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Résumé

Le modèle standard de la physique des particules est achevé après la découverte du
boson de Higgs au Grand collisionneur de hadrons (LHC) en 2012. La découverte
d’une nouvelle physique au-delà du modèle standard et sonder le secteur du boson de
Higgs sont deux des objectifs les plus importants des expériences actuelles et futures
de physique des particules. En 2026-2029, le LHC fera l’objet d’une mise à niveau
afin d’augmenter sa luminosité instantanée d’un facteur de 5 à 7 par rapport à sa
luminosité nominale. Cette mise à niveau marquera le début de l’ère du LHC à haute
luminosité (HL-LHC). Parallèlement, les détecteurs ATLAS et CMS seront mis à niveau
pour faire face à l’augmentation de la luminosité du LHC.

Le calorimètre à argon liquide (LAr) d’ATLAS mesure l’énergie des particules pro-
duites dans les collisions proton-proton au LHC. L’électronique de lecture du calorimètre
LAr sera remplacée pour le préparer à la l’ère HL-LHC. Cela lui permettra de fonc-
tionner à un taux de déclenchement plus élevé et d’avoir une granularité accrue au
niveau du déclenchement. L’énergie déposée dans le calorimètre LAr est reconstruite
à partir du signal d’impulsion électronique à l’aide d’un algorithme de filtrage optimal.
L’énergie est calculée en temps réel à l’aide de cartes électroniques basées sur des
circuits logique programmables (FPGA). Les FPGA ont été choisis en raison de leur
capacité à traiter de grandes quantités de données avec une faible latence, ce qui est
une exigence du système de déclenchement d’ATLAS. L’augmentation de la luminosité
du LHC entraînera un taux élevé de collisions multiples et simultanées entre protons
et protons (pileup), ce qui se traduira par une dégradation significative de la résolu-
tion en énergie calculée par les algorithmes de filtrage optimal. Il est extrêmement
important de calculer l’énergie avec une grande précision afin d’atteindre les objectifs
de physique de l’expérience ATLAS au HL-LHC.

Les récentes avancées dans le domaine de l’apprentissage profond, associées à la
capacité de calcul accrue des FPGA, font des algorithmes d’apprentissage profond des
outils prometteurs pour remplacer les algorithmes de filtrage optimal existants. Dans
cette thèse, des réseaux neuronaux récurrents (RNN) sont développés pour calculer
l’énergie déposée dans le calorimètre LAr. Des réseaux récurrents à mémoire court
et long terme (LSTM) et des réseaux neuronaux récurrents simples sont étudiés. Les
paramètres de ces réseaux sont étudiés en détail afin d’optimiser les performances.
Les réseaux développés se révèlent plus performants que les algorithmes de filtrage
optimaux. Ces réseaux sont en outre optimisés pour être déployés sur des FPGA
par des méthodes de quantification et de compression qui permettent de réduire
l’utilisation de ressources avec un effet minimal sur les performances.

Le calorimètre LAr est composé de 182000 canaux individuels pour lesquels nous de-
vons calculer les énergies déposées. L’entraînement de 182000 réseaux neuronaux dif-
férents n’est pas réalisable en pratique. Une nouvelle méthode basée sur l’apprentissage
non supervisé est développée pour former des groupes de canaux avec des signaux
d’impulsion électroniques similaires, ce qui permet d’utiliser le même réseau neu-
ronal pour tous les canaux dans un même groupe. Cette méthode réduit le nombre de
réseaux neuronaux nécessaires à environ 100, ce qui permet de couvrir l’ensemble du
détecteur avec ces algorithmes avancés.

Mots clés: L’intelligence artificielle, calorimètre à argon liquide, ATLAS, LHC, FPGA
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Abstract

The Standard Model of particle physics is completed after the discovery of the Higgs
boson at the Large Hadron Collider (LHC) in 2012. Discovering new physics beyond
the Standard Model and probing the newly discovered Higgs sector are two of the most
important goals of current and future particle physics experiments. In 2026-2029, the
LHC will undergo an upgrade to increase its instantaneous luminosity by a factor of
5-7 with respect to its design luminosity. This upgrade will mark the beginning of the
High Luminosity LHC (HL-LHC) era. Concurrently, the ATLAS and the CMS detectors
will be upgraded to cope with the increased LHC luminosity.

The ATLAS liquid argon (LAr) calorimeter measures the energies of particles pro-
duced in proton-proton collisions at the LHC. The LAr calorimeter readout electronics
will be replaced to prepare it for the HL-LHC era. This will allow it to run at a higher
trigger rate and have increased granularity at the trigger level. The energy deposited in
the LAr calorimeter is reconstructed out of the electronic pulse signal using the opti-
mal filtering algorithm. The energy is computed in real-time using custom electronic
boards based on Field Programmable Gate Arrays (FPGAs). FPGAs are chosen due to
their ability to process large amounts of data with low latency which is a requirement
of the ATLAS trigger system. The increased LHC luminosity will lead to a high rate of
simultaneous multiple proton-proton collisions (pileup) that results in a significant
degradation of the energy resolution computed by the optimal filtering algorithm.
Computing the energy with high precision is of utmost importance to achieve the
physics goals of the ATLAS experiment at the HL-LHC.

Recent advances in deep learning coupled with the increased computing capacity
of FPGAs makes deep learning algorithms promising tools to replace the existing
optimal filtering algorithms. In this dissertation, recurrent neural networks (RNNs)
are developed to compute the energy deposited in the LAr calorimeter. Long-Short-
Term-Memory (LSTM) and simple RNNs are investigated. The parameters of these
neural networks are studied in detail to optimize the performance. The developed
networks are shown to outperform the optimal filtering algorithms. The models
are further optimized to be deployed on FPGAs by quantization and compression
methods which are shown to reduce the resource consumption with minimal effect
on the performance.

The LAr calorimeter is composed of 182000 individual channels for which we need
to compute the deposited energies. Training 182000 different neural networks is not
practically feasible. A new method based on unsupervised learning is developed to
form clusters of channels with similar electronic pulse signals, which allows the use
of the same neural network for all channels in one cluster. This method reduces the
number of needed neural networks to about 100 making it possible to cover the full
detector with these advanced algorithms.

Keywords: machine learning, liquid argon calorimeter, LHC, ATLAS, FPGA
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Synthèse en français

Introduction
Le Modèle Standard de la physique des particules est la théorie la plus aboutie pour
expliquer les particules élémentaires et leurs interactions. Il a été complété après la
découverte du boson de Higgs au Grand Collisionneur de Hadrons (LHC) en 2012
par les expériences ATLAS et CMS. Malgré son succès, le Modèle Standard est réputé
être un tremplin vers une théorie plus complète décrivant les phénomènes qu’il ne
parvient pas à expliquer, tels que la matière noire, l’énergie noire et l’asymétrie matière-
antimatière. Les données recueillies jusqu’à présent au LHC ont été suffisantes pour
découvrir le boson de Higgs et de mesurer un grand nombre de ses propriétés, mais
toutes les recherches de physique au-delà du Modèle Standard ont été infructueuses.
Toutefois, l’essentiel des données des expériences au LHC sont encore à venir.

Le LHC à haute luminosité (HL-LHC) est la forme ultime de l’accélérateur qui vise à
augmenter sa luminosité instantanée d’un facteur de 5 à 7 par rapport à sa luminosité
nominale pour atteindre 5−7×1034cm−2s−1, ce qui se traduit par 140 à 200 inter-
actions proton-proton par croisement de paquets. Le HL-LHC devrait fonctionner
jusqu’en 2040 et recueillir dix fois plus de données que les cycles précédents du LHC
réunis. Des mises à niveau sont nécessaires pour que les détecteurs puissent faire face
à l’augmentation de la luminosité. Elles sont prévues pour 2026-2028 et cette phase
est connue sous le nom de mise à niveau de phase II. Le calorimètre à argon liquide
(LAr) d’ATLAS mesure l’énergie des particules sensibles à l’interaction électromagné-
tique produites dans les collisions proton-proton au LHC. L’électronique de lecture
du calorimètre LAr sera remplacée pour le préparer au HL-LHC. Cela lui permettra de
fonctionner à un taux de déclenchement plus élevé et d’avoir une granularité accrue
au niveau du déclenchement. L’énergie déposée dans le calorimètre LAr est calculée à
partir du signal d’impulsion électronique à l’aide d’un algorithme de filtrage optimal.
L’énergie est reconstruite en temps réel à l’aide de cartes électroniques personnalisées
basées sur des circuits logique programmables (FPGA). Les FPGAs ont été choisis en
raison de leur capacité à traiter de grandes quantités de données avec une faible la-
tence, ce qui est une exigence du système de déclenchement d’ATLAS. L’augmentation
de la luminosité du LHC entraînera un taux élevé de collisions multiples simultanées
entre protons et protons (empilement), ce qui se traduira par une dégradation signi-
ficative de la résolution de l’énergie calculée par l’algorithme de filtrage optimal. Le
calcul de l’énergie avec une grande précision est de la plus haute importance pour
atteindre les objectifs de physique de l’expérience ATLAS au HL-LHC.

Les avancées récentes en matière d’apprentissage profond couplées à l’augmentation
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de la capacité de calcul des FPGA font des algorithmes d’apprentissage profond des
outils prometteurs pour remplacer les algorithmes de filtrage optimal existants. Dans
cette thèse, des réseaux de neurones récurrents (RNN) sont développés pour calculer
l’énergie déposée dans le calorimètre LAr. Des réseaux récurrents à mémoire court et
long terme (LSTM) et des réseaux de neurones simples sont étudiés. Les paramètres
de ces réseaux de neurones sont étudiés en détail afin d’optimiser les performances et
de trouver des architectures de réseau qui peuvent s’adapter aux FPGAs. Les réseaux
développés se révèlent plus performants que les algorithmes de filtrage optimaux. Les
modèles sont optimisés davantage pour être déployés sur les FPGA par des méthodes
de quantification et de compression qui permettent de réduire la consommation de
ressources avec un effet minimal sur les performances.

Le calorimètre LAr est composé de 182000 canaux individuels pour lesquels nous de-
vons calculer les énergies déposées. L’entraînement de 182000 réseaux neuronaux dif-
férents n’est pas réalisable en pratique. Une nouvelle méthode basée sur l’apprentissage
non supervisé pour former des groupes de canaux de calorimètre avec des signaux
d’impulsion électroniques similaires est developpée. Cela permet l’utilisation du
même réseau de neurones pour tous les canaux dans un même groupe. Cette méth-
ode réduit le nombre de réseaux de neurones nécessaires à une centaine environ, ce
qui permet d’exploiter l’ensemble du détecteur avec ces algorithmes avancés.

Algorithmes actuels de reconstruction de l’énergie
Le calorimètre à argon liquide détecte les particules qui ionisent l’argon, qui joue le
rôle de millieu actif. Les électrons libres sont collectés grâce à des électrodes à haute
tension. La réponse du détecteur est une impulsion triangulaire, comme le montre
la figure 0.1. Cette réponse a une montée rapide et une descente qui dure jusqu’à
500ns. Un filtre analogique C R −RC 2 est utilisé pour filtrer le signal. La réponse après
application du filtre est une forme d’impulsion bipolaire à partir de laquelle il est
possible d’extraire l’amplitude et le temps du dépôt. Cette réponse très stable ne varie
qu’au niveau de sa hauteur de crête, qui est proportionnelle à l’énergie déposée et au
temps du dépôt. Ces deux facteurs, la hauteur et le temps du pic, sont les objectifs
de la reconstruction dans le LAr. La reconstruction se fait à partir de plusieurs points
d’échantillonnage sur le signal comme le montre la figure 0.1.

Filtrage optimal
L’algorithme de filtrage optimal est utilisé dans le calorimètre LAr pour extraire
l’amplitude et la position dans le temps d’un signal bruyant afin de minimiser les effets
de l’empilement et d’autres sources de bruit telles que le bruit thermique. L’amplitude
de l’impulsion A est reconstruite avec la formule 0.1 et le déphasage (temps relatif du
pic) avec la formule 0.2. Ces formules sont des sommes pondérées des échantillons
de signaux numérisés (n = 5 dans les études de phase II) en utilisant les coefficients
de filtrage ai pour l’amplitude de l’impulsion et bi pour le temps relatif τ mesurant le
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Figure 0.1: Forme d’impulsion électronique dans le LAr avec les échantillons à 40
MHz.

déphasage entre le moment prévu et le moment réel de l’impulsion.

A =
n∑

i=1
ai · si (0.1)

Aτ=
n∑

i=1
bi · si (0.2)

Mesure continue de l’énergie avec les algorithmes de filtrage optimal

Pour la mesure continue de l’énergie, un détecteur de maximum est utilisé sur la sortie
du filtrage optimal pour attribuer l’énergie E à un croisement de paquets spécifique.
La condition pour attribuer l’énergie à un croisement de paquet est que celle ci soit
l’énergie maximale par rapport aux croisements précédents et suivants, et qu’elle
soit supérieure à un seuil défini Ethr . Dans le cas contraire, l’énergie attribuée à ce
croisement est nulle. La condition de recherche du maximum est formulée dans
l’équation 0.3. La combinaison de l’algorithme de filtrage optimal avec la recherche
du maximum est appelée OFMax.

E =
{

Ei−1 if (Ei−1 > Ei )∧ (Ei−1 > Ei−2)∧ (Ei−1 > Ethr )

0 sinon
(0.3)

L’augmentation de la luminosité du HL-LHC introduira des conditions d’empilement
qui réduiront considérablement les performances de la technique de filtrage optimal
et nécessiteront de nouvelles techniques de traitement du signal. Cette thèse évalue
la possibilité de reconstruire l’énergie avec des réseaux de neurones récurrents qui
seront employés sur les FPGAs des nouvelles cartes de traitement des données du
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calorimètre LAr.

Reconstruction de l’énergie avec des réseaux de
neurones récurrents en fenêtres coulissantes
L’application des RNNs est effectué avec une architecture comportant des fenêtres
coulissantes des échantillons. La séquence d’échantillons complète est divisé en
séquences plus courtes qui se chevauchent; chacune des séquences correspond à
un dépôt d’énergie. L’énergie cible pour chaque sous-séquence peut être choisie de
manière à ce que la séquence contienne des informations à la fois avant le dépôt,
pour corriger les effets d’empilement, et des échantillons après le dépôt pour la
reconstruction de l’amplitude du signal. La position de l’énergie cible par rapport à la
sous-séquence doit être choisie pour obtenir la performance optimale des réseaux,
tout en gardant à l’esprit que chaque échantillon ajouté dans la séquence augmente
l’utilisation des ressources dans les FPGAs. De plus, les échantillons après le dépôt
ajouteront de la latence au temps de calcul de l’énergie.

L’architecture choisie des réseaux consiste en une couche RNN suivie d’un seul
neurone dans la couche de sortie. Quatre échantillons sont utilisés après le dépôt
d’énergie en plus de plusieurs échantillons dans le passé. La figure 0.2 montre un
exemple de la division de la chaîne complète en fenêtres coulissante d’une longueur
de cinq échantillons.

Performance de la reconstruction de l’énergie
La performance des RNNs pour la reconstruction des énergies est affectée par plusieurs
facteurs. L’un de ces facteurs est la taille du réseau RNN en termes de nombre d’unités.
La taille du réseau détermine la capacité du réseau à apprendre des modèles com-
plexes et peut avoir un impact significatif sur sa capacité à se généraliser à des données
non vues. Un autre facteur important est la taille de la fenêtre coulissante utilisée,
qui affecte à la fois la correction de l’empilement et la reconstruction de l’amplitude.
L’optimisation de ces facteurs est cruciale pour obtenir les meilleures performances
possibles en matière de reconstruction de l’énergie. Les réseaux évalués sont le RNN
simple et le LSTM qui est plus complexe.

Résumé des performances des réseaux en fonction de la longueur de la
séquence

Pour répondre aux exigences strictes en termes de latence et d’occupation du FPGA,
il est essentiel que le réseau soit aussi petit que possible. La figure 0.3 présente les
performances des RNN simples et des LSTM en fonction de la longueur de la séquence.
Comme prévu, la séquence la plus longue (30) présente les meilleures performances,
mais elle nécessite 6 fois plus de calculs que la séquence la plus courte (5). Tous les
réseaux LSTM bénéficient d’une longueur de séquence plus importante, mais seuls les
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Figure 0.2: Application du RNN avec des fenêtres coulissantes, où une fenêtre de taille
fixe est déplacée sur la séquence des échantillons pour traiter les données
en segments plus petits qui se chevauchent.
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Figure 0.3: Résolution de l’énergie transversale en fonction de la longueur de la
séquence pour les LSTMs (à gauche) et les RNNs simples (à droite) avec
différents nombres d’unités internes.
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trois plus grands RNNs bénéficient du même avantage. En fait, le RNN avec seulement
4 unités n’est pas en mesure de profiter de la longueur de séquence plus importante
en raison de la taille réduite de son réseau neuronal interne. Pour les deux types de
réseaux, on peut observer une structure en coude à une longueur de séquence de
15, où le doublement de la longueur de séquence à 30 n’apporte pas d’amélioration
significative à la performance.

Résumé de la performance des réseaux en fonction du nombre d’unités
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Figure 0.4: Résolution de l’énergie transversale en fonction du nombre d’unités des
LSTMs (à gauche) et des RNNs simples (à droite).

Le nombre de paramètres augmente quadratiquement avec le nombre d’unités.
Alors, il est essentiel de maintenir le nombre d’unités aussi bas que possible. La figure
0.4 montre les performances en fonction du nombre d’unités du RNN pour différentes
longueurs de séquences, à la fois pour le LSTM et le RNN simple. L’ajout d’unités
améliore les performances, mais l’effet est faible au-delà de 16 unités.

Optimisation des RNNs pour le déploiement sur
FPGA
L’implémentation des RNNs discutés ci-dessus sur FPGA a déjà été effectuée et les ré-
sultats sont publiés dans [1] et [2]. Ces implémentations ont utilisé des réseaux de neu-
rones entraînés avec des nombres à virgule flottante et implémentés en utilisant des
nombres virgule fixe dans le micrologiciel, ce qui correspond à la quantification des
opérations arithmétiques du réseau. La conversion de la virgule flottante à la virgule
fixe a entraîné une perte de précision, mais le nombre de bits dans la représentation
en virgule fixe a été augmenté pour réduire cet effet. Dans ce chapitre, l’entraînement
prenant en compte la quantification sera étudié pour effectuer l’apprentissage des
réseaux neuronaux avec une arithmétique en virgule fixe. Cela permet de réduire
encore le nombre de bits nécessaires, et donc les ressources des FPGA, sans perte de
précision. D’autres méthodes visant à réduire les ressources, telles que l’élagage des
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réseaux et une initialisation des RNN basée sur un réseau avec une couche dense, sont
également étudiées.

L’entraînement conscient de la quantification
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Figure 0.5: Erreur quadratique moyenne (RMSE) en fonction du nombre de bits pour
un RNN simple avec 8 unités et une longueur de séquence de 5 quantifiée
avec les méthodes PTQ et QAT, comparée aux résultats d’OFMax et du
réseau neuronal avec une précision en virgule flottante dans le logiciel. La
partie entière est de 3 bits pour PTQ et de 1 bit pour QAT.

L’entraînement conscient de la quantification (QAT) est une méthode d’apprentissage
des réseaux de neurones qui atténue, pendant la durée de la formation, la perte de per-
formance causée par l’utilisation de représentations numériques à virgule fixe avec un
faible nombre de bits. Cette méthode diffère de la quantification post-entraînement
(PTQ) où le nombre de bits approprié est déterminée après l’entraînement du réseau
neuronal avec la précision de la virgule flottante. Lors de la PTQ, l’implémentation
FPGA a besoin d’un nombre de bits suffisant pour reproduire les opérations mathé-
matiques sans perte significative de performance, ce qui nécessite généralement un
nombre de bits élevé. Ce problème peut être évité par le QAT où le nombre de bit est
déterminé pendant l’entraînement.

Le RNN simple avec 8 unités et une longueur de séquence de 5 est utilisé pour
étudier l’apprentissage quantifié. Dans des travaux antérieurs [2], PTQ a été utilisé
pour trouver le nombre de bits approprié pour les poids de ce réseau. Un minimum
de 14 bits au total, dont trois bits réservés à la partie entière, s’est avéré nécessaire. Un
nombre de bits inférieur entraîne une perte de performance inacceptable.

La figure 0.5 montre la résolution en énergie en fonction du nombre de bits total
pour différents entraînements de RNN et pour OFMax. La résolution pour les réseaux
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quantifiés est évaluée à l’aide d’une simulation d’une implémentation de micrologiciel
réalisée avec le langage High Level Synthesis (HLS) comme expliqué dans [1]. On
peut constater la perte de performance du PTQ pour une largeur de bit inférieure
à 14. Un QAT est réalisé pour le réseau RNN simple à l’aide de QKeras [3]. La QAT
atteint la précision totale en virgule flottante implémentée dans le logiciel à partir
d’une largeur de bit de 8. Cela fait de la QAT une méthode appropriée pour réduire
considérablement les ressources nécessaires dans le FPGA.

Processus de regroupement
Pour utiliser les réseaux neuronaux pour la reconstruction de l’énergie dans toutes les
cellules du détecteur, il est essentiel de disposer d’un ensemble de RNNs performants
pour chaque cellule. Les algorithmes traditionnels et les RNN sont tous deux sensibles
aux changements dans la forme des impulsions d’une cellule à l’autre du calorimètre.
Il serait possible d’entraîner un réseau pour l’ensemble des 182 468 cellules de manière
indépendante, mais cela engendrerait un temps d’entraînement insoutenable. Pour
conserver des performances élevées dans toutes les cellules et disposer d’un nombre
limité de RNNs, il est possible d’utiliser l’apprentissage non supervisé pour identifier
les régions du détecteur qui ont une réponse similaire. En regroupant les impulsions
sur la base de leur similarité, les algorithmes d’apprentissage non supervisé peuvent
identifier des groupes de cellules du détecteur qui ont des propriétés similaires. Un
groupe identifié utilisera alors le même RNN, ce qui réduit considérablement le temps
d’apprentissage nécessaire. Outre l’identification des cellules ayant une réponse
similaire, il est également possible de détecter les cellules ayant une réponse anormale.

Les impulsions des cellules actuelles du calorimètre sont mesurées avec 768 échan-
tillons qui peuvent être représentés par 768 dimensions. Le regroupement procède
d’abord par une réduction de la dimensionnalité avec t-SNE à deux dimensions puis
le regroupement est effectué dans ces deux dimensions avec DBSCAN.

La figure 0.6 montre les performances des RNN avec différents entraînements pour
une cellule de la couche 3 du tonneau (EMB) du calorimètre LAr. Quatre réseaux
neuronaux sont comparés : le premier est entraîné à l’aide des données du même
groupe de cette cellule. Dans ce cas, la forme de l’impulsion de la cellule au centre du
groupe est utilisée pour la simulation des données. Le deuxième réseau est formé à
partir des données de la même cellule. Le troisième réseau est entraîné sur une autre
cellule choisie au hasard dans la couche 3 de l’EMB. Le dernier réseau est entraîné sur
des données simulées avec un mélange de formes d’impulsions provenant de tous les
groupes de la couche 3 de l’EMB.

On constate que les réseaux entraînés sur la même cellule et sur la cellule au centre
du même groupe donnent des résultats similaires. Cela confirme que la procédure est
capable de regrouper les cellules ayant des formes d’impulsion similaires. Le réseau en-
traîné sur un autre groupe présente des performances très médiocres. L’entraînement
sur des données contenant un mélange de formes d’impulsions provenant de tous
les amas ne permet pas de retrouver les mêmes performances que celui effectué sur
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la même cellule. Ce résultat démontre la nécessité et l’efficacité de la procédure de
regroupement développée durant cette thèse.
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Figure 0.6: E pr ed
T −E tr ue

T des RNNs pour une cellule dans la couche 3 du EMB. En bleu,
le RNN est entraîné sur une autre cellule du même groupe. En orange, le
RNN est entraîné sur la même cellule que celle utilisée pour le test. En vert,
le réseau est entraîné sur une cellule d’un autre groupe. En rouge, le RNN
est entraîné sur un ensemble de données combinant les données de tous
les groupes.

Conclusion
La luminosité élevée sans précédent du HL-LHC entraîne une réduction de la réso-
lution de l’énergie reconstruite dans le calorimètre LAr d’ATLAS par l’algorithme de
filtrage optimal. Pour atteindre les objectifs de physique de l’expérience ATLAS, des
méthodes nouvelles et améliorées de reconstruction de l’énergie sont nécessaires. Le
système de lecture du calorimètre LAr sera remplacé dans le cadre de la mise à niveau
de la phase II en 2026-2028. La nouvelle électronique sera basée sur des FPGAs de
pointe avec une capacité de calcul accrue permettant d’effectuer la reconstruction de
l’énergie à l’aide de réseaux de neurones.

Cette thèse évalue les RNNs en tant que candidats pour remplacer l’algorithme de
filtrage optimal. Les architectures RNN simple et LSTM ont été développées et se sont
avérées plus performantes que l’algorithme de filtrage optimal dans les conditions du
HL-LHC. En particulier, ces RNN sont conçus pour calculer avec précision l’énergie
des impulsions qui se chevauchent, un domaine dans lequel l’algorithme de filtrage
optimal est peu performant. Les RNNs sont capables d’évaluer les corrections néces-
saires en cas de distorsion des impulsions due au chevauchement en incorporant des
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informations sur les événements antérieurs au dépôt d’énergie. En outre, les RNNs
se révèlent résistants aux variations de l’empilement moyen au cours des runs du
LHC : Les RNNs entraînés sur des échantillons dont l’empilement moyen se situe
entre 100 et 200 ont de très bonnes performances sur n’importe quel échantillon dont
l’empilement moyen se situe dans la même fourchette. Enfin, des RNNs capables de
calculer simultanément l’énergie et le déphasage dans le temps du pic d’impulsion
sont développés. Le déphasage est important pour attribuer l’énergie déposée au
croisement de faisceaux correspondant et pour rechercher les particules à longue
durée de vie. Les RNNs sont plus performants que l’algorithme de filtrage optimal
pour la reconstruction de l’énergie et du déphasage en temps.

Le déploiement des RNNs sur les FPGAs requiert des considérations particulières.
Afin de réduire les ressources dans les FPGAs, l’arithmétique en virgule fixe avec le plus
petit nombre de bits possible est nécessaire. L’entraînement du réseau avec des poids
quantifiés permet de réduire le nombre de bits d’un facteur deux tout en conservant
une précision similaire à celle de la virgule flottante. Cela conduit à une réduction
drastique des ressources nécessaires dans les FPGA. Une autre façon de réduire les
ressources consiste à élaguer les réseaux de neurones en supprimant les poids non
significatifs. Toutefois, il est démontré qu’il est plus efficace de commencer par de
petits RNNs sans élagage que de former de grands RNNs et de les élaguer ensuite.
L’élagage n’est donc pas envisagé pour les RNNs utilisés pour le calcul de l’énergie dans
le calorimètre LAr. Enfin, une nouvelle architecture utilisant une couche dense, qui
sonde les informations passées, pour initialiser le RNN est développée. Cette architec-
ture est capable de reproduire les performances des RNN avec de longues séquences
tout en nécessitant 5 fois moins de puissance de calcul. Tous ces développements
permettent d’implémenter un RNN efficace sur des FPGAs.

Pour utiliser les RNNs pour le calorimètre LAr complet, 182000 réseaux neuronaux
sont nécessaires. L’entraînement d’un si grand nombre de RNNs est pratiquement
impossible. Pour éviter ce problème, l’apprentissage non supervisé est utilisé pour
regrouper automatiquement les cellules du calorimètre sur la base de similitudes dans
leur réponse électronique. Cette méthode réduit le nombre de réseaux de neurones
récurrents requis à 100 pour les parties électromagnétiques du détecteur, ce qui rend
l’utilisation des RNN plus réaliste pour le calorimètre LAr complet.

En résumé, les RNNs se révèlent être d’excellents candidats pour reconstruire
l’énergie déposée dans le calorimètre LAr durant le HL-LHC. Ils sont plus perfor-
mants que l’algorithme de filtrage optimal actuel et peuvent être mis en œuvre sur
des FPGAs. Des travaux supplémentaires sont encore nécessaires pour optimiser
davantage les réseaux neuronaux et pour réaliser l’implémentation finale dans le
microprogramme FPGA. En outre, des méthodes d’étalonnage de la réponse des RNNs
avec des données réelles doivent encore être mises au point pour tenir compte des dif-
férences entre les données de simulation utilisées pour l’entraînement et les données
réelles du HL-LHC.
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Introduction

The standard model of particle physics is the most successful theory to explain ele-
mentary particles and their interactions. It was completed after the discovery of the
Higgs boson at the Large Hadron Collider (LHC) in 2012 by ATLAS and CMS experi-
ments. Despite its success the standard model is thought to be a stepping stone to a
more comprehensive theory that explains phenomena that the standard model fails to
explain such as dark matter, dark energy and matter-antimatter asymmetry. The data
collected until recently by the ATLAS and CMS collaborations allowed to discover the
Higgs boson and study many of its properties, however, all searches for new physics
beyond the standard model have been unsuccessful. The LHC will collect more data
with increased precision in the HL-LHC phase which offers the opportunity to further
study the Higgs boson and discover rare phenomena not described by the standard
model.

The High-Luminosity LHC (HL-LHC) is the last phase in the LHC lifetime that
aims to increase its instantaneous luminosity by a factor of 5-7 with respect to its
design luminosity to 5−7×1034cm−2s−1. This translates to 140 to 200 proton-proton
interactions every 25 ns. The HL-LHC is scheduled to be running until 2040 and
to gather 10 times more data than the previous LHC runs combined. Upgrades are
required for the detectors to be able to cope with the increased luminosity. The
upgrades are planned during the so called Phase-II upgrade that will happen in 2026-
2028.

The ATLAS liquid argon (LAr) calorimeter measures mainly the energies of electro-
magnetically interacting particles produced in proton-proton collisions at the LHC.
The readout electronics of the LAr calorimeter will be replaced to prepare it for the
HL-LHC era. This will allow it to run at a higher trigger rate and have increased
granularity at the trigger level. The energy deposited in the LAr calorimeter is re-
constructed out of the electronic pulse signal using the optimal filtering algorithm.
The energy is reconstructed in real-time using custom electronic boards based on
Field Programmable Gate Arrays (FPGAs). FPGAs are chosen due to their ability to
process large amounts of data with low latency which is a requirement of the ATLAS
trigger system. The increased LHC luminosity will lead to a high rate of simultaneous
multiple proton-proton collisions (pileup) that results in a significant degradation of
the energy resolution computed by the optimal filtering algorithm. Computing the
energy with high precision is of utmost importance to achieve the physics goals of the
ATLAS experiment at the HL-LHC.

Recent advances in deep learning coupled with the increased computing capacity
of FPGAs makes deep learning algorithms promising tools to replace the existing
optimal filtering algorithms. In this dissertation, recurrent neural networks (RNNs) are
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developed to compute the energy deposited in the LAr calorimeter. After an overview
of particle physics in chapter 1 and of neural networks in chapter 2, an investigation
of the usage of recurrent neural networks for the energy reconstruction in the LAr
calorimeter is presented in chapter 3. The parameters of these neural networks are
studied in detail to optimize the performance while focusing on architectures that
can fit into FPGAs. The developed networks are shown to outperform the optimal
filtering algorithms. In chapter 4 the models are further optimized to be deployed
on FPGAs by quantization and compression methods which are shown to reduce the
resource consumption with minimal effect on the performance. New architectures
with reduced computational needs are also presented.

The LAr calorimeter is composed of 182000 individual channels for which we need
to compute the deposited energies. Training 182000 different neural networks is
not practically feasible. Chapter 5 introduces a new method based on unsupervised
learning to form clusters of calorimeter channels with similar electronic pulse sig-
nals, which allows the use of the same neural network for all channels in one cluster.
This method reduces the number of needed neural networks to about 100 making it
possible to cover the full detector with these advanced algorithms.
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1 The ATLAS Experiment – 1.1 The Standard Model of Particle Physics

1.1 The Standard Model of Particle Physics
The Standard Model of particle physics is the most successful theory to explain the
elementary particles and their interactions [4]. Despite its ability to explain a broad
range of phenomena, it has limitations which suggest an underlying and more funda-
mental theory. Precision measurements of standard model processes and the searches
for physics beyond the standard model (BSM) are required to probe for new physics.
These include searches for dark matter, super symmetry and matter-antimatter asym-
metry, which will be the key areas of research in the coming decades.

Figure 1.1: Standard model of elementary particles [5].

1.1.1 Fermions and Matter
The standard model has 12 fermions which are divided into quarks and leptons de-
pending on whether they interact strongly or not [4]. The quarks interact strongly
while leptons do not.

Both quarks and leptons are divided further into three generations where the gen-
erations have similar properties but different scales of mass. The particles in the
first generation are the only ones to be stable. These stable particles constitute the
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1 The ATLAS Experiment – 1.2 CERN

material of our surroundings by forming composite particles: the electron and the up
and down quarks [4]. The composite particles are called hadrons. For example the
nuclei of atoms are formed by hadrons. Protons have two up quarks and one down
quark (uud) and neutrons have two down quarks and one up quark (udd).

1.1.2 Interactions
Out of the four fundamental forces, three are explained by the standard model as an
exchange of gauge bosons between elementary particles [4].

Gravitational interaction is not explained by the standard model. It acts between
a pair of bodies that have non-zero mass. Gravity is the dominant force at macroscopic
scales and it is explained by the general theory of relativity. At present, only extensions
of the standard model include gravitational interaction but no evidence of a particle
responsible for it has been found.

Electromagnetic interaction is propagated by photons (γ) and acts between pairs
of electrically charged particles. It affects all matter except for the neutrinos.

Weak interaction is propagated by the W and Z bosons. It affects particles with
weak charge. The weak force is for instance responsible for the beta decay.

Strong interaction is propagated by gluons (g ) and is responsible for binding the
atomic nuclei together. Only quarks are sensitive to the strong interaction.

1.1.3 The Higgs Boson
The standard model also includes the Higgs mechanism that is responsible for the
mass of elementary particles. Particles are intrinsically massless and their interaction
with the Higgs field is what gives them mass. An excitation of the Higgs field produces
a new particle that is called the Higgs boson [4]. The Higgs boson was the last particle
to be observed and its discovery was announced in 2012 by the ATLAS [6] and CMS [7]
experiments at the LHC.

1.2 CERN
The European Organization of Nuclear Research (CERN) was established in 1954 as an
European collaboration for fundamental science. Since then it has been the home of
multiple physics experiments and evolved into an international collaboration.
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1.2.1 The Large Hadron Collider
The LHC [8] is the largest particle accelerator and collider in the world, located at the
CERN accelerator complex, seen in figure 1.2. It is 26.7 km long and has two counter-
rotating proton beams bent by magnetic dipoles with opposite fields. The beams
intersect at interaction points where the detectors are located. The LHC was built to
accelerate and to collide particles, namely proton-proton collisions at center-of-mass
energy of 14 TeV as well as to collide ions. Four main detectors in the LHC are ALICE,
ATLAS, CMS and LHCb. Of these ATLAS and CMS are general purpose detectors while
ALICE and LHCb are more specialized detectors.

The particles used in the collisions in the LHC are supplied to it via an injector
chain [8]. The injector chain for protons consists of several steps: Linac4 - Proton
Synchrotron Booster (PSB) - Proton Synchrotron (PS) - Super Proton Synchrotron
(SPS). A radio frequency (RF) system is used to accelerate the particles and to organize
them into bunches instead of a continuous stream. These bunches are colliding at
a frequency of 40 MHz, every 25 ns, in what are called bunch crossings (BC). Each
bunch consists of a nominal value of O(1011) protons. The full accelerator is able to
hold up to 2808 bunches, but usually not all of them contain protons. Different filling
schemes are called bunch trains and the densest structure used is 72 consecutive
bunches followed by 8 empty bunches.
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Figure 1.2: The CERN accelerator complex [9].

1.2.2 Luminosity
The rate of collisions in a particle accelerator is given by its luminosity [10]. The
luminosity of a design with two counter-rotating beams with bunched particles, such
as the LHC, can be approximated by the formula in equation 1.1. The luminosity
depends on the beam parameters where Nb is the number of particles per bunch, nb

the number of bunches per beam, fr ev the revolution frequency, γr the relativistic
gamma factor, εn the normalized transverse beam emittance, β∗ the beta function at
the collision point and F the geometric luminosity reduction factor due to the crossing
angle at the interaction point.

L = N 2
b nb fr evγr

4πεnβ∗
F (1.1)

The unit for collisions happening over a period of time is an inverse femtobarn
(fb−1) which corresponds to approximately 1012 proton-proton collisions, this is also
commonly referred to as integrated luminosity.

The design luminosity of the LHC (1034 cm−2s−1) was surpassed in 2016. Figure 1.3
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shows the luminosity and the integrated luminosity of the ATLAS experiment over
different runs as well as the average number of proton-proton interactions per bunch
crossing, this is referred to as pileup, and is denoted by 〈µ〉. Figure 1.4 shows the cumu-
lative luminosity delivered to ATLAS for p-p collisions over time. The instantaneous
luminosity for each run has been increasing and the preliminary average pileup for
Run-3 is 〈µ〉 = 42.5.
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Figure 1.3: Shown is the luminosity-weighted distribution of the mean number of
interactions per crossing for pp collisions at 7 and 8 TeV center-of-mass
energy in 2011-12, 13 TeV in 2015-18, and 13.6 TeV in 2022 [11]. All physics
data recorded by ATLAS during stable beams in these years are shown,
and the integrated luminosity and the mean mu value are given in the
figure. The mean number of interactions per crossing corresponds to
the mean of the Poisson distribution of the number of interactions per
crossing calculated for each colliding bunch pair. It is calculated from
the instantaneous per bunch luminosity as µ = Lbunch ×σi nel / fr where
Lbunch is the per bunch instantaneous luminosity, σi nel is the inelastic
cross section, and fr is the LHC revolution frequency. The inelastic cross
section has been assumed to be 71.5 mb at 7 TeV, 73 mb at 8 TeV, and 80
mb at both 13 TeV and 13.6 TeV. The luminosity shown for 2022 uses a
preliminary 13.6 TeV luminosity calibration based on van-der-Meer beam-
separation scans taken in 2022.
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Figure 1.4: Cumulative luminosity versus day delivered to ATLAS during stable beams
and for high energy p-p collisions [11].

1.2.3 High-luminosity LHC
While the LHC has been running since 2008, most of its data taking is still ahead. The
LHC will undergo several upgrades during its lifetime as seen on figure 1.5. The last
upgrade is the High Luminosity LHC (HL-LHC) upgrade [12]. To be able to fulfill its
physics goals upgrades are required for precision measurements of the Higgs boson
properties, other standard model processes and searches for phenomena beyond the
standard model such as dark matter. The upgrade of the LHC will increase the lumi-
nosity while upgrades for the detectors will allow for more accurate data collection.
Higher luminosity requires upgrading of numerous components in the LHC and its
detectors to withstand higher radiation as well as upgraded electronics to track and
store the increased amount of events. The upgrades will be installed during the long
shutdown 3 (LS3) from 2026-2028 in what is known as the Phase II upgrade.

The target luminosity of the HL-LHC is 7.5 ·1034 cm−2s−1 which corresponds to an
average of 200 proton-proton collisions per bunch crossing (µ= 200). An integrated
luminosity of 300 fb−1 per year is foreseen. The scheduled duration of the HL-LHC is
over 10 years and it is estimated that a total of 4000 fb−1 of data is produced, which is
10 times of what will be gathered during the combined runs 1-3.
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Figure 1.5: The timeline of upgrades at the LHC.

1.3 The ATLAS experiment
The ATLAS experiment [13] is one of the two large general-purpose experiments. It
was designed to study proton-proton (pp) as well as heavy-ion collisions at the LHC.
The detector is situated in an underground cavern near the CERN main site at point 1
seen in figure 1.2. The detector, shown in figure 1.6, has four main detector elements
and the interactions of different particles with the ATLAS components are shown in
figure 1.7. Each component is designed to detect specific particles or to measure the
properties of specific particles.
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Figure 1.6: A cutout of the ATLAS experiment.

Figure 1.7: The interactions of different particles in the different sub-detectors of the
ATLAS.
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1.3.1 Coordinate System
ATLAS uses a right-handed coordinate system where the origin is the nominal interac-
tion point with z-axis along the beam pipe, y-axis pointing upwards and x-axis points
to the center of the LHC ring. The detector uses cylindrical coordinates which are
defined as (θ,φ) where φ is the azimuthal angle around the z-axis and θ is the angle
from the z-axis.

The commonly used variable instead of θ in hadron collider physics is the pseudo-
rapidity η which is defined through the angle from the z-axis θ shown in equation 1.2.
This is because the distribution of particles in pseudorapidity is more uniform than in
the actual angle.

η=−ln(t an(θ/2)) (1.2)
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θ = 90◦

η= 0.55

θ = 60◦

η= 0.88

θ = 45◦ η= 1.32

θ = 30◦
η= 2.01

θ = 15◦ η= 2.70
θ = 7.5◦

η=+∞θ = 0◦

Figure 1.8: Pseudorapidity η for different θ angles [14].

Further important variables derived from η are the transverse energy defined as
ET = E/cosh(η) as well as the angular distance defined as ∆R =√

(∆η)2 + (∆φ)2.

1.3.2 Inner Detector
The ATLAS Inner Detector (ID) [15] is located closest to the interaction point and it
measures the direction, momentum and charge of charged particles produced in the
collisions as well as providing the primary and secondary vertex measurements [13].
The ATLAS inner detector consists of three different systems of sensors, shown in
figure 1.9 that are immersed in a magnetic field that is parallel to the beam axis.

During the Phase-II upgrade of the inner detector [16], the Inner tracker (ITk) will be
installed. The new detector replaces the existing ID and consists of a new all-silicon
detector configuration, shown in figure 1.10, where pixel layers are located closest
to the interaction point and they are complemented by layers of strip detectors that
surround the pixel layers.
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Figure 1.9: The figure shows the barrel part of ID of the ATLAS experiment with the
Pixel, SCT and TRT sub-detectors [13].

Figure 1.10: Schematic view of one quadrant of the ITk layout with only the active
detector elements shown, in red for the pixel detector and in blue for the
strip detector [17].

1.3.3 Liquid Argon Calorimeter
The liquid argon calorimeter (LAr) [18] is designed to trigger on and to provide pre-
cision measurements of photons, electrons, jets as well as missing ET (MET). The
calorimeter consists of several subsystems shown in the cutout figure 1.11. The
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calorimeter uses accordion shaped electrodes for all electromagnetic calorimetry up
to η < 3.2, the construction is shown in figure 1.12. The construction forms a sam-
pling calorimeter with absorbers made out of either lead-iron or copper-tungsten and
liquid argon as the active material. The fraction of measured energy deposit in the
active material of the total deposited energy is shown in equation 1.3. The energy
is measured by the drift electrons ionized by passing particles attracted to the drift
electrodes in the center of the accordion as shown in figure 1.13.

The different parts of the LAr are the Electromagnetic barrel (EMB) which covers 0 ≤
|η| < 1.475, Electromagnetic end-cap (EMEC) which covers 1.375 < |η| < 3.2, Forward
calorimeter (FCal) which covers 3.1 < |η| < 4.9 as well as the Hadronic endcap (HEC)
which complements the Tile calorimeter and measures hadrons in 1.5 < |η| < 3.2. The
absorbers of EMB and EMEC are made of lead-iron while the absorbers of HEC and
FCal are copper-tungsten.

fsampli ng = Eacti ve

Eacti ve +Eabsor ber
(1.3)

Figure 1.11: A cutout of the LAr calorimeter with its subcomponents annotated [19].
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Figure 1.12: The layers of the LAr calorimeter module. The different modules are
presampler: layer 0/PS, front: layer 1, middle: layer 2 and back: layer 3
[13].

Figure 1.13: The LAr accordion structure with the active medium, absorber material
and the readout electrode [18].
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1.3.3.1 LAr calibration system

The LAr calorimeter requires constant calibrations for precision measurements which
are done inbetween fills of the accelerator. The system is based on a pulsing board
in the front-end crates. This pulsing creates a response similar to the response of
ionization signal from particles depositing their energy in the calorimeter [20]. The
known amplitude of the pulse is used for the calibration.

1.3.4 Trigger and Data-Acquisition System
The collision rate of the LHC is 40MHz [8]. This high event rate requires a multi-
staged triggering system to record only the events with interesting physics, ultimately
dropping the event data recording rate to an average of approximately 1 kHz. This
system if referred to as the Trigger and Data Acquisition (TDAQ) system [21].

The trigger system undergoes several upgrades over its lifetime. For Run-2 it has two
level structure: Level-1 and the high level trigger (HLT), each reducing the rate of data
passed to the subsequent level [21]. The Level-1 trigger forms its decision by receiving
information from the Level-1 calorimeter (L1Calo) and muon (L1Muon) triggers as
well as from the topological (L1Topo) trigger. The Level-1 trigger reduces the data rate
from 40MHz down to 100kHz and has a latency of 2.5µs. Once the Level-1 triggers, a
Level-1 Accept (L1A) signal is sent to the detectors, which will then send their buffered
data to the data acquisition (DAQ) system. The HLT performs object reconstruction by
using input from Level-1 in form of geometrical regions in the detector called regions
of interest (RoI). It has an event accept or reject rate of 1 kHz and a latency of 200ms.

The HL-LHC upgrade will introduce changes to the trigger system. The Phase-I
trigger system [22], commissioned in 2022, will run in parallel to the Phase-II triggers.
The number of background events passing the threshold will increase as the number
of interactions per bunch crossing goes up to µ= 200 which requires improvements
to the system. The main shortcomings are the low rate of 100 kHz which will not
be sufficient for the higher pileup rates, the inability to process higher granularity
information from the calorimeters as well as the muon trigger acceptance in the
barrel region and the low background rejection of the muon trigger in the endcap
regions. The Level-0 trigger and the Global Trigger seen in figure 1.14 are currently
being developed [21]. The Level-0 hardware triggers will have a rate of 1 MHz and
latency of 10µs using information from the calorimeters and the muon system.
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Figure 1.14: L0 trigger system supplying information to the central trigger processor
(CTP).

1.3.5 Tile Calorimeter
The Tile calorimeter [23] is the hadronic calorimeter of the ATLAS experiment at
|η| < 1.7 and measures the energy of hadrons as they pass through the detector and
interact with matter. It is a sampling calorimeter using steel as the absorber and
scintillator as the active medium. Ultraviolet scintillator light is induced by ionising
particles crossing the medium, this is converted to visible light and measured using
photomultiplier tubes (PMTs).

The main upgrades in Phase-II are that in the analogue electronics will be replaced
and all data from the Tile cells will be sent to the trigger system at 40 MHz. In addition
the old PMTs will be replaced with newer technology [24].

1.3.6 Muon spectrometer
The outer part of the ATLAS is the muon spectrometer [13]. It is designed to detect and
to measure the momenta of charged particles at |η| < 2.7 and to trigger on the particles
at |η| < 2.4. The different components shown in figure 1.15 are the Monitored Drift
Tube chambers (MDTs) which are used for precision measurement of the momentum
and in the forward region 2 < |η| < 2.7. Cathode-Strip Chambers (CSC) are used in
the inner-most tracking layer due to their capability for higher rates and better time
resolution.
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For the purpose of the triggering, track information is delivered within tens of
microseconds after the passage of the particle. This is done using Resistive Plate
Chambers (RPC) in the barrel region of |η| < 1.05 and Thin Gap Chambers (TGC) in
the end-cap region 1.05 < |η| < 2.4.

The main upgrade for Phase-II for the muon spectrometer is primarily focusing on
the improvement of the muon trigger chambers [21]. The Level-0 trigger electronics of
the RPC and TGC chambers will be upgraded. Also new RPC detectors will be added
in the barred in the region of |η| < 1, which will significantly increase the solid angle
coverage and the redundancy of the Level-0 trigger system. In addition the front-end
readout of the MDT will be replaced to fulfill the trigger rate and latency requirements
of the new trigger system as well as allow the hit information from MDT to be used in
the Level-0 trigger which improves the muon pT resolution in the trigger.

Figure 1.15: Cross-sectional view of ATLAS muon spectrometer. The barrel MDT cham-
bers are shown in green, the endcap MDT chambers are blue. In the barrel
(endcaps), the RPC (TGC) chambers are shown outlined in black (solid
purple) [13].

1.4 LAr Phase-II Upgrade
The main objectives for the LAr Phase-II upgrade [25] are to replace the LAr readout
electronics. The new readout electronics are required because of the trigger upgrade,
which operates at a frequency of 1MHz. In addition the trigger granularity is increased
to cell level granularity. Much of the current readout system has been in use since
run-1 and consists of obsolete electronics and furthermore components inside the
detector have been degraded by radiation.
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Figure 1.16: Schematic of the LAr calorimeter readout architecture for the Phase-II
upgrade [25].

1.4.1 Front-end Electronics
The front-end electronics are radiation hardened components located inside the
detector, mounted on the LAr cryostats. The electronics are housed in front-end crates
(FECs) which will host the upgraded front-end boards (FEB2s). These boards receive
the input of 128 LAr channels, shape the incoming analog signal with C R−(RC )2 filter,
digitize it and this signal is sent to the computing room using optical links. The board
will host custom application specific integrated circuits (ASICs). This includes ASICs
for the analog filtering and for the analog-to-digital (ADC) conversion. In addition
new calibration boards will be installed in the FECs.

1.4.2 LASP
The LAr Signal Processor (LASP) is the board that receives the digitized signal from
the FEB2s. The board will reconstruct the energy and the phase of the pulses using
digital filtering techniques, supply the information to the trigger while buffering the
data waiting for the triggering decision and if an accept is received the board will
then transmit the data to the Global Event Trigger Processors and the L0Calo systems.
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Each LASP board will process 384 LAr channels. The board is required to compute the
energies for all of the channels within 125 ns as well as to buffer the energies in case of
the accept from the trigger for up to 10 µs. The specifications also require the system
to be capable of bursts of 4 L0 accepts in 5 consecutive BCs, 8 L0 accepts in 5 µs and
128 L0 accepts in 30 µs. The high throughput computing of LASP is done with an Intel
AgileX FPGA. In this work energy reconstruction algorithms based on neural networks
are evaluated to be deployed on the LASP in place of the analytical method used up to
now.

1.4.3 Legacy energy reconstruction algorithms
In the liquid argon calorimeter, particles passing the detector ionize the liquid argon
that acts as the active material. The free electrons drift by high voltage and are collected
by electrodes [26]. The detector response is a triangular detector pulse shape shown
in figure 1.17. This response has a fast rise and tail that lasts for up to 500 ns. It is a
highly stable response that varies only at its peak height which is proportional to the
deposited energy and the peaking time. These two factors, the height and time of the
peak, are what the reconstruction in LAr aims to compute. With a triangular pulse
and sampling rate of 40MHz, the precise peak height and timing will be missed and
cannot be inferred from the sampled signal to counter this an analog C R − (RC )2 filter
is used to filter the signal into a known shape which allows for accurate reconstruction
of the height and timing. The response after applying the filter is a bipolar pulse which
is sampled at 40 MHz is seen in figure 1.17.

1.4.3.1 Optimal Filtering

Figure 1.17: LAr pulse shape using a C R − (RC )2 sampled at 40 MHz.
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The Optimal Filtering (OF) [27] algorithm is used in the LAr calorimeter to extract
the amplitude and timing from a noisy signal. This algorithm allows to minimize the
effects of pileup and other sources of noise such as thermal noise.

The amplitude of the pulse A is reconstructed with formula 1.4 and the timing
with 1.5 as the weighted sum of the digitized signal samples and filter coefficients.
Filter coefficients ai are used for the pulse amplitude and coefficients bi are used for
the timing τ which measures the phase shift between the expected and actual pulse
timing. The reconstruction is done with either n = 4 or n = 5 samples depending on
the run. The studies in this work are done with n = 5.

A =
n∑

i=1
ai · si (1.4)

Aτ=
n∑

i=1
bi · si (1.5)

1.4.3.2 Continuous energy measurement with OF

The duration of the pulse spans across several bunch crossings. A maximum finder is
used on the optimal filtering output to assign the energy E to a specific bunch crossing
[28]. The condition for attributing the energy to a bunch crossing is that it is the peak
energy of the preceeding as well as following bunch crossing and above a selected
threshold Ethr . Otherwise a zero energy is attributed for that bunch crossing. The
maximum finder condition is formulated in equation 1.6 where the energy is assigned
to a BC i if Ei is larger than Ei−1 and Ei+1 [29]. The combination of optimal filtering
with maximum finder is referred to as OFMax. The increased luminosity of HL-LHC
will introduce pile-up conditions that significantly reduce the performance of the
Optimal Filtering algorithm and require new signal processing techniques [26].

E =
{

Ei if (Ei > Ei+1)∧ (Ei > Ei−1)∧ (Ei > Ethr )

0 otherwise
(1.6)

1.4.3.3 Other filter types for energy reconstruction

Optimal filtering struggles in HL-LHC conditions [29]. When using the OF, the peak
height of a pulse can be biased by the trailing undershoot of a preceding pulse, leading
to an underestimation of the preceding peak value of the pulse by up to 20% (de-
pending on the pulse shape). In severe cases, the undershoot can completely obscure
an energy deposit. To overcome the performance drop other filter types have been
evaluated in previous works [29]. The best performing filter type considered as an
alternative to the OFMax is the Wiener Filter with Forward Correction (WFFC) which
has a specific focus on effectively detecting overlapping signal contributions. The goal
of the WFFC is to minimize this effect while retaining the ability to accurately recon-
struct the energy deposits for each BC. While the WFFC and OFMax perform similarly
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overall, the WFFC is able to reconstruct energies better in the case of overlapping
signals while OFMax performs better in the isolated scenario.

The evaluation in this work is only done in comparison to OFMax because the goal is
to improve the performance in both the case of isolated pulses as well as overlapping
ones.

1.5 ATLAS Simulation
ATLAS simulations can be done either by simulating the LAr readout electronics using
the ATLAS readout simulator (AREUS) [30] or using the full detector simulator Athena
[31]. AREUS simulation produces a continuous signal for a single calorimeter cell
whereas Athena produces the detector response for selected physics events for the full
detector without continuity between the events.

1.5.1 AREUS
AREUS is a simulation framework of the continuous signal of the LAr readout elec-
tronics for individual LAr cells, which allows the evaluation of various digital filtering
algorithms. The simulation is done BC-by-BC basis over a period of time and the
detector response is simulated as it would happen in the continuous data flow in the
detector. This continuous nature enables the filter algorithms to show their potential
unexpected behavior in long propagation time as it would be the case in data-taking,
which includes ringing, oscillations, swinging up and baseline shift.

1.5.2 Athena
In Athena events are generated and processed on an event-by-event basis. The general
digital processing is based on the time grid defined by bunch crossings (BCs), but the
processing of events is done independently of each other: for each event it is possible
to use in a total of 32 BCs around the event by ATHENA when calculating its filter
result. Intermediate filtering results are then discarded and the processing is recycled
for the next event which is again computed independently from the previous event.
This processing method is excellent when evaluating the detector performance with
selected physics events, but has limitations when evaluating filter algorithms.

1.6 Electron and photon reconstruction and
identification

Out of the deposited energy and tracks in the detector it is possible to reconstruct the
energy and identify the particles in question as shown in figure 1.7. The reconstruc-
tion algorithm introduced in 2017 is based on variable-sized clusters referred to as
superclusters [32]. This algorithm replaces the sliding-window algorithm [33]. The
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main improvements are dynamic clusters that change in size as needed to recover
energy from bremsstrahlung photons or from electrons from photon conversions.
An important reason for using superclusters is the improved energy resolution that
superclusters provide by collecting more of the deposited energy. The reconstruction
of electrons and photons with |η| < 2.5 proceeds as shown in figure 1.18.

Figure 1.18: Algorithm flow diagram for the electron and photon reconstruction. [32]

1.6.1 Topo-cluster reconstruction
The first part of the algorithm is to prepare tracks and clusters to be used. It first builds
EM topo-clusters by forming proto-clusters in the calorimeters using the cells that
have deposits above a set of noise thresholds. The initial step uses a threshold of
E E M

cel l /σE M
noi se,cel l ≥ 4.

In the next iteration proto-clusters then collect neighboring cells with half the
significance (E E M

cel l /σE M
noi se,cel l ≥ 2) and these become seed cells for the next iteration.

If two proto-clusters contain the same cell, the clusters are merged. In the final step a
crown of nearest-neigbour cells are added to the cluster without applying thresholds.
This is known as ’4-2-0’ set of thresholds. The proto-cluster is then split if there are
local maxima that fulfill the conditions: E E M

cel l > 500MeV with at least four neighbors
none of which have a higher signal.

A preselection is applied to cut up to 60% of pile-up clusters without affecting the
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true electron topo-clusters. This preselection is based on cuts on the EM energy of the
cluster, which is measured with the cluster energy using cells of the EM calorimeter
(in the transition region also scintillator and presampler are taken into account) larger
than 400 MeV and the fraction of EM energy to the total energy of the cluster fE M > 0.5.

Figure 1.19: A schematic illustration of the path of an electron through the detector.
The red trajectory shows the hypothetical path of an electron, which first
traverses the tracking system (pixel detectors, then silicon-strip detectors
and lastly the TRT) and then enters the electromagnetic calorimeter. The
dashed red trajectory indicates the path of a photon produced by the
interaction of the electron with the material in the tracking system [34].

1.6.2 Track reconstruction
Track reconstruction is done in the inner detector as described in [34] with improve-
ments introduced in [32]. The tracks are reconstructed from charged particle hits in
the inner detector as shown in figure 1.19. The tracks are reconstructed using pattern
reconstruction [35], χ2 fitter [36] or Gaussian sum filter (GSF) [37] which is a non-linear
generalization of the Kalman filter [38]. The algorithm used depends on properties
and success of other methods. The acquired tracks are fitted and matched with the
EM topo-clusters. In case multiple tracks are matched to a cluster, they are ranked.
Highest rank is given to tracks that have hits in the pixel detector, then tracks that have
hits in the SCT but not in the pixel detector. Inside these categories tracks are ranked
by better matching ∆R to the cluster in the second layer of the calorimeter. The track
with highest ranking is used to define the properties of the reconstructed electron.
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1.6.3 Supercluster reconstruction
Superclustering gathers adjacent EM topo-clusters that originate from the same source.
The satellite clusters may emerge from bremsstrahlung radiation or topo-cluster
splitting. The superclustering is done independently for electrons and photons in
two stages. Figure 1.20 shows the process of the superclustering where electron
supercluster seed requires EM energy ET ≥ 1GeV and must be matched to a track
with at least four hits in the silicon tracking detectors. Photon seeds require larger EM
energy of ET ≥ 1.5GeV with no track requirements. The clusters are initially sorted
by descending energy and the same cluster cannot be used as a seed if it has already
been assigned as a satellite of another cluster.

For photons, a cluster is considered a satellite if it falls within a window of ∆η×
∆φ= 0.075×0.125 around the seed cluster barycenter. For electrons the window is
∆η×∆φ= 0.125×0.300 and the best matched track is used for the supercluster.

For photons with conversion vertices made up only of tracks containing silicon
hits, a cluster is added as a satellite if its best-matched (electron) track belongs to the
conversion vertex matched to the seed cluster. Finally calorimeter cells are assigned for
the supercluster using LAr layers 0-3 (for transition region 1.4 < |η|1.6 also scintillators
are used).

Figure 1.20: Diagram of the superclustering algorithm for electrons and photons. Seed
clusters are shown in red, satellite clusters in blue [32].

1.6.4 Creation of analysis objects and performance
Finally analysis objects need to be created. An initial calibration is performed on
the created superclusters and track matching is done for the electron superclusters.
However as the electron and photon superclusters are built independently, a given
seed cluster can produce both an electron and a photon. In the case of duplicate, an
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algorithm identifies the object. The object is classified for analysis as only a photon
if there is a cluster but no good tracks or only an electron if there is a cluster with
a good track and no good photon conversion vertex. Otherwise both electron and
photon analysis objects are created. In addition these cases where the identification is
ambiguous the objects are marked so for specific analysis requirements. The created
objects are recalibrated and the shower shapes and other discriminating variables are
computed.

Figure 1.21 shows the efficiency of the reconstruction for electrons as a function of
ET . The achieved efficiency is good and approaches the track reconstruction efficiency
at higher pT , but deteriorates at lower energies due to tracks which are matched to
superclusters only GSF re-fit has been performed on them, this introduces a ET

threshold because of the fixed-size clusters. The performance of the reconstruction is
affected by pileup levels. Figure 1.22 shows the electron identification efficiency as a
function of pile-up. The efficiency decreases with higher pileup.
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Figure 1.21: The cluster, track, cluster and track, and electron reconstruction efficien-
cies as a function of the generated electron ET .
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Figure 1.22: The electron identification efficiency in data for electrons with ET > 30 GeV
as a function of the average number of interactions per bunch crossing
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of the η distribution is shown as a shaded histogram. The bottom panel
shows the data-to-simulation ratios. The total uncertainties are shown.
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2.1 Introduction
Machine learning is a subset of artificial intelligence where a task is solved by using a
learning algorithm that observes data and learns from it [39]. The system learns to
find statistical structures of data in a process referred to as training where the input is
transformed into meaningful output by using the observed error in the task to adjust
how the task is solved.

The recent popularity of machine learning methods can be attributed to the avail-
ability of large datasets combined with new computing hardware. While machine
learning is related to mathematical statistics, there are key differences. A key dif-
ference is the ability to deal with larger and more complex datasets, for example
datasets that consist of millions of images each of which contain tens of thousands
of pixels. The ability to learn meaningful representations from complex data can be
attributed to the methods categorized as deep learning, where the data processing has
a layered structure with a significant depth. These methods include recurrent neural
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networks (RNNs), convolutional neural networks (CNNs) and more recently the trans-
former architecture. The field of machine learning is also more engineering-oriented
where ideas are often proven empirically rather than theoretically and often has little
mathematical theory in comparison to classical statistical analysis.

The three main categories of machine learning problems are: supervised learning,
unsupervised learning and reinforcement learning [40]. Supervised learning learns
patterns from labeled data where each training sample has a known true value. Super-
vised learning tasks are divided to classification, where the output is a discrete class,
and regression tasks where the output is real-valued. Unsupervised learning deals
with unlabeled data from which patterns are learned, examples of unsupervised learn-
ing are clustering and dimensionality reduction algorithms. Reinforcement learning
deals with an agent that takes actions in an environment and receives feedback of the
performed action to learn. The learning in all of these categories requires a way to
evaluate how well a task was performed, this is done using a loss function.

Machine learning techniques have been successfully used in high-energy physics
experiments for different tasks such as particle identification, event selection, jet tag-
ging or reconstruction at later stages of data analysis using methods such as Boosted
Decision Trees, RNNs and CNNs [41]. However the ability to use advanced machine
learning techniques in real time at the data acquisition and trigger levels has not been
possible due to the restrictions imposed by the available hardware.

2.2 Neural Networks

2.2.1 Perceptron
The perceptron [42] is the earliest development of a biologically inspired structure
for computation. It maps directly multiple weighted inputs into a binary value using
a threshold function. The original Mark I perceptron was a physical machine built
in 1958 and it was used for image recognition. The weights were adjusted using
potentiometers. The weight adjustments were a heuristic process where weights were
adjusted based on the error. However the original perceptron does not include a
loss function. The training process has similarities to gradient descent, but is not
derived from it as the perceptron is not a smooth function where a gradient-based
method would work. While the perceptron was revolutionary for its time and laid the
foundation for the field of artificial neural networks, it had serious limitations that
made it applicable only for simple problems. The main limitation is that it is only able
to converge with linearly separable data.

The mathematical representation of the perceptron is shown in equation 2.1. The
sum of the inputs xi are multiplied by weights wi , the bias b is added and this is
passed to the threshold function thr s. The schematic of the perceptron computation
is shown in figure 2.1.

ŷ = thr s(
n∑

i=1
(wi xi )+b) (2.1)
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Figure 2.1: Computation of the perceptron. The inputs xn are multiplied with the
weights wn and bias b and summed, the sum is passed through threshold
function thr s() to acquire output ŷ .

2.2.2 Feed Forward Network
The feed forward network, also known as the multi layer perceptron or dense networks,
consists of neuronal units, commonly referred to as just units, similar to the perceptron
organized in layers. Each unit has a weighted connection to every unit of the previous
layer, thus the amount of weights in a given layer is n ×m where n is the unit count of
the previous layer and m the unit count of the layer itself. Each unit has also a bias b
as well as a non-linear activation function. Equation 2.2 shows the computation of a
single unit of a feed forward network where the weighted sum of inputs xi multiplied
by weights wi is added to bias b and the result is passed through activation function
acti vati on. Figure 2.2 shows how the neurons are used to construct a feed forward
network that has three layers.

ŷ = acti vati on(
n∑

i=1
(wi xi )+b) (2.2)

The addition of a non-linear activation function for each layer enables the network
to approximate complex functions. Without a non-linear activation a feed forward
network could be represented with a single linear layer and thus would not provide
better modeling ability than a single layer linear network. This type of network is the
fundamental building block of modern deep learning models due to the fact that other
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network types are either specialized usage of feed forward neurons such as the CNN,
extensions of feed forward layers with feedback loops such as the RNN or are partly
built from feed forward layers such as the transformer architecture.

... ...

...

x1

x2

x3

xn

y1

yn

Input
layer

Hidden
layer

Ouput
layer

Figure 2.2: A schematic illustration of a feed forward network with a single hidden
layer.

2.2.2.1 Activation functions

Activation functions are what enables neural networks to learn non-linear relations
in the data. The key features of an activation function is that it is continuous and
differentiable. Common activation functions are the sigmoid, hyperbolic tangent
(tanh), rectified linear unit (ReLU) [43] and softmax. The mathematical formula and
ranges of these activation functions are shown in figure 2.1 and their visualizations in
figure 2.3 with the exception of softmax, because its value is dependent on the other
outputs of the layer and thus cannot be plotted individually. The activation function
chosen for the last layer of a network has special considerations due to its effect on
the range and other properties of the output of the network.

Sigmoid was more commonly used in the past but is nowadays mostly used as
the final activation in binary and multi-label classification, this is due to its range of
x ∈ [0,1] which can represent a probability. It is also used in RNNs.
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Activation Formula Range

Sigmoid σ(x) = 1
1+e−x (0,1)

Tanh t anh(x) = ex−e−x

ex+e−x (−1,1)

ReLU f (x) =
{

0 if x ≤ 0

x otherwise
[0,∞)

Softmax Φ(x)i = exp(xi )∑n
j=1 exp(x j ) (0,1)

Table 2.1: Common activation functions, their mathematical expressions and ranges.

Tanh was a commonly used activation function but is nowadays mainly used in the
output layer of some generative models due to its output range x ∈ (−1,1). It is also
used in RNNs.

ReLU has become one of the most popular activation functions due to its simplicity.
The downside of the activation function is that it might "die" during the training or
due to a bad neuron weight initialization or adjustment because the gradient of the
negative part is zero. If this happens the learning of the neuron stops. Variations
include the leaky ReLU [44] with non-zero negative part and the Gaussian Error Linear
Unit (GELU) [45].

Softmax is the activation function used in the last layer of multi-class classification.
It turns the output values into a probability distribution that sums to 1. It is also used
in the transformer architecture as an intermediate activation function.
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Figure 2.3: Common activation functions. (top left) sigmoid, (top right) hyperbolic
tangent (tanh), (bottom) rectified linear unit.

2.2.3 Optimization
The training of a neural network consists of minimizing the loss function by adjusting
the weights and biases. This is done by an optimizer. The weights of a neural network
are initialized with random values while biases are often initialized to zeros. The
predictions will at first be random, but during the training process the optimizer
adjusts the weights and biases to minimize the error between the target and predicted
values which is quantified by the loss. The training loop, illustrated in figure 2.4 shows
how the predicted values along with the true values are used as inputs of the loss. The
loss value is then used in the optimizer to perform weight adjustments. The training is
done in batches and the loss value is averaged over a batch of training samples.
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Figure 2.4: The training loop of a supervised machine learning model [39].

2.2.3.1 Loss

The loss function plays a crucial role in the training process of a neural network. Its
purpose is to give a value that represents the difference between the true and predicted
values. This value is then used by the optimizer to perform weight adjustments. The
loss function needs to be differentiable for a gradient-based learning algorithm to
work.

The selection of loss function depends on the task. The mathematical formulas of
common loss functions are shown in table 2.2. The common loss function for regres-
sion tasks is the mean squared error (MSE). For classification either binary crossen-
tropy or categorical crossentropy is used depending on the task. Binary crossentropy
is used for tasks with two classes or in multi-label classification where the target
value can have multiple classes simultaneously. Categorical crossentropy is used in
multi-class classification where only one of the classes is the correct class.

2.2.3.2 Gradient Descent

The training of neural networks is based on gradient descent, which uses the gradient
of the differentiable loss function to adjust the weights of the network. Gradient
descent is an iterative optimization process during which steps are taken towards the
minimum by following the negative direction of the gradient. Equation 2.3 shows the
formula of gradient descent where new weights wn are the computed from the old
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Loss function Usage Formula

Mean squared error Regression 1
n

∑n
i=1(ŷi − yi )2

Binary crossentropy
Binary and multi-label

classification
− 1

n

∑n
i=1(yn · log (ŷn)+ (1− yn) · log (1− ŷn))

Categorical crossentropy
Multi-class

classification
− 1

n

∑n
i=1

∑k
j=1 y j · l og (ŷ j ),

k denotes the number of classes

Table 2.2: The formulas for loss functions. The loss is computed for predicted value y
and target value ŷ for n training samples.

weights wn−1 by subtracting the gradient ∇L multiplied by the step size ϵ. The gradient
is the mean of all training samples. Figure 2.5 shows an example of the evolution of
gradient descent in a two dimensional plane.

wn = wn−1 −ϵ ·∇L (2.3)
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Figure 2.5: Gradient descent moving towards the minimum in a two dimensional
plane.
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Figure 2.6: Function with local and global minimum.

2.2.3.3 Stochastic Gradient Descent

The original gradient descent algorithm, also known as batch gradient descent, per-
forms one update for all training samples. This method of weight updates is prone to
getting the minimization stuck in a local minimum instead of finding the global mini-
mum when the error surface contains numerous local minima. An example of local
and global minima is shown in 2.6. By performing weight updates for each training
example, known as the stochastic gradient descent, the optimization process becomes
noisier which has the benefit of bouncing out of local minima. This is advantageous
when optimizing a multi-dimensional problem, such as modern machine learning
models, which may contain hundreds of millions of trainable parameters, each of
which is a dimension in the optimization space. Modern gradient based optimization
methods use mini batches of tens to hundreds of training samples for weight updates
instead of a single sample. In addition to the batch sizes, gradient descent can be
improved by adapting the learning rate for better control of the step sizes as well as
introducing momentum to better direct the gradient in multi-dimensional problems.

2.2.3.4 Adaptive Learning Rate

The step size ϵ, also referred to as the learning rate, controls the magnitude of the
update performed by the gradient descent. By default the ϵ value is static for the
optimization process. However this poses problems because a large ϵ helps the model
to learn fast in the initial phase of the training, but causes oscillations around the
minimum [46]. A small ϵ makes the learning process slow initially and can cause the
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model to be stuck in a local minimum. To mitigate these problems the learning rate ϵ
can be adapted as the model approaches the global minimum, this way the model can
learn fast in the initial phases using a larger ϵ and not bounce around global minimum
in the later stages of the training.

2.2.3.5 Momentum

The error surface of the optimization problem often has a higher curvature in one
dimension than another. These types of surfaces will cause gradient descent to oscil-
late instead of efficiently moving towards the minimum as shown in figure 2.7a. By
introducing an additional momentum term z, referred to as velocity, these oscillations
can be reduced. The effect of the velocity is controlled by the parameter γ ∈ (0,1),
which is often kept close to 1. The weight update becomes a two-staged process where
first the new velocity zn is computed based on the previous velocity zn−1, shown
in equation 2.4. The new velocity zn is then used for the weight update, shown in
equation 2.5. Figure 2.7b shows an example of gradient descent with momentum
where the oscillations are significantly damped which speeds up the learning process.
With equal amount of steps the gradient descent with momentum reaches closer to
the minimum while gradient descent without momentum oscillates achieving smaller
progress towards the minimum.

zn = γ · zn−1 −ϵ∇L (2.4)

wn = wn−1 − zn (2.5)
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(a) No momentum
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(b) With momentum

Figure 2.7: Illustration of 10 steps taken by gradient descent without momentum and
with momentum in a two dimensional plane with higher curvature in one
dimension than another.
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2.2.3.6 ADAM

The training process of neural networks can be further improved by more complex
gradient based algorithms. Adaptive Moment Estimation (Adam) [47] optimizer is
designed specifically for the use of optimizing deep learning models. Adam com-
bines the advantages of two other popular optimizers: AdaGrad [48] which performs
well with sparse gradients by adapting a per-parameter learning rate and RMSProp
[49] which works well in non-stationary and online settings by utilizing the recent
magnitudes of the gradients. The algorithm computes individual adaptive learning
rates for different parameters using the estimates of first and second moments of the
gradient. It also utilizes an exponentially decaying average of part gradients, similar to
momentum as well as a decaying learning rate

p
t where t is the time step of the train-

ing process. Reviews of different optimizers have shown that Adam is outperforming
other optimizers in many deep learning tasks [46].

2.2.4 Backpropagation
The backpropagation algorithm [50] enables the efficient training of multi-layered
neural networks. The weight adjustments for a single layer of neurons can be directly
acquired from the loss function, but weight adjustments for a multi-layered network
requires knowledge of the contribution of each weight in the intermediate layers to
the loss. The backpropagation algorithm forms a composition function for multi-layer
networks, as shown in figure 2.8, and computes the gradients for this composition
function by using the chain rule of differential calculus. The algorithm is a special
case of reverse-mode automatic differentiation [51].

The backpropagation algorithm consists of two parts: the forward and the backward
pass. The forward pass is the computation of the network output with respect to its
input. The loss value is then used for the weight adjustments. The backward pass
starts from the output of the network, moving backwards in the network and computes
the gradients of each layer with the chain rule to determine the contribution of each
parameter to the loss value as shown in equation 2.6.

w x y z
f f f

Figure 2.8: A computational graph that results in repeated subexpressions when com-
puting the gradient. The same function f is applied at every step of a chain
x = f (w),y = f (x) and z = f (y) [52].

∂z

∂w
= ∂z

∂y

∂y

∂x

∂x

∂w
(2.6)
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2.3 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) [53] are designed to process time series data. This
is achieved through parameter-sharing over each timestep of the time series. The
same RNN operation is applied to each timestep and the state of the cell, commonly
referred to as hidden state h, is used to encode the information from the past that is
carried through time. The advantage of parameter-sharing is that the network does
not need to learn all the rules for each position in the time-series like would be the
case for a feed-forward network used for time series data. RNNs are feed-forward
networks that add feedback loops for recurrence. To form a computational graph of a
RNN the network is commonly unfolded as shown in figure 2.9. This unfolded graph
provides an explicit description of the performed computations while also helping to
illustrate the flow of information in a RNN [52].

A RNN layer can be applied to different types of sequences. The ways to apply a RNN
to data are shown in figure 2.10. The RNN that produces an output for each input is
referred to a many-to-many RNN also known as a sequence-to-sequence model. The
second type produces a single output after processing the full sequence and is referred
to as many-to-one. The third type uses the same input for each timestep to produce
different output for each timestep and is referred to as one-to-many. Different types
of RNN layers can be chained, for example using a many-to-one RNN followed by
one-to-many RNN can be used to form an autoencoder [54].

C C C C=C

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .

Figure 2.9: RNN operation C is applied for each timestep with input xt to produce state
ht and can be unrolled to provide an explicit description of the performed
computations.
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Figure 2.10: RNN operation for different input and output types. (top) Multiple inputs,
multiple outputs known as many-to-many, (middle) multiple inputs and
single output known as many-to-one, (bottom) single input with multiple
outputs known as one-to-many.

2.3.1 Simple RNN
The simple RNN structure [55] is the simplest RNN type that consists of two weight
matrices. Equation 2.7 shows the operations for RNN cell for each timestep. The
weight matrices in the cell are W which is used for the input xt which is a n×m square
matrix. n is the unit count and m is the number of input features for each timestep of
xt . The weight matrix U is used for the hidden state ht−1 and is a n ×n square matrix.
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The bias vector is of length n. The output of the RNN is a vector of the size n. The
activation in the original publication is tanh, but in this work the ReLU because its
simplicity makes it ideal for firmware implementation.

ReLUh⟨t−1⟩

x⟨t⟩

h⟨t⟩

h⟨t⟩

Figure 2.11: RNN operation for previous hidden state ht−1 and input xt using a ReLU
activation produces output ht .

ht = acti vati on(W xt +Uht−1 +b) (2.7)

2.3.2 Backpropagation Through Time
RNNs are trained using the backpropagation through time algorithm (BPTT) intro-
duced in [56] which is a generalization of the backpropagation algorithm. It works by
unfolding the RNN: every time step has its own input but the parameters are shared
for all time steps. The backpropagation algorithm is then used for the gradients of the
RNN.

2.3.3 Long Short-term Memory
Long Short-Term Memory (LSTM) [57] is an evolution of the simple RNN structure
designed to process complex information through time. Better handling of informa-
tion through time is achieved through a gated architecture with four internal gates
(forget gate f , input gate i , gate for the cell state candidate c̃ and output gate o) and
by carrying two states through time: the hidden state h and the cell state c . This gated
architecture has been proven to perform better on longer sequences by allowing it to
learn to selectively access the states and to mitigate the vanishing gradient problem
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[58]. The addition of the forget gate plays an essential role in enabling the LSTM to
perform well over long sequences and it can be applied to infinite input streams [59].

The computation of LSTM for time step t consists of computing the gates using
the input xt and previous hidden state ht−1 as shown in equations 2.8, 2.9, 2.10 and
2.11. The cell state ct is acquired summing the element-wise product of previous cell
state ct−1 and forget gate output ft with element-wise product of input gate output
it and the cell state candidate c̃t as shown in equation 2.12. The hidden state ht is
acquired by performing an element-wise product of the output gate ot and the cell
state ct passed through a tanh activation function.

σf σi Tanhc σo

× +

× ×
Tanh

c⟨t−1⟩

h⟨t−1⟩

x⟨t⟩

c⟨t⟩

h⟨t⟩

h⟨t⟩

Figure 2.12: LSTM cell structure. For each timestep t the cell uses the past hidden
state ht−1 and cell state ct−1 as well as input xt . Outputs are the hidden
state ht and cell state ct .

ft =σ(W f xt +U f ht−1 +b f ) (2.8)

it =σ(Wi xt +Ui ht−1 +bi ) (2.9)

c̃t = t anh(Wc xt +Uc ht−1 +bc ) (2.10)

ot =σ(Wo xt +Uoht−1 +bo) (2.11)

ct = ft ⊙ ct−1 + it ⊙ c̃t (2.12)

ht = ot ⊙ t anh(ct ) (2.13)
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3.1 Introduction
This chapter evaluates the performance of RNNs for the energy reconstruction in
the LAr calorimeter. The size of the network as well as amount of samples required
for accurate energy reconstruction are evaluated. In addition, the selection of the
optimizer and model criteria to pick the best performing model are evaluated. The
RNN can be applied in a many-to-one way, which corresponds to a sliding-window
application in section 3.3. The other possible way to apply the RNN is in a many-to-
many way which is referred to as single-cell in section 3.4. The RNN is also extended to
reconstruct the phase shift of the electronic pulse in addition to the amplitude of the
pulse in section 3.5. The ability of the RNNs to perform over a range of instantaneous
luminosities is evaluated in section 3.6.

3.2 Dataset
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Figure 3.1: An example sequence with 150 bunch crossings that contains isolated and
overlapping signals. The true energy deposits as well as the energy recon-
structed by OFMax are also shown. The sample amplitude is normalized to
the deposited energy in GeV.

The dataset used to train and evaluate the performance of the neural networks con-
tains 2 million simulated continuous bunch crossings created using AREUS with an
average pileup of µ= 140. The simulation is done for a calorimeter cell in the middle
layer of the barrel (labeled EMB middle) at η = 0.5125 and φ = 0.0125. In addition
to pileup, a signal of up to 5 GeV is injected at a random interval with a mean of 30
bunch crossing and standard deviation of 10. This results in a dataset that contains
a significant amount of overlapping events where either two peaks are overlapping
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or the second peak is in the tail of the previous pulse. The dataset is the same as the
one used in [1]. Figure 3.1 shows an example sequence that contains overlapping
signals where the pulse height is affected by the previous pulses. The deposits that are
affected by the tail of the previous pulse, such as around BCID 50 and 95, lead to the
energy being underestimated by optimal filtering with maxfinder (OFMax), explained
in section 1.4.3.1. The largest misprediction happens around BCID 30 where the tail
of the pulse has two deposits within one bunch crossing from each other. This leads
OFMax to predict a non-zero energy at the BC which is between the two deposits.
The energy is set to 0 at the correct BCs. OFMax performs well in the case of isolated
pulses, such as the deposits around BCID 15, 80 and 125.

3.3 Energy reconstruction with Recurrent Neural
Networks in the sliding window architecture

In the sliding window architecture, the LAr sample sequence is divided into relatively
short overlapping sub-sequences with each sub-sequence corresponding to one en-
ergy output following the many-to-one RNN architecture explained in chapter 2.3. The
target energy for each sub-sequence is chosen so that the sequence contains samples
both before and after the deposited energy. The samples in the past allow to correct for
the effects from out-of-time pileup. The samples after the deposit probe the resulting
pulse amplitude to reconstruct the energy. The length of the sub-sequence has to be
chosen to achieve an optimal performance of the networks while keeping in mind
that each added sample increases the resource usage in the FPGA. Moreover, samples
added after the deposited energy will increase the total reconstruction latency since
the computation of the energy will need to wait for these samples to be available.

The chosen architecture of the network consists of one RNN layer followed by a
single neuron for the output layer to transform the vector output of the RNN into a
single value corresponding to the energy. Four samples following the energy deposit
are used to probe the peak of the pulse and are found to be sufficient to reconstruct
the pulse amplitude. Further samples are used for out-of-time pileup corrections.
Figure 3.2 depicts the sliding window application of the RNN with one sample prior to
the energy deposit totaling 5 samples as input to the neural network.
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Figure 3.2: Sliding window application of the RNN, where a window of fixed size is
moved across the sequence to process it in smaller, overlapping segments,
allowing for the reconstruction of the deposited energy and the correction
of the effect of out-of-time pileup [1].

3.3.1 Optimizing RNNs for LAr
This section evaluates the choice of RNN hyper-parameters for the energy reconstruc-
tion. The goal is to find the best performing network that will fit on the FPGA. The
network parameters and the choice of the optimizer are evaluated to select the best
performing network. The MSE loss function is widely used for regression tasks and is
chosen for all the training performed in this work. The performance of the networks is
examined using several criteria as explained in section 3.3.1.1.

3.3.1.1 Model selection criteria

The neural network training is a stochastic process with the network weights initialized
with random values. In addition, the training data is also randomly shuffled between
each epoch. The common initialization for RNNs is glorot uniform [60] for the weight
matrix, orthogonal for the recurrent weight matrix and zeros for the biases.

Several networks with the same configuration but different initializations are trained
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and the best performing is selected. However a selection criteria is needed to evaluate
which one of the models performs the best. The model needs to accurately reconstruct
higher energies but also suppress the bunch crossings that contain only noise.

The comparison of the models is done using either RMSE shown in equation 3.1

where E pr ed
T is the predicted value, E tr ue

T is the true value and n the number of samples

or standard deviation shown in equation 3.2 where E pr ed
T is the predicted value, E tr ue

T
is the true value, x̄ is the mean of the predicted values and n is the number of samples.

RMSE =
√

1

n
·∑(E pr ed

T −E tr ue
T )2 (3.1)

σ=
√∑

((E pr ed
T −E tr ue

T )− x̄)2

n
(3.2)

The models can either be evaluated for all events, this is mostly dominated by low
energy events, or only for events above a selected threshold. The evaluation for high
energy reconstruction performance is done only for events above 240 MeV. The cut at
240 MeV is chosen as it corresponds to 3σ above noise level for the chosen calorimeter
cell. The different selection criteria probe the performance in different regions and
do not necessarily lead to the same best model. Table 3.1 shows the RMSE and the
standard deviation for the best models selected by the different selection criteria.
Among 35 trained RNNs with 8 units and a sequence length of 5, the RMSE and
standard deviation criteria on all events lead to the same best model while different
best models are selected if a cut on E T

tr ue > 240 MeV is applied. The three selected
models have only minor differences (<1 MeV) in performance. Figure 3.3 shows the
performance of the three models for the two energy ranges E T

tr ue ≤ 240 MeV and
E T

tr ue > 240 MeV.

Selection criteria RMSE/Stdev Stdev 240 MSE 240
σ 49 MeV 51 MeV 50 MeV

σ,E tr ue
T > 240MeV 139 MeV 135 MeV 139 MeV

RMSE 49 MeV 52 MeV 50 MeV
RMSE E tr ue

T > 240MeV 150 MeV 149 MeV 148 MeV

Table 3.1: Model performance for different model selection criteria. Each column
represents the selected model and rows represent the corresponding per-
formance of the model with that criteria. The numbers highlighted in bold
represent the model that has the best performance for a given criteria.
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Figure 3.3: Transverse energy resolution for the three RNN models selected with
different model selection criteria in comparison with OFMax for (top)
E tr ue

T > 240 MeV and (bottom) E tr ue
T < 240 MeV.

3.3.1.2 Selection of the optimizer

The choice of the optimizer plays a crucial role in training neural networks. Different
optimizers yield vastly different results. The optimizers evaluated are: SGD, SGD with
momentum of 0.9, RMSprop and Adam. Figure 3.4 shows the validation loss in RMSE
for the models using different optimizers for an RNN with 8 internal units. 20 different
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trainings with different initialization is used for each optimizer. The mean of these 20
trainings is shown in solid line while the bands show the range between the minimum
and maximum values.

Table 3.2 shows the rate of convergence and the performance of the optimizers.
Overall the Adam optimizer performs the best with the highest amount of trainings
resulting in a performance better than OFMax. The dead neuron effect with the
ReLU activation function is the cause of some initializations not converging. However
all models that converged using the Adam optimizer perform better than OFMax.
RMSprop is the second most efficient optimizer with equal percentage of converged
networks as with Adam. However the performance of the trained networks is not
as good as with Adam with only 40% of them being better than OFMax. RMSprop
also shows less stable training with heavy oscillations after several epochs of training.
Networks trained using SGD achieve poor performance, none of the models perform
better than OFMax after 20 epochs. SGD with momentum improves the performance
with 55% of the trainings having overall performance better than OFMax.
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Figure 3.4: The effect of the optimizer for the converged models. Each model was
trained for 20 epochs. Mean RMSE on the validation set is shown in solid
line and the shaded area shows the minimum and maximum RMSE values
for that epoch. The RMSE of OFMax is shown with the dashed line.
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Optimizer SGD SGD with momentum RMSprop Adam
Converged 60% 55% 80% 60%

RMSERNN < RMSEOFMax 0% 45% 55% 60%
σRNN <σOFMax(E t

T r ue > 240 MeV) 0% 50% 55% 60%

Table 3.2: Convergence and performance after training for 20 epochs 8 unit RNN
with different optimizers. 20 independent trainings with different random
initializations are used for each optimizer. The percentage of converged
models, the fraction of models with better RMSE than OFMax, and the
fraction of model with a standard deviation better than OFMax for energy
deposits above 240 MeV are shown.

3.3.2 Energy reconstruction performance
The performance of RNNs in energy reconstruction is affected by several factors. One
such factor is the size of the RNN network in terms of the RNN unit count. The network
size determines the capacity of the network to learn complex patterns in the input
signal and can have a significant impact on its ability to generalize to unseen data.
Another major factor is the sequence length used, which affects both out-of-time
pileup correction as well as the reconstruction of the amplitude. The optimization of
these factors is crucial to achieve the best possible energy reconstruction performance
using RNNs. The evaluated networks are the simple RNN as well as the more complex
LSTM.
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3.3.2.1 Optimizing the neural network size for simple RNN architecture
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Figure 3.5: Transverse energy resolution for different simple RNNs compared to OF-
Max. Each plot has four RNNs with different unit size (u) ranging from 4 to
32 while the sequence length (seq) is kept unchanged.

The two main model hyper-parameters for RNNs are the unit size and the input
sequence length. These two parameters are optimized to ensure a good energy resolu-
tion both for overlapping and isolated pulses. The training of the networks utilizes
two tools in addition to the optimizer: learning rate reducer to lower the learning rate
when the validation loss is stagnating and early stopping to stop the training when
reducing learning rate does not help reduce the validation loss. Figure 3.5 shows the
effect of the network size for four different sequence lengths for simple RNN evaluated
for four network sizes. The OFMax distribution shows two peaks: the peak close to
0 corresponds mainly to isolated pulses where OFMax performs relatively well, the
second peak at lower values correspond to overlapping pulses where OFMax predicts
low or 0 energy.

For a sequence length of 5, which has only one sample before the energy deposit,
none of the networks are able to correct well for out-of-time pileup that correspond
to the second peak at low values. Larger network is able to improve in the core of the
distribution. Increasing the sequence length to 8 with 4 samples in the past shows
small improvement in energy resolution. All networks show improvement when using
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longer sequence length. With a sequence length of 15 the second peak is almost gone
for all networks except the smallest which has 4 units. With this sequence length the
16 and 32 unit RNNs are also able to achieve better performance than OFMax in the
main peak. When increasing the sequence length to 30, which corresponds to the
full length of the LAr electronic pulse, the two larger networks are able to almost fully
mitigate the second peak. However the two smallest networks with 4 and 8 units are
not capable of probe all the information from the 30 samples and thus do not correct
the second peak.

3.3.2.2 Optimizing neural network size for LSTM architecture
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Figure 3.6: Transverse energy resolution for different LSTM compared to OFMax. Each
plot has four LSTMs with different unit size (u) ranging from 4 to 32 while
the sequence length (seq) is kept unchanged.

The LSTM network has more parameters than the simple RNN. Figure 3.6 shows the
effect of network size for four different sequence lengths for LSTM. For sequence
length of 5, similarly to simple RNN, none of the networks achieve better performance
in the main peak than OFMax. However OFMax shows a much larger second peak
so that its overall resolution in terms of standard deviation is not as good as with the
LSTMs. With a sequence length of 8 the LSTM networks have increased performance
with a higher peak in the main part and bringing the secondary peak closer to zero. A
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sequence length of 15 allows the LSTM networks to greatly improves both the main
peak as well as the secondary. The LSTMs with 8, 16 and 32 units are also able to
achieve better performance than OFMax in the main peak. While the smallest LSTM
improves slightly in the main peak, it is able to well mitigate the second peak. A
sequence length of 30 allows the three larger networks to mitigate the second peak as
well as to have better performance in the main peak. However this sequence length is
also too long for the smallest network with 4 units which cannot outperform OFMax.

3.3.2.3 Summary of the network performance as a function of the
sequence length
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Figure 3.7: Standard deviation of E pr ed
T −E tr ue

T as a function of the sequence length
for (left) LSTM and (right) simple RNNs with different internal unit sizes.

To fit the stringent requirements in terms of latency and FPGA occupancy, it is essential
that the network is as small as possible. Figure 3.7 shows the simple RNN and LSTM
performance as a function of the sequence length. As expected the longest sequence
length of 30 has the best performance but it requires 6 times more computations than
the smallest sequence length of 5. All LSTM networks benefit from longer sequence
length, however, only the 3 biggest RNNs have the same benefit. In fact the RNN with
only 4 units is not able to take advantage of the longer sequence length which is due
to its reduced internal neural network size. For both types of networks one can see an
elbow structure at a sequence length of 15 where doubling the sequence length to 30
does not bring significant improvement in the performance.

80



3 Energy Reconstruction in the LAr Calorimeter – 3.3 Energy reconstruction with
Recurrent Neural Networks in the sliding window architecture

3.3.2.4 Summary of the network performance as a function of the unit
count
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Figure 3.8: Standard deviation of E pr ed
T −E tr ue

T as a function of the sequence length
for (left) LSTM and (right) simple RNNs with different sequence lengths.

The number of parameters increases quadratically with the unit count. It is essential
to keep the unit count as low as possible. Figure 3.8 shows the LSTM and simple RNN
performance as a function of RNN unit count for different sequence lengths. Adding
units improves the performance but the effect is small beyond 16 units where one
can see a convergence of all networks above this value. One can also notice that the
simple RNN, due to its smaller size, benefits more from the increase of the unit size.
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3.3.2.5 Energy resolution as a function of the parameter count.
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Figure 3.9: Performance as a function of the parameter count for LSTM and RNN

When selecting the model for the real-time energy reconstruction, minimizing the
parameter count plays a crucial role as the resources are limited. Figure 3.9 shows the
resolution as a function of the number of parameters of different neural networks. The
LSTMs have a higher number of parameters and start with a better performance at a
low number of units. However with the increased number of units the simple RNNs
outperform the LSTM. Overall the simple RNNs perform better for the same number
of parameters compared to the LSTM.

3.3.2.6 Performance as a function of the time gap between two
subsequent pulses

The HL-LHC collision rate of up to 200 simultaneous proton-proton collisions will
present a challenge for energy reconstruction by the large in-time pileup and because
of the pulse response of the detector, which affects the energy reconstruction for
up to 25 subsequent bunch crossings leading to out-of-time pileup. In addition to
high pileup, the Phase-II triggering scheme has no dead-time which requires that the
energy reconstruction algorithm is able to reconstruct accurately deposits that happen
within a few bunch crossings of each other as well as the ability to assign the energy for
the correct bunch crossing. This increases the importance of properly reconstructing
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the energy of overlapping pulses. Figure 3.10 shows the energy resolution as a function
of the time gap between two high energy deposits (E tr ue

T > 240 MeV) for OFMax. This
plot shows that the OFMax performance is greatly reduced in case of overlapping
pulses with a time gap smaller than 20 bunch crossings.

Figure 3.10: OFMax energy resolution as a function of the gap between two energy
deposits for higher energies than 240 MeV.

RNNs are able to take advantage of samples before the deposit to correct for out-
of-time pileup. When using a sequence length of five, the RNN is able to partially
correct the effect of overlapping pulses as shown in figure 3.11 for simple RNN and in
figure 3.12 for LSTM. The correction is possible since the input sequence contains one
sample from before the peak which enables the RNN to capture some of the out-of-
time pileup in the signal. However, the correction is limited since only one sample
is not enough to capture all the relevant information for the RNN to make accurate
predictions. This insufficient amount of past data is the reason for the undershoot
in the gap region of up to 20 and the overshoot around the gap region of 20. This
overshoot is due to edge effects where only the sample before the deposit is affected
by previous energy deposits and not the actual pulse that the network is trying to
probe. Nevertheless, even a small correction can lead to significant improvements in
the overall energy resolution as shown in previous sections where the overall energy
resolution was better than for OFMax. Increasing the size of the network by increasing
the number of units improves mainly the resolution for isolated pulses with a gap
above 20 bunch crossings.
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Figure 3.11: Resolution as a function of the gap between two energy deposits for simple
RNNs with a sequence length of 5 and different unit sizes.
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Figure 3.12: Resolution as a function of the gap between two energy deposits for
LSTMs with a sequence length of 5 and different unit sizes.

When increasing the sequence length to eight, the RNN is able to correct for the
overlapping events slightly more effectively, especially in cases where the time gap
between two overlapping pulses is around 8 BCs as shown in figure 3.13 for simple
RNN and in 3.14 for LSTM. This is because a longer sequence length allows the RNN
to have more information about the past events, which is crucial for correcting for out-
of-time pileup. The longer sequence length also allows the RNN to better distinguish
between overlapping peaks and better attribute the energy to the appropriate peak

appears which is seen in the figures where there are fewer events at the E pr ed
T −E tr ue

T =
−240 MeV region in the plots in comparison to those with shorter sequence length.
However, the correction is still fairly minimal, and in most cases the RNNs are not able
to fully correct for overlapping events.
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Figure 3.13: Resolution as a function of the gap between two energy deposits for simple
RNNs with a sequence length of 8 and different unit sizes.
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Figure 3.14: Resolution as a function of the gap between two energy deposits for
LSTMs with a sequence length of 8 and different unit sizes.

Using a sequence length of 15, shown in figure 3.15 for simple RNN and in 3.16 for
LSTM, the RNNs are able to properly reconstruct the energy for overlapping pulses as
the sequence length is enough to infer the conditions before the deposit. However
this is mainly true for the networks that are large enough to be able to carry the
information in the internal state through the full sequence. This results in a significant
improvement in the overall energy resolution for networks that have 8, 16 or 32 units.
While the energy resolution is a lot better than with shorter sequence lengths, there
are still cases where the RNN is not able to fully correct for the past events especially
in the region around a time gap of 20.
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Figure 3.15: Resolution as a function of the gap between two energy deposits for simple
RNNs with a sequence length of 15 and different unit sizes.
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Figure 3.16: Resolution as a function of the gap between two energy deposits for
LSTMs with a sequence length of 15 and different unit sizes.

Finally, using a sequence length of 30, shown in figure 3.17 for simple RNN and in
figure 3.18 for LSTM, the RNNs are able to fully correct for the out-of-time pileup, in
all gap regions given that the network is large enough. An excellent performance is
noticed for RNNs with 16 and 32 units and LSTMs with 8, 16 and 32 units. The RNN
with 4 units is performing poorly with this long sequence. The RNN with 8 units is able
to correct for out-of-time pileup but the correction is not as good as the one observed
with a sequence length of 15 due to the network not being complex enough to probe
long sequences.
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Figure 3.17: Resolution as a function of the gap between two energy deposits for simple
RNNs with a sequence length of 30 and different unit sizes.
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Figure 3.18: Resolution as a function of the gap between two energy deposits for
LSTMs with a sequence length of 30 and different unit sizes.

The performance of the energy reconstruction methods clearly show a difference
in the low gap and high gap regions. The drop of performance appears mainly when
the time gap between two pulses is lower than 20 bunch crossings. It is thus useful
to evaluate the performance independently for pulses at a time gap lower and higher
than 20 bunch crossings.

The energy resolution for the low gap region is shown in figure 3.19 for simple RNNs
and figure 3.20 for LSTMs. All networks perform slightly better than OFMax for a
sequence length of 5. Adding three more samples in the past, for a total sequence
length of 8, improves the performance slightly especially for large networks. The
neural networks clearly perform better starting with a sequence length of 15 where
the larger LSTM and simple RNNs are able to mitigate the effect of the out-of-time
pileup and resolve the double peak structure. When increasing the sequence length to
30, only the simple RNNs with 16 and 32 units and LSTMs with 8 or more units are
able to gain performance. The long sequence causes mainly performance decrease
for the smaller networks.
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Figure 3.21 and 3.22 show the energy resolution in the high gap region for RNNs and
LSTMs, respectively. The sequence length has a slight effect on the performance of the
networks in this region. The network size plays a more important role in this region as
expected. With large network size and long sequence length the neural networks are
able to achieve similar performance as OFMax in the high gap region. One should note
that the optimal filtering technique is optimal for isolated pulses and the networks
are not expected to outperform OFMax in this region. The purpose of the network
is to correct the degraded performance in the low gap region while keeping similar
performance to OFMax in the high gap region.
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Figure 3.19: Transverse energy resolution for different simple RNNs in the region with
a time gap of less than 20 bunch crossings.
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Figure 3.20: Transverse energy resolution for different LSTMs in the region with a time
gap of less than 20 bunch crossings.
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Figure 3.21: Transverse energy resolution for different simple RNNs in the region with
a time gap of more than 20 bunch crossings.
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Figure 3.22: Transverse energy resolution for different LSTMs in the region with a time
gap of more than 20 bunch crossings.

Figure 3.23 summarizes the network performance in the low and high gap region as
a function of the sequence length and the size of the network. In the high gap region
the resolution improves mainly with the increased size of the networks as expected.
The neural networks show slightly better performance in this region compared to
OFMax in terms of standard deviation. This is mainly due to the small second peak
seen for OFMax in this region. This second peak is due to the fact that the applied
cuts at gap > 20 and E tr ue

T > 240 MeV do not eliminate completely overlapping pulses
which affects the overall performance of OFMax. In the low gap region the resolution
of the neural network clearly improves with the length of the input sequence. This is
however not the case when the neural network size is not large enough to carry all the
information in the long sequence through the internal cell state of the network.
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Figure 3.23: Transverse energy resolution for high gap and low region for simple RNN
and LSTM.

3.4 Energy reconstruction with single-cell LSTM
In contrast to the sliding window approach, the many-to-many RNN architecture,
explained in chapter 2.3, allows for energy reconstruction at each update of the RNN
state. The RNN processes one input sample and updates its hidden state at each
time step, without resetting the state between bunch crossings. This means that
the network carries the state with full information about the past, which allows it to
correct better for out-of-time pileup. Furthermore, the computation capacity needed
per predicted bunch crossing is reduced in comparison to processing the full sliding
window.

Figure 3.24 illustrates the processing flow of the many-to-many RNN architecture
for continuous energy reconstruction. The energy is reconstructed with a delay of
5 bunch crossings which means that 5 samples around the pulse peak are used for
the energy computation. A single neuron is used for the output layer to reconstruct
the deposited energy. This approach allows for continuous energy reconstruction
and correction for out-of-time pileup over long time ranges, making it a promising
alternative to the sliding window approach. This approach is only possible with a
gated RNN structure such as the LSTM.
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Figure 3.24: Representation of the many-to-many architecture applied for continuous
energy reconstruction, where the input signal is processed by a RNN cell
to reconstruct the energy [1].

3.4.0.1 Training single-cell LSTM

The single-cell LSTM is a many-to-many network where the state for each timestep
is reconstructed as energy. The training dataset consists of ≈ 1M events. However
training directly on such a long sequence does not converge. To train a single-cell it is
mandatory to reset the states in the initial part of the training after a limited sequence
of data because initially the LSTM is not able to keep the state stable over longer
sequences. After the network has learned to reconstruct short sequences, the training
can be extended to long sequences without state resets. The full training procedure is
explained in pseudo code block 1.

Algorithm 2 The training procedure for single-cell LSTM by training it with incremen-
tally longer sequences.

1: for sequence in [50,100,200,250,300,400,500,700,1000,1500,2000] do
2: for m = 1,2, . . . ,20 do
3: Select random starting point n in the training set
4: Fit the model with sequence ×100 continuous bunch crossings starting at

n with weight updates every sequences bunch crossings
5: Reset the LSTM states to a vector of zeros
6: end for
7: end for
8: for sequence in [200,500] do
9: Fit the model for 200 epochs with weight updates every sequence bunch cross-

ings
10: end for
11: Fit the model for 5000 epochs
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3.4.0.2 Performance

Figure 3.25 shows the performance of single-cell LSTM in comparison to sliding
window LSTM with a sequence length of 5. Both of the networks have 10 units that
amounts to 491 parameters for the full network. The single-cell LSTM is able to better
correct for overlapping events than the sliding window with sequence length of 5.
Figure 3.26 shows the resolution of the single-cell LSTM in comparison to sliding
window LSTM and simple RNN. The overall performance of the single-cell LSTM is
better than with the sliding window methods. Figure 3.27 shows the energy resolution
in the high gap and low gap regions.The single-cell LSTM has better performance in
the low gap region as expected. However this comes at the price of a degradation of
the performance in the high gap region. All networks perform better than OFMax in
the low gap regions. In the high gap region only the sliding window RNNs outperform
OFMax.

Figure 3.25: Transverse energy resolution as a function of the time gap for (left) single
cell LSTM and (right) sliding window LSTM [1].
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Figure 3.26: Transverse energy resolution for a single-cell LSTM, sliding window LSTM
with a sequence length of 5, and a simple RNN with a sequence length
of 5 compared to OFMax. The standard deviation and the 98% range are
shown [1].
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Figure 3.27: Transverse energy resolution for a single-cell LSTM, sliding window LSTM
with a sequence length of 5, and a simple RNN with a sequence length
of 5 compared to OFMax. The standard deviation and the 98% range are
shown for (right) high gap and (left) low gap [1].

3.4.0.3 Feasibility

The single-cell LSTM faces several challenges that limit its feasibility for the real-
time reconstruction. One key challenge is that the network requires a stabilization
period when starting from the zero state, which limits its performance before the state
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stabilizes. Another related issue are unexpected detector effects, such as noise bursts.
These detector effects are difficult to accurately simulate when generating the training
data. The effects from noise bursts are limited for the sliding window algorithms
since the state is reset at each bunch crossing. However the single-cell LSTM will
carry the information about the noise bursts over the full run period. This can result
in unexpected behavior over long period of time while the system state stabilizes.
Another challenge for single-cell LSTMs is the need to simulate long sequences for the
training. This is not possible in the current ATLAS framework that simulates the full
detector. It is only possible for single calorimeter cells that do not take into account
the full detector geometry. Implementing the simulation of long sequences for the
full detector is currently out of reach since it will require a huge amount of CPU and
memory. As a result, the performance of the detector simulation may not match the
performance observed during data taking. Furthermore problems in the firmware
implementation arise since the single-cell architecture, the computation at BCID
n needs to wait for the results of the computation at BCID n − 1. In this case the
computation at each BCID should not take more than 25 ns. This is hard to achieve as
it was shown in [1].

For these reasons, while the single-cell LSTM is able to perform well and has ex-
cellent correction for out-of-time pileup, it is not a viable candidate for the energy
reconstruction in the LASP board.

3.5 Timing reconstruction
In addition to energy reconstruction, the OF algorithm also computes the time shift,
also referred to as the phase shift, of the pulse. The OF algorithm actually computes
the product of the pulse amplitude times that phase shift as seen in equation 1.5. This
value can be used to determine the BCID of the deposited energy and also to detect
the presence of long-lived particles [22].

The computation of the phase shift can be included in the RNNs with an additional
output node for the network. In this case the RNN state is connected to two neurons:
one that outputs the energy and one the phase shift. This allows the network to
simultaneously predict both the energy reconstruction and the phase shift of the pulse.
The difference to the OF computation is that the network directly outputs the phase
shift value instead of the product of the energy and the phase shift.

3.5.1 Dataset with phase shift
The dataset used for this study is similar to the one used for the energy computation
described in section 3.2 with the exception of having phase shift ranging from -8ns to
8ns. However AERUS is able to apply the phase shift only on signal energy deposits and
not to the pileup deposits. Thus only BCIDs with signal energy deposits are selected
for the training. At these BCIDs, the energy deposits coming from in-time pileup do
not have a phase shift but they are added to the signal energy deposits. The phase
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shift of the sum is assumed to be the one from the signal energy deposit since this
energy is much larger than pileup energies.

Figure 3.28 shows how the sampled pulse shape changes with the phase shift. The
main changes are in the amplitude of the samples before and after with maximum
amplitude.
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Figure 3.28: Example sampled pulse shape for different phase shift values.

3.5.2 Timing reconstruction performance
The performance is evaluated for a simple RNN with 8 units and a LSTM with 10
units both with a sequence length of 5. Figure 3.29 shows the timing resolution as
a function of the true energy for networks predicting both the phase shift and the
energy in comparison to optimal filtering. Both networks as well as OF show similar
behavior where the phase shift is well reconstructed at high energies while the timing
resolution degrades at low energies. This is expected as the effect of noise and pileup
causes proportionally larger distortion to the pulses. Both LSTM and simple RNN
have better performance for lower energies than OF. Figure 3.30 shows the timing
resolution for networks predicting both timing and energy. Both neural networks have
better resolution compared to the OF algorithm.
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Figure 3.29: Phase shift resolution as a function of the deposited energy for the OF
algorithm, the LSTM and the RNN.
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Figure 3.30: Phase shift resolution resolution Tpr ed −Ttr ue for LSTM, simple RNN and
OF.
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Figure 3.31: Resolution of the transverse energy for networks with and without timing
predictions in comparison to OFMax.

In the network design the same RNN state is used to reconstruct both the energy
and the phase shift with only one additional neuron to compute the time shift. This
allows for the probing of the phase shift with minimal additional computational power.
However this introduces a correlation between the resolution on the energy and on the
time. Figure 3.31 shows the energy resolution for networks with and without timing
predictions. One can notice a notable drop in the energy resolution when the network
is required to compute both the energy and the time. A mitigation for this drop is
presented in section 3.5.3.

3.5.3 Loss function to prioritize timing or energy
The MSE loss function is used to train the models, which computes the element-wise
squared error and averages over these values. However, this loss function treats the
energy and timing predictions equally and does not take into account the relative im-
portance of each quantity. The value of this loss is dependent on the magnitude of the
values which in turn is determined by the normalization of each of them. To address
this, it is possible to use a custom loss function based on the MSE that computes the
loss for the energy and the timing separately and balances the contribution of each
using an additional parameter that can be adjusted accordingly to give the desirable
performance. The loss function is shown in equation 3.3 where w is the weight factor
given to the timing predictions.

L = MSE(e)+w ·MSE(t ) (3.3)

103



3 Energy Reconstruction in the LAr Calorimeter – 3.5 Timing reconstruction

0.2 0.4 0.6 0.8 1.0
Weight factor

0.11

0.12

0.13

0.14

0.15

0.16

0.17

σ 
( E

Tpr
ed

Et Tru
e )[

G
eV

] 0.24 GeV < Etrue
T < 5 GeV

0.2 0.4 0.6 0.8 1.0
Weight factor

1.84

1.85

1.86

1.87

1.88

σ 
(T

pr
ed

   
   

  T
tr

ue
 ) 

[n
s] 0.24 GeV < Etrue

T < 5 GeV

Figure 3.32: Resolution of the transverse energy and of the phase shift as a function
of the weight factor that balances the corresponding contributions in the
loss function for a 8 unit simple RNN.

Figure 3.32 shows the performance of 8 unit simple RNN trained with different
weight factors w demonstrating that when the weight is chosen to prioritize energy,
the energy resolution is improved going from a standard deviation of 120 MeV to 180
MeV, while the timing prediction does not change significantly going from 1.86 ns to
1.85 ns. This suggests that the model is able to learn to prioritize energy reconstruction
without sacrificing timing resolution. Conversely, when the importance of timing is
high with larger weight factor w , the timing resolution is slightly improved, but at the
expense of energy reconstruction. Therefore, by using the custom loss function with
a weight value that puts a higher priority on the energy resolution, it is possible to
achieve a good compromise between energy and timing resolution.

Figure 3.33 shows the distribution of energy and timing resolution for different
weight values. The changes in the energy resolution are significant and only the RNN
with the lowest weight value of w = 0.1 surpasses the performance of OFMax. However
the timing reconstruction performance for all weight values are better than OF and
have only minor changes between each other.
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Figure 3.33: Transverse energy and timing resolution for an RNN trained with different
weight factors in the loss function compared to the resolution given by
OF algorithms.

3.6 Resilience against changing instantaneous
luminosity

The nominal luminosity range for the HL-LHC is expected to be 5−7×1034cm−2s−1

which translates to 140 to 200 proton-proton interactions per bunch crossing. The
pileup rate changes between LHC runs and also during the run on a BCID-by-BCID
basis. Because of this the RNNs need to be resilient against possible changes in
the luminosity. The optimal filter coefficients are acquired for each expected average
pileup rate independently and are known to not perform optimally over varying pileup
with higher average pileup rates. This section evaluates the ability of simple RNNs to
cope against varying pileup rates. The selected network configuration is the 8 unit
simple RNN with a sequence length of 5.

3.6.1 Performance of the RNNs on samples with varying
average pileup rate

Three datasets with an average pileup rate of 100, 140 and 200 are generated using
AREUS. Since the RNN performance depends on the initialization of the weights at
the training level, 100 RNNs are trained for each pileup rate with a different random
initialization. This allows for the separation of the effect of the changing pileup from
the initialization effects. An additional 100 networks are trained with an equal mixture
of the sample with pileup 100, 140, and 200. In total 276 models converged and their
performance is evaluated on the three datasets with different pileup.

Figure 3.34 shows σ(E pr ed
T −E tr ue

T ) for each or the RNNs trained and applied to the
different samples with different 〈µ〉, each model being an entry in the histogram. The
resulting distributions have large overlap between the RNNs trained with different
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pileup conditions which suggests that, overall, the impact of the initialization of the
model has a larger effect on the performance than the pileup conditions used in the
training dataset. This indicates that the way in which the model is initialized can have
a significant impact on its ability to learn and generalize to unseen luminosities. While
the overlap of the histograms is significant, there is a trend where the models trained
with higher pileup are more likely to converge to better energy resolution.
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Figure 3.34: Distribution of σ(E tr ue
T −E pr ed

T ) obtained by changing the initialization
of the RNN for different values of 〈µ〉 in the training sample. The RNNs
are applied to (upper left) a dataset with 〈µ〉 = 100, (upper right) a dataset
with 〈µ〉 = 140 and (bottom) a dataset with 〈µ〉 = 200. Only events with
E tr ue

T ≥ 240 MeV are considered when evaluating the performance of the
networks [61].

3.6.2 RNN resilience against pile-up
To evaluate the performance of the RNNs as a function of the 〈µ〉 values, the model
with the best resolution is chosen from each set of models trained on a given pileup
sample. By comparing the performance of the best models trained with different
pileup rates, we can gain insights into how well they can generalize to real data taking
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conditions, where pileup rates can vary widely. The performance of the RNNs are
compared to OFMax with coefficients extracted with a pileup ranging from 〈µ〉 = 100
to 〈µ〉 = 200 with steps of 20.

Figure 3.35 shows the performance of the networks trained with different 〈µ〉 in
comparison to OF with different coefficients as a function of the 〈µ〉 value. The
resolution of all models degrade at high pileup as expected. However all RNNs have
an energy resolution of about 50 MeV better than OFMax. It is also notable that for the
RNNs the lowest standard deviation is achieved by the model trained with a pileup
rate of 200 and the lowest performing network was trained on pileup of 140. This could
be due to the initialization during the training phase that can affect the performance
of the neural networks.
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Figure 3.35: σ(E tr ue
T −E pr ed
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Max trained with different 〈µ〉 values.
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Figure 3.36 shows the neural networks and the OFMax resolution as a function of
〈µ〉 in the high and low time gap regions separately. In the region with a high gap
between two pulses the performance decreases when the pileup increases as expected
since both RNNs and OFMax are further affected by the noise from pileup. One
should note that the time gap is computed for deposits with E tr ue

T > 240 MeV so even
if pulses at high gaps are relatively well isolated they are still affected by noise from
low energy deposits. The RNN trained on 〈µ〉 = 200 has smaller drop in performance
than the two other networks, however the best performing network is trained with
〈µ〉 = 100. In the low time gap region the networks have almost invariant performance
where increased pileup noise does not decrease the performance while the standard
deviation of OFMax slightly decreases when the pileup increases. This effect is not fully
understood and points to the complex balance between reconstructing the energy in
isolated pulses and correcting for overlapping pulses that these algorithms exhibit.

3.7 Conclusion
In this chapter the viability of two different RNN types was evaluated for the re-
construction of the energy deposited in the LAr calorimeter. In the sliding window
configuration both the simple RNN and LSTM are outperforming OFMax given a
sufficiently large network. The improvements are in large part due to the ability of the
RNNs to correct for out-of-time pileup. Networks with 16 units or more are able also
to match the OFMax performance for isolated pulses.

The single-cell architecture with an LSTM cell is found to perform best for over-
lapping pulses. However this architecture is not optimal for isolated pulses. This
architecture requires the simulation of very long sequences which is not feasible for
all cells in the calorimeter. Moreover this architecture does not fit the latency re-
quirements to be implemented in the LASP FPGAs. These two limitations make this
architecture not viable in the LAr energy reconstruction.

The RNNs are expanded to predict possible timing phase shift of the pulse by adding
a second output to the neural network. The timing resolution of both simple RNN
and LSTM is better than the OF algorithm. A custom loss function is built allowing
to prioritize the performance of the RNN in terms of energy resolution or timing
resolution during the training. Prioritizing energy resolution improves the energy
resolution while having negligible effect on the time resolution.

The instantaneous luminosity is expected to change during HL-LHC runs. Therefore
the RNNs should be resilient against changes in the average pileup since it is not
possible to change the neural network weights during the run. RNNs trained and
applied to different 〈µ〉 values have shown resilience against pileup changes. RNNs
trained on samples with pileup ranging from 〈µ〉 = 100 to 〈µ〉 = 200 can be applied to
data with pileup in the same range without significant loss of performance.
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4.1 Introduction
The real-time processing of LAr calorimeter data is done by custom electronics boards
based on FPGA chips. FPGAs are reprogrammable which makes them highly versatile.
They consist of a matrix of programmable logic blocks (PLBs) that can be configured
to perform different logic functions (AND, OR and XOR). In addition to the simple
logic functions, FPGAs contain blocks to enable more complex operations, these
include digital signal processing blocks (DSPs) which implement multiplication and
division as well as the random access memory (RAM). The PLBs can be connected
through programmable interconnects to create the desired custom circuit. They allow
the creation of systems that repeatedly perform the same computations with high
throughput and low latency which makes them the best candidates for the online
energy reconstruction in the LAr calorimeter.

Deploying machine learning models on FPGAs has become increasingly popular
due to their flexibility, parallel processing capabilities and energy efficiency. FPGAs
give much of the benefits of using application specific integrated circuits (ASICs) but
give a high level of configurability. However the deployment of these models pose
challenges due to the nature of FPGAs. While modern FPGAs implement floating point
operations, which is what machine learning models are usually trained with, these
operations consume a large amount of resources. Instead the preferred way to perform
computations in FPGAs is using fixed-point arithmetic, which is a method to represent
fractional numbers. Fixed point arithmetic allows for faster computation with lower
resource utilization, however they provide a relatively smaller dynamic range than
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floating points and thus have lower precision. The fixed point representation of
numbers is defined by its total number of bits W and the number of integer bits I . The
ranges of unsigned fixed-point is shown in equation 4.1 and of signed fixed-point in
equation 4.2 and the quanta for both is 2I−W [62]. This reduced numerical precision
requires special care for the implementation of the calculations or else the accuracy of
the neural network is significantly reduced due to the quantization.

x ∈ [0, (1−2−W )2I ] (4.1)

x ∈ [−0.5 ·2I , (0.5−2−W )2I ] (4.2)

The firmware implementation of the RNNs developed in chapter 3 has been already
performed and the results are published in [1] and [2]. These implementations used
neural networks trained with floating points and implemented using fixed points in
firmware. The conversion from floating point to fixed point lead to loss of accuracy
however the number of bits in the fixed-point representation was increased to reduce
this effect. In this chapter quantization aware training will be investigated to perform
the training of the neural networks with fixed-point arithmetic. This allows to further
reduce the number of needed bits, and thus the resources in the FPGAs, without loss
of accuracy. Other methods to reduce the resources such as pruning the networks and
a NN-based initialization of the RNNs are also investigated.

4.1.1 DSP arrangement in Agilex FPGAs
The chosen FPGA type for the LASP board is the Intel Agilex FPGA. The previous im-
plementation [2] of the RNNs with firmware targeted the INTEL Stratix 10 FPGA since
the Agilex was not available. Each Stratix 10 DSP allows to perform two fixed-point
multiplications with 19x18 bits with a single DSP block. Thus the implementation of
the RNN can use up to 18 bits to represent the weights and the data. However each
Agilex DSP allows to perform four 9x9 bits multiplications with a single DSP block [63].
Figure 4.1 shows the Agilex DSP arrangement in the 9x9 mode. To take full advantage
of this new DSP arrangement and to reduce the number of needed DSPs by a factor of
two, the neural networks running in the LASP should be able to run accurately with 9
bit fixed-points operations.
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Figure 4.1: Agilex DSP operated in a mode where four 9x9 bits fixed-point operations
are allowed [63].

4.2 Quantization Aware Training
Quantization Aware Training (QAT) [64] is a method of training neural networks which
mitigates during training time the loss in performance caused by using lower bitwidth
numerical representations, commonly known as quantization error. This method
reduces the quantization error in comparison to post-training quantization (PTQ)
where the appropriate bitwidth is determined after training the neural network in
floating point precision. When doing PTQ, the FPGA implementation needs sufficient
bitwidth to replicate the operations without significant loss in performance which
usually requires high bitwidths of around 16 bits. Quantization after training also poses
the problem for the energy reconstruction in LAr due to the fact that the reconstruction
in full detector requires several sets of weights that are used for different calorimeter
cells. This has the risk of requiring possible changes in the FPGA implementation
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when new weights are needed due to changes in the calibrations in case the previously
determined bitwidth is not sufficient. This problem can be avoided by QAT in which
the bitwidth is determined before the training and the network learns to perform the
operations with the pre-determined bitwidth.

Quantization aware training can be done by using a quantization function shown
in equation 4.3 where W is the total bitwidth, I is the bits used for the integer part,
x is the input [3]. The problem of training neural networks with quantized numeric
representations is that by using a quantization function the gradients are equal to zero
due to the function being a step-like with a step size of the quanta. Zero gradients
prevent the usage of backpropagation. The straight-through estimator (STE) [65] can
be used during the backwards pass to enable the usage of backpropagation for the
training. The STE is a linear estimation of the quantized function which is used for
the gradients. In the forward pass a quantization function is used to turn the weights
and activations to fixed-point values and in the backward pass the gradients are
estimated using the STE. Figure 4.2 shows the quantizations of weights and activation
and their straight-through estimators. This way of training the networks allows for the
mitigation of the quantization error during training time.

y = 2I−W +1 · cl i p(r ound(x ·2W −I−1),−2W −1‚2W −1 −1) (4.3)
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Figure 4.2: Quantized representations for numbers and the straight through estimator
(left) for the weight quantization and (right) the ReLU activation function.

4.2.1 Optimizing quantized RNNs for energy reconstruction
The simple RNN with 8 units and a sequence length of 5 is used to study quantized
training. In previous work [2], PTQ was used to find the appropriate bitwidths for the
weights of this network. A minimum of 14 total bits with three bits reserved for the
integer part are found to be necessary. Lower bitwidths result in unacceptable loss in
performance. Thus PTQ does not allow to take advantage of the four multiplications
mode of the Agilex DSP.
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Figure 4.3 shows the RMSE as function of the total bit width for different quan-
tization methods for simple RNN in comparison to OFMax and the floating-point
precision simple RNN. The RMSE for the quantized networks is evaluated using a
simulation of a firmware implementation performed with the High Level Synthesis
(HLS) language as explained in [1]. One can see the loss of performance for PTQ for
a bit width lower than 14. A QAT is performed for the simple RNN network using
QKeras [3]. The QAT reaches the full floating-point precision implemented in software
starting at a bit width of 8. This makes QAT a suitable method to use the Agilex DSP in
the four 9x9 multiplication mode and thus greatly reduces the resources needed in
the FPGA. The implementation is able to use the 9x9 mode for the recurrent kernel
multiplications which forms the majority of the multiplications in a RNN, however the
input data is quantized to 16 bit precision which requires the kernel multiplication to
use a higher bitwidth mode of the DSPs.
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Figure 4.3: RMSE as function of the number of bits for a simple RNN with 8 units and a
sequence length of 5 quantized with the PTQ and QAT methods, compared
to the results from OFMax and the simple RNN with full floating point
precision in software. The integer part is 3 bits for PTQ and 1 bit for QAT.

4.3 Pruned Neural Networks

4.3.1 Pruning
Pruning refers to the process of removing insignificant parameters from a neural
network [66]. Pruning has been a popular model compression method for deploy-
ment on hardware since it can reduce the resource consumption due to the ability of
avoiding performing multiplications for the removed parameters [67]. Weight pruning
refers to a pruning method that targets only the weights of the neural network which
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results in sparse weight matrices. One way to achieve this is to implement a scheduled
removal of low magnitude weights since weights that are very small only add small
contributions to the model output and they can be removed in the pruning process.
During the scheduled removal a small fraction of the weights are removed first, these
weights are then kept at zero for the rest of the training. The training of the model
then continues and in the next iteration more low magnitude weights are removed.
Ultimately a predetermined final sparsity is reached and the pruning is stopped while
the model can still be trained further to minimize potential performance drop caused
by having fewer weights contributing to the output.

The effect of weight pruning can be seen in figure 4.4 which shows the distribution
of weights for the 32 unit simple RNN with a sequence length of 5 obtained in section
3.3. The RNN is pruned to different sparsities using a polynomial pruning schedule.
The original model has most of its weight in the lower bins, but not many in the zero
bin. When pruned to 50% the model starts to have either the pruned weights at the
zero bin or weights |w | > 0.1, this is also true for the 80% sparsity where most of the
non-zero weights are |w | > 0.3. The model pruned to 95% sparsity follows similar
trend with the absolute weight values being either zero or |w | > 0.5.
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Figure 4.4: Distribution of weights for 32 unit RNN with different percentages of
weights pruned.

Figure 4.5 shows the performance of the RNNs with 8, 16 and 32 units with a se-
quence length of 5, acquired in section 3.3, pruned to different sparsities compared
to OFMax. All RNNs have significant performance drop when pruned. For the 8 unit
RNN the performance drop is the most significant, at 50% sparsity the performance
drops, but remains better than OFMax. However at 80% sparsity the performance
is not as well as for OFMax and quickly degrades even more at 95% sparsity. The
performance drop is lower for the RNNs with 16 and 32 units as expected. However, at
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the same number of non-zero weights, un-pruned small RNNs perform better than
pruned large RNNs as can be seen in figure 4.5.

One can conclude that pruning does not have any advantage for the energy com-
putation in the LAr calorimeter. It does not allow to improve the performance at a
fixed number of required multiplications. Furthermore, if pruning is applied then
multiplexing in the firmware, which allows the use of the same neural network in-
stance in the hardware for several calorimeter channels [2], would not be possible
anymore since the structure of the networks will depend on the pruning and thus an
independent RNN instance is required per channel.
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Figure 4.5: (left) Transverse energy resolution as function of the pruning sparsity for
different simple RNNs with a sequence length of 5 compared to OFMax.
(right) Transverse energy resolution as function of amount of non-zero
weights for different simple RNNs with a sequence length of 5 compared to
OFMax.

4.4 Resource efficient out-of-time pile-up
correction

Section 3.3 shows that the effect of out-of-time pileup can be mitigated by having
longer sequences with past information. However this comes at high computational
cost, as each timestep increases the computational requirements. This section im-
proves on the implementation by incorporating past information with minimal re-
source cost. Adding 25 timesteps requires adding 25 RNN cells for each energy com-
putation while only contributing to small correction for out-of-time pileup. Figure 4.6
shows the architecture of the network that uses a fully connected layer with 16 units
to process the first 25 samples of the sequence. This results in a vector of length 16
which is then used as the initial hidden state of a simple RNN layer with 16 units. This
RNN layer then processes a sequence of length 5 which has one sample before the
energy deposit and four around the peak. The model is then trained in full precision
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and QAT with all weights and biases quantized to 9 bits to evaluate if the Agilex DSP
scheme can be utilized.

Dense RNN

ET
pred

Figure 4.6: Correcting for out-of-time pileup by using a dense layer which sets the
initial hidden state of the RNN.

Figure 4.7 shows the energy resolution as a function of the time gap to previous
high energy deposit for this new architecture. The model is able to mitigate the drop
of performance for overlapping events while keeping good performance for isolated
pulses. The quantized model is performing as good as the full precision model. Figure
4.8 shows the energy resolution in the high and low gap region for the new architecture
compared to simple RNNs and OFMax. In the low gap region the new architecture
performs as good as the RNN with a sequence length of 30. In the high gap region
the performances are similar for all models. Table 4.1 shows the required number of
multiplications for each network. The architecture with a dense layer for out-of-time
pileup correction significantly reduces the required amount of computations with
respect to a simple RNN with sequence length of 30 which has the same amount of
samples for out-of-time pileup correction.
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Figure 4.7: Transverse energy resolution as function of the time gap to previous high
energy deposit for a simple RNN with 16 units and a sequence length of 5
that is initialized by a dense layer that probes the past information from
25 additional samples in the past. (left) The RNN trained with full floating
point precision and (right) the network trained with QAT with a bit width
of 9.
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Figure 4.8: Transverse energy resolution for a simple RNN with 16 units and a se-
quence length of 5 that is initialized by a dense layer that probes the past
information from 25 additional samples in the past (RNN corr.) and the
same network quantized with a bit width of 9 (QRNN corr.) in comparison
to a 16 unit simple RNN of sequence lengths 5 (RNN seq 5) and 30 (RNN
seq 30) as well as OFMax for for (left) low gap and (right) high gap.
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Model RNN 16 units, seq 5 RNN 16 units, seq 30 RNN 16 units corr.
Number of multiplications 1376 8176 1776

Table 4.1: Number of multiplication needed for a simple RNN with 16 units with a
sequence length of 5 or 30 and for the RNN with a sequence length of 5
that is initialized by a dense layer that probes the past information from 25
additional samples in the past (referred to as RNN 16 units corr.).

4.5 Conclusion
Deploying the RNNs on the FPGAs requires special considerations and optimizations
for accurate real-time predictions. In order to reduce resources in the FPGAs, fixed-
point arithmetic with the smallest possible bit width is required. Training the RNNs
with floating point precision and quantizing the results after the training for FPGA
implementation led to drop of accuracy due to quantization. This quantization post
training also requires a relatively large number of bits to keep a reasonable accuracy.
Training the network with quantized weight allows to mitigate this problem. It allows
to recover the same accuracy with almost half the number of bits and thus greatly
reduces the resources required in the FPGA.

Pruning neural networks allows to create sparse weight matrices that have mostly ze-
ros. Multiplication with zero-weights can be omitted in the firmware implementation
and thus reduce resource usage. However it has been seen that at an equal number of
required multiplications smaller unpruned networks perform better than large pruned
networks. Therefore pruning is deemed not suitable for the energy reconstruction in
the LAr calorimeter.

The main improvement of neural networks over the optimal filtering algorithms
resides in a better energy resolution in case of overlapping pulses caused by out-
of-time pileup. However this requires long sequences that increase the resource
consumption of RNNs. An alternative architecture using a dense layer to initialize
the hidden state of a simple RNN is used to reduce the required resources while
taking advantage of samples in the past to correct for out-of-time pileup. This new
architecture has similar performance to RNNs with long sequences while reducing
the needed resources by a factor of 5.
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5.1 Introduction
The training of the RNNs developed in chapter 3 requires simulated data that takes
into account the detector response for one of the calorimeter cells. The detector
response determines the pulse shape that is seen by the readout electronics and that
is used to compute the energy deposited in the calorimeter. However the pulse shape
varies depending on the calorimeter region and the cell size. Particularly, pulse shapes
are known to vary for different layers and for cells at different pseudorapidity (η).

To use neural networks for the reconstruction of the energy deposited in all cells of
the detector, it is essential to have a well performing neural network assigned to each
cell. Both legacy algorithms and RNNs are sensitive to changes in the pulse shape
and thus a different set of weights is a priory needed for each cell. While it would be
possible to train an independent network for all 182 468 cells, this would lead to an
unsustainable amount of training time.

To keep high performance in all cells with a limited amount of trainings, it is possible
to use unsupervised machine learning methods to group cells that have similar pulse
shapes and that can use the same neural network with a single set of weights. Both
calibration pulses, taken with injected signals in the detector, and physics pulses,
measured in real proton-proton collisions, are available for the current LAr electronics.
While the detector electronics will change during the phase II upgrade, one can use
the current pulse shapes to demonstrate that grouping cells is achievable to reduce
the required number of RNNs to train.
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5.2 Clustering process
Unsupervised learning can be used to identify regions of the detector that have sim-
ilar response. By clustering together pulses based on their similarity, unsupervised
learning algorithms can identify groups of detector cells that have similar properties.
One identified cluster will then use the same set of weights, significantly reducing
the amount of required training time. In addition to identifying cells with similar
response, also cells with anomalous response can be detected. Cells with anomalous
response might require further investigations and ultimately help in identifying bad
calorimeter cells.

5.2.1 Dimensionality reduction with t-SNE
t-SNE [68], short for t-Distributed Stochastic Neighbor Embedding, is a machine
learning algorithm used for dimensionality reduction and data visualization. The
algorithm takes high-dimensional data and maps it to a low-dimensional space while
preserving the pairwise similarities between data points as much as possible. Points
that are similar in the high-dimensional space will be close to each other in the low-
dimensional space.

t-SNE works by first calculating the pairwise similarities between data points in
the high-dimensional space using a Gaussian kernel. It then defines a probability
distribution over pairs of points in the low-dimensional space, and minimizes the
difference between this distribution and the pairwise similarity distribution in the
high-dimensional space using a gradient descent algorithm.

5.2.2 DBSCAN for Cluster Classification
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [69], is a clus-
tering algorithm used in data analysis to group together points that are close to each
other by distance. Euclidean distance in two dimensions is used in this work. DBSCAN
works by first determining core points; core points are defined as any point that have
at least n points within a radius ϵ from it. The algorithm then recursively expands the
cluster by adding points to the cluster if they are reachable from that cluster within
the radius ϵ. The final cluster consists of points that can be reached via other points
on a path where each step is smaller than the radius ϵ. Points that neither fulfill the
conditions of the core point nor are reachable by other points in all clusters are clas-
sified as anomaly points. Anomaly points will be referred to with a cluster index -1
in what follows. The main advantages of DBSCAN are that it is able to automatically
determine the required number of clusters, its ability to handle non-linearly separable
clusters and its ability to identify anomalous points.
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5.3 Clustering of calibration pulses
The LAr calibration pulses contain 768 samples over 800 ns with a spacing of 1.04
ns. The calibration pulses are measured in-situ for almost all calorimeter cells. The
missing pulses are due to faulty cells that are marked as bad cells. In what follows,
only LAr cells in the EMB and EMEC are considered; The HEC and FCAL pulses are
excluded. The clustering is performed separately for each of the four layers in the
EMB and EMEC. This is due to the fact that cells in different layers are known to have
different size and thus different impedance and pulse shapes.

First the calibration pulses which are represented in 768 dimensions, which corre-
spond to the number of samples, are reduced to two dimensions using t-SNE. The
resulting map in two dimensions is shown in figure 5.1. The points in these two di-
mensions are drawn with different colors depending on the η of the cell. One can
notice a correlation between the formed clusters and the color of the cluster. This is
expected since the cell size and thus the pulse shape changes with the η of the cell.

Figure 5.2 shows the result of clustering by DBSCAN on the two dimensional map-
ping by t-SNE. The amount of found clusters is varying depending on the layer. EMB
layers have between 2 and 11 clusters. However for EMEC there are up to 46 clusters
in layer 2. Figure 5.3 shows the pulse shapes per layer where the different clusters are
shown in different colors. One can see that pulses in the same clusters have similar
shapes which qualitatively validates the clustering method. In all cases very different
pulse shapes are in different clusters, but in some cases two groups of similar pulses
have been assigned to different clusters.

The clustering results in the η - φ plane is shown in figure 5.4. The results clearly
show that the pulse shapes are dependent on η and are symmetric in φ. The combina-
tion of t-SNE and DBSCAN is able to recognize not only the dependence of the pulse
shape on η but also detect anomalous regions, such as cluster 7 of EMB layer 0, for
which the pulse shape differs from other cells in the same η.
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Figure 5.1: Distribution of the calorimeter cells as function of the two t-SNE dimen-
sions for different layers in the EMB and EMEC. The color denotes the η of
the cells.
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Figure 5.2: Distribution of the calorimeter cells as function of the two t-SNE dimen-
sions for different layers in the EMB and EMEC. The color denotes the
cluster ID as identified by DBSCAN.
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Figure 5.3: Calibration pulse shapes in the 4 layers of the EMB and EMEC. The colors
represent the cluster ID as identified by DBSCAN.
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Figure 5.4: Distribution of the cluster ID in η - φ plane in the four layers of the EMB
and EMEC.
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5.4 RNN performance for clustered pulse shapes
To fully validate the clustering procedure, it is important to evaluate the performance
of RNNs trained on clusters and compare them to RNNs trained on individual cells.
The EMB layer 3 is chosen as a use case since it contains both clusters with similar
pulse shapes and clusters with very different shapes. Figure 5.5 shows the performance
of RNNs with different trainings for a cell in EMB layer 3 belonging to cluster 5. Three
neural networks are compared: the first one is trained using data from cluster 5. In this
case the pulse shape of the cell at the center of cluster 5 is used for the data simulation.
This network is evaluated with data from another cell in the cluster and the same
center cell it was trained on. The second network is trained on a different cluster
randomly picked in EMB layer 3. The last network is trained on data that contains a
mix of pulse shapes from all clusters in EMB layer 3.

One can see that the networks trained on the cluster center performs equally well
with test data from another cell in the same cluster as it does with test data for the
same cell. This validates that the clustering is able to group together cells with similar
pulse shapes. The network trained on a different cluster shows very poor performance.
Training on data containing a mixture of pulse shapes from all clusters does not recover
the performance which validates the need for this clustering procedure.
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Figure 5.5: Transverse energy resolution for RNNs applied to a cell in EMB layer 3. In
blue the RNN is tested on another cell from the same cluster. In orange
the RNN is tested on the same cell that is used for training. In green the
network is trained on a cell from a different cluster. In red the RNN is
trained on a dataset that combines data from all clusters.

Figure 5.6 shows the performance from cross testing networks trained on data
from each cluster in EMB layer 3 by picking the cell in the center of the cluster. Data
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used for evaluation was created for 10 randomly sampled cells of each cluster. The
plot shows the mean and standard deviation of the and the standard deviation of

σ(E pr ed
T −E tr ue

T ) for deposits with E tr ue
T > 240 MeV. In addition the minimum and

maximum σ(E pr ed
T −E tr ue

T ) are shown. The best performing models are highlighted in
red. The best models are chosen to be within one standard deviation of the training
that have the best resolution.

For 8 out of 11 clusters the training performed on the same cluster is one of the
best models. In the three other cases, models from different clusters perform better
than the training on the same cluster. This could be due to fluctuations during the
initialization of the RNN training or the cluster center not properly representing the
pulse shapes in the cluster however the effect is not fully understood. The network
trained with mixed data from all clusters gives mediocre performance and is in no
case better than the one trained using the same cluster. This highlights the need to
group cells for the training of the RNNs.
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Figure 5.6: σ(E pr ed
T −E tr ue

T ) for RNNs trained and applied to different clusters in EMB
layer 3. Each model is trained with a cell in the center of the cluster and
is evaluated on 10 randomly sampled cells in the cluster. For each box 4

values are given: the mean of σ(E pr ed
T −E tr ue

T ) over the 10 cells evaluated,

its standard deviation, and the minimum and maximum σ(E pr ed
T −E tr ue

T )
for the 10 evaluated cells. The best performing models are highlighted in
red. The best models are chosen to be within one standard deviation of the
model that has the best resolution.

5.5 Clustering using physics pulses
Physics pulses, recorded during proton-proton collisions, differ from calibration
pulses. Figure 5.7 shows an example of the calibration and physics pulse shape for the
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same calorimeter cell. The physics pulses should be ultimately used to train the neural
networks. Therefore the clustering procedure that is demonstrated on calibration
pulses is repeated for physics pulses. The measured physics pulses have 256 samples
and are available for 90% of the cells. The missing pulses are due to problematic cells
or problems with the data processing used to extract these pulses.
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Figure 5.7: Calibration and physics pulse shapes for the same calorimeter cell.

5.5.1 Clustering process
The clustering process is the same as for the calibration pulses. Figure 5.8 shows a
map of the calorimeter cells in the two dimensions produced by t-SNE. The colors
represent the η of the cells. One can see a correlation between the η of the cells and
the clusters that they belong to.
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Figure 5.8: Distribution of the calorimeter cells as function of the two t-SNE dimen-
sions for different layers in the EMB and EMEC for the physics pulses. The
color denotes the η of the cells.
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Figure 5.9 shows that DBSCAN yields approximately 10 clusters per layer, with
the exception of EMEC layer 0. The number of clusters using the physics pulses is
relatively smaller than the one using calibration pulses. Figure 5.10 shows the pulse
shapes in the different clusters. There is less variation in the pulse shapes compared
to calibration pulses.

Figure 5.11 shows a clear correlation between the η of the cell and the corresponding
clusters. Clusters are found to span over larger η regions on average compared to
calibration clusters. However physics pulses show more anomalous regions on the
detector that break the correlation between the η and the pulse shape.
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Figure 5.9: Distribution of the calorimeter cells as function of the two t-SNE dimen-
sions for different layers in the EMB and EMEC for the physics pulses. The
color denotes the cluster ID as identified by DBSCAN.
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Figure 5.10: Physics pulse shapes in the 4 layers of the EMB and EMEC. The colors
represent the cluster ID as identified by DBSCAN.
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Figure 5.11: Distribution of the cluster ID in η - φ plane in the four layers of the EMB
and EMEC for physics pulses.
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5.6 Conclusion
The usage of RNNs for energy reconstruction in the full detector poses challenges to
be able to extend the training of the neural networks to all 180000 calorimeter cells.
Unsupervised learning and clustering algorithms can efficiently group LAr cells that
have similar pulse shapes: t-SNE dimensionality reduction algorithm is used to create
a two dimensional projection of the LAr cells based on the calibration pulses and
DBSCAN clustering algorithm is then used to create clusters.The clustering algorithm
is able to recover the dependence of the pulse shapes on η with remarkable accuracy.

The effectiveness of the clustering is validated by training RNNs on data that uses
the pulse shapes from the cell at the center of the clusters. EMB layer 3 is chosen as
a use case since it contains a variety of clusters with similar or very different pulse
shapes. The RNNs perform well if they are trained on cells within the same cluster.
RNNs trained on a mixture of cells from all clusters perform poorly thus validating
the need for this clustering procedure. The clustering is only performed on EMB and
EMEC cells; HEC and FCAL cells are left for future work. The clustering method is
confirmed work for both calibration pulses and physics pulses. The clustering allows
to reduce the number of needed neural networks to about 100 to cover all EMB and
EMEC cells.
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Conclusion

The unprecedented high luminosity of the HL-LHC leads to reduced resolution of the
energy reconstructed in the ATLAS LAr calorimeter by the optimal filtering algorithm.
To achieve the physics goals of the ATLAS experiment, new and improved energy
reconstruction methods are required. The LAr calorimeter readout system will be
replaced as part of the Phase-II upgrade in 2026-2028. The new electronics will
be based on state-of-the-art FPGAs with increased computing capacity allowing to
perform the energy reconstruction using neural networks.

This dissertation evaluates RNNs as candidates to replace the optimal filtering
algorithm. Simple RNN and LSTM architectures are developed and are found to out-
perform the optimal filtering algorithm in HL-LHC conditions. Particularly, these
RNNs are designed to accurately compute the energy of overlapping pulses, an area
where the optimal filtering algorithm performs poorly. The RNNs are able to probe
the corrections needed in case of pulse distortion due to overlapping pulses by incor-
porating information from past events prior to the energy deposit. Furthermore the
RNNs are shown to be resilient against changes in the average pileup during the runs:
RNNs trained on samples with an average pileup ranging between 100 and 200 have
very good performance on any sample with average pileup in the same range. Finally,
RNNs that can simultaneously compute the energy and the phase shift in the time of
the pulse peak are developed. The phase shift is important to assign the deposited
energy to the correct bunch crossing and to search for long lived particles. The RNNs
are shown to outperform the optimal filtering algorithm both for the energy and phase
shift reconstruction.

Deployment of the RNNs on FPGAs requires special considerations. In order to
reduce resources in the FPGAs, fixed-point arithmetic with the smallest possible bit
width is required. Training the network with quantized weights allows to reduce the
number of bits by a factor of two while keeping similar accuracy to floating point
precision. This leads to a drastic reduction of the resources needed in the FPGAs.
Another way to reduce the computational resource is to prune the neural networks by
removing insignificant weights. However it is shown that starting with small RNNs
without pruning is more efficient than training large RNNs and then pruning them.
Thus pruning is not considered further for the RNNs used for the energy computation
in the LAr calorimeter. Finally a new architecture that uses a dense layer, that probes
past information, to initialize the RNN is developed. This architecture is capable of
reproducing the performance of RNNs with long sequences while requiring 5 times
less computational power. All these developments make it possible to implement an
efficient RNN on FPGAs.

To use the RNNs for the full LAr calorimeter, 182000 neural networks are needed.
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Training such a large number of RNNs is practically impossible. To avoid this problem,
unsupervised learning is used to automatically group calorimeter cells based on
similarities in their electronic response. This method reduces the amount of required
neural network to 100 for the EMB and EMEC part of the detector making the usage of
RNNs more realistic for the full LAr calorimeter.

In summary RNNs are found to be excellent candidates to reconstruct the energy
deposited in the LAr calorimeter during the HL-LHC era. They are found to outperform
the current optimal filtering algorithm and are implementable on FPGAs. Additional
work is still needed to further optimize the neural networks and to perform the final
implementation in firmware. Furthermore, methods to calibrate the response of the
RNNs in real data are still to be developed to take into account differences between
the simulation data used in the training and real data at the HL-LHC.
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