ C (�). But we also get)�◦g◦f ∼+)� , meaning
⟨)�◦g◦f,)�⟩x =)�⟨g◦f, id�⟩x ∈ S+(A)

for all x ∈ C (�) – but so by thin, �x = idx for all x ∈ C (�). So for all x ∈ C (�)
and s ∈ x, g(f (s)) = s. But any event s ∈ � appears in at least one configuration
[s] ∈ C (�), so g◦f = id� . Symmetrically, f◦g = id� .

Going back and forth around a positive equivalence yields a map g◦f ∼ id� . But
as the symmetries witnessing this display to positive symmetries in A, they must be
identities as � is thin. This property will be very important in the forthcoming devel-
opment: the horizontal composition of positive isomorphisms will only yield a positive
equivalence, and it is only via this lemma that it will turn out to be an isomorphism.
This strictification only holds for positive equivalences. To generalize it further, we

shall prove that any mediating map between (pre)strategies can be made positive.

CHAPTER 7. THIN CONCURRENT GAMES 158

A fibration-like property. Let us investigate this positivisation process, and see how
its crux is a fundamental fibration-like property of thin strategies.
Intuitively, the idea is simple: for � and � thin (pre)strategies, a weak morphism

f ∶ � → �

changes copy indices for both Player and Opponent. The idea is, for each s− ∈ �, to
set f+(s−) as the unique event symmetric to f (s) with the same copy index as s. By
uniformity, we expect that the assignment f+ should be completable to Player moves.
But this would be intractable to formalize directly on events, so instead we reason on
configurations. That f is only a weak morphism means that for x ∈ C (�),

⟨)� ,)�◦f ⟩x ∶)�x ≅A)�f (x)

may not be in S+(A). However, by Lemma 7.1.18 it factors uniquely as

)�x
�+
≅−A y

�−

≅+A)�f (x) ;

where y is understood as)�f (x)with negative copy indices “set back” to those of)�(x).Now, we would like to set f+(x) by transporting f (x) along this symmetry �−. In the
presence of the condition isofibration of saturated strategies (Definition 7.1.16), this
would be straightforward, but our thin strategies do not satisfy isofibration.
Instead, we shall prove and exploit an alternative fibration-like property for thin

strategies: we shall find z ∈ C (�) such that)� (z) is not equal to y, but positively
symmetric to y. This is best first illustrated on an example. Consider

!(!U → U) ⊸ U

q−
.ss{q+0

.ss{
_���

q−0,i
� ##+

✓−0

q+i+1
-ssz

q−i+1,k

a symbolic representation of the strategy � ∶ A (with A = !(!B ⊸ B) ⊸ B) obtained
for instance by interpreting �fU→U. f (f ⊥); ⊥. So � admits as configuration:

C (�) ∋

!(!U → U) ⊸ U

q−
/ss{q+0/ss{

q−0,4
� ##+q+5

)�
←→

q−

q+0 q+5

q−0,4

∈ C (A)

CHAPTER 7. THIN CONCURRENT GAMES 159

Now, assume we have the negative symmetry reindexing the bottom move:

x =

q−

q+0 q+5

q−0,4

≅−A

q−

q+0 q+5

q−0,8

= y

Clearly, � cannot match y, but it can match it up to positive symmetry, with
!(!U → U) ⊸ U

q−
/ss{q+0/ss{

q−0,4
� ##+q+5

≅�

!(!U → U) ⊸ U

q−
/ss{q+0/ss{

q−0,8
� ##+q+9

)�
←→

q−

q+0 q+9

q−0,8

positively isomorphic to y: Player can adapt to the change of Opponent copy indices by
performing his own reindexing. This can be done systematically by exploiting unifor-
mity of �; or more precisely by a straightforward successive application of∼-receptivity
and extension. Finally, the process results in a unique configuration via thin. Altogether:
Lemma 7.2.6. Consider A a tcg, � ∶ A a (pre)strategy, x ∈ C (�), �− ∶)�x ≅−A y.
Then, there are unique ' ∶ x ≅� z and �+ ∶ y ≅+A)�z such that

)�' = �+◦�− ∶)�x ≅A)�z .

Proof. Existence. By induction on (the size of) x. If x is empty, this is clear. Otherwise,
x = x′ ⊎ {s1} with s1 maximal in x. By restriction, �− restricts to #− ∶)�x′ ≅−A y′.By induction hypothesis, there are '′ ∶ x′ ≅� z′ and #+ ∶ y′ ≅+A)�z′ such that

)�'
′ = #+◦#− ∶)�x′ ≅A)�z′ .

Furthermore, let us write �− = #− ⊎ {()�s1, a1)} ∶)�x ≅−A y with y = y′ ⊎ {a1},by construction of #−. Now there are two cases, dependending on the polarity of s1. If
s1, a1 are negative, then by extension for S+(A), there is an extension #+⊎{(a−1 , a−2)} ∈
S+(A), set �+ = #+ ⊎ {(a−1 , a−2)} ∶ y ≅+A)�z′ ⊎ {a−2 }. To sum up,

'′ ∶ x′ ≅� z′ , x′ ⊢� s
−
1 ,)�'

′ ⊢ ()�(s−1), a
−
2) ,

so by ∼-receptivity there is a unique z′ ⊢� s−2 such that '′ ⊢S (�) (s−1 , s−2) and)�(s−2) =
a−2 . Setting ' = '′ ⊎ {(s−1 , s−2)} provides the extension of '′ as required.

Now, if s1 is positive, then by extension on S (�) there is ' = '′⊎{(s+1 , s+2)} ∈ S (�)with z = z′ ⊎ {s+2 } ∈ C (�). But writing a+2 =)�s+2 , this means that we may set

�+ = y′ ⊎ {a+1 }
(�−)−1
≅A)�x

)�'
≅A)�z

′ ⊎ {a+2 }

CHAPTER 7. THIN CONCURRENT GAMES 160

in S (A) by groupoid and which extends #+ ∶ y′ ≅+A)�z′ with (a+1 , a+2), so also �+ ∈
S+(A) by +-receptivity. By construction, we have)�' = �+◦�− as required.

Uniqueness. Consider alternative � ∶ x ≅� w and #+ ∶ y ≅+A)�w such that
)�� = #+◦�− ∶)�x ≅A)�w. Then we have the following commuting diagram

)�z)�x
)�'oo

�−

��

)�� //)�w

y
�+

bb

#+

<<

in S (A), showing that)�(�◦'−1) ∈ S+(A), so z = w and �◦'−1 = idz by thin. It
follows that ' = �, and then that �+ = #+, as required.

This is reminiscent of Melliès’ notion of uniformity by bi-invariance [Melliès, 2003].
Via this fundamental lemma, we can mimic the consequences of the isofibration of

saturated strategies, without saturation. We also mention the following generalization,
which gives a similar fibration-like property without assuming that the symmetry along
which the reindexing happens is negative – it is an easy consequence of the above.
Lemma 7.2.7. Consider A a tcg, � ∶ A a (pre)strategy, x ∈ C (�), � ∶)�x ≅A y.
Then, there are unique ' ∶ x ≅� z and #+ ∶ y ≅+A)�z such that

)�' = #+◦� ∶)�x ≅A)�z .

Proof. Existence. First, we factor � = �+◦�− for some �− ∶)�x ≅−A w and �+ ∶ w ≅+A
y as prescribed by Lemma 7.1.18. By Lemma 7.2.6, there are ' ∶ x ≅� z and + ∶
w ≅+A)�z such that +◦�− =)�'. But then, setting #+ = +◦(�+)−1 ∶ y ≅+A)�z,we have #+◦� = +◦�− =)�' as required.
Uniqueness. As in Lemma 7.2.6, for alternative � ∶ x ≅� w and + ∶ y ≅+A)�wsuch that)�� = +◦� ∶)�x ≅A)�w, we have the following commuting diagram

)�z)�x
)�'oo

�
��

)�� //)�w

y
#+

bb

 +

<<

in S (A), showing)�(�◦'−1) ∈ S+(A), which entails uniqueness by thin.

7.2.3 All Equivalences Coincide
Positivization of mediating maps. We deduce the desired positivization property:
Proposition 7.2.8. Consider �, � ∶ A (pre)strategies, f ∶ � → � a weak morphism.
Then, there is a unique positive morphism f+ ∶ � ⇒ � such that f ∼ f+.

CHAPTER 7. THIN CONCURRENT GAMES 161

Proof. Existence. Consider x ∈ C (�). By definition of weak morphisms we have
⟨)� ,)�◦f ⟩x = {()�(s),)� (f (s))) ∣ s ∈ x} ∶)�x ≅A)� (f (x)) ,

and by Lemma 7.2.7, there are unique 'x ∶ f (x) ≅� zx and �+x ∶)�x ≅+A)�zx s.t.
)�'x = �+x ◦⟨)� ,)�◦f ⟩

−1
x ,

let us call all that a solution for x. We set f+(x) = zx. This defines an action on config-urations; we aim to induce a map by Lemma 7.1.9. Clearly, f+ preserves cardinality as
x ≃ f (x) by local injectivity of f and f (x) ≅� z; we show that f+ preserves unions.

Consider x, y ∈ C (�) such that x ∪ y ∈ C (�). As above, we have
'x∪y ∶ f (x ∪ y) ≅� zx∪y , �+x∪y ∶)�(x ∪ y) ≅

+
A)�zx∪y

such that)�'x∪y = �+x∪y◦⟨)� ,)�◦f ⟩
−1
x∪y, i.e. a solution for x ∪ y. But as f (x ∪ y) =

f (x)∪f (y),)�(x∪y) =)�(x)∪)�(y) and ⟨)� ,)�◦f ⟩x∪y = ⟨)� ,)�◦f ⟩x∪⟨)� ,)�◦f⟩y,by the restriction axiom it restricts to solutions for x and y, and must hence be their
componentwise union. In particular, f+(x ∪ y) = f+(x) ∪ f+(y) as needed.
For the action on symmetries, for ! ∶ x ≅� x′ we set as f̃+(!) the composite

f+(x)
'−1x
≅� f (x)

f (!)
≅� f (x′)

'x′
≅� f+(x′) ,

clearly commuting with domain and codomain, so that by Lemma 7.1.9 there is a unique
map of ess f+ ∶ � → � extending the action of f+ on configurations. For all x ∈ C (�),
⟨)� ,)�◦f

+
⟩x = {()�s,)� (f+(s))) ∣ s ∈ x} =)� ('x)◦⟨)� ,)�◦f ⟩x = �+x ∈ S+(A)

so that f+ ∶ � ⇒ � is a positive morphism as required.
Uniqueness. Consider f+1 , f+2 ∶ � ⇒ � two symmetric positive morphisms. This

means for all x ∈ C (�) we have ⟨f+1 , f+2 ⟩x ∈ S (�), together with
⟨)� ,)�◦f+1 ⟩x ∶)�(x) ≅+A)� (f

+
1 (x)) ,

⟨)� ,)�◦f+2 ⟩x ∶)�(x) ≅+A)� (f
+
2 (x)) ,

but ⟨)� ,)�◦f+2 ⟩x◦⟨)� ,)�◦f+1 ⟩−1x =)�⟨f+1 , f
+
2 ⟩x, so)�⟨f+1 , f+2 ⟩x ∈ S+(A), so that

⟨f+1 , f
+
2 ⟩x identity by thin. Thus f+1 (x) = f+2 (x) and f+1 = f+2 by Lemma 6.1.12.

From this, we may finally deduce the following:
Corollary 7.2.9. For �, � ∶ A (pre)strategies on tcg A, the following are equivalent:

(1) � and � are weakly equivalent,
(2) � and � are positively equivalent,
(3) � and � are weakly isomorphic,
(4) � and � are positively isomorphic,

and we write � ≈ � if that is the case.

CHAPTER 7. THIN CONCURRENT GAMES 162

Proof. (1) ⇐⇒ (2) by Proposition 7.2.8; (2) ⇐⇒ (4) by Lemma 7.2.5; (4) ⇐⇒ (3) by
definition; and (3) ⇐⇒ (1) by definition.
These four variants induce the same equivalence relation on (pre)strategies, but the

equivalences themselves (with the mediating maps) are not the same! In particular,
going from weak equivalence to positive equivalence requires changing the maps.
From all this, it should be clear why we adopt positive morphisms and positive iso-

morphisms as the canonical device to compare (pre)strategies, used throughout this
monograph. The developments in this section will be used often, and notably to ensure
that positive morphisms are preserved by forthcoming operations on strategies.

7.2.4 Constructing Positive Morphisms
In plain concurrent games, we have argued that working with morphisms of strategies
following their concrete definition – that is, as functions acting on the sets of events –
is often impractical. For this purpose we introduced Lemma 6.3.4, which shows that in
order to build a morphism between strategies, one can ignore trailing Opponent events:
it suffices to define the action of a morphism on +-covered configurations only. In the
presence of symmetry, this need for tools to help construct morphisms is strengthened,
so we need a similar lemma. As with Lemma 6.3.4, positive morphisms will act on
+-covered configurations; but also on +-covered symmetries:
Definition 7.2.10. Consider A a tcg, and � a (pre)strategy on A.
A symmetry � ∈ S (�) is +-covered if its domain (equivalently, its codomain) is. We

write S+(�) for the set of +-covered symmetries of �.

The reader should take particular care not to confuse the set of +-covered symmetries
of a thin prestrategy� ∶ A, writtenS+(�), with the set of positive symmetries of a tcgA,
writtenS+(A). The former asks that maximal events are positive, relying on the fact that
symmetries are order-isomorphisms and so preserve maximal events; while the latter is
part of the data of a tcg, intuitively capturing those symmetries only reindexing Player
moves. Note that only a tcg has positive and negative symmetries, not a (pre)strategy.
With this notion, we prove the following generalization of Lemma 6.3.4:

Lemma 7.2.11. Consider �, � ∶ A two strategies. Assume there is a function f ∶
C+(�)→ C+(�) preserving unions, and monotone functions

f̃ ∶ S+(�)→ S+(�) , f̌ ∶ C+(�)→ S+(A) ,

compatible with dom and cod as in Lemma 7.1.9, such that for all x ∈ C+(�),

f̌ (x) ∶)� x ≅+A)� f (x) ,

and such that for all � ∶ x ≅� y ∈ S+(�), we have)� (f̃ (�)) = f̌ (y)◦()� �)◦f̌ (x)−1.
Then, there is a unique positive f̂ ∶ � ⇒ � such that for all x ∈ C+(�), f̂ x = f x.

CHAPTER 7. THIN CONCURRENT GAMES 163

Proof. Existence. We first extend f to all configurations, via the following elaboration
of the reasoning in Lemma 6.3.4. Consider x ∈ C (�). There is a unique y ∈ C+(�)
such that y ⊆− x, obtained by removing trailing events. Now, by hypothesis we have

f̌ (y) ∶)� y ≅+A)� f (y) ,

and)� y ⊆−)� x, thus by extension, there is f̌ (y) ⊆− � ∶)� x ≅+A z; it is actually
unique because if we also have f̌ (y) ⊆− �′ ∶)� x ≅+A z′, then �′◦�−1 ∶ z ≅+A z′ is
a negative extension of id)� x hence is also a negative symmetry, and thus must be an
identity by orthogonality. Now that � ∶)� x ≅+A z is uniquely determined, we note
that)� f (y) ⊆− z inducing a unique f (y) ⊆− u ∈ C (�) so that)� u = z by −-discrete
opfibration; we set f (x) = u and f̌ (x) = �. From the uniqueness properties of z, �, u it
is straightforward that f , extended in this way, preserves unions.
We must similarly extend f̃ to all symmetries. If � ∶ x ≅� x′, then as above there

is a unique ' ⊆− � such that ' ∈ S+(�), write ' ∶ y ≅� y′, obtained by removing
trailing (pairs of) negative moves. We have then f̃ (') ∶ f (y) ≅� f (y′). Then

 =)� f (x)
f̌ (x)−1

≅+A)� x
)� �
≅A)� x′

f̌ (x′)
≅+A)� f (x′)

is a negative extension of f̌ (y′)◦()� ')◦f̌ (y)−1, which by hypothesis is)� (f̃ (�)). Thus
by ∼-receptivity of � , there is a unique f̃ (�) ⊆− �′ s.t.)� �′ = , and we set f̃ (�) = �′.Clearly, this assignment is compatible with the extension of f with respect to domain
and codomain, and thus by Lemma 7.1.9, there is a unique map of ess f̂ ∶ � → �
extending f . We must show that)� ∼+)�◦f , which amounts to showing

f̌ (x) = ⟨)� ,)�◦f⟩x (7.2)
for all x ∈ C (�), which we prove by induction on x. If x is empty, there is nothing to
prove. If x is not +-covered, then there is unique y ∈ C+(�) such that y ⊂− x. By
induction hypothesis, f̌ (y) = ⟨)� ,)�◦f ⟩y, and there is a covering chain

y
s−1
−←⊂ …

s−n
−←⊂ x

by induction on which it is immediate that (7.2) holds for x as well by definition of
the extension of f̌ . Now if x is +-covered, it has a maximal positive event s. Setting
y = x ⧵ {s}, by induction hypothesis (7.2) holds for y ∈ C (�), but then it holds for x
by monotonicity of f̌ . Thus we have)� ∼+)�◦f̂ as required.

Rigidity. Similar to the reasoning in Lemma 6.3.4.
Uniqueness. Consider g another such extension. We first show by induction on x

that for all x ∈ C (�), we have f (x) = g(x) and f̌ (x) = ⟨)� ,)�◦g⟩x. If x is empty there
is nothing to prove. If x is not +-covered, there is y ∈ C+(�) such that y ⊂− x. By
induction hypothesis, we have f (y) = g(y) and f̌ (y) = ⟨)� ,)�◦g⟩y. Now we have

⟨)� ,)�◦g⟩y ⊂
−
⟨)� ,)�◦g⟩x ∈ S+(A) ,

forcing g(x) to coincide with the construction of f (x) above; that f̌ (x) = ⟨)� ,)�◦g⟩x isimmediate from the construction of f̌ (x) following a covering chain of y ⊂− x. Finally,
if x is +-covered, the result follows by f (x) = g(x) and monotonicity of f̌ .

CHAPTER 7. THIN CONCURRENT GAMES 164

As before, when using this lemma we will not always explicitely spell out the action
on +-covered symmetries when it is transparent from that on +-covered configurations,
similarly we will detail f̌ only when it is non-trivial. Though unlike for Lemma 7.1.9,
it remains unclear if f̃ and f̌ are necessarily unique here.

We mention in passing two direct consequences of the above. First, we have:
Corollary 7.2.12. Consider f, g ∶ � ⇒ � two positive morphisms between strategies.

If for all x� ∈ C+(�), we have f (x�) = g(x�), then f = g.

Proof. By uniqueness in Lemma 7.2.11.
And then, the following is sometimes useful to construct strong isomorphisms:

Corollary 7.2.13. Consider �, � ∶ A strategies on tcg A. Assume there are

f ∶ C+(�) ≃ C+(�) f̃ ∶ S+(�) ≃ S+(�)

order-isomorphisms compatible with dom, cod, and display maps.
Then, there is a strong isomorphism f̂ ∶ � ≅ � s.t. for all x ∈ C+(�), f̂ (x) = f (x).

7.3 Composition and Copycat
Now that we have introduced thin strategies and the required tools to mediate between
them, we are in position to compose them and introduce copycat. For both, the idea is
to keep the structure developed in Chapter 6, only enriching it with symmetry.
For composition, the symmetries will exactly be pairs of causally compatible sym-

metries, as summarized by the following extension of Proposition 6.2.1:
Proposition 7.3.1. Consider A,B, C tcgs, and � ∶ A ⊢ B and � ∶ B ⊢ C strategies.

Then there is a strategy � ⊙ � ∶ A ⊢ C , unique up to strong iso, such that there are

(−⊙ −) ∶ {(x� , x�) ∈ C+(�) × C+(�) ∣ causally compatible} ≃ C+(� ⊙ �)
(−⊙ −) ∶ {(�� , ��) ∈ S+(�) × S+(�) ∣ causally compatible} ≃ S+(� ⊙ �)

order-isomorphisms commuting with dom, cod, and such that we have

)�⊙�(�� ⊙ ��) = ��A ∥ �
�
C ,

for all �� ∈ S+(�) and �� ∈ S+(�) causally compatible.

As without symmetry, this proposition packages almost all the “working concurrent
game semanticist” needs to know about the composition of thin strategies. We shall
gradually work our way towards its proof, and the concrete construction of composition.
In the statement, we have used for the display of symmetries the same notation as for

the display of configurations in Chapter 6, that is to say, we typically write �� ∈ S (�)
for symmetries in � for � a (pre)strategy, and we write its display as)� �� = ��A ⊢ ��B .We have also used the notion of causal compatibility for symmetries:

CHAPTER 7. THIN CONCURRENT GAMES 165

Definition 7.3.2. Take � ∶ A ⊢ C , � ∶ B ⊢ C prestrategies, �� ∈ S (�), �� ∈ S (�).
We say that �� and �� are matching if ��B = ��B; and causally compatible if the

domains dom(��), dom(��) are (equivalently, if the codomains cod(��), cod(��) are).

7.3.1 Interactions with Symmetry
We now set to construct concretely the composition of thin (pre)strategies. The first
step is simply to enrich Definition 6.2.3 with symmetry, for A,B and C tcgs.
Definition 7.3.3. An interaction on A,B, C is an ess � = (|�|,≤�, #�,S (�)) with

) ∶ |�| → |A ∥ B ∥ C|

a display map subject to the following conditions:

rule-abiding: for all x ∈ C (�),)(x) ∈ C (A ∥ B ∥ C),
locally injective: for all s1, s2 ∈ x ∈ C (�), if)(s1) =)(s2) then s1 = s2,
∼-preserving: for all � ∈ S (�),)(�) ∈ S (A ∥ B ∥ C),

thin: for all � ∈ S (�), writing)(�) ∈ �A ∥ �B ∥ �C ,
if �A ∈ S−(A) and �C ∈ S+(C), then � = idx for some x ∈ C (�).

i.e.) ∶ �→ A ∥ B ∥ C is a map of event structures with symmetry; and is thin.
Fix for now prestrategies � ∶ A ⊢ B and � ∶ B ⊢ C . Following the developments in

Chapter 6, we have already constructed an interaction � ⊛ � in the sense of Definition
6.2.3, that we need to enrich with symmetry. This relies on the following observation,
letting us “zip” causally compatible symmetries into a bijection in � ⊛ �:
Lemma 7.3.4. Consider �� ∶ x� ≅� y� and �� ∶ x� ≅� y� causally compatible.

Then, there exists a unique bijection �� ⊛ �� ∶ x� ⊛ x� ≃ y� ⊛ y� such that

x� ∥ x�C
��∥��C

��

x� ⊛ x�

��⊛��

��

Π�oo Π� // x�A ∥ x
�

��A∥�
�

��
y� ∥ y�C y� ⊛ y�

Π�
oo

Π�
// y�A ∥ y

�

(7.3)

commutes in the category of finite sets and bijections.

Proof. Existence. As �� and �� are matching, the outer diagram commutes by Lemma
6.2.12. This lets us define the bijection �� ⊛ �� ∶ x� ⊛ x� ≃ y� ⊛ y� as either path
along the diagram above. The condition holds by construction.
Uniqueness. Clearly, �� ⊛ �� is uniquely determined by the diagram.
This invites us to set S (�⊛�) as including all ��⊛�� for �� ∈ S (�) and �� ∈ S (�)

causally compatible. It remains to prove that this satisfies the required conditions.

CHAPTER 7. THIN CONCURRENT GAMES 166

Lemma 7.3.5. Setting S (�⊛�) to comprise all ��⊛�� for �� ∈ S (�) and �� ∈ S (�)
causally compatible defines an ess (|� ⊛ �|,≤�⊛� , #�⊛� ,S (� ⊛ �)), yielding

� ⊛ �
Π�
{{

Π�
##

� ∥ C

)�∥C ##

A ∥ �

A∥)�{{
A ∥ B ∥ C

(7.4)

a pullback in the category of ess and their maps.

Proof. We verify the axioms of isomorphism families. First, groupoid axioms follow
from the definition. For restriction, by definition of �� and �� matching we have

x� ∥ x�C
��∥��C

��

'[x� , x�]domoo cod // x�A ∥ x
�

��A∥�
�

��
y� ∥ y�C '[y� , y�]

dom
oo

cod
// y�A ∥ y

�

(7.5)

commuting; assume now that u� ⊛ u� ⊆ x� ⊛ x� ; i.e. we have u� ⊆ x� and u� ⊆ x�
causally compatible. But then by restriction for � and � , we have

u� ∥ u�C
#�∥#�C

��

'[u� , u�]domoo cod // u�A ∥ u
�

#�A∥#
�

��
v� ∥ v�C '[v� , v�]

dom
oo

cod
// v�A ∥ v

�

with #� ⊆ �� and #� ⊆ �� ; in particular the diagram still commutes. Restriction fol-
lows by definition and Lemma 6.2.12.
For extension, consider again the diagram (7.5). It suffices to deal with one-step ex-

tensions, the general case follows by induction. Furthermore, we focus on an extension

'[x� , x�]
((1,s),(2,t))
−←⊂ '[u� , u�] ,

with x� s
−←⊂u� and x� t

−←⊂u� , i.e. a synchronized event between � and � – where)�sand)� t occur inB – the other cases are simpler. Moreover, we assume pol�(s) = +, theother case is symmetric. Now, by extension for �, there is �� −⊂#� ∶ u� ≅� v� . By ∼-
preserving for �,)�#� = ��A ∥ #�B with ��B −⊂#�B ∶ u�B ≅B v�B . But then, ∼-receptivityof � exactly gives us a matching extension �� ⊆ #� such that

u� ∥ x�C
#�∥��C

��

'[u� , u�]domoo cod // x�A ∥ u
�

��A∥#
�

��
v� ∥ y�C '[v� , v�]

dom
oo

cod
// y�A ∥ v

�

CHAPTER 7. THIN CONCURRENT GAMES 167

commutes, which provides us with the required extension by Lemma 6.2.12.
It is clear by definition (see the diagram of Lemma 7.3.4) that Π� and Π� preservesymmetry. We skip the universal property, straightforward via Lemma 7.1.9.
At last, this provides us with the ingredients for the interaction.

Proposition 7.3.6. There is an interaction � ⊛ �, unique up to iso, s.t. there are

(−⊛ −) ∶ {(x� , x�) ∈ C (�) × C (�) ∣ x� , x� causally compatible} ≃ C (� ⊛ �)
(−⊛ −) ∶ {(�� , ��) ∈ S (�) × S (�) ∣ �� , �� causally compatible} ≃ S (� ⊛ �)

order-isomorphisms commuting with dom and cod, and satisfying

)�⊛�(�� ⊛ ��) = ��A ∥ �B ∥ �
�
C

for all �� ∈ S (�) and �� ∈ S (�) causally compatible.

Proof. Existence. The ess � ⊛ � is defined in Lemma 7.3.5, with display map)�⊛� ∶
�⊛� → A ∥ B ∥ C defined as either way around (7.4). The order-iso for configurations
comes from Proposition 6.2.8, while for symmetries it is follows from Lemma 7.3.4 (it
is immediate from (7.3) that �� and �� can be recovered from �� ⊛ ��).

For thin, take �� ⊛ �� ∈ S (� ⊛ �) s.t. ��A ∈ S−(A) and ��C ∈ S+(A). Consider:

x� ∥ x�C
��∥��C

��

'[x� , x�]domoo cod // x�A ∥ x
�

��A∥�
�

��
y� ∥ y�C '[y� , y�]

dom
oo

cod
// y�A ∥ y

�

and seeking a contradiction, assume the induced ∶ '[x� , x�] ≃ '[y� , y�] is not an
identity. By restriction, we may assume w.l.o.g. that there is exactly one non-identity
((m,m′), (n, n′)) ∈ . Several cases arise. If m = (2, c), n = (2, t) with m′ = (2, c′)
and n′ = (2, t′), then)��� = �B ∥ ��C with �B ∈ S−(B) as an identity symmetry and
��C ∈ S+(C) by hypothesis, so �� is an identity as � is thin, contradiction. The case
m = (1, s), n = (1, a), m′ = (1, s′) and n′ = (1, a′) is symmetric. The last case has
m = (1, s), n = (2, t), m′ = (1, s′) and n′ = (2, t′). If pol�(s) = pol�(s′) = +, then

)��
� = ��A ∥ �

�
B = idx�A ∥ (idx�B ⊎ {(b, b

′)})

with)�(s) = (2, b) and)�(s′) = (2, b′). Then, polB(b) = polB(b′) = +, so ��B ∈ S+(B)by +-receptivity. Of course, ��A ∈ S−(A) by hypothesis, so �� is an identity by thin,
contradiction. The final case, with pol� (t) = pol� (t′) = +, is symmetric.

Uniqueness. Immediate from the order-isos, by Lemma 7.1.9.
Here, an isomorphism of interactions simply means an iso of ess commuting with the

display maps on the nose. We may now give the concrete definition of composition.

CHAPTER 7. THIN CONCURRENT GAMES 168

7.3.2 Composition with Symmetry
To defined composition, we simply add symmetry to Definition 6.2.16:
Definition 7.3.7. The composition of � ∶ A ⊢ B and � ∶ B ⊢ C comprises the
components of Definition 6.2.16, enriched with a set of symmetries, defined as:

� ∶ x ≅�⊙� y ⇔ ∃� ⊆ �′ ∶ x′ ≅�⊛� y′ .

We have yet to show that composition yields a (pre)strategy; and first of all, while
the axioms of event structures are immediate, it is not obvious at all that S (� ⊙�) is an
isomorphism family: we need a tighter characterization of symmetries:
Lemma 7.3.8. Consider x, y ∈ C (� ⊙ �), and a symmetry � ∶ x ≅�⊙� y.

There exists a unique [�]�⊛� , the interaction witness of �, s.t. � ⊆ [�]�⊛� , and:

[�]�⊛� ∶ [x]�⊛� ≅�⊛� [y]�⊛� .

Proof. Existence. By definition, there is � ⊆ �′ ∶ x′ ≅�⊛� y′. But [x]�⊛� ⊆ x′, so
by restriction we have �′′ ∶ [x]�⊛� ≅�⊛� y′′ – note �′′ still contains � as dom(�) =
x ⊆ [x]�⊛� . Now, by Lemma 7.1.6 �′′ is an order-isomorphism. From this, it is easy
to show that maximal events of y′′ are in y, i.e. y′′ = [y]�⊛� .
Uniqueness. Assume #, #′ ∶ [x]�⊛� ≅�⊛� [y]�⊛� such that � ⊆ #, #′. Then

)�⊛�# = �A ∥ #B ∥ �C)�⊛�#
′ = �A ∥ #′B ∥ �C

only differ on B as � ⊆ #, #′ only adding (pairs of) synchronized events. But then,
)�⊛�(#′◦#−1) = id[y]�⊛� ∥ (#

′
B◦#

−1
B) ∥ id[x]�⊛�

so #′◦#−1 is an identity since � ⊛ � is thin; therefore # = #′.
We can now conclude that the composition yields an event structure with symmetry:

Proposition 7.3.9. We have � ⊙ � = (|� ⊙ �|,≤�⊙� , #�⊙� ,S (� ⊙ �)), an ess.
Moreover, we have order-isomorphisms commuting with dom and cod:

(−⊙ −) ∶ {(x� , x�) ∈ C (�) × C (�) ∣ x� , x� minimal caus. comp.} ≃ C (� ⊙ �)
(−⊙ −) ∶ {(�� , ��) ∈ S (�) × S (�) ∣ �� , �� minimal caus. comp.} ≃ S (� ⊙ �) ,

where �� , �� minimal means dom(��), dom(��) (or cod(��), cod(��)) minimal.

Proof. The definition of the event structure and order-isomorphism on configurations
are developed in Proposition 6.2.18, which we only need to extend with symmetries.
The conditions for isomorphism families follow directly from those for S (� ⊛ �) in
combination with Lemma 7.3.8. For the order-isomorphism on symmetries, first we
note that the isomorphism of Proposition 7.3.6 refine to an order-isomorphism:
(−⊛ −) ∶ {(�� , ��) ∈ S (�) × S (�) ∣ �� , �� min. caus. comp.} ≃ S v(� ⊛ �)

CHAPTER 7. THIN CONCURRENT GAMES 169

where S v(�⊛�) refers to symmetries whose maximal (pairs of) events are visible. This
is clear by Lemma 6.2.12. Next, we have an order-isomorphism formed with:

S v(� ⊛ �) → S (� ⊙ �)
� → � ∩ V 2

S (� ⊙ �) → S v(� ⊛ �)
� → [�]�⊛�

where V is the set of visible events – it is easy that this defines an order-iso.
This defines the composition of � and � as an ess, to which we may adjoin a display

map specified via Lemma 7.1.9 by completing)�⊙� with)�⊙�(�� ⊙ ��) = ��A ⊢ ��C .

Preservation of prestrategies. We still have not accounted for a few of the additional
conditions on (pre)strategies. Before wrapping up the composition of strategies, it is
sometimes technically convenient to be able to compose prestrategies. This holds only
modulo an additional condition on � and � , called span-courtesy:
Definition 7.3.10. Consider � ∶ A ⊢ B. We define the following condition:

span-courtesy: for all s1 _� s2, if pol�(s1) = + or pol�(s2) = −,
then writing)�(si) = (ki, ci), we have k1 = k2.

This tames failures of courtesy, expressing that they cannot span accross the compo-
nents A,B – without it, composition of prestrategies may fail ∼-receptivity.

Now, we have the ingredients to prove the following defining property:
Proposition 7.3.11. Take � ∶ A ⊢ B and � ∶ B ⊢ C span-courteous prestrategies.
Then, there is a prestrategy � ⊙ �, unique up to strong iso, s.t. there are order-isos:

(−⊙ −) ∶ {(x� , x�) ∈ C (�) × C (�) ∣ x� , x� min. caus. comp.} ≃ C (� ⊙ �)
(−⊙ −) ∶ {(�� , ��) ∈ S (�) × S (�) ∣ �� , �� min. caus. comp.} ≃ S (� ⊙ �)

commuting with dom and cod; such that for �� ∈ S (�), �� ∈ S (�) minimal causally
compatible,)�⊙�(�� ⊙ ��) = ��A ∥ �

�
C . Moreover, � ⊙ � is span-courteous.

Proof. Existence. The ess � ⊙� is defined in Proposition 7.3.9, and the display map as
above. Thin is immediate from thin for interactions, and Proposition 7.3.6.

For ∼-receptive, consider �� ⊙ �� ∶ x� ⊙ x� ≅�⊙� y� ⊙ y� with extensions
x� ⊙ x� ⊢�⊙� p

−
1 ,)�⊙�(�� ⊙ ��) ⊢�⊙� ()�⊙�(p−1), (2, c

−
2)) ,

assuming w.l.o.g. that)�⊙�(p1) = (2, c1) occurs in C , witnessed in the interaction by
x� ⊛ x� ⊆ y� ⊛ y� ⊢�⊛� p

−
1 ,

where the inclusion only adds synchronized events, which w.l.o.g. we may assume to
be causal dependencies of the extension p1. In fact, then, x� ⊛ x� = y� ⊛ y� . Indeed,
taking p0 ∈ y� ⊛ y� such that p0 _�⊛� p1, by Lemma 6.2.15 this entails that (p0)�

CHAPTER 7. THIN CONCURRENT GAMES 170

is defined and (p0)� _� (p1)� . But as � is span-courteous,)� (p0)� = (2, c0), so p0 isvisible. Thus p0 ∈ x� ⊛ x� necessarily. So in fact, we have:
x� ⊛ x� ⊢�⊛� p

−
1 ,)�⊛�(�� ⊛ ��) ⊢�⊛� ((3, c1), (3, c2))

which projects to x� ⊢� (p1)� and)� (��) ⊢� ()� ((p1)�), (2, c2)), and by ∼-receptive
for � , there is a unique �� ⊢� ((p1)� , t2) such that)� (t2) = c2. Now, by Proposition
7.3.9 we have y� ⊙ y� −⊂ (y� ⊎ {t2}) ⊙ y� – those being easily seen minimal causally
compatible – write p2 ∈ � ⊙ � the added move. Likewise, we have

�� ⊙ ��
(p1,p2)
−←⊂ (�� ⊎ {((p1)� , t2)})⊙ ��

which fits the requirements; uniqueness is direct from uniqueness of t2.For span-courteous, take p1 _�⊙� p2 s.t. pol(p1) = + or pol(p2) = −, say first
pol(p2) = −, and w.l.o.g. p2 occurs in C , i.e.)�⊙�(p2) = (2, c−2). By Lemma 6.2.21,

p1 _�⊛� q1 _�⊛� …_�⊛� qn _�⊛� p2

with all qi synchronized, if any. But by Lemma 6.2.15, (qn)� exists and (qn)� _� (p2)� .But as � is span-courteous, this implies)� ((qn)�) = (2, c), so is qn visible – this entails
p1 = qn, so)�⊙� = (2, c) as required. The case where pol(p1) = + is analogous.
Uniqueness up to strong iso is straightforward by Lemma 7.1.9.
Without span-courtesy, ∼-receptivitymay fail to be preserved under composition – a

counter-example is not terribly hard to find; we omit it for the economy of presentation.

Composition of strategies. We may finally prove our main proposition:
Proposition 7.3.1. Consider A,B, C tcgs, and � ∶ A ⊢ B and � ∶ B ⊢ C strategies.

Then there is a strategy � ⊙ � ∶ A ⊢ C , unique up to strong iso, such that there are

(−⊙ −) ∶ {(x� , x�) ∈ C+(�) × C+(�) ∣ causally compatible} ≃ C+(� ⊙ �)
(−⊙ −) ∶ {(�� , ��) ∈ S+(�) × S+(�) ∣ causally compatible} ≃ S+(� ⊙ �)

order-isomorphisms commuting with dom, cod, and such that we have

)�⊙�(�� ⊙ ��) = ��A ∥ �
�
C ,

for all �� ∈ S+(�) and �� ∈ S+(�) causally compatible.

Proof. Existence. Being courteous, strategies are in particular span-courteous, which
applies to show that � ⊙ � is a prestrategy. It is a strategy by Proposition 6.3.1, as the
additional conditions do not involve symmetry. The order-isomorphisms follow from
Proposition 7.3.11 specialized to +-covered configurations – Lemmas 6.3.5, 6.3.6 and
6.3.7 directly extend to symmetries as they are order-isomorphisms.
Uniqueness. By Corollary 7.2.13.

CHAPTER 7. THIN CONCURRENT GAMES 171

7.3.3 Copycat
Now, we introduce the copycat thin strategy. As for composition, copycat will simply
be the copycat strategy of Chapter 6, adequately enriched with symmetry.
Recall from Lemma 6.4.2 that for a plain game A, the configurations of cc A are those

x ⊢ y ∈ C (A ⊢ A) such that x ⊇+ x ∩ y ⊆− y; here the intuition is that y comprises
positive events imported from x, negative events already propagated to x, but also neg-
ative events that have yet to be forwarded to x – and the situation is symmetric for x.
So what should be a symmetry

� ∶ x1 ⊢ x2 ≅ ccA y1 ⊢ y2 ?

As it should display to a symmetry on A ⊢ A, we know it should have the form
�1 ⊢ �2 for �1 ∶ x1 ≅A y1 and �2 ∶ x2 ≅A y2. But that is not all: additionally, �1 and
�2 must agree on events that have already been propagated. We formalize this as:
Definition 7.3.12. For any tcg A, cc A ∶ A ⊢ A is defined with Definition 6.4.1, with:

symmetry: S (cc A) = {�1 ⊢ �2 ∈ S (A ⊢ A) ∣
dom(�1 ⊢ �2) ∈ C (cc A), cod(�1 ⊢ �2) ∈ C (cc A),
∀a ∈ dom(�1) ∩ dom(�2), �1(a) = �2(a)} .

Note that though we have required �1(a) = �2(a) on any element of the common
domain. This looks asymmetric, but it will follow from the next lemma that we could
have equivalently asked �−11 (a) = �−12 (a) for any a in the common codomain.
Now we show that this gives a well-formed ess, and characterize its symmetries:

Lemma 7.3.13. Consider A a tcg. Then, (| cc A|,≤A, #A,S (cc A)) is an ess.
Moreover, S (cc A) = {�1 ⊢ �2 ∣ �1, �2 ∈ S (A), �1 ∩ �2 ⊆+ �1 & �1 ∩ �2 ⊆− �2}.

Proof. We first prove the characterization of symmetries. For ⊆, clearly �1 ∩ �2 ⊆ �1and take (a, a′) ∈ �1 with polA(a) = −. Since �1 ⊢ �2 ∈ S (cc A), in particular dom(�1 ⊢
�2) ∈ C (cc A). So by Lemma 6.4.2, a ∈ dom(�2). Now, by definition of S (cc A) again,
�1(a) = �2(a), so (a, a′) ∈ �1 ∩ �2. The proof that �1 ∩ �2 ⊆− �2 is symmetric.
For ⊇, consider a ∈ dom(�1) ∩ dom(�2) and w.l.o.g. assume polA(a) = +; the othercase is symmetric. Since a ∈ dom(�2), there is (a, a′) ∈ �2. But since �1 ∩ �2 ⊆−

�2, it follows that (a, a′) ∈ �1 as well, so �1(a) = �2(a) as required. Next, we show
dom(�1 ⊢ �2) ∈ C (cc A) – let us write �1 ∶ x1 ≅A y1 and �2 ∶ x2 ≅A y2 and reason via
Lemma 6.4.2. Consider a+ ∈ x2; we must show a+ ∈ x1 as well. But there is some
(a+, b+) ∈ �2, so by hypothesis (a+, b+) ∈ �1 as well, so a+ ∈ x1. Symmetrically, any
a− ∈ x1 must be in x2; so x1 ⊢ x2 ∈ C (cc A). Symmetrically, y1 ⊢ y2 ∈ C (cc A).Next come the axioms for isomorphism families. Groupoid and restriction follow
directly from the characterization of symmetries and Lemma 6.4.2. However, extension
is subtle – to keep the development focused we postpone it to Lemma 7.3.17.
Extension is really subtle. Indeed, the first significant surprise when starting the de-

sign of concurrent games with symmetry, was that copycat failed extension with games

CHAPTER 7. THIN CONCURRENT GAMES 172

plain ess with polarities (see Section A.4 in [Castellan et al., 2019]); this is a large part
of what first steered us towards saturation in [Castellan et al., 2014], and of what later
prompted us to look for what would eventually become the definition of tcgs. Here we
opt to keep going with the development of copycat which is largely independent of the
proof of extension, and come back to extension later on.

We mention the property on symmetries reflecting Lemma 6.4.4:
Lemma 7.3.14. Consider A a tcg. Then, S+(cc A) = {� ⊢ � ∣ � ∈ S (A)}.

If � ∈ S (A), we write cc � = � ⊢ � ∈ S+(cc A) for this +-covered symmetry.

Proof. Immediate from Lemmas 7.3.13 and 6.4.4.
Finally, we show that copycat indeed is a well-formed strategy.

Proposition 7.3.15. For any tcg A, we have cc A ∶ A ⊢ A a strategy.

Proof. By Lemma 7.3.13, cc A is an ess. We first check the conditions for a prestrategy
(i.e. Definition 7.1.19). Rule-abiding, locally injective, ∼-preserving, and ∼-receptive
are direct. For thin, consider �1 ⊢ �2 ∶ x1 ⊢ x2 ≅ ccA y1 ⊢ y2 such that �1 ∈ S−(A)and �2 ∈ S+(A). By restriction, this means that �1 ∩ �1 ∈ S−(A) ∩ S+(A). By
orthogonality, this means that �1 ∩ �2 = idx for some x ∈ C (A). But then, by Lemma
7.3.13, idx ⊆− �2, so by −-receptive, �2 ∈ S−(A). So again, �2 ∈ S−(A) ∩S+(A)must
be an identity by orthogonality – the symmetric argument shows that �1 is an identity.
Finally, we show the conditions of Definition 7.1.20: courteous follows from Lemma

6.4.3, while receptive is direct from Lemma 6.4.2.
In the sequel, we shall mostly reason on copycat via the characterizations of its +-

covered configurations and symmetries in Lemmas 6.4.2 and 7.3.13.

The extension property. Now, we set towards completing the proof of Lemma 7.3.13
and proving the extension property for S (cc A). This is a bit technical, but this devel-
opment will not be referred to later on in this monograph, so skipping to Section 7.4
should not impede understanding of the rest of the text.
First, we find it interesting to start with a counter-example, to see where is the tension

and how close extension is to fail. Consider !(⊖⊕) obtained via the clauses of Definition
7.1.26, ignoring the negativity assumption and the positive and negative symmetries
(recall that we noted below Definition 7.1.26 that those do not form a tcg). We may
define cc !(⊖⊕) exactly as in Definition 7.3.12, but it does not form an event structure
with symmetry, as it fails extension! To see the problem, consider the symmetry

⊕1
�1 ≅

⊢ ⊖1
≅ �2

⊕1 ⊢ ⊖2

linking configurations of cc !(⊖⊕), where no event has been forwarded. The issue is that
�1 and �2 have made irreconciliable choices regarding copy indices. It causes no issue

CHAPTER 7. THIN CONCURRENT GAMES 173

yet as they live in separated components, but the upper configuration may move to
⊖1⊕1 ⊢ ⊖1

which, by extension, should trigger a corresponding extension of the bottom configura-
tion, and of the symmetry. But the bottom configuration may only extend to ⊖2⊕1 ⊢
⊖2 (by propagating to the left hand side the event ⊖2 from the right hand side), and
⊖1⊕1 ̸≅!(⊖⊕) ⊖1⊕2, because a symmetry in !(⊖⊕)must follow a permutation of copy
indices! Thus, extension fails. Fortunately for tcgs this cannot happen, due to:
Lemma 7.3.16. Consider A a tcg, �, �1, �2 ∈ S (A) such that � ⊆+ �1 and � ⊆− �2.

If dom(�1) and dom(�2) are compatible, then so are �1 and �2.

Proof. First, we prove this property for the positive symmetries, thus assume we have
�, �1, �2 ∈ S+(A) such that � ⊆+ �1 and � ⊆− �2. By extension for S+(A), we have

�′1 ∶ x1 ∪ x2 ≅
+
A y

′
1 �′2 ∶ x1 ∪ x2 ≅

+
A y

′
2

�1 ∶ x1 ≅+A y1

⊆
−

�2 ∶ x2 ≅+A y2

⊆
+

� ∶ x ≅+A y
⊆+ ⊆

−

so by groupoid, we can form ' = �′2◦�
′
1
−1 ∶ y′1 ≅

+
A y′2. As both �′1 and �′2 contain

�, it follows that idy ⊆ '. Now, by restriction, consider ∶ x′1 ≅
+
A y2 obtained by

restricting ' to y2 on the right. Since y ⊆ y2, we still have idy ⊆ . But actually that
inclusion is negative, which – as idy ∈ S−(A) – entails that ∈ S−(A) as well. Thusby orthogonality, x′1 = y2 and = idy2 . Summing up, if (a, a′) ∈ �2, then (a, a′) ∈ �′2,
and there is (a′′, a′) ∈ ' for some (a′′, a) ∈ �′1

−1. But then (a′′, a′) ∈ also, hence
a′′ = a′ and (a, a′) ∈ �′1; so we have proved �2 ⊆ �′1, establishing compatibility of �1and �2. Symmetrically, the same property holds for S−(A).Now, from this we must conclude that the property holds for S (A), so take �, �1, �2 ∈
S (A) such that � ⊆+ �1 and � ⊆+ �2. By Lemma 7.1.18, we have unique factorizations

� = �+◦�− , �1 = �+1 ◦�
−
1 , �2 = �+2 ◦�

−
2 .

By uniqueness in Lemma 7.1.18, it is immediate that this factorization is monotone,
i.e. �+ ⊆ �+1 and �+ ⊆ �+2 , so by the reasoning above we have �+1 and �+2 compatible in
S+(A), i.e. �+1 ∪ �+2 ∈ S+(A). Likewise, �−1 ∪ �−2 ∈ S−(A). Now it is immediate that
�−1 ∪ �

−
2 and �+1 and �+2 are composable, and that we have

(�+1 ∪ �
+
2)◦(�

−
1 ∪ �

−
2) = (�

+
1 ◦�

−
1) ∪ (�

+
2 ◦�

−
2) = �1 ∪ �2

which must hence be a valid symmetry, concluding that �1 and �2 are compatible.
With the key lemma above, it is straightforward to finally deduce:

Lemma 7.3.17. Consider A a tcg. Then, S (cc A) satisfies extension.

CHAPTER 7. THIN CONCURRENT GAMES 174

Proof. Consider a symmetry on copycat, which may be written as
x1

�1 ��

⊢ x2
�2��

y1 ⊢ y2

and consider an extension of x1 ⊢ x2. Without loss of generality, we can consider that
only x2 is extended, and with moves of the same polarity – this leaves two cases, for
x2 ⊆− x′2 and x2 ⊆+ x′2. In the former case, then by extension we have �2 ⊆ �′2 ∶
x′2 ≅A y

′
2, and �1 ⊆+ �1 ∩ �2 ⊆− �2 ⊆+ �′2, so �1 ⊢ �′2 ∈ S (cc A) by Lemma 7.3.13.

In the latter case, writing x′1 = x1 ∩x′2, and considering the restriction �′1 of �1 to x′1,
�′1 ⊇

+ �1 ∩ �2 ⊆− �2 ,

so that �′2 = �′1∪�2 ∈ S (A) by Lemma 7.3.16; and �1 ⊢ �′2 is the desired extension.
At last, this concludes the construction of the thin copycat strategy.

7.4 The Bicategory TCG
We have most of the ingredients for our bicategory TCG: a notion of objects (thin
concurrent games), morphisms (thin strategies), 2-cells (positive morphisms). We have
the data for identities (copycat strategies) and composition.

Structural 2-cells. We must still extend from CG the 2-cells for associativity and
unity laws, which is direct from the developments above. For associators, we have:
Proposition 7.4.1. Consider thin prestrategies � ∶ A ⊢ B, � ∶ B ⊢ C and � ∶ C ⊢ D.
Then, there is a strong isomorphism of strategies, the associator

a�,� ,� ∶ (�⊙ �)⊙ � ≅ �⊙ (� ⊙ �) ,

such that for all (x�⊙x�)⊙x� ∈ C ((�⊙�)⊙�) and (��⊙��)⊙�� ∈ S ((�⊙�)⊙�),

a�,� ,�((x� ⊙ x�)⊙ x�) = x� ⊙ (x� ⊙ x�)

a�,� ,�((�� ⊙ ��)⊙ ��) = �� ⊙ (�� ⊙ ��) .

Proof. To apply Lemma 7.1.9 we show the associator preserves symmetry, which is
clear by the description of the symmetries in the composition in Proposition 7.3.9.
Likewise, the developments above make it easy to define the unitors:

Proposition 7.4.2. Consider � ∶ A ⊢ B a thin strategy.
Then there are strong isomorphisms, the unitors:

l� ∶ cc B ⊙ � ≅ � r� ∶ � ⊙ cc A ≅ �

CHAPTER 7. THIN CONCURRENT GAMES 175

such that for all x� ∈ C+(�) and �� ∈ S+(�),

l�(cc x�B ⊙ x
�) = x�

l�(cc ��B ⊙ �
�) = �� ,

r�(x� ⊙ cc x�A) = x�

r�(�� ⊙ cc ��A) = �� .

Proof. Obvious by Corollary 7.2.13.

Horizontal composition. There is still one piece of data missing: the horizontal com-
position of positive morphisms, letting us assemble two positive morphisms as in

A

�
''

�′

77⇓ f B

�
''

�′

77⇓ g C

into g ⊙ f ∶ � ⊙ � ⇒ � ′ ⊙ �′. In CG this was simple, as we could just set
(g ⊙ f)(x� ⊙ x�) = g(x�)⊙ f (x�)

defining a 2-cell in CG via Lemma 6.3.4. In TCG this would also work, for strong
morphisms. But in general, for positivemorphisms, f (x�) ∈ C (�′) and g(x�) ∈ C (� ′)
have no reason to be matching as we only have)�′◦f ∼+)� and)�′◦g ∼+)� .
By the definition of positively symmetric maps, for all x� ⊙ x� ∈ C+(� ⊙ �), there

are (necessarily unique) �−A ∈ S−(A), �+B ∈ S+(B), �−B ∈ S−(B) and �+C ∈ S+(C) s.t.

x�
f //

)� ��

f (x�)
)�′��

x�A ⊢ x
�
B �−A⊢�

+
B

// f (x�)A ⊢ f (x�)B

x�
g //

)� ��

g(x�)
)�′��

x�B ⊢ x
�
C �−B⊢�

+
C

// g(x�)B ⊢ g(x�)C
(7.6)

commute in the category of finite sets of bijections (f, g and the display maps being
locally injective). Let us write f [x�]A = �−A, f [x�]B = �+B , g[x�]B = �−B and g[x�]C =
�+C to emphasize that those symmetries are part of f and g, and the dependency on x�
and x� . So, though we lack f (x�)B = g(x�)B as matching would require, we do have

� ∶ f (x�)B ≅B g(x�)B

where � = g[x�]B◦f [x�]−1B , and using that x�B = x�B: f (x�) and g(x�) are matching
up to symmetry. The fundamental property we must show, is that such a situation can
be massaged to extract configurations of �′ and � ′ matching on the nose.
This is our final required conceptual tool, synchronization up to symmetry:

CHAPTER 7. THIN CONCURRENT GAMES 176

7.4.1 Synchronization up to Symmetry
Fix � ∶ A ⊢ B and � ∶ B ⊢ C two (pre)strategies.
First, wemust specify under which conditionswe expect to be able to synchronize two

configurations up to symmetry. As without symmetry, there needs to be some causal
compatibility condition – accordingly, we first generalize the definition of causally com-
patible pairs (Definition 6.2.2) to account for a mediating symmetry:
Definition 7.4.3. Consider x� ∈ C (�), x� ∈ C (�) and � ∶ x�B ≅B x

�
B .

We say that the triple (x� , �, x�) is causally compatible if the composite bijection

'[x� , �, x�] ∶ x� ∥ x�C
)�∥x�C≃ x�A ∥ x

�
B ∥ x

�
C

x�A∥�∥x
�
C≃ x�A ∥ x

�
B ∥ x

�
C

)−1� ∥x�C≃ x�A ∥ x
�

is secured, in the sense that the relation

(m, n) ⊲ (m′, n′) ⇔ m <�∥C m
′ ∨ n <A∥� n

′

defined on (the graph of) '[x� , �, x�] from the causal constraints of � and � , is acyclic.
In that case, the reflexive transitive closure of ⊲ is a partial order ≤'[x� ,�,x�], and

(x� , �, x�) is minimal if the maximal elements of '[x� , �, x�] occur in A or C .

At the core of TCG is the following property, stating that any causally compatible
triple can be massaged to produce a unique equivalent causally compatible pair:
Proposition 7.4.4. Consider (x� , �, x�) a causally compatible triple.

Then, there are unique y� ∈ C (�) and y� ∈ C (�) causally compatible, and

'� ∶ x� ≅� y� , '� ∶ x� ≅� y� ,

such that we have '�A ∈ S−(A), '
�
C ∈ S+(C), and the following diagram commutes:

x� ∥ x�C
)�∥x�C //

'�∥'�C

x�A ∥ x
�
B ∥ x

�
C

x�A∥�∥x
�
C //

'�A∥'
�
B∥'

�
C
&&

x�A ∥ x
�
B ∥ x

�
C

'�A∥'
�
B∥'

�
C

yy

x�A∥)
−1
� // x�A ∥ x

�

'�A∥'
�~~

y� ∥ yC)�∥yC
// yA ∥ yB ∥ yC yA∥)−1�

// yA ∥ y�

(in particular, the middle triangle commutes – the squares come for free).

Proof. Securedness follows the obvious generalization of Definition 6.2.2.
Existence. For a secured bijection � (top of the diagram) as above, assume adequate

'� ∶ x� ≅� y� and '� ∶ x� ≅� y� are provided by induction hypothesis. Consider:

�
(m,n)
−←⊂ �′

with �′ a composite bijection. We first consider the key case, with m = (1, s) for
x� ⊢� s+, and n = (2, t) for x� ⊢� t− synchronized. Let us write their displays as

)�(x� ⊎ {s}) = x�A ⊢ (x
�
B ⊎ {b1}) ,)� (x� ⊎ {t}) = (x�B ⊎ {b2}) ⊢ x

�
C

CHAPTER 7. THIN CONCURRENT GAMES 177

synchronizing through � ⊎ {(b1, b2)} ∈ S (B).By extension for �, we may propagate this extension through '� to obtain:
 � = '� ⊎ {(s, s′)} ∶ x� ⊎ {s} ≅� y� ⊎ {s′}

displaying to)�(�) = '�A ⊢ ('�B ⊎ {(b1, b′)}) ∈ S (A ⊢ B). But then:
'�B ⊎ {(b2, b

′)} ∈ S (B)

as it may be obtained as the composition ('�B ⊎ {(b1, b′)})◦(� ⊎ {(b1, b2)})−1 of knownsymmetries in B. Then ∼-receptivity directly applies to provide � = '� ⊎ {(t, t′)}
matching this extension, concluding this case – missing verifications are immediate.
The case with s negative and t positive is symmetric. Next, consider the case m =

(2, c) and n = (2, t) with x� ⊢� t−, i.e. a visible, negative move in C . Its display is
)� (x� ⊎ {t}) = x�B ⊢ (x

�
C ⊎ {c}) ,

but then extension of S+(C) applies to provide an extension'�C ⊎{(c, c′)} ∈ S+(C). By
∼-receptivity of � , there is an (unique) matching extension � = '� ⊎ {(t, t′)} ∈ S (�),
concluding this case – other components are unchanged.
Consider then the case m = (2, c) and n = (2, t) with x� ⊢� t+. In that case,

 � = '� ⊎ {(t, t′)} ∈ S (�)

is provided by extension for � . Considering its display)� (�) = '�B ⊢ ('�C ⊎{(c, c′)}),we do have �C ∈ S+(C) as '�C ∈ S+(C) and by +-receptivity of tcgs. This concludes
this case – other components are unchanged. All missing cases are symmetric. Finally,
securedness follows from the diagram and securedness of (x� , �, x�), as all vertical
morphisms in the diagram are order-isomorphisms.
Uniqueness. Consider now � ∶ x� ≅� z� and � ∶ x� ≅� z� also satisfying the

hypotheses. But then, by composition of symmetries we also have
!� = �◦('�)−1 ∶ y� ≅� z� , !� = �◦('�)−1 ∶ y� ≅� z� ,

but additionally these symmetries are causally compatible, since
!�B = �B◦('

�
B)
−1

= �B◦�◦('
�◦�)−1

= !�B

hence we have!�⊛!� ∶ y�⊛y� ≅�⊛� z�⊛z� by Proposition 7.3.6. But additionally,
(!� ⊛!�)A = �A◦('

�
A)
−1 ∈ S−(A) ,

and likewise (!�⊛!�)C ∈ S+(C), so by thin for �⊛�, !�⊛!� = idy�⊛y� . It followsfrom Proposition 7.3.6 that !� and !� are identities, so '� = � and '� = � .
The above may be applied to compose configurations up to symmetry:

CHAPTER 7. THIN CONCURRENT GAMES 178

Corollary 7.4.5. Consider (x� , �, x�) a minimal causally compatible triple.
Then, the pair (y� , y�) given by Proposition 7.4.4 is minimal causally compatible.

Proof. By Proposition 7.4.4, we have '� ∶ x� ≅� y� and '� ∶ x� ≅� y� making

x� ∥ x�C
'[x� ,�,x�] //

'�∥'�C ��

x�A ∥ x
�

'�A∥'
�

��
y� ∥ y�C '[y� ,y�]

// y�A ∥ y
�

commute. But the vertical morphisms are order-isomorphisms, inducing an order-iso
between the (graphs of) '[x� , �, x�] and '[y� , y�]. In particular it preserves maximal
elements, so that the minimality of (y� , y�) follows from that of (x� , �, x�).

This finally lets us define the composition of configurations up to symmetry:
Definition 7.4.6. Consider (x� , �, x�) a minimal causally compatible triple. We set

x� ⊙� x
� = y� ⊙ y� ∈ C (� ⊙ �)

for y� , y� the minimal causally compatible pair given by Corollary 7.4.5.

It will be useful later on that this construction preserves unions:
Lemma 7.4.7. Consider (x�1 , �1, x

�
1), (x

�
2 , �2, x

�
2) minimal causally compatible triples,

also compatible which each other in the sense that (x�1 ∪x
�
2 , �1∪�2, x

�
2∪x

�
2) is a minimal

causally compatible triple. Then, x�1 ⊙�1 x
�
1 and x�2 ⊙�2 x

�
2 are compatible, and

(x�1 ∪ x
�
2)⊙�1∪�2 (x

�
1 ∪ x

�
2) = (x

�
1 ⊙�1 x

�
2) ∪ (x

�
2 ⊙�2 x

�
2)

Proof. Applying Proposition 7.4.4 to (x� , �, x�) = (x�1 ∪ x�2 , �1 ∪ �2, x�2 ∪ x�2), we get

x� ∥ x�C
)�∥x�C //

'�∥'�C

x�A ∥ x
�
B ∥ x

�
C

x�A∥�∥x
�
C //

'�A∥'
�
B∥'

�
C
&&

x�A ∥ x
�
B ∥ x

�
C

'�A∥'
�
B∥'

�
C

yy

x�A∥)
−1
� // x�A ∥ x

�

'�A∥'
�~~

y� ∥ yC)�∥yC
// yA ∥ yB ∥ yC yA∥)−1�

// yA ∥ y�

with similar diagrams for (x�1 , �1, x�1) and (x�2 , �2, x�2) yielding causally compatible pairs
(y�1 , y

�
1) and (y�2 , y�2). But the diagram above restricts to diagrams for (x�1 , �1, x�1) and

(x�2 , �2, x
�
2), so by the uniqueness clause of Proposition 7.4.4 it must be the componen-

twise union of the diagrams for (x�1 , �1, x�1) and (x�2 , �2, x�2). Thus, we have
'[y� , y�] = '[y�1 , y

�
1] ∪ '[y

�
2 , y

�
2]

which, restricting to prime sub-secured bijections with visible top, yields
x� ⊙� x

� = (x�1 ⊙�1 x
�
1) ∪ (x

�
2 ⊙�2 x

�
2)

as required, implying also their compatibility.

CHAPTER 7. THIN CONCURRENT GAMES 179

7.4.2 Horizontal Composition
We can now use this to define horizontal composition of positive morphisms:
Proposition 7.4.8. Consider �,�′ ∶ A ⊢ B and � , � ′ ∶ B ⊢ C (pre)strategies, along
with f ∶ � ⇒ �′ and g ∶ � ⇒ � ′ positive morphisms.

Then, there is a unique positive morphism g ⊙ f ∶ � ⊙ � → � ′ ⊙ �′ such that

(g ⊙ f)(x� ⊙ x�) = g(x�)⊙g[x�]B◦f [x�]−1B f (x�)

for all x� ⊙ x� ∈ C (� ⊙ �) where f [x�]B and g[x�]B arise as below (7.6).
Proof. Existence. Unfortunately, we cannot directly apply Lemma 7.2.11, because we
want this proposition to handle positive morphisms between prestrategies. Thus, we
construct g⊙f via Lemma 7.1.9. Its action on configurations is given by definition – in
particular, it follows immediately from rigidity that if (x� , x�) is minimal causally com-
patible, then (f (x�), g[x�]B◦f [x�]−1B , g(x�)) is minimal causally compatible. Preser-
vation of unions follows from Lemma 7.4.7 and the fact that

g[x�]B◦f [x�]−1B = (g[x�1]B◦f [x
�
1]
−1
B) ∪ (g[x

�
2]B◦f [x

�
2]
−1
B)

whenever x� = x�1 ∪x�2 and x� = x�1 ∪x�2 . Preservation of cardinality follows from the
preservation of the display to the game (see positivity below).
We must show that this action extends to symmetries. Consider

 � ⊙ � ∶ x� ⊙ x� ≅�⊙� y� ⊙ y�

a symmetry in � ⊙ �; so � ∶ x� ≅� y� , � ∶ x� ≅� y� with �B = �B . We name:

f (x�)B oo
('�B)

−1

(��B)
−1 ((

x�B = x
�
B
g[x�]B // g(x�)B

'�B
vv

z�′B = z�′B

f (y�)B oo
f [y�]B

��B
((

y�B = y
�
B
g[y�]B // g(y�)B

��B
vv

u�′B = u�′B

writing z�′ ⊙ z�′ = g(x�)⊙� f (x�) for � = g[x�]B◦f [x�]−1B , and u� ⊙ u� = g(y�)⊙#
f (y�) for # = g[y�]B◦f [y�]−1B . Next we note that the diagram below commutes

f (x�)B

f (�)B
��

oo f [x
�]B x�B = x

�
B

 �B=
�
B
��

g[x�]B // g(x�)B

g(�)B
��

f (y�)B oo f [y�]B
y�B = y

�
B g[y�]B

// g(y�)B

CHAPTER 7. THIN CONCURRENT GAMES 180

by definition of the components involved. But this means that the following diagram

z�′B = z�′B('�B)
−1

vv
('�B)

−1

((
f (x�)B

g[x�]B◦f [x�]−1B //

f (�)B ��

g(x�)B
g(�)B��

f (y�)B g[y�]B◦f [y�]−1B

//

��B
((

g(y�)B

��B
vv

u�′B = u�′B

commutes as well; so we may set the image (g ⊙ f)(� ⊙ �) of � ⊙ � as
(��◦f (�)◦('�)−1)⊙ (��◦g(�)◦('�)−1) ∶ (g⊙f)(x� ⊙x�) ≅�′⊙�′ (g⊙f)(y� ⊙y�)

and as Proposition 7.4.4 entails that '� is uniquely determined by f (�) and similarly
for '� , �� and �� , it follows that this construction is monotone.

Positivity. Write y�′ ⊙ y�′ = (g ⊙ f)(x� ⊙ x�). We have

x�
)� ��

f // f (x�)
)�′��

'�′ // y�′

)�′��
⋅
f [x�]A⊢f [x�]B

// ⋅
'�

′
A ⊢'

�′
B

// ⋅

x�
)� ��

f // g(x�)
)�′��

'�′ // y�′

)�′��
⋅
f [x�]A⊢f [x�]B

// ⋅
'�
′
A ⊢'

�′
B

// ⋅

where in each case the left hand square commutes by definition of positive morphisms,
and '�′ , '�′ provided by Proposition 7.4.4 – which also ensure that '�′A ∈ S−(A) and
'�′C ∈ S+(C). Now from the above, by definition andmonotonicity of the constructions,

x� ⊙ x�
g⊙f //

)�
��

(g ⊙ f)(x� ⊙ x�)
)�′⊙�′
��

⋅
'�

′
A ◦f [x

�]A⊢'�
′
C ◦g[x

�]C

// ⋅

(7.7)

commutes as well, and '�′A ◦f [x�]A ∈ S−(A) and '�
′

C ◦g[x
�]C ∈ S+(C) as required.

Uniqueness. Direct consequence of Lemma 6.1.12.
In particular, this entails that thin equivalence is a congruence, i.e. if� ≈ �′ ∶ A ⊢ B

and � ≈ � ′ ∶ B ⊢ C , then � ⊙ � ≈ � ′ ⊙ �′ ∶ A ⊢ C . This will be useful when, later
on, we truncate our bicategory TCG into a ∼-category – see Section 7.4.4.
We prove one final lemma on horizontal composition:

Lemma 7.4.9. Consider f ∶ � → �′ and g ∶ � → � ′ positive morphisms.
Then, for all minimal causally compatible triple (x� , �, x�), we have:

(g ⊙ f)(x� ⊙� x�) = g(x�)⊙g[x�]B◦�◦f [x�]−1B f (x�) .

CHAPTER 7. THIN CONCURRENT GAMES 181

Proof. Let us write y�⊙y� = x�⊙� x� and z�⊙z� = (g⊙f)(y�⊙y�); by definition of
x� ⊙� x� and of (g⊙f)(y� ⊙y�), we have symmetries '� ∶ x� ≅� y� , '� ∶ x� ≅� y� ,
��′ ∶ f (y�) ≅�′ z�

′ and ��′ ∶ g(y�) ≅�′ z�′ , satisfying the triangles:

x�B
� //

'�B
''

x�B
'�B

ww
yB

f (y�)B
g[y�]B◦f [y�]−1B //

��
′

B
))

g(y�)B
��
′
B

uuzB

It follows that the following diagram commutes as well:

f (x�)B
f [x�]−1B //

f ('�)B ��

x�B
� //

'�B
##

x�B
'�B
{{

g[x�]B// g(x�)B
g('�)B��

f (y�)B
f [y�]−1B //

��
′

B **

yB
g[y�]B // g(y�)B

��
′
BttzB

which proves our equality by uniqueness of Proposition 7.4.4.

7.4.3 Bicatorical Laws
Proving the bicategorical laws requires one final technical development, establishing an
associativity property of synchronization up to symmetry.

Ternary synchronization up to symmetry. Fix three strategies
� ∶ A ⊢ B , � ∶ B ⊢ C , � ∶ C ⊢ D

with configurations x� ∈ C (�), x� ∈ C (�), x� ∈ C (�), and mediating symmetries
� ∶ x�B ≅B x

�
B , ! ∶ x�C ≅C x

�
C .

What can we say about their synchronizations up to symmetry? Assuming (x� , �, x�)
is minimal causally compatible, by Proposition 7.4.4 there are unique

'� ∶ x� ≅� y� , '� ∶ x� ≅� y�

such that '�A ∈ S−(A), '�C ∈ S+(C) and the following diagram commutes

x�B
� //

'�B

x�B
'�B~~

yB

and by Corollary 7.4.5, y� , y� are minimal causally compatible. With these notations:
Lemma 7.4.10. Assume (x� , �, x�) and (x�⊙�x� , !◦('�C)

−1, x�) are min. caus. comp.
Then, so is (x� , !, x�).

CHAPTER 7. THIN CONCURRENT GAMES 182

Proof. In that case, then by Proposition 7.4.4 there are unique
Ψ�,� ∶ y� ⊙ y� ≅�⊙� u� ⊙ u� , Ψ� ∶ x� ≅� u�

such that Ψ�,�A ∈ S−(A), Ψ�D ∈ S+(D) and the following diagram commutes:

(y� ⊙ y�)C
!◦('�C)

−1
//

Ψ�,�C &&

x�C

Ψ�C
~~

uC

recalling thatΨ�,� ∶ y� ⊙x� ≅�⊙� u� ⊙u� consists inΨ� ∶ x� ≅� u� andΨ� ∶ x� ≅�
u� matching onB. By Corollary 7.4.5, u�⊙u� and u� are minimal causally compatible.
By Lemma 6.2.24, it follows that u� , u� are minimal causally compatible. But then

Ψ�◦'� ∶ x� ≅� u� , Ψ� ∶ x� ≅� u�

are order-isomorphisms such that the following triangle commutes:

x�C
! //

(Ψ�◦'�)C

x�C

Ψ�C
~~

uC

Following these isomorphisms, it is a direct verification to establish causal compati-
bility of (x� , !, x�) from that of (u� , u�).

Now, assuming that the conditions of this lemma are satisfied, we know that (x� , !, x�)
are causally compatible. This means, again by Proposition 7.4.4, that there are

 � ∶ x� ≅� z� , � ∶ x� ≅� z�

such that the following triangle commutes:

x�B
! //

 �B

x�B

 �B
~~

zB

Using these notations, we can then prove the following lemma:
Lemma 7.4.11. Assume (x� , �, x�) and (x�⊙�x� , !◦('�C)

−1, x�) are min. caus. comp.
Then, so is (x� , �B◦�, x

� ⊙! x�).

Proof. By Corollary 7.4.5, u� and u�⊙u� are minimal causally compatible. As for the
previous lemma, the idea is to provide symmetries makingminimal causal compatibility
of (x� , �B◦�, x� ⊙! x�) boil down to that of (u� , u� ⊙ u�). First there is:

Ψ�◦'� ∶ x� ≅� u� ,

CHAPTER 7. THIN CONCURRENT GAMES 183

and likewise we have two symmetries
Ψ�◦'�◦(�)−1 ∶ z� ≅� u� , Ψ�◦(�)−1 ∶ z� ≅� u�

which can be checked to have the same projection onC . So their synchronization yields
Φ = (Ψ�◦(�)−1)⊙ (Ψ�◦'�◦(�)−1) ∶ x� ⊙! x� ≅�⊙� u� ⊙ u� .

Finally, a direct verification shows that the triangle below commutes:

x�B
 �B◦� //

Ψ�◦'�

(x� ⊙! x�)B
ΦBxx

uB

(7.8)

via which the announced min. caus. comp. boils down to that of (u� , u� ⊙ u�).
At this point we are equipped to state the seeked associativity property:

Lemma 7.4.12. If (x� , �, x�) and (x� ⊙� x� , !◦('�C)
−1, x�) are min. caus. comp.,

x� ⊙!◦('�C)−1 (x
� ⊙� x

�) = a�,� ,�((x� ⊙! x�)⊙ �B◦� x
�) .

Proof. Keeping the notations above, x� ⊙!◦('�C)−1 (x� ⊙� x�) = u� ⊙ (u� ⊙ u�). Now,

Ψ ∶ x� ⊙! x� ≅�⊙� u� ⊙ u� , Ψ�◦'� ∶ x� ≅� u�

are symmetries satisfying (7.8); and it is direct from the definition that ΨA ∈ S−(A)and (Ψ�◦'�)C ∈ S+(C). Consequently, by the uniqueness clause of Proposition 7.4.4,
(x� ⊙! x�)⊙ �B◦� x

� = (u� ⊙ u�)⊙ u�

and a�,� ,�((u� ⊙ u�)⊙ u�) = u� ⊙ (u� ⊙ u�) as required.

A bicategory. At last, we have the ingredients to conclude:
Theorem 7.4.13. There is a bicategory TCG with games as objects, strategies as mor-
phisms, and positive morphisms as 2-cells.
Proof. Identities are defined in Proposition 7.3.15, and composition in Proposition
7.3.1. Each strategy has an identity 2-cell (the identity positive isomorphism). Vertical
composition of positive morphisms is composition in ESS, and horizontal composition
is Proposition 7.4.8. Associators are defined in Proposition 7.4.1 and unitors in Propo-
sition 7.4.2. It remains to prove the following laws:

CHAPTER 7. THIN CONCURRENT GAMES 184

Functoriality of horizontal composition. For functoriality, we compute
(g′ ⊙ f ′)◦(g ⊙ f)(x� ⊙ x�)

= (g′ ⊙ f ′)(g(x�)⊙g[x�]B◦f [x�]−1B f (x�))

= g′(g(x�))⊙g′[g(x�)]B⊙g[x�]B⊙f [x�]−1B ◦f ′[f (x�)]−1B
f ′(f (x�))

= (g′◦g)(x�)⊙(g′◦g)[x�]B◦(f ′◦f)[x�]−1B (f ′◦f)(x�)

= ((g′◦g)⊙ (f ′◦f))(x� ⊙ x�)

using definition of g ⊙ f , Lemma 7.4.9, definition of the preservation of symmetry of
g′◦g and f ′◦f , and definition of (g′◦g)⊙ (f ′◦f). By Lemma 6.1.12, we conclude that
(g′ ⊙f ′)◦(g ⊙ f) = (g′◦g)⊙ (f ′◦f) as required. Likewise, it is straightforward using
the same lemmas that horizontal composition preserves identity positive morphisms.
Naturality of unitors. Wefirst show the naturality of l� ∶ cc B⊙� ≅ � in�, i.e. that for

all �,�′ ∶ A ⊢ B and f ∶ � ⇒ �′ a positive morphism, we have f◦l� = l�′◦(cc B⊙f),and byCorollary 7.2.12 it suffices to prove the equality for+-covered configurations. By
Lemma 6.4.4, +-covered configurations in cc B⊙� have form cc x�B ⊙x

� ∈ C+(cc B⊙�),
and by definition of horizontal composition (in Proposition 7.4.8),

(cc B ⊙ f)(cc x�B ⊙ x
�) = cc x�B ⊙f [x�]−1B f (x�) ,

but that must be cc f (x�)B ⊙ f (x�) ∈ C+(cc B ⊙ �′) as it is easily proved to satisfy the
properties in Proposition 7.4.4 defining it uniquely.
Now, from the characterization of the action of unitors in Proposition 7.4.2,

l�′ (cc f (x�)B ⊙ f (x
�)) = f (x�)

which is also f (l�(cc x�B ⊙ x�)) = f (x�). The proof for r� is symmetric.
Naturality of associators. Consider now f ∶ � ⇒ �′ ∶ A ⊢ B, g ∶ � ⇒ � ′ ∶ B ⊢ C

and ℎ ∶ �⇒ �′ ∶ C ⊢ D positive morphisms, and calculate:
(ℎ ⊙ (g ⊙ f))◦a�,� ,�((x� ⊙ x�)⊙ x�)

= (ℎ ⊙ (g ⊙ f))(x� ⊙ (x� ⊙ x�))
= ℎ(x�)⊙ℎ[x�]C◦(g⊙f)[x�⊙x�]−1C (g ⊙ f)(x� ⊙ x�)

= ℎ(x�)⊙ℎ[x�]C◦(g⊙f)[x�⊙x�]−1C (g(x�)⊙g[x�]B◦ℎ[x�]−1B f (x�))

= ℎ(x�)⊙ℎ[x�]C◦g[x�]−1C ◦('�′C)
−1 (g(x�)⊙g[x�]B◦f [x�]−1B f (x�))

= a�′,�′,�′ ((ℎ(x�)⊙ℎ[x�]C◦g[x�]−1C g(x�))⊙ �B◦g[x�]B◦f [x�]−1B f (x�))

= a�′,�′,�′ ((ℎ(x�)⊙ℎ[x�]C◦g[x�]−1C g(x�))⊙(ℎ⊙g)[x�⊙x�]B◦f [x�]−1B f (x�))

= a�′,�′,�′ ((ℎ ⊙ g)(x� ⊙ x�)⊙(ℎ⊙g)[x�⊙x�]B◦f [x�]−1B f (x�))

= a�′,�′,�′ (((ℎ ⊙ g)⊙ f)((x� ⊙ x�)⊙ x�))

using Lemma 7.4.9 twice, then the witness exposed in (7.7) for the fact that g ⊙ f is
a positive morphism, then Lemma 7.4.12 (using the same notations for ' and), then

CHAPTER 7. THIN CONCURRENT GAMES 185

again the witness in (7.7) for the fact that ℎ◦g is a positive morphism, concluding with
two applications of Lemma 7.4.9 – which finally ends the proof.

Though we have constructed a bicategory TCG, most of this monograph relies on a
simpler structure ignoring coherence laws, sufficient for many semantic purposes.

7.4.4 A ∼-category
To wrap up this chapter, we introduce a simplified higher-dimensional structure.
In order to use TCG for semantic purposes, we need much additional categorical

structure: in particular, we must at least have a cartesian closed structure in order to
interpret the simply-typed �-calculus. Following Theorem 7.4.13, the reader may nat-
urally expect us to aim towards constructing the bicategorical version of this structure.
Such a construction is described by Paquet in [Paquet, 2020]. But ultimately, the ex-
plicit managing of 2-cells does not appear particularly useful for the semantic purposes
of this monograph so we opted to not develop this higher-dimensional structure further.
Alternatively, we could quotient TCG to a category having as morphisms equiva-

lence classes of strategies with respect to positive isomorphism (as done for instance
in AJM games [Abramsky et al., 2000]). But this is actually harmful: it is method-
ologically better for the interpretation to yield actual concrete strategies, rather than
equivalence classes (for instance, recursion is obtained via completeness properties of
an ordering on strategies that does not seem to lift to equivalence classes). We also want
to avoid the vagueness often encountered in switching implicitely between equivalence
classes and representatives.
So we shall work neither with categories nor bicategories but with ∼-categories:

Definition 7.4.14. A (small)∼-category consists in a set of objects 0; for eachA,B,
a set of morphisms (A,B) with an equivalence relation ∼; a composition operation

(−◦−) ∶ (B,C) × (A,B)→ (A,C)

for all A,B, C ∈ 0; an identity morphism idA ∈ (A,A) for all A ∈ 0, subject to:

associativity: for all f ∈ (A,B), g ∈ (B,C), ℎ ∈ (C,D), (ℎ◦g)◦f ∼ ℎ◦(g◦f),
identity: for all f ∈ (A,B), idB◦f ∼ f◦idA ∼ f ,congruence: for all f ∼ f ′ ∈ (A,B), g ∼ g′ ∈ (B,C), g′◦f ′ ∼ g◦f .

In other words, a ∼-category is a special case of a bicategory where any two mor-
phisms are related by at most one (invertible) 2-cell. Any bicategory yields a∼-category
where f ∼ g iff f and g are related by an isomorphism.
Using ∼-categories avoids quotienting morphisms, while making all coherence laws

hold vacuously. All categorical notions extend transparently to∼-categories, with equa-
tions holding up to ∼ rather than equality. For instance, functors between ∼-categories
respect ∼, and preservation of identities and composition only holds up to ∼. In the

CHAPTER 7. THIN CONCURRENT GAMES 186

sequel, we shall use several standard categorical notions in the ∼-categorical world
without explicitly spelling them out – hopefully this causes no confusion.
From now on, we regard TCG as a ∼-category:

Proposition 7.4.15. There is TCG, a ∼-category with tcgs as objects, strategies as
morphisms, and equivalence relation ≈ the thin equivalence, from Corollary 7.2.9.

7.5 History and Related Work
Genesis ofTCG. I arrived as a postdoc with GlynnWinskel in Cambridge in Septem-
ber 2011. After participating in a first project to enrich concurrent games with winning
conditions [Clairambault et al., 2012], my main task was the supposedly simple ob-
jective to extend CG with symmetry [Winskel, 2007], in particular so that concurrent
games could handle replication as in AJM games [Abramsky et al., 2000]. What was
initially expected to be relatively straightforward proved to be an endeavour full of sur-
prises, for which we were soon joined by a research intern, Simon Castellan.
As discussed ealier, there are two ways to handle uniformity in (copy indices-based)

game semantics. The fat way, and the thin way. The fat approach to uniformity consists
in forcing strategies to be saturated: if a strategy can play one copy index, it must play
non-deterministically all copy indices. In contrast, in the thin approach, a strategy in a
given state will play one canonically chosen copy index. Uniformity then becomes an
interactive property: any change inOpponent’s copy indices causes a subsequent change
in Player’s copy indices. This thin/fat distinction is not about concurrent games at all,
but present as soon as there are strategies with copy indices: the original AJM games
are thin [Abramsky et al., 2000], but they can be made fat – the very first fat model
is [Baillot et al., 1997a]. The fat approach is simpler; however, it conflates uniformity
with non-determinism and also is not a compatible extension of the symmetry-free layer
as the basic mechanisms (identity and composition) must be changed.
In developing concurrent games with symmetry, we found that we could not make

the thin approach work as we lacked a good way to describe the interactive reindexing
process involved in uniformity. So the first published version of concurrent games with
symmetry is fat3 [Castellan et al., 2014]4. However, saturation made the model difficult
to use, and I kept looking for a thin version, whose maturing was a long process.
Thin concurrent games first appeared in [Castellan et al., 2015] (the paper wasmainly

about parallel innocence – see Chapter 10. The core of this setting is the one presented in
this chapter, though with many crucial changes and simplifications. Many significant
improvements (including the very definition of a tcg!) are due to Simon Castellan,
developed during his PhD thesis; others camewhile writing the journal version detailing
thin concurrent games [Castellan et al., 2019], and others still appeared since.

3In fact, the very first version of concurrent games with symmetry is thin, and only appears in Simon
Castellan’s (unpublished) internship report – however, we could only make this work adopting a coarse
bisimulation-like equivalence relation on strategies, whereas we wanted an isomorphism.

4Not verywell-known is the fact that this paper also contains the very first non-deterministic generalization
of Hyland-Ong innocence!

CHAPTER 7. THIN CONCURRENT GAMES 187

Further comments. This chapter mainly presents constructions first introduced in
[Castellan et al., 2015] and improved in [Castellan et al., 2019]. However, the latter
uses results from [Castellan et al., 2017a], making for a somewhat intimidating chain of
dependencies. In contrast, the present chapter is entirely self-contained and constructs
thin concurrent games from the ground, with full details.
Finally, this chapter builds a bicategory, whereas the papers cited above only con-

struct a category up to positive isomorphisms. This is not a new result: in his PhD
thesis, Paquet proves that thin concurrent games form a bicategory (actually a symmet-
ric monoidal closed bicategory [Paquet, 2020]). However, Paquet does not detail the
naturality of unitors and associators; so our proof complements his.
It seems fair to say that TCG is the most expressive and fine-grained intensional

model on the market. Much of our further work builds on it, and there is a lot left to
explore. I consider this to be one of the main contributions in this line of work.

Related work. The core idea behind TCG is splitting symmetries into positive and
negative symmetries: it is thanks to this separation that we are able to factor out Op-
ponent’s reindexings when expressing uniformity and when comparing strategies. As
mentioned earlier, this idea was first developed by Melliès as his approach to unifor-
mity in asynchronous games [Melliès, 2003]. There, he considers an asynchronous
game with two groups acting on plays, one for Player reindexings and one for Oppo-
nent reindexings; uniformity is there specified as a bi-invariance property with respect
to these group actions, analogous in spirit to Lemma 7.2.6 – note that recently, Pa-
quet showed that Melliès’ mechanism could also be applied in the setting of concurrent
games [Paquet, 2023], obtaining a different, more global, notion of uniformity which
differs from the present one for subtle reasons.
In any case, this polarized decomposition of symmetry is clearly a fundamental struc-

ture that deserves further exploration. One such recent exploration is a joint work with
Simon Forest, in which we build a bicategory of thin spans of groupoids sharing much
of the structure of TCG, but completely statically [Clairambault and Forest, 2023], i.e.
without time or causality. There, an object is a groupoid with two sub-groupoids,
the positive and the negative ones. Morphisms are spans of groupoids selected by a
biorthogonality relation ensuring that their composition satisfies a universal property
analogous to Proposition 7.3.1, but without causal compatibility. Overall, we get a
proof-relevant relational model sharing much of the flavour of TCG, but avoiding the
combinatorics of concurrent strategies and their composition.

Chapter 8

Constructing Games and
Strategies

The previous chapter describes the bare bones of thin concurrent games: namely, the
composition mechanism and the tools to handle symmetry. In the present chapter, we
describe the constructions on games and strategies that will be exploited throughout
this monograph, aiming to establish categorical structures useful for semantics.
In practive, we will build from TCG two radically different categorical structures.
TCG per se is an unpolarized category of games, in that games have no assigned

polarity: in a game A, both players may be able to start. This is in contrast with most
notions of games used in game semantics, which focus on negative games where only
Opponent starts (for call-by-name languages), or on positive games where only Player
starts (for call-by-value languages). A widespread urban legend has it that such non-
polarized game settings suffer from a lack of associativity, due to the infamous Blass
problem [Abramsky, 2003]. In fact, this phenomenon is very specific to Blass games,
and Proposition 6.2.25 ensures that composition in TCG is indeed associative up to
iso. But TCG is certainly not the first unpolarized category of games, the pioneering
example is Joyal’s category of Conway games [Joyal, 1977]. As pioneered by Joyal,
the expected categorical structure of such an unpolarized category of games is that of
a compact closed category, i.e. a degenerate model of MLL where ⊗ = `. Our first
objective in this chapter will be to show that TCG is a compact closed ∼-category.

To prepare the ground for semantics, we must then switch to polarized games – neg-
ative, since the languages considered here are call-by-name. We shall equip the neg-
ative sub-∼-category of TCG with (a variation of) the structure of a Seely category
[Melliès, 2009]. Seely categories are a standard model of ILL, and thus of the simply-
typed �-calculus; and we shall use this structure as the basis for our interpretations.

188

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 189

8.1 A Compact closed ∼-Category
Compact closed categories are amongst the simplest categorical structures that exhibit
higher-order behaviour. They are essentially those degeneratedmodels of multiplicative
linear logic where the ⊗ and its dual ` coincide – intuitively, they resemble proof
nets without the correctness criterion. Like Conway games [Joyal, 1977], categories of
unpolarized games are often compact closed, and this structure underlies much of the
additional structure appearing in polarized categories of games, as explored by Melliès
[Melliès, 2004b]. It is thus natural to start there.
Recall that a compact closed category is a symmetric monoidal category where

each object A has a (necessarily unique up to iso) dual object A∗. This means we have
the unit, �A ∶ I → A⊗A∗

the co-unit, �A ∶ A∗ ⊗A → I

two morphisms for all A, respectively akin to the axiom and cut of proof nets, satisfy-
ing two coherence axioms [Kelly and Laplaza, 1980]. A compact closed ∼-category is
defined likewise, with all laws holding up to ∼ instead of equality.

8.1.1 A bifunctor
For thin concurrent games we start with the first component, a ∼-bifunctor:

(− ∥−) ∶ TCG × TCG → TCG .

Notice that we use ∥ for the tensor of the compact closed structure, as we shall reserve
⊗ for a later construction in the context of negative games.

Definition. On tcgs, the construction ∥ is defined in Section 7.1.4. IfA andB are tcgs,
then A ∥ B is thought of as the game formed of A and B played in parallel. Note that
though the games are independent, a strategy on A ∥ B may very well impose crossed
immediate causal links between the two components!
On strategies, the action of ∥ is given by the following:

Proposition 8.1.1. Consider A,B, C,D tcgs, and � ∶ A ⊢ B, � ∶ C ⊢ D strategies.
Then, there is a strategy � ∥ � ∶ A ∥ C ⊢ B ∥ D, unique up to iso, s.t. there are

(− ∥ −) ∶ C+(�) × C+(�) ≃ C+(� ∥ �)
(− ∥ −) ∶ S+(�) × S+(�) ≃ S+(� ∥ �)

order-isos commuting with dom, cod, and s.t. for all �� ∈ S+(�) and �� ∈ S+(�),

)�∥� (�� ∥ ��) = (��A ∥ �
�
C) ∥ (�

�
B ∥ �

�
D) .

Moreover, (− ∥ −) preserves ≈ (a property we call congruence).

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 190

Proof. Existence. As the notation suggests, � ∥ � has ess the simple parallel composi-
tion of � and � . Its display map is set as:

)�∥� (1, s) =
{

(1, (1, a)) if)�(s) = (1, a)
(2, (1, b)) if)�(s) = (2, b)

)�∥� (2, t) =
{

(1, (2, c)) if)� (t) = (1, c)
(2, (2, d)) if)� (t) = (2, d),

we omit the routine verification that this yields a strategy. All additional conditions
follow as in Lemma 7.1.22 along with routine verifications.
Uniqueness. Straightforward consequence of Corollary 7.2.13.
Congruence. Immediate from the definition.

Functoriality. Proposition 8.1.1 makes functoriality easy. First:
Lemma 8.1.2. For any tcgs A and B, we have cc A∥B ≈ cc A ∥ cc B .

Proof. We calculate:
C+(cc A ∥ cc B) ≅ C+(cc A) × C+(cc B)

= {xA ∥ xA ∣ xA ∈ C (A)} × {xB ∥ xB ∣ xB ∈ C (B)}
≅ {(xA ∥ xB) ∥ (xA ∥ xB) ∣ xA ∥ xB ∈ C (A ∥ B)}
= C+(cc A∥B)

using Proposition 8.1.1, then Lemma 6.4.4, then the obvious bijection, then Lemma
6.4.4 again – all these are order-isos, which preserve display maps in the obvious sense.
The same reasoning applies to symmetries compatibly, using Proposition 8.1.1 and

Lemma 7.3.14. Finally, the seeked isomorphism follows from Corollary 7.2.13.
For preservation of composition, consider four strategies
�1 ∶ A1 ⊢ B1 , �2 ∶ A2 ⊢ B2 , �1 ∶ B1 ⊢ C1 , �2 ∶ B2 ⊢ C2 .

The only additional ingredient needed is the following lemma:
Lemma 8.1.3. Take x�1 ∈ C+(�1), x�2 ∈ C+(�2), x�1 ∈ C+(�1) and x�2 ∈ C+(�2).
Then, x�1 ∥ x�2 ∈ C+(�1 ∥ �2) and x�1 ∥ x�2 ∈ C+(�1 ∥ �2) are causally

compatible iff (1) x�1 and x�1 are causally compatible; and (2) x�2 and x�2 likewise.
Proof. A routine verification, left to the reader.
Now, we can finally conclude:

Proposition 8.1.4. Parallel composition extends to a ∼-bifunctor:

(− ∥−) ∶ TCG × TCG → TCG .

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 191

Proof. Preservation of copycat is by Lemma 8.1.2. For composition, we calculate:
C+((�1 ∥ �2)⊙ (�1 ∥ �2))

≅ {(x�1 ∥ x�2 , x�1 ∥ x�2) ∈ C+(�1 ∥ �2) × C+(�1 ∥ �2) ∣ caus. comp.}
≅ {(x�1 , x�1) ∈ C+(�1) × C+(�1) ∣ caus. comp.} ×

{(x�2 , x�2) ∈ C+(�2) × C+(�2) ∣ caus. comp.}
≅ C+(�1 ⊙ �1) × C+(�2 ⊙ �2)

using Proposition 7.3.1, then Proposition 8.1.1 along with Lemma 8.1.3, then Proposi-
tion 7.3.1 again. All these are order-isos, preserve displaymaps, and the same reasoning
applies to symmetries – so the desired isomorphism follows from Corollary 7.2.13.

8.1.2 Lifting Maps to Strategies
Besides this bifunctor, we need structural morphisms for the monoidal structure.
We introduce a method to construct them systematically. The idea is that all these

morphisms are direct variations of copycat: they play copycat following a certain iso-
morphism of games. Accordingly, we show how to lift certain maps to strategies.

Renamings. We shall lift more than just isos: “liftable” maps are called renamings:
Definition 8.1.5. A renaming from gameA toB is a function f ∶ |A| → |B| satisfying:

validity: ∀x ∈ C (A), fx ∈ C (B)
local injectivity: ∀a1, a2 ∈ x ∈ C (A), fa1 = fa2 ⇐⇒ a1 = a2pol-preserving: ∀a ∈ A, polB(fa) = polA(a)sym-preserving: ∀� ∈ S (A)(resp. S+(A),S−(A)),

f � ∈ S (B), (resp. S+(B),S−(B))strong-receptivity: ∀� ∈ S (A), ∀f� ⊆− ' ∈ S (B), ∃!� ⊆− �′ ∈ S (A) f�′ = '
courtesy: ∀a1 _A a2, (polA(a1) = + ∨ polA(a2) = −) ⇐⇒ fa1 _B fa2 .

We write Ren for the category of renamings, and f ∶ A→ B for a renaming.

Any isomorphism of games (i.e. an isomorphism preserving all structure) is a re-
naming. Renamings let us change the display of events of strategies, via the operation:
Definition 8.1.6. Consider � ∶ A ⊢ B, with renamings f ∶ A⟂ → A′⟂, g ∶ B → B′.

Then, the redisplayed strategy g ⋅ � ⋅ f has components the same as �, except:

)g⋅�⋅f = (f ∥ g)◦)� .

This is still a strategy – note the strategy itself is not really changed, only its display.
Here, f ∥ g refers to the monoidal structure of ESS, defined with (f ∥ g)(1, a) =
(1, f (a)) and (f ∥ g)(2, b) = (2, g(b)). Note also that we can redisplay on one side of a
strategy only, as in g ⋅ �: this means g ⋅ � ⋅ idA – likewise, � ⋅ f means idB ⋅ � ⋅ f .

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 192

Lifting. We motivated renamings by the lifting operation, which is:
Definition 8.1.7. Consider f ∶ A → B a renaming.

Its forward lifting cc f ∶ A ⊢ B is defined as cc f = f ⋅ cc A.
Its backward lifting cc

f ∶ B⟂ ⊢ A⟂ is defined as cc

f = cc A⟂ ⋅ f .

This gives a simple definition of a strategy playing copycat alongside a certain map.
This is a nice feature of concurrent games: such a construction is ubiquitous also in
more traditional game semantics settings, but it is very rarely made explicit.
The fundamental property enjoyed by this construction is the lifting lemma:

Lemma 8.1.8. Consider � ∶ A ⊢ B, and renamings f ∶ A⟂ → A′⟂, g ∶ B → B′.
Then, g ⋅ � ⋅ f ≈ cc g ⊙ � ⊙

cc

f .

Proof. We show g ⋅ � ≈ cc g ⊙ � – note � ⋅ f ≈ � ⊙ cc

f is symmetric, and the general
case follows since g ⋅ � ⋅ f = g ⋅ (� ⋅ f) = (g ⋅ �) ⋅ f and ⊙ is associative up to ≈.
By definition, C+(cc f) = C+(cc B) = {xB ∥ xB ∣ xB ∈ C (B)} (Lemma 6.4.4), with

) cc g (xB ∥ xB) = xB ∥ g(xB) .

Thus a pair (x� , xB ∥ xB) is causally compatible for � and cc f iff it is causally com-
patible for � and cc B . We may then reuse the unitor of Proposition 6.4.9 which yields
r� ∶ C+(� ⊙ cc f) ≅ C+(�). Computing the display maps, we have

)g⋅�(x�) = g(x�B) = g(xB) ,) cc g⊙�((xB ∥ xB)⊙ x
�) = g(xB)

where x�B = xB as the pair (x� , xB ∥ xB) is matching. The same reasoning applies to
symmetries using Lemma 7.3.14. By Corollary 7.2.13, we deduce the desired iso.
We deduce one last convenient property of lifting:

Proposition 8.1.9. There are two ∼-functors:

cc − ∶ Ren → TCG , cc

− ∶ Renop → TCG ,

such that if f ∶ A → B is an iso, then cc f and cc

f⟂ are inverses, and cc f−1 ≈

cc

f⟂ .

Proof. By Lemma 8.1.8 and a direct verification via Corollary 7.2.13.
Above, we write f⟂ ∶ A⟂ → B⟂ for f ∶ A → B defined as the same map as f .

Note that if f ∶ A→ B is an iso, then f⟂ ∶ A⟂ → B⟂ is an iso hence a renaming.

8.1.3 Compact Closed Structure
We may now directly apply this for the symmetric monoidal structure.

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 193

Symmetric monoidal structure. We need structural isomorphisms for TCG.
First, notice that Ren is a symmetric monoidal category. Indeed, for f ∶ A → B

and f ′ ∶ A′ → B′ renamings, then f ∥ f ′ ∶ A ∥ A′ → B ∥ B′ is a renaming.
Furthermore, there are obvious isomorphisms of tcgs, so invertible renamings

�A ∶ A ∥ 1 → A
�A ∶ 1 ∥ A → A

�A,B,C ∶ (A ∥ B) ∥ C → A ∥ (B ∥ C)
sA,B ∶ A ∥ B → B ∥ A

natural in A,B, C and satisfying the coherence laws of a symmetric monoidal category.
From this and the lifting operation introduced above, we prove:

Proposition 8.1.10. Consider the ∼-bifunctor (− ∥−) along with the empty tcg 1, and

�A ∶ A ∥ 1 → A
�A ∶ 1 ∥ A → A

�A,B,C ∶ (A ∥ B) ∥ C → A ∥ (B ∥ C)
sA,B ∶ A ∥ B → B ∥ A

defined with �A = cc �A ,�A = cc �A ,�A,B,C = cc �A,B,C and sA,B = cc sA,B .
This data makes TCG a symmetric monoidal ∼-category.

Proof. The bifunctor is constructed in Proposition 8.1.4. The coherence laws follow
from the symmetric monoidal structure of Ren along with Proposition 8.1.9.
It remains to establish naturality, which is now relatively direct. We detail naturality

of sA,B for illustration purposes: take � ∶ A ⊢ A′ and � ∶ B ⊢ B′. Observe
sA′,B′ ⋅ (� ∥ �) ≈ (� ∥ �) ⋅ s⟂A,B (8.1)

as follows directly by Corollary 7.2.13 applied to the obvious isomorphisms C+(� ∥
�) ≅ C+(� ∥ �) and S+(� ∥ �) ≅ S+(� ∥ �). From that we calculate:

sA′,B′ ⊙ (� ∥ �) ≈ sA′,B′ ⋅ (� ∥ �)
≈ (� ∥ �) ⋅ s⟂A,B
≈ (� ∥ �)⊙ cc

s⟂A,B
≈ (� ∥ �)⊙ cc sB,A
≈ (� ∥ �)⊙ sB,A

using Lemma 8.1.8, equation (8.1), Lemma 8.1.8 again, Proposition 8.1.9, and defini-
tion of sA,B . All other naturality squares follow using the same route.

Compact closed structure. Briefly recall that a compact closed category is a sym-
metric monoidal category where each object comes with a dual A∗ and two morphisms

�A ∶ A∗ ⊗A → 1 �A ∶ 1→ A⊗A∗ ,

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 194

the unit and the co-unit, satisfying two equations (see Theorem 8.1.12). A compact
closed category is automatically symmetric monoidal closed: the monoidal closure can
be defined asA ⊸ B = A∗⊗B. While this structure is not adequate to directly interpret
a programming language, it is the fundamental structure expected of an unpolarized
category of games, and it will be helpful for further constructions.
In TCG, the dual of a game A is as expected A⟂. The unit and co-unit are:

Definition 8.1.11. Consider A a tcg. The co-unit �A ∶ A⟂ ∥ A ⊢ 1 and unit �A ∶ 1 ⊢
A ∥ A⟂ , formed with ess respectively cc A⟂ and cc A with display maps respectively

)�A ∶ | cc A⟂ | → |A⟂ ∥ A ⊢ 1|
(1, a) → (1, (1, a))
(2, a) → (1, (2, a)) ,

)�A ∶ | cc A| → |1 ⊢ A ∥ A⟂|
(1, a) → (2, (1, a))
(2, a) → (2, (2, a))

are valid strategies.

Altogether, this provides the data for the following theorem:
Theorem 8.1.12. TCG is a compact closed ∼-category.

Proof. It remains to prove the two duality conditions:
cc A ≈ �A ⊙ (cc A ∥ �A)⊙ �A,A⟂,A ⊙ (�A ∥ cc A)⊙ �−1A
cc A⟂ ≈ �A⟂ ⊙ (�A ∥ cc A⟂)⊙ �−1A⟂,A,A⟂ ⊙ (cc A⟂ ∥ �A⟂)⊙ �

−1
A⟂

which follow from Corollary 7.2.13 using Proposition 7.3.1, Lemmas 6.4.4 and 7.3.14
and the direct verification that all matching pairs involved are causally compatible.
As a compact closed ∼-category, TCG is a model of MLL and hence of the linear

�-calculus. But not more: like Conway games, TCG has neither products nor coprod-
ucts (as analysed by Melliès [Melliès, 2004b]). It also does not support the resource
modality ! of Definition 7.1.26, which was defined on negative tcgs.

This missing structure may be recovered by switching to a polarized category of
games: here negative games, where Opponent always starts (see Definition 7.1.24).

8.2 Negative Winning Games
As mentioned earlier, in order to obtain the categorical structure required to interpret
programming language, one must commit to either negative games (which have prod-
ucts but no coproducts); or positive games (which have coproducts but no products).
A pleasant feature of game semantics is that this choice reflects the evaluation order
that one wishes to represent: call-by-name languages are naturally interpreted in cate-
gories of negative games, while call-by-value languages are interpreted in categories of
positive games [Honda and Yoshida, 1999]. Here, we focus on negative games.

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 195

Winning games. We also introduce another condition: winning games and strategies.
This mechanism, adapted from [Melliès, 2005, Melliès and Tabareau, 2007], has two
purposes: (1) it compensates the inherently affine nature of game semantics, tightening
the connections with relational-like semantics (see Section 10.4); and (2) it replaces the
traditional but often bulky notion of well-bracketing in banning control operators like
call/cc. We wire this into our ambient game semantics. We call this winning as it sets
as common objective for both players to reach a winning position with as many Player
as Opponent moves – and where intuitively speaking, all questions have an answer.

Relative Seely categories. Here, a reader familiar with categorical models of linear
logic might expect us to construct a Seely category, a categorical model of intuition-
istic linear logic [Melliès, 2009]. One can indeed construct a Seely category of thin
concurrent games [Castellan and Clairambault, 2021]. But that construction is slightly
unpleasant due to types such as o ⊸ (o⊗o), i.e. tensors appearing on the right hand side
of an arrow, which do not appear in our languages1. Worse, this construction breaks the
clean connection with the relational model. So we shall aim for a slightly weaker cate-
gorical structure called a relative Seely category, which slightly restricts the monoidal
closure, banning in particular tensors on the right of an arrow. Like Seely categories,
relative Seely categories still enjoy that the Kleisli category for ! is cartesian closed.

8.2.1 Relative Seely categories
Though that is a detour in our game-theoretic narrative, we must first define what we
mean by relative Seely categories. Relative Seely categories model the fragment of
intuitionistic linear logic with formulas those generated by the grammar

S, T ∶∶= ⊤ ∣ S&T ∣ A ⊸ S
A,B ∶∶= 1 ∣ A⊗ B ∣ S ∣ !S

splitting formulas into strict S, T and general A,B formulas. Note that this covers all
formulas involved in Girard’s call-by-name translation for types.
In the following definition, we make use of the standard notions of relative adjunc-

tions and relative comonads. For the reader unfamiliar with these, the definition also
contains explicit data. For full details, see Appendix A.
Definition 8.2.1. A relative Seely category is a symmetric monoidal category (, ⊗, 1)
equipped with a full subcategory s together with the following data and axioms:

• s has finite products (&, ⊤) preserved by the inclusion functor J ∶ s → .

• For every B ∈ there is a functor B ⊸ − ∶ s → s, such that there is

Λ(−) ∶ (A⊗ B,S) ≃ (A,B ⊸ S).

a bijection natural in A ∈ and S ∈ s.
1This triggers a duplication of the o on the left with conflict between the two copies. Monoidal closure

works, but with a cumbersome technical overhead that we prefer to avoid here. Note that products on the
right hand side of an arrow are fine; indeed we shall eventually form a cartesian closed Kleisli category.

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 196

• There is a J -relative comonad ! ∶ s → : we have, for every S ∈ s, an object
!S ∈ and a dereliction morphism derS ∶ !S → S, and for every � ∶ !S → T ,
a promotion �! ∶ !S → !T , subject to three axioms [Altenkirch et al., 2010]:

derT ◦�! = � (� ∶ !S → T)
der!S = id!S (S ∈ s)

(� ◦ �!)! = �! ◦ �! (� ∶ !S → T , � ∶T → U) ,

which make ! ∶ s → a functor, via !� = (� ◦ derS)! for � ∶ S → T .

• The functor ! ∶ s → is symmetric strong monoidal (s,&, ⊤)→ (, ⊗, 1), so

m0 ∶ 1→ !⊤ mS,T ∶ !S ⊗ !T → !(S&T)

are natural isos, additional compatible with promotion: the diagram

!Γ
⟨f,g⟩! //

⟨der,der⟩! ��

!(S&T)
m−1��

!(Γ&Γ)

m−1
&&

!S ⊗ !T77

f !⊗g!!Γ⊗ !Γ

commutes for all Γ, S, T ∈ s, f ∈ (!Γ, S), g ∈ (!Γ, T).

Note any Seely category is canonically a relative Seely category with = s. For anyrelative Seely category, the Kleisli category associated with !, denoted !, is cartesianclosed: it has objects those of s, and !(S, T) = (!S, T).
Lemma 8.2.2. For a relative Seely category , the Kleisli category ! is cartesian
closed with finite products given as in s, and function space S ⇒ T = !S ⊸ T .

Proof. The proof is essentially as for Seely categories; see Appendix A.1.
For TCG these definitions must of course be taken in ∼-categorical form: as before

this means that all operations preserve ∼, and all conditions hold up to ∼; yielding a
notion of relative Seely ∼-category. We omit the straightforward adaptation.
We now start building the concrete relative Seely ∼-category NTCG.

8.2.2 Playing Board Games
Objects ofNTCG are certain negative tcgs, equipped with an additional component �, a
so-called payoff function expressing the winning conditions. More precisely, � records
which configurations are complete and assigns responsibility of non-completeness to
one of the players otherwise. The resulting object will be the main notion of game used
in the rest of this monograph, so we need a distinctive name that remains “gamey”:

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 197

Boards. We now give the full definition of the objects of NTCG:
Definition 8.2.3. A board is a tcg A along with �A ∶ C (A) → {−1, 0,+1} a payoff
function, such that this data satisfies the following conditions:

invariant: for all � ∶ x ≅A y, we have �A(x) = �A(y),race-free: for all a A a′, we have polA(a) = polA(a′).forestial: for all a1, a2, a ∈ A, if a1, a2 ≤A a, then a1 ≤A a2 or a2 ≤A a1,alternating: for all a1, a2 ∈ A, if a1 _A a2, then polA(a1) ≠ polA(a2),

A −-board is additionally negative, and must also satisfy:

initialized: �A(∅) ≥ 0 .

Finally, a −-board A is strict if �A(∅) = 1 and all its initial moves are in pairwise
conflict. It is well-opened if it is strict with exactly one initial move.

The payoff function �A assigns a value to each configuration. Configurations with
payoff 0 are called complete: they correspond to terminated executions, which have
reached an adequate stopping point where in particular all calls have adequately re-
turned. Otherwise, �A assigns a responsibility for why a configuration is non-complete.
If �A(x) = −1 then Player is responsible, otherwise it is Opponent.

Basic −-boards. It seems natural to introduce first the boards for PCF base types.
Recall that in Figures 7.7, 7.8 and 7.9 we introduced tcgs U,B and N respectively for

the unit type, booleans and natural numbers. These three tcgs are turned into boards by
adjoining them a payoff function which, for all three, is defined similarly by

�(∅) = 1
�({q−}) = −1

�({q−, a+}) = 0

which is exhaustive as maximal configurations have only two elements.
We keep the notationsU,B andN for these boards. They are strict: the payoff function

essentially forces Opponent to ask the initial question. In these three basic boards,
maximal configurations have null payoff – as mentioned earlier, we call those complete:
Definition 8.2.4. Consider A a board, and x ∈ C (A).

We say that x is complete iff �A(x) = 0, and write x ∈ C 0(A).

Complete configurations are intuitively those where every call is answered, in that
they reflect the complete plays of traditional game semantics (see Definition 3.3.6).
They shall also inform the link with relational semantics: this will be detailed in Section
10.4, but note already that C 0(U),C 0(B) and C 0(N) are in bijection with the usual
relational model interpretation of the corresponding types.
The other basic −-boards are the units. In the presence of the payoff function the

empty tcg 1 splits into two units, reflecting the units of multiplicative and additive con-
junctions in linear logic: the top ⊤ has �⊤(∅) = 1, while the one 1 has �1(∅) = 0 – we
overload the notation for the empty tcg 1, which should not cause any confusion.

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 198

⊗ −1 0 +1
−1 −1 −1 −1
0 −1 0 +1
+1 −1 +1 +1

` −1 0 +1
−1 −1 −1 +1
0 −1 0 +1
+1 +1 +1 +1

Figure 8.1: Payoff for⊗ and `

Dual, tensor and par. First, the dual (Definition 7.1.23) extends with payoff via
�A⟂ (x) = −�A(x) as expected. Of course, the dual does not preserve −-boards.

Like the units, parallel composition splits into two:
Definition 8.2.5. Consider A and B two boards.
Their tensor A⊗ B and their par A` B are A ∥ B enriched with:

�A⊗B(xA ∥ xB) = �A(xA)⊗ �B(xB) , �A`B(xA ∥ xB) = �A(xA)` �B(xB)

with the operations⊗ and ` defined on {−1, 0,+1} in Figure 8.1.

The tensor of two −-boards is still a −-board, though tensor does not preserve strict
−-boards. The par also preserves −-boards, but we shall not use it on −-boards: if A
and B are −-boards, let us use A ⊢ B to denote the board A⟂ ` B used to define the
strategies from A to B. Observe that even if A and B are −-boards, A ⊢ B is not.

The with. We only consider the additive conjunction of linear logic: the with. But in
order to define it, we must first define a new operation of ess and tcgs.
Definition 8.2.6. Let A1 and A2 be two tcgs.

Then, we define their sum A1 + A2 as comprising the components:

events: |A1 ∥ A2| = |A1| + |A2|causality: (i, a) ≤A1∥A2 (j, a
′) ⇔ i = j & a ≤Ai a

′

conflict: (i, a) #A1∥A2 (j, a
′) ⇔ i ≠ j ∨ a #Ei a

′ ,
symmetry: � ∈ S (A1 ∥ A2) ⇔ ∃�i ∈ S (Ai), � = �1 ∥ �2 ,positive symmetries: �1 ∥ �2 ∈ S+(A1 + A2) ⇔ �1 ∈ S+(A1) & �2 ∈ S+(A2)negative symmetries: �1 ∥ �2 ∈ S−(A1 + A2) ⇔ �1 ∈ S−(A1) & �2 ∈ S−(A2) .

where, necessarily, one of �1 or �2 must be empty.

Ignoring the positive and negative symmetries, this also yields an operation + on
plain event structures with symmetry that we shall use later on.
If A,B are tcgs and xA ∈ C (A), we write (1, xA) ∈ C (A + B) as a shorthand for

{1}×xA and likewise for (2, xB) = {2}×xB ∈ C (A+B) for xB ∈ C (B). Note that allconfigurations ofA+B have the form (1, xA) for xA ∈ C (A) or (2, xB) for xB ∈ C (B).For non-empty configurations, this decomposition is unique. We shall also use the
corresponding notations for symmetries, with e.g. (1, �A) ∶ (1, xA) ≅A+B (1, yA) for
�A ∶ xA ≅A yA comprising all ((1, a), (1, a′)) for (a, a′) ∈ �A.

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 199

This sum operation yields the with operation on strict boards:
Definition 8.2.7. Consider A and B two strict −-boards.
Then, their with A&B is the strict −-board with tcg the sum A + B and

�A&B(1, xA) = �A(xA) , �A&B(2, xB) = �B(xB) ,

for non-empty configurations and �A&B(∅) = 1.

As we will see, this construction will give a cartesian product in the subcategory of
strict−-boards. It can also be applied to non-strict−-boards, but then it is not a product:
if one of theAi is not strict then the corresponding projection does not respect payoff (in
the sense of Definition 8.2.14), because we have set �A1&A2 (∅) = 1. On the other handhaving �A1&A2 (∅) = 0 breaks the correspondence with the relational model, since the
empty configuration does not correspond in a canonical way to one of the components.
In the sequel, we should use the obvious n-ary generalization of the product, with

respect to which any strict −-board decomposes into a with of well-opened −-boards:
Lemma 8.2.8. Consider A a strict −-board. Then there is a family (Ai)i∈I of well-
opened −-boards, unique up to isomorphism, such that A ≅ &i∈IAi.

Proof. Straightforward.
We need notations for configurations of this board. Writing C≠∅(A) (resp. S≠∅(A))

for the set of non-empty configurations (resp. symmetries) of A, we observe:
Lemma 8.2.9. Consider (Ai)i∈I a family of well-opened −-boards. Then there are

C≠∅(&i∈IAi) ≅
∑

i∈I C
≠∅(Ai)

S≠∅(&i∈IAi) ≅
∑

i∈I S
≠∅(Ai)

S≠∅
− (&i∈IAi) ≅

∑

i∈I S
≠∅
− (Ai)

S≠∅
+ (&i∈IAi) ≅

∑

i∈I S
≠∅
+ (Ai)

order-isos commuting with dom and cod.

Proof. Straightforward.
For x ∈ C≠∅(Ai) (resp. � ∈ S≠∅(Ai)) we write (i, x) ∈ C≠∅(&i∈IAi) (resp. (i, �) ∈

S≠∅(&i∈IAi). The final linear connective we shall consider is the linear arrow:

Linear arrow. First, we define it in the case the rhs board is well-opened:
Definition 8.2.10. Consider A a −-board and B a well-opened −-board.
Then, A ⊸ B has tcg as defined in Definition 7.1.25, and payoff function:

�A⊸B(xA ∥ xB) = �A⊢B(xA ∥ xB) = �A⟂ (xA)` �B(xB) .

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 200

U ⊸ U & U

q− q−

q+ q+ ✓+ ✓+

✓− ✓−

Figure 8.2: The board U ⊸ (U&U)

The definition of relative Seely categories requires us to define A ⊸ B not only
when B is well-opened (which has no particular status in the definition of relative Seely
categories), but when it is strict. In that case, A ⊸ B may be defined directly via the
decomposition of Lemma 8.2.8, as done in the following definition:
Definition 8.2.11. Consider A a −-board, and B a strict −-board, with B ≅ &i∈IBi.
Then, we define A ⊸ B = &i∈IA ⊸ Bi.

The construction is illustrated in Figure 8.2.2, in which we omit payoff. The con-
struction duplicates the argument arena, with one copy for each initial move of B. In
that, the reader familiar with Hyland-Ong games – or the attentive reader of Part I) will
recognize its arrow arena construction (modulo the conflict, see e.g. Figure 4.1).

It will be useful to have the analogue of Lemma 8.2.9 for the linear arrow:
Lemma 8.2.12. Consider A,B −-boards with B strict. Then, there are:

C≠∅(A ⊸ B) ≅ C (A) × C≠∅(B)
S≠∅(A ⊸ B) ≅ S (A) × S≠∅(B)
S≠∅
− (A ⊸ B) ≅ S+(A) × S≠∅

− (B)
S≠∅
+ (A ⊸ B) ≅ S−(A) × S

≠∅
+ (B)

order-isos commuting with dom and cod.

Proof. If B is well-opened, then C≠∅(A ⊸ B) ≅ C (A) × C≠∅(B) is obvious. Now if
B ≅

∑

i∈I Bi via Lemma 8.2.8, we compose bijections:
C≠∅(A ⊸ B) ≅

∑

i∈I
C≠∅(A ⊸ Bi)

≅
∑

i∈I
C (A) × C≠∅(Bi)

≅ C (A) × (
∑

i∈I
C≠∅(Bi))

≅ C (A) × C≠∅(B)

using Lemma 8.2.9, the well-opened case, distributivity, followed by Lemma 8.2.9
again. The same construction applies to symmetries in a compatible way.

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 201

Following this lemma, we adopt the convention that for each xA ∈ C (A) and xB ∈
C≠∅(B), xA ⊸ xB ∈ C≠∅(A ⊸ B) denotes the corresponding configuration.

Bang. The next definition enriches Definition 7.1.26 with payoff:
Definition 8.2.13. Consider A a −-board.

Then, !A has tcg as in Definition 7.1.26 enriched with:

�!A(∥i∈I xi) =
⨂

i∈I �A(xi) (I ⊆ ℕ, ∀i ∈ I, xi ≠ ∅)
�!A(∅) = 0

where ∥i∈I xi =
⨄

i∈I ({i} × xi).

So the payoff for the bang acts as a n-ary tensor for the non-empty components, while
the empty configuration gets assigned payoff zero. This means that it is considered
complete: a complete execution might not initiate any of the copies; but a copy initiated
must be brought to a complete state if the whole computation is to be complete.
A pleasing consequence of this definition is that if A is strict, then the symmetry

classes of complete configurations of !A are in one-to-one correspondence with finite
multisets of symmetry classes of complete configurations of A, informing the link with
the relational model – again, see Section 10.4 for more details.

8.2.3 Negative Winning Strategies
Winning strategies. First, we define what it means for a strategy to be well-behaved
with respect to payoff. Recall that this has two effects: it compensates for the inherently
affine nature of strategies, and it also replaces the traditional well-bracketing condition.
Intuitively, a strategy iswinningwhen its stopping points are complete, or the incom-

pleteness can be attributed – via the payoff function – to Opponent:
Definition 8.2.14. Consider A a board, and � ∶ A a strategy. We define conditions:

negative: for all s ∈ � minimal for ≤� , we have polA()� s) = −,winning: for all x� ∈ C+(�), �A()� x�) ≥ 0.

Negative means that Opponent always starts, also in strategies. Winning forces � to
be strictly linear rather than affine, i.e. it must investigate arguments not marked with a
!. For instance, the strategy displayed in Figure 8.3 is non-winning: as U is strict, the
fact that the strategy does not investigate its argument is punished by a payoff of −1 on
the left, yielding a global payoff of −1` 0 = −1 for the maximal configuration.
This definition also ensures a measure of well-bracketing, though it may not be obvi-

ous to the reader. Conceptually, Melliès and Tabareau’s insight is that well-bracketing
is a linearity constraint [Melliès and Tabareau, 2007]: in a well-bracketed completed
(in the sense that the initial question receives an answer) execution, each question re-
ceives exactly one answer. Still, it might be helpful to examine a concrete example of
how typically non-well-bracketed behaviour in the traditional sense is banned. Such an

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 202

U ⊸ U

q−

_���
✓+

Figure 8.3: An affine non-winning strategy

(U ⊸ U) ⊸ U

q−
+rryq+

,rrz
_���

q−

�))/
✓−

✓+

Figure 8.4: A non-winning strategy

example appears in Figure 8.4: the configuration without the gray event is +-covered.
Its payoff is (−1⊗+1)`0 = −1, where the −1 is the price of Player omitting to answer
the “pending” left-most question. But this is actually quite subtle and one should not
attempt to match this notion of well-bracketing with the traditional ones. In particular,
the same causal pattern may very well appear in a winning strategy: for instance, we
invite the reader to verify that the strategy in Figure 7.6 (on the left) is winning.
We obtain a ∼-category of −-boards and negative winning strategies:

Proposition 8.2.15. There is NTCG, a ∼-category with −-boards as objects, negative
winning strategies on A ⊢ B as morphisms from A to B, and ≈ as equivalence.

Proof. Copycat. Negative is immediate by inspection of Definition 6.4.1. For winning,
consider xA ∥ xA ∈ C+(cc A) exploiting Lemma 6.4.4. Then, �A⊢A(xA ∥ xA) = −p`pfor p = �A(xA), and for all p ∈ {−1, 0,+1}, −p` p ≥ 0 as required.

Composition. For negative, assume w.l.o.g. that there is p ∈ � ⊙ � minimal positive.
In particular, x� ⊙ x� = {p} ∈ C+(� ⊙ �). Now p cannot occur in C , as minimal
events in C are negative, so it must occur in A. That means x� ∈ C+(�) is non-
empty. As � is negative, there is a minimal (necessarily) negative event in x� , which
must occur in B. As x� and x� are matching, x� is non-empty as well. By negative,
there is a minimal (necessarily) negative event in x� , which must occur in C . But as
)�⊙�(x� ⊙ x�) = x�A ∥ x

�
C , x� ⊙ x� must have an event occurring in C , absurd.

For winning, consider x� ⊙ x� ∈ C+(� ⊙ �), with)�⊙�(x� ⊙ x�) = x�A ∥ x
�
C . If

�A(x�A) = −1, then �A⊢C (x�A ∥ x�C) = 1 and we are done. Likewise if �C (x�C) = 1,
we are done, so assume neither. Now if �A(x�A) = 1, as � is winning we must have
�B(x�B) = �B(x�B) = 1 as well; and as � is winning this entails �C (x�C) = 1, absurd.
Symmetrically, �C (x�C) = −1 entails �A(x�A) = −1, absurd. The only case left has
�A(x�A) = �C (x

�
C) = 0, so that �A⊢C (x�A ∥ x�C) = 0 ≥ 0 as required.

The properties of the equivalence relation≈ packaged in Proposition 7.4.15 are undis-
turbed by these now conditions and apply transparently.

8.2.4 Symmetric Monoidal Structure
We now extend the symmetric monoidal structure.

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 203

Tensor. First, we extend the tensor of strategies:
Proposition 8.2.16. The tensor operation of Definition 8.2.5 yields a ∼-bifunctor:

(−⊗ −) ∶ NTCG × NTCG → NTCG .

Proof. Consider � ∶ A ⊢ B, � ∶ C ⊢ D, their tensor � ⊗ � is defined on strategies as
in Proposition 8.1.1. We must check that this preserves negative and winning.
Negative. Consider m ∈ � ∥ � minimal. Seeking a contradiction, assume m is pos-

itive, so {m} is +-covered. By Proposition 8.1.1, {m} may be written as x� ∥ x� ∈
C+(� ⊗ �). As)�⊗� (m) ∈ A⊗ C ⊢ B ⊗D, m occurs in one of the four components.
Say w.l.o.g. that it is in A or B, then x� must be a singleton. But as � is negative,)� x�is a singleton whose only event is negative in A ⊢ B. By the constraints on display
maps given by Proposition 8.1.1, it follows that m is negative, contradiction.

Winning. Consider x� ∥ x� ∈ C+(�⊗�). If �A(x�A) = −1 or �C (x�C) = −1, then weare done. As � and � are winning, this directly entails that we cannot have �B(x�B) = −1or �D(x�D) = −1 either, so �B(x�B), �D(x�D) ≥ 0. Now, assume �A⊗C (x�A ∥ x�C) = 1.
If �A(x�A) = 1, then as � is winning we have �B(x�B) = 1. But as �D(x�D) ≥ 0,
�B⊗D(x�B ∥ x

�
D) = 1 and we are done. Likewise if �C (x�C) = 1, we may conclude.

Lifting. The monoidal structure shall be obtained following Section 8.1.2, by lifting
maps. However, we must first define those renamings that yield winning strategies.
Definition 8.2.17. Consider A,B two boards, and f ∶ A→ B a renaming.

We say that f is winning if for all xA ∈ C (A), �B(f (xA)) ≥ �A(xA).

As expected, winning renamings preserve winning strategies:
Lemma 8.2.18. Consider winning renamings f ∶ A⟂ → A′⟂ and g ∶ B → B′.

Then, g ⋅ � ⋅ f ∶ A′ ⊢ B′ is winning.

Proof. Consider x� ∈ C+(�). If �A′ (f (x�A)) = −1 or �B′ (g(x�B)) = 1 then we are
done, so assume otherwise. If �A′ (f (x�A)) = 1, then �A′⟂ (f (x�A)) = −1, but since f
is winning, we have �A′⟂ (f (x�A)) ≥ �A⟂ (x�A) so �A⟂ (x�A) = −1 as well. Now since �
is winning, this entails �B(x�B) = 1. But then �B′ (g(x�B)) ≥ �B(x�B) as g is winning,
so �B′ (g(x�B)) = 1, contradiction. Symmetrically, if �B′ (g(x�B)) = −1, this entails
�A′ (f (x�A)) = −1 as f,� and g are winning, contradiction.
It follows directly that we may lift winning renamings to strategies:

Corollary 8.2.19. Consider f ∶ A → B a winning renaming. Then,

(1) cc f ∶ A ⊢ B is a negative, winning strategy,
(2) cc

f ∶ B⟂ ⊢ A⟂ is a negative, winning strategy.

Proof. Immediate by Lemma 8.2.18.
And finally, we deduce the symmetric monoidal structure:

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 204

Proposition 8.2.20. Proposition 8.2.16 along with the data of Proposition 8.1.10makes
NTCG a symmetric monoidal ∼-category.

Proof. Direct from Propositions 8.2.16, 8.1.10 and Corollary 8.2.19.

8.2.5 Cartesian Product of Strict −-Boards
Next, we must define the cartesian structure. Recall from the definition of relative Seely
categories (Definition 8.2.1) that the cartesian product is not required to be defined on
the whole category, but only on a full subcategory s. Here, we will consider the full
∼-subcategory NTCGs with as objects the strict −-boards.

Projections. First, we define the projections. First we need renamings:
Lemma 8.2.21. Consider A,B strict −-boards.
The injections �A ∶ A⟂ → (A&B)⟂, �B ∶ B⟂ → (A&B)⟂ are winning renamings.

Proof. Immediate verification.
The above lets us define the projections via lifting:

�A =

cc

�A ∶ A&B ⊢ A , �B =

cc

�B ∶ A&B ⊢ B

winning negative strategies by Corollary 8.2.19.

Pairing. As for earlier constructions, we build pairing via a universal construction:
Proposition 8.2.22. For−-boardsΓ, A, B, withA,B strict, and negative winning strate-
gies � ∶ Γ ⊢ A, � ∶ Γ ⊢ B, there is a negative winning strategy ⟨�, �⟩ ∶ Γ ⊢ A&B,
unique up to iso, s.t. there are order-isos:

C+(�) + C+(�) ≃ C+(⟨�, �⟩)
S+(�) + S+(�) ≃ S+(⟨�, �⟩)

commuting with dom, cod, and such that for all �� ∈ S+(�) and �� ∈ S+(�), we have

)
⟨�,�⟩(��(��)) = ��Γ ∥ (�

�
A ∥ ∅) ,)

⟨�,�⟩(�� (��)) = ��Γ ∥ (∅ ∥ �
�
B)

with �� ∶ C+(�)→ C+(⟨�, �⟩) and �� ∶ C+(�)→ C+(⟨�, �⟩) the induced injections.
Moreover, ⟨−,−⟩ preserves ≈.

Proof. Existence. We set ⟨�, �⟩ as having as ess � + � , with display maps given by
)
⟨�,�⟩(��(x�)) = x�Γ ⊢ (1, x

�
A)

)
⟨�,�⟩(�� (x�)) = x�Γ ⊢ (2, x

�
B)

where)�(x�) = x�Γ ⊢ x�A and)� (x�) = x�Γ ⊢ x�B; and likewise for symmetries. All
required verifications are immediate, and this yields a negative winning strategy.
Uniqueness. Direct consequence of Corollary 7.2.13.
Congruence. Direct from the definition.

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 205

We need one last lemma to conclude with the cartesian product:
Lemma 8.2.23. Consider Γ, A, B −-boards withA,B strict, and � ∶ Γ ⊢ A&B. Then,

C+(�A ⊙ �) ≅ {x� ∈ C+(�) ∣)� x� = x�Γ ⊢ (1, x
�
A)}

S+(�A ⊙ �) ≅ {�� ∈ S+(�) ∣)� �� = ��Γ ⊢ (1, �
�
A)}

are order-isomorphisms compatible with display maps – and likewise for �B .

Proof. A direct adaptation of the proof of Proposition 6.4.9.
Proposition 8.2.24. For any two strict −-boards A and B, A&B is a cartesian product
of A and B in NTCG. Moreover, ⊤ is terminal.

Proof. We prove the universal property of cartesian products.
Existence. For � ∶ Γ ⊢ A, � ∶ Γ ⊢ B we form ⟨�, �⟩ via Proposition 8.2.22. Then:

C+(�A ⊙ ⟨�, �⟩) ≅ {x ∈ C+(⟨�, �⟩) ∣) x = xΓ ⊢ (1, xA)}
≅ C+(�)

using Lemma 8.2.23 followed by Proposition 8.2.22, and those order-isos preserve dis-
play maps. The same reasoning applies to symmetries, so that �A ⊙ ⟨�, �⟩ ≈ � by
Corollary 7.2.13. Symmetrically, we have �B ⊙ ⟨�, �⟩ ≈ � as well.
Uniqueness. Consider � ∶ Γ ⊢ A&B such that �A ⊙ � ≈ � and �B ⊙ � ≈ � . First,

� ≅ ⟨�A ⊙ �, �B ⊙ �⟩

follows from Lemma 8.2.23, uniqueness of Proposition 8.2.22 and immediate verifica-
tions. Finally, we have ⟨�A ⊙ �, �B ⊙ �⟩ ≈ ⟨�, �⟩ as ⟨−,−⟩ preserves ≈.
Terminal. For any −-board Γ, it is immediate that the empty strategy � ∶ Γ ⊢ ⊤ is

a winning negative strategy. Moreover, given any � ∶ Γ ⊢ ⊤ negative, any minimal
event in � must be negative and hence map to an event in ⊤ – but there are none.

This concludes the investigation of cartesian products in NTCG.

8.2.6 Relative Closure
The final piece of the linear structure is the relative closure (see Definition 8.2.1). The
main operation wemust define is currying – as for the other operations, we characterize
it uniquely up to isomorphism via its configurations.
Proposition 8.2.25. Consider Γ, A, B −-boards with B strict.
For � ∶ Γ⊗A ⊢ B, there is Λ(�) ∶ Γ ⊢ A ⊸ B, unique up to iso, s.t. there are

Λ(−) ∶ C+(�) ≅ C+(Λ(�))
Λ(−) ∶ S+(�) ≅ S+(Λ(�))

order-isos commuting with dom, cod, and such that for all �� non-empty,

)Λ(�)(Λ(��)) = ��Γ ⊢ �
�
A ⊸ ��B (8.2)

whenever)�(��) = ��Γ ∥ �
�
A ⊢ �

�
B .

Moreover, Λ(−) preserves ≈.

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 206

Proof. Note that (8.2) relies on Lemmas 7.1.22, 8.2.9 and 8.2.12, via which there are
C (Γ⊗A) × C≠∅(B) ≅ C (Γ) × C≠∅(A ⊸ B) (8.3)
S (Γ⊗A) × S≠∅(B) ≅ S (Γ) × S≠∅(A ⊸ B) (8.4)

order-isos preserving dom and cod – by negativity of �, for �� ∈ S≠∅(�), ��B ≠ ∅.
Existence. We set Λ(�) with the same ess as �, so in particular C+(�) = C+(Λ(�))

and S+(�) = S+(Λ(�)). It remains to redefine the display map of Λ(�); but given the
equalities above and Lemma 7.1.9, (8.2) may be read as a definition.
Uniqueness. Follows from Corollary 7.2.13.
Congruence. Consider f ∶ � ≈ � a positive isomorphism. As Λ(−) leaves the ess

unchanged, it suffices to show that f ∶ Λ(�) ≅ Λ(�) is still a positive isomorphism.
Now, by hypothesis, we know that for all x� ∈ C (�), the following square commutes:

x�
f //

)� ��

f (x�)
)���

x�Γ ∥ x
�
A ⊢ x

�
B �Γ∥�A⊢�B

// y�Γ ∥ y
�
A ⊢ y

�
B

where �Γ ∥ �A ⊢ �B ∶ x�Γ ∥ x�A ⊢ x�B ≅+Γ⊗A⊢B y�Γ ∥ y�A ⊢ y�B is a positive symmetry.
Now, from Lemma 8.2.12 and definition of)Λ(�),)Λ(�), the following typechecks:

x�
f //

)� ��

f (x�)
)���

x�Γ ⊢ x
�
A ⊸ x�B �Γ⊢�A⊸�B

// y�Γ ⊢ y
�
A ⊸ y�B

and it commutes bymonotonicity of all constructions involved, sincemaps in this square
are in particular maps of event structures (regarding configurations as conflict-free event
structures) and maps coinciding on configurations must be equal (Lemma 6.1.12).
Finally, from Lemmas 7.1.22, 8.2.9 and 8.2.12, �Γ ⊢ �A ⊸ �B is positive.
Next in the construction of the closure comes that Λ(−) has an inverse:

Lemma 8.2.26. For any Γ, A, B −-boards with B strict, we have a bijection:

Λ(−) ∶ NTCG(Γ⊗A,B) ≃ NTCG(Γ, A ⊸ B)

preserving and reflecting ≈.

Proof. Given � ∶ Γ ⊢ A ⊸ B, Λ−1(�) ∶ Γ⊗A ⊢ B has same ess as �, with
)Λ−1(�)(x

�) = x�Γ ∥ x
�
A ⊢ x

�
B

for x� ∈ C≠∅(�), using (8.3) and likewise for symmetries via (8.4). As in the proof of
Proposition 8.2.25, via Lemma 7.1.9 this may be indeed read as a definition.
That Λ−1(−) preserves ≈ is as in the proof of Proposition 8.2.25. Finally, from the

definition we have Λ(Λ−1(�)) = � and Λ−1(Λ(�)) = � , actual equalities, as definitions
of Λ(−) and Λ−1 follow opposite directions of the isomorphism (8.3).

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 207

As usual, evaluation evA,B ∶ (A ⊸ B)⊗A ⊢ B may be defined as
evA,B = Λ−1(cc A⊸B)

the uncurrying of the identity, for A,B −-boards with B strict. We have:
Lemma 8.2.27. Consider A,B −-boards with B strict. Then,

C≠∅,+(evA,B) = { cc xA⊸xB ∣ xA ∈ C (A), xB ∈ C
≠∅(A)} ,

S≠∅,+(evA,B) = { cc �A⊸�B ∣ �A ∈ S (A), �B ∈ S
≠∅(B)}

with)evA,B (cc xA⊸xB) = (xA ⊸ xB) ∥ xA ⊢ xB and idem for symmetries.

Proof. Direct from Lemmas 6.4.4, 7.3.14 and the definition of Λ−1(−).
Finally, uncurrying may be equivalently computed by composing with evaluation:

Lemma 8.2.28. Consider � ∶ Γ ⊢ A ⊸ B a negative winning strategy.
Then, Λ−1(�) ≈ evA,B ⊙ (� ⊗ cc A).

Proof. We calculate:
C+(evA,B ⊙ (� ⊗ cc A))

≅ {(cc xA⊸xB , (x
� ∥ cc yA)) ∣ matching, c.c.}

= {(cc xA⊸xB , (x
� ∥ cc yA)) ∣ matching}

= {(cc x�A⊸x�B , (x
� ∥ cc x�A)) ∣ x

� ∈ C+(�)}

≅ C+(�)

using Propositions 7.3.1 and 8.1.1, Lemmas 6.4.4 and 8.2.27; a direct verification to
ensure that no causal loop arises; and resolving the constraints due to matching by
definition of the display maps. All order-isomorphisms involved are compatible with
display maps, and the same reasoning compatibly applies to symmetries, so altogether
we get a strong isomorphism by Corollary 7.2.13.

Finally, we may conclude the universal property of relative closure for NTCG:
Proposition 8.2.29. Consider Γ, A, B −-arenas with B strict.

For any � ∶ Γ ⊗ A ⊢ B negative and winning, there is a unique (up to ≈) Λ(�) ∶
Γ ⊢ A ⊸ B such that evA,B ⊙ (Λ(�)⊗ cc A) ≈ �.

Proof. Existence. First, Λ(�) is obtained by Proposition 8.2.25. Now we have
evA,B ⊙ (Λ(�)⊗ cc A) ≈ Λ−1(Λ(�)) ≈ �

by Lemma 8.2.28 followed by Lemma 8.2.26.
Uniqueness. If � ∶ Γ ⊢ A ⊸ B satisfies the desired property, then Λ−1(�) ≈ � by

Lemma 8.2.28, so � ≈ Λ(�) since Λ(−) preserves ≈ and by Lemma 8.2.26.

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 208

8.3 Non-Linear Structure
Next, we describe the non-linear structure in boards.

8.3.1 The Resource Modality
Last but not least, we must define !, the resource modality. This is where all the some-
what heavy handling of symmetries up to now finally strikes in.

Functorial action. On a strict −-board A, the (non-strict) −-board !A was defined in
Definition 8.2.13. We must extend it to a functor, thus first define the functorial action.
As observed below Definition 7.1.26, the construction !(−) applies to plain ess, so

we may form the ess !� which we must equip with a display map. For that, we use:
Lemma 8.3.1. For E an ess, there is an order-isomorphism

[−] ∶ Fam
(

C≠∅(E)
)

≃ C (!E)

with Fam(X) the set of families of elements of X indexed by finite subsets of ℕ.

Proof. If (xi)i∈I is a family of non-empty configurations of E, we write
[(xi)i∈I] = ∥i∈Ixi =

⨄

i∈I
{i} × xi ∈ C (!E) ,

and this decomposition is clearly unique if we insist that all xis are non-empty.
This order-iso for configurations of !E is very much like similar isomorphisms we

encountered for other constructions, see e.g. Lemma 7.1.22 for parallel composition /
tensor, Lemma 8.2.9 with &, and Lemma 8.2.12 for ⊸. However, unlike those, it does
not extend to symmetries. This is because symmetries of !E do not restrict component-
wise, on the contrary, their role is precisely to span accross components. However:
Lemma 8.3.2. Consider A a strict −-board. Then, there is an order-isomorphism

[−] ∶ Fam(S≠∅
+ (A)) ≅ S+(!A)

compatible with dom and cod.

Proof. Direct from the definition.
In order to define the strategy !�, it suffices to assign a display map:

Proposition 8.3.3. Consider A,B strict −-boards, and � ∶ A ⊢ B negative winning.
Then, the ess !� may be equipped with a display map)!� such that

)!�([xi ∣ i ∈ I]) = [xiA ∣ i ∈ I] ⊢ [xiB ∣ i ∈ I]

where)�(xi) = xiA ⊢ x
i
B for i ∈ I; making !� ∶ !A ⊢ !B negative winning.

Moreover, !(−) preserves ≈.

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 209

Proof. Strategy. The display map defined above on configurations preserves unions
and cardinal; moreover it is straightforward to extend it to symmetries. This gives a
map of ess by Lemma 7.1.9, we omit the verifications that this yields a strategy.
Negative, winning. A n-ary analogue of the tensor (see Proposition 8.2.16).
Congruence. Consider f ∶ � ≈ � . We construct !f ∶ !� ≈ !� simply component-

wise. Clearly, it is an isomorphism, we must show that it commutes with the display to
the board up to a positive symmetry. For that, consider [xi ∣ i ∈ I] ∈ C (!�). For i ∈ I

xi
f //

)� ��

f (xi)
)���

xiA ⊢ x
i
B �iA⊢�

i
B

// yiA ⊢ y
i
B

where �iA ∈ S−(A) and �iB ∈ S+(B). It follows by Lemma 8.3.2 that the diagram

[xi ∣ i ∈ I] !f //

)!� ��

[f (xi) ∣ i ∈ I]
)!���

[xiA ∣ i ∈ I] ⊢ [xiB ∣ i ∈ I] [�iA∣i∈I]⊢[�
i
B ∣i∈I]

// [yiA ∣ i ∈ I] ⊢ [yiB ∣ i ∈ I]

typechecks, where [�iA ∣ i ∈ I] ∈ S−(!A) and [�iB ∣ i ∈ I] ∈ S+(!A). It also commutes
as it typechecks for all sub-configurations of [xi ∣ i ∈ I], all as constructions involved
are monotone and preserve cardinal, by Lemma 6.1.12 this implies commutation.
It remains to prove that !(−) is a ∼-functor:

Proposition 8.3.4. We have a ∼-functor !(−) ∶ NTCG → NTCG.

Proof. Preservation of copycat. We build an isomorphism !(cc A) ≈ cc !A. This is donevia Corollary 7.2.13, by constructing an order-isomorphism between S+(!(cc A)) and
S+(cc !A) compatible with dom and cod and with display maps. First, notice that

S+(cc !A) ≅ S (!A) (8.5)
by Lemma 7.3.14. From the definition and Lemma 7.3.14, S (! cc A) comprises

� ∶ [xiA ∥ x
i
A ∣ i ∈ I] ≅ [yjA ∥ y

j
A ∣ j ∈ J]

given by some bijection � ∶ I ≃ J and �i ∥ �i ∶ xiA ∥ xiA ≅ ccA y
j
A ∥ j

j
A – but this is

clearly isomorphic to the data of � ∶ I ≃ J and a family of symmetries �i ∶ xiA ≅A yiA,
i.e. to S (!A). Together with (8.5), this yields a bijection S+(cc !A) ≃ S+(! cc A) which is
easily checked to be an order-isomorphism preserving display maps as required.
Preservation of composition. We build an iso S+(!(� ⊙ �)) ≅ S+(!(�)⊙ !(�)).
By definition and Proposition 7.3.1, symmetries in S+(!(� ⊙ �)) are given by a bi-

jection � ∶ I ≃ J , and for each i ∈ I , a symmetry
��i ⊙ �

�
i ∶ x

�
i ⊙ x

�
i ≅�⊙� y

�
�(i) ⊙ y

�
�(i)

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 210

in S+(� ⊙ �). Then � ∶ I ≃ J together with the family of ��i ∶ x�i ≅� y��(i) yields
�!� ∶ [x�i ∣ i ∈ I] ≅!� [y

�
j ∣ j ∈ J] .

Likewise, set I ′ = {i ∈ I ∣ ��i ≠ ∅}, and �′ ∶ I ′ ≃ J ′ as the restriction of �. Then,
�′ ∶ I ′ ≃ J ′ together with the family of ��i ∶ x�i ≅� y��′(i) for i ∈ I ′ yields

�!� ∶ [x�i ∣ i ∈ I
′] ≅!� [y�j ∣ j ∈ J

′] .

It is direct that �!� and �!� are causally compatible, forming �!�⊙�!� ∈ S+(!�⊙!�),
and that the construction preserves unions and display maps.
Reciprocally, symmetries in S+(!� ⊙ !�) are given by causally compatible

�!� ∶ x!� ≅!� y!� , �!� ∶ x!� ≅!� y!�

respectively given by �� ∶ I ≃ J and ��i ∶ x�i ≅� y��(i) for i ∈ I ; and by �� ∶ I ′ ≃ J ′
and ��i ∶ x�i ≅� y��′(i) for i ∈ I ′. Now, for i ∈ I , ��i is non-empty. Since � is negative,
(��i)B is non-empty. So as �!� and �!� are matching, we must have i ∈ I ′ as well with
��i non-empty. This also entails that �(i) = �′(i), so that I ⊆ I ′, J ⊆ J ′ and � ⊆ �′.
For i ∈ I ′ ⧵ I , set x�i = ∅, y�i = ∅, and ��i = ∅. Now it is direct that for any i ∈ I , the
symmetries ��i and ��i are matching causally compatible, so that ��i ⊙��i ∈ S+(� ⊙�).So altogether we have a bijection � ∶ I ≃ J , and for all i ∈ I a symmetry

��i ⊙ �
�
i ∶ x

�
i ⊙ x

�
i ≅�⊙� y

�
i ⊙ y

�
i ,

that is, the data for a symmetry in !(� ⊙ �). It is a direct verification that this transfor-
mation preserves unions and display maps.
These operations are defined on symmetries but the same applies to configurations

compatibly, informing an isomorphism !(� ⊙ �) ≈ !� ⊙ !� by Corollary 7.2.13.
Notice that we formulated the latter isomorphism directly on symmetries, whereas

in many earlier proofs, we worked on configurations and only remarked that the same
applies to symmetries. In most cases (e.g. tensor, with, composition), the construction
applies to configurations and symmetries in exactly the same way. But the situation is
really different for !(−) : this is the only construction that introduces new, non-trivial
symmetries, and so treats the two levels genuinely differently.

A ∼-comonad. It remains to equip !(−) with adequate structural morphisms, which
as before will be obtained by lifting appropriate renamings:
Lemma 8.3.5. Consider A a −-board. Then, we have winning renamings:

derA ∶ A⟂ → (!A)⟂
a → (0, a)

digA ∶ (!!A)⟂ → (!A)⟂
(i, (j, a)) → (⟨i, j⟩, a)

with ⟨−,−⟩ ∶ ℕ × ℕ ≃ ℕ a fixed bijection.

Proof. Direct verification.

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 211

Using these, for any −-board A we may obtain strategies for the comonad structure
derA ∶ !A ⊢ A , digA ∶ !A ⊢ !!A

respectively called dereliction and digging after the following components in linear
logic, simply by backward lifting: derA = cc

derA
and digA =

cc

digA
.

We shall prove that this makes (!,der,dig) a ∼-comonad onNTCG, but this requires
us to prove a number of coherence laws. For the symmetric monoidal structure, recall
that such coherence laws simply followed by equations on renamings, and concluding
from functoriality of lifting (i.e. Proposition 8.1.9). However here, the coherence laws
for renamings do not hold on the nose. Consider for example one of the unit laws:

!A
ccA

!!
digA
��
!!A

!derA
// !A

(!A)⟂cc
id

OO

digA

(!!A)⟂ oo
?derA

(!A)⟂

with the corresponding diagram on renamings on the right hand side, where ?derA(i, a) =
(i, derA(a)) = (i, (0, a)). This diagram for renamings does not commute: the bottom-
left path takes (i, a) to (⟨i, 0⟩, a) instead of (i, a) as it should. But of course, this is no
surprise: it is well-known that laws for exponentials require reindexing, and it is exactly
the reason why we constructed an equivalence ≈ on strategies authorizing reindexings.
Note then that the diagram above does commute up to positive symmetry, i.e.

digA◦?derA ∼+ id(!A)⟂

where recall that ∼+, defined in Definition 7.2.3, formalizes that the two maps are equal
up to a positive symmetry, i.e. reindexing of Player moves.

This property will be sufficient to establish positive isomorphisms, exploiting:
Lemma 8.3.6. Consider f, f ′ ∶ A → B winning renamings such that f ∼+ f ′ (re-
spectively, g, g′ ∶ B⟂ → A⟂ such that g ∼+ g′). Then, cc f ≈ cc f ′ (resp.

cc

g ≈

cc

g′).

Proof. The positive isos are simply identity maps between the underlying ess, and com-
mutation with the display maps up to positive symmetry is obvious.
Now, we can prove the expected comonad laws.

Proposition 8.3.7. We have (!,der,dig) a ∼-comonad on NTCG.

Proof. Naturality. We show naturality of derA. Consider � ∶ A ⊢ B. By Lemma
8.1.8, S+(� ⊙ derA) ≅ S+(�) with, for � ∈ S+(�),)(�) = (0, �A) ⊢ �B – where
(0, �A) stands for {((0, a), (0, a′)) ∣ (a, a′) ∈ �A}. Likewise by Proposition 7.3.1 and
Lemma 7.3.14, S+(derB ⊙ !�) comprises matching pairs of �!� ∈ S+(!�) and �B ∥
�B ∈ S+(cc B), where the latter displays to (0, �B) ⊢ �B . So by matching, �!� spans
only one copy of index 0, and thus must display to some (0, �A) ⊢ (0, �B). From this,

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 212

the required order-isomorphism follows easily.
Next, we show naturality of digA. First, symmetries in S+(!!�⊙digA) are somewhat

hard to describe: by Lemma 8.1.8, they correspond to those
� ∶ [[xi,j ∣ j ∈ Ji] ∣ i ∈ I] ≅ [[yk,l ∣ l ∈ Lk] ∣ k ∈ K] (8.6)

given by (1) a bijection � ∶ I ≃ K; (2) for each i ∈ I , a bijection �i ∶ Ji ≃ L�(i); and
(3) for each i ∈ I, j ∈ Ji, a symmetry �i,j ∶ xi,j ≅� y�(i),�i(j). This is displayed to

�!A ∶ [xi,jA ∣ ⟨i, j⟩ ∈ X] ≅ [yk,lA ∣ ⟨k, j⟩ ∈ Y]
�B ∶ [[xi,jB ∣ j ∈ Ji] ∣ i ∈ I] ≅ [[yk,lB ∣ l ∈ Lk] ∣ k ∈ K]

where X comprises those ⟨i, j⟩ such that i ∈ I and j ∈ Ji and xi,jA is non-empty, and
likewise for Y . For the other side of the naturality diagram, by Proposition 7.3.1 and
Lemma 7.3.14, symmetries in S+(digB ⊙ !�) correspond to pairs

�!� ∶ [xm ∣ m ∈ X] ≅ [yn ∣ n ∈ Y]
�!!B ∶ [[xi,j ∣ i ∈ I] ∣ j ∈ Ji] ≅ [[yk,l ∣ k ∈ K] ∣ l ∈ Lk]

which are matching, implying that X comprises those ⟨i, j⟩ such that i ∈ I and j ∈ Ji;
Y comprises those ⟨k, l⟩ such that k ∈ K and l ∈ Lk, and �!� first follows a bijection
� ∶ I ≃ K and for each i ∈ I a bijection Ji ≃ K�(i). This means that equivalently,

�!� ∶ [[x⟨i,j⟩ ∣ j ∈ Ji] ∣ i ∈ I] ≅ [[y⟨k,l⟩ ∣ l ∈ Lk] ∣ k ∈ K]

a symmetry in !!�. This matches (8.6); this correspondence is an order-iso compatible
with display maps so that !!� ⊙ digA ≈ digB ⊙ !� as required by Corollary 7.2.13.
Coherence. First, we define renamings:

?derA ∶ (!A)⟂ → (!!A)⟂ , ?digA ∶ (!!A)⟂ → (!!!A)⟂

simply copying the index for the outer !. Now, Proposition 8.3.4 (in particular, preser-
vation of copycat) provides us with isomorphisms of ess

! cc A ≅ cc !A , !(cc !A) ≅ cc !!A

which simply by verifying compatibilitywith displaymaps, yield positive isomorphisms
!(ccderA) ≈

cc

?derA , !(ccdigA) ≈

cc

?digA , (8.7)
so that finally, noting the positive symmetries between renamings

digA◦?derA ∼+ id
digA◦der!A ∼+ id
digA◦dig!A ∼+ digA◦?dig!A

we get the coherence laws up to ≈ by (8.7), Lemma 8.3.6 and Proposition 8.1.9.

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 213

This structure lets us define the particularly important following operation. If A and
B are strict −-boards and � ∶ !A ⊢ B, then its promotion is

�! ∶ !A ⊢ !B (8.8)
defined as �! = !(�) ⊙ digA, involving both digging and the functorial action of !.
Promotion may be taken as a primitive, letting us state:
Corollary 8.3.8. Consider the ∼-functor ! ∶ NTCGs → NTCG, together with: (1)
the dereliction strategy derA ∶ !A ⊢ A for strict A; and (2) the promotion operation
�! ∶ !A ⊢ !B for all � ∶ !A ⊢ B with A and B strict.
This yields a relative ∼-comonad, with respect to the inclusion NTCGs ⊆ NTCG.

Proof. Straightforward.
But since we have a regular comonad, why emphasize this less standard relative

comonad structure? Well, because as we shall see in Section 10.4, the comonad struc-
ture is not preserved by the collapse to the relational model: we shall see that the inter-
play between the collapse and !A only works well when A is strict.

Seely isomorphisms. First, we have an equality !⊤ = 1, so the corresponding iso-
morphism is realized by the identity. We need one final isomorphism

monA,B ∶ !A⊗ !B ≅ !(A&B) ,

which we shall obtain via the following renamings:
Lemma 8.3.9. Consider A,B two strict −-boards. Then, we have winning renamings:

monA,B ∶ (!(A&B))⟂ → (!A⊗ !B)⟂
(i, (j, m)) → (j, (i, m))

mon∗A,B ∶ (!A⊗ !B)⟂ → (!(A&B))⟂

(i, (j, m)) → (⟨i, j⟩, (i, m))

satisfying monA,B◦mon∗A,B ∼
+ id and mon∗A,B◦monA,B ∼+ id.

Proof. Straightforward.
As expected, the required isomorphismmonA,B is obtained by backward lifting, i.e.

monA,B =

cc

monA,B
, mon−1A,B =

cc

mon∗A,B
,

inverses up to positive iso as follows from Lemmas 8.3.9, 8.3.6 and Proposition 8.1.9.
Note that these strategies cannot be defined via forward lifting, as neithermonA,B nor

mon∗A,B would be valid renamings if typed without the (−)⟂, both failing receptive.

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 214

It remains to show that the Seely isomorphism is compatible with promotion. For
that, it is convenient to introduce one last map. Consider the winning renaming

conA ∶ ((!A)⊗ (!A))⟂ → (!A)⟂
(i, (j, a)) → (⟨i, j⟩, a) ,

called contraction (for A a −-board), which induces conA = cc

conA
∶ !A ⊢ !A ⊗ !A.

Using this additional strategy, we first prove the following lemma:
Lemma 8.3.10. Consider Γ, A, B strict −-boards, and � ∶ !Γ ⊢ A, � ∶ !Γ ⊢ B.

Then, the following diagram commutes up to positive isomorphism:

!!Γ
!⟨�,�⟩ //

con!Γ
��

!(A&B)

mon−1A,B
��

!!Γ⊗ !!Γ
!�⊗!�

// !A⊗ !B

Proof. By Lemma 8.1.8, the bottom-left path is (!� ⊗ !�) ⋅ con!Γ, with ess !� ∥ !� .
We now examine the +-covered symmetries in the upper-right strategy. Via Proposi-

tion 7.3.1 and Lemma 7.3.14, those correspond to symmetries � ∈ S+(!(�+ �)) whose
display on !(A&B) is in the image of mon∗A,B , i.e. of the form

{((⟨1, i⟩, (1, a)), (⟨1, j⟩, (1, a′))) ∣ ((i, a), (j, a′)) ∈ �A}
⊎ {((⟨2, i⟩, (2, b)), (⟨2, j⟩, (2, b′))) ∣ ((i, b), (j, b′)) ∈ �B}

for �A ∈ S (!A) and �B ∈ S (!B); i.e. symmetries using copy indices of the form ⟨1,−⟩
forA and ⟨2,−⟩ forB. This means that � also decomposes uniquely in this way, relating
events of � on indices ⟨1,−⟩, and events of � on indices ⟨2,−⟩. This directly informs
the required order-isomorphism with !� ∥ !�; we omit further details.

With this lemma, we may finally prove compatibility of mon with promotion:
Lemma 8.3.11. Consider Γ, A, B strict −-boards, and � ∶ !Γ ⊢ A, � ∶ !Γ ⊢ B.

Then, the following diagram commutes up to positive symmetry:

!Γ
⟨�,�⟩! //

⟨der,der⟩! ��

!(S&T)
m−1��

!(Γ&Γ)

m−1
&&

!S ⊗ !T77

�!⊗� !!Γ⊗ !Γ

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 215

Proof. Via Lemma 8.3.10, it remains to show that the following diagram commutes

!!Γ
con!Γ // !!Γ⊗ !!Γ

!Γ

digΓ
99

digΓ %%

!Γ⊗ !Γ

digΓ⊗digΓhh

!!Γ
!⟨derΓ,derΓ⟩

// !(Γ&Γ)
mon−1Γ,Γ

66

up to positive symmetry. We first observe that considering the winning renaming
�Γ ∶ (!(Γ&Γ))⟂ → (!!Γ)⟂

(i, (j, m)) → (i, (0, m)) ,

we have !⟨derΓ,derΓ⟩ ≈ cc

�Γ , as is establish by a – by now routine – analysis of sym-
metries of !⟨derΓ,derΓ⟩. The diagram then follows from Proposition 8.1.9, Lemma
8.3.6 and a direct computation of the composition of the renamings involved.
We may finally conclude the main result of this chapter:

Theorem 8.3.12. There is NTCG, a relative Seely ∼-category.

Proof. The only components which were not detailed are naturality of monA,B , andthe coherence diagrams making !(−) a strong symmetric monoidal ∼-functor. All these
follow from Proposition 8.1.9 via a now routine methodology; we omit details.
And of course (see Appendix A.1 for the construction of the Kleisli category):

Corollary 8.3.13. The Kleisli ∼-category NTCG! is cartesian closed.

In the sequel, we write ⊙! for Kleisli composition, i.e. composition in NTCG!.

8.3.2 Recursion
The last piece of structure that we shall construct in NTCG is the interpretation of the
fixpoint combinator, used to interpret recursion. Following the standard denotational
semantics practice, this infinite strategy will be obtained as a least fixed point with
respect to a partial order on concrete strategies.
First, we introduce this partial order:

Definition 8.3.14. Consider A a board, and �, � ∶ A winning strategies.
We write � ⊲ � if C (�) ⊆ C (�) – so in particular |�| ⊆ |�|, and additionally:

(1) for all s1, s2 ∈ �, s1 ≤� s2 iff s1 ≤� s2,(2) for all s1, s2 ∈ �, s1 #� s2 iff s1 #� s2,(3) for all x, y ∈ C (�) and bijection � ∶ x ≃ y, we have � ∈ S (�) iff � ∈ S (�),
(4) for all s ∈ �,)�(s) =)� (s),

i.e. all components compatible with the inclusion.

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 216

Strategies on A, ordered by ⊲, form a directed complete partial order, with respect
to which all operations on strategies are easily shown to be continuous. We have:
Proposition 8.3.15. Consider A a board, and D a directed set of strategies on A.
Then D has a least fixed point for ⊲, written ∨D, and satisfying:

C+(∨D) =
⋃

�∈D
C+(�) , S+(∨D) =

⋃

�∈D
S+(�) .

Moreover, if every � ∈ D is winning, then so is ∨D ∶ A.

Proof. We set |∨D| = ⋃

�∈D |�|, and take the union as well for all other components.
All verifications are straightforward, and omitted.

For any −-boards A and B this turns NTCG(A ⊢ B) into a dcpo. We have:
Lemma 8.3.16. The following operations on strategies are continuous:

−⊙ − ∶ NTCG(B ⊢ C) × NTCG(A ⊢ B) → NTCG(A ⊢ C)
−⊗ − ∶ NTCG(A ⊢ B) × NTCG(C ⊢ D) → NTCG(A⊗ C ⊢ B ⊗D)
⟨−,−⟩ ∶ NTCG(Γ ⊢ A) × NTCG(Γ ⊢ B) → NTCG(Γ ⊢ A&B)
(−)! ∶ NTCG(!Γ ⊢ A) → NTCG(!Γ ⊢ !A)

Proof. Straightforward.
The plan is then to follow the standard denotational semantics route, and define the

recursion combinator via Kleene’s fixed point theorem, as the least fixed point of a
well-chosen functional continous via the proposition above.
For that, we must deal with a minor inconvenience: Kleene’s fixed point theorem ap-

plies to continuous functionals over a dcpowith a least element, but the dcpoNTCG(A)
of winning strategies over a board A does not in general have a least element. Indeed,
strategies on A cannot in general be empty, as they must have – by receptivity – events
matching the negative minimal events of A. But “matching” is loose: they are free to
name those events arbitrarily. We solve this as in [Castellan et al., 2019]: we choose
one minimal ⊥A ∶ A, serving as the canonical least element. Then for any � ∶ A, we
pick an isomorphic � ≈ �♭ ∶ A s.t. ⊥A ⊲ �♭, obtained by renaming minimal events.
We write A for the pointed dcpo of strategies above ⊥A. For this new operation:
Lemma 8.3.17. For any board A, the following operation is continuous:

(−)♭ ∶ NTCG(A)→ A .

Proof. Straightforward.
As all operations involved are continuous, for any strict −-board A we have

F ∶ !⊤⊢(A→A)→A → !⊤⊢(A→A)→A
� → (�fA→A. f (� f))♭ ,

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 217

continuous, written in �-calculus syntax relying on the constructions on strategies corre-
sponding to the cartesian closed structure of NTCG! [Lambek and Scott, 1988]. Here,
we use A→ B as a notation for !A ⊸ B. Hence by Kleene’s fixpoint theorem,

A =
⋁

n∈ℕ
F n(⊥) ∈ NTCG!(⊤, (A → A)→ A)

is a least fixpoint of F . Finally, in the presence of a strict −-board Γ serving as context,
we set Γ,A = A ⊙! eΓ where eΓ ∈ NTCG!(Γ, ⊤) is the terminal morphism, yielding

Γ,A ∈ NTCG!(Γ, !(!A ⊸ A) ⊸ A) (8.9)
which will provide the interpretation of recursion throughout this monograph.

8.4 History and Related Work
Compact Closed Category. Following Joyal’s compact closed category of Conway
games [Joyal, 1977], it is certainly expected that a category of unpolarized games should
be compact closed – a notable exception to that is of course Blass games [Blass, 1992]
which famously do not form a category. A detailed analysis of this so-called “Blass
problem” in the context of Conway games may be found in [Melliès, 2004b].
For our particular technical setting of concurrent games on event structures, the com-

pact closed structure was first described in [Castellan et al., 2017a] without symmetry,
and extended to thin concurrent games in [Castellan et al., 2019].

Seely Category. Seely categories is a convenient categorical axiomatization of mod-
els of intuitionistic linear logic, in the presence of a product. Many categories of neg-
ative games form Seely categories, starting with simple games [Hyland, 1997] with
respect to several choices of exponential modalities.
In the original presentation of thin concurrent games (first in conference version in

[Castellan et al., 2015] then detailed in [Castellan et al., 2019]), we did not construct
a model of intuitionistic linear logic. Indeed, we opted to construct a category called
Concurrent Hyland-Ong games, with objects exactly the same arenas as in traditional
Hyland-Ong games. We wanted a conservative extension of HO games: the appeal was
to make it easier to adapt and extend the developments that led to their versatility and
impact – and in particular, concepts such as justifiers and conditions on strategies such
as innocence. Technically, this was done by building a tcg from any Hyland-Ong arena
via a variant of the resource modality (inspired by [Harmer et al., 2007]) performing
duplications not just at the root, but deep within the arena.
In developing probabilistic concurrent games in [Castellan et al., 2018b], we reverted

to an AJM-style !, which made it easier to link with the weighted relational model. But
then we (re-)discovered (Melliès, at least, was certainly aware of this from his work
in asynchronous games) that justifiers, and in general the necessary ingredients to the
Hyland-Ong machinery, were already available in concurrent games even with an AJM-
style exponential! This is one of the advantages of the causal setting, as opposed to

CHAPTER 8. CONSTRUCTING GAMES AND STRATEGIES 218

traditional AJM games. In retrospect, this makes Concurrent Hyland-Ong Games mis-
guided: they suffer from the same defect as traditional Hyland-Ong games (lacking a
linear decomposition), while working in the Kleisli category of a Seely category of thin
concurrent games gives you the best of both AJM and HO worlds.
Concerning relative Seely category: from TCG one can get an actual Seely cate-

gory [Castellan and Clairambault, 2021]. But the general linear arrow construction is
awkward, and the interest of the added expressiveness is unclear for semantic purposes.
Finally, the full Seely category structure lacks a clean connection with relational seman-
tics. Relative Seely categories give a good compromise for semantics of call-by-name.

Winning Strategies. Finally, the payoff mechanism and winning strategies we use
here are an adaptation of similar mechanisms in [Melliès, 2005] (with a later refine-
ment in [Melliès and Tabareau, 2007]) where they serve essentially the same purpose
as here: they cope for the otherwise inherently affine nature of game semantics, making
strategies more linear and identifying the stopping configurations of games, those corre-
sponding points of the web in the relational model. Note that we first adapted this mech-
anism to concurrent games on event structures in [Clairambault and de Visme, 2020].
It might be unclear to the reader why a mechanism making strategies linear is ap-

propriate for a model intended for the languages considered in this monograph, which
are non-linear and include full recursion and divergence. Firstly, the term linear is not
really adequate; we should rather say “following the linearity constraints”, which are
made more liberal by using the exponential. Secondly, our notion of winningness does
not force termination, it only constrains resource usage of successful terminating exe-
cutions, if they exist. More precisely, our (new) restriction of winningness to+-covered
configurations has the subtle effect to prevent from forcing Player to respond in diverg-
ing branches, say i.e. a diverging boolean.

Part III

Disentangling Parallelism and
State

219

Introduction to Part III

Figure 8.5: The Inception of Parallel Innocence

220

221

Now comes the core of this monograph: from NTCG we build a cartesian closed cate-
gory_-Strat in which we disentangle parallelism and state, as in Section 1.7.

More precisely, we first show that_-Strat is an intensionally fully abstract denota-
tional model for IA�, by providing an interpretation-preserving functor

↺-Unf ∶_-Strat → ↺-Strat
to non-alternating play-based strategies as described in Chapter 5. The category_-Strat
is close to NTCG! but is not exactly that, for two reasons: firstly, because NTCG and
↺-Strat do not have the same objects, and there is no easy way to reconstruct an arena
in the sense of Hyland-Ong game from a board – so the objects of _-Strat will re-
member both. Secondly, nothing in NTCG guarantees the logical well-bracketing used
in ↺-Strat, so that must be reimposed as well. This is detailed in Chapter 9.
Once _-Strat is constructed along with its interpretation of IA� and its unfolding

to ↺-Strat, we set to build our two conditions on strategies, sequentiality and globu-
larity, respectively banning parallelism and state. We first focus on globularity. The
heart of globularity is parallel innocence, a condition that removes state by banning
certain causal patterns that are deemed inherently stateful. Parallel innocence can be
regarded as a conservative extension of traditional Hyland-Ong innocence, in the sense
that paired with sequentiality, we obtain a category (equivalent to) ⇵-Inn. As a con-
ceptually important aside, we show that parallel innocence allows a simple functor to
the relational model, compatibly with the structure of a model of intuitionistic linear
logic. Finally we introduce globularity, which refines parallel innocence by adding a
constraint with respect to Questions and Answers. This is detailed in Chapter 10.
Next, we focus on sequentiality – we show that in the presence of sequentiality,

↺-Unf can be refined to an alternating unfolding, an interpretation-preserving
⇵-Unf ∶_-Seq → ⇵-Strat

which entails that _-Seq is intensionally fully abstract for IA. We also show that in
combination with globularity, ⇵-Unf yields an interpretation-preserving functor

⇵-Unf ∶_-SeqGlob → ⇵-InnWB

proving_-SeqGlob intensionally fully abstract for PCF. This appears in Chapter 11.
Finally, it remains to establish that_-Glob is fully abstract for PCF�. This is provedby an elaborate finite definability argument. To bring concurrent strategies closer to

syntax, wemust first show that globular strategies enjoy a so-calledmeager form, akin to
the forest ofP-views for traditional sequential innocence. This meager form provides the
appropriate notion of finiteness or size of a globular strategy, on which the definability
argument operates. We then show a factorization result, to the effect that any globular
strategy factors into what is essentially a pure �-term, and a globular strategy on a first-
order arena. It remains to define those first-order strategies, which we do – up to the
equivalence generated by the relational collapse. This is detailed in Chapter 12.
Altogether, this disentangles parallelism and state.

Chapter 9

The Causal Semantics of IA�
and its Unfolding

The purpose of this chapter is to construct_-Strat – the causal analogue of↺-Strat,
the fully abstract model of IA� – and describe the interpretation of IA�.

The outline is as follows. In Section 9.1, we will first describe the interpretation
of IA� in NTCG! as constructed in Corollary 8.3.13. In Section 9.2, we shall refine
NTCG! into _-Strat, adding a missing condition so that it unfolds to ↺-Strat. In
Section 9.3, we detail the unfolding to ↺-Strat and prove full abstraction for IA�.

9.1 Interpretation of IA�
We rely on the cartesian closed ∼-category NTCG! from Part II (see Corollary 8.3.13).
Thus, building on the standard interpretation of the simply-typed �-calculus, it remains
to give an interpretation to all basic datatypes and primitives of IA�.

9.1.1 Interpretation of PCF�
Interpretation of types. The cartesian closed structure of NTCG! fixes the interpre-tation of the arrow constructor, which we must complete with an interpretation for the
ground types B,ℕ and U. Earlier we have already provided −-boards B, N and U for
those ground types, with for instance, for the booleans, the −-board: with for instance

B =
q−

tt+ ff+

In the sequel, we shall refer to these as the small boards for ground types. The small
ground boards are very natural, but in tension with the fact that in the play-based games

222

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 223

seq ∶ !(U & U) ⊢ U
q−

%oouq+0
✓−i

� $$,q+i+1
✓−j

� $$,
✓+
⟨i,j⟩

if ∶ !(B & X & X) ⊢ X
q−

#nntq+0
tt−i � $$,

q+2i+1
v−j

� ''.v+
⟨1,i,j⟩

if ∶ !(B & X & X) ⊢ X
q−

$nnuq+0
ff−i

� ''.q+2i+2
v−j

� $$,
v+
⟨2,i,j⟩

succ ∶ !N ⊢ N
q−

*qqxq+0
n−i � &&-

(n + 1)+i

iszero ∶ !N ⊢ B
q−.ss{q+0

0−i
� ##+tt+i

iszero ∶ !N ⊢ B
q−

(ppwq+0
(n + 1)−i

� ''.ff+i

Figure 9.1: Configurations of basic strategies for PCF

of Part I, a question may be answered multiple times (possibly with the same answer).
So as to avoid a cumbersome mismatch1, we introduce an alternative interpretation of
base types, where all possible answers are replicated. This is handled by:
Definition 9.1.1. Consider V = {a, b, c,…} an at most countable set of values.

We define the strict −-board ground(V) as having essp:

q−

a+0 … a+i … b+0 … b+j … c+0 … c+k … …

with symmetries all bijections only changing copy indices. All symmetries are positive;
negative symmetries are restricted to identities. Finally, the payoff function is:

� ∶ C (ground(V)) → {−1, 0,+1}
∅ → +1

{q−, v+i } → 0
x → −1 otherwise

Each value has countably many copies, with no conflict. Thus, when playing a value,
a strategy must provide an accompanying copy index. Player may answer several times,
either with the same or different values, but this is banned from strategies by thewinning
mechanism. However, Opponent may still answer several times (if the board appears

1In non-alternating games, (logical) well-bracketing corrects this. The mismatch occurs only in the up-
coming alternating unfolding, as in the alternating case well-bracketing is on strategies rather than on plays.

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 224

JM ; NK = seq⊙! ⟨JMK, JNK⟩
JifMN1N2K = if ⊙! ⟨JMK, JN1K, JN2K⟩

JsuccMK = succ⊙! JMK
JpredMK = pred⊙! JMK
JiszeroMK = iszero⊙! JMK

Jlet x = N inMK = letX,Y ⊙! ⟨JNK,Λ!(JMK)⟩

Figure 9.2: Basic interpretation clauses

pred∶!N ⊢ N
q−.ss{q+0

0−i � ""*
0+
⟨1,i⟩

pred∶ !N ⊢ N
q−*qqxq+0

(n + 1)−i
� %%,n+

⟨2,i⟩

Figure 9.3: Strategy for pred

in contravariant position) so that the model conveys information about the behaviour of
programs under a context that answers several times.
We define the large ground boards as U = ground({✓}), B = ground({tt, ff}) and

N = ground(ℕ) (the set of all natural numbers). As explained above, this extends to
all types of PCF by setting JA → BK = !JAK ⊸ JBK using the constructions from
Section 8.2.2, yielding for any type A a strict −-board JAK. Finally, a context Γ =
x1 ∶ A1,… , xn ∶ An is interpreted as JΓK = ˘

1≤i≤nJAiK. We insist that IA� can be
interpreted with the ground types set as U,B and N; or as U,B and N. We set the large
boards as our default choice so as to match with non-alternating games, but we may
sometimes refer to the small as well, because it allows for more succinct examples.

Interpretation of terms. A term Γ ⊢ M ∶ A of PCF is interpreted as a strategy
JMK ∈ NTCG!(JΓK, JAK) .

We invoke the cartesian closed structure of NTCG! – writing ⊙! for Kleisli com-
position, and Λ! for Kleisli currying. We skip the details of the interpretation of the
�-calculus combinators, which follows the standard lines of the interpretation of the
simply-typed �-calculus in a cartesian closed category [Lambek and Scott, 1988].
We must specify strategies for the term constructions that PCF adds to the simply-

typed �-calculus. For constants, we set JskipK ∶ U, JttK ∶ B, JffK ∶ B and JnK ∶ N as
the obvious strategies replying immediately the corresponding value (with copy index
0). For all other combinators, the interpretation is in Figure 9.2. The strategies used
are described in Figures 9.1, 9.3 and 9.4. The notation we employ is symbolic: the
strategies comprise a branch for each instantiation of the copy index parameters i, j and
the value parameters v,w,… . For instance, the strategy if has as configuration that
shown in Figure 9.5 as nothing prevents Opponent from answering a question multi-
ple times – this is in contrast with ↺-Strat, where plays were always assumed to be
well-bracketed. Recall also from Section 8.3.1 that ⟨−,… ,−⟩ ∶ ℕn ≃ ℕ denotes any
bijection. Strategies specified symbolically as above carry a specific choice determin-
ing the copy indices of Player moves from those of Opponent moves. This choice does
not matter up to positive isomorphism; the only thing that matters is that there is never
any collision so that the display maps do satisfy the conditions of a concurrent strategy.

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 225

!(X & (!X ⊸ Y)) ⊢ Y
q−

"mmtq+0_���
v−i

� **0q+i+1_���%oou *qqxq−i1_���
… q−in_���

w−j
� &&-v+0 v+0 w+

⟨i,j⟩

Figure 9.4: Typical configuration of let

!(B & N & N) ⊢ N
q−

!mmsq+0>yy� _��� � ��%
tt−2

� ((/

tt−8
�))/

ff−0
� **0q+5 q+17_���
q+2Azz� }��$

2−1
�))0

7−0
�))0

7−3
�))02+

⟨1,8,1⟩ 7
+
⟨2,0,0⟩ 7

+
⟨2,0,3⟩

Figure 9.5: Example of a configuration of if

!(X & X & (!X ⊸ !X ⊸ Y)) ⊢ Y

q−

#nnt #nntq+0
_���

q+1
_���

v−i

�))0

w−j

�))/q+
⟨i,j⟩+2

&oov (ppw -ssz
6vv� _���q−i1

_���

… q−in
_���

q−j1
_���

… q−jp
_���

u−k

�)
v+0 v+0 w+0 w+0 u+

⟨i,j,k⟩

Figure 9.6: Typical configuration of plet

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 226

w0−, w1−, … wn−, …

✓
+,
i ✓

+,
i ✓

+,
i

Figure 9.7: Vw

r−,

0+,i 1+,i 2+,i …

Figure 9.8: Vr

g−, rl−,

✓
+,
i ✓

+,
i

Figure 9.9: S

For let, the strategy implements a memoization mechanism: it evaluates on X first
obtaining a value v, which it feeds to the function argument each call. The interpretation
is completed with JAMK = Γ,A ⊙! JMK for Γ ⊢ M ∶ A → A, using (8.9).

Semantics of parallelism. This is extended to PCF� simply by adding the clause

JΓ ⊢ let
(

x1 = N1
x2 = N2

)

inM ∶ Y K = pletX,Y ⊙! ⟨JN1K, JN2K,Λ!(Λ!(JMK))⟩

via the strategy pletX,Y with typical configurations as presented in Figure 9.6. It is in-
teresting to compare this definition with the non-alternating plays in Figure 5.11: the
diagram avoids listing all interleavings, hence staying much more faithful to the intu-
ition behind the behaviour of this primitive.

9.1.2 Semantics of state
The interpretation of references and semaphores closely follows that in (⇵-Strat and)
↺-Strat. For the types V and S, we first introduce strict −-boards Vw,Vr and S as

Vw =
¯
n∈ℕ

U , Vr = N , S = U&U

with moves renamed as illustrated in Figures 9.7 (where in Vw, all write requests are inpairwise conflict), 9.8 and 9.9. We set V = Vw&Vr, and JV K = V, JSK = S.

Stateless primitives. As in Section 4.2.2, only the interpretation of the primitives
newref and newsem is effectful – other primitives only send various queries to refer-
ences and semaphores, and as such are simple innocent strategies.
Accordingly, we set the interpretation of memory and semaphore accesses as:

JM ∶= NK = assign⊙! ⟨JNK, JMK⟩
J!MK = deref ⊙! JMK

Jgrab(M)K = grab⊙! JMK
Jrelease(M)K = release⊙! JMK

using the strategies of Figures 9.10, 9.11, 9.12, and 9.13. Finally, we set

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 227

!(N & V) ⊢ U
q−#nntq+0n−i � ''.wn+i+1

✓−j � ''.
✓+
⟨i,j⟩

Figure 9.10: assign

!V ⊸ N
q−

/ss{r+0
n−i

� ""*n+i

Figure 9.11: deref

!S ⊸ U
q−

.ss{g+0
✓−i

� ##+
✓+i

Figure 9.12: grab

!S ⊸ U
q−

.ss{rl+0
✓−i

� ##+
✓+i

Figure 9.13: release

JmkvarMNK = ⟨⟨JMK n ∣ n ∈ ℕ⟩, JNK⟩ , JmksemMNK = ⟨JMK, JNK⟩ ,

where JMK n is JMK applied to the constant strategy n (using the cartesian closed struc-
ture of NTCG!). It remains to define the semantics of newref and newsem.

Creation of reference and semaphores. For newref and newsem, again we follow
in the footsteps of Section 4.2.2. However, in contrast with respect to Section 4.2.2, we
must manage copy indices so as to satisfy the constraints of concurrent prestrategies.
For each I ⊆f ℕ and n ∈ ℕ, we define languages of infinite words on !V and !S:

cellIn = r−i ⋅ n
+
0 ⋅ cell

I⊎{i}
n ∣ wk−i ⋅✓

+
0 ⋅ cell

I⊎{i}
k (i ∉ I)

lockI0 = g−i ⋅✓
+
0 ⋅ lock

I⊎{i}
1 ∣ rl−i (i ∉ I)

lockIn = g−i ∣ rl
−
i ⋅✓

+
0 ⋅ lock

I⊎{i}
0 (i ∉ I, n > 0)

where symbols are moves in !V and !S respectively, separated via ⋅ for readability. Note
that positive moves should really include two copy indices: one for the outer bang, one
for the value – we show only the latter, the former is always the same as the previous
negative move. Here, I ⊆f ℕ collects the copy indices already used so that each new
copy index is fresh, ensuring that no single move appears twice. We set celln as (the
prefix language of) cell∅n and lockn as (the prefix language of) lock∅n. Theymay be viewed
as event structures by setting events to be finite words, causality the prefix ordering, and
setting any incomparable words to be in conflict. The two display maps

)cell ∶ |cell| → !V
sa → a

)lock ∶ |lock| → !S
sa → a

only keep the last move. As configurations of cell and lock are sets of prefixes of a branch
which is an alternating play in !V or !S, we set S (celln) to comprise those bijections
induced by plays s1 ≅A s2 symmetric onA (forA being !V or !S, see Definition 7.1.14).

Altogether, we get:
Proposition 9.1.2. We have two concurrent prestrategies cell ∶ !V and lock ∶ !S.

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 228

r−8
_���

w4−2
_���

w6−2
_���

0+0 ✓+0
=yy� _��� � ��&

✓+0

r−8
_���

w6−3
_���

w7−4
_���

4+0 ✓+0 ✓+0

Figure 9.14: Beginning of cell0

g−0
_���

g−1
_���

rl−2 rl−3

✓+0 ✓+0
H~~� w��!

g−0 rl−2
_���
✓+0

Figure 9.15: Beginning of lock0

We display a few early moves, of cell in Figure 9.14 and lock in Figure 9.15, with the
convention that all moves in the same row are in pairwise conflict. We observe that both
prestrategies fail courtesy: the immediate causal link ✓+0 _ r−8 , for instance, would beillegal for a strategy. Note that for semaphores, in Figure 9.15, trailing Opponent moves
are indeed maximal, Player has no response – an attempt to release a lock that has not
been grabbed, or to grab a lock that has not been released, triggers no response.
Note that although cell ∶ !V is only a prestrategy and not a strategy, we have:

Proposition 9.1.3. Consider � ∶ !V ⊢ A and � ∶ !S ⊢ A.
Then, the two prestrategies � ⊙ cell ∶ A and � ⊙ lock ∶ A are strategies.

Proof. We show it for cell, the proof for lock is the same. First, while cell is not courte-
ous, it is span-courteous in the sense of Definition 7.3.10. Thus, by Proposition 6.2.22,
� ⊙ cell is well-defined and a prestrategy. It remains to prove that � ⊙ cell is receptive
and courteous. But by Proposition 6.4.12, that is the case if and only if it is invariant
(up to strong iso) under composition with copycat. Thus we compute:

cc A ⊙ (� ⊙ cell) ≅ (cc A ⊙ �)⊙ cell

≅ � ⊙ cell ,

so by Proposition 6.4.12, � ⊙ cell is receptive and courteous as required.
It is then easy to deduce the following fact:

Corollary 9.1.4. Consider � ∈ NTCG(V, A) and � ∈ NTCG(S, A).
Then, � ⊙ cell ∈ NTCG(1, A) and � ⊙ lock ∈ NTCG(1, A).

Proof. Again, we prove it for � ⊙ cell. According to Proposition 8.2.15, we must show
that it is negative and winning in the sense of Definition 8.2.14.

Negative is trivial asA is negative. Forwinning, take x�⊙xcell ∈ C+(�⊙cell). Then,
x� ∈ C (�) must be +-maximal, otherwise it immediately contradicts +-maximality of
x� ⊙ xcell or minimality of (xcell, x�) in the sense of Proposition 7.3.9. Now in xcell,

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 229

maximal events (if any exists) must be positive, or contradict minimality of (xcell, x�).
But thus �!V(xcell!V) = 0, hence �A(x�A) ≥ 0 follows by � winning.
We now complete the interpretation. Consider Γ, x ∶ V ⊢ M ∶ X with

JMK ∈ NTCG!(Γ&V ,X)

omitting some brackets. Using the cartesian closed structure of NTCG!, we consider
Λ!Γ(JMK) ∈ NTCG(!V , !Γ ⊸ X)

which we compose with the memory cell. Summing up, for references and semaphores,
Jnewref x∶=n inMK = Λ!Γ

−1(Λ!Γ(JMK)⊙ celln) ∈ NTCG!(Γ,X)
Jnewsem x∶=n inMK = Λ!Γ

−1(Λ!Γ(JMK)⊙ lockn) ∈ NTCG!(Γ,X) .

concluding the interpretation of IA� in NTCG. It shall follow from this chapter that:
Theorem 9.1.5. NTCG! is adequate for IA�.

Proof. A consequence of the adequacy of ↺-Strat for IA� with Theorem 9.3.9.

9.1.3 Discussion on the Interpretation
What does the interpretation of IA� programs as concurrent strategies look like?

At first sight, the information on programs of IA� that the interpretation exposes is
conceptually close to that in↺-Strat: it is a representation of its interactive behaviour.
But the causal information makes it more explicit: for instance, the concurrent strategy
for the parallel composition operation is simply described by the diagram

!(U & U) ⊢ U

q−
'ppw

.ss{q+0
_���

q+1
_���

✓−i

� ''.

✓−j
� ""*
✓+
⟨i,j⟩

which is very close to the intention behind the many interleavings of the correspond-
ing non-alternating strategy. Of course that example is somewhat expected: it is the
canonical example illustrating what is gained by moving from an interleaving to a truly
concurrentmodel of concurrency. So beyond this example, let us consider various frag-
ments of IA� and provide examples illustrating the expressiveness of the model.

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 230

Sequential innocent strategies. Though the model is designed to support the inter-
pretation of rich, effectful concurrent programs, it is informative to consider first its
interpretation of simple, pure sequential programs.
For instance, the interpretation of the following simple program:

⊢ �fU→U.f (f skip) ∶ (U → U)→ U → U

yields the strategy whose behaviour is described, in symbolic notation, by
!(!U ⊸ U) ⊸ U

q−
.ss{q+0

-ssz
_���

q−i
� ##+

✓−j

� ""*q+i+1
-ssz

_���

✓+j

q−k
_���

✓−l;xx�
✓+0 ✓+l

Ignoring indices, onemay recognize the shape ofmeager innocent strategy fromDef-
inition 3.2.12, i.e. the forest of P-views – this is behind the link with sequential inno-
cent strategies in Section 11.3. Accounting for the replications implicit in the symbolic
notation, the full strategy has branches for all values of i, j, k, l, making the strategy
analogous to a normal form with replicated branches as in the resource calculus.

This shows that the traditional notion of P-view is really a way to recover the causal
structure for sequential, purely functional programs. Concurrent games push this handle
on causality way beyond purely functional sequential programs.

Causality of effectful programs. For pure sequential programs, causality simply
conveys syntactic dependency in the sense of imbrication within the syntax tree. But
what does it express for effectful programs? We consider the program

⊢ newref x in �fU→U. f (x ∶= 1); not (iszero !x) ∶ (U → U)→ B

that implements a sort of strictness testing: if f answers without evaluating its argu-
ment, then the read is triggered and returns the default value of the memory cell, 0 –
hence the program returns ff . If f does evaluate its argument before returning, then
the program returns tt. The interpretation yields a strategy which comprises as induced
sub-event structure that in Figure 9.16 where copy indices are indicative – unfolding
the exact definition of the interpretation might yield different choices. The full strategy
is of course infinite, taking into account all possible replications by Opponent.
This showcases a few important phenomena:

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 231

(U → U) → B

q−

,rrzq+0
-ssz

_���
q−0

K��	 s���
� ''.

✓−0
2uu} � !!) � &&-✓+0 ✓+0 tt+0 ff+0

Figure 9.16: A prefix of the strategy for an effectful program

First of all, the example has conflict, i.e. non-determinism. Why is that, since the
program above is in IA, a deterministic language? In fact, IA is only deterministic
when observed by a sequential context: here, the model is more permissive and allows
the argument function to simultaneously return and call its argument. This triggers a
race in memory, which may be resolved in two incompatible ways: the write may win
(leading to value tt), or the read may win (leading to value ff). Accordingly, the diagram
has two maximal configurations, corresponding to the two resolutions of this race.
Secondly, beyond merely describing the syntactic tree, causality also flows through

memory: tt+0 depends on q−0 as it can only happen after reading a value written by the
subterm whose evaluation is triggered by q−0 . In contrast, ff+0 only depends on✓−0 . Thismay seem strange, because it does not seem to imply that the read must happen before
the write for us to observe ff+0 . But ff+0 is only compatible with the copy of the write
acknowledgement ✓+0 that does depend on ✓−0 (which triggers the read).
When drawing strategies for impure programs we avoid the symbolic representation

used before, as it is very misleading. If Opponent duplicates q−0 in the diagram above,
this is not going to “only” duplicate the moves that depend on it: there will now be two
read requests and one write requests, leading to 3! = 6 ways to resolve this three-party
race. This will give rise to a complex pattern of conflicts too unwieldy to be pleasantly
drawn in a single diagram, allowing 6 maximal configurations. One of them will be

(U → U) → B

q−

/ss{q+0
*qqx

2uu}
_���

q−0
_��� � ��'

� ((/

q−1
_���

✓−0
2uu} � ""*

✓+0 ✓+0 tt+0

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 232

in which by squinting appropriately, the trained eye will recognize an execution where
the write triggered by q+0 was treated first, then the read, then the write triggered by q+1– the only possible alternating linearization of this diagram follows this order.

Non-determinism. The example above also shows that a strategy may have two non-
deterministic events with the same label. It is crucial that in this model, conflict is not
idempotent: for instance, ⊢ M = if choice then skip else skip ∶ U yields a strategy

U

q−
C{{� {��#

✓+0 ✓+0

with two completely indistinguishable copies of the same computational event ✓+0 . In-tuivively, there are two events because there are two derivations of M ⇓ skip – each
event carries its full causal history. Keeping these events separate is sometimes impor-
tant, because they may have different futures. For instance, in the strategy

(U → U) → U

q−

'ppw ,rrzq+0
_���*qqx

q+0
_���*qqxq−i

_���

q−j ✓−k

� &&-

✓−l

� &&-✓+0 ✓+k ✓+l

the two events q+0 look similar, but one will feed a value to the argument function while
the other will not, as in the term ⊢ �f. if choice then f skip elsef ⊥.
One may wonder if this very fine-grained non-deterministic branching information

makes the model sound with respect to must-testing. The answer is: not directly, be-
cause non-deterministic branches not yielding any observable result are erased when
performing the hiding. However, hiding can be amended to correct that: this is done in
[Castellan et al., 2018a] for affine games – we shall however not follow that route here.

Observable behaviour. It should be clear from the examples above that the model is
extremely intensional; it displays information that reflects the internal workings of the
program and is by no means observable. A natural question is then: what parts of the
concurrent strategy interpreting an IA� program is observable within IA�? We shall
provide an answer to that next, by unfolding to non-alternating game semantics.

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 233

9.2 Unfolding Causal to Non-Alternating Strategies
For the first time, we must simultaneously consider two kinds of strategies: concurrent
strategies, as in, event structures; and non-alternating strategies – which are, of course,
also concurrent! To avoid confusion, we shall say causal (pre)strategies for event struc-
ture based (pre)strategies, and non-alternating (pre)strategies otherwise.
Play-based strategies present programs by listing all their observable behaviour, pre-

sented as chronologically ordered plays. Causal strategies tell us more: why an action
was performed, which actions are independent, also keeping track separately of non-
deterministic branches. Intuitively, it is clear how to go from the former to the latter:
simply forget the causal structure and retain only the induced linear orderings.
While conceptually clear, doing this concretely will require us to address a number

of small but significant mismatches between the two settings.

9.2.1 A First Unfolding
Plays on games with symmetry. We start with linearizations of event structures.
Definition 9.2.1. Consider E an event structure.
A linearization on E is a sequence s = s1… sn which is:

valid: ∀1 ≤ i ≤ n, {s1,… , si} ∈ C (A) ,non-repetitive: ∀1 ≤ i, j ≤ n, si = sj ⇐⇒ i = j .

We writeℒ (E) for the set of linearizations on E.

If A is a board, then we also call s ∈ ℒ (A) a non-alternating play on A, and write
↺-Plays(A) = ℒ (A). Now recall that a board also carries a notion of symmetry (see
Section 7.1.1). As in Definition 7.1.14, this induces an equivalence on linearizations:
Definition 9.2.2. Let E be an ess and s, t ∈ ℒ (E). We say that s and t are symmetric,
written s ≅E t, if s and t have the same length, and we have

�js,t = {(si, ti) ∣ 1 ≤ i ≤ j} ∶ {s1,… , sj} ≅E {t1,… , tj}

a symmetry in S (E) for all 1 ≤ j ≤ n; writing s = s1… sn and t = t1… tn.

It is straightforward to establish:
Lemma 9.2.3. Consider A a board.
Then, the relation ≅A onℒ (A) is a length-preserving equivalence satisfying:

preservation: if s1… sn ≅A t1… tp, then for all 1 ≤ i ≤ n, polA(si) = polA(ti),restriction: if s1… sn ≅A t1… tn, then for all 1 ≤ i ≤ n, s1… si ≅A t1… ti,simulation: if s ≅A t and sa ∈ ℒ (A),
then there is tb ∈ ℒ (A) such that sa ≅A tb.

Proof. Straightforward from Definitions 7.1.5 and 9.2.2.
We shall rely on this to define our unfolding.

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 234

Linearizing strategies. As a first step towards the unfolding, we shall extract from
any causal strategy � on board A a subset of ↺-Plays(A) – a “non-alternating strategy
on A”, though no such formal object has been defined2.
To do so, our main observation is the following:

Lemma 9.2.4. Consider � ∶ A a causal strategy on board A. Then we have:

)� ∶ ℒ (�) → ℒ (A) =↺-Plays(A)
" → "

sm →)�(s))�(m) .

a length-preserving monotone function.

Proof. It is immediate from rule-abiding and locally injective that this is well-defined.
Monotonicity and preservation of length are by definition.

The overload of notations for)� should not cause any confusion.
The pre-unfolding of� is then obtained simply by projectingℒ (�) – all linearizations

of � – through)� . More precisely, we prove the following proposition:
Proposition 9.2.5. Consider � ∶ A a causal prestrategy on board A. Then, the set

↺-Plays(�) =)�(ℒ (�))

satisfies the following properties:

non-empty: " ∈↺-Plays(�) ,
prefix-closed: for all t ∈↺-Plays(�), is s ⊑ t, then s ∈↺-Plays(�),

and furthermore, if � is a strategy, then we additionally have:

receptive: if s ∈↺-Plays(�) and sa− ∈ ℒ (A), then sa ∈↺-Plays(�),
courteous: if sabt ∈↺-Plays(�) and pol(a) = + or pol(b) = −,

then if sbat ∈ ℒ (A), sbat ∈↺-Plays(�).

Proof. Non-empty, prefix-closed. Obvious since " ∈ ℒ (�),ℒ (�) is prefix-closed and
)� is monotone and length-preserving.
Receptive. Consider s ∈ ↺-Plays(�) and sa− ∈ ℒ (A). By definition, there is

u ∈ ℒ (�) s.t. s =)�(u). By definition of plays, |u| ∈ C (�) and)�(|u|) = |s| extends
with a−; so by receptive there is m ∈ |�| s.t. |u| extends with m and)� m = a. Hence,
um ∈ ℒ (�) and)�(um) = sa, so that sa ∈↺-Plays(�) as required.

Courteous. Consider sabt ∈ ↺-Plays(�) and assume pol(a) = + or pol(b) = −.
By definition, there is umnv ∈ ℒ (�) such that)�(u) = s,)�(m) = a,)�(n) = b
and)�(v) = t. Now, of course we cannot have n <� m. If m, n are incomparable,
then unmv ∈ ℒ (�) as well as needed. Otherwise, m <� n. But then, we must have
m_� n. Now, since pol(m) = + or pol(n) = −, by courteous we have a_A b as well,contradicting sbat ∈ ℒ (A).

2Recall that non-alternating strategies are sets of plays with pointers on arenas, not sets of plays on boards.

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 235

Note that these properties are essentially those defining a non-alternating strategy
(Definition 5.1.5), though based on ℒ (A) with A a board rather than based on plays
with pointers on an arena, i.e. as in a non-alternating version of AJM games.
It is tempting to attempt defining such a non-alternating version of AJM games, and

set it as target for the unfolding of causal strategies. After all, thin concurrent games and
AJM games rely on a similar mechanism for handling replication, via copy indices and
symmetry, whereas↺-Strat rests on plays with pointers. However, it turns out that the
AJM approach to uniformity breaks down beyond alternating deterministic strategies.
An appealing alternative is suggested by Melliès’ orbital games [Melliès, 2003], but
this has yet to be worked out. In this monograph, the non-alternating pre-unfolding
above will only be an intermediary towards the unfolding to plays with pointers.

Notations. In this section, the application of the display map to plays
)� ∶ ℒ (�)→ ↺-Plays(�) ⊆↺-Plays(A) ,

for a causal � ∶ A, is a central concept – it is thus worth introducing some specialized
notations (inspired from our notations on configurations) to reason on such situations.
As usual, plays are ranged over via s, t, u, v, etc; while single moves are ranged over

by a, b, m, n etc. For plays in a game, we often add a tag in subscript as in sA, tA ∈
↺-Plays(A). For linearizations in a causal strategy, we add a similar tag as a superscript,
with e.g. s� , t� ∈ ℒ (�). In that case, we write s�A ∈)�(s�) ∈↺-Plays(A).

9.2.2 Mixed Boards and Pointifixion
The above already gives a notion of unfolding of a causal strategy � ∶ A on a board A
as a set of non-alternating plays on A. However, the non-alternating game semantics of
Chapter 5 is based on plays with pointers. How shall we link the two?

A causal strategy plays on a board, whereas non-alternating plays operate on arenas,
which represent types without duplications. In principle, the arena may be obtained by
quotienting the board, but it is not clear how to formalize this elegantly. So instead,
we interpret types with a structure that stores both the arena and the board, along with
the links between the two. Besides connecting the two structures, this will serve as a
description of the “concrete” boards, that arise as the interpretation of types.

Mixed boards. This is captured by the notion of mixed boards:
Definition 9.2.6. A mixed board is (A,A, lblA) with A a strict board, A an arena, and

lblA ∶ |A| → |A|

a label function preserving polarities, satisfying the following requirements:

rigid: lblA preserves and reflects minimality, and preserves_,
transparent: for any x, y ∈ C (A) and bijection � ∶ x ≃ y,

then � ∈ S (A) iff � is an order-iso preserving lblA,

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 236

q−

q+0 … q+i … ✓+0 … ✓+n …

✓−0
…✓−j

… ✓−0
…✓−k

…

Figure 9.17: The strict board for U → U

q−

q+ ✓+

✓−

Figure 9.18: The arena

with additional components postponed until Section 12.1.1 (Definition 12.1.1).

Mixed boardsmake explicit how multiple moves in the board, kept apart by copy in-
dices, match the same in the arena. Figures 9.17 and 9.18 together form a representative
example, giving the mixed board interpreting the type U → U, where the label function
is clear. Transparent gives a concrete account of symmetries: as they must preserve the
partial order and the label, they only exchange between interchangeable copies.

Constructions on mixed boards. All the basic arenas and boards used in the inter-
pretation of ground types may be paired to yield mixed boards: for instance,

(X,X, lblX)

pairs the “large” boards for U,B,ℕ from Section 9.1 with the basic arenas from Section
3.2.1, via the obvious labelling map – the mixed boards for references and semaphores
are likewise straightforward. So as to lift this to the arrow type, we first need:
Lemma 9.2.7. Consider A a mixed board. We extend lblA to

lblA ∶ | !A| → |A|

by setting lblA(i, a) = lblA(a). Then, we still have:

rigid: lblA preserves minimality, and preserves immediate causality_,
transparent: for any x, y ∈ C (!A) and bijection � ∶ x ≃ y,

then � ∈ S (!A) iff � is an order-iso preserving lblA.

Proof. Rigid is obvious; we show transparent. If. Consider x, y ∈ C (!A) and a bijec-
tion � ∶ x ≃ y, assume � is an order-iso preserving lblA. Decompose x and y as

x = [xi ∣ i ∈ I] y = [yj ∣ j ∈ J]

via Lemma 8.3.1 – so that in particular for all i ∈ I , xi ≠ ∅ and for all j ∈ J , yj ≠ ∅.
If I and J are empty then � = ∅ ∈ S (!A). Otherwise, fix i ∈ I . As A is strict, xi hasexactly one initial move (i, a), take �(i, a) = (j, b). Set �(i) = j; done for all i ∈ I this
yields � ∶ I ≃ J , a bijection as � induces a bijection between the initial moves of x
and y. Now since � is an order-iso, for all (i, a′) ∈ x, we have �(i, a′) = (�(i), b′) for

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 237

some b′ ∈ x�(i). It is direct that � restricts to an order-iso �i ∶ xi ≃ y�(j) which still
preserves labels. This concludes the proof that � ∈ S (!A) as required.

Only if. Straightforward.
Via this lemma, all the remaining constructions on arenas extend transparently to

mixed boards, pairing the arena with the matching board construction. In particular,
(A,A, lblA) & (B,B, lblB) = (A&B,A&B, lblA&B)
(A,A, lblA)⇒ (B,B, lblB) = (!A ⊸ B,A⇒ B, lblA⇒B)

where the labels for mixed board constructions are given by
lblA1&A2 (i, a) = (i, lblAi (a))
lblA⇒B(2, b) = (2, lblB(b))

lblA⇒B(1, (i, a)) = (1, lblA(a)) (B well-opened)
lblA⇒B(1, (b, (i, a))) = (1, (b, lblA(a))) (B = &i∈IBi with Bi well-opened);

we omit the immediate verifications that these satisfy the conditions for mixed boards.
Overall, this yields an interpretation of each IA� type (or context)A as a mixed board

JAK. As a convention, we shall still letA,B, C etc range over mixed boards, and silently
coerce them to the board components (as in “let a ∈ A”, etc). The arena component
will be referred to explicitly via A,B, etc.

Pointifixion. Mixed boards are the adequate setting to link causal strategies with plays
with pointers. First, any play on the board A yields a play with pointer on the arena A:
Lemma 9.2.8. Consider A a mixed board. Then, the function

↶(−) ∶↺-Plays(!A) → ↺-Pre ↶Plays(A)

sending s = s1… sn ∈↺-Plays(A) to↶s with components,

moves: the sequence t = t1… tn with ti = lbl(si),pointers: for 1 ≤ i < j ≤ n, tj points to ti iff si _A ti.

is well-defined.

Proof. For s = s1… sn ∈↺-Plays(!A),↶s is t1… tn, where tj points to ti iff si _!A sj .We must show that every non-initial move has a pointer: if tj is non-initial, then sjis non-initial since lbl preserves minimality. So there is a _!A sj . But since s ∈
↺-Plays(!A), {s1,… , sj} is a configuration thus down-closed, so a = si for some 1 ≤
i < j. It follows that tj has a pointer to ti as required.

This is illustrated in Figure 9.19: on the lhs, we show a non-alternating play on
!(!(!U ⊸ U) ⊸ B) – in this figure, each move carries a sequence of copy indices,
from the outermost ! to the innermost3. On the rhs, we show the corresponding play

3This is different to the convention in most of this monograph where only the index for the innermost ! is
shown, the others being recovered from the immediate dependency.

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 238

!(!(!U ⊸ U) ⊸ B)
q−0

q+0,0
q−0,0,0
✓+0,0,0,0
q−0,0,1
✓+0,0,1,0

✓−0,0,0
q+0,1

q−0,1,0
✓+0,1,0,0
q−0,1,1
✓+0,1,1,0

✓−0,1,0
tt+0,0

⇝

(U → U) → B
q−

q+

q−
✓+

q−
✓+

✓−

q+

q−
✓+

q−
✓+

✓−

tt+

Figure 9.19: Recovering pointers

with pointers: it is obtained from the diagram on the lhs by making the immediate de-
pendency from the game an explicit component of the play, then removing copy indices.
Crucially, this construction is invariant under symmetry:

Proposition 9.2.9. Consider A a mixed board. Then, ↶(−) yields a function

↶(−) ∶ ↺-Plays(!A)∕≅!A → ↺-Pre ↶Plays(A) ,

injective and preserving length and prefix.

Proof. First, it preserves ≅!A: if s = s1… sn ≅!A t1… tn = t, then � = {(si, ti) ∣ 1 ≤
i ≤ n} ∈ S (!A); but by transparent (via Lemma 9.2.8), lbl(si) = lbl(ti) for all 1 ≤ i ≤ n.
Furthermore, by Lemma 7.1.6, � is an order-isomorphism, so si _A sj iff ti _A tjfor all 1 ≤ i < j ≤ n, hence↶s and↶t have the same pointers. Finally, the construction
clearly preserves length and prefix as required.
For injectivity, take s, t ∈ ↺-Plays(!A) with ↶s = ↶t , writing s = s1… sn and t =

t1… tn. Then, for all 1 ≤ i ≤ n, �is,t = {(sj , tj) ∣ 1 ≤ j ≤ i} is a bijection between
configurations of A. But since↶s = ↶t , �is,t is actually an order-iso preserving lbl, so by
transparent (via Lemma 9.2.8) we have �i ∈ S (!A). Hence, s ≅!A t.

This proposition makes explicit the folklore idea that plays with pointers are concrete
representatives for equivalence classes of plays with copy indices. Drawing inspira-
tion from [Danos et al., 1996], we call ↶s the pointifixion of s – note however that in
[Danos et al., 1996] the pointers must be reconstructed from the copy indices, whereas
here, they are already in s as the immediate causal links from the board.

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 239

!(!U ⊸ U) ⊸ B

q−
7ww�

q+0
7ww� _���

q−2
_���

✓−0
7ww� � ��'

✓+4 ff+6

written

a
_���
b

D||� y��"
c

_���

d
3uu~ _���f e

)�
←→

q−

q+0 ff+6

q−2 ✓−0

✓+4

Figure 9.20: A configuration of � ∶ !(!U ⊸ U) ⊸ B

Note that though pointifixion was defined as
↶(−) ∶↺-Plays(!A)∕≅!A → ↺-Pre ↶Plays(A) ,

the same definition may be transparently applied to obtain, for all A,
↶(−) ∶↺-Plays(A)∕≅A → ↺-Pre ↶Plays∙(A) ,

used without further details. Additionally, extensions of plays lift along these functions:
Lemma 9.2.10. Consider A a mixed board. We have the following properties:

(1) For all ta ∈↺-Pre ↶Plays∙(A), s ∈↺-Plays(A) such that t =↶s ,
there is sa′ ∈↺-Plays(A) such that ↶(−)(sa′) = ta;

(2) For all ta ∈↺-Pre ↶Plays(A), s ∈↺-Plays(!A) such that t =↶s ,
there is sa′ ∈↺-Plays(!A) such that ↶(−)(sa′) = ta.

Sketch. The proof exploits that since we have interpreted ground types duplicating an-
swers, for any extension of t ∈↺-Pre ↶Plays(A) one can find a “fresh” move in !A, with
a new copy index, matching the extension. However, formalizing this requires the full
definition of mixed boards which we prefer to postpone to Section 12.1.1.

Proposition 9.2.9 and Lemma 9.2.10 entail that plays with pointers on A may be
regarded exactly as non-alternating plays on the−-board !A considered up to symmetry:
Corollary 9.2.11. Consider A a mixed board. Then, ↶(−) yields a bijection

↶(−) ∶ ↺-Plays(!A)∕≅!A ≃ ↺-Pre ↶Plays(A) ,

preserving length and prefix.

The above development concerns non-alternating pre-plays with pointers (Definition
5.1.1); recall that the non-alternating plays with pointers from which non-alternating
game semantics are built are also (logically) well-bracketed (Definition 5.1.3).

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 240

a

b

c

d

e

f

)�
→

q−

q+0
q−2
✓−0
ff+

✓+2

↶(⋅)
→

(U → U) → B
q−

q+

q−

✓−

ff+

✓+

Figure 9.21: Constructing a play in the unfolding

9.2.3 Unfoldings of a Causal Strategy
Next, we describe how to unfold a causal strategy to a non-alternating strategy.

More precisely, we shall provide three different unfoldings:
(1) ↺-Unf∙ unfolds � ∶ A to a non-alternating thread-strategy on A,
(2) ↺-Unf! unfolds � ∶ !A to a non-alternating strategy on A,
(3) ↺-Unf unfolds � ∶ !A ⊢ B to a non-alternating strategy on A ⇒ B,

for all mixed boards A and B.

Unfolding to a thread-strategy. For A a mixed board, we may now unfold a causal
strategy � ∶ A to a set ↺-Unf∙(�) of threads. Plays in ↺-Unf∙(�) are obtained from
� in three steps. First (1) form the linearizations of configurations of �, i.e. ℒ (�)
(Definition 9.2.1). Then (2), project those to↺-Plays(A) by applying)� event by event.Then finally, (3) apply pointifixion. More formally, the definition reads as:
Definition 9.2.12. Consider A a mixed board, and � ∶ A a causal strategy.
The unfolding of � is the set ↺-Unf∙(�) = {

↶(⋅)(s�A) ∈↺- ↶Plays(A) ∣ s� ∈ ℒ (�)}.

Observe that not all linearizations of � contribute to the unfolding, only those which
by display and pointifixion yield a (logically) well-bracketed play.
We illustrate this in Figures 9.20 and 9.21. Figure 9.20 displays a configuration of a

causal � on !(!U ⊸ U) ⊸ B, first with our usual notational convention, then explicitely
separating the internal events of � from their display in the game. In Figure 9.21, we
start with the sequence abcdef ∈ ℒ (�); then follow the two steps of the construction
of the corresponding play of the unfolding: first by displaying it onA, then pointifixion.
In Figure 9.21, we insist that though pointers appear in the intermediary step, they are
not part of the structure of plays and only represent immediate causal dependency in
the game. On the right hand side, pointers are now explicitly part of the play.
As expected, this unfolding yields a valid non-alternating thread-strategy on A:

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 241

Proposition 9.2.13. Consider � ∶ A a causal strategy.
Then, ↺-Unf∙(�) ∶ A is a thread-strategy in the sense of Definition 5.1.7.

Proof. Clearly it is a set of threads. Non-empty and prefix-closed are immediate.
Receptive: consider t = ↶(−)(s�A) for s� ∈ ℒ (�), with tb− ∈ ↺- ↶Plays∙(A). By

Lemma 9.2.10, there is s�Aa− ∈ ↺-Plays(A) such that ↶(−)(s�Aa
−) = tb−. Now, by

Proposition 9.2.5, there is s�m ∈ ℒ (�) displaying to s�Aa−, and receptive follows.
Courteous: consider uabv = ↶(−)(u�Aa

′b′v�A) where a is positive or b negative, and
assume ubav ∈↺- ↶Plays∙(A). It follows that u�Ab′a′v�A ∈↺-Plays(A): if we had a′ _A
b′, this would mean that b points on a by definition of pointifixion. Hence, u�b′a′v�A ∈
↺-Plays(�) by Proposition 9.2.5, whose pointifixion is ubav as required.

Unfolding to a non-alternating strategy. Above, we have defined the unfolding of
� ∶ A as a thread-strategy↺-Unf∙(�). Next we unfold � ∶ !A to a full strategy:
Definition 9.2.14. Consider A a mixed board, and � ∶ !A a causal strategy.
The unfolding of � is the set ↺-Unf!(�) = {

↶(⋅)(s�!A) ∣ s
� ∈ ℒ (�)}.

With respect to Definition 9.2.12, the only difference is that we start with a causal
strategy on !A rather than A. The immediate consequence is that the unfolding process
will give us plays, rather than merely threads. As before, we have:
Proposition 9.2.15. Consider A a mixed board and � ∶ !A a causal strategy.
Then, ↺-Unf!(�) ∶ A is a non-alternating strategy as in Definition 5.1.5.

Proof. Same proof as for Proposition 9.2.13.
If � ∶ A is a causal strategy, we may unfold it as a thread-strategy with↺-Unf∙(�) ∶

A; or we may unfold its promotion as a full non-alternating strategy with↺-Unf!(�!) ∶
A. In the sequel we shall need to relate these two unfoldings: in particular,↺-Unf!(�!)is a single-threaded strategy whose generating thread-strategy is ↺-Unf∙(�):
Lemma 9.2.16. Consider causal � ∶ A, and �! ∶ !A its promotion.
Then, (↺-Unf∙(�))! =↺-Unf!(�!).

Proof. For ⊆, we show by induction on n ∈ ℕ that for all n ∈ ℕ, ↺-Unf∙(�)(n) asdefined below Definition 5.1.7, is included in ↺-Unf!(�!). This boils down to the fact
that whenever s ∈↺-Unf!(�!) and t ∈↺-Unf∙(�), then s ⊔ t ⊆↺-Unf!(�!).Consider u ∈ s ⊔ t. We have s =↶u and t =↶v for u =)�!(u′) and v =)�(v′) with

u′ ∈↺-Plays(�!) , v′ ∈↺-Plays(�) .
Now, u′ visits only finitely many copies for the outermost !, so considering

w′ = (i, v′1)… (i, v′n)

for v′ = v′1… v′n, with i ∈ N not visited by u′, we get w′ ∈↺-Plays(�!) satisfying that
writingw =)�!(w′), we have ↶w =↶v = t. But necessarily, u′ andw′ are disjoint; so we
may form z′ ∈↺-Plays(�!) the interleaving of u′ andw′ following the same scheduling

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 242

as u ∈ s ⊔ t, and by construction u =↶z for z =)�!(z′).For ⊇, consider s ∈ ↺-Unf!(�!). By definition, s = ↶u and u =)�!(u′) such that
u′ ∈ ↺-Plays(�!). By definition, u′ visits a finite set I of copy indices; each i ∈ I
yields a restriction u′i ∈ ↺-Plays(�). For each i ∈ I , we write ui =)�(u′i) and si = ↶ui– by construction, si ∈↺-Unf∙(�). Finally, s is an interleaving of all the si’s.

Unfolding from mixed board A to mixed board B. We wish to relate the Kleisli
category NTCG! to the cartesian closed category ↺-Strat – this induces two compli-
cations in the unfolding, departing from the simple case described above.
Firstly, the way the two hom-sets are constructed differs slightly. Indeed, a morphism

� fromA to B inNTCG! is a causal strategy on !A ⊢ B, i.e. (!A)⟂ ∥ B where !A,B are
causally independent. In constrast, non-alternating strategies from A to B have plays
in A ⇒ B, where the arrow construction imposes a dependency between (the initial
moves of) the two components. We must thus consider the currying of �:

Λ(�) ∶ !A ⊸ B .

Secondly, the configurations of a causal strategy � ∶ !A ⊸ B have at most one initial
move inB – in contrast with non-alternating plays onA⇒ B, in which arbitrarily many
initial moves in B may occur. This is solved by unfolding not Λ(�) but

Λ(�)! ∶ !(!A ⊸ B) ,

its promotion, which will be the basis of the unfolding. This prompts:
Definition 9.2.17. Consider � ∶ !A ⊢ B a causal strategy. Its unfolding is:

↺-Unf (�) =↺-Unf!(Λ(�)!) ∶ A⇒ B .

It is a consequence of Proposition 9.2.15 that this is well-defined.

9.3 _-Strat and Full Abstraction
We aim to prove that the unfolding above is as expected compatible with all operations
used in the interpretation of IA�, which shall bridge the two interpretations.
But we shall soon see that this will require us to add one further condition refining

NTCG! to_-Strat, dealing with the fact that non-alternating plays with pointers are
(logically) well-bracketed while arbitrary linearizations might not be.

9.3.1 Unfolding the Categorical Structure
We examine how unfolding preserves the categorical structure of NTCG!.

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 243

Unfolding of copycat. First, we unfold the identities of NTCG!. Here, not much is
happening conceptually; however technically the respective definitions of the causal
and non-alternating copycat strongly differ: while the causal copycat comes from an
explicit, concrete description (Definition 6.4.1), the non-alternating copycat is in a sense
the “free asynchronous completion” of the alternating copycat (Definition 5.2.5). This
indirect definition makes it quite unwieldy to reason with.
Proposition 9.3.1. Consider A a mixed board.
Then, derA ∶ !A ⊢ A unfolds to the non-alternating copycat strategy, ↺- cc A.

Proof. Recall fromDefinition 5.2.5 and Lemma 5.1.10 that the plays of↺- cc A are those
obtained from ⇵- cc A by receptivity and courtesy in the sense of Definition 5.1.5.

By Lemma 9.2.16, it suffices to prove the equality
↺-Unf∙(Λ(derA)) =↺- cc ∙A ,

where ↺- cc ∙A denotes the set of threads of↺- cc A.
For ⊆ consider s ∈ ↺-Unf∙(Λ(derA)), meaning that there are s = ↶t with t =

)Λ(derA)(u) for some u ∈ ℒ (cc A). Now, one can show that there is v ∈ ⇵-ℒ (cc A)and w− a sequence of moves of cc A negative in A ⊢ A, such that
vw− ∈↺-Plays(cc A)

has the same moves as u, and s.t. u may be obtained from vw− by courtesy, such that
(the pointifixion of) all intermediate plays are logically well-bracketed. Considering

t′ =)Λ(derA)(v) , s′ =↶t′ , t′′ =)Λ(derA)(vw
−) , s′′ = ↶t′′ ,

it is immediate that t′ ∈ ⇵- cc A. Thus, t′ ∈ ↺- cc A, and so t′′ ∈ ↺- cc A by receptivity.
But then, by construction s may be obtained from s′′ by courtesy, thus s ∈↺- cc A.For ⊇, consider s ∈ ↺- cc A a thread. By definition, s is obtained by courtesy and
receptivity from some s′ ∈ ⇵- cc A. Writing s′ ∈ ↺- ↶Plays(A1 ⇒ A2), for all positive-
ending t′ ⊑ s′, t′ ↾ A1 = t′ ↾ A2. By Corollary 9.2.11, there is u ∈ ⇵-Plays(A) s.t.
t′ ↾ A1 = ↶u. We may then define v ∈ ⇵-ℒ (cc A) by interleaving two copies of u in the
obvious way, s.t. v ↾ A1 = v ↾ A2 = u. From the definition, it is direct that writing
w =)Λ(derA)(v), s′ = ↶w. By Proposition 9.2.5, applying tow instances of courtesy and
receptivity as for s′ ⇝ s, we get z ∈↺-Plays(cc A) s.t. s =↶⋅ ()Λ(derA)(z)).

The definition of↺- cc A via saturation in Definition 5.2.5 is unpleasant: to prove that a
play is in↺- cc A we must provide a sequence of applications of courtesy and receptivity
from a play of ⇵- cc A. It seems hard to avoid while staying in the context of pointer
games. In contrast, derA offers via unfolding a concrete definition of ↺- cc A.

Well-bracketing. Unfolding preserves the identity; but composition is not preserved:
for � ∈ NTCG!(A,B) and � ∈ NTCG!(B,C), we may not have

↺-Unf (� ⊙! �) ⊆↺-Unf (�)⊙↺-Unf (�) .

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 244

The issue is that unfolding only keeps (logically) well-bracketed plays, but well-
bracketed plays in the unfolding of � ⊙! � may very well originate in pre-plays in the
unfoldings of � and � that fail well-bracketing. In order to obtain this inclusion, we
shall have to put an additional restriction on causal strategies:
Definition 9.3.2. Consider � ∶ !A ⊢ B a causal strategy. It is well-bracketed iff for
all sm+ ∈ ℒ (�), if ↶(⋅)()Λ(�)(s)) is (logically) well-bracketed, then so is ↶(⋅)()Λ(�)(sm)).

Alternatively, � is well-bracketed iff the unfolding only “cuts at Opponent moves”.
We skip the routine but lengthy verification of the following fact:
Theorem 9.3.3. There is_-Strat, a cartesian closed ∼-category with objects mixed
boards and morphisms those well-bracketed � ∈ NTCG!(A,B), which supports the
interpretation of IA�. Moreover there is an obvious forgetful ∼-functor

_-Strat → NTCG!

sending a mixed board to the underlying −-board, leaving morphisms unchanged.

Preservation of composition. The models_-Strat and ↺-Strat differ fundamen-
tally in that one is causal while the other is based on interleavings, but that in itself is
not hard to manage, via the mechanism of linearizations.
The real challenge is that the compositional mechanisms of these two models follow

significantly different principles: (1) _-Strat is constructed via the Kleisli category
of the linear model NTCG, while↺-Strat is inherently non-linear; (2)_-Strat uses
explicit copy indices, while↺-Strat uses pointers; and (3) the hom-set of_-Strat is
the board !A ⊢ B with no causal dependency between A and B, whereas↺-Strat uses
the arrow construction A ⇒ B (which seems unavoidable for a pointer-based model).
None of these are particularly challenging, but the three are deeply intertwinned and
must be managed simultaneously in the compatibility of unfolding with composition4.

We address the two directions of the unfolding separately. First:
Lemma 9.3.4. Consider � ∈_-Strat(A,B) and � ∈_-Strat(B,C).
Then, we have the inclusion ↺-Unf∙(Λ(� ⊙ �!)) ⊆↺-Unf (�)⊙↺-Unf (�).

Proof. For s ∈ ↺-Unf∙(Λ(� ⊙ �!)), by definition s = ↶(⋅)()Λ(�⊙�!)(s′)) for some s′ ∈
↺-Plays(� ⊙ �!). There is u′ ∈↺-Plays(� ⊛ �!) with visible restriction s′, and

u′�! ∈↺-Plays(�!) =↺-Plays(!�) , u′� ∈↺-Plays(�) .
are projections obtained applying move-by-move the (partial) projections of moves of
the interaction tomoves of the compound strategies as defined just above Lemma 6.2.14.
Now, u′ is displayed to v′ ∈ ↺-Plays(!A ∥ !B ∥ C) via)�⊛� . There is an implicit

dependency between moves minimal in the game: moves minimal in !B depend on the
minimal move in C . Likewise, there is a unique way to assign moves minimal in !A to

4Ideally, one would deal with them separately by introducing a separate model: a non-alternating play-
based games model based on copy indices rather than pointers – but we leave this out of scope.

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 245

those minimal in !B in a way compatible with)!Λ(�)(u′�!) ∈ ↺-Plays(!(!A ⊸ B)). We
form w′ ∈↺-I(A,B, C) by first applying labels to v′ as in Proposition 9.2.9, extended
with this assignment. Now from the constructions, direct verifications entail

w′ ↾ A,B ∈↺-Unf!(Λ(�)!) , w′ ↾ B,C ∈↺-Unf!(Λ(�)!) , w′ ↾ A,C = s ,

thus w′ is a witness for s ∈↺-Unf (�)⊙↺-Unf (�) as required.
These “direct verifications” include, in particular, that the restrictions ofw′ are (log-

ically) well-bracketed. That w′ is itself well-bracketed is established by immediate
induction, using that � and � are well-bracketed. Now, we focus on the other inclusion:
Lemma 9.3.5. Consider � ∈ NTCG!(A,B), � ∈ NTCG!(B,C).
Then, threads in ↺-Unf (�)⊙↺-Unf (�) are in↺-Unf∙(Λ(� ⊙ �!)).

Proof. Consider s ∈↺-Unf (�)⊙↺-Unf (�) a thread, so there is u ∈↺-I(A,B, C) s.t.
u ↾ A,B ∈↺-Unf (�), u ↾ B,C ∈↺-Unf (�), and u ↾ A,C = s. By hypothesis,

u ↾ A,B = ↶(⋅)()Λ(�)!(v
�)) , u ↾ B,C = ↶(⋅)()Λ(�)!(v

�))

for v� ∈ ↺-Plays(!�) = ↺-Plays(�!) and v� ∈ ↺-Plays(!�); but as v� has one initial
move, we consider v� ∈↺-Plays(�) with u ↾ B,C = ↶(⋅)()Λ(�)(v�)). We also have:

w� =)�!(v
�) ∈↺-Plays(!A ⊢ !B) , w� =)� (v�) ∈↺-Plays(!B ⊢ C) ,

and since u ↾ A,B and u ↾ B,C coincide on B, it is a direct verification that
↶(⋅)(w� ↾ !B) = u ↾ B = ↶(⋅)(w� ↾ !B) ,

so that w� ↾ !B ≅!B w� ↾ !B by Proposition 9.2.9. Now, writing configurations
x� = |v�| , x� = |v� | ,

this informs a symmetry � ∶ x�!B ≅!B x�!B . The difficulty is that this symmetry might
not be the identity, preventing us from synchronizing x� and x� .

So additionally, we note that u informs a linearization of the composite bijection

'[x� , �, x�] ∶ x� ∥ x�C
)�∥x�C≃ x�!A ∥ x

�
!B ∥ x

�
C

x�!A∥�∥x
�
C≃ x�!A ∥ x

�
!B ∥ x

�
C

)−1� ∥x�C≃ x�!A ∥ x
� ,

witnessing the fact that the triple (x� , �, x�) is causally compatible in the sense of Def-
inition 7.4.3. We write r ∈ ↺-Plays('[x� , �, x�]) for this linearization; it projects to
)(r) ∈↺-Plays(!A ∥ !B ∥ C) in the obvious way, and we have

↶(⋅)()(r)) = ū ∈↺- ↶Plays(A × B × C)

where ū is u without the pointers of initial moves in A and B.
Thanks to causal compatibility, Proposition 7.4.4 provides us with y� ∈ C (�!) and

y� ∈ C (�) causally compatible configurations, along with symmetries
'� ∶ x� ≅�! y

� , '� ∶ x� ≅� y� ,

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 246

such that we have '�!A ∈ S−(!A), '�C ∈ S+(C), and the following diagram commutes

x� ∥ x�C
)�!∥x

�
C//

'�∥'�C ��

x�!A ∥ x
�
!B ∥ x

�
C

x�!A∥�∥x
�
C //

'�!A∥'
�
!B∥'

�
C
&&

x�!A ∥ x
�
!B ∥ x

�
C

'�!A∥'
�
!B∥'

�
C

xx

x�!A∥)
−1
� // x�!A ∥ x

�

'�!A∥'
�~~

y� ∥ yC)�∥yC
// y!A ∥ y!B ∥ yC y!A∥)−1�

// y!A ∥ y�

following which the linearization r ∈ ↺-Plays('[x� , �, x�]) transports to a lineariza-
tion r′ ∈↺-Plays('[y� , y�]) satisfying)(r) ≅!A∥!B∥C)(r′), so that ↶(⋅)()(r′)) = ū.
Now by Proposition 6.2.7, '[y� ⊛y�] is order-isomorphic to y� ⊛y� ∈ C (� ⊛ �!).

Accordingly, r′ transports to r′′ ∈↺-Plays(y�⊛y�) such that ↶(⋅)()�⊛�!(r′′)) = ū, which
projects to z ∈ ↺-Plays(� ⊙ �!) such that ↶(⋅)()�⊙�!(z)) = s̄. But s is a thread so that
the pointers of initial moves in A are forced; accordingly ↶(⋅)()Λ(�⊙�!)(z)) = s.

Note that this inclusion does not require well-bracketing. Altogether:
Corollary 9.3.6. Consider � ∈_-Strat(A,B) and � ∈_-Strat(B,C).
Then, ↺-Unf (� ⊙! �) =↺-Unf (�)⊙↺-Unf (�).

Proof. For the first inclusion, we compute:
↺-Unf (� ⊙! �) = ↺-Unf (� ⊙ �!)

= ↺-Unf!(Λ(� ⊙ �!)!)
= ↺-Unf∙(Λ(� ⊙ �!))!
⊆ (↺-Unf (�)⊙↺-Unf (�))!
= ↺-Unf (�)⊙↺-Unf (�)

using definition of Kleisli composition, definition of ↺-Unf , Lemma 9.2.16, Lemma
9.3.4. Finally, we use that by Lemma 9.2.16, ↺-Unf (�) and ↺-Unf (�) are single-
threaded strategies so that their composition is, so it is stable under interleavings.
The other inclusion holds on threads by Lemma 9.3.5 and extends to all plays by

Lemma 9.2.16 since the non-alternating strategies involved are single-threaded.
Now, we may finally state:

Theorem 9.3.7. Unfolding yields a ∼-functor↺-Unf ∶_-Strat → ↺-Strat.

Proof. For any� ∈_-Strat(A,B),↺-Unf (�) is a non-alternating strategy onA ⇒ B,
single-threaded by Lemma 9.2.16, thus ↺-Unf (�) ∈ ↺-Strat(A,B). The only thing
remaining to check is that ↺-Unf preserves equivalence, i.e.

↺-Unf (�) =↺-Unf (�)
for all positive iso ' ∶ � ≈ � ∈ _-Strat(A,B). To prove that, consider s ∈
↺-Unf (�), i.e. there must be s� ∈ ℒ (�) such that ↶(⋅)()Λ(�)!(s�)) = s. But then

'(s�) ∈ ℒ (�)

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 247

and from the commutation in the game up to symmetry, it follows immediately that
)Λ(�)!(s

�) ≅!(!A⊸B))Λ(�)!('(s
�))

which entails that their pointifixion is the same by Proposition 9.2.9. Thus we have
found '(s�) ∈ ℒ (�) such that ↶(⋅)()Λ(�)!('(s�))) = s, so that s ∈↺-Unf (�).

9.3.2 Unfolding the Interpretation of IA�
Next, we show that ↺-Unf preserves the interpretation of IA�.

Cartesian closed ∼-functor. Recall that on objects,↺-Unf (A,A, lblA) = A is a sim-
ple forgetful operation. By definition of constructions on mixed boards it follows that
↺-Unf (−) preserves on the nose the interpretation of ground types, products and ar-
rows, and the terminal object. In order to preserve the cartesian closed structure, from
the universal property it suffices to preserve projections and the evaluation morphism.
For projections, a direct variation of Proposition 9.3.1 shows that

↺-Unf (�!A) = �A , ↺-Unf (�!B) = �B ,
so that the cartesian structure is preserved in the strict sense. For the evaluation,

↺-Unf (Λ!(�)) = Λ(↺-Unf (�))
follows from a direct verification for � ∶ !(Γ&A) ⊢ B with Γ, A and B mixed boards:
currying is defined on both sides with essentially the same relabeling. It follows that
↺-Unf preserves Λ−1 as well, and thus the evaluation (which is Λ−1(idA⇒B)).
Overall, we get:

Theorem 9.3.8. We have a cartesian closed ∼-functor:

↺-Unf (−) ∶_-Strat → ↺-Strat

It is also straightforward that unfolding is continuous with respect to the dcpo struc-
ture of hom-sets, so that ↺-Unf (A) = A for any mixed board A.

Unfolding PIA� primitives. For all the basic primitives of PIA� (constants, condi-
tional, sequential composition, operation, sequential and parallel let bindings, refer-
ence and semaphore queries, reference and semaphore creation, and bad variable and
semaphores), it follows by inspection that they are preserved by unfolding.
Altogether, we get:

Theorem 9.3.9. Consider Γ ⊢ M ∶ A any term of IA�. Then,

↺-Unf (JMK_-Strat) = JMK↺-Strat .

Along with intentional full abstraction of_-Strat:

CHAPTER 9. THE CAUSAL SEMANTICS OF IA� AND ITS UNFOLDING 248

Theorem 9.3.10. The interpretation of IA� in_-Strat is intensionally fully abstract.

Proof. Consider ⊢ M,N ∶ A observationally equivalent and assume JMK_-Strat and
JNK_-Strat are not, i.e. there is � ∈_-Strat(JAK,U)which distinguishes them. Then,

↺-Unf (�) ∈↺-Strat(JAK,U)
which, by unfolding, distinguishes JMK↺-Strat and JNK↺-Strat . But since ↺-Strat is
intensionally fully abstract for IA�, this contradicts the obs. equivalenceM ≃ N .
In fact, from Theorems 5.3.2 and 9.3.9 we may immediately deduce that
M ≃ N ⇔ comp(↺-Unf (JMK_-Strat)) = comp(↺-Unf (JNK_-Strat)) .

9.4 History and Related Work
This interpretation of higher-order concurrency into concurrent games (and its non-
alternating unfolding) was first introduced in [Castellan and Clairambault, 2016], al-
though for an affine language. The interpretation of non-affine IA� in full concurrent
games was first skecthed in [Castellan et al., 2019], though without any adequacy or full
abstraction result. The overall results presented here, with the unfolding to ↺-Strat,
were first presented in [Castellan and Clairambault, 2021].
Overall, this forms the first “truly concurrent”model of a higher-order concurrent lan-

guage with shared memory. Around the same time this was developed, a truly concur-
rent model of the asychronous �-calculus was proposed [Sakayori and Tsukada, 2017].

Chapter 10

Parallel Innocence

As we have seen,_-Strat (and already NTCG) is a wide semantic realm, with strate-
gies witnessing a wealth of computational phenomena: they reflect higher-order con-
current programs, accessing shared state or semaphores. In this permissive universe,
can we capture which causal patterns are definable via programs without state, i.e. with
only pure parallel higher-order programming? Answering that is the purpose of this
chapter, under the form of a condition on strategies called parallel innocence.

The outline is as follows. First, in Section 10.1 we introduce the definition of parallel
innocence, motivating the different ingredients in sequence – in particular we introduce
visibility, a first approximation of parallel innocence that already enjoys a number of
its properties. Sections 10.2 and 10.3 are devoted to the stability under composition of
parallel innocence: first visibility, and then innocence. In Section 10.4 we show that
visible strategies admit an interpretation-preserving collapse to the relational model.
Finally, in Section 10.5 we refine parallel innocence into globularity, that further con-
strains the causal shape of strategies accounting for Questions and Answers. This is
less fundamental, but will be helpful later on for proving finite definability.

Remark. In this chapter, the interpretation is used mostly to provide examples. For
succinctness, we shall refer in examples to the interpretation using small ground boards
rather than large ground boards (see the beginning of Section 9.1.1). All formal state-
ments on the interpretation hold for both, based on either small or large ground boards.
Besides, though we eventually must consider parallel innocence on the cartesian

closed ∼-category _-Strat, this development is completely independent from mixed
boards and (logical) well-bracketing – thus, we prefer to develop the theory of parallel
innocence for the linear structure, i.e. based on the relative Seely ∼-category NTCG.
Of course, all the constructions given here will seamlessly apply to_-Strat as well.

249

CHAPTER 10. PARALLEL INNOCENCE 250

10.1 Defining Parallel Innocence
We now embark on our quest to understand the causal shape of pure parallel programs.

10.1.1 Causal Determinism
In PCF�, the parallel let lets us write programs like

Γ ⊢ let
(

x = f skip
y = g skip

)

in x + y ∶ Y

where the execution of f skip and g skip are in parallel. The execution of this program is
non-deterministic: the scheduler must run one of f skip and g skip first. Nevertheless,
one may argue that in PCF�, this order does not matter. Intuitively, we have

f skip ⋅ g skip ∼ g skip ⋅ f skip

if f skip and g skip perform no side effect, in the sense that the environment has no
way to distinguish between the two: whatever the order, the result of the computation
will be the same. We say that this program is causally deterministic. This is unlike the
behaviour of a true non-deterministic primitive such as choice.

Of course, IA� is a truly non-deterministic language (we have seen in Section 2.2.3
how to define choice via a race in the memory). However, this true non-determinism
emerges from the combination of shared memory and parallelism. Hence, if parallel
innocence is to remove shared memory, it must also reinstate causal determinism1.

Definition. While causal determinism may be hard to express in traditional, play-
based game semantics, it is straightforward to do so for causal strategies: it simply
amounts to asking that Player does not impose any minimal conflicts.
Definition 10.1.1. Consider � ∶ A ⊢ B a causal strategy.
We say � is causally deterministic if for all s � s′ in �, pol(s) = pol(s′) = −.

This rejects a truly non-deterministic strategy such as in Figure 10.1, but accepts
strategies such as that in Figure 10.2 where the conflict originates in Opponent moves.
Keep in mind that by Lemma 6.1.17, such an immediate conflict between negative
events in the strategy must correspond to an immediate conflict in the game.

Copycat strategies. We show that copycat strategies are deterministic. First:
Proposition 10.1.2. For any −-board A, cc A ∈ NTCG(A,A) is causally deterministic.

Proof. Consider m1 ccA m2 in minimal conflict. In particular, m1 # ccA m2 meaning
that by definition, there is m′1 ≤ ccA m1 and m′2 ≤ ccA m2 such that

m′1 #A⊢A m
′
2

1The status of determinism in concurrent games is unsatisfactory – see Section 14.2.2 for a discussion.

CHAPTER 10. PARALLEL INNOCENCE 251

B

q−

J��	 u���
tt+ ff+

Figure 10.1: A non-deterministic strategy

B ⊢ B

q−
&oovq+9ww� � ��'

tt−
� ((/

ff−
� ((/tt+ ff+

Figure 10.2: Deterministic copycat

hence there are m′′1 ≤A⊢A m′1 and m′′2 ≤A⊢A m′2 such that m′′1 A⊢A m′′2 . Now, by
Lemma 6.1.8, m′′1 ≤ ccA m

′
1 and m′′2 ≤ ccA m

′
2, so that m′′1 ≤ ccA m1 and m′′2 ≤ ccA m2; andclearly m′′1 # ccA m′′2 as they conflict in the game. Thus by minimality, m′′1 = m1 and

m′′2 = m2; hence we have shown that for any m1 ccA m2, m1 A⊢A m2 as well.Now assume, seeking a contradiction, that polA⊢A(m1) = +. By condition race-free
of Definition 8.2.3, it follows that polA⊢A(m2) = + as well. But then there are unique

m′1 _ ccA m1 , m′2 _ ccA m2

both negative and corresponding to the same event in A. So, m′1 A⊢A m′2, contra-dicting the minimality of m1 ccA m2. Hence, polA⊢A(m1) = polA⊢A(m2) = −.
For the first time, we have used the condition race-free from the definition of boards.

Without this condition, a minimal conflict in the game of mixed polarity, as in
⊕ ⊖ ,

causes copycat to be non-deterministic (as the reader may check).
It is straightforward that this applies to all structural morphisms involved in the cat-

egorical structure of NTCG, obtained via lifting of renamings – as the renaming oper-
ation g ⋅ � ⋅ f from Section 8.1.2 does not change the strategy, only its display map.

Composition. Next, we show preservation under composition. First, we must be able
to attribute the responsibility of a minimal conflict to one of the two players.
Lemma 10.1.3. Consider � ∶ A ⊢ B and � ∶ B ⊢ C causal strategies.
Then, for each p �⊛� p′, one of the two propositions hold:

(1) p� , p′� are defined and p� � p′� ,(2) p� , p′� are defined and p� � p′� .

Proof. An equivalent statement of the hypothesis is that we have

x� ⊛ x�
p
−←⊂y� ⊛ y� , x� ⊛ x�

p′
−←⊂z� ⊛ z�

CHAPTER 10. PARALLEL INNOCENCE 252

with y� ⊛ y� , z� ⊛ z� incompatible. By Lemma 6.2.12, this means that we have

'[x� , x�]
(m1,m2)
−←⊂ '[y� , y�] , '[x� , x�]

(m′1,m
′
2)

−←⊂ '[z� , z�]

with '[y� , y�] ∪ '[z� , z�] not a secured bijection. This may be because it is not a
bijection – say m1 = m′1 while m2 ≠ m′2. But then m2 = (2, t) and m′2 = (2, t′) with
)� (t) =)� (t′) and thus t #� t′ by local injectivity. Overall, p� = t and p′� = t′ are
defined and conflicting. Or, this may be because m1 #�∥C m′1 or m2 #A∥� m′2, say the
former. If m1 = (1, s) and m′1 = (1, s′), then p� = s and p′� = s′ are defined and
conflicting. Otherwise, m1 = (2, c) and m2 = (2, c′) with c #C c′. But then, necessarily
m2 = (2, t) and m′2 = (2, t′)with t #� t′, thus p� = t and p′� = t′ defined and conflicting.It remains to prove that the resulting conflict is minimal, but that is obvious: if p� #�
p′� , all their strict dependency lie in x� – and symmetrically if p� #� p′� .

It remains to link minimal conflicts in the composition with the interaction:
Lemma 10.1.4. Consider � ∶ A ⊢ B and � ∶ B ⊢ C causal strategies.
If p �⊙� p′, then we have a diagram in � ⊛ �:

q1
� ,,2q2

� ,,2… � ,,2qm
� ,,2p

q′1
� ,,2q′2

� ,,2… � ,,2q′n
� ,,2p′

with all qi’s synchronized (if m > 0) and q′i ’s synchronized (if n > 0).

Proof. Obvious by definition of � ⊙ �.
Proposition 10.1.5. Consider � ∶ A ⊢ B and � ∶ B ⊢ C causally deterministic.

Then, � ⊙ � ∶ A ⊢ C is causally deterministic.

Proof. Consider p �⊙� p′ a minimal conflict in �⊙�, and its originating immediate
conflict in � ⊛ � as guaranteed by Lemma 10.1.4. First, assume that p �⊛� p′, i.e.
m = n = 0. By Lemma 10.1.3, this corresponds to an immediate conflict for � or � –
assume the former, so that p� and p′� are defined and p� � p′� . But then since � is
causally deterministic, those are negative moves, hence negative in � ⊙ � as well.
Otherwise, we have m > 0 or n > 0, say the former so that the immediate conflict

originates in q �⊛� q′ with q synchronized. By Lemma 10.1.3, this corresponds to
an immediate conflict for � or � – assume the former, so that q� and q′� are defined
and q� � q′� . Since � is causally deterministic, q� and q′� must be negative and by
Lemma 6.1.17, their display to the game are conflicting. But this implies that q� and
q′� are defined and conflicting as well. Additionally we must have q� � q′� , or wewould get a contradiction with the minimality of q �⊛� q′. But since � is causally
deterministic this means that q� and q′� are negative, contradiction.

CHAPTER 10. PARALLEL INNOCENCE 253

(U ⊸ U) ⊸ N

q−
0tt|q+

/ss{
_���

q−
F}}� x��!

� &&-

✓−
8ww� � ��' � %%,✓+ ✓+ 1+ 0+

Figure 10.3: A causal strategy

(U ⊸ U) ⊸ N

q−
0tt|q+

0tt|
_���

q−
_���

� ''.

✓−

� ""*
✓+ 1+

(U ⊸ U) ⊸ N

q−
0tt|q+

0tt|
_���

q−
_���

✓−

/ss{ � ""*
✓+ 0+

Figure 10.4: Two configurations of Figure 10.3

Full structure. For remaining operations on strategies (tensor, pairing, currying, pro-
motion), it is immediate by construction that they preserve causal determinism. So:
Theorem 10.1.6. The relative Seely∼-categoryNTCG admits a lluf relative Seely sub-
∼-category NTCG-Det with morphisms restricted to causally deterministic strategies.

Additionally, the least upper bound of a chain of causally deterministic strategies is
still causally deterministic, hence the fixpoint combinator is causally deterministic. It
also follows by direct inspection that the strategies used in the interpretation of PCF�are all causally deterministic; hence for any Γ ⊢ M ∶ A in PCF�, it follows that

JMK ∈ NTCG-Det!(JΓK, JAK) .

But causal determinism is not sufficient to characterise pure parallel computation.

10.1.2 Pre-innocence
So, what causal shapes are distinctive of pure parallel computation?
Pure parallel programs may spawn parallel threads, which remain independent in the

absence of interference. Once they terminate the program may take new actions that
depend on their results, causally “merging” them. A typical causal strategy featuring
this behaviour, for x ∶ U, y ∶ U ⊢ x ∥ y ∶ U, appears in Figure 10.6. The slogan is:

“Player may merge threads than he himself has spawned”.
In contrast, both diagrams of Figure 10.4 bear signs of interference. In the first, the

answer 1+ depends on q−: the program somehow observes if the function has called
its argument, which is only possible if the argument performs some side-effect that the
program observes. In the second, ✓+ depends on ✓−; but likewise this can only occur
if the termination of the function triggers a side-effect. In both cases, this is witnessed
by Player “merging” causal chains which forked at Opponent moves.
To ban such interference, the slogan is:

“Player may not merge threads spawned by Opponent”.

CHAPTER 10. PARALLEL INNOCENCE 254

gcc

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(U ⊸ U) ⊸ N

q−
5vv�

q+
5vv� _���

q−
_��� � &&-

✓−

	 ��(
✓+ 1+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊇

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(U ⊸ U) ⊸ N

q−
6vv�

q+
5vv�

q−
_���
✓+

,

(U ⊸ U) ⊸ N

q−
6vv�

q+
6vv�

q−

� &&-1+

,

(U ⊸ U) ⊸ N

q−
5vv�

q+
_���
✓−

 ��)
1+

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

Figure 10.5: Maximal grounded causal chains of a causal strategy

To define parallel innocence, our first step is to introduce a formal notion of “thread”:
Definition 10.1.7. Consider A a board, and � ∶ A a causal strategy.
A grounded causal chain (gcc) in � is � = {�1,… , �n} ⊆ |�| forming

�1 _� …_� �n

a chain with �1 minimal with respect to ≤� . We write gcc(�) for the gccs in �.

A gcc is just a set, written � = �1 _� …_� �n ∈ gcc(�) with the causal ordering
from ≤� . If also �1 _� …_� �n _� m ∈ gcc(�), then we write �_ m = � ∪ {m}.
Gccs are not necessarily down-closed: we show in Figure 10.5 all maximal gccs of a
causal strategy. Of those, the second and third omit some dependencies of 1+.
We may now make formal the idea of “only merging threads forked by Player”.

Definition 10.1.8. For A a board, a causally deterministic � ∶ A is pre-innocent iff

pre-innocent: If m+ ∈ � and �1 _ m, �2 _ m ∈ gcc(�) are distinct,
then min(�1) = min(�2) and their least distinct moves are positive.

The strategy of Figure 10.6 is pre-innocent. In contrast, that of Figure 10.3 is not
– both configurations of Figure 10.4 fail pre-innocence. For instance, the second and
third gccs of Figure 10.5 arrive at 1+ but before that, the greatest common event is q+,
which is positive: Player is merging (via 1+) two gccs forked by Opponent.
It will follow later on that the sequential pre-innocent causal strategies exactly match

the standard alternating innocent strategies of Definition 3.2.9; see Section 11.3.
However, for non-sequential strategies, pre-innocence is still incomplete.

10.1.3 Visibility
The problem arises as non-stability of pre-innocence under composition.

CHAPTER 10. PARALLEL INNOCENCE 255

!(U & U) ⊢ U

q−

(ppw
2uu}q+0

_���

q+1
_���

✓−

� ''.

✓−

� ""*
✓+

Figure 10.6: A typical pre-innocent strat.

!(U & U) ∥ U

q−
,rrz%oouqr0

� $$,
_���

qr1_���
✓l

�))/

✓l

� %%,
✓r

Figure 10.7: Partiality of views

(U ⊸ U) ⊸ N

q−
2uu}q+

_���
✓−

0tt|
✓+

∈ gcc

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(U ⊸ U) ⊸ N

q−
2uu}q+

2uu}
_���

q−
_���

✓−
1tt} � !!)

✓+ 0+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Figure 10.8: A gcc of a non-visible strategy, losing its pointer

A counter-example appears in Figure 10.9, which we postpone to the section devoted
to compositionality of innocence. However, we can already explain the issue intuitively:
the definition of pre-innocence relies on gccs which formalize a notion of thread. If
that intuition is to be taken seriously, gccs should be valid executions of standalone
sequential programs. But this is not the case: Figure 10.8 shows a gcc where the last
move answers a question that was not asked within this gcc. This could not be a valid
state of a sequential program, because the last move loses its pointer.
Visible strategies are simply those such that this does not happen.

Definition 10.1.9. A causal strategy � ∶ A is visible if it is:

pointed: for any s ∈ �, there is a unique init(s) ≤� s minimal in �,valid-gccs: for all � ∈ gcc(�),)�(�) ∈ C (A).

We smuggle in pointed, which ensures that separate initial Opponent moves explore
causally independent parts of the strategy. It is necessary for our proof of composition
of visibility, but it is clearly less important than valid-gccs, mainly because it is already
implied by pre-innocence (and also, automatic for � ∶ A ⊢ B with B strict). Hence,
we shall tend in the future to brush over pointed, and identify visible and valid-gccs.

Valid-gccs means that every move in � points within �. This phrasing highlights the
analogy with Definition 3.2.8, i.e. “Player always points in the P-view”. It is indeed this

CHAPTER 10. PARALLEL INNOCENCE 256

analogy that inspired the name2. But one must be wary: the alternating interpretation
of sequential programs with state yields sequential P-visible strategies, but their causal
interpretation (as in Figure 10.3) may not be visible. Visibility is very restrictive, it is
not clear what sensible primitive would satisfy visibility but not pre-innocence.
The following lemma captures how a gcc may be regarded as a standalone thread.

Lemma 10.1.10. Consider A a mixed board, and � ∶ A a visible causal strategy.
If � = �1 _� …_� �n ∈ gcc(�), ↶(⋅)()�(�)) =

↶(⋅)()�(�1)…)�(�n)) is a P-view.

Proof. By Lemma 6.1.16,)�(�) is alternating. By visibility, its prefixes are configu-
rations of A. So,)�(�) ∈ ⇵-Plays(A). By Lemma 6.1.16 again, the predecessor of
a− ∈)�(�) for _A is its predecessor in)�(�), i.e. Opponent always points to the
previous move. The statement follows by definition of pointifixion.
We may now define parallel innocent causal strategies, or just innocent for short.

Definition 10.1.11. Consider � ∶ A causally deterministic on board A.
It is parallel innocent if it is pre-innocent and visible.

A standard innocent strategy as in Section 3.2.3, under its “causal” presentation, is
a forest of P-views, i.e. a forest of (displayed) gccs. In that light the definition of
parallel innocent strategies seems natural: they are generated no longer by a forest of P-
views, but by a directed acyclic graph of P-views with additional conflict relation. This
graph describes how threads are spawned, and thenmaymerge, following the innocence
discipline ensuring that Player may not create interference between Opponent’s threads.
One of the main hurdles, in traditional game semantics, is to prove that innocent

strategies compose. We now tackle this problem for parallel innocent strategies.

10.2 Composition of Visibility
First, we establish compositionality of visibility.

10.2.1 Justifiers in causal strategies
We introduce some machinery on justifiers. If � ∶ A is a causal strategy on A some −-
board, then as for plays, the immediate causality in A endows moves in � with a notion
of justifier. This extends to � ∶ A ⊢ B where A and B are −-boards:
Definition 10.2.1. Consider A and B −-boards, and � ∶ A ⊢ B pointed.

We define the justifiers in � by setting, for all m,m′ ∈ �,

j(m) = m′ if)�(m′)_A⊢B)�(m),
j(m) = init(m) if)�(m) minimal in A,

and undefined otherwise.
2This, plus as in traditional game semantics, visibility is a prerequisite for a working notion of innocence.

CHAPTER 10. PARALLEL INNOCENCE 257

SinceA and B are forestial and � is pointed, j(−) is well-defined as a partial function
on �, only left undefined for m ∈ � minimal in �. Note that assigning the justifier of
m minimal in A to init(m) ensures that the assignment of justifiers is invariant under
currying. It might be helpful to the reader to observe that a pointed causal strategy
� ∶ A ⊢ B is visible iff for all � ∈ gcc(�), for all m ∈ �, j(m) ∈ � as well: all gccs are
closed under justifiers. We mention in passing this lemma:
Lemma 10.2.2. Consider A,B −-boards and � ∶ A ⊢ B a pointed causal strategy.
Then, for any non-initial m ∈ �, we have j(m) <� m. Moreover, if pol�(m) = −, then

j(m)_� m is its (unique) immediate predecessor in �.

Proof. As a map of es,)� locally reflects causality (Lemma 6.1.8), so j(m) <� m if the
first clause of Definition 10.2.1 applies; for the other we clearly have init(m) <� m.The second fact is simply by Lemma 6.1.16.

10.2.2 Justifiers in interactions
So as to prove visibility stable under composition, we first extend justifiers to interac-
tions – consider A,B and C three −-boards, and � ∶ A ⊢ B and � ∶ B ⊢ C pointed.
Definition 10.2.3. We define j ∶ |� ⊛ �| ⇀ |� ⊛ �| as j(m) = m′ if:

(1))�⊛�(m′)_A∥B∥C)�⊛�(m), or(2))�⊛�(m) is minimal in A and m′� = init(m�), or(3))�⊛�(m) is minimal in B and m′� = init(m�),

and undefined otherwise. We say that m′ is the justifier of m in � ⊛ �.

This leaves j(m) undefined exactly if it corresponds to a minimal move in C . Clearly
the two notions of justifier are compatible, in the sense that for all m ∈ � ⊛ �, if m� is
defined then j(m)� is defined and equal to j(m�), and likewise for � .

10.2.3 Views of gccs
We introduce the main technical device on visible causal interactions.
We use polarities in interactions as in Lemma 6.2.15, and annotate events accord-

ingly. We also write e.g. a−,r to indicate that a has polarity − or r. If � ∈ gcc(� ⊛ �)
with last event m, we say that � ends in � if m� is defined, and likewise for � . We now
define views of gccs, used to project a gcc of the interaction to gccs for both strategies.
Definition 10.2.4. Take � ∶ A ⊢ B and � ∶ B ⊢ C pointed with A, B, C −-boards.
If � ∈ gcc(� ⊛ �) ends in �, we (partially) define ⌜�⌝� ∈ gcc(�) by:

⌜�0_…_�n_�ln+1⌝
� = ⌜�0_…_�n⌝� ∪ {(�n+1)�} ,

⌜�0_…_�i_…_�−,rn+1⌝
� = ⌜�0_…_�i⌝� ∪ {(�n+1)�} if j(�n+1) = �i in A or B ,

⌜�0_…_�i_…_�rn+1⌝
� = {(�n+1)�} if �n+1 minimal in B ,

undefined otherwise. If � ∈ gcc(� ⊛ �) ends in � , we (partially) define ⌜�⌝� ∈ gcc(�):
⌜�0_…_�n_�rn+1⌝

� = ⌜�0_…_�n⌝� ∪ {(�n+1)�} ,
⌜�0_…_�i_…_�−,ln+1⌝

� = ⌜�0_…_�i⌝� ∪ {(�n+1)�} if j(�n+1) = �i ;

CHAPTER 10. PARALLEL INNOCENCE 258

when defined, ⌜�⌝� ∈ gcc(�) is the �-view of � and ⌜�⌝� ∈ gcc(�) the �-view of �.

These definitions closely follow Definition 3.2.7. The last clause is only needed for
⌜−⌝� and not ⌜−⌝� , because an initial event in C must be the first event of � anyway.
That this yields gccs of � and � rests on Lemma 6.2.15, and courtesy of � and � . The

�-view and the �-view are in principle only partially defined, because it may be, when
attempting to follow the opponent’s pointer, that that justifier lies outside the gcc. For
instance ⌜�⌝� , for � in Figure 10.7, is not well-defined: when attempting to compute
⌜q−qr0✓

l
1 ⌝
� , none of the clauses apply as j(✓l1) = qr1 is outside �. The bulk of the proofof stability of visibility under composition, is to show that this cannot happen:

Proposition 10.2.5. Let � ∶ A ⊢ B and � ∶ B ⊢ C be visible causal strategies.
Then, the views of gccs of � ⊛ � as in Definition 10.2.4 are always well-defined.

Proof. We prove by induction on � that, for all prefixes of �,
(1) if � ends in �, then ⌜�⌝� ∈ gcc(�) is well-defined,
(2) if � ends in � , then ⌜�⌝� ∈ gcc(�) is well-defined .

Assume � ends in � . If the last move has polarity −, then either it is initial and
there is nothing to prove, or by Lemma 6.2.15 its justifier is its predecessor in �, so
⌜�⌝� ∈ gcc(�) follows by induction hypothesis (in that case � does not end in �).

If the last move has pol. r, write � = �′ _ m_ nr. By Lemma 6.2.15, m� _� n� ,so m is in � . By induction hypothesis, � = ⌜�′ _ m⌝� ∈ gcc(�), so
� _ n� = ⌜�⌝� ∈ gcc(�)

as well. But if � ends in � and � (i.e. in B), we must further prove that ⌜�⌝� ∈ gcc(�).
In that case, since ⌜�⌝� ∈ gcc(�) and � is visible, it follows that j(n�) ∈ ⌜�⌝� , but thisentails j(n) ∈ �. Hence the second clause of Definition 10.2.4 applies, and we conclude
by induction hypothesis. If � finishes in �, the reasoning is symmetric.
From this, we are now ready to conclude:

Proposition 10.2.6. Let � ∶ A ⊢ B and � ∶ B ⊢ C be visible causal strategies.
Then, � ⊙ � ∶ A ⊢ C is also visible.

Proof. First, we show that � ⊙ � is pointed. there are distinct q, q′ ∈ � ⊙ � minimal
such that q ≤�⊙� p and q′ ≤�⊙� p. It is a direct consequence of courtesy (via Lemma
6.1.16) that then, q, q′ must still be minimal in � ⊛ �. Then there must be some r in
� ⊛ � minimal such that there is m _�⊛� r and n _�⊛� r with [m]�⊛� and [n]�⊛�disjoint. Now, we distinguish cases depending on the polarity of r. If it is l, then by
Lemma 6.2.15, m� and n� are defined and m� _� r� and n� _� r� . But since � is
pointed, [m�]� and [n�]� cannot be disjoint, contradiction. The case for r is symmetric.
Now, we show visibility. For that, we prove by induction on � that for all � ∈ gcc(�⊛

�),)�⊛�(�) ∈ C (A ∥ B ∥ C). If � is empty it is clear; take �_ m ∈ gcc(� ⊛ �). By
induction hypothesis,)�⊛�(�) ∈ C (A ∥ B ∥ C), we only need that the justifier of m
is in �. We reason by cases on the polarity of m: if it is l, then by Proposition 10.2.5
⌜� _ m⌝� ∈ gcc(�). But since � is visible, the justifier of m� appears in ⌜�⌝� , hence

CHAPTER 10. PARALLEL INNOCENCE 259

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

U ⊸ U ⊸ U

q−

(ppw
1tt}q+

_���

q+
_���

✓−

� ''.

✓−

� ""*
✓+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊙

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

U ⊸ U ⊸ U ⊢ (U ⊸ U ⊸U)⊸ U

q−

(ppw
C{{�

q+

0tt|
Azz� _���

q+

1tt}
D||�

q−
_���

q−
_���

✓−

|��#

q−
_���*qqx

q−

*qqx
✓+ ✓+ ✓+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(U ⊸ U ⊸U)⊸ U

q−
C{{�

q+

1tt}
C{{�

q−
_���

q−
@zz�

✓+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Figure 10.9: Failure of preservation of pre-innocence under composition

the justifier of m appears in �. The other cases are symmetric or trivial.
Now, take �⊙ ∈ gcc(� ⊙ �). By definition of � ⊙ �, there is a (non-necessarily

unique) �⊛ ∈ gcc(� ⊛ �) s.t. �⊙ comprises exactly those events of �⊛ in A or C . By
the observation above,)�⊛�(�⊛) ∈ C (A ∥ B ∥ C), hence)�⊙�(�⊙) ∈ C (A ∥ C).

10.2.4 The Relative Seely ∼-Category NTCG-Vis
In this monograph, we are particularly interested in visibility as a means to ensure that
innocence is preserved under composition. However, it is noteworthy that visibility
indeed supports all the constructions involved in the relative Seely category structure.
Theorem 10.2.7. There isNTCG-Vis, a relative Seely sub-∼-category ofNTCG, with
morphisms restricted to visible causal strategies.

Proof. As causality in boards is forestial, so is the causality of copycat – it follows
immediately that copycat is visible, and this immediately extends to lifted strategies.
By Proposition 10.2.6, visibility is stable under composition. For all other operations
(tensor, pairing, currying, promotions), it is immediate that visibility is preserved.
This extends to the fixpoint operation and – by inspection – to all primitive strategies

involved in the interpretation of PCF�, so that any term Γ ⊢ M ∶ A of PCF� yields a
visible causal strategy JMK ∈ NTCG-Vis!(JΓK, JAK). In contrast, the interpretation of
IA� does not satisfy visibility: the non-visible behaviour from Figure 10.8 comes from

⊢ newref x in �fU→U. f (x ∶= tt); !r ∶ (U → U)→ B , (10.1)
a term of IA. Though visibility does not match tightly any of our programming lan-
guages, it will play in important role in this work. But next, we show that in the presence
of visibility, innocence becomes stable under composition.

10.3 Composition of Innocence
We start by showing “what could go wrong”. In Figure 10.9, we show a counter-

CHAPTER 10. PARALLEL INNOCENCE 260

U ⊸ U ⊸ U ⊢ (U ⊸ U ⊸ U) ⊸ U

q−

&oov
=yy�

q�

-ssz
<yy�

q�

.ss{
>yy�

q�
_���

q�
_���

q−

(ppw

q−

(ppw
✓�

� $$,

✓�

� ��&
✓�

� ��&
✓�

Figure 10.10: Illegal causal merge

∙

		

� ,,2�� qq �� qq �� � ,,2∙qq

∙ � ,,2qq �� qq �� qq � ,,2∙

OCCK

o���

��

∙

UU

� ,,2
^^ mm \\ mm \\

� ,,2∙mm

∙ � ,,2

��

qq �� qq �� � ,,2∙qq

∙ � ,,2qq �� qq �� qq � ,,2∙

OCCK

o���

^^

∙

UU

� ,,2
^^ mm \\ mm \\

� ,,2∙mm

Figure 10.11: Merging paths in G

example to the stability under composition of pre-innocence without visibility, with the
corresponding interaction appearing as Figure 10.10. Let us attempt to explain the phe-
nomenon, calling � the left hand side strategy (parallel composition) and � the right
hand side one – observe that the dotted lines include the justification relations from
Definition 10.2.1 rather than just those coming from the arena. Imagine that � wants to
perform an illegal causal merge between the two argument calls of its argument of type
U ⊸ U ⊸ U. By pre-innocence it cannot do so directly. However, it can outsource the
merge to � by linking (legally with respect to pre-innocence, but illegally with respect
to visibility) the arguments of the parallel composition to those that it wants to merge.
We shall prove that this cannot happen in the presence of visibility. Let us fix, until

the end of the section, two visible causal strategies � ∶ A ⊢ B and � ∶ B ⊢ C .

10.3.1 The “forking lemma”
Taking a closer look at Figure 10.10, we highlight the two illegally merging gccs in the
interaction: while � is responsible for the merge, the point where these gccs forked is
external, outside the scope of �! The next lemma, dubbed the “forking lemma”, forbids
this: it implies that visible strategies cannot unknowingly close an Opponent fork.
If � = �1 _ … _ �n is a gcc and 1 ≤ i ≤ n, �≤i is �1 _ … _ �i. Two gccs

�, � are forking iff � ∩ � ≠ ∅, and for all i, j, if �i = �j then �≤i = �≤j . If �, �
are two forking gccs, we write gce(�, �) for their greatest common event. Notice that
despite the terminology, two forking gccs can be prefix of one another and never truly
go separate ways; but if they do diverge, their remainder must be independent.
Lemma 10.3.1 (Forking lemma). Consiser � ∶ A ⊢ B and � ∶ B ⊢ C visible strate-
gies. Let �, � ∈ gcc(� ⊛ �) be forking gccs ending in �, s.t. ⌜�⌝� ∩ ⌜�⌝� ≠ ∅ and
gce(⌜�⌝� , ⌜�⌝�) negative (the least distinct events, if any, are positive).

CHAPTER 10. PARALLEL INNOCENCE 261

Then, gce(⌜�⌝� , ⌜�⌝�) = gce(�, �)� . The symmetric property holds for � .

Proof. We only detail the proof for �, the proof for � is exactly the same. We build a
directed graph G with vertices � ∪ �, and edges the (disjoint) union of the sets:

O-edges = {(m1, ml2) ∣ j(m1) = m2}
P -edges = {(ml1 , m2) ∣ m2 _�⊛� m1}

where (−)l indicates the polarity. Each vertex is source of at most one edge, and fol-
lowing edges consists exactly in computing the �-view. If � and � have the same final
move, then � = �. Otherwise, consider the two paths in G starting with these distinct
final moves. Since ⌜�⌝� ∩ ⌜�⌝� ≠ ∅, these paths must intersect – Figure 10.11 repre-
sents a typical G with O-edges in blue and P -edges in red with the two typical cases.
These paths meet at a vertex of incoming degree at least 2; but vertices receive only

O-edges, or only P -edges. For the former (as in the bottom of Figure 10.11), then
gce(⌜�⌝� , ⌜�⌝�) is positive, which contradicts the hypothesis. For the latter (as in the
top of Figure 10.11), we remark that P -edges are immediate causal links in � ⊛ �; and
there is at most one event in � ∪ � causing two distinct events: gce(�, �).
This provides the core argument for the compositionality of pre-innocence: if a pre-

innocent strategy merges two threads, by pre-innocence its views of these two threads
fork positively. But then the forking lemma ensures that this strategy sees the actual
forking point for these threads –which therefore cannot be due to the external Opponent.

10.3.2 Stability of pre-innocence
Now, much of the proof consists in restricting the causal shapes in �⊛� corresponding
to a causal merge in � ⊙ �, so that the forking lemma applies.
Proposition 10.3.2. Consider � ∶ A ⊢ B and � ∶ C ⊢ C visible causal strategies.
If � ∶ A ⊢ B and � ∶ B ⊢ C are pre-innocent, then so is � ⊙ �.

Proof. Consider m ∈ � ⊙ � and distinct �1 _ m, �2 _ m ∈ gcc(� ⊙ �). W.l.o.g.
assume that whenever �1i = �2j , �1≤i = �2≤j – or we can ensure this by changingm and �i,
keeping the same least distinct events. Likewise, since �1, �2 are distinct, w.l.o.g. their
last moves m1 ∈ �1, m2 ∈ �2 are distinct – or we may replace m with an earlier causal
merge. These gccs �1 and �2 may be completed to �1 _ m, �2 _ m ∈ gcc(�⊛�) such
that �i consists exactly of the events of �i occurring inA or C . Necessarily, the greatest
visible events of �1 and �2 are m1 and m2 respectively. Call n the least common event
of �1 _ m and �2 _ m above m1 and m2 (which might not be m). The situation is:

� ,,2m1
� ,,2 � ,,2�1n

w��!n � ,,2 � ,,2m

� ,,2m2
� ,,2 � ,,2�2p

G==G

CHAPTER 10. PARALLEL INNOCENCE 262

with m1, m2 and m visible, and no one visible in between. We reason on the polarity of
n in � ⊛ �. By Lemma 6.2.15 and since arenas are forestial, it cannot be negative, so
its polarity is either l or r. Assume it is l – the other case is symmetric.

The polarity of n is positive for �, so we compute the �-views:
⌜�1≤n _ n⌝� , ⌜�2≤p _ n⌝� ∈ gcc(�) ,

respectively ⌜�1≤n⌝� _ n� and ⌜�2≤p⌝� _ n� , with ⌜�1≤n⌝� and ⌜�2≤p⌝� distinct as they
respectively contain �1n and �2p . Since � is pointed, ⌜�1≤n⌝�∩⌜�2≤p⌝� ≠ ∅, so �1∩�2 ≠ ∅
as well. Call m′ the gce of �1 and �2, necessarily below m1 and m2, then:

�1i+1
� ,,2 � ,,2m1

� ,,2 � ,,2�1n
v��

�11
� ,,2 � ,,2�1i−1

� ,,2m′

D<<F

z��"

nl � ,,2 � ,,2m

�2i+1
� ,,2 � ,,2m2

� ,,2 � ,,2�2p

H>>H

assuming w.l.o.g. that �1≤i = �2≤i (changing the beginning of �2 if required). Summing
up some properties, �1 = �1i+1… �1n and �2 = �2i+1… �2p are disjoint. Thus the �-views

⌜�1≤n⌝
� , ⌜�2≤p⌝

� ∈ gcc(�)

are forking: they coincide on a prefix and disjoint after. Indeed, since �1 and �2 are
disjoint, any common event is in �11 _…_ �1i , before which the �-views coincide.

Since � is pre-innocent, the least distinct moves m′1 and m′2 of ⌜�1≤n⌝� and ⌜�2≤p⌝�are positive. Thus their common immediate predecessor is negative – but it is also their
greatest common event, since ⌜�1≤n⌝� and ⌜�2≤p⌝� are forking. Thus by Lemma 10.3.1,

gce(⌜�1≤n⌝
� , ⌜�2≤p⌝

�) = gce(�1≤n, �
2
≤p)� = m

′
� ,

so m′ is negative for �. In � ⊛ �, m′ is negative or in B – in both cases the least visible
events in �1 and �2 are positive, but those are our least distinct events of �1 and �2.

10.3.3 The Relative Seely Category NTCG-Inn
As for visibility, we have:
Theorem 10.3.3. There isNTCG-Inn, a relative Seely sub-∼-category ofNTCG-Det,
with morphisms restricted to parallel innocent causal strategies.

Proof. For composition, this is via Propositions 10.1.5, 10.2.6 and 10.3.2. Parallel
innocence of copycat is immediate, and that extends to lifted strategies. For all other
operations on strategies, preservation of innocence is direct.

CHAPTER 10. PARALLEL INNOCENCE 263

Again this extends to the fixpoint operation and to all primitive strategies involved in
the interpretation of PCF�, so that any term Γ ⊢ M ∶ A of PCF� yields

JMK ∈ NTCG-Inn!(JΓK, JAK)
a parallel innocent strategy.
Note that though we bundled causal determinism with parallel innocence in this

monograph, they are actually independent in the sense that stability under composition
of parallel innocence does not need causal determinism. However, without determin-
ism, parallel innocence as presented here is insufficient to obtain a definability result
for a non-deterministic extension of PCF�. We have not yet been able to give a working
notion of non-deterministic parallel innocence – see Section 14.2.1 for a discussion.

10.3.4 Complement: the “Bang Lemma”
Within the relative Seely∼-categoryNTCG-Inn, one can prove the “bang lemma” from
AJM games [Abramsky et al., 2000] – it is an important technical lemma expressing
that essentially, all innocent strategies on !A ⊢ !B are the promotion of some strategy
on !A ⊢ B. Note that this does not hold without innocence: a non-innocent strategy on
!B may very well impose constraints accross its different copies. In AJM games, the
bang lemma depends on history-freeness; it does not exist in HO games in the absence
of a linear decomposition. Fix A and B two strict boards, and � ∶ !A ⊢ !B innocent.
A minimal m ∈ � displays to)�(m) = (2, (i, b)) for some i ∈ ℕ – we say that m is

in copy i. Being innocent, � is pointed and every event has a unique minimal cause; so
we say that arbitrary m ∈ � is in copy i if its unique minimal cause is. Let us write

|�i| = {m ∈ |�| ∣ m is in copy i}
for the set of events of � in copy i. By construction, for i, j ∈ ℕ distinct, |�i| and |�j|are disjoint, and each inherit from � the structure of an ess. Furthermore, �i ∶ !A ⊢ B
with the display map)�i defined in the obvious way. Moreover, we have:
Lemma 10.3.4. As event structures with symmetries, we have � ≅ ∥i∈ℕ�i.

Proof. The non-trivial point is that no immediate conflict in � can span accross copies:
if s �s′ then pol(s) = pol(s′) = − by causal determinism, and)�(s))�(s′) aswell by Lemma 6.1.17. By definition of bang, this entails that)�(s) and)�(s′) are in acommon copy of B, or of A. If it is B then we are done. If it is A then from polarity
reasons they cannot be minimal inA, and sinceA is strict this entails that they are above
(for ≤!A) the same minimal event in A. So s and s′ are above a common move in �,
which entails that they are in the same copy.

They key argument, in the bang lemma, is that these copies are interchangeable:
Lemma 10.3.5. For any i, j ∈ ℕ, we have �i ≈ �j .

CHAPTER 10. PARALLEL INNOCENCE 264

Proof. Weexploit Lemma 7.1.9 and build an iso between the domains of configurations,
compatible with symmetry. Consider xi ∈ C (�i), displaying to

)�(xi) = xA ∥ {i} × xB .

By definition of the board constructions, there is a symmetry exchanging i and j:
�−i,j ∶ xA ∥ {i} × xB ≅

−
!A⊢!B xA ∥ {j} × xB ,

and our isomorphism will transport xi along this negative symmetry. Indeed by Lemma
7.2.6, there are unique xj ∈ C (�) and ∶ xi ≅� xj s.t.)� = �+◦�−i,j for some

�+ ∶ xA ∥ {j} × xB ≅+!A∥!B yA ∥ {j} × yB

where we know that j is unchanged by definition of the positive symmetries of the bang.
Therefore, xj ∈ C (�j) as required. Monotonicity of this operation and the fact that it is
a bijection between configurations follow from the uniqueness clause for Lemma 7.2.6;
compatibility with symmetry follows from composition with the symmetry .

This induces an isomorphism of ess ' ∶ �i ≈ �j which we must still check is a
positive isomorphism. But for xi ∈ C (�i), the symmetry �+ above entails

)�i (xi) = xA ∥ xB
'+

≅+!A⊢B yA ∥ yB =)�j (xj)

ensuring that the triangle commutes up to positive symmetry as required.
Next we lift a positive isomorphism on one copy index to the whole strategy:

Lemma 10.3.6. ConsiderA andB strict boards, and �, � ∶ !A ⊢ !B parallel innocent.
If �0 ≈ �0, then � ≈ � .

Proof. By Lemma 10.3.5, for i ∈ ℕ, �i ≈ �0 ≈ �0 ≈ � i, and thus we have
∥i∈ℕ�i ≈ ∥i∈ℕ� i

lifted to an isomorphism of ess � ≅ � by Lemma 10.3.4. It is then straightforward that
this isomorphisms is compatible with display maps up to positive symmetries.
We may finally deduce the bang lemma:

Lemma 10.3.7. For A,B strict boards and � ∈ NTCG-Inn(!A, !B) parallel innocent,

(derB ⊙ �)! ≈ � .

Proof. From Proposition 7.3.1, it is direct to establish derB ⊙ � ≈ �0. Therefore, byLemma 10.3.6, for any �, � ∶ !A ⊢ !B, if derB ⊙ � ≈ derB ⊙ � , then � ≈ � . Now as
derB ⊙ (derB ⊙ �)† ≈ derB ⊙ �

by the laws of relative Seely categories, the lemma follows.

CHAPTER 10. PARALLEL INNOCENCE 265

q−

4uu�
q+0

J��	 \

� u���

tt+0 q+1
J��	 \

� u���

q−0
]���

q−1
]���

✓−0

- 33:

q−0
]���

q−1
]���

✓−0

�ddl

✓+0 ✓+0 ✓+0 ✓+0

→

q−

q+0 tt+0 q+1

q−0 q−1 ✓−0 q−0 q−1 ✓−0

✓+0 ✓+0 ✓+0 ✓+0

Figure 10.12: A witness and its display

10.4 Relational Collapse
Most consequences of parallel innocence will be presented in Chapter 12, when we
focus on finite definability for those and intensional full abstraction for PCF�. But weexplore now a crucial consequence of parallel innocence (more precisely, of visibility):
it allows a simple, transparent translation to the relational model. This will be useful
technically later on, but we also regard this as an important contribution in its own right.

10.4.1 Stopping Positions and Witnesses
Intuitively, a causal strategy records observable computational events, along with the
causal dependencies between them, but we may also regard it as presenting all positions
reached in the sense of the relational model, enriching them with causal information.

Forgetting causality. Recall that a causal strategy � ∶ A on −-board A is specified
by an internal event structure �, along with a display map

)� ∶ � → A .

A configuration xA ∈ C (A) is reached by � iff there is x� ∈ C (�), its witness,
such that)�x� = xA. Intuitively, and as a first approximation, the relational model
only remembers which configurations xA ∈ C (A) have a witness (though we shall
see below that the relational model only tracks certain configurations considered as
completed executions, and that symmetry entails that points in the relational models
should be certain symmetry classes rather than mere configurations).
As an example, we show in Figure 10.12 a configuration of the strategy � for

⊢ �fU→U. f skip; f skip; tt ∶ (U → U)→ B ;

where the configuration appears on the left hand side. This diagram follows our long-
standing convention to draw x� ∈ C (�) with events displayed as their image via)� ,

CHAPTER 10. PARALLEL INNOCENCE 266

with the diagram showing immediate causality both in � (drawn as_) and inA (drawn
as dotted lines). Thus, its display via)� is obtained diagrammatically simply as the
erasure of the_ relation, moving towards the right hand side of the diagram.
Our claim is that the diagram on the right hand side of Figure 10.12 corresponds (up

to symmetry, see below) to an element in the interpretation of the type (U → U) → B
in the relational model: that point resulting in tt, where the argument is called twice,
and where in turn each call of the argument calls its argument twice – written

� = ([([✓,✓],✓), ([✓,✓],✓)], tt)

in standard relational model notation, but (ignoring copy indices) the reader should be
able to see how the same information is conveyed on the right hand side of Figure 10.12:
each “atom” in � corresponds to a pair of a question and an answer. Then, moving from
concurrent games to the relational model essentially consists in forgetting the relation
_ in all configurations – so that we may even regard concurrent games as the relational
model enriched with causal information. We now aim to make this more formal.

Positions. Wewish to extract from a board a set matching the relational interpretation.
To that end, we start by examining the most constraining constructor, which is

!X =ℳf (X) ,

the bang ofX a set, defined as the set of finite multisets. In contrast, the configurations
of a −-board !A correspond to the set Fam(A) of families of non-empty configurations
indexed by finite sets of natural numbers (see Proposition 7.1.3). As ℳf (X) may be
presented as a quotient of finitely indexed families of elements of X, it is natural to
define the positions of a −-board A as configurations up to symmetry:
Definition 10.4.1. Consider A a board.
The set Pℴs(A) of positions of A is simply defined as the quotient set C (A)∕≅A.

By convention, we use symbols x, y, z, etc to range over positions – i.e. the same
letters as for configurations, but with a different font.
As an example, there are four positions on the −-board B of Section 8.2.2: the (sym-

metry classes corrresponding to the) configurations ∅, {q−}, {q−, tt+}, and {q−, ff+}.
This shows that positions do not quite match the relational model just yet, as the rela-
tional interpretation of B only has two elements, for the two complete computations.

Stopping positions of boards. Fortunately, boards come equipped with exactly the
structure needed to eliminate partial computations: the payoff function.

Recall from Definition 8.2.3 that boards come equipped with a payoff function �A ∶
C (A) → {−1, 0,+1}, which was motivated precisely by the need to capture which
configurations are complete, and to designate a responsible for non-complete configu-
rations. By condition invariant, the payoff function automatically extends to

�A ∶ Pℴs(A)→ {−1, 0,+1}

a payoff function for positions. This lets us define:

CHAPTER 10. PARALLEL INNOCENCE 267

B

q−
D||� z��"

tt+ tt+

Figure 10.13: Non-deterministic witnesses

!B

q−i
_���
tt+i

Figure 10.14: Symmetric witnesses

Definition 10.4.2. Consider A a board. Its set of stopping positions is the set

⦗A⦘ = {xA ∈ Pℴs(A) ∣ �A(xA) = 0}

This is indeed the right definition, and we shall see in Section 10.4.4 that it makes
the various constructions on boards agree with their relational counterparts.

Stopping positions of strategies. To a board A, the relational collapse will associate
a set ⦗A⦘. If � ∶ A is a strategy on A, we should assign it a subset of ⦗A⦘. We have
seen with Proposition 7.3.1 that causal strategies almost compose relationally already
with respect to +-covered configurations, so the next definition is almost self-evident:
Definition 10.4.3. Consider A a board and � ∶ A a causal strategy. Then,

⦗�⦘ = {xA ∈ ⦗A⦘ ∣ ∃x� ∈ C+(�),)� x� ∈ xA}

is its relational collapse.

For x� ∈ C+(�) such that)� x� ∈ xA ∈ ⦗A⦘, we say that x� is awitness for xA; therelational collapse only keeps stopping positions for which there is a witness. In general,
the witness is not unique. We show two examples: in Figure 10.13, the (symmetry class
of) {q−, tt+} has two witnesses, illustrating the two distinct non-deterministic branches
realizing the value tt. But the number of witnesses does not necessarily match the
number of non-deterministic branches leading to an observable result: in Figure 10.14,
there is an infinite number of witnesses for the stopping position corresponding to value
tt – even though all those witnesses are symmetric with each other3.

10.4.2 Composition and Deadlocks
Now, takeA and B two −-boards, and let us consider the case of a strategy fromA to B.
Of course the definition above applies, instantiated on the board A ⊢ B. But in order
to get a relation from ⦗A⦘ to ⦗B⦘, we shall make use of the following fact:
Lemma 10.4.4. Consider A,B two −-boards. Then, there is a bijection

s⊢A,B ∶ ⦗A ⊢ B⦘ ≃ ⦗A⦘ × ⦗B⦘
3It is a good intuition that witnesses should somehow count non-deterministic branches leading to an

observable result, but it requires a much finer definition of witnesses – see Section 13.3.1.

CHAPTER 10. PARALLEL INNOCENCE 268

Proof. We know from Lemma 7.1.22 that configurations of A ⊢ B all have the form
xA ⊢ xB where xA ∈ C (A) and xB ∈ C (B); this extends to symmetry classes since
symmetries enjoy the same unique decomposition. By Definition 8.2.5, xA ⊢ xB has
null payoff exactly when both xA and xB have (recall thatA ⊢ B = A⟂`B by definition,
below Definition 8.2.5). The bijection follows this decomposition.
We use this bijection implicitely when defining the collapse of � ∶ A ⊢ B as

⦗�⦘ = {(xA, xB) ∈ ⦗A⦘ × ⦗B⦘ ∣ ∃x� ∈ C+(�),)�x� ∈ xA ⊢ xB}

a morphism in Rel(⦗A⦘, ⦗B⦘) – now, does this preserve the categorical structure?

Copycat. We start the analysis for copycat, which is straightforward:
Proposition 10.4.5. Consider A a −-board. Then, we have the equality

⦗ cc A⦘ = id⦗A⦘ ∈ Rel(⦗A⦘, ⦗A⦘) .

Proof. ⊆. Consider xA ⊢ yA ∈ ⦗ cc A⦘. By definition it has a witness in cc A, which by
Lemma 6.4.4 has form xA ∥ xA ∈ C+(cc A) with xA ⊢ xA ∈ xA ⊢ yA, so xA = yA.
⊇. Consider (xA, xA) ∈ id⦗A⦘ and take any representative xA ∈ xA. Again by Lemma

6.4.4, xA ∥ xA ∈ C+(cc A), and it is immediate that it is a witness for (xA, xA).
Indeed from Lemma 6.4.4, and with respect to +-covered configurations, copycat

already acts like the relational identity! In the light of Proposition 7.3.1, we may hope
that the situation for composition will just as simple.

Composition: oplax preservation. For one of the two directions, it is simple:
Lemma 10.4.6. Consider −-boards A,B, C , and � ∶ A ⊢ B, � ∶ B ⊢ C .

Then, we have ⦗� ⊙ �⦘ ⊆ ⦗�⦘◦⦗�⦘.

Proof. Consider (xA, xC) ∈ ⦗� ⊙ �⦘. By definition – and inlining Proposition 7.3.1 –
there is x� ⊙ x� ∈ C+(� ⊙ �) s.t.)�⊙�(x� ⊙ x�) = x�A ⊢ x�C ∈ xA ⊢ xC . Thus

)� x
� = x�A ⊢ x

�
B ∈ xA ⊢ xB ,)� x

� = x�B ⊢ x
�
C ∈ xB ⊢ xC

where x� ∈ C+(�) and x� ∈ C+(�) and for xB the symmetry class of x�B = x�B = xB .The only thing we must check is that xB ∈ ⦗B⦘, i.e. �B(xB) = 0. But if we had
�B(xB) = −1, we would have �A⊢B(x�A ⊢ xB) = −1, contradicting that � is winning.
Likewise, �B(xB) = 1 would contradict that � is winning. Hence, �B(xB) = 0.
This is not by chance: the mechanism of payoff and winning strategies has been set

up specifically with this collapse in mind. Now, examine the other direction.

CHAPTER 10. PARALLEL INNOCENCE 269

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

U ⊸ U ⊢ N

q−
.ss{q+

.ss{
_���

q−_���
✓−

-ssz � ##+
✓+ 0+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊙

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

U ⊸ U

q−
-sszq+_���

✓−

� $$,
✓+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

N

q−
⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Figure 10.15: Deadlocking composition of causal strategies

Composition: non lax preservation. In the other direction, consider � ∶ A ⊢ B, � ∶
B ⊢ C , and (xA, xC) ∈ ⦗�⦘◦⦗�⦘. Thismeans that there is xB ∈ ⦗B⦘ a stopping positionsuch that (xA, xB) ∈ ⦗�⦘ and (xB , xC) ∈ ⦗�⦘; meaning that there are two witnesses

x� ∈ C+(�) , x� ∈ C+(�)

such that x�A ∈ xA, x�C ∈ xC and x�B , x�B ∈ xB – thus there is �B ∶ x�B ≅B x�B . So x�and x� may not match on B on the nose, but only up to symmetry. This is an issue, but
one that we are prepared to handle just as we already did in the proof of Lemma 9.3.5,
using Proposition 7.4.4, reindexing both x� and x� to find a true synchronization. Thus
let us ignore that for now, and pretend that we are lucky enough to have x�B = x�B .

To sum up, relational composition provides us with awitness position that both strate-
gies agree (up to symmetry) is reachable. In contrast, composition of strategies is more
rigid: not only should the projections of x� and x� on B match, they should also ar-
rive at this position in a compatible chronological ordering. This is not always possible:
these two notions of composition differ when interaction triggers a causal deadlock, i.e.
pairs of configurations that are matching but not secured as in Definition 6.2.2. Figure
10.15 displays an example: the strategy obtained by composition has no response to the
initial Opponent move, while relational composition authorizes 0+.
This strikes at the heart of the difference between game and relational semantics: the

former is dynamic hence sensitive to deadlocks, while the latter is static. This of course
is what lets game semantics model languages with non-commutative effects, but for us,
very concretely, it means that the relational model is not lax functorial.

10.4.3 The Deadlock-Free Lemma
Our deus ex machina is visibility. A powerful – and at first unexpected – consequence
of visibility is that any interaction between visible strategies is always deadlock-free.
The consequence of visibility that our proof will exploit repeatedly is:
Lemma 10.4.7. Take A,B −-boards, � ∶ A ⊢ B visible, and m,m′ ∈ � s.t. m <� m′.

Then, j(m′) is comparable with m with respect to ≤� .

Proof. Since m <� m′, there is � _ m′ ∈ gcc(�) s.t. m ∈ �. If)�(m′) is minimal
in A,)�(j(m′)) is minimal in B, so j(m′) is minimal for ≤� by courtesy. But since � is

CHAPTER 10. PARALLEL INNOCENCE 270

pointed, j(m′) is initial in �, obviously comparable with m as � is totally ordered.
Else, by visibility j(m′) ∈ �. But � is totally ordered, so m, j(m′) comparable.
We shall prove that the composition of visible causal strategies is deadlock-free. But

first, we recall the basic mechanisms of interactions between causal strategies. Consider
� ∶ A ⊢ B and � ∶ B ⊢ C , and configurations x� ∈ C (�), and x� ∈ C (�) s.t., writing
)�x� = x�A ∥ x

�
B and)�x� = x�B ∥ x

�
C , we have x�B = x�B = xB , i.e. x� and x� are

matching. Recall from Definition 6.2.2 the bijection arising from their synchronization:

' ∶ x� ∥ x�C
)�∥x�C≃ x�A ∥ xB ∥ x

�
C

x�A∥)
−1
�

≃ x�A ∥ x
� ,

whose graph is equipped with a relation importing the causal constraints from � and �:
(l, r) ⊲ (l′, r′) ⇔ l <�∥C l

′ ∨ r <A∥� r
′ .

We saw in Definition 6.2.2 and Proposition 7.3.6 that (x� , x�) corresponds to a con-
figuration of the interaction � ⊛ � when this bijection is secured, i.e. ⊲ is acyclic.
If � ∶ A ⊢ B and � ∶ B ⊢ C are visible, we claim that this is always the case.

Proof sketch. Before giving the formal proof, we showcase the reasoning on a sim-
plified case. The basic idea is by contradiction: starting with a putative deadlock, we
repeatedly push it down the causal dependency of the board, until it reaches a minimal
event – but those cannot appear in a cycle.
Consider a simple deadlock in ', given by p1 = (l1, r1) and p2 = (l2, r2) ∈ ' s.t.

l1 <�∥C l2 , r2 <A∥� r1 ,

an immediate incompatibility between p1 and p2. In other words we have p1 ⊲ p2 and
p2 ⊲ p1; we use p1 ⊲� p2 and p2 ⊲� p1 to indicate the origin of the causal constraint.
We apply the same conventions for polarity of elements of ' as for Lemma 6.2.15.
The first observation (skipped here) is that w.l.o.g., the polarities are as in

pr1

⊲� ''
pl2

⊲�
gg ,

where both occur in B but not minimal in B – so we may take j(pi) = (j(li), j(ri)). ByLemma 10.4.7, l1 and j(l2) are comparable for �; while r2 and j(r1) are comparable for
� . If p1 ⊲� j(p2) or p2 ⊲� j(p1), then we respectively have one of the cycles:

j(p2)r ⊲� $$
pr1

⊲�
11

pl2
⊲�

ff or pr1

⊲�
&&
pl2

⊲�qqj(p1)l
⊲�

dd

CHAPTER 10. PARALLEL INNOCENCE 271

so simple deadlocks between p1 and j(p2); or between j(p1) and p2. Those simple dead-
locks are smaller, in the sense that their cumulative depth inB has decreased – justifying
the inductive reasoning. The case p1 = j(p2) or p2 = j(p1) is easily discarded.

The last case has j(p2) ⊲� p1 and j(p1) ⊲� p2. But p1 has polarity r, so by Lemma
10.2.2 the only immediate dependency in � of l−1 is j(l1). So j(p2) ⊲� p1 factors as
j(p2) ⊲� j(p1) ⊲� p1. Symmetrically j(p1) ⊲� j(p2), so we have:

j(p1)

⊲�
$$
j(p2)

⊲�

dd
,

closer to the root of the board. Repeating this we eventually hit an impossible simple
deadlock with a minimal event in B, finally exposing the contradiction.

Detailed proof. The proof of the deadlock-free lemma is the same in essence, but
challenging in form. Firstly, cycles in ⊲ in Definition 6.2.2 may have arbitrary length.
Secondly, in relational composition strategies synchronize on symmetry classes rather
than configurations; so we must account for synchronization through symmetry.
Lemma 10.4.8. Consider A,B, C −-boards, � ∶ A ⊢ B and � ∶ B ⊢ C visible causal
strategies, x� ∈ C (�) and x� ∈ C (�) with a symmetry � ∶ x�B ≅B x

�
B .

Then, the composite bijection

' ∶ x� ∥ x�C
)�∥x�C≃ x�A ∥ x

�
B ∥ x

�
C

x�A∥�∥x
�
C≃ x�A ∥ x

�
B ∥ x

�
C

x�A∥)
−1
�

≃ x�A ∥ x
� ,

is secured, in the sense that the relation ⊲, defined on the graph of ' with

(l, r) ⊲ (l′, r′)

whenever l (<�∥<C) l′ or r (<A∥<�) r′, is acyclic; i.e. (x� , �, x�) causally compatible.
Proof. We use polarities l,r or − for elements of ' (i.e. pairs (l, r)) as above. We say
(l, r) occurs in A, B or C in the obvious sense. We use a notion of justifier of a pair
(l, r) non-minimal in B: as � is an order-iso, ()� ∥ C)(l) is minimal in B iff (A ∥)�)(r)is. If not, then j(l) and j(r) also match up to � and (j(l), j(r)) must be in ' as well – we
write it j(l, r). Suppose now ⊲ is not secured, i.e. there is ((l1, r1),… , (ln, rn)) with

(l1, r1) ⊲ (l2, r2) ⊲… ⊲ (ln, rn) ⊲ (l1, r1) ,

written p1 ⊲⋯ ⊲ pn ⊲ p1 – the length of this cycle is n. First, w.l.o.g. the cycle occurs
entirely inB. Assume it hasminimal length. If it occurs entirely inA orC , then (li)1≤i≤n(resp. (ri)1≤i≤n) is a cycle in � (resp. �), absurd. So, it passes through B. Next, if e.g.

p(B)i ⊲ p(C)i+1 ⊲⋯ ⊲ p(C)j−1 ⊲ p
(B)
j ,

then it is easy to prove that ri < ri+1 <⋯ < rj−1 < rj , so that p(B)i ⊲p(B)j and the cycle
can be shortened, contradicting its minimality – the same argument holds for A.

CHAPTER 10. PARALLEL INNOCENCE 272

We restrict to cycles in B. The depth of (l, r) is the length of the chain of justifiers
to (l0, r0) minimal in B – the depth of (l0, r0) minimal in B is 0. The cycle has depth

d =
∑

1≤i≤n
depth(li, ri) ,

and we assume w.l.o.g. the cycle minimal for the product order on pairs (n, d). In this
proof, all arithmetic computations on indices are done modulo n (the length).
Next, we write pi ⊲� pj if li (<�∥<C) lj and pi ⊲� pj symmetrically. We notice that

⊲� and⊲� alternate – if not we shorten the cycle by transitivity. We assumew.l.o.g. that
p2k ⊲� p2k+1 and p2k+1 ⊲� p2k+2 for all k. But then, pol(p2k) = r and pol(p2k+1) = lso that polarity in the cycle is alternating as well. Indeed, assume e.g.

p2k+1 ⊲ p
l
2k+2 ⊲ p2k+3

with p2k+1⊲� p2k+2 and p2k+2⊲� p2k+3. Then, r2k+1 <A∥� r−2k+2. Negative r−2k+2 cannotbe minimal inB, so by Lemma 10.2.2, it has a unique predecessor j(r2k+2)_A∥� r2k+2,so r2k+1 <A∥� r−2k+2 factors as r2k+1 <A∥� j(r2k+2)_A∥� r−2k+2. Accordingly, p2k+1⊲�
j(p2k+2) ⊲� p2k+2 – but dependencies in the game are respected by both strategies, so
j(p2k+2) ⊲� p2k+2. So j(p2k+2) ⊲� p2k+3, and we can replace the cycle fragment with

p2k+1 ⊲ j(p2k+2) ⊲ p2k+3

which is still in B, has the same length but strictly smaller depth. The symmetric argu-
ment applies for �, so any p2k+1 has polarity l and any p2k+2 has polarity r.We show the cycle cannot have an event minimal in B. Seeking a contradiction, if

pl2k+1 ⊲� p
r
2k+2 ⊲� p

l
2k+3

with p2k+2 minimal in B, then l2k+2 <�∥C l2k+3 with l2k+2 minimal in B, but then
)�∥C (l2k+2) <A∥B∥C)�∥C (l2k+3). Indeed, if)�∥C (l2k+2) is minimal in B, l2k+2 is (bycourtesy) minimal in � ∥ C . Likewise, since l2k+3 occurs in B,)�∥C (l2k+3) depends(for ≤A∥B∥C) on a unique)�∥C (l) minimal in B, where l must also be minimal in �.
But since � is pointed, l2k+3 has a unique minimal dependency, hence l = l2k+2 and
)�∥C (l2k+2) <A∥B∥C)�∥C (l2k+3) as claimed. But then, r2k+2 <A∥� r2k+3, so pl2k+1 ⊲�
pr2k+2 ⊲� p

l
2k+3 and again the cycle can be shortened by transitivity.

We have proved a minimal cycle has a canonical form where the strategies alternate,
polarity alternates, all events are in B and non-minimal. Since pr2k ⊲� pl2k+1, writing
p = (l, r) = j(p2k+1), l = j(l2k+1) as well. From Lemma 10.4.7, we know that l =
j(l2k+1) is comparable with l2k in � ∥ C (by visibility of �). If j(l2k+1) = l2k, then
r2k ⊲� r2k+1 as well. This gives p2k−1 ⊲� p2k+2, contradicting minimality of the cycle.
So j(l2k+1) ≠ l2k. Similarly, j(r2k+2) is comparable with r2k+1 in A ∥ � , but distinct.Assume that we have p2k ⊲� j(p2k+1) for some k. Since j(p2k+1) ⊲� p2k+1 ⊲� p2k+2we can replace the cycle fragment p2k ⊲ p2k+1 ⊲ p2k+2 with the cycle fragment

p2k ⊲ j(p2k+1) ⊲ p2k+2

which has the same length but smaller depth, absurd. So, j(p2k+1) ⊲� p2k for all k
(symmetrically, j(p2k+2) ⊲� p2k+1 for all k). In particular, j(l2k+1) <�∥C l−2k but by

CHAPTER 10. PARALLEL INNOCENCE 273

Lemma 10.2.2, l−2k has a unique immediate predecessor j(l2k). So, j(p2k+1)⊲� j(p2k) forall k; and likewise j(p2k+2) ⊲� j(p2k+1) for all k. So we can replace the full cycle with
j(pn) ⊲ j(pn−1) ⊲… ⊲ j(p1) ⊲ j(pn)

which has the same length but smaller depth, contradiction.
The deadlock-free lemma is a powerful observation with far-reaching consequences

in linking game semantics and relational models. It also gives a lot of weight to the
notion of visibility, as a simple, well-behaved under-approximation of innocence.
As a direct consequence of the deadlock-free lemma, we obtain:

Corollary 10.4.9. Consider −-boards A,B, C , and � ∶ A ⊢ B, � ∶ B ⊢ C visible.
Then, ⦗� ⊙ �⦘ = ⦗�⦘◦⦗�⦘.

Proof. ⊆. Follows from Lemma 10.4.6.
⊇. Consider (xA, xB) ∈ ⦗�⦘ and (xB , xC) ∈ ⦗�⦘, with witnesses x� ∈ C+(�) and

x� ∈ C+(�) with)�(x�) = x�A ∥ x�B ,)� (x�) = x�B ∥ x�C , with x�A ∈ xA, x�B , x�B ∈ xB ,and x�C ∈ xC . In particular, there is � ∶ x�B ≅B x�B . Now, the composite bijection

' ∶ x� ∥ x�C
)�∥x�C≃ x�A ∥ x

�
B ∥ x

�
C

x�A∥�∥x
�
C≃ x�A ∥ x

�
B ∥ x

�
C

x�A∥)
−1
�

≃ x�A ∥ x
� ,

is secured by Lemma 10.4.8. Thus by Proposition 7.4.4, there are reindexings y� ≅� x�and y� ≅� x� such that)�(y�) = y�A ∥ y�B ,)� (y�) = y�B ∥ y�C with y�B = y�B – so
y� ⊙ y� ∈ C (� ⊙ �). But since y� ≅� x� and y� ≅� x� , we also know that y�A ∈ xAand y�C ∈ xC still, so y� ⊙ y� witnesses (xA, xC) ∈ ⦗� ⊙ �⦘ as required.

10.4.4 A Relative Seely ∼-Functor
Next, we show that the relational collapse preserves the rest of the structure – it should
form a relative Seely ∼-functor. Relative Seely (∼-)functors are simply (∼-)functors
equippedwith isomorphisms expressing the preservation of the additional structure, sat-
isfying certain coherence conditions. Just like relative Seely categories, relative Seely
(∼-)functors are not a standard notion. However, they are certainly an unsurprising one,
so in this monograph we opted to relegate it to the appendix (Appendix A.2).
To construct our concrete relative Seely ∼-functor, we start with:

Proposition 10.4.10. We have a ∼-functor ⦗−⦘ ∶ NTCG-Vis → Rel.

Proof. Preservation of copycat is by Proposition 10.4.5, and preservation of composi-
tion is by Proposition 10.4.9. It remains to show that ⦗−⦘ preserves ≈.
Hence, consider �,�′ ∶ A ⊢ B with f ∶ � ≈ �′, and take (xA, xB) ∈ ⦗�⦘. By

definition, there is a witness x� ∈ C+(�) such that)� x� ∈ xA ⊢ xB . But then,
f [x�]A ⊢ f [x�]B ∶ x�A ⊢ x

�
B ≅A⊢B f (x�)A ⊢ f (x�)B

so that f (x�) ∈ xA ⊢ xB as required. The other inclusion holds by symmetry.
Next, we examine preservation of the full categorical structure.

CHAPTER 10. PARALLEL INNOCENCE 274

Preservation of the monoidal structure. Following Definition A.2.1, we require
s⊗A,B ∶ ⦗A⦘ × ⦗B⦘ ≅ ⦗A⊗ B⦘
s1 ∶ 1 ≅ ⦗1⦘

isomorphisms in Rel, natural in A and B – those follow from the bijections of Lemma
7.1.22 in the obvious way, which is indeed compatible with payoff.
Proposition 10.4.11. We have (⦗−⦘, s⊗, s1) a symmetric monoidal ∼-functor.

Proof. All verifications are straightforward. For naturality, we must show that

⦗A⦘ × ⦗B⦘
s⊗A,B //

⦗�⦘×⦗�⦘
��

⦗A⊗ B⦘

⦗�⊗�⦘
��

⦗A′⦘ × ⦗B′⦘
s⊗
A′ ,B′

// ⦗A′ ⊗B′⦘

commutes for � ∶ A ⊢ A′ and � ∶ B ⊢ B′, which is direct by Proposition 8.1.1.

Preservation of !. Next we deal with the exponential structure, which is the most
challenging. Inspecting the requirements for relative Seely functors we must first show
that ⦗−⦘ preserves strict objects – but this is trivial: as a proper Seely category, Rel is
regarded as a relative Seely category with all objects strict. Then we must provide

s!S ∶ℳf (⦗S⦘) ≅ ⦗!S⦘

for every strict S, subject to coherence conditions. We first construct the bijection:
Proposition 10.4.12. For any S strict, there is a bijection s!S ∶ℳf (⦗S⦘) ≅ ⦗!S⦘.

Proof. First, recall from Lemma 8.3.1 that we have a bijection
Fam(C≠∅(S)) ≃ C (!S)

following which configurations of null payoff of !S correspond to families of non-empty
configurations of null payoff of S. But S is strict, thus its configurations of null payoff
are non-empty. Hence the bijection above may be directly refined into another bijection

Fam(⟬S⟭) ≃ ⟬!S⟭

where ⟬A⟭ is the set of configurations of null payoff. Inlining this bijection, we may
define the inverse of s!S on representatives directly as follows:

(s!S)
−1 ∶ ⟬!S⟭ → ℳf (⦗S⦘)

[xSi ∣ i ∈ I] → [xSi ∣ i ∈ I]

where xiS denotes the symmetry class of xSi , [xSi ∣ i ∈ I] (with a bold font) is our
notation for families, and [xSi ∣ i ∈ I] (with non-bold font) is multiset comprehension.

CHAPTER 10. PARALLEL INNOCENCE 275

Invariant. Consider � ∶ [xSi ∣ i ∈ I] ≅!S [ySj ∣ j ∈ J] a symmetry, which by
definition is given by a bijection � ∶ I ≃ J and a family (�i)i∈I where �i ∶ xSi ≅S yS�(i)
for all i ∈ I . But then, xSi = yS�(i), from which, as required, we deduce that

[xSi ∣ i ∈ I] = [y
S
�(i) ∣ i ∈ I] = [y

S
j ∣ j ∈ J] .

Injective. Assume [xSi ∣ i ∈ I] = [ySj ∣ j ∈ J]. Thus, there is a bijection � ∶ I ≃ J
such that for all i ∈ I , xSi = yS�(i). Hence, for all i ∈ I there is �i ∶ xSi ≅S yS�(i),
altogether forming a symmetry � ∶ [xSi ∣ i ∈ I] ≅S [ySj ∣ j ∈ J].
Surjective. Consider a multiset [x1,… , xn] ∈ ℳf (⦗S⦘). For each 1 ≤ i ≤ n,

consider a representative xi ∈ xi. Then, [xi ∣ 1 ≤ i ≤ n] provides a pre-image.
Observe that there is no such bijectionℳf (⦗A⦘) ≃ ⦗!A⦘ for A non-strict, because

[∅] ≠ [∅, ∅]

are distinct elements ofℳf (⦗A⦘), but can only be represented in ⦗!A⦘ with the same
(empty) configuration since there are no events. The relational model may remember
how many times a game is not visited, which makes no sense in terms of games. This
is the reason behind the preservation of the relative Seely ∼-categorical structure only.
Among the several diagrams to check, the most subtle is preservation of promotion:

Lemma 10.4.13. Consider S, T strict and � ∶ !S ⊢ T .
Then, the following square commutes in Rel:

ℳf (⦗S⦘)

s!S
��

(⦗�⦘◦s!S)
!
//ℳf (⦗T ⦘)

s!T
��

⦗!S⦘
⦗�!⦘

// ⦗!T ⦘

Proof. We use a multiset notation for stopping positions of !S and !T , inlining Propo-
sition 10.4.12. The upper-right path computes to the pairs that can be written as

([xi,j ∣ i ∈ I, j ∈ Ji], [yi ∣ i ∈ I])

for xi,j ∈ ⦗S⦘ and yi ∈ ⦗T ⦘where we have that for all i ∈ I , ([xi,j ∣ j ∈ Ji], yi) ∈ ⦗�⦘.Thus for all i ∈ I , there is x�i ∈ C+(�) witnessing that pair, i.e. we have
)�x

�
i ∈ [xi,j ∣ j ∈ Ji] ⊢ yi .

Thus, relying on Proposition 8.3.3 we may form [x�i ∣ i ∈ I] ∈ C
+(�!) (by Lemma

8.1.8, �! only differs from !� via its display map), and a direct verification ensures that
)�![x�i ∣ i ∈ I] ∈ ([xi,j ∣ i ∈ I, j ∈ Ji], [yi ∣ i ∈ I])

as required. The other direction follows the same decompositions.

CHAPTER 10. PARALLEL INNOCENCE 276

Relative Seely ∼-functor. To wrap up, we introduce the missing components. First,
s⊤ ∶ ∅ ≅ ⦗⊤⦘

is simply the empty relation. For the product and the arrow, we prove:
Lemma 10.4.14. ConsiderA,S, T −-boards with S, T strict. Then, we have bijections

s&S,T ∶ ⦗S⦘ + ⦗T ⦘ ≅ ⦗S&T ⦘
s⊸A,S ∶ ⦗A⦘ × ⦗S⦘ ≅ ⦗A ⊸ S⦘

Proof. For the product, recall first that by Lemma 8.2.9, we have a bijection
C≠∅(S) + C≠∅(T) ≃ C≠∅(S&T)

which holds also for symmetries, and thus extends to symmetry classes. But now we
note that S, T , and S&T are strict, therefore configurations of null payoff must be non-
empty. It follows that the bijection above extends to stopping positions.
For the arrow, similarly recall that by Lemma 8.2.12, we have a bijection

C≠∅(A ⊸ S) ≃ C (A) × C≠∅(S)

which also holds to symmetry and thus extends to symmetry classes. But again note
that since S is strict, configurations with null payoff must be non-empty, and thus the
above extends to a bijection on stopping positions.
The missing five coherence diagrams of relative Seely ∼-functors are direct, from

an analysis of the symmetry classes reached by the component strategies. Projections,
dereliction and monoidality are defined by lifting, hence the corresponding diagrams
follow as for copycat in Proposition 10.4.5. For evaluation, this follows from the de-
scription of its +-covered configurations in Proposition 8.2.27. Altogether:
Corollary 10.4.15. We have a relative Seely ∼-functor ⦗−⦘ ∶ NTCG-Vis → Rel.

By Theorem A.2.3 we have a cartesian closed ∼-functor ⦗−⦘ ∶ NTCG-Vis! → Rel!.
Once the deadlock-free lemma is established, this interpretation-preserving collapse

from concurrent games to the relational model is strikingly simple, and emphasizes how
the concurrent games model may be regarded as a causal and temporal extension of the
relational model. This extension is of course far from negligible as it allows one to
represent programming languages with non-commutative effects, such as references.

Positional equivalence. In this monograph, we shall exploit this concretely by rea-
soning on strategies up to the induced equivalence relation:
Definition 10.4.16. Consider A,B −-boards, and �,�′ ∈ NTCG-Vis(A,B).

We say that � and �′ are positionally equivalent, written � ≡ �′, iff ⦗�⦘ = ⦗�′⦘.

CHAPTER 10. PARALLEL INNOCENCE 277

U ⊸ U ⊸ U

q−
%oouq+_���

✓−

� %%,q+_���
✓−

� &&-
✓+

≡

U ⊸ U ⊸ U

q−

1tt}(ppwq+
_���

q+
_���

✓−

� ''.

✓−

� ""*
✓+

Figure 10.16: Quotienting out evaluation order

xA ∈ ⦗A⦘ xB ∈ ⦗B⦘

xA ⊗ xB ∈ ⦗A⊗ B⦘

xA ∈ ⦗A⦘ xC ∈ ⦗C⦘

xA ⊸ xC ∈ ⦗A ⊸ C⦘

x ∈ ⦗A⦘i (i ∈ I)

(i, x) ∈ ⦗&i∈IAi⦘

(xiC ∈ ⦗C⦘)i∈I
[xiC ∣ i ∈ I] ∈ ⦗!C⦘

xA ∈ ⦗A⦘ xB ∈ ⦗B⦘

xA ⊢ xB ∈ ⦗A ⊢ B⦘

Figure 10.17: Syntax for positions for A,B, C −-boards with C strict

Concretely, positional equivalence amounts to quotienting out information about the
evaluation order, as illustrated in Figure 10.16. It is a very brutal quotient, which would
clearly be inconsistent in the presence of any non-commutative effect. But since ⦗−⦘ is
a relative Seely ∼-functor, positional equivalence is a congruence within visible causal
strategies: it is preserved by all operations used in computing the interpretation. In
other words, there is another relative Seely ∼-category where visible strategies are con-
sidered up to positional equivalence – we shall not move to this ∼-category, but the
finite definability result of Chapter 12 will hold up to positional equivalence only.

Back to _-Strat. The developments presented in this chapter have no interaction
with mixed boards and well-bracketing, hence transport transparently from NTCG! to
-Strat. Hence there are-Vis and_-Inn, two cartesian closed sub-∼-categories of
_-Strat with morphisms respectively restricted to visible and parallel innocent strate-
gies. They both support the interpretation of PCF�, with cartesian closed ∼-functors:

⦗−⦘ ∶ _-Vis → Rel!
⦗−⦘ ∶ _-Inn → Rel! ;

preserving the interpretation. Consequently,_-Vis and_-Inn both support positional
equivalence which is preserved by all operations used in the interpretation of PCF�.

CHAPTER 10. PARALLEL INNOCENCE 278

(U → U) → (U → U) → U

q−
$nnuq+

.ss{
_���

q−

�))0

✓−

q+
.ss{

_���
q−

&oov

✓−

✓+

Figure 10.18: A well-bracketed innocent strategy with a non well-bracketed gcc

A syntax for positions. It will be convenient to have a syntactic description of the
shape of positions on various−-boards constructions. We give this description in Figure
10.17, directly applying the bijection s⊗A,B from Proposition 10.4.11, s⊸A,C and s&C,D from
Lemma 10.4.14, s!S Proposition 10.4.12, and the obvious variant of s⊗A,B for ⊢.

10.5 Globularity
Though we regard parallel innocence (and visibility) as the key conditions to understand
the causal shape of pure parallel programs, it is not yet precise enough to entail our
definability result. For definability purposes, we need yet again more rigid constraints
on the causal shape of strategies, taking the form of a final condition called globularity.

10.5.1 Motivation and Definition
Well-bracketed gccs. In Section 10.1.2, we introduced pre-innocence with the intu-
ition that a gcc may be regarded as a standalone sequential program, and pre-innocence
brings constraints as to how these “sequential threads” may be forked and merged. But
if these “threads” do correspond to good old sequential computations, they should cer-
tainly satisfy a condition akin to sequential well-bracketing (see Definition 3.2.5).
Strategies in_-Strat already satisfy a well-bracketing condition (Definition 9.3.2).

However, it is based in the logical well-bracketing of non-alternating plays (Definition
5.1.2), which is insufficient to ensure that gccs are (sequentially) well-bracketed: this is
illustrated in Figure 10.18, displaying a well-bracketed innocent causal strategy with a
non well-bracketed gcc highlighted. This invites the condition, for � in_-Inn:

wb-threads: any � ∈ gcc(�) is well-bracketed in the sense of Definition 3.2.5.

However, this is not yet enough to fully capture higher-order pure parallel compu-
tation. The final condition required has to do with which gccs can be legally merged.

CHAPTER 10. PARALLEL INNOCENCE 279

(U → U) → U → (U → U) → U
q−

#nnt
1tt}q+11tt}

q+21tt}q−

� ''.

q−
1tt}q+3

Figure 10.19: An innocent non-globular strategy

Intuitively, all causal merges in PCF� are generated by the parallel let binding

let
(

x1 = N1
x2 = N2

)

inM

where the two branches are causally merged when the computation ofN1 has returned,and the computation ofN2 has returned also – so all Questions involved in the computa-
tion ofN1 have an answer, and likewise forN2. But not all parallel innocent strategiessatisfy this pattern: the strategy shown in Figure 10.19 is parallel innocent, satisfies
condition wb-threads, but is not definable within PCF� as there is a causal merge of
computation branches that have not returned yet. Banning this invites the condition:
globules: for any diagram with X = {m1,… , mn} and Y = {n1,… , np} disjoint:

m+1
� ,,2 � ,,2m−n

� ��'
m−0

7 77A

� ��'
m+

n+1
� ,,2 � ,,2n−p

8 77A

in �, then every question in X (resp. Y) is answered in X (resp. Y).
We call such a diagram a globule. Note that only Player can merge parallel threads,

and only if he is responsible for the fork (by parallel innocence), so polarities in the def-
inition of globules are not restrictive. Additionally, one can also observe that globules
must always have Question/Answer assignments as in the diagram:

m+,1
� ,,2m−,2

� ,,2 � ,,2m+,2n−1
� ,,2m−,2n

 !!*
m−0

2 55=

� !!)
m+

n+,1
� ,,2n−,2

� ,,2 � ,,2n−,2p−1
� ,,2n+,2p

2 55= (10.2)

Indeed, if m1 was an answer, it would be maximal in � (by Lemma 6.1.16, as by
answer-closing, answers are maximal in A) and the merge would be impossible. So
m1 is a question, and by globules it has an answer in {m1,… , m2n}. By Lemma 6.1.16
this answer depends immediately on m1 in � and so must be m2. Repeating this we getthe description above. Hence by globules, parallel threads that eventually might merge
have to follow a strict call/return discipline. Altogether, we set:

CHAPTER 10. PARALLEL INNOCENCE 280

Definition 10.5.1. Consider A,B mixed boards, and � ∈_-Inn(A,B).
Then � is globular if it satisfies conditions wb-threads and globules.

10.5.2 Composition of Globularity
In this section, we develop the compositional structure of globularity.

Basic categorical structure. As usual when introducing a new condition on strate-
gies, we must show that it is compatible with all our constructions on strategies – and as
is often the case, the most crucial point is compatibility with copycat and composition.
Recall that the definition of globularity concerns morphisms in_-Inn, defined as (a

subcategory of) a Kleisli category, i.e. its morphisms are certain strategies on !A ⊢ B
where A and B are mixed boards. In examining compatibility of globularity with the
categorical structure, it is convenient to work with the basic constructions in NTCG
(copycat, composition) rather than those in the Kleisli category (Kleisli composition).
Here we shall do that, keeping in mind the slight abuse that technically the definition of
globularity refers to the Question/Answer labelling, which was not required on boards,
but arises only in mixed boards, via the link with the arena.
Proposition 10.5.2. The copycat strategy cc A ∶ A ⊢ A is globular.

Proof. The condition wb-threads boils down to the proof that P-views of the alternat-
ing copycat are well-bracketed in the sense of Definition 3.2.5. Globularity holds vac-
uously, as the event structure for copycat has no causal merge.
As usual, this reasoning applies to all copycat strategies involved in the interpretation:

projections, structural morphisms for the monoidal structure, dereliction, etc.
Now, we establish stability of globularity under composition:

Proposition 10.5.3. Consider � ∶ A ⊢ B and � ∶ B ⊢ C globular.
Then, � ⊙ � ∶ A ⊢ C is globular.

Proof. For wb-threads, we first prove that all gccs in �⊛� are well-bracketed – this is a
variation of the fact that alternating innocent strategies are well-bracketed iff their mea-
ger form is (Proposition 3.2.13). For globules, by the same reasoning as in Proposition
10.3.2, a globule in � ⊙ � originates in a diagram picturing causal chains

�1i+1
� ,,2 � ,,2m1

� ,,2 � ,,2�1n
v��

�11
� ,,2 � ,,2�1i−1

� ,,2m′

D<<F

z��"

nl � ,,2 � ,,2m

�2i+1
� ,,2 � ,,2m2

� ,,2 � ,,2�2p

H>>H

in �⊛�, constructed as and satisfying the same properties as in Proposition 10.3.2 – in
particular n has polarity l without loss of generality. But then as in Proposition 10.3.2,

gce(⌜�1≤n⌝
� , ⌜�2≤p⌝

�) = gce(�1≤n, �
2
≤p)� = m

′
� ,

CHAPTER 10. PARALLEL INNOCENCE 281

by the forking lemma, i.e. � sees the same fork as in � ⊛ �. Since � is globular, all
questions between m′� and n� in both ⌜�1≤n⌝� and ⌜�2≤n⌝� have an answer. But as ob-
served above, gccs in �⊛� are well-bracketed, which entails that all questions between
m′ and n in �1 and �2 also have an answer – hence, globules is satisfied in � ⊙ �.

Interpretation of PCF�. As for parallel innocence, preservation of globularity for all
other operations is straightforward. We omit the details of that, and of the fact that the
basic primitives of PCF� yields globular strategies. Altogether, we get:
Theorem 10.5.4. there is _-Glob, a cartesian closed sub-∼-category of _-Strat,
with morphisms restricted to globular strategies.
Moreover,_-Glob supports the interpretation of PCF�.

10.6 History and Related Work
Parallel innocence and its accompanying theory (the forking lemma and stability under
composition, the deadlock-free lemma and the collapse to Rel, globularity) have been
developed in close collaboration with Simon Castellan during his PhD thesis4 – they
first appear in published form in [Castellan et al., 2015]; though the presentation given
here differs significantly, having matured quite a bit since then.
Parallel innocence was first developed aiming for a finite definability result for (es-

sentially) PCF�, which was achieved in [Castellan et al., 2015]. It became a corner-
stone of subsequent developments in concurrent games. Though surprisingly, it is not
parallel innocence per se that turned out so useful in our later work, but visibility
and the deadlock-free lemma! Indeed, this is one of the key ingredients in our sub-
sequent results relating concurrent games and relational models, in the probabilistic
[Castellan et al., 2018b], the general weighted case [Clairambault and Paquet, 2021],
the quantum case [Clairambault and de Visme, 2020] and more recently for generalized
species of structure [Clairambault et al., 2023b]. In a sense, the deadlock-free lemma
explains why the relational models work at all for pure parallel programs: no deadlocks
can arise in composing them, so that causal information has no impact on possible
synchronizations and can safely be forgotten. No such miracle occurs for effectful pro-
gramming languages, for which the causal information is unavoidable.

Related work. In [Melliès and Mimram, 2007], Melliès and Mimram have sketched
a notion of innocent strategies in the setting of non-alternating asynchronous games
(which are essentially the linear, causally deterministic part of TCG), with the purpose
of eliminating deadlocks from composition. This appears with more details in Mim-
ram’s PhD thesis [Mimram, 2008]. According to their definition, innocence amounts
to a correctness criterion inspired from linear logic proof nets. We are not aware of a
direct link with the present developments, though this would be interesting to explore.

4More precisely, visibility and parallel innocence were invented on the 7th of february 2014, a (probably)
rainy friday – as witnessed by Figure 8.5.

Chapter 11

Sequentiality

The conditions of parallel innocence and globularity developed in the previous chap-
ter enforce pure computation, which may still be parallel. In contrast, the conditions
developed in this chapter aim to reinstate sequentiality, which may still be impure.
Sequentiality is probably the simplest of our conditions on strategies, but it still comes

with a few subtleties. Firstly, the concept of sequentiality is of course tied to time, which
is notably absent from concurrent strategies! So it makes sense that the definition will
have to refer to linearizations of strategies, in the style developed in the unfolding of
causal to non-alternating strategies in Chapter 9. Secondly, a phenomenon occurs that
is similar to what we encountered for parallel innocence: as non-determinism arises
from the combination of parallelism and state, sequentiality must reinstate it – but not
quite under the same form as in the previous chapter: it is hard to unify sequential
determinism and causal determinism (see discussion in Section 14.2.2).

Outline. The developments of this chapter will proceed as follows. In Section 11.1,
we develop sequentiality, aiming to show that sequential strategies form a sub-relative
Seely ∼-categoryNTCG-Seq, that refines to a sub-cartesian closed ∼-category_-Seq
of _-Strat, supporting the interpretation of IA. In Section 11.2, we show that the
non-alternating unfolding↺-Unf of Chapter 9 refines into an interpretation-preserving

⇵-Unf ∶_-Seq → ⇵-Strat
which entails that_-Seq is intensionally fully abstract for IA. In Section 11.3, we show
that in combination with globularity,⇵-Unf yields an interpretation-preserving functor

⇵-Unf ∶_-SeqGlob → ⇵-InnWB

proving_-SeqGlob intensionally fully abstract for PCF.

282

CHAPTER 11. SEQUENTIALITY 283

11.1 Sequentiality
Sequentiality has no interaction with mixed boards or well-bracketing, hence we carry
it out in the relative Seely ∼-categoryNTCG. Likewise, for succinctness, the examples
shall be based on the small interpretation of ground types (see Section 9.1.1) – although
the actual interpretation remains the same as for IA�, i.e large.

11.1.1 Definition of Sequentiality
What is a sequential causal strategy? The right answer is more subtle than it looks.

Sequential event structures. As strategies are certain event structures, it seems rea-
sonable to start by looking at what is a sequential event structure. Event structures are
concurrent generalizations of trees or forests: there is a natural representation of forests
as event structures, which entails a canonical notion of sequentiality:
Definition 11.1.1. An event structure E is sequential if it satisfies the conditions:

forestial: for all e1, e2 ≤E e′, then e1 ≤E e2 or e2 ≤E e1.
#-branching: for all e1, e2 ∈ E, e1 #E e2 iff they are causally incomparable.

In other words, a sequential event structure has the shape of a forest as in
∙

@zz� ~��$

∙
_���∙

_���

∙ ∙
@zz� ~��$∙ ∙ ∙

whose configurations, always totally ordered, correspond to branches of the forest.
However, it is quickly apparent that this is not useful as a definition of sequential

causal strategies. Technically, receptivity entails that conflicts between negative moves
should be exactly as in the game. But negative events may not conflict in the game, as
in e.g. the initial moves of !B; so no strategy can actually be sequential on !B.
More fundamentally, it turns out that although IA is indeed a sequential language,

the shape of causality in the corresponding strategies is certainly not sequential. We
show two examples: first in Figure 11.1 we repeat the example of Figure 10.3. This is
(an affine linear version of) the interpretation of the term in (10.1), a term of IA which
should hence be deemed sequential – we see that even though the program itself does
not spawn parallel threads, the strategy cannot be sequential as in Definition 11.1.1 as
it must show how the program reacts when Opponent does. A similar phenomenon
occurs for pure sequential innocent programs: Figure 11.2 shows a configuration of

⊢ �fU→U. f skip; f skip; tt ∶ (U → U)→ B

which has a typical shape for pure sequential programs. We see that although the causal
shape of pure sequential programs is indeed forestial, the branches do not conflict.

CHAPTER 11. SEQUENTIALITY 284

(U ⊸ U) ⊸ N

q−
4uu�q+

3uu~
_���

q−
K��	 s��� � %%,

✓−

=yy� ���$ � ##+
✓+ ✓+ 1+ 0+

Figure 11.1: A sequential strategy

q−
_���
q+0

1tt} _��� � $$,q−0,0_���
q−0,1_���

✓−0_���
✓+0,0 ✓+0,1 q+1

9ww� _��� � ��'
q−1,0_���

q−1,1_���
✓−1,1_���

✓+1,0 ✓+1,1 tt+

Figure 11.2: A sequential innocent configuration

Alternating linearizations. So how shall we instead define sequentiality?
Let us set the stage for the definition. First, recall that the definition of linearizations

(Definition 9.2.1) associates to any event structure the setℒ (E) of words of |E|, which
are non-repetitive and whose prefixes form configurations. Now through its display
map, � has polarities, so we can look at those alternating linearizations:
Definition 11.1.2. Consider E an event structure with polarities.
The set ⇵-ℒ (E) of alternating linearizations comprises those s ∈ ℒ (E) such that

polarities alternate and the first move (if s is non-empty) is negative.

We insist that ⇵-ℒ (�) comprises words of events of �: we have not yet projected �
to the game. Its elements are internal witnesses of sequential executions, invisible to
the environment. Despite this, we can perform on ⇵-ℒ (�) certain operations usually
done on alternating legal plays on arenas. In particular, we can compute the P-view:
Definition 11.1.3. Consider � ∈ NTCG(A,B) pointed, and s ∈ ⇵-ℒ (�).
Its P-view is the subsequence ⌜s⌝ defined by:

⌜"⌝ = "
⌜sm+⌝ = ⌜s⌝m+

⌜sn+s′m−⌝ = ⌜s⌝n+m− if m points to n,
⌜sm−⌝ = m− if m is minimal,

where m points to n if)�(n)_A⊢B)�(m); or if)�(m) is minimal in A and n = init(m).
We say s ∈ ⇵-ℒ (�) is P-visible if for all t ⊑ s, ⌜t⌝ ∈ ⇵-ℒ (�).

This mimics the traditional definition (Definition 3.2.7), except that sequences s ∈
⇵-ℒ (�) do not have pointers; those are derived from the immediate causality in the
game as in Lemma 9.2.8. Observe that this is where the hypothesis pointed is needed:
as causal strategies play on A ⊢ B, the causal dependency from initial moves in B to
initial moves in A may only be recovered from the immediate causality in �: pointed-
ness ensures that moves minimal in A have a unique initial dependency which must be
minimal in B, which ensures that that the justifier is always well-defined.

CHAPTER 11. SEQUENTIALITY 285

Sequentiality. Programs of IA will respect sequentiality only within a sequential ex-
ecution: we wish to impose that in any state reachable in a sequential execution, Player
will not throw parallel threads. But as explained in Section 10.1, as for parallel inno-
cence, sequentiality must also reinstate a notion of determinism. Altogether we get:
Definition 11.1.4. A strategy � ∈ NTCG(A,B) is sequential if:

pointed: if s ∈ �, there is a unique init(s) ≤� s minimal in �,sequential determinism: if tn+1 , tn
+
2 ∈ ⇵-ℒ (�), then n1 = n2,

sequential visibility: if s ∈ ⇵-ℒ (�), writing ⌜s⌝ = s1… sn and 1 ≤ j ≤ n,
if sj is non-minimal then there is 1 ≤ i < j s.t. j(sj) = si,

where the justifier j(m) of m ∈ � refers to Definition 10.2.1.

For sequential determinism, more than asking that the unfolding acts determinis-
tically on alternating plays, this condition ensures that no internal non-deterministic
choice is alternatingly reachable, even when this choice would yield no observable non-
deterministic behaviour (surprisingly for us, this turned out necessary).
Sequential visibility is perhaps puzzling, as P-visibility of alternating strategies (Defi-

nition 3.2.8) is usually associated not to sequentiality, but to the absence of higher-order
state (see Section 3.3.2). From a given control point, a P-visible strategy may only call
a procedure bound within the branch of the syntax tree leading to that control point. In
contrast, with higher-order state, a program may call a procedure stored in the memory,
originating from a remote program phrase outside the current branch. This phenomenon
is independent of sequentiality, but in NTCG the causality due to the syntax tree blurs
with that passing via state or semaphores. So strategies arising from the interpretation
of IA� are “morally” P-visible but formalizing this is nontrivial1. For us it is not worth
the trouble as P-visibility is not required for full abstraction for IA�2. Consequently, itsuffices to reinstate it once we restrict to sequential strategies.

The strategy in Figure 10.6 is not sequential: it fails sequential determinism as two
Player moves are available after the initial move. In contrast, the strategy in Figure 11.1
is sequential: although it may perform non-deterministic choices and play Player moves
in parallel, none of these behaviours are reachable in an alternating execution.
We mention a direct consequence of sequentiality:

Lemma 11.1.5. Consider � ∈ NTCG(A,B) a sequential causal strategy.
Then, it automatically satisfies the following additional condition:

reachable sequentiality: if tn+ ∈ ℒ (�), if t ∈ ⇵-ℒ (�) then tn ∈ ⇵-ℒ (�).

Proof. Consider tn+ ∈ ℒ (�) with t ∈ ⇵-ℒ (�). If tn ∉ ⇵-ℒ (�), this necessarily
means that tn+ fails alternation, i.e. t = sm+. But then, we argue that sn+ ∈ ℒ (�)
as well. Indeed, this may fail only if m+ _� n+. But by courteous, this implies
)�(m)_A⊢B)�(n) as well. But as a board, A ⊢ B is alternating, contradiction.

1This was done by Laird in the first interleaving games model [Laird, 2001b], via threading information.
2Proposition 5.1.11 shows that non-visible behaviour characteristic of higher-order state can be mimicked

by running several threads in parallel and using signaling via interference to jump control between them.

CHAPTER 11. SEQUENTIALITY 286

This means that restricting a sequential strategy to its alternating linearizations only
cuts at Opponent moves: it never prevents Player from playing.

11.1.2 Categorical Structure
We show that sequential causal strategies form a sub-∼-category of NTCG.

Sequentiality of copycat. First, we show that the copycat strategy is sequential:
Lemma 11.1.6. Consider A a −-board. Then, cc A ∶ A ⊢ A is sequential.

Proof. First, cc A is pointed, as its causal shape is forestial. For the other two conditions,
we observe that the even-length alternating linearizations of cc A are exactly those words
on s ∈ |A1 ⊢ A2|∗ (with indices used for disambiguation only) such that for all even-
length prefix t ⊑ s, t ↾ A1 = t ↾ A2, with the restriction ↾ defined in the obvious way.
The two conditions sequential determinism and sequential visibility follow easily.

Composition of sequential determinism. As often when introducing a new condi-
tion, much of the work required is in checking stability under composition. Here in
particular, something is striking: recall from Section 4.1.3 that proving associativity of
composition for alternating strategies involves the study of a “state diagram” for inter-
actions (in contrast, nothing of the sort shows up when constructing the associator for
the composition of causal strategies) – this diagram intervenes again here.
Let us start by introducing some further terminology. Consider � ∶ A ⊢ B and

� ∶ B ⊢ C two causal strategies, and p ∈ � ⊛ � an event of the interaction. We have
analyzed above Lemma 6.2.14 the different possible polarities of p – at least one of
p� ∈ � and p� ∈ � must be defined, possibly both if p occurs inB, in which case p does
not appear in the composition. Otherwise p occurs in A or C and we have p ∈ � ⊙ �;
let us write p⊙ = p ∈ � ⊙ � if that is the case, and undefined otherwise.
Applying these projections move-by-move, from s ∈ ℒ (� ⊛ �) we get:

Lemma 11.1.7. Consider s = s1… sn ∈ ℒ (� ⊛ �). Then, forming

s� = (s1)�…(sn)�
s� = (s1)�…(sn)�
s⊙ = (s1)⊙…(sn)⊙ ,

removing moves where the projection is undefined, we have that

u� ∈ ℒ (�) , u� ∈ ℒ (�) , u⊙ ∈ ℒ (� ⊙ �) .

Proof. From the definition, it is immediate that for all x� ∈ C (�), x� ∈ C (�) causally
compatible, we have (x� ⊛ x�)� = x� ∈ C (�) (where (x� ⊛ x�)� is obtained as
for linearizations above, applying (−)� event-by-event), (x� ⊛ x�)� = x� ∈ C (�) and
(x�⊛x�)⊙ ∈ C (�⊙�) (by definition of �⊙�). The claims on linearizations follow.

CHAPTER 11. SEQUENTIALITY 287

A linearization u ∈ ℒ (�) may be – or not – alternating, i.e. u ∈ ⇵-ℒ (�). If it is,
then as for legal plays on arenas (Definition 3.1.4) two cases are possible: if it has even
length (so that the last move is by Player), we say that it is in state O. If it has odd
length (so that the last move is by Opponent), we say that it is in state P .
Putting the projections of the lemma above to work, we have the state diagram:

Lemma 11.1.8. Consider A,B, C −-boards, and � ∶ A ⊢ B, � ∶ B ⊢ C sequential.
For any u ∈ ℒ (� ⊛ �) such that u⊙ ∈ ⇵-ℒ (� ⊙ �) we have u� ∈ ⇵-ℒ (�) and

u� ∈ ⇵-ℒ (�), and we are in one of the following three cases:

(1) u� , u� , u⊙ are respectively in state O,O,O,
(2) u� , u� , u⊙ are respectively in state O, P , P ,
(3) u� , u� , u⊙ are respectively in state P ,O, P .

Proof. By induction on u. If u is empty, this is clear. Consider um ∈ ℒ (� ⊛ �). By
induction hypothesis u is in one of cases (1), (2) and (3). We distinguish cases:
(1) Seeking a contradiction, assumem occurs in B. Then, one ofm� orm� is positive– say w.l.o.g. the former. By IH, u� is alternating in state O, so ends with a Player

move. But so, u�m+� ∈ ℒ (�) with u� ∈ ⇵-ℒ (�), so u�m� ∈ ⇵-ℒ (�) since � satisfies
reachable sequentiality, contradiction. So, m occurs in A or C – assume w.l.o.g. in A.
Since u⊙ is in state O, m is negative – then, it is direct that um satisfies (3).

(2) First assume m occurs in A. Since u⊙ ∈ ⇵-ℒ (� ⊛ �) is in state P , then m is
positive; then m� is positive, contradicting reachable sequentiality of � with the fact
that u� is in state O. Similarly, if m occurs in B it has polarity r and we transition to
(3), and if m occurs in C it has polarity r and we transition to (1).

(3) Symmetric to (2).
As long as the external Opponent respects the alternation discipline, interactions fol-

low the familiar state diagram of interactions in alternating game semantics, shown in
Figure 4.2. None of the interacting agents can be the first to break alternation, so the
interaction ends up alternating. It follows that � ⊙ � satisfies sequential determinism:
Proposition 11.1.9. Consider � ∶ A ⊢ B and � ∶ B ⊢ C sequential causal strategies.
Then, � ⊙ � satisfies sequential determinism.

Proof. Consider tn+1 , tn+2 ∈ ⇵-ℒ (� ⊙ �) completed to u1n1, u2n2 ∈ ℒ (� ⊛ �), and
u′ the greatest common prefix of u1n1 and u2n2, with u′m1 ⊑ u1n1 and u′m2 ⊑ u2n2.Necessarily, the visible restriction of u′ is a prefix t′ ⊑ tni, so in particular t′ ∈ ⇵-ℒ (�⊙
�). We distinguish cases on Lemma 11.1.7 applied to u′.
For (1) (state OOO), m1 and m2 must both be the next negative event appearing in

t, so m1 = m2, contradiction. For (2) (state OPP), m1 and m2 both have polarity r and
we have u′� ∈ ⇵-ℒ (�), u′� (m1)+� , u′� (m2)+� ∈ ⇵-ℒ (�). Hence (m1)� = (m2)� since �
satisfies sequential determinism – so m1 = m2 by local injectivity of the projection Π� ;contradiction. For (3) (state POP), the reasoning is symmetric.

By the state diagram, in an alternating interaction, only one agent has control at any
point. So any alternatingly reachable non-deterministic choice in �⊙� can be attributed

CHAPTER 11. SEQUENTIALITY 288

to � and � . Since they are both deterministic, no such choice exists. We single out
the linearizations of an interaction u ∈ ℒ (� ⊛ �) that satisfy the state diagram of
interactions as in Lemma 11.1.8: the alternating interactions.
Definition 11.1.10. Consider u ∈ ℒ (� ⊛ �). It is an alternating interaction, written
u ∈ ⇵-ℒ (� ⊛ �), if u⊙ ∈ ⇵-ℒ (� ⊙ �), u� ∈ ⇵-ℒ (�) and u� ∈ ⇵-ℒ (�).

The notation ⇵-ℒ (� ⊛ �) should hopefully not cause confusion, since � ⊛ � does
not have polarities: the polarity of synchronized events is indetermined.
A fundamental property is that an alternating linearization between sequential strate-

gies is necessarily witnessed by an alternating interaction:
Lemma 11.1.11. Consider � ∶ A ⊢ B and � ∶ B ⊢ C sequential, and u ∈ ℒ (� ⊛ �).
If u⊙ ∈ ⇵-ℒ (� ⊙ �), then u ∈ ⇵-ℒ (� ⊛ �).

Proof. By induction on u. Consider um ∈ ℒ (� ⊛ �) such that (um)⊙ ∈ ⇵-ℒ (� ⊙ �).
By induction hypothesis, u ∈ ⇵-ℒ (�⊛�), so it must be in one of the states of Lemma
11.1.7. For (1) (state OOO). Then necessarilym is negative, and it is immediate that the
invariant is preserved. For (2) (state OPP), then we reason by cases depending on when
m occurs. If it occurs inA, then it must be positive in �⊙� since (um)⊙ ∈ ⇵-ℒ (�⊙�).
Then m� is defined and positive. So u� ∈ ⇵-ℒ (�) and u�m+� ∈ ℒ (�), thus by Lemma
11.1.5 we have u�m+� ∈ ⇵-ℒ (�) as well, contradicting that u� is in state O. Thus m
occurs in B or C , so that m� is defined. But then u� ∈ ⇵-ℒ (�) and u�m� ∈ ℒ (�), thusby Lemma 11.1.5 we have u�m� ∈ ⇵-ℒ (�), thus m� is positive. If m occurs in B then
the invariant is preserved and um is in state POP, if m occurs in C then the invariant is
preserved and um is in state OOO. Finally, (3) (state POP) is symmetric.

Composition of sequential visibility. Next, we must prove that the composition of
sequential strategies satisfies sequential visibility. This is a direct variation of the sta-
bility under composition of P-visible strategies in alternating game semantics.
As announced, we generalize P-views to alternating interactions:

Definition 11.1.12. For u ∈ ⇵-ℒ (� ⊛ �), we define the subsequence ⌜u⌝ with

⌜"⌝ = "
⌜um⌝ = ⌜u⌝m (if m is positive or synchronized)

⌜un+u′m−⌝ = ⌜u⌝n+m′ (if m is justified by n)
⌜um−⌝ = m− (m− minimal)

Those are the same clauses as in Defininition 11.1.3, applying to interactions rather
than alternating linearizations of a causal strategy. The idea is the same: we browse the
sequence, going back in time and following pointers of moves by the external Opponent.
The main argument behind the composition of sequential visibility is:

Lemma 11.1.13. Consider u ∈ ⇵-ℒ (� ⊛ �).
Writing ⌜u⌝ = u1… un and for 1 ≤ j ≤ n, if uj is non-minimal in � ⊛ � then there is

1 ≤ i < j such that j(uj) = ui – where j(m) refers to Definition 10.2.3.

CHAPTER 11. SEQUENTIALITY 289

Proof. We show by mutual induction the following properties, for u ∈ ⇵-ℒ (� ⊛ �):
(1) writing ⌜u⌝ = u1… un and for 1 ≤ j ≤ n, if uj is non-minimal in � ⊛ �

then there is 1 ≤ i < j such that j(uj) = ui,
(2) if u = vm with m� defined, ⌜u�⌝ is a subsequence of ⌜u⌝� ,
(3) if u = vm with m� is defined, ⌜u�⌝ is a subsequence of ⌜u⌝� ,

and we refer to (1) as ⌜u⌝ being well-justified.
For (1), write u = vn. If n is negative, then either it is minimal (then the property

is trivial), or u = v1l+v2n− where j(n−) = l+ (say w.l.o.g. l is positive for �). Then
by induction hypothesis, ⌜v1l+⌝ is well-justified and as ⌜v1l+v2n−⌝ = ⌜v1l+⌝n− with
j(n) = l, ⌜u⌝ is well-justified as well. Otherwise, ⌜u⌝ = ⌜v⌝n and by induction hypothe-
sis, ⌜v⌝ is well-justified, but we must show that the justifier of n is in ⌜v⌝. Necessarily n
is positive for � or � , say � w.l.o.g.. As (vn)� = v�n+� ∈ ⇵-ℒ (�), as � is sequentially
visible, n� must point within ⌜v�⌝. Now by Lemma 11.1.8, since n is positive for �, v is
in state POP. If the last move of v occurs in C , since v⊙ has state P it must be negative.
But since v� has state O it must be Player – contradiction, so the last move of v occurs
in A or B and its projection to � is defined. Thus by (2) of the induction hypothesis on
v, ⌜v�⌝ is a subsequence of ⌜v⌝� . Now by sequential visibility of �, the justifier of n�is in ⌜v�⌝, thus in ⌜v⌝� , hence it ⌜v⌝.For (2), assume m� is defined. If it is positive, then by Lemma 11.1.8 v must be
in state POP; write v = v′n. If n occurs in C , then it must be negative since v⊙ is in
state P, but this contradicts that v� is in state O. Thus, n occurs in A or C , but then n�is defined (and negative). Hence, by induction hypothesis, ⌜v�⌝ is a subsequence of
⌜v⌝� . But ⌜(um)�⌝ = ⌜u�⌝m� and ⌜u⌝� = ⌜v⌝�m� , hence ⌜u�⌝ is a subsequence of
⌜u⌝� as required. Next if m� is negative, write u = v1nv2m with j(m) = n. Two sub-
cases arise. If m occurs in A, then it is negative and ⌜u⌝ = ⌜v1⌝nm. Likewise, ⌜u�⌝ =
⌜(v1)�⌝n+�m

−
� , so the result follows by induction hypothesis. Finally if m occurs in B,

then by (1), ⌜u⌝ is well-justified, hence n appears in ⌜v1nv2⌝, i.e. ⌜v1nv2⌝ = ⌜v1⌝nv′2and ⌜u⌝� = ⌜v1⌝�n�(v′2)�m� . Likewise by definition ⌜u�⌝ = ⌜(v1)�⌝n�m� . Finally byinduction hypothesis ⌜(v1)�⌝ is a subsequence of ⌜v1⌝� , hence the result follows.For (3), it is the same reasoning as above.
From this, we may conclude:

Proposition 11.1.14. Consider� ∶ A ⊢ B and � ∶ B ⊢ C sequential causal strategies.
Then, � ⊙ � satisfies sequential visibility.

Proof. Consider s ∈ ⇵-ℒ (�⊙�), and write ⌜s⌝ = s1… sn, consider 1 ≤ j ≤ nwith sjnon-minimal. Necessarily, there is u ∈ ℒ (�⊛�) such that u⊙ = s ∈ ⇵-ℒ (� ⊙�). By
Lemma 11.1.11, we have u ∈ ⇵-ℒ (�⊛�). Write ⌜u⌝ = u1… um – from the definition
it is immediate that ⌜u⌝⊙ = ⌜s⌝, so there is a unique j′ such that uj′ = sj (necessarilynon-minimal). By Lemma 11.1.13, there is some 1 ≤ i′ < j′ such that j(uj′) = ui′ .First, ui′ may occur in B (if uj′ is minimal in A and ui′ minimal in B). Then by Lemma
11.1.13, there is 1 ≤ k′ < i′ such that j(ui′) = uk′ , necessarily minimal in C . But then
j(uj′) = (uk′) for � ⊙ � – but uk′ = sk for some 1 ≤ k < j, and the property is proved.
If ui′ does not occur in B, then it is visible and j(uj′) = ui′ in � ⊙ � as well. As above
ui′ = si for some 1 ≤ i < j, which concludes the proof.

CHAPTER 11. SEQUENTIALITY 290

Putting everything together, we have:
Corollary 11.1.15. The ∼-category NTCG admits a lluf sub-∼-category NTCG-Seq
with morphisms restricted to causal sequential strategies.

Proof. Firstly, copycat is sequential by Lemma 11.1.6. Consider � ∈ NTCG(A,B) and
� ∈ NTCG(B,C) sequential. Firstly, the proof that � ⊙ � ∈ NTCG(A,C) is pointed
is as in Proposition 10.2.6 (which did not rely on visibility). Composition of sequential
determinism and sequential visibility are Propositions 11.1.9 and 11.1.14.
Next, we move to the rest of the categorical structure.

11.1.3 A Relative Seely ∼-Category
All structural morphisms of NTCG are obtained by lifting, and it is immediate (as for
Lemma 11.1.6) that they are sequential. The next step is to prove that other operations
on strategies (tensor, pairing, currying and promotion) preserve sequentiality. We shall
consider them all, focusing on the two non-trivial cases: tensor and promotion.

Tensor. Consider � ∶ A ⊢ B and � ∶ C ⊢ D. Similarly to interactions, ifm ∈ �⊗� ,
write m� ∈ � as m′ if m = (1, m′) and undefined otherwise; and m� ∈ � partially
defined symmetrically. For s ∈ ℒ (� ⊗ �), write s� ∈ ℒ (�) and s� ∈ ℒ (�) defined
in the obvious way. Using these projections, the stability of sequentiality under tensor
exploits a state case analysis, similar to Lemma 11.1.8:
Lemma 11.1.16. Take A,B, C,D −-boards, � ∶ A ⊢ B, � ∶ C ⊢ D sequential.
If s ∈ ⇵-ℒ (� ⊗ �), then s� ∈ ⇵-ℒ (�), s� ∈ ⇵-ℒ (�). Moreover, one of

(1) s� , s� , s are respectively in state O,O,O,
(2) s� , s� , s are respectively in state O, P , P ,
(3) s� , s� , s are respectively in state P ,O, P ,

must hold.

Proof. Straightforward by induction on s, using reachable sequentiality of � and � .
Thus, in a tensor of sequential strategies �⊗ � , at most one of � and � has control at

a given point in time, and only Opponent is able to switch. From this, we may prove:
Proposition 11.1.17. Take A,B, C,D −-boards, � ∶ A ⊢ B, � ∶ C ⊢ D sequential.

Then, � ⊗ � is sequential.

Proof. Pointed: this is straightforward, as the event structure � ⊗ � is simply � ∥ � .
Sequential determinism: Consider sm+, sn+ ∈ ⇵-ℒ (� ⊗ �). By Lemma 11.1.16,

s� , s� , s must be in one of the states OOO, OPP, or POP. If it is OOO, then s is in state
O, contradicting sm+ ∈ ⇵-ℒ (� ⊗ �). If it is OPP, then m+� , n+� must be defined, or
contradict that s� is in state O – but then, (sm+)� = s�m+� ∈ ℒ (�), and (sn)� = s�n+� ∈
ℒ (�). As s� ∈ ⇵-ℒ (�) is in state P, thus s�m+� , s�n+� ∈ ⇵-ℒ (�), hence m+� = n+� by
sequential determinism of � . Hence, m+ = n+ as required. Finally, if s is in state POP,

CHAPTER 11. SEQUENTIALITY 291

the reasoning is symmetric.
Sequential visibility: Consider s ∈ ⇵-ℒ (� ⊗ �). By Lemma 11.1.16, we have

s� ∈ ⇵-ℒ (�) and s� ∈ ⇵-ℒ (�). Moreover, it is immediate from Lemma 11.1.16 that
only Opponent may switch between � and � , and consequently ⌜s⌝ is entirely in � or
in � . Hence, sequential visibility of � and � allow us to conclude.

Promotion. The proof for promotion is analogous. ConsiderA andB strict−-boards,
and � ∶ !A ⊢ B sequential. Recall that every move m ∈ �! has the form m = (i, m′)
where i ∈ ℕ is its copy index. For j ∈ ℕ we then partially define mj = m′ if i = j andundefined otherwise. Again, if s ∈ ℒ (�⊗ �), then its projection si for i ∈ ℕ is defined
in the obvious way. Using these, we state the promotion state case analysis:
Lemma 11.1.18. Consider A,B strict −-boards, and � ∶ !A ⊢ B sequential.
For any s ∈ ⇵-ℒ (�!), for any i ∈ ℕ, si ∈ ⇵-ℒ (�) and we are in one of:

(1) s has state O, and for all i ∈ ℕ, si has state O,(2) s has state P , and there exists a unique i ∈ ℕ such that si has state P .

Proof. Straightforward by induction on s, using reachable sequentiality of �.
As for tensor, we conclude:

Proposition 11.1.19. Consider A,B strict −-boards, and � ∶ !A ⊢ B sequential.
Then, �! ∶ !A ⊢ !B is a sequential strategy.

Proof. Similar to the proof of Proposition 11.1.17.

Remainer of the structure. That pairing preserves sequentiality is straightforward;
so is currying as the internal event structure is unchanged (along with the justifier func-
tion j(−)). Altogether, we have the ingredients to conclude the relative Seely structure:
Theorem 11.1.20. There is NTCG-Seq, a relative Seely sub-∼-category of NTCG,
with morphisms restricted to sequential causal strategies.

Proof. Follows from Corollary 11.1.15, Propositions 11.1.17 and 11.1.19, and omitted
direct verifications for pairing, currying and structural isomorphisms.

11.1.4 _-Seq and Interpretation of IA
As a relative Seely ∼-category, NTCG-Seq induces a cartesian closed ∼-category:
Definition 11.1.21. There is_-Seq, a cartesian closed sub-∼-category of_-Strat.

Its objects are mixed boards, its morphisms are those of _-Strat restricted to se-
quential strategies, and the equivalence relation is as in_-Strat.

For stateless primitives (i.e. PCF primitives, reference and semaphore queries, bad
variables and semaphores), it is direct by inspection to show that the corresponding
strategies are sequential – we omit those verifications. Finally, we also have:

CHAPTER 11. SEQUENTIALITY 292

Proposition 11.1.22. Consider � ∈_-Seq(V, A) sequential with A well-opened.
Then, � ⊙ cell ∈_-Strat(⊤,A) is also sequential.

Proof. Although cell is not a strategy (it fails courtesy), it does satisfy conditions se-
quential determinism and sequential visibility (the latter involves the notion of justifier
which is defined in Definition 10.2.1 only for pointed strategies, but this is needed only
for strategies fromA to B – it is not necessary for cell ∶ V). It follows from the same ar-
guments as in Proposition 11.1.9 and 11.1.14 that �⊙cell satisfies these two conditions
– it is also obvious from A well-opened that � ⊙ cell is pointed.
The exact same reasoning establishes that for � ∈_-Seq(S, A)withAwell-opened,

� ⊙ lock ∶ A is sequential as well. Altogether we have the ingredients for:
Corollary 11.1.23. The interpretation of IA� in_-Strat of Chapter 9 restricts to an
adequate interpretation of IA in_-Seq.

Proof. That the interpretation of IA terms yields sequential strategies follows fromThe-
orem 11.1.20, verifications for basic primitives, Proposition 11.1.22 for new references,
and the analogous for new semaphores. Adequacy is an immediate consequence of ad-
equacy of the adequacy of the interpretation of IA� in NTCG! (Theorem 9.1.5).

11.2 The Alternating Unfolding
Now that we have constructed _-Seq and proved that the interpretation of IA indeed
yields sequential causal strategies, we examine the unfolding of_-Seq onto ⇵-Strat.

11.2.1 Alternating Unfolding on a Mixed Board
The alternating unfolding of a sequential strategy is a simple refinement of the non-
alternating unfolding of Section 9.2 – recall that for causal � ∶ A on mixed board A, its
unfoldingwas obtained by first considering all linearizations of �, then displaying these
linearizations to the game, and finally recovering plays with pointers by pointifixion.
We now adapt this to the alternating case.

Alternating linearizations. Recall from Definition 11.1.2 the set ⇵-ℒ (E) of the al-
ternating linearizations of an event structure with polaritiesE, which applies to a causal
strategy � ∶ A thanks to the polarities inherited from A. Our first observation is:
Lemma 11.2.1. Consider � ∶ A a causal strategy on a board A.
The length-preserving monotone function of Lemma 9.2.4 restricts to

)� ∶ ⇵-ℒ (�) → ⇵-ℒ (A) = ⇵-Plays(A)
" → "

sm →)�(s))�(m) .

Proof. Straightforward.

CHAPTER 11. SEQUENTIALITY 293

We recall our convention in such a situation: alternating linearizations in � are of-
ten denoted as s� ∈ ⇵-ℒ (�) with the causal strategy added as superscript, and their
display is s�A =)�(s�) ∈ ⇵-Plays(A). As in the non-alternating case, this displayed
linearization enjoys the main properties expected of what would be a play-based alter-
nating strategy on A – to prove that, the following lemma shall be useful:
Lemma 11.2.2. Consider A a board, and � ∶ A a sequential causal strategy.

For any s ∈ ⇵-Plays(�), there is a unique t ∈ ⇵-ℒ (�) such that s =)�(t).

Proof. Immediate by induction, using receptivity and sequential determinism.
We obtain a strategy in the sense of simple games (Definition 3.1.2):

Proposition 11.2.3. Consider � ∶ A a sequential strategy on board A. Then, the set

⇵-Plays(�) =)�(⇵-ℒ (�))

satisfies the following properties:

non-empty: " ∈ ⇵-Plays(�) ,
prefix-closed: for all t ∈ ⇵-Plays(�), is s ⊑ t, then s ∈↺-Plays(�),

receptive: if s ∈ ⇵-Plays(�) and sa− ∈ ⇵-Plays(A), then sa ∈ ⇵-Plays(�),
deterministic: if sa+, sb+ ∈ ⇵-Plays(�), then a+ = b+,

Proof. Non-empty, prefix-closed, receptive. Same proof as for Proposition 9.2.5.
Deterministic. Immediate by Lemma 11.2.2 and sequential determinism.
With the appropriate phrasing it also follows that ⇵-Plays(�) is P -visible, but we

have not defined the P-view of alternating plays on A and it does not seem worth the
detour. Thus, following the non-alternating case, we shall now apply the above to a
sequential strategy on a mixed board, and follow it up with pointifixion.

Alternating linearizations up to symmetry. The above proposition does not say any-
thing about symmetry. Recall that we proved in Proposition 7.1.15 that for A a gws
(hence, in particular, for A a board), the set of plays ⇵-Plays(A) equipped with the
equivalence relation ≅A (from Definition 7.1.14) is automatically an AJM game. Ac-
cordingly, we expect that ⇵-Plays(�) is uniform in the sense of AJM games – this is
natural as a consistency check, but it shall also be required later on.
To prove this, the first step is a symmetry-aware version of Lemma 11.2.2. Here for

s� , t� ∈ ⇵-ℒ (�), we write s� ≅� t� for the equivalence relation defined in exactly the
same way as the AJM equivalence on plays on gws (Definition 7.1.14).
Lemma 11.2.4. Consider A a −-board, � ∶ A a sequential causal strategy.
For all s� , t� ∈ ⇵-ℒ (�), if s�A ≅A t

�
A then s� ≅� t� .

CHAPTER 11. SEQUENTIALITY 294

Proof. By induction on the length of linearizations – note from s�A ≅A t
�
A that s� and

t� have the same length. If they are both empty then there is nothing to prove.
Consider s�m− ∈ ⇵-ℒ (�) displaying to s�Aa− ∈ ⇵-Plays(�), and t�n− ∈ ⇵-ℒ (�)

displaying to t�Ab− ∈ ⇵-Plays(�), s.t. s�Aa− ≅A t�Ab−. By IH, we have s� ≅� t� . Butthen it immediately follows by ∼-receptivity of � that s�m− ≅� t�n− as required.
Now, consider s�m+ ∈ ⇵-ℒ (�) displaying to s�Aa+ ∈ ⇵-Plays(�), and t�n+ ∈

⇵-ℒ (�) displaying to t�Ab+ ∈ ⇵-Plays(�), such that s�Aa+ ≅A t�Ab
+. By induction

hypothesis, we have s� ≅� t� . Now, by extension for≅� , wemust have t�p+ ∈ ⇵-ℒ (�)
such that s�m+ ≅� s�p+. But by sequential determinism, it follows that n+ = p+, hencewe do have s�m+ ≅� t�n+ as required.
The following lemma has two purposes: it will ensure that strategies obtained as

displayed linearizations are indeed uniform in the sense of AJM strategies, and that two
positively isomorphic sequential strategies will yield equivalent AJM strategies.
Lemma 11.2.5. Consider A a −-board and �, � ∶ A sequential causal strategies.

If � ≈ � (as in Section 7.2.1), then⇵-Plays(�) ≈ ⇵-Plays(�) (as in Definition 3.4.4).

Proof. If � ≈ � , by Definition 7.2.4 there is an iso ' ∶ � ≅ � of ess satisfying
)�◦' ∼+)� ,

which in particular entails that for all s� ∈ ⇵-ℒ (�), we have s�A ≅A '(s�)A. Combined
with Lemma 11.2.4, this has an important direct consequence: if s� ∈ ⇵-ℒ (�) and
s� ∈ ⇵-ℒ (�) are such that s�A ≅A s�A, then it also follows that '(s�)A ≅A s�A, andconsequently '(s�) ≅� s� by Lemma 11.2.4 – we shall use that in the proof below.

→-simulation: consider s�Aa+ ∈ ⇵-Plays(�), s�A ∈ ⇵-Plays(�) such that s�A ≅A s�A.By our auxiliary statement, we necessarily have '(s�) ≅� s� . Now writing s�m+ ∈
⇵-ℒ (�) the witness for s�Aa+ ∈ ⇵-Plays(�), we have '(s�)'(m+) ∈ ⇵-ℒ (�) with
'(s�) ≅� s� , hence by extension for � there is n+ such that '(s�)'(m+) ≅� s�n+, with

s�Aa
+ ≅A)�(s�m+) ≅A)� (s�n+) = s�Ab

+ ∈ ⇵-Plays(�)
as required. The case for ←-simulation is symmetric.

→-receptive: consider s�Aa− ∈ ⇵-Plays(�), s�A ∈ ⇵-Plays(�), and s�Aa− ≅A s�Ab
−.

By the observation above, '(s�) ≅� s� . Write s�m− ∈ ⇵-ℒ (�) such that)�(s�m−) =
s�Aa

−, and write '(m−) = n−. Then '(s�)n− ∈ ⇵-ℒ (�) displayed to '(s�)Ac−, and
'(s�)Ac− ≅A s�Aa

− ≅A s�Ab
− ,

where '(s�) ≅� s� , hence by ∼-receptivity of � there must be a unique extension
'(s�)n− ≅� s�p−

such that)� (s�p−) = s�Ab−. Finally, ←-receptive is symmetric.
In particular, we obtain as a direct corollary:

Corollary 11.2.6. If � ∶ A is a sequential strategy, then⇵-Plays(�) is an AJM strategy.

CHAPTER 11. SEQUENTIALITY 295

Proof. From Proposition 11.2.3 we lack uniformity, obvious from Lemma 11.2.5.
However, our goal is to unfold to strategies in HO games rather than AJM games.

Pointifixion of Alternating Plays From a sequential causal strategy, we wish to ob-
tain an alternating strategy in the sense of Chapter 3; but those play on arenas rather
than boards. Hence the situation is exactly the same as in Section 9.2: it is unclear
how to automatically obtain an arena in the sence of Chapter 3 from a board, hence we
unfold sequential causal strategies playing on mixed boards in the sense of Definition
9.2.6 – comprising the data of the board, the arena, along with the link between the two.
As in Corollary 9.2.11 for the non-alternating case, we have:

Proposition 11.2.7. Consider A a mixed board. Then, ↶(−) restricts to bijections
↶(−) ∶ ⇵-Plays(!A)∕≅!A ≃ ⇵- ↶Plays(A) ,
↶(−) ∶ ⇵-Plays(A)∕≅A ≃ ⇵- ↶Plays∙(A) ,

preserving length and prefix.

Proof. Simply the restriction of Corollary 9.2.11 to alternating plays.
Corollary 9.2.11 stated a similar bijection between↺-Plays(!A) up to symmetry and

pre-plays↺-Pre ↶Plays(A). The mismatch with the above is because while this bijection
does not account for any well-bracketing constraint, non-alternating plays with pointers
were defined as always logically well-bracketed (Definition 5.1.3) whereas alternating
plays have no such hardwired condition3 (Definition 3.1.4).

11.2.2 Alternating Unfoldings of Sequential Strategies
Now, we are in position to define the alternating unfolding of a sequential causal strat-
egy. As for non-alternating strategies, we shall actually define three unfoldings:

(1) ⇵-Unf∙ unfolds � ∶ A to an alternating thread-strategy on A,
(2) ⇵-Unf! unfolds � ∶ !A to an alternating strategy on A,
(3) ⇵-Unf unfolds � ∶ !A ⊢ B to an alternating strategy on A⇒ B,

for all mixed boards A and B.

Unfolding to a thread-strategy. First, we define the pointed alternating unfolding of
a sequential causal strategy on a mixed board A. The definition is essentially the same
as Definition 9.2.12 for the non-alternating unfolding of causal strategies:
Definition 11.2.8. Consider A a mixed board, and � ∶ A a sequential causal strategy.
The unfolding of � is the set ⇵-Unf∙(�) = {

↶(⋅)(s�A) ∈ ⇵- ↶Plays(A) ∣ s� ∈ ℒ (�)}.
3In general, we consider it better to impose conditions on strategies rather than on plays whenever possible,

so as to not unnecessarily constrain the behaviour of the execution environment. But for non-alternating
strategies wewere brought to assume all plays to be logically well-bracketing, as the non-alternating strategies
for basic IA� primitives are hard to define rigourously otherwise: they have too many plays!

CHAPTER 11. SEQUENTIALITY 296

We show that this is indeed a valid alternating thread-strategy. With respect to Propo-
sition 9.2.13 in the non-alternating case, the difficulty is to prove determinism: this
puts together (1) sequential determinism, (2) Proposition 11.2.7 ensuring that alternat-
ing plays with pointers on A exactly represent alternating plays on A up to symmetry,
and (3) Lemma 11.2.4 showing uniqueness of the witness in ⇵-ℒ (�) for a plays in
⇵-Plays(�), up to symmetry. Putting those together, we get the proposition:
Proposition 11.2.9. Consider � ∶ A a causal strategy on mixed board A.

Then, ⇵-Unf∙(�) ∶ A is a P-visible thread-strategy in the sense of Definition 4.3.2.

Proof. It is a set of threads since A is strict. Non-empty and prefix-closed are direct.
Receptive: consider t = ↶(−)(s�A) for s� ∈ ⇵-ℒ (�), with tb− ∈ ⇵- ↶Plays∙(A). By

Lemma 9.2.10, there is s�Aa− ∈ ↺-Plays(A) such that ↶(−)(s�Aa
−) = tb−; but by con-

struction s�Aa− is alternating, thus in ⇵-Plays(A). Now, by Proposition 11.2.3, there is
s�m ∈ ⇵-ℒ (�) displaying to s�Aa−, and receptive follows.
Deterministic: Consider sa−b+1 , sa−b+2 ∈ ⇵-Unf∙(�), so there are t�m�n� ∈ ⇵-ℒ (�)

and u�c�d� ∈ ⇵-ℒ (�) s.t. sa−b+1 = ↶(−)(t�Am
�
An

�
A) and sa−b+2 = ↶(−)(u�Ac

�
Ad

�
A). Thus

t�m�An
�
A ∈ ⇵-Plays(�) , u�c�Ad

�
A ∈ ⇵-Plays(�) ,

with ↶(−)(t�Am
�
A) =

↶(−)(u�Ac
�
A) = sa−, which entails t�Am�A ≅A u�Ac

�
A by Proposition

11.2.7. But then, by Lemma 11.2.4, we must actually have
t�m� ≅� u�c� ,

but hence by extension, there is t�m�n� ≅� u�c�e� . But by sequential determinism
for �, this means e� = d� , so that t�m�n� ≅� u�c�d� . Thus their display are also
symmetric, so their pointifixion must be equal by Proposition 11.2.7.
P-visible: Straightforward by definition of sequential visibility.

Unfolding to an alternating strategy. Next, we show how to unfold a sequential
causal strategy to a full alternating strategy – again the definition closely mimics the
non-alternating case, more specifically Definition 9.2.14
Definition 11.2.10. ConsiderA amixed board, and� ∶ !A a sequential causal strategy.
The unfolding of � is the set ⇵-Unf!(�) = {

↶(⋅)(s�!A) ∣ s
� ∈ ⇵-ℒ (�)}.

This is a well-formed alternating strategy on arena A:
Proposition 11.2.11. Consider A a mixed board and � ∶ !A a sequential strategy.

Then, ⇵-Unf!(�) ∶ A is a P-visible alternating strategy as in Definition 3.1.5.

Proof. Same proof as for Proposition 11.2.9.
As in the non-alternating case, if � ∶ A is a sequential causal strategy, we may unfold

it to a thread-strategy⇵-Unf∙(�) ∶ A and then obtain the corresponding single-threaded
alternating strategy�!, or wemay directly unfold its promotion as an alternating strategy
with ⇵-Unf!(�!) – the two options coincide, as we show now.

CHAPTER 11. SEQUENTIALITY 297

Lemma 11.2.12. Consider sequential causal � ∶ A, and �! ∶ !A its promotion.
Then, (⇵-Unf∙(�))! = ⇵-Unf!(�!).

Proof. ⊆. We actually show by induction on n that for all s = s1… sn ∈ (⇵-Unf∙(�))!,there is t = t1… tn ∈ ⇵-ℒ (�!) such that s = ↶(−)(t!A) and for all prefix s1… sk, writing
s�(1)… s�(k) = ⌈s1… sk⌉

the current thread of s1… sk for � ∶ {1,… , p} → {1,… , k} some injection, we have
t�(1),…,�(p) ∈ ⇵-ℒ (�) and s�(1)… s�(k) =

↶(−)()�(t�(1)… t�(p))); the proof by inductionis straightforward, relying on Lemma 9.2.10 and receptivity for negative extensions, on
Lemma 11.2.4 and extension of isomorphism families for positive extensions.
⊇. Necessarily, any sa+ ∈ ⇵-Unf!(�!) comes from some tm+ ∈ ⇵-ℒ (�!), where m

is in the component of �! with copy index i. It is then straightforward that the moves
of tm+ with the same initial hereditary justifier as m+ are exactly those events in copy
index i, written t′m+ ∈ ⇵-ℒ (�); and then we must have that

⌈sa+⌉ = ⌈

↶(−)()�!(tm
+))⌉ = ↶(−)()�(t′m+)) ∈ ⇵-Unf∙(�)

as required, concluding the proof of the inclusion.

Unfolding from mixed board A to mixed board B. As in the non-alternating case,
we finish with the definition of the unfolding of a sequential causal strategy from one
mixed board to another – again this must deal with the fact that morphisms from A to
B in_-Seq are causal sequential strategies on !A ⊢ B (with at most one initial move)
whereas morphisms in ⇵-Strat are alternating P-visible strategies on A ⇒ B, whose
plays have arbitrarily many initial moves. Thus to deal with these differences, we set:
Definition 11.2.13. Consider � ∶ !A ⊢ B a sequential strategy. Its unfolding is:

⇵-Unf (�) = ⇵-Unf!(Λ(�)!) ∶ A ⇒ B .

It is a consequence of Proposition 11.2.11 that this is well-defined:
Proposition 11.2.14. For any� ∈_-Seq(A,B), we have⇵-Unf (�) ∈ ⇵-Strat(A,B).

Proof. In complement to Proposition 11.2.11, it remains to prove that ⇵-Unf (�) is
single-threaded. But by Lemma 11.2.12, we have ⇵-Unf (�) = ⇵-Unf∙(Λ(�))! which issingle-threaded by Proposition 4.3.3; this concludes the proof.

11.2.3 Unfolding the Basic Categorical Structure
Next, we aim to show that the unfolding defined just above yields a ∼-functor

⇵-Unf (−) ∶_-Seq → ⇵-Strat
which we will show preserves the interpretation of IA.

CHAPTER 11. SEQUENTIALITY 298

Identities. First, we show that unfolding preserves identities. Of course, one must
keep in mind that _-Seq is built on top of the Kleisli category NTCG!, so that the
identity to be unfolded is actually dereliction derA ∶ !A ⊢ A.
Proposition 11.2.15. Consider A a mixed board. Then,

⇵-Unf (derA) = ⇵- cc A ∈ ⇵-Strat(A,A) .

Proof. By Lemma 11.2.12 and Proposition 4.3.4 it suffices to show the equality
⇵-Unf∙(Λ(derA)) = ⇵- cc ∙A ,

where ⇵- cc ∙A denotes the set of threads of ⇵- cc A.
For ⊆, consider s ∈ ⇵-Unf∙(Λ(derA)), meaning that s = ↶t with t =)Λ(derA)(u)for some u ∈ ⇵-ℒ (cc A). Recalling that | cc A| = |A1 ⊢ A2| with tags used for disam-

biguation, we observed in the proof of Lemma 11.1.6 that alternating linearizations on
cc A are exactly those v ∈ |A1 ⊢ A2|∗ such that for all event-length w ⊑ v, we have
w ↾ A1 = w ↾ A2. Now any even-length s′ ⊑ s comes from w ⊑ u an even-length
prefix of u on which this observation applies, and it is direct that s′ ↾ A1 = s′ ↾ A2.For ⊇, consider s ∈ ⇵- cc ∙A, assuming first that it has even length – hence s ↾ A1 =
s ↾ A2. By Lemma 9.2.10, there is t ∈ ⇵-Plays(A) such that↶t = s ↾ A1 = s ↾ A2.Interleaving two copies of t, it is straightforward to get u ∈ ⇵-Plays(A1 ⊢ A2) suchthat u ↾ A1 = u ↾ A2 = t, and that for all even-length prefix v ⊑ u, we have
v ↾ A1 = v ↾ A2 as well, hence u ∈ ⇵-ℒ (cc A) – it is then a direct verification that
writing w =)Λ(derA)(u), we have ↶w = s as required. Finally, if s has odd length, we
use the above without the last move, and conclude by receptivity of⇵-Unf∙(derA).

Composition. Here, the reasoning is pretty much the same as in the non-alternating
case, except that plays and witnesses have to be ensured alternating – which follows
easily from sequentiality. Thus we give fewer details than in the non-alternating case:
Proposition 11.2.16. Consider � ∈_-Seq(A,B) and � ∈_-Seq(B,C). Then:

⇵-Unf (� ⊙! �) = ⇵-Unf (�)⊙⇵-Unf (�)

Proof. First of all, we prove the inclusion
⇵-Unf∙(Λ(� ⊙ �!)) ⊆ ⇵-Unf (�)⊙⇵-Unf (�) ,

this follows by the same reasoning as in Lemma 9.3.4, additionally observing by induc-
tion that the interaction we obtain is in⇵-Unf (�) ∥ ⇵-Unf (�) (in the sense of Definition
4.1.7) exploiting that � and � satisfy reachable sequentiality (Lemma 11.1.5).

Next, we show the following inclusion:
⌈⌈⇵-Unf (�)⊙⇵-Unf (�)⌉⌉ ⊆ ⇵-Unf∙(Λ(� ⊙ �!)) ,

in this case this follows exactly as in 9.3.5, as the play for which we construct a witness
in � ⊙ �! is by hypothesis alternating.
From these two inclusions, the desired equality follows as in Corollary 9.3.6.

CHAPTER 11. SEQUENTIALITY 299

Altogether, we have proved:
Theorem 11.2.17. Unfolding yields a ∼-functor ⇵-Unf ∶_-Seq → ⇵-Strat.

Proof. The only thing remaining to check is that ⇵-Unf preserves equivalence, which
is proved exactly as in Theorem 9.3.7.

11.2.4 Unfolding the Interpretation of IA
As in the non-alternating case, it is an immediate verification that the alternating unfold-
ing preserves the cartesian closed structure: preservation of projections is a variation
of Proposition 11.2.15, it is a simple verification that unfolding preserves currying and
its inverse, so that evaluation is preserved as well – altogether we get

⇵-Unf (−) ∶_-Seq → ⇵-Strat
a cartesian closed ∼-functor. The unfolding is continuous with respect to the dcpo
structure on hom-sets, so that the fixpoint operator is preserved. Finally, it follows by
inspection that the unfolding preserves the interpretation of all IA primitives, so that:
Theorem 11.2.18. We have a cartesian closed ∼-functor:

⇵-Unf (−) ∶_-Seq → ⇵-Strat ,

preserving the interpretation in the sense that for Γ ⊢ M ∶ A any term of IA, we have

⇵-Unf (JMK_-Seq) = JMK⇵-Strat .

Intensional full abstraction. We motivated the unfolding
⇵-Unf (−) ∶_-Seq → ⇵-Strat

as a way to show that_-Seq is intensionally fully abstract for IA, i.e. to inherit in con-
current games the full abstraction result for IA in alternating game semantics (Theorem
3.3.5). However, full abstraction does not hold for ⇵-Strat but only with respect to
well-bracketed P-visible alternating strategies, i.e. for ⇵-WB.
Strategies in _-Seq already embark two notions of well-bracketing: the winning

mechanism implemented in NTCG (see Section 8.2) already bans call/cc, and we also
imported logical well-bracketing from non-alternating games in Definition 9.3.2 – so
we may hope that the unfolding actually lifts to a cartesian closed ∼-functor

⇵-Unf (−) ∶_-Seq → ⇵-WB ,

but that is not the case: we showed in Figure 10.18 a sequential causal strategy whose al-
ternating unfolding is not well-bracketed. The strategy is winning: its+-covered config-
urations have a positive payoff. Its non-alternating unfolding is logically well-bracketed
(this matches the counter-example to the fact that logical well-bracketing implies well-
bracketing, seen in Figure 5.3). Nevertheless, the play following the long causal chain
is not well-bracketed as the final move does not answer the pending question. However
this does not prevent the interpretation of IA in_-Seq to be intensionally fully abstract,
because this phenomenon cannot occur in plays where the initial move has an answer.

CHAPTER 11. SEQUENTIALITY 300

Lemma 11.2.19. Let s ∈ ⇵- ↶Plays(A) be P- and O-visible. Assume that s has the form

s = … si … sj …

where no further move points to sj . Then, no move after sj can point within si… sj .

Proof. By P- or O-visibility, sj+1 points strictly before si. Then no view can ever see
si+1… sj – so no move can point there. Besides, si can only be seen by the player
responsible for it, so no move can point to si.A detailed proof appears in [Clairambault and Harmer, 2010, Lemma 5].

From this, we may easily deduce the following:
Lemma 11.2.20. Consider s ∈ ⇵- ↶Plays(A) O- and P-visible, and such that any Ques-
tion has an answer. Then, s is well-bracketed in the sense of Definition 3.2.5.

Proof. Assume s has a well-bracketing failure, i.e. as in:

s = … q1 … q2 … a …

with q2 unanswered when playing a. By answer-closing, no further move can point to a.
Thus by Lemma 11.2.19, no further move can point to q2 which must therefore remain
unanswered, contradicting the hypothesis that every question has an answer.
From all this, we may now conclude:

Theorem 11.2.21. The interpretation of IA in_-Seq is intensionally fully abstract.

Proof. Let ⊢ M,N ∶ A be terms in IA, and assume that JMK ̸≃ JNK, i.e. there is
a test � ∈ _-Seq(JAK, JUK) such that � ⊙! JMK ≠ � ⊙! JNK – assume w.l.o.g. that
� ⊙! JMK converges while � ⊙! JMK diverges. Writing �′ = ⇵-Unf (�), it follows that

�′ ⊙ JMK⇵-Strat ⇓ �′ ⊙ JNK⇵-Strat ⇑ ,

since, by Theorem 11.2.18, the alternating unfolding preserves composition and the
interpretation of IA. Here, �′ is a P-visible alternating strategy, but because of the
phenomena highlighted in Figure 10.18 it may not be well-bracketed as in Definition
3.2.6. Consider s ∈ �′ involved in �′ ⊙! JMK ⇓ – until the rest of the proof, JMK is
the interpretation in ⇵-Strat. The initial question of s has an answer. Moreover, JMK
is the alternating restriction of ↺-Unf (JMK_-Strat) which is logically well-bracketed,
and likewise �′ is logically well-bracketed, thus s is logically well-bracketed and hence
all its questions are answered. It is P-visible and O-visible since both JMK and �′ are
P-visible. Hence, by Lemma 11.2.20, it is well-bracketed as in Definition 3.2.6.
Consider �′ restricted to prefixes of s. Now �′ is well-bracketed as in Definition

3.2.5, and it distinguishes JMK and JNK, henceM ̸≃ N by Theorem 4.3.11.

CHAPTER 11. SEQUENTIALITY 301

So far we have seen that:
_-Strat is intensionally fully abstract for IA� (Theorem 9.3.10),
_-Seq is intensionally fully abstract for IA (Theorem 11.2.21).

It remains to prove two matching theorems in the presence of parallel innocence.

11.3 Sequential Innocence
In this section, we study the combination of sequentiality and parallel innocence, and
establish links with traditional innocence as introduced in Section 3.2.
Let us start with the definition:

Definition 11.3.1. A causal strategy � ∶ A is sequential innocent if it is both sequential
(as in Definition 11.1.4) and parallel innocent (as in Definition 10.1.11).

As both sequential and parallel innocent causal strategies form a cartesian closed sub-
∼-category of_-Strat, there is a cartesian closed∼-category_-SeqInn of sequential
innocent strategies. As PCF may be interpreted in both _-Seq and _-Inn, it follows
that it has an adequate interpretation in _-SeqInn as well. In this section we shall
prove that this interpretation is intensionally fully abstract, by proving that⇵-Strat(−)
sends sequential innocent strategies to innocent alternating strategies as in Definition
3.2.9, and rely on Theorem 4.3.10 to deduce intensional full abstraction.

11.3.1 Causal Analysis of Sequential Innocence
Basic causal shape. So as to establish the link with traditional innocence, we first aim
to understand better what constraints on the causal shape are brought by the combination
of parallel innocence, and sequentiality. Roughly speaking, parallel innocence only
allows Player to merge threads he spawned, whereas sequentiality prevents Player to
spawn parallel threads: it follows that the causal shape of a sequential innocent strategy
must be purely forestial, with branchings the entire responsibility of Opponent:
Lemma 11.3.2. ConsiderA a board, and � ∶ A a sequential, parallel innocent strategy.

Then, � is an O-branching alternating forest.

Proof. First, we prove that for all m ∈ �, its set of dependencies [m]� is a total order.
Seeking a contradiction, take m′ ∈ � minimal with m′ _� m1 and m′ _� m2distinct, all within [m]� . By minimality, [m′]� is a total order, i.e. a gcc. By Lemma

6.1.16, m1 and m2 have the same polarity, opposite of m′. Consider �1 ∈ gcc(�) a
gcc for m passing through m′ _� m1, and �2 ∈ gcc(�) a gcc for m passing through
m′ _� m2. Then �1 and �2 have least distinct eventsm1 andm2; hence by pre-innocence
m1 and m2 are positive. Now, m′ must be the only immediate dependency of m1, andthe only immediate dependency ofm2; indeed if there wasm′′ _� mi, then considering
�′ _ mi ∈ gcc(�) passing through m′′, � and �′ would fork at some event smaller than

CHAPTER 11. SEQUENTIALITY 302

q−

_���
q+0

+rry
5vv� u��� � ##+q−0

_���

… q−i
_���

… ✓−0

_���

… ✓−j

_���

…

✓+0 … ✓+0 … q+1 … q+j+1

*qqx
5vv� }��$ � $$,

…

q−0
_���

… q−k
_���

… ✓−0

_���

… ✓−l

_���

…

✓+0 … ✓+0 … tt+
⟨j,0⟩ … tt+

⟨j,l⟩ …

Figure 11.3: A sequential innocent causal strategy

m′, contradicting its minimality. Hence, [m′] ∪ {mi} ∈ C (�) for i ∈ {1, 2}.Also writing [m′] for the linearization in ⇵-ℒ (�) with events in the same order,
[m′], [m′]m1, [m′]m2 ∈ ℒ (�) ,

but by Lemma 6.1.16, [m′]m+1 and [m′]m+2 are alternating. By sequential determinism
of �, it follows that m1 = m2, contradiction. So, for all m ∈ �, [m]� is a total order.
Thus (|�|,≤�) is a forest. Likewise, if m− _ m+1 and m− _ m+2 in �, by sequential

determinism and the same reasoning as above, m1 = m2, so � is O-branching. Finally,
as for any causal strategy � ∶ A onA alternating, we have_� is alternating as well.

Description. The causal shape of a sequential innocent strategy is a forest, but it might
not be obvious to the reader what this forest actually represents. Thus we start this
discussion by looking at the interpretation as a causal strategy of the simple term

⊢ �fU→U. f skip; f skip; tt ∶ (U → U)→ B .

of pure PCF. The interpretation of this term yields the strategy in Figure 11.3.
This event structure is infinite, since Opponent may play any of his available moves

an arbitrary number of times, using any natural number as copy index.
Intuitively, this diagram follows the structure of the term: once computation is ini-

tiated, Player asks for the output of f . Each time f calls its argument, Player answers
✓+. Note though that unlike in traditional game semantics, the strategy shows that these
calls are causally independent from each other. Likewise, the game permits Opponent
to have f return multiple times. Each time this happens, this triggers another call to f ,
which may call its argument any number of times, and return any number of times.

CHAPTER 11. SEQUENTIALITY 303

(U → U) → U
q−

q+

q−
✓+

(U → U) → U
q−

q+

✓−

q+

q−
✓+

(U → U) → U
q−

q+

✓−

q+

✓−

tt+

Figure 11.4: Maximal P-views of �f . f skip; f skip; tt

It seems clear from this diagram that the strategy contains a lot of redundant informa-
tion: by symmetry, it intuitively suffices to know how the strategy behaves if Opponent
performs each available action exactly once, say with copy index 0:

q−
_���
q+0

9ww� � !!)
q−0

_���

✓−0
_���

✓+0 q+1
C{{� {��#

q−0
_���

✓−0
_���

✓+0 tt+1

leading to what we shall call themeager form in general for parallel innocent strategies,
in Section 12.1. Ignoring the copy indices we observe here that we have a tree with three
maximal branches, which coincide with the three maximal P-views of the correspond-
ing innocent alternating strategy in the traditional sense, as displayed in Figure 11.4.
This plainly shows that P-views actually express the causal structures in traditional
game semantics already, with however one main difference with respect to concurrent
games: sets of P-views cannot express Opponent replications, so that composing them
requires using plays, stepping out of the causal reprentation. In contrast, concurrent
games remain causal also in the presence of Opponent replications.

Recovering P-views. Next we show that, as expected from the discussion above, the
branches of a sequential innocent strategy do correspond to P-views.
Proposition 11.3.3. Consider A a mixed board, and � ∶ A sequential innocent.
For all � ∈ gcc(�), ↶(−)()�(�)) is a P-view.

Proof. By Lemma 11.3.2, � is forestial, so that prefixes of � are down-closed and
inform configurations. Hence, we actually have � ∈ ℒ (�). Moreover, by Lemma

CHAPTER 11. SEQUENTIALITY 304

6.1.16, immediate causality alternates in � and in particular, � ∈ ⇵-ℒ (�). In particu-
lar,)�(�) ∈ ⇵-Plays(A) and hence ↶(−)()�(�)) ∈ ⇵- ↶Plays(A).
To prove that it is a P-view, it remains to show that Opponent moves point to the

previous move. But if we have s = s1… s+i s
−
i+1⋯ = ↶(−)()�(�)), those must come from

� = �1 _� …_� �
+
i _� �

−
i+1 _� … ,

then)�(�+i)_A)�(�−i+1) by courtesy, which entails that s−i+1 points to s+i .
Thus indeed, we may regard a sequential innocent strategy as a presentation of an

expanded version of the forest of P-views, with an explicit choice of copy indices.

11.3.2 The Unfolding Preserves Innocence
We now aim to show that the unfolding of a sequential innocent strategy is innocent in
the sense of traditional Hyland-Ong game semantics, as introduced in Chapter 3.

Alternating linearizations. In order to prove that, our first step will be to study alter-
nating linearizations of sequential innocent strategies, in particular understanding how
the mechanism of P-views captures the causal structure.
Recall the P-view of an alternating linearization, introduced in Definition 11.1.3.

Lemma 11.3.4. Consider � ∈ NTCG(A,B) sequential innocent.
Then, for all tm ∈ ⇵-ℒ (�), we have ⌜tm⌝ = [m]� .

Proof. Here we treat [m]� as the sequence induced by its total ordering.
The crucial observation is that if tm−n+ ∈ ⇵-ℒ (�), then necessarily m− _� n+.To prove that, we prove by induction that for any t ∈ ⇵-ℒ (�): (1) if t has even length,

then all maximal events of |t| ∈ C (�) are positive; and (2) if t has odd length, then
|t| ∈ C (�) has exactly one maximal negative event. Indeed, for tm− ∈ ⇵-ℒ (�), then t
has even length, so |t| has all its maximal events positive. But then |tm−| has exactly one
maximal negative event, namely m−. Likewise, for tm+ ∈ ⇵-ℒ (�), then |t| has exactly
one maximal negative event. Now, the immediate predecessor of m must be negative.
But if it is not maximal in |t|, this contradicts Lemma 11.3.2, and in particular that �
is O-branching. Therefore, the predecessor of m must be the unique maximal negative
event of |t|, and |tm| has all maximal events positive as required.

Now, if tm−n+, then |tm−| has exactly one maximal negative event (namely m−);
while the maximal events of |tm−n+| are all positive (and comprise n+). Hence,m− _�
n+ as required. Likewise, if t1m+t2n− ∈ ⇵-ℒ (�) such that j(n) = m – so ⌜t1mt2n⌝ =
⌜t1⌝mn then we must have)�(m) _)�(n) hence m _� n by Lemma 6.1.16. From
these two facts, the lemma is a direct verification by induction on t.

We regard this as the fundamental reason why the mechanism of P-views works: on
alternating linearizations, it recaptures exactly the causal structure explicitely carried
by concurrent strategies – a strength of concurrent games is that beyond the alternating

CHAPTER 11. SEQUENTIALITY 305

1q−

_���
2q+0

5vv� _��� � $$,3q−0
_���

5q−1
_���

7✓−0
_���

4✓+0
6✓+0

8q+1
:xx� _��� � ��&

9q−0
_���

11q−1
_���

13✓−0
_���

10✓+0
12✓+0

14tt+0

Figure 11.5: Witness for Figure 9.19

deterministic realm, P-views are no longer available while concurrent strategies remain.

As an illustration, Figure 11.5 shows the configuration explored in the play of
J�fU→U. f skip; f skip; ttK ∶ J(U → U)→ BK

in Figure 9.19 (note that this is another presentation of the diagram on the left hand side
of Figure 10.12) – the numbers in red correspond to the order in which the linearization
proceeds. As proved above, at each stage the P-view is exactly the branch leading to the
corresponding move in the configuration. Opponent could explore the same configura-
tion in a different order, corresponding to a different play visiting the same P-views. On
the other hand, only Opponent has any degree of freedom in this exploration: Player has
ever at most one possible move, that immediately caused by the last Opponent move4.

Innocence of the unfolding. Now, we show that as expected, the alternating unfold-
ing of a sequential innocent strategy is innocent in the traditional sense.
Proposition 11.3.5. Consider A a mixed board, and � ∶ A sequential innocent.
Then, ⇵-Unf!(�!) ∶ A is an innocent alternating strategy (as in Definition 3.2.9).

Proof. We already know from Proposition 11.2.11 that ⇵-Unf!(�!) is P-visible.Consider sa−b+, ta− ∈ ⇵-Unf (�!) s.t. ⌜sa−⌝ = ⌜ta−⌝. By definition, there are
witnesses umn ∈ ⇵-ℒ (�!) for sa−b+ and vo ∈ ⇵-ℒ (�!) for ta−. By Lemma 11.3.4,

⌜um⌝ = [m]�! , ⌜vo⌝ = [o]�!
4Different explorations of the same configuration may be related by permuting contiguous OP pairs of

moves. Deterministic innocent strategies may be defined as those stable under the permutations of OP pairs
permitted by the arena: this is the idea behind Melliès’ presentation of innocence [Melliès, 2004a].

CHAPTER 11. SEQUENTIALITY 306

where [m]�!, [o]�! are seen as the sequences induced by their total ordering. Those are
gccs, and as in Proposition 11.3.3 theymust be alternating, thus ⌜um⌝, ⌜vo⌝ ∈ ⇵-ℒ (�!).
Now, from ⌜sa−⌝ = ⌜ta−⌝, by Proposition 11.2.7 we have that)�! ⌜um⌝ ≅A)�! ⌜vo⌝,which entails that ⌜um⌝ ≅�! ⌜vo⌝ by Lemma 11.2.4. Now, as ⌜um⌝ extends with n, by

extension there must be ⌜vo⌝p = ⌜vop⌝ ∈ ⇵-ℒ (�!) with ⌜umn⌝ ≅� ⌜vop⌝. Now it
follows that |vo| ∪ {p} ∈ C (�!) by determinism, so that vop ∈ ⇵-ℒ (�!). We may
project it to ta−b+ = ↶(−)()�!(vop)). Finally, since ⌜umn⌝ ≅� ⌜vop⌝ we must have

)�!(⌜umn⌝) ≅!A)�!(⌜vop⌝)

hence ↶(−)()�!(⌜umn⌝)) =
↶(−)()�!(⌜vop⌝)), and since ⌜sa−b+⌝ = ⌜ ↶(−)()�!(umn))⌝ =

↶(−)()�!(⌜umn⌝)) and likewise for vop it follows that ⌜sa−b+⌝ = ⌜ta−b+⌝.
Of course, from the above we also have a characterization of its P-views:

Proposition 11.3.6. Consider A a mixed board, and � ∶ A sequential innocent.
The (non-empty) P-views of ⇵-Unf!(�!) are exactly those ↶(−)()�([m]�)) for m ∈ �.

Proof. If m ∈ �, then, picking some arbitrary copy index i ∈ ℕ, we have (i, m) ∈ �!,
and [(i, m)]�! ∈ ⇵-ℒ (�!) thus ↶(−)()�!([(i, m)]�!)) ∈ ⇵-Unf!(�!). Moreover, by Propo-
sition 11.3.3, it is a P-view of ⇵-Unf!(�!). Finally, ↶(−)()�!([(i, m)]�!) =

↶(−)()�([m]�)).Reciprocally, consider s ∈ ⇵-Unf!(�!) a non-empty P-view, i.e. we have ⌜s⌝ = s.
By definition, there is tm ∈ ⇵-ℒ (�!) such that s = ↶(−)()�!(tm)), with ⌜tm⌝ = tm. By
Lemma 11.3.4, ⌜tm⌝ = [m]�!. But then, m = (i, m′) for some copy index i ∈ ℕ and
↶(−)()�([m′]�)) =

↶(−)()�!([m]�!) = s as required.
We may now wrap up the unfolding to innocent alternating strategies:

Theorem 11.3.7. We have a cartesian closed ∼-functor:

⇵-Unf (−) ∶_-SeqInn → ⇵-Inn ,

preserving the interpretation in the sense that for Γ ⊢ M ∶ A any term of PCF, we have

⇵-Unf (JMK_-SeqInn) = JMK⇵-Inn .

Proof. Follows from Theorem 11.2.18 and Proposition 11.3.5.

11.3.3 Sequential Globularity
We refine this in the presence of the further constraint of globularity (Definition 10.5.1).

Let us start with:
Definition 11.3.8. A strategy � ∈ _-Strat(A,B) is sequential globular if it is both
sequential (as in Definition 11.1.4) and globular (as in Definition 10.5.1).

CHAPTER 11. SEQUENTIALITY 307

As both sequential and globular strategies form a cartesian closed sub-∼-category
of_-Strat, there is a cartesian closed ∼-category_-SeqGlob of sequential globular
strategies. As PCF may be interpreted in both _-Seq and _-Glob, it follows that it
has an adequate interpretation in _-SeqGlob as well – here we shall prove that this
interpretation is actually exactly the same as that in ⇵-InnWB.

We first show that the unfolding of a sequential globular strategy is well-bracketed:
Proposition 11.3.9. Consider A and B mixed boards, and � ∈_-SeqGlob(A,B).
Then, ⇵-Unf (�) ∈ ⇵-Inn(A,B) is well-bracketed (in the sense of Definition 3.2.6).

Proof. Recall that ⇵-Unf (�) is defined as ⇵-Unf!(Λ(�)!), which is innocent by Propo-
sition 11.3.5. Moreover, by Proposition 11.3.6 its non-empty P-views are exactly the

s = ↶(−)()�([m]�))

for m ∈ �. But by wb-threads, [m]� is a well-bracketed gcc; it entails directly that s is
well-bracketed. Thus by Proposition 3.2.13, ⇵-Unf (�) is well-bracketed.

Together with Theorem 11.2.18, we get:
Theorem 11.3.10. The alternating unfolding yields

⇵-Unf (−) ∶_-SeqGlob → ⇵-InnWB

a cartesian closed ∼-functor preserving the interpretation of PCF.

In fact, we shall be able to prove later on:
Theorem 11.3.11. The induced functor ⇵-Unf (−) ∶ _-SeqGlob∕≈ → ⇵-InnWB is
full and faithful: for allA,B mixed boards, the alternating unfolding induces a bijection

⇵-Unf (−) ∶ _-SeqGlob(A,B)∕≈ ≃ ⇵-InnWB(A,B) .

Proof. This requires the notion of meager form of a parallel innocent causal strategy,
introduced in Section 12.1.2 – hence, we postpone the proof until Section 12.1.3.
This should not surprise the reader: we have seen in Section 11.3.1 that the causal

shape of a sequential innocent causal strategy is a forest, whose branches correspond
to P-views enriched with explicit copy indices. Once we factor out the choice of copy
indices via positive iso, we are left with exactly the same information as P-views.

11.3.4 Intensional Full Abstraction
At last, we are finally equipped to prove the final result of this chapter:
Theorem 11.3.12. The interpretation of PCF in_-SeqGlob is intens. fully abstract.

CHAPTER 11. SEQUENTIALITY 308

Proof. Let ⊢ M,N ∶ A be terms in PCF, and assume JMK ̸≃ JNK, i.e. there is
� ∈ _-SeqGlob(JAK, JUK) s.t. � ⊙! JMK ≠ � ⊙! JNK – assume w.l.o.g. � ⊙! JMK
converges while � ⊙! JMK diverges. Then it follows from Theorem 11.3.7 that

⇵-Unf (�)⊙ JMK⇵-Strat ⇓ ⇵-Unf (�)⊙ JNK⇵-Strat ⇑ ,

where⇵-Unf (�) is an innocent alternating strategy, but also well-bracketed by Theorem
11.3.10. Thus finally, it follows thatM ̸≃ N by Theorem 4.3.10.
This leaves us with one, final theorem to prove in Part III: that the model_-Inn of

parallel innocent strategies is intensionally fully abstract for PCF�. This will prove themost challenging of our full abstraction results, investigated in the next chapter.

11.4 History and Related Work
Though it seemed clear for a long time that concurrent strategies supported a fitting
notion of sequentiality, the constructions presented in this chapter were not worked out
until the long paper [Castellan and Clairambault, 2021], with a few significant suprises
in store. The presentation given here is slightly simpler.

Related work. Though the results of this chapter are new, the developments resonate
significantly with several earlier works. First and foremost, the structure of sequential
innocent strategies is close to the designs of Girard’s Ludics [Girard, 2001], and part
of our developments are reminiscent of Faggian and Hyland’s work on the connection
between Ludics and Hyland-Ong games [Faggian and Hyland, 2002]. Again, the causal
shape of sequential innocent strategies was also noticed by Melliès: diagrams such as
in Figure 11.3 are very syntactic in nature, and may be written down via terms of the
non-uniform �-calculus introduced in [Melliès, 2004a].
Another notable aspect of this chapter is the analysis of polarities necessary to prove

sequentiality stable under composition and tensoring (see e.g. Lemmas 11.1.8 and
11.1.16). Such lemmas are fundamental structures of the theory of sequentiality. In
traditional presentations of alternating strategies, they show up early when proving de-
terminism stable under composition, and associativity (Chapter 4); here instead they
show up when proving sequentiality stable under composition. Usually they are kept
implicit, relegated to technical appendices (if anything); but they are at the foreground
of Melliès’ recent template games [Melliès, 2019a, Melliès, 2019b].

Chapter 12

Finite Definability for PCF�

We are approaching the end of the journey. Over the course of the previous three chap-
ters, we have established the following intensional full abstraction results

_-Strat is fully abstract for IA� ,
_-Strat + sequentiality is fully abstract for IA ,

_-Strat + globularity + sequentiality is fully abstract for PCF ,

and we are left with the one outstanding objective:
_-Strat + globularity is fully abstract for PCF� .

This is also the most challenging of our full abstraction results: for the others we
could leverage earlier work, but here we must prove finite definability from scratch.
Proving finite definability for globular strategies is a technical endeavour, involving

a number of steps. First of all, what is “finite” in “finite definability”? Recall that this is
already subtle for traditional innocent strategies, where finiteness is defined with respect
to a meager representation: the forest of P-views (see Section 3.2.4). Accordingly, we
shall start in Section 12.1 by providing a compact, meager form for parallel innocent
strategies. Once this is done, we focus on the causal shape of globular strategies. There
our observation, is that parallel behaviour is inherently first-order: two threads whose
destiny is to be merged cannot delve into the higher-order structure. This allows us to
prove a factorization result: any globular strategy can be decomposed into (the inter-
pretation of) a pure �-term, and a globular purely first-order strategy – this is detailed
in Section 12.2. Finally, it remains to show finite definability for first-order globular
strategies, which we do up to positional equivalence in Section 12.3.
Let us now delve in, starting with the meager form.

309

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 310

mf

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

q−

_���
q+0

+rry
5vv� u��� � ##+q−0

_���

… q−i
_���

… ✓−0

_���

… ✓−j

_���

…

✓+0 … ✓+0 … q+1 … q+j+1

*qqx
5vv� }��$ � $$,

…

q−0
_���

… q−k
_���

… ✓−0

_���

… ✓−l

_���

…

✓+0 … ✓+0 … tt+
⟨j,0⟩ … tt+

⟨j,l⟩ …

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

q−

_���
q+0

>yy� 	 ��(
q−0

_���

✓−0

_���
✓+0 q+1

G}}� w��!
q−0

_���

✓−0

_���
✓+0 tt+1

Figure 12.1: Meager form of a sequential innocent strategy on (U → U)→ B

12.1 Meager Form
Analogously to traditional innocent strategies, globular causal strategies support a no-
tion of meager form, where all Opponent replications are factored out.

Introducing the meager form We have already seen in Section 11.3.1 the computa-
tion of the meager form for a sequential innocent strategy, summed up in Figure 12.1: so
as to factor out Opponent’s duplications, it suffices to only keep those Opponent moves
that have 0 as their copy index (it is actually not straightforward how to make this formal
for arbitrary mixed boards, we shall see later on how to do that). In doing so, we get
a useful notion of finite sequential innocent strategy: although the tree at the left hand
side of Figure 12.1 is infinite, the strategy is finite because factoring out Opponent’s
duplications yields the finite tree on the right hand side of Figure 12.1.
Then, the full strategy can be fully recovered from it: all the branches of the diagram

on the left hand side of Figure 12.1 are copies of some branch of the meager form, and
thus with each new Opponent copy of a move, we can make an independent copy of
the subsequent subtree, choosing copy indices so as to avoid collisions. We shall see
that the only information lost in going from left to right is the specific choice of copy
indices, which however does not matter up to positive isomorphism.
This motivates the meager form and its expansion for sequential innocent strategies;

but in this section we develop this in general for parallel innocent strategies. We show
an example of the computation of the meager form of a parallel innocent strategy in
Figure 12.2 – again we shall see that no essential information is lost. The diagram on
the right hand side informs the full causal strategy: there is one copy of the final answer
for each pair of answers to the two arguments, so that Opponent providing a new copy
of the value for either argument prompts a new independent copy of the final answer.

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 311

mf

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

U → U → U

q−

%oou +rryq+0
=yy� _���

q+0
=yy� _���

✓−0

� ((/

… ✓−i

� ((/

… ✓−0

� $$,

… ✓−j

� $$,

…

✓+
⟨0,0⟩ … ✓+

⟨i,j⟩ …

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

U → U → U

q−

,rrz
8ww�

q+0
_���

q+0
_���

✓−0

� ##+

✓−0

� ��&
✓+
⟨0,0⟩

Figure 12.2: Meager form of parallel composition

12.1.1 Updating Mixed Boards
To make this formal, we need a way to specify the copy index of a move occurring deep
in the board; forcing us to complete the definition of mixed boards (Definition 9.2.6).

Making copy indices explicit. If A is a board (and thus in particular, for a mixed
board) its causality is forestial, thus any non-minimal event a ∈ A has a unique prede-
cessor for_A, written pred(a)_A a; by convention we also specify that pred(a) = ∗
if a is a minimal event. With these conventions in place, we complete Definition 9.2.6
(the intention is that the definition of mixed board was that below from the start, but
with some of the components postponed, as they played no role until now).
Definition 12.1.1. A mixed board is (A,A) with A a strict board, A an arena, with

lblA ∶ |A| → |A| , indA ∶ |A| → ℕ ,

with lblA a label function preserving polarities, satisfying Definition 9.2.6, and indA an
indexing function, with the following additional conditions:

initialized: for all a ∈ min(A) there is a unique a ∈ min(A) s.t. lbl(a) = a,
and it additionally satisfies ind(a) = 0.

local conflict: if a a′, we have pred(a) = pred(a′) and ind(a) = ind(a′),
invariant conflict: if a1 a2, lbl(a1) = lbl(b1), lbl(a2) = lbl(b2),

pred(b1) = pred(b2) and ind(b1) = ind(b2), then b1 b2.jointly injective: for a1, a2 ∈ A, if lbl(a1) = lbl(a2), ind(a1) = ind(a2),
and pred(a1) = pred(a2), then a1 = a2.wide: for any a ∈ A, b ∈ A such that lbl(a)_A b, and n ∈ ℕ,
there is b ∈ A s.t. pred(b) = a, lbl(b) = b and ind(b) = n.

+-transparent: for � ∶ x ≅A y, � ∈ S+(A) iff for all a− ∈ x, ind(�(a)) = ind(a).
−-transparent: for � ∶ x ≅A y, � ∈ S−(A) iff for all a+ ∈ x, ind(�(a)) = ind(a).

In particular, the function indA explicitly associates to every move a ∈ A of the board
a copy index. While this definition looks intimidating, its intention is simply to bind

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 312

q−

a+0 … a+i … b+0 … b+j … c+0 … c+k … …

ind(q−) = 0
ind(a+i) = i
ind(b+i) = i
ind(c+i) = i

…

Figure 12.3: Copy indices for ground(V)

tightly the board and the arena so that events of the board are determined by their label
in the arena, their predecessor in the board and their copy index. By transparent, the
copy index is the only thing that symmetries can change. By +-transparent, positive
symmetries can only change indices of positive moves, while by−-transparent, negative
symmetries can only change indices of negative moves.
Accounting for the new component indA ∶ |A| → ℕ of mixed boards, we must now

define the copy indices for all our mixed board constructions. For basic mixed boards,
recall that they were obtained by linking the arenas for ground types with the ground
strict boards obtained as ground(V) for some set V of values. Thus we must equip this
with a copy index function: for a set of values V = {a, b, c,…}, we define the copy
indices for the ground board ground(V) (Definition 9.1.1) as specified in Figure 12.3.
For all basic mixed boards, it is clear that Definition 12.1.1 is satisfied. We extend the
copy index function to all constructions on mixed boards used in the interpretation, via:

indA1&A2 (i, a) = indAi (a)
indA⇒B(2, b) = indB(b)

lblA⇒B(1, (b, (i, a))) = i if a ∈ min(A),
lblA⇒B(1, (b, (i, a))) = indA(a) otherwise,

for B = &i∈IBi with Bi well-opened. We omit the routine verification that these defi-
nitions indeed preserve the conditions of Definition 12.1.1.
Introducing explicit copy indices only makes explicit a notion that we have already

referred to in the exposition; for instance in diagrams such as in Figure 11.5 where the
greyed-out subscripts are nothing but the numbers given by the copy index function. In
mixed boards, the board is essentially an expanded form of the arena, with all branches
replaced with countably many copies: playing a newmove consists in picking a justifier
(if any), picking an enabled move in the arena, and picking a copy index1

Properties. Equipped with this now completed notion of mixed board, we may now
prove the property that was postponed after Definition 9.2.6.

1In fact, we could have set_-Strat as having mere arenas as objects, and having strategies play on the
generated board – this was the road suggested in [Castellan et al., 2019]. We prefer the present presentation,
which allows for a smoother link with the relative Seely category structure ofNTCG and the relational model.

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 313

Lemma 9.2.10. Consider A a mixed board. We have the following properties:

(1) For all ta ∈↺-Pre ↶Plays∙(A), s ∈↺-Plays(A) such that t =↶s ,
there is sa′ ∈↺-Plays(A) such that ↶(−)(sa′) = ta;

(2) For all ta ∈↺-Pre ↶Plays(A), s ∈↺-Plays(!A) such that t =↶s ,
there is sa′ ∈↺-Plays(!A) such that ↶(−)(sa′) = ta.

Proof. (1) Consider ta ∈ ↺-Pre ↶Plays∙(A) and s ∈ ↺-Plays(A) such that t = ↶s . If t is
empty, then a is initial in A and the property follows by initialized. Otherwise, write

s = s1… sn t =↶s = t1… tn

where a points to ti. Now, consider p a copy index not yet appearing in s. By wide,
there is a′ ∈ A such that lbl(a′) = a, pred(a′) = si and ind(a′) = p. Then sa′ ∈ ℒ (A).
Indeed, |s| ∪ {a′} ∈ C (A): it is down-closed as pred(a′) ∈ |s| and conflict-free by
locally conflicting since no other move in s has index p. Finally, ↶(−)(sa′) = ta.
(2) same reasoning as for (1).

12.1.2 Meager Innocent Strategies
Now, we are equipped to define meager parallel innocent strategies, the notion analo-
gous to the meager innocent strategies in the traditional setting (see Section 3.2.4).

Definition. In analogy to the traditional case,meager innocent strategies are supposed
to be parallel innocent strategies, but playing on games not allowing any Opponent
replications. We formalize this by restricting Opponent to copy index 0:
Definition 12.1.2. Consider A a mixed board. Then, we set A+ a strict board with

|A+| = {a′ ∈ |A| ∣ ∀a− ≤A a′, indA(a) = 0} ,

and all other components inherited. We call A+ the positive restriction of A.

This definition of the positive restriction has the immediate consequence that its only
non-trivial symmetries are positive, since Opponent moves must have index 0:
Lemma 12.1.3. For A a mixed board, if � ∈ S (A+) then � ∈ S+(A+) ⊆ S+(A).

This is obvious by+-transparent. We now definemeager parallel innocent strategies:
Definition 12.1.4. Consider A a mixed board.
A meager parallel innocent strategy on A is a parallel innocent strategy on A+.

For instance, the diagrams on the right hand side of Figures 12.1 and 12.2 are meager
parallel innocent strategies. Note that on the left hand side of these diagrams, the infinite
nature of the strategies forces us to resort to a symbolic notation so as to describe those
finitely; also the notation conveys no information on the symmetries, although those are
in principle part of the data. In contrast, for meager parallel innocent strategies:

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 314

Proposition 12.1.5. Consider A a mixed board, and � ∶ A+ meager parallel innocent.
Then its symmetries are trivial, i.e. S (�) = {idx ∶ x ≅� x ∣ x ∈ C (�)}.

Proof. Consider � ∶ x ≅� y any symmetry. By Lemma 12.1.3,)� � ∈ S+(A+). Henceby thin, we have that x = y and � = idx; thus S (�) is restricted to identities.
Thus when specifying a meager parallel innocent strategy �, it is unnecessary to

specify the isomorphism family S (�), which is trivial. Thus it is entirely sufficient to
describe � with a diagram (as on the right hand side of Figures 12.1 and 12.2) describing
the event structure concretely, with no ellipse or symbolic representation. Likewise, a
positive iso between meager parallel innocent strategies boils down to an isomorphism

' ∶ � ≅ �

of plain event structures such that)�◦' ∼)� , which amounts to renaming the internal
events of � and � and changing the copy indices of positive moves.

Meager form. The above is interesting, provided it does indeed give an alternative
but equivalent representation for usual parallel innocent strategies. Accordingly, we
now define the meager form of parallel innocent strategies – in the obvious way:
Proposition 12.1.6. ConsiderA a mixed board, and � ∶ A a parallel innocent strategy.
Then, setting the set of events

|mf (�)| = {m ∈ |�| ∣)� [m]� ∈ C (A+)}

with all components inherited yields a meager parallel innocent strategy mf (�) on A.
Moreover, mf (−) preserves ≈.

Proof. There are a few conditions to check, which we list below.
Event structure with symmetry. It is easy that mf (�) is an event structure. For sym-

metry only the extension axiom is non-trivial: if � ∶ x ≅� y with x, y ∈ C (mf (�)),
then by the same reasoning as in Proposition 12.1.5, � = idx; extension follows.

Strategy, winning, visible, parallel innocent. Immediate verifications.
Preservation of ≈. Consider ' ∶ � ≈ � a positive isomorphism. Then, the important

observation is that ' sends mf (�) to mf (�). Indeed if m ∈ mf (�), then
⟨)� ,)�◦'⟩[m]� ∶)� [m]� ≅

+
A)� ['(m)]�

which by +-transparent, being positive, must preserve the copy indices of negative
events. Hence)� ['(m)]� ∈ C (A+), and ' restricts to mf (') ∶ mf (�) ≈ mf (�).

Note that in the construction of mf (�) we have never actually used the hypothesis
that � is parallel innocent, and the construction works in more generality. However,
the operation is not very interesting for non-innocent strategies as it is lossy: if � is not
parallel innocent, one cannot in general reconstruct � from mf (�).
Next, we show how to recover a parallel innocent strategy from a meager form.

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 315

exp

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

U U U

q−

-ssz
8ww�

q+0
_���

q+1
_���

✓−0

� ##+

✓−0

� ��&
✓+
⟨0,0⟩

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

U → U → U

q−

%oou)qqxq+
♯(q+0)

D||� _���

q+
♯(q+1)

D||� _���
✓−0

� ''.

… ✓−i

� ((/

…✓−0

� ##+

… ✓−j

� &&-

…

✓+
♯(✓+

⟨0,0⟩,0,0)
…✓+

♯(✓+
⟨0,0⟩,0,0)

…

Figure 12.4: Expansion of meager parallel composition

Expansion of a meager parallel innocent strategy. Fix A a mixed board, and � ∶
A+ meager parallel innocent on A. We must infer from � its behaviour if Opponent
performs arbitrary duplications, by performing adequately many copies of its events.
We shall achieve that by pairing each event of a meager parallel innocent strategy with
the choice of a copy index for each of its duplicable Opponent dependencies, i.e. its
negative dependencies save for the initial move – we call such choice an exponential
slice. We must then assign a new copy index for positive moves, hashing together the
positive move and the exponential slice. The process is displayed in Figure 12.4.
Consider m ∈ �. How many copies of m should we include in the expanded form?

The answer is that there should be one copy for each simultaneous choice of a copy
index for each duplicable negative dependency of m. Write

[m]−� = {n
− ∈ |�| ∣ n− ≤� m}

for the negative dependencies of m. Then, we define:
Definition 12.1.7. An exponential slice for � is a function, for some m ∈ �,

� ∶ [m]−� → ℕ .

such that �(n) = 0 for n minimal.
An expanded event is m = (m, �m ∶ [m]−� → ℕ), we write m = (m, �) ∈ exp(�).

We write lbl((m, �)) = m. If lbl(m) is negative we say that m is negative, and write
ind((m, �)) = �(m) for its copy index. For m = (m, �), n = (n, �) ∈ exp(�), we write
m ⊑ n iff m ≤� n, and for all e− ≤� m, we have �(e−) = �(e−). Note that if m is
negative, as lbl(m) has a unique predecessor in �, m must have a unique predecessor
in exp(�), written pred(m). We set the minimal conflict m exp(�) n iff m and n are
negative, pred(m) = pred(n), lbl(m) � lbl(n) and ind(m) = ind(n).

Towards defining a strategy, we first extend this to an event structure with symmetry:

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 316

Proposition 12.1.8. Consider exp(�) with events |exp(�)|, components

m ≤exp(�) n ⇔ m ⊑ n
m #exp(�) n ⇔ ∃m′ ⊑ m, n′ ⊑ n, m′ exp(�) n

′

and S (exp(�)) comprising all order-isos preserving lbl(−) between configurations.
Then, exp(�) is an event structure with symmetry.

Proof. The less trivial point is that #exp(�) is irreflexive so assumem #exp(�) m, meaning
there are n, o ⊑ m such that n exp(�) o. So pred(n) = pred(o) = p, lbl(n) � lbl(o),
and ind(n) = ind(o). But this means we have lbl(n) ≤� lbl(m) and lbl(o) ≤� lbl(m) with
lbl(n) � lbl(o), thus lbl(m) #� lbl(m), contradiction since � is an event structure.
Event structure with symmetry. The non-trivial point is the extension axiom. Con-

sider � ∶ x ≅exp(�) y, and x ⊢exp(�) (m, �). If m is positive, then for each n− ≤� m, wehave (n−, � ↾ [n−]−�) ∈ x, and we write �((n−, � ↾ [n−]−�)) = (n
−, �n). Then we set:

(n−) = �n(n−)

for all n− ≤� m, yielding (m,) ∈ exp(�). Then, we observe that y ⊢exp(�) (m,):indeed if (p, ′) ≤exp(�) (m,) then one can prove that �((p, �′)) = (p, ′) for �′ =
� ↾ [p]−� . Moreover, y ∪ {(m,)} is consistent as immediate conflicts are negative.
Likewise � ⊢ ((m, �), (m,)) by definition of S (exp(�)). Finally if m is negative, then
write (n, �) = pred(m, �) and (n, �′) = �(n, �). Set �′ ∶ [m]� → ℕ as �′(o) = �(o) for
o <� m, and �′(m) = i fresh; then it is straightforward that � ⊢ ((m, �), (m, �′)).

Now, in order to obtain a strategy, we must specify its display map. In particular, we
must set a copy index for all moves. For negative moves, it should clearly match that
given by the exponential slice. For positive moves, we choose arbitrarily

♯ ∶ Σm+∈|�|ℕ[m
+]−� → ℕ

any injective function, which we shall use to fix a copy index for positive moves – note
that the strategy obtained will not depend (up to positive iso) on this choice.
In order to better formulate the definition, we shall use the lemma:

Lemma 12.1.9. Consider a ∈ A non-minimal, and write pred(a) = b its predecessor.
Then for all b ∈ A such that lbl(b) = b, and n ∈ ℕ, there is a unique a ∈ A such that

lbl(a) = a, pred(a) = b and ind(a) = n.

Proof. Direct consequence of wide and jointly injective of mixed boards.
Notice also that each non-minimal m ∈ exp(�) has a natural notion of justifier: for

m = (m, �), we set j(m) = (j(m), � ↾ [j(m)]−�) – we make use of this below:

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 317

Lemma 12.1.10. The function defined by induction on ≤� via the clauses

)exp(�)(m−, �) = a− such that

⎧

⎪

⎨

⎪

⎩

pred(a−) =)exp(�)(j(m−, �))
lbl(a−) = lbl()�(m−))
ind(a−) = �(m−)

)exp(�)(m+, �) = a+ such that

⎧

⎪

⎨

⎪

⎩

pred(a+) =)exp(�)(j(m+, �))
lbl(a+) = lbl()�(m+))
ind(a+) = ♯(m+, �)

is a map of event structures with symmetry)exp(�) ∶ exp(�)→ A.

Proof. It is clear by construction that the image of a configuration is down-closed, and
it is easily verified that)exp(�) is locally injective. Now considering x ∈ C (exp(�)),
we must show that)exp(�)(x) is conflict-free. Seeking a contradiction, assume there
are m = (m−, �) and n = (n−, �) s.t.)exp(�)(m) exp(�))exp(�)(n). By definition of
)exp(�), lbl()�(m−)) = lbl()exp(�)(m)) and lbl()�(n−)) = lbl()exp(�)(n)). By local conflict,
)exp(�)(m) and)exp(�)(n) must have the same predecessor, so j(m−, �) and j(n−, �) have
the same display. But they are compatible, thus by local injectivity they must be equal
– in turn this entails that pred(m−) = pred(n−), thus pred()�(m−)) = pred()�(n−))by courtesy. Thus by invariant conflict, we have)�(m−) A)�(n−) which entails
m− �n−. Summing up, lbl(m) � lbl(n), ind(m) = ind(n) since ind()exp(�)(m)) =
ind()exp(�)(n) by local conflict, and pred(m) = pred(n), thus m exp(�)n.Finally if � ∈ S (exp(�)), it is by definition an order-isomorphism preserving labels.
From that it is obvious that it must preserve justifiers. It follows from the definition that
)exp(�) � is an order-iso preserving labels, hence a symmetry by transparent.

There is still a lot of work to do in order to obtain a causal strategy; first we must
construct a strategy in the sense of Definition 6.1.6. But in order to prove properties
based on configurations (starting with receptive), we must understand better how con-
figurations of exp(�) relate to configurations of �. We shall establish such a connection
not in general, but in the particular case of so-called linear configurations:
Definition 12.1.11. Consider A a mixed board, � ∶ A a strategy.
Then, x ∈ C (�) is linear if for all n−1 , n

−
2 ∈ x, if pred(n

−
1) = pred(n−2) then n

−
1 = n

−
2 .

Linear configurations are analogous to P-views: Opponent may point on any given
Player move at most once. Their interest comes from the following observation:
Lemma 12.1.12. If � ∶ A is parallel innocent and m ∈ �, [m]� ∈ C (�) is linear.

If � ∶ A meager parallel innocent and m ∈ exp(�), then [m]exp(�) is linear.

Proof. The first is a direct consequence of pre-innocence (and Lemma 6.1.16); the sec-
ond is straightforward from the definition, boiling down to the pre-innocence of �.

Next, we observe that if � ∶ A is a meager parallel innocent strategy, any linear
configuration x ∈ C (�) may be canonically regarded as a (linear) configuration of
exp(�) by adjoining the constant 0 copy index to all Opponent moves:

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 318

Lemma 12.1.13. Consider A a mixed board, and � ∶ A meager parallel innocent.
For each linear x ∈ C (�), with 0m ∶ [m]−� → ℕ the constant 0 function, setting

exp(x) = {(m, 0m) ∣ m ∈ x} ,

we get exp(x) ∈ C (exp(�)) a linear configuration; and �x ∶ m → (m, 0m) is an order-
isomorphism �x ∶ x ≅ exp(x) compatible with display maps, i.e.)exp(�)◦�x ∼+)� .
Proof. Straightforward, since meager parallel innocent strategies play on A+.
It is also straightforward that �x preserves and reflects symmetry. Reciprocally, all

linear configurations of exp(�) are canonically symmetric to a configuration of �:
Lemma 12.1.14. ConsiderA a mixed board, meager � ∶ A, and x ∈ C (exp(�)) linear.

There are unique mf (x) ∈ C (�) and �x ∶ x ≅exp(�) exp(mf (x)), given by

mf (x) = {m ∣ (m, �) ∈ x} , �x = {((m, �), (m, 0m)) ∣ (m, �) ∈ x} .

Proof. Existence. We prove that this data satisfies the required conditions by induction
on x. For x empty this is clear. If x ⊢ (m−, �), then by induction hypothesis, mf (x) ∈
C (�). It is immediate thatmf (x)∪{m−} is down-closed. If it was conflicting, then there
would be n− ∈ mf (x) such that m− � n−. But then, by Lemma 6.1.17, we have
)�(m−) A)�(n−), which by local conflict entails pred()�(m−)) = pred()�(n−)),hence pred(m−) = pred(n−) by Lemma 6.1.16. Writing p+ ∈ � for this predecessor,

(p+, �′)_exp(�) (m−, �) , (p+, �′)_exp(�) (n−, �)

with all four events in x ∪ {(m−, �)} linear. If �′ = �′ we get (m−, �) = (n−, �) by
linearity hence m− = n−, contradiction. Otherwise (p+, �′), (p+, �′) ∈ x differ, but
this directly entails a failure of linearity as well – contradiction. Now if x ⊢ (m+, �),
as above mf (x) ∪ {m+} is down-closed. It must also be conflict-free, since by causal
determinism, minimal conflicts in � are negative. It is direct to check that �x ∶ x ≅
mf (x) sending (m, �) to m is an order-isomorphism and that �x = �mf (x)◦�x is an order-iso preserving labels, hence a symmetry in exp(�) as required.

Uniqueness. Assume we have y ∈ C (�) and �′x ∶ x ≅exp(�) exp(y). Then,
�′x◦�

−1
x ∶ exp(mf (x)) ≅exp(�) exp(y)

which entails exp(mf (x)) = exp(y) (so that mf (x) = y) and �′x◦�−1x is an identity by
definition of symmetries in exp(�); this concludes the proof.

Now, we may finally prove:
Proposition 12.1.15. Consider A a mixed board, and � ∶ A meager parallel innocent.
Then, exp(�) with the components above is a parallel innocent strategy.

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 319

Proof. Receptive. Consider x ∈ C (exp(�)) and)exp(�) x ⊢A a−. Call c+ ∈)exp(�) xthe predecessor of a− in x – there is a unique m = (m, �) ∈ x such that)exp(�)m = c+.
By Lemma 12.1.12, [m]exp(�) is linear, and thus by Lemma 12.1.14 there is

�x ∶ [(m, �)]exp(�) ≅exp(�) [(m, 0m)]exp(�) ,

mapping via)exp(�) to a symmetry in A which must extend by some (a−, b−). By wide,
we may assume that ind(b−) = 0 so that the extension is in A+. By Lemma 12.1.13
and receptivity of �, there is a unique [m]� ⊢� n− such that)�(n−) = b−. Extending
� to �′ ∶ [n−]−� → ℕ with �′(n−) = ind(a−), by jointly injective we get the required
extension – it is compatible with x by definition of minimal conflict.
∼-receptive is similar, and all further conditions are straightforward.
This at last concludes the construction of exp(�) as a parallel innocent strategy.

Equivalence of meager and expanded forms. Finally, so as to show that meager
parallel innocent strategies provide an equivalent representation of parallel innocent
strategies, we must prove that the two constructionsmf (−) and exp(−) preserve positive
isomorphisms, and are inverses up to positive isomorphism.
Proposition 12.1.16. The constructions mf (−) and exp(−) preserve positive isos.

Proof. It is obvious that mf (−) preserves positive isomorphisms. Consider ' ∶ � ≈ �
a positive iso between meager parallel innocent strategies on A; we must construct

exp(') ∶ exp(�) ≈ exp(�)

a positive isomorphism between the expansions. We simply set:
exp(') ∶ exp(�) ≈ exp(�)

(m, �) → ('(m), �′)

where for '(n)− ≤� '(m), �′('(n)) = �(n). It is direct that this is an order-iso; it
preserves and reflects immediate conflict by causal determinism and invariant conflict.
For positivity, for all (m, �) ∈ exp(�), exp(') on [(m, �)]exp(�) factors as

[(m, �)]exp(�)

)exp(�)

((

�−1◦�
≅ [m]�

)�
��

'
≅ ['(m)]�

)�
��

�−1◦�
≅ [('(m), �′)]exp(�)

)exp(�)

uuA

omitting subscripts for readability – where every triangle commutes up to symmetry
via Lemmas 12.1.13 and 12.1.14, and positivity follows by +-transparent.
It remains to show that mf (−) and exp(−) are inverses up to positive iso. We start

with the easy direction, that a meager strategy can be recovered from its expansion:

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 320

Proposition 12.1.17. Consider � ∶ A meager parallel innocent. Then, the function

Φ ∶ � → mf (exp(�))
m → (m, 0m) ,

yields a positive isomorphism Φ ∶ � ≈ mf (exp(�)).

Proof. We omit the direct verification that this is an isomorphism of ess. Positivity
follows from Lemma 12.1.13 on prime configurations, extended by taking unions.
Finally we must show that analogously, a full parallel innocent strategy can always

be recovered from its meager form. This means that given a parallel innocent strategy
� ∶ A, we must provide a bijection between events of � and of exp(mf (�)), hence
extract from any m ∈ � a label in mf (�) and an exponential slice.

We start by the following generalization of Lemma 12.1.14:
Lemma 12.1.18. Consider A a mixed board, and � ∶ A a parallel innocent strategy.
For x ∈ C (�) linear, there are unique mf (x) ∈ C (mf (�)) and �x ∶ x ≅� mf (x).

Proof. Existence. By induction on x. If x is empty there is nothing to do. If x ⊢� a−,then �x extends with some (a−, b−). By wide, we may assume that ind(b−) = 0, so
that it fits in A+ (such b− cannot be in mf (x) by linearity of x). If x ⊢� a+, then the
extension of �x automatically does the trick.

Uniqueness. As in Lemma 12.1.14.
In particular, given parallel innocent � ∶ A andm ∈ � we know fromLemma 12.1.12

that [m]� is linear, thus Lemma 12.1.18 gives us a unique mf ([m]�) = [lbl(m)]� ∈
C (mf (�)) with �m ∶ [m]� ≅� [lbl(m)]� . As the notation suggests, lbl(m) is considered
as the label of m, i.e. the move of mf (�) that m is considered a duplicate of.
This duplicate is also characterized by an exponential slice, defined as:

� ∶ [lbl(m)]−� → ℕ
�m(n) → ind()�(n)) ,

and writing � = sl(m) we get (lbl(m), sl(m)) ∈ exp(mf (�)). Besides:
Proposition 12.1.19. Consider � ∶ A parallel innocent. Then, the function

Ψ ∶ � → exp(mf (�))
m → (lbl(m), sl(m))

yields a positive isomorphism Ψ ∶ � ≈ exp(mf (�)).

Proof. Injective. We prove that if lbl(m) = lbl(m′) and sl(m) = sl(m′), then m = m′.
Indeed if lbl(m) = lbl(m′), by definition this means there are two symmetries

�m ∶ [m]� ≅� [lbl(m)]� , �m′ ∶ [m′]� ≅� [lbl(m)]�

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 321

which wemay compose to get � = �−1m′ ◦�m ∶ [m]� ≅� [m′]� . Now, since sl(m) = sl(m′),
it follows that)� � preserves indices of negative events, so that it is positive by +-
transparent. Hence, � is an identity and [m]� = [m′]� since � is thin.
Surjective. Consider (n, �) ∈ exp(mf (�)), then we construct by induction on m some

m ∈ � s.t. lbl(m) = n and sl(m) = �, along with a symmetry � ∶ [m]� ≅� [n]� .If (n, �) _exp(mf (�)) (n′, �′) positive, by necessity �′ = �. Then � extends to �′ ∶
[m′]� ≅� [n′]� so that lbl(m′) = n′, and it is direct that sl(m′) = � as required. If (n′, �′)is negative, then by ∼-receptive and wide, there is a unique m _� m′ such � extends
with (m,m′), and ind()�(m)) = �′(m′) – so that lbl(m′) = n′ and sl(m′) = �′.
Remaining verifications are direct, positivity following from +-transparent.
Altogether, we have proved:

Theorem 12.1.20. Consider A a mixed board. The operations mf (−) and exp(−) in-
form a one-to-one correspondence between parallel innocent strategies on A (up to
positive iso), and meager parallel innocent strategies on A (up to positive iso).

Proof. The statement packages Propositions 12.1.16, 12.1.17 and 12.1.19.
Thus, just as for traditional alternating innocent strategies, parallel innocent strategies

have a compact representation via the meager form. This is important conceptually: in
traditional alternating innocent strategies, the meager form may be regarded as syntax
as meager sequential innocent strategies are alternative representations of a syntactic
notion of normal form for PCF, the PCF Böhm trees – we reviewed this correspondence
in Section 3.2.4. Here, by analogy, meager parallel innocent strategies may also be
regarded as syntax, but DAG-shaped rather than tree-shaped.
We included Theorem 12.1.20 because of its conceptual importance, however we

shall not rely on it in our definability theorem: we shall only use the notion of meager
form insofar as it gives an adequate notion of finiteness for parallel innocent strategies,
that extends the finiteness of traditional innocent strategies reviewed in Section 3.2.4.

12.1.3 The Meager Form of Sequential Globularity
Here we take a small detour, and prove Theorem 11.3.11 which we postponed until we
had access to the meager form of parallel innocent strategies. We recall the statement:
Theorem 11.3.11. The induced functor ⇵-Unf (−) ∶ _-SeqGlob∕≈ → ⇵-InnWB is
full and faithful: for allA,B mixed boards, the alternating unfolding induces a bijection

⇵-Unf (−) ∶ _-SeqGlob(A,B)∕≈ ≃ ⇵-InnWB(A,B) .

Proof. Faithful. Consider �, � ∶ A sequential globular on mixed board A, and as-
sume ⇵-Unf!(�!) = ⇵-Unf!(� !). In particular, they have the same P-views – recall from
Proposition 11.3.6 that P-views of ⇵-Unf!(�!) are exactly those of the form

↶(−)()�([m]�))

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 322

for all events m ∈ �. But by Lemma 12.1.18, there is a unique
�m ∶ [m]� ≅� [lbl(m)]�

with lbl(m) ∈ mf (�). From that, it is clear that m and lbl(m) generate the same P-view,
i.e. ↶(−)()�([m]�)) =

↶(−)()�([lbl(m)]�). Therefore, the P-views of ⇵-Unf!(�!) can be
obtained simply from the events of the meager form of �. Moreover, for any P-view s
on A, there is at most one m ∈ mf (�) generating s – if they were two, they would be
symmetric by Lemma 11.2.4, and thus equal by Proposition 12.1.5. Thus, any P-view
of ⇵-Unf!(�!) = ⇵-Unf!(� !) is witnessed by exactly one event of mf (�), and exactly
one event of mf (�). This entails a bijection ' ∶ |mf (�)| ≃ |mf (�)|, and it is a direct
verification that this entails a positive isomorphism ' ∶ mf (�) ≈ mf (�). By Theorem
12.1.20, this entails � ≈ � as well – from this follows that ⇵-Unf (−) is faithful.

Full. Now, consider � ∶ A an innocent well-bracketed alternating strategy on A. For
every non-empty even-length P-view s of �, choose a copy index ♯s ∈ ℕ so that this is
injective. We then specify a meager causal innocent strategy with events

|�| = {s ∈ � ∣ s non-empty P-view} ,
with causality the prefix ordering, no conflict, trivial symmetries. We set the display
map by induction: for odd-length sa+b−, we set it to the unique event b′ with lbl(b′) =
b, pred(b′) =)�(sa+), and ind(b′) = 0 – this event exists by wide. For even-length
s = s1a−s2b+ where b+ points to a−, we set the display to the unique event b′ with
lbl(b′) = b, pred(b′) =)�(s1a−) and ind(b′) = ♯s. Altogether, it is easily verified that
this defines a meager sequential innocent strategy on A and that ↶(−)()�([s]�)) = s.
Hence the P-views of ⇵-Unf!(�!) are exactly those of � by Proposition 11.3.6, thus
⇵-Unf!(�!) = � by Proposition 3.2.13 – from this follows that ⇵-Unf (−) is full.
So that indeed, globular causal strategies are conservative extensions of traditional

well-bracketed innocent strategies. Moreover, we established that by showing that the
meager form of globular strategies specializes to the meager form of Section 3.2.4.

12.1.4 Finite Tests Suffice
Back on track, we now introduce a notion of finiteness for parallel innocent strategies:
Definition 12.1.21. ConsiderA a mixed board, and � ∶ A a parallel innocent strategy.

Then � is finite iff |mf (�)|+ = {s ∈ |mf�| ∣ pol(s) = +} is finite.
In that case, the size of � is the cardinal of |mf (�)|+.

As in the case of traditional innocent strategies, our forthcoming definability result
will concern only finite parallel innocent strategies. So that finite definability does entail
intensional full abstraction, we must show that if two strategies can be distinguished by
a parallel innocent strategy, then they can be distinguished by a finite one.
Any parallel innocent strategy can be approximated by finite ones:

Proposition 12.1.22. ConsiderA a mixed board, and � ∶ A parallel innocent. Writing

D = {� ∶ A ∣ � finite& � ⊲ �}

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 323

yields a directed set of finite parallel innocent strategies, such that � = ∨D.

Proof. By definition, ∨D ⊲ �. For the other direction, pick m ∈ �. Considering
|�| = {n ∈ |�| ∣ ∀p+ ≤� n, mf (p+) ≤� mf (m)} ,

it is easily verified that inheriting from � all additional components makes � ∶ A a
parallel innocent strategy s.t. � ⊲ �. Moreover m ∈ � , and � is finite since all positive
events of mf (�) are below mf (m). Altogether � ∈ D and m ∈ � , so m ∈ ∨D.

The development above concerns strategies on mixed boards, but recall that mor-
phisms in _-Strat are strategies between mixed boards: a � ∈ _-Strat(A,B) is a
well-bracketed causal strategy on !A ⊢ B. Nevertheless the above directly extends:
� ∈_-Inn(A,B) is finite if Λ(�) ∶ A⇒ B is. From the above, we get:
Corollary 12.1.23. Consider A a mixed board, and �1,�2 ∶ A parallel innocent.

If there is � ∶ !A ⊢ U parallel innocent such that

� ⊙! �1 ⇓ , � ⊙! �2 ⇑ ,

then there is �′ ⊲ � finite and parallel innocent, such that

�′ ⊙! �1 ⇓ , �′ ⊙! �2 ⇑ .

Finally if � is globular (resp. well-bracketed), then so is �′.

Proof. By Proposition 12.1.22, Λ(�) = ∨D for D some directed set of finite parallel
innocent strategies – automatically innocent, as this is inherited from �. The result
then directly follows by continuity of composition of causal strategies; preservation of
well-bracketing and globularity are immediate.

12.2 Factorization
Our next goal is to prove a definability result for finite globular strategies, but it shall
be more complex than in the traditional case. Indeed, unlike in Section 3.2.4, globular
strategies have no “first Playermove” to reproduce first syntactically. Hencewe organize
our definability process differently. Its core is a factorization result (Corollary 12.2.18):
namely, that every finite globular � ∶ !(&Ai) ⊢ X may be obtained as

� ≡ fo(�)⊙! ⟨xi �k,1 … �k,pi ∣ i ∈ I, k ∈ Ki⟩ , (12.1)
with fo(�) a strategy on a first-order type and �k,j strictly smaller. This reduces finite
definability to that for finite first-order strategies, dealt with in Section 12.3.1.
We first extract the componentsmentioned in (12.1): the first-order substrategy fo(�),

and the argument substrategies�k,j . We use as illustration themeager strategywith typ-
ical linear configurations in Figure 12.5. The first-order sub-strategy, in red, has events
those depending on no Opponent question besides the initial move: it is independent of
Opponent’s exploration of the arguments, and is purely first-order. The Player questions

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 324

!((B → U) & ((U → B) → B)) ⊢ B

q−

%oou
9ww�

q+0
7ww� _���

q+1
9ww� _���

q−0
_���

✓−0
_���

q−0
9ww� � ��'

tt−0
(ppwtt+0 q+2

_���7ww�

q+0
_���

q+3
_���

q−0
_���

✓−0

� ((/

✓−0
� ��'

b−0
9ww�

ff+0 b+0 tt+0

!((B → U) & ((U → B) → B)) ⊢ B

q−

%oou
8ww�

q+0
7ww� _���

q+1
9ww� _���

q−0
_���

✓−0

� ((/

q−0
9ww� � ��'

ff−0
� ��&

tt+0 q+0
_���

q+3
_���

ff+0

✓−0
� ��'

b−0
9ww�

b+0

Figure 12.5: A finite meager globular strategy

f ∶ B → U, g ∶ (U → B)→ B ⊢

let
⎛

⎜

⎜

⎝

x= f tt

y= g (�zU. let
(

u = z
v = g ⊥

)

in v)

⎞

⎟

⎟

⎠

in (if y then (f ff ; tt) else ff) ∶ B

Figure 12.6: Factorization and definability for Figure 12.5

in this first-order part play a special role; we call them primary questions. Intuitively,
they correspond to occurrences of variables not appearing in an argument to a vari-
able call. In Figure 12.5, the primary questions are q+0 , q+1 and q+2 . Depending on
their type, the primary questions admit arguments that Opponent can access by playing
questions pointing to them. Parts of the strategy accessed in this way are the argument
sub-strategies – in Figure 12.5 there are three, respectively prompted by (i.e. causally
depending on) q−0,i, q−2,k and q−1,r and colored accordingly.
The strategy of Figure 12.5 is exactly definable; as illustration we show the term in

Figure 12.6, with subterms colored so as to match the four components of the strategy2.
The proof of factorization is organized as follows: in Section 12.2.1 we extract the

first-order part, in Section 12.2.2, we extract the argument substrategies, and in Section
12.2.3, we recompose them to obtain the original strategy back.

12.2.1 The Flow Substrategy
Shallow substrategy. Consider A a type, and � ∶ JAK a finite globular strategy.

Necessarily A has form A1 → ⋯ → An → X for Ai = Ai,1 → ⋯ → Ai,pi → Xi.
2In the end, our definability process will not quite give the term of Figure 12.6 but a sequential version as

we only know how to define first-order strategies in general up to positional equivalence – see Section 12.3.1.

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 325

Recall X,Xi range over ground types, i.e. U, B and ℕ. Up to currying, we write
� ∶ !(&1≤i≤nAi) ⊢ X ,

omitting semantic brackets. We often shorten the left hand side part to !(&Ai), andreuse A for the board !(&Ai) ⊢ X. Now, we start with the shallow substrategy. First:
Definition 12.2.1. Consider an event m ∈ �.
Then m is shallow iff [m]� contains exactly one Opponent question.

In Figure 12.5, the shallow events are exactly those in red. Note that if m is shallow,
then the Opponent question in [m]� is necessarily the initial Opponent question. As onecan dive within the Ais only via an Opponent question, this means that m and its causal
history must remain in the first-order part of the arena.

The shallow substrategy is obtained by restricting � to shallow events:
Proposition 12.2.2. Set sh(�)with the shallow events of�, other components inherited.
Then, sh(�) ∶ !(&Xi) ⊢ X is finite globular.

Proof. Write sh(A) for the board !(&Xi) ⊢ X. First, for each m ∈ sh(�),)�(m) ∈
sh(A): indeed, the least events inA but not in sh(A) are Opponent questions. For exten-
sion, as symmetries are order-isos preserving polarities and Q/A labeling, they preserve
sh(�). The conditions for a finite globular strategy are direct from �.

This captures the strategy induced by the red part of Figure 12.5.

The flow substrategy Eventually we wish to reconstruct � from its first-order and ar-
gument substrategies using the composition mechanisms available on causal strategies.
But we cannot hope to do that merely with sh(�). Indeed, two Player questions in sh(�)
playing in the same component Xi must receive the same argument substrategy if � is
to be reassembled compositionally – but there is no reason why two Player questions in
the same component should always have the same argument substrategy!
Thus rather than working with sh(�), we need to relabel it to send distinct (non-

symmetric) Player questions to distinct components. First we define:
Definition 12.2.3. A primary question of � is any q,+ ∈ mf (sh(�)). We write Q for
the set of primary questions, and Qi for the primary questions displaying to Xi.

By construction, Q = ⊎1≤i≤nQi – as observed above, Q is finite. A m,+ ∈ sh(�)
might not be a primary question, but it must necessarily be symmetric to lbl(m) ∈ Q a
primary question (as its label, i.e. its representative in the meager form).
Definition 12.2.4. The flow substrategy of �, written

f low(�) ∶
⨂

1≤i≤n

⨂

q∈Qi

!Xi ⊢ X

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 326

!Uq+0 ⊗ !Uq+2 ⊗ !Bq+1 ⊢ B

q−

&oov
5vv�

q+0
_���

q+1
_���

✓−0
�)

tt−0
4uu�q+2

_���
✓−0

� &&-tt+0

!Uq+0 ⊗ !Uq+2 ⊗ !Bq+1 ⊢ B

q−

&oov
5vv�

q+0
_���

q+1
_���

✓−0

� ((/

ff−0
� ��'
ff+0

Figure 12.7: Configurations of the flow substrategy for Figure 12.5

is obtained as sh(�) with the display map)sh(�) replaced with:

)f low(�)(m,−) = (2, a) if)sh(�)(m,−) = (2, a)
)f low(�)(m,+) = (2, a) if)sh(�)(m,+) = (2, a)
)f low(�)(m,+) = (1, (i, (lbl(m), (j, a)))) if)sh(�)(m,+) = (1, (j, (i, a)))
)f low(�)(m,−) = (1, (i, (j(lbl(m)), (j, a)))) if)sh(�)(m,−) = (1, (j, (i, a))) ,

i.e. sending each q ∈ Q and its answers to the copy of Xi specified by indices i, q.

It is a finite globular strategy (though not a morphism in _-Strat, but the same
definition applies nonetheless). Figure 12.7 shows typical configurations of the flow
substrategy for Figure 12.5, tagging each component by a primary question.

12.2.2 The Argument Substrategies
Next, we focus on the higher-order structure, aiming to extract the arguments to (the
variable calls corresponding to) the primary questions. A slight complication comes
from the fact that because answers in the shallow substrategy can be replicated, � actu-
ally comprises many copies of each argument substrategy – we solve that by temporarily
only considering the part of � where shallow answers have copy index 0:
Definition 12.2.5. An eventm ∈ � is canonical iff for all shallow n,− ≤� m, ind()�(n)) =
0. We write ‖�‖ the set of canonical events of �.

Aprimary question is always canonical; so are all events inmf (�). Now, fix a primary
question q ∈ Qi. It displays to an initial event in Ai, which is:

!Ai,1 ⊸… ⊸ !Ai,pi ⊸ Xi .

Argument substrategies are accessed by Opponent questions pointing to (moves sym-
metric to) primary questions. Up to symmetry, there are pi distinct Opponent questions

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 327

pointing to q, matching the pi arguments of Ai. From now on, if q ∈ Qi is a primary
question and q _� m,− an Opponent question, we shall say that m is in component j
if it displays to an initial move of !Ai,j . For q ∈ Qi and 1 ≤ j ≤ pi, we shall extract the
argument sub-strategy �q,j initiated by Opponent questions pointing to q in component
j. As the strategy provides the information for an argument of Ai it must live in Ai,j ;but it can still access the context, so we aim for a finite globular strategy:

�q,j ∶ !(&Ai) ⊢ !Ai,j .

Extracting events. To do this, we assign to all events of � tags, as follows:
Definition 12.2.6. Consider m ∈ ‖�‖. We write:

m A sh(�) ⇔ m is shallow,
m A �q,j ⇔ there is q _� n,− in component j, such that n ≤� m,

where in the second clause, q ∈ Qi is a primary question and 1 ≤ j ≤ pi.

Any m ∈ ‖�‖ receives a tag as either in sh(�); or in one of the argument sub-
strategies. Crucially, each event receives exactly one tag – this is subtle and involves all
our structural constraints on strategies. For instance, without globular, in Figure 10.19
the move q+2 would be tagged for two distinct argument sub-strategies.
Lemma 12.2.7. Every m ∈ ‖�‖ receives exactly one tag following Definition 12.2.6.

Proof. First, each m ∈ ‖�‖ receives at least one tag. Any [m]� contains at least one
Opponent question: the initial move. If it contains exactly one Opponent question, then
m is shallow by definition. Assume there are at least two. Take n,− ≤� m minimal
such that it is a non-initial Opponent question. Then its immediate predecessor must be
some primary question q ∈ Qi; and so there is 1 ≤ j ≤ pi s.t. m A �q,j .We prove that m receives at most one tag. Clearly if m A �q,j for some q ∈ Qiand 1 ≤ j ≤ pi, there are at least two Opponent questions in [m]� so we cannot have
m A sh(�). But m could be in two argument substrategies: assume m A �q,j and
m A �q′,j′ for q ∈ Qi, q′ ∈ Qi′ , 1 ≤ j ≤ pi and 1 ≤ j′ ≤ pi′ . We first show that q = q′;
seeking a contradiction assume they are distinct. But q and q′ cannot be comparable: if
q ≤� q′, [q′]� has at least two Opponent questions, contradicting q′ ∈ sh(�).
Take �_ m, �′ _ m ∈ gcc(�), respectively passing through q and q′. We draw:

m1
� ,,2 � ,,2q � ,,2 � ,,2mk

 !!*� ,,2m0

4 55?

� ��'

mk+1
� ,,2 � ,,2m

n1
� ,,2 � ,,2q′ � ,,2 � ,,2np

3 55>

and since q, q′ are distinct, the diagram may be chosen with X = {m1,… , mk} and
Y = {n1,… , np} disjoint. By pre-innocence, m1 and n1 are positive. Moreover, since
the board is forestial and alternating, it is immediate from Lemma 6.1.16 that mk+1 ispositive, and mk, np positive. Altogether we have a globule, so X and Y are complete
by globularity – and moreover the diagram has the shape as in (10.2), and in particular q

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 328

!((B → U) & ((U → B) → B)) ⊢ B

q−

%oou
6vv�

q+0
6vv� _���

q+1
8ww� _���

q−0
_���

✓−0
_���

q−0
8ww� � ��'

tt−0
'ppwtt+0 q+2

_���6vv�

q+0
_���

q+3
_���

q−0
_���

✓−0

�))/

✓−0
� ��'

b−0
8ww�

ff+0 b+0 tt+0

Figure 12.8: Ev. |�q+1 ,1
| of Figure 12.5

!((B→U)&((U→B)→B))⊢ !(U→B)

q−0
0tt|

?zz�
q+3

_���

q+0
_���

b−0
� ""*

✓−0
~��$
b+0

Figure 12.9: Its reassigment in �q+1 ,1

is answered in �. Additionally as observed in (10.2), writing q = mi, mi+1 must answer
q. But since m A �q,j , q _� nQu,− ≤� m where n is a negative question in component
j. Then necessarily, n = mi+1, or we get a contradiction with parallel innocence. Thus
mi+1 is both a question and an answer, contradiction, so q = q′.

Finally, if j and j′ were distinct, there would be necessarily distinct q _� n,−1in component j and nq,−2 in component j′ such that n1, n2 ≤� m, but this is in direct
contradiction with pre-innocence. Thus j = j′, concluding the proof.
This shows anym ∈ ‖�‖ can always be attributed to exactly one of the sub-strategies

we wish to extract. Accordingly, the argument sub-strategies will have events
|�q,j| = {m ∈ ‖�‖ ∣ m A �q,j} ,

completed to ess by inheriting the components from �, as will be made explicit later.

Assigning displaymap. Themain challenge in extracting the argument sub-strategies
is to define what shall be their new display maps. Indeed,)� still displays events in �q,jto moves in !(&Ai) ⊢ X, whereas)�q,j must display then to !(&Ai) ⊢ !Ai,j .
For this, we must give special care to those events that correspond to the new !Ai,jcomponent on the right hand side, reindexing them as illustrated in Figures 12.8 and

12.9. For this we split |�q,j| in two subsets: on the one hand, some events depend
statically, i.e. with respect to ≤A (through)�) on the primary question q – in Figure
12.8, those are q−0 ,q+0 ,✓−0 and b+0 . On the other hand, the remaining events must follow
from new calls to variables in the context – in Figure 12.8, those are q+3 and b−0 . Thesetwo subsets are treated differently when defining the new display map: the former are
left unchanged, while the latter are reindexed as in Figure 12.9.

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 329

It will be helpful to have notations for the canonical embeddings of the set of moves
|Ai| and |Ai,j| into |A|. More precisely, for each primary question q ∈ Qi, we write

�q(−) ∶ |Ai| → |A|

the injection adding the sequence of tags addressing Ai within A, originating from the
tagged disjoint unions in the board constructions – in particular, �q maps the initial move
of Ai to)�(q). Likewise, �q,j ∶ |Ai,j| → |A| addresses the j-th argument of q. Then:
Definition 12.2.8. We define a display map for �q,j by setting, for m ∈ �q,j:

)�q,j (m) = �r(a) if)�(m) = �q,j(a),
)�q,j (m) =)�(m) otherwise,

where �l(a) = (1, a) and �r(a) = (2, a).

Altogether, this lets us extract �q,j as intended:
Proposition 12.2.9. Consider q ∈ Qi and 1 ≤ j ≤ pi. The argument substrategy for
q, j is (|�q,j|,≤q,j , #q,j ,S (�q,j),)�q,j), with components ≤q,j and #q,j the restrictions of
�, S (�q,j) = {� ∩ |�q,j|2 ∣ � ∈ S (�)}, and)�q,j in Definition 12.2.8.

Then, �q,j ∶ !(&Ai) ⊢ !Ai,j is a globular finite strategy.

Proof. A lengthy but routine verification.

Removing the bang. But we must obtain a morphism in_-Glob, and thus eliminate
the bang on the right hand side. This is done by composition with dereliction, i.e.

�∙q,j = derAi,j ⊙ �q,j ∶ !(&Ai) ⊢ Ai,j ,

it only remains to show that this satisfies the conditions which will later on allow us to
proceed from �∙q,i with the inductive definability argument:
Proposition 12.2.10. Consider q ∈ Qi a primary question, and 1 ≤ j ≤ pi.

Then, �∙q,j is finite globular with size strictly lesser than �.

Proof. Using Proposition 7.3.1, it is easy that �∙q,j is positively isomorphic to the strat-
egy obtained from�q,j by restricting the initial Opponent question to copy index 0. Thisalso informs an injection of mf (�∙q,j) into mf (�) not reaching the primary question q,
from which follows the announced size constraint.

Note that �q,j is easily recovered from �∙q,j , as we have

�q,j ≈ (derAi,j ⊙ �q,j)
! = (�∙q,j)

! (12.2)

via the “bang lemma” (Lemma 10.3.7) and by definition of �!q,j .

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 330

12.2.3 Recomposition
Having extracted from � its flow substrategy and its argument substrategies, our next
aim is to prove that � can be reconstructed from those.

Reconstructing �. From the original strategy � ∶ !(&Ai) ⊢ X, we have now ex-
tracted the flow substrategy and a family of argument substrategies:

f low(�) ∶ ⊗1≤i≤n ⊗q∈Qi !Xi ⊢ X
�∙q,j ∶ !(&Ai) ⊢ Ai,j for each q ∈ Qi and 1 ≤ j ≤ pi.

For each q ∈ Qi, we first form a strategy �q ∶ !(&Ai) ⊢ Xi gathering all the argu-
ments for the primary question q. This is constructed from the argument substrategies,
using the internal language corresponding to the cartesian closed structure of_-Inn:

�q = x1 ∶ A1,… , xn ∶ An ⊢ xi �∙q,1 … �∙q,pi ∶ Xi .

Then, we plug each �q onto the corresponding primary question in the flow substrat-
egy. This is done relying on the relative Seely category structure of NTCG-Inn:

recomp(�) = f low(�)⊙ (⊗1≤i≤n ⊗q∈Qi �
!
q)⊙ �&Ai ∶ !(&Ai) ⊢ X ,

where for B a strict board and n ∈ ℕ, we write �B ∶ !B ⊢ (!B)⊗n for the obvious
strategy (leaving n implicit). In the sequel we may only write �.

Positions of recomp(�). Recall that the positional equivalence ≡, studied in Section
10.4, consists in listing the zero-payoff symmetry classes of configurations reached by
(+-covered configurations of) a visible strategy. We expect that recomp(�) ≈ �, but
we shall only prove recomp(�) ≡ � – this is simpler as positions compose relationally.
We shall make use of the syntax for positions on −-boards introduced in Figure 10.17.

We now analyse the positions of the recomposition (12.2.3). We start with:
Lemma 12.2.11. Consider B a strict −-board.

Then, the positions ⦗�B⦘ of �B ∶ !B ⊢ (!B)⊗n are exactly those
(

∑

1≤i≤n
xi ⊢ ⊗1≤i≤nxi

)

∈ ⦗!B ⊢ (!B)⊗n⦘

where xi ∈ ⦗!B⦘ for all 1 ≤ i ≤ n.

Proof. By a direct variation of Lemma 6.4.4.
Next we analyse the positions of �q for q ∈ Qi:

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 331

Lemma 12.2.12. For any q ∈ Qi, the positions ⦗�q⦘ are exactly those of the form
(

[(i, yq,1 ⊸… ⊸ yq,pi ⊸ vq)] +
∑

1≤j≤pi

xq,j

)

⊢ vq ∈ ⦗!(&Ai) ⊢ Xi⦘

where for each 1 ≤ j ≤ pi, (xq,j ⊢ yq,j) ∈ ⦗�q,j⦘, and for vq ∈ ⦗Xi⦘.

Proof. From the laws of relative Seely categories, �q is positively isomorphic to

!(&Ai)
� // ⊗pi+1 !(&Ai)

(⊗1≤j≤pi (�
∙
q,j)

!)⊗JxiK��
(⊗1≤j≤pi !Ai,j)⊗Ai ev

// Xi

inNTCG. The lemma follows fromCorollary 10.4.15, Lemma 12.2.11, (12.2)and char-
acterisations analogous to Lemma 12.2.11 for other copycat-like strategies.
From all those, we may characterise the positions of recomp(�) as

Corollary 12.2.13. The positions of recomp(�) are exactly those of the form

∑

1≤i≤n

∑

q∈Q′i

(

[(i, yq,1 ⊸… ⊸ yq,pi ⊸ vq)] +
∑

1≤j≤pi

xq,j

)

⊢ v ∈ ⦗!(&Ai) ⊢ X⦘

where for all 1 ≤ i ≤ n, Q′i is a subset of Qi, and:
(

⊗1≤i≤n ⊗q∈Q′i
vq ⊢ v

)

∈ ⦗f low(�)⦘ ,
(

(xq,j ⊢ yq,j) ∈ ⦗�q,j⦘
)

q∈Q′i ,1≤j≤pi
.

Proof. Direct from Lemmas 12.2.11, 12.2.12 and Corollary 10.4.15.

Positions of �. Next, we must similarly characterise the positions of �.
We call stopping configurations of � those x ∈ C+(�) such that �()�(x)) = 0 (i.e.those configurations that contribute a point to the relational collapse), and such that all

Opponent answers in x have copy index 0. Write stop(�) for this set; our first observa-
tion is that the relational collapse of � is entirely spanned by stopping configurations –
the restriction to the copy index of Opponent answers has no consequence.
Lemma 12.2.14. Consider xΓ ⊢ xX ∈ ⦗�⦘.
Then, there is a stopping configuration x ∈ stop(�) such that)�x ∈ xΓ ⊢ xX.

Proof. By definition, there is y ∈ C+(�) such that)�y ∈ xΓ ⊢ xX. In particular,
�()�y) = 0. By definition of payoff on ground types, this entails that all questions in y
have exactly one answer. We construct z ∈ C (A) from)�(y) using wide, by changing
the copy index of every negative answer to 0 – by −-transparent, we obtain a symmetry

� ∶)�(x) ≅−A z ,

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 332

and applying Lemma 7.2.6 we get y ≅� x and ' ∶)�y ≅+A z. By +-transparent, '
preserves the copy indices of negative events, thus the indices of negative answers in)�yis 0. Finally, as x ≅� y we have)�y ∈ xΓ ⊢ xX, and y is a stopping configuration.
Restricting to stopping configurations is important, because events of stopping con-

figurations are canonical in the sense of Definition 12.2.5 (i.e. the shallow Opponent
answers on which they depend have copy index 0) – and argument sub-strategies were
extracted from the canonical events of �, following Definition 12.2.6. Thanks to this,
we shall be able to partition any x ∈ stop(�) into stopping configurations from the flow
substrategy, and the argument sub-strategies. This partitionning is the key argument to
link the positions of � with the positions of its sub-strategies.
Let us perform this partitioning. We define components of the partition as

sh(x) = {m ∈ x ∣ m A sh(�)}
xq,j = {m ∈ x ∣ m A �q,j} , (for q ∈ Qi and 1 ≤ j ≤ pi)

additionally we write Qx = Q ∩ x, and Qxi likewise. We have:
Lemma 12.2.15. Consider x ∈ stop(�).
Then sh(x) ∈ stop(sh(�)), xq,j ∈ stop(�q,j) and x partitions as

x = sh(x) ⊎
⎛

⎜

⎜

⎝

⨄

1≤i≤n

⨄

q∈Qxi

⨄

1≤j≤pi

xq,j
⎞

⎟

⎟

⎠

,

moreover this decomposition is compatible with display maps, in the sense that

)�(x) =
(

⨄

1≤i≤n
⨄

q∈Qxi

([

�q(zq,1 ⊸… ⊸ zq,pi ⊸ vq)
]

⊎
[

⨄

1≤j≤pi �l(yq,j)
]))

⊎ �r(v) ,

where we have, for all 1 ≤ i ≤ n, q ∈ Qxi and 1 ≤ j ≤ pi:

)f low(�)(x) = �l
(

⊗1≤i≤n ⊗q∈Qxi
vq
)

⊎ �r(v))�q,j (xq,j) = �l(yq,j) ⊎ �r(zq,j) .

Proof. From Lemma 12.2.7, lengthy but straightforward verifications.
Reciprocally, any compatible collection of stopping configurations from the various

substrategies may be assembled into a stopping configuration of �:
Lemma 12.2.16. For x ∈ stop(sh(�)) and (xq,j ∈ stop(�q,j))1≤i≤n,q∈Qxi ,1≤j≤pi ,

x ⊎
⎛

⎜

⎜

⎝

⨄

1≤i≤n

⨄

q∈Qxi

⨄

1≤j≤pi

xq,j
⎞

⎟

⎟

⎠

∈ stop(�) .

Proof. Lengthy but straightforward verifications.

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 333

From this we may finally conclude the proof of factorization:
Corollary 12.2.17. The strategies � and recomp(�) are positionally equivalent.

Proof. Altogether, Lemmas 12.2.15 and 12.2.16 ensure that stopping configurations
of � are in one-to-one correspondence with the data of stopping configurations x ∈
stop(sh(�)) and families (xq,j)1≤i≤n,q∈Qxi ,1≤j≤pi , in a way compatible with the display
maps as stated in Lemma 12.2.15. Taking symmetry classes, we derive the same char-
acterisation of complete positions of � as that of recomp(�) in Corollary 12.2.13.

Syntactic factorization. Finally, we reformulate this relying on the cartesian closed
structure only. The first-order substrategy fo(�) ∈ NTCG!(&1≤i≤n&q∈QiXi,X) isobtained in the obvious way from f low(�) using the relative Seely category structure.
Using Corollary 12.2.17, Proposition 12.2.10, and laws of a relative Seely category:
Corollary 12.2.18. Any globular strategy � ∶ !(&Ai) ⊢ X factors as

� ≡ fo(�)⊙! ⟨xi �∙q,1 … �∙q,pi ∣ 1 ≤ i ≤ n, q ∈ Qi⟩ ,

where fo(�) ∶ !(&Xi) ⊢ X and �∙q,j ∶ !(&Ai) ⊢ Ai,j are globular.
If � is finite, so are fo(�) and �∙q,j , the latter with size strictly lesser than that of �.

12.3 Finite Definability and Full Abstraction
12.3.1 First-Order Definability
Assuming we are in the process of an inductive definability procedure, we may assume
that we have terms for the argument sub-strategies �∙q,j . Thus, it remains to define

fo(�) ∶ !(&Xi) ⊢ X

the first-order substrategy.

Strict definability. This naturally asks the question: does finite definability hold for
first-order globular strategies? It is fairly easy to see that the answer is negative:
Proposition 12.3.1. The strategy with meager form pictured in Figure 12.10 is finite
globular, but not definable in PCF�.

Sketch. By rewriting means, one may establish that if it was definable in PCF�, thenit would be definable just via parallel compositions of variables. However, such terms
composed only of parallel compositions and variables are easily seen to yield series-
parallel causal shapes; thus the example in Figure 12.10 is undefinable.

For strategies on the game !(&U) ⊢ U, it seems that we may get finite definability
up to positive isomorphism by restricting globular strategies further to those that have a
series-parallel causal shape. But for more complex datatypes, requiring a series-parallel
causal shape is not enough to get back definability: an example phenomenon appears in

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 334

!(U & U & U & U & U) ⊢ U

q−
$nnu 'ppw

8ww�
q+0

_���

q+1
_���

q+2
_���

✓−0
� ��'

✓−09ww� � ��'

✓−09ww�
q+3

_���

q+4
_���

✓−0

�))/

✓−0
� %%,
✓+

Figure 12.10: An undefinable strategy

!(U& U & B & U & U) ⊢ U

q−

$nnu 'ppw
>yy�

q+0
_���

q+1
N��
 p���

q+2
_���

✓−0
� ��%

tt−0
@zz�

ff−0
���$

✓−0
>yy�

q+3
_���

q+4
_���

✓−0 ✓−0

Figure 12.11: Dynamic causal shape

Figure 12.11, where the structure of forking/merging threads is impacted by the values.
Though we do not have a proof, it seems clear that this is undefinable: in a term as in

let
⎛

⎜

⎜

⎝

x1 = M1
x2 = M2
x3 = M3

⎞

⎟

⎟

⎠

inN

then the first move in N will depend on the values obtained for x1, x2 and x3: there isno way to indicate that e.g. if x2 is true, thenN should not wait for x1.
Altogether, we have not been able to characterise the globular strategies definable

in PCF�. A natural option would be to reify the first-order globular strategies, i.e. to
consider them as syntax and add a new syntactic construct for every first-order glob-
ular strategy. This seems interesting, because first-order globular strategies are indeed
relevant from a computational point of view; however it seems hard to give then an
appealing syntactic theory. Instead, we shall weaken our objective and only perform
definability up to positional equivalence – which will suffice for our purposes3.

12.3.2 Positional First-Order Definability
Moving from positive isomorphism to positional equivalence is convenient, because
positional equivalence may not respect the evaluation order. This lets us construct a
purely sequential version of any finite globular first-order strategy.
From now on, fix a first-order finite globular strategy � ∶ !(&Xi) ⊢ X.

Necessary primary question. Once prompted, � may launch many computations in
parallel, via minimal primary questions (i.e. that only depend on the Opponent initial

3Of course, the factorization result of Corollary 12.2.18 is already up to positional equivalence, but this
is mostly for convenience: factorization should hold up to positive isomorphism.

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 335

question). The idea is that our sequential definability procedure will choose any of those
(the choice does not matter up to positional equivalence), and evaluate it first. However,
we must show that all these primary questions are actually necessary, in the sense that
any stopping configuration necessarily includes this primary question, answered.
Lemma 12.3.2. Consider � ∈_-Glob(&Xi,X) finite globular.

Then for each minimal primary question q and x ∈ stop(�), we have q ∈ x.

Proof. Consider x ∈ stop(�) and seeking a contradiction, assume q ∉ x. By causal
determinism, q is compatible with x. Consider t ∈ ℒ (x) any linearization of x, yielding

s = ↶(⋅)()Λ(�)(t)) ∈↺-Unf (�) ,
it is straightforward that it is (logically) well-bracketed. Now, � is a morphism in
_-Strat, and must thus be well-bracketed in the sense of Definition 9.3.2. Therefore,

sa+ = ↶(⋅)()Λ(�)(tq)) ∈↺-Unf (�)
should be (logically) well-bracketed. But it is not, since q points to the initial Opponent
question which must already be answered in x: a contradiction, thus q ∈ x.

Thus we may safely begin the sequentialization with any minimal primary question:
by this lemma, we know that it will appear in all stopping configurations.

Residual. Choose q ∈ Qi0 minimal. As q appears in every stopping configuration,
it is safe to first make a call to xi0 , then branch on the possible return values. Since
� is finite, there is a finite set V of values leading to an observable result. Now, for
each v ∈ V , we define �(qv) the residual of � after q yields value v; and then proceed
inductively. To define this residual, our first step is to rename � to isolate this first call:
Lemma 12.3.3. There is �(q) ∈ _-Glob((&Xi)&Xi0 ,X) with the same ess as � and
differing only via its display map, such that:

(1) for x ⊢ w ∈ ⦗�(q)⦘, then x = x′ + [(n + 1, v)] such that x′ + [(i0, v)] ⊢ w ∈ ⦗�⦘,
(2) for x ⊢ w ∈ ⦗�⦘, then x = x′ + [(i0, v)] such that x′ + [(n + 1, v)] ⊢ w ∈ ⦗�(q)⦘.

Proof. The strategy �(q) has the same components as �, with display map sending q
and its answers to the new component. The characterisation of positions is direct.
Note that in the second clause, the decomposition x = x′ + [(i0, v)] is not unique:there may be several values in component i, but one of them yields a position of �(q).
We set the residual �(qv) as �(qv) = �(q) ⊙! ⟨der&Xi , v⟩ ∶ !(&Xi) ⊢ X writing v ∶

!(&Xi) ⊢ Xi0 the constant strategy. In order to characterize its positions, we note:
Lemma 12.3.4. For any v ∈ V , the positions of ⟨der&Xi , v⟩

! are exactly of the form

x ⊢ x + p ⋅ [(n + 1, v)] ∈ ⦗!(&Xi) ⊢ !((&Xi)&Xi0)⦘ ,

where p ⋅ [(n + 1, v)] denotes the p-fold sum, and for any x ∈ ⦗!(&Xi)⦘ and p ∈ ℕ.

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 336

Proof. Straightforward verification.
Using this lemma, we link the positions of � and �(qv).

Lemma 12.3.5. Consider positions x ∈ ⦗!(&Xi)⦘ and w ∈ ⦗X⦘.
Then, x ⊢ w ∈ ⦗�⦘ iff x = x′ + [(i0, v)] with x′ ⊢ w ∈ ⦗�(qv)⦘.

Proof. By definition, we have �(qv) = �(q) ⊙ ⟨der&Xi , v⟩
!, so by Corollary 10.4.15,

⦗�(qv)⦘ = ⦗(�(q))⦘⊙ ⦗⟨der&Xi , v⟩
!⦘ .

The lemma directly follows by Lemmas 12.3.3 and 12.3.4.

Reconstruction. We now rebuild a term. We have �(qv) a globular finite strategy withsize strictly lesser than that of �. By induction hypothesis, there is a term
x1 ∶ X1,… , xn ∶ Xn ⊢ N(qv) ∶ Xi0 ,

for each v ∈ V , such that JN(qv)K ≡ �(qv). We set x1 ∶ X1,… , xn ∶ Xn ⊢ M ∶ X as

case xi0 of
v1 → N(qv1)
v2 → N(qv2)
…
vp → N(qvp)

def
=

let x = xi0 in
if x =X v1 thenN(qv1)

else if x =X v2 thenN(qv2)
…

else if x =X vp thenN(qvp)
else⊥

where V = {v1,… , vp}, using the syntactic sugar introduced in Section 2.2.3. Write
x1 ∶ X1,… , xn ∶ Xn, x ∶ Xi ⊢ M

′ ∶ X

for the iterated if statement, i.e. M is let x = xi0 inM
′.

Analysis. It remains to analyze the positions of JMK and JM ′K to show that JMK ≡ �
as required. We start by an analysis of the positions of JM ′K.
Lemma 12.3.6. Consider positions x ∈ ⦗!(&Xi)⦘ and w ∈ ⦗X⦘.
Then, x ⊢ w ∈ ⦗JN(qv)K⦘ iff there is p ∈ ℕ such that x+p⋅[(n+1, v)] ⊢ w ∈ ⦗JM ′K⦘.

Proof. It is a direct verification, amounting to the correctness of our definition for equal-
ity test and the usual laws for conditionals, that for any v ∈ V we have JM ′K⊙!⟨der, v⟩ =
JN(qv)K. The claim then follows by Corollary 10.4.15 and Lemma 12.3.4.
It remains to take the interpretation of the let construction into account. Recall that

JMK = letXi0 ,X
⊙! ⟨�i0 ,Λ

!(JM ′K)⟩ ∶ !(&Xi) ⊢ X

where letXi0 ,X ∶ !(Xi0&(!Xi ⊸ X)) ⊢ X. The positions of letXi0 ,X are as follows:

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 337

Lemma 12.3.7. The positions of letXi0 ,X are exactly those of the form

[(1, v)] + [(2, ((p ⋅ [v]) ⊸ w))] ⊢ w ∈ ⦗(!(Xi0&(!Xi ⊸ X)) ⊢ X)⦘

for v ∈ ⦗Xi0⦘, w ∈ ⦗X⦘, and p ∈ ℕ.

Proof. A direct analysis of positions reached by stopping configurations of letXi0 ,X.

We can now wrap up, showing that JMK has the same non-empty positions as �.
Lemma 12.3.8. Consider x ∈ ⦗&Xi⦘ and w ∈ ⦗X⦘.
Then, x ⊢ w ∈ ⦗JMK⦘ iff x = x′ + [(i0, v)] with x′ ⊢ w ∈ ⦗JN(qv)K⦘.

Proof. By Lemmas 12.3.6 and 12.3.7.
Note that this exactly matches the characterisation of positions of � in Lemma 12.3.5.

As �(qv) ≡ JN(qv)K by induction hypothesis, it follows that JMK ≡ �. Summing up, we
have proved finite first-order definability up to positional equivalence:
Theorem 12.3.9. For � ∈_-Glob((&Xi),X) finite, there is

x1 ∶ X1,… , xn ∶ Xn ⊢ M ∶ X

a term of PCF (not using parallel evaluation) such that JMK ≡ �.

12.3.3 Finite Globular Definability
We may now conclude the proof of finite definability.
Theorem 12.3.10. Let Γ ⊢ A be a PCF typing judgment, � ∈_-Glob(JΓK, JAK) finite.

Then, there is Γ ⊢ M ∶ A such that JMK ≡ �.

Proof. Up to currying, � ∶ !(&1≤i≤nAi) ⊢ X, writing Ai = Ai,1 → ⋯ → Ai,pi → Xifor 1 ≤ i ≤ n. We reason by induction on the size of �. By Corollary 12.2.18,
� ≡ fo(�)⊙! ⟨xi �∙q,1 … �∙q,pi ∣ 1 ≤ i ≤ n, q ∈ Qi⟩ ,

with each Qi finite, and for 1 ≤ i ≤ n, q ∈ Qi and 1 ≤ j ≤ pi, �∙q,j ∶ !(&Ai) ⊢ Ai,j aglobular finite strategy of size strictly smaller than �. By induction hypothesis, there is
x1 ∶ A1,… , xn ∶ An ⊢ Nq,j ∶ Ai,j

s.t. JNq,jK ≡ �q,j . Let us write Qi = {qi,1,… , qi,ki}. By Theorem 12.3.9 there is
xq1,1 ∶ X1,… , xq1,k1 ∶ X1,… , xqn,1 ∶ Xn,… , xqn,kn ∶ Xn ⊢ Mfo ∶ X

such that JMfoK ≡ fo(�). Then, we define the term x1 ∶ A1,… , xn ∶ An ⊢ M ∶ X as
x1 ∶ A1,… , xn ∶ An ⊢ Mfo[xiNqi,l ,1 … Nqi,l ,pi∕xqi,l] ∶ X .

CHAPTER 12. FINITE DEFINABILITY FOR PCF� 338

Then we may finally compute
JMK = JMfoK⊙! ⟨JxiNqi,l ,1 … Nqi,l ,piK ∣ 1 ≤ i ≤ n, qi,l ∈ Qi⟩

≡ JMfoK⊙! ⟨xi JNq,1K … JNq,nK ∣ 1 ≤ i ≤ n, q ∈ Qi⟩
≡ fo(�)⊙! ⟨xi �∙q,1 … �∙q,pi ∣ 1 ≤ i ≤ n, q ∈ Qi⟩

using the substitution lemma for cartesian closed categories, properties of the internal
language, the properties ofMfo andNq,j and that ≡ is a congruence.

12.3.4 Intensional Full Abstraction
We may now prove our final full abstraction result:
Theorem 12.3.11. The model_-Glob is intensionally fully abstract for PCF�.

Proof. Consider ⊢ M,N ∶ A such that M ≃ N , and assume that JMK ̸≃ JNK, i.e.
there is a test � ∈_-Glob(JAK, JUK) such that, w.l.o.g., � ⊙! JMK ⇓ and � ⊙! JNK ⇑.

By Corollary 12.1.23, we assume � is additionally finite. By Theorem 12.3.9, there
is a term x ∶ A ⊢ T ∶ U such that JT K ≡ �. Defining the context C[−] = (�xA. T) [−],
it follows from the laws of cartesian closed categories that

JC[M]K = J(�xA. T)MK ≈ JT [M∕x]K ≈ JT K⊙! JMK ≡ � ⊙! JMK ⇓ ,

and JC[N]K ≡ comp(�)⊙! JNK. By Theorem 9.1.5, C[M] ⇓. By hypothesisM ≃ N ,
so C[N] ⇓. By Theorem 9.1.5 again, JC[N]K ⇓, hence �⊙!JNK ⇓, contradiction.
Summing up, in Part III we have constructed a cartesian closed∼-category_-Strat.

We have defined two conditions on morphisms of _-Strat, sequentiality and globu-
larity, forming three sub-cartesian closed ∼-categories of_-Strat: _-Seq,_-Glob
and_-SeqGlob. We established four intensional full abstraction results

_-Strat is fully abstract for IA� (Th. 9.3.10)
_-Strat + sequentiality is fully abstract for IA (Th. 11.2.21)

_-Strat + globularity + sequentiality is fully abstract for PCF (Th. 11.3.12)
_-Strat + globularity is fully abstract for PCF� (Th. 12.3.11)

therefore achieving our objective to disentangle parallelism and state. A significant part
of this consisted in establishing interpretation-preserving cartesian closed ∼-functors

↺-Unf ∶ _-Strat → ↺-Strat (Theorem 9.3.8)
⇵-Unf ∶ _-Seq → ⇵-Strat (Theorem 11.2.18)
⇵-Unf ∶ _-SeqGlob → ⇵-Inn (Theorem 11.3.7)
⦗−⦘ ∶ _-Glob → Rel! (Corollary 10.4.15)

to previously established models of different nature, which altogether, or so we hope,
substantiates our claim that thin concurrent games can play a valuable role at the inter-
face of many denotational semantics of programming languages.

Part IV

Other Developments and
Openings

339

Introduction to Part IV

Figure 12.12: Concurrent strategies want cycles too!

In this final part, we conclude the monograph by providing some larger perspective on
the landscape of concurrent games. First, in Chapter 13, we shall give a synthesis of a
lot of the work done in concurrent games that could not be presented in this document.
Then, in Chapter 14 we give some conclusions: we ask to what extent the work done so
far substantiates the view evoked in the introduction, of concurrent games as a bridge
between interactive semantics. We also then present a few open problems raised in the
present development, and conclude with some perspectives.

340

Chapter 13

Further Work

In this monograph so far, we have given a detailed, technical account of what we con-
sider to be the core results and developments in the theory of (thin) concurrent games.
But this is not the full story; and though this monograph is already intimidatingly
lengthy, we feel like a survey of the further work accomplished is called for. We show in
Figure 13.1 all the works accounted for in this monograph, either in the main technical
content or in this survey, grouped by themes and along with the (technical, rather than
in terms of mere inspiration) dependencies between them.
This is not intended to be an exhaustive survey of concurrent games, but only of

the lines of work that I have been leading. There are other interesting developments
in concurrent games in which I did not participate; or for which my participation was
minor; or that feel too loosely connected from the main thrust of the present document.

13.1 Effects and Concurrency
This section summarises work that was mostly developed in close collaboration with
Simon Castellan, during his PhD thesis (2014-2017).
In 2015, our paper introducing TCG, our concept of parallel innocence, and our full

abstraction result for parallel evaluation of PCF, was published [Castellan et al., 2015].
At that time, it felt ironic and a little embarassing that we had something called concur-
rent games and yet had not developed semantics for actual concurrent effects.
It was very clear for us at the time how to interpret IA� in TCG, but for a while, what

was not clear was which theorem to prove! In the denotational semantics literature, the
gold standard is full abstraction. We were confident that we could inherit intensional
full abstraction by linearizing our model to [Ghica and Murawski, 2008] (though the
details of this were not actually written up before this monograph – and they did require
some care), but it felt unsatisfactory to only reprove an old result, and at that, one that

341

CHAPTER 13. FURTHER WORK 342

§6

§7

§8

§9
§10

§11

§13.6.3

§12

§13.1.1

§13.1.2 §13.1.3

§13.2.1 §13.2.2

§13.3.1

§13.3.2§13.5

§13.6.2

§13.6.1

§13.4.1

§13.4.2

§13.4.3

Effects and concurrency

Foundations

Quantitative
Operational

Proof Theory

Taylor

Figure 13.1: The event structure of contributions in concurrent games

CHAPTER 13. FURTHER WORK 343

does not actually need the causal information. So what is the right nail, for a hammer
whose specialty is to uncover structure that by nature is not observable?

13.1.1 Non-canonical causal presentation
The mainstream approach, in formalizing the execution of concurrent systems, is by
interleaving the executions of its sequential components – this is the approach followed
by Ghica and Murawski’s fully abstract model for IA� [Ghica and Murawski, 2008].
But considering a concurrent system formed of n sequential processes

P1 ∥⋯ ∥ Pn ,

even if each Pi performs only one atomic action, this induces n! different executions:
this is the state explosion problem, one of the main challenges to the algorithmic veri-
fication of concurrent systems. In contrast, the truly concurrent approach followed by
concurrent games avoids interleavings and proposes a more compact representation of
executions, that may in principle be helpful for algorithmic verification.
This makes concurrent games seem promising as a basis for an observational equiv-

alence checker for IA�, especially in the light of Ghica and Murawski’s full abstrac-
tion result [Ghica and Murawski, 2008] and the topic of algorithmic game semantics
[Ghica and McCusker, 2003]. More precisely, the hope was to formalize the intuition
that non-alternating strategies in the sense of ↺-Strat already had an implicit causal
structure, i.e. that a non-alternating strategy interpreting a termM was simply

JMK =↺-Unf (�M)
for �M a canonical causal explanation for JMK, a compact representation of the in-
terleavings that may be used instead of the interleavings for algorithmic purposes.
In [Castellan and Clairambault, 2016] we showed that this was not the case, already

in the affine case. We first built a concurrent games model of an affine version of IA�,a corresponding non-alternating model, and an interpretation-preserving functor from
the causal to the interleaving model. Then we showed that a non-alternating strategy
could have distinct and incomparable minimal causal explanations – additionally, we
proved this already happens within the interpretation of affine IA�: there are two affine
programs with incomparable causal behaviour that have the same non-alternating un-
folding. This phenomenon is illustrated in Figure 13.2.
This does not show that concurrent games cannot help for checking the equivalence of

higher-order concurrent programs, it only points out a fundamental obstacle to the route
we had in mind. It is also a hint that the value of concurrent games is in its presentation
of the intensional behaviour, not as an efficient way to present the interleavings. Thus,
we then refocused our research on the intensional behaviour.

13.1.2 Non-angelic concurrent games
Another aspect of concurrent games that was clear from the start is that they record
explicitly the point of non-deterministic branching. For instance, the program x ∶ U ⊢

CHAPTER 13. FURTHER WORK 344

U ∥ U ∥ U ∥ U
q−

_��� � $$,

q−
_���

q−
_���

q−
_���

✓+ ✓+ ✓+ ✓+

U ∥ U ∥ U ∥ U
q−

_��� w��!

q−
_���

q−
_��� w��!

q−
_���

✓+ ✓+ ✓+ ✓+

U ∥ U ∥ U ∥ U
q−

_���

q−
_���

q−
_���

G}}�

q−
_���

✓+ ✓+ ✓+ ✓+

U ∥ U ∥ U ∥ U
q−

_���

q−
_���

q−
G}}� _���

q−
G}}� _���

✓+ ✓+ ✓+ ✓+

U ∥ U ∥ U ∥ U
q−

_���

q−
_���

G}}�

q−
G}}� _��� w��!

q−
_���

✓+ ✓+ ✓+ ✓+

Figure 13.2: As the goal is only to reconstruct interleavings, the branching structure
does not matter, so rather than an event structure we can work only with a set of aug-
mentations, i.e. the partial orders induced by configurations. In this example, both the
second and the third augmentation can be removed without changing the interleavings
– but no other; yielding two incompatible minimal causal explanations.

x ∶ U ⊢ U

q−
*qqx

<yy�
q+

_���
q+

_���
✓− ✓−

� ��&
✓+

Figure 13.3: Recording
non-angelic behaviour

x ∶ U ⊢ U

q−
+rry

>yy�

_���

q
_���

q
_���

✓ ✓
� ��%
✓+

Figure 13.4: After hiding

U

q−
J��	 x��!

⋆ ⋆
_���
✓+

Figure 13.5: Composition
with essential events

if choice then x; ⊥ else x; ✓ ∶ U yields the strategy of Figure 13.3, tracking explicitly
the two incompatible calls to x and the fact that one yields to a divergence, while the
other yields termination. In most earlier games models (with the notable exception of
[Harmer and McCusker, 1999] for Erratic IA), the diverging branch would be ignored:
this is a direct consequence of the traditional methodology of representing a program
as a set of plays, i.e. a set of converging behaviour. We only record the converging
behaviour, forgetting the non-deterministic branching information, leading to an angelic
view of termination, i.e. may-convergence.
This discussion might lead the reader to expect that concurrent games are sound with

respect to must-convergence, but that is not the case: hiding removes branches that
do not prompt any visible behaviour, even if they witness possible non-deterministic
branches. For instance, composing the strategy of Figure 13.3 with skip yields the
interaction of Figure 13.4 which, after hiding, yields the constant strategy JskipK –
because of hiding, we forget that something may have gone wrong in the computation.
Nevertheless, in [Castellan et al., 2018a], we proved that concurrent games are easily

amended so as to recall more than angelic information on program behaviour. It is
simply a matter of changing hiding, so that we retain events that are part of a minimal
conflict: those are kept through hiding as events of neutral polarity, dubbed essential

CHAPTER 13. FURTHER WORK 345

events. With this modification, the composition above yields the strategy of Figure 13.5
where the events labelled⋆ are those essential events. With this interpretation, we keep
more than angelic information: in fact, we show that (the transition system generated by)
the strategy is weakly bisimilary to (the transition system generated by) the operational
semantics, for an affine version of IA�. We are not aware of any other work capturing
by denotational means such a precise information on program behaviour.
This felt a rather good illustration of the expressivity of concurrent games, and in

particular of its feature that it retains the non-deterministic branching information. But,
weak bisimulation does not really take causality into account.

13.1.3 Resource-tracking concurrent games
This is a collaboration with Aurore Alcolei during her PhD thesis, and Olivier Laurent.
To explore the expressiveness of causality in concurrent games, we needed to record

information about programs that really depends on the causal independence between
events, and is incompatible with an interleaving interpretation. As a natural objective,
we thought of the following problem. Consider IA� extended with a primitive wait(n)
that takes a natural number n, and waits for n seconds. The program

⊢ newref r in let
(

x = wait(1); r∶= 1; wait(2)
y = wait(2); r∶= 2; wait(1)

)

in !r ∶ ℕ

always evaluates in 6 seconds according to an interleaving operational semantics, as all
the wait instructions must be handled before termination. But running this program on
a multicore architecture, one will observe faster termination times: the program should
evaluate to 2 in about 3 seconds, but – if the thread for x gets stuck – we can in principle
observe a termination to 1 in at least 4 seconds. This can be captured operationally via a
semantics where threads can wait in parallel, but it seems hard to capture denotationally
as one must be able to see when parts of the computation are causally independent.
Investigating this question, we had twomain inspirations: firstly [Ghica, 2005], where

Ghica builds a variant of↺-Strat to capture semantically the (interleaving) execution
time for an IA�-like language; and secondly [Laird et al., 2013], where the authors use
the relational model weighted over the tropical or arctic semirings to capture resource
usage for a PCF-like language extended with non-deterministic choice.
In [Alcolei et al., 2019] we introduce a version of concurrent games parametrized by

an algebraic structure we call a resource bimonoid, that tracks resource consumption
sequentially and in parallel – our main example is ℝ+ for time, equipped with + (for
sequential resource consumption) and max (for parallel resource consumption). In this
model, strategies track resource consumption: each positive move comes equipped with
an expression describing the resource usage necessary to play this move, as a function
of the resources used to reach its causal dependencies. Building on this, we give (among
other results) an interpretation of an affine IA�-like language extended with wait, cor-
rectly predicting execution time in a maximally parallel evaluation model. This is il-
lustrated in Figure 13.6, that shows the interaction yielding the interpretation of the
program above, where each event is annotated by its minimal time of appearance.

CHAPTER 13. FURTHER WORK 346

r ∶ V ⊢ ℕ

q−t≥0

%oou
+rry

[

� e���

w1t≥1

G}}� w��! � $$,

w2t≥2

G}}� w��!-ssz
✓t≥1

�)

✓t≥2

 ��)

✓t≥2

4uu�

✓t≥2

3uu~rt≥3

_���

rt≥4

_���
1t≥3

� ''.

2t≥4

� ((/1+t≥3 2+t≥4

Figure 13.6: Predicting minimal parallel evaluation time

This is neat as it is an application that really exploits the causal information available
in concurrent games. It is also the first occurrence of a trend that we followed next: the
enriching of concurrent games with quantitative information.

13.2 Quantitative Concurrent Games
This section summarizes work developed in collaboration with Hugo Paquet and Glynn
Winskel, as part of Hugo Paquet’s PhD thesis1; and – regarding the work on semantics
of quantum programming – as part of Marc de Visme’s PhD thesis (2017-2020).
The original motivation for this line of work was two-fold. The first was an intrigu-

ing gap in the literature, originally investigated by Hugo during a research internship
at IRIF with Christine Tasson. There were two fully abstract models for fairly close
probabilistic languages: probabilistic game semantics [Danos and Harmer, 2000] for
probabilistic IA, and the weighted relational model [Laird et al., 2013] for probabilistic
PCF. While these models were fairly close in spirit, it was very unclear how to actually
relate them formally. Could we have a time-forgetting map from games to weighted
relations? From reading Melliès’ papers on asynchronous games [Melliès, 2005], it
was clear to me that the source of such a time-forgetting map should not be Danos and

1Hugo did his PhD in Cambridge with Glynn Winskel, defended in 2019, but I spent most of the year
2016 in Cambridge, and a lot of that work was carried out during that time.

CHAPTER 13. FURTHER WORK 347

Harmer’s model, but rather a concurrent games version, for reasons similar to those that
make the relational collapse of Section 10.4 tick.
The second motivation was to give a notion of probabilistic innocence, i.e. to capture

the interactive behaviour of pure parallel programs. It had been known for long that the
naive theory of non-deterministic innocence does not work in sequential game seman-
tics [Harmer, 1999]; and it seemed that such a theory could be obtained in probabilistic
concurrent games thanks to their explicit handling of the branching information2.

In both cases, this seemed to be problems where concurrent games were naturally
helpful, so we embarked in our journey in probabilistic concurrent games.

13.2.1 Probabilistic PCF
When we started working on this, there was already a notion of probabilistic concurrent
strategy, due to Glynn [Winskel, 2013a], which we first review.
The initial idea is simple: a probabilistic concurrent strategy is a strategy � with

v� ∶ C (�)→ [0, 1]

a probability valuation that expresses the probabilistic weight of the Player choices
made so far. So for instance, a strategy for a fair random boolean would have

q−
;xx� � ��&

tt+ ff+

with v(∅) = 1, v({q−}) = 1, v({q−, tt+}) = v({q−, ff+}) = 1
2 – playing Opponent

moves has no impact on the probability valuation as only the weight of the Player
choices is tracked (this is similar to the approach in [Danos and Harmer, 2000]).
Glynn’s probabilistic strategies must satisfy additional conditions. The easy ones are

normalized: v(∅) = 1,
receptive: if x� ⊆− y� , then v(x�) = v(y�),

but there is more. If from a configuration x� ∈ C (�), � can do two events s+1 and s+2which are additionally conflicting, then we expect to have the inequality
v(x� ∪ {s+1 })

v(x�)
+
v(x� ∪ {s+2 })

v(x�)
≤ 1 ∶

the first term of the sum is the probability of playing s+1 in configuration x� , the second
is the probability of playing s+2 in configuration x� ; the condition amounts to asking
that those form a sub-probability distribution – note the same condition can be written

v(x�) ≥ v(x� ∪ {s+1 }) + v(x
� ∪ {s+2 }) .

2Other works had already arrived at notions of non-deterministic innocence via adopting strategies with
explicit branching structure [Castellan et al., 2014, Tsukada and Ong, 2015].

CHAPTER 13. FURTHER WORK 348

In sequential probabilistic game semantics [Danos and Harmer, 2000], a similar con-
dition suffices. But the soundness of this relies on the conflict between s+1 and s+2 , sothat x� ∪ {s+1 } and x� ∪ {s+2 } delineate two disjoint parts of the probability space.
In concurrent games it is possible that x� ∪ {s+1 , s+2 } is also a configuration, which is
accounted for twice in the sum above. Correcting for this yields the inequality

v(x�) ≥ v(x� ∪ {s+1 }) + v(x
� ∪ {s+2 }) − v(x

� ∪ {s+1 , s
+
2 }) ,

but a similar phenomenon occurs for three concurrent events, in which case
v(x�) ≥ v(x� ∪ {s+1 }) + v(x

� ∪ {s+2 }) + v(x
� ∪ {s+3 })

−v(x� ∪ {s+1 , s
+
2 }) − v(x

� ∪ {s+1 , s
+
3 }) − v(x

� ∪ {s+2 , s
+
3 })

+v(x� ∪ {s+1 , s
+
2 , s

+
3 }) ,

and the general formula can be written following the inclusion-exclusion principle –
Glynn called this the drop condition as it requires that a quantity, the “drop” obtained
as the left hand side term minus the right hand side term, should be positive.
Note that by receptive, it suffices to assign probability valuations to+-covered config-

urations. This makes the compositional structure of probabilistic strategies very easy:
v�⊙�(x� ⊙ x�) = v�(x�) ⋅ v� (x�) (13.1)

for all x� ⊙ x� ∈ C+(� ⊙ �); and v ccA (cc x) = 1 for all x ∈ C (A). Probabilistic
strategies directly inherit from CG the structure of a bicategory (the only difficulty
being composition of the drop condition). But it is “only” a bicategory, and we needed
much more in order to interpret PCF, so our first task was to merge this with TCG.
In doing that, we had the good surprise to find that this needed almost no work at all!

In dealing with symmetry, the only condition that must be added to strategies is
invariance: for all x� ≅� y� , we have v�(x�) = v�(y�)

ensuring that the probability valuation is invariant under symmetry – the drop condition,
for instance, remained unchanged3, forming a relative Seely category that we shall refer
to as ProbNTCG in the context of this monograph. Then, the same constructions used
tomodel PCF and reported in Chapter 8 work just as well to give amodel of probabilistic
PCF – this was the starting point of the paper [Castellan et al., 2018b].

Probabilistic innocence. Then in that situation, we looked for a notion of probabilis-
tic innocence – note that we are talking about sequential probabilistic innocence, as it is
already unclear what is parallel non-deterministic innocence, see Section 14.2.1. Hence
we could build on the sequential non-deterministic innocence of [Castellan et al., 2014]:
Definition 13.2.1. A strategy � on board A is non-deterministic sequential innocent if:

negative: for all s ∈ min(�), pol�(s) = −,forestial: if s1, s2 ≤� s, then s1 ≤� s2 or s2 ≤� s2,locally conflicting: if s1 � s2, then [s1)� = [s2)� ,locally sequential: if s− _� s+1 , s
+
2 , then s

+
1 � s+2 .

3Note in passing the nightmare avoided by using thin concurrent games instead of the saturated concurrent
games of [Castellan et al., 2014]! See Section 7.1.2 for a reminder on the thin / saturated distinction.

CHAPTER 13. FURTHER WORK 349

This takes as a definition the forestial shape that was derived in this monograph from
combined sequentiality and parallel innocence (see Lemma 11.3.2); with the difference
that the resulting forest might not be O-branching: Player is now also able to branch.
But that Player branching cannot be parallel branching, it must come with a conflict.
Thus any configuration is an O-branching forest, where each branch is an independent
exploration of a branch of the term, following the intuitions of Section 11.3.1.
Now for a probabilistic strategy, how should the probabilistic weight behave with

respect to this forestial structure? What we proposed in [Castellan et al., 2018b] is that
on top of non-deterministic sequential innocence, we should have
Definition 13.2.2. Consider � ∶ A probabilistic, non-deterministic seq. innocent.
It is probabilistic innocent iff for all x, y ∈ C (�) such that x ∪ y ∈ C (�),

v�(x ∪ y) =
v�(x) ⋅ v�(y)
v�(x ∩ y)

.

This asserts that two causally independent branches of a configuration must also be
probabilistically independent: the extensions x ∩ y ⊆ x and x ∩ y ⊆ y must explore
distinct branches of the syntax tree, and hence trigger independent probabilistic choices.
Probabilistic innocent strategies form a relative Seely category that supports the inter-

pretation of probabilistic PCF, and enjoy a finite definability result yielding intensional
full abstraction for probabilistic PCF. But probabilistic PCF has a simpler, actually
fully abstract model: probabilistic coherence spaces [Ehrhard et al., 2018] and hence
their backbone, the weighted relational model [Laird et al., 2013].
Our paper had a second result, an interpretation-preserving collapse to the weighted

relational model, but we shall come back to that in Section 13.3. In any case, there was
clearly a parallel between concurrent games and relational models: just as relational
models are made quantitative by attaching to each point of the “web” a coefficient,
and concurrent games are made quantitative by attaching to each configuration a coeffi-
cient. But the relational supports more elaborate weights than just scalars: in particular,
points of the web can be decorated by finite dimensional Hilbert spaces and completely
positive maps, to obtain a computationally adequate model of the quantum �-calculus
[Pagani et al., 2014]. This suggested to do the same in concurrent games.

13.2.2 Quantum strategies
This is joint work with Marc de Visme for his PhD (2017-2020), and Glynn Winskel.
In Marc’s PhD thesis, we set as main objective to build a computationally adequate

concurrent games model for the quantum �-calculus; this is a call-by-value language,
linear but with an explicit exponential modality, structured via the types

A,B ∶∶= qubit ∣ 1 ∣ A⊗ B ∣ A⊕ B ∣ list(A) ∣ A ⊸ B ∣ !(A ⊸ B) ,

with e.g. B = 1 ⊕ 1 defined as syntactic sugar; linearity is of course crucial because
qubits cannot be duplicated. Terms include the expected term formers for these types,

CHAPTER 13. FURTHER WORK 350

along with new primitives, used to manipulate quantum data:
new ∶ B ⊸ qubit , meas ∶ qubit ⊸ B , U ∶ qubit⊗n ⊸ qubit⊗n ,

where new initializes a new qubit based on a boolean, meas measures a qubit (with a
probabilistic result), and U imports any n-ary unitary inside the syntax.
Building a concurrent games model for this language posed several challenges. First

of course, the language is call-by-value – while there were no earlier concurrent games
models of call-by-value languages, it was not too difficult to infer what the correspond-
ing structure should be, looking at traditional games models for call-by-value languages
[Abramsky and McCusker, 1997, Honda and Yoshida, 1999] and from the game seman-
tics of tensorial logic in e.g. [Melliès and Tabareau, 2007]. In particular, in contrast
with NTCG, types (ignoring the quantum aspect) should be interpreted as positive
games, where Player always starts. For instance, the type 1 ⊸ 1 yields the board

1 ⊸ 1

�+

✓−

✓+

where computation starts by Player providing a value – in that written �+, as it carries
the information that the program yields an abstraction. This enables Opponent to call
the function by providing an argument which can only be the unique value of unit type,
which in turn enables Player to terminate with again, the unique value of unit type.
The main challenge was dealing with quantum information. For this, our idea fol-

lows the paradigm to separate quantum data and classical control, putting together
ideas from probabilistic concurrent games above, and quantum relational semantics
[Pagani et al., 2014]. For classical control, qubits are interpreted just like the unit type,
so that the plain event structure for qubit ⊸ qubit is exactly like 1 ⊸ 1 above. The
difference comes with quantum data, for which each event a ∈ A of the game comes
labelled with a (finite dimensional) Hilbert space QA(a). Events that do not carry any
quantum state are annotated with the 1-dimensional Hilbert space, the unit for the tensor
of Hilbert spaces, i.e. the complex numbers ℂ. Events that do have a quantum content
carry a non-trivial Hilbert space; for instance qubit ⊸ qubit becomes the game

qubit ⊸ qubit

�+ℂ

qb−ℂ2

qb+
ℂ2

with Hilbert space annotations in green. Intuitively, playing a move annotated with a
Hilbert spaceH , has a side effect of openingH in the quantum register. Accordingly,

CHAPTER 13. FURTHER WORK 351

qubit ⊢ B

qb−ℂ2

� ##+ � ''.tt+ℂ ff+ℂ

v({qb−, tt+}) = meastt ∶ ℂ2
CPM
→ ℂ

v({qb−, ff+}) = measff ∶ ℂ2
CPM
→ ℂ

meastt ∶
(

a b
c d

)

→ (a)

measff ∶
(

a b
c d

)

→ (d)

Figure 13.7: Quantum strategy for measurement

any configuration x ∈ C (A) yields a finite dimensional Hilbert space
QA(x) =

⨂

a∈x
QA(a) ,

the tensor of the Hilbert spaces opened in x. Now the idea is that a strategy � ∶ A is
accompanied by a valuation as for probabilistic strategies, except it is typed: to each
x� ∈ C (�)we associate a density operator on the Hilbert space of moves played so far:

v�(x�) ∈ DOp(QA()� x�)) ;

recall that density operators are the standard representation ofmixed quantum states, i.e.
supporting pure states but also convex (probabilistic) sums andmeasurements. Now, the
definition of quantum strategies is analogous to that of probabilistic strategies, except
that the valuations are typed: the drop condition can be defined, though it is with respect
to the so-called Löwner order between density operators and involves some tracing out
to bring all density operators to the same Hilbert space.
At the core of our approach, we use that for a strategy between games � ∶ A ⊢ B, a

quantum valuation on A ⊢ B, i.e. a density operator on a tensor Hilbert space
v�(x�) ∈ DOp(QA(x�A)⊗ QB(x�B))

may be equivalently presented as a completely positive map, i.e. a morphism
v→� (x

�) ∈ CPM(QA(x�A),QB(x
�
B)) ,

in the compact closed category CPM that we shall not define here, but which should be
thought of as taking mixed states on QA(x�A) (so, certain operators on QA(x�A) to mixed
states on QB(x�B). This lets us define the quantum valuation of the composition � ⊙ �
simply by composition of the quantum valuations of � and � respectively, via

v→�⊙�(x
� ⊙ x�) = v→� (x

�)◦v→� (x
�)

reminiscent of (13.1) for probabilistic strategies.
As an example, we show in Figure 13.7 the quantum strategies for measurement.

Its control flow seems to select a boolean non-deterministically, but each branch is

CHAPTER 13. FURTHER WORK 352

weighted by the CPM map taking a density matrix on ℂ2 and maps it to (a 1 by 1
matrix with) the probability of obtaining the corresponding value via a measurement.
With Marc and Glynn, we published a first paper [Clairambault et al., 2019] present-

ing the model; its main results are computational adequacy, but also an important con-
sequence of the quantum drop condition: our quantum valuations can be presented as
superoperators, those CPM maps that are trace non-increasing, they correspond to the
physically realizable transformations on mixed quantum states. More precisely, con-
sider � ∶ A, x� ∈ C (�) and)� x� = xA, and split xA into its positive and negative
events xA = x−A ⊎ x+A. Then we may present equivalently v�(x�) as

v−+� (x�) ∈ CPM(QA(x−A),QA(x
+
A)) ,

which we show is always a superoperator. This was an improvement with respect to the
earlier denotational model of the quantum �-calculus [Pagani et al., 2014], for which
there was no such boundedness property – their model construction required valuations
to include an infinitary completion of CPM, just as the weighted relational model re-
quires an infinitary completion of scalars to work around convergence issues.
In a second paper with Marc [Clairambault and de Visme, 2020], we were able to

exploit this boundedness property to adapt in our model the proof method of Ehrhard,
Pagani and Tasson for their full abstraction result of probabilistic coherence spaces for
Probabilistic PCF [Ehrhard et al., 2018]. This shows that our model is fully abstract for
the quantum �-calculus, modulo a quotient of strategies that amounts to a quantitative
relational collapse to the model of [Pagani et al., 2014], which entails that their model
was already fully abstract. We cover the ideas around this quantitative collapse next.

13.3 Quantitative Relational Collapses
13.3.1 Counting witnesses and quantitative collapse
When working on [Castellan et al., 2018b], one of our goals was to understand the link
between probabilistic alternating game semantics [Danos and Harmer, 2000] and prob-
abilistic coherence spaces [Danos and Ehrhard, 2011] via the weighted relational model
[Laird et al., 2013]; for that we meant to define an interpretation-preserving functor

⦗−⦘ ∶ ProbNTCG-Vis → ℝ+-Rel
refining quantitatively the one of Corollary 10.4.15 – recall that here, ℝ+-Rel is the
weighted relational model [Laird et al., 2013], here weighted by the semiring ℝ+ =
ℝ+ ⊎ {+∞} of the completed positive reals. Its objects are sets, and morphisms from
A to B are matrices (�a,b)a∈A,b∈B where �a,b ∈ ℝ+ for all a ∈ A and b ∈ B.

Composition of � ∈ ℝ+-Rel(A,B) and � ∈ ℝ+-Rel(B,C) is matrix multiplication:
(�◦�)a,c =

∑

b∈B
�a,b ⋅ �b,c

CHAPTER 13. FURTHER WORK 353

which might not converge if B is infinite – hence the completion to ℝ+.
At the time we were investigating this, it felt like it should be a minor variation of the

usual relational collapse of Section 10.4. Recall that for � ∶ A, Definition 10.4.3 has
⦗�⦘ = {xA ∈ ⦗A⦘ ∣ ∃x� ∈ C+(�),)� x� ∈ xA} ,

recording all xA ∈ ⦗A⦘ which is reachable in �, which is witnessed by x� ∈ C+(�)
such that)� x� ∈ xA. Intuitively, instead of only recording themere existence of such awitness, we must sum the weight of all possible witnesses. Of course that is too naive:
as a strategy needs to be receptive to all Opponent reindexings, and as there are usually
countably many of those, each “witness” in the sense above usually has countably many
distinct but symmetric peers, yielding almost always infinitely many witnesses.
In [Castellan et al., 2018b], we proposed to solve this issue by summing not over all

concrete witnesses as above, but over all symmetry classes of witnesses:
⦗�⦘xA =

∑

x�∈wit≅� (xA)
v�(x�)

for wit≅� (xA) = {x� ∈ C+
≅ (�) ∣)� x

�} using that by invariance, the valuation v� lifts
to symmetry classes. This yields a finite coefficient that operates as it should on simple
examples. For composition, functoriality amount to proving the equality

⦗� ⊙ �⦘xA⊢xC =
∑

xB∈⦗B⦘
⦗�⦘xA⊢xB ⋅ ⦗�⦘xB⊢xC

which seems like it should be a natural consequence of a bijection
wit≅�⊙�(xA ⊢ xC) ≃

∑

xB∈⦗B⦘
wit≅� (xA ⊢ xB) × wit≅� (xB ⊢ xC) . (13.2)

This seems simple enough: from x� ∈ wit≅� (xA ⊢ xB) and x� ∈ wit≅� (xB ⊢ xC), wecan pick representatives x� ∈ x� , x� ∈ x� and a symmetry �B ∶ x�B ≅B x�B , and obtainan element of wit≅�⊙�(xA ⊢ xC) as (the symmetry class of) x� ⊙� x� defined following
Definition 7.4.6. It can be checked that any x ∈ wit≅�⊙�(xA ⊢ xC) can be obtained in
this ways, and that x� ∈ wit≅� (xA ⊢ xB) and x� ∈ wit≅� (xB ⊢ xC) can be uniquely
recovered from x. So this bijection seemed to work just fine, as expected!

Counting witnesses. This is how the collapse was written in [Castellan et al., 2018b],
and it was the state of my understanding for about two years. But later on, when writing
the details of the quantum version of this collapse withMarc, we realized that something
was off – the more typed version of the collapse made it more apparent.
The issue is that in the reasoning above, we have defined

wit≅� (xA ⊢ xB) × wit≅� (xB ⊢ xC) → wit≅�⊙�(xA ⊢ xC)

a function by working on concrete representatives, and we had not checked that the re-
sult does not depend on the representative. And of course it does, and it also depends

CHAPTER 13. FURTHER WORK 354

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

!(!�⊸ �) ⊢ !� ⊸�q−%oouq+0,rrzq−0,i � $$,q+ℎ(i)-ssz
q−ℎ(i),j � &&- q+k(i,j)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊙

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

!(!� ⊸�)

q−i
1tt} I���

q+i,f (i) q+i,g(i)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

!� ⊸ �

q−
4uu�
 ��)

H~~� v��

q+k(f (0),f (ℎ(f (0)))) q+k(f (0),g(ℎ(f (0))))

q+k(g(0),f (ℎ(g(0)))) q+k(g(0),g(ℎ(g(0))))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Figure 13.8: Composition of � and �

on the choice of the mediating symmetry �B – which in hindsight should have been
obvious with some familiarity with the resource calculus, because �B somehow corre-
sponds to the non-determinism of reduction in the resource calculus (see Section 13.4).
As a matter of fact, (13.2) fails; let us see a counter-example:
Example 13.3.1. Take the board � with one event q−, ��(∅) = 1, ��({q−}) = 0, and

� ∶ !(!� ⊸ �) ⊢ !� ⊸ � , � ∶ !(!� ⊸ �)

two strategies as in Figure 13.8. Their assignment of copy indices uses functions

f ∶ ℕ → ℕ , g ∶ ℕ → ℕ , ℎ ∶ ℕ → ℕ , k ∶ ℕ2 → ℕ ,

whose precise identity is irrelevant. Their composition unfolds as in Figure 13.8, yield-
ing four pairwise conflicting, non-symmetric positive moves.
Enriching non-deterministic PCF with a type � with no constant, the substitution

(�x� . f (f x)) [(�y� . y> y)∕f]

gives a perfect syntactic counterpart to the composition in Figure 13.8. As there are
two calls to the non-deterministic choice, this reduces to �x� . x, but in four different
ways. In the copy indices of each positive move of � ⊙ �, one can read back how the
two non-deterministic choices were resolved: the upper row corresponds to the first call
yielding q+i,f (i), the leftmost column to the second call yielding q+i,f (i), and so on.
Reading back witnesses from the components and their composition, we have

♯wit≅�⊙�

(

q−

q+

)

= 4 , ♯wit≅�

(

q− q−

q+ q+
,
q−

q+

)

= 1 , ♯wit≅�

(

q− q−

q+ q+

)

= 3 ;

as � and � cannot synchronize on any other symmetry class, this contradicts (13.2).
After staring at this example for a while, it seemed that themistake was in the enumer-

ation of the witnesses for � . Indeed, up to symmetry, there are exactly three configura-
tions of � corresponding to two calls: (1) both choices may be resolved with qi,f (i) (callthis “left-left”); (2) both choices may be resolved with qi,g(i) (call this “right-right”);

CHAPTER 13. FURTHER WORK 355

and (3) we may have one of each. But arguably, (3) really identifies two cases: (3a)
“left-right” and (3b) “right-left”. Those configurations are symmetric, but it turns out
that TCG is equipped with exactly the right tool to keep them distinct. Imagine fixed,
for every xA ∈ ⦗A⦘, a concrete representative xA ∈ xA. Then, for � ∶ A we set

wit+� (xA) = {x
� ∈ C+(�) ∣)� x� ≅+A xA}

the set of positive witnesses4 for xA, i.e. those concrete configurations of � for which
there exists a positive symmetry to the chosen representative xA. The positivity re-
quirement morally fixes the identity of each Opponent move, factoring out Opponent
reindexing but still letting us see the Player behaviour. We now have

wit+�

(

q− q−

q+ q+

)

=

{(

q−0 q−1

q+0,f (0) q
+
1,f (1)

)

,

(

q−0 q−1

q+0,g(0) q
+
1,g(1)

)

,

(

q−0 q−1

q+0,f (0) q
+
1,g(1)

)

,

(

q−0 q−1

q+0,g(0) q
+
1,f (1)

)}

a set of concrete configurations of cardinal 4, solving the mismatch.
In [Clairambault and Paquet, 2021] we detail this, which involves delving into an

intricate analysis of symmetries in concurrent games. Thanks to this we are able to
correct the interpretation-preserving functor ⦗−⦘ ∶ ProbNTCG-Vis → ℝ+-Rel of[Castellan et al., 2018b]: the correct definition turns out to be given by

⦗�⦘xA =
∑

x�∈wit+� (xA)

v�(x�) ,

summing over positive witnesses rather than symmetry classes5. Beyond probabilistic
weights, we prove this for games and relations weighted by arbitrary semirings of re-
sources, modulo mild hypotheses. An interesting case is the interpretation of PCF in
ℕ-Rel, the relational model weighted by natural numbers. If ⊢ M ∶ A is a term, to
each a ∈ JAK, JMKa is a natural number, which might be arbitrarily high. So the rela-
tional model counts something, but what? It turns out from our study that the weighted
relational model counts positive witnesses in the sense of concurrent game semantics.

Finally, in [Clairambault and de Visme, 2020], we also apply these ideas for the quan-
titative collapse of quantum strategies onto the quantum relational model.

13.3.2 Generalized species of structure
Interpreting programs in TCG allows us – for each point of the web in the sense of
relational semantics – to replace a natural number, as given by the weighted relational
model, with a set of witnesses. This is an example of what is increasingly being called
proof-relevant denotational semantics; which beyond collecting behaviours, tracks, for
each possible behaviour, a set of witnesses. The main example of such a model is the
cartesian closed bicategory of generalized species of structure [Fiore et al., 2008].

4The cardinal of wit+� (xA) does not depend on the representative, provided it satisfies a condition called
canonicity, not covered here, see [Clairambault and Paquet, 2021].

5One can sum over symmetry classes, with correcting coefficients: ⦗�⦘xA =
∑

x�∈wit≅� (xA)
♯S−(xA)
♯S (x�) ⋅v� (x

�).

CHAPTER 13. FURTHER WORK 356

At the time (2021-2022), there was intense activity, in the quantitative semantics
community, around species of structure. Roughly speaking, species of structure are a
categorification of the relational model. The objects of Rel, i.e. sets, are replaced with
categories. The morphisms of Rel, i.e. functions � ∶ A×B → {0, 1} are replaced with

� ∶ Aop × B → Set ,

i.e. profunctors from A to B. The bang of Rel, which to any set associates its set of
finite multisets, is replaced with the free symmetric monoidal category. Altogether, to
a program ⊢ M ∶ A and some a ∈ A, the interpretation ofM associates a set JMKa– notably, Federico Olimpieri proved [Olimpieri, 2021] that this set could be presented
as the set of derivations ofM ∶ a in a non-idempotent intersection type system.
As two “proof-relevant” denotationalmodels, it was appealing to try to understand the

links between concurrent games and generalized species of structure. As generalized
species of structure replace the coefficient computed by the weighted relational model
with a set, it is tempting to conjecture that the two agree – that the coefficient given
by the weighted relational model is the cardinal of the witnesses given by generalized
species. But it is easy to see that this is not true: for instance, for any set A we have

(idA)a,a′ =
{

1 if a = a′,
0 otherwise

for the identity in the weighted relational model, compared with (idA)a,a′ = A[a, a′]
given by the hom-functor, the identity in the bicategory of profunctors. We can plainly
see that species of structures import morphisms ofA as witnesses, whereas the weighted
relational model does not. From the perspective of concurrent games these morphisms
are nothing but the symmetries between configurations, so it seems that witnesses in the
sense of generalized species of structure should correspond to witnesses in the sense of
concurrent games along with explicit symmetries, i.e. for a strategy � ∶ A ⊢ B,
⦗�⦘(xA, xB) = {(�−A, x

� , �+B) ∣ �
−
A ∶ xA ≅

−
A x

�
A, x

� ∈ C+(�), �+B ∶ x
�
B ≅

+
B xB} .

Though defined on configurations, this can turned be into a profunctor
⦗�⦘ ∶ S (A)op × S (B)→ Set

from the groupoid S (A) of symmetries of A, to that on B – the functorial action is an
elaboration of Lemma 7.2.7. With significant effort with Hugo Paquet and Federico
Olimpieri, we proved in [Clairambault et al., 2023a] that this yields a pseudofunctor
from a cartesian closed bicategory of thin concurrent games (with visible strategies, so
as to cope with deadlocks) into that of generalized species of structure. It turns out that
up to isomorphism, generalized species of structure can be seen as computing positive
witnesses in the sense of concurrent games, along with explicit positive symmetries!
This is striking, as species of structure were invented between any of those. This also
shows that the cardinality mismatch between the weighted relational model and gener-
alized species of structure exactly amounts to the number of positive symmetries.

CHAPTER 13. FURTHER WORK 357

This is a new step in the relational collapses of games model, refining earlier work
in that it is proof-relevant, and operates at the bicategorical level. It also emphasizes
that the combinatorial core of proof-relevant models is their handling of symmetries,
and there is an incredible wealth of mathematical structures to be worked out here, in
which thin concurrent games play a central role. This is also strongly connected to the
coefficients appearing in the Taylor expansion of �-terms, see the next section.

13.4 Game Semantics as Taylor Expansion
This line of work is in collaboration with Lison Blondeau-Patissier, as part of her PhD
thesis (2021-2024), and with Lionel Vaux Auclair.

13.4.1 Pointer concurrent games and positional injectivity
As we have seen, thin concurrent games provide an expressive representation of the
interactive behaviour of programs, but at the cost of a significant technical complexity
– a lot of which comes from copy indexing and uniformity. Could we conceivably
simplify this by adopting an “Hyland-Ong” style representation, with pointers? It turns
out that we can to an extent, losing some features such as non-derministic branching, but
gaining some such as a compelling connection with the Taylor expansion of �-terms.

The idea is the following: instead of a concurrent strategy �, we retain only its set of
symmetry classes of (+-covered) configurations, which must hence be defined directly,
without appealing to all the technology of Part II. To do that we start with:
Definition 13.4.1. Consider A an arena in the sense of Definition 3.1.3.
An exploration6 x ∈ ℰ (A) of arena A is x = ⟨|x|,≤x,)x⟩ such that ⟨|x|,≤x⟩ is a

finite forest, and the display map)x ∶ |x| → |A| is a function satisfying the conditions:

minimality-respecting: for any a ∈ |x|, a is ≤x-minimal iff)x(a) is ≤A-minimal,causality-preserving: for all a1, a2 ∈ |x|, if a1 _x a2 then)x(a1)_A)x(a2).

If A is a mixed board, then explorations of A are analogous to configurations of
A: they serve as concrete representatives for symmetry classes. A symmetry between
explorations x, y ∈ ℰ (A) is a bijection ' ∶ |x| ≃ |y| that preserves and reflects all
structure. This lets us define positions as symmetry classes of explorations – if A is a
mixed board without conflict, those are in one-to-one correspondence with C≅(A).
But one should not immediately quotient explorations to positions, because doing

so blurs out the identity of individual moves, preventing us from enriching it with the
dynamic causality from the program. Instead those are added on explorations:
Definition 13.4.2. An augmentation on arenaA is a tuple q = ⟨|q|,≤q,≤LqM,)q⟩, where

6In the published papers, we call those configurations. Here, I use exploration instead to avoid the collision
with the configurations of an event structure.

CHAPTER 13. FURTHER WORK 358

((o → o) → (o → o) → o) → o

q−
<yy�

q+0
'ppw)qqx

>yy�
q−0

0tt|

q−12
1tt}

q−1
>yy�

q+0 q+1 q+2

Figure 13.9: A configuration

((o → o) → (o → o) → o) → o

q−
;xx�

q+

&oov)qqx
;xx�

q−

/ss{

q−

0tt|

q−
;xx�

q+ q+ q+

Figure 13.10: An isogmentation

LqM = ⟨|q|,≤LqM,)q⟩ ∈ ℰ (A), and ⟨|q|,≤q⟩ is a forest7 satisfying:

rule-abiding: for all a1, a2 ∈ |q|, if a1 ≤LqM a2, then a1 ≤q a2,
courteous: for all a1 _q a2, if pol(a1) = + or pol(a2) = −, then a1 _LqM a2,

deterministic: for all a− _q a+1 and a− _q a+2 , then a1 = a2,
+-covered: for all a ∈ |q| maximal in q, we have pol(a) = +,
negative: for all a ∈ min(q), we have pol(a) = −,

we then write q ∈ A (A), and call LqM ∈ C (A) the desequentialization of q.

An augmentation equips an exploration of the game with the causal dependency due
to the program. In particular, if � ∶ A is a causal strategy on a mixed board A, then any
x� ∈ C (�) gives rise to an augmentation q ∈ A (A) on A by setting |q| = x� , s1 ≤q s2iff s1 ≤� s2, s1 ≤LqM s2 iff)� s1 ≤A)� s2, and for all s ∈ |q|,)q s = lblA()� s).
In thin concurrent games, all events have a distinct identity and yield a distinct image

in the game with distinct copy indices, as illustrated in Figure 13.9; this rigidity is then
tamed by 2-cells mediating between strategies. In contrast, in pointer concurrent games,
individual events have no identity; just like elements of a multiset have no individual
identity. This is illustrated in Figure 13.10, but it is not properly captured yet by Defi-
nition 13.4.2 – it remains to quotient out the identity of events. For that, a symmetry
between augmentations q and p is a bijection ' ∶ |q| ≃ |p| preserving and reflecting all
structure. Finally, an isogmentation is a symmetry class of augmentations; and then
strategies should morally be certain aggregations of isogmentations.

Our original motivation in developing these definitions was not really to define a
fully-fledged variant of concurrent games, but rather to obtain the tools we needed to
prove an injectivity theorem [Blondeau-Patissier and Clairambault, 2021] along the fol-
lowing lines. Consider �, � ∶ A two total finite innocent strategies in the Hyland-Ong
sense. Each play s ∈ � reaches a position obtained by simply forgetting the chrono-
logical order; so that for each strategy we can retain its set of positions only. Now the
theorem is that if � and � reach the same positions, then they are equal. Now proving

7For now, we have only explored pointer concurrent games in a sequential innocent setting – of course,
there is no reason why the methodology would not extend further.

CHAPTER 13. FURTHER WORK 359

that involves a pumping technique similar to that used in traditional injectivity results in
the linear logic literature [de Carvalho and de Falco, 2012], which needed understand-
ing the effect of Opponent duplications on reached positions – and in turn, this invited
a representation of plays factoring out Opponent’s scheduling, i.e. isogmentations8.

13.4.2 Isogmentations and the resource calculus
It is natural to see in isogmentations a variation of resource terms, the terms of the
finitary calculus called resource calculus used as target for the Taylor expansion of �-
terms [Ehrhard and Regnier, 2008] – this observation was nothing new, the similarity
between resource terms and plays up to Melliès’ homotopy had already been remarked
before [Melliès, 2006, Tsukada and Ong, 2016]. For instance, along this similarity, the
isogmentation in Figure 13.10 could be naturally be written syntactically as

�f o→o. f [�xo. x, �xo. x] [�xo. x] .

More precisely, there is a bijection between isogmentations on (the arena for) a simple
type A, and �-normal resource terms in a simply-typed extensional resource calculus
– moreover the correspondence is straightforward, closely following the standard finite
definability argument for innocent strategies (see Theorem 3.2.14) – but this correspon-
dence does not account for non-normal terms and for the dynamics of resource terms.
To account for these dynamics, one difficulty is that isogmentations do not easily

compose. Indeed, we expect isogmentations q ∈ A (A ⊢ B) and p ∈ A (B ⊢ C) to
be composable if, writing LqM = xA ⊢ xB and LpM = yB ⊢ yC for the corresponding
positions, we have xB = yB – so that we may write LqM = xA ⊢ xB and LpM = xB ⊢ xC .In that case, up to symmetrywe can pick concrete representatives for q and pwhich share
the same events on B, letting us synchronize them. However, this idea bumps against
an issue similar to that exposed in Example 13.3.1: the resulting composition depends
on the representative chosen. . .To eliminate this dependency on the representative, we
first define a composition p⊙� q through a symmetry � ∶ xB ≅B yB , and then set

p⊙ q =
∑

�∶xB≅ByB

p⊙� q

a formal sum of isogmentations. This observation – that the composition of isogmen-
tations yields a formal sum of isogmentations, rather than a single isogmentation – is
reminiscent of the fact that substitution is the resource calculus also yields a sum

s⟨[u1,… , un]∕x⟩ =
∑

�∈(n)
s⟨u�(1)∕x1⟩… ⟨u�(n)∕xn⟩

if x has n occurrences in s (the result is 0 otherwise) – where x1,… xn is an enumeration
of all occurrences of x in t. This prompted us to extend the correspondence between
isogmentations and normal resource terms to the dynamics of the resource calculus.

8In other terms, isogmentations are plays up to Melliès’ homotopy equivalence on plays [Melliès, 2006].

CHAPTER 13. FURTHER WORK 360

This is what we achieve in [Blondeau-Patissier et al., 2023b]: we construct an inter-
pretation of (simply-typed, extensional) resource terms as strategies, i.e. formal sums
of isogmentations weighted by non-negative rational coefficients. For normal forms,
this coincides with the bijection between normal resource terms and isogmentations
mentioned above. But for non-normal terms, we show that the interpretation is invari-
ant under reduction – also accounting for the coefficients arising throughout reduction.
The proof of this result is structured by a new categorical model we call a resource cat-
egory. Resource categories axiomatize the structure available in our category of pointer
concurrent games. Much of their structure resembles notions of differential categories
[Blute et al., 2020], but without an exponential modality.

13.4.3 Taylor expansion, extensional resource terms
The correspondence between normal resource terms and isogmentations invites the con-
jecture that the game semantics of a �-term is the normal form of its Taylor expansion.

But the Taylor expansion typically targets the pure �-calculus, for which this is not
quite true: game semantics is an extensional model, while the Taylor expansion of a
�-term follows its Böhm tree (i.e., the normal form of the Taylor expansion of a �-term
M is the Taylor expansion of its Böhm tree, as proved in [Ehrhard and Regnier, 2003].
So what we did instead is to devise a variant of the untyped resource calculus, the
extensional resource calculus, obtained by seeking a syntax for the isogmentations on
the universal arena of [Ker et al., 2002]. The extensional resource calculus has a nice
syntactic theory, and is the target of an extensional Taylor expansion that captures ∗

[Blondeau-Patissier et al., 2023a]. At the date of writing, the correspondence of this
extensional Taylor expansion with pointer concurrent games is still work in progress.

13.5 Operational Concurrent Games
This line of work is in collaboration with Simon Castellan.

Operationalizing a denotational model. As hopefully demonstrated in this mono-
graph, thin concurrent games offer a very expressive intensional presentation of the
interactive behaviours of programs. The work presented here already accounts for com-
plex programming features, and there is no obstacle in principle to extend it further.
Yet, something is puzzling. More than any other denotational semantics, game se-

mantics has a strong operational flavour. To the trained game semanticist, each play or
configuration of the interpretation of a programmatches an operational execution trace:
it is this informal connection that guided our introduction to game semantics in Chapter
3. Yet, actually proving that a concrete play or configuration is in the interpretation
is discouragingly – and embarrassingly – tricky: one must unfold the definition of the
interpretation of a �-term in a cartesian closed category, which is itself obtained as the
Kleisli category of a model of intuitionistic linear logic. Overall, the interpretation of a
program unfolds to a large algebraic expression in the language of the categorical model

CHAPTER 13. FURTHER WORK 361

q−2
_���
q+1

@zz� _��� ���$
q−0

_���

q−0

_���

✓−1

T��

q+1
_���q−0

���$
1+2

∈

u

wwww
v
F ∶ U0 → U1 ⊢

⎛

⎜

⎜

⎜

⎜

⎝

newref x in
newref y in
F (x ∶=!y;
F (y ∶= 1));

!x

⎞

⎟

⎟

⎟

⎟

⎠

∶ ℕ2

}

����
~

Figure 13.11: Is this a valid configuration for this program?

– for instance, the program of Figure 13.11 (partially) unfolds to an expression like
seq◦

(

(ev◦((JF K⊗ Jx ∶=!y; F (y ∶= 1)K!)◦(� ⊗ id⊗ id)))⊗ J!xK
)

◦(id⊗ � ⊗ id)◦(id⊗ cell⊗ cell) ,

and answering the question in Figure 13.11 means putting forward an analogous con-
figuration for each of the components of this expression, and proving they globally
aggregate to the configuration claimed: this is not problematic in principle, but not effi-
cient or even tractable in practice, so it is an obstacle to using game semantics to reason
on concrete programs. Game semantics papers are full of examples, yet I feel confident
in claiming that none but a few trivial ones have ever been proved formally9.

It seems we must choose between an interpretation that is compositional and one
that it obtained directly operationally from the program. Or; we could try to devise
an alternative – operational – method to generate the denotational object. Connect-
ing operational and game semantics in that way is far from a new idea. Though it
was clear from early work on game semantics [Danos et al., 1996] that interaction be-
tween strategies was related to execution by abstract machines, the idea to generate
strategies by operational means was – to our knowledge – first suggested by Laird in
his trace semantics for higher-order references [Laird, 2007] (with the explicit connec-
tion with game semantics later worked out by Jaber [Jaber, 2015]). In the 2010s, sev-
eral works were proposed blurring the lines between operational and game semantics
[Ghica and Tzevelekos, 2012, Levy and Staton, 2014], typically via LTSs dealing with
open programs by sending and receiving messages from the environment; for these sys-
tems, compositionality is a theorem rather than a definition. But these developments do
not yield strategies in the sense of previously established models. They also only deal
with sequential deterministic programs, and it seems hard to extend LTS-based tech-
niques to give a causal account of the execution of higher-order concurrent programs.

9This observation is meant to apply to all the game semantics literature, not just concurrent games.

CHAPTER 13. FURTHER WORK 362

But in fact, a powerful connection between operational and denotational semantics
was already established significantly before the above, although not then presented as
such: it is Baillot’s result [Baillot, 1999] that Girard’s Geometry of Interaction for
IMELL generates the strategy obtained as its interpretation in so-called Abramsky-
Jagadeesan-Malacaria (AJM) games [Abramsky et al., 2000]. We would like a similar
correspondence for concurrent games as presented in this monograph. But how so?
Geometry of Interaction is based on linear logic proof nets and Baillot’s theorem relies
on the rewriting theory of proof nets, but there are no such tools for IA�.

Geometry of Interaction via Petri nets. In [Castellan and Clairambault, 2023] we
ask the question: can we provide an analogue of Baillot’s theorem for IA�, i.e. a notionof execution for IA� programs that generates, just as a side effect of execution, the same
concurrent strategy than that computed denotationally?
Our idea is the following: while there are no proof nets for IA�, a proof net equipped

with the GoI token game is an instance of an object that is very well-known in the veri-
fication and concurrency communities: a coloured Petri net. So we sidestep proof nets
and aim to translate IA� programs directly into Petri nets. More precisely, we devise a
notion we call a Petri strategy: a Petri strategy on gameA is a (finite) coloured Petri net
equipped with special transitions called negative and positive (on top of the old transi-
tions now dubbed neutral). While neutral transitions have the same familiar mechanics
as usual, negative and positive transitions are different: negative transitions have no
precondition, instead triggered by an Opponent move in A and introducing a new to-
ken into the net. Dually, positive transitions have no postcondition, instead playing a
positive move in A. Now, Petri nets satisfying adequate conditions support a notion
of unfolding into event structures: each run has an implicit causal structure and those
can be aggregated into an event structure. Accordingly, a Petri strategy is additionally
required to unfold to a valid concurrent strategy. Finally, Petri strategies � and � can be
easily composed, by putting them side by side and merging adequately matching neg-
ative and positive transitions. Altogether, we obtain a compositional interpretation of
IA� into Petri strategies and an unfolding to concurrent strategies, such that

IA�

J−K
��

J−K

%%
PetriStrat

Unf
// CG

commutes. The interpretation of IA� into Petri nets is linear time, and can be regarded
as a syntactic translation – a compilation – to an intermediate representation.
This is implemented and available at https://ipatopetrinets.github.io/. A

screenshot of the application appears in Figure 13.12: on the right hand side we have
the Petri strategy, with which the user can interact by clicking on available transitions.
On the upper left corner is the program, and below is the configuration of the corre-
sponding concurrent strategy reconstructed by the unfolding. The configuration is that
of Figure 13.11 which, by our main result, proves that this is indeed a configuration of

https://ipatopetrinets.github.io/

CHAPTER 13. FURTHER WORK 363

Figure 13.12: IA� to Petri nets

the concurrent strategy interpreting this program. Thanks to the causal nature of our
interpretation, there is also a reverse mode that let us undo events, not necessarily in the
opposite order in which they were played.

13.6 Miscellaneous
Finally, in this section, I give an account of other works that stand a bit on the side:
though interesting, they are not part of the main thrust of our work on concurrent games.

13.6.1 Full Abstraction for Parallel-Or
This is joint work with Simon Castellan and Glynn Winskel.
In Chapter 10, I have presented our notion of parallel innocence, culminating in Chap-

ter 12 to finite definability and intensional full abstraction for PCF�. But in fact, our
original objective was not PCF�, but PCF plus parallel-or, the famous parallel primitive

por ff ff = ff
por tt ⊥ = tt
por ⊥ tt = tt

introduced by Plotkin in order to obtain a finite definability result with respect to Scott
domains and continuous functions [Plotkin, 1977]. A central motivation in the original
development of game semantics was precisely to ban por and obtain a cartesian closed
category of sequential functions, and thus it felt deliciously ironic to attempt to close the

CHAPTER 13. FURTHER WORK 364

q−3

1tt} !!*q+1
D||� {��#

q+2
C{{� {��#

tt−1

z��"

ff−1

� %%,

tt−2
D||�

ff−2
C{{�

tt+3 tt+3 ff+3

Figure 13.13: The concurrent strategy por ∶ B1 ⊸ B2 ⊸ B3

loop and capture the intensional behaviour of programs from PCF+por. Unfortunately,
back in 2014, we bumped against a tricky problem and could not quite make this work.
Let us describe the problem. There is a natural concurrent strategy for por, described

in Figure 13.13. When prompted by Opponent, the strategy plays two causally indepen-
dent moves, prompting the evaluation of its two arguments in parallel. If both arguments
return ff , then the strategy merges those two threads and returns ff . However, it suffices
that one argument returns tt for the overall computation to return tt. What may come
as a surprise is that although the extensional behaviour of por is functional (and thus
deterministic), its intensional behaviour as given by this strategy is not. Indeed, each
argument returning tt must cause an independent instance of the answer tt at toplevel.
But those must conflict, since they match the same move in the game! In other words,

por tt tt

triggers an (invisible) race as the two threads compete to provide the same answer –
operationally, por tt tt can be proved via two distinct rules, also witnessing this race.
How to formulate a notion of determinism accepting por, but refusing an actual non-

deterministic choice? We could not figure out how to solve this back in 2014, hence
reverted in [Castellan et al., 2015] to giving a model giving account of (causally deter-
ministic) parallel evaluation in plain PCF.

Disjunctive causality. In [Castellan et al., 2017b] we solved that, constructing an in-
tensionally fully abstract model for (an affine version of) PCF with por. The core of
our solution is a variant of CG in which the semantics of por is deterministic.

The reasons why por is deterministic run quite deep: it boils down to the inability of
event structures to express disjunctive causality, i.e. causal patterns such as

1

}��$
or

2

Azz�
3

(13.3)

CHAPTER 13. FURTHER WORK 365

where the same event 3 may be caused either by 1 or by 2. But in fact, this is not a
limitation of event structures in general, only of event structures of the kind we consider
in this monograph, which are known as prime event structures in the literature. There
are alternatives: for instance, general event structures [Winskel, 1980] allow events to
be enabled in several distinct ways. We give an equivalent notion [Winskel, 1986]:
Definition 13.6.1. A configuration family is a pair (|A|, A) (often just writtenA) where
|A| is a set of events, and A is a set of configurations, finite subsets of |A| satisfying:

rooted: ∅ ∈ A
complete: for x, y ∈ A, if x ↑ y (they are compatible, i.e. there exists z ∈ A

such that x ⊆ z and y ⊆ z), then x ∪ y ∈ A.
coincidence-free: if x ∈ A, for all distinct e1, e2 ∈ x there exists y ⊆ x

such that y ∈ A and e1 ∈ y⇔ e2 ∉ y.

Configuration families do support disjunctive causality: the causal pattern of (13.3)
is expressible with the configuration family with events {1, 2, 3} and the configurations

{∅, {1}, {2}, {1, 3}, {2, 3}, {1, 2, 3}} ,

and accordingly, parallel-or can be formalized as a configuration family that is deter-
ministic in a suitable sense. So – why is this monograph entirely phrased in terms of
configuration families, rather than prime event structures? The issue with configuration
families is that they do not support hiding as is required in the composition of strategies:
Proposition 13.6.2. Configuration families do not support hiding. There is a configu-
ration family A and V ⊆ |A| s.t. {x ∩ V ∣ x ∈ A} is not a configuration family.

Proof. Set |A| = {a, b, c, d}, and configurations those specified by the diagram
a

or}��$

b
_���

c
Azz�

d

with V = {b, c, d}, i.e. we hide the event a. Then, the set of configurations obtained
by hiding fails completeness: it contains {b}, {d}, {b, c, d} but not {b, d}.
Prime event structures support hiding because each event in the event structure post-

hiding comes with a unique, minimal causal history in the event structure pre-hiding,
a property that is lost here10. The failure of hiding comes from our inability to assign
canonically, to any configuration of the hidden structure, a witness pre-hiding.

10One could object here that perhaps we could build concurrent games on something even more permis-
sive than configuration families. But we must retain coincidence-freeness, because they are how we express
the absence of causal loops (which distinguish concurrent games from relational semantics as illustrated in
Section 10.4): any configuration should be reachable adding events one by one. Rooted coincidence-free
families do support hiding, but they yield a non-associative composition of strategies.

CHAPTER 13. FURTHER WORK 366

Observational determinism. The key idea of our contribution is that we can recover
hiding on configuration families, by requiring an additional determinism hypothesis:
Definition 13.6.3. A deterministic configuration family with polarities (dcfp) is a con-
figuration family A with polA ∶ |A| → {−, 0,+}, satisfying the additional condition:

disjunctive deterministic: for all x ⊆≥0
A y and x ⊆ z, we have y ∪ z ∈ A.

where x ⊆≥0
A y means that x ⊆ y and polA(y ⧵ x) ⊆ {0,+}.

Here, the events with null polarities are those that we wish to hide, and indeed:
Proposition 13.6.4. If A is a dcfp, then its hiding A↓, with events the set V = {a ∈ A ∣
pol(a) ≠ 0} and configurations those x ∩ V for x ∈ A, is still a dcfp.

The key idea is as follows: a configuration x ∈ A↓ may have many different wit-
nesses, i.e. configurations y ∈ A such that y ∩ V = x – in general forming a family
(yi)i∈I . But thanks to disjunctive determinism, all these witnesses are compatible, and

y =
⋃

i∈I
yi ∈ A

is then a canonical witness for x. As in prime event structures, it is this ability to assign
canonically to each x ∈ A↓ a witness in A that makes hiding go through. The situation
here is somewhat dual to that for prime event structures: the canonical witness is the
union of all witnesses, instead of the intersection as in the construction of CG.

Replaying the construction of CG based on the ideas above yields a compact closed
category Disj of disjunctive deterministic strategies, where por admits a determinis-
tic interpretation. In [Castellan et al., 2017b] we then proceed to build a hybrid model
pairingDisj andCG, so that we have access to both disjunctive determinism and parallel
innocence, letting us prove a finite definability result and intensional full abstraction.

13.6.2 A Semantic Proof of Herbrand’s Theorem
This is joint work with Aurore Alcolei, Martin Hyland and Glynn Winskel.
In a formula of (first-order) predicate logic, there is a clear causal dependency be-

tween instance of quantifiers that may be represented as a concurrent game, e.g.

J∀x (∃y P (x, y) ∨ ∀z¬P (x, z))K =
∀x

∃y ∀z

though this representation ignores for now all propositional connectives and atomic
predicates. Then, a proof intuitively induces a further dependency between instances

CHAPTER 13. FURTHER WORK 367

of quantifiers that may be represented with a concurrent strategy; for instance we have
u

wwwwwwww
v

⊢ P (x, z) ∨ ¬P (x, z)

⊢ ∃y P (x, y),¬P (x, z)

⊢ ∃y P (x, y),∀z¬P (x, z)

⊢ ∃y P (x, y) ∨ ∀z¬P (x, z)

⊢ ∀x(∃y P (x, y) ∨ ∀z¬P (x, z))

}

��������
~

=
∀x

}��$
∃y ∀z�llr

witnessing the fact that the proof instantiates y with the eigenvariable z. The strategy
only carries this causal dependency between quantifiers; the two players do not, for
instance, play elements of a given structure in which the formula is evaluated, as would
be the case in usual notions of games in the context of model theory.
We must still account for predicates and propositional connectives. To figure out

whether such a strategy is correct, or winning in our terminology, we instantiate quan-
tifiers following the dependency specified in the strategy, yielding a quantifier-free for-
mula for which we assess whether it is a propositional tautology. In the example above,
the causal dependency ∀z_ ∃y in the strategy expresses that y should be replaced with
z. Performing this substitution (and removing quantifiers), we obtain the formula

P (x, z) ∨ ¬P (x, z)

which is a propositional tautology indeed, so the strategy is winning.

Strategies with witnesses. Beyond simply substituting one variable for another, a
proof can instantiate an existential quantifier with a first-order term. Accordingly a strat-
egy provides, for each positive move (existential quantifier), a first-order term whose
free variables are the eigenvariables introduced by the universal quantifiers.
For instance, a variation of the example above could be

u

wwwwwwww
v

⊢ P (x, f (z)) ∨ ¬P (x, f (z))

⊢ ∃y P (x, y),¬P (x, f (z))

⊢ ∃y P (x, y),∀z¬P (x, f (z))

⊢ ∃y P (x, y) ∨ ∀z¬P (x, f (z))

⊢ ∀x(∃y P (x, y) ∨ ∀z¬P (x, f (z)))

}

��������
~

=
∀x

{��#
∃yf (z) ∀z�llr

decorating the quantifier ∃y with the witness provided for y, here f (z). The resulting
instantiation of quantifiers yields a propositional tautology P (x, f (z)) ∨ ¬P (x, f (z)).

Contraction. But classical proofs have access to the contraction rule, and as suchmay
provide several witnesses for the same existential quantifier. So the interpretation of
formulas is modified accordingly: instead of simply following the nesting of quantifiers,

CHAPTER 13. FURTHER WORK 368

it has countably many copies of each quantifier – though it is often more convenient to
only draw the part of the game where only existential quantifiers are replicated.
For instance, the strategy for the usual proof of the Drinker’s formula is:
u

wwwwwwwwwwww
v

⊢ ¬P (c), P (y),¬P (y) ∨ ∀y P (y)

⊢ ¬P (c), P (y),∃x (¬P (x) ∨ ∀y P (y))

⊢ ¬P (c),∀y P (y),∃x (¬P (x) ∨ ∀y P (y))

⊢ ¬P (c) ∨ ∀y P (y),∃x (¬P (x) ∨ ∀y P (y))

⊢ ∃x (¬P (x) ∨ ∀y P (y)),∃x (¬P (x) ∨ ∀y P (y))

⊢ ∃x (¬P (x) ∨ ∀y P (y))

}

������������
~

=
∃xc

_���

∃xy
_���

∀y

< 99C

∀y

assuming we have at least one constant symbol c – here the existential quantifier has
two copies, witnessing the fact that the proof has a contraction. Instantiating quantifiers
following this strategy, we obtain the quantifier-free formula

(¬P (c) ∨ P (y)) ∨ (¬P (y) ∨ P (z))

which is a tautology – here as there are two instantiations for the existential quantifier,
there are two copies of the subsequent sub-formula, linked with a disjunction.
In [Alcolei et al., 2018] we provide a denotational semantics for first-order classical

proofs following this idea. For an existential formula ∃xP (x), the interpretation of a
proof corresponds exactly to a set of closed first-order terms t1,… , tn such that P (t1) ∨
⋯∨P (tn) is a propositional tautology, recoveringHerbrand’s theorem. Formore general
formulas, we essentially recover Miller’s expansion trees [Miller, 1987].
This work is original in that of all the developments considered in this monograph,

this is the only one for which the games considered are not polarized (all minimal moves
may not have the same polarity) and where causality is not alternating.

13.6.3 Revisiting Games Models of MALL
Asmentioned in Section 6.5, (thin) concurrent games belong to a family of gamesmodel
rejecting the hypothesis that plays should be totally chronologically ordered, initiated
in the seminal paper [Abramsky and Melliès, 1999] and used in particular to construct
a fully complete model for multiplicative additive linear logic.
Abramsky and Melliès’ take on games is rather radical: their games have neither

moves nor plays, but only a partial order of positions. More precisely, they are dI-
domains, i.e. directed-complete, bounded-complete partial order satisfying two further
axioms. If D is a dI-domain, we write D⊤ its extension with a top element ⊤ – it fol-
lows that D⊤ is a complete lattice. If E is an event structure (so that this automatically
applies to a game A in the sense of Definition 6.1.3), then the domain C∞(E) of poten-
tially infinite configurations is such a dI-domain. If A is a game, then C∞(A) is a new
presentation of that game retaining only positions, forgetting individual moves.

CHAPTER 13. FURTHER WORK 369

Accordingly, a strategy in the sense of Abramsky and Melliès cannot play individual
moves and acts on positions instead. Applied to a position x, a strategy � saturates it,
returning a new position that intuitively incorporates all moves that � is prepared to play
in x (or⊤ if the strategy is undefined on the current position). More precisely, strategies
are continuous, stable closure operators11 – recall f ∶ D → D′ between dI-domains is
stable iff for x, y ∈ D, if x, y are bounded then f (x ∧ y) = f (x) ∧ f (y).
Definition 13.6.5. A closure-strategy on dI-domainD, written � ∶ D, is a continuous
stable closure operator on D⊤, i.e. a continuous function � ∶ D⊤ → D⊤ which is:

extensive: for all x ∈ D⊤, x ≤ �(x),
idempotent: for all x ∈ D⊤, �(�(x)) = �(x)),

stable: there is a stable function f ∶ D → D satisfying that
for all x ∈ D such that �(x) ≠ ⊤, �(x) = x ∨ f (x).

Stable implies extensive, however we state it separately as extensive and idempotent
together they define a closure operator, a standard notion independently of stability.
The strategies may be composed; and Abramsky and Melliès construct a category

ClosOp of dI-domains and closure-strategies, using which they build a fully complete
model of linear logic. Naively, it might seem full completeness follows by “fixing” the
non-associativity of composition in Blass games [Blass, 1992], and thus reinstating the
equational laws expected of a model of MALL. In truth, the situation is more subtle:
Abramsky and Melliès (implicitly) construct a model of a polarized version of MALL.
It is then the positionality of strategies in ClosOp that allows the depolarization to
MALL to induce a congruence, reinstating the desired equational laws and obtaining
full completeness, as made more explicit in later work by Melliès [Melliès, 2005].
In [Clairambault, 2023], I revisit this story in the context of concurrent games on

event structures. A lot of that paper consists in a synthesis of old ideas, already existing
in the literature (though with a different technical underpinning).

From event structures to closure operators. But this article also has original contri-
butions, with in particular the first proper treatment of the relationship between move-
based game semantics and Abramsky and Melliès’ model. Though the intuition seems
clear, the definition is not so obvious (several incorrect attempts appear in the literature).
Given a (causally deterministic) concurrent strategy � ∶ A, we must define

Clos(�) ∶ C∞(A)→ C∞(A)

a closure-strategy. Given xA ∈ C∞(A), by causal determinism, there is at most one
x� ∈ C∞(�) such that)� x� = xA. If we can find such x� , then we may saturate it by
taking a maximal x� ⊆+ y� , and set Clos(�)(xA) = y�A. But what should we do if thereis no x� ∈ C∞(�) such that)� x� = xA? As it turns out, the correct answer is to play
all positive moves of � enabled in xA, even though xA might have positive moves that
� will never play. If doing so yields a conflict, then we return ⊤.

11Some additional conditions appear in the course of [Abramsky and Melliès, 1999], omitted here.

Chapter 14

Conclusions

14.1 The Work Done so Far
What do the following works have in common?

• Hyland and Ong’s fully abstract games model for PCF [Hyland and Ong, 2000],
• Abramsky and McCusker’s fully abstract games model for IA based on alternat-

ing non-innocent strategies [Abramsky and McCusker, 1996],
• Abramsky and Melliès’ fully complete model for MALL based on closure oper-

ators [Abramsky and Melliès, 1999],
• The relational model and its syntactic presentation, non-idempotent intersection

types [Girard, 1988],
• Ghica and Murawski’s fully abstract model for IA� [Ghica et al., 2006],
• The weighted relational model [Laird et al., 2013],
• Alternating probabilistic game semantics [Danos and Harmer, 2000],
• Generalized species of structure [Fiore et al., 2008],
• The Taylor expansion of �-terms [Ehrhard and Regnier, 2008],
• The GoI token machines [Danos and Regnier, 1996, Mackie, 1995].
The results presented in this monograph, accounting both for the work presented in

details in Parts II and III and that presented more synthetically in Chapter 13, show that
all these models are essentially obtained from concurrent games via forgetful opera-
tions: they are presentations of certain aspects of concurrent strategies. This list is of
course a tiny fragment of denotational semantics, but this already gives a sign that we
are getting closer to the full interactive behaviour mentioned in the introduction.

370

CHAPTER 14. CONCLUSIONS 371

Our point is certainly not that thismakes all thesemodels obsolete. Concurrent games
are too intensional for many purposes, and syntactic methods such as non-idempotent
intersection types or Taylor expansion, by working directly on syntax, avoid the over-
head brought by the categorical machinery of denotational semantics. More generally,
different purposes call for different tools; concurrent games unifies these models but
with the price of a high technical complexity which is not always desirable.
In contrast, we argue that this work strengthens all these models by inscribing them

within a common semantic landscape and making them part of a joint mathematical
theory. Many questions on their strengths, limitations and potential extensions can
be attacked under the lense of concurrent games: for one example, how should non-
idempotent intersection types and Taylor expansion of programs best deal with branch-
ing effects (such as non-determinism and parallelism) or quantitative effets (such as
probabilities)? Concurrent strategies support all this and extend Taylor expansion con-
servatively, so the question above is reduced to the following: can concurrent games be
described more syntactically, in the style of intersection types or Taylor expansion?

14.2 Open Problems
Next, here are some open problems around the theory presented in this monograph.
Those are not necessarily long-term research objectives or directions (though some
could be), but rather technical difficulties encountered during the technical develop-
ments, that we have not been able to solve and have had to avoid or work around.

14.2.1 Non-deterministic parallel innocence
In Chapter 10 we have developed the theory of parallel innocent causal strategies; but
our notion of innocence (Definitions 10.1.8 and 10.1.11) smuggles in causal determin-
ism, i.e. the absence of minimal conflicts between Player moves. But parallel innocence
is intended to ban state and more generally side-channel interference between threads,
there is no reason why it would necessarily enforce determinism. For instance, what
are the strategies generated by PCF� plus a non-deterministic choice operator >?
First of all, in the case of sequential innocence there is no problem, as spelled out in

Definition 13.2.1: the problem appears only for non-deterministic parallel innocence.
First, the conditions of Definition 13.2.1 do not work as-is: locally sequential is wrong
for obvious reasons (as it forbids parallel branching); locally conflicting forbids parallel-
or (see Figure 13.13) which should certainly be parallel innocent.
Recall that parallel innocence started with pre-innocence (Definition 10.1.8), which

follows the idea that Player cannot causally merge threads forked by Opponent. It is
natural to attempt to follow the same idea for conflict, and define:
Definition 14.2.1. For A a board, a visible � ∶ A is #-pre-innocent iff

#-pre-innocence: If m+1 � m+2 ∈ � and �1 _ m+1 , �2 _ m+2 ∈ gcc(�),
then min(�1) = min(�2) and their least distinct moves are positive.

CHAPTER 14. CONCLUSIONS 372

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

((o⊸ o ⊸ o) ⊸ o) ⊸ o ⊢ (o ⊸ o ⊸ o) ⊸ o ⊸ o ⊸ o

q−

%oouq+
C{{�

q−
C{{�

� ''.q+

1tt}
C{{�

q+

1tt}
C{{�

q−

) 118

q−

& //6

q−

� %%,

q−

� %%,q+ q+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊙

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

((o⊸ o ⊸ o) ⊸ o) ⊸ o

q−

M��

q+

M��
q−

<yy� M��

q+ q+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(o ⊸ o ⊸ o) ⊸ o ⊸ o ⊸ o

q−

)qqxq+

.ss{
=yy�

q−

� &&-

q−

� &&-q+ q+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Figure 14.1: The subtlety of non-deterministic parallel innocence

In other words, Player cannot impose conflict between threads forked by Opponent.
It is quite intuitive that strategies obtained from PCF� plus > must satisfy this, as

> can only be used to generate conflict between moves that share the same causal
predecessors. And for quite some time, we were convinced we had a proof that this
(in the presence of visibility) was stable under composition. With that condition, it is
then tempting to define parallel innocence without causal determinism but with #-pre-
innocence, so that it also covers non-deterministic parallel innocence.

However, #-pre-innocence is not stable under composition. The strategy
(o ⊸ o) ⊢ o ⊸ o ⊸ (o ⊸ o ⊸ o) ⊸ o

q−

#nnt
8ww�

q+
8ww�

q+

,rrz
8ww�

q−

� $$,

q−

,rrz

q−

,rrzq+ q+

is visible, pre-innocent and #-pre-innocent, but its composition with the identity on o
is not, as the minimal conflict is transported to the two final positive moves, though the
gccs leading to them are forked by Opponent. Therefore the open question is:
Open question 14.2.2. Define a condition of non-deterministic parallel innocence.
Non-deterministic parallel innocence should compose, and support the interpretation

of PCF� with >, and of parallel-or. Additionally, non-deterministic parallel innocent
strategies which are causally deterministic should be parallel innocent in the sense of
this monograph. Non-deterministic parallel innocent strategies which are sequential
should be non-deterministic sequential innocent as in Definition 13.2.1.

In other word, the problem is to disentangle non-determinism and parallelism.
Note that non-deterministic parallel innocence is not going to be conservative with

respect to deterministic parallel innocence (which probably means that we do not have

CHAPTER 14. CONCLUSIONS 373

deterministic parallel innocence quite right either) as illustrated in Figure 14.1. By
composing a deterministic parallel innocent strategywith a sequential non-deterministic
innocent strategy (that is obviously definable in a non-deterministic linear �-calculus
with non-deterministic choice), we break #-pre-innocence. Something is wrong with
the deterministic parallel innocent strategy of Figure 14.1, but it seems that it cannot be
banned with simple, local forbidden patterns as in pre-innocence and #-pre-innocence;
our best guess is a global correctness criterion in the style of linear logic proof nets.
Once equipped with a satisfactory notion of non-deterministic innocence, it would

be natural to further seek a corresponding extension of the sequential probabilistic in-
nocence of Definition 13.2.2 to a full parallel probabilistic innocence.

14.2.2 Proper determinism
An issue strongly related to proper non-deterministic parallel innocence, is that of de-
terminism. As we have seen, IA� is a genuinely non-deterministic language, due to
the combination of parallelism and state causing races in the memory. Accordingly, in
Part III, our conditions of parallel innocence and sequentiality each had to reimpose
determinism; but this was done is radically different ways.
Recall indeed causal determinism, a part of parallel innocence:

Definition 10.1.1. Consider � ∶ A ⊢ B a causal strategy.
We say � is causally deterministic if for all s � s′ in �, pol(s) = pol(s′) = −.

And recall also sequential determinism, a part of sequentiality:
Definition 11.1.4. A strategy � ∈ NTCG(A,B) is sequential if:

pointed: if s ∈ �, there is a unique init(s) ≤� s minimal in �,sequential determinism: if tn+1 , tn
+
2 ∈ ⇵-ℒ (�), then n1 = n2,

sequential visibility: if s ∈ ⇵-ℒ (�), writing ⌜s⌝ = s1… sn and 1 ≤ j ≤ n,
if sj is non-minimal then there is 1 ≤ i < j s.t. j(sj) = si,

where the justifier j(m) of m ∈ � refers to Definition 10.2.1.

Open question 14.2.3. Define a proper notion of determinism, unifying these two.

Note that such a proper determinism should not be compositional – indeed both IA
and PCF� are deterministic languages, but their union is not. However, proper determin-
ism should become compositional in conjunction with either non-deterministic parallel
innocence and non-deterministic sequentiality.
As a reasonable starting point, it might be that in the presence of (an appropriate

notion of) non-deterministic parallel innocence, sequential determinism implies causal
determinism. Indeed, proving that amounts to showing that all Player immediate con-
flicts are reachable in an alternating linearization, which seems plausible, if conflicting
patterns are anything like the globules of Definition 10.5.1.

CHAPTER 14. CONCLUSIONS 374

14.2.3 All well-bracketings
Rather than the clear statement of an open problem, this is a description of an unfortu-
nate state of affairs in this monograph: namely, the status of well-bracketing – under-
stood broadly as a constraint on the function call/return discipline. In this monograph,
we have seen four different mechanisms akin to well-bracketing.
Firstly, of course, we have seen the traditional chronological well-bracketing of Sec-

tion 3.2.2, explicitly requiring that calls and returns, ordered chronologically, are. . .well-
bracketed. This is of course very natural, though restricted to sequential plays.
Secondly, in non-alternating games we have seen logical well-bracketing (Section

5.1.1), also used in concurrent games when constructing_-Strat (Section 9.3.1). Log-
ical well-bracketing asks that a function may only call its arguments before it returns,
andmay only return once all called arguments have returned. A logically well-bracketed
play may not be chronologically well-bracketed even if alternating (Figure 5.3).
Next, in the definition ofNTCGwe have deployedwinning conditions (Section 8.2.2)

imported from [Melliès and Tabareau, 2007]. This positional well-bracketing, avoid-
ing the explicit disctinction of Questions and Answers, treats well-bracketing as a lin-
earity constraint: a call may only be answered once. The winning mechanism enforces
that winning strategies are never the first to break this linearity constraint, which hits
surprisingly close to chronological well-bracketing at least for sequential innocent total
strategies. In general, positional well-bracketing does not subsume the other more in-
teractive notions, and e.g. cannot guarantee finite definability result. On the other hand,
it is by far the best way to formulate the relational collapse of Section 10.4.
Finally, we have seen globularity, which is a causal well-bracketing: it ensures that

the forking of merging of threads also respects the call/return discipline for parallel
innocent strategies, in that a strategy may not merge threads with calls still pending
since their fork. Again this is not guaranteed by our previous notions, bit is nevertheless
required for the definability result of Chapter 12.
This profusion of subtly different notions of well-bracketing is messy and unsatisfac-

tory. It feels that they could be unified in principle, but at the cost of requiring importing
even more intensional information onto strategies, such as the concurrency pointers of
[Laird, 2001b] to distinguish causal links coming from the term structure from those
going through side-channel communication – this may allow us to extend causal well-
bracketing beyond parallel innocent strategies. But does this actually work? And is it
worth making the model even more complex? We leave this as an exercise to the reader.

14.2.4 Observing causality
Typically, concurrent games models are not fully abstract; as argued in Section 1.6
the strength of concurrent games is not to capture observational equivalence, but to
record intensional information. Nevertheless, it is natural to wonder under which cir-
cumstances this causal information might be observed. From full abstraction results
such as Theorem 5.1.12, this seems to boil down to asking when causal strategies may
be entirely recovered (up to positive iso) from their non-alternating plays.

CHAPTER 14. CONCLUSIONS 375

As presented in Section 13.1.1, the causal information cannot be reconstructed from
plays in general. But we think it might be under the right circumstances: if each move
can be replicated and the strategy is parallel innocent, then in principle causality may
be observed by duplicating Opponent moves and observing the triggered duplications
of Player moves. Indeed in examples, it is usually easy to define plays that separate
distinct parallel innocent strategies. This brings us to the conjecture:
Conjecture 14.2.4. Consider A a mixed board such that no moves are answers, and
�, � ∶ A two (possibly finite) parallel innocent strategies.
If ↺-Unf (�) =↺-Unf (�), then � ≈ � .

If this was the case, it would likely entail that two terms in PCF� yield isomorphic
strategies if and only if they cannot be distinguished by contexts from IA� extended
with a control operator. However, one should not underestimate this problem: given a
non-alternating play s, there may in principle be several parts of the strategy causing it
– thus it is hard to pin down what one individual play teaches us about a strategy.
Perhaps the right path to that conjecture is via another:

Conjecture 14.2.5. Consider A a mixed board such that no moves are answers, and
�, � ∶ A two (possibly finite) parallel innocent strategies.
If ⦗�⦘ = ⦗�⦘, then � ≈ � .

In [Blondeau-Patissier and Clairambault, 2021], we have already proved this for fi-
nite sequential innocent strategies. It would imply Conjecture 14.2.4, since the rela-
tional collapse can be extracted from the plays. The proof method for the sequential
innocent case seems to extend in principle, but it becomes very technical and so far we
have not managed to work out the details.

14.3 Perspectives and Future Directions
While the open problems abovemay tie loose ends and offer good avenues for short-term
technical developments, they do not give long-term overarching research directions for
the future. While we believe that the work reported here gives valuable steps in the
direction presented in our introduction, the long-term goal is to use concurrent games
to help make denotational semantics a connected mathematical theory. This suggests a
wealth of research directions for the future, and we now introduce some of them.

The cube of branching structure. The core contribution of this monograph is the
disentangling of parallelism and state, leading to a semantic square in the style of that
presented in Section 3.3.3. This fits together parallelism and state in a single model,
but why only those? After all, there are multiple other programming features studied
in the game semantics litterature – to cite only a few: control operators, exceptions,
higher-order references, coroutines, probabilistic choice, etc. In principle, all of those
semantics could be reformulated within concurrent games, but it does not seem such
a good research strategy to do it exhaustively for all of them – if only because such a
massive undertaking would prevent us from investigating other interesting questions.

CHAPTER 14. CONCLUSIONS 376

Figure 14.2: The cube of branching structures

So we introduce the following criterion. Some of the features above change the rules
following which control flows through the program, but do not change the geometry of
the control flow – this includes control operators, exceptions, higher-order references
and coroutines: adding any of those to a sequential deterministic programming language
yields a sequential deterministic programming language.
In contrast, some programming features heavily affect the geometric shape of exe-

cution: in this monograph, we have investigated in depth parallelism, and also non-
determinism arising from the combination of parallelism and state. Non-determinism
makes execution a tree, parallelism makes it a partial order, and the two together turn
execution into an event structure. This makes concurrent games based on event struc-
tures perfect for this combination; we argue it is their ability to represent explicitly this
branching structure that made possible the results presented in Part III. We expect giv-
ing a proper treatment of a new branching structure is a more fundamental problem than
dealing with other programming features: after all, most of the non-branching effects
mentioned above did not require changing much of the basic sequential deterministic
game semantics canvas; unlike the results presented in this monograph.
There is a major branching structure that is not properly covered within this mono-

graph: probabilistic choice. By itself, it differs from non-deterministic choice by the ad-
dition of quantitative weigths representing probabilities (as described in Section 13.2).
But more fundamentally, it is the branching structure in the presence of all three of par-
allelism, non-determinism and probabilistic choice that poses the real challenge. This
combination of branching effects is embodied by the cube in Figure 14.2.
Its left hand face is that studied in Part III. Its front face seems easy to handle working

from the results of Section 13.2. The real challenge is in dealing with the all three effects
together, which requires us to elaborate concurrent strategies to deal with the combina-
tion of non-determinism and probabilistic choice – perhaps based on de Visme’s mixed
event structures [de Visme, 2019]. But besides having to develop a new theory of con-

CHAPTER 14. CONCLUSIONS 377

current games, constructing a semantic cube to match Figure 14.2 means wemust solve
the open problems of Section 14.2.1 and give proper notions of probabilistic and non-
deterministic parallel innocence. So this is a long-term objective that will require many
developments before we can properly tackle it.

Call-by-value and evaluation order. Amajor element missing from all the develop-
ment presented in this monograph, is evaluation order. All the languages considered
here are call-by-name. This is mainly for historical reasons, because we connect to
earlier work in the literature which is set in call-by-name. There is no obstacle, in
principle, to replaying the results presented here in call-by-value: in particular, it has
been known for a long time how to build games models for call-by-value languages
[Abramsky and McCusker, 1997, Honda and Yoshida, 1999]. Our point here is not to
redo all the previous work in call-by-value, as this would be a major undertaking offer-
ing comparatively little conceptual insight – though some of it does need to be redone.
There are several frameworks for languages and models encompassing both call-

by-name and call-by-value: the main example is of course Levy’s call-by-push-value
[Levy, 1999] which focuses on the impact of evaluation order on effects, but also oth-
ers such as the bang calculus (inspired from Girard’s translations of intuitionistic logic
into linear logic), which instead captures evaluation order via its impact on resource
consumption [Ehrhard and Guerrieri, 2016]. Or finally, system L [Curien et al., 2016],
encompassing both. This latter system, to our knowledge, does not yet have a concrete
games model, which is unfortunate since it is the family of models that gives a concrete
account of both effects and resources. A concurrent games analysis of such systems
could be enlightening and also help us understand how parallelism fits into this picture.
In fact, there is currently increasing research activity revisiting classical topics (such

as the pure �-calculus, solvability, Böhm trees etc) in call-by-value. It seems that ad-
equate notions of infinite normal forms in call-by-value include permutative equiva-
lences inducing the structure of a DAG, rather than simply a tree [Accattoli et al., 2023],
meaning that it might naturally yield a parallel innocent concurrent strategy. A natu-
ral question is that of full abstraction for the pure �-calculus in call-by-value, which
is still missing; drawing inspirations from the results of this monograph this also of-
fers enticing areas of investigation, connecting concurrent games with Taylor expansion
[Kerinec et al., 2020] and intersection types [Arrial et al., 2023] in call-by-value.
Finally, a major objective is to extend our geometry of interaction multi-token ma-

chine presented in Section 13.5 to a call-by-value language – this is a prerequisite before
we can seriously investigate if it might be useful in practice. We have preliminary ideas
about how such a machine should work exploiting subtle memoization mechanisms in
Petri nets, but much ground work is needed: in call-by-name, the validity of the ma-
chine rests on the adequate concurrent games model of IA� presented in Chapter 9, and
no such model exists yet for a higher-order call-by-value stateful concurrent language.

Taylor expansion and intersection types. As reported in Section 13.4.3, for the pure
�-calculus, concurrent games offer a representation of programs very close to that pro-
posed by the Taylor expansion of �-terms [Ehrhard and Regnier, 2008] – more pre-

CHAPTER 14. CONCLUSIONS 378

cisely, concurrent strategies form what could be regarded as a very rigid Taylor expan-
sion. With respect to game semantics, the Taylor expansion of �-terms has the advan-
tage of being a syntactic method. This makes it much easier to deploy, and with a much
tighter connection with the original syntax. In return, concurrent games are much more
general, supporting with in the same framework many additional programming features
including non-determinism, concurrency, probabilistic choice, shared memory, etc.
This suggests a number of natural questions: to what extent could concurrent games

models be presented syntactically beyond the pure �-calculus? How does it compare
with existing extensions of the Taylor expansion, such as for non-deterministic choice
[Olimpieri and Vaux Auclair, 2022] or probabilistic choice [Dal Lago and Leventis, 2019]?
Can we use concurrent games as a guide to construct intersection type systems or Tay-
lor expansions for effectful languages (such as IA�), giving us the expressiveness of
concurrent games models without all the accompanying technical complications?

Categorification. Games models lack uniformity; while they often formalize sim-
ilar ideas and follow a common methodology, different models usually rest on very
different technical underpinnings. The work presented in this monograph attempts
to cope with this state of affairs by linking the models together, providing functo-
rial bridges that make explicit how they relate to concurrent games. But a comple-
mentary methodology is to capture the construction of various games models as in-
stances of one common categorical construction; notable works in this direction in-
clude [Eberhart and Hirschowitz, 2018] and more recently, Melliès’ template games
[Melliès, 2019a,Melliès, 2019b]. However, for the time being, concurrent games evade
this categorical unification. Melliès’ original template games lack mechanisms to elim-
inate deadlocking synchronizations – a new, more elaborate version [Melliès, 2021]
does capture the interaction of concurrent strategies (see Proposition 6.2.13), but not
the composition, for subtle reasons. So the question remains open: how should template
games be generalized so as to encompass concurrent games?
A strongly related topic is the proper categorical treatment of symmetries in con-

current games. Recently [Clairambault and Forest, 2023], we constructed a cartesian
closed bicategory of certain spans of groupoids, reproducing categorically much of the
structure of symmetries in thin concurrent games (but, like template games, also failing
to account for deadlocks in compositions). It is our conviction that a proper categorifi-
cation of game semantics should rest on thin spans of groupoids. The link with template
games is fascinating, as the twomodels use completely different mechanisms to account
for replication of resources – thin spans are thin as in thin concurrent games, while tem-
plate games are saturated (as in Section 7.1.2). Another fundamental question is the
link with distributors and generalized species of structure; we give some elements in
[Clairambault et al., 2023b] but this should be completed to account for inclusion of
configurations and not just symmetries, and should also include a proper treatment of
the linear bicategorical (or double-categorical) structure.
Thin spans of groupoids really are thin concurrent games without concurrent games.

It seems that many of our passed achievements with thin concurrent games (typically,
the enrichment with quantitative valuations and the corresponding relational collapses,

CHAPTER 14. CONCLUSIONS 379

up to generalized species of structure) are actually independent from the basic game
mechanisms, and should really be carried out in thin spans of groupoids instead. We
should spell this out and investigate extensions made possible by the fact that we are no
longer hindered by the intricate combinatorics of strategy composition.

Qualitative concurrent games. Thin concurrent games are a quantitative model, in
the sense that they record explicitly themultiplicity of resource usage – even more, each
individual move has a separate identity, formalized as a copy index. In categorified re-
lational models such as distributors, it is possible to change the exponential modality
to make it qualitative; this is done by changing the morphisms in !A so as to allow
contraction and weakening. In principle, the same could be done in thin concurrent
games, by generalizing symmetries to encompass more general relations between con-
figurations that may not preserve multiplicity. There are fundamental questions to solve
regarding how such relations behave with respect to polarity. A first concrete objective
would be to construct such a generalization of thin concurrent games, and deduce a
new, more concrete proof of Ehrhard’s extensional collapse theorem [Ehrhard, 2012]
linking qualitative and quantitative models.
One interest of such a concrete proof is that we expect it to generalize in a situ-

ation with infinite multiplicities. More precisely, we aim to generalize the relational
collapse presented in this monograph to a collapse to the infinitary relational model
[Grellois and Melliès, 2015], also accounting for infinite configurations. Paired with an
infinitary version of Ehrhard’s extensional collapse, we expect this is the key ingredient
to a purely semantic proof of the decidability of the higher-order model-checking prob-
lem, which would be a beautiful illustration of the strength of thin concurrent games.

Bibliography

[Abramsky, 2003] Abramsky, S. (2003). Sequentiality vs. concurrency in games and
logic. Math. Struct. Comput. Sci., 13(4):531–565.

[Abramsky et al., 1998] Abramsky, S., Honda, K., and McCusker, G. (1998). A fully
abstract game semantics for general references. In Thirteenth Annual IEEE Sympo-
sium on Logic in Computer Science, Indianapolis, Indiana, USA, June 21-24, 1998,
pages 334–344. IEEE Computer Society.

[Abramsky et al., 2000] Abramsky, S., Jagadeesan, R., and Malacaria, P. (2000). Full
abstraction for PCF. Inf. Comput., 163(2):409–470.

[Abramsky and McCusker, 1996] Abramsky, S. and McCusker, G. (1996). Linearity,
sharing and state: a fully abstract game semantics for idealized algol with active
expressions. Electron. Notes Theor. Comput. Sci., 3:2–14.

[Abramsky and McCusker, 1997] Abramsky, S. and McCusker, G. (1997). Call-by-
value games. In CSL, volume 1414 of Lecture Notes in Computer Science, pages
1–17. Springer.

[Abramsky and Melliès, 1999] Abramsky, S. and Melliès, P. (1999). Concurrent
games and full completeness. In LICS, pages 431–442. IEEE Computer Society.

[Accattoli et al., 2023] Accattoli, B., Faggian, C., and Lancelot, A. (2023). Normal
form bisimulations by value. CoRR, abs/2303.08161.

[Alcolei et al., 2018] Alcolei, A., Clairambault, P., Hyland, M., and Winskel, G.
(2018). The true concurrency of herbrand’s theorem. In CSL, volume 119 of LIPIcs,
pages 5:1–5:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[Alcolei et al., 2019] Alcolei, A., Clairambault, P., and Laurent, O. (2019). Resource-
tracking concurrent games. In FoSSaCS, volume 11425 of Lecture Notes in Com-
puter Science, pages 27–44. Springer.

[Altenkirch et al., 2010] Altenkirch, T., Chapman, J., and Uustalu, T. (2010). Monads
need not be endofunctors. In International Conference on Foundations of Software
Science and Computational Structures, pages 297–311. Springer.

[Arnold and Niwiński, 2001] Arnold, A. and Niwiński, D. (2001). Rudiments of �-
calculus. Elsevier.

380

BIBLIOGRAPHY 381

[Arrial et al., 2023] Arrial, V., Guerrieri, G., and Kesner, D. (2023). Quantitative in-
habitation for different lambda calculi in a unifying framework. Proc. ACMProgram.
Lang., 7(POPL):1483–1513.

[Baillot, 1999] Baillot, P. (1999). Approches dynamiques en sémantique de la logique
linéaire: jeux et géométrie de l’interaction. PhD thesis, Aix-Marseille 2.

[Baillot et al., 1997a] Baillot, P., Danos, V., Ehrhard, T., and Regnier, L. (1997a). Be-
lieve it or not, ajm’s games model is a model of classical linear logic. In LICS, pages
68–75. IEEE Computer Society.

[Baillot et al., 1997b] Baillot, P., Danos, V., Ehrhard, T., and Regnier, L. (1997b).
Timeless games. In Computer Science Logic, 11th International Workshop, CSL
’97, Annual Conference of the EACSL, Aarhus, Denmark, August 23-29, 1997, Se-
lected Papers, pages 56–77.

[Blass, 1992] Blass, A. (1992). A game semantics for linear logic. Ann. Pure Appl.
Log., 56(1-3):183–220.

[Blondeau-Patissier and Clairambault, 2021] Blondeau-Patissier, L. and Clairambault,
P. (2021). Positional injectivity for innocent strategies. In Kobayashi, N., editor,
6th International Conference on Formal Structures for Computation and Deduc-
tion, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Conference),
volume 195 of LIPIcs, pages 17:1–17:22. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik.

[Blondeau-Patissier et al., 2023a] Blondeau-Patissier, L., Clairambault, P., and Vaux
Auclair, L. (2023a). Extensional taylor expansion. CoRR, abs/2305.08489.

[Blondeau-Patissier et al., 2023b] Blondeau-Patissier, L., Clairambault, P., and Vaux
Auclair, L. (2023b). Strategies as resource terms, and their categorical semantics.
In Gaboardi, M. and van Raamsdonk, F., editors, 8th International Conference on
Formal Structures for Computation and Deduction, FSCD 2023, July 3-6, 2023,
Rome, Italy, volume 260 of LIPIcs, pages 13:1–13:22. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik.

[Blute et al., 2020] Blute, R., Cockett, J. R. B., Lemay, J. P., and Seely, R. A. G. (2020).
Differential categories revisited. Appl. Categorical Struct., 28(2):171–235.

[Boudes, 2009] Boudes, P. (2009). Thick subtrees, games and experiments. In
Typed Lambda Calculi and Applications, 9th International Conference, TLCA 2009,
Brasilia, Brazil, July 1-3, 2009. Proceedings, pages 65–79.

[Calderon and McCusker, 2010] Calderon, A. C. and McCusker, G. (2010). Under-
standing game semantics through coherence spaces. Electr. Notes Theor. Comput.
Sci., 265:231–244.

[Cartwright et al., 1994] Cartwright, R., Curien, P., and Felleisen, M. (1994). Fully
abstract semantics for observably sequential languages. Inf. Comput., 111(2):297–
401.

BIBLIOGRAPHY 382

[Castellan, 2015] Castellan, S. (2015). La stratégie de la fourchette. In Vingt-sixièmes
Journées Francophones des Langages Applicatifs (JFLA 2015).

[Castellan and Clairambault, 2016] Castellan, S. and Clairambault, P. (2016). Causal-
ity vs. interleavings in concurrent game semantics. In CONCUR, volume 59 of
LIPIcs, pages 32:1–32:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[Castellan and Clairambault, 2021] Castellan, S. and Clairambault, P. (2021). Disen-
tangling parallelism and interference in game semantics. Submitted.

[Castellan and Clairambault, 2023] Castellan, S. and Clairambault, P. (2023). The ge-
ometry of causality: Multi-token geometry of interaction and its causal unfolding.
Proc. ACM Program. Lang., 7(POPL):689–717.

[Castellan et al., 2018a] Castellan, S., Clairambault, P., Hayman, J., and Winskel, G.
(2018a). Non-angelic concurrent game semantics. In Baier, C. and Lago, U. D., ed-
itors, Foundations of Software Science and Computation Structures - 21st Interna-
tional Conference, FOSSACS 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-
20, 2018, Proceedings, volume 10803 of Lecture Notes in Computer Science, pages
3–19. Springer.

[Castellan et al., 2018b] Castellan, S., Clairambault, P., Paquet, H., and Winskel, G.
(2018b). The concurrent game semantics of probabilistic PCF. In LICS, pages 215–
224. ACM.

[Castellan et al., 2017a] Castellan, S., Clairambault, P., Rideau, S., and Winskel, G.
(2017a). Games and strategies as event structures. Log. Methods Comput. Sci.,
13(3).

[Castellan et al., 2014] Castellan, S., Clairambault, P., and Winskel, G. (2014). Sym-
metry in concurrent games. In Henzinger, T. A. andMiller, D., editors, Joint Meeting
of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL)
and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 28:1–28:10. ACM.

[Castellan et al., 2015] Castellan, S., Clairambault, P., and Winskel, G. (2015). The
parallel intensionally fully abstract games model of PCF. In 30th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10,
2015, pages 232–243. IEEE Computer Society.

[Castellan et al., 2017b] Castellan, S., Clairambault, P., and Winskel, G. (2017b).
Observably deterministic concurrent strategies and intensional full abstraction for
parallel-or. In FSCD, volume 84 of LIPIcs, pages 12:1–12:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

[Castellan et al., 2019] Castellan, S., Clairambault, P., and Winskel, G. (2019). Thin
games with symmetry and concurrent hyland-ong games. Log. Methods Comput.
Sci., 15(1).

BIBLIOGRAPHY 383

[Chappe et al., 2023] Chappe, N., He, P., Henrio, L., Zakowski, Y., and Zdancewic,
S. (2023). Choice trees: Representing nondeterministic, recursive, and impure pro-
grams in coq. Proc. ACM Program. Lang., 7(POPL):1770–1800.

[Clairambault, 2010] Clairambault, P. (2010). Logique et Interaction : une Étude Sé-
mantique de la Totalité. (Logic and Interaction : a Semantic Study of Totality). PhD
thesis, Paris Diderot University, France.

[Clairambault, 2023] Clairambault, P. (2023). A tale of additives and concurrency in
game semantics. In Samson Abramsky on Logic and Structure in Computer Science
and Beyond, pages 363–414. Springer.

[Clairambault and de Visme, 2020] Clairambault, P. and de Visme, M. (2020). Full
abstraction for the quantum lambda-calculus. Proc. ACM Program. Lang.,
4(POPL):63:1–63:28.

[Clairambault et al., 2019] Clairambault, P., de Visme, M., and Winskel, G. (2019).
Game semantics for quantum programming. Proc. ACM Program. Lang.,
3(POPL):32:1–32:29.

[Clairambault and Forest, 2023] Clairambault, P. and Forest, S. (2023). The cartesian
closed bicategory of thin spans of groupoids. In LICS, pages 1–13.

[Clairambault et al., 2012] Clairambault, P., Gutierrez, J., andWinskel, G. (2012). The
winning ways of concurrent games. In LICS, pages 235–244. IEEE Computer Soci-
ety.

[Clairambault and Harmer, 2010] Clairambault, P. and Harmer, R. (2010). Totality in
arena games. Ann. Pure Appl. Logic, 161(5):673–689.

[Clairambault et al., 2023a] Clairambault, P., Olimpieri, F., and Paquet, H. (2023a).
From thin concurrent games to generalized species of structure. In Proceedings of
the 38th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2023,
Boston, US, June 26–29, 2023. To appear.

[Clairambault et al., 2023b] Clairambault, P., Olimpieri, F., and Paquet, H. (2023b).
From thin concurrent games to generalized species of structures. In LICS, pages
1–14.

[Clairambault and Paquet, 2021] Clairambault, P. and Paquet, H. (2021). The quanti-
tative collapse of concurrent games with symmetry. CoRR, abs/2107.03155.

[Coquand, 1995] Coquand, T. (1995). A semantics of evidence for classical arithmetic.
J. Symb. Log., 60(1):325–337.

[Curien and Faggian, 2005] Curien, P. and Faggian, C. (2005). L-nets, strategies and
proof-nets. In CSL, volume 3634 of Lecture Notes in Computer Science, pages 167–
183. Springer.

[Curien et al., 2016] Curien, P., Fiore, M. P., and Munch-Maccagnoni, G. (2016). A
theory of effects and resources: adjunction models and polarised calculi. In POPL,
pages 44–56. ACM.

BIBLIOGRAPHY 384

[Dal Lago and Leventis, 2019] Dal Lago, U. and Leventis, T. (2019). On the taylor
expansion of probabilistic lambda-terms. In Geuvers, H., editor, 4th International
Conference on Formal Structures for Computation andDeduction, FSCD 2019, June
24-30, 2019, Dortmund, Germany, volume 131 of LIPIcs, pages 13:1–13:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

[Danos and Ehrhard, 2011] Danos, V. and Ehrhard, T. (2011). Probabilistic coher-
ence spaces as a model of higher-order probabilistic computation. Inf. Comput.,
209(6):966–991.

[Danos and Harmer, 2000] Danos, V. and Harmer, R. (2000). Probabilistic game se-
mantics. In LICS, pages 204–213. IEEE Computer Society.

[Danos et al., 1996] Danos, V., Herbelin, H., and Regnier, L. (1996). Game semantics
& abstract machines. In Proceedings, 11th Annual IEEE Symposium on Logic in
Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996, pages 394–
405. IEEE Computer Society.

[Danos and Regnier, 1996] Danos, V. and Regnier, L. (1996). Reversible, irreversible
and optimal lambda-machines. In Linear Logic Tokyo Meeting, volume 3 of Elec-
tronic Notes in Theoretical Computer Science, pages 40–60. Elsevier.

[de Carvalho and de Falco, 2012] de Carvalho, D. and de Falco, L. T. (2012). The re-
lational model is injective for multiplicative exponential linear logic (without weak-
enings). Ann. Pure Appl. Log., 163(9):1210–1236.

[de Visme, 2019] de Visme, M. (2019). Event structures for mixed choice. In Fokkink,
W. J. and van Glabbeek, R., editors, 30th International Conference on Concurrency
Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands, volume
140 of LIPIcs, pages 11:1–11:16. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik.

[Dixon et al., 2021a] Dixon, A., Lazic, R., Murawski, A. S., and Walukiewicz, I.
(2021a). Leafy automata for higher-order concurrency. In FoSSaCS, volume 12650
of Lecture Notes in Computer Science, pages 184–204. Springer.

[Dixon et al., 2021b] Dixon, A., Lazic, R., Murawski, A. S., and Walukiewicz, I.
(2021b). Verifying higher-order concurrency with data automata. In LICS, pages
1–13. IEEE.

[Eberhart and Hirschowitz, 2018] Eberhart, C. and Hirschowitz, T. (2018). What’s in a
game?: A theory of game models. In Dawar, A. and Grädel, E., editors, Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2018, Oxford, UK, July 09-12, 2018, pages 374–383. ACM.

[Eberhart et al., 2017] Eberhart, C., Hirschowitz, T., and Seiller, T. (2017). An inten-
sionally fully-abstract sheaf model for �(expanded version). Log. Methods Comput.
Sci., 13(4).

[Ehrhard, 2012] Ehrhard, T. (2012). The scott model of linear logic is the extensional
collapse of its relational model. Theor. Comput. Sci., 424:20–45.

BIBLIOGRAPHY 385

[Ehrhard and Guerrieri, 2016] Ehrhard, T. and Guerrieri, G. (2016). The bang calcu-
lus: an untyped lambda-calculus generalizing call-by-name and call-by-value. In
PPDP, pages 174–187. ACM.

[Ehrhard et al., 2018] Ehrhard, T., Pagani, M., and Tasson, C. (2018). Full abstraction
for probabilistic PCF. J. ACM, 65(4):23:1–23:44.

[Ehrhard and Regnier, 2003] Ehrhard, T. and Regnier, L. (2003). The differential
lambda-calculus. Theor. Comput. Sci., 309(1-3):1–41.

[Ehrhard and Regnier, 2008] Ehrhard, T. and Regnier, L. (2008). Uniformity and the
taylor expansion of ordinary lambda-terms. Theor. Comput. Sci., 403(2-3):347–372.

[Faggian and Hyland, 2002] Faggian, C. and Hyland, M. (2002). Designs, disputes
and strategies. In CSL, volume 2471 of Lecture Notes in Computer Science, pages
442–457. Springer.

[Faggian and Maurel, 2005] Faggian, C. and Maurel, F. (2005). Ludics nets, a game
model of concurrent interaction. In LICS, pages 376–385. IEEE Computer Society.

[Faggian and Piccolo, 2009] Faggian, C. and Piccolo, M. (2009). Partial orders, event
structures and linear strategies. In TLCA, volume 5608 of Lecture Notes in Computer
Science, pages 95–111. Springer.

[Fiore et al., 2008] Fiore, M., Gambino, N., Hyland, M., and Winskel, G. (2008). The
cartesian closed bicategory of generalised species of structures. Journal of the Lon-
don Mathematical Society, 77(1):203–220.

[Gabbay and Ghica, 2012] Gabbay,M. andGhica, D. R. (2012). Game semantics in the
nominal model. InMFPS, volume 286 of Electronic Notes in Theoretical Computer
Science, pages 173–189. Elsevier.

[Ghica, 2005] Ghica, D. R. (2005). Slot games: a quantitative model of computation.
In Palsberg, J. and Abadi, M., editors, Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2005, Long
Beach, California, USA, January 12-14, 2005, pages 85–97. ACM.

[Ghica and McCusker, 2003] Ghica, D. R. and McCusker, G. (2003). The regular-
language semantics of second-order idealized Algol. Theor. Comput. Sci., 309(1-
3):469–502.

[Ghica and Murawski, 2004] Ghica, D. R. and Murawski, A. S. (2004). Angelic se-
mantics of fine-grained concurrency. In FoSSaCS, volume 2987 of Lecture Notes in
Computer Science, pages 211–225. Springer.

[Ghica and Murawski, 2008] Ghica, D. R. and Murawski, A. S. (2008). Angelic se-
mantics of fine-grained concurrency. Ann. Pure Appl. Log., 151(2-3):89–114.

[Ghica et al., 2006] Ghica, D. R., Murawski, A. S., and Ong, C. L. (2006). Syntactic
control of concurrency. Theor. Comput. Sci., 350(2-3):234–251.

[Ghica and Tzevelekos, 2012] Ghica, D. R. and Tzevelekos, N. (2012). A system-level
game semantics. In Berger, U. and Mislove, M. W., editors, Proceedings of the 28th

BIBLIOGRAPHY 386

Conference on the Mathematical Foundations of Programming Semantics, MFPS
2012, Bath, UK, June 6-9, 2012, volume 286 of Electronic Notes in Theoretical
Computer Science, pages 191–211. Elsevier.

[Girard, 1987] Girard, J. (1987). Linear logic. Theor. Comput. Sci., 50:1–102.
[Girard, 1988] Girard, J. (1988). Normal functors, power series and �-calculus. Ann.

Pure Appl. Log., 37(2):129–177.
[Girard, 2001] Girard, J. (2001). Locus solum: From the rules of logic to the logic of

rules. Math. Struct. Comput. Sci., 11(3):301–506.
[Girard, 1989] Girard, J.-Y. (1989). Geometry of Interaction 1: Interpretation of Sys-

tem F. In Studies in Logic and the Foundations of Mathematics, volume 127, pages
221–260. Elsevier.

[Goyet, 2013] Goyet, A. (2013). The lambda lambda-bar calculus: a dual calculus for
unconstrained strategies. In POPL, pages 155–166. ACM.

[Grellois and Melliès, 2015] Grellois, C. and Melliès, P. (2015). An infinitary model
of linear logic. In Pitts, A. M., editor, Foundations of Software Science and Compu-
tation Structures - 18th International Conference, FoSSaCS 2015, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, volume 9034 of Lecture Notes in Com-
puter Science, pages 41–55. Springer.

[Griffin, 1990] Griffin, T. (1990). A formulae-as-types notion of control. In Allen,
F. E., editor, Conference Record of the Seventeenth Annual ACM Symposium on
Principles of Programming Languages, San Francisco, California, USA, January
1990, pages 47–58. ACM Press.

[Harmer, 1999] Harmer, R. (1999). Games and full abstraction for non-deterministic
languages. PhD thesis, Imperial College London, UK.

[Harmer, 2004] Harmer, R. (2004). Innocent game semantics. Lecture notes, 2007.
[Harmer et al., 2007] Harmer, R., Hyland, M., and Melliès, P. (2007). Categorical

combinatorics for innocent strategies. In LICS, pages 379–388. IEEE Computer
Society.

[Harmer and McCusker, 1999] Harmer, R. and McCusker, G. (1999). A fully abstract
game semantics for finite nondeterminism. In 14th Annual IEEE Symposium on
Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages 422–430. IEEECom-
puter Society.

[Honda and Yoshida, 1999] Honda, K. and Yoshida, N. (1999). Game-theoretic anal-
ysis of call-by-value computation. Theor. Comput. Sci., 221(1-2):393–456.

[Hyland and Ong, 2000] Hyland, J. M. E. and Ong, C. L. (2000). On full abstraction
for PCF: I, II, and III. Inf. Comput., 163(2):285–408.

[Hyland, 1997] Hyland, M. (1997). Game semantics. Semantics and Logics of Com-
putation, 14:131.

BIBLIOGRAPHY 387

[Hyland and Schalk, 2002] Hyland, M. and Schalk, A. (2002). Games on graphs and
sequentially realizable functionals. In 17th IEEE Symposium on Logic in Computer
Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings, pages
257–264. IEEE Computer Society.

[Jaber, 2015] Jaber, G. (2015). Operational nominal game semantics. In Pitts, A. M.,
editor, Foundations of Software Science and Computation Structures - 18th Interna-
tional Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings, volume 9034 of Lecture Notes in Computer Science, pages 264–278.
Springer.

[Jacq and Melliès, 2018] Jacq, C. andMelliès, P. (2018). Categorical combinatorics for
non deterministic strategies on simple games. In Baier, C. and Lago, U. D., editors,
Foundations of Software Science and Computation Structures - 21st International
Conference, FOSSACS 2018, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20,
2018, Proceedings, volume 10803 of Lecture Notes in Computer Science, pages 39–
70. Springer.

[Joyal, 1977] Joyal, A. (1977). Remarques sur la théorie des jeux à deux personnes.
Gazette des sciences mathématiques du Québec, 1(4):46–52.

[Kelly and Laplaza, 1980] Kelly, G. M. and Laplaza, M. L. (1980). Coherence for
compact closed categories. Journal of pure and applied algebra, 19:193–213.

[Ker et al., 2002] Ker, A. D., Nickau, H., and Ong, C. L. (2002). Innocent gamemodels
of untyped lambda-calculus. Theor. Comput. Sci., 272(1-2):247–292.

[Kerinec et al., 2020] Kerinec, A., Manzonetto, G., and Pagani, M. (2020). Revisiting
call-by-value böhm trees in light of their taylor expansion. Log. Methods Comput.
Sci., 16(3).

[Koenig and Shao, 2020] Koenig, J. and Shao, Z. (2020). Refinement-based game se-
mantics for certified abstraction layers. In LICS, pages 633–647. ACM.

[Krebbers et al., 2014] Krebbers, R., Leroy, X., and Wiedijk, F. (2014). Formal C se-
mantics: Compcert and the C standard. In Klein, G. and Gamboa, R., editors, Inter-
active Theorem Proving - 5th International Conference, ITP 2014, Held as Part of
the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceed-
ings, volume 8558 of Lecture Notes in Computer Science, pages 543–548. Springer.

[Laird, 1997] Laird, J. (1997). Full abstraction for functional languages with control.
In LICS, pages 58–67. IEEE Computer Society.

[Laird, 2001a] Laird, J. (2001a). A fully abstract game semantics of local exceptions.
In LICS, pages 105–114. IEEE Computer Society.

[Laird, 2001b] Laird, J. (2001b). A game semantics of idealized CSP. In MFPS, vol-
ume 45 of Electronic Notes in Theoretical Computer Science, pages 232–257. Else-
vier.

BIBLIOGRAPHY 388

[Laird, 2002] Laird, J. (2002). A categorical semantics of higher order store. In CTCS,
volume 69 of Electronic Notes in Theoretical Computer Science, pages 209–226.
Elsevier.

[Laird, 2007] Laird, J. (2007). A fully abstract trace semantics for general references.
In ICALP, volume 4596 of Lecture Notes in Computer Science, pages 667–679.
Springer.

[Laird et al., 2013] Laird, J., Manzonetto, G., McCusker, G., and Pagani, M. (2013).
Weighted relational models of typed lambda-calculi. In LICS, pages 301–310. IEEE
Computer Society.

[Lambek and Scott, 1988] Lambek, J. and Scott, P. J. (1988). Introduction to higher-
order categorical logic, volume 7. Cambridge University Press.

[Laurent, 2002] Laurent, O. (2002). Polarized games. In LICS, page 265. IEEE Com-
puter Society.

[Leroy, 2009] Leroy, X. (2009). Formal verification of a realistic compiler. Commun.
ACM, 52(7):107–115.

[Levy, 1999] Levy, P. B. (1999). Call-by-push-value: A subsuming paradigm. In
TLCA, volume 1581 of Lecture Notes in Computer Science, pages 228–242. Springer.

[Levy, 2014] Levy, P. B. (2014). Transition systems over games. Talk at the Chocola
seminar.

[Levy and Staton, 2014] Levy, P. B. and Staton, S. (2014). Transition systems over
games. In Joint Meeting of the Twenty-Third EACSL Annual Conference on Com-
puter Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18,
2014, pages 64:1–64:10.

[Loader, 2001] Loader, R. (2001). Finitary PCF is not decidable. Theor. Comput. Sci.,
266(1-2):341–364.

[Mackie, 1995] Mackie, I. (1995). The geometry of interaction machine. In POPL,
pages 198–208. ACM Press.

[McCusker, 2003] McCusker, G. (2003). On the semantics of the bad-variable con-
structor in algol-like languages. In MFPS, volume 83 of Electronic Notes in Theo-
retical Computer Science, pages 169–186. Elsevier.

[Melliès, 2004a] Melliès, P. (2004a). Asynchronous games 2: The true concurrency of
innocence. In CONCUR, volume 3170 of Lecture Notes in Computer Science, pages
448–465. Springer.

[Melliès, 2004b] Melliès, P. (2004b). Asynchronous games 3 an innocent model of
linear logic. In CTCS, volume 122 of Electronic Notes in Theoretical Computer
Science, pages 171–192. Elsevier.

[Melliès, 2005] Melliès, P. (2005). Asynchronous games 4: A fully complete model
of propositional linear logic. In LICS, pages 386–395. IEEE Computer Society.

BIBLIOGRAPHY 389

[Melliès, 2006] Melliès, P. (2006). Asynchronous games 2: The true concurrency of
innocence. Theor. Comput. Sci., 358(2-3):200–228.

[Melliès, 2019a] Melliès, P. (2019a). Categorical combinatorics of scheduling and syn-
chronization in game semantics. Proc. ACM Program. Lang., 3(POPL):23:1–23:30.

[Melliès, 2019b] Melliès, P. (2019b). Template games and differential linear logic.
In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019,
Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE.

[Melliès, 2021] Melliès, P. (2021). Asynchronous template games and the gray tensor
product of 2-categories. In 36th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE.

[Melliès and Mimram, 2007] Melliès, P. and Mimram, S. (2007). Asynchronous
games: Innocence without alternation. In CONCUR, volume 4703 of Lecture Notes
in Computer Science, pages 395–411. Springer.

[Melliès and Tabareau, 2007] Melliès, P. and Tabareau, N. (2007). Resource modali-
ties in game semantics. In LICS, pages 389–398. IEEE Computer Society.

[Melliès, 2003] Melliès, P.-A. (2003). Asynchronous games 1: Uniformity by group
invariance.

[Melliès, 2009] Melliès, P.-A. (2009). Categorical semantics of linear logic. Panora-
mas et synthèses, 27:15–215.

[Miller, 1987] Miller, D. A. (1987). A compact representation of proofs. Stud Logica,
46(4):347–370.

[Mimram, 2008] Mimram, S. (2008). Sémantique des jeux asynchrones et réécriture 2-
dimensionnelle. (Asynchronous Game Semantics and 2-dimensional Rewriting Sys-
tems). PhD thesis, Paris Diderot University, France.

[Moggi, 1991] Moggi, E. (1991). Notions of computation and monads. Inf. Comput.,
93(1):55–92.

[Murawski, 2007] Murawski, A. S. (2007). Bad variables under control. In CSL, vol-
ume 4646 of Lecture Notes in Computer Science, pages 558–572. Springer.

[Murawski, 2010] Murawski, A. S. (2010). Full abstraction without synchronization
primitives. InMFPS, volume 265 of Electronic Notes in Theoretical Computer Sci-
ence, pages 423–436. Elsevier.

[Murawski and Tzevelekos, 2013] Murawski, A. S. and Tzevelekos, N. (2013). De-
constructing general references via game semantics. In FoSSaCS, volume 7794 of
Lecture Notes in Computer Science, pages 241–256. Springer.

[New et al., 2016] New, M. S., Bowman, W. J., and Ahmed, A. (2016). Fully abstract
compilation via universal embedding. In Garrigue, J., Keller, G., and Sumii, E.,
editors, Proceedings of the 21st ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, pages 103–
116. ACM.

BIBLIOGRAPHY 390

[Nickau, 1994] Nickau, H. (1994). Hereditarily sequential functionals. In Nerode, A.
and Matiyasevich, Y. V., editors, Proceedings of the Symposium on Logical Foun-
dations of Computer Science: Logic at St. Petersburg, volume 813 of Lecture Notes
in Computer Science, pages 253–264. Springer Verlag.

[O’Hearn, 2015] O’Hearn, P. W. (2015). From categorical logic to facebook engineer-
ing. In LICS, pages 17–20. IEEE Computer Society.

[Olimpieri, 2021] Olimpieri, F. (2021). Intersection type distributors. In 36th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June
29 - July 2, 2021, pages 1–15. IEEE.

[Olimpieri and Vaux Auclair, 2022] Olimpieri, F. and Vaux Auclair, L. (2022). On the
taylor expansion of �-terms and the groupoid structure of their rigid approximants.
Log. Methods Comput. Sci., 18(1).

[Pagani et al., 2014] Pagani, M., Selinger, P., and Valiron, B. (2014). Applying quan-
titative semantics to higher-order quantum computing. In POPL, pages 647–658.
ACM.

[Paquet, 2020] Paquet, H. (2020). Probabilistic concurrent game semantics. Technical
report, University of Cambridge, Computer Laboratory.

[Paquet, 2023] Paquet, H. (2023). Bi-invariance for uniform strategies on event struc-
tures. Electronic Notes in Theoretical Informatics and Computer Science, 1.

[Plotkin, 1977] Plotkin, G. D. (1977). LCF considered as a programming language.
Theor. Comput. Sci., 5(3):223–255.

[Plotkin, 1981] Plotkin, G. D. (1981). Post-graduate lecture notes in advanced domain
theory (incorporating the∖pisa notes"). Dept. of Computer Science, Univ. of Edin-
burgh.

[Rideau and Winskel, 2011] Rideau, S. andWinskel, G. (2011). Concurrent strategies.
In Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science,
LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada, pages 409–418. IEEE
Computer Society.

[Sakayori and Tsukada, 2017] Sakayori, K. and Tsukada, T. (2017). A truly concurrent
gamemodel of the asynchronous \pi -calculus. InFoSSaCS, volume 10203 of Lecture
Notes in Computer Science, pages 389–406.

[Saunders-Evans and Winskel, 2006] Saunders-Evans, L. and Winskel, G. (2006).
Event structure spans for nondeterministic dataflow. In EXPRESS, volume 175 of
Electronic Notes in Theoretical Computer Science, pages 109–129. Elsevier.

[Scott and Strachey, 1971] Scott, D. S. and Strachey, C. (1971). Toward a mathemat-
ical semantics for computer languages, volume 1. Oxford University Computing
Laboratory, Programming Research Group Oxford.

[Selinger, 1997] Selinger, P. (1997). First-order axioms for asynchrony. In
Mazurkiewicz, A. W. and Winkowski, J., editors, CONCUR ’97: Concurrency The-

BIBLIOGRAPHY 391

ory, 8th International Conference, Warsaw, Poland, July 1-4, 1997, Proceedings,
volume 1243 of Lecture Notes in Computer Science, pages 376–390. Springer.

[Stewart et al., 2015] Stewart, G., Beringer, L., Cuellar, S., and Appel, A. W. (2015).
Compositional compcert. In POPL, pages 275–287. ACM.

[Tsukada and Ong, 2015] Tsukada, T. andOng, C. L. (2015). Nondeterminism in game
semantics via sheaves. In 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 220–231. IEEE Computer
Society.

[Tsukada and Ong, 2016] Tsukada, T. and Ong, C. L. (2016). Plays as resource terms
via non-idempotent intersection types. In Grohe, M., Koskinen, E., and Shankar, N.,
editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 237–246. ACM.

[Turi and Plotkin, 1997] Turi, D. and Plotkin, G. D. (1997). Towards a mathematical
operational semantics. In LICS, pages 280–291. IEEE Computer Society.

[Tzevelekos, 2009] Tzevelekos, N. (2009). Full abstraction for nominal general refer-
ences. Log. Methods Comput. Sci., 5(3).

[Vale et al., 2023] Vale, A. O., Shao, Z., and Chen, Y. (2023). A compositional theory
of linearizability. Proc. ACM Program. Lang., 7(POPL):1089–1120.

[Winskel, 1980] Winskel, G. (1980). Events in computation. PhD Thesis, Edinburgh
University.

[Winskel, 1982] Winskel, G. (1982). Event structure semantics for CCS and related
languages. In Nielsen, M. and Schmidt, E. M., editors, Automata, Languages and
Programming, 9th Colloquium, Aarhus, Denmark, July 12-16, 1982, Proceedings,
volume 140 of Lecture Notes in Computer Science, pages 561–576. Springer.

[Winskel, 1986] Winskel, G. (1986). Event structures. In Brauer, W., Reisig, W., and
Rozenberg, G., editors, Petri Nets: Central Models and Their Properties, Advances
in Petri Nets 1986, Part II, Proceedings of an Advanced Course, Bad Honnef, Ger-
many, 8-19 September 1986, volume 255 of Lecture Notes in Computer Science,
pages 325–392. Springer.

[Winskel, 1993] Winskel, G. (1993). The formal semantics of programming lan-
guages: an introduction. MIT press.

[Winskel, 2007] Winskel, G. (2007). Event structures with symmetry. Electron. Notes
Theor. Comput. Sci., 172:611–652.

[Winskel, 2013a] Winskel, G. (2013a). Distributed probabilistic and quantum strate-
gies. In MFPS, volume 298 of Electronic Notes in Theoretical Computer Science,
pages 403–425. Elsevier.

[Winskel, 2013b] Winskel, G. (2013b). Strategies as profunctors. In Pfenning, F.,
editor, Foundations of Software Science and Computation Structures - 16th Interna-
tional Conference, FOSSACS 2013, Held as Part of the European Joint Conferences

BIBLIOGRAPHY 392

on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings, volume 7794 of Lecture Notes in Computer Science, pages 418–433.
Springer.

[Xia et al., 2020] Xia, L., Zakowski, Y., He, P., Hur, C., Malecha, G., Pierce, B. C., and
Zdancewic, S. (2020). Interaction trees: representing recursive and impure programs
in coq. Proc. ACM Program. Lang., 4(POPL):51:1–51:32.

Part V

Appendices

393

Appendix A

Complements on Relative Seely
Categories

Like many other works in denotational semantics, the developments appearing in this
monograph target programming languages with a non-linear type system, whosemodels
are certain cartesian closed categories. But as is also common in denotational seman-
tics, our cartesian closed categories are constructed following a linear decomposition,
from a model of intuitionistic linear logic. A standard categorical structure used for this
purpose is that of a Seely category [Melliès, 2009]: it is a symmetric monoidal closed
category also equipped with a cartesian structure along with a comonad ! on and

!A⊗ !B ≅ !(A&B) , 1 ≅ !⊤ ,

natural isos called the Seely isomorphisms satisfying a few coherence conditions.
It is possible to build a genuine Seely category of games and concurrent strategies,

and this is done for instance in [Castellan and Clairambault, 2021]. But the construction
is inelegant: as argued in Section 8.2, handling types such as o ⊸ (o ⊗ o) with a tensor
on the right hand side complicates the shape of games and weakens the connection with
the relational model. So we shall ban such types and work not with Seely categories,
but with relative Seely categories, defined and developed here1.

In Section A.1, we first define relative Seely category, then construct the cartesian
closed Kleisli category of a Seely category. Then, in Section A.2 we shall define func-
tors between relative Seely categories, and show how they lift to the Kleisli category.

1More precisely, the monograph builds on relative Seely ∼-category, where every law holds up to an
equivalence relation ∼, which is also preserved by all constructions on morphisms – but we omit it in this
appendix as it is completely orthogonal to the development.

394

APPENDIX A. COMPLEMENTS ON RELATIVE SEELY CATEGORIES 395

A.1 Definition and Kleisli Category
Definition. It seems natural to first restate the definition from Section 8.2.1:
Definition 8.2.1. A relative Seely category is a symmetric monoidal category (, ⊗, 1)
equipped with a full subcategory s together with the following data and axioms:

• s has finite products (&, ⊤) preserved by the inclusion functor J ∶ s → .

• For every B ∈ there is a functor B ⊸ − ∶ s → s, such that there is

Λ(−) ∶ (A⊗ B,S) ≃ (A,B ⊸ S).

a bijection natural in A ∈ and S ∈ s.

• There is a J -relative comonad ! ∶ s → : we have, for every S ∈ s, an object
!S ∈ and a dereliction morphism derS ∶ !S → S, and for every � ∶ !S → T ,
a promotion �! ∶ !S → !T , subject to three axioms [Altenkirch et al., 2010]:

derT ◦�! = � (� ∶ !S → T)
der!S = id!S (S ∈ s)

(� ◦ �!)! = �! ◦ �! (� ∶ !S → T , � ∶T → U) ,

which make ! ∶ s → a functor, via !� = (� ◦ derS)! for � ∶ S → T .

• The functor ! ∶ s → is symmetric strong monoidal (s,&, ⊤)→ (, ⊗, 1), so

m0 ∶ 1→ !⊤ mS,T ∶ !S ⊗ !T → !(S&T)

are natural isos, additional compatible with promotion: the diagram

!Γ
⟨f,g⟩! //

⟨der,der⟩! ��

!(S&T)
m−1��

!(Γ&Γ)

m−1
&&

!S ⊗ !T77

f !⊗g!!Γ⊗ !Γ

commutes for all Γ, S, T ∈ s, f ∈ (!Γ, S), g ∈ (!Γ, T).

As we shall annotate with ! the components of the constructed Kleisli category, we
prefer to write the promotion as �† from now on (rather than �!), to avoid the collision.

Kleisli category. We define the Kleisli category ! as follows. Its objects are simply
those of s. A morphism from S to T is f ∶ !S → T in . The identity on object S is
id†S = derS ∶ !S → S. The composition of � ∈ !(S, T) and � ∈ !(T , U) is

� ◦! � = � ◦ �† .

It is completely straightforward that this data defines a category; the equations to be
verified directly boil down to the axioms of relative comonads above. Thus we have:
Proposition A.1.1. The data above forms a category C!, the Kleisli category of !.

APPENDIX A. COMPLEMENTS ON RELATIVE SEELY CATEGORIES 396

Cartesian closed structure. Obviously, ⊤ is still terminal in !. If S, T ∈ s, their
product is S&T ∈ s. The corresponding projections are (in):

�!S = �S ◦ derS&T ∶ !(S&T) → S
�!T = �T ◦ derS&T ∶ !(S&T) → T ,

and the pairing of � ∶ !Γ→ S and � ∶ !Γ→ T is ⟨�, �⟩! = ⟨�, �⟩. It is easy to check:
Proposition A.1.2. This data equips ! with a cartesian structure.

Likewise, given S, T ∈ s, their arrow is S ⇒ T = !S ⊸ T . The evaluation is

ev⇒S,T = !((!S ⊸ T)&S)
m−1!S⊸T ,S
←→ !(!S ⊸ T)⊗!S

der!S⊸T⊗!S
←→ (!S ⊸ T)⊗!S

ev!S,T
←→ T

and given � ∶ !(S&T) → U , its currying is Λ!S,T ,U = Λ!S,!T ,U (�◦mS,T) which is in
!(S, !T ⊸ U) as required. Again, it is an elementary verification that:
Theorem A.1.3. This data equips ! with a cartesian closed structure.

A.2 Relative Seely Functors
Theorem A.1.3 is our main tool to construct cartesian closed categories in this mono-
graph; but we also need an accompanying tool to construct cartesian closed functors
from an appropriate notion of functor between relative Seely categories.

Definition. Let us start by defining relative Seely functors.
DefinitionA.2.1. Let , be relative Seely categories. A relative Seely functor →
is a functor F ∶ → which restricts to F ∶ s → s, equipped with:

• For every A,B ∈ , natural isomorphisms morphisms

t⊗A,B ∶ FA⊗ FB ≅ F (A⊗ B)
t1 ∶ 1 ≅ F1;

making (F , t⊗, t1) a strong symmetric monoidal functor (, ⊗, 1)→ (, ⊗, 1);

• for every S, T ∈ s, isomorphisms

t&S,T ∶ FS&FT ≅ F (S&T)
t⊤ ∶ ⊤ ≅ F⊤;

• For every A ∈ and S ∈ s, an isomorphism

t⊸A,S ∶ FA ⊸ FS ≅ F (A ⊸ S);

• For every S ∈ s, an isomorphism

t!S ∶ !FS ≅ F !S;

APPENDIX A. COMPLEMENTS ON RELATIVE SEELY CATEGORIES 397

satisfying the coherence axioms of Figure A.1, and the naturality-like condition that for
every S, T ∈ s and � ∶ !S → T , the following diagram commutes:

!FS
(F� ◦ t!S)

†
//

t!S
��

!FT

t!T
��

F !S
F (�†)

// F !T

Lifting to the Kleisli categories. Given a relative Seely functor F ∶ → , we
define its lifting to a functor F! ∶ ! → ! that we shall prove to be cartesian closed.

On objects, we simply set F!(S) = FS. On morphisms, for � ∶ !S → T , we set
F! � = F� ◦ t!S ∶ !FS → FT .

From this data, a routine calculation ensures that we have:
Proposition A.2.2. The above data yields a functor F! ∶ ! → !.

Next, we show that this functor is cartesian. By definition, this means that F⊤ is
terminal – which is clear from t⊤ – and that for all S, T ∈ !, the canonical map

⟨F!�
!
S , F!�

!
T ⟩! ∈ !(F (S&T), FS&FT)

obtained via the cartesian structures of ! and !, is invertible. Now using our coher-
ence laws, this morphism simplifies to ⟨F�S◦derS,T , F�T ◦derS,T ⟩ ∶ !F (S&T) →
FS&FT . And indeed, the inverse we seek can be constructed as

r&S,T = t&S,T ◦ derFS&FT ∶ !(FS&FT) → F (S&T) ;

that it is an inverse is a direct verification via our coherence laws, which ensure that t&S,Tis an inverse in to the canonical map ⟨F (�S), F (�T)⟩ ∶ F (S&T)→ FS&FT given
by the cartesian closed structures in and .

Likewise, proving that F! is cartesian closed means showing, for all S, T ∈ !, that
Λ!(F!(ev⇒S,T)◦

!r⇒S,T) ∈ !(F (S ⇒ T), FS ⇒ FT)

obtained via the cartesian closed structures of ! and !, has an inverse. But via our
coherence rules, this morphism simplifies to the composition in :

!F (!S ⊸ T)
derF (!S⊸T)

←→ F (!S ⊸ T)
(t⊸!S,T)

−1

←→ F (!S) ⊸ FT
t!S⊸FT
←→ !FS ⊸ FT ,

where we use that as usual, relative closure informs a contravariant functor − ⊸ S ∶
op → for all S ∈ s, defined as � ⊸ S = Λ(evB,S◦((B ⊸ S) ⊗ �) for any
� ∶ A→ B in . Now, the morphism above has an inverse in !, constructed as
r⇒S,T = t⊸!S,T ◦ ((t

!
S)
−1 ⊸ FT) ◦ derFS⇒FT ∶ !(!FS ⊸ FT) → F (!S ⊸ T)

concluding the proof of the following statement:

APPENDIX A. COMPLEMENTS ON RELATIVE SEELY CATEGORIES 398

FS

FS&FT
t&S,T //

�FT $$

�FS
::

F (S&T)

F (�T)zz

F (�S)
dd

FT

F (A ⊸ S)⊗ FA
t⊗A⊸S,A // F ((A ⊸ S)⊗A)

F (evA,S)
��

(FA ⊸ FS)⊗ FA

t⊸A,S⊗FA

OO

evFA,FS
// FS

!FS
t!S //

derFS ""

F !S

FderS{{
FS

!FS ⊗ !FT
mFS,FT //

t!S⊗t
!
T
��

!(FS&FT)
! t&S,T // !F (S&T)

t!S&T
��

F !S ⊗ F !T
t⊗!S,!T

// F (!S ⊗ !T)
F (mS,T)

// F !(S&T)

!⊤ ! t⊤ // !F⊤

t!⊤
��

1

m0 ::

t1 $$ F1
Fm0
// F !⊤

Figure A.1: Coherence diagrams for relative Seely functors

APPENDIX A. COMPLEMENTS ON RELATIVE SEELY CATEGORIES 399

Theorem A.2.3. Consider F ∶ → a relative Seely functor.
Then, the functor F! ∶ ! → ! constructed above is cartesian closed.

All the axioms of relative Seely functors get used in the proof, except for the last
coherence diagram of Figure A.1, which appears unnecessary to ensure that a relative
Seely functor lifts to a cartesian closed functor between the Kleisli categories. We
include it nonetheless, as it seems likely to be necessary if we ever wish to show that
relative Seely functors preserve the interpretation of a linear/non-linear type system.

	Introduction
	Operational Semantics
	Toward a Mathematical Semantics
	The Next 700 Denotational Semantics
	Full Abstraction and Intentional Intensionality
	Plays Considered Harmful
	A Case for Causal Game Semantics
	Contributions and Outline

	General Preliminaries
	Mathematical Language
	IA and its Fragments
	Syntax of IA
	Operational Semantics of IA
	Expressiveness of IA

	Generalities on Semantics

	I Pointer Game Semantics
	First Steps in Game Semantics
	Executions, Plays, and Strategies
	Dialogues, Plays, and Simple Games
	Replication and Thread Indexing
	Pointer Games

	Carving Out Innocent Strategies
	The Strategies of PCF
	Well-Bracketing
	Visibility and Innocence
	Finite Definability and Full Abstraction

	Non-Innocence and Effects
	Non-Local State
	Higher-Order State
	The ``Semantic Cube''

	An Alternative to Pointers: Copy Indices
	Conclusions and Historical Notes

	The Category of Alternating Strategies
	The Ambient Cartesian Closed Category -Strat
	More Arena Constructions
	Composition of Strategies
	A Category of Arenas and Strategies
	Cartesian Closed Structure
	Recursion

	Interpretation of IA
	Interpretation of PCF
	Interpretation of State

	Complements on Alternating Strategies
	Complements on Single-Threadedness
	Factorization and Definability
	Summary of Results

	Conclusions and Historical Notes

	Non-Alternating Game Semantics
	Concurrency and Non-Alternation
	Non-Alternating Plays
	Non-Alternating Strategies
	Single-Threadedness
	Full Abstraction for IA

	The Ambiant Cartesian Closed Category -Strat
	Constructing -Strat
	Cartesian Closed Structure
	Recursion

	Interpretation of IA
	Interpretation of PCF
	Interpretation of State
	Summary of Results

	Conclusions and Historical Notes

	II Thin Concurrent Games
	Basic Concurrent Games
	Games and Strategies as Event Structures
	Basic Intuitions on Concurrent Strategies
	Formalizing Concurrent Strategies
	Basic Properties of Event Structures and Maps

	Composition of Prestrategies
	Interaction of prestrategies
	Composition of prestrategies
	The associator

	Composition of Strategies
	Composition of Strategies
	Strategies and +-covered configurations
	Composition and +-coveredness

	The Bicategory CG
	Copycat
	Copycat and Strategies
	Horizontal Composition and Bicategorical Structure
	Characterization of Strategies

	Conclusions and Historical Notes

	Thin Concurrent Games
	Symmetry in Games and Strategies
	Event Structures with Symmetry
	Saturated Games with Symmetry
	Thin Concurrent Games
	Constructions on Thin Concurrent Games

	Mediating Between Strategies
	A Zoology of Morphisms and Equivalences
	A Study of Positive Morphisms
	All Equivalences Coincide
	Constructing Positive Morphisms

	Composition and Copycat
	Interactions with Symmetry
	Composition with Symmetry
	Copycat

	The Bicategory TCG
	Synchronization up to Symmetry
	Horizontal Composition
	Bicatorical Laws
	A -category

	History and Related Work

	Constructing Games and Strategies
	A Compact closed -Category
	A bifunctor
	Lifting Maps to Strategies
	Compact Closed Structure

	Negative Winning Games
	Relative Seely categories
	Playing Board Games
	Negative Winning Strategies
	Symmetric Monoidal Structure
	Cartesian Product of Strict –Boards
	Relative Closure

	Non-Linear Structure
	The Resource Modality
	Recursion

	History and Related Work

	III Disentangling Parallelism and State
	The Causal Semantics of IA and its Unfolding
	Interpretation of IA
	Interpretation of PCF
	Semantics of state
	Discussion on the Interpretation

	Unfolding Causal to Non-Alternating Strategies
	A First Unfolding
	Mixed Boards and Pointifixion
	Unfoldings of a Causal Strategy

	-Strat and Full Abstraction
	Unfolding the Categorical Structure
	Unfolding the Interpretation of IA

	History and Related Work

	Parallel Innocence
	Defining Parallel Innocence
	Causal Determinism
	Pre-innocence
	Visibility

	Composition of Visibility
	Justifiers in causal strategies
	Justifiers in interactions
	Views of gccs
	The Relative Seely -Category NTCG-Vis

	Composition of Innocence
	The ``forking lemma''
	Stability of pre-innocence
	The Relative Seely Category NTCG-Inn
	Complement: the ``Bang Lemma''

	Relational Collapse
	Stopping Positions and Witnesses
	Composition and Deadlocks
	The Deadlock-Free Lemma
	A Relative Seely -Functor

	Globularity
	Motivation and Definition
	Composition of Globularity

	History and Related Work

	Sequentiality
	Sequentiality
	Definition of Sequentiality
	Categorical Structure
	A Relative Seely -Category
	-Seq and Interpretation of IA

	The Alternating Unfolding
	Alternating Unfolding on a Mixed Board
	Alternating Unfoldings of Sequential Strategies
	Unfolding the Basic Categorical Structure
	Unfolding the Interpretation of IA

	Sequential Innocence
	Causal Analysis of Sequential Innocence
	The Unfolding Preserves Innocence
	Sequential Globularity
	Intensional Full Abstraction

	History and Related Work

	Finite Definability for PCF
	Meager Form
	Updating Mixed Boards
	Meager Innocent Strategies
	The Meager Form of Sequential Globularity
	Finite Tests Suffice

	Factorization
	The Flow Substrategy
	The Argument Substrategies
	Recomposition

	Finite Definability and Full Abstraction
	First-Order Definability
	Positional First-Order Definability
	Finite Globular Definability
	Intensional Full Abstraction

	IV Other Developments and Openings
	Further Work
	Effects and Concurrency
	Non-canonical causal presentation
	Non-angelic concurrent games
	Resource-tracking concurrent games

	Quantitative Concurrent Games
	Probabilistic PCF
	Quantum strategies

	Quantitative Relational Collapses
	Counting witnesses and quantitative collapse
	Generalized species of structure

	Game Semantics as Taylor Expansion
	Pointer concurrent games and positional injectivity
	Isogmentations and the resource calculus
	Taylor expansion, extensional resource terms

	Operational Concurrent Games
	Miscellaneous
	Full Abstraction for Parallel-Or
	A Semantic Proof of Herbrand's Theorem
	Revisiting Games Models of MALL

	Conclusions
	The Work Done so Far
	Open Problems
	Non-deterministic parallel innocence
	Proper determinism
	All well-bracketings
	Observing causality

	Perspectives and Future Directions

	V Appendices
	Complements on Relative Seely Categories
	Definition and Kleisli Category
	Relative Seely Functors

