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Méthodes hiérarchiques pour des équations aux

dérivées partielles déterministes et stochastiques

Paul Mycek

Résumé

Les méthodes hiérarchiques sont devenues un outil essentiel pour la simulation nu-
mérique efficace de phénomènes physiques avec une fidélité croissante sur des calcu-
lateurs à haute performance modernes. Des méthodes bien établies, telles que les mé-
thodes multigrilles et de décomposition de domaine, se sont avérées performantes, de
par leur capacité de passage à l’échelle, pour résoudre certains problèmes de grande
taille de manière parallèle sur des supercalculateurs. D’autre part, la propagation
des incertitudes dans les simulations numériques a reçu une attention croissante ces
dernières années. Pour des simulations onéreuses en temps de calcul de problèmes
fortement non-linéaires (par rapport à des paramètres d’entrée incertains), des mé-
thodes avancées de quantification des incertitudes doivent être dévelopées. Dans
ce manuscrit, nous exposons des idées méthodologiques et algorithmiques pour ré-
pondre à des questions spécifiques liées aux méthodes hiérarchiques. Premièrement,
nous présentons des approches de décomposition de domaine résilientes pour la réso-
lution numérique d’équations aux dérivées partielles déterministes et stochastiques,
ainsi que des stratégies de Monte Carlo accélérées par des modèles de substitu-
tion pour la propagation des incertitudes dans des méthodes de décomposition de
domaine. Deuxièmement, nous présentons de nouveaux solveurs multigrilles pour
des systèmes linéaires issus de discrétisations hybrides d’ordre élevé. Troisièmement,
nous proposons des approches hiérarchiques, plus précisément des méthodes mul-
tiniveaux et multifidélité, pour la propagation d’incertitudes dans les simulateurs
numériques coûteux. Enfin, nous proposons également des idées pour la résolution
numérique efficace de suites de systèmes d’équations linéaires, rencontrées typique-
ment lors de la résolution de problèmes instationnaires et/ou non linéaires, ou lors
de l’échantillonnage d’équations aux dérivées partielles stochastiques.
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Hierarchical methods for deterministic and

stochastic partial differential equations

Paul Mycek

Abstract

Hierarchical methods have become essential tools for the efficient numerical simula-
tion of physical phenomena with ever-growing fidelity on modern high-performance
supercomputers. Well-established methods, such as multigrid and domain decompo-
sition methods, owing to their scaling capabilities, have proven powerful to solve cer-
tain classes of large-scale problems in a parallel fashion on supercomputers. On the
other hand, the propagation of uncertainties in numerical simulations has received
increasing attention in recent years. For computationally demanding simulations
of highly non-linear problems (w.r.t. uncertain input parameters), advanced uncer-
tainty quantification methods need to be designed. In this manuscript, we present
methodological and algorithmic ideas to address specific questions related to hierar-
chical methods. First, we present resilient domain decomposition approaches for the
numerical solution of deterministic and stochastic partial differential equations, as
well as surrogate-assisted Monte Carlo strategies for the propagation of uncertain-
ties in domain decomposition solvers. Second, we introduce novel multigrid solvers
for the linear systems arising from hybridizable high-order discretizations. Third,
we propose hierarchical approaches, namely multilevel and multifidelity methods,
for the propagation of uncertainties in expensive numerical simulators. Finally, we
also propose ideas for the efficient numerical solving of sequences of systems of lin-
ear equations that typically arise when solving time-dependent and/or non-linear
problems, or when sampling stochastic partial differential equations.
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Chapter 1

Introduction

Since the beginning of my scientific career as a researcher, most of my research
activities have revolved around high-performance computing (HPC), with a focus
on hierarchical methods and algorithms for the numerical solution of determinis-
tic and stochastic partial differential equations (PDEs), for large-scale applications
primarily in computational fluid dynamics. With a somewhat loose definition of
the term hierarchical1, we include here domain decomposition methods under this
designation.

My early years of research were largely influenced by the challenges that the
forthcoming generation of exascale supercomputers was expected to face. In par-
ticular, the question of resilience of such extreme scale computers to faults was
a major concern for the scientific computing community. Indeed, the fault-coping
mechanisms implemented on petascale computer systems at the time were challenged
by the anticipated increase in the occurrence of faults with the increased number
of transistors on exascale systems [M1]. This context led me to work on the design
of resilient algorithms for the numerical solution of (deterministic and stochastic)
PDEs, based on a reformulation of standard overlapping domain decomposition ap-
proaches and the use of robust regression techniques [M2–M7]. This also gave me
the opportunity to work more generally on domain decomposition methods for the
propagation of uncertainties in discretized elliptic PDEs, using surrogate models to
accelerate the Monte Carlo sampling of such problems [M8–M10].

My research interests have since evolved towards multifidelity techniques for the
estimation of statistics of the output of costly numerical simulators, which represents
a major part of my current research work [M11–M14]. Multifidelity estimation has
gained increasing attention in recent years as a means to tackle high-dimensional
uncertainty propagation in complex systems for which high-fidelity sampling or high-
fidelity surrogate modeling alone do not yield accurate enough estimates at afford-

1for the sake of a more concise manuscript title!
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2 Chapter 1. Introduction

able computational cost. A typical example is the problem of data assimilation for
numerical weather prediction applications, where uncertainties need to be propa-
gated through a large-scale, high-dimensional, chaotic numerical model.

The multilevel aspect of certain multifidelity techniques, along with the high-
performance computing and numerical linear algebra ecosystem at Cerfacs, naturally
prompted me to get involved in multigrid methods. This materialized through the
co-supervision of a PhD thesis on the design of efficient multigrid solvers for the
hybrid high-order (HHO) discretization [M15–M18].

Tractable uncertainty propagation through discretized PDEs often requires the
ability to efficiently solve (possibly massively long) sequences of systems of linear
equations with multiple left- and right-hand sides. This led me to work on block
iterative solvers and deflation techniques, bringing together the worlds of uncer-
tainty quantification and high-performance numerical linear algebra [M19]. Inciden-
tally, this question of solving sequences of systems had already come up during my
PhD [M20] in the context of a time-dependent problem for the modeling of marine
current turbine farms, for which a block-Jacobi preconditioner was proposed [M21].

This manuscript is intended as an extended summary of selected parts of my
past research. For that reason, technical details are kept to a minimum, with an
effort to employ consistent and standard notation, so that readers acquainted with
the subject can (hopefully) appreciate the core ideas of each research aspect. The
curious reader may, however, find further details in the supporting articles, preprints
or reports, which are systematically cited. The manuscript concludes with medium-
and long-term research perspectives for the coming years.



Chapter 2

Domain decomposition methods

Domain decomposition (DD) methods [1–4] refer to a class of divide-and-conquer
methodologies for the numerical solution of partial differential equations (PDEs).
DD methods are based on the partitioning of the domain of the PDE into smaller
subdomains, and are, by design, well-suited for parallel computing. This chapter
presents two aspects of my research activities related to DD methods.

The first aspect concerns the design of a resilient DD solver for extreme scale
computing. Resilience to faults was a major concern for the HPC community in
the 2010s, as the upcoming exascale computer systems were expected to have sig-
nificantly higher fault rates than petascale systems [M1]. It was then anticipated
that the mean time between faults would become too short for the fault-coping
mechanisms implemented on petascale systems to remain efficient. For example, in
the case of the popular checkpoint-restart mechanism, which consists of periodically
saving the state of the system and restoring it upon detection of a fault, the time
required for checkpointing could be close to the mean time between faults, resulting
in the system spending more time saving and restoring states than performing actual
computation [5]. Owing to their natural parallel aspect and their ability to scale to
many subdomains, DD methods represent a particularly promising candidate frame-
work for solving large-scale discretized elliptic PDEs on exascale computer systems.
They are also well-suited to address the question of resilience, in that faults are,
to some extent, localized to subdomains. In section 2.1, we present a resilient DD
solver based on a reformulation of the original PDE as an optimization problem,
exploiting an extreme-scale computing paradigm that states that computation is
nearly free, while communication is severely expensive. The proposed algorithm
relies on two resilience-enabling programming models formally introduced by [6],
namely selective reliability programming and skeptical programming. Although the
issue of resilience has now become a secondary concern for the community, it is still
closely tied to another critical aspect of extreme-scale computer systems, which is

3



4 Chapter 2. Domain decomposition methods

their energy consumption. Indeed, the energy consumption of a supercomputer may
be reduced by lowering its supply voltage at the expense of higher fault rates. In
the long run, potentially for the post-exascale era, should it exist, the issue of re-
silience may resurface in that context, provided that the HPC community embraces
a new paradigm of performing scientific computations on unreliable computer sys-
tems. Such considerations are briefly discussed in the context of our algorithm in
section 2.1.5.

The second aspect concerns the design of DD strategies for the numerical solution
of stochastic elliptic PDEs. While a stochastic counterpart to multigrid methods,
namely multilevel Monte Carlo (MLMC) methods [7–9], has been introduced and
successfully employed for a variety of stochastic problems, few stochastic versions of
deterministic DD methods have been proposed to solve stochastic elliptic PDEs [10–
14]. The advantage of such DD methods could lie in leveraging some form of locality
in the random input parameters to mitigate the curse of dimensionality within indi-
vidual subdomains, so that local surrogate models can be constructed at affordable
cost. In section 2.2, we present stochastic DD strategies based on local Karhunen-
Loève (KL) approximations of the random coefficient field of the elliptic PDE and
accelerated Monte Carlo sampling based on local polynomial expansions.

2.1 A resilient domain decomposition method for

extreme scale computing

For extreme scale computing, and more generally for reliable scientific computations
on unreliable computer systems, a major challenge lies in the ability to overcome
the occurrence of faults. In this section, we present the ingredients of a resilient DD
solver for PDEs of the form Lu = f in D,

u|∂D = g.
(2.1)

We will restrict our exposition to the case where L is a linear partial differential
operator. The more general case is addressed in [M2].

2.1.1 General formulation

The global domain D is partitioned into N overlapping, open and bounded subdo-
mains {Di}Ni=1 such that ∪Ni=1Di = D. We denote by ∂D (resp. ∂Di) the boundary
of D (resp. Di), and by Γin

i := ∂Di ∩ D = ∂Di\∂D the inner boundary of Di (i.e.,
excluding the boundary ∂D of the global domain D). We consider a Dirichlet prob-
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lem of the form (2.1) in the global domain D, and we focus on the solution u|Γ to
this problem at the boundaries of the inner boundaries of the subdomains, defined
by Γin := ∪Ni=1Γ

in
i = (∪Ni=1∂Di) ∩ D = (∪Ni=1∂Di)\∂D. Because of the overlapping

decomposition, each subdomain Di includes a set Γneigh
i := (∪Nj=1∂Dj)∩Di = Γin∩Di

of boundary parts belonging to neighboring subdomains.

Our approach [M2], which may be seen as an accelerated overlapping Schwarz
algorithm, relies on the functions Fi that map, on each subdomain Di, local Dirichlet
boundary data vΓi to the solution v|Γneigh

i
, at the neighboring interfaces Γneigh

i , of a
local Dirichlet problem with boundary condition v|Γin

i
= vΓi . Specifically,

Fi : v
Γ
i 7→ v|Γneigh

i
, where v is such that


Lv = f in Di,

v|Γin
i
= vΓi ,

v|Γext
i

= g|Γext
i
.

(2.2)

We then seek uΓ defined on Γin satisfying compatibility conditions at the inter-
faces of the subdomains, namely, ∀i = 1, . . . , N, uΓ|Γin

i
= Fiu

Γ|Γneigh
i

, which may
eventually be recast as a fixed-point problem of the form uΓ = FuΓ. Provided that
the original problem (2.1) is well-posed, the solution uΓ of this reduced problem
uniquely matches the solution u|Γ of (2.1) at the inner boundaries. Note that the
additive Schwarz method [15] amounts to solving the fixed-point problem by the
iterations uΓ

(k+1) = FuΓ
(k).

For linear PDEs (i.e., if L is a linear operator), the boundary-to-boundary map-
pings Fi are affine mappings, so that the fixed-point problem can be recast as a trace
problem of the form SuΓ = bΓ, where bΓ is defined on Γin and S is a linear opera-
tor. Upon discretization, we obtain a reduced system of linear equations SuΓ = bΓ,
where uΓ denotes the vector of solution values at the discretization points along Γin.

Our approach consists in learning the boundary-to-boundary mappings Fi in a
resilient manner to build the fixed-point operator F . The process is illustrated in
Figure 2.1. Specifically, we rely on a sampling strategy that involves solving the tar-
get PDE equation locally within each subdomain for sampled values of the boundary
conditions on that subdomain (stage 4 of Fig. 2.1). Using these input-output sample
pairs, we resort to robust regression techniques to find resilient approximations of
the mappings from potentially corrupted samples (stage 4 of Fig. 2.1). Finally, the
reduced problem SuΓ = bΓ is assembled and solved (stage 5 of Fig. 2.1). One of
the important features of the algorithm is that the construction of the boundary-
to-boundary mappings can be done for each subdomain independently from all the
others. This allows us to satisfy data locality, which is one of the main factors
contributing to scalability on extreme scale machines. In that sense, our approach
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Stage 1: discretization
Stage 2: partitioning

Workflow

Stage 3: state & range

Stage 4: sampling

State

Sampling range

Stage 5: regression, 
boundary mappings

Stage 6: solve 
reduced system

Stage 7: update
state & range

PDE samples

Figure 2.1: Schematic of the workflow of the resilient domain decomposition solver
described in [M2]. Adapted from [M3, M4].

differs considerably from the classical iterative overlapping Schwarz algorithms.
In this framework, robust regression techniques are key to achieving resilience.

Because least squares regression is known to be very sensitive to outliers (see [M2] for
examples in the context of bit-flips), we instead resort to least absolute deviations
regression, which is known to be much more robust [16]. In practice, we solve
this regression problem using the iteratively reweighted least squares algorithm (see,
e.g.,[17]).

For linear PDEs, the boundary-to-boundary mappings could theoretically be
determined by solving exactly as many independent local PDEs as the number of
unknown affine coefficients (i.e., the number of unknown boundary points plus one)
on each subdomain Di. However, because of the potential occurrence of faults, we
allow ourselves to slightly oversample the boundary conditions by a factor ρ > 1.
In other words, on a subdomain Di with NΓ

i unknown boundary points, we define a
target number of samples s∗i = ρ(NΓ

i + 1) to be used for the regression problems on
subdomain Di. The nominal sampling rate ρ thus determines the amount of extra
work required to ensure the resilience of the approach.

2.1.2 Server-client implementation and selective reliability

model

The algorithm described previously was implemented using a task-based paradigm
within a server-client (SC) structure [M3, M5] where MPI processes are grouped
into servers and clients.
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Figure 2.2: Schematic of the server-client implementation. Adapted from [M5].

Our SC model follows the selective reliability programming model introduced
by [6, 18], which consists of declaring specific data and compute regions to be highly
reliable (more than the default reliability level of the system). Specifically, in our
model, the servers are assumed to be safe (or “sandboxed”) units holding the data,
whereas the clients are designed solely to accept and perform work without any
assumption on their reliability. Clearly, the SC framework involves substantial data
exchange between servers and clients, but a key advantage of this structure relies
in its inherent resiliency to hard faults, provided that the MPI framework is made
fault-tolerant, e.g., using the User Level Failure Mitigation (ULFM) prototype for
MPI [19]. Since the actual data is safely held by the servers, the SC is inherently
resilient to clients crashing (partial or complete node failures), since this only trans-
lates into missing tasks. The asynchronous nature of the SC model is beneficial to
reduce the communication wait times.

Figure 2.2 shows a schematic of our SC structure. We adopt a cluster-based
model, namely the MPI ranks are grouped into separate clusters, with each cluster
containing a server and, for resource balancing purposes, the same number of clients.
These clusters are designed such that all servers can communicate between each
other, while the clients within a cluster are only visible to the server within that
cluster. Moreover, within any given cluster, clients are independent, i.e., they cannot
communicate with each other. The data is distributed among the servers, and these
are assumed to be highly resilient (safe or under a sandbox model implementation).
The sandbox model assumed for the servers can be supported by either hardware
or software. The former assumption is supported by hardware specifications on the
variable levels of resilience that can be allowed within large computer systems. In the
case of software support, a sandbox effect can be accomplished by a programming
model relying on data redundancy and strategic synchronization [18, 20, 21].
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Since the servers hold the data, they are responsible for generating work in the
form of tasks, dispatching them to their pool of available clients, as well as receiving
and processing tasks. To optimize communication, clients are designed such that it
is their root process that receives a new task to perform. After receiving the task,
the root process then broadcasts it to all the other ranks in the client, so that the
client as a whole works in parallel to solve the task. This paradigm can be exploited
in certain hardware configurations because leveraging local communication within
a client is more efficient than having the server communicate a task to all the MPI
ranks in a client. One example is the case where all ranks of a client live in the same
node, so that they can exploit in-node parallelism and faster memory access. All
communications between a server and its clients are implemented with non-blocking
operations, allowing us to overlap them on the server side with the computational
operations involved in the creation and processing of the tasks.

Due to separation of state from computation, and because of the nature of the
algorithm, sampling and regression are executed by the clients through tasks. On the
other hand, because the servers hold the state, they are responsible for performing
the solve of the reduced system and the subdomains updating. The safety of the
servers precludes any potential data corruption during these operations.

This resilient solver was validated on 1D [M2] and 2D [M3, M5] elliptic problems,
where tests up to about 110,000 cores showed excellent parallel scalability (greater
than 90%) and perfect resilience with limited overhead.

2.1.3 Skeptical programming approach using a priori bounds

Another key model introduced in [6, 22] is the so-called skeptical programming
model, which consists in acknowledging the unreliable nature of the software ex-
ecution by being skeptical of the returned results. These results may be tested
using known mathematical properties of the algorithms, such as theoretical bounds,
provided that they are simple and cheap enough not to cause significant overhead.
This helps detecting some (not all) errors, and guarantees that the remaining (un-
detected) errors are bounded.

Following this idea, we derived a priori bounds for the discrete solution of second-
order elliptic partial differential equations. In [M4], we derive closed form expres-
sions for the case of a conservative, second-order finite difference approximation of
the diffusion equation with variable scalar diffusivity. The bounds depend on four
parameters, namely:

• the minimum and maximum of the boundary conditions;
• the diffusivity field (and its gradient);
• the source field;
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• the size of the domain.
The boundary conditions contribute to a first term in the bounds, which directly
relates to the homogeneous PDE, for which the maximum principle applies, where
only the boundary conditions are involved. The last three parameters influence a
second term in the bounds, which we refer to as the invariant part of the bounds,
because it does not depend on the boundary values.

The bounds are then incorporated into the resilient domain decomposition frame-
work previously described in sections 2.1.1 and 2.1.2, in order to verify the admissi-
bility of local PDE solutions. Specifically, the sampling stage (stage 4 of Fig. 2.1) is
adapted to include the admissibility check, as described in algorithm 1. When a fault
is detected, the corresponding sample is simply discarded, and the resilient regres-
sion stage (stage 5 of Fig. 2.1) will simply proceed with fewer (namely si), but better
quality samples than the prescribed number of samples s∗i . This approach is robust
as long as not too many samples get discarded. The computations demonstrate that
the bounds are able to detect most system faults, and thus considerably enhance the
resilience and the overall performance of the solver. In particular, we demonstrate
that this skeptical programming approach allows to reduce the value of the nominal
sampling rate ρ (and so the overhead) compared to the original approach in [M2],
described in sections 2.1.1 and 2.1.2.

2.1.4 Extension to uncertain elliptic PDEs

In [M7], we extend the deterministic approach of [M2] to uncertain (stochastic)
elliptic PDEs. Specifically, we consider the following 1D (d = 1) problem:L(ξ)u = f in D := (0, 1),

u(x = 0) = U0, u(x = 1) = U1,
(2.3)

where L is a linear, elliptic differential operator parameterized by a vector ξ of
independent real-valued random variables defined on a probability space (Ω,Σ,P),
with prescribed joint distribution pξ. Our approach consists in learning polynomial
chaos (PC) surrogates [23–26] of the affine coefficients of the stochastic boundary-
to-boundary mappings Fi(ξ). The PC surrogates correspond to truncated spectral
expansions of second-order random variables (or vectors, or fields) in a basis of
orthonormal multivariate polynomials in ξ.

As in the deterministic case described in section 2.1.1, for each subdomain Di,
we rely on samples of the boundary data at the subdomains’ inner boundaries,
which are now sampled jointly with the random vector ξ according to pξ. For each
such input sample, the corresponding local problem is solved in Di, and we use the
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Algorithm 1: Simplified algorithm of the sampling stage (stage 4 of
Fig. 2.1), including the computation of the bounds and the admissibility
check of the PDE samples. Adapted from [M4].

foreach subdomain Di do
// [SERVER] Pre-processing stage
Compute the invariant parts of the bounds for Di ;

// [SERVER] Sample boundary conditions
Sample s∗i boundary conditions for Di ;
si ← s∗i ;

foreach sample do
// [SERVER]
Add contribution of the boundary conditions to the bounds ;
Send task to a client ;

// [CLIENT]
Receive task from server ;
Solve the local PDE in Di using the received sample of boundary
conditions ;

Send task (with the solution) back to server ; ▷ Corruption may occur

// [SERVER]
Receive returning task from client ; ▷ Task is potentially corrupted
if received solution does not lie between the bounds then

Discard current sample ;
si ← si − 1 ;

end if
end foreach

end foreach

resulting input-output sample pairs to infer the PC coefficients of the local boundary-
to-boundary mapping in Di through robust regression. Once we have constructed
the PC surrogate of the mappings on all the subdomains, imposing compatibility
conditions at the inner interfaces yields a stochastic fixed-point problem. We then
seek PC approximations of the boundary data at the inner interfaces such that the
residual of the fixed-point problem is orthogonal to space spanned by the PC basis,
in a stochastic Galerkin fashion [25, 26]. This yields a deterministic system of linear
equations SuΓ = bΓ whose structure is similar to that of the deterministic case
described in [M2].

The higher-dimensionality of the regression problems associated with the num-
ber of terms in the PC expansions, which is controlled by the size of ξ (the number
of random variables in ξ) on the one hand, and by the expansion truncation strat-
egy (related to the polynomial degree of the PC surrogates), introduces additional
difficulties due to the risk of overfitting, especially in the presence of faults, for
reasonable sampling rates ρ. To address this problem, we resort to a lasso-like
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sparsity-promoting regularization of the regression problem [27]. To solve the re-
gression problem, we proposed an iteratively reweighted Tikhonov algorithm, which
extends the iteratively reweighted least squares algorithm introduced in section 2.1.1
to regularized regression problems. Finally, we derived a robust leave-one-out cross-
validation procedure to select the regularization parameter, based on the median
value of the leave-one-out residuals.

The computations performed in [M7] demonstrated that, provided sufficiently
many samples are generated, the method effectively overcomes the occurrence of
soft faults, even when considering unrealistically large rates of soft faults.

2.1.5 Energy consumption

The solver based on the approach described in sections 2.1.1 to 2.1.3 proved to be
scalable and highly resilient to both soft and hard faults, even for high rates of fault
occurrence, provided that the sampling rate ρ is adapted accordingly. Although al-
gorithmic resilience may no longer be critically needed on today’s emerging exascale
systems, our approach addresses the more general question of unreliable systems.
In particular, in order to reduce the energy consumption of a supercomputer, it is
possible to decrease its supply voltage (and operating frequency accordingly), at the
expense of an increased fault rate [28].

In [M6], we explore the application of such a voltage scaling strategy to our solver.
Specifically, we decrease the supply voltage and operating frequency by the same
factor r < 1, which results in a higher fault rate. To accommodate the increased
fault rate, the sampling rate ρ needs to be increased accordingly. The combined
effect of the decreased frequency and increased sampling rate results in an increase
of the execution time (focusing on the sampling stage, i.e., stage 4 of Fig. 2.1) by a
factor of ρ/r. Using the energy consumption model and analysis proposed in [28],
we derive a closed-form expression for the ratio of the energy consumption Ẽ in the
voltage-reduced configuration to the energy consumption E for running the same
code in the nominal voltage mode:

Ẽ

E
= ρ

(1/r)P̂ind + r2

P̂ind + 1
, (2.4)

where P̂ind := Pind/(CV 2f) is the normalized frequency-independent active power [28],
C is the switch capacitance, V is the nominal supply voltage and f is the nominal
operating frequency. This allowed us to identify (large) energy-saving ranges of r
for various values of P̂ind and ρ.
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2.2 Domain decomposition methods for stochastic

elliptic PDEs

In this section, we are interested in the numerical solution of stochastic elliptic PDEs
of the form ∇ · [κ(x, ω)∇u(x, ω)] = −f(x), x ∈ D, ω ∈ Ω,

u(x, ω) = 0, x ∈ ∂D, ω ∈ Ω,
(2.5)

where κ : D × Ω→ R is a second-order random field defined on a probability space
(Ω,Σ,P). In the following, we focus on the specific case where κ is a log-normal
stochastic field, whose logarithm is a zero-mean, stationary Gaussian process, with
a prescribed covariance kernel for which we control the variance and the correlation
length.

2.2.1 Discretization of random fields

In order to solve eq. (2.5) numerically, one first typically needs to be able to approx-
imate the random field numerically. In our case, we are interested in the discretiza-
tion of log(κ) both in the stochastic and in the spatial dimensions. The (truncated)
Karhunen–Loève (KL) expansion [29] is one of the most common techniques for the
approximation of random fields. An attractive feature of the KL representation of
a random field is that it is optimal in the mean-square sense. Computing the KL
expansion is, however, challenging as it involves the solution of a Fredholm integral
problem of the second kind. Upon discretization, this typically requires solving a
generalized eigenvalue problem [26, 30], which may be computationally demanding,
especially for fine discretizations (i.e., involving many degrees of freedom).

In [M8], we developed a non-overlapping domain decomposition method to effi-
ciently approximate the KL expansion of a stochastic process. The proposed method
relies on a divide-and-conquer strategy based on a partitioning of the global domain
D into non-overlapping subdomains {Di}Ni=1 such that D̄ = ∪Ni=1D̄i andDi∩Dj ̸=i = ∅.
Specifically, the method consists of three stages:

i) solving a local generalized eigenvalue problem over each subdomain, resulting
in local KL representations of the field;

ii) using the dominant eigenfunctions from the local expansions to assemble a
reduced standard eigenvalue problem; and

iii) solving the reduced eigenvalue problem to obtain the desired (global) KL ex-
pansion.

The size of the reduced eigenvalue problem is generally much smaller than the origi-
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nal KL problem, but it increases with the number of subdomains, so that a trade-off
between the sizes of the local subproblems and that of the reduced eigenvalue prob-
lem needs to be found in order to achieve the best performance. We also present
a rigorous error analysis and propose a truncation strategy for the local and global
KL expansions so as to achieve a prescribed accuracy of the global KL representa-
tion. One of the key advantages of our method is that, for a given correlation length
associated with the random field, fewer random variables can be used to locally
parameterize the random field over the subdomains.

The method also allows us to efficiently distribute and parallelize most of the
computations. In particular, step i involves solving independent problems, for which
only local data is needed to construct the stiffness and mass matrices of each local
generalized eigenvalue problem. Step ii, on the contrary, requires global communi-
cation. However, for large problems, the computational cost of steps i and iii should
dominate, which is what we observed on 2D problems of moderate size (80k de-
grees of freedom). Finally, for step iii, one may resort to parallel eigenvalue solvers
provided by libraries such as SLEPc [31].

2.2.2 Accelerated Monte Carlo sampling with local polyno-

mial chaos expansions

Various numerical methods exist for solving eq. (2.5). Perhaps the most straight-
forward method is Monte Carlo (MC) simulation, which consists in solving many
deterministic PDEs corresponding to realizations of the field κ. Another approach
consists in constructing a surrogate model of the solution u, e.g., in the form of
a polynomial chaos (PC) expansion or a Gaussian process (GP). Such approaches
typically suffer from the so-called curse-of-dimensionality, expressing the fact that
the construction cost of the surrogate increases quickly with the stochastic input
dimension. In particular, assuming a global KL approximation of κ with K random
variables, the number of terms in the (total-degree truncated) PC expansion of u
increases exponentially with K and the polynomial degree.

Following the earlier observation that in subdomains, a limited number of ran-
dom variables may be used to accurately parameterize the random field κ at the
local level, we proposed (see [M9]) a PC-based domain decomposition method for
the efficient solving of stochastic elliptic PDEs of the form (2.5). We rely on
the same non-overlapping decomposition as in section 2.2.1, and we denote by
Γin := (∪Ni=1∂Di) ∩ D = (∪Ni=1∂Di)\∂D the inner boundaries (i.e., the common
interfaces). Upon finite element spatial discretization, a Schur complement ap-
proach (see, e.g., [3, Chap. 3]) leads to a stochastic Schur complement system
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of the form S(ω)uΓ(ω) = bΓ(ω), for ω ∈ Ω. The so-called Schur complement
matrix S can be interpreted as the non-overlapping counterpart of the influence
(boundary-to-boundary) matrix S introduced in section 2.1.1, and can be decom-
posed into a sum of local contributions, S(ω) =

∑N
i=1R

T
i Si(ω)Ri, where Si(ω)

will be referred to as the local (stochastic) Schur complement matrix associated
with subdomain Di, and where Ri is a deterministic restriction matrix that relates
global inner boundary nodes on Γin := ∪Ni=1Γ

in
i to the local inner boundary nodes

on Γin
i := ∂Di ∩ D = ∂Di\∂D. Likewise, bΓ(ω) =

∑N
i=1R

T
i b

Γ
i (ω), where bΓi (ω) will

be referred to as the local right-hand side of subdomain Di. In the following, the
explicit dependence to ω may be dropped to simplify notations when no confusion
is possible.

Our approach consists in constructing local PC surrogates S̃i ≈ Si and b̃Γi ≈ bΓi ,

S̃i(ω) =
∑
α∈Ai

[Ŝi]αΨα(ξi(ω)), b̃Γi =
∑
α∈Ai

[b̂Γi ]αΨα(ξi(ω)), (2.6)

of the local Schur matrices and local right-hand sides. The key observation is that
our approach relies on the local nature of Si(ω) on Di, in the sense that it only
involves the local field κ|Di

, which in turn is locally parameterized using a limited
number mi of random variables, collected in the random vector ξi := (ξ1i , . . . , ξ

mi
i ).

The local PC surrogates are constructed on each subdomain (column by column in
the case of S̃i) by solving local, stochastic influence problems by means of a local
stochastic Galerkin method, in a preprocessing stage. This can be done at reasonable
cost because of the reduced dimensionality (small mi), and efficiently parallelized be-
cause the local influence problems on different subdomains are independent. Then,
in a sampling stage, the full set of random variables (i.e., on all subdomains) {ξi}Ni=1

is sampled in a Monte Carlo fashion according to their correlation structure. In-
deed, although the random variables of a subdomain (i.e., the random variables that
parameterize the local field in the subdomain) are, by construction, uncorrelated,
the random variables of distinct subdomains are generally correlated, with correla-
tion structure given in [M8, M9]. The corresponding samples of the approximate
local Schur complement matrices S̃i are then cheaply evaluated through their func-
tional (PC) representation. Eventually, for each sample, the global approximate
Schur system is solved using a preconditioned conjugate gradient (PCG) method.
The global approximate Schur matrix is either fully assembled (substructuring ap-
proach) as S̃(ω) =

∑N
i=1 R

T
i S̃i(ω)Ri, or applied in a matrix-free manner using the

local contributions S̃i(ω) in the PCG iterations. In both cases, the (deterministic)
preconditioner M is based on the expectation of the approximate Schur complement
matrix S̃, specifically M =

∑N
i=1 R

T
i [Ŝi]α=0Ri.
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We demonstrated the superiority of the method compared to direct MC sampling
of the Schur system (i.e., without resorting to the PC surrogates and re-building
the local Schur complements and right-hand sides for each sample). However, as
evidenced in [M9], our approach suffers from several disadvantages:

i) The approximate Schur system (and thus its solution) is contaminated by
model error coming from the truncated PC surrogates.

ii) In fact, the PC-based approximation S̃ of the Schur complement matrix does
not guarantee to yield realizations that are symmetric positive definite, which
is a key property of S and a requirement for the PCG theory to hold.

iii) For cases where the random field κ has a large variance, the proposed precon-
ditioner based on the expected Schur complement matrix may not be efficient
for realizations that deviate significantly from the expected system.

iv) Due to the global nature of the proposed preconditioner, the sampling/solving
stage is not expected to scale well in parallel.

We proposed alternative approaches to address these issues in subsequent work [M10,
32], as detailed in the next section.

2.2.3 Stochastic preconditioning approaches

To address issues i and iii described above, we proposed in [M10] an alternative ap-
proach consisting in using the PC-based approximate Schur complement matrix S̃ to
generate sample-dependent preconditioners for each sample of the actual Schur com-
plement system. The fact that the PC approximation is now used as a preconditioner
(instead of a surrogate/replacement of the actual system) addresses issue i, and the
fact that the preconditioner is now sample-dependent (i.e., suited to each sampled
system) addresses issue iii. To address issue ii, we proposed to rely on an orthogo-
nal factorization of the local Schur complement matrices, namely Si(ω) = Hi(ω)

2,
with Hi(ω) := Qi(ω)Λi(ω)

1/2Qi(ω)
T, where Λi(ω) denotes the diagonal matrix con-

taining the (positive) eigenvalues of Si(ω), and Qi(ω) denotes the matrix of the
associated eigenvectors. Then, instead of constructing PC approximations of Si di-
rectly, we construct PC approximations H̃i(ω) =

∑
α∈Ai

[Ĥi]αΨα(ξi(ω)) of the local
factors Hi, and define S̃i = H̃

2

i . This prompts the use of a non-intrusive method
for the construction of the PC surrogates, where a factorization of the local Schur
complement matrix Si = H2

i needs to be computed for each sample point of the
experimental design used for the PC construction (e.g., quadrature points). The
resulting approximate Schur complement matrix, S̃(ω) =

∑N
i=1R

T
i H̃i(ω)

2Ri, is now
guaranteed to be almost-surely non-negative. The method was shown to be effi-
cient and robust over a wide range of values for the involved parameters (number of
subdomains, PC and KL truncation, smoothness of the field).
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The method described above addresses most of the issues of the method presented
in section 2.2.2, but still relies on a global preconditioner, which penalizes the parallel
scalability of the approach, and leaves issue iv unsolved. This question was further
investigated in collaboration with João Reis during his PhD degree [32]. A scalable
strategy was devised based on multipreconditioning techniques [33], specifically a
Neumann-Neumann (NN) PC-based preconditioner with either a Nicolaides or a Ge-
nEO coarse space. The advantage of such a preconditioner in that its application is
mainly local and only requires data exchange between neighboring subdomains. The
NN preconditionner has the form Minv(ω) =

∑N
i=1 R

T
i χiS

†
i (ω)χiRi, where χi is a

diagonal matrix of non-negative entries corresponding to a discrete partition of unity
such that

∑N
i=1R

T
i χiRi = I, and S†

i denotes a Moore-Penrose pseudoinverse of Si.
Following the orthogonal factorization strategy described previously, we construct
PC approximations H̃

†
i (ω) of the local factors H†

i (ω) := Qi(ω)[Λ
†
i (ω)]

1/2Qi(ω)
T such

that S†
i = [H†

i ]
2, where Λ†

i is a diagonal matrix with entries corresponding to the in-
verse of the eigenvalues of Si for positive eigenvalues, 0 otherwise. The resulting PC-
based approximate preconditioner is given by M̃inv(ω) =

∑N
i=1R

T
i χi[H̃

†
i (ω)]

2χiRi.
Preliminary results confirm the good performance of the method, in particular in
terms of scalability, which addresses issue iv.

2.3 Summary

This chapter described several aspects of my research work on domain decomposition
(DD) methods, covering the topics of resilience and the application to uncertain
problems.

To achieve resilience, in an overlapping DD framework, we proposed to recast the
original problem as an optimization problem of learning the boundary-to-boundary
mappings on the subdomains. The optimization problem is then solved in a resilient
manner, using sampling and robust regression techniques. The algorithm was im-
plemented in a server-client framework within a selective reliability paradigm, which
allows to sandbox certain data and compute regions that need to be highly reliable.
The approach was further improved by incorporating a priori bounds on the solution
of the local problems on the subdomains during the sampling stage, so that faulty
solutions lying outside these bounds can be discarded, following a skeptical program-
ming paradigm. Finally, we investigated energy consumption considerations using
a simplified energy model. By decreasing the supply voltage of a supercomputer,
its power consumption is reduced quadratically at the expense of a linearly reduced
speed and a higher fault rate, which can be compensated in our resilient framework
by increasing the sampling rate. This allowed us to identify energy-saving ranges of
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supply voltage reduction factors.
The second aspect addresses the design of DD methods for uncertain problems.

The first contribution consisted of the extension of the deterministic resilient ap-
proach to stochastic problems. We proposed an approach combining the use of
polynomial chaos (PC) surrogate models with robust regression, sparsity-promoting
regularization, and robust cross-validation. The second contribution concerned the
derivation of non-overlapping DD methods for uncertain elliptic partial differential
equations. First, we designed a DD approach for the discretization of random fields,
based on local Karhunen–Loève expansions of the field on the subdomains. Sec-
ond, we proposed to approximate the Schur complement of the partitioned problem
using PC surrogates of the local Schur matrices on the subdomains. This prelimi-
nary idea was further refined by using such local PC approximations in a scalable
DD preconditioner. As such, the surrogate models are no longer considered strictly
as surrogates (i.e., replacements) of the true operators, but rather as accelerators,
where their model error (bias) is actually acknowledged. This last point particularly
resonates with the research avenues that I have been exploring recently and which
constitute one of the main prospective directions for my future research activities
(see chapters 3 and 6).





Chapter 3

Multifidelity methods for uncertainty
quantification

Multifidelity methods rely on a collection of numerical models of different fideli-
ties (i.e., accuracy and associated computational cost) to reduce the overall cost of
computing the solution of a problem, compared to using only the highest fidelity
model. In the context of probabilistic uncertainty propagation, we focus here on
multifidelity variance reduction techniques for MC-like sampling methods, which we
will refer to as multifidelity MC (MFMC), although this name is used in the liter-
ature for a specific method [34, 35] that lies within this class of techniques. With
that definition, MFMC includes broad classes of methods such as multilevel MC
(MLMC) [7–9] multi-index MC (MIMC) [36], control variates (CV) [37, 38], control
variates using estimated means (CVEM) [34, 35, 39, 40], and multilevel best linear
unbiased estimators (MBLUE) [41, 42]. A unifying formulation for such methods
was recently proposed in [41, 42], which may be written as

θ̂MF
K =

K∑
k=1

∑
ℓ∈Sk

w
(k)
ℓ θ̂

(k)
ℓ , (3.1)

where θ̂MF
K is the multifidelity estimator of the statistic θ we want to estimate, θ̂(k)ℓ is

an unbiased estimator of θ on fidelity level ℓ based on an input sample ζ(k) common
to the coupling group Sk, and w

(k)
ℓ ∈ R is the associated weight. The members of

samples ζ(k) and ζ(k
′) pertaining to two different coupling groups Sk and Sk′ ̸=k are

independent, so that the terms of the outer sum are independent, while, for each of
these terms, the estimators of the inner sum, thus pertaining to the same coupling
group, are correlated. Finally, K represent the number of coupling groups.

Equation (3.1) can be compactly written as θ̂MF
K = ⟨W, Θ̂⟩F = tr(WTΘ̂), where

⟨·, ·⟩F denotes the Frobenius inner product of matrices of the same size, W is the

19
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(possibly sparse) matrix of coupling weights with entries Wij = w
(j)
i , and Θ̂ is the

matrix of estimators with entries Θ̂ij = θ̂
(j)
i . The structure of W alone makes it

possible to distinguish different families of methods, as illustrated in fig. 3.1 (see also
fig. 3.3 in section 3.3). Besides this distinction based on stochastic coupling groups,
an additional segregation is usually made between general multifidelity methods
and more specific multilevel methods. In the latter case, the low-fidelity models are
structured in a hierarchy with a clear order in terms of cost and accuracy, while in
the former case, no assumption is made about such an ordering, other than the fact
that the low-fidelity models have lower cost and accuracy than the highest-fidelity
model, as illustrated in fig. 3.2.
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Figure 3.1: Illustration of the structure of the coupling weight matrices W associated
with various MFMC methods, with K = 4. Inspired by [41, 42].

While MFMC methods were originally designed for the estimation of the expec-
tation of a single scalar quantity, the MBLUE methodology was recently extended
to the estimation of the expectation of several scalar quantities of interest [45]. The
multilevel estimation of statistics of random fields is somewhat more challenging,
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Figure 3.2: Illustration of the structural difference between general multifidelity
methods and more specific multilevel methods.

although discretized random fields may be seen as collections of scalar random vari-
ables so that the multi-output MBLUE methodology still applies. The difficulty
lies in the fact that the linear combination in eq. (3.1) involves estimators that are
themselves discretized random fields, which must be defined on the same (finest)
level. Besides, it should be noted that certain UQ tasks, such as sensitivity analysis,
may require the estimation of higher-order statistical moments than the expecta-
tion, which requires the original MFMC methods to be adapted. In this chapter,
we present multilevel methods for statistical estimation and sensitivity analysis that
address these limitations. Here the term multilevel relates to the fact that multi-
fidelity originates from a hierarchy of levels similar to the MLMC framework (see
fig. 3.2b). In section 3.1, we present an MLMC methodology for the estimation of
Sobol’ indices in the context of global sensitivity analysis. Then, in section 3.2, we
present an extension of MLMC to discretized random fields, with an application to
the estimation of normalization coefficients for diffusion-based covariance operators
by (multilevel) randomization. Finally, when the exact statistics of the low-fidelity
models are available, as is the case for certain surrogate models, strategies based on
the original CV approach may be exploited. In section 3.3, we present a multilevel
surrogate-based CV method for statistical estimation.

3.1 Multilevel global sensitivity analysis

In this and the following section, we consider an abstract numerical simulator

f : X → R

x 7→ f(x),
(3.2)



22 Chapter 3. Multifidelity methods for uncertainty quantification

where the p scalar input parameters, collected in x := (x1, . . . , xp) ∈ X ⊂ Rp, are
uncertain. In a probabilistic UQ framework, we use random variables, defined on a
probability space (Ω,Σ,P), to model the uncertainty in x. Specifically, we define an
X -valued random vector X whose components X1 . . . , Xp are independent random
variables with prescribed probability distributions. We further assume here that
f(X) has a finite fourth-order moment, i.e., E[f(X)4] <∞.

In [M11], we proposed an MLMC methodology and its mathematical analysis
for the estimation of Sobol’ indices Su, for ∅ ̸= u ⊆ {1, . . . , p}, based on their
pick-and-freeze formulation [46]:

Su =
C[f(Xu ⊕Xū), f(Xu ⊕X ′

ū)]

V[f(X)]
−
∑

∅≠v⊊u

Sv, (3.3)

where Xu := (Xi)i∈u, ū := {1, . . . , p}\u, Xu ⊕Xū = (X1, . . . , Xp) = X, and where
Xu ⊕X ′

ū denotes the Rp-valued random vector whose ith component is Xi if i ∈ u

and X ′
i otherwise, where Xi and X ′

i are i.i.d. Our multilevel methodology then lies in
the MLMC estimation of the covariance term C[f(Xu⊕Xū), f(Xu⊕X ′

ū)]. To that
end, we proposed an MLMC estimator of the covariance between two real-valued,
fourth-order random variables Y and Z. The multilevel estimator is of the form
Ĉ

ML
L [Y, Z] =

∑L
ℓ=1 T̂ℓ, where T̂1 := Ĉ

(1)

n1
[Y1, Z1] is a coarse, single-level estimator

and T̂ℓ>1 := Ĉ
(ℓ)

nℓ
[Yℓ, Zℓ]− Ĉ

(ℓ)

nℓ
[Yℓ−1, Zℓ−1] are multilevel correction estimators. Here,

Ĉ
(ℓ)

nℓ
[·, ·] denotes the single-level, unbiased, sample covariance estimator based on an

input sample ζ(ℓ) := {X(ℓ,1), . . . ,X(ℓ,nℓ)} associated with the coupling group Sℓ.

In addition, we provided upper bounds on the variance of the multilevel terms
T̂ℓ, for ℓ ≥ 1,

V[T̂ℓ] ≤
1

2

1

nℓ − 1

[√
M4[δ−ℓ Y ]M4[δ+ℓ Z] +

√
M4[δ−ℓ Z]M4[δ+ℓ Y ]

]
, (3.4)

where M4[Y ] := E[(Y −E[Y ])4], and where δ±1 Y := Y1 and δ±ℓ>1Y := Yℓ±Yℓ−1. These
bounds allowed us to derive sufficient conditions, stated in [M11, theorem 2.5], to
fit into the abstract MLMC framework of [47, theorem 4.1].

We also provided an adaptive MLMC algorithm aiming at reaching (heuristically)
a minimal variance given a fixed computational budget. We conducted numerical
experiments on an uncertain ordinary differential equation with known analytic solu-
tion and Sobol’ indices. They confirmed the convergence properties of our estimator
predicted by the theory.
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3.2 Extension of MLMC to discretized random fields

In [M12], we proposed an extension of MLMC estimators to the case where

i) the numerical simulator f : Rp ⊃ X → Y ⊂ Rq is now a vector-valued function;
ii) the input parameter X represents a discretized random field; and
iii) the output Y = f(X) is also a discretized random field.

The main difficulty of such a setting lies in the inconsistent input and output vec-
tor dimensions across levels for a natural multilevel hierarchy of simulators (fℓ)

L
ℓ=1

defined by fℓ : Rpℓ ⊃ Xℓ → Yℓ ⊂ Rqℓ , which prevent the MLMC telescoping sum
from being used as is. We thus resorted to multigrid ingredients, in particular grid
transfer operators, to extend the scalar MLMC estimators to the multilevel estima-
tion of statistics of discretized random fields. Specifically, restriction operators Rℓ

L

are used to transfer the fine input X, defined on level L, to a grid on level ℓ (with
RL

L := IL), and prolongation operators PL
ℓ are used to transfer the outputs defined

on level ℓ to the finest grid on level L (with PL
L := IL). These transfer operators

are defined as the composition of transfer operators between successive levels of the
hierarchy,

PL
ℓ = PL

L−1 · · ·Pℓ+2
ℓ+1P

ℓ+1
ℓ and Rℓ

L = Rℓ
ℓ+1 · · ·RL−2

L−1R
L−1
L , ∀ℓ = 1, . . . , L− 1. (3.5)

The MLMC estimator θ̂ML
L of θL := Q[fL(X)] then reads θ̂ML

L =
∑L

ℓ=1 T̂ℓ, where
T̂1 and T̂ℓ>1 are unbiased estimators of θ1 and Tℓ>1 := θℓ − θℓ−1, respectively, with
θℓ := Q[Yℓ] and Yℓ := PL

ℓ fℓ(R
ℓ
LX). Each estimator T̂ℓ is based on an input sample

ζ(ℓ) of size nℓ associated with its coupling group Sℓ, for ℓ = 1, . . . , L.

Following the typical Fourier analysis of multigrid methods (see, e.g., [48]), we
conducted a spectral analysis of θ̂ML

L , for the estimation of the expectation (Q = E).
Similar to multigrid methods, the analysis revealed that the grid transfer operators
introduce spurious high frequencies in the transferred discretized fields Yℓ. Nonethe-
less, owing to the telescoping correction mechanism of MLMC, these spurious high
frequencies do not affect the bias of the multilevel estimators, so that E[θ̂ML

L ] = θL.
Instead, they do affect the estimator’s variance, V(θ̂ML

L ) := E[∥θ̂ML
L −E[θ̂ML

L ]∥22]. Us-
ing an orthogonal, Fourier-like basis H, the estimator’s variance can be decomposed
into contributions associated with each basis vector hk, and, in turn, with the corre-
sponding frequency, specifically V(θ̂ML

L ) =
∑qL

k=1V[hT
k θ̂

ML
L ]. This allowed us to show

that the variance is deteriorated (i.e., increased) by contributions associated with
high frequencies when the prolongation operators are based on low-order interpola-
tion. Inspired by the smoothing iterations used in multigrid methods, we proposed
to introduce a filtering step in the definition of the transfer operators between suc-
cessive levels. More precisely, Pℓ

ℓ−1 and Rℓ−1
ℓ are replaced with P̄

ℓ
ℓ−1 := SℓP

ℓ
ℓ−1



24 Chapter 3. Multifidelity methods for uncertainty quantification

and R̄
ℓ−1
ℓ := Rℓ−1

ℓ Sℓ, respectively, where Sℓ denotes a low-pass filter on level ℓ, for
ℓ = 2, . . . , L. The filters are designed to damp the high-frequency components of fine
signals before restricting them to a coarser grid, as well as the high-frequency com-
ponents in signals prolongated from a coarser grid, where such frequencies cannot
be represented.

We applied this filtered MLMC (FMLMC) approach to the multilevel estima-
tion of normalization coefficients for diffusion-based covariance operators [49–51].
This approach relies on diffusion operators of the form Aℓ := VT

ℓ (Iℓ −∆ℓ)
J , each

related to the discretization of a heat (or, more generally, diffusion) equation on
level ℓ = 1, . . . , L, using an implicit, backward Euler (pseudo-time) integration
scheme, with J ∈ N pseudo-time steps. Letting X ∼ N (0L, IL), we want to es-
timate θL := V[A−1

L X] = E[(A−1
L X) ⊙ (A−1

L X)], where ⊙ denotes the Hadamard
(element-wise) product, which corresponds to the vector of the diagonal entries
of A−1

L A−T
L . Thus, the multilevel hierarchy of simulators (fℓ)

L
ℓ=1 is defined by

fℓ : Xℓ 7→ (A−1
ℓ Xℓ) ⊙ (A−1

ℓ Xℓ). Our numerical experiments in 1D and 2D showed
that the filtering step reduces the high-frequency contributions to the multilevel es-
timator’s variance, resulting in smoother individual estimations of the discretized
normalizing field. In addition, in instances where these high-frequency contributions
are large, their filtering can even significantly improve the overall variance V(θ̂ML

L ),
thus exploiting the full power of MLMC. For a given computational budget, we ob-
tained smooth estimators of the discretized normalizing fields with lower variance
than the crude MC estimators and of (unfiltered) MLMC estimators.

3.3 Multilevel surrogate-based control variates

In [M13], we proposed a multilevel, surrogate-based CV estimator of some statistic
θ. We start by recalling the standard (multiple) CV estimator θ̂CV of θ, based on m

control variates, which reads

θ̂CV(α) = θ̂ − ν̂Tα, E[ν̂] = 0, (3.6)

where θ̂ is an unbiased estimator of θ, α ∈ Rm is the CV weight vector, and ν̂

is a zero-mean, Rm-valued random vector that is somehow correlated with θ̂. By
construction, θ̂CV is unbiased, and, in practice, one typically has ν̂ = τ̂−τ , where τ
is a vector of statistics that are approximations of θ, and τ̂ is an unbiased estimator of
τ . The CV weight α is optimized so that θ̂CV(α) has minimal variance. The optimal
weight is given by α∗ = Σ−1c, where Σ := C[τ̂ ] ∈ Rm×m and c := C[τ̂ , θ̂] ∈ Rm.
The resulting optimal CV estimator, θ̂CV(α∗), always has a lower variance than θ̂,
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with a reduction factor of 1−R2, where R2 := V[θ̂]−1cTα∗ ∈ [0, 1]. In [M13], we show
that introducing additional control variates always reduces (or, more precisely, never
increases) the variance of the CV estimator. Note that, in practice, the statistics
involved in the definition of α∗ are estimated using the same sample as θ̂ and τ̂ ,
thus deteriorating the theoretical variance reduction factor and introducing bias.
The latter may be eliminated using splitting techniques [52].

In a multifidelity context, given a collection {f1, . . . , fK} of models of different
fidelities of the form (3.2), and fK denoting (by convention) the high-fidelity model,
we are interested in a statistical measure θ = Q[fK(X)] (e.g., θ = E[fK(X)]),
and we define τ := (τ1, . . . , τm), with τℓ = Q[fℓ(X)] for ℓ ≤ m := K − 1. The
resulting CV estimator can be written in the form of eq. (3.1), and an illustration of
the resulting coupling weight matrix is given in fig. 3.3a. Note that this estimator
involves a single coupling group. Assuming that τ̂ is a consistent estimator of τ ,
we may define an asymptotic sampling version of eq. (3.6) by replacing τ with its
asymptotic version τ̂∞, thus leading to the CV-AS estimator illustrated in fig. 3.3b.
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(b) CV-AS

Figure 3.3: Illustration of the structure of the coupling weight matrices W associated
with the CV method, with K = m+ 1 = 4. Inspired by [41, 42].

In practice, the true statistical measures τℓ = Q[fℓ(X)] may not be known, and
thus need to be estimated. This has given rise to a family of MFMC methods
exploiting this strategy (starting with the actual method referred to as “MFMC”
in [35]), such as [34, 35, 39, 40] of the CVEM family, and, in a sense, also [41, 42] of
the MBLUE family, which can be written in the form of eq. (3.1), as illustrated in
fig. 3.1 (last two figures). In such instances, the sample allocation can be optimized
considering the cost of estimating τ using extra samples, and the deterioration of
variance reduction introduced by this approximation. Alternatively, we propose a
surrogate-based CV (SBCV) approach where we use surrogate models fℓ≤m = f̃ℓ,
for which we know Q[f̃ℓ(X)] exactly, as low-fidelity models. PC surrogates are



26 Chapter 3. Multifidelity methods for uncertainty quantification

ideal candidates, since their (exact) expected value and variance can be readily
accessed through the PC coefficients [53–56]. Nonetheless, other candidates can
be considered, in particular surrogate models based on a Taylor expansion of f

around E[X], as we suggested in [M13]. The advantage of such an approach is
two-fold. First, the cost of evaluating the surrogate model is negligible compared to
the cost of evaluating the high-fidelity model. Second, the exact (and free) access
to τ allows us not to deteriorate the variance reduction, contrary to the CVEM
approaches mentioned previously. Even in the case of surrogate models for which τ is
generally not readily accessible, such as Gaussian processes, an accurate estimation
of τ can still be obtained for a negligible cost by sampling the surrogate model,
corresponding to an ACV-IS [40] approach (see fig. 3.1c), whose asymptotic version
is CV-AS (see fig. 3.3b). In any case, the resulting SBCV estimator is unbiased by
construction, so that, in a sense, this surrogate-based approach can be seen as a
bias reduction technique (w.r.t. the biased surrogate), in addition to the traditional
variance reduction (w.r.t. the MC estimator) interpretation.

In [M13], we proposed a multilevel extension of the approach described above,
resulting in the MLMC-MLCV estimator (here simply denoted by MLCV),

θ̂MLCV
L (α1, . . . ,αL) = θ̂

(1)
1 −


τ̂
(1)
1 − τ1

...
τ̂
(1)
L − τL


T

α(1) +
L∑

ℓ=2

T̂
(ℓ)
ℓ −


Û

(ℓ)
2 − U2

...
Û

(ℓ)
L − UL


T

α(ℓ), (3.7)

where

• θ̂
(1)
1 is an unbiased (coarse) estimator of θ1 := Q[f1(X)], based on an input

sample ζ(1) of size n1 associated with the coupling group S1;
• τ̂

(1)
ℓ′ is an unbiased estimator of τℓ′ := Q[f̃ℓ′(X)] ≈ θℓ′ , based on the same input

sample ζ(1), for ℓ′ > 1;
• T̂

(ℓ)
ℓ is an unbiased estimator of the correction Tℓ := θℓ − θℓ−1, with θℓ :=

Q[fℓ(X)], based on an input sample ζ(ℓ) of size nℓ associated with the coupling
group Sℓ, for ℓ > 1;

• Û
(ℓ)
ℓ′ is an unbiased estimator of Uℓ′ := τℓ′ − τℓ′−1 ≈ Tℓ′ , based on the same

input sample ζ(ℓ), for ℓ, ℓ′ > 1.

This multilevel estimator proposes to reduce the variance of the MLMC estimator by
using, for each term of the telescoping sum, multiple CVs based on surrogate models
at all levels. Equation (3.7) can be written in the form of eq. (3.1), and an illustration
of the coupling weight matrix, along with its asymptotic sampling counterpart, is
given in fig. 3.4 in the specific case where Û

(ℓ)
ℓ′ is defined as Û (ℓ)

ℓ′ := τ̂
(ℓ)
ℓ′ − τ̂

(ℓ)
ℓ′−1. The

optimal CV weights are given by α
(ℓ)
∗ = C[Û (ℓ)]−1C[T̂ (ℓ)

ℓ , Û (ℓ)], where T̂
(1)
1 := θ̂

(1)
1 ,
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Û (1) := (τ̂
(1)
ℓ′ )Lℓ′=1 and Û (ℓ) := (Û

(ℓ)
ℓ′ )Lℓ′=2 for ℓ > 1. The resulting optimal estimator

has variance
∑L

ℓ=1(1 − R2
ℓ )V[T̂

(ℓ)
ℓ ], with R2

ℓ := V[T̂ (ℓ)
ℓ ]−1C[T̂ (ℓ)

ℓ , Û (ℓ)]Tα
(ℓ)
∗ ∈ [0, 1],

which is smaller than the variance of the MLMC estimator given by
∑L

ℓ=1V[T̂
(ℓ)
ℓ ].
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Figure 3.4: Illustration of the structure of the coupling weight matrices W associated
with the MLCV method, with K = L = m = 3 and Û

(ℓ)
ℓ′ := τ̂

(ℓ)
ℓ′ − τ̂

(ℓ)
ℓ′−1. Inspired

by [41, 42].

We derived PC-based MLCV estimators for the estimation of the expected value
(Q = E) and of the variance (Q = V) [M13]. The practical definition of Û (ℓ) was
discussed, as well as several variants of the above strategy taking into account the
construction cost of the surrogate models. The proposed estimators were successfully
tested on the estimation of the expected value of the output of a discretized, uncer-
tain heat equation. Our numerical experiments confirmed the significant variance
reduction brought by the multilevel CVs, consistent with the theory.

3.4 Summary

In this chapter, we presented multilevel and/or multifidelity methods for the es-
timation of statistics of the output of expensive numerical simulators. The main
contributions concern extensions of the well-established MLMC method to the es-
timation of covariance for sensitivity analysis (section 3.1) and to the estimation of
statistics of discretized random fields (section 3.2), as well as the combination of
MLMC with surrogate-based control variate estimation (section 3.3). The efficiency
of these methods in terms of variance reduction was demonstrated theoretically
and/or numerically. The proposed multilevel estimators all belong to the class of
estimators defined by the unifying form eq. (3.1), so that the MBLUE approach
of [41, 42] may be employed instead of MLMC, which should result in a greater
variance reduction.





Chapter 4

Multigrid methods for the hybrid
high-order discretization

This chapter is dedicated to the development of multigrid methods for the hybrid
high-order (HHO) discretization [57–59] that were made in the context of Pierre
Matalon’s PhD degree [60]. The HHO discretization is hybrid in the sense that the
discrete unknowns are located on the mesh and its skeleton. Specifically, the PDE
is discretized (in variational form) using broken polynomial spaces defined on the
mesh elements (or cells) and faces, which allows high-order representations of the
solution. The main advantages of the HHO discretization lie in its native support
of polyhedral elements, its optimal orders of convergence, and its reduced number
of degrees of freedom (DoFs) through the static condensation process. Static con-
densation relies on the fact that the interior unknowns (i.e., cell unknowns) are not
(directly) coupled with each other, instead they only interact through interface un-
knowns (i.e., face unknowns). As a consequence, in the resulting system of linear
equations representing the discretized PDE, cell unknowns can be eliminated by
a Schur complement technique, yielding a reduced system involving only face un-
knowns. This reduced system is referred to as the statically condensed system, trace
system or Schur complement system. The specific structure of the trace system
calls for dedicated solvers. In particular, for multigrid methods [48, 61–63], specific
intergrid transfer operators need to be designed and appropriate smoothers must be
employed.

In section 4.1 we present an h-multigrid method relying on a tailored prolon-
gation operator. Then, section 4.2 introduces and compares different h-, p- and
hp- coarsening strategies. Finally, in section 4.3 we propose an algebraic multigrid
(AMG) method for the lowest polynomial order. The approaches are tested in 2D

29
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and 3D on an elliptic diffusion problem of the form{
−∇ · (K∇u) = f in D ⊂ Rd, d ∈ {2, 3},

u = 0 on ∂D,
(4.1)

where K : D → Rd×d is a symmetric diffusion tensor field.

4.1 An h-multigrid method

4.1.1 Nested meshes

In [M15], we proposed an h-multigrid method for solving the trace system arising
from the HHO discretization of model problem (4.1) on a hierarchy of nested meshes.
A crucial assumption is that the hierarchy successively coarsens not only elements,
but also faces, so that the smoother (which applies to the face unknowns) may
perceive (and dampen) lower frequencies of the error on the faces. As mentioned
previously, one of the key ingredient of the proposed multigrid method for the trace
system lies in the definition of suitable intergrid transfer operators. In particular,
because the system is defined on the mesh skeleton, it is not straightforward to de-
fine a face-based prolongation operator P that interpolates a face-defined correction
from a coarse mesh skeleton to a finer one. The proposed prolongation operator,
which we will refer to as the prolongation operator by decondensation, consists of
the composition of two operations, which involves as an intermediary step the recon-
struction of the correction over the elements. Specifically, we define the prolongation
as P := Πℓ

ℓ−1 ◦ Θℓ−1, where Θℓ−1 will be referred to as the coarse potential recon-
struction operator, and Πℓ

ℓ−1 will be referred to as the trace prolongation operator.
The coarse potential reconstruction operator Θℓ−1 is itself composed of two steps.
First, it computes the interior correction defined on the coarse cells from the correc-
tion on the coarse faces (similar to how one would compute the solution of a PDE
over subdomains from the boundary data in a domain decomposition framework).
Then, using the hybrid information, i.e., both the cell- and face-defined correction
(of degree k), it reconstructs a higher-degree approximation (of degree k + 1) over
the coarse cells, using the HHO potential reconstruction operator, which is a central
component of the HHO methodology. Finally, the trace prolongation operator Πℓ

ℓ−1

is defined as an orthogonal projection that maps the corrections of degree k + 1

defined on the coarse cells to a correction of degree k defined on the fine faces. The
full prolongation process is illustrated in fig. 4.1. The restriction operator is defined
as the adjoint of the prolongation operator, and block versions of fixed-point itera-
tions are used as smoothers, whose block size correspond to the number of degrees
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Figure 4.1: Prolongation from coarse to fine faces (edges in 2D). Adapted from [M15].

of freedom per face (i.e., the dimension of the polynomial basis on the faces).

The numerical experiments carried out in [M15] demonstrated the optimality of
our multigrid solver, in the sense that the number of iterations required to reach
convergence is independent of the mesh size, and its robustness with respect to the
polynomial degree and to heterogeneity in the diffusion tensor.

4.1.2 Non-nested meshes

In [M16], we proposed an extension of our multigrid solver to non-nested mesh hi-
erarchies. Again, a proper definition of the prolongation operator is at the heart
of the proposed method. Specifically, we modify the definition of the prolongation
to P := Πℓ ◦ J ℓ

ℓ−1 ◦ Θℓ−1, which includes an additional orthogonal projection step
J ℓ
ℓ−1 from the coarse cells to the (non-nested) fine cells. Note that this addition

requires a slight modification of the trace operator, now denoted by Πℓ, which now
maps the corrections of degree k + 1 defined on the fine cells to a correction of
degree k defined on the fine faces. The numerical evaluation of J ℓ

ℓ−1 requires the
computing of the geometric intersections between coarse and fine elements, which
may be computationally demanding. To avoid this costly calculation, we propose
an approximation of J ℓ

ℓ−1 that does not require the computation of the geometric
intersections. This approximate operator instead relies on the definition of an ap-
proximate intersection between a coarse cell Tc and a fine cell Tf, denoted by Tc ∩̃Tf,
based on a subdivison of Tf. Each sub-element tf of Tf belongs to the approximate
intersection Tc ∩̃ Tf if and only if Tc is the closest coarse element to tf. Otherwise,
it will belong to the approximate intersection of Tf with another coarse element T ′

c

(which is the closest to it). Our numerical experiments showed that, in 2D, the solver
based on approximate intersections behaved nearly identically to the solver based
on exact intersections. In 3D, computing exact intersections was not affordable, but
the solver based on approximate intersections exhibited a good convergence rate
and scalability for moderate polynomial degrees, including for complex geometries
requiring unstructured meshes.
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Figure 4.2: Illustration of the approximate intersection Tc ∩̃Tf between a coarse cell
Tc (in blue) and a fine cell Tf (in orange). The green area, consisting of a collection
of sub-elements of Tf, represents Tc ∩̃ Tf.

4.2 Multigrid coarsening strategies

In [M17], we introduced coarsening strategies for the definition of the multigrid hi-
erarchy. In particular, we introduce p-coarsening, which consists in decreasing the
polynomial degree of the HHO approximation. Then, the multigrid hierarchy can be
designed using p-coarsening, h-coarsening (i.e., mesh coarsening), or a combination
of both, referred to as hp-coarsening. When considering p-coarsening, the prolonga-
tion operator can either be defined as previously (prolongation by decondensation),
and the restriction as its adjoint. Alternatively, the prolongation operator may be
defined by natural injection and the restriction by orthogonal projection. In that
case, efficient implementation can be achieved by constructing hierarchical, orthog-
onal polynomial bases on the faces. Different multigrid strategies, namely based on
h-only, p-then-h, and hp-then-h multigrid hierarchies, are compared on a variety of
2D and 3D test problems. All the strategies exhibit fast convergence with a low,
mesh-independent number of iterations to reach convergence. The strategies are
then compared in terms of CPU time and equivalent work units for the setup stage
and the iteration stage. The results show that the behavior of the different solvers
is problem dependent. Nonetheless, we provide insights on how to choose a suitable
strategy, depending on the problem, and depending on whether the problem needs
to be solved only once or multiple times, e.g., for multiple right-hand sides.

4.3 An algebraic multigrid method for the lowest

order

Geometric multigrid methods require geometric information about the PDE dis-
cretization, namely a hierarchy of meshes at different resolutions. This can be an
obstacle to the use of such methods in an industrial context, despite their efficiency.
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Algebraic multigrid (AMG) methods, on the other hand, do not require other infor-
mation than the linear system itself. In [M18], we proposed an AMG methodology
for the lowest order (k = 0) HHO discretization. The proposed AMG solver heavily
relies on ingredients of the AGMG solver [64]. In particular, we rely on a pairwise
aggregation strategy based on a strong negative coupling criterion, and we use the
so-called K-cycle, which introduces Krylov acceleration into the multigrid recursive
cycle. The resulting multigrid cycle is itself used as a variable preconditioner of an
outer flexible Krylov method. The particularity of our method is that it uses the
uncondensed HHO system (i.e., before static condensation), so that the connectivity
information between elements and faces can be retrieved. From this information,
an algebraic, element-based aggregation method can be devised to mimic the be-
havior of a geometric coarsening or semi-coarsening strategy. A crucial step of face
collapsing is included so that the faces are coarsened. Inspired by plain aggregation
techniques, we define (highly) sparse restriction and prolongation matrices that are
then used to construct coarse uncondensed systems from fine ones in a Galerkin man-
ner. These algebraic intergrid transfer matrices are only used for the construction of
the hierarchy of uncondensed systems, but not inside the multigrid cycle. Instead,
we derive algebraic versions of the intergrid transfer operators designed previously
for the geometric solver described in section 4.1, in particular the prolongation op-
erator by decondensation, which make use of the hierarchy of uncondensed systems.
The multigrid iterations operate on the condensed systems, whose hierarchy is also
constructed in a Galerkin manner, but with these newly defined operators. Our
numerical experiments demonstrated the good performance of the proposed AMG
solver, comparable to AGMG [64] on a variety of test problems, but with a better
robustness to orthotropic anisotropy.

4.4 Summary

In this chapter, we presented contributions to the design of multigrid solvers for
hybrid high-order (HHO) discretizations. The core contribution concerned the def-
inition of appropriate intergrid transfer operators based on decondensation, and
block smoothers, which lead to the design of a robust and scalable geometric multi-
grid method. Originally designed for nested meshes, our solver was then adapted
to non-nested mesh hierarchies, by incorporating an additional projection opera-
tor. In practice, for computational reasons, this projection operator is approximated
through the definition of approximate intersections between (non-nested) coarse and
fine elements, thus alleviating the heavy calculation of all exact geometric intersec-
tions. We also investigated various coarsening strategies, mixing h-coarsening (i.e.,



34 Chapter 4. Multigrid methods for HHO

increasing the size of the mesh elements) and p-coarsening (i.e., deteriorating the
polynomial degree of approximation). Finally, we proposed an algebraic multigrid
preconditioner for lowest-order HHO discretizations, relying on the uncondensed
system to extract coupling information about the degrees of freedom. One natu-
ral continuation of this work would concern HHO discretizations of other partial
differential equations (PDEs), such as the Stokes or the Navier-Stokes equations,
although the design of efficient multigrid algorithms is already a challenge for more
traditional discretizations of such PDEs.



Chapter 5

Sequences of linear systems

This chapter is dedicated to the design of iterative solver strategies for solving se-
quences of linear systems with multiple left- and right-hand sides. Such sequences
may arise, for example, from unsteady computational fluid dynamics (CFD) simu-
lations (typically with implicit time-stepping schemes), in non-linear optimization
problems, or when sampling discretized stochastic PDEs. In section 5.1, we present
an iterative solver approach for solving sequences of dense linear systems arising
from unsteady CFD simulations of marine current turbine farms, based on a Krylov
iterative solver with an appropriate preconditioner. In section 5.2, we discuss spec-
tral recycling strategies for solving sequences of correlated systems corresponding to
samples of discretized stochastic PDEs.

5.1 Preconditioning BEM systems for marine cur-

rent turbine farms

During my PhD [M20], we developed an iterative solver approach for the modeling
of marine current turbine farms, based on a vortex particle method [M21]. The
set-up consists of an exterior fluid domain with moving boundaries S, assumed non-
deformable, representing the surfaces of the blades and hubs of the N ≥ 1 turbines.
The flow is governed by the incompressible Navier-Stokes equations, which may be
written in their velocity-vorticity formulation as

Dω

Dt
= (ω · ∇u) + u∆ω, ω = ∇× u,

∇ · u = 0,
(5.1)

where × denotes the cross product and ∇× denotes the curl operator. The velocity
field u is decomposed as u = u∞ + uϕ + uψ according to the Helmholtz decom-
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Blade (thin profile)

Panel method Vortex method

Free vortex particles

(a) Cross-sectional illustration of the discretization
method, showing the location of the panel method
and of the particle method.

(b) Notations for the interaction
between two panels Si and Sj .

Figure 5.1: Illustration of the particle and panel methods, adapted from [M21].

position, where u∞ is the inflow, uϕ is the potential velocity field and uψ is the
rotational part of the velocity field. The potential velocity may be expressed as

uϕ(x) =
1

4π
∇
∫∫

S

µ(y)
(y − x) · n(y)
|y − x|3

dS(y), (5.2)

where µ represents a distribution of normal dipoles on the surface S of the turbine
blades. The discretization method consists of two parts: first, the moving surfaces
S are discretised using an integral panel method, otherwise known as the bound-
ary element method (BEM); and second, the fluid domain is discretized into free
vortex particles. A sketch of the method is depicted in fig. 5.1a, for a single blade
represented as a thin profile.

The boundaries S are discretized using quadrangular panels {Si}ni=1, over each
of which the dipole distribution is assumed to be constant. The dipole distribution
is determined so as to enforce boundary conditions for the flow velocity u on the
panels. This involves solving, at each time step t, a linear system of the form
A(t)µ(t) = b(t), where the elements µi of µ ∈ Rn correspond to the piecewise
constant values of the dipole distribution on the panels. The entries Aij of A are
defined as

Aij =
ni

4π
·

3∑
k=0

∫
ℓkj

y − xi

|y − xi|3
× dℓ(y) (5.3)

=
ni

4π
·

3∑
k=0

(|rk
ij|+ |rk+1

ij |)

(
1−

rk
ij · rk+1

ij

|rk
ij| |rk+1

ij |

)
rk
ij × rk+1

ij

|rk
ij × rk+1

ij |2
, (5.4)

where the notations are depicted in fig. 5.1b, k + 1 is taken modulo 4, and where
xi represents the location of Qi, i.e., the center of panel Si. We see immediately
that A is dense, and that it is generally non-symmetric. In fact, our experiments
indicate that it is generally not positive definite either.

When a single (N = 1) turbine is considered, the matrix A represents the influ-
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Figure 5.2: Illustration of two rotating turbines in interaction, at two successive
time steps t and t + δt, and of the consequence on the interaction between panels.
Reproduced from [M21].

ence of the turbine on itself. Because the turbine is assumed to be non-deformable,
the rotation does not change the coefficients of A [M21]. In such a case, because
the system is small enough (n ≈ 2000 at most), we may rely on an LU factorization
of A at the beginning at the simulation, and use it to subsequently solve the linear
system Aµ(t) = b(t) at each time step. However, this property no longer holds when
considering multiple (N > 1) turbines rotating at different velocities, as illustrated
in fig. 5.2. The matrix A then has a natural block structure, as shown in eq. (5.5),
where each block represents the influence of on turbine on another (or the same, for
diagonal blocks) one. The diagonal blocks, which represent the influence of a tur-
bine on itself, are stationary (i.e., their coefficients do not change with time). The
entries of the off-diagonal blocks, corresponding to the interaction between panels
belonging to different turbines, change with time but have a small magnitude, due
to the quadratic decay of the interactions with the distance, see eq. (5.3). We thus
resort to an iterative Krylov solver, namely Bi-CGSTAB [65], to solve the linear
systems at each time step, using an appropriate preconditioner. The preconditioner
M is obtained by replacing the non-stationary blocks, i.e., the off-diagonal blocks,
of the influence matrix A by zero blocks,

A(t) =


A11 A12(t) · · · A1N(t)

A21(t) A22 · · · A2N(t)
...

... . . . ...
AN1(t) AN2(t) · · · ANN

 , M :=


A11 0 · · · 0

0 A22 · · · 0
...

... . . . ...
0 0 · · · ANN

 , (5.5)

which corresponds to a block-Jacobi preconditioner. The individual LU factoriza-
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tions of the diagonal blocks Aii may be computed at the beginning of the simulation,
and subsequently used to precondition the Bi-CGSTAB iterations. This strategy
was tested on a 10-turbine farm, discretized with a total of n ≈ 20,000 panels. Our
experiments indicate that the iterative approach brings a substantial time save as
compared to a naive use of a direct method at each time step, or of an unprecondi-
tioned Bi-CGSTAB iterative method. In particular, this allows the cost of emitting
particles at the trailing edge of the blades (transition between the panel method and
the vortex method in fig. 5.1a), which includes the linear system solve, to remain
negligible compared to the cost of advecting the particles in the fluid domain.

5.2 Spectral recycling techniques

In [M19, 66], we investigated the use of Krylov subspace spectral recycling ap-
proaches based on deflation techniques for solving sequences of linear systems with
multiple left- and right-hand sides, {Atxt = bt}t≥1. In that context, deflation tech-
niques are used to recycle approximate spectral information about the left-hand
side At from one system to the next. Such techniques have proved to be very ef-
fective for sequences with multiple right-hand sides, but with constant left-hand
side [67], i.e., sequences of the form {Axt = bt}t≥1. The reason is that the spectral
information about the constant matrix A is continually refined from one system
to the next. When the matrix At changes, however, it becomes less clear whether
recycling spectral information from At may be beneficial for the subsequent system
At+1xt+1 = bt+1. As a natural first step, we investigate if this approach may still
be effective for sequences where At does not “change much” from one system to the
next. Such a situation occurs, for instance, when sampling the random field κ of
eq. (2.5) according to a Markov chain, in the context of Bayesian inference. As a
consequence, the sample matrices {At}t≥1, corresponding to the discretization of the
PDE with the sample random fields {κt}t≥1, are correlated. We set up an illustrative
test case where κ is a log-normal random field, whose logarithm is a Gaussian field
approximated by a truncated KL expansion. The resulting stochastic coordinates ξ
of the parameterized field log κ(ξ) are then sampled by Markov chain Monte Carlo
(MCMC) using a Gaussian proposal distribution with variance ϑ2, which controls
the correlation between subsequent samples. Our numerical experiments indicate
that, in the absence of a (first-level) preconditioner, deflation accelerates the con-
vergence of the conjugate gradient (CG) solver from a certain point in the sample
chain as compared to the plain CG without deflation. We then tested deflated CG
in combination with a first-level block-Jacobi preconditioner (Def-PCG-bJ), and we
compared it to a preconditioned CG without deflation with an AMG preconditioner
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(PCG-AMG), which is the state-of-the-art preconditioner for such SPD systems aris-
ing from discretized elliptic PDEs. Although block-Jacobi preconditioning is cheaper
and (on its own) less efficient for this class of problems, our experiments indicate that
its combination with deflation, resulting in the Def-PCG-bJ solver, makes it possi-
ble to reach similar convergence rates as PCG-AMG. This constitutes encouraging
results for discretizations for which an AMG preconditioner is not readily accessi-
ble (e.g., HHO discretizations, see section 4.3), or for other types of PDEs (e.g.,
the Helmholtz equation) for which there exist no state-of-the-art preconditioner, at
least not as versatile and efficient as AMG.

5.3 Summary

In this chapter, I presented two contributions for speeding-up the solving of se-
quences of linear systems in specific contexts. The first is based on a block Jacobi
preconditioner for systems arising from a BEM discretization of interacting turbines,
taking advantage of the isometry-invariance of the diagonal blocks corresponding to
individual, rigid turbines. The second contribution is an extension of deflation tech-
niques, originally designed for systems with multiple right-hand sides, to sequences
of systems with multiple left-hand sides, which proved to be efficient when successive
operators are correlated. A possible avenue for relaxing the constraints of similarity
between successive systems would be to resort to randomized algorithms [68–70]
to approximate eigen-pairs of the current operator, as suggested in [71] using lim-
ited memory preconditioning [72], which is a preconditioning technique similar to
deflation.





Chapter 6

Outlook and future work

My future research activities will primarily focus on multilevel and multifidelity
methods for UQ and optimization under uncertainty (OUU) as well as advanced
preconditioning techniques for (sequences of) systems of linear equations. In par-
ticular, one of the ideas I would like to explore further in the coming years is the
use of surrogate models based on neural networks (NNs) as accelerators in hybrid
machine learning frameworks for the propagation of uncertainties or for the solution
of systems of linear equations. Such surrogate models fit well into the framework
of control variates for multifidelity estimation (see chapter 3) or the framework of
NN preconditioners for flexible subspace iteration solvers (see section 6.3 below).
In this chapter, I detail three medium-term research perspectives. In section 6.1,
I present ideas for combining (F)MLMC with multigrid techniques for the normal-
ization problem introduced in section 3.2. Then, in section 6.2, I discuss avenues
and obstacles for the design of multifidelity ensemble-variational data assimilation
algorithms for large-scale applications in geosciences, e.g, for numerical weather pre-
diction systems. Finally, in section 6.3, I introduce a prospective hybrid machine
learning and numerical linear algebra solver for systems of linear equations arising
from the discretization of PDEs, based on a non-linear, NN-based preconditioner for
flexible subspace iteration solvers.

6.1 Combining MLMC and multigrid techniques

A natural extension of the work presented in section 3.2 would be the combina-
tion of FMLMC with a multigrid method for solving the discretized diffusion prob-
lems. In particular, the full multigrid (FMG) cycle [63, section 2.6] seems appro-
priate, as suggested by [73, 74] in a different context. From section 3.2, we observe
that evaluations of fℓ require the solution of a system of linear equations, namely
fℓ(Xℓ) = gℓ(A

−1
ℓ Xℓ) = (A−1

ℓ Xℓ) ⊙ (A−1
ℓ Xℓ). The FMLMC estimator of θL =

41
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E[(A−1
L X) ⊙ (A−1

L X)] involves sampling the quantities Yℓ = P̄
L
ℓ gℓ(A

−1
ℓ (R̄

ℓ
LX)),

with filtered grid transfer operators defined as in eq. (3.5) but with the filtered
versions of the inter-level operators, P̄ℓ

ℓ−1 and R̄
ℓ−1
ℓ . The (approximate) solving of

the systems of linear equations could be obtained by FMG, and the samples of Yℓ

could be collected after each V-cycle on level ℓ, as illustrated in fig. 6.1, inspired
by [73]. Specifically, on level ℓ > 1, an approximation Zℓ of A−1

ℓ (R̄
ℓ
LX) is obtained

by V-cycleℓ(Z
0
ℓ , R̄

ℓ
LX) from an initial guess Z0

ℓ corresponding to the interpolation
of the approximate solution Zℓ−1 at the previous (coarser) level onto level ℓ using the
FMG interpolation operator Πℓ

ℓ−1 (see, e.g., [63, section 2.6]), i.e., Z0
ℓ = Πℓ

ℓ−1Zℓ−1.
On the coarsest level ℓ = 1, Z1 may be obtained using a direct solver. The ap-
proximate solutions Zℓ are then squared element-wise through gℓ and prolongated
to the finest grid through P̄

L
ℓ to obtain Yℓ. A multilevel sampling strategy similar

to that proposed in [73] may be employed. Sampling via FMG up to level L not
only provides an nL-sample of YL, but also of YL−1, . . . ,Y1 on the coarser levels. To
obtain an nL−1-sample of YL−1, one may simply complement the previously obtained
nL-sample with an (nL−1 − nL)-sample via FMG up to level L− 1, and so on.
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Figure 6.1: Sketch of a prospective FMG-MLMC algorithm for the estimation of
θL = E[(A−1

L X) ⊙ (A−1
L X)] for the problem described in section 3.2, here with

L = 4 and X4 := X. The double line ( ) represents the FMG interpolation Πℓ+1
ℓ

and gℓ : Zℓ 7→ Zℓ ⊙Zℓ.

In fact, for large-scale applications of the problem described in section 3.2, the
operator Aℓ = VT

ℓ (Iℓ − ∆ℓ)
J is neither explicitly stored, nor directly accessible.

Instead, only matrix-free representations of Uℓ := (Iℓ −∆ℓ) and Vℓ are available.
The latter is designed such that VℓV

T
ℓ = Wℓ is a symmetric and positive definite

Gram matrix related to the discretization of the diffusion equation so that ∆ℓ is self-
adjoint w.r.t. the Euclidean inner product weighted by Wℓ, i.e., Wℓ∆ℓ = ∆T

ℓ Wℓ.
As a result, Wℓ∆ℓ is symmetric, and so is Ũℓ := WℓUℓ. The solution Zℓ := Z

(J)
ℓ

of AℓZℓ = Xℓ, with Xℓ := R̄
ℓ
LX, can thus be obtained by solving the sequence of
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symmetric systems

ŨℓZ
(1)
ℓ = VℓXℓ, ŨℓZ

(2)
ℓ = WℓZ

(1)
ℓ , . . . , ŨℓZ

(J)
ℓ = WℓZ

(J−1)
ℓ . (6.1)

This raises interesting questions as to how the FMG-MLMC strategy described
above may be applied to such a sequence of systems. A straightforward approach
would be to apply FMG successively to each of the systems in eq. (6.1). More in-
volved strategies could possibly be adapted from parallel-in-time multigrid methods
(see, e.g., [75]) that are used for time-dependent problems disctretized with implicit
time-stepping methods, resulting in sequences of systems similar to eq. (6.1). Al-
ternative multigrid ideas might be devised by considering the algebraic form of the
operator Aℓ involving powers of the discretized shifted diffusion operator Iℓ −∆ℓ.

6.2 Multifidelity ensemble-variational data assimi-

lation

Another extension of the work presented in section 3.2 would be the multilevel,
or multifidelity, estimation of background error covariance matrices using ensem-
bles of data assimilation (EDAs) [76–79] for ensemble-variational data assimila-
tion [80–82]. In such a framework, independent low-fidelity EDAs are used for
the multifidelity estimation of a background error covariance matrix B̂

ML
L−1, which is

used in a high-fidelity, deterministic variational data assimilation method. This
process is illustrated in fig. 6.2, with a multifidelity structure corresponding to
that of (possibly weighted) MLMC (see fig. 3.1). In the more general multifi-
delity framework presented in chapter 3, the multifidelity estimator B̂

ML
L−1 would

read B̂
ML
L−1 =

∑L−1
k=1

∑
ℓ∈Sk w

(k)
ℓ B̂

(k)

ℓ , where B̂
(k)

ℓ = P̄
L
ℓ E

(k)
ℓ (P̄

L
ℓ E

(k)
ℓ )T are single-

level estimators of the covariance matrix using the ensemble matrices E
(k)
ℓ of fi-

delity level ℓ associated with the coupling group Sk, appropriately prolongated
to the high-fidelity level L. Specifically, the ensemble matrices E

(k)
ℓ are defined

by E
(k)
ℓ = (nk − 1)−1/2[ε

(k,1)
ℓ · · · ε

(k,nk)
ℓ ], with ε

(k,i)
ℓ := x

b,(k,i)
ℓ − n−1

k

∑nk

j=1 x
b,(k,j)
ℓ .

In [M14], we proposed multivariate extensions of the original MBLUE framework
proposed by [41, 42], with various flavors of MBLUE-like covariance matrix estima-
tors with scalar, vector, or matrix weights.

Preliminary experiments, conducted on two-layer quasi-geostrophic model [84,
85], revealed a number of potential difficulties related to the multifidelity covariance
matrix estimator described above. First, contrary to the classical, single-level MC
estimator, a decomposition of the form B̂ = EET is not readily available. Such
a decomposition is used in some applications to generate a discretized correlated
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Figure 6.2: Sketch of a prospective multilevel EDA algorithm, inspired by [83].

Gaussian random field Eη, with η ∼ N (0, I), having the covariance structure de-
fined by B̂. Second, because of the linear combination of single-level covariance
matrix estimators involved in the multilevel definition, realizations of B̂

ML
L−1 are not

guaranteed to be positive definite when using finite (and, a fortiori, small) ensemble
sizes. This may cause problems in the optimization stage of the variational data
assimilation, for which conjugate-gradient-like solvers, requiring positive definite-
ness, are typically used. Again, this is a drawback compared to the single-level MC
estimator of the form B̂ = EET, for which positive semi-definiteness is guaranteed
by construction. However, B̂ is usually rank-deficient in large-scale applications,
because the ensemble size is typically orders of magnitude smaller than the number
of degrees of freedom of the discretized system. The multilevel estimator does have
a larger rank, because larger ensemble sizes are used on the lower-fidelity levels. A
third potential difficulty of using the multilevel estimator in ensemble-variational
data assimilation is to maintain the correlation of the ensembles within the coupling
groups throughout the assimilation cycles. In the prospective framework depicted
in fig. 6.2, the stochastic coupling originates from the perturbed observations alone,
which may not ensure sufficient correlation for the multilevel estimator’s variance
to be significantly reduced.

As mentioned previously, a well-known issue of single-level MC estimates of co-
variance matrices is that they are singular for large-scale applications, which poses
problems for the minimization algorithms used in variational data assimilation. A
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common way to alleviate this problem is to resort to localization, which, in addition
to reducing the sampling noise (variance) in regions “far away” from the diagonal,
does ensure the strict positive definiteness of the localized matrix. Localizing, how-
ever, introduces bias into the otherwise unbiased estimator. An interesting questions
lies in how to apply localization to the multilevel estimator. A natural way would
consist in localizing the final estimator B̂

ML
L−1 on level L − 1. Alternatively, one

could localize the prolongated single-level estimators B̂
(k)

ℓ , or the unprolongated
ones, E(k)

ℓ (E
(k)
ℓ )T, individually on each fidelity level. In any case, both approaches

would also introduce bias into the otherwise unbiased multilevel estimator. This bias
may be controlled through the optimal localization approach developed in [86–88].
Incidentally, this approach is very close to MBLUE, in that it seeks the localization
operator that minimizes the mean square error (MSE) of the localized estimator.
In a multifidelity framework, one may then try to find the optimal level-dependent
localization operators that minimize the overall MSE. In the same spirit, it may also
be possible to enforce the positive-definiteness (with a certain, high probability) of
the resulting estimator through the addition of probabilistic constraints to the op-
timization problem, or possibly by imposing it by design, as was recently proposed
in [89, 90].

6.3 Neural network preconditioners for flexible sub-

space methods

In this section, I present avenues for hybridizing machine learning techniques and nu-
merical linear algebra solvers, specifically by using a trained neural network (NN) as
a non-linear preconditioner for a flexible subspace iteration method. Let Nθ denote
a neural network that has been trained so that Nθ(b) provides a good approxima-
tion to the solution of a linear system Ax = b corresponding to the discretization
of a PDE of the form Lu = f . Provided that the trained network generalizes to a
variety of plausible discretized sources b, the mapping Nθ : v 7→ Nθ(v) ≈ A−1v can
then be seen as a non-linear approximation of A−1, i.e., loosely speaking, Nθ ≈ A−1.
Thus, Nθ may be used as a non-linear preconditioner for a flexible subspace iteration
method such as the flexible generalized minimum residual (FGMRES) method or
the flexible full orthogonalization method (FFOM) [91, 92]. Given an initial guess
x0, at each iteration of the flexible solver, the iterate xm is sought in the affine
subspace x0 + span{z1, . . . ,zm}, with zj = Nθ(vj) instead of zj = M−1vj for a
constant, linear, right preconditioner M. A simplified NN-preconditioned FGMRES
algorithm, adapted from [92, Algorithm 9.6], is provided in algorithm 2, where the
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key step corresponding to the NN preconditioning is performed on line 3.

Algorithm 2: Simplified NN-preconditioned FGMRES algorithm.
1 r0 = b−Ax0, β = ∥r0∥2, v1 = r0/β
2 for j = 1, . . . ,m do
3 zj = Nθ(vj), w := Azj
4 for i = 1, . . . , j do
5 hi,j = ⟨w,vi⟩, w ← w − hi,jvi
6 end for
7 hj+1,j = ∥w∥2, vj+1 = w/hj+1,j

8 end for
9 H̄m = [hi,j ]1≤j≤m,1≤i≤j+1

10 ym = argminy ∥βe1 − H̄my∥2, xm = x0 +
[
z1 · · · zm

]
ym

A natural candidate NN architecture is that of neural operators [93], and more
particularly Fourier neural operators (FNOs) [94], which are designed to learn an
entire family of PDEs. Their principal advantage lies in the fact that a single trained
neural operator can be used for different discretizations. A promising alternative is
the recurrent NN based on a U-net architecture proposed in [95], which is trained by
unsupervised learning inside non-linear fixed-point iterations. We performed prelim-
inary experiments on discretized Helmholtz equations using both architectures [96,
97], which demonstrated the validity of the NN preconditioning approach described
above, although the generalization to different meshes seems to be challenging. An
interesting follow-up would be to devise an active learning strategy to train the NN-
based preconditioner on-the-fly during the solving of sequences of linear systems
corresponding to a massive number of right- and/or left-hand sides.
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Méthodes hiérarchiques pour des équations aux dérivées partielles déterministes
et stochastiques

Les méthodes hiérarchiques sont devenues un outil essentiel pour la simulation numérique efficace de
phénomènes physiques avec une fidélité croissante sur des calculateurs à haute performance modernes.
Des méthodes bien établies, telles que les méthodes multigrilles et de décomposition de domaine, se
sont avérées performantes, de par leur capacité de passage à l’échelle, pour résoudre certains prob-
lèmes de grande taille de manière parallèle sur des supercalculateurs. D’autre part, la propagation
des incertitudes dans les simulations numériques a reçu une attention croissante ces dernières années.
Pour des simulations onéreuses en temps de calcul de problèmes fortement non-linéaires (par rapport à
des paramètres d’entrée incertains), des méthodes avancées de quantification des incertitudes doivent
être dévelopées. Dans ce manuscrit, nous exposons des idées méthodologiques et algorithmiques pour
répondre à des questions spécifiques liées aux méthodes hiérarchiques. Premièrement, nous présentons
des approches de décomposition de domaine résilientes pour la résolution numérique d’équations aux
dérivées partielles déterministes et stochastiques, ainsi que des stratégies de Monte Carlo accélérées
par des modèles de substitution pour la propagation des incertitudes dans des méthodes de décom-
position de domaine. Deuxièmement, nous présentons de nouveaux solveurs multigrilles pour des
systèmes linéaires issus de discrétisations hybrides d’ordre élevé. Troisièmement, nous proposons des
approches hiérarchiques, plus précisément des méthodes multiniveaux et multifidélité, pour la propaga-
tion d’incertitudes dans les simulateurs numériques coûteux. Enfin, nous proposons également des idées
pour la résolution numérique efficace de suites de systèmes d’équations linéaires, rencontrées typique-
ment lors de la résolution de problèmes instationnaires et/ou non linéaires, ou lors de l’échantillonnage
d’équations aux dérivées partielles stochastiques.

Hierarchical methods for deterministic and stochastic partial differential equations

Hierarchical methods have become essential tools for the efficient numerical simulation of physical
phenomena with ever-growing fidelity on modern high-performance supercomputers. Well-established
methods, such as multigrid and domain decomposition methods, owing to their scaling capabilities, have
proven powerful to solve certain classes of large-scale problems in a parallel fashion on supercomputers.
On the other hand, the propagation of uncertainties in numerical simulations has received increasing
attention in recent years. For computationally demanding simulations of highly non-linear problems
(w.r.t. uncertain input parameters), advanced uncertainty quantification methods need to be designed.
In this manuscript, we present methodological and algorithmic ideas to address specific questions
related to hierarchical methods. First, we present resilient domain decomposition approaches for the
numerical solution of deterministic and stochastic partial differential equations, as well as surrogate-
assisted Monte Carlo strategies for the propagation of uncertainties in domain decomposition solvers.
Second, we introduce novel multigrid solvers for the linear systems arising from hybridizable high-
order discretizations. Third, we propose hierarchical approaches, namely multilevel and multifidelity
methods, for the propagation of uncertainties in expensive numerical simulators. Finally, we also
propose ideas for the efficient numerical solving of sequences of systems of linear equations that typically
arise when solving time-dependent and/or non-linear problems, or when sampling stochastic partial
differential equations.
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