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Abstract/Résumé

Abstract

Over the last decades significant progress has been achieved with respect to the
mining and analysis of trajectory data. This Thesis is concerned with the problem of,
given as input a set of indoor trajectories and additional contextual data describing
those trajectories, how to structure those data and analyze them properly, in order
to derive valuable insight about the movement phenomena under examination. The
research fields most related to it are Semantic Trajectory Data Modeling and Semantic
Trajectory Data Mining. Moreover, we address particular issues stemming from the
application domain of museums, or more generally from human mobility in indoor
environments. Thus, our modeling and analysis proposals are inspired by museum
visit trajectories, but not limited to them.

The main contributions of this Thesis can be summarized as follows:

(i) An overview and a classification of trajectory data mining tasks according to
the state-of-the-practice

(ii) A survey of the semantic trajectory modeling literature, the trajectory pattern
mining literature, and the (non-trajectory) sequential pattern mining literature
for multidimensional or temporally annotated data.

(iii) One of the first-ever studies on how museums and their visitors can simultane-
ously benefit from the implementation of museum visitor trajectory analytics.

(iv) A conceptual data model called Semantic Indoor Trajectory Model (SITM) that
aims at representing semantic trajectories of moving objects in indoor environ-
ments, allowing a rich representation of movement and supporting advanced
types of movement analysis.

(v) An implementation of SITM for representing museum visits as semantic indoor
trajectories, and an experimental case study analyzing real visitor trajectories
from the Louvre Museum in Paris.

(vi) A trajectory pattern mining approach, extending state-of-the-art algorithms
and combining semantics, time, and topology.

Keywords: semantic trajectories, indoor trajectories, trajectory data modeling,
trajectory pattern mining, sequential pattern mining, human mobility analytics, mu-
seum visitor studies
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vi Abstract/Résumé

Résumé

Au cours des dernières décennies, des progrès importants ont été réalisés en
ce qui concerne l’exploration et l’analyse de données de trajectoires. Cette Thèse
s’intéresse au problème de la fouille de données à partir d’un ensemble de trajec-
toires en milieu intérieur ainsi que des données contextuelles liées, afin de révéler des
structures cachées et des connaissances sur le phénomènes de mobilité étudié. Les
domaines de recherche relatifs à ce problème sont la modélisation des données de
trajectoires sémantiques et l’exploration de données de ces trajectoires. Par ailleurs,
nous intégrons certains travaux issus du domaine d’application cible, à savoir la mo-
bilité dans les musées, ou plus généralement de la mobilité humaine dans des envi-
ronnements à l’intérieur.

Ainsi, nos propositions de modélisation et d’analyse s’inspirent des trajectoires des
visites des musées, mais ne s’y limitent pas. En particulier, nous nous concentrons sur
des méthodes d’extraction de motifs séquentiels afin d’extraire des motifs intéressants
de trajectoires sémantiques en intérieur.

Les principaux apports de cette thèse peuvent être résumés comme suit:

(i) Une classification des tâches d’exploration de données de trajectoires.

(ii) Une étude de la littérature sur la modélisation de trajectoires sémantiques, sur la
fouille de motifs de trajectoires, ainsi que sur la fouille de motifs séquentiels mul-
tidimensionnels et/ou temporellement annotées (pouvant servir dans la fouille
de trajectoires sémantiques).

(iii) L’une des toutes premières études sur la façon dont les musées et leurs visi-
teurs peuvent simultanément bénéficier de la mise en œuvre de l’analyse des
trajectoires des visiteurs des musées.

(iv) Un modèle de données conceptuel appelé Semantic Indoor Trajectory Model
(SITM) permettant de représenter des trajectoires sémantiques d’objets mobiles
dans des environnements intérieurs, qui capture la richesse des trajectoires et
sert des types d’analyse avancés de mobilité.

(v) Une implémentation de SITM pour représenter les visites de musées comme
des trajectoires sémantiques en interieur et une étude de cas sur l’analyse de
trajectoires réelles des visiteurs du musée du Louvre à Paris.

(vi) Une approche d’exploration de motifs de trajectoires, étendant des algorithmes
de l’état de l’art et combinant sémantique, temps et topologie.

Mots-clés: modélisation de trajectoires, fouilles de trajectoires, enrichissement
d’information, analyse de trajectoires, mobilité humaine
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2 Introduction

1.1 Research Context

Τhis introductory chapter sets the research context of the Thesis and the application-
oriented motivation behind it. The main thematic axes most related to our work are
Trajectory Data Modeling and Representation, Trajectory Data Mining and Analysis,
and Museum Visitor Mobility Studies. The Thesis was conducted in partnership with
the Louvre Museum in Paris, which provided us with a unique real-world case study.

1.1.1 Trajectory Data Modeling and Representation

In the data analysis domain, movements consist of spatiotemporal records out of
which individual trajectories can be formed. When the moving objects are people,
with the exception of applications requiring very precise tracking of different body
parts, trajectories are typically represented as moving points. Then, a trajectory
essentially consists of a sequence of timestamped locations. But even though for
human mobility data, the moving object is considered to exist in a specific location,
oftentimes it is preferable to capture only the area containing that location. In such
cases, a trajectory essentially consists of a sequence of timestamped spatial regions.

A considerable amount of research work has dealt with modeling and analyzing
people’s trajectories in a variety of application domains, ranging from urban trans-
portation [80, 113] and road-network vehicle movement [10], to animal migration [126]
and air pollution studies [26, 27].

Yet most trajectory-based human mobility research works focus solely on out-
door trajectories, driven by the fact that Geographic Information Science (GIS) has
traditionally only supported outdoor spatial information. For indoor environments
there are considerable differences, mainly due to interior architectural components
constraining (or otherwise affecting) the way people move. For example, an indoor
trajectory model has to consider multiple room entrances, floor changes, specific build-
ing entrances/exits, sensor coverage gaps or detection area overlaps (due to obstacles,
sensor malpositioning, etc.), varying spatial granularity in the data, and numerous
other challenges.

This not only affects the analysis’ goals, but oftentimes also the quality of the
movement data, and as a result the methods required to achieve those goals. For
example, without proper installation planning, detection beacons may produce low-
quality tracking data riddled with uncertainty issues (e.g. long periods of non-
detection), whereas without proper maintenance planning, they may start logging
completely erroneous data due to battery depletion [159].

Another difference is that indoor trajectory analytics may gain from avoiding
cumbersome calculations over geometric representations of space and objects within
it, that are typical of outdoor settings. The reason is that an indoor space is typically
clearly divided into subspaces. Therefore, operations such as intersection, contain-
ment, and proximity can be simplified in order to prioritize the non-geometric aspects
of movement [81] (e.g. topological properties), instead of the metric aspects which
typically focus on Euclidean distances from potential targets. These are only some of
the reasons why indoor environments deserve special attention when analyzing human



1.1 Research Context 3

mobility data.

Moreover, in order to reason about movement in information-rich domains, a
trajectory model must also account for multiple types of contextual and semantic
information. As identified by Peuquet in [143] and further explored by Andrienko et
al. in [14, 15], there are three fundamental sets pertinent to movement, representing
the where (set of locations), when (set of instants or intervals), and what (set of
objects) of spatiotemporal data. This is true across applications, as well as across
application domains. Distinguishing among semantics of time, semantics of places,
and semantics of moving objects, in addition to the semantics of the movement itself,
can empower a synergistic interplay between them.

In practice however, the most crucial pieces of semantic information are derived
either from the moving object’s environment or from external data sources. Such
information can then be used to add a meaningful dimension to the large volumes
of purely spatiotemporal location feeds being amassed nowadays. These are often
referred to as raw Big Trajectory Data. Unfortunately, semantic trajectory models
have - to a large extent - targeted outdoor settings where the semantics are quite
different than those found in indoor applications. Therefore, we need to come up
with new ways of integrating contextual information.

For example, the trajectory literature has typically used ad-hoc speed thresholds,
temporal thresholds, or spatiotemporal thresholds, to derive the stops and moves
from raw trajectories, in an attempt to enrich them with the correponding semantics.
But as explained in [139], the characterization of a stop can imply no movement
at all, slow speed, movement within constrained area, or proximity to some POI1,
to name a few. More generally, this means that the same approach that works in
outdoor settings might not be nearly as relevant in an indoor environment. For
instance, the moving object’s location information is directly linked to a finite number
of predetermined well-separated spatial regions, and thus movement is more naturally
discretized without necessarily involving stops and moves. Also, the crowdedness of a
room may force a stop or even determine the whole route, whereas something similar
can only happen outdoors if the movement takes place over a network. In addition,
an object moving indoors generally does not travel such long distances nor does it
reach such high speeds, compared to objects moving outdoors, which is why an indoor
stop may hold a different significance.

Stops and moves constitute only a small example of the intricacies of trajectory
semantics that merit further study. By targeting outdoor settings, the related liter-
ature has also emphasized the enrichment of Global Positioning System (GPS) data,
the identification of transportation means, and other modeling concepts and issues
that are, either not interesting or simply not transferable in an indoor setting. On
the other hand, the adoption of some modeling approaches, such as the segmentation
of trajectories into episodes, or the use of semantic annotations at different levels of
spatial granularity, seems to be equally promising for indoor environments. In this
Thesis, some of these more broadly applicable ideas are combined with new modeling
concepts to derive a novel semantic trajectory model for indoor spaces.

1Point of Interest.
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1.1.2 Trajectory Data Mining and Analysis

During the last fifteen years, there has been a gradual increase in semantic trajec-
tory research activity, not only with respect to the design of trajectory models and
representation formats, but also with respect to the mining methods used to derive
knowledge from them. Location-based applications have been a major driving force
for this progress. As will be detailed in chapter 2, trajectory data mining already in-
cludes a broad range of problems and methods, like characterization of moving objects
(e.g. profiling), discovery of relationships between them (e.g. social relationships),
discovery and characterization of interesting places or regions, recognition of social
events, prediction and recommendation, among others.

However, trajectory data mining research has not yet fully caught up with the
increased inclusion of semantic information in the representation of trajectories. One
of the reasons is that - similar to modeling works - trajectory data mining works
have mostly focused on outdoor long-distance trajectory applications, like tourist
travels or urban mobility. As a result the semantics utilized in the mining tended
to reflect those domains. Another reason is that trajectories had in the past almost
become synonymous to GPS trajectories, and therefore almost any abstraction from
coordinate positional data was considered as “semantic enrichment”. But lately, there
is increased interest for trajectory-based research over a plethora of more specialized
domains, like maritime trajectories [42], team sports trajectories [174], mobile crowd-
sensing [59], indoor-outdoor trajectory integration [136], museum visit trajectories
[37], and various others. Therefore, there lies considerable potential for research
breakthroughs in the field of semantic indoor trajectory data mining and analysis,
and this is precisely the focus of this Thesis.

In particular, the Thesis explores Trajectory Pattern Mining (T-PM), which in
simple terms is the task of finding all trajectory parts that occur frequently enough
in a given set of trajectories. Albeit in this case, the mining approach needs to
be adapted to indoor environments and semantic information. Our methodology of
choice for doing so is to extend and combine general-scope pattern mining algorithms,
especially those looking for sequential patterns.

To illustrate the importance of coming up with new T-PM methods, let us con-
sider a set of shopping mall client trajectories and assume that, as managers of this
shopping mall, we wish to provide clients with a comfortable and enjoyable experi-
ence. At the same time we want to find out which stores are more attractive and why,
so that we may increase our revenue. Hence, we decide to run a standard Sequen-
tial Pattern Mining (S-PM) algorithm (e.g. GSP [165]), in order to find out typical
mobility behaviors in our shopping mall. Indeed, we learn that for instance a very
frequent pattern is:

Y ves Rocher → H&M → Promod→MacDonald′s.

Sequential patterns like the above one, consist of chains of real-world symbolic
locations, or as in this case spatial regions representing the presence of a client inside
of them. Such patterns are indicative of the shopping activity of clients, but do not
offer conclusive insight about it. To understand why this is the case, let us assume
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that the previous pattern is somehow enhanced with temporal information becoming:

15min
Y ves Rocher →

1min
H&M →

5min
Promod→

30min

MacDonald′s

where each time annotation indicates the approximate duration of stay in the cor-
responding shop. Why is this new representation more insightful than the previous
one? By taking time into account, we are now in a position to understand our clients’
actual shopping behavior much better. The amount of time consistently spent at
Y ves Rocher indicates a clear interest in shopping there, whereas similarly, the low
duration value at H&M indicates clients are only passing by it. As for Promod they
do stop to take a quick look at it or maybe they tend to pre-order and they stop to
pick-up their products. The pattern also reveals that the typical shopping mall ex-
perience involves MacDonald′s clients who prefer to spend time there after shopping
in the aforementioned shops. Judging from the time spent there, they eat on spot
rather than take something to eat on the go. Evidently, adding time into the patterns
can expand our understanding of practically any type of movement phenomena.

Now, we take a hypothetical look at the floor plans of our shopping mall, and
notice that due to a peculiar architectural design of the building, a client actually
has to pass through H&M to arrive at Promod. This is a piece of information that
we would like our analysis to be aware of, as it makes us confident about discarding

the corresponding item
1min
H&M from the sequence as unimportant. Or perhaps to the

contrary, we notice that H&M is located on a different floor level than Y ves Rocher
and Promod and is not directly accessible from either one, again making us confident
about discarding it, this time as a sensor misfire. In either case, by taking the
building’s topology into account, our analysis now outputs the pattern:

15min
Y ves Rocher →

5min
Promod→

30min

MacDonald′s

which better captures the true essence of this particular client mobility behavior.
Now, let us take one step further and assume that we have developed and launched

a smartphone application offering Location-Based Services (LBS) to our clients, in
order to facilitate their experience in our shopping mall. This application provides
near real-time semantic information about the client’s activity, enabling us to enrich
the purely spatiotemporal client trajectories with additional non-spatial non-temporal
information. In turn, our mining efforts shall result in yet more detailed trajectory
patterns. For example, now the most frequent pattern is:

15min

{Y ves Rocher, disc buy, reg cust} →
5min

{Promod, prod replacement, cas cust} →
30min

{MacDonald′s, reg buy, new cust}

where the two extra data dimensions represent shopping actions and shopper type.
Provided that we can indeed obtain or estimate their values, the extra semantic

dimensions enable a much more meaningful interpretation of client movement: we
learn that regular customers (“reg cust”) like to visit Y ves Rocher specifically to take
advantage of its discounts (“disc buy”), whereas casual customers (“cas cust”) tend to
visit Promod to return or replace products (“prod replacement”), and MacDonald′s
attracts mostly new customers (“new cust”) instead of returning ones. Of course,
other semantic data dimensions and other types of contextual information can also
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be used, such as demographics, satisfaction level, product wishlists, appointments,
fidelity points, public happenings, etc.

The above example goes to show the types of insight that can be extracted from
the discovery of qualitatively richer mobility patterns, when combining spatiotempo-
ral data, semantic information, and the intricacies of indoor space. From now on,
the focus will shift to a related indoor application domain, namely museum visits.
However, as illustrated by the shopping mall example, the proposed solutions will
be equally useful to any application domain of indoor mobility and especially human
indoor mobility.

1.1.3 Museum Visitor Trajectory Modeling and Analysis

Let us now put ourselves in the position of the manager, not of a shopping mall like
before, but this time of a museum. As is well known, the role of a museum mainly
lies in collecting, storing, preserving and exhibiting natural and man-made objects
[169], but museums also emphasize the visitor experience [62], especially since the ex-
pectations of the museum-visitor interaction have changed for both sides [130, 131].
Actually, it has long been of paramount importance for museums to know their visi-
tors, meaning to study and understand their motivations, expectations, engagement,
and satisfaction.

In this regard, they have traditionally relied on visitor study methods based on hu-
man observation, survey questionnaires, and interviews. Throughout the years, these
methods have been enhanced with digital information resources and technologies,
while still retaining the human element at their core. For example, video recording
has been used to help a human observer detect visiting behaviors that he or she
might have missed in person, and digital questionnaires and handheld devices have
addressed the inefficiencies of hand-written note taking. This has allowed museum
visitor studies to become less intrusive for the visitors.

Nevertheless, these studies still lack precision and generally rely upon human-error
prone ways to derive the necessary data. Moreover, since they are labor intensive and
resource demanding, they have limited scaling potential2, i.e. they can only support
studies of limited duration and visitor sample size. In turn this makes the analysis
vulnerable to biases (e.g. seasonal bias, demographics bias), more dependable on the
ability of the visitors to accurately report their visiting experience, and in general
less likely to reach confident conclusions.

Despite all these limitations, traditional visitor study methods still to this day
constitute the primary way for studying and profiling the visitors. But this is starting
to change as museums become aware of the implications of the virtual and digital
dimensions of visiting exhibitions. For example, the Louvre Museum has identified
that only 5% of its visitors are purely “physical” (i.e. with no relationship to the
museum’s website) as opposed to 27% being purely “virtual” (i.e. with no physical
relationship to the museum) [61]. What is more, these figures correspond to the

2See [194] for a historic comparison of museum visitor movement data collection techniques in-
cluding in terms of sample size.
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period before the COVID-19 pandemic, which made museums like the Louvre rely
even more on social media and digital means of communication to keep the active
participation of the audience alive [44].

Among others, one of the most effective ways for museums to understand their
visitors is to study their movement in the exhibition space. For a long time, this
has been attempted in person by following visitors around as their visit progresses
[4]. But as of late, the advent of diverse wireless indoor positioning technologies
has contributed in LBS (e.g. way-finding, contextualized content delivery) becoming
almost standard museum multimedia guide functionality. These LBSs grant museums
access to an unprecedented wealth of visitor movement data which, despite privacy
restrictions [137], can reveal many aspects of the visitors’ behavior and experience if
properly analysed.

As a general rule, since museums engage primarily in understanding their visitors,
they are more interested in descriptive rather than predictive mobility analytics. The
specific analysis goals vary considerably as described in greater detail in chapter 6,
but can be grouped into three main categories: improving the visitor experience,
aiding the managerial decision making, and effectively managing the visitor crowd,
as identified by the author in [100]. For all three areas of improvement, the indoor
context and the semantic aspect of movement remain key modeling elements.

Finally, studying human mobility behavior through semantic indoor trajectory
analysis is of great interest not only to museums, but also to sectors such as health-
care, universities, retail, and airports. In all of these application domains, similar
opportunities to collect vast amounts of individual trajectory data exist [87]. This
is why our modeling and analysis proposals are inspired by, but not exclusive to the
museum domain.

1.2 Problem Statement and Contributions

A concise description of the problem that this Thesis attempts to study and help
solve follows below.

Given a raw tracking dataset of individuals moving in an indoor environment,
and given any type of semantic information related either to those moving objects or
to their movement, we wish to derive knowledge that will help us understand their
movement in depth. Our goal is to do so, first by structuring the input data in
a properly designed semantic trajectory format, and then by applying proper data
mining methods over those trajectories.

As will be explained in chapter 2, there is a great plethora of data mining methods
to consider for deriving knowledge from trajectory data, however not all are relevant
for descriptive semantic indoor trajectory analytics. This is why the focus will be
onSequential Pattern Mining (S-PM) methods in particular.

The previous problem statement is straightforward, but encompasses many inter-
esting subproblems including:

• How does the indoor environment affect a trajectory?

• How to best represent the indoor space when modeling trajectories?
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• How to model an indoor trajectory that is semantically rich?

• How to mine frequent patterns from semantic indoor trajectories?

• How to treat spatial hierarchies and semantic hierarchies in the mining process?

• What are the practical challenges related to the quality of real-world indoor
trajectory data?

• What can be done about them at the modeling level, at the data pre-processing
level, or at the analysis level?

• What are the typical visiting behaviors in the world’s most frequented museum?

In order to help address the aforementioned problem, and all of the modeling and
analysis issues stemming from it, this Thesis contributes the following elements:

1. A survey of semantic trajectory modeling literature and a survey of trajectory
pattern mining literature.

2. An overview of trajectory data mining literature accompanied by a proposed
classification of the related tasks according to the state-of-the-practice.

3. A study on the benefits of trajectory data analytics research for museums [100].

4. A new model for spatiotemporal indoor trajectories enriched with semantic
annotations, called Semantic Indoor Trajectory Model (SITM) [102].

5. A validation of SITM by its instantiation in the case of the Louvre Museum in
Paris, and the application of standard and state-of-the-art mining algorithms
over real-world Louvre visit trajectories expressed in SITM form.

6. A formalization of the problem of mining semantic indoor trajectory patterns
from input trajectories, and a novel T-PM approach to solve it, along with a
corresponding proposed algorithm called Semantic Indoor Trajectory Pattern
Extractor (SITPE).

7. A unique analysis study of the Louvre visitors’ mobility patterns, constitut-
ing one of the rare cases of real-world museum visitor trajectory data-based
computational studies.

1.3 Thesis Organization

The rest of this Thesis is divided as follows:

• Chapter 2 presents an extended overview of the related work in the research
fields of Semantic Trajectory Modeling, Trajectory Data Mining, T-PM, and
non-trajectory S-PM.

• Chapter 3 proposes a Semantic Indoor Trajectory Model.
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• Chapter 5 introduces the Semantic Indoor Trajectory Pattern Mining (SIT-
PM) problem and proposes an algorithmic method to solve it.

• Chapter 6 introduces a compelling real-world case study for validating our
trajectory model, involving visitor trajectory data from the Louvre Museum.

The Thesis is complemented by examples illustrating how the proposed trajectory
model serves its purpose in practice and how the proposed mining method will enable
us to extract richer mobility patterns. Finally, it includes a discussion on trajectory
data-based museum visitor studies, and identifies important goals related to this very
promising new application domain of trajectory data mining research.

A more detailed summary of the Thesis follows.

Chapter 2 describes the state-of-the-art works for targeting the aforementioned
problem statement. It contains a survey of Semantic Trajectory Models and an
overview of the field of Computational Trajectory Analytics, both receiving consid-
erable attention currently in the research world. It also encompasses a classification
of trajectory data mining tasks, before delving deeper into the work being done in
T-PM in particular. Our focus is given to Semantic Trajectories and Indoor Trajecto-
ries, both independently and in combination, and a complete survey-level overview is
provided. The second part of the chapter has a narrower scope dealing with a specific
type of trajectory data, namely museum visits. It looks into how the movement of
museum visitors has so far been represented in trajectory form, and proceeds into
detailing the importance of semantics and the indoor context in the modeling effort.

Chapter 3 describes the proposed conceptual data model, called Semantic Indoor
Trajectory Model (SITM), which is illustrated for the museum domain, but is actu-
ally applicable across all indoor environments. The chapter starts by making a con-
crete case for why this model was developed, and then proceeds to define a standards-
based representation of the indoor space itself. This indoor space representation can
be considered as part of the trajectory model itself, in the sense that the spatial
dimension of the trajectory data refers to it. Then, the relevant trajectory concept
definitions are provided. Our extensive study of semantic trajectory models in chap-
ter 2 is of paramount importance here, because it enables us to identify concepts
necessary for representing semantic trajectories in the indoor context while avoiding
others that are suited mostly to outdoor environments. It also provides a bird’s eye
view of the related literature which helps us avoid confusion around the terminology
used to describe similar concepts (like episodes, segments, and subtrajectories, or
annotations and labels, or places, PoIs, and RoIs, etc). Finally, SITM fits the space
representation with the trajectory concepts and the semantic mechanisms cohesively
into a single model.
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Chapter 5 is dedicated to the problem of extracting frequent patterns from a set
of input trajectories. First, it deals with how to apply methods reviewed in chapter
2 over trajectory data. The goal is to be able to find not only sequential patterns,
but patterns containing either temporal or semantic information. Then, it extends
and combines such methods in order to mine qualitatively richer patterns than those
which the state-of-the-art currently allows. More specifically, the pseudo-code of the
algorithm is given, its implementation process is illustrated, and it is discussed how
it differs or improves upon previous algorithms. To the author’s knowledge, it is the
first algorithm to take into account multiple hierarchical spatiosemantic dimensions,
temporal annotations, and topological constraints, resulting in a qualitatively richer
description of mobility behaviors.

Chapter 6 presents a real-world case study from the Louvre museum, in which a
historic dataset of around 5,000 visits is structured into trajectories and then, based
on the proposed trajectory model is subjected to gradual analysis, revealing interest-
ing visiting behavioral patterns. Also, analysis work is provided which is not related
to T-PM but nevertheless provides an exclusive view at an intriguing case study, not
only of the most frequented museum but also of the largest indoor beacon installation
at the time globally. This includes issues and conclusions on trajectory data quality,
trajectory matching, trajectory data pre-processing, and trajectory semantics. Apart
from validating our trajectory model proposed in chapter 3 and deriving insight on
the visitors, and despite the practical constraints preventing us from validating the
proposed T-PM methodology, it is - to our knowledge - the first attempt at extracting
temporally-aware trajectory patterns of museum visits, and more generally the fist
attempt at analyzing museum visitor trajectories at such scale. Thus it served to the
Louvre as an evaluation of the visitor behavior analysis potential of permanent bea-
con installations, and provides various contributions in the field of Museum Visitor
Studies especially in terms of methodology.

Chapter 7 offers our conclusions and perspectives about all of the issues addressed
in this Thesis. This is a very important chapter as the main ways to drive forwards
the research field of T-PM is identified, based on the extensive experience with one
of the few real-world case studies in the museum domain. Related to this, a personal
view of the current state of Trajectory Data Mining more generally is provided, along
with concluding remarks for what should be tackled next in this field, especially in
terms of modeling and mining.
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2.1 Introduction

In this chapter, the background works in the trajectory modeling research domain are
presented, especially those relating to the author’s own corresponding contributions.
In addition, an exhaustive overview of the semantic trajectory modeling literature
is provided and the limitations of state-of-the-art conceptual models are identified,
before proposing ways to overcome them in the case of movement in indoor envi-
ronments in chapter 3. An overview of the trajectory data mining landscape is also
provided, and it is identified why state-of-the-art methods and algorithms are lack-
ing for finding patterns in temporally annotated datasets, before proposing ways to
overcome them as far as trajectory data analysis is concerned in chapter 5.

2.2 Trajectory Data Modeling and Representation

2.2.1 Trajectory Definition and Fundamental Trajectory Types

When the term trajectory is encountered in everyday discussions, it is usually inter-
preted as a specific instance of movement of somebody or something. In the scientific
literature, its meaning is actually not that different, although it varies according to
the particular field of interest. In Computer Science, the tendency is to use the term
moving object trajectory, as opposed to more specific terms such as gene expression
trajectories (in Biology), particle trajectories or quantum trajectories (in Physics),
molecular trajectories (in Chemistry), which all narrow down the type of the moving
object. In the same spirit for example, the term trajectory data management is also
often referred to as moving objects databases [28, 75].

Thus, it is best to start by explaining how the related terminology is understood in
this Thesis, before moving on to the discussion of modeling a trajectory. This ¿Thesis
is concerned with moving object trajectories, which can be defined as follows:

Definition 2.2.1 (moving object trajectory)
A moving object trajectory is a spatiotemporal trail generated over time by a

person, or an animal, or an inanimate object.

Figure 2.1: A trajectory represents the abstraction of a continuous part of some real-world
movement.

As shown in Figure 2.1, a moving object trajectory does not necessarily coincide
with the entire movement of that object, nor does it have to last for the entire
observation period during which tracking data have been generated. Instead, it might
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as well represent any meaningful and well defined part of that movement, spanning
over any window of the entire observation lifetime. In fact, a trajectory does not even
presuppose the existence of tracking data, as long as it is possible to somehow guess
or estimate the location of the moving object for the duration of a gap, as illustrated
in Figure 2.2. This goes to show that despite the large observation gap in the middle
of the movement, in principle it is still possible to derive a close approximation to the
two actual trajectories in Figure 2.2.

Figure 2.2: A trajectory differs conceptually from a mere collection of detection records.

Until the 1990s, temporal and spatial databases were completely separate areas
of database research [103], and only gradually did conceptual data models start to
combine the spatial and temporal aspects, thanks to works such as [181] and [140]. By
similarly restricting - for now - our attention to the spatial and temporal dimensions
separately, a few basic trajectory types can be distinguished.

Given Definition 2.2.1, one of the naturally arising fundamental modeling ques-
tions at the lowest levels of abstraction is whether the moving object is described
as a moving point or as a moving region. Of course, this depends on the nature of
the moving object and that of the movement phenomenon itself. For example, ap-
plications modeling geophysical processes such as storms or cyclones often require a
certain amount of realism that can not be attained by a moving point representa-
tion, and thus spatial variability is introduced into the moving object representation
(e.g. random field representation [138]). For human mobility data in particular, the
distinction remains pertinent because some human activities may be described in
enough detail through the evolution of each person’s unique representative location
(e.g. navigation), whereas others would require the evolution of different body part
locations (e.g. gait analysis).

For the rest of this chapter and Thesis, the focus will be only on the first type
of human mobility data representation, namely moving points, especially given that
it fits our own application domain of interest which concerns museum visitor tra-
jectories. Finally, oftentimes when human movement data are unavailable (e.g. in
migration studies [161]) the first type of trajectories might degenerate into consisting
of only two timestamped positions: the origin and the destination. However, this
Thesis focuses on the non-trivial case where intermediate positions do exist, since its
interest lies in studying human mobility at the individual level.
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2.2.1.1 Outdoor vs Indoor

Arguably, outdoor spatial informatics have received much more attention than indoor
spatial informatics, and by consequence, the same can be said about trajectory data
research. The distinction between outdoor trajectories and indoor trajectories is
rather straightforward: depending on the type of environment in which the related
movement phenomenon takes place, a trajectory is either of the former type or of
the latter type. But this distinction is not a mere formality, as it has less obvious
implications on how trajectories can and should be thought of and represented.

Many differences between the two types of environments with respect to the
computational analysis of mobility data have already been identified during the last
decade. According to [87], the two major ones are, first that indoor spaces are com-
posed of entities unique to them (e.g. rooms, hallways) which constrain movement,
and secondly that unlike GPS, indoor positioning technologies (e.g. proximity-based
ones) can not report velocities or accurate locations, resulting in uncertain tracking
data and an increased need for symbolic models (e.g. graph-based). With respect to
positioning technologies, [72] stresses that indoor environments are lacking a univer-
sally used one, like GPS or Galileo serving outdoor applications. [180] goes a step
further reporting more specifically on the problems related with the various indoor
localization technologies: position accuracy affected by limitations in signal transmit-
tance, absence of precise and synchronous clocks between transmitters and receivers,
non-line of sight, signal attenuation and interference due to environmental factors,
time consuming calibration phase, demanding infrastructure maintenance (hardware
and software), multipath propagation effects, energy inefficiency, cost, etc. These
factors are hardly as relevant to outdoor applications. [72] detects some other dif-
ferences when studying indoor - as opposed to outdoor - movement: the existence
of multi-level routes, the different function of landmarks, the focus on pedestrian
(rather than vehicular) traffic, the more “regular” geometries of rooms, the layered
and often complex structure of buildings. With respect to the latter, [6] mentions the
hierarchical structure of an indoor environment and the different levels of granularity
as a major difference, and also claims that small-scale indoor spaces encompass more
specific properties and hold more interactions between moving objects (e.g. humans)
in comparison to large-scale open spaces. [156] considers the concept of indoor ge-
ography to be heavily context-based, due to the fact that the modeling of an indoor
structure is strongly intertwined with the associated application field of the building.
This is a remark also made in [6] where the design of a comprehensive indoor spatial
data model is said to require the integration of data from diverse sources and the
user’s context.

To conclude by adding our personal view on the outdoor-indoor trajectory dis-
tinction, the main differences between the two types can be summarized as follows:

• the nature of the location information (discrete spatial entities indoors, precise
points outdoors);

• the levels of positional data uncertainty (higher indoors);

• the existence of movement constraints (indoors as opposed to only sometimes
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outdoors);

• the floor changes (indoors);

• the ability to more readily capture the semantics of space (indoors);

• the changes in speed (greater outdoors).

2.2.1.2 Geometric vs Symbolic

Another clear distinction is the one between geometric and symbolic trajectories [5],
which is based upon how the moving object’s location information is modeled. Tra-
jectories of the former type are typically characterized by a coordinate system-based
representation of the location information, whereas trajectories of the latter type use
symbols to represent it, in other words discrete spatial entities such as particular
points or areas. Those entities can either be predefined or they can be found by
processing the tracking data themselves, as explained in section 4.2.

Geometric trajectories do not necessarily comprise coordinate values, as long as
they are represented on the basis of geometric primitives such points, lines, areas,
and volumes. But in practice, these basic shapes are almost always measured within
a given coordinate system, and therefore a geometric trajectory is typically composed
of a sequence of timestamped coordinate tuples, e.g. timestamped pairs (x, y, t) in
the 2-dimensional case, or timestamped triples (x, y, z, t) in the 3-dimensional case.
This type of representation enables accurate location and distance information [6]
and is prevalent in outdoor applications.

Symbolic trajectories on the other hand are based on a modeling of space which
treats entire spatial entities as first-class citizens, instead of relying on precise - but
sometimes meaningless - coordinate values. As a result, a symbolic trajectory is
typically composed of a sequence of named places. This of course emphasizes the
topological properties of space, facilitates the representation of dynamically chang-
ing environments, and in general is characterised by attributes that will be further
elaborated in section 2.3.2. In addition, even though symbolic trajectories are not
necessarily semantic, they do favor a semantic modeling of the environment where
movement takes place.

Figure 2.3: A geometric outdoor trajectory (left) and its symbolic counterpart (right),
where coordinate points have been grouped at the city level.
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2.2.1.3 Sequential vs Temporally Annotated

With respect to the temporal aspect of trajectories, there exists an implicit distinc-
tion having to do with whether the temporal information is kept in some form, or is
discarded in favor of the mere order of location records. We can refer to the first case
as a temporally annotated trajectory and to the second case as a sequential trajectory.
Interestingly, whereas trajectory modeling research has always adopted a temporally
annotated type of trajectory, which is a sensible approach given that a considerable
amount of explanatory power lies within the temporal information of any movement,
a considerable amount of application-driven research works actually use simple se-
quential trajectories, as will be shown in our literature review in the rest of this
chapter. This can no longer be attributed to a lack of timestamped data because,
as explained in chapter 1, even for indoor environments there is now a broad range
of wireless indoor positioning technologies generating large volumes of timestamped
detection logs. Instead, it can be partly attributed to some application cases being
sufficiently served by ordered positional information alone. But mainly to the lack of
a cohesive strategy for addressing the temporal dimension in trajectory mining and
analysis, without having to retreat to time series analysis methods that would take
the focus away from individual trajectories. Put more simply, it may have sometimes
been more convenient to disregard time completely, than find out how to properly
account for it in the analysis of trajectories, when order information is “good enough”
with respect to the analysis requirements.

Finally, there exists a third intermediate category, or to be more precise, a subcate-
gory of temporally annotated trajectories, which is interval-based trajectories. These
are trajectories encompassing temporal information, not in absolute time moment
form, but rather in the form of time durations. Each interval may correspond either
to a specific position of the moving object or to the transition period between two
such consecutive locations. This type of trajectories has been used in various works
(e.g. [31]) but has very seldom been explicitly studied in trajectory data research
[183].

2.2.1.4 Semantic Trajectories

Recently, apart from the usual1 issues related to their large volumes or fast process
rates, Big Trajectory Data have also started being studied with respect to issues
of data heterogeneity [152]. This does not simply constitute an attempt at finding
methods to combine multiple trajectory datasets, or even to fuse trajectory datasets
together with relevant non-trajectory datasets. Instead, it is a more elaborate effort
to enrich the way in which trajectories are being modeled, processed, and analysed,
with information that allows them to become more meaningful, and to serve as more
comprehensive abstractions of real-world mobility phenomena.

More specifically, the inclusion of contextual elements such as properties of space,
moving object profiles, personal preferences, events, or even entire ontologies, leads

1In the sense that they are nowadays encountered with all types of data.
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to the formation of semantic trajectories, which precisely embed the additional con-
textual information to the main geometric or symbolic nature of the data. Whereas
these additional data dimensions are indeed contextual, related to the environment of
the movement and to the agents or objects that participate in it, the semantic scope
of trajectories is only really limited by the particular application domain or use case
requirements. Different semantic facets may be useful for different types of scenarios
and analyses, and so there is no reliable way to determine a priori which types of
semantic information should be taken into account and which not. For example, in
section 1.1.2 an indoors example was examined of how the addition of semantic as-
pects to trajectories can be envisaged, to enable new methods of trajectory analysis,
qualitatively superior in comparison to what would be possible solely based on their
spatiotemporal aspects.

Let us now more formally define a semantic trajectory as follows:

Definition 2.2.2 (semantic trajectory)
A semantic trajectory is a moving object trajectory, whose spatiotemporal trail

is enriched with information relating to the context, the environment, and/or the
domain of movement, resulting in a more meaningful representation of it.

Figure 2.4: A semantic trajectory can be either geometric (left) or symbolic (right). Here,
it is enriched with information about the transportation means.

Finally, it should be noted that semantic trajectories can be either geometric or
symbolic, but the latter is typically more convenient, as exemplified in Figure 2.4.
This can be more easily appreciated, if one notices that in the trajectory research
literature, geometric trajectories have been almost exclusively outdoor trajectories,
whereas symbolic ones have been used in both outdoor and indoor settings. The link
between symbolic trajectories and indoor trajectories clearly lies in the existence of
well-defined spatial areas in almost any building, which can be fittingly represented as
symbols. Hence, these spatial entities often also have clearly distinguishable semantics
(e.g. the function of a space, the temperature of a room). However, the connection
between symbolic trajectories and outdoor trajectories is less evident, and has its
roots in efforts (over the last fifteen years) to transition from purely spatiotemporal
outdoor trajectories, composed of GPS coordinate pairs, to semantic trajectories.
These efforts lead to the realization that, single coordinate points only rarely hold
significant semantic content so as to justify treating them as the atomic unit of spatial
information, or to use the words of [187], that annotating each GPS point may result
in information overload. Consequently, concepts like the semantic point [25] are often
not very useful. Instead, the preferred approach by far has been to group coordinate
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points into symbolic regions, and only then proceed into adding semantic information
to the symbolic trajectories. Therefore, whereas indoor symbolic trajectories were
conceived intuitively, in the world of outdoor GIS, symbolic trajectories have only
really served as a step towards semantic trajectories.

This Thesis is particularly interested in exploring how semantic trajectories can
serve human mobility analytics in indoor spaces, especially in the museum domain
which will be the focus of chapter 6.

2.2.2 State-of-the-art Semantic Trajectory Models

Over the last ten to fifteen years, considerable progress has been made in the field
of semantic trajectory data modeling. Here, this progress is overviewed in loose
chronological order, starting from trajectory models encompassing a basic level of
semantics and moving on to ones with more complex semantics. Particular attention
is paid to the modeling ideas that withstood the test of time, in order to gain the
necessary understanding for developing a new conceptual model in chapter 3, but
also for informative and educational purposes. The limitations of these models are
identified here but will be addressed in detail in chapter 3.

2.2.2.1 The First Conceptual Semantic Trajectory Model

In [163], the first formal definition of a semantic trajectory at the conceptual level was
proposed by Spaccapietra et al. in an effort to structure movement data into iden-
tifiable and countable units. A moving object is said to potentially produce many
trajectories during its lifespan, some of which are meaningful and can be semanti-
cally segmented. Thus, the authors define a trajectory as the user defined record of
spatiotemporal evolvement of the position of the moving object, during a given time
interval (part of its lifespan), as indicated by the mapping [tbegin, tend]→ space, and
in order to achieve a certain goal.

On top of this definition, the authors propose a characterization of trajectories
with semantic annotation properties (e.g. the name of the moving object’s location)
and spatial and/or thematic integrity constraints (e.g. movement restrictions based
on the type of moving object). It should be clarified that these are to be understood
as generic annotations, i.e. as text attachments or unstructured content tags, because
the authors do not specify any particular format. With respect to the content of the
annotations however, the authors do differentiate between semantic properties that
hold a constant or a time-varying value, either throughout the whole trajectory or
during the corresponding trajectory component that they characterize.

Their modeling approach is illustrated by a hypothetical example of the study of
the behavior of white storks during their migration period. The type of semantics
in relation to this scenario includes, with respect to stops, the type of stop (nightly
or longer), the food availability, the bird activities during the stop (feeding, resting),
the bird attributes (weight, percentage of fat, body temperature, health condition),
and with respect to moves, the bird’s flying altitude, the topography, the weather
conditions, any potential obstacles (natural or artificial), the flock that the bird is
part of, etc.
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The authors also propose the semantic segmentation of a trajectory into stops
and moves, that they believe to be inherent semantic facets of any trajectory. Thus,
they view a trajectory as a sequence of time sub-intervals where the moving object’s
position alternates between changing and remaining fixed. More specifically, the
two concepts are purposefully defined generically, so as to be refined by the modeler
according to the needs of the application at hand (e.g. assigned specific geometries):

Definition 2.2.3 (trajectory stop)
A stop is defined as a non-empty (temporally disjoint with any other) trajec-

tory part [tbeginstopx, tendstopx] where the traveling object does not move as far as the
application view is concerned.

In the context of the previous white stork migration example, this concept would
describe where and why a bird makes a stopover during its migration.

Definition 2.2.4 (trajectory move)
A move is defined as a non-empty (temporally disjoint with any other) trajectory

part [tbeginmovex, tendmovex] delimited by stops and/or the temporal extremities of the
trajectory itself tbegin, tend.

Again in the context of the previous white stork migration example, a move would
be the representation of a bird going from one place to the next, or in the context of
a human mobility example, the transition between two different cities.

Finally, the proposed model is accompanied by two materialization methods. The
first is a design pattern which is imported by a particular application database schema
and personalized accordingly. The alternative is the use of two dedicated Trajecto-
ryType and TrajectoryListType data types which hide the handling of the trajectory
and its components behind a set of basic methods that a particular application will
be using.

Although [163] was a pioneering effort with respect to trajectory modeling, its
main limitations are, first that stops and moves add only a first level of semantic
content to the trajectory which is not enough for certain modern day applications,
and secondly that it is more pertinent to outdoor trajectories, as indicated by the
aforementioned example.

2.2.2.2 Early Models Extending “Stop-Move” Semantics

In [11], Alvares et al. identify that if trajectories simply consist of data in the form
(tid, x, y, t) where tid is the moving object identifier, x and y are the spatial co-
ordinates, and t is a timestamp, then trajectory analysis becomes computationally
expensive and complex from the user’s perspective, and lacks semantic information
at the representation and data manipulation levels. This is why they adopt the tra-
jectory model of [163], whose main semantic facet is the segmentation of a trajectory
into stops and moves. More specifically, the authors define the concepts of a sample
trajectory, a candidate stop, an application, and a stop, as follows:



20 State of the Art in Trajectory Data Modeling

Definition 2.2.5 (sample trajectory)
A sample trajectory T is a list < (x0, y0, t0), (x1, y1, t1), ..., (xN , yN , tN ) > of

space-time points, where xi, yi, ti ∈ IR, i = 0, ..., N , t0 < t1 < ... < tN .

Definition 2.2.6 (candidate stop)
A candidate stop C is a tuple (RC ,∆C) whose geometry RC is a topologically

closed polygon in IR2 and whose minimum time duration ∆C is a strictly positive real
number.

Definition 2.2.7 (application)
An application A is a finite set of candidate stops {C1 = (RC1 ,∆C1), ..., CN =

(RCN
,∆CN

)} with mutually non-overlapping geometries RC1 , ..., RCN
.

Definition 2.2.8 (stop)
A stop of trajectory T with respect to application A is a tuple (RCk

, ti, ti+l)
for which ∃ a subtrajectory < (xi, yi, ti), (xi+1, yi+1, ti+1), ..., (xi+l, yi+l, ti+l) > of T
and a candidate stop (RCk

,∆Ck
) ∈ A, such that ∀j ∈ [i, i + l] : (xj , yj) ∈ RCk

and
|ti+l − ti| ≥ ∆Ck

.

Finally, the authors illustrate their framework with an example of a 2-month
dataset of tourist visits in the city of Paris, where candidate stops consist of feature
types such as hotel, touristic place, shopping area, train station, airport, etc. or
more specific ones such as Ibis Hotel, Eiffel Tower, etc. Timewise a discretization
at multiple levels of granularity is proposed, resulting in values such as morning,
afternoon, evening, rush hours, [07:00-09:00], [17:00-19:00], weekdays , weekend, etc.
They also implemented it as part of the Weka data mining toolkit, under the name
of Weka-STPM (Semantic Trajectory Preprocessing Module) [12].

The advantage of the model proposed by [11] is that, by adopting the stop-move
representation of [163], it enables non-spatial queries and data mining tasks related to
behaviors such as arriving at the airport, going from hotels to touristic places, going
from touristic places to shopping areas, etc. On the other hand, the main limita-
tion is again that the trajectory representation is geared towards outdoor geometric
trajectories, and as a result proposes a semantic enrichment based on geographic in-
formation alone.

In [23], Bogorny et al. also adopt the conceptual model of trajectories of Spaccapi-
etra et al. [163] along with its semantic interpretation of a trajectory as a sequence of
alternating stop and move segments. Stops are here associated with important visited
places. However, the authors extend the model with some fundamental data mining
concepts in the form of new classes, attributes, and methods, in order to enable trajec-
tory mining functionality i.e. the extracting of frequent patterns, sequential patterns,
and association rules. More importantly, the authors define a semantic trajectory and
the pattern mining notion of support as follows:

Definition 2.2.9 (semantic trajectory)
A semantic trajectory is a finite sequence < I1, I2, ..., In > where each item Ik

is a stop or a move, and has a spatial dimension (a spatial feature name and type)
and a temporal dimension (a generalized time description).
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Definition 2.2.10 (support)
The support s(X) of a set of items X = {x1, x2, ..., xn} with respect to a set of

trajectories T is the fraction of trajectories in T that contain X

Definition 2.2.11 (trajectory frequent pattern & trajectory sequential pattern)
If X is a set and s(X) ≥ minSup then X is a trajectory frequent pattern with

respect to T . If X is a time-ordered sequence and s(X) ≥ minSup then X is a
trajectory sequential pattern with respect to T .

For example, a trajectory frequent pattern might be

{ReligiousP lace[weekend], Restaurant[weekend]})
whereas a trajectory sequential pattern might be

{Work[morning], ShoppingCenter[afternoon], Gym[afternoon]}).
The authors also define a trajectory association rule:

Definition 2.2.12 (trajectory association rule)
A trajectory association rule with respect to T , minSup, and minConf is an

implication of the form X =⇒ Y , where X and Y are two disjoint sets of items,
if s(X ∪ Y ) ≥ minSup and c ≥ minConf where s(X ∪ Y ) is the support of the rule

X =⇒ Y , and the confidence c is defined as s(X∪Y )
s(X) .

At the level of actual data storage, the authors represent a stop, a move, and
the three types of trajectory patterns, as database relations. Finally, their work is
closely related to [24], where Bogorny et al. propose a trajectory data mining query
language called ST-DMQL, and implement it as an extension of spatial SQL. The
main modeling limitation in both works, is that a semantic trajectory is considered
to aggregate the geographic information that is necessary for the analysis of the tra-
jectory, but can not represent other types of semantics not related to the geographic
space. For instance, a semantic trajectory example given in [24] is

Airport [08:00–08:30] → IbisHotel [09:00–12:00] → EiffelTower [13:00–15:00]
→ LouvreMuseum [16:00–18:00],

and another example given in [24] is

Home [8PM–7AM] → Work [8AM–1PM] → ShoppingCenter [2PM–5PM] →
Gym [6PM–7PM].

However, these trajectories are practically almost symbolic, because the name
of a place alone is not informative enough to justify viewing the trajectory from a
semantic perspective, unless more information about those places enters the model.

2.2.2.3 A Conceptual Framework For Movement Analysis

In [14, 15], Andrienko et al. propose a generic conceptual modeling framework aim-
ing to connect the analysis of movement data with the spatiotemporal context of
movement. The two concepts are illustrated in Figure 2.5 and defined as follows:

Definition 2.2.13 (movement)
A movement is the change of the spatial position(s) of one or more moving

objects over time.
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Figure 2.5: A “Venn-like” diagram reflecting the components of the spatiotemporal con-
text (gray) of movement data (white), according to the modeling framework of [14, 15].

Definition 2.2.14 (spatiotemporal context / environment)
The spatiotemporal context of movement is the physical space and time (along

with their properties) where it takes place, together with the objects and events that
co-exist in that space and time. It is fundamentally composed of the set of locations S
(representing space), the set of time units T (representing time instants or intervals),
and the set of objects O (representing physical and abstract entities)

Locations in specific may be assigned arbitrary geometric shapes (e.g. points,
lines, areas, volumes), whereas objects are categorized based on their spatial and
temporal properties into:

• spatial objects (having a particular position in space at any moment of their
existence);

• temporal objects / events (having a particular position in time, i.e. a limited
time of existence with respect to the time period of observation);

• spatial events (having a particular position in space and time);

• moving objects / movers (having a changing spatial position over time);

• spatiotemporal objects (i.e. spatial events and movers).

Additionally, the authors introduce the notion of a movement event :

Definition 2.2.15 (movement event)
A movement event (t, s) (where t ∈ T and s ∈ S) is an elementary or composite

- i.e. consisting of consecutive lower level ones - spatial event involved in a movement.
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Hence, under the modeling framework of Spaccapietra et al., movement essentially
becomes a collection of so-called spatial events, represented by the mapping τ : T → S
for a single mover or µ : OxT → S for multiple movers. Moreover, the authors define
the concept of presence dynamics and spatial configuration as follows:

Definition 2.2.16 (presence dynamics)
Presence dynamics is a dynamic (time-dependent) attribute of a location which

characterizes it in terms of the objects that are present in it (T → P (O))

Definition 2.2.17 (spatial configuration)
Spatial configuration is an attribute of a time unit which characterizes it in

terms of the objects existing in it and in terms of their spatial positions (O → S).

Elements of the three sets S, T , O comprising the spatiotemporal context of
movement may have properties represented as attribute values, which in turn can
involve other elements of S, T , O. If its values are not purely spatiotemporal, then
an attribute is said to be a thematic attribute. Thematic attributes of objects and
locations are further distinguished into static ones and dynamic ones, depending on
whether they change over time or not. Dynamic thematic attributes of movers may
be derived from trajectories (e.g. speed, direction) and dynamic thematic attributes
of locations may be derived from presence dynamics (e.g. counts of the objects,
statistics of the objects’ attributes or time spent in the locations).

Furthermore, each movement event may be linked to one or more elements of the
spatiotemporal context via relations. The framework models the occurrences of such
relations as spatial events. Temporal relations are categorized into binary topological,
ordering, and distance relations, while spatial relations are categorized into binary
topological, directional and distance relations. Topological and ordering relations can
be modeled as predicates PxQ → {true, false}. Distance and directional relations
can be modeled either quantitatively by numeric functions PxQ→ [0,∞] or qualita-
tively by application-specific predicates (e.g. “near”, “north”). The aforementioned
types of relations can also be used to build more complex ones such as density re-
lations (e.g. clustering, dispersion), arrangement relations (e.g. temporal sequence,
spatial alignment), and spatiotemporal relations (i.e. movement patterns such as
approaching, entering, following, concentrating). As a result, under the framework
of Andrienko et al. the trajectories of movers are linked with locations via spatial
relations and linked with times via temporal relations.

The difference between [14] and [15] lies only in the use cases used to illustrate
the conceptual framework: in [14] the indicative trajectory consists of a sequence of
geographically referenced photo taking events by a single Flickr user, whereas in [15]
it consists of a sparse sequence of positions of wildlife animals. It is worth noting
that, even though they pertain to completely different application domains, both use
cases concern outdoor trajectories, which indicates the proclivity of the model towards
outdoor settings. Despite this, the representation of the movement phenomenon is
broken down into its most basic components in a very detailed manner, and all are
interconnected thanks to the concepts of spatial events and relations. This makes the
framework of Andrienko et al. one of the most exhaustive ones, in terms of linking
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all of the fundamental constituting elements of a trajectory together, and in principle
applicable to indoor trajectories.

2.2.2.4 Annotation-based Model Used in SeMiTri Framework

In [190], Yan et al. propose a modeling and computing platform for inferring semantic
abstractions from raw GPS data. Their goal is to take a step towards bridging the
gap between semantic trajectory modeling and conventional data mining and machine
learning, by forming semantic trajectories from low-level GPS and other real-life
mobility feeds such as cellular location data. The proposed platform is based upon
a so-called hybrid trajectory model, which adopts its semantic concepts mainly from
the works of Yan et al. [189] and Spaccapietra et al. [163]), and is comprised of three
submodels:

• The data model encapsulates the low-level representation of trajectories as de-
rived from the characteristics of raw mobility data, based on temporal (e.g.
hourly/daily/monthly) or spatial (e.g. geo-fenced) trajectory division points.

• The conceptual model encapsulates a mid-level semantic abstraction of trajec-
tories as series of non-overlapping episodes of stops and moves.

• The semantic model encapsulates the “spatio-semantic” behavior of trajectories
via semantic annotations of their episodes or of themselves as a whole.

In [187], Yan et al. present a closely related application-independent framework,
called SeMiTri, for the semantic enrichment of raw GPS trajectories in the form of
annotations. In [188], Yan et al. further extend the trajectory model of SeMiTri.
Although the main goal of SeMiTri is to support multilevel trajectory abstractions, it
also explores the annotation algorithms that take into account, not only the spatial
and temporal properties of the raw data stream or its derived features (e.g. velocity,
acceleration), but also contextual geographic and application data (e.g. road types,
transport networks).

This is evident in the “shopping” and “traffic” semantics in the following indicative
semantic trajectory example of [190]:

home
traffic→ office

traffic→ market
traffic→ home,

which also reveals the model’s focus on outdoor trajectories. The same trajectory
example is refined in [188] by adding the transportation means semantics:

home
road(bus)→ office

train(metro)→ market
pathway(walk)→ home.

Likewise, the semantic trajectory example given in [187]:

(home,−9am,−)→ (road, 9am−10am, on−bus)→ (office, 10am−5pm,work)
→ (road, 5pm− 5.30pm, on−metro) → (market, 5.30pm− 6pm, shopping) →
(road, 6pm− 6.20pm, on− foot) → (home, 6.20pm−,−)

also includes transportation means semantics, whereas the similar semantic tra-
jectory example offered in [188]:

(Begin, home,−9am,−) → (move, road, 9am− 10am, on− bus) →
(stop, office, 10am− 5pm,work) → (move, road, 5pm− 5.30pm, on−metro) →
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(stop,market, 5.30pm− 6pm, shopping) → (move, road, 6pm− 6.20pm,walking) →
(End, home, 6.20pm−,−),

contains explicit annotations of each episode’s basic type (“stop” or “move”).

Furthermore, event examples such as “Harry just reached office”, “Sally is shop-
ping in the Owings Mills mall”, and “Dave is stuck in traffic” reveal how the authors
envisage trajectory semantics.

As made apparent by all of the above examples, the semantic content captured
by SeMiTri constitutes an upgrade from previous related works reviewed, where it
was limited to a very thin layer of “stop-move” and “named place” semantics. More
precisely, the works of Yan et al. adopt a “stop-move” segmentation into episodes
inspired by Spaccapietra et al. in [163] but then each episode is potentially enhanced
with additional semantics, integrated from third party geographic sources such as
geographic databases or social networks. Let us now look more closely at the formal
concepts used to make this possible.

In [188, 190] a GPS feed and a spatiotemporal trajectory are defined as follows:

Definition 2.2.18 (GPS feed)
A GPS feed is a raw sequence G = {p1, p2, ..., pm} of spatiotemporal points

pi = (xi, yi, ti) of a moving object.

Definition 2.2.19 (spatiotemporal trajectory)
A spatiotemporal trajectory Tspa is a cleaned subsequence of a GPS feed G that

represents a meaningful unit of movement and corresponds to a given time interval
[tbegin, tend] during which it does not contain any significant spatial or temporal gap.

In [187], a raw trajectory is defined as follows:

Definition 2.2.20 (raw trajectory)
A raw trajectory is a sequence T = {Q1, ..., Qm} of spatiotemporal points Qi =

(x, y, t) each described as a (longitude, latitude, timestamp) triple.

The conceptual model as presented in [187] and [188] enables the low-level enrich-
ment of the location feed with semantic places:

Definition 2.2.21 (semantic place)
A semantic place spi ∈ P = Pregion ∪ Pline ∪ Ppoint is a meaningful geographic

object having an extent that is either a region (spi ∈ Pregion = {r1, r2, ..., rn1} where
each ri represents a park, an administrative region, a residential land use cell, or any
other possible Region Of Interest [ROI]), or a line (spi ∈ Pline = {l1, l2, ..., ln2} where
each li represents a jogging path, a highway, a road, or any other possible Line Of
Interest [LOI]), or a point (spi ∈ Ppoint = {p1, p2, ..., pn3} where each pi represents a
bar, a restaurant, a shopping mall, or any other possible Point Of Interest [POI]).

In [187], an episode is defined as follows:

Definition 2.2.22 (episode)
An episode is a maximal trajectory subsequence such that all its spatiotemporal

positions comply with a given predicate that bears on the spatiotemporal positions
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and/or their annotations (e.g. based on speed, transportation means, time periods,
traveled zones)

Whereas, in [188, 190] an episode is similarly defined as follows:

Definition 2.2.23 (episode)
An episode is defined as an abstraction of a subsequence of a spatiotemporal

trajectory’s points {pei1 , ..., p
ei
k } that are highly correlated with respect to some iden-

tifiable spatiotemporal feature (e.g. velocity, acceleration, orientation, density, time
interval).

Either way, the conceptual model enables the automated structuring of trajecto-
ries into episodes based on different algorithms and techniques. Hence, in [187], a
structured semantic trajectory is defined as follows:

Definition 2.2.24 (structured semantic trajectory)
A structured semantic trajectory is a sequence of episodes SST = {ep1, ep2, ..., epm},

where each episode corresponds to a subsequence of the original trajectory epi =
(sp, timein, timeout, A), sp ∈ P is a link to a semantic place, timein and timeout
are respectively the time that the moving object enters and exits sp, and A is a set
of other annotations associated to the whole episode (e.g. the activity of a stop, the
transportation means of a move).

Similarly, in [188, 190] a structured trajectory is defined as follows:

Definition 2.2.25 (structured trajectory)
A structured trajectory is a sequence of episodes Tstr = {e1, e2, ..., em} where

each episode is denoted ei = (timefrom, timeto, da, rep), timefrom is the instant of
the first point of the episode, timeto is the instant of the last point of the episode, da
is the episode’s defining annotation (i.e. the spatiotemporal characteristics shared by
all the spatiotemporal points of the episode), and rep is the episode’s spatiotemporal or
spatial representation (i.e. a sequence of the episode’s points or a spatial abstraction
of those such as its two extremity points, or its center point, or its bounding rectangle).

In [188, 190], a semantic trajectory is defined as follows:

Definition 2.2.26 (semantic trajectory)
A semantic trajectory is a structured trajectory enhanced with semantic annota-

tions of its episodes Tsem = {se1, se2, ..., sem} where each semantic episode is denoted
sei = (da, spi, t

spi
in , t

spi
out, tagList), the semantic position spi is a real-world geographic

object (e.g. a building, a road segment, an administrative region) or one of its char-
acteristics (e.g. its type) and represents the episode’s location at the semantic level,
tspiin and tspiout are the incoming and outgoing timestamps for the trajectory entering
and leaving spi respectively (approximated by the episode’s timefrom and timeto val-
ues), and tagList is a list of additional semantic episode annotations (e.g. activity
performed, transportation mode).

In [187], a semantic trajectory is defined as follows:
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Definition 2.2.27 (semantic trajectory)
ST = {Q′1, Q′2, ..., Q′m} as a raw trajectory whose spatiotemporal positions Q′i =

(x, y, t, A) have been complemented with associated annotations A that are links to
semantic places that the moving object visited.

From the above definitions, it can be noticed that [188, 190] use the term “seman-
tic trajectory” differently in comparison to [187]. However, despite such terminology
differences, and despite the more recent experimental results of [188], all three works
share an almost identical conceptual trajectory model and the same two ways to se-
mantically enhance a spatiotemporal/raw trajectory: either at the level of individual
spatiotemporal points or at a higher level of grouped spatiotemporal points called
episodes. The difference between the two is precisely the one already highlighted in
section 2.2.1.4 and illustrated in Figure 2.4.

2.2.2.5 Annotation-based Model Refined

In [162], Spaccapietra et al. define movement as the timestamped changes in the spa-
tial position of a moving object. They also define a movement track as the sequence
of spatiotemporal positions that contains the evolving position of a moving object,
while raw data are defined as the captured data that represent such a movement track,
typically in the form of (instant, point) pairs. Temporal gaps in the movement track
greater than the sampling rate of its raw data, are said to be either accidental and
called holes, or intentional and called semantic gaps. A similar concept called invisi-
bility duration has also been proposed by Teng et al. in [168] to address uncertainty
in location information.

Let us proceed with the main conceptual modeling definitions proposed by [162].

A raw trajectory is defined as follows:

Definition 2.2.28 (raw trajectory)
A raw trajectory is a tuple (trajectoryID, movingObjectID, track: LISTOF po-

sition(instant, point)).

An application data repository is defined as follows:

Definition 2.2.29 (application data repository)
An application data repository is the external sources (e.g. databases, GIS, web

pages) that offer information (e.g. goal, activity, or transportation means of that
part) that can be attached to parts of the movement track.

An annotation is defined as follows:

Definition 2.2.30 (annotation)
An annotation is any (captured or inferred) additional data that enrich the

knowledge about a trajectory or any part of a trajectory: an attribute value, a link
to an object, or even a complex value composed of both attribute values and links to
objects.



28 State of the Art in Trajectory Data Modeling

Next, with an episode defined verbatim from [187]2, a trajectory is defined as
the segments of an object’s movement that are of interest for a given application,
whereas a trajectory interpretation is defined as a list of episodes constituting a tra-
jectory. Thus, in the modeling approach proposed by Spaccapitera et al., a semantic
trajectory is understood as a trajectory enhanced with annotations and/or one or
several alternative interpretations, and is more formally defined as follows:

Definition 2.2.31 (semantic trajectory)
A semantic trajectory is a tuple ( trajectoryID, objectID, trajAnnotations, track:

LISTOF position (t, p, posAnnotations), semanticGaps: LISTOF gap (t1, t2), inter-
pretations: SETOF interpretation (interpretationID, episodes: LISTOF episode (t′1,
t′2, type, episodeAnnotations)) )

In the above semantic trajectory definition, trajAnnotations is the (possibly empty)
set of annotations associated to the trajectory as a whole (e.g. goal, cause, du-
ration, length), track is the (temporally ordered according to ascending t) list of
spatiotemporal positions of the moving object, p is a spatial element (assumed to be
a 2D/3D-coordinate point), posAnnotations is a (possibly empty) set of annotations
associated to a spatiotemporal position (the first being Begin and the last being
End), semanticGaps is a (possibly empty) list of semantic gaps in the trajectory,
episodes is the list of episodes reflecting a particular interpretation of the trajectory,
type is the type of the episode (e.g. “stop”, “move”, “playing”, “eating”, “resting”),
and episodeAnnotations is the (possibly empty) set of annotations associated to the
episode.

Interestingly, there can be multiple alternative interpretations of the same trajec-
tory, and therefore multiple corresponding segmentations of it into episodes. This is
actually one of the main differences between the semantic trajectory model proposed
by [139, 162] presented here, and the one proposed by [187, 188, 190] previously re-
viewed. In other words, if we take any semantic trajectory and find two different (no
matter how similar) meaningful ways to divide it into episodes, according to Spac-
capietra et al. we are still left with one semantic trajectory, whereas according to Yan
et al. we end up with two different semantic trajectories. The repercussions of this
modeling viewpoint choice have never been considered to the best of our knowledge.

Apart from the mild refinements in the core trajectory modeling part, the dif-
ference between [162] and the works of Yan et al. lie in the modeling of trajectory
behaviors. Spaccapietra et al. define a trajectory behavior/pattern by its Boolean
predicate p(T ), which - based on some logic formalism - indicates if a given trajec-
tory T complies with the corresponding behavior or not. More specifically, a trajectory
behavior predicate is said to denote some distinguishable spatial (e.g. “CrossAreaA”,
“Co-location”, “Concentration”), temporal (e.g. within a certain time interval, or
starting before a certain time), spatiotemporal (e.g. “Convergence”, “Expansion”,
“Progression”, “Flock”, “Sequence”, “TemporalCross”), or semantic (e.g. “Shop-
ping” defined as the total duration of stops in places of type “Shop” being greater
than a certain percentage of the total duration of stops) characteristic.

2As a maximal subsequence of a semantic trajectory, such that all its spatiotemporal positions
comply with a given predicate, bearing on the spatiotemporal characteristics of the positions.
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Behaviors can also be defined as any combination of such characteristics. For
example, a “TouristGroup” can be defined as any “Flock” for which most stops are
in places of type “Museum”, or “Monument”, or “SouvenirShop”, or “Restaurant”.

Finally, behaviors are classified into:

• global behaviors, whose predicates constrain the whole trajectory;

• local behaviors, whose predicates constrain only a part of the trajectory;

• simple behaviors, whose predicates consist in a set of conditions connected by
the regular Boolean operators AND, OR, NOT;

• complex behaviors, whose predicates consist in a set of conditions connected by
the Boolean operators and by at least one sequence operator;

• individual behaviors, whose predicates p(T ) need to be checked independently
against any single trajectory T (e.g. “Tourist” behavior);

• collective behaviors, whose predicates p(S) need to be checked simultaneously
against a non-empty set of trajectories S of different moving objects (e.g.
“Flock” behavior).

Clearly, the notion of a complex behavior proposed by Spaccapietra et al. largely
coincides with that of a sequential pattern, that is used more broadly and will be
examined in detail in section 4.3. Also, in between the last two types, we find behav-
iors that characterize a single trajectory but with respect to a group of trajectories
(e.g. “Leadership” behavior). Finally, the authors refer to a priori known groups of
trajectories as groups and to a posteriori identified groups of trajectories as cohorts.

In their survey work of [139], Parent et al. retain the model proposed by Spac-
capietra et al. in [162], but refine some of the definitions and add a few new ones.

Definition 2.2.32 (raw trajectory)
A raw trajectory is a tuple (trajectoryID, movingObjectID, trace: LISTOF po-

sition(instant, point, δ)) where δ represents a (possibly empty) list of additional raw
data (e.g. speed, direction).

In the above definition of a raw trajectory, an improvement over the model of [162]
is the inclusion of the element δ, which serves to capture additional attribute-like data.

Definition 2.2.33 (“sound” raw trajectory)
A “sound” raw trajectory is a clean (i.e. noiseless), accurate (i.e. map-

matched), and compressed (i.e. compact) trajectory.

The authors also overview common approaches for deriving “sound” raw trajec-
tories from raw data, which is essentially a trajectory data preprocessing layer.

Definition 2.2.34 (semantic trajectory)
A semantic trajectory is a tuple (trajectoryID, movingObjectID, trajectoryAn-

notations, trace: LISTOF position (instant, point, δ, positionAnnotations), semantic-
Gaps: LISTOF gap (t1, t2), segmentations: SETOF segmentation (segmentationID,
episodes: LISTOF episode (t3, t4, definingAnnotation, episodeAnnotations))).
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In the above definition of a semantic trajectory, at least one of trajectoryAnnotations
or segmentations must be non-empty, while semanticGaps are optional. When com-
pared to Definition 2.2.27, various differences in terminology (e.g. “track” becomes
“trace”, “interpretation” becomes “segmentation”, “type” becomes “definingAnno-
tation”, “application data repository” becomes “contextual data repository”) can be
noticed, but more important is the addition of attribute data δ. Other than that, the
concept of a semantic trajectory remains the same in the two works.

With respect to the concept of a trajectory behavior/pattern, Parent et al. retain
its definition from [162] as a set of distinguishing characteristics that identifies a
particular bearing of a moving object (or of a set of moving objects), and claim that
a trajectory behavior may be used as a criterion for segmenting a trajectory into
episodes i.e. homogeneous meaningful segments. Lastly, they distinguish between an
individual trajectory behavior defined as a trajectory behavior whose predicate p(T )
bears on a single trajectory T (e.g. “Tourist”), and a collective trajectory behavior
defined as a trajectory behavior whose predicate p(S) bears on a non-empty set of
trajectories S (e.g. “Flock”).

In conclusion, [162] and [139] define meaningful abstractions in an attempt to
form a semantic counterpart to raw GPS records. Compared to the models in [187,
188, 190], the major difference in their proposal is that a semantic trajectory is not
annotated either at the level of points or at the level of episodes, but potentially at
both levels at the same time. Also the semantic gaps is a novel feature.

2.2.2.6 CONSTAnT: Conceptual Model of Semantic Trajectories

In [25], Bogorny et al. present a conceptual semantic trajectory data model named
CONSTAnT. It is inspired by the semantic trajectory model proposed by Parent et al.
in [139] and complements it with an integrated conceptual schema, shown in Figure
2.6. Thus, it tries to organize the semantic information into concepts and relations,
instead of using annotations like the semantic trajectory model of Yan et al. [187].

First, the authors define a point p as a tuple (x, y, t) where x, y are spatial
coordinates and t is the timestamp in which the point was collected. Given this, a
trajectory and a subtrajectory are defined as follows:

Definition 2.2.35 (trajectory)
A trajectory T is an ordered list of points < p1, p2, ..., pn > where pi = (xi, yi, ti)

and t1 < t2 < ... < tn.

Definition 2.2.36 (subtrajectory)
A subtrajectory s of a trajectory T is an ordered list of points < pk, pk+1, ..., pk+l >

where pi ⊂ T , k ≥ 1, k + l ≤ n.

Contextual information (e.g. moving object temperature, place temperature,
weather, transportation means, movement objective, activity) can enrich a trajec-
tory into becoming a semantic trajectory, which is defined as follows:

Definition 2.2.37 (semantic trajectory)
A semantic trajectory T defined is a tuple (tid, oid, S, g, d), where tid and oid
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Figure 2.6: The class diagram of the CONSTAnT conceptual model taken from [25].

are the trajectory and moving object identifiers respectively, S is a non-empty list of
semantic subtrajectories, g is the (required) general goal of the trajectory (the rea-
son/objective of the movement), and d is the device that generated the trajectory (i.e.
the apparatus that collected the sequence of points).

In the above definition, it is worth noticing that g is required and S must contain
at least one semantic subtrajectory, which means that a semantic trajectory must
have exactly one goal and at least one meaningful part.

Next, a semantic subtrajectory is defined in a rather different way:

Definition 2.2.38 (semantic subtrajectory)
A semantic subtrajectory s ⊂ T is a tuple (tid, sid, P , G, M , B, startT ime,

endT ime), where P is a list of consecutive semantic points, G is a set of goals of
the subtrajectory, M is a set of transportation means, B is a set of behaviors, and at
least one of G, M , B must be non-empty.

Thus, a semantic subtrajectory must correspond at least to one goal or one trans-
portation means or one behavior, and potentially to multiple ones. This bears the
question of how Bogorny et al. define the goal of a trajectory:

Definition 2.2.39 (goal)
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A goal g is a triple (id, name, activity), where name is the objective that the
moving object wants to achieve (e.g. “going to the gym”, “work”, “eat”, “having
fun”), and activity is what the object is going to do (e.g. “going to work”, “reading
a paper in the office”, “teaching”, “visit a city”).

As it is obvious from its definition, a goal can be related to an activity, or some-
times even be an activity itself (e.g. “jogging”, “eat something”, “watch a movie”).

Finally, a semantic point is defined as follows:

Definition 2.2.40 (semantic point)
A semantic point p ⊂ s is a tuple (pid, x, y, t, V , L, sid), where x, y are

geographic coordinates collected at time t, V is a set of environments related to where
the point was collected, L is a set of places where the point is located, and at least one
of V , L must be non-empty.

In relation to the above definition, an environment v ∈ V is defined as follows:

Definition 2.2.41 (environment)
An environment is a triple (name, type, value), where name is the name of an

environmental attribute (e.g. air temperature, moving object temperature, humidity,
pollution degree), type is whether the attribute refers to external or internal to the
object information, and value is the value of the attribute.

Definition 2.2.42 (event)
An event e is defined as a tuple (l, name, type, startT ime, endT ime), where

l is a place, name is the name of the event, and type is the kind of the event.

Two examples of events given by the authors are, a musical show on May 13th,
2012 from 8 to 11 p.m. at Main Square in the city of Madrid, and a football match
at Bernabéu Stadium on May 14th, 2012 from 4 to 6 p.m..

The model also adopts from [139] the definition of a trajectory behavior, and each
semantic subtrajectory, as well as the whole semantic trajectory, may be related to
one or several behaviors during their lifetime.

Finally, the model also adopts from [139] the distinction between individual - here
called single - and collective behaviors. However, it extends the latter to also include
patterns defined by multiple trajectories of the same moving object. It also further
classifies collective behaviors into:

• aware behaviors, in which at least one trajectory is affected by one or more
other trajectories (e.g. “chasing” behavior).

• non-aware trajectories, in which when trajectories behave similarly by coinci-
dence and not intention (e.g. “highway driving”).

Just like the annotation-based conceptual models proposed by Yan et al. and
Parent et al., CONSTAnT primarily attempts to broaden the scope of semantic in-
formation included in the trajectory model, beyond just stops and moves. In place
of episodes, it proposes the notion of semantic subtrajectories. Unlike those works
however, it does not adopt a generic annotation-based approach to representation;
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instead it tries to walk the fine line of specifying semantics, enough so that it better re-
flects the meaning of a movement, but less than a domain-specific ontology would do.
For example, CONSTAnT’s concepts have stricter semantic requirements in compar-
ison to the aforementioned models: a semantic trajectory requires a goal, a semantic
subtrajectory requires either a goal, a behavior, or a transportation means, an event
requires an event type, a goal requires a related activity, etc. The downside is of
course that there can be applications where these restrictions render the model unfit.
For example, a museum exhibition can be visited without any overarching goal other
than the (tautological) general goal of seeing the exhibit(s), but still be comprised of
parts having their own goals such as avoiding congested rooms or resting.

2.2.2.7 Symbolic Trajectory Model used in SECONDO DBMS

In [77], Güting et al. propose a generic trajectory model to capture a wide range of
meanings in an originally geometric trajectory. Mentioned examples include, under-
standing that a tourist is visiting the Louvre or having dinner at a restaurant (instead
of just being at some geographic coordinates in France), understanding that a car was
in a traffic jam during a certain period, understanding an animal’s migration behav-
ior, understanding that a bird is flying in a swarm, understanding whether a person
moving around is walking, going by bicycle or using a bus, and others. Hence, the
focus is once again on outdoor trajectories. However, unlike previous trajectory mod-
eling works using the adjective “semantic”, Güting et al. prefer to characterize their
modeled trajectories as “symbolic”. In our view, this adjective would be more fitting
for earlier trajectory models whose inclusion of semantic information was absolutely
minimal (e.g. meaningful places).

More specifically, they define a symbolic trajectory as follows:

Definition 2.2.43 (symbolic trajectory)
A symbolic trajectory is a temporally ordered sequence of pairs < (i1, l1), ..., (in, ln) >

where ij is a time interval (disjoint from others) and lj is a time dependent label i.e.
a short character string.

For example, a semantic trajectory might be:
<([8:30-8:45], walk), ([8:45-9:13], train), ([9:13-9:19], walk)>

The authors claim that, although symbolic trajectories can be used on their own,
if they are combined with geometric trajectories then their labels essentially become
the annotations of the geometric trajectory. Accordingly, they distinguish three kinds
of trajectory annotations reflecting:

• semantics obtained from data mining (e.g. transportation modes, activities);

• relations to the spatiotemporal environment (e.g. temperature, weather, states,
districts, cell towers);

• properties derived directly from the raw geometric trajectory (e.g. direction,
speed, acceleration, altitude).
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Unlike previous works reviewed in this section, [77] focuses more on the database
querying aspects rather than the conceptual modeling ones, and actually also proposes
a language for pattern matching and rewriting of symbolic trajectories.

A label is thus also modeled as an abstract data type called moving label or mlabel,
and integrated into the data type framework of the SECONDO prototype DBMS for
moving objects [75], whose generic operations it inherits. Similarly, moving places
or mplaces are defined in the framework. Also, a pattern is defined as a sequence
containing the same type of pairs that make up a symbolic trajectory (called units)
and wildcards that match any sequence of units, as well as regular expressions over
such elements. The corresponding pattern language proposed has been demoed by
Valdés et al. for the case of Aircraft Traffic Control data composed of timestamped
aircraft position and altitude recordings in [173]. Finally, in [172], Valdés et al.
extend the flexibility and expressiveness of the pattern language by changing its
semantics, making it fit for analyzing large datasets having any number of time-
dependent attributes of different types.

2.2.2.8 MASTER: Multiple Aspect Trajectory Representation

In [67], Ferrero et al. envision a multiple aspect representation of trajectories, mo-
tivated by the fact that, even though trajectories are gradually being represented
as more complex data types bearing several dimensions, there has never been any
concentrated effort to tackle multiple aspect trajectory data analysis and mining. By
aspect the authors actually refer to the main data dimension by which the trajectory
is being interpreted, be it a spatial / temporal dimension (e.g. “raw data” aspect) or
a semantic dimension (e.g. “stop” aspects, “transportation means” aspect, “activi-
ties” aspect, “weather conditions” aspect), or perhaps a combination of them. They
argue that such a viewpoint allows analytical queries to concern multiple aspects and
dimensions at once, and as a result help answer questions such as: “Which trans-
portation means do individuals use when it is raining?”, “Do groups of friends visit
specific places only by bus and with good weather?”, “How do weather conditions
affect traffic jams?”, “Which is the transportation pattern at a beach town on a rainy
weekend and a sunny weekend?”.

Under this type of modeling, an aspect may encompass multiple data dimensions:
space, time, semantics, or any of their combinations. Let us relate these notions to
some query examples given in [67]: “the name and location of the stops with duration
above 1 hour” refers to one aspect (stops) and three dimensions (stop location, stop
duration, stop name), whereas “the average speed of the moving object when traveling
by car when it is raining” refers to three different aspects (raw data, transportation
means, weather conditions).

According to Ferrero et al., a typical semantic trajectory example in the related
literature would be:

Hotel[8:00,10:00] → Mall[13:00,19:00] → Restaurant[20:00,21:30].

But based on their proposed model, the above representation only encodes the
trajectory’s stops aspect, which encompasses a semantic dimension (the type of place)
and a temporal dimension (the duration of stay).
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The same trajectory may also be represented using a transportation means aspect:

On foot[8:00,10:00]
by car→ On foot[13:00,19:00]

by bus→ On foot[20:00,21:30].

Or alternatively, it can be represented by incorporating a weather conditions
aspect:

Rainy[8:00,13:00] → Sunny[13:00,19:00].

In general, the main idea presented in [67] is that trajectories have several aspects
to be considered in their analysis. Then, this serves as motivation for Mello et al.
to propose MASTER [133], a conceptual semantic trajectory model, converted into a
logical RDF Schema and implemented using a middleware which stores RDF data into
multiple NoSQL databases. MASTER focuses on the heterogeneity of the semantic
information of trajectories by reintroducing the notion of an aspect and introducing
that of its type:

Definition 2.2.44 (aspect)
An aspect asp = (desc, SAT ) is a real-world fact relevant to the trajectory data

analysis, where:

• desc is the aspect description;

• SAT = {sat} is a set of aspect types that the aspect may hold;

• sati = (asptype k, ATVk), sati ∈ SAT ;

• an aspect type asptype k;

• a non-empty set ATVk = {a1 : v1, a2 : v2, ..., an : vn} of attribute-value pairs so
that each pair (ai : vi) ∈ ATVk is an instantiation of a property ai of asptype k
with an atomic or multivalued value vi.

A trajectory may have numerous aspects, complex contextual data dimensions of
heterogeneous form such as numbers, ranges, text, geometries (e.g. the shape of a
hurricane at a specific time instant), complex objects, etc. Of course, the specific
aspects to be included in the representation depend on the application. To illustrate
this, the authors claim that a tourism example might include, visited POIS along
with their categories, prices, and reviews, transportation means, social status of the
tourist, weather conditions, general mood or opinions about the town or local services,
etc. A smart city example may include the aspects of home and work, working hours,
transportation mode, social status, weather condition, etc. A bird migration example
may include regions where birds fly, rest, or eat, relationships with other species, the
temperature, the types of vegetation, etc.

Definition 2.2.45 (aspect type)
An aspect type asptype = (desc,ATT, aspsupertype) is a category of aspects that

is composed of:

• a description desc of the aspects,

• a set of attributes ATT = {a1, a2, ..., ak} that hold their properties,
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• a (possibly empty) supertype aspect aspsupertype

Aspect types act as the metadata of aspects, akin to a semantic taxonomy. For ex-
ample, a “weather condition” aspect type may contain attributes like “temperature”,
“wind speed”, “climate”.

For example, a “train” aspect belongs to a “transportation mode” aspect type, and
a “rain” aspect belongs to a “weather condition” aspect type. An aspect type has a
set of attributes and it may also be a subtype of a more general aspect type, allowing
the modeling of an aspect type subtypeOf hierarchy (e.g. POI, accommodation,
hotel).

As another mentioned example, an “Il Campanario Resort” aspect belongs to a
“hotel” aspect type which has the attributes “geographic coordinates”, “address”,
“stars”, “types of rooms”, and “facilities”. Hence, this aspect will have correspond-
ing attribute-values such as “geographic coordinates”:-27.439771,-48.500802, “ad-
dress”:Buzios Ave., Florianopolis, “stars”:5, “types of rooms”:{suite, suite junior},
“facilities”:{gym, swimming pool, restaurant, bar, beach service}.

Similarly, a “happy” aspect belongs to a “mood” aspect type which has the at-
tributes “emoticon” and “intensity”. Hence, it has the attribute-values: “emoticon”:
:-D, “intensity”: high.

Moreover, an aspect may hold several real-world meanings. An indicative example
given in [133] is the “Sao Paulo” aspect which might mean the “town”, the “state”, the
“soccer team” or even the “holy Sao Paulo”. Thus, the notion of semantic meaning
is defined to give the context of the aspect:

Definition 2.2.46 (semantic meaning)
A Semantic Meaning SM = (asp, asptype) is an association between an aspect

asp and an aspect type asptype, so that the latter belongs to former’s aspect types.

To highlight the general scope of the semantic information that might be of interest
to trajectories, the authors mention, data about the place (e.g. temperature, air
pollution, noise, luminosity), about the object that is moving around or inside this
place (e.g. the heart rate, the emotional status, blood pressure, sleeping stages).

Given all of the above concepts, a multiple aspect trajectory is defined as follows:

Definition 2.2.47 (multiple aspect trajectory)
A multiple aspect trajectory is a tuple mat = (P, S LTA,mo, desc) where:

• P = <p1, p2, ..., pn> is a sequence of points pi = (xi, yi, ti, S V A) each consist-
ing of timestamped (x, y) coordinate points and a (possibly empty) set
S V A = {SMva} of volatile aspects (i.e. changing semantic meanings),

• S LTA = {SMlta} is a set of long term aspects (i.e. not changing semantic
meanings),

• mo = (motype, desc, S PA) is the moving object consisting of a description
desc, a set of (possibly empty) permanent aspects S PA, being S PA = {SMpa},
a set of semantic meanings, and a type motype that categorizes it,
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Figure 2.7: The conceptual data model of the multiple aspect modeling approach of [133].

• desc is an aspect description.

Noticeably, volatile aspects vary during a multiple aspect trajectory and are thus
associated with each trajectory point (e.g. stops, heart rate), whereas long term
aspects remain the same and are thus associated with the entire trajectory, and per-
manent aspects remain unchanged even across different trajectories since they are
associated with the moving object and not with the movement.

Subtrajectories are not defined in the model as the authors opt to leave any type
of granularity representation to the analysis process (e.g. as a segmentation step).
However, MASTER does define a spatial feature as a relevant PoI not spatially related
to any trajectory point (e.g. a church between two PoIs), and an event as a happening
at a spatial feature (thus again not related to the trajectory itself but perhaps relevant
to the analytical query) for a valid period.

Finally, Mello et al. focus on the concept of a moving object relationship that is
actually neglected by most other related modeling works. They define it as follows:

Definition 2.2.48 (moving object relationship)
A Moving Object Relationship mor = (mo1,mo2, S RA) is a relevant associa-

tion between two moving objects mo1 and mo2 that holds a (possibly empty) set of
relationship aspects S RA, where S RA = {SMra} is a set of semantic meanings.

2.2.2.9 STriDE: Semantic Trajectories in Dynamic Environments

In [45], Cruz et al. propose one of the very few trajectory models oriented both
towards indoor environments and towards the semantic aspects of movement. They
introduce it in the form of a geographic ontology-based conceptual trajectory model
called Semantic Trajectories in Dynamic Environments (STriDE ), focusing on the
representation of moving objects in dynamically changing built environments. By
dynamic, the authors refer to environments that include moving objects and that
may change in shape, size, or attributes (e.g. an entry gate becomes closed, a simple
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room becomes a meeting room). STriDE actually extends the Continuum model
proposed by Harbelot et al. [79], which represents dynamic entities using ephemeral
timeslices.

The Continuum model proposed in
[79].

The extension of the Continuum model
proposed in [45].

Figure 2.8: Structured (left) or ad-hoc (right) representation of a hierarchical space.

A timeslice is composed of an object identity, a set of object (alphanumeric)
properties, a geometric spatial representation, and a valid period. Any time there is
a change either in the identity, or in the geometry, or in the properties, a new timeslice
is created. Thus, filiation relationships between consecutive timeslices associated with
the same entity, are used to represent the entity’s spatial or semantic evolution while
preserving its identity. More generally, filiation relationships represent the succession
between different representations of the same object at different instants of time,
thereby being also useful for representing divisions or mergers of entities. Moreover,
ontological taxonomies enable the association of the same timeslice to concepts at
different levels of spatiosemantic granularity.

In STriDE in particular, a moving object is an instance of the class Feature and
a semantic trajectory is defined as follows:

Definition 2.2.49 (semantic trajectory)
A semantic trajectory is a set of timeslices having a starting and an ending

spatiotemporal point.

Finally, instead of using land parcels as in [79], Cruz et al. use building elements,
represented by 2D floor plans with an additional third dimension. Then, semantic
trajectories are linked to building element trajectories, using spatiotemporal relation-
ships between instances of TimeSlice objects and spatiotemporal integrity constrains.
Finally, the temporal domain is represented - as suggested in [61] - as a linear struc-
ture composed of a set of strictly ordered TemporalPoint objects, any pair of which
defines a time interval.
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2.2.3 Applied Trajectory Models: what is used in practice?

The purpose of designing a trajectory model is naturally to use it towards tackling
some type of trajectory data mining and analysis task. Therefore, it is worth finding
out to what degree formal trajectory models presented in section 2.2.2 have affected
(or not) these works. Do trajectory mining and analysis methods already adopt
semantic trajectory representations as envisioned more than a decade ago? If that is
the case, to what extent do they use their offered features? If not, do they instead
resort to simpler ad-hoc trajectory models? These are the types of questions that
this section aims to address.

2.2.3.1 Semantic trajectory models

The previous section reviewed how trajectory data mining and analysis research works
have handled the modeling of spatiotemporal trajectories. Within the scope of this
Thesis however, the interest is in finding out how they deal with the modeling of
semantic trajectories, and especially how they represent their semantic aspects.

SPLITTER method. In [83], Huang et al. propose a method called SPLITTER for
retrieving a set of spatially coarse trajectory patterns and then progressively breaking
down each pattern using a so-called weighted snippet shift algorithm. Their goal is
to find interesting patterns in semantic trajectories which are defined as follows:

Definition 2.2.50 (semantic trajectory)
A semantic trajectory is a sequence < (p1, t1), (p2, t2), ..., (pl, tl) > of times-

tamped places, where each place is described by a spatial location as well as a semantic
label (e.g., office, park).

Hence, the authors only consider semantic trajectory aspects by virtue of a 2-level
hierarchy comprised of location names and location types, with no support for addi-
tional data dimensions or deeper spatiosemantic hierarchies.

Hermoupolis simulator. In [142], Pelekis et al. propose a pattern-aware syn-
thetic network-constrained trajectory generator, which produces semantically anno-
tated moving object trajectories along with respective artificial “GPS-like” records.
Their aim is to enable the validation of existing mobility data management and mining
techniques, given that there exist no openly accessible semantic trajectory datasets
to include both the raw GPS records and the corresponding semantic annotations.

The simulated movement patterns follow, either certain mobility profiles given as
input (Hermoupolis simulator), or alternatively mobility profiles discovered in (typ-
ically small) real semantic trajectory datasets (Hermoupolis by−example simulator).
Examples of such patterns include “from home to work and back to home”, “from
home to a mall for shopping, then to a restaurant for dining, and back to home”, etc.
Moreover, the authors represent a road network as follows:

Definition 2.2.51 (road network)
A road network N is a graph G(V,E) consisting of, a set of vertices V =
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v1, ..., vn each corresponding to a geographical location (x, y), and a set of edges E =
{ei,j = (vi, vj)|vi, vj ∈ V, i 6= j} each belonging to one of a small number of categories
(i.e. road types) and being associated with a maximum speed and capacity at a specific
time instance.

What is worth noticing in the above definition is the assignment of different types
and attributes to the edges of the network, a useful way to semantically enhance
network-based trajectories. Another type of information source used is the set of
Points of Interest (PoIs), where a point of interest poi ∈ PoI in the simulation’s
region is defined as follows:

Definition 2.2.52 (point of interest)
A point of interest is a tuple < poi−id, poi−loc, poitags, poi−cat > correspond-

ing to a vertex of the network, where poi− id is its unique identifier, poi− loc ∈ V is
its location corresponding to a vertex, poi− tags is a set of tags describing its utility
(e.g. “caf’e del mar”, “Greek tavern Parthenon”), and poi− cat is its category (e.g.
“caf’e”, “restaurant”).

Moreover, a (raw) trajectory is defined as follows:

Definition 2.2.53 (trajectory)
A trajectory τ is a tuple <o-id, traj-id, T>, where o-id is the identifier of the

moving object, traj-id is the identifier of its specific trajectory, and T is a 3D polyline
consisting of a sequence of |T | pairs (pi, ti), 0 ≤ i ≤ |T |–1, where in turn each pi
is a 2D point (xi, yi) laying over a vertex / edge of the road network, and ti is its
corresponding timestamp.

With regards to the polyline, the authors assume linear interpolation between
consecutive pairs (pi, ti) and (pi+1, ti+1). A raw trajectory can be partitioned into a
sequence of raw sub-trajectories defined as follows:

Definition 2.2.54 (subtrajectory)
A subtrajectory τ ′ (of trajectory τ) - valid in the interval [ti, tj ], t0 ≤ ti < tj ≤

t|T |–1 - is a tuple <o-id, traj-id, subtraj-id,T’>, where T ′ is the portion of T between
timestamps ti and tj.

Then, the authors propose their own versions of an episode and of a semantic
trajectory. In place of the former, they define a LifeStep as follows:

Definition 2.2.55 (LifeStep)
A LifeStep ls is a tuple <ls-id, ls-flag, MBB, tags, T-link>, where ls-id is the

LifeStep’s identifier, ls-flag is a flag taking the values “Move” or “Stop”, MBB is a
tuple < MBR, [tstart, tend] > corresponding to the 3D approximation of τ ′, MBR is
the 2D Minimum Bounding Rectangle enclosing the spatial projection of τ ′ in a 2D
plane, [tstart, tend] is the interval of the temporal projection of τ ′ in a 1D timeline, tags
is a set of keywords describing the corresponding activities and semantic annotations
related to this portion of movement (e.g. category of PoI for stops, type of road for
moves), and T-link is a link to τ ′.



2.2 Trajectory Data Modeling and Representation 41

Figure 2.9: The trajectory generator of [142] considers mainly “stop-move” semantics
targeting outdoor environments.

Similarly for the latter, they define a mobility TimeLine as follows:

Definition 2.2.56 (mobility TimeLine)
A mobility TimeLine mtl is a (raw) trajectory τ of a moving object valid in

G, represented as a tuple <o-id, mtl-id,TLS>, where o-id is the moving object iden-
tifier, mtl-id is its mobility timeline identifier, and TLS is a sequence of successive
LifeSteps of trajectory τ (lsi.tend = lsi+1.tstart).

Finally, the authors define a Generalized LifeStep (GLS) as follows:

Definition 2.2.57 (Generalized LifeStep)
A Generalized LifeStep is a tuple <gls-id, gls-flag, stop-params, move-params>,

where:

• gls-id is the GLS identifier

• gls-flag indicates whether the GLS corresponds to a Stop or a Move

• stop-params / move-params are optional parameters of Stop / Move LifeSteps

• stop-params is a tuple <MBB, σ2range, σ
2
dur, poi-cat> where:

– MBB is a spatiotemporal region wherein all simulated Stop LifeStep reside

– σ2range is the variance of the spatial range of the simulated Stop LifeSteps

– poi-cat is the PoI category that simulated Stop LifeSteps should belong to

• move-params is a tuple <speedmax, move-tags> where:
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– speedmax is the maximum allowed speed of this movement

– move-tags is a set of annotations attached to the simulated Move LifeStep

As can be told from the parameters of their trajectory data generator, Pelekis et
al. mainly consider in their semantic trajectory (i.e. LifeSteps) modeling approach
the “stop-move” semantics of movement, as well as some move attributes, but not
much else.

Stop Activity Inference. In [18], Beber et al. propose a method to integrate GPS
human trajectory data with social media data and census data, aiming at multiple
activity recognition in certain Points of Interest (PoIs) and the discovery of all in-
dividuals participating in each activity. Based on whether people who are together
performing the same activity are connected (either directly or by sharing a common
connection) or not, they infer whether that activity was performed in a group or indi-
vidually. This extends the authors’ proposed activity recognition algorithm from [17],
which is based on a matching process that takes into account the similarity between a
trajectory of georeferenced (associated with Foursquare) tweets and a knowledge base
(extracted from Twitter and enriched with statistics) that describes the activities that
can be performed at any given PoI.

In both works, Beber et al. use the same trajectory model. They define a raw
trajectory as a temporally ordered sequence of spatial positions which do not present
explicit semantics, and simplify the semantic trajectory definition of [25] as follows:

Definition 2.2.58 (semantic trajectory)
A semantic trajectory is a sequence of stops S =< s0, s1, ..., sn >, where the

i-th stop is a tuple si = (xi, yi, startT imei, endT imei, poii) composed of:

• xi and yi are the spatial coordinates of the stop at poi

• startT imei until endT imei denote when the stop takes place

• the tuple poi = (type, x, y, ot, ct) is a Point of Interest (PoI), where in turn,
type is the type of the PoI (e.g. restaurant), x and y are its spatial coordinates,
and ot and ct are its opening and closing hours respectively.

Also, the authors define an activity as follows:

Definition 2.2.59 (activity)
An activity is a tuple a = (act.startT ime, act.endT ime, label, P ), where act.startT ime

and act.endT ime are the starting and ending times of the activity label, and P is the
set of moving objects performing this activity.

Then, they define an activity trajectory as follows:

Definition 2.2.60 (activity trajectory)
An activity trajectory is a sequence T =< t0, t1, ..., tn > of tuples ti = (si, Ai),

where si is a stop, and Ai = {a0, a1, ..., an} is the set of activities performed at si.
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In [17] in particular, the authors define a georeferenced tweet as a tuple (text,
time, day week, POI, act) where act is the activity extracted from the tweet text
text shared at time time of the day of the week day week at the PoI POI. This goes
to show how social media are affecting the modeling of semantic trajectories, because
oftentimes in practice the models follow data availability.

At the same time, motivated by the task of identifying group activities based on
similarity measures, the authors in fact extend the model of [25], with respect to
the semantics of places (by introducing the notion of PoI profiles) and in [18] also
with respect to collective activities (by introducing the notions of encounters and
relationship degrees between the moving objects).

In both [17, 18], in order to know which activities can happen at each PoI type,
the authors introduce the notion of a PoI type profile defined as follows:

Definition 2.2.61 (PoI type profile)
A PoI type profile is a tuple

pro = (POItype, act, meanTime, sdT ime, meanDuration, sdDuration, frequency),
where:

• meanTime is the mean time of the observed occurrences of the activity act at
the PoI type POItype

• sdT ime is the standard deviation of that time

• meanDuration is the mean duration of act at POItype

• sdDuration is the standard deviation of that duration

• frequency is the frequency of act at POItype relative to the total number of
activity occurrences observed at PoIs of the type POItype

In other words, PoI profiles consist of an activity knowledge base representing the
distribution of activity time and duration.

Moreover, to distinguish between different possible activities at the same PoI, they
introduce the notion of a sub-stop defined as follows:

Definition 2.2.62 (sub-stop)
A sub-stop is a tuple sub = (s, t.startT ime, t.endT ime, x, y), where sub takes

place inside the stop s from t.startT ime until t.endT ime, and x, y are the coordinates
of the centroid of the sub-stop.

Actually, modeling sub-stops is simply another convention aimed at capturing
trajectories at a finer spatiotemporal level of granularity.

Since they are targeting the task of activity recognition, the authors look at the
similarity between PoI type profiles and trajectory sub-stops, and accordingly choose
the most similar activity. More specifically, they define two similarity metrics (a time-
based one and a frequency-based one). To this end, they also consider the relative
frequencies of the activities.

Finally, they also give a threshold-based definition of an encounter and a group
activity :
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Figure 2.10: An illustration of the sub-stop concept proposed in [17, 18].

Definition 2.2.63 (encounter)
An encounter is two or more moving objects meeting at the same place, at the

same time, and for a minimum amount of time.

Definition 2.2.64 (group activity)
A group activity is an activity performed by a group of people that have a certain

relationship degree and that are at the same place, at the same time.

Unlike other types of trajectory mining and analysis, Beber et al. propose a
plethora of trajectory-related concepts, despite the fact that their trajectory model-
ing is not their primary concern. This is justified by the fact that the problem of
activity recognition is inherently semantic in nature, and therefore lends itself per-
fectly to the use of rich trajectory semantics.

Ranking semantic data sources. In [111], Leme et al. propose a method to
rank datasets according to their suitability for enriching mobility data, based on the
purpose of movement, to the extent that this can be induced by the sequence of
places visited i.e. the stops. For example, the sequence [hotel, stadium, restaurant,
hotel] in the city of Rio de Janeiro suggests that this could be a tourist trajectory.
They describe a raw trajectory as a track collected by a mobile device representing
the geometric facets of movement data and define it as follows:

Definition 2.2.65 (raw trajectory)
A raw trajectory is a sequence ρ0 = (p1, p2, ..., pn) of spatiotemporal points such

that the timestamp of p1 is earlier than the timestamp of pi+1.

Then, they define a segmented trajectory as follows:

Definition 2.2.66 (segmented trajectory)
A segmented trajectory of the raw trajectory ρ0 is a sequence σ0 = (g1, g2, ..., gn),

where each segment gi is a fragment (continuous subsequence) of ρ0 in which a given
property holds.

The authors adopt the “stop-move” segmentation strategy from [188] by merging
the positions of corresponding consecutive Foursquare check-in tweets into move or
stop segments, based on a threshold value of the time interval between them. This
segmentation approach is motivated by the typical sparseness of trajectory data ex-
tracted from social media (which prohibits speed-based criteria for example). Then,
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the authors label each segment with taxonomic classifications of the place visited at
the end of the segment.

Moreover, Leme et al. define a contextual resource as follows:

Definition 2.2.67 (contextual resource)
A contextual resource r of a dataset d is a pair rd = (r, d) where r ∈ d.

They also define the notion of contextual information as follows:

Definition 2.2.68 (contextual information)
A contextual information c of a segment g of the segmented trajectory σ0 is a

set of contextual resources c = {rd11 , ..., rdnn } enriching g.

The above concepts are used to define a semantic trajectory :

Definition 2.2.69 (semantic trajectory)
A segmented trajectory σ0 is a sequence τ0 = (< g1, c1 >, ..., < gn, cn), where

< gi, ci > is a pair indicating that segment gi is enriched with contextual information
ci.

In other words, according to [111] a semantic trajectory enriches a segmented
trajectory with contextual information retrieved from external datasets.

For mobility data captured from social media in particular, they similarly define
a labeled trajectory :

Definition 2.2.70 (labeled trajectory)
A labeled trajectory is a sequence λ0 = (< g1, l1 >, ..., < gn, ln >) where <

gi, li > is a pair indicating that segment gi is enriched with a set li of labels.

Finally, by defining Σ as a set of segmented trajectories, Λ as a set of labeled tra-
jectories of the trajectories in Σ, T as a set of semantic trajectories of the trajectories
in Σ, ∆ as a set of datasets (available on the Web) of the contextual resources of the
trajectories in T , and P as an assessment function of the likelihood that a dataset di
contains enrichments for a segmented trajectory σ0 ∈ Σ with respect to the labeled
trajectory λ0 ∈ Λ, the authors define the problem of finding a ranking function rank
: Λ → ∪∞n=1∆

n such that rank(λ0) = [d1, ..., dn] =⇒ P (λ0, di) > P (λ0, di+1), for
i = 1, ..., n− 1.

They proceed into solving this as a supervised multi-class classification problem,
assessing the computed ranking function by the Mean Average Precision (MAP) of
the rankings of a set of trajectories. The enrichment process is implemented through
a combination of a matching process that computes the similarity of the visited places
to the entities contained in each dataset, based on their geometric distance and the
Levenshtein distance of their names, and of a manual matching decision.

DART project. Within the scope of the DART project [66], Fernandez et al.
explore how machine learning methods (in particular Hidden Markov Models, kernel-
based distance metric clustering methods, and non-linear regression models) as well
as agent-based modeling, can help Air Traffic Management systems make single air-
craft trajectory predictions based on weather data and other contextual information.
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The goal is to consider the demand-capacity balance in order to prevent hotspots of
excessive demand of airspace use, by the surrounding traffic.

More specifically, instead of a uniform grid of 3 + k dimensions, where k is the
number of additional enrichment parameters (e.g. local weather), the waypoints of
the filed flight plans of each specific flight are used as reference points for the Hidden
Markov Model states. Each of these is matched to the closest point of the medoid of
the cluster that each flight is assigned to during the first phase (using the properly
defined similarity metric).

T is a set of trajectories that must be executed over the airspace in a period of p
time instants (e.g. hours), and S is a set of sector comprising the airspace of interest.
Time is divided in intervals ∆t equal to the duration of a measured occupancy period
reflecting the demand, which in turn is considered to be the number of trajectories
co-occurring over of a period p in the same sector.

Within the DART project, a trajectory is viewed as the time-evolution of the
position of the aircraft’s center of mass and other state variables. From a sequence
of timed positions in airspace, it is then transformed into a series of sectors that each
flight crosses, together with the entry and exit time for each one:

Definition 2.2.71 (flight trajectory)
A flight trajectory is a sequence T = {(s1, entryT ime1, exitT ime1),

(s2, entryT ime2, exitT ime2), ..., (sm, entryT imem, exitT imem)} where si ∈ S, i =
1, ...m are the sectors that the flight crosses, and entryT imei, exitT imei are the
flight’s corresponding entry and exit times to those sectors.

Thus, Fernandez et al. adopt a grid-based representation of the airspace of interest
and ignore all flight parts outside of it. For example, the trajectory shown in Figure
2.11 would be encoded as: T = {(s25, t1, t2), (s26, t2, t3), ..., (s8, t11, t12)}

Finally, trajectory semantics are not modeled anew but instead are adopted,
thanks to the use of the SemT-OPTICS clustering algorithm that Pelekis et al. pro-
pose in [142] for discovering typical mobility profiles. Hence, the authors essentially
follow the tag-based semantic representation of a LifeStep which as already seen in
[142] is a network-constrained equivalent of a semantic trajectory, instead of propos-
ing their own semantic modeling of trajectories.

STOM: Semantic Trajectory Ontology Model. In [135], Mousavi et al. in-
troduce a new ontology-based approach so as to extract different types of human
activity from GPS data. Their proposed conceptual model addresses the interpre-
tation of movement patterns by extending the model of Spaccapietra et al. [163].
In specific, a raw trajectory may be divided into semantic subtrajectories, each com-
posed of stops (the spatial part related to a stop interval) and moves (the maximal
subsequence between two consecutive stops).

Moreover, the authors model the following domain concepts and relations:

• semantic features of stops: frequency, average duration, land use type, POI
category type, start time
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Figure 2.11: Example of a trajectory defined with respect to space sectors according to
[66].

• semantic place: environmental description/information of stop locations such
as land use type, PoI type

• activity : a movement objective belonging to one of four possible activity types.

• activity type: the category of activity: recreation (e.g. go to the theater),
profession (e.g. working), shopping (e.g. buying food), or other (e.g. relaxing
at home, cultural activities”).

According to the authors, the activity coincides with the objective of the movement,
while its type is associated to places where they are typically performed, but also to
the time of day and the duration spent in the place. They capture this by defining it
as follows:

Definition 2.2.72 (activity type)
An activity type is a function AT = f(P,L, Sf , Tb, Sd) of several features:

• P is the POI type that is around the stop

• L is the land use type where the stop has occurred

• Sf is the frequency of the stop in a week

• Tb is the start time of the stop in the place

• Sd is the average duration of the stop in a week

Based on the above concepts, Mousavi et al. propose an ontology model called
STOM, which consists of a spatial ontology (generic concepts about the geomet-
ric component of a trajectory), a temporal ontology (uses the OwlT ime ontology
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Figure 2.12: The concepts and relations of the datAcron ontology for semantic trajectories
as proposed by Vouros et al. [177]

Figure 2.13: Extension of the conceptual model of semantic trajectories of [163] as pro-
posed by Mousavi et al. [135]
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to integrate time concepts and rules), a geographic ontology (describes a stop place
with: land use types, road networks, POIs layer), and a thematic ontology (gathers a
wide range of application-dependent concepts). Integrating these ontologies together
(by setting up rules between them) provides the semantic description of application-
relevant trajectories within each specific domain.

Geo-tagged photo trajectory mining. The line of works consisting of [21, 31–34]
attempts to mine sequential trajectory patterns from geo-tagged photos.

A trajectory is defined as a sequence of geographic coordinates with time infor-
mation:

Definition 2.2.73 (trajectory)
A trajectory is a sequence T =< (x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn) >, where

xi and yi, 1 ≤ i ≤ n, are attached geographical coordinates of a geo-tagged entity, and
ti is the corresponding timestamp.

Out of these works, only [33] and [34] consider semantic trajectories and define
them as follows:

Definition 2.2.74 (semantic trajectory)
A semantic trajectory is a sequence SemT =< (SemA0, t0), ..., (SemAn, tn) >,

where each semantic element SemAi = (ei, Vi) contains a set of basic semantics ei
and a set of additional semantic annotations Vi pertaining to a RoI, and ti, 1 ≤ i ≤ n
is the corresponding timestamp.

In essence, in the above two works, Cai et al. represent trajectories as time ordered
sequences of basic semantic spatial information with additional aspatial semantic
information. To be precise, each sequence item is a spatial region annotated with
contextual place type semantics, giving rise to what is called a semantic RoI. These
RoIs are extracted through means of a grid-based mining method that considers
such contextual semantics. A multi-dimensional semantic RoI is then defined as a
semantic RoI with additional semantic features such as temporal information and
weather condition. Noticeably then, this semantic trajectory modeling approach is
yet another example of focusing on outdoor applications, and limiting the semantic
scope of the analysis to place semantics.

Finally, two indicative trajectory examples used in [34] are the following:
((Beach[clear], t1), (Park[rain], t2), Home[rain], t3))
((Beach[clear], t1′), Lake[clear], t2′), (Park[rain], t3′), (Home[rain], t4′))

Another work which attempts to mine sequential trajectory patterns for seman-
tic trajectories is [41]. However, as in earlier works the semantics here only con-
cern the types of places visited by the moving object. More specifically, a seman-
tic trajectory is defined as a sequence of pairs of PoIs together with a timestamp:
T =< (p1, t1), ..., (pl(T ), tl((T )) > where l(T ) is the length of the trajectory T . And
each PoI p corresponds to a semantic category c: γ



50 State of the Art in Trajectory Data Modeling

In [186], the authors provide the outline of a moving objects database system,
aimed at integrating multiple movement data models (e.g. road network models,
region-based outdoor models, indoor models) paying attention to the support of se-
mantics and multiple descriptive attributes. A data type called mpoint is defined
for representing spatiotemporal trajectories having m attributes A1, ..., Am. Thus, a
multi-attribute trajectory consists of a sequence of time-stamped locations and a set
of attributes characterizing diverse aspects. The system is intended to also include a
preprocessing tool for the detection and reparation of GPS data errors, a supervised-
learning classifier for handling natural language queries, and a prediction model for
indicating the 3D R-tree’s leaf where nodes are stored. In [185], the authors investi-
gate queries which return trajectories whose multiple attributes contain the expected
values and whose locations are within a range from a query trajectory during the
whole overlap period. This line of work goes to show that semantic trajectories are
gradually starting to be supported at the lowest system levels.

2.2.3.2 Indoor trajectory models

Let us now take a closer look at how application-oriented works consider modeling
trajectories, when the movement environment is specifically indoors. Then, by com-
paring with the findings of the previous section, where practically all of the works
treated outdoor mobility data, the reader can be better positioned to appreciate the
particular ways in which an indoor environment may affect computational mobility
data analysis, so that in turn a novel modeling approach and a novel mining approach
can be proposed in the next two chapters.

In [60], Elmamooz et al. propose an architecture to manage museum visitor
mobility data. It consists mainly of a so-called museum data management component
that continuously processes data incoming from and feeding other (sub)components,
namely mobility sensors (e.g. cameras, WiFi trackers), mobile museum guides (i.e. a
multimedia application), a curator decision support application (visual data analysis),
and a museum graph editor (i.e. a modeling tool for planning the exhibitions, game
tasks, room layouts, etc.). In the end, semantic trajectories are produced and fed to
various trajectory mining tasks to produce mobility models, such as frequent mobility
patterns and trajectory clusters.

In particular, based on the overview and classification of location models proposed
in [19], the authors in [60] opt for a graph model of the museum, that represents all
assets and objects (e.g. exhibits, visitors, tasks, areas, sensor locations, routes) as
nodes, and all their relationships (mainly expressing containment and connectedness)
as edges. This graph model is considered by the authors as the context information of
the trajectories. They adopt the property graph approach for their model which allows
the inclusion of multiple attributes to the nodes and edges (e.g. unique ID, name,
type, subtype, description, topics, temporal availability). In the example provided,
they use four different types of nodes: “PoI” (e.g. an exhibit, a service), “location”
(e.g. a room), “passage” (e.g. a door), and “activity” (e.g. a task), as well as
three different types of edges: “connected”, “inside”, and “assigned” (expressing the
assignment of a task offered to the visitors to an exhibit). The authors identify the
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fact that the museum environment is dynamic and public, as the main challenges
with respect to managing the data related to the museum, and indicate some ways
to meet those challenges.

The actual visitor movements coming from the mobile sensors and the actual
usage data coming from the mobile museum guide, are eventually separately mod-
eled as so-called mobility models. The authors pinpoint to the adoption of existing
preprocessing techniques (e.g. stay point detection, map-matching), primary route
extraction, trajectory segmentation techniques, and trajectory mining tasks (e.g. tra-
jectory clustering, stay point clustering), for producing more than one such mobility
models to be used for obtaining knowledge serving the applications.

In [60], the authors focus specifically on data coming from proximity sensors
attached to visitors and exhibits, however the proposed graph model of the museum
can be expected to effectively support other types of raw movement data as well. In
addition, it is flexible and scalable, as it is easy to add or remove nodes and their
properties and relationships. It does not however account for a description of the
museum at multiple spatial granularities.

Moreover, the authors partly overstress the dynamic nature of the museum envi-
ronment. While indeed different parts of the graph model need to be updated with
variable frequency, that frequency is almost always larger than the lifecycle of an
individual trajectory. For example, a new room is not added to the museum very
often, nor does an existing room change its availability so often, so as to affect evolv-
ing individual trajectories. On the other hand, such topological changes might for
sure affect the aggregate movement over larger periods of time (e.g. from month to
month). Thus, it is useful that the authors identify graph features that can assist
in dealing with the dynamic nature of the environment as well as with data privacy
concerns (due to the public nature of museums), but they do not propose any specific
implementation of those features.

More importantly however, the authors do not propose any trajectory model.
Even though the graph model of the museum and the consideration of stay points
suggest what the main trajectory modeling direction would probably be, a lot of
modeling aspects are left unspecified.

In [86], the authors propose a graph model for indoor space with the aim to
improve the indoor tracking accuracy from a data management perspective. They
define base graphs as the labeled multi-graphs resulting from applying the Poincaré
duality mapping to a floor plan. A base graph thus incorporates the basic connectivity
and accessibility information of an indoor space. More specifically, the connectivity
base graph is defined as the triple Gconn = (V,Ed,Σdoor), where V is the set of
vertices, Ed is the set of undirected edges Ed = {({vi, vj}, k)|vi, vj ∈ V, k ∈ Σdoor},
Σdoor is a set of edge labels that represent connections (k values distinguish edges
connecting the same vertices). Similarly, the accessibility base graph is defined as
the triple Gacc = (V,E,Σdoor, le), where V is the set of the vertices, E is the set of
directed edges E = {vi, vj |vi, vj ∈ V, vi 6= vj}, where le is a function that maps edges
to subsets of the set of doors le : E → Σdoor. A base graph is enriched with geometric
information as well, thanks to a mapping BuildingPartitions : V → Polygons of
vertices to polygons, and to a mapping Doors : Σdoor → Line Segments of edges to
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line segments.

The base graphs are first derived along with relevant mappings that represent the
topology of the indoor space at different levels. Then, assuming RFID readers with
disjoint activation ranges that are embedded in known positions of the indoor space,
a deployment graph can be constructed that represents their deployment. Other
deployment graphs may represent other indoor positioning technologies. For the
specific case of RFID, the authors propose using RFID readers, either as partitioning
readers (dividing the indoor space into cells such as a reader deployed by the single
door of a room) or as presence readers (sensing the presence of RFID tags within their
detection range). The resulting spatial cells correspond to the deployment graph’s
vertices, while the partitioning readers correspond to its edges (since by definition
they signify a transition from one cell to another).

The raw movement data consist of RFID reader detections collected continuously
with a certain sampling frequency. They are in the form < readerID, tagID, t >,
where readerID is the reader identifier, tagID is the detected tag identifier, and
t is the detection time. Time intervals during which the object is not observed by
any reader are defined as vacant time intervals. An off-line trajectory is defined as
a sequence of observation records of the form < readerID, tagID, t`, ta >, where
tagID is always the same (denoting a specific moving object) and t` and ta are the
first and last time points of continuous detection of tagID by readerID.

Such a trajectory is refined with the help of the deployment graph, by obtaining
the graph element corresponding to the readerID of each observation in the raw
trajectory, as well as the spatial cells (in geometric form) that the object could have
possibly been in during vacant time intervals. The latter are filtered using the graph
topology and maximum speed constraints (based on the intersection of polygons and
ellipses and having assumed circular detection regions). This so called refinement
process is essentially a mapping, from a sequence of reader detections, to a sequence
of graph elements, a more intuitive trajectory form which corresponds directly to the
indoor environment.

The trajectory model proposed in [86] is primarily symbolic. Geometrical infor-
mation is only used to infer the potential location of the moving object when the
latter is not being detected. This showcases the difference with the trajectory models
typically used in outdoor environments.

As mentioned in the future work section of [86], the model does not account for
overlapping activation ranges of sensors, and has not yet been tested with multiple
deployment graphs representing several positioning technologies used in parallel.

The trajectory model does not account for semantic information, apart from some
trivial semantics of the indoor spaces (e.g. awareness that a certain spatial cell is a
room or that a certain transition corresponds to traversing a door).

In [114], the authors analyse episodic movement data that may contain uncer-
tainties with respect to temporal continuity, spatial accuracy, and moving object
coverage. They use aggregations to tackle such uncertainties through means of visual
exploration. In specific, they use a previously trained Spatial Bayesian Network to
denote the conditional probabilities of visits to discrete locations and visualize them
on 3D thematic maps. The Spatial Bayesian Network is used as an intermediate data
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structure holding only the required data instead of complete trajectories.

In the work of [114], even in their rawest form, the trajectory data are not geo-
metric coordinate data, but instead log entries of the form: [timestamp], [sensorID],
[sha256(MAC)], [signalstrength], coming from 15 Bluetooth beacons. This leads
the authors to implicitly define a trajectory as a sequence of discrete visited locations
which are truly regions (each region corresponding to a part of a football stadium
in this specific application). This serves as an indicative example of why symbolic
trajectories are generally a better fit for pedestrian mobility analysis in indoor or
combined indoor/outdoor environments.

Some elements of the workflow used are of course not always relevant. For exam-
ple, deciding on the number and location of the sensors to be deployed based on the
application requirements, is not always possible, in case the tracking infrastructure is
pre-deployed.

In [150], the authors propose an algorithmic (bootstrapping) approach for mitigat-
ing error biases and other types of noise and inaccuracies of the positioning estimates
of indoor trajectories, as well as for infering an approximation of the underlying route
network from the trajectory data themselves. Their algorithm produces in particular
the following output: a reconstructed route network (reflecting the actual route seg-
ments taken by the moving objects and useful in detecting implicit route segments),
deviation maps (taken by comparing representative trajectories - which result from
aggregating all subtrajectories corresponding to a particular segment of the inferred
(or given) route network into an average or median trajectory - with the location
estimations of route segments), outlier-free trajectories (either by mapping each tra-
jectory to the representatives of its segments or by checking if its geometric distance
from the representative trajectory surpasses a given threshold), detected outliers in
movement patterns (again by comparing the position traces collected to the repre-
sentative trajectory), self-healing analysis (thanks to trajectory cleaning and outlier
detection getting better as more trajectories are being collected over time).

These deliverables are produced by a processing pipeline consisting of three main
modules. Firstly, the “route network reconstruction” module - as its name suggests -
analyzes the noisy collected trajectories and finds the intersection points and major
segments of the underlying route network, based on the “majority angle” of the tra-
jectories in each cell of a grid covering the area over which the trajectories extend.
Secondly, the “trajectory segmentation” module performs a type of “map matching”
by iteratively subdividing the input trajectories into subtrajectories that connect in-
tersection points of the extracted route network, effectively aligning each trajectory
with the edges (corridors) of the route network. It takes special care for cases where a
subtrajectory misses intermediate interesection points or where yet undected corridors
exist between the subtrajectory’s endpoints. It also filters the input data, because
if two consecutive elements of the resulting subdivision of a trajectory are assigned
to non-adjacent corridors, they are marked as an overly noisy part of the trajectory,
which is then excluded from consideration in computing representative trajectories.
Thirdly, the “computation of representative trajectories” module aggregates the sub-
trajectories assigned to each corridor of the route network, either by replacing them
with their average trajectory (better suited for regular layouts) or with their median
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trajectory (better suited for curved trajectories and outlier movement detection, be-
cause it always results in a traversable representative). The proposed approach was
evaluated on trajectories of hospital employees collected from smartphones based on
Wi-Fi signal strength measurements.

Even though the authors do not explicitly offer a definition or model of trajectories
in their work, it is apparent that they treat them as sequences of points represented
by coordinates in a 2D grid cell space, where each cell has a given size σ. Over this
grid representation of indoor space, they implicitly interpolate the moving object’s
positions between two consecutive detection points of a trajectory (trivially assuming
straight lines). Thus, thanks to the grid providing a rasterization of the trajectories,
they are also able to extract the (quantized) angles between two consecutive straight
segments of a trajectory. This is an example of a work which does not focus on indoor
trajectory modeling at all but rather implicitly adopts a simple indoor trajectory
representation.

2.3 Indoor Space Modeling and Representation

This section examines how indoor environments are represented for trajectory analysis
purposes. Naturally, whenever trajectory data are processed towards some analytical
goal, then the spatial aspect of the environment within which the movement phe-
nomena that produced those data took place has to be modeled either implicitly or
explicitly. This may range from a trivial representation to a very elaborate model.
The same applies for indoor environments in specific, despite the argument posed in
section 2.2 that by far most trajectory data-based research works still target outdoor
environments. Actually, this makes it even more important to consider how outdoor
space is typically modeled so as to help determine a proper indoor representation.

2.3.1 Fundamental Space Representations

In order to represent movement phenomena in terms of trajectories, first a formal spa-
tial model is needed to provide an abstraction of their physical environment. Thus,
every trajectory model proposed in the literature, either explicitly or more usually
implicitly, uses a certain model of location and therefore space. Similarly, an indoor
trajectory model always entails some understanding of the related indoor space, be-
cause at its core lies the representation of indoor location information. At the same
time, it is important to realize that modeling indoor spaces is not an effort undertaken
exclusively for trajectory research purposes: moving object tracking, navigation (in-
cluding routing and guidance), ubiquitous computing, ambient assisted living, crowd
management, location-based systems, smart cities, spatial analysis, and many other
families of applications have all been motivating factors for modeling indoor space,
whether the data are structured in trajectory form or not.

Having stated that, this Thesis is interested in modeling indoor space for indi-
vidual trajectory analytics purposes. In this regard, a fundamental distinction exists
between quantitative and qualitative spatial representation approaches. The former
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are preferable when precise spatial information is important, while the latter when it
is unnecessary or unavailable [39].

A qualitative spatial representation formalism, coupled with qualitative relations
between spatial objects and qualitative reasoning about spatial knowledge, consti-
tutes what is known as Qualitative Spatial Reasoning (QSR) [153]. Two of the most
widespread qualitative spatial calculi are RCC (Region Connection Calculus) [43] and
n-intersection [55].

RCC theory in particular, considers spatial regions as its primary spatial primitive
and the reflexive and symmetric is connected to dyadic relation as its primitive rela-
tion [47]. Based on it, various constraint languages have been defined. For example,
RCC-8 defines eight JEPD (Joint Exhaustive and Pairwise Disjoint) relations: is dis-
connected from, is externally connected with, partially overlaps, equals, is a tangential
proper part of and its inverse, is a non-tangential proper part of and its inverse.

Alternatively, n-intersection theory is based on point-set topological theory and
considers a spatial region as a 2D point set x embedded inR2, related to its interior, its
boundary, and its exterior [56]. In particular, the 4-intersection formalism ignores the
exterior, and based on the intersection combinations of the interiors and boundaries
of two regions, results in eight binary topological relations: disjoint, touch (meet),
overlap, contains, insideOf, covers, coveredBy, equal [57], equivalent to those of RCC-
8.

From a more applied perspective, indoor space models can be broadly categorised
into semantic and spatial models [182]. The former represent the different types of
fixed (e.g. walls, rooms, doors, windows, floors, landmarks) and mobile (e.g. peo-
ple, furniture, equipment) entities, their properties, and the relationships between
them. The latter consist of topological models and geometrical models. The first are
concerned with the various connectivity properties of space, and typically represent
the building’s structural aspect as a primal/topographic space and its connectivity
aspect as a dual/path space. As appreciated by [182], the two types can be combined
into hybrid models in which case “geometry adds quantification of distance and angle
to the connectivity and accessibility provided by topology”. It is also worth noting
that despite being a review of indoor space models in general, [182] focuses solely
on graph-based models, which goes to confirm the common intuition of how fitting a
graph is as the basic representation component of an indoor space.

Looking more closely, most indoor spatial data models can be classified into geo-
metric ones and symbolic ones [5]. The former focus on representing the geometry of
indoor features using primitives such as points, lines, areas, and volumes. The latter
focus on representing the ontological aspects of spatial units and the topological rela-
tionships between them, maintaining a more abstract view of indoor space [6]. Sym-
bolic indoor space models in particular, are typically either set-based or graph-based
(when capturing topological information). Hybrid models represent both symbolic
concepts and geometric properties. Geometric and symbolic indoor space models
largely correspond to the aforementioned quantitative and qualitative approaches of
representing space in general, but focus on the conceptual data structures that hold
the spatial information rather than on its mathematical formalism.
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Figure 2.14: A basic taxonomy of indoor space models according to [182]

Figure 2.15: A detailed taxonomy of indoor space models according to [182]

2.3.2 Indoor Space Models and the IndoorGML Standard

A long line of research works on indoor space modeling ([29], [82], [107], [166], [20],
etc.) has culminated into the development of IndoorGML [108, 109]3, an OGC stan-
dard aimed at representing and allowing the exchange of geoinformation that is re-
quired to build and operate indoor navigation systems. It does so by providing
encoding features for indoor spatial information, modularly structured as a core data
model (an application schema of GML3.2.1 [2]) and thematic extension data models.
The core module considers an indoor space as a cellular space i.e. a set of non-
overlapping cells that represent the smallest organizational/structural units of space:
S = {c1, c2, ..., cn}, ci ∩ cj = ∅. Since IndoorGML is not concerned with the archi-
tectural components themselves (e.g. roofs, ceilings, walls, doors), cells represent the
spaces that those components define (e.g. rooms, corridors, stairs) and where objects
may actually be located in and navigate. Thus, they may share boundaries with each
other but are assumed not to overlap, and as a result, an object may be at most in
one cell at any given point in time.

Technically, IndoorGML describes a hybrid indoor space model since it captures
the topological information of cells as well as an optional quantitative description of
their spatial characteristics. The cell space and the topological relationships among

3For an overview of how IndoorGML was inspired by previous hybrid indoor space models in an
attempt to meet the same requirements for a more general application scope, the reader is advised
to refer to [91] as well as the standard’s original requirements in [108].
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its objects are represented by one or more Node-Relation Graphs (NRGs). A NRG
is a graph whose nodes represent indoor space cells and whose edges represent topo-
logical relationships between any two such cells. Consequently, a NRG’s nodes also
correspond to potential locations of a navigating object, which is why they are also
referred to as states. The node representing the actual cell that the object belongs
to at a given point in time is called the active state. Similarly, edges are also called
transitions whenever they reflect the movement of a navigating object from one cell
to another. Essentially, a NRG simplifies complex spatial relationships based on
graph theory concepts [107] and the Poincaré duality in particular: a cell (e.g. room)
becomes a node and a cell boundary (e.g. a thin wall) becomes an edge. More pre-
cisely, an Adjacency NRG is directly derived from the Poincaré duality which maps
k-dimensional objects in an N -dimensional primal (here a 2D/3D physical) space to
(N -k)-dimensional objects in a dual space. If cell boundary semantics (e.g. doors,
walls, ramps) and/or boundary constraints (e.g. door width) are also taken into ac-
count, then a connectivity and/or an accessibility NRG may in turn be derived from
the Adjacency NRG. Connectivity suggests that there exists an opening in the com-
mon boundary of two cells. Accessibility additionally suggests that the opening can
be crossed by the moving object.

The basic principle of IndoorGML is that any meaningful definition of space can
be used to decompose it into cells. Thus, each NRG is treated as a separate graph
layer. E.g. the same indoor space may be interpreted as a topographic space com-
posed of rooms, corridors, stairs, etc., or as another topographic space defined at
a different level of granularity and composed of floors, inner courts, etc., or as a
WiFi/RFID sensor space composed of sensor coverage cells, or even yet as a security
space composed of private offices, check-in areas, boarding areas, crew areas, etc.
Moreover, there is a modeling choice to be made between a thin/paper wall model
where walls and doors are considered to be boundaries in the primal space and thus
get mapped to edges of the NRG, and a thick wall model where walls and doors are
considered to be cells of a certain thickness in the primal space and thus get mapped
to nodes of the NRG. The same distinction is made for doors as well leading to a thin
door model nad a thick door model. In addition, depending on whether its nodes
and edges contain any geometric properties or not, a NRG can either be a Geometric
NRG or a Logical NRG. In the case of the former, IndoorGML does not define its
own geometric description, but instead offers two ways of representing the spatial
characteristics (i.e. form, extension, and position) of the 2D or 3D Euclidean spaces
corresponding to cells: either using the data model of ISO 19197 (e.g. c.geom is
“GM Solid” or “GM Point”, e.geom is a “GM Surface”, “GM Curve”) or using sim-
ple external references to objects defined in other datasets (c.xlink is a 1 : 1 or n : 1
mapping from cells to objects). This mechanism of optional external references can
also be used to represent indoor features bearing external domain specific semantics.
Finally,

Perhaps more importantly, IndoorGML’s Multi Layer Space Model (MLSM) can
be used to represent spatial hierarchies. The combination of multiple layers into a
single multi-layered graph is assisted by joint edges which connect nodes belonging
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to different layers. To this end, in [91] the authors define an IndoorGML hierarchi-
cal graph as a direct adaptation of the hierarchical graph definition of [167]. While
the intra-layer edges represent either adjacency, connectivity, or accessibility rela-
tions between non-overlapping cells, the aforementioned joint edges are inter-layer
relationships denoting the potential locations where a physical object might actually
reside. Therefore, given that a physical object may be in only one active state at
each layer at any given point in time, joint edges practically express all the valid
active state combinations (called overall states) and are derived by pairwise cell in-
tersection. Equivalently, a joint edge represents any of the eight binary topological
relationships derived by the n-intersection model [55]4, except for disjoint and meet,
because a physical object can not simultaneously coexist in two cells that are com-
pletely disjoint or simply touch each other. Instead, the intersection of the interior
of their corresponding cells must be non-empty.

Finally, with regards to topology, IndoorGML also provides the concept of an-
chor nodes as a special node type connecting indoors to outdoors and potentially
providing the necessary information for converting coordinates from a relative indoor
Coordinate Reference System (CRS) to a different outdoor CRS (e.g.rotation ori-
gin point, rotation angles, rescaling factor, translation vector). Anchor nodes may
actually belong to external datasets instead of being defined within IndoorGML.

2.3.3 IndoorGML Reception

In this section, review works related to IndoorGML are briefly discussed in order to
gain a deeper understanding about how to meet our indoor space modeling needs,
and thereby our indoor trajectory modeling needs. Studying the standard’s technical
specification is of course necessary, but alone does not suffice to gain a deep under-
standing of its function, advantages, and limitations. This is why related research
works that have made use of IndoorGML or at least commented on it are also re-
viewed. It is important to state here that IndoorGML leaves many modeling details
unspecified, and rightfully so since it is essentially a framework providing a modeling
basis and only some guidelines for the rest.

In [155], Ryoo et al. study how the IndoorGML standard may be used in comple-
ment to CityGML [1] which is another OGC standard. In particular, they compare
IndoorGML to CityGML Level of Detail 4 (the finest out of five levels), which de-
scribes indoor spatial objects (e.g. windows, doors, floors, furniture), as opposed to
describing indoor spaces like IndoorGML. The authors identify a few requirements
that CityGML fails to meet in comparison to IndoorGML: the cellular representation
of space is unclear (only “Room” may represent a cell), the topological representation
of space is incomplete, multiple interpretations of space are difficult to derive, refer-
ences to external objects are not supported. The authors also detail the differences in
modeling space closures, stairs and staircases, walls, nested rooms, cell decomposition
criteria, door surface orientation, wall texture and materials. They illustrate their
observations, with two use case studies: three buildings hosting shopping malls in the

4Resulting from the 9-intersection of two objects i.e. the emptiness or non-emptiness of the
intersections of their three topologically distinct parts: interior, boundary, and exterior.
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Lotte World Tower complex, and a two-level subway station in Seoul.
Similarly in [91], Kang et al. briefly explain how IndoorGML differs from CityGML

and from the Industrial Foundation Classes (IFC) standard: although they all tar-
get built environments (3D buildings and indoor space), the latter are based upon
feature modeling (e.g. walls, doors, slabs, windows, spaces), whereas IndoorGML
is based upon space (e.g. room) modeling. Hence, IndoorGML reflects important
indoor space properties such as topological ones. The authors also find IndoorGML
to be complementary to the IndoorLocationGML standard [115, 184, 199] which em-
phasizes more the modeling of moving object locations. Furthermore, by comparing
to outdoor space, they extract what they consider to be the typical characteristics of
indoor space and the requirements of indoor spatial data models in general:

• non-Euclidean distance definitions considering architectural components, topo-
logical constraints, and verticality

• support of indoor space structures that are complex in terms of geometry

• network connectivity and multiple interpretations

• support for indoor cell-awareness by defining an identifiable unit of space clearly
bounded by a closed geometry

• an indoor position corrective function (akin to an outdoor map-matching func-
tion)

• a mechanism of integration with the outdoor space (either through physical data
transformation between standard data models, or through external references
to them)

Then, the authors proceed to describe the basic concepts of IndoorGML that meet
the above-specified requirements, namely the cellular space model, the optional cell
geometry, the cell topology encoded as a NRG, the cell semantics encoded as a classon-
omy, the MLSM, and the standard’s modular structure. Finally, they propose their
own ways of applying IndoorGML, in particular with relation to cell granularity, sub-
spacing determination, indoor distance computation, and indoor context-awareness
services implementation.

In [52], Diakite et al. study in detail how IndoorGML’s cell subdivision may
be applied to support automatic subspacing, especially for fine-grained furnished 3D
spaces. Using the notion of static occupancy, they describe objects physically occu-
pying a fixed location in the indoor environment. Even though a cell corresponding
to a room is typically classified as a “navigable-general” space, more often than not
it contains a “non-navigable” part. This is why the authors claim that finer than
room cells need to be considered when applying the IndoorGML standard for nav-
igation purposes. As for automatically choosing how a cell should be subdivided,
one approach suggested is to use purely geometric criteria (e.g. length, surface area,
volume) and another is to use primarily topological criteria (e.g. contact with other
cells) potentially enriched with geometric and/or semantic criteria (e.g. contact with
wall cells, navigation constraints).
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Moreover, since [52] is primarily concerned with the navigability of the spatial
cells’ interior, it addresses the question of exactly which position within the spatial
cell a NRG node represents. With regards to this, they identify that the common
practice in indoor navigation is to represent the centroid of the cell, but that it
risks residing outside a non-convex cell. Thus, they propose to rely on a per-case
combination of geometric, topological, and semantic information (e.g. specific types
of furnishing elements). Finally, related to the previous issue, the authors identify a
potentially problematic case: if the geometry of an edge of the NRG is interpreted
as the actual path followed by the moving object when that edge is traversed, then
if the positions of the two nodes (that the edge connects) are not on a navigable
(e.g. there are furnishing elements, or walls between them) then the representation
is wrong. This issue of edges crossing through non-navigable elements is actually
closely related to the issue of defining a proper way to measure indoor distance that
has been the focus of past works such as [91, 116, 123]

In [184], Xiong et al. introduce the user requirements of a GML-based Chinese
national standard (under development at the time) that aims to provide an exchange
format for location information in indoor routing and navigation applications. They
claim that an indoor location model must support the representation of both an
absolute location as well as a relative location. The former is defined as a point
in geographic space measured with respect to the origin of a standard coordinate
system. The latter is defined as a position measured or described with respect to
another location. Having identified as a shortcoming IndoorGML’s (also CityGML’s)
lack of indoor location information representation, the authors propose a first version
of the class diagram upon which their IndoorLocationGML standard was based.

Without going into the details of their classonomy5, the main idea is rather simple:
the are two ways to define a location, either in absolute terms, or in relation to some
well-defined reference location. In either case, its definition may be “specific” (i.e.
geometric) or “rough” (i.e. semantic). The authors illustrate the proposed location
model with a use case in which it complements a sensor model and a 3D building
model that structures the building into four parts: portal, container, surface, obstacle.

Later on in [199], Zhu et al. revise IndoorLocationGML and formalize it as a
standard. Thus, they present the formal definitions for the following notions:

• indoor location: a location of an object in enclosed indoor spaces

• indoor absolute location: a unitary structured description and identification of
an object in an indoor space, only relevant to the spatial reference system in
which it is defined

• indoor relative location: a structured description and identification of an object
by a spatial relationship between that object and other references

• indoor spatial reference system: a spatial coordinate (geographic or local Carte-
sian) reference system of the indoor space, associated with an indoor reference

5Containing classes such as Life Circle, Indoor Location, Indoor Absolute Location, Indoor Relative
Location , Geometrical Absolute Location, Geometrical Relative Location, Semantic Absolute Location,
Semantic Relative Location, Spatial Cell Location, etc.
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and an indoor target

• indoor spatial relationship: a relationship between any two or more target ob-
jects in indoor space (e.g. directional, distance, order, topological)

• multi-dimensional location: the information used to describe both indoor abso-
lute and relative locations from the perspective of space, time, and semantics

In [115], Liu et al. study the interaction between the two indoor modeling stan-
dards of IndoorGML and IndoorLocationGML. They first compare their area of focus,
which according to them is the following: IndoorLocationGML focuses on the defi-
nition and description of indoor locations and location-based applications, whereas
IndoorGML focuses on the definition of navigation networks and representation of dif-
ferent space subdivisions, and pathfinding services. Then, they proceed to describe
each one’s main structure and most important classes. Omitting the technical details,
they argue mainly that IndoorGML offers no definition of a PoI, which can instead
be represented by instances of IndoorLocationGML’s IndoorAbsoluteLocation and In-
doorRelativeLocation classes. The authors then describe how the two standards can
be used in a complementary way for indoor navigation, by enriching IndoorGML’s
nodes and edges with semantics encoded in IndoorLocationGML. They detect as two
associations as the key to integrating the two standards. First, the association be-
tween IndoorLocation and CellSpace, according to which a CellSpace may contain
none or many IndoorLocation and an IndoorLocation is always contained within one
CellSpace. Secondly, the association between IndoorLocation and RouteNode, ac-
cording to which a RouteNode may link to none or many IndoorLocation and an
IndoorLocation may link to none or one RouteNode. As for the practical side of the
integration, the authors state two alternative approaches: either the use of unified
data documents according to a joint UML model, or the development of a parser to
acquire data of the two different types.

However, while indeed IndoorLocationGML is better equipped to represent the
location of a PoI, an IndoorGML cell is still enough to represent a PoI, because it can
be arbitrarily small and contained within bigger cells thanks to the MLSM. Besides,
as Kang et al. note in [91]: “...while cells have spatial extents in most cases, there
are also cases where no spatial extent is necessarily required except a point”.

Finally, as of late a future version 2.0 of the IndoorGML standard was announced
by Diakite et al. [51] which will tackle several limitations of the previous version 1.1,
including some of the issues discussed above6. More specifically, IndoorGML 2.0 will
introduce:

• a renaming of classes: nodes and edges will no longer be called states and
transitions to avoid confusion in non-navigation applications

• a simplification of the navigation module: new definitions of “TransferSpace”
and “GeneralSpace” classes, deletion of “RouteSegment” and “RouteNode”
classes

6The indoor space model of the proposed trajectory model [101] presented in chapter 3 does not
consider these future changes as it was already published before [51].
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• exclusion of the “thin door” model concept (can nonetheless still be handled
with the help of the “NavigableBoundary” class)

• introduction of the “level” attribute in the “CellSpace” class

• redefinition of geometry: it will no longer consist of a separate class but of
the new attributes “CellSpaceGeom”, “CellBoundaryGeom”, “Geometry”, and
“externalReference”

• clarification of the notion of a layer : a combination of primal space features,
dual space features, or both via the introduction of the “ThematicLayer” class
which is an aggregation of “PrimalSpaceLayer” and “DualSpaceLayer” instances
and has the “semantic” and “Theme” attributes to designate the type of layer
(e.g. “TOPOGRAPHIC”, “SENSOR”, “LOGICAL”, “TAGS”, “UNKNOWN”,
“LEGAL”)

Finally, two changes are perhaps the most interesting. First, IndoorGML 2.0 will
introduce a “PoI” attribute to the “CellSpace” class to allow for cell subdivisions at a
suitable granularity level [95], whereas the proposed model dedicates an entire graph
layer (as detailed in section 3.3.1) to do it. Secondly, the lack of a strategy to partition
space will be addressed on the basis of the ability of the objects within those spaces
to move or to be moved. Hence, the indoor space will be divided into three main
subspaces: object spaces (O-Spaces) representing the spaces physically occupied by
static and semi-mobile objects, functional spaces (F-Spaces) representing the spaces
related to the function of an O-Space, and the remaining free spaces (R-Spaces)
representing the spaces that are freely available for agents’ navigation.

2.4 Chapter Conclusions

In this chapter, the fundamental as well as the state-of-the-art research works in the
trajectory data modeling research domain were described. The focus was on seman-
tic trajectories and indoor trajectories. As argued in depth throughout the chapter,
modeling semantic trajectories has so far neglected the intricacies of indoor envi-
ronments, whereas in terms of data mining even well-established “outdoor-inspired”
semantic concepts have not been sufficiently utilized yet. Chapter 3 will build upon
this awareness of the related works’ limitations to provide a conceptual model for
semantic indoor trajectory data at multiple levels of spatiosemantic granularity.
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3.1 Introduction

Having described among other things the state-of-the-art in Trajectory Modeling in
section 2.2, the focus now shifts to its limitations and a new conceptual data model
of trajectories is introduced, named Semantic Indoor Trajectory Model (SITM).

In specific, SITM is a model of spatiotemporal indoor trajectories enriched with
semantic annotations. It accounts for semantic and indoor space information and
supports the design and implementation of context-aware mobility data mining and
statistical analytics methods. It does so by means of a standardized (primarily sym-
bolic) indoor space modeling framework, instead of modeling space on a 2D coordinate
reference system, as is typically the case with formal trajectory models. Moreover,
it integrates semantic annotations at different levels of spatiosemantic granularity, in
order to allow a detailed description of movement.

More generally, motivated by what is perceived as a lack in indoor trajectory
research, this Thesis combines in SITM different aspects of state-of-the-art semantic
outdoor trajectory models, along with a semantically-enabled hierarchical symbolic
representation of the indoor space which abides by OGC’s IndoorGML standard [109].
Finally, this chapter also drives the discussion on modeling issues that have so far
been overlooked in the literature.

3.2 The Semantic Indoor Trajectory Modeling Problem

Let us now proceed into a detailed identification of the shortcomings in the state-of-
the-art semantic trajectory models. Those will then be used to formalize the proposed
modeling problem.

3.2.1 A Close Look at Current Modeling Limitations

In [163], Spaccapietra et al. identify the need to model movement data from the ap-
plication’s perspective by structuring them into meaningful trajectories. At the time,
this constituted an important breakthrough as it allows the model to avoid unneces-
sary computational complexity issues, i.e. repeating low-level geometric calculations
for finding the characteristics of and the relations between points. It also enables the
representation of semantic aspects of trajectories such as their goal-oriented nature,
although it is not clarified how a trajectory goal may be represented, or calculated /
extracted. For example, in the bird migration application example used to illustrate
the trajectory model’s usage, a bird’s goal may be to “search for food”.

Even though they only segment a trajectory into stops and moves, they sug-
gest that this be done at an application-specific level. Combined with the fact that
semantic annotations may be used to represent any type of semantic information, ei-
ther related to the trajectory itself or to the moving object, this results in a relatively
flexible and generalizable trajectory model.

In comparison, Alvares et al. [11] adopt the model in [163] but refine its defini-
tion of stops based on some temporal threshold value of stay, in order to propose a
particular stop-move detection algorithm. Both works are actually targeting outdoor
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environments, where stops may be identified by intersections with background geo-
metric information (i.e. places of interest). This is also made evident by referring
to trajectories and moving objects as travels and traveling objects respectively. For
indoor applications however, a distinction between stops and moves is often not that
significant. Instead, other types of movement semantics indeed are more important
such as with respect to the functional interpretation of the environment. Moreover, a
symbolic (rather than geometric) trajectory representation is better suited to capture
the indoor space semantics.

The model of Bogorny et al. [23] succeeds in representing the trajectory patterns
at multiple granularity levels thanks to the methods already proposed previously in
[24]. These methods discretize the temporal dimension either in several predefined
granularities (e.g. month) or in user defined intervals (e.g. 14:00-18:00), and the
spatiosemantic dimension either in two predefined granularities (namely feature in-
stance and feature type) or in user defined intermediate granularity levels (namely
the class GenericSpatialFeatureType). Thus, the model proposed by the authors is
flexible with respect to the representation of space and time and suffices to perform
certain pattern mining tasks over trajectory data.

However, it adopts the limitations of the model of Spaccapietra et al. [163] due
to its being oriented towards outdoor settings. Most importantly, the semantic as-
pects of the mining process are exhausted in the names and types of the geographic
locations of interest and do not support associating trajectory patterns with other
types of contextual information (e.g. the type of the traveling object). Topological or
geographical relationships between the various interesting places that constitute the
items of the patterns are also not possible. Instead, the standardized spatial features
adopted by the model of [163] may be used to define the geometry of stops and moves,
but this information can only be leveraged for processing the results of the mining
algorithm, not in the main mining process.

The conceptual framework proposed by Andrienko et al. in [14, 15] exhaustively
describes and categorizes the types of information that may be represented by move-
ment data. In this sense, it offers a deeper theoretical foundation than all other
trajectory data models reviewed in the previous chapter. By effectively breaking
movement down to its most essential elements: space, time, and objects, it enables
the sound definition of events and relations between objects and events. This in turn
allows the definition of higher level concepts (e.g. trajectories, spatiotemporal context
of movement) in a way that captures the interactions between them.

Typically, in the literature the term event is loosely used to describe external
phenomena that may affect the movement. In [14, 15] however, an event is precisely
defined as any object having a particular position in time and hence a lifecycle, while
a spatial event is simply defined as a spatially positioned event. As a result, any
trajectory or any part of a trajectory is actually a spatial event (consisting of a
sequence of elementary spatial events).

Thanks to this representation, relations between events in the movement data
(e.g. visiting a particular place) and events in the context data (e.g. closing down
of particular subway station due to a strike) may themselves be defined as spatial
events, without resorting to ad-hoc modeling approaches. Relations between moving
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objects can also be similarly described. Even individual occurrences of such relations
are spatial events. Spatial events can be even used to represent activities of objects
but this idea is not explored.

The aforementioned representation sets the ground for the extraction of interest-
ing events from trajectories, and the subsequent use of those events as independent
objects. In other words, the framework proposed by Andrienko et al. offers a way of
using movement data analysis results for performing further analysis.

More broadly, different types of spatial events may be used to reflect different
interpretations of movement from the application viewpoint. In this sense, the frame-
work constitutes a generalization of the conceptual model of Spaccapietra et al. [163].
However, the authors do not offer any direction on how to proceed with this type of
semantic modeling.

Related to this, dynamic thematic attributes are defined to represent any attribute
available in the movement data or “any other existing or conceivable thing”, including
semantic pieces of information. This effectively turns a thematic attribute into the
equivalent of a semantic annotation in the model of [163]. But apart from proposing
this conceptual mechanism, the authors do not address at all the issue of how to
implement it.

From the examples used to illustrate the usefulness of the framework, it is appar-
ent that the model of Andrienko et al. primarily targets outdoor environments where
movement data originally consist of geometric coordinates. Characteristically, it is
stated in [14] that “positions in movement data are most often specified by coordi-
nates”, and in [15] that “most often, movement data have the form (object identifier,
time reference, spatial coordinates, attribute values). Movement data available in
other forms can be transformed to this form”. Hence, while the framework does not
prohibit the use of other types, it is oriented towards coordinate positional data.

The conceptual model of semantic trajectories proposed by Yan et al. in [187] and
the very similar one proposed in [188, 190] are more flexible than the model in [163],
because they support heterogeneous semantics, thanks to the concept of episodes
functioning as a generalization of stops and moves.

In addition, their model allows the semantics of movement to be captured even at
the level of spatiotemporal positions via unrestricted annotations of any type. How-
ever, annotating individual positions is not an efficient way to capture even slightly
abstract semantics. It is instead more useful to model high-level trajectory semantics
with equally high-level annotations, each encompassing multiple position records.

Apart from enabling different interpretations of the same movement, another up-
side of an episodic interpretation of trajectories is that it enables trajectory data
compression, because individual GPS records may be replaced by episodes. For ex-
ample, as stated by Yan et al. in [190], an episode can be efficiently stored as a
tuple

ei = (timefrom, timeto, boundingrectangle, center).

Storing such episodic intervals is much less memory costly than storing all times-
tamped positions. In addition, unrestricted episode annotations even allow multiple
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semantic episodes
sei = (da, spi, t
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to refer to the same semantic place spi, which again is less costly than storing repeat-
ing the same semantic place tags. The downside is of course that all of the semantic
modeling effort falls upon the shoulders of the model adopter, because the model
offers no predefined (domain-specific or generic movement-related) semantic specifi-
cations or restrictions. For example, it is not specified whether one or more trajectory
goals are required, optional, or not supported at all.

Moreover, while in [187] it is left unspecified, in [188, 190] the episodes of a seman-
tic trajectory are specifically assumed to be non-overlapping, without any reasoning
in support of this assumption: only mutually exclusive episode predicates are con-
sidered (i.e. [P1] + [P2] + ... + [Pn] = 1 where [P ] = 1 if P = true and [P ] = 0 if
[P ] = false). Perhaps this can be attributed to a particular focus on identifying
stops and moves, which are normally non-overlapping.

In the more general case however, two meaningful trajectory subsequences - each
satisfying a different predicate - may share a common part. For example, if an episode
reflects a specific movement goal and multiple movement goals are modeled in parallel,
then it could be the case that two episodes overlap. A trajectory model should
ideally support segmentation strategies that allow for such overlaps to occur. Τhe
implication of this on the results of the extraction of sequential movement patterns
is also discussed in chapter 6.

The conceptual semantic trajectory model proposed by Spaccapietra and Parent
in [162] and refined in [139], adopts from the model of Yan et al. in [187] its main
structure as a sequence of (potentially annotated) timestamped coordinate positions
or episodes. However, it extends it in the following ways:

• Firstly, it more precisely defines and groups trajectory behaviors, thus enabling
new types of analyses.

• Secondly, it accounts for purposefully missing data in the trajectory’s trace
(thanks to semanticGaps). Distinguishing between accidental and deliberate
(hence meaningful) missing movement information can be useful for dealing
with data quality and uncertainty issues1.

• Thirdly, it accounts for the representation of additional types of raw data (e.g.
speed) besides coordinate positions (thanks to δ).

• Lastly, it encodes multiple different episode segmentations within the same copy
of the trajectory (thanks to segmentations).

By allowing multiple alternative interpretations of the same trajectory and imple-
menting them via unrestricted semantic annotations, the model of Spaccapietra and
Parent significantly generalizes the stop-move interpretation of [163]. Also, it repre-
sents the semantics of movement at three different levels of granularity (i.e. points,

1For example, when a moving object being tracked regularly skips detections (e.g. active tracking
such as badge scanning systems), or when a moving object often enters areas not covered by the
tracking hardware.
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episodes, and whole trajectories). However, even though an episode may group to-
gether any number of positions, this does not mean that it can correspond to any
level of granularity desired, because episodes are defined according to [187] as maximal
subsequences whose spatio-temporal positions all comply with a given predicate.

In addition, the distinction between individual and collective trajectory behaviors
constitutes a first step towards modeling phenomena that involve multiple simultane-
ously moving objects (e.g. visitor group interactions). In particular, the fact that a
trajectory behavior can be defined with respect to another trajectory behavior (e.g.
“Leadership” requiring the presence of “Flock”) can enable a hierarchy of trajectory
behaviors, with “macro-behaviors” building upon “micro-behaviors”.

The main technical limitation of the conceptual model of [139] is that the spatial
dimension of the trajectories is purely geometrical: a spatiotemporal position is actu-
ally a timestamped point which consists of latitude and longitude coordinates, and a
trace (called track in [162]) is simply a list of such positions. On the contrary, an in-
door trajectory model should primarily support symbolic trajectories, where location
information is encoded as a symbol, instead of a coordinate tuple. Therefore, even
though it would be possible to derive symbolic spatial entities after a first step of
(light) semantic enrichment, it is preferable to first symbolically model indoor space
at the application level, and then define trajectories directly over this space model,
effectively bypassing the coordinate representation altogether.

This limitation also concerns the models of [162, 187, 188, 190], all oriented to-
wards handling GPS data collected in a coordinate form, and in contrast to raw
indoor movement tracks which are often collected in a symbolic form (e.g. for com-
pression purposes). Hence, these models simply can not support certain types of
movement data (e.g. proximity sensor readings) since they either do not readily of-
fer any higher-level construct to function as a spatiotemporal unit, other than the
timestamped coordinate position, or if they do, they still require coordinate data to
calculate its values.

Another modeling aspect of the works of [139, 162, 187, 188, 190], that may
prove to be limiting under certain advanced analysis scenarios, is that the trajectory
model allows for the addition of semantic information strictly with respect to the
movement itself (via the mechanism of annotations of the trajectory itself and/or of
its parts i.e. positions and episodes). However, as identified by [143] and described
in the conceptual framework of [14, 15], there are three fundamental sets pertinent
to movement, representing the “where” (set of locations), “when” (set of instants or
intervals), and “what” (set of objects) of spatiotemporal data. This is true across
applications.

For some annotation-based models such as the one of [139], the distinction between
semantics of time, semantics of places, semantics of moving objects, and semantics
of movement itself, can be accounted for by using the annotations as references to
external application-specific objects. To put it more simply, the trajectory model itself
does not distinguish between the different types of semantics but can be extended to
do so.

Ideally however, semantic information should be captured in a way that empowers
the trajectory model not only to distinguish between these four entities, but also to
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capture their interplay. In this respect, it would be useful to complement annotations
with other mechanisms, in an effort to capture the interactions of the fundamental
types of trajectory semantics. For example, if the semantics of indoor spaces re-
main the same throughout the lifetime of a trajectory, then it is probably not worth
capturing them as yet another annotation value set.

Finally, as in the models of [139, 162, 187, 188, 190], also in [25] trajectories are
composed of 2D-coordinate timestamped points p = (x, y, t), due to the model be-
ing oriented towards handling GPS data. In indoor environments however, symbolic
positions are preferred and the raw movement track is not always provided in co-
ordinate or even geometric form. The model proposes an optional classification of
semantic points into geometrically described places but only as part of the enrichment
process. As previously explained, the opposite approach is actually preferable for in-
door trajectories: symbolic places should be the de facto position representation, and
only optionally mapped to their corresponding geometries and coordinate systems.
Also inspired from outdoor long-distance trajectories, is the importance given by the
model to the transportation means: a semantic subtrajectory can be defined purely
based on its transportation means. On the contrary, transportation means in indoor
environments are typically restricted to a static distinction of the moving objects
(e.g. people with or without walking disabilities) and therefore do not constitute an
important part of the model.

The conceptual model of Bogorny et al. [25] is inspired by the model of Parent
et al. [139], but specifies more precisely the supported types of trajectory semantics,
by organizing the contextual and semantic information into concepts and relations
between concepts. The proposed conceptual schema is still flexible enough to allow
the user to select the types of information with which to enrich a trajectory, as well as
the granularity level of the enrichment (i.e. trajectory, subtrajectory, or point levels).

The semantic trajectory definition proposed by Bogorny et al. is stricter than the
one in [139]:

• Firstly, semantic annotations are required to be either goals, or transportation
means, or behaviors, or place names, or environmental information, as opposed
to any type in [139].

• Secondly, a semantic trajectory needs to have exactly one goal and at least one
semantic subtrajectory, as opposed to any number and any type of semantic
annotations and meaningful segmentations in [139].

• Thirdly, some basic application-independent attributes of the contextual objects
are already predefined (e.g. point-level “speed” and “acceleration”), whereas in
[139] they are supported but not predefined.

Although, some of the additional modeling concepts are both interesting and use-
ful (e.g. distinction between “aware” and “non aware” behaviors) and some modeling
choices are sound (e.g. separate classes representing objects, events, places, and en-
vironments), the model of Bogny et al. also makes a few unnecessarily restrictive
assumptions.
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For example, the dependence of a semantic trajectory upon the existence of its
semantic subtrajectories, and in turn the dependence of a semantic subtrajectory
upon the existence of its semantic points, reflects a bottom-up structuring of the
trajectory semantics, consistent with applications trying to enrich GPS datasets. It
is not however necessarily preferable for other trajectory data mining tasks or for
indoor trajectories where all spatial entities are already predefined. For example,
it can be argued that a trajectory having an explicit goal should qualify as being
semantic, even if it does not include any semantic subtrajectory at all.

In [77], Güting et al. study annotated trajectory databases. They consider a
symbolic trajectory to be a sequence of pairs, called units and consisting of a time in-
terval and a label. An important quality of the model they propose is that it provides
a consistent framework for querying both symbolic and geometric trajectories. An
advantage in comparison to other models is that, its proposed abstract data types are
integrated into an existing framework of data types for moving objects (introduced in
[76]). As a result, the trajectory model inherits that framework’s generic operations.

The modeling framework of Güting et al. is a time interval-based one which fits
perfectly the intuition of symbolic indoor trajectories. However, it is oriented towards
lower-level modeling elements, offering a pattern matching language and query op-
erations, since it aims to improve storage space and response time in comparison to
raw geometric trajectory representations. Thus, it is not of primary interest to this
Thesis.

The semantic trajectory model used by Beber et al. in [17, 18] once again show-
cases that, for outdoor trajectory mining and analysis applications the focus is typi-
cally on stop episodes. The authors opt to ignore most of the semantics represented
in the similar model of Bogorny et al. [25]: environments, events, goals, transporta-
tion means, behaviors (in the more general sense than mere activities). In this way,
they avoid some of its restrictive requirements such as the whole trajectory always
having a general goal. Instead their semantic trajectory model only represents stops
corresponding to particular PoIs, each mapped to a specific 2D-coordinate pair.

At the same time however, Beber et al. do extend the model of [25], first with
respect to the semantics of places with the notion of PoI profiles, and also with respect
to collective activities with the notions of encounters and moving object relationship
degrees. Other works typically ignore group activities or simply assume that groups
are known in advance.

This goes to show that it is difficult to strive a fine balance when introducing
semantics to a general scope conceptual trajectory model, because each application
task may put the emphasis on different semantic aspects of the movement. As a
general rule, indoor trajectory applications are more often and more deeply interested
in space semantics than their outdoor counterparts.

Finally, the definition of sub-stops as additional stops corresponding to a partic-
ular stop and its PoI, is an unsophisticated - yet effective - way to account for the
representation of trajectories at multiple levels of spatiotemporal granularity. It al-
lows the identification of multiple finer activities happening during a single stop, in
an otherwise limited (in terms of expressiveness) model.

In [111], Leme et al. are interested only in finding the most relevant datasets
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(through classification algorithms) for the semantic enrichment of trajectories, based
on the types of places visited. As a result, similarly to the works of [17, 18], the
expressiveness offered by existing conceptual models of semantic trajectories is not
needed. Instead, the authors rely on a simple stop-move heuristic and a simple
categorization of the “check-in” places used for labeling them within the trajectories.

While Ferrero et al. do not specifically define a semantic trajectory, their work of
[67] outlines how to do it in a way that enables the discovery of new and more complex
types of patterns. Examples envisaged include the discovery of patterns of moving
object relationships, group awareness, individual-group movement influence. Indeed,
it is the first work in our knowledge to point to this direction, although it targets the
broader trajectory data mining landscape (including trajectory segmentation, feature
extraction, similarity measures, etc.), whereas this Thesis is specifically focused on
trajectory pattern mining.

Despite the fact that the resulting MASTER model introduced in [133] targets
only geometric trajectory data, it is actually compatible with the model proposed in
this chapter, because it focuses on the modeling of the relationships between moving
objects (e.g. friendship, professional, family) and a handful of other concepts (e.g.
events) that are left largely unspecified in the approach of this Thesis. At the same
time, MASTER does not consider data at multiple levels of granularity and would
therefore most fittingly be implemented in combination with or even parallel to a
multigranular trajectory model.

The model proposed by Cruz in [45] is arguably an interval-based one, since a
transitory structure, namely a timeslice, constitutes its most basic component. Un-
fortunately, the model does not scale well when representing data of fine granularity.
The latter seems to be partly due to the fact that a relationship (meets) and a prop-
erty (hasFiliation) are needed to specify the temporal relationship between even two
consecutive timeslices. It would instead be simpler to structure timeslices in a fixed
manner per identity value, and order them (either all together or per moving object)
according to their starting time.

Τimeslices are better suited for trajectories of changing objects, but this Thesis
is only interested in trajectories of well established individual moving objects whose
identity does not change over time. Thus, representing the parent-child relationships
between timeslices seems to be a cumbersome representation not yielding any practical
returns. Another limitation of the model is that it does not account for movement
uncertainty. A separate ontology could be developed to address this, but this idea is
neither pursued nor suggested.

As with many semantic trajectory modeling efforts, especially those tackling the
problem of location-based service user activity inference, Mousavi et al. [135] intro-
duce a trajectory model focused on outdoor trips. This again leads to the logical
representation of a trajectory as a set of stops and moves. Given their focus on ac-
tivity recognition from GPS data, the authors succeed in offering a balanced level of
semantic specification, so as to make their formalism useful for any given application
case related to the aforementioned task.

The ontology model is wisely composed of four separate ontologies: time, place,
stops, and activity. This actually resembles a refinement of the proposal in [189]
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which consists of three different ontologies, namely a Geometric Trajectory Ontology
for the basic concepts of the spatiotemporal aspect of a trajectory (e.g. temporal
points, areas, lines), a Geography Ontology for describing domain-specific natural
and artificial features of interest, and an Application Domain Ontology for higher
level concepts related to specific domains.

Here however, the temporal ontology is concerned with time in qualitative terms
(e.g. morning, evening). More generally, capturing the temporal dimension in such
discretized semantic form can be useful but does not have to fully replace a metric
approach. In addition, the temporal ontology does not include crucial temporal fea-
tures of stops (e.g. average duration, begin time). It would be interesting for the
trajectory model to offer some interconnectedness between the two, perhaps via a
common representation as intervals which would also allow their superimposition.

3.2.2 A Broad Perspective of Current Modeling Limitations

In the earlier semantic trajectory modeling literature, semantics were largely ex-
hausted in the names and types of the geographic places of interest related to the
moving object’s physical stops. Whereas other types of contextual information, or
relations between places, were rarely taken into account.

In general, the relevant context information is acquired from three different types
of sources: users, sensors, and inference systems [158]. As covered in detail in section
2.2.1.4, efforts have since been undertaken to integrate movement ontologies, linked
open data, information extracted from social network platforms, or complementary
case-specific datasets, with spatiotemporal trajectory data. Even the basic concept
of (trajectory) episodes can be viewed as a generalization from stop-move segments
to more diverse and heterogeneous semantics.

However, as more and more types of semantics become relevant given the increas-
ing interest in context-aware location based services and applications (e.g. context-
aware museum guidance [105]), and as Big Trajectory Data are characterized more
and more by their variety and not just volume, semantically rich models become
all the more appreciated. Unfortunately, targeted trajectory semantics have so far
largely concerned outdoor contexts, as often made evident by the terminology (e.g.
traveling objects [163]) and definitions used.

On the contrary, a model for semantic trajectories in indoor environments needs
to at least consider the building’s topology and space semantics. The interior of build-
ings is typically divided into clearly delimited spatial entities such as rooms, halls,
corridors, floors. This physical segmentation already holds a considerable amount
of semantic information that a typical outdoors-inspired trajectory model does not
capture.

Furthermore, for most semantic trajectory models, the sole spatial primitive is a
2D coordinate position relative to the GPS’s or to the specific application’s coordi-
nate reference system. In contrast, raw indoor movement tracks are often collected
in symbolic form, either due to indoor positioning technologies being better suited
for compartmentalized tracking (e.g. proximity sensor readings), or due to pressing
data compression needs. The latter is particularly important in the context of Big
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Trajectory Data, because the indoor topology can be used to reduce the massive stor-
age needs, in a way much similar to how a road network [149] can compress a vehicle
trajectory dataset.

In any case, a model representing movement in symbolic terms has the advantage
of being independent from the positioning technology used for collecting the move-
ment data [151]. At the same time, knowing in advance the spatial entities that
a moving object may find itself in (e.g. a list of rooms) makes encoding them as
symbols conceptually and computationally more practical. Therefore, symbolic and
hybrid indoor space models become an attractive building block for modeling indoor
trajectories.

3.2.3 Problem Statement

With the above points in mind and within the scope of a broad range of real-world
applications (e.g. airports, exhibition spaces, museums, etc.), the modeling problem
can be reduced into finding a trajectory data representation which consistently:

1. captures the meaningful aspects of indoor movement;

2. captures the intricate effects of the indoor environment upon movement;

3. remains application domain-independent.

More particularly, there is a need to design a trajectory model which supports
spatiotemporal types of analysis and semantics-based types of analysis, at multiple
levels of spatiosemantic granularity, for multiple moving objects, and at the same
time account for trajectory data quality and uncertainty issues.

3.3 Semantic Indoor Trajectory Model (SITM)

In this section, a new model is defined for semantic trajectories in indoor environ-
ments, named Semantic Indoor Trajectory Model (SITM), aimed at supporting:

• all types of indoor settings;

• different types of semantics;

• both human and inanimate moving objects;

• mining and analysis applications using statistical and reasoning approaches (ap-
plied both at the individual and collective trajectory level).

SITM consists of, a semantically enriched representation of indoor space, and a
semantically enriched sequence representing an individual moving object’s spatiotem-
poral presence.

The proposed indoor space representation is a layered multigraph. Its nodes
symbolically represent indoor spatial regions, and its edges represent topological re-
lationship information between those regions. Static semantic information about the
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regions is represented through node classes and attributes as well the grouping of
nodes and edges into layers. The proposed representation is compatible with OGC’s
IndoorGML standard and can be viewed as an extension of it. It is described in
section 3.3.1.

The proposed representation of an individual moving object’s trajectory is a cou-
ple consisting of, a trace of consecutive presence intervals inside the indoor regions
represented by the graph’s nodes, and a set of semantic annotations describing the
trajectory in its entirety. It uses the aforementioned indoor space representation and
is described in section 3.3.2.

3.3.1 The Indoor Space Model

As argued in section 2.3, any type of trajectory model has to somehow represent lo-
cation information, and consequently the spatial environment where movement takes
place. For indoor spaces in particular, symbolic representations are generally pre-
ferred for reasons already discussed in chapter 2. Set-based ones are of course simpler
than graph-based ones, but lack the means to represent space connectivity, a feature
that is too important to ignore as far as trajectories go.

3.3.1.1 Abiding by the IndoorGML standard

As explained in section 2.3.2, the IndoorGML standard [109] serves to represent
indoor space as a set of cells. Further information can of course be represented thanks
to the graph structure (topological information), the ISO19197 spatial features and
the external references (optional geometric information), as well as the classification
of cells and the Multi-Layered Space Model (semantic information).

Hence, IndoorGML offers a flexible indoor space model that combines topologi-
cal, geometric, and semantic information. In particular thanks to the graph-based
representation of the spatial entities, it offers a computationally efficient way to not
only model indoor navigation and routing problems, but also implement innovative
indoor trajectory pattern mining methods.

In specific, based on the modeling framework provided by IndoorGML and its
Multi-Layered Space Model (MLSM), a 2D multiple floor (i.e. 2.5D) indoor space is
defined as follows:

Definition 3.3.1 (2D multiple floor indoor space)
A 2D multiple floor indoor space is represented as a layered multigraph G =

(V,E) with m+ 1 layers where

• V =
m⋃
i=0

Vi

• E = Etop ∪
m⋃
i=0

Eacci

• Each layer constitutes an accessibility Node-Relation Graph (NRG) Gi = (Vi, E
acc
i ),

0 ≤ i ≤ m, where Etop represents binary topological relationships between two
cells of different layers
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• The graph G is composed of m + 1 different layers of nodes and edges, each
comprising a NRG Gi and corresponding to a different decomposition of the
indoor space.

On the one hand, node v ∈ Vi represents a cell belonging to the i-th layer and an
edge e ∈ Eacci ⊆ Vi×Vi represents the accessibility between two cells of the i-th layer.
On the other hand, a joint edge e′ ∈ Etop ⊆ Vi × Vj represents a binary topological
relationship between two cells of different layers (i 6= j).

Figure 3.1 illustrates an example of such an indoor space graph representation con-
sisting of five hierarchical layers: Region of Interest, Room, Floor, Building, Building
Complex, which will be explained in greater detail in the following paragraphs.

Figure 3.1: A 2D multiple floor hierarchical indoor space representation

3.3.1.2 Indoor Space Modeling: Definitions, Aspects, Details

Despite the IndoorGML standard offering a core framework for modeling indoor space
in a meaningful way, it is still necessary to clarify, restrict, or adapt certain parts of
it. More generally, there exist important modeling details or issues that have never
been addressed before in the literature. Thus, along with presenting the indoor space
model, this section also examines various modeling choices.

First, let us define a layer hierarchy as k + 1 ordered layers Gi (0 ≤ i ≤ k, k ≥ 2)
of G, only consecutively connected by joint edges. The hierarchical structure of an
indoor space is often perceived based on its function/usage and is thus not necessarily
the same as its architectural structure. On this matter, Diakite et al. [52] propose a
categorization of specific criteria to automate the subspacing procedure:

• geometry-driven criteria (e.g. split if some cell dimension surpasses a certain
value),

• topology-driven criteria (e.g. split depending on which cells a cell is connected
to before/after the split),
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• semantics-driven criteria (e.g. split depending on what type of cells a cell is
connected to),

• navigation-driven criteria (e.g. split if a cell has both walkable and non-walkable
parts).

Despite the fact that [52] focuses on furnished 3D indoor spaces, this categoriza-
tion can also be used as a guideline for coming up with 2D space partitioning criteria,
despite the implementation differing considerably from case to case. However, a spe-
cific splitting strategy is missing. Unfortunately, hierarchical subspacing based on
loose guidelines requires a considerable amount of modeling effort, because there are
many possible ways to structure the multi-layered graph G, some more complicated
than others.

The straightforward modeling approach, followed here, is to define specific levels
of spatiosemantic granularity with respect to the main architectural elements of in-
door environments, and devote a separate layer to each one. Then, additional layers
reflecting purely semantic interpretations (e.g. usage) of space can also be added
according to application needs. These may or may not be part of the initial spatial
hierarchy. Semantic layers can actually relate to a basic architectural hierarchy, or be
completely independent of them, even form their own hierarchies (e.g. an ontology
or a taxonomy) in parallel to the topographic one.

The alternative approach would be to define fewer layers of mixed (i.e. non-
hierarchical) spatial granularity in order to satisfy a specific application’s require-
ments. This would lead to a more compact ad-hoc space model where for example
rooms and artworks may be represented in the same layer, whereas buildings and
floors in a different one. In the limit case where an application is only relevant to a
specific level of granularity (e.g. room level), it suffices to model indoor space with a
single NRG.

However, since the model’s goal is to support trajectory modeling for a variety of
application cases, a hierarchical approach is preferred. Nevertheless, the multigraph
G does not have to be “entirely” hierarchical, meaning that not all of its m layers
need to belong to the same hierarchy.

More specifically, the space model requires a certain 3-layer core hierarchy to
account for the fact that virtually any indoor environment consists of: a Building
layer, a Floor layer, and a Room layer.

Therefore, G must include 3 layers representing static hierarchical levels of spa-
tiosemantic granularity. Other layers are of course optional and may also integrate
with this core layer hierarchy, in which case k > 2.

As mentioned, layer hierarchies comprise either topographic layers, or semantic
layers, or both. It is evident that the proposed 3-layer core hierarchy is basically
a topographic one. The Building and Floor layers are spatially defined, since the
architectural structure alone is mostly enough to determine which space constitutes
a building and which space constitutes a floor. The Room layer is also predicated
spatially, but in a looser way since it may on occasion contain cells whose boundaries
are not necessarily physical (e.g. functionally independent subspaces of a big hall or
of a great room). Hence, it may actually contain any type of room-level navigable
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spatial cell: rooms, chambers, halls, lobbies, cellars, terraces, corridors, hallways, big
staircases, etc.

Furthermore, the 3-layer core hierarchy makes the model generalizable to differ-
ent tracking technologies and infrastructures, an important enabler for the fusion of
heterogeneous Big Trajectory Data. In addition, it simplifies the indoor space model
as it follows common intuition about the building blocks of indoor space.

This is especially important when more than one hierarchical interpretations are
needed, for example when the usage of the spaces has to be added to the model.
The reason is that each usage layer (e.g. sensor layer) might need to be related
to multiple layers of the architectural structure (e.g. a sensor might cover a part
of a room while another sensor might cover a whole room plus a part of the next
room). Specifically, for N architectural structure layers and M usage layers, there
might be MxN different groups of inter-layer connections, without accounting for the
possibility of having relationships amongst different usage layers.

In addition to the core hierarchy, two optional layers are proposed for typical cases,
as shown in Figure 3.1: a Building Complex root layer and a Region of Interest (RoI)
leaf layer. The Building Complex layer is defined to represent the indoor space of a
site comprised of multiple buildings, such as a hospital spanning multiple attached
wings or a university campus spanning multiple independent edifices. The RoI layer
is defined to represent navigable sub-room level spatial cells of application-specific
interest, such as “you-are-here” map installations in a shopping mall or individual
exhibit displays in a museum.

The Building Complex and RoI layers are only relevant per case, and can be
properly integrated into the core layer hierarchy: Building Complex → Building →
Floor → Room → RoI. In such case, a Floor object describes a single building’s floor
level and not that floor level in general (e.g. FloorA1 6= FloorB1 for two different
buildings BuildingA and BuildingB).

Concerning G’s edges, intra-layer edges and inter-layer edges are always of differ-
ent type, and therefore G can be considered as an edge-coloured multigraph which
can be mapped to a multilayer network [97]. Identifying representation equivalencies
like the aforementioned one is important, as it allows trajectory data modelers and
analysts to tap into methodologies already developed in the respective research fields
(e.g. Graph Theory).

With regards to the interpretation of the graph’s joint edges, the IndoorGML
standard defines them as representing the contains, within, overlaps, crosses, equals,
and intersects topological relationships, illustrated in Figure 3.2. However, it is crucial
to specify restrictions imposed over these relationship types depending on the goals
of the model and its desired functionality.

More specifically, in the proposed implementation of the indoor space hierarchy,
the overlaps, crosses, intersects, and within relationships are excluded from the set of
possible joint edge interpretations, as far as hierarchies go. This leads to a simplified
top down hierarchical model which offers some advantages for analytical operations
as will be explained later in this section. However, all types of intersects relationships
are still allowed for relating “in parallel” the core 3-layer (or the extended 5-layer)
structural hierarchy to one or more semantic layers.
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The equals relationship could also be excluded to prohibit node repetition and
instead enforce a proper hierarchy, in other words to ensure that going from one layer
to the next, every node will reflect a strictly finer spatial entity than its parent node.

Related to this, since the indoor space model adopts IndoorGML’s implicit as-

sumption that each node belongs to a single layer (
m⋂
i=0

Vi = ∅), it follows that if a

node is relevant to multiple layers, then essentially it has to be replicated in each
one. Effectively, this means that all of its consecutive copies have to be connected via
equals joint edges. This is only needed in exceptional use cases where repeating the
same node in different layers both makes sense and serves a purpose (e.g. particularly
large rooms, single floor buildings).

Finally, Figure 3.2 illustrates common topological relationships between surfaces
which may sometimes be mixed due to different naming conventions.

Figure 3.2: Common types of binary topological relationships between surfaces.

With regards to intra-layer edges, according to the IndoorGML standard they
may represent adjacency, connectivity, or accessibility relationships. Of course, ac-
cessibility presupposes connectivity which in turn presupposes adjacency, as argued
in section 2.3.2.
Αdjacency and connectivity can be said to be less useful for most types of trajec-

tory analysis, because for any moving object to be able to transition between states
accessibility is the true requirement. Therefore, the meaning of the intra-layer edges
is restricted solely to accessibility between spatial cells.

Modeling adjacency and connectivity can still be useful when changes in the indoor
environment itself need to be taken into consideration. In the museum domain for
example, it may help with route optimization for emergency response planning, or
with interpreting certain mobility behaviors. For instance, a regular visitor getting
lost might be explained by an old accessibility relationship being “downgraded” to a
connectivity one (e.g. a passage or a door temporarily closing down for renovation
reasons) without the visitor being informed about it.

Moreover, given that cells in our core model represent the physical reality of
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planar space (instead of some form of conceptual space) and that same-layer cells
do not overlap at all, an intra-layer edge e ∈ Eacci actually presupposes the meets
topological relationship between its two cells, because the corresponding spaces need
to share a common surface for the moving object to be able to physically transition
between the two.

Another important indoor space modeling decision has to do with whether G is
directed or not. Although IndoorGML does not explicitly assume either case, it con-
siders undirected edges in all of its examples. As far as intra-layer edges go, adjacency
and connectivity can be thought of as being symmetric relationships. However, the
proposed model only considers the accessibility relationship which is not symmetric
since indoor movement is often only unidirectionally possible due to technical, safety
or other limitations.

In the right part of Figure 3.3 for example, Room4 (Salle des États) houses the
Mona Lisa and accommodates a vast number of visitors on a daily basis. To facilitate
their flow, entering it from Room2 is often prohibited by the museum personnel,
whereas exiting it that way is allowed. Therefore, accessibility NRGs are directed as
indicated by the downwards pointing arrowheads in Figure 3.3.

As far as joint edges go, while overlaps and equals relationships can be thought of
as symmetric, contains relationships can not. Therefore, again directed joint edges
are assumed (as seen in Figure 3.1). If a modeler was only interested in capturing
intersection non-emptiness instead of the specific nature of their relationships, then
undirected joint edges would suffice, but the hierarchical representation of space would
have to be dropped. In conclusion, the entire multigraph G is directed.

Having explained the specific nature of joint edges, it can now be appreciated how
a static predefined layer hierarchy enables a structured reasoning about the trajecto-
ries at multiple levels of granularity, as opposed to local ad-hoc node subdivisioning
schemes.

First, by only allowing proper part types of relationships, a direct inference of
a moving object’s location at all levels above the detection/observation data level
becomes possible. This in turn allows developing reasoning mechanisms to cope with
missing or uncertain location information. For example, in the frequent cases of
double detections in one layer (e.g. room layer), such conflicts may be resolved by
considering presence at the above layer (e.g. floor) instead of risking an estimation.
It also enables the identification of certain types of movement patterns at the room
level for instance, and at the same time of other types of patterns at the floor level,
all from the same trajectory dataset.

Moreover, multiple layer hierarchies may be defined in parallel to each other via
parallel joint edges that can additionally include the equals and overlap relationships.
In that case, thanks to the transitivity of parthood (isomorphic to set inclusion) in
classical mereology, each layer hierarchy only needs to connect to other layers or
layer hierarchies at the lowest possible level. This is because an equals or overlap
relationship between two nodes means that an overlap relationship also holds between
any two of their predecessors in their respective hierarchies.

Related to this, the graph representation assumes that the indoor area designated
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Indoor space represented at different
granularity levels by different NRGs.

A 2-level hierarchical graph of the
Denon wing’s central part.

Figure 3.3: Structured (left) or ad-hoc (right) representation of a hierarchical space.

by each node is fully covered by the areas represented by its child nodes 2.

As a reminder from section 2.3.1, IndoorGML distinguishes between a Geometric
NRG and a Logical NRG, depending on whether its nodes and edges have geometric
properties or not. However, a logical NRG does not address at all how the space being
symbolised is being represented, as remarked by [184]: “an explicit indoor location
information is outside the scope of CityGML and IndoorGML”. Also, according to
[52] IndoorGML “does not seem to provide restriction concerning the placement of
such node, but for the targeted applications, such constraints may be necessary. It
is implicitly assumed that a node representing a space should be at least contained in
that space”.

Intuitively one may assume that a node in a NRG represents the centroid of the
corresponding spatial cell. However, in the proposed indoor space model a different
convention is adopted: the location of the moving object is considered to be the whole
spatial cell corresponding to the node. This straightforward interpretation implicitly
mentioned in [155] can be very useful in applications involving uncertainty in the
positional data.

Finally, SITM follows an entrance/exit node convention: only entrances may

2The alternative is IndoorGML’s open-world-like assumption that “the union of all cells is a subset
of the given indoor space” (

⋃
ci ⊆ U) [91], under which, if the moving object is present in a given

node, then it should certainly also be present in one of its child nodes.
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generate moving objects and only exits may consume moving objects. All other nodes
are assumed to have equal input and output flows at the end of each day, which can
serve for correcting tracking errors in the data. IndoorGML uses the concept of anchor
nodes, to bidirectionally connect indoors with outdoors, and to contain information
for transforming between the respective coordinate reference systems. Entrance and
exit nodes can thus be viewed as specializations of anchor nodes, and are meaningful
to have even when the outdoor environment is not modeled.

3.3.2 The Semantic Indoor Trajectory Model

Automatically collected raw movement data typically consist of spatiotemporal records,
out of which individual trajectories can be extracted. Depending on the application
and on the type of moving object, only the evolution of its representative location
may be relevant (e.g. museum visit analysis) or perhaps also its shape and parts’
movements (e.g. skeletal tracking for sports performance analysis).

In the former case, a trajectory is typically represented as a sequence of times-
tamped spatial points. Due to a building’s clearly separated spaces however, regions
(instead of points) are considered to be the model’s primary primitive spatial enti-
ties, in the spirit of Qualitative Spatial Representation [43] and IndoorGML’s cellular
space [109], and according to the indoor space model proposed in section 3.3.1.

Following is the presentation of the proposed model of semantic trajectories taking
place in an indoor environment. Louvre visits will be used as trajectory examples,
since this fits the particular application case, studied in greater detail in chapter 6.
Let us first start by providing the formal definition of a semantic trajectory.

Definition 3.3.2 (semantic trajectory)
A semantic trajectory is defined as the couple of its spatiotemporal trace and

the set Atraj of its semantic annotations:

TIDmo,tstart,tend
= (traceIDmo,tstart,tend

, Atraj)

where IDmo is the identifier of the moving object, tstart and tend are the trajec-
tory’s starting and ending timestamps, traceIDmo,tstart,tend

is a semantic trajectory
trace representing the spatiotemporal aspect of the trajectory as a sequence of times-
tamped semantically annotated presence periods/intervals, and Atraj is a set of se-
mantic annotations describing the trajectory in its entirety.

Assuming that no moving object can be in two different places at the same time, its
identifier along with the two limit-case timestamps, can be used to identify each of its
trajectories TIDmo,tstart,tend

. The first element traceIDmo,tstart,tend
of such a trajectory

will be more thoroughly described in the following definition.

The trajectory’s second element Atraj is a non-empty set of semantic annotations
atraj ∈ Atraj characterizing the trajectory in its entirety. Trajectory annotations are
not confined within specific types of information, but would typically be chosen to
represent an activity, a behavior, or a goal showcased by the complete trajectory.
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These terms are often ambiguously used in trajectory literature. Risking oversim-
plification, the distinction between these three types of trajectory semantics can be
summarized as follows:

• activities concern targeted/conscious actions performed by a moving object; for
example:
atraj = “visit temporary exhibition”;

• behaviors concern less intentional actions or reactions; for example:
atraj = “follow ′Masterpieces′ guided tour”

• goals concern the motivations which affect the movement; for example:
atraj = “visit Mona Lisa”

The first two types describe the actuality of movement, whereas the third one
instead describes the potentiality of movement. For example, many trajectories in
the Louvre Museum are greatly affected by the visitor’s intention to see the Mona
Lisa, irrespective of whether this goal will eventually be accomplished or disrupted
due to overcrowding.

Naturally, a trajectory may well be characterized by multiple types of semantics,
e.g.: Atraj = {behaviors : [“follow ′Masterpieces′ guided tour”],

goals : [“visit Mona Lisa”]}.
Semantic annotations also have the advantage of allowing the modeler to specify

them to the extent desired or needed for a particular application, rather than embark
on an ambitious attempt to define all useful movement concepts and relationships of
movement in general. For example, they can be used as attribute types in a relational
model as suggested in [77], or even matched to the concepts of an ontological model
which imposes its own semantic rules and restrictions over what can be represented
and what not.

However, they mainly just act as simple labels (i.e. textual annotations) to keep
the trajectory model as flexible as possible.

Definition 3.3.3 (semantic trajectory trace)
Let us consider a 2D multiple floor indoor space represented (as detailed in

section 3.3.1) by a layered multigraph G = (V,E), V =
m⋃
i=0

Vi, E = Etop ∪
m⋃
i=0

Eacci .

A semantic trajectory trace is defined as:

traceIDmo,tstart,tend
= (ek, vk, t

start
k , tendk , Ak)k∈[1,n]

where vk is the state where the moving object IDmo finds itself from tstartk until tendk ,

ek = (vk−1, vk) ∈
m⋃
i=0

Eacci is the transition that led the moving object from state

vk−1 to state vk (i.e. which boundary was crossed; for example which door, staircase,
or elevator was used to get there), and Ak is a potentially empty set of semantic
annotations describing that specific stay.
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As an example of a semantic trajectory and its corresponding semantic trajectory
trace, let us consider a visitor’s 2-hour morning visit to the Louvre:

Tvis0042,11:30:00,13:30:00 = (
tracevis0042,11:30:00,13:30:00,
{goals : [“visit temporary exhibition”]}

)

tracevis0042,11:30:00,13:30:00 = {
(entrance01, “PH”, 11:30:00, 11:32:30, ∅),
(ticketcontrol02, “TE”, 11:32:30, 13:00:00, {mo : [“home ticket′′]}),
(ticketcontrol02, “PH”, 13:00:00, 13:02:00, ∅),
(opening02, “MS”, 13:04:00, 13:28:30, {activity : [“shopping′′]}),
(opening01, “IPH”, 13:28:30, 13:30:00, ∅)

}
The above semantic trajectory represents the movement of visitor vis0042 in

the Louvre in order to visit the temporary exhibition. The visitor moves through 4
different zones, first appearing in and passing twice from the Pyramid Hall (“PE”),
then going to the Temporary Exhibition (“TE”) zone where he/she stays for a long
time, and then going back again in the Pyramid Hall (“PH”), before entering the
Museum Shop (“MS”) area and exiting from the Inverse Pyramid Hall (“IPH”).

Unsurprisingly, while in the Museum Shop the visitor did some shopping. It is
not the trajectory model’s goal to decide how to obtain such semantic aspects from
the spatiotemporal context (they may even be simply provided to the analyst) but
rather how to represent them in a way that facilitates their extraction and subsequent
usage for analysis purposes. As pointed out in [34], semantic annotations “could be
arbitrary combinations of the initial multiple semantics”, meaning that they can even
be partly provided and partly extracted as part of the analysis. For example, as will
be mentioned in section 4.2, a lot of trajectory data mining works have focused on
the task of enriching geometric trajectories with place semantics, either as part of the
preprocessing process or even as the main means of knowledge discovery.

To accommodate for trajectory holes and semantic gaps [162] as well as detection
data uncertainty issues in general, the spatiotemporal trace is allowed to contain
temporal gaps where the presence of the moving object is unknown. This is the case
in the above example when the visitor disappeared for a couple of minutes before
entering the Museum Shop. Allowing for such gaps enables the design of analysis
mechanisms [198] treating the uncertainty that is especially prevalent in raw form
Big Trajectory Data.

Next, a semantic subtrajectory is defined for all practical purposes as a semantic
trajectory - similar to how a mathematical subsequence is itself a sequence - but
necessarily referable to some other main semantic trajectory.

Definition 3.3.4 (semantic subtrajectory)
Given a semantic trajectory

TIDmo,tstart,tend
= (traceIDmo,tstart,tend

, Atraj)
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a semantic subtrajectory of it is defined as:

T ′IDmo,t′start,t
′
end

= (trace′IDmo,t′start,t
′
end
, A′traj)

iff trace′ is a proper subsequence of trace:
tstart ≤ t′start < t′end < tend or tstart < t′start < t′end ≤ tend.

A subtrajectory’s set of semantic annotations A′traj may or may not be the same
as that of its main trajectory Atraj , contrary for example to [25] where these are (by
design) enriched with different types of semantic information.

Let us now consider another visitor’s semantic trajectory:

Tvis0043,13:00:00,13:33:00 = (
tracevis0043,13:00:00,13:33:00,
{goals : [“visit temporary exhibition”]}

)

tracevis0043,13:00:00,13:33:00 = {
(entrance01, “PH”, 13:00:00, 13:02:00, ∅),
(opening02, “MS”, 13:04:00, 13:28:30, {activity : [“shopping′′]}),
(opening01, “IPH”, 13:28:30, 13:33:00, ∅)

}
In comparison to the previous trajectory example, this one concerns a more ca-

sual type of Louvre visitor who is simply shopping in its stores (where a ticket is
not required). According to a strict interpretation of Definition 3.3.4, the seman-
tic trajectory of visitor vis0043 is not a subtrajectory of the semantic trajectory
of visitor vis0042, because even though they share the same 3-zone pattern of visit
“PH”→ “MS”→ “IPH”, and the exact same semantics, vis0043 arrives at “PH”
via a different edge and stays in “IPH” a little longer than vis0042.

Therefore, for practical reasons and depending on the application case, the proper
subsequence requirement needs to be mathematically relaxed according to a fitting
interpretation of trace similarity. This can be either with respect to spatiotemporal
similarity or semantic similarity or both.

For instance, if we ignore the traversed edges and allow a temporal deviation of 5
minutes in the timestamps of each presence interval, then Tvis0043,13:00:00,13:33:00 is in-
deed a semantic subtrajectory of Tvis0042,11:30:00,13:30:00, because their last timestamps
differ only by 3 minutes (less than the aforementioned threshold value of 5 minutes).

Finally, as made evident by the last example, a semantic subtrajectory may con-
cern a different moving object than its main semantic trajectory. This is because in
the general case, the proposed model is concerned with studying movement patterns
irrespective of who performed them.

Next, an episode of a semantic trajectory is defined as any particularly meaningful
part of it.

Definition 3.3.5 (episode)
Given a semantic trajectory

TIDmo,tstart,tend
= (traceIDmo,tstart,tend

, Atraj)
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an episode of it is defined as:

T ′IDmo,t′start,t
′
end

= (trace′IDmo,t′start,t
′
end
, A′traj)

iff

(1) T ′IDmo,t′start,t
′
end

is a semantic subtrajectory of TIDmo,tstart,tend

(2) A′traj 6= Atraj

(3) T ′IDmo,t′start,t
′
end

satisfies a domain-dependent and user-defined spatiotemporal

and/or semantic predicate Pep : T ′IDmo,t′start,t
′
end
→ {true, false}

Moreover, an episodic segmentation of a semantic trajectory is simply any subset
of its episodes that covers it time-wise. Contrary to typical literature practice, we
allow an episodic segmentation to contain episodes that overlap in time, since the
exact same movement part may have multiple meanings depending on the broader
context or on the scale at which it is examined.

For example in the museum domain more precisely, it may be useful to enrich a
visit trajectory with PoI theme instances corresponding to where the moving object
stopped (e.g. the artwork type), with contextual event instances affecting the move-
ment (e.g. a fire alarm activation that took place at a specific time), with the current
status of the moving object (e.g. audio description being played), etc. However,
using state of the art annotation-based semantic trajectory models would already
require three separate segmentations of the same trajectory trace. One segmentation
would include spatiotemporally-defined “visit” episodes with annotation values such
as “Painting X”, a second segmentation would include temporally-defined “event”
episodes with annotation values such as “Fire Alarm” or a link to a “Fire Alarm” ob-
ject, and a third segmentation would include semantically-defined “listening” episodes
with annotation values such as “Sculpture Y Audio”.

Instead, it is much more convenient to allow overlapping episodes, since for in-
stance

Let us consider an enriched version of visitor vis0042’s previous semantic trajectory
example and a non-overlapping activity-based episodic segmentation of it:
episodeseg = {

episode1 (arrival):
Tvis0042,11:30:00,11:32:30 = (

tracevis0042,11:30:00,11:32:30,
{activities : [“arrive Louvre”]}

)
tracevis0042,11:30:00,11:32:30 = {

(entrance01, “PH”, 11:30:00, 11:32:30,∅)
}

episode2 (temporary exhibition visit):
Tvis0042,11:32:30,13:00:00 = (
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tracevis0042,11:32:30,13:00:00,
{activities : [“visit temporary exhibition”],
goals : [“visit Salvator Mundi”]}

)
tracevis0042,11:32:30,13:00:00 = {

(ticketcontrol02, “TE”, 11:32:30, 13:00:00, {mo:[“home ticket”]})
}

episode3 (departure):
Tvis0042,13:00:00,13:30:00 = (

tracevis0042,13:00:00,13:30:00,
{activities : [“shopping”, “exit Louvre”]}

)
tracevis0042,13:00:00,13:30:00 = {

(ticketcontrol02, “PH”, 13:00:00, 13:02:00, ∅),
(opening02, “MS”, 13:04:00, 13:28:30, {activity : [“shopping′′]}),
(opening01, “IPH”, 13:28:30, 13:30:00, ∅)

}
}

Interestingly, even though it describes temporally continuous movement phenom-
ena, SITM is still an event-based model: only a change of the spatial cell that the
moving object is located in, or a change of the semantic information regarding the
moving object’s presence in that cell, requires a seperate tuple. Hence, each tuple’s
begin and end timestamps denote the natural time interval that corresponds to the
moving object’s physical presence given stable semantics. One may argue that it then
becomes difficult to correctly split and annotate the trajectory because what if the
intervals become overloaded with different many types of semantics. Whereas this
would be true in a stops and moves model, as warned by [67], here it is countered by
the multi-granular nature of our representation: not all spatial abstraction levels need
to correlate to all semantic semantic abstraction levels. For example, if the spatial
granularity of a museum visitor’s trace is at the RoI layer, then perhaps we need to
take into consideration annotations describing which particular artwork caught that
visitor’s attention. If on the other hand our data’s spatial granularity stops at the
room layer, then perhaps we prefer to skip the lowest-level of semantic information
that we possess and only use the artwork theme of the rooms or the room congestion
level.

Although, we took advantage of spatial semantics in our model, the proper layer
equivalence between spatial information and movement semantics is ultimately ap-
plication dependent. Therefore, it should be up to the analysis method (or to a
specific model extension) to decide whether it wants to derive higher level semantics
from lower level semantics, attempt to extract lower level semantics from higher level
ones and/or from the spatiotemporal data, etc. Finally, such a representation also
suits most raw indoor mobility datasets, which typically consist of individual sensor
detections.
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3.4 Chapter Conclusion

In this chapter, we presented a new conceptual model of trajectories, which accounts
for semantic and indoor space information. More specifically, it formally defines a
new model for spatiotemporal indoor trajectories enriched with semantic annotations,
called Semantic Indoor Trajectory Model (SITM). The proposed model makes se-
lective use of the IndoorGML standardized indoor space modeling framework, and
integrates semantic annotations at different levels of granularity in order to allow a
detailed description of the movements, thus enabling more interesting types of anal-
ysis.

Many of the concepts used in our proposed model (e.g. episodes, semantic annota-
tions) were adopted from state-of-the-art conceptual models, as presented in section
2.2.2 and modified to fit cohesively with each other and with the new ideas (e.g.
multilayered graph indoor space representation, selective topological relation types,
overlapping episodes). In chapter 6 we will illustrate SITM with respect to the
modeling of visitor trajectories in the Louvre Museum.
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4.1 Introduction

This chapter offers a research overview and categorization of computational process-
ing and analysis tasks related to trajectory data. It does not constitute a systematic
literature review, nor does it aim to cover completely the whole spectrum of corre-
sponding methods in the bibliography for tackling these problems. Our aim is to
provide help in orientating the researchers and professionals who deal with mobility
datasets, and to assist them in identifying which types of analyses fit which data and
fields of expertise, and inversely which types of mobility data and analytical methods
are most suitable for solving a particular movement analysis problem. This original
overview also serves as an introduction to Trajectory Pattern Mining (T-PM) which
is the main focus area for the rest of this chapter and for which background work will
be examined.

4.2 Trajectory Data Mining Landscape

Data processing, mining, and analysis have been extensively studied for at least three
decades already [144], but have typically relied on a data instance independence
assumption. Naturally, this is not the case with spatiotemporal movement data, where
data instances are integrally interrelated, and even the temporal data dimension alone
requires special consideration. Moreover, the apparition of semantic trajectory data
throughout the last decade - however they may be represented - makes it even more
important in the data mining world to build new specialization around trajectory
data mining tasks.

In section 2.2 the focus was on the state-of-the-art on modeling trajectories, but
structuring mobility data into a trajectory form is only the first step towards extract-
ing knowledge from them. Towards this end, this section is primarily interested in
T-PM, yet it begins by presenting an integrated view on a broad range of trajectory
data mining tasks.

Oftentimes the terms trajectory data mining and trajectory pattern mining are in-
correctly used interchangeably, when in fact the former encompasses numerous tasks
including - but not limited to - frequent pattern extraction from an input trajec-
tory dataset. The motivation for proposing this problem overview is twofold. First,
a delay in acquiring the application case datasets (i.e. the Louvre museum visitor
datasets) lead the author to first study and consider the broader trajectory data min-
ing landscape, before narrowing down on a set of potential target problem(s) based
on his personal literature review and examination of the available data. Thus, it was
experienced first-hand how real-world data availability and quality can dictate the
pursual of certain trajectory data mining tasks, whereas others clearly become un-
feasible despite being equally interesting from a theoretical point of view. Secondly,
similar efforts have so far been undertaken in survey works such as [198], [65], [132],
[16]1, and [179]. There also exist survey works which only cover narrower segments

1In this survey Atluri et al. actually review all types of spatiotemporal data and consider trajec-
tories as a particular class of data instances.
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of the trajectory data-related research spectrum, such as taxi trajectory data mining
[36], semantic trajectory data management [85], road transportation systems analysis
[129], maritime trajectory management and mining [42, 177], context-aware move-
ment analysis [158] and others. Unfortunately, the attempted trajectory data mining
taxonomies proposed by such surveys have a limited utility lifespan, given the pace
of advances in the related research field. Hence, a concise up-to-date task taxonomy
which emphasizes awareness about the interrelatedness of said tasks, can serve the
trajectory research community.

Existing trajectory data mining surveys follow largely different categorization cri-
teria, which almost always fall within either a methodological point of view or an
application point of view. Indeed, there is a plethora of useful criteria that one
may come up with: the type of information sought, the analysis’ level of abstrac-
tion, the nature of the analytical task (e.g. descriptive-predictive dichotomy), the
methods/techniques being applied, the execution order (within the broader knowl-
edge discovery process), the dependence or exclusivity or perhaps even orthogonality
with respect to other tasks, the domain(s) of application, etc.

Whereas each criterion has its own merit, multiple tables would be needed to
reflect all of them properly. Therefore, in an attempt to maximize its practicality,
the proposed categorization in Table 4.1 is based on a mixture of these criteria that
best reflects the current state-of-the art practices. It follows a pragmatic perspective
considering the essential nature of the tasks themselves: if a group of tasks is distinctly
defined by their analytic goals then that group constitutes a task category. The same
is true even if the tasks don’t share the same analysis goals but are almost always
tackled by the same mining methods.

Also, popularity plays a role in determining whether a task is classified separately
from “similar” ones. For example, trajectory-based recommendation could comprise
a promising application-inspired task category on its own, but it has not yet gained
enough traction so as to justify considering it separately from the broader trajectory
similarity and clustering task category, given that they share the very same methods.

Similarly, trajectory segmentation and hotspot extraction sometimes constitute
by themselves the end goal of an application, but most of the times are simply used
as an input data wrangling step towards enabling further trajectory data mining and
analysis actions. As a result, we assign them to the trajectory data processing task
category. In relation to this, some surveys such as [179] distinguish between first-
tier methods and second-tier methods, with the former being essentially trajectory
clustering and classification and the latter being all of the other types of analysis that
run on the already clustered or classified trajectories. Indeed, similar requirement
chains do exist between trajectory data mining tasks, where one task depends on
the output of another, and are worth studying further, especially as the trajectory
data pipeline keeps evolving due to the continuous progress in the applied tracking
and storage technologies. However, task dependencies do not qualify as a primary
criterion for the “reference guide” type of taxonomy envisaged here and presented in
Table 4.1.
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Category Analysis/Mining Task Typical Application & Application Domain

Trajectory
Data
Preprocessing

trajectory data cleaning filtering out erroneous detection records (e.g. impossible/invalid locations, timestamps,
transitions) based on spatiotemporal constraints, ground-truth data, etc.

trajectory calibration & uncertainty
handling

resolving conflicting observational data (e.g. double detections), outlier/anomaly detec-
tion and handling, fusion or homogenization of trajectory data captured from different
sources, handling probabilistic movement data

trajectory completion/refinement resolving missing observational data (e.g. detection gaps), extracting representative
trajectories by synthesizing fragmented or sparse trajectory data, multiple trajectory
datasets integration, trajectory-based entity resolution of unidentified moving objects

trajectory enrichment semantic and/or contextual information integration to raw trajectories, adding fine-
grained movement information to coarse trajectory data

map matching correcting road network-constrained vehicle trajectories, indoor navigation, vehicle nav-
igation, urban resource allocation

trajectory segmentation segmentation based on predetermined spatiotemporal thresholds, transportation means
extraction, stop-move identification, activity discovery, etc.

trajectory compression and/or sim-
plification

trajectory sampling (e.g. error-bounded), episode extraction

Trajectory
Data
Management

trajectory data query processing trajectory data query language & operator design, location-based queries, range queries,
nearest-neighbour queries, spatiotextual queries, similarity queries

trajectory storage & retrieval in-memory trajectory storage, trajectory data indexing structures, trajectory datatypes
(e.g. moving point/region), distributed data pipelines

trajectory modeling concept imple-
mentation

semantic trajectory data management, trajectory database management systems design,
trajectory model integration with existing databases, low-level trajectory conceptual-
ization

Trajectory
Similarity
and
Clustering

clustering (sub)trajectories (of the
same or different moving objects)

mobility behavior profiling

clustering moving objects moving object profiling, moving object group discovery
designing trajectory similarity met-
rics

identifying spatiotemporal and non-spatiotemporal similarities of movements, design-
ing semantic similarity metrics, exploring the correlations between spatiotemporal and
semantic types of trajectory similarity

Trajectory
Pattern
Mining

collective/group pattern mining urban development (e.g. transportation systems design), group interaction discovery,
fleet management, team sports tactical analysis

sequential pattern mining discovering typical mobility behaviors, discovering unexpected patterns, place/trip rec-
ommendation, crime prevention, metaphorical trajectory analysis (e.g. healthcare tra-
jectories, information trajectories)

periodic pattern mining discovering seasonal trends, discovering recurring micro-behaviors, mobility behavior
change detection (e.g. abnormal behaviors)

Trajectory
Classification

(sub)trajectory classification predefined behavior recognition, transportation means classification
moving object relation/role identifi-
cation

determining the leader of a moving group, distinguishing “personnel” (e.g. museum
guards) from “clients” (e.g. visitors) for indoor trajectories

Trajectory
Prediction

location prediction destination prediction, next-location prediction, traffic estimation, emergency response
planning

(sub)trajectory prediction network route prediction (based on trajectories of the specific moving object or of all
moving objects), turn choice prediction, air flight or marine vessel destination prediction

trajectory attribute prediction speed prediction, orientation prediction

Trajectory
Visual
Analytics

trajectory visualization & interactive
exploration

interactive mobility pattern extraction, suspicious activity detection, inclusion of do-
main expert intuition (e.g. visual trajectory prediction), visual report generation for
decision support

multigranular spatio-temporal ana-
lytical query answering

activity impact assessment, public transit and traffic control planning

multi-source visual information fu-
sion/integration

situation overview and real-time monitoring (e.g. city operation control centres, air-
traffic & maritime operation safety)

Mobility
Behavior
Discovery

RoI extraction hotspot extraction (i.e. areas of high levels of moving object co-occurrence), geographic
place discovery, semantic place discovery, event detection

discovering movement purpose trajectory-based activity / intent / motivation / goal extraction
behavior identification matching trajectory patterns to predefined mobility behaviors, verifying or disproving

mobility behavior hypotheses (e.g. typical museum visiting styles)

Miscellaneous

privacy protection/preservation time distortion anonymization of mobility data, trajectory-based geo-
indistinguishability, differential privacy over trajectory data

routing shortest/fastest path discovery, accessibility network extraction, personalized route rec-
ommendation

artificial trajectory generation trajectory data availability for testing analysis and mining methods, enabling experi-
ments in sensitive domains of strong privacy restrictions

Big Trajectory Data support data volume scalability, handling heterogeneous data stemming from different detection
infrastructures and collection methodologies, handling online trajectory data streams

Table 4.1: State of the practice classification of trajectory data mining tasks.
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4.2.1 Trajectory Data Management & Preprocessing

Trajectory data management and trajectory data preprocessing can be viewed sepa-
rately than main trajectory mining tasks, despite the fact that they overlap in terms
of goals and methods.

Trajectory data management often involves algorithmic and data structure ef-
forts to optimize two major types of queries, namely nearest neighbors queries and
spatiotemporal range queries. This often includes finding efficient ways to store and
retrieve the trajectory data. More recently, particular effort is being put towards
addressing Big Data issues as well as semantic data issues. More specifically, recent
works have targeted distributed data pipelines including storage and computation
engines [54, 112], combined online and offline analysis support [63], interactive visual
exploration [38], semantic extensions of database systems [73], data textualization
techniques and corresponding semantic querying mechanisms [8], and others.

Whereas in trajectory data management research the main tasks are generally
well established, despite some variations imposed by modern computation needs men-
tioned in the previous paragraph, trajectory data preprocessing encompasses a lot of
different tasks and even an even greater number of corresponding techniques, often
ad-hoc ones. What they all have in common is that they deal with trajectory data
at its rawest form (e.g. tracking data logs). But what constitutes raw trajectory
data can actually vary considerably from case to case. Depending on the application,
trajectory data may be extracted in a form far from the desired one, and hence a lot
of preprocessing is required, or to the contrary, it can already resemble closely its final
analysis form, in which case preprocessing may even consist of a single straightforward
transformation task.

Whatever the case may be, due to the fact that trajectory data are in general
more complex than conventional and spatial data [24], their preprocessing requires
careful consideration, no matter how simple or complicated. This is why although
preprocessing tasks are typically considered to correspond to the preparation of input
trajectory data for the main mining step(s), in practice they already result in a great
level of knowledge extraction, as they require a deep understanding of the trajectory
dataset in terms of its structure and interpretation, as well as strong familiarity
with the application domain and even particular use case. This is especially true
when the data provider fails to provide the analyst with proper documentation or
metadata, resulting in unclear preprocessing requirements even before the beginning
of the analysis.

Furthermore, a task like the semantic enrichment of input trajectories, or their
segmentation into meaningful parts, can sometimes constitute the mining goal in and
of itself, which is why it can be claimed that trajectory data preprocessing is actually
an “umbrella term” rather than a clearly defined group of tasks.
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4.3 Sequential Pattern Mining and Trajectory Pattern
Mining

One of the most interesting family of trajectory data mining tasks is T-PM. As its
name suggests it consists in finding the most frequently occurring mobility patterns
within a trajectory dataset. But despite the task’s simplicity, there are actually many
different ways in which the problem can be formulated and tackled.

4.3.1 Trajectory Pattern Mining: History and State-of-the-Art

Trajectory data pattern mining research has its roots in the early 2000s. Related
works at the time attempted to adapt classical data mining techniques so as to
discover different types of trajectory patterns. Dimitrijevic et al. [53] generalize
the Apriori algorithmic framework to discover frequent segments in the trajectories
of multiple ice hockey players. They propose a two-phase algorithm, which first
transforms geometric trajectories into symbolic sets of trajectory segments, and then
through the use of a similarity function compares all segments to the candidate pat-
tern to derive its support. Time is taken into account in the form of constraints that
each segment must satisfy (e.g. a certain time interval must exist between the start
of any two adjacent segments).

First attempts at mining trajectories as sequences. In [157], Sclarrof et al. first
derive the trajectories through sampling and piecewise-linear curve approximation,
and then follow a similar approach in transforming the trajectories into sequences of
symbolic segments, the so-called motion signatures of the trajectories, over which a
Longest Common SubSequence (LCSS)-based similarity measure is applied, thereby
abstracting time from the mining process.

In [170], Tsoukatos et al. propose a Depth-First-Search(DFS)-like sequential pat-
tern mining (S-PM) approach for mining spatiotemporal patterns, but in reality only
use order information, not temporal information. This is actually one of the first
works to propose mining spatiotemporal patterns at multiple spatial granularity lev-
els. It does so simply by joining (sub)regions formed at the original data granularity
level, into coarser regions (i.e. of a higher granularity level), and repeating this process
as necessary. Featuring multiple spatial granularities is an important consideration
for our hierarchical indoor space model that will be described in section 3.3.1.

Lee et al. in [110] propose one of the first online T-PM methods on the basis
of incremental sequential patterns, and Hwang et al. in [84] one of the first col-
lective pattern mining methods using the Apriori algorithm and a threshold-based
geographic proximity measure of moving object groups. In [35], Huiping et al. pro-
pose one of the first works to study trajectory segmentation, in the form of direct
lines subsequently matched to spatial regions, and then used to discover sequential
patterns based on a substring tree structure and the Apriori technique. Unlike most
other works however, their method finds frequent spatiotemporal patterns in a long
spatiotemporal sequence, rather than in a set of sequences. This is actually what
Mannila et al. [128] as well as subsequent works have referred to as episode mining.
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In [89], Kalnis et al. propose the problem of extracting a special type of pattern
called moving group, which is simply an evolving cluster of moving objects, repre-
sented as sequences of spatial clusters in consecutive movement snapshots, potentially
sharing a number of common objects. The authors then propose three timeslice-based
clustering methods to retrieve them.

First attempt at mining museum trajectories. Kanda et al. propose one of
the first works [90] to address pattern mining of indoor trajectories, and actually in
a museum setting which is particularly interesting to our own use case. Almost all
RFID readers used to collect the tracking data were installed in the exhibition space,
except for a few mobile ones installed in humanoid robots as part of a separate field
trial [160].

First, similar to many other works, the authors transform the coordinate position
data into symbolic region data, by applying a k-means algorithm over all input tra-
jectories. Hence, their method divides the indoor space into k areas, rather than use
a predefined spatial or semantic partitioning of the indoor space.

Then, they adopt a state-chain representation of trajectories Si =< A1, A2, ..., An >
where each state is the spatial partitionAi in which the corresponding (x,y)-coordinate
point of the trajectory belongs. Thus, a state-chain may include consecutive state
repetitions such as < P1, P1, P1, P2, P1, P3, P2, P2, P4 >. Subsequently, the au-
thors again apply a k-means clustering method over those state-chains, along with a
Dynamic Programming matching approach based on a Levenshtein distance metric.
In specific, they use the distance between the centers of the indoor space partitions
to calculate this metric.

Figure 4.1: The five most typical visitor behavior patterns found in [90]: 1) “directly go
to robot area”, 2) “go around and stay at robot area”, 3) go around backwards”‘ 4)“visit
every place”, 5) “stay for long time”.
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Unlike other works however, the authors essentially treat T-PM as a clustering
problem where the interpretation of the resulting clusters reveals the overall visiting
patterns, as opposed to finding patterns that correspond to trajectory parts, which
is what T-PM methods typically do. This is also evident by the output patterns
illustrated in Figure 4.1 which describe the entire visit. Unfortunately, time is once
again not taken into account, as only the order of regions and the entire visit duration
is taken into consideration, and only at the stage of the results’ post-processing and
interpretation.

t-patterns algorithm. The work of Giannotti et al. in [71] is - to our knowledge
- the first to attempt to mine trajectory patterns using properly extended S-PM
methods, which capture the temporal aspect of movement instead of relying solely on
the order of location information. More specifically, the authors define a trajectory
as a spatiotemporal sequence of triples:

Definition 4.3.1 (trajectory)
A trajectory is a sequence T =< (x0, y0, t0), ..., (xk, yk, tk) > where ti < ti+1 is

a timestamp and (xi, yi) ∈ R2 are Cartesian coordinate points (i = 0...k).

Then, a trajectory pattern or T-pattern is defined as follows:

Definition 4.3.2 (T-pattern)
A T-pattern is a pair (S,A) where A =< α1, α2, ..., αk >∈ Rk+ is a sequence of

temporal annotations corresponding to a sequence of points S =< (x0, y0), (x1, y1), ...,
(xk, yk) >∈ R2.

Furthermore, by defining the notion of spatial containment the authors are able
to transform the abovementioned coordinates into symbolic regions of interest, in the
same spirit as many other works:

Definition 4.3.3 (spatial containment)
A sequence of spatial points S =< (x0, y0), ..., (xk, yk) > is spatially contained

in a spatiotemporal sequence T =< (x′0, y
′
0, t
′
0), ..., (x

′
n, y
′
n, t
′
n) > (S �N T or S � T )

IFF ∃0 ≤ i0 < ... < ik ≤ n such that ∀0 ≤ j ≤ k : (xj , yj) ∈ N(x′ij , y
′
ij) where the

neighborhood function N : R2 → P(R2) assigns to each point a set of neighboring
points.

As a result, the pattern mining problem is reduced to that of Temporally Anno-
tated Sequential Pattern Mining (TAS-PM) as defined in [70] and studied in detail
in the next section, where the sequences’ discrete elements (usually from a prede-
fined alphabet) now symbolize the spatial neighborhoods of the input trajectories.
Figure 4.2 exemplifies the logic behind matching a candidate subsequence to the in-
put sequences, even when their corresponding transition times are not exactly equal,
through the use of a temporal relaxation parameter τ .

Slicing-STS-Miner algorithm. In [83], Huang et al. propose a S-PM algorithm
called Slicing-STS-Miner for mining spatiotemporal event patterns. It uses a se-
quence index as a measure of statistical significance of spatiotemporal sequential
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Figure 4.2: An occurrence of a trivial T-pattern (x0, y0)→ (x1, y1) in an input trajectory
instance, given a neighborhood function N and a temporal threshold τ , taken from [71].

patterns. In particular, it builds a pattern tree in which each pattern’s sequence
index is calculated (via node and branch values), and prunes it according to a mini-
mum sequence index threshold value θ. It also partitions the dataset into overlapping
temporal slices when the number of events is too large to be processed in memory,
processes each slice separately, and then utilizes the unidirectional property of time
to recover the patterns across slice boundaries. This helps deal with cases of excessive
number of database scans.

Noticeably, Slicing-STS-Miner uses spatiotemporal event data, not trajectory
data. An event is a happening at a given place and time, which belongs to a specific
event type (e.g. “car accident”, “traffic jam”, “chromium-6-polluted water source”,
“the West Nile disease”, “deforestation”).

Definition 4.3.4 (spatiotemporal sequential pattern)
A spatiotemporal sequential pattern is a sequence f1 → f2 → ...→ fk of spatial

and temporal event types f which happens in a specific spatial and temporal manner.

For example, a West Nile disease sequential transmission path might be Bird→
Mosquito→ HumanBeing.

Time is taken into account through the use of a spatiotemporal predicate follow
which requires that, an event happens in the nearby region of another event, and only
shortly afterwards that event.
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Definition 4.3.5 (follow predicate)
An event e0 followsN another event e′, denoted by e e0 iff e′ is in the spa-

tiotemporal neighborhood N(e) of e.

Definition 4.3.6 (spatiotemporal neighborhood)
A simple spatiotemporal neighborhood of an event e is N(e) = {p|p ∈ D,

distance(e.location, p.location) ≤ R, (p.time− e.time) ∈ [0, T ]}

For example, a spatiotemporal neighborhood could be defined by a distance limit
of 1.5 miles for any time interval of less than 1 hour.

Whereas the follow predicate is useful when the input dataset consists of a col-
lection of spatiotemporal events, it is not meaningful2 when it consists of individual
trajectories, because then each event corresponds to an already identified moving ob-
ject. In other words, having already built moving object trajectories, there is no need
to “connect” spatiotemporal events to each other.

ST-DMQL query language. In contrast to the previous works, in [24] Bogorny et
al. do not propose any specific trajectory data mining algorithm, but aim to offer the
mechanisms to support such algorithms. More specifically, they provide the method-
ology and the primitives for a trajectory data mining query language, as well as a
prototype implementation called ST-DMQL. Their work targets semantic trajectories
in particular, but understood merely as trajectories enriched with geographic infor-
mation based on the concepts of stops and moves. The related semantic trajectory
model has already been reviewed in the review of [23] from section 2.2.2.2.

As part of ST-DMQL, they propose two operators for defining the granularity
of time and place, namely timeG and stopG. The first operator converts a times-
tamp into user-defined granularity labels (e.g. [07:00-09:00] may be labeled as “rush-
Hour”, [14:00-18:00] as afternoon, etc.) or predetermined labels (e.g. “WEEKEND-
WEEKDAY”, “YEAR”, “MONTH”, “SEASON”, and “DAY-OF-THE-WEEK”).
The second operator manages the granularity of stops. It can generate two gran-
ularity levels, called feature instance (e.g. “Centrum Hotel”) and feature type (e.g.
“Hotel”), without any background knowledge such as concept hierarchies or ontolo-
gies. This function allows the user to specify stops at different granularities, for
example to specify a hierarchy of intermediate granularity levels specifically for some
feature types.

This is one of the first times that support for hierarchical spatial information is
considered with respect to trajectory data mining. With respect to S-PM in partic-
ular, Bogorny et al. envisage queries such as:
SELECT sequentialMoves (item=NameEnd, timeG=[8:00-12:00 AS morning, 18:00-
23:00 AS evening], stopG=instance, minsup=0.03)
FROM move
which would return patterns such as

{IbisHotel −NotreDame[morning[, EiffelTower − IbisHotel[evening]}

2On the other hand, requiring spatiotemporal proximity in each item transition might be useful
for correcting the input trajectory data.
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Figure 4.3: Example move concept hierarchy from [24] which assumes that the database
instances correspond to the lowest level of granularity g=n.

provided of course that a morning move from the Ibis Hotel to Notre Dame hap-
pens before an evening move from Eiffel Tower to the Ibis Hotel in at least 4% of the
input trajectories.

MTP-ITP and MTP-TEQ algorithms. Similar to [71], Kang et al. in [92] present
one of the few works to have identified the inefficient consideration of the temporal
information in T-PM literature, in terms of both performance and result quality and
interpretability. They propose a method whose first step is - like in the majority
of the related works - a transformation of the trajectories from raw form to line
segments, in turn clustered into symbolic regions. This region extraction process is a
common technique for discretizing continuous location values, and has some obvious
advantages over fixed-size grid approaches which risk missing patterns or ending up
with redundant locations (depending on cell size).

However, Kang et al. propose two approaches for partitioning the trajectories,
leading to two fundamentally different mining methods, namely MTP-ITP and MTP-
TEQ.

The first method (left side of Figure 4.4) involves a spatiotemporal discretization
process after which the temporal aspect of a trajectory is abstracted into the result-
ing spatiotemporal regions. More specifically, a spatiotemporal pattern is defined as
follows:

Definition 4.3.7 (spatiotemporal pattern)
A spatiotemporal pattern is a sequence ST =< R1R2...Rk >, k < n, where

Ri = (si, di) is a spatiotemporal region, si is a spatial approximation of points from
tl to tm in trajectory T , l < m < n, and di is the duration of movements between tl
to tm.

In this way, the main mining step can be performed using any existing S-PM
algorithm and the authors proceed to choose a pattern-growth based one.

The second method (right side of Figure 4.4) instead involves a purely spatial tra-
jectory discretization in the first step, but then the temporal information is explicitly
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Figure 4.4: Alternative approaches of considering time in T-PM as illustrated in [92]:
implicitly in the regions Ri (left) or explicitly in the items [sI , di] (right).

normalized and added to the resulting spatial regions. This is akin to extending the
items to be mined with an additional dimension representing time, based on the du-
ration of the corresponding segment in the database and using a temporal threshold
parameter. More specifically, a trajectory is defined as follows:

Definition 4.3.8 (trajectory)
A trajectory is a sequence ST =< [s1, d1][s2, d2]...[sk, dk] >, where si is the

symbolic identifier of a spatial approximation, and di is the corresponding discrete
temporal duration value, for 0 ≤ di < 1.

Indoor spatial region S-PM. The work of Radaelli et al. in [151] is one of the first
to highlight the lack of S-PM techniques not taking into account the specificities of
indoor space, even when adapted to handle spatial data. It addresses this shortcoming
by assuming presence sensor deployment in preselected indoor positions, and as a
result is one of the very few works that consider leveraging topological information
in the construction of candidate patterns.

More specifically, the authors define an indoor trajectory as follows:

Definition 4.3.9 (indoor trajectory)
An indoor trajectory is a time-ordered sequence of a moving object’s tracking

triples (sensori, tsi, tei), extracted with the help of a splitting threshold Tsplit, where
sensori is the identifier of the positioning sensor that observed the moving object
continuously from time tsi to time tei.

The splitting threshold Tsplit is used to determine based on the transition duration
values tsi+1 − tei whether two consecutive tracking triples belong to the same or to
consecutive trajectories. Moreover, an indoor movement n-pattern and its support
are then defined as follows:

Definition 4.3.10 (indoor movement n-pattern)
An indoor movement n-pattern is the sequence of the identifiers of the sensors
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that detected the moving object: < sensori1sensori2 , ..., sensorin >, n > 1.

Definition 4.3.11 (indoor movement n-pattern support)
The support of an indoor movement pattern p is the sum of all the times it ap-

pears in each trajectory: support(p,OTT, Tsplit) = Σt∈TT (OTT,Tsplit)OCC(p, t) where
TT (OTT, Tsplit) is the trajectory table as results from applying the splitting threshold
Tsplit over the Object Tracking Table OTT (i.e. raw positioning data), and OCC(p, t)
is the number of occurrences of pattern p in trajectory t.

The proposed main mining method first obtains the frequent 1-patterns (individ-
ual sensor observations) and 2-patterns (transitions), and out of those creates longer
candidates. The authors also try to account partially for multi-granular patterns, by
extracting region-based patterns as simple spatial aggregations of the finer individual
sensor-based patterns in the output. Moreover, they propose a weighted variant of
support called aggregate support :

Definition 4.3.12 (indoor movement n-pattern aggregate support)
The aggregate support of an indoor pattern is defined as supportA = supportD+

(supportT − supportD)w, where supportD represents the number of distinct moving
objects with a trajectory that upholds the pattern, supportT is the total number of times
the pattern is upheld by all trajectories in the trajectory table (supportT ≥ supportD),
and w ∈ [0, 1] is the controlling weight parameter.

Thus, in the limit case of w=0 the aggregate support is incremented once per ob-
ject, whereas in the opposite limit case of w=1 it is incremented once per trajectory.
This mechanism proposed by Radaelli et al. is useful for addressing different appli-
cation needs as long as there exist multiple trajectories per moving object, because
sometimes the interest is on how many moving objects present a certain mobility
behavior (e.g. a museum visitor getting lost), whereas other times on how often they
do it (e.g. a museum visitor stopping in front of an exhibit).

Finally, like in many other works, their method ignores time completely and in-
stead relies solely on sensor order information, but Radaelli et al. propose as in-
teresting future work “to extend the representation of patterns to include temporal
information (e.g., duration of the stay in a location) and adapt the mining process to
deal with this extra information.”, which makes part of our objective in chapter 5.

SPLITTER algorithm. In [197], Zhang et al. propose a way to derive places from
a continuous space and then group them together according to their type, in an effort
to mine only interesting patterns. To achieve this, their algorithm called SPLITTER
equates trajectory semantics to the semantics of places, but instead of a fixed space
partitioning, it follows a data-driven divide-and-conquer strategy.

Notably, SPLITTER groups all places by category and retrieves a set of so-called
coarse patterns, each attached with a set of trajectory snippets that record the pat-
tern’s occurrences in the database. Then, SPLITTER splits a coarse pattern in a
top-down divide-and-conquer manner, by clustering its attached trajectory snippets,
and then extracting fine-grained patterns from the resulting dense (i.e. satisfying
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the support requirements) and spatially compact snippet clusters. Unqualified snip-
pet clusters form disjoint communities, and small communities that cannot meet the
minimum support are pruned to avoid unnecessary splitting.

This process reduces the search space of fine-grained patterns, because any one of
those must have one and only one “parent” coarse pattern, and allows the discovery
of trajectory patterns at different spatial granularity levels. As far as the temporal
aspect of trajectories goes, the authors only consider a threshold-based temporal
constraint with regards to the continuity of a trajectory pattern. In other words,
they simply impose a ∆t upper limit in the transition time values of every candidate
pattern.

Figure 4.5: A fine-grained semantic trajectory pattern example according to the SPLIT-
TER algorithm [83].

Geo-tagged photo trajectory data mining. As previously mentioned, [21, 31–
34] focus on mining sequential trajectory patterns from geo-tagged photos. Having
already examined the trajectory modeling approach used in this line of works in
section 2.2.3.1, let us now look more closely at how they mine trajectory patterns.

In [31], Cai et al. adopt the T-PM framework proposed by Giannotti et al. in [71]
and, through the necessary preprocessing, apply it on sequences of locations visited by
Flickr photo takers to find patterns relating major cities to tourist hotspots. In [32],
they improve its region extraction process while leaving the pattern mining step intact.
Towards this end, they propose two algorithms to extract finer and arbitrary-shaped
regions of interest. In [21], they extract Regions of Interest (RoIs) taking into account
both space and time, and use this approach to discover seasonal visiting patterns in
the same type of geo-tagged photo dataset. Finally, in [33], they transition to RoIs
represented as tuples of the form (ownerid, numberofpoints, {time, latitude, longitude}
annotated with place semantics (e.g. hospital, pier, populated place). These are ex-
tracted by a hybrid grid-based process which uses a minimum support and a cell size
parameter.

Hence, Cai et al. with their work in [34] proceed in mining trajectory behav-
iors with multiple place semantic dimensions (e.g. contextual information such as
place type, weather condition, temporal information) from geo-referenced social me-
dia content. They achieve this by combining the PrefixSpan algorithm [141] with the
BottomUpCube (BUC) algorithm [22], similar to [146] in turn inspired by [145] which
first tried to use these two algorithms in a unified way.

More specifically, the authors distinguish between a basic semantic trajectory pat-
tern whose elements are composed of basic geographic semantic annotations each
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describing the place type of a spatial grid cell, and a multidimensional sequential pat-
tern whose elements are composed of the aforementioned basic semantics but also an
arbitrary combination of some or all of them as additional semantics. Semantic RoIs
are then formed by merging neighboring grid cells exhibiting the same basic place
type, as illustrated in Figure 4.6. The authors also take into account transit time
annotations, indicating the time intervals between consecutive places in a sequence.

Figure 4.6: The merging of grid cells is used to transition from geometric trajectories to
semantic RoIs in the approach of [34].

To mine both the semantic and temporal aspects, in [33], Cai et al. propose a
new type of sequence containment:

Definition 4.3.13 (dimensional and τ -containment)

A SemT-pattern (SemS,A) = SemA0
a1→ ...

ak→ SemAk is contained in a se-
mantic trajectory SemT =< (SemA0, t0), ..., (SemAn, tn) > ((SemS,A) �d,τ SemT )
iff ∃ a subsequence SemT ′ =< (SemA′0, t

′
0), ..., (SemA

′
n, t
′
n) > of SemT such that:

1. ∀0≤j≤k: ej = e′j, Vj ⊆ Vj SemS �d SemT ′.sequence of SemA

2. ∀1≤j≤k: |αj − α′j | ≤ τ where ∀1≤k≤n: α′j = t′j − t′j−1
Whereas for the matching of two time intervals, the gap between them should be

smaller than a given tolerance threshold, which is exactly the approach used in the
MiSTA algorithm of [69].

Regional pattern mining. [41] proposes a pattern growth strategy-based algorithm
for mining sequential so-called regional patterns, which are simply sequences of PoI
categories. It makes use of a DBSCAN-like clustering technique to find sets of PoIs
that play the role of items in the sequential patterns. However, it does not take time
into account and semantics are only limited to place categories.

4.3.2 Sequential Pattern Mining

An important part of extracting interesting information from information repositories
or databases is discovering patterns in sequences. This process known as Sequential
Pattern Mining (S-PM), holds both predictive and descriptive explanatory power as
long as the input data are indeed of a sequential nature, as opposed to having been
forced into such form. This is why S-PM has been successfully applied in genome
analysis, web usage analysis, product sales, alarm data analysis, and other fields.
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Figure 4.7: An example of semantic trajectories (left) and regional patterns (right) ac-
cording to [41].

Quite fittingly, trajectory data are intrinsically sequential, because at their core
they represent successive location information about a moving object. This section
looks at the related work from the non-trajectory S-PM research field, in an attempt to
identify ideas, mechanisms, and methods transferable to the trajectory data domain,
and useful for mining semantic indoor trajectories and especially museum visitor
trajectories.

4.3.3 The Standard Problem and Algorithms

The classical problem of S-PM was first defined in [7] as follows:

Definition 4.3.14 (The Sequential Pattern Mining (S-PM) Problem)
Given a database of sequences, where each sequence is a list of transactions

ordered by transaction-time, and each transaction is a set of items, discover all se-
quential patterns with a user-specified minimum support.

Definition 4.3.15 (pattern support)
The support of a pattern is the number of data-sequences that contain the pat-

tern.

Let us assume a set of symbolic items I = {i1, i2, ..., im}. These items are the
main data components of interest to the analysis and will thus compose the output
patterns, irrespective of what they represent in the real world. An itemset X is simply
a set of items i.e. a subset of I: X ⊂ I. A sequence sX =< X1, X2, ..., Xn > is an
ordered list of itemsets Xk ⊆ I, 1 ≤ k ≤ n. A sequence database Sdb = {s1, s2, ..., sn}
is simply a set of such sequences which represents the analysis input data. Finally,
given two sequences sX =< X1, X2, ..., Xn > and sY =< Y1, Y2, ..., Ym >, we say that
sX is contained in sY (sX � sY ) iff ∃1 ≤ i1 ≤ i2 < ... < in ≤ m such that X1 ⊆ Yi1 ,
X2 ⊆ Yi2 , ..., Xin ⊆ Yin , in which case sX is also said to be a subsequence of sY .

Based on the above definitions, the S-PM problem lies in finding subsequences
that occur frequently “enough” in a given database of sequences, i.e. that appear
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as subsequences of a large percentage of database sequences. More formally, it is
the problem of finding all subsequences s whose support sup(s) = |s′|s � s′, s ∈ Sdb|
surpasses a given threshold value supmin called the minimum support : sup(s) ≥
supmin

4.3.4 Sequential Pattern Mining and Multiple Dimensions

In [145], Pinto et al. propose what can be arguably considered as the first Multi-
dimensional Sequential Pattern Mining (MD-S-PM) algorithm, by integrating S-PM
methods with multidimensional analysis methods. The result is the proposal of three
pattern mining methods named UniSeq, Dim − Seq, Seq − Dim, with the latter
being the most efficient one.

Unfortunately, all three methods concern datasets where the sequential part and
the multidimensional part are practically independent, as the multidimensional infor-
mation is practically “appended” to the sequence and not integral part of it. Thus, a
multi-dimensional sequence takes the form: (α1, ..., αm, s) where αi ∈ (Ai ∪ {∗}) are
the dimension values which “extend” the actual sequence s. To put it more simply us-
ing an original example from [145], the sequence< (business,Boston,middle)(bd)cba) >
is interpreted simply as the sequence < (bd)cba > with the additional multidimen-
sional information (business,Boston,middle) remaining the same throughout the
sequence, and thereby characterising all of it. As a consequence, all three methods
use PrefixSpan for the sequential pattern mining part and a BUC-like algorithm for
the multidimensional mining part.

The HY PE algorithm [148] extends the approach of the M2SP algorithm [146]
by taking into account hierarchical relations within each sequence. These relations are
materialized as taxonomies. In specific, HY PE extracts patterns associated to the
lowest possible hierarchical levels, under the assumption that the most specific pat-
terns are typically the most relevant and informative ones. To achieve this, HY PE
uses a partitioning of the data dimensions D into three subsets: 1) a time dimension
Dt associated with a totally ordered domain according to which sequences are con-
structed, 2) a set of (potentially hierarchical) analysis dimensions DA, tuples over
which form the actual sequential pattern items, and 3) a set of reference dimensions
DR, tuples over which partition the table into a set of blocks B(DR) used for counting
the support of candidate sequences in a more efficient way. An example of how the
domain of the analysis dimensions may be instantiated in the context of international
product orders can be appreciated in Figure 4.8.

The M3SP algorithm [147] refines HY PE’s approach. First, it additionally de-
fines a set of “ignored” dimensions DI to separate all dimensions not used for structur-
ing the sequences nor in the mining process. It also defines a hierarchical pattern in-
clusion which considers < {(France, wine)}, {(Germany, beer)} > as a subsequence
of < {(France,Alcoholic drinks), (USA, drinks)}, {(EU,Alcoholic drinks)} >.

At the core of the M3SP algorithm lies the notion of item specificity �I :
α=(d1, ..., dm) �I α′=(d′1, ..., d′m) iff ∀1≤i≤l: d′i ∈ d

↓
i

where:
d↓i is the set of specializations of di
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Figure 4.8: Example of a hierarchical tree over a “Location” dimension and over a “Prod-
uct” dimension, taken from [147].

α=(d1, ..., dm) and α′=(d′1, ..., d′m) are multidimensional items defined over the
analysis dimensions Di ∈ DA, i = 1, ...,m: di, d

′
i ∈ Dom(Di). In this case, item α′ is

said to be more specific than item α.

Consequently, a block B ∈ B(DR) supports the sequence ς = <1, ..., sl> of item-
sets s = {α1, ..., αk} (i.e. non-empty sets of multidimensional items) if ∃t1, ..., tl ∈
Dom(Dt) such that: 1) t1 < ... < tl, and 2) ∀α ∈ si, i = 1, ..., l: ∃(ti, a) ∈ B such that
α �I a. Put simply, B supports ς if for each of ς’s items it contains (in the proper
order) a tuple that is at least as specific as that item. Based on this, a sequence ς of
itemsets is frequent if the percentage of blocks supporting it (over the total number
of blocks |B(DR)|) is greater than or equal to the minimum support threshold: sup(ς)
≥ minsup.

Moreover, the notion of item specificity�I gives rise to two other partial orderings,
that of itemset specificity �IS and that of sequence specificity �S .

Concerning the latter, a sequence ς′ = <s′1, ..., s
′
l′> is more specific than another

sequence ς = <s1, ..., sl> (ς �S ς′) if ∃1 ≤ i1 ≤ i2 ≤ ... ≤ il ≤ l′: s1 �IS s′i1 ,
s2 �IS s′i2 , ..., sl �IS s′il .

All three types of specificity are illustrated using examples within the context of
international product sales taken from [147]:
1) With respect to item specificity:
(USA, drink) �I (USA, soda) because USA ∈ USA↓ and soda ∈ drink↓
It can be noticed that not every two items are comparable with respect to �I . For
example, (Paris, wine) and (USA, soda) are not comparable because, according to
the hierarchy of the “Location” dimension, neither Paris ∈ USA↑ nor Paris ∈ USA↓
holds.
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2) With respect to itemset specificity:
{(EU,wine)} �IS {(Paris, wine)} because (EU,wine) �I (Paris, wine).
{(EU,wine)} �IS {(Paris, wine), (USA, soda)} again because (EU,wine) �I (Paris, wine).
{(Paris, wine), (USA, alcoholic drink)} �IS {(Paris, wine), (Chicago, beer)} because
(Paris, wine) �I (Paris, wine) and (USA, alcoholic drink) �I (Chicago, beer). It
is important to notice that an itemset can not include items that are comparable with
respect to �I ; for example, the set {(Paris, wine), (EU, alcoholic drink)} does not
constitute an itemset because (EU, alcoholic drink) �I (Paris, wine).
3) With respect to sequence specificity:
<{(EU,wine)}> �S <{(Paris, wine)}> because {(EU,wine)} �IS {(Paris, wine)}.
<{(EU,wine)}, {(EU, beer)}> �S <{(Paris, wine), (USA, soda)}, {(Berlin, beer)}>
because {(EU,wine)} �IS {(Paris, wine), (USA, soda)} and {(EU, beer)} �IS {(Berlin, beer)}.
<{(Paris, alcoholic drink)}> �S <{(Paris, wine), (USA, drink)}, {(Berlin, beer)}>
because {(Paris, alcoholic drink)} �IS {(Paris, wine), (USA, drink)}.

Furthermore, M3SP constructs the sequences to be mined based on maximal
atomic frequent (maf) sequences, which are defined as atomic sequences <{α}> that
are frequent and for which there exists no other frequent atomic sequence α′ such that
α �I α′ (i.e. that is more specfic). M3SP actually consists of a two-step algorithmic
process:

1. mining maf-sequences

2. transforming the dataset (using the maf sequences) and mining frequent se-
quences (using standard algorithms)

It makes use of the following propositions:

• α �I α′ ⇒ sup(<{α′}>) ≤ sup(<{α}>)

• ς �S ς′ ⇒ sup(ς′) ≤ sup(ς) (anti-monotonic support of sequences)

• ∀α = (d1, ..., dm) ∈ Dom(DA):
succ(α) = {(d′1, ..., d′m) | ∃i ∈ {1, ...,m} : d′i ∈ down(di) and (∀j 6= i : d′j =
dj)} (set of direct successors of α)
gen(α) = {(d′1, ..., d′m) | ∃i ∈ {ρ(α), ...,m} : d′i ∈ down(di) and (∀j 6= i : d′j =
dj)} (set of multidimensional items generated from α)
where:
∗ down(x) denotes the set of all direct specializations of x (the set of all y in
Dom(Di) such that Hi contains an edge from x to y, or the empty set in case
x is a leaf)
∗ ρ(α) ∈ {0, 1, ...,m} : dρ(alpha) 6= ALLρ(α) and (∀j > ρ(α) : dj = ALLj)
∗ if ρ(α) = 0 then succ(α) = gen(α) (since α = ALLA)

•
⋃
α∈Dom(DA) gen(α) = Dom(DA) \ {ALLA}
∀α, α′ ∈ Dom(DA) : α 6= α′ ⇒ gen(α) ∩ gen(α′) = ∅ (for tree hierarchies)
(i.e. all multidimensional items except ALLA can be generated in a non-
redundant manner)
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As illustrated in Figure 4.9, Step 1 consists of a Depth-First traversal of the
set Dom(DA) starting from the most general item ALLA = (ALL1, ..., ALLm) and
following a strategy similar to the BUC algorithm proposed in [22]. Namely, for each
atomic sequence <{α}> all the direct successors succ(α) in the lattice defined by the
partially ordered set (Dom(DA),�I) of its multidimensional element α are generated
once, and their support is computed against all tuples that are more specialized than
α.

Step 2 can then use any typical S-PM algorithm (in [147] the authors applied
SPADE [196]) in order to compute non-atomic frequent sequences, because for any
multidimensional item α of any candidate sequence ς, <{α}> is known to be a maf
sequence. Therefore, all the components needed to construct candidate sequences
have already been found in Step 1. More specifically, in Step 2 a transformation of
the database takes place wherein, each maf sequence <{α}> is assigned a unique
id(α) and becomes the equivalent of an item in standard S-PM (Figure 4.9), whereas
each block B ∈ B(DR) is assigned a unique ID(B) and becomes the equivalent of
a sequence ς(B) = <(µ1,1, ..., µ1,n1), ..., (µp,1, ..., µp,np)> of itemsets in standard S-
PM (right part of figure 4.10) where ∀j ∈ {1, ..., p}, ∀k ∈ {1, ..., nj} : µj,k = id(αk).
Therefore, a standard S-PM algorithm will treat all ς(B) as typical input sequences
(unaware that they encode multidimensional information) and will result in trans-
formed frequent sequences, as exemplified in Figure 4.11.

Figure 4.9: Example of a tree of generated multidimensional items taken from [147].

4.3.5 Sequential Pattern Mining and the Temporal Dimension

In section 4.3.1 the t-patterns algorithm proposed by Giannotti et al. for mining
temporally annotated trajectory data is reviewed. t − patterns is actually based
upon the (non-trajectory) S-PM algorithm proposed by the same authors in [69]
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Example of assigning identifiers to maf
sequences taken from [147].

Example of assigning identifiers to blocks
taken from [147].

Figure 4.10: Example of the database transformation in the proposal of Plantevit et al.
[147].

Figure 4.11: Example of the output of a standard S-PM process run over the transformed
database taken from [147].

and called MiSTA. MiSTA is actually - to our knowledge - the first algorithm to
introduce temporal annotations into the mining step. These annotations characterize
the duration of the transitions between consecutive items in the sequences. In chapter
6, MiSTA is applied over the Louvre dataset to discover unknown visiting patterns,
and in chapter 5 it is used as a component of a novel T-PM proposal. In the remainder
of this section, MiSTA’s function is explained in detail.

First, a Temporally Annotated Sequence (TAS) is defined as follows:

Definition 4.3.16 (temporally annotated sequence)

A TAS is a couple T (
−
s,
−
a) = s0

a1→ s1
a2→ ...→an→ sn where

−
s =< s0, s1, ..., sn >

is a sequence of itemsets, and
−
a =< a1, a2, ..., an > is a sequence of temporal annota-

tions corresponding to the transitions of
−
s.

In simple terms, a TAS can be considered as a special form of event sequence that
includes the transition times between consecutive events.

In terms of its function, MiSTA accepts two parameters: a typical minimum
support value smin, and a temporal threshold value τ which specifies the maximally
allowed temporal annotation difference for determining whether a pattern occurs in
an input TAS or not. Thus, the notion of τ − containment is introduced:

Definition 4.3.17 (τ -containment)

An n-long TAS T1 = (
−
s1,
−
a1) is τ − contained in an m-long TAS T2 = (

−
s2,
−
a2)

(n ≤ m) (T1 �τ T2) iff ∃0 ≤ i0 < ... < in ≤ m such that:

1. ∀0≤k≤n: s1,k ⊆ s2,ik
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2. ∀1≤k≤n: |aa,k − a∗,k| ≤ τ where a∗,k = Σik−1<j≤ika2,j

As indicated by the use of two different indices k and ik in the second condition of
the above definition, the itemsets of T1 are considered to be consecutive whereas the
corresponding itemsets of T2 are not necessarily consecutive. In case they are not,
all transition times of T2 that correspond to a single transition of T1 are summed up
before comparing against time threshold τ . In other words, a single annotation of T1
may match multiple annotations of T2 added together.

For example, if T1 = {a} 2→ {b} 6→ {c} and T2 = {a, e} 1→ {d} 1→ {b, f} 5→ {c, f}
with τ = 1.5, it holds that T1 is τ − contained in T2, because T1’s pattern {a} 2→
{b} actually matches perfectly T2’s pattern {a, e} 1→ {d} 1→ {b, f} if the latter’s
intermediate itemset {d} is skipped and the two annotations from either side of it are
added together.

Moreover, T1 is strictly τ -contained in T2 (T1 ≺τ T2) if the second condition of
Definition 4.3.17 holds with a strict inequality, whereas T1 is exactly contained in T2
(T1 ≺0 T2) if it holds with τ = 0 (in which case containment becomes transitive).

Extending Definition 4.3.17, a TAS T1 is τ − contained in a set of TASs D3

(T1 �τ D) iff ∃T2 ∈ D such that T1 �τ T2. Based on this, Giannotti et al. introduce
the notion of tau-support and correspondingly that of a frequent TAS in relative
terms:

Definition 4.3.18 (τ -support)
The τ -support of a TAS T w.r.t. a set of TASs D is equal to τ − support(T ) =

|{T ∗∈D|T�tT ∗}|
|D|

Definition 4.3.19 (frequent TAS)
Given a time threshold τ and a minimum support threshold smin ∈ [0, 1], a TAS

T is frequent if τ -support(T ) ≥ smin.

As expected, a frequent sequence
−
s may not correspond to any frequent TAS T if

its occurrences in the database are accompanied by highly dispersed annotation val-

ues. Simply put, if
−
s alone is frequent but has no typical transition times, then (

−
s,
−
a)

will probably not be τ -frequent. Interestingly, multiple instances of the same sequence
−
s may be τ -contained in a TAS T , with completely different temporal annotations.

As far as finding the frequent TASs goes, Giannotti et al. originally used a two
(independent) step mining process in [70], the second step being dedicated to handling
the annotations, but MiSTA [69] improves this algorithmic approach, by extending
the prefix-projection-based method of PrefixSpan [141]. More specifically, it initial-
izes an evolving set of projections in the form of so-called T-sequences. These carry
complete information about all useful occurrences of a prefix in the projected se-
quence. Then, MiSTA recursively performs either enlargement (i.e. adding a new
element to the last item of the prefix) or extension (i.e. adding a new element to the
prefix) projections. The recursive usage of these two operations serves to generate all
sub-projections of an actual projection.

3The authors also refer to D as set of transactions according to classic pattern mining terminology.
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As already mentioned, the mining mechanism of database projection is not a
MiSTA novelty. In general, a projection D|a of the initial dataset D w.r.t. the
atomic sequence a as prefix, is simply a set which contains the sequences of D where
a appears and where all items up until and including the first appearance of a have
been removed. The difference in the case of MiSTA is of course that this projection
mechanism needs to be extended with temporal information as well:

Definition 4.3.20 (T-sequence)
A T -sequence of a projected sequence S is a couple (S,A) where:

• S = S0|s∗ =< (s1, t1), ..., (sn, tn)) > is a temporal (i.e. time-stamped) sequence
obtained as a projection of the sequence S0 w.r.t. prefix s∗

• A =< (a1, e1), ..., (am, em) > is an annotation sequence

• (ai, ei) represents an occurrence of prefix s∗ in the original sequence S0

• ai is the sequence of timestamps of the occurrence

• ei is a pointer to the element of S where the occurrence terminates (or ∅ if there
is no such element in S)

Given a sequence S, each input TAS can be mapped to a set of annotations
corresponding to all possible occurrences of S in that transaction. The resulting
T−sequences then incorporate the information necessary to find all possible occur-
rences of S and the exact point within the sequence where each one is concluded.

To use an example from [69], let us assume the following temporal sequence:
S =< ({a}, 1), ({a, b}, 2), ({b, c}, 3), ({a}, 4)) >
Then, the T-sequence of S w.r.t. prefix a is the couple (S|a, A|a) where:
S|a =< ({a, b}, 2), ({b, c}, 3), ({a}, 4)) >
A|a =< (< 1 >, ∅), (< 2 >,→ 2), (< 4 >,→ 4) >
Obviously, S|a is the same as S except for the first itemset having been removed
since it contains the first occurrence of the prefix a. Concerning A|a, its first item
(< 1 >, ∅) denotes that the prefix occurs in the first item of S and has already been
erased from the projection, its second item (< 2 >,→ 2) denotes that the prefix also
occurs in the second item of S and ends there, and its third item (< 4 >,→ 4) denotes
that it also occurs in the fourth item of S and ends there. It should be noted that,
despite the fact that the annotation sequences A contain timestamps, MiSTA only
takes the temporal durations between those timestamps into account.

Then, S|a can be further projected, for instance w.r.t. to prefix b resulting in the
couple (S|ab, A|ab) where:
S|ab =< ({b, c}, 3), ({a}, 4)) >
A|ab =< (< 1, 2 >, ∅), (< 1, 3 >,→ 3), (< 2, 3 >,→ 3) >
The two sequences S|ab, A|ab can be similarly interpreted as before, with A|ab this
time containing the information about all occurrences of the sequence a→ b in S.

During MiSTA’s execution more generally, as projections are recursively per-
formed and the prefix becomes longer, S|prefix becomes shorter, whereas A|prefix
becomes longer and eventually contains all the information necessary to retrieve all
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occurrences of the final prefix in the original TAS dataset.

Figure 4.12: The MiSTA algorithm as presented in [69].

In Figure 4.12 the MiSTA algorithm from [69] is presented in its entirety. As seen
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from the pseudocode of Figure 4.12, MiSTA takes as input a dataset of time-stamped
sequences Din, a minimum support smin, a temporal threshold τ , and produces as
output a set of couples (S,D∗) of sequences with annotations. First, it initializes a
set of projections PL that contains all of the input temporal sequences Din but no
annotation sequences yet (lines 1-3). Then, for each projection in the evolving set of
projections P ∈ PL (line 4), it performs the following tasks:

1. It handles its annotations (lines 5-11)

2. It generates all of its sub-projections (lines 12-16)

To handle the annotations, MiSTA does the following:

• It extracts annotations from the projection by scanning all annotation sequences
(line 6)

• It computes their hyper-cubical areas of influence (line 6)

• It combines those areas thereby partitioning the space of annotations into hyper-
rectangles of homogeneous density (line 7)

• It merges the hyper-rectangles together to maximize a quality criterion (line 8)

• It outputs the condensed annotations (line 8)

• It filters the annotation sequences by removing all occurrences whose area of
influence is not of any use for computing dense annotations (line 9)

To generate all sub-projections, MiSTA does the following for each item i in the
filtered projection P ∗ (line 12):

• If the support of item i within the projection is greater or equal to smin when
counting only occurrences of i that can be used in an enlargement projection,
then an enlargement projection takes place (lines 13-14)

• If the support of that item within the projection is greater or equal to smin when
counting only occurrences of i that can be used in an extension projection, then
an extension projection takes place (lines 15-16)

Given that chapter 6 will be using MiSTA for the algorithmic proposal, let us
explain in more detail how the aforementioned pseudocode works.

The actual temporal annotation values of the input TASs (called dataset points)
are used together with the relaxation parameter τ to build corresponding hyper-
cubical influence areas in the annotation space, as depicted in Figure 4.13. Since τ
represents the allowed level of temporal similarity relaxation, these influence areas
have an edge equal to 2τ . Next, they are merged and partitioned into disjoint hyper-
rectangles, which are added to the collection of influence areas outputted by function
Extract annotation blocks(P). This allows all prefix occurrences whose corresponding
dataset points do not contribute to any dense region to be deleted before any new
projection.
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Figure 4.13: An example of searching for frequent TASs of length 3 (a
a1→ b

a2→ c) in the
corresponding 2D annotation space, taken from [70].

In the aforementioned illustration provided by Giannotti et al., we can notice how
dataset points that are close to each other in the annotation space, i.e. have similar a
values, form coloured overlapping areas, inside of which any point would temporally
match all of them. For instance, the green surfaces contain all the annotation pairs
(a1, a2) that would match at least 2 out of the 10 dataset points, whereas the blue
surfaces contain all the annotation pairs (a1, a2) that would match at least 3 dataset
points.

Then, function Compute density blocks(A) receives as input a set of annotation
blocks (i.e. hyper-rectangles) and returns those that have a frequency equal to or
higher than smin. It does so, by collecting the extreme coordinates of each block
along some dimension d. These denote the boundaries for a split along that d dimen-
sion corresponding to homogeneous density (and hence frequency/support). Then a
recursive split is performed for each interval defined by two successive boundaries.
When all dimensions have been split in this way, all the intervals collected along the
recursive calls are combined to extract the hyper-rectangle associated with its density
measure. As a result, the annotation space is divided into regions of homogeneous
density.

Subsequently, function Coalesce density blocks(D) is a greedy algorithm that turns
a typically large number of small hyper-rectangles of slightly variable density into a
sequence of sets of TASs, interpreted as a series of successive approximations of the
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real set of dense annotations, such that the first outputted provides the best possible
approximation in terms of the coverage (i.e. the percentage of annotations in a vol-
umetrical sense represented by the approximation). It does so by randomly choosing
an initial dense hyper-rectangle, then repeatedly extending it along the dimension
and direction that yields the maximum increase in volume, while merging any other
hyper-rectangles that get covered, and then when no more extensions are possible,
adding the hyper-rectangle to the output and repeating this process. Information
about the density of the coalesced hyper-rectangles is actually dropped or only kept
approximately (e.g. avg, min, max) during this process.

Finally, function Annotation based prune(P,D∗) receives as input a sequence of
dense annotation blocks (i.e. hyper-rectangles) and a projection, and produces as
output the occurrences of the prefix in the projection that contribute to form dense
annotations. More specifically, each occurrence of the prefix corresponds to a dataset
point that contributes to the density in the annotation space within its hyper-cubical
neighborhood. If no annotation within such a neighborhood is dense, then that
dataset point could have been disregarded in Line 7 of the algorithm. In an extension
projection, all the annotations of the projection are extended by a temporal com-
ponent, therefore all dataset points move to a higher-dimensional annotation space
where dense regions can become “rarefied” and rarefied regions remain so. As a re-
sult, prefix occurrences that cease being interesting at some stage of the computation
(i.e. their corresponding dataset points do not contribute to any dense region) will
remain useless for the mining process and can be deleted before any new projection.

At the same time, any T-sequence of the projection that does not contain any
useful occurrence of the prefix, can only generate larger useless occurrences when
projected. As a result, a T-sequence whose dataset points have all been eliminated
can itself be deleted. Ultimately, if the projection remains with less than smin T-
sequences, then there is no item that can be frequent and the projection process can
be stopped altogether.

4.4 Chapter Conclusions

In this chapter, the state-of-the-art research works in the trajectory analysis research
domain were described. The state-of-the-art in T-PM more specifically was covered
in detail, as well as the necessary background research on S-PM. Chapter 5 will be
referring to these works as needed for the design of the proposed T-PM algorithm,
which takes into account time, semantics, and topology, as well as hierarchical data
dimensions.
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5.1 Introduction

Based on the review of trajectory pattern mining research works presented in section
4.3.1, it can be concluded that even though significant advances have been achieved
over the last 20 years, especially following the conception of semantic trajectories,
there still exist some obstacles on the way to creating museum visitor trajectory
analytics systems as envisioned by the author in [100]. The same can also be said for
the analysis and mining of trajectories in all other indoor location-based application
domains described in section 1.1. More specifically, what is mainly lacking is the
necessary mechanisms to intertwine the semantics and the mechanics of movement.

One of the most promising research directions in this respect, showing both pre-
dictive and descriptive analytic potential, lies in new specialized trajectory pattern
mining algorithms. These can be primarily thought of as extensions and variations
of existing general-scope Sequential Pattern Mining (S-PM) algorithms, because the
main underlying mathematical approaches (e.g. Apriori principle) remain intact irre-
spective of the type of data being mined. At the same time however, multidimensional
values, hierarchical values, topological restrictions, uncertainty in the data, are addi-
tional factors requiring special consideration.

Hence, this chapter first discusses how existing S-PM algorithms can be adapted
to trajectory data mining, following the Semantic Indoor Trajectory Model (SITM)-
based formalism proposed in section 3.3.2. More specifically, the Semantic Indoor
Trajectory Pattern Mining (SIT-PM) problem is formulated as a MultiDimensional
Temporally Annotated Sequential Pattern Mining (MD-TAS-PM) problem/ Then, the
advantages of SITM ’s expressive power are highlighted with respect to this problem.

Finally, a new algorithm tackling the SIT-PM problem is proposed, called Seman-
tic Indoor Trajectory Pattern Extractor (SITPE). SITPE is described in detail and
its implementation process is illustrated. Also, it is explained how it improves upon
related trajectory and non-trajectory PM algorithms alike. To the author’s knowl-
edge, it is the first algorithm to take into account multiple hierarchical spatiosemantic
dimensions, temporal information, and topological constraints. As a result, it outputs
more comprehensive patterns and thereby provides a qualitatively richer description
of mobility behaviors.

5.1.1 The MultiDimensional Temporally Annotated Sequential Pat-
tern Mining (MD-TAS-PM) Problem

In section 4.3, it was detailed how trajectory pattern mining can be tackled us-
ing a combination of different types of techniques and methods, mainly including
clustering methods, geographic proximity measures, spatial discretization techniques,
data-induced topological constraints, etc. The suitability of each approach depends
- among other things - on the type of trajectory data: outdoor or indoor, geometric
or symbolic, certain or uncertain, fine-grained or coarse-grained, freely moving or
network-constrained, etc.

Nevertheless, S-PM is by far the prevailing approach for trajectory pattern ex-
traction, due to the sequential nature of all types of movement data, with semantic
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indoor trajectory data of course being no exception. This is why section 4.3 also sur-
veyed how S-PM comprises a broad range of algorithmic methods aimed at finding
all or some of the patterns frequently occurring in a given dataset of sequences.

Therefore, a primarily sequential trajectory data model, like the proposed SITM
(detailed in section 3.3), can serve as the basis for solving the Semantic Indoor Tra-
jectory Pattern Mining (SIT-PM) problem.

Let us begin formalizing this problem by defining a multidimensional temporally
annotated sequence (MD-TAS):

Definition 5.1.1 (MD-TAS)
A multidimensional temporally annotated sequence is a couple S = (s, α) con-

sisting of two sequences:

1. An n-long sequence s = <s1, s2, ..., sn> of temporally ordered (according to rela-
tion <t) elementary vectors si = (ci,1, ci,2, ..., ci,m), i ∈ [1, n] whose components
are itemsets ci,j, j ∈ [1,m] composed of one or more items that respectively
belong to dimensions D = {D1, D2, ..., Dm} in a specific position within their
respective domain’s hierarchy H = {H1, H2, ...,Hm}.

2. An n-long sequence α = <α1, α2, ..., αn> of real-valued temporal annotations,
representing the duration of the respective vectors of s.

Hence, a MD-TAS can be represented as: (s, α) =
α1
s1 →

α2
s2 → ...→ αn

sn

Moreover, an n-long MD-TAS S1 = (s, α) is multidimensionally τ -contained (mdτ -
contained) within another n′-long MD-TAS S2 = (s′, α′), n ≤ n′ (S1 �mdτ S2) iff
∃ 0 ≤ i0 < ... < in ≤ n′ such that:

1. ∀0≤k≤n: sk ≤H s′ik ⇔ ck,1 ≤H1 c
′
ik,1

, ck,2 ≤H2 c
′
ik,2

, ..., ck,m ≤Hm c′ik,m

2. ∀0≤k≤n: |αk − α′∗k| ≤ τ where α′∗k =
ik∑

j=ik−1

α′j

Simply put, S1 �mdτ S2 holds when there is a (potentially non-contiguous) subse-
quence of S2, whose itemsets correspond to all the itemsets of S1 but are equally or
more general than them (condition 1) according to the respective dimension’s hier-
archy, and whose annotations differ by at most τ seconds from the corresponding
annotations of S1 (condition 2).

Consequently, the MD-TAS-PM problem is defined as follows:

Definition 5.1.2 (MD-TAS-PM problem)
The MultiDimensional Temporally Annotated Sequential Pattern Mining (MD-

TAS-PM) problem is the problem of, given as input a set of MD-TASs Sin along with
their respective data dimension hierarchies H = {H1, H2, ...,Hm}, a minimum support
value minsup, and a temporal relaxation value τ , to return as output all MD-TAS
patterns that are mdτ -contained in Sin with a frequency higher than minsup.
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Based on the above problem definition and the proposed conceptual trajectory
model defined in section 3.3.2, the Semantic Indoor Trajectory Pattern Mining (SIT-
PM) problem can be defined as follows:

Definition 5.1.3 (SIT-PM problem)
The Semantic Indoor Trajectory Pattern Mining (SIT-PM) problem is the prob-

lem of, given as input a set of semantic indoor trajectories Tin each represented accord-
ing to Definition 3.3.2 along with the respective semantic annotation data hierarchies
Hsem = {Hsem1, Hsem2, ...,Hsemm}, a multi-layered graph representation G = (V,E)
of the indoor space represented according to Definition 3.3.1, a minimum support
value minsup, and a temporal relaxation value τ , to return as output all trajectory
patterns which are mdτ -contained in Tin with a frequency higher than minsup, and
respect the mobility constraints imposed by G.

As evident from the above problem definition, for SIT-PM to be performed prop-
erly, order information alone is not enough. Three additional aspects need to be
addressed in order to derive more interesting patterns that capture movement phe-
nomena in a much richer way. These are time, semantics, and topology.

5.1.1.1 Temporal Information as Interval Duration Annotations

Among the related trajectory pattern mining works, a few actually do consider the
above three aspects of mobility data. First with respect to time, whereas many works
ignore it altogether and focus on spatial patterns, others choose to abstract temporal
information into the relative order of symbolic locations. This is presumably done to
make S-PM algorithms directly applicable to trajectory data.

However, a considerable amount of knowledge remains hidden when, for example,

one considers the pattern A→ B→ C instead of the pattern
30sec

A →
200sec

B →
1000sec

C .
The fact that the moving object remained for 1000 seconds in the spatial region C
whereas only for 30 seconds in the region A, is clearly significant for understanding
its behavior.

For instance, if A and C were museum exhibition rooms, the duration of visit in
each one could be indicative of the level of interest in their corresponding artworks.
In such case, it might be concluded that the visitor was much more interested in the
artworks of room C.

Some other works including [53, 83, 157], implicitly take time into account in the
way they extract spatiotemporal (rather than spatial) regions. This means that each
item in a pattern contains temporal information simply by virtue of its existence as a
spatiotemporal entity. This also makes standard S-PM algorithms readily applicable.

Unfortunately, this approach is only suited for outdoor environments where the
regions or places of interest are not known in advance, and instead are extracted
from the movement data with the help of geographic information. On the contrary,
for indoor environments, it is not wise to disregard spatial regions simply because they
were not visited enough. One reason is that we may wish to find out for example
why some parts of a museum are less visited than others, or whether less visited parts
actually affect the attendance in the most popular ones.
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In addition, spatiotemporal region extraction uses the time of appearance / hap-
pening of a spatial event, whereas durations are more helpful for interpreting indi-
vidual indoor movement parts. To illustrate this point, let us consider which output
pattern is more helpful to the museum management for gaining a better understand-

ing of their visitors:
afternoon

A →
afternoon

B →
late afternoon

C or
30sec

A →
200sec

B →
1000sec

C ?
Naturally, the time of day, or the day of the year, etc. are useful for several types of
aggregate analyses or even for periodic pattern detection. At the individual moving
object level however, what is more important is the duration of each movement part.

Unfortunately, trajectory pattern mining research has solely focused on tempo-
ral information of the former type, mainly due to its focus on outdoor trajectories
spanning entire days (e.g. tourist trajectories) or even months (animal trajectories).
Ideally, both types of temporal information can be unified in a trajectory model.
The former type can even be dealt as any other semantic dimension holding nominal
values (i.e. a qualitative description of the temporal context).

Finally, there exist few other works which account for time in more peculiar ways.
For example, [83, 151, 197] consider a threshold value acting to restrict the transition
time between consecutive symbolic locations. This is used as a splitting threshold
in the creation of candidate patterns. The problem with this approach is that it is
only relevant for structuring or segmenting the input trajectories, and does not really
concern the main mining step, as it relates only to a movement’s ending moment (not
to the movement itself). This is why applying a splitting threshold makes more sense
in the preprocessing phase, rather than in the main mining process step.

To illustrate this in the museum domain for example, item duration threshold
constraints would make it impossible to find visiting patterns such as spending a lot
of time in each room at the beginning of the visit, and then moving faster through each

room towards the end of the visit. This is because a trajectory like
1000sec

A →
800sec

B →
900sec

C →
500sec

D →
50sec

E →
40sec

F would be cut right in the middle for a threshold value of
600 sec for instance. In other words, such a method assumes a homogenized behavior
time-wise that is not necessarily realistic.

More generally, it would be useful to be able to extract patterns revealing temporal
regularities for which a cut-off value is not enough. In this respect, only [71] and [34]
adequately consider time in the main mining step by capturing the duration of item
transitions.

Hence, the proposed approach will be using the MiSTA (Mining Sequences with
Temporal Annotations) algorithm proposed in [69]. Its trajectory-based counterpart
proposed in [71] (for mining so-called T-patterns) is not used, because of the symbolic
nature of the trajectory data assumed here. The T-pattern mining method is identical
to MiSTA, except for an additional initial grouping of the geometric positional data
into geographic regions, that is not useful in the indoor context targeted here.

Finally, whereas MiSTA is indeed one of the few S-PM algorithms accounting
for time, it associates the temporal annotations to the transitions from one sequence
item to the next. Instead, here they are needed to characterize the items themselves.
The reason is simple: it is more interesting how long the moving object spends in
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a spatial region (e.g. room) than how long it takes for it to transition between
consecutive spatial regions (e.g. pass through a door).

This can be easily compensated for at the stage of data pre-processing and does not
pose a problem. More importantly, MiSTA does not account for multidimensional
item sequences, which leads to the following discussion about capturing the semantics
of the trajectories.

5.1.1.2 Semantic Information as Multiple Dimensions

Different Big Data sources can be used to enrich trajectories with complex and hetero-
geneous semantic information [99]. In such cases, trajectory pattern mining, viewed
as a S-PM problem, becomes multidimensional as illustrated in section 1.1.2 for the
case of semantic indoor trajectories.

Unfortunately, in comparison to the temporal information discussed in the previ-
ous section, here the state-of-the-art practices are much more limited: to the author’s
knowledge only a couple of works have ever tried to use S-PM to discover interesting
patterns in truly semantic trajectories.

Most works are limited to a superficial incorporation of semantics in the sequences,
and consequently in the discovered trajectory patterns as well. For example, [197]
observes that “to find frequent sequential patterns in semantic trajectories, one should
group similar places together”, but a place type categorization alone makes only for
small part of the semantic wealth that the mining process could be supported with.

Similarly, some works such as [41] claim to retrieve sequential patterns in semantic
trajectories, but the semantic information used is only limited to a set of PoIs P =
p1, p2, ..., p|P | accompanied by a set of semantic categories C = c1, c2, ..., c|C|, where
p ∈ P is a 2D point associated with a category c ∈ C.

Apart from place name semantics1, semantics of space in general need to be treated
differently in indoor environments. For example, congestion of small indoor spaces
is something that might affect movement considerably, and thus should be captured
in the mined patterns. In addition, there may be semantics related to the movement
itself, to the moving object, to other moving objects, to time, etc. depending on the
application at hand.

Occasionally, bibliographical trajectory models have even proposed representing
very specialized types of semantics, such as the device capturing the tracking data
[25]. Thus, all these types of semantics have to be treated as first-class citizens and
integrated within the core mining process, almost - if not completely - equally to the
spatial and temporal data dimensions.

To this end, the focus is momentarily shifted away from trajectory-specific pat-
tern mining in an attempt to derive inspiration from the - admittedly few - existing
MultiDimensional Sequential Pattern Mining (MD-S-PM) algorithms.

The goal is to be able to find specific patterns that appear frequently in the
input trajectories (e.g. museum visits), taking advantage of multidimensional items
representing not only the location information but also the trajectories’ semantics. In

1Which are really only symbolic unless accompanied by some place hierarchy or ontology.
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addition, any existing hierarchies across all data dimensions should be represented in
order to capture the different spatiosemantic granularity levels of indoor movement.

As detailed in section 4.3.4, whereas earlier methods proposed by Pinto et al.
in their seminal work of [145] are some of the first to account for additional data
dimensions extending the main sequence of items, they are not adequate, because
the values of the extra dimensions remain static throughout the sequence. In the
museum domain for example, these extra static dimensions may represent the visitor’s
demographic information, profile preferences (e.g. art interests), impairments, etc.
but not their level of fatigue, guide content consumption, or any other dynamic
characteristic subject to change during the visit. Using the terminology introduced
by Mello et al. in [133], these methods can represent any permanent aspect, but not
any volatile aspect, of a moving object’s trajectory.

The M2SP algorithm proposed by Plantevit et al. in [146] is the first to address
the aforementioned issue, by completely integrating all extra dimensions into the
sequences. This is necessary for discovering truly semantic patterns.

Then, the authors extend it with a mining mechanism that supports hierarchical
data values, resulting in the HY PE algorithm of [148]. Their approach is further
refined in [147] resulting in the M3SP algorithm, which detects multidimensional
sequential patterns at the highest possible level of specificity. A MD-S-PM method
similar to the M3SP algorithm holds a lot of promise for mining semantic trajectories
represented as sequences of multidimensional items.

Unfortunately however, all these methods share a major shortcoming with respect
to mobility data applications: they ignore the temporal dimension of the data [30],
and thus need to be adapted with respect to the issues considered in the previous
section, before being applied on trajectory data. Also, they do not make use of any
topological information with regards to transitions between consecutive items in the
sequence, nor do they consider any type of spatial data uncertainty, both primary
characteristics of moving object trajectory data in indoor environments.

5.1.1.3 Topological Information as Accessibility Constraints

With respect to topological information, whereas it is taken into account in (typically
road) network-constrained trajectory data mining approaches, it has been almost
totally ignored in the S-PM research landscape. This is partly due to the relevant al-
gorithms not specifically targeting mobility data, let alone indoor trajectories affected
by topological restrictions.

To the author’s knowledge, the only two works considering topological restrictions
in the candidate generation part of an S-PM algorithm are [151] and [50], the first
targeting indoor trajectories and the second targeting alarm propagation through a
network2.

In [35], Huiping et al. propose a connectivity constraint as a means to reduce
the number of candidates, based upon the remark that “due to continuity of ob-
ject movement, a spatial region can only connect to some but not all the others...”.
However, this idea is pursued through means of a connectivity graph whose nodes

2These can be viewed as metaphorical trajectories of information.
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represent all spatial regions and each edge weight reflects the number of occurrences
of the corresponding region transition. Then, the idea put forth by the authors is to
compare the edge weight to the minimum support, before generating a new candi-
date sequence. However this is simply equivalent to candidate generation based on
frequent 2-sequences.

In [151], Radaelli et al. claim to “utilize the topology of indoor space to improve
performance by pruning irrelevant candidate pattern segments” but only indirectly
capture indoor movement constraints, through the frequent 2-patterns extracted from
the trajectory data. However, this approach does not really add anything to the A-
Priori principle, according to which if a sequence is not frequent, then neither any
of its super-sequences can be frequent. Also from a theoretical point of view, it is
equivalent to disregarding impossible transitions based on the assumption that they
will not occur frequently enough. This is not necessarily true since a faulty sensor
or a misplaced detector might consistently generate erroneous data. Thus, for indoor
trajectories it is much preferable that the S-PM algorithm considers explicitly the
building’s topological structure.

In [50], Devitt et al. consider a network topology while counting sequences as part
of their proposed S-PM approach. Although they refer to this as topographic proxim-
ity, the term topological would be more appropriate since the patterns take place over
a network topology. Either way, their proposed TP algorithm derives in run-time a
proximity score for each candidate sequence. This score acts as an indication of its
plausibility in the network context, and based on a minimum threshold score value,
determines whether the sequence is discarded or kept. TP is not reliant on any pre-
defined network configuration, but instead considers the network node types and the
connections inferred from the data. However, its main idea can be adapted to indoor
trajectories as transition plausibilities in matrix form, derived either exclusively from
the indoor space topology, or in combination with the data.

Taking into consideration the topological information of an indoor space should
be done in an explicit way. As long as a building topology is available, there is no
point in relying solely on the transitions present in the trajectory dataset, because
this is what any standard pattern mining process will do. This is of course unless one
is specifically tackling the problem of automated floor plan generation [13, 63, 68],
which is not the Thesis’ goal.

The proposed model SITM can support such explicit mechanisms, thanks to the
edges ei ∈ Eacci representing accessibility relationships between the spatial regions
of any layer’s NRG Gi = (Vi, E

acc
i ). From those accessibility edges, an accessibility

matrix of binary values can be derived, or even an accessibility plausibility matrix
of normalized values, akin to the TP score of [50]. This matrix can then help deal
with potential uncertainty with regards to transitions. Finally, inserting topological
constraints within the mining process also offers a way to speed up the mining process.



5.1 Introduction 125

The main TP algorithm uses “topographic”
proximity as an additional pruning criterion.

Single transitions and entire sequences
alike are assigned a plausibility score.

Figure 5.1: The TP algorithm proposed by Devitt et al. in [50].

5.1.2 Combining Time, Semantics, and Topology: The Case for a
Novel Semantic Indoor Trajectory Pattern Mining Algorithm

In the rest of this chapter, a novel algorithmic method for mining semantic indoor tra-
jectory data is proposed. But before examining it in detail, it needs to be stressed that
the techniques designed are actually transferable to the vastly unexplored domain-
agnostic field of MD-TAS-PM.

Regarding this, the distinguishing factor between a trajectory-specific approach
and any other time-evolving semantic phenomenon is primarily the use of the in-
door space model, and secondly also the interval-based nature of time modeling.
Besides these two factors, various non-trajectory application domains could benefit
from multidimensional sequential patterns encompassing time, such as web activity
mining, market prediction, sports performance analysis.

What is completely missing from the related bibliography is an algorithmic method
to take all three types of information into account: multiple data dimensions i.e. one
topologically constrained spatial dimension and one or more semantic dimensions,
along with the duration of stay of the moving object in each spatial region.

At the same time, hierarchical value levels for each of those dimensions should
ideally be supported as well. In this way, phenomena characterized by patterns at
different levels of granularity may be studied.

As detailed in chapter 3, the proposed model SITM defines a trajectory as a cou-
ple comprised of a trace and a set of semantic annotations (Definition 3.3.2), which
thanks to the hierarchical indoor space representation, can represent multi-faceted in-
formation about any particular presence/stay of the visitor inside of a discrete spatial
region of the indoor environment (e.g. museum). These intervals are timestamped
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and temporally ordered in a non-overlapping manner. Thus, given an input trajec-
tory dataset in SITM form, any standard S-PM algorithm is able to derive trajectory
patterns in the form of simple interval subsequences occurring frequently enough in
that dataset.

But more importantly, SITM can enable the design of a new algorithm, taking all
three aforementioned elements into consideration, effectively solving the correspond-
ing MD-TAS-PM problem. The main goal is to detect qualitatively richer frequent
patterns in the output. To quote Cai et al. [34], a semantic trajectory pattern of “go-
ing to a hotel and then going to a park after two hours on a rainy weekday and visiting
a beach two days later on a clear weekend” is much more detailed and meaningful
than “place A to place B”.

In a similar fashion for indoor settings, let us consider a typical semantic trajectory
pattern of Louvre visitors interested in Italian Renaissance paintings. The pattern
starts by visiting the Mona Lisa for 30 minutes, before proceeding to the museum shop
located in Salle Denon for 10 minutes and buying the guidebook of the “Leonardo da
Vinci” temporary exhibition. Then it continues with the visitor strolling through the
Salle Mollien for another 30 minutes while stopping at select paintings such as the
Liberty Leading the People, before feeling increased art fatigue and deciding to stop
for a coffee break at the cafeteria next to the Mollien staircase.

Compared to a simplistic sequential pattern like SalledesEtats→ SalleDenon→
SalleMollien → MollienStaircase, the previous pattern is obviously much more
telling about the movement qualities, and in this particular case about the visitor
experience. This is despite the fact that the simpler pattern would also qualify as a
“semantic” trajectory pattern, simply by virtue of including the names of the visited
spatial regions, according to many of the definitions proposed in the related works.

5.1.2.1 Background Definitions

Adopting the notations used in [147], the following notions are defined:

Definition 5.1.4 (value generalizations)
The generalizations x↑ of a 1D data value x is the set containing x and all of

its predecessors in its corresponding dimension hierarchy Hi.

Definition 5.1.5 (value specializations)
The specializations x↓ of a 1D data value x is the set containing x and all of

its successors in its corresponding dimension hierarchy Hi.

Definition 5.1.6 (generated MD item)
The set gen(a) of multi-dimensional items generated from a multidimensional

item a = (d1, ..., dm) is the set of all (non-duplicate) multidimensional items a′ =
(d′1, ..., d

′
m) that can be created by specializing a across all of its corresponding dimen-

sions’ hierarchies H1, ...,Hm.

The above definitions will help simplify the algorithmic notation.
Moreover, by focusing on adapting the notion of containment according to their

specific needs, most S-PM research works miss out on discussing possible support
variants.
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For multidimensional sequences for instance, Egho et al. [58] define the support
supp(s,MSDB) of a multidimensional sequence s, as the number of sequences si in the
input database MSDB that are more general than s. In other words, their proposed
algorithm MMISP ignores multiple occurrences of a multidimensional pattern in the
same input trajectory and only counts them once.

Whereas in [147], Plantevit et al. exclude some of the data dimensions (so-called
reference dimensions) from the mining step, and use them instead to partition the
input sequence database into multiple blocks. In other words, their proposed algo-
rithm M3SP ultimately counts multiple occurrences of a multidimensional pattern
only once per block of input data.

Motivated by this lack of consideration about the core definition of support, this
Thesis proposes three variations of the absolute MD-TAS pattern support. In the
proposed algorithm only the first two (classic and repetitive) are used. The third
one (block) is particularly interesting for taking advantage of the static semantics of
trajectories, or what Mello et al. call in [133] the long term aspects of trajectories.

The first variation, Classic support, reflects the well-known notion of support as
it relates to all types of Pattern Mining: it only considers whether a pattern occurs
in an input data instance or not, not how many times it occurs in it. This is for
example what Egho et al. adopted to the multi-dimensional case in [58].

In the context of indoor trajectory data, it is relevant for detecting virtually any
type of semantic mobility behavior, such as visiting the Mona Lisa for 30 minutes and
then going to the Museum Shop for 20 minutes to buy a Mona Lisa themed handbag or
drinking a coffee at Louvre’s Café Mollien for 15 minutes and then strolling through
the Grande Gallerie for 30 minutes while listening to the audio description of various
paintings. Such mobility behaviors typically take place only once or twice in any
given visit.

Definition 5.1.7 (Classic MD-TAS Pattern Support)
The classic support sup(p) of an MD-TAS pattern p is equal to the number of

input sequences containing p.

The second variation, Repetitive support, is oriented more towards detecting mo-
bility micro-behaviors that tend to be repeated numerous times during the lifetime
of a single trajectory. As far as the the museum domain is concerned, these could
be patterns like seeing a painting for 10 seconds and then seeing a sculpture for 20
seconds, or backtracking to the previous room and then proceeding again to the current
room. These are typically either episodic patterns or simply patterns of lower spa-
tiotemporal granularity. In correspondence to SITM , this version of support is more
useful for mining patterns at the intra-room RoI leaf layer, as depicted in Figure 3.1
of section 3.3.1.1.

Definition 5.1.8 (Repetitive MD-TAS Pattern Support)
The repetitive support rsup(p) of an MD-TAS pattern p is equal to the total

number of times it occurs in any input sequence.

The third variation of support uses a division of the input trajectories into blocks,
based on the distinction between their long term aspects and their volatile aspects
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[133]. Since the former stay unchanged throughout the trajectory, they are fit to be
used to segment the trajectory dataset into blocks.

A similar approach is used by the M3SP algorithm in [147], where every block
B is eventually assigned a unique identifier ID(B) “playing the role of the customer
identifiers in standard algorithms”, but it is not justified why this is the case.

Blocking is actually not required for the mining process, but in our view it can be
useful for parallelizing it, because input dataset scans need only check a single block
at a time, with the overall support value being calculated in a separate step. Hence,
a block-based support can speed up the mining process for distributed sequential
pattern mining. However, it concerns only application scenarios involving (at least
some) static trajectory semantics to act as the reference dimensions [147] based upon
which the input dataset is partitioned.

Definition 5.1.9 (Block MD-TAS Pattern Support)
The block support bsup(p) of an MD-TAS pattern p is equal to the total number

of blocks of input sequences containing p, where the blocks are formed according to
the non-changing semantic dimensions of the data.

In the museum domain for example, the semantics describing an entire visit trajec-
tory (Atraj from Definition 3.3.2) can be exploited to divide a massive input dataset
of visits into smaller blocks: a block of trajectories whose goal is to visit the Mona
Lisa, another block of trajectories whose goal is to visit the temporary exhibition, etc.
Alternatively, moving object semantics such as demographics can be used to partition
the input data: a block of trajectories performed by French visitors, another block of
trajectories performed by foreign European visitors, and so on.

In the rest of this chapter, the Classic MD-TAS Pattern Support is used, as it
generally corresponds to the most wide range of PM application scenarios.

5.1.2.2 Compatibility with SITM and Trajectory Data Preprocessing

As a necessary reminder, the proposed SITM model presented in section 3.3.2 con-
siders a trajectory as a couple comprised of a trace and a set of semantic annotations.
The trace consists of a sequence of tuples, each representing information about the
(non-overlapping) timestamped presence/stay intervals of the moving object (e.g. vis-
itor) inside of a discrete spatial region of the indoor environment (e.g. museum). The
semantic annotations describe both the trajectory in its entirety (the set Atraj in
Definition 3.3.2) and/or any specific tuple (the set Atraj in Definition 3.3.3).

Whereas, specific semantic ontologies or hierarchies are not included in SITM
in order to keep it domain-independent, an elaborate indoor space representation
suitable for any indoor environment (the layered multigraph G=(V ,E) is defined in
section 3.3.1).

Hence, SITM provides the analyst with a way to address the semantic aspects
of trajectories as additional item dimensions. This in turn, enables the combination
of the time-aware prefix-projection generation mechanism of the MiSTA algorithm
[69] with the multidimensional item generation mechanism of the M3SP algorithm
[147] (based on the notion of item specificity as explained in section 4.3.4) for mining
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semantic trajectory patterns. Hence, SITM ’s trajectory representation can support
the information representation needs of the MD-TAS-PM algorithm that will be for-
malized next. More concretely, the algorithm will make use of the following modeling
elements of SITM :

1. The semantic content : the values di of the multidimensional items in the se-
quences represent the evolving semantic/contextual aspects of the trajectories,
and thus correspond to the range of values a ∈ Ai of SITM ’s semantic anno-
tation sets Ai, ∀i ∈ [1, n].

2. The spatial hierarchy : the hierarchy Hsp of the spatial dimension in the se-
quences represents the hierarchy of indoor spatial regions where the moving
object may be found, and thus corresponds to the binary topological relation-
ships Etop of SITM ’s hierarchical indoor space G=(V ,E).

3. The topology : the topological restrictions over item transitions in the sequences
represent the movement constraints imposed by the indoor environment’s ar-
chitectural or functional properties, and thus correspond to the accessibility
relationships Eacc of SITM ’s accessibility NRG Gi=(Vi,Eacc,i) for any hierar-
chical level 0 ≤ i ≤ m of the particular spatial data value.

4. The temporal dimension: the temporal annotation values of a sequence’s mul-
tidimensional items represent the duration of the moving object’s stay in each
corresponding spatial region, and thus correspond to the difference (in seconds)
between the two related absolute timestamps: tdurk = tendk - tstartk .

Inversely, there are also a few modeling elements in SITM not used by the al-
gorithm, which can nevertheless be taken advantage of by future extensions of the
proposed PM approach or other methods inspired by it. These are mentioned next
along with how they could potentially be handled:

1. The edges ei: The connections traversed by the moving object in the acces-
sibility NRG Gi=(Vi,Eacc,i) of any layer 0 ≤ i ≤ m of the hierarchy are not
used. Instead, an accessibility matrix is used, which disregards different edges
connecting the same two spatial regions. Given that SITM ’s indoor space
representation (section 3.3.1) is multigraph-based, and therefore can support
multiple ways to go from one spatial region to another. In that case however,
a more complex topological pruning step should be implemented (than the one
actually used) that takes edges into account.

2. The absolute timestamps tstarti and tendi : The beginning / ending moments of
the presence intervals representing precisely when the moving object entered /
exited a spatial region are not used. The MiSTA algorithm actually ignores
those. This is a fundamental decision on how to model time in the patterns. A
different algorithm, taking absolute timestamps into account, could be used in
the final step of the proposed algorithm3. The most suitable algorithmic design

3Even though as argued in section 5.1.1.1, duration intervals are actually more crucial for inter-
preting individual movements.
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approach to do that would be to combine the intervals with the absolute times-
tamps, enriching the sequences with a time-related semantic data dimension
derived from those timestamps and taking values such as “Morning”, “Early
Afternoon”, “Summer”. Then, the algorithm would treat it in the same way as
any other categorical semantic data dimension.

3. The set of semantic annotations Atraj : The semantic aspects of an entire tra-
jectory are not used, because the proposed PM approach is focused on dynamic
semantics, rather than on those staying the same throughout the lifetime of a
trajectory. However, a block support, as formalized in Definition 5.1.9, can be
used to consider these static semantic annotations, and extract patterns that
are frequent, not only in the input dataset in general, but also with respect
to specific types of trajectories (e.g. visits to see the Mona Lisa, visits of art
professionals, guided visits).

Given the above choice of modeling elements, a semantic indoor trajectory

TIDmo,tstart,tend
= (traceIDmo,tstart,tend

, Atraj)

where

traceIDmo,tstart,tend
= (ei, vi, t

start
i , tendi , Ai)i∈[1,n]

can be formulated as a MD-TAS (s, α) for which:

• the set of dimensions D = {Dspace, Dsemantics} contains a spatial dimension
Dspace which takes its values from the active domain of the edge-node tuples
(ei, vi) present in the indoor space graph G, and one or more semantic dimen-
sions Dsemantics = {Dsem1 , Dsem2 , ..., Dsemm} which take their values from the
case-specific sets Ai of trajectory-part semantic annotations.

• the corresponding set of hierarchies H = {G(V,E), Hsemantics} contains a spa-
tial hierarchy which is the indoor space graph, and one or more semantic tax-
onomies.

• the elementary vectors si = (vi, Ai,1, ..., Ai,m), i ∈ [1, n] contain the following
items: the node vi,j denoting the value of the spatial dimension (i.e. location
information), and one or more items that respectively belong to dimensions
Dsemantics = {Dsem1 , Dsem2 , ..., Dsemm} in a specific position within the respec-
tive semantic hierarchy Hsemantics = {Hsem1 , Hsem2 , ...,Hsemm}.

• the annotation sequence α = <(tend1 − tbegin1), (tend2 − tbegint2), ...,
(tendn − tbeginn)> is extracted from subtracting the real-valued timestamps rep-
resenting the start and finish of the corresponding elementary vectors of s.

• the absolute timestamps tstarti , tendi can (optionally) be used in one of the m
semantic dimensions Dsemtemp to represent the temporal context.
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5.1.2.3 SITPE: A MD-TAS Pattern Mining Algorithm

Hereby, the proposed MD-TAS-PM algorithm is formalized. It extracts from an input
trajectory dataset in the aforedescribed SITM form, all trajectory patterns occurring
“frequently enough” in it, by taking into account multiple data (one spatial and one
or more semantic) dimensions, hierarchical value levels for each of those dimensions,
and the duration of stay of the moving object in each spatial region. To the best
of the author’s knowledge, this is the first proposed method for mining sequential
patterns based on the multitude of information described in section 5.1.2.

The proposed algorithm called Semantic Indoor Trajectory Pattern Extractor
(SITPE) comprises a main function (sitpe main) which takes as input a semantic
trajectory dataset (according to section 3.3.2), a support threshold value, a temporal
threshold value, as well as an indoor space representation (according to section 3.3.1),
and the hierarchies of trajectory semantics. It then calculates the frequent trajectory
patterns in three steps by calling helper functions and procedures: count 1D values,
discard 1D values, calculate msfas(Tin, H, I).

Algorithm 1 is the main algorithm and it works in three steps:

1. First, it calculates the frequency with which any 1-dimensional value occurs
in the input dataset, and discards from the data dimension hierarchies those
values that do not occur frequently enough to potentially belong to a frequent
pattern. Then, starting from the set of all frequent multidimensional values of
the form (ALL1, ..., ALLi−1, di, ALLi+1, ..., ALLm), where di is a frequent child
node value of the value ALLi, it recursively specializes over all dimensions, until
it finds the set of Most Specific Frequent (Multidimensional) Values (MSFV).

2. Secondly, it transforms the input database sequences by using the newly found
MSFV set: any item that is not a MSFV is replaced by its corresponding
MSFV. Special attention is paid during this generalization step, in order to
update accordingly the temporal annotations of the replaced items, but also
to fuse together any consecutive items that may appear (as a result of the
transformation) having the exact same spatiosemantic multidimensional values.

3. Finally, it uses a TAS-PM algorithm in order to mine the transformed database
in a way that takes into account the temporal annotations of the items. More
specifically, a variation of the MiSTA algorithm is used in which the τ parame-
ter is not static, but instead adapted to the granularity of the spatial dimension
value of each item in the sequence. Moreover, an extra topological pruning crite-
rion is added, which makes use of the indoor space representation as well as the
data to derive a transition plausibility matrix. Hence, it is called MultiGranular
Topologically Aware MiSTA (MGTA−MiSTA).

It is important to notice that not every frequent trajectory pattern is returned
due to computational complexity issues. Instead, the algorithm4 finds only the most
specific frequent patterns. For example, if (D+1:SJ, [150−300]sec, low fatigue) →

4Similar to [147].
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Algorithm 1: sitpe main(Tin, H, G, minsup, τ)

Data:

• a set of trajectories Tin in SITM -based form (as defined in section 3.3)

• a minimum support threshold minsup

• a temporal relaxation threshold τ (in seconds)

• a set of m hierarchies H = {Hi}, i ∈ [1,m] where Hi is the hierarchy of the
i-th semantic data dimension and Hm = Hsp = (V,Etop) is the spatial
hierarchy as derived from the indoor space graph representation G

• the indoor space model G = (V,E) (as defined in section 3.3.1)

Result: a set of frequent SIT patterns TPout
/* Step1 - Calculate the most specific (hierarchically

lower) frequent multidimensional values: */
/* Step1A - Calculate frequency counts: */

1 Counts ← count 1D values(Tin, H) ;
/* Step1B - Discard infrequent 1D data values: */

2 I ← discard 1D values(H, Counts);
/* Step1C - Find most specific frequent MD values: */

3 MSFV ← ∅;
4 forall item ∈ I do
5 MSFV ← calculate msfv(Tin, H, item, minsup, MSFV ) ;
6 end
/* Step2 - Transform input data to sequences consisting

only of most specific frequent MD items: */
7 T ′in ← transform dataset(Tin, H, MSFV ) ;
/* Step3 - Mine the transformed input sequences taking

into account the temporal annotations: */
8 TPout ←MGTA−MiSTA(T’in, G, minsup, τ) ;

(D+1:S, [50−100]sec, high fatigue) is a frequent semantic trajectory pattern, then so is
(Denon Wing, [150-300]sec, ALLfatigue)→ (Denon +1 floor, [50-100]sec, ALLfatigue).
However, the latter will not be returned, as it is only a generalization of the former.

The eventual output of Algorithm 1 is a set of patterns, that occur frequently in
the input semantic trajectory dataset. Unlike the items in the input dataset them-
selves which contain a specific duration value, the items constituting these sequential
patterns contain a range of duration values, due to the temporal relaxation parameter
τ that the MiSTA algorithm applies.

This is natural, since not all matching trajectory parts can be expected to contain
exactly the same durations in every spatial region. In the previous example for in-
stance, the range for [150-300] followed by the range [50-100], means that remaining
in zone D+1:SJ for anywhere between 150 and 300 seconds (inclusive), transitioning
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to zone D+1:S, and remaining there for anywhere between 50 and 100 seconds (in-
clusive), would suffice to produce a frequent pattern no matter the exact number of
seconds in each zone. The allowed range is not fixed, instead it depends on the input
data.

Next, the helper functions used to implement the main algorithmic steps of
SITPE are described.

Algorithm 2: count 1D values(Tin, H)

Data:

• the set of trajectories Tin having m semantic data dimensions

• the set of m hierarchies H = {Hi}, i ∈ [1,m] where Hi is the hierarchy of the
i-th semantic data dimension and Hm = Hsp = (V,Etop) is the spatial
hierarchy as derived from the indoor space graph representation G

Result: The set of frequency counts
Counts(d) = {counts(d)|d ∈ Hi, Hi ∈ H} of all the possible (at any
hierarchical level) values d of each data dimension i ∈ [1,m] is
calculated.

1
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The first auxiliary algorithm is a short helper function, called count 1D values
(Algorithm 2). It calculates how often any atomic sequence appears in the input
trajectory dataset. Although easy to understand, it contains some less obvious im-
plementation details that make use of the hierarchical representation of the semantic
dimensions.

First in line 13, the data value under consideration has to be different than the
most general “root” value of the corresponding dimension’s hierarchy. This is simply
because there is no point in counting these all-encompassing (so-called ALL [147])
values, since by definition they are considered to always occur. It would only make
sense to consider pruning the ALL values in case of missing data under a closed-world
assumption.

To the contrary, it is assumed that if a semantic dimension value is missing from
any of the multidimensional items comprising the input trajectories, then it can be
replaced by its corresponding genericALL value. This is a more natural interpretation
with regards to most semantic dimensions concerning the museum domain.

For example, if the level of fatigue of a visitor is unknown, it can be assumed that
it is either low, or medium, or high. Similarly, if the artistic preferences of another
visitor are unknown, then it can be assumed that he or she potentially likes all artwork
types and artistic movements (instead of none). Hence, using hierarchical semantic
dimensions also serves as a means of managing data uncertainty in the trajectories.

Secondly in line 16, the frequency count is increased not only for the specific one-
dimensional value d′ that was encountered in the input data, but also for all of its
predecessors in the corresponding semantic hierarchy. For example, when encounter-
ing the value Mona Lisa with respect to the artwork types and art themes, the count
of the Italian Renaissance value will also be increased, given that it is its parent node
in the corresponding semantic hierarchy. This is important to guarantee completeness
of the algorithm.

Specifically for the previous example, if the input trajectory dataset explicitly
contains the Mona Lisa value frequently enough but not the Italian Renaissance
value, Algorithm 2 will not discard the latter because it will count every appearance
of the former as its own appearance as well.

As another example, consider that the input trajectory dataset contains the Mona
Lisa value but not quite frequently enough, and also contains the Death of the Vir-
gin value but again not enough times, then it might be the case that together the
occurrences of these two values are enough to qualify their parent value of Italian Re-
naissance as being frequent. Therefore, the appearances of both need to be counted
towards that.

Naturally then, the count increase in line 16 needs to adapt to the selected type
of support. Because in the atomic value pruning phase in Algorithm 2 each count
will be compared to the minimum support. Any discrepancy between the two would
lead either to the algorithm keeping atomic values that can never participate in any
frequent pattern, or - worse yet - to pruning atomic values that could eventually make
it to a frequent pattern.

The choice of support type can of course be parameterized. In line 15 of Algorithm
2, a flag variable is used to calculate the classical support metric (in absolute terms)
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as defined in Definition 5.1.7. If instead a repetitive support (Definition 5.1.8) is
preferred, then multiple occurrences of atomic values can be counted multiple times
by removing the flag variable as follows:

1 ∀T ∈ Tin : // for all input trajectories
2 ∀(d1, d2, ..., dm) ∈ T : // for all m-dimensional items
3 ∀d′ ∈ (d1, d2, ..., dm), d′ 6= ALL : // for all 1D values

4 ∀δ ∈ d′↑ :
Counts(δ)← Counts(δ) + 1;// count their occurrence

Next, a second helper function called discard 1D values is used to discard all
atomic values that appear in the input dataset too rarely to have any chance of
making it into a frequent subsequence.

Algorithm 3: discard 1D values(Tin, H)

Data:

• the set Counts of the number of occurrences of every 1D data value

• a set of m hierarchies H = {Hi}, i ∈ [1,m] where Hi is the hierarchy of the
i-th semantic data dimension and Hm = Hsp = (V,Etop) is the spatial
hierarchy as derived from the indoor space graph representation G

Result: A set of multidimensional values
I = {(ALL1, ..., ALLi1, di, ALLi+1, ..., ALLm)} in which the 1D
values di are “frequently enough” occurring children of their
corresponding dimension’s “ALL-encompassing” value ALLi.

/* Atomic values occurring less than minsup times and
their successor values are discarded: */

1

The aforementioned pruning of the hierarchies performed by the function dis-
card 1D values(Tin, H) is actually performed in preparation of the next step, whose
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main idea is rather simple and originates in [147]: starting off with all multidimen-
sional values in the form of (ALL1, ..., ALLi1, d, ALLi+1, ..., ALLm), where the 1-
dimensional value d occurs frequently enough and is a child node of a corresponding
all-encompassing value ALLi (to avoid unnecessary repetitions), all multidimensional
items that occur frequently enough in the dataset can be found by specializing recur-
sively over all data dimensions in a DFS manner.

Now it is apparent why only frequent 1D values of a level below the ALL values
(line 6 in Algorithm 3) need to be kept: any more specific values would be exhaustively
generated anyway as part of the multidimensional item generation. But out of those
multidimensional items, only the most specific ones are needed, assuming of course
that it is acceptable to ignore trajectory patterns that are semantically “too general”.

Each of the frequent multidimensional items (v1, ..., vi1, vi, vi+1, ..., vm) that makes
it to the set MSFV comprises an atomic sequence < {(v1, ..., vi1, vi, vi+1, ..., vm)} >
which can then function as the starting point for building the candidate patterns /
subsequences of length greater than 1.

The above method actually mirrors the notion of Maximal Atomic Frequent (MAF)
sequences used in [147] and the practically equivalent notion of Most Specific Frequent
Elementary Vectors (MSFEVs) used in [58]. In turn, both are inspired from the BUC
algorithm proposed by Beyer et al. in [22] tackling the Iceberg-CUBE problem in a
bottom-up manner.

Here the term Most Specific Frequent (MultiDimensional) Values (MSFV) is pre-
ferred, because until the MSFV set is actually used for candidate generation, the
algorithm does not yet really consider any sequences or vectors of items5. Hence,
those terms might obscure the fact that sequences are only generated in the last step
of the main algorithm (Algorithm 1) which is detailed in Algorithm 4.

Algorithm 4 comprises the part of the main algorithm which handles the multiple
data dimensions present in the items. It is called multiple times, and each time it
take as argument an item in the previously described form (v1, ..., vi1, vi, vi+1, ..., vm)
and generates all of each successors, but only according to the pruned hierarchies. If
one of these successors occurs more often than minsup then it is added to a set of
frequent candidates.

While the MiSTA algorithm proposed by Giannotti et al. in [69] takes into
account temporal annotations, it does not consider different hierarchical levels for its
items. This raises the issue of how to treat time within sequences whose tuples contain
data values that belong to different levels of granularity, especially concerning the
spatial dimension. For instance, two indoor spatial regions that differ considerably in
size would be expected to relate to different presence interval values: shorter durations
for smaller regions and longer durations for bigger regions.

However, MiSTA’s τ parameter is not adjustable to any symbol semantics. There-
fore, a τ value that is too low (strict restriction) risks losing patterns that contain large
regions, whereas a τ value that is too high (loose restriction) risks over-representing
patterns that contain small regions.

5Nor of itemsets as in the case of [58].



5.1 Introduction 137

Algorithm 4: calculate msfv(Tin, H, item, minsup, MSFV )

Data:

• the set Counts of the number of occurrences of every 1D data value

• a set of m hierarchies H = {Hi}, i ∈ [1,m] where Hi is the hierarchy of the
i-th semantic data dimension and Hm = Hsp = (V,Etop) is the spatial
hierarchy as derived from the indoor space graph representation G

• a MD item item = (ALL1, ..., ALLi1, di, ALLi+1, ..., ALLm) in which the 1D
value di is “frequent enough” and a child of its corresponding ALLi value

• the minimum support threshold minsup

• the current set MSFV of MD values each occurring frequently enough in the
input data and having no other more specific MD value that does so

Result: an updated set MSFV (at the end of the recursion it coincides
with the Most Specific Frequent MD Values)

/* For the input item, we generate all specializations
traversing the pruned hierarchies in a DFS manner:

*/

1

Moreover, as already seen, virtually all S-PM algorithms do not account for topo-
logical restrictions which are nonetheless of paramount importance for indoor trajec-
tories. Therefore, this additional pruning criterion needs to be added into MiSTA’s
prefix-based projection method explained in section 4.3.1.

Hence, a variation of the MiSTA algorithm called MGTA−MiSTA (MultiGran-
ular Trajectory MiSTA) is proposed, which has three main distinctions with respect
to the original proposal of Giannotti et al.:

1. It assigns the duration annotation not to the transition between two items, but
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to the item of departure. This makes the algorithm applicable according to the
proposed trajectory model SITM . From a technical implementation point of
view, it mainly suffices to add a last ”dummy” ending (EXIT ) state in each
input sequence, in order not to miss its last annotation.

2. Instead of relaxing the temporal annotation value by τ in a static manner, it
relaxes it by α∗τ where α is a normalization coefficient used to reflect that stays
in large spatial regions deserve a looser temporal pattern matching requirement.

3. It implements an additional pruning criterion (completely orthogonal to the
temporal criterion) in the form of a transition plausibility matrix, which essen-
tially is a merging of a transition matrix and an accessibility matrix.

A final technical issue that needs to be addressed without affecting the algorithmic
process of MiSTA is that when used with trajectory datasets, instead of sequences of
itemsets supported by Mista, MGTA−MiSTA is restricted to work with sequences
of multidimensional items. In practice however, only the input file needs to be re-
stricted, because a S-PM for sequences of itemsets will run just as fine with sequences
of items. Also, only the symbol representing the spatial dimension is considered by
MGTA −MiSTA, because the extra semantic dimensions have already been dealt
with by the previous steps of the proposed algorithm.

Figure 5.2: Data dimension hierarchies corresponding to a Louvre visit dataset.

5.2 Conclusion

This chapter was consecrated to the design of a novel algorithmic approach, with
respect to S-PM specifically for the domain of semantic indoor trajectories. First,the
case was made for why it is important to consider semantics, time, and topology in
a unified manner. Then, the corresponding pattern mining problem was formulated,
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and the necessary definitions provided. Finally, an indicative algorithmic method
for solving this problem was proposed, based on combining the time-aware prefix-
projection generation mechanism of the MiSTA algorithm [69] with the multidimen-
sional item generation mechanism of the M3SP algorithm [147] and the accessibility
plausibility idea inspired from [50]. The specific algorithmic implementation of this
method is called SITPE. Unfortunately, in the next chapter, experimental results
from the application of SITPE are not included.
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6.1 Introduction

In this chapter, the usefulness of the proposed trajectory modeling proposal from
chapter 3 is illustrated, with a real-world case study concerning the Louvre Museum,
in an effort to provide a pragmatic view of what it represents and how it can be used
for the analysis of trajectories. The rest of this chapter is dedicated to experiments
conducted in order to analyze the mobility behavior of the Louvre visitors, either
based on statistical analysis or on Trajectory Pattern Mining (T-PM) methods applied
over trajectories represented according to the proposed SITM . Our main aim is to
validate how state-of-the-art mining algorithms can be applied on indoor trajectory
data, outline their advantages and limitations, and gain a clearer perspective on
how our novel Trajectory Pattern Mining algorithm proposed in chapter 5 should be
implemented. Equally importantly, this chapter offers a rare account of current and
future trajectory data analytics practices in a museum case study, unique in terms
of exhibition size, architectural environment, visit rates, and cultural significance.
Hence, it lends itself perfectly for identifying the real-world difficulties related to
data acquisition and data quality, which may not be present in artificially generated
or smaller scale case studies. Therefore, this chapter also bears a high educational
value.

6.2 The Museum Application Domain

As stated in section 1.1.3, museums invest a lot of effort in studying the visiting
experience of their public, as it relates to the motivations of their visit, the way in
which they engage with the exhibition and the individual exhibits, the stimulation of
their curiosity and the satisfaction of their expectations, even the fulfillment of the
museums’ educational mission towards them. Thus, they have long been conducting
observational studies of their visitor’s mobility behavior[171], a particularly effective
method of acquiring insight about their overall experience of the visit.

Whereas similar observational studies do not scale well when performed in person,
nowadays observational data of visitor movement can be automatically and massively
amassed, thanks to the prevalence of low-cost indoor tracking infrastructure [127].
Especially, for internationally renowned museums, the collected trajectory datasets
can quickly become very large, given their sheer surface size (e.g. over 652,000 square
feet for the Louvre) and the daily tracking of tens of thousands of visitors. At the same
time, the required infrastructure mainly includes the deployment of low-cost sensors
based on diverse wireless indoor positioning, even communication, technologies such
as IR, RFID, WiFi, Bluetooth, UWB, Zigbee, etc., as well as the use of smartphones
and portable electronic guides.

Actually, the idea of using handheld devices in conjunction with sensors deployed
in the museum environment, dates back to the start of this century. For instance,
in [96], Kindberg et al. proposed the usage of portable digital assistants (PDAs)1

1A mobile device type now displaced by smartphones.
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Goal Type Goal Beneficiary Indicative Use Case

Visitor
Experience

G1: Visitor experience personalization Individual
Visitor

Adapting the delivery of multimedia
content according to visitor location.

G2: Accessibility promotion (i.e. meeting
the needs of atypical visitors)

Designing specialized itineraries avoid-
ing large crowds for visitors with autism
or social anxiety disorders.

G3: Dynamic tour proposal Using streams of location data of other
visitors in combination with current vis-
itor preferences to update in real-time
the itineraries proposed to that visitor.

G4: Social interaction promotion Exploiting demographics and visitor
preferences to propose individual vis-
itors with similar interests to form
groups.

Managerial
Decision
Making

G5: Intragroup visitor dynamics study Museum
Organization

Identifying groups of visitors and then
profiling them according to how often
or far they are likely to split during the
visit.

G6: Location-based services evaluation Comparing different indoor positioning
technologies to be embedded in the mu-
seum’s electronic guide.

G7: Visitor Profiling Identifying types of visitors based on
how they move and comparing them to
existing ones obtained through conven-
tional observation studies.

G8: Visitor behavior quantification Deriving new metrics such as visitor
resting time in proportion to total visit
time.

Crowd
Management

G8: Emergency response planning Visitor
Crowd

Improving the evacuation routes based
on mobility patterns from past emer-
gency occasions.

G9: Visitor flow control Changing the accessibility of spaces to
strengthen particular visitor flows and
prevent bottlenecks.

G10: Optimization of the exhibition
spaces’ spatial organization/arrangement

Changing the accessibility of spaces to
strengthen particular visitor flows and
prevent bottlenecks.

Table 6.1: Our classification of visitor trajectory data mining and analysis goals in the
museum domain [100]
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to receive URLs correlated with a physical object (e.g. artwork) from wireless in-
frared transceivers. Two decades later, while it is true that sensors like proximity
beacons are affordable even for small museums, due to financial pressure and lack of
technical skills, only museums of a certain size have so far afforded to offer complete
digital services to their visitors (e.g. website, applications, multimedia guides and
tools) [61]. For those museums in particular, traditional museum audio guides have
gradually transformed into full-fledged multimedia devices, bearing multiple function-
alities, including location-based services. Thus, the device positioning data can be
extracted, collected, and used to structure individual visit trajectories. Furthermore,
these trajectories may then be enhanced with semantic and contextual information,
again originating from the electronic guide.

This is why in [100], the author proposes a first-ever classification of the types
of analyses that can be achieved through computational analysis of museum visit
trajectory data. Both the museum’s visitors and management can benefit from such
practices, as long as museum professionals are aware of their potential benefits. As
shown in Table 6.1, the identified analytical goals serve both the visitors and the
museum management. Unfortunately however, there is a gap between the current
state-of-the-art in indoor trajectory analysis (reviewed in chapter 2) and a princi-
pled holistic approach of trajectory data mining in general, let alone in the museum
context.

More specifically, contextual/semantic data should be used to add meaning to the
spatiotemporal visit data. Similar to other domains, the additional information may
target all aspects of the trajectory model:

• the moving object (e.g. a visitor’s demographics, fatigue level, favorite artists,
reduced mobility)

• the spatial entities(e.g. an artwork’s type, a museum zone’s theme, an exhibition
room hosting a small shop, a room’s level of congestion)

• the temporal dimension (e.g. lunch break, free-entry day, time-slot allocated
tickets)

• the movement itself or any part of it (e.g. group following, hasty visit, resting,
being lost, leaving the premises)

Even less important modeling elements may be semantically enriched, such as the
observer of the movement (e.g. tracking technology, sensor accuracy, sensor range), or
the connection of the spatial entities (e.g. mean transition time, vertical connection
type). The plurality of possible semantic aspects is actually closely connected to the
heterogeneity of their sources: text annotations, vocabularies, categorical/attribute
data, ontologies, linked open data, etc.

What is more, in many cases the localisation process suffers from imprecision or
other quality issues. This may happen due to the museum’s architecture and the
various mobile obstacles found in it, particularly other visitors or even the exhibits
themselves. It is especially true for museums whose original function was not related
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to the housing of art collections, and whose architectural design is therefore not really
compatible with their role.

Those museums also face an additional challenge related to the function of space
often being ambivalent. For example the Louvre, originally built as a fortress and
subsequently turned into a palace, before becoming a museum in 1793, contains many
spaces that serve multiple functions (Figure 6.1). For both cases illustrated, it is
nearly impossible to analyze properly or interpret correctly the visitor trajectories
without taking into account the semantics of space.

Figure 6.1: Visitors often use The Daru staircase surrounding the Winged Victory of
Samothrace to rest (left). The Salon Denon has a triple function: it hosts a museum shop, it
serves as a major junction point, and it houses many large-scale neoclassical paintings (right).

Finally, due to the volume and heterogeneity of the visit data, the museum visitor
movement analysis problem falls right within the emerging field of Big Trajectory
Data analytics [179]. Within this context riddled with challenges but also opportuni-
ties for innovation, SITM will be implemented to the particular case of the world’s
most frequented museum [122], the Louvre Museum in Paris.

By intertwining a semantic model of visitor trajectories with a hierarchical model
of the museum space, more elaborate types of movement analysis can be supported.
Especially, the graph-based representation of the museum space can serve to model
permanent space semantics in the form of node classes or attributes, whereas the
semantic annotations can serve to model the more dynamic semantics, related to the
moving object or to the evolving movement.

6.3 The Louvre Case Study

This section introduces the broader context of the Louvre application case, which
motivated our work and served as a testbed for the SITM trajectory model, but
also as an opportunity to aid the museum management in its study of the visitors’
mobility data. The analysis results (both positive and negative) presented in this
section also formed part of an internal tech report [178], conducted by the museum
for the scope of identifying visitor data sources and practices, their potential, and
their limitations.
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6.3.1 The Louvre Setting

Our research partnership with the Louvre coincides with the museum’s 2016-2020
research plan [104] which focuses on the exploration of cultural Big Data and the for-
mation of multidisciplinary strategies for developing, supporting, and making trans-
parent the collection and usage of such data. This of course includes automated
tracking data. From the Louvre’s perspective, the in-depth study of Big Data is ex-
pected to improve its knowledge about the dynamics of attendance, the related tools,
and their future evolution.

With respect to the study of automatically collected visitor movement data, the
Louvre has been considering it since 2006, when according to a report [49] on the
modernization of the museum’s audioguide system it was deemed that “the develop-
ment of mobile visit aid systems in exterior environments is currently favoured thanks
to the stability of the GSM (satellite) network” but that “this technology is inoperable
inside the museum, whose buildings need to be equipped with an internal wireless com-
munication network (WiFi, Bluetooth) or RFID tags.”. Hence, even for a museum of
the Louvre’s magnitude, the necessary infrastructure was a prohibitive factor fifteen
years ago.

Four years later, in April 2010, a small set of Bluetooth proximity sensors was
temporarily installed as part of a series of visitor mobility research works which have
derived interesting conclusions about visiting behaviors [191–195]. For instance, it
was verified that, the length of stay in the museum tends to decrease towards the
closing hours of the museum, that the earlier a visitor enters the museum the longer
that visitor can be predicted to stay, and that short-stay visitors exhibit stronger
patterns than long-stay visitors. These works have been based upon a statistical
analysis of symbolic trajectories, where each sensor corresponds to a so-called node.
These nodes are simply the spatial regions of fixed size illustrated in Figure 6.2.

In specific, the aforementioned works by Yoshimura et al. calculate metrics such
as the following: node stay duration, museum visit duration, node-to-node travel time
and transition rates, node sequence length (i.e. number of visited nodes) and prob-
ability, number of unique visited nodes, number of devices per node and per path,
node-to-node distribution/transition rates. The authors also compare these measure-
ments with respect to each other and to the hour of the day. In [194] in specific,
the authors consider how frequent sequential patterns in the trajectory data com-
pare to a random walk simulation model, induced from a simple graph representation
of the museum’s structure, but nevertheless do not apply sequential pattern mining
methods.

Since then, permanent data collection mechanisms have been installed in the
Louvre’s premises. In April 2012, the Nintendo 3DS console system became the
Louvre’s official electronic guide, containing photographs, audio commentary, high
resolution images and 3D models of the exhibits, all aimed at increasing appreciation
of the artworks. It also functions as a navigation device showing the quickest way to an
artwork of interest. The position of the visitors is tracked thanks to the installation of
approximately 500 WiFi beacons (top right in left part of Figure 6.3) scattered across
the permanent exhibition premises. The consoles’ usage data are being stored in a



6.3 The Louvre Case Study 147

Figure 6.2: The symbolic spatial regions used in past analysis studies of the Louvre’s
visitor movement data [191–193, 195]. Area coverage has since improved considerably.

big relational database silo, but unfortunately this dataset is not addressed within
the scope of this Thesis. The usage of the Nintendo 3DS console guide has also been
studied with respect to visitor profiling and the study results have been made public
in [154], but this study did not consider the visitors’ mobility data.

More potential sources of visitor tracking data do exist such as a network of 150
Wi-Fi public hotspots, which goes to show the heterogeneity of tracking data sources
in big museums. More generally, as newer technological solutions become available, it
can be expect from forward thinking museums to adopt technological innovations that
will enable the study of visitor mobility, while at the same time respecting privacy
restrictions [137].

Bluetooth (smartphone app) and WiFi
(Nintendo 3DS) beacons installed

throughout the Louvre.

Usage of the Louvre’s Nintendo 3DS and
smartphone application guides is what
enables its visitors’ location detection.

Figure 6.3: Visitor tracking data acquisition infrastructure used in the Louvre.

In July 2016, the Louvre launched its official My Visit to the Louvre2 smartphone
application, which takes advantage of a very large Bluetooth Low Energy (BLE)

2The french version of the application was named Louvre: Ma Visite.
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beacon infrastructure3 depicted in Figure 6.3, and the smartphone’s accelerometer
and compass, in order to estimate the visitors’ precise (lat, long) coordinate position
within the museum. This is accomplished via BLE Received Signal Strength Indicator
(RSSI)-based trilateration, extended Kalman and particle filtering techniques. Then,
the positions get reported every second, as long as the device has internet connection,
or else they get stored in the app and pushed to the cloud after Internet access has
been restored. The application visualizes the position over a locally stored version
of the museum map for navigation purposes. It was discontinued and stopped being
available on 01-10-2019.

6.3.2 Trajectory Dataset and Model

Having described the data sources, this section presents the trajectory dataset used
for the experimental analysis and the validation of our model’s usefulness. Coming
from the world’s most frequented museum [117–122], it is also of practical value for
identifying problems related to the large-scale collection and retention of trajectory,
such as issues of data quality and integration problems.

6.3.2.1 Trajectory Dataset Description & Data Quality Issues

In the obtained JSON dataset, raw geometric positions have already been spatially
aggregated into 52 non-overlapping zones. Each zone corresponds to a large polyg-
onal area of the museum, as can be seen in Figure 5.4, specified by the museum
administration in such a way so as to reflect a single exhibition theme (e.g. Italian
paintings) but also only extend within a single floor.

Big museums can be a vast source of Big Trajectory Data, especially in terms of
their volume and variety. The conceptual trajectory model presented in section 3.3.2
aims at supporting the development of analysis techniques making use of such large
datasets, produced on a daily basis by thousands of visitors. In the analysis of historic
trajectory datasets for example, the trajectory traces (Definition 3.3.3) themselves can
be used at the pre-processing phase, in order to annotate semantically the trajectories
with the level of congestion in the corresponding spatial region.

However, the results presented in this Thesis are based on a more modest dataset
consisting of 4,945 visits, continuously collected from 19-01-2017 to 29-05-2017, each
composed of a sequence of timestamped zone detections i.e. detections of the visitor’s
smartphone inside a certain zone. The duration of a visit ranges from 0 sec (considered
as an error) to 7 hours 41 min and 37 sec, whereas the duration of a zone detection
ranges from 0 sec (considered as an error) to 5 hours 39 min and 20 sec. The visits
were performed by 3,228 different visitors using both the iPhone and Android versions
of the application. Out of those, 1,227 were returning visitors who made 1,717 second
or third visits (not necessarily on different days). The dataset includes 20,245 zone
detections and 15,300 (intra-visit) zone transitions in total.

3In specific, 1800 beacons were installed across all five floors of the museum, considerably improv-
ing tracking coverage and continuity, with respect to all earlier tracking infrastructure.
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+2 FLOOR

+1 FLOOR

0 FLOOR

-1 FLOOR

-2 FLOOR

Figure 6.4: Thematic zones of the Louvre Museum’s five floors, hand-annotated with
accessibility relations within or across floors. White zones are not covered by the Bluetooth
beacons but are included in our graph-based representation of indoor space.
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Figure 6.5: Visual representation of a real Louvre visit trajectory, structured as a sequence
of detection intervals inside zones (red). Since “Begin” detection timestamps (blue) do not
coincide with their respective previous “End” timestamps (orange), there are detection gaps.

Unfortunately, only 30 out of the 52 zones appear in the movement dataset, with
the -1 floor completely missing. Apart from some beacons not recording data during
that particular period, additional factors that may explain the movement dataset’s
sparsity include the following:

• A visitor may launch and/or close the application mid-visit (due to battery de-
pletion, sporadic navigation-only usage, etc.) resulting in its partial recording4.

• A visitor may deactivate the phone’s Bluetooth while the application is running.

• The period of data collection is characterized by lower adoption rates and po-
tentially transitory phenomena, because it coincides with the operational launch
of both the app and the beacon infrastructure.

• 10.55% of the zone detections have a duration value equal to 0, forcing us to
filter them out as detection errors.

The sparsity of the data is partly expressed by the power law distribution of the length
of visit presented in Figure 6.6. It can be seen there that 53.55% of the visits actually
degenerate into a single zone detection. Out of that percentage, only 2.61% is due
to erroneous detections of zero duration, therefore practically one out of every two
visits has a length of only 1. Obviously then, the dataset quality is not the desired.

What is more, the raw tracking dataset also includes periods of non-detection and
periods of double detection, of the moving object. For example, for visit #1485530085

performed by visitor number #4575878 and depicted in Figure 6.5, there exist temporal
gaps between each “End” timestamp and the next “Begin” timestamp. These gaps
denote that in the meantime the visitor was not being tracked. As another example in
Figure 6.7, by projecting the nominal value of the museum zone on the y-axis, we can
see in a more pronounced way how a visitor’s zone sequence 60907→ 60908→ 60907
is characterized by a double detection: while detected in zone 60908, the visitor was
also continuing to be detected in zone 60907, which is of course impossible given that
the zones are non-overlapping.

4This is supported by the fact that most of the frequent visits in the dataset do not satisfy the
constraint of beginning in an entry zone and ending in an exit zone.
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Figure 6.6: Bar chart illustrating the trajectory dataset’s distribution of visit length.

Different approaches for correcting multiple detection data can be implemented
using our SITM , each corresponding to a different assumption. For example, they
can be based on the duration tend - tstart (Definition 3.3.2) of each detection interval,
and lead to the conclusion that in this particular case the visitor did not really
pass from zone 60908, because 10 seconds is not long enough in comparison to the
surrounding zone detections. Or alternatively, the accessibility relationships Eacci

from the zone layer NRG (Definition 3.3.1) can be checked, in which case the zone
sequence 60907→ 60908→ 60907 is valid, because it is indeed possible to transition
between the two zones. Perhaps the visitor really entered 60908 for a little while and
then returned.

Similarly, for cases of non-detection, one can simply assign the visitor to either
of the two spatial regions where he or she was right before or right after the “disap-
pearance”, or instead consult the building’s topology, for a more informed decision,
especially in the cases of longer detection gaps. The hierarchical multigraph of SITM
allows even to complete such gaps in the trajectories with location information at a
coarser level (e.g. floor, wing)) of spatial granularity, in case there is enough confi-
dence about it, but not about the specific position.

6.3.2.2 Smartphone Application Usage Dataset Description

In addition to the trajectory dataset described in the previous section, the author
obtained access to CSV log files recorded from the Yahoo Flurry analytics platform
used in the My Visit to the Louvre smartphone application. This platform actually
captures various metrics and statistics, but except for the aforementioned event logs,
all other are aggregates (hourly at best) that can not be mapped to individual visits.
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Figure 6.7: Part of a real Louvre visit showcasing a detection overlap example.
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Timestamp Session Index Event Description Version

Nov 07, 2017 01:17 AM 2 map popup - 2.0.26

Platform Device User Id Params
Android Motorola Moto G4 Plus 396f8c54db4ceb67 { poi idx : 92}

Table 6.2: A single log record created by the map popup event of Figure 6.8.

Unfortunately, this includes demographic information which is of particular interest
for museum visitor studies5, since it allows them to identify target groups based on
cultural, ethnic, or social affiliation, educational level, leisure preferences, etc[164].

The logs contain records of app usage events grouped into sessions which describe
how users interact with the app, irrespective of whether they are visiting the museum
at the time of usage or not. More specifically, they contain 28 different types of events
for the iOS version and 23 different types of events for the Android version. Out of
those, 18 are common (including their parameters) to both app versions.

The records begin in 30-01-2017 and therefore a subset corresponding to the period
from that day to 29-05-2017 was used, in order to match the trajectory dataset’s
collection period as closely as possible, given our primary objective to semantically
enrich the trajectories. Hence, there were 159,742 sessions left containing 717,580
events (belonging to 33 different event types) performed by 21,935 unique devices.
Out of those, 3,406 unique Android User Id’s6 were identified in the museum at the
time of usage. This is a reasonable number given the 3,228 unique Android and
iPhone visitors of the trajectory dataset corresponding to that period. Some event
types (e.g. profile validation, map popup, poi audio time) included in the logs hold
useful information in the form of parameter values, which mainly indicate what the
visitor was interested in learning about, or which exhibit the visitor was trying to
locate in the museum. In Figure 6.8, such a map popup event is illustrated from
the application usage’s point of view. Such usage will result in a log record getting
created:

Most event types however are not at all interesting with respect to trajectory
enrichment, as they typically concern User Interface navigation and control actions
(e.g. home burger, skip intro, map keypad).

Of particular interest is the app launch localisation event which exists only in the
Android version of the application, and captures the GPS coordinates of the device
at the time of app launch. These coordinates are only captured when inside a circle
of ≈ 1km radius centered near the Glass Pyramid of the Louvre. For the time period
in question, there exist 8,336 such localization events (less than the total number of
sessions since these are Android only and on-site only events).

In Figure 6.10, the temporal distribution of these events signaling the launch
of the smartphone application is drawn. As expected, there are very few people
launching the application on Tuesdays, since that is the only day of the week that

5Except for a “countryISO” code (“FR”, “US”, etc.) field assigned to each session individually.
6The number of iOS User IDs was even greater but contained an unknown number of duplicates,

because any time the app is uninstalled and re-installed again on an iPhone, a new User ID was
generated.
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Figure 6.8: While in the map tab of the My Visit to the Louvre app, the visitor can find
out more about individual exhibits, in this case Michelangelo’s famous Slave sculptures.

the Louvre is closed to the public. Also, the peak hour in terms of launching the
app is from 10am to 11am, which is in agreement with the museum’s perception of
peak arrival times. Moreover, whereas after reopening from the COVID-19 pandemic
the museum’s opening hours are from 9am to 6pm, back in 2017 the closing time on
Wednesdays and Fridays was moved to 21:45 to offer nocturnal visits. This explains
the slightly increased attendance levels of those two days. It also justifies the existence
of a small but not insignificant amount of application launches at night.

App launch localization events per day. App launch localization events per hour.

Figure 6.9: Temporal distribution of the smartphone application’s launch events.

In Figure 6.10, the GPS coordinates of the same event type’s instances as before
are visualized over a map of the area. It can be seen that the visitors start using the
smartphone application in different parts of the Museum, but there are two clearly
visible clusters: around the Glass Pyramid in the Napoleon Court and in the middle
of the Denon wing. The latter happens to be exactly where the Mona Lisa is located,
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although the positional data lacks any floor information or z-coordinate value to verify
any such correlation. A reasonable explanation however, is that perhaps visitors get
the chance to launch the application while standing in line, waiting either to enter
the Museum or to see the Mona Lisa. On the other hand, for the case of the Glass
Pyramid in particular, we can not be certain whether they are indeed out in the open
or have already entered through the Pyramid when launching the app, which would
just record the last known location of the device in case it can’t properly receive a
satellite signal from within the museum.

Still, despite a few more smaller clusters, such as in the Carrousel area, or near
the Porte des Lions (where perhaps visitors regroup before entering the museum), the
overall distribution of the points indicates that the visitors do not consistently launch
the application exactly at the start of the visit. Instead, they do so both in advance
and during their visit, since the entire museum premises are covered, not just the
entry points. Here, it is important to mention that according to the Flurry platform,
if the app pauses or moves to the background for more than 10 seconds, then the
next time it runs, the Flurry agent will automatically create a new session and end
the previous one. Therefore there are signs of discontinued usage of the application.

Moreover, a small number of people seems to be launching the application from
the Musée d’Orsay which is not surprising, given that essentially it is the same type
of public who is interested in visiting both museums. A typical behavior is for them
to visit the Louvre on Mondays when the Musée d’Orsay is closed, and visit the the
Musée d’Orsay on Tuesdays when the Louvre is closed, or a few may even combine
both visits on the same day. What is more, out of all the app launches that took place
in or around the museum, 908 (or 10.893%) took place around it, which suggests that
at least one in ten visitors that use the app, starts doing so clearly in preparation to
the visit (or less likely after it).

Finally, it should be noted since GPS signals are blocked and reflected by walls,
it is often impossible to calculate the location when inside the museum due to the
insufficient signal strength. In that case, More specifically, the 42,473 events initiating
a session correspond to 34,460 unique coordinate pairs, duplicates are perhaps due to
the GPS system reporting the last known coordinates when new ones are unavailable).

88.3% app launches took place in the
museum.

11.7% app launches took place around
the museum.

Figure 6.10: The GPS coordinate positions where the Louvre visitors launched the app.
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6.3.2.3 Trajectory Data Model Instantiation

This section describes how each visit can be modeled as a trajectory, so that visiting
behaviors can be discovered and studied in the form of elements or parts of such
trajectories.

Indoor space representation.

In order to instantiate the SITM that was proposed in section 3.3.2 for the
Louvre case study, a representation of the museum’s indoor spaces according to the
graph-based structure formalized in Definition 3.3.1 is needed. Although the Louvre’s
multi-layered graph is prohibitively large to be shown, its correspondence to Figure
3.1 is explained here in a top-to-bottom fashion:

• Layer 4 is instantiated as the whole Louvre Museum: it represents a level above
any specific building, denoting presence in the museum in general.

• Layer 3 is instantiated as the museum’s three wings (Richelieu, Denon, and
Sully) as well as the Napoleon area that they surround and which contains the
Glass Pyramid: it represents the museum’s main structural parts as separate
buildings, given that their spaces and usage are those of a typical building.

• Layer 2 is instantiated as a wing’s five different floors (-2, -1, 0, +1, +2), except
for the Napoleon area which is only built underground and thus does not have
+1, +2 floors.

• Layer 1 is instantiated as a floor’s rooms and halls (hundreds in total).

• Layer 0 is instantiated as a room’s most important exhibits in the form of
Regions of Interest (several hundreds in total): it represents predefined fully-
navigable (without any holes) spatial areas of engagement with each exhibit,
outside of which a visitor is certain not to be paying attention to it.

Moreover, a semantic layer representing the thematic zones present in the available
trajectory dataset (described in section 6.3.2.1) is added. This layer happens to fall
right between Layer 2 and Layer 1. Both intra-floor (e.g. door, ramp) and inter-floor
(e.g. staircases, elevators) zone accessibility topology was extracted on site (Figure
6.4) and used to derive the zone layer NRG (Figure 6.11). It does not however include
zones missing from the data, nor any additional indoor areas needed to completely
cover the navigable space.

This brings forth an interesting space modeling decision concerning whether or
not to assume that the spatial region represented by a node in layer i+1 is fully
covered by the union of the spatial regions represented by its child nodes in layer i.
For example, is a floor fully covered by the rooms it contains? Similarly, is a room
fully covered by the RoIs it contains? Or are there coverage gaps as in Figure 6.4?

Although not explicitly stated, the IndoorGML standard and related works (e.g.
[91]) adhere to a full space coverage assumption. The same is considered to be true
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Figure 6.11: Based on the chain topology of zones (denoted by alphanumeric IDs), a
visitor’s presence in the blue zone can be inferred, even when undetected.

with respect to the three-layer core hierarchies. This has the advantage that acces-
sibility relations need only be captured at the lowest possible level of the hierarchy,
from where they can be exhaustively inferred for the higher levels.

In the Louvre example, if each wing’s floor (parent node) is assumed to be fully
covered by its zones (child nodes), then the available zone-level accessibility topology
is enough to automatically deduce the floor-level one, because if two floors contain
no zones that are directly accessible one from the other, then neither can these floors
themselves be reciprocally directly accessible.

The full space coverage assumption is closely related to a stronger full movement
detection assumption, which requires that, not only does the indoor space represen-
tation (i.e. our graph model) completely cover the areas where the moving object
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may find itself in, but also that each of those areas is observable with respect to the
detection data acquisition mechanism.

The proposed model does not make this often unrealistic (e.g. for proximity
detection devices [124]) assumption. Simply put, if at some point the moving object
is not detected anywhere, then its position is considered to be unknown and open to
further estimation. A complete indoor space topology is then enough to repair the
trajectory data, by inferring the presence of the moving object in non-observable - yet
modeled - areas (Figure 6.12), just as it is enough to filter out impossible transitions
as already explained in the example of Figure 6.7.

Holes may arise when only part of the
navigable indoor space is represented.

Under full indoor space coverage,
trajectories with holes can be restored.

Figure 6.12: Taking into account non-observable areas in the modeling of space can help
obtain trajectories that are more faithful to the actual real-world movement.

However, at the lowest level of spatial granularity full coverage is not always easy
to implement. Let us assume that RoIs represent the displayed exhibits or even some
facility installations like “you-are-here” maps (Figure 6.15). These RoIs will almost
certainly incompletely cover the surface of the room that they belong to. In a room
full of paintings for example, there most of the times there are at least some spots
near the center of the room, where a visitor is not standing close enough to focus on
any exhibit. Similarly, when a visitor transitions from the Beatrice d’Este RoI to the
Battle Scene RoI within Room 403 (Figure 6.13), his/her trace is briefly lost, because
the two regions are disjoint and thus not directly accessible from each other.

If deemed necessary, SITM can address this by adding to the RoI-layer NRG, a
single complement node representing the spatial area of the room excluding all areas
covered by all of its RoI children nodes. It is then up to the application-level logic to
infer whether the visitor is in the remaining area of the room (i.e. in the complement)
or if perhaps left the room altogether. Obviously, the RoI topology plays a critical
role in determining this.
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An alternative approach would be to simply switch to a geometric representation
at the intra-room level and encode all RoIs’ surface geometries within it, effectively
adopting a hybrid indoor space representation [5]. Despite the advantage of increased
precision, this approach would need to rely on a correspondingly precise data acquisi-
tion infrastructure. Which of the two approaches is preferable depends highly on the
particular case. It may well be enough even to simply assume the visitor’s presence
in the room containing the last known RoI detection, until further re-appearance in
another RoI.

Semantic indoor trajectories representation.

Having instantiated the Louvre’s indoor space representation, SITM is used to
extract from the zone detection dataset, the visit trajectories as sequences of presence
intervals in the museum’s thematic zones. For example, a complete one hour visit
trajectory spanning three floors in the museum (Figure 6.16) can be encoded as the
couple TIDvis,12:00:00,13:00:00 = (traceIDvis,12:00:00,13:00:00, ∅) whose trace is the following
sequence of 19 presence intervals:

traceIDvis,12:00:00,13:00:00 = {
(01) (pyramid control, “N-2:P”, 12:00:00, 12:03:00, ∅),
(02) (door001, “N-2:B”, 12:03:00, 12:08:00, ∅),
(03) (door001, “N-2:P”, 12:08:00, 12:09:00, ∅),
(04) (D electric stairs, “N-1:P”, 12:09:00, 12:10:00, ∅),
(05) (D ticket control, “D-1:EH”, 12:10:00, 12:12:00, ∅),
(06) (opening001, “D-1:APOE”, 12:12:00, 12:16:00, ∅),
(07) (door002, “D-1:AI”, 12:16:00, 12:20:00, ∅),
(08) (door003, “D-1:AG”, 12:20:00, 12:30:00, ∅),
(09) (opening002, “D-1:DS”, 12:30:00, 12:31:30, ∅),
(10) (Daru stairs -1 0, “D0:DS”, 12:31:30, 12:36:00, ∅),
(11) (opening003, “D0:AIE”, 12:36:00, 12:38:00, ∅),
(12) (opening004, “S0:AG”, 12:38:00, 12:40:00, ∅),
(13) (opening004, “S0:HIIS”, 12:40:00, 12:41:00, ∅),
(14) (HenryII stairs -1 0, “S-1:HIIS”, 12:41:00, 12:42:00, ∅),
(15) (opening004, “S-1:EH”, 12:42:00, 12:44:00, ∅),
(16) (opening005, “N-1:E”, 12:44:00, 12:45:00, ∅),
(17) (S ticket control, “N-1:P”, 12:45:00, 13:46:00, ∅),
(18) (S electric stairs, “N-2:P”, 12:46:00, 13:47:00, ∅),
(19) (opening006, “N-2:LB”, 12:47:00, 13:00:00, ∅) }

The zones comprising this visit trajectory are described in detail in Table 6.3. It
can be noticed that the beacon infrastructure does not cover all of them: tuples 5, 9,
10, 13, 14, and 15 represent inferred (rather than directly observed) visitor presence in
the corresponding areas. Inferred tuples are derived thanks to the topology of indoor
space. Alternatively, the representation can be limited to the actual observation data,
in which case the trajectory will contain temporal gaps in their place.

In the above trajectory example, only its spatial and temporal dimensions were
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Figure 6.13: Indicative Regions of Interest belonging to two different thematic zones.

Abbrev. Thematic Zone Wing Floor Obser. Adm. Tuples

“N-2:P” Pyramide Napoleon -2 Yes Free 1, 3, 18

“N-2:B” Billetterie Napoleon -2 Yes Free 2

“N-1:P” Pyramide Napoleon -1 Yes Free 4, 17

“D-1:EH” Entrance Hall Denon -1 No Ticket 5

“D-1:APOE” Art du Proche Orient et de l’Egypte Denon -1 Yes Ticket 6

“D-1:AI” Art de l’Islam Denon -1 Yes Ticket 7

“D-1:AG” Antiquités Grecques Denon -1 Yes Ticket 8

“D-1:DS” Daru Staircase Denon -1 No Ticket 9

“D0:DS” Daru Staircase Denon 0 No Ticket 10

“D0:AIE” Antiquités Italiques et Étrusques Denon 0 Yes Ticket 11

“S0:AG” Antiquités Grecques Sully 0 Yes Ticket 12

“S0:HIIS” Henry II Staircase Sully 0 No Ticket 13

“S-1:HIIS” Henry II Staircase Sully -1 No Ticket 14

“S-1:EH” Entrance Hall Sully -1 No Ticket 15

“N-1:E” Exhibition Napoleon -1 Yes Ticket 16

“N-2:LB” Librairie, Boutiques Napoleon -2 Yes Ticket 19

Table 6.3: Information about the zones encountered in the trajectory of Figure 6.13.
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taken into account7. However, the semantics of places also offer us valuable insight
about the visitor’s trajectory. For instance, beginning the visit in zone “N-2:P” is
known to be normal because this is one of the Louvre’s entrance zones (either through
the Glass Pyramid or through the Richelieu passage). In general, validation against
entrance/exit zones allows us to distinguish truncated visits from complete visits.
As another example, zones “D-1:DS” and “D0:DS” represent the big Daru staircase
which also serves as a resting place for visitors [193] (Figure 6.1), so it shouldn’t
come as a surprise that the visitor of the previous trajectory example spent nearly 5
minutes there.

More generally, all of the above are examples of static place semantics remaining
the same throughout any given trajectory. These can be represented by node classes,
since each spatial region corresponds to a node from the set V of Definition 3.3.1.
For example, zones “D0:DS” and “D-1:DS” would both belong to a staircase and a
resting space class of nodes. This way, what might at first seem as an inexplicably
long time spent transitioning from one floor to the other, can now be appropriately
interpreted and treated in the analysis. The Louvre actually contains numerous
eponymous staircases whose various details can even be appreciated as artworks on
their own [74] (e.g. HenryII, HenryIV, Lefuel, Mollien, du Midi, de la Colonnade).
These merit to be represented as nodes in the room-layer NRG, instead of edges which
is more fitting for smaller or insignificant staircases.

Another type of space semantics is zone admissibility, which can function as a
criterion for dividing our previous example’s main trajectory into three episodes:

• arrival (tuples 1− 4): presence in freely accessible zones

• main visit (tuples 5− 16): presence in zones requiring a ticket

• departure (tuples 17− 19): presence in freely accessible zones

Just like every semantic subtrajectory (Definition 3.3.4), an episode is assigned a
semantic annotation set that reflects its overall meaning. For example:

• the arrival episode can be enriched with:
A′traj = {activities : [“buy ticket”, “enter permanent exhibition”]}

• the main visit episode can be enriched with:
A′′traj = {activities : [“visit greek antiquities”], goals : [“visit V ictoire”]}

• the departure episode can be enriched with:
A′′′traj = {activities : [“buy souvenir”], goals : [“leave Louvre”]}

It is important to clarify here that the role of the trajectory model is to support
such semantics, not necessarily to provide them. The semantic information itself may
be either explicitly given in the form of additional data, or derived implicitly from the
spatiotemporal movement data. In either case, the trajectory model has to enable and

7Timestamps are rounded for illustrative purposes
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facilitate this process, but not define it, since the semantic enrichment of trajectories
poses a task of its own8.

In our previous example, we may explicitly know that the visitor bought a normal
ticket, or we may derive it from the fact that he entered the permanent but not the
temporary exhibition, which is hosted in zone “N-2:E” and requires a separate ticket.
Similarly, we may explicitly know the visitor’s interest in Ancient Greek art as stated
in the mobile application’s profile section, or we may infer it from the proportionally
larger amount of time spent in the respective zones.

It is now also more apparent why our SITM allows for overlapping episodes
instead of requiring mutually exclusive episode predicates like for instance the model
of Yan et al. [190].

Firstly, given the multiple spatiotemporal granularity levels at which movement
can be characterized, the essence of any movement segment may be quite different
if examined at a macroscopic or at a microscopic level. In the trajectory example of
Figure 6.16, the segment consisting of tuples 1-5 corresponds to entering the Louvre’s
permanent exhibition space. However, the first part of it (tuples 1-3) corresponds
more specifically to buying a ticket, and can therefore also meaningfully stand on its
own.

More generally, one may wish to model situations where one or more episodes
(e.g. buy ticket) are contained within a broader episode (e.g. enter exhibition), in
turn taking place within an overarching episode (e.g. see Mona Lisa). There may
even be multiple such containment instances within the same trajectory. This is true
in the previous example, where apart from beginning of the trajectory, there is also an
overlap at the end of it: tuples 17-19 correspond to exiting the museum premises (i.e.
departure episode), whereas tuple 19 alone corresponds to shopping at the museum
shop (i.e. buy souvenir episode).

Secondly, by allowing semantic hierarchies potentially independent from each
other, cases can be modeled where an episode defined on the basis of one semantic
dimension overlaps with an episode defined on the basis of another semantic dimen-
sion. To illustrate this, let us consider the trajectory example in Figure 6.14. The
visit starts with the visitor spending very little time in highly congested rooms hous-
ing Italian Renaissance paintings (tuples 1-2), whereas next the visitor stays a lot
longer in rooms housing Ancient Greek artworks (tuples 4,6). Thus, if both semantic
dimensions (i.e. congestion level and artwork theme) are taken into account as well
as the temporal dimension (i.e. period of stay in each room), it can be reasonably
inferred that a crowd-avoidance behavior was driving the visit at first, followed by a
particular interest in Ancient Greek art.

Let us now look more closely at the trace of the example visit:
tracevis0058,16:00:00,16:45:00 = {
(01) (door010, “Room710”, 16:00:00, 16:01:00, {“high-congestion”}),
(02) (door011, “Room709”, 16:01:00, 16:02:00, {“high-congestion”}),
(03) (door012, “D1:DS”, 16:02:00, 16:05:00, {“low-congestion”}),

8We classify it under Trajectory Data Preprocessing tasks in Table tab:2-Classification of trajec-
tory data mining tasks.
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Figure 6.14: Tvis0058,16:00:00,16:45:00 = (tracevis0058,16:00:00,16:45:00, ∅) is a subtrajectory
example composed of 6 presence intervals in several rooms of the Louvre’s Denon wing. Green
rooms house Italian Renaissance paintings. Cyan rooms house Ancient Greek sculptures.

(04) (door013, “Room703”, 16:05:00, 16:20:00, {“low-congestion”}),
(05) (door014, “Room704”, 16:20:00, 16:23:00, {“high-congestion”}),
(06) (door015, “Room661”, 16:23:00, 16:45:00, {“high-congestion”}) }

In specific, the first two transitions “Room710” → “Room709” → “D1:DS”
can be assigned to a “crowd avoidance” episode, since the visitor quickly passes
through large crowds visiting Italian Renaissance paintings, and the last two transi-
tions “Room703” → “Room704” → “Room661” can be assigned to a “visit Ancient
Greek sculptures” episode, since the visitor now slowly strolls through rooms filled
with Ancient Greek marble artworks, despite the congestion. However, it is not ap-
parent exactly at which point the former behavior gave its place to the latter: the
transition “D1:DS” → “Room703” may well have been due to the visitor finding
“Room703” to be both less occupied and at the same time more interesting (themat-
ically) than the equally accessible “Room706” and “Room702”. Therefore, it applies
to both types of episodes, as the two behaviors coexist for a certain amount of time.

More generally, any part of a MO’s trajectory might correspond to multiple
episodes, goal-related or other. The main analytical advantage of allowing over-
lapping episodes is the quality of the produced results. For example, we can now
distinguish between three different trajectory segments:
(crowd-avoidance) → (crowd-avoidance, visit Greek art) → (visit Greek art),
instead of just two, therefore enabling a more subtle interpretation of the visitor’s
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mobility data. Such distinctions can make a big difference for museum curators who
are more interested in a qualitative interpretation of experimental results. The dis-
advantage in doing so is that the order of the episodes is no longer assured by the
model, in contrast to the order of the MO’s physical presence in space, and it is up
to the analysis method (e.g. the particular pattern mining algorithm) to deal with
the additional complexity.

As detailed in section 3.3.2, individual presence intervals can also be enriched with
semantic annotations. For example, the “buy souvenir” tag specifically characterizes
tuple 19 in Figure 6.16. Similarly, based on the specific zone (i.e. ticket office), on
the time spent in it (i.e. 5 minutes), and on the zones that follow it (i.e. permanent
exhibition), the visitor’s activity could be inferred and tuple 2 could be enriched with
the annotation set A2 = {activities : [“buy ticket”]}.

Naturally, semantics of individual tuples can potentially be the ones that give rise
to semantics of (sub)sequences. For example, if the visited rooms are highly congested
(e.g. based on specific threshold values) over a long period of time, then a significant
part of, or even the whole visit may be characterized by the average congestion
levels. Similarly, if a zone subsequence contains numerous Italian Renaissance-themed
zones, then it may be characterized as a visit Italian art episode. Such semantics
typically characterize the movement itself, but possibly even the moving object (e.g.
visitor tiredness level), the spatial entities i.e. nodes (e.g. room congestion level), the
connections between spatial entities i.e. edges (e.g. zone closure), etc.

Finally, application domain semantics can be matched to the indoor space hi-
erarchy and to the trajectory elements. In general, there are various advantages
in using ontologies for context modeling [175] such as their hierarchical structure
and their enabling of inferring new information. In [175], the authors propose an
ontology-based method which combines cross-domain behavior primitives (activities,
locations, emotions) referred to as low-level contexts, in order to infer more complex
and abstract human high-level contexts that need low-level ones in order to be identi-
fied. Activity context needs to be specialized according to the particular application
domain: museums, shopping malls, subway stations, etc. Related to the museum
domain in particular, besides activity semantics, the CIDOC Conceptual Reference
Model (CRM) [106] is an ISO standard that provides a semantic framework for de-
scribing concepts and relationships used in cultural heritage documentation. It can
be used to implement an ontological hierarchy that structures the semantic content of
the museum space, as illustrated in Figure 6.15. In specific, the E18 Physical Thing
concept is adopted, which comprises “all persistent physical items with a relatively
stable form, man-made or natural” in order to represent the area of engagement with
individual exhibits as a RoI. The E4 Period concept is also adopted. This is often
used to describe prehistoric or historic periods such as the Neolithic Period, the Ming
Dynasty or the McCarthy Era, in order to model the historical context and style of
the artworks, and from that, of the groupings of artworks as well, such as at the level
of zones.
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Figure 6.15: A simple 2-level domain-specific instantiation of CIDOC concepts maps the
RoIs to exhibits providing structure to the interpretation of indoor space.

6.4 Louvre Visitor Experimental Results

This section presents the analysis results of the Louvre visitor trajectory dataset
described in detail in section 6.3.2.1. First, some standard statistical and pattern
mining results are derived. Those offer a much deeper understanding of the dataset.
Then the temporal aspect of the visits is introduced into the mining process by using
the MiSTA algorithm [69] over the trajectory dataset represented accorind to SITM .

6.4.1 Trajectory Data Preprocessing

As explained in the previous section, the initial aim of our cooperation with the Louvre
Museum was to apply semantic trajectory analytics methods using the semantics
collected by the museum’s official smartphone application. These data are collected
in near real-time as the visitors use the app.

However, after examining the related data in detail, a few discrepancies were
found, such as the fact that the event logs of the app usage dataset have a minute-
level temporal granularity, whereas the movement dataset contains timestamps at the
level of seconds. More importantly however, the user identifier (i.e. “UserID” field in
Flurry) in the app usage dataset was completely independent of the visitor identifier
in the movement dataset. The latter were generated by the company providing the
detection data, after applying an anonymization / randomisation process. As a result,
the movement of any given individual visitor could not be matched to his or her usage
of the app.

The possibility of tackling the problem of matching the visitors in the two datasets
based on temporal coincidence and spatiosemantic similarity was considered. In other
words, to treat the identifier mismatch as a particular instance of the moving entity
resolution / linking problem, for which specific bibliography is only recently starting
to appear [88, 94, 98]. Unfortunately, there is no way to verify the accuracy of any
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A complete zone-level visit trajectory in
three different floors of the Louvre

Museum.

User-specified profile options may
constitute a source of moving object

semantics.

Figure 6.16: UI action logs (right) can in principle enrich trajectory data (left).

matching estimation, given the lack of ground truth data, and the high numbers of
visitors co-existing in the museum spaces at the same time. Only through on-site
experimentation would it have been possible to derive some limited ground-truth
data, in order to develop a matching method and then apply it to the two historic
datasets.

As a result the focus will now be solely on the trajectory dataset, for which a TAS-
PM algorithm will be applied in the next section. But first, the trajectory data need
to be brought into the proper SITM -based form. This includes the following main
transformation actions implemented in the Pandas Python open source framework:

1. Transform all timestamps from UTC (“yyyy-MM-dd’T’hh:mm:ss.sss’Z’”) to lo-
cal time in France (CET in the winter and CEST in the summer) according to
the “date time” format and ISO 8601.
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2. Calculate duration values as the difference between a “Begin” detection times-
tamp and its previous “End” detection timestamp.

3. Remove all detections of zero duration.

4. Split visits according to a temporal threshold of half hour.

v id u id v dur #pos z id z name z lev z beg z dur z end z next

14..78 45..78 3544 1535 60888 “S2-Nap” -2 27-01 15:14:45 1225 27-01 15:35:10 60906
14..78 45..78 3544 1535 60906 “N1-Sul” 1 27-01 16:00:52 0 27-01 16:00:52 60851
14..78 45..78 3544 1535 60851 “RC-Sul” 0 27-01 16:00:54 764 27-01 16:13:38 60906
14..78 45..78 3544 1535 60906 “N1-Sul” 1 27-01 16:13:49 0 27-01 16:13:49 -
14..27 45..27 938 28 60887 “S2-Nap” -2 13-02 09:30:07 938 13-02 09:45:45 -

14..18 45..18 351 4 60909 “N1-Sul” 1 17-03 12:06:02 351 17-03 12:11:53 -

14..18 45..18 2783 608 60888 “S2-Nap” -2 01-03 09:59:35 881 01-03 09:14:16 60889
14..18 45..18 2783 608 60889 “S2-Nap” -2 01-03 10:27:33 65 01-03 10:28:38 60908
14..18 45..18 2783 608 60908 “N1-Sul” 1 01-03 10:28:40 73 01-03 10:29:53 60891
14..18 45..18 2783 608 60891 “N2-Sul” 2 01-03 10:30:49 909 01-03 10:27:02 -

... ... ... ... ... ... ... ... ... ... -

Table 6.4: The preprocessed trajectory dataset in tabular form: each row corresponds to
a single zone detection. Detections of zero duration are discarded.

In Table 6.4, it is evident in the structured trajectory dataset that a visit con-
sists of a group of rows (i.e. zone detections). The color coding corresponds to the
representation of temporal information in Figure 6.5. Detections of zero duration are
discarded as errors. The “#pos” column concerns the indoor positioning process and
is not of concern to the analysis of the trajectories.

6.4.2 Preliminary Statistical Analysis

Although this Thesis focuses on individual trajectory data modeling and mining, a
simple statistical analysis of the aggregate spatial data offers a good macroscopic
understanding of the visits. Also, since similarly extensive visit trajectory datasets
have so far very rarely been available to museums (and never before for the Louvre
Museum in particular), there is great motivation in helping the museum gain some
additional insight into its visitors’ behaviors thereby contributing in museum visitor
studies more generally.

As part of exploring the Louvre visitor trajectory dataset, Figure 6.17 visualizes
the Louvre’s thematic zones, each shaded in proportion to the absolute number of
times a visitor was detected in it. As explained in section 6.3.2.1, the whole -1 floor
is omitted and any other zone missing from the dataset is displayed as striped.

It can be noted that the most frequented zone is unsurprisingly the main Pyramid
hall (“N-2:P”) of the -2 floor, located right under the Glass Pyramid (Figure 6.18).
This is due to the fact that virtually all visitors need to pass by there after entering
the museum if they want to proceed to the exhibition spaces. Moreover, the zones in
the southern part of the Louvre (Denon wing and southern half of Sully wing) are
more frequented than the ones in the northern part (Richelieu wing). An exception
is the Arts Décoratifs Européens zone (“R+1:ADE”) on the +1 floor of the Richelieu
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Figure 6.17: Choropleth map of the Louvre’s zones (-1 floor missing from the data).

wing being the second most visited zone, but at the same time much larger than
most others. Finally, as evident from its light color in Figure 6.17, the +2 floor is
considerably less visited than the rest.

This spatial imbalance of visitor attendance during the first half of 2017 may
still be relevant today. After a record-breaking attendance of 10.2 million visitors
in 2018 [120], the Louvre Museum implemented an online time-slot booking system
which helped spread its 9.6 million visitors in 2019 [121] throughout the day, but not
throughout the exhibition spaces. For instance, the Leonardo da Vinci temporary
exhibition has managed to attract over a period of four months more than 1 million
visitors [122] in zone “N-2:E” alone. Therefore, in light of the recent COVID-19
pandemic, an attempt at re-balancing the attractiveness of the different areas could
be envisaged, although more direct measures such as, limiting the daily number of
visitors, modifying visitor reception processes, and regulating more heavily the visitor
flow, are certainly easier to implement in the short term and expected to have a more
controllable effect.

6.4.3 Visualization & Standard Sequential Pattern Mining

Now let us move beyond aggregate statistical analysis. Once the zone detection data
are properly structured in the form of individual visitor trajectories according to
SITM , traditional itemset and sequential pattern mining algorithms may be applied.
But first, we would like to have the means of visualizing individual visits for two
reasons. First, it will allow us to be able to quickly grasp the main structure of each
visitor’s mobility behavior and compare it to the others if desired. More importantly
perhaps, it will allow us to intuitively check the quality of our dataset, by making
detection gaps and detection overlaps directly visible.

For these reasons, it was decided to visualize the space-time graph [14] of each vis-
itor, a two-dimensional display with the horizontal axis representing time and the ver-
tical axis representing space as a finite linearly ordered set of locations. The proposed
model SITM can support such types of visual analytics, since it is both sequential
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Few detections take place in the
Pyramid Hall at night.

Throughout the day most visitors pass at least
once from the Pyramid Hall.

Figure 6.18: The main hall of the Louvre Museum is its most frequented area.

Figure 6.19: Space-time graphs [14] of the trajectories of two real Louvre visitors: single-
visit visitor #4645703 (left) and returning visitor #4549164 (right).

and primarily symbolic. Figure 6.19 depicts the space-graphs for two different Louvre
visitors. Their presence intervals inside of zones are shown as horizontal lines, with
points denoting the start and end of a single detection, and triangles denoting the
start and end of a whole visit.

Notice how in the right part of Figure 6.19, visitor #4549164 is actually a returning
visitor who went to the Louvre on multiple days. By visualizing the space-time
graph, the analyst can zoom in on any particular visit and get a clearer image of
the corresponding trajectory, in what would resemble the graph of visitor #4645703
shown in the left part of the same Figure 6.19.

Next, after filtering out visits of length equal to 1, we are left with 2,297 visits
on which two conventional pattern mining algorithms are applied, namely FPGrowth
[78] for zone co-occurence mining and GSP [165] for zone sequence mining. Table
6.5 contains the support values of the most frequent patterns. Noticeably, there is
no 3-zone (or longer) sequence that is more frequent than either of the ten most
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frequent 2-zone sequences (i.e. transitions). Not surprisingly, most frequent patterns
take place in the southern part of the museum, just as expected given their spatial
distribution in Figure 6.17.

Zone Co-occurence support Zone Transition support

“S0:AG”, “D0:AIE” 19.98% “S0:AG” → “D0:AIE” 6.40%

“D0:AIE”, “D0:AR” 18.46% “D0:AR” → “D+1:PF” 5.27%

“D0:AIE”, “D+1:S” 17.07% “D0:AIE” → “D+1:S” 4.61%

“D0:AR”, “D+1:PF” 16.33% “D0:SE” → “D+1:PF” 4.53%

“D+1:S”, “S+1:AGR” 14.80% “D0:AIE” → “D0:AR” 3.79%

“D+1:PF”, “D0:AIE” 13.93% “D0:AR” → “D0:SE” 3.79%

“S+1:AGR”, “S0:AG” 13.80% “N-2:E” → “N-2:P” 3.70%

“D+1:S”, “D0:AR” 13.76% “S0:AG” → “S+1:AGR” 3.57%

“S+1:AGR”, “D0:AIE” 13.71% “D0:AR” → “D+1:S” 3.48%

“D0:SE”, “D0:AR” 13.67% “D+1:S” → “S+1:AGR” 3.48%

Table 6.5: Ten most frequent Louvre zone co-occurences and zone transitions.

While it is natural for shorter sequences to populate the output of the mining
process, the extent to which this happens here suggests that, either the visits quickly
diverge, or the dataset is indeed fragmented (or perhaps both). The latter is also
supported by the fact that combining most of the frequent transitions, a dominant
visitor flow emerges as illustrated in Figure 6.20.

In terms of floor transitioning, it is evident that the general movement trend
is going upwards which is not surprising: visitors are more prone to be using their
smartphones while entering deeper into the museum’s exhibition spaces, whereas once
they decide to leave, they might close the application before starting to descend.
This is sensible due to the app-based navigation service being of much greater help
for finding a particular artwork, rather than for finding the exit, which is relatively
easier thanks to the related signage. Of course, this hypothesis can neither be proved
or disproved without a corresponding observational experiment.

In terms of the general movement trend, visitors tend to proceed right-to-left at
the 0 floor and left-to-right at the +1 floor of the Denon wing. Unfortunately, the
neighboring Peintures Salle Joconde and Peintures Italie Est zones are missing from
the data, which makes deriving any conclusions risky. It seems however to be the case
that visitors who arrive at the Daru staircase at the 0 floor, coming from the Sully
wing, tend to continue all the way until the Mollien staircase before going up, instead
of directly climbing the Daru staircase to visit the Winged Victory of Samothrace.
Yet, there is a short pattern opposite to this main flux of visitors, namely “D0:AR”
→ “D+1:S” which corresponds to the 9th most frequent transition in the museum
(Table 6.5). This is normal because the Winged Victory is one of the museum’s most
iconic masterpieces and hence can be expected to attract people to the “D+1:S” zone
from the lower floor level.
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Figure 6.20: Most frequent zone transitions happen in the southern part of the Louvre.

6.4.4 SITM-based State-Of-The-Art Sequential Pattern Mining

This section studies how the proposed conceptual model for the representation of se-
mantic indoor trajectories supports and enhances the process of trajectory mining. To
this end, two pattern mining approaches are evaluated with respect to the Louvre case
study, namely Multidimensional Sequential Pattern Mining (MD-S-PM), reviewed in
section 4.3.4, and Temporally Annotated Sequential Pattern Mining (TAS-PM), re-
viewed in section 4.3.5. Their limitations are identified, and it is reported which are
the elements that make their combination a promising approach for extracting even
more interesting patterns.
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SITM-based MultiDimensional Sequential Pattern Mining

In the previous section 6.4.3, interesting visiting patterns in the Louvre Museum
were derived by using standard S-PM algorithms. While these were applied on tra-
jectories represented according to SITM , they do not take advantage of its full
expressiveness (e.g. trajectory semantics, contextual information, indoor topology,
temporal duration), since they rely exclusively on the presence or sequence of the
detection records. However, SITM contains extra information that can be used by
more advanced mining methods, or even inspire the design of new ones. With regards
to the former, MD-S-PM methods are especially interesting because they enable the
analysis to benefit from the integration of contextual information.

Studied in section 4.3.4, the mining methods proposed by Pinto et al. [145]
consider the multidimensional part to be independent from the main sequence. The
same type of method can be applied over SITM -based museum visit trajectories. For
instance, if static visitor information (e.g. profile settings) is retrieved from the mobile
guide application (Figure 6.16), then the trajectory example from section 3.3.2 can
be enriched by adding more semantic annotations in Atraj describing each individual
visitor’s declared interests and time availability:
Tvis0042,11:30:00,13:30:00 = (tracevis0042,11:30:00,13:30:00, Atraj)
Atraj = {goals : [“visit temporary exhibition”], regularity : “First− Timer”,
subjects : [“Antiquities”, “Sculptures”], time : [“ > 2hours”]}
This allows us for instance to find frequent visiting patterns per type of visitor, instead
of only for all visitors indiscriminately.

Again as examined extensively in section 4.3.4, Plantevit et al. [146] generalized
the above approach to account for multiple dimensions within the sequence itself.
Data are stored in a relational table T as a finite set of tuples t = (d1, ..., dn) whose
values belong to the domain of several data dimensions di ∈ dom(Di), i = 1, ..., n.

The same or similar methods (studied in chapter 2) can be applied over SITM .
For example, assuming that dynamic visitor information (e.g. access records of the
application’s educational content) is available, then it can be used to annotate each
presence record independently. More concretely, a particular interval of the visitor’s
presence in spatial area vj together with its corresponding annotations Aj can combine
for a multidimensional item ij , and the application of MD-S-PM methods becomes
straightforward.

For instance, in the previous trajectory example from section 3.3.2, the 5th and
last tuple of the trace may be enriched based on the audio description playback that
the visitor listened to and the textual description that he read, while being detected
in the Inverse Pyramid Hall :
(opening002, “IPH”, 13:28:30, 13:30:00, {audio : [“Fountainhead” : 03′15′′,
“Lady of Auxerre” : 00′32′′], text : [“Al Mughira′s Pyxis”]})

On a more practical side, the semantic enrichment of visitor trajectories would be
easier if the movement data were annotated automatically at the moment of collection,
but for now this is not being done in the museum domain, and most probably neither
in any other application domain. In the specific case of the Louvre’s smartphone
application, a poi audio time event record gets created whenever a visitor listens to
an artwork’s audio description, and such records would produce some of the semantic
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Timestamp Session Index Event Version

Nov 07, 2017 03:06 AM 4 poi audio time 2.0.26

Platform Device User Id Params

Android Motorola Moto G4 Plus 396f8c54db4ceb67 { poi idx:92; total time:214,274; stop time:213,862}

Table 6.6: A single log record created by the poi audio event of Figure 6.21.

annotations to be included in the trajectories.

For instance, Figure 6.21 and Table 6.6 describe the User Interface action for
listening to the audio description of Michelangelo’s Slave sculptures and the corre-
sponding event record that is created in the log files of the Flurry platform. No-
ticeably, the event is timestamped and also includes the total listening time and the
playback stoppage time. Also, the parameter “poi idx” uniquely identifies the related
artwork. Such information is ideal to add to the trajectory represented in SITM
form a semantic annotation to the particular presence interval within which this par-
ticular event occurred. This could for example help us find out whether visitors are
generally located within an artwork’s RoI (according to SITM) when they choose to
listen to that artwork’s audio description, or whether they instead tend to listen to a
description before / after visiting the corresponding artwork.

Figure 6.21: Multimedia content consumption from the smartphone application can the-
oretically provide the semantic enrichment of the trajectories of the Louvre museum visitors.

Furthermore, in [147, 148], Plantevit et al. allow for several hierarchical levels to
be mixed within the same sequence, and the extracted patterns to be automatically
associated to the lowest possible level of granularity. To achieve this, a new type
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of hierarchical pattern inclusion was defined based on the notion of item specificity
described in detail in section 4.3.4. SITM ’s trajectory representation enables the
application of such hierarchical pattern mining methods, by using annotations that
belong to multiple levels of a semantic taxonomy. For instance, the previous presence
interval may be changed to have the consumed textual description information at
the level of artwork-type, but keep the audio description playback information at the
lower level of specific artworks:
(opening002, “IPH”, 13:28:30, 13:30:00, {audio : [“Fountainhead” : 03′15′′,
“Lady of Auxerre” : 00′32′′], text : [“Sculptures”]})

In this way, the methods of [147, 148] can be applied in order to extract semantic
trajectory patterns formulated as multidimensional and at the same time multigran-
ular sequences:
... → (“IPH”, “low-congestion”, “Spanish Islamic”) →
(“AG”, “high-congestion”, “Classical Greece”, “Sculptures”) →
(“SE”, “normal-congestion”, “Mona Lisa”) →...
Extracting such patterns will have great value for museum professionals because it
brings some of the qualitative elements of traditional observation studies into the
realm of Big Trajectory Data analytics, with all of the advantages that this entails.

SITM-based Temporally Annotated Sequential Pattern Mining

Most mining approaches described in section 4.3 completely ignore the temporal
aspect of movement data and at best only account for their sequential nature. Unfor-
tunately, this is problematic for mining trajectory patterns, given that the resulting
patterns are much poorer this way. In the particular context of this chapter, we would
like to find out whether the Louvre’s visitors show any representative behaviors with
respect to how much time they spend in each zone as they move within the museum.

In this regard, it would be useful to adopt a Temporally Annotated Sequence
(TAS) form for the visit sequences, introduced in [70], where Giannotti et al. propose
the MiSTA algorithm for calculating the most frequent TAS patterns given an input
TAS dataset. MiSTA was studied in detail in section 4.3.5, and it was found that,
whereas it lacks support for multidimensional or hierarchical pattern mining, it does
have the ability to account for duration intervals, which is of paramount importance
for mining trajectory data.

In the follow-up work of [71], the elements of a TAS sequence S are assumed to
constitute coordinate pairs, thus defining a trajectory pattern mining problem, and
Giannotti et al. introduce the t-patterns algorithm to solve it. As explained in detail
in section 4.3.1, t-patterns consists simply of the MiSTA algorithm preceded by a
transformation step which groups the raw geometric data into regions, based on a
neighborhood function, so that they take a symbolic form that can be handled by
MiSTA.

Given that our conceptual trajectory model requires symbolic location data, like
the ones available from the Louvre case study, and not necessarily geometric data,
the focus is solely on the MiSTA algorithm and not on the t-patterns algorithm.

In order to be able to apply MiSTA’ mining process on SITM ’s trajectories, the
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following two assumptions are necessary:

• MiSTA only considers sequences of itemsets and their corresponding duration
annotations, and cannot integrate in the mining process other elements. Thus,
the SITM -based trajectories need to be restricted to the following elements:

TIDmo,tstart,tend
= (traceIDmo,tstart,tend

,
��

��H
HHH

Atraj)

traceIDmo,tstart,tend
= (��ZZek, vk,

tdurationk

���
��XXXXXtstartk , tendk ,��ZZAk)k∈[1,n]

• MiSTA’s input data are restricted into consisting solely of sequences of items
rather than sequences of itemsets, because SITM assumes that a moving ob-
ject can not be present in multiple symbolic spatial entities at the same time.
As a consequence, only extension projections will take place during MiSTA’s
execution, and not enlargement ones. This assumption does not induce any
changes in the MiSTA algorithm itself.

• Instead of attributing each temporal annotation to the transition between two
consecutive items, one can attribute it to the duration of stay in the first item,
which represents the spatial entity of departure. This assumption simply serves
to correct the interpretation of TASs according to the SITM .

For instance if τ=20, then the TAS (S,A) =
60

“N-1:P”→
120

“D-1:EH”→
240

“D-1:APOE”

τ -contains the TAS pattern (S1, A1) =
130

“D-1:EH”→
255

“D-1:APOE”, but not the TAS

pattern (S2, A2) =
150

“D-1:EH” →
240

“D-1:APOE”, because their corresponding annota-
tions differ by more than 20 seconds in at least one case.

Extracting Louvre visitor trajectory patterns

Before the actual mining process, some pre-processing of the original trajectory
dataset is needed to transform it into TAS form. First, any zone detection record
with duration equal to 0 is filtered out. This leads to the deletion of 2135 out a total
of 20245 records. Secondly, in 1080 of those cases, the previous and the subsequent
(to the deleted one) zones actually coincide, which constitutes further indication that
the deleted zones are indeed errors. Those are merged into a single zone in order
to avoid any identical items appearing consecutively in the input TASs. Thirdly, all
trajectories containing less than 3 zones are filtered out.

We opt for a low threshold value, taking into account the coarse spatiotemporal
granularity of the available trajectory data, as well as their length distribution being
left-skewed (Figure 6.6). Finally, even though SITM can represent temporal gaps
in the trajectories, MiSTA does not allow for gaps in the sequences. Therefore, all
periods of visitor non-detection need to be erased, or it is assumed that the visitor
is actually continuously located in the last known zone until he or she is re-detected
in a different one. Given that the duration values are on the low side of what would
normally be expected for a museum, the second approach is adopted as more realistic.
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Next, in order to choose a proper τ parameter value, the normal distribution of
the zone detection duration value is calculated. As expected and confirmed by the
curve’s push to the right (Figure 6.22), taking into account the detection gaps in
the original trajectory dataset increases the values of the temporal annotations in
MiSTA’s input TAS dataset. After trying out lower (i.e. stricter) and higher (i.e.
more relaxed) values, we opted for τ=117 sec, equal to the median zone stay duration
value. In practice, this means that MiSTA will count a projected pattern’s occurrence
in the input TAS data only as long as all of the corresponding annotations differ by
less than 2 minutes.

Figure 6.22: Normal distribution of the Louvre visitors’ duration of stay in each zone,
under two different interpretations of the detection gaps.

Figure 6.23 contains the frequent TAS patterns of length equal to 3, enabling us to
derive additional insight compared to the purely sequential approach used previously.
Interestingly, all four patterns involve two types of movement taking place in two
different parts of the museum, both characterized by a floor-switching back and forth
type of behavior (Figure 6.24). In addition, they do not take place in the busiest parts
of the museum like the ones shown in Figure 6.20. This means that their support
values are not much higher than their τ -support values.

However, due to the fact that MiSTA involves a lossy step of merging frequent
annotation intervals, specific τ -support values are not reported because there is no



6.4 Louvre Visitor Experimental Results 177

approximation guarantee other than their being higher than suppmin=5%. Instead,
the contiguous sequence support is presented, which corresponds to requiring direct
transitions only (Figure 6.23).

Figure 6.23: The four frequent Louvre TAS patterns of length 3, for suppmin=5% and
τ=117sec.

It can be noticed that the two patterns in the Arts décoratifs européens and Sculp-
tures France Marly zones of the Richelieu wing (“R+1:ADE” and “R0:SFM”) are
almost always contiguous, whereas the two patterns in the Antiquités Égyptiennes
zones of the Sully wing (“S0:AE” and “S+1:AE”) more often include intermediate
transitions. Also interestingly, the former two patterns contain more restricted dura-
tion intervals than the latter two, which suggests that visitors spend a more specific
amount of time in that part of the Richelieu wing. Further interpretation of the
reported time intervals is outside the scope of this illustrative experiment.

Finally, let us report on a few important implementation details. First, MiSTA
counts each TAS pattern only once per input TAS, even when it appears multiple
times in the same input TAS. In some application cases, this may not be the most
desired way to calculate τ -support, particularly true for datasets containing long
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Figure 6.24: The four frequent Louvre TAS patterns of length 3, for suppmin=5% and
τ=117sec.

episodic trajectories. Secondly, as already explained, due to how τ -containment is
defined [70], the TAS patterns reported by MiSTA are not necessarily contiguous.
In such case, the corresponding annotation describes how long the visitor stayed
in all of the zones combined, leading up to the next zone in the pattern. Again,
a contiguous variation may be interesting depending on the case. Thirdly, since
MiSTA’s annotations were originally designed to describe the transitions and the last
item of each TAS is not followed by any transition, the duration of stay in the last
zone of any trajectory is lost during its transformation to an input TAS. Technically,
this issue can be easily solved by adding an “EXIT” item at the end of each TAS. This
does not alter the mining output, apart from adding any frequent trajectory-ending
patterns that contain the newly included interval.

6.5 Chapter Conclusion

This chapter presented in detail the Louvre case study, especially as it relates to
semantic indoor trajectory modeling and analysis. First, the context and motivation
for this case study were presented, as well as the related past research studies and
future research opportunities, stemming from the museum’s digital innovation strat-
egy. Many more museums will certainly follow this line of practice in the near future.
Then, the specific datasets deemed useable for this Thesis were presented in detail,
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along with the implementation of the proposed trajectory model, and the analysis re-
sults obtained by applying state-of-the-art sequential pattern mining methods. Along
with [194], this is to the author’s knowledge the first time that sequential patterns
have been extracted and studied in the context of a museum visitor study at this
scale. Unfortunately, Bluetooth detection data alone cannot disclose the semantics
of movement, neither was it possible in this case to match the trajectories to the
application’s usage data, in order to apply the envisaged multidimensional sequential
pattern mining techniques over semantic trajectories.
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Conclusion

Thesis and Results Synopsis

The goal of this Thesis has been to explore new ways to extract useful insight about
an indoor movement phenomenon under examination, given a raw tracking dataset of
individual moving objects, and given any type of semantic information related either
to those moving objects or to the movement itself. The Thesis was developed in
cooperation with the Louvre Museum and under the support of the Foundation for
Cultural Heritage Science. Thus, the initial motivation was both academic and of an
applied nature, aiming to explore the potential of novel trajectory-based methods for
studying visitor trajectories in the Louvre Museum.

Naturally then, this Thesis is related to the ever-expanding research field of Hu-
man Mobility Computational Analytics and more specifically to Trajectory Data Mod-
eling and Representation, Trajectory Data Mining and Analysis, Indoor Trajectories,
Sequential Pattern Mining, and Museum Visitor Mobility Studies.

The intention from the beginning and throughout its course has been, on the one
hand to help the Louvre better understand its visitors by confirming or disproving
currently held beliefs, discovering previously unknown behavioral patterns, etc., but
on the other hand to contribute to trajectory-based research in a domain-agnostic
fashion. Hence, the proposed model and mining algorithm were kept relevant to any
type of indoor mobility data or scenario, instead of only museum visits or any specific
type of built environment.

Furthermore, the start of the Thesis coincided with the museum’s launch of its
official My Visit to the Louvre smartphone application, which was meant to provide
the necessary data concerning this prestigious case study. While these data were still
being collected, the author embarked on a broad overview study of the whole Tra-
jectory Data Mining and Analytics state-of-the-art landscape, presented in chapter
2. This led to a classification of the trajectory data mining tasks being proposed,
according to the state-of-the-practice in Table 4.1.

With the focus on semantic trajectories and indoor trajectories (both separately
and in combination), an exhaustive review of the respective literature was provided.
The last part of chapter 2 was dedicated to the research works related to the study of
museum visitor movement represented in trajectory form, and reveals the importance
of both movement semantics and the indoor context for modeling these particular
types of trajectories. Related to this, chapter 6 also reviewed a series of computational
mobility analysis research works regarding the Louvre visitors specifically. Apart
from relating directly to our own case study, this line of works is actually one of
the few attempts at analyzing real-world museum visitor mobility data automatically
collected from a sensor network.

As argued in chapter 2, while the field of Semantic Trajectory Modeling has
produced interesting concepts and worthwhile approaches to the representation of
meaningful movements, it has also largely ignored indoor environments. Perhaps
even more importantly, the formal models proposed in the literature have not yet
been adopted significantly by the more application-oriented trajectory data mining
research community. Specifically with respect to trajectory pattern mining, this is
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presumably also done to fit the standard S-PM methods that are more readily avail-
able. Therefore, chapter 3 proposed a new conceptual trajectory model, called SITM ,
specifically meant to address the needs of semantic trajectory data mining in indoor
environments.

The proposed model takes into account any type of available semantic information
related to the various aspects of the movement phenomenon. SITM is based upon a
representation of indoor space inspired by and abiding to the IndoorGML standard.
It does however feature its own specifications, and deviates from the standard’s guide-
lines whenever deemed necessary, without breaking compatibility. Over its multilay-
ered multigraph-based representation of indoor space, the trajectories are principally
modeled as sequences of presence intervals in the spatial regions represented by the
graph’s nodes. At the same time, each interval contains a set of semantic annota-
tions, not bound to any particular vocabulary or ontology of movement. The model
is instantiated and validated in chapter 6 with respect to the Louvre case study.

Moreover, since S-PM methods in particular have often been successfully imple-
mented for trajectory data mining, those were studied in further detail in chapter 2,
outside of the trajectory domain as well. Just like trajectory pattern mining most
existing works neglect the semantic aspects of movement, apart from a thin-layer of
geographic semantics. Similarly in non-trajectory S-PM, not many methods consider
enriching the item sequences with dynamic contextual/semantic information. As a
result, such methods, including ours, cannot take advantage of the semantic load
present in most semantic trajectory models proposed in the bibliography.

What is more, most times these S-PM methods also ignore the temporal dimension
of the trajectory data, relying instead solely on the sequential order of items that
represent the location of the moving object. This is of paramount importance since
time is central to movement. And of course, the vast majority of the related literature
has been dedicated to mining outdoor trajectories, given the prevalence of GPS data,
therefore ignoring the effect that the building has over movement.

Thus, having identified the aforementioned undesirable traits of state-of-the-art
methods and algorithms for finding patterns in trajectory datasets, chapter 5 pro-
posed a novel trajectory mining method which embeds semantic information in the
mining process, along with temporal and topological information. It is influenced by
the following algorithms:

• M3SP [147] for the spatiosemantic dimensions;

• MiSTA[69] for the temporal dimension;

• TP [50] for the topological information.

The relevant algorithm, called SITPE, produces in its output frequent trajectory
patterns that are qualitatively richer compared to the state-of-the-art methods. For
example, as explained in chapter 1, with the case of a shopping mall client, instead
of obtaining simple patterns such as:

Y ves Rocher → H&M → Promod→MacDonald′s



184 Conclusion and Perspectives

we obtain more indicative temporally and semantically aware patterns like:

15min

{Y ves Rocher, disc buy, reg cust} →
5min

{Promod, prod replacement, cas cust} →
30min

{MacDonald′s, reg buy, new cust}

informing us that a typical shopping behavior involves customers that tend to reg-
ularly visit Y ves Rocher to take advantage of its discounts, followed by Promod to
replace products that they have already bought, before having a seated meal for the
first time in this particular MacDonald′s outlet.

Finally, in chapter 6 an intriguing case study was presented, involving real-world
trajectory data from the visitors of the Louvre Museum. The Louvre has actually
long been one of the leading museums in terms of innovative technology adoption.
For instance, in 1995 it was one of the first cultural institutions to offer a website to
its visitors [61]. Thus, it comes as no surprise that since the aforementioned works of
Yoshimura et al., it has installed its own permanent tracking infrastructure, which has
so far been used only for location-based services offered to the visitors. This Thesis
exploits for the first time this infrastructure through a computational trajectory-based
analysis of the visits.

More specifically, the author was given access to a historic dataset spanning a
four month period in 2017, as well as an additional dataset of app usage events
over the same period, both emanating from the official (at the time) smartphone
application offered by the museum. Thus, the analysis and data exploration results
were presented. The initial goal was to enrich the trajectories with semantics derived
from the app usage data. However, this was found to be impossible due to the
unresolvable mismatch of user identifiers.

In terms of PM, two existing algorithms were run, namely GSP and FPGrowth
which revealed some interesting but not surprising patterns. Also, MiSTA was ap-
plied, which takes transition durations into account. First, the dataset had to be
adapted to the proposed trajectory model and to the proper interpretation of the
patterns. The resulting patterns were unexpected and merit further investigation.
Data quality issues were also identified and discussed in chapter 6, as well as consid-
ered by the Louvre for improving its technological solutions in the future [178].

Finally, apart from learning more about the visitors’ mobility behaviors and eval-
uating the potential of trajectory-based analysis methods, the Louvre case study
served as a validation of the practicality and usefulness of the proposed trajectory
representation.

Contributions
The main contribution of this Thesis is organized around the proposal of a new

conceptual model of semantic trajectories specifically for indoor environments called
SITM . This model is used to represent spatiotemporal trajectories enriched with
semantic annotations, taking place in indoor environments. Moreover, it is compatible
with the IndoorGML standard and it was validated by being instantiated for the case
of the Louvre Museum, and used to run pattern mining methods over real-world
Louvre visitor trajectories.
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Another contributing element of this Thesis is the definition of a new type of pat-
tern mining problem, called the MultiDimensional Temporally Annotated Sequential
Pattern Mining (MD-TAS-PM) problem, and the definition of a new type of trajec-
tory pattern mining problem, called the Semantic Indoor Trajectory Pattern Mining
(SIT-PM) problem. Also, an algorithmic method and a first corresponding algorithm
called SITPE are proposed to help solve the SIT-PM problem. SITPE combines
and extends three different state-of-the-art sequential pattern approaches, in an at-
tempt to mine qualitatively rich trajectory patterns.

In total, the contributions of this Thesis (both primary and secondary) can be
summarized as follows:

• An overview and a practical classification of trajectory data mining tasks.

• An extensive survey of semantic and/or indoor trajectory modeling.

• A new conceptual model of spatiotemporal indoor trajectories enriched with
semantic annotations, called Semantic Indoor Trajectory Model (SITM) [102].

• A formal definition of the problem of mining multidimensional and temporal
patterns from input sequences.

• A formal definition of the problem of mining semantic indoor trajectory patterns
from input trajectories.

• A new algorithmic approach called Semantic Indoor Trajectory Pattern Ex-
tractor (SITPE), which extends and combines state-of-the-art general-scope se-
quential pattern mining algorithms, in order to solve the SIT-PM problem.

• An identification and classification of the museum goals w.r.t. the computa-
tional analysis of their visitors’ trajectory data.

Finally, throughout this Thesis the author cooperated with researchers and pro-
fessionals from the Louvre Museum, especially with regards to the extraction and
exploration of the datasets, but also the interpretation of the analysis’ results.

This experimentation phase produced the following results:

• A validation of SITM through its instantiation in the context of the Louvre
Museum case study, and its usage to support standard and state-of-the art
pattern mining algorithms applied over real-world visit trajectory data.

• A unique study of the Louvre visitors’ mobility patterns and dynamics of at-
tendance.

• A practical study and report of how the Louvre’s trajectory data acquisition and
wrangling processes, and corresponding data quality issues, constrain or other-
wise impact semantic trajectory modeling and analysis, raising the awareness
of museum management for the future development of digital tools.
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Perspectives

Emerging Trends in Trajectory-Based Research
After extensively reviewing the Trajectory Data Modeling and Mining literature,

as well as experiencing recent developments in Museum Visitor Mobility Studies and
experimenting on a unique museum visit trajectory dataset, in this final section the
most promising lines of research for advancing the respective fields are identified. The
proposals are in no way limited to the specific domain of museums. Specific issues
that need to be addressed for the advances to take place are also discussed here.

First, with respect to the future of Trajectory Data Modeling and Mining, there
is an emerging trend of adopting vector representations and Deep Learning methods
[9, 40, 46, 48, 64, 125, 176]. While this is promising in many respects, it is so far
best suited to trajectory prediction problems, whereas cultural institutions such as
museums are much more interested in obtaining qualitative descriptions of their vis-
itors’ behavioral patterns. This is due to the fact that organizations in the Arts and
Humanities are typically less interested in maximizing attendance or profitability, and
more interested in maintaining a high level of quality of their visitors’ experience.

Hence, even though the use of Neural Network-based methods can be expected to
transition into other trajectory data mining tasks (e.g. generating realistic artificial
trajectories), there is also a lot of untapped potential in developing S-PM methods
that will leverage properly represented semantic trajectories for descriptive types of
analyses.

This brings us to the field of Semantic Trajectory Modeling, for which there is
significant bibliographical content and multiple well developed approaches, but at
the same time adoption is lacking by part of the trajectory data analytics litera-
ture. When faced with a particular trajectory-related problem instance, the analyst
is tempted to adopt ad-hoc representations, rather than study a properly structured
trajectory model in detail, and spend time to adhere to it. Perhaps, an industry
standard for representing semantic trajectories would be useful in addressing this.

Additionally, concentrated efforts by the trajectory research community to clarify
the terminology and homogenize the conceptualization of semantic trajectory repre-
sentations would also considerably help. This is particularly true for indoor trajec-
tories, because at least for outdoor trajectories there is a certain level of established
consensus over concepts and practices, as a result of the longer period that they have
been studied for and of the lesser variance of the raw trajectory data form.

Moreover, even though the SITPE algorithm proposed in section 5.1.2.3 takes a
big step in this direction, our vision is to combine even more closely together indoor
space, semantics, and time, within the scope of trajectory analytics. This is a complex
task that merits further investigation. Εven the semantic nature of indoor trajectories
alone is still largely unexplored. Let us provide examples of future research directions
in relation to this:

• Examine the interaction between trajectory data research and the Space Syntax
approach [3].

• Explore how time-series analysis can complement current trajectory data mining
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practices (e.g. to detect patterns in the evolution of the number of moving
objects present in each indoor spatial region).

• Study in more depth the implications of allowing overlapping trajectory episodes
as proposed in SITM (e.g. how should S-PM methods handle them?, how
should pattern containment change to reflect those?).

• Study in more depth ways to use the spatiosemantic hierarchies in order to
handle trajectory data uncertainty issues (e.g. methods to infer presence in
coarser spatial regions).

• Develop a new notion of trajectory pattern containment which takes into ac-
count recent advances in semantic similarity research should be developed.

• Further explore the difference between actual movement and potential or in-
tended movement (e.g. detect Louvre visitors who move in order to see the
Mona Lisa but end up skipping doing so because they don’t want to wait in
line).

• Use semantic information to improve the quality of indoor positioning / location
estimation (e.g. use multimedia content access logs from museum guides to infer
the location of the visitor at a level of granularity finer than that of the original
data).

• Use the degree of the nodes of the indoor space graph representation to develop
a new type of trajectory similarity metric (thereby distinguishing whether two
trajectories are similar by “free-will” or as a result of indoor architectural con-
straints.).

• Transfer network-constrained outdoor trajectory analysis practices to the indoor
space case

• Explore how landmarks affect indoor navigation (popular artworks serve the
museum visitor as a reference for mentally re-estimating his current position).

• Develop methods to distinguish between systematic non-detections (i.e. cover-
age gaps or malfunctioning sensors), and random non-detections (i.e. occasional
tracking errors) based on the relative frequency of the spatial entities involved
and methods to deal with the former (e.g. graph rearrangement).

More specifically with respect to the proposed modeling work, whereas it was
shown how the proposed SITM can handle certain modeling aspects such as topo-
logical constraints (accessibility NRGs), indoor space semantics (node classes and
properties, parallel hierarchies), location uncertainty (spatial hierarchy, accessibility
NRGs), there are other issues that were left untreated, such as changes in the indoor
topology (e.g. dynamic graph), group patterns (e.g. overlap of presence intervals),
etc.
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There are also new interesting concepts to consider. For example, whereas in
outdoor (people) trajectories, movement often consists of long travel distances be-
tween PoIs which clearly separate the activity-rich stops (taking place in those PoIs)
from the activity-poor moves (taking place over transportation networks), for indoor
mobility this is not the case. The corresponding distinction would be that between
periods of walking and periods of standing, which means that activities can be more
equally assigned to either interval type. The proposed model is interval-based and
can therefore support this by annotating each item in the sequence as a “standing”
or “walking” presence interval. Spatiotemporal threshold-based approaches can be
used for doing so.

However, also the semantics of space have a major role to play in this. For in-
stance, quoting [155]: “...it is not considered as a movement if she/he just is moving
around in a store. However, if she/he is walking in a corridor, we consider it as a
movement. It means that the decision of movement depends on the granularity and
classification of location.”. Hence, spatiotemporal threshold-based approaches could
be used in synergy with space semantics. For example, a stationarity temporal thresh-
old could be higher in a “TransitionSpace” with respect to an “ExhibitionSpace” to
reflect the intuition that it is harder for a valid stop to take place there.

Future developments to be pursued after completion of the Thesis include the
following:

• Generate artificial semantic trajectories using characteristics of the real Louvre
visit trajectories.

• Validate SITPE over those trajectories.

• Modify it to derive proper τ values automatically from the data in combination
with domain expertise (not necessarily the size of the spatial region).

• Apply our analysis over a more complete Louvre dataset (i.e. without so many
missing zones or such coarse spatial granularity) and validate if the discovered
patterns still apply.

• Ensure that SITM conforms to the new version of the IndoorGML standard
(IndoorGML 2.0).

• Add a temporal dimension to the edges of the indoor space graph (i.e. G = G(t))
to model dynamic accessibility restrictions with dynamic/temporal graphs [134]
(e.g. unavailability of exhibits, spaces under restoration).

Towards a Better Understanding of Museum Visitor Behavior
This Thesis illustrated how SITM can be applied to an intriguing real-world

case study, and validated it using state-of-the-art pattern mining algorithms in or-
der to analyze real-world museum visitor trajectory data. Due to data accessibility
and quality issues, it was not possible to validate experimentally the proposed novel
pattern mining algorithm SITPE (defined in section 5.1.2.3).

This is precisely why the next step of our reasearch group is to apply the SITPE
with the help of artificially generated museum visit trajectory data. The existing
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trajectory dataset is planned to be used to derive transition probabilities and du-
ration distributions in this respect. Also, given that the user mismatch problem is
insurmountable, the app usage dataset will enable the mimicking of user behavior in
order to generate realistic semantic trajectories.

At the same time, it would be useful to repeat the experiments over an extended
version of the Louvre dataset, because at least some of the quality issues that en-
countered in this Thesis have been improved over the course of time. Also, it is worth
pursuing the mining of patterns from the app usage dataset on its own. After all,
S-PM is often used to mine web activity which closely resembles app usage. Despite
the fact that this is not related to trajectories, it would be innovative to map the
usage events to their corresponding physical locations in the Louvre’s indoor space
graph, study the derived virtual trajectories in comparison to the actual space, and
quantify how much they deviate from the typical physical trajectories. Correlating
app usage data to indoor space has been recently proposed in [93], albeit in a different
manner.

In any case, the Louvre visit patterns discovered in this Thesis, despite being
simpler (i.e. only space and time are taken into account in the mining process), are
still helpful and show that the proposed model is polyvalent in terms of trajectory
mining and analysis support. In addition, after closely studying similar past research
works in the museum domain, and with the help of our Louvre partners, this Thesis
has identified the most important trajectory analysis tasks for any museum, presented
in Table 6.1. This can serve as a basis for contemplating how to best take advantage
of the digital tools at their disposal for a variety of purposes.

Finally, trajectory-based mining and analysis, especially related to semantic and
indoor trajectories, will eventually be a key technology for improving the visitor
experience, as it offers an insightful look at how they behave, and at the same time can
scale to the numbers of visits encountered in the world’s biggest museums. Trajectory
pattern mining in particular will have a prominent role in this effort, especially if more
progress is made around the integration of semantics and time in sequential patterns.
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Glossary

Abbreviation Explanation

2D Two Dimensional

3D Three Dimensional

BTD Big Trajectory Data

BUC BottomUpCube

GPS Global Positioning System

IndoorGML Indoor Geographic Markup Language

MD-S-PM MultiDimensional Sequential Pattern Mining

MD-TAS-PM MultiDimensional Temporally Annotated Sequential Pattern Mining

MLSM Multi Layered Space Model

NRG Node Relation Graph

PoI Point of Interest

RoI Region of Interest

RSSI Received Signal Strength Indicator

S-PM Sequential Pattern Mining

SITM Semantic Indoor Trajectory Model

SITPE Semantic Indoor Trajectory Pattern Extractor

SIT-PM Semantic Indoor Trajectory Pattern Mining

Table 7.1: Glossary of special terms and abbreviations used in the present manuscript.
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[129] Nikola Marković, Przemy law Seku la, Zachary Vander Laan, Gennady An-
drienko, and Natalia Andrienko. Applications of trajectory data from the per-
spective of a road transportation agency: Literature review and maryland case
study. IEEE Transactions on Intelligent Transportation Systems, 20(5):1858–
1869, 2019.

[130] Paul F. Marty and Katherine Burton Jones. The Museum Experience Revisited.
Routledge, 1 edition, 2008.

[131] Paul F. Marty and Katherine Burton Jones. Museum Informatics: People,
Information, and Technology in Museums. Taylor & Francis, 2008.

[132] Jean Damascene Mazimpaka and Sabine Timpf. Trajectory data mining: A
review of methods and applications. Journal of Spatial Information Science,
13:61–99, 12 2016.

[133] Ronaldo dos Santos Mello, Vania Bogorny, Luis Otavio Alvares, Luiz Hen-
rique Zambom Santana, Carlos Andres Ferrero, Angelo Augusto Frozza, Geo-
mar Andre Schreiner, and Chiara Renso. MASTER: A Multiple Aspect View
on Trajectories. Transactions in GIS, 23(4):805–822, 2019.



References 205

[134] Othon Michail. An Introduction to Temporal Graphs: An Algorithmic Perspec-
tive, pages 308–343. Springer International Publishing, Cham, 2015.

[135] A. Mousavi, A. Sheikh Mohammad Zadeh, M. Akbari, and A. Hunter. A new
ontology-based approach for human activity recognition from gps data. Journal
of AI and Data Mining, 5(2):197–210, 2017.

[136] Hassan Noureddine, Cyril Ray, and Christophe Claramunt. Multiple views
of semantic trajectories in indoor and outdoor spaces. In Proceedings of the
29th International Conference on Advances in Geographic Information Systems,
SIGSPATIAL ’21, page 99–102, New York, NY, USA, 2021. Association for
Computing Machinery.

[137] Georgios Papaioannou and Ioannis Sarakinos. The general data protection reg-
ulation (gdpr, 2016/679/ee) and the (big) personal data in cultural institutions:
Thoughts on the gdpr compliance process. In Milena Dobreva, Annika Hinze,
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