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Résumé
Cette thèse est le fruit de recherches menées entre 2019 et 2023, réparties en trois parties. Dans la première
partie, nous étudions des questions liées à la pandémie du Covid-19, telles que les tests par lots, un domaine
bien établi dans lequel les échantillons de plusieurs patients sontmélangés pour effectuer des tests collectifs. Un
telle procédure permet de réduire les coûts et d'économiser du temps. Nous proposons des algorithmes ten-
ant compte des probabilités a priori que les tests individuels soient positifs. De telles probabilités peuvent être
évaluées lors d'un examen clinique préalable du patient. Nous examinons également les tests par lots en situa-
tion d'urgence, où certains échantillons doivent être analysés en priorité. Dans les deux cas, nous proposons de
nouveaux algorithmes et les analysons en détail. Cette section traite également de la préservation de la confiden-
tialité de l'ADNdans les tests de dépistage duCovid-19. Dans la deuxième partie, nous présentons nos résultats
en mathématiques expérimentales, où nous avons découvert plusieurs nouvelles conjectures sur les fractions
continues grâce à des explorations automatisées. Toutes ces conjectures ont été testées numériquement pour
évaluer leur plausibilité. Enfin, dans la troisième partie de la thèse, nous abordons divers résultats dans le do-
maine de la sécurité informatique, tels qu'une attaque inconnue jusqu'à présent sur le logiciel Mathematica,
un nouveau mécanisme de protection contre les médicaments contrefaits, et des nouvelles observations sur les
preuves à divulgation nulle.

Mots clés : Sécurité de l'information, Tests par lots,Mathématiques expérimentales, Confidentialité de l'ADN,
Covid-19

v



Abstract
This thesis is the culmination of research conducted between 2019 and 2023. It is divided into three parts. In
the first part, we explore algorithms related to the Covid-19 pandemic, such as Pool Testing, a well-established
technique where samples from multiple patients are pooled for collective testing, allowing for cost reduction
and time savings. We propose algorithms taking into account the a priori probabilities that individual tests are
positive, which can be evaluated during a prior clinical examination of the patient. We also examine Pool Test-
ing in emergency situations, where certain samples need to be analyzed according to some prescribed priority
order. In both cases, we propose new algorithms and analyze them in detail. This section also deals with DNA
privacy preservation in Covid-19 tests. In the second part, we present our results in experimental mathematics,
where we have discovered several new conjectures on continued fractions through automated exploration. All
those conjectures have been numerically tested to assess their plausibility. Finally, the third part of this the-
sis is devoted to various results in the field of computer security, such as a previously unknown attack on the
Mathematica software, a new protection mechanism against counterfeit medication, and new observations on
zero-knowledge proofs.

Keywords : Information Security, Pool Testing, Experimental Mathematics, DNA Privacy, Covid-19
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Chapter 1
Introduction

1 Context

This PhD thesis presents my scientific results accomplished between 2019 and 2023, which largely coincided
with the Covid-19 crisis. I had initially set out to investigate general mathematical and information security
problems, but the urgency of the pandemic crisis required an “all hands on deck” approach from the scientific
community, and scientists worldwide, myself included, put in efforts to help solve the global crisis.

In this sense, the situation provided an opportunity for me and other ENS PhD candidates to apply our
skills to the development of algorithms for optimizing and anonymizing Covid-19 tests. These algorithms not
only served a practical purpose but also involved nontrivial and beautiful mathematics, as the reader will soon
discover. Despite the challenging nature of the crisis, I was able to make significant contributions in this area,
and was able to return to my planned research in other areas as the emergency subsided.

My co-supervisor, David Naccache, assigned me a diverse range of problems from a variety of fields, in-
cluding number theory, electrics and machine learning. This diversity of work is a vital step in what David
Naccache believes a computer scientist’s education needs to include, so he encourages his students to resist
sticking to “their” areas of expertise, and to explore others. As a result of this beautiful albeit daunting jour-
ney, my research spans across diverse scientific fields and this document is thus composed of three independent
parts: Covid-19 related research, including Pool Testing and privacy-preserving tests, results in experimental
mathematics and the discovery of new conjectures, and various results in the broad area of computer security.

2 Topical Coverage of this Thesis

2.1 Covid-19-Related Research

The first part of the thesis revolves around the Covid-19 pandemic and its corollary challenges. In March 11,
2020, the World Health Organization (WHO) declared Covid-19 a pandemic [Cucinotta, 2020], making it
evident that the world was facing a crisis situation like which we have not seen since the Spanish Flu in 1918
[Robinson, 2021]. As the thenumber of cases began to rise, themedicalworldwas preparing to support the fast-
growingneeds of the population, highlighting theneed for “out-of-the-box” solutions. Notably, the importance
of testing emerged as a key factor in controlling the spread of the virus. Unfortunately, shortages in the Covid-
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19 testing supply were consistently reported as a hindrance in the ability to maintain sufficient, consistent, and
equitable testing across the population [Beaudevin, 2021].

Rapid Antigen tests were only approved in August 2020, before which testing schemes relied mostly on
PCR tests, which required specialized equipment and could not be performed at home, thus adding more load
on the already-burdened medical system [Emanuel, 2020]. In addition, many countries out-sourced their test-
ing services, imposing privacy risks, as will be discussed inChapter 2 (Section 4). Evenwith the outsourcing, the
test shortages continued to be prevalent, and the need to findmore efficient and resource-effective test methods
remained a priority throughout the pandemic.

2.1.1 Pool Testing

Pool testing (or Group Testing) is a relatively new field of applied mathematics used on various practical appli-
cations. The concept of Group Testing is credited to Robert Dorfman (1943) [Dorfman, 1943] who wished
to test US servicemen for syphilis. Testing each person individually requires drawing a blood sample from each
person and then analysing each sample to determine the presence or absence of syphilis. Since this would have
been costly and time-consuming, Dorfman developed a strategy in which several samples could be tested simul-
taneously. His paper —’The Detection of Defective Members of Large Populations’ (1943) is a landmark in
the sphere of Combinatorial Group Testing.

In group testing, multiple samples are mixed, and the resulting ‘pool’, is tested using the same amount of
material or equipment that would have been required to test one individual sample. In essence, pool testing
is concerned with the classification of N units into two categories: “good” and “defective”. Any number n
of units (1 ≤ n ≤ N ) can be tested simultaneously with only one of two possible outcomes: if all units are
“good”, the result will be “good”. However, when at least one sample in the pool is positive, then the pool test
receives a “defective” result. This means that (at least) one sample in the pool is “defective”, but the test gives no
information about which one it is, or how many “defective items” are in the pool. The most naive approach is
then to re-test individually each sample, wasting even more resources.

The units are assumed to have come independently from a binomial population with common probability
p of being “defective” and q = 1− p of being “good”. The challenge in pool testing is to devise a scheme,
preferably sequential, using the minimal number of tests needed to classify all of theN units as either “good”
or “defective” [Pasternack, 1974].

Throughout the years betweenDorfman’s development and the pandemic in 2020, pool testing has already
been used to screen large portions of the population in scarcely-infected areas (or as a best-effort measure, when
test availabilitywas low). Pool testing has been successfully used to identify viral diseases, such asHIV [Nguyen,
2019], ZIKA [Bierlaire, 2017], and Influenza [Van, 2012]. In addition, pool testing has been suggested as a
screening method for routine HCV, HBV, and HIV -1 PCR donors for blood-banks [Roth, 1999].

The idea of using pool testing in light of the global pandemic in 2020 was suggested by many researchers
and applied in many countries. By July 2020, it was already in use in dozens of countries as a main testing
scheme. But there are various ways of performing pool testing: from halving methods, through triplet testing,
matrix testing etc., all in search for the most efficient way to get the maximum information with the minimum
of resources.

The section entitled “Optimal Covid-19 Pool Testing with a priori Information” describes how to opti-
mally detect infected patients in pools, meaning, using a minimal number of tests to precisely identify them,
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given the a priori probabilities that each of the patients is healthy. Those probabilities can be estimated using
questionnaires, supervised machine learning or clinical examinations. The resulting algorithms, which can be
interpreted as informed divide-and-conquer strategies, are non-intuitive and quite surprising.

The section entitled “Near-Optimal Pool Testing under Urgency Constraints” discusses testing strategies
that provably approach best-possible strategy - optimal in the sense that no other strategy can give exact results
with fewer tests. Our algorithms guarantee that they provide a complete and exact result for every individual,
without exceeding 1

0.99 times the number of tests the optimal strategywould require. This threshold is arbitrary:
algorithms closer to the optimal bound can be described, however their complexity increases, making them less
practical. Moreover, theway the algorithms process input samples leads to some individuals’ status to be known
sooner, thus allowing to take urgency into account when assigning individuals to tests.

2.1.2 DNA Privacy Security

Privacy can be defined as the “claim of an individual to determine what information about himself or herself
should be known to others” [Westin, 1967]. Over the last two decades, and specifically with the rise in use
of social media, the right to privacy has been a growing concern for many people. In his book Three Floors
Up, the Israeli author Eshkol Nevo writes “There are no secrets in the modern era. Everything is bared, aired,
shared,Twittered and Flickered; you can Snapchat andWhatsApp andViber andWiki. Nothing is secret, privacy
is dead, and the funeral will be broadcast on the Reality Channel” [Nevo, 2017].

While some believe that the idea of privacy is a modern phenomenon and that the protection of privacy
has evolved “not despite new technologies, but because of them” [Salecl, 2002], the notion of having a separate
private sphere is actually very old. The right to privacy is not specifically mentioned in the American Constitu-
tion, but a discussion about this concept was documented as early as 1890, in a review article written by Samual
D. Warren and Louis D. Brandeis, in which they argued that the law needed to provide protection against the
invasion of an individual’s privacy. This article is considered to have been the beginning of judicial recognition
of the right to privacy in American law.

The notion ofmedical privacy, however, predates American law. TheHippocratic oath, which was written
around the 5th century, “places an absolute duty on the physician not only to preserve the confidentiality of
medical information, but also to observe discretion about general information relating to patients to which
they may become privy in social intercourse” [Higgins, 1989].

Alan F. Westin, who is considered to have been “the father of the modern field of privacy law”, described
that following a “privacy baseline” in the years 1945-1960, three phases can be distinguished in contemporary
privacy development: 1961–1979, 1980–1989, and 1990–2002 [Westin, 2003]. The Privacy Baseline period
was characterized by high public trust in government, business, and the non-profit sector and, therefore, general
public comfort with the information collection and use activities of those organizations. In these years, privacy
limits were generally accepted by the mass media, and the law addressed privacy issues in traditional constitu-
tional and common law concepts. In other words, “Privacy was essentially a third-level social issue—interesting
but neither primary nor even secondary in social and political salience” [Westin, 2003].

In the years 1961–1979, with the growth of popular media, the expansion of computers into more and
more daily domains, there was a marked rise in physical, psychological, and data surveillance technologies. At
the same time, this was an era of increased socio-political turbulence spurred by events such as the war in Viet-
nam, Watergate, racial discrimination, and other phenomena, which lead to a increased focus on the notion of
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individuality, human rights protests and distrust towards governments. Needless to say, this also had an impact
on privacy. Westin writes: “In socio-cultural terms, this era saw fundamental change in public and private al-
locable criteria, limiting overt discrimination based on race, gender, family-life conformity, sexual activity, and
the like. This required revising all business and government record systems that embedded the older criteria,
transforming these personal characteristics into private matters”.

In 1980-1989 many technological advancements were made, especially in the area of computers, and in
particular, the introduction of personal computers (PC). Since PCs were not connected to each other at that
time, no significant threat to privacy was posed by the increasing usage of personal computers. The public
showed ambivalence toward new information technologies; on one hand, people appreciated the benefits and
conveniences of the technologies, while on the other, worried about the potential implications of abuse of these
technologies was just beginning to emerge.

The third era of privacy development (1990-2002), according to Westin, is “the period when privacy be-
came a first-level social and political issue” [Westin, 2003]. The development of privacy as an issue became
more evident following 9/11. [Norris, 2017]. Other factors which contributed to the debate regarding privacy
were the introduction of the internet in the mid 1990s, the development of wireless communication, the de-
velopment of data-mining software, government programs blocking private use of encryption tools, and the
Human Genome Project.

Each person has a unique genome, consisting of a sequence of chromosomes. TheHumanGenomeProject
generated the sequence of the human genome, now allowing mapping the sequence of individuals. Genome
sequencing reveals a tremendous amount about an individual, more than their medical records [Greenbaum,
2011]. As DNA sequences become understood as information, the privacy of these sequences becomes an area
of public concern [Annas, 2004].

During the Covid-19 pandemic, privacy concerns were emerging regarding confinement, tracing and test-
ing. The scientific debate concerning privacy of the Covid-19 tracing efforts was intense, especially focusing
on the choice between centralised and decentralised tracing apps. The privacy concerns regarding Covid-19
testing, however, have not received as much attention even though the privacy at stake is arguably even higher.
Covid-19 tests require the collection of samples. Those samples possibly contain viral material but inevitably
also human DNA. Patient DNA is not necessary for the test but it is technically impossible to avoid collecting
it.

The unlawful preservation, or misuse, of such samples at a massive scale may hence disclose patient DNA
information with far-reaching privacy consequences. Inspired by the cryptographic concept of Indistinguisha-
bility under Chosen Plaintext Attack, which will be discussed in further detail later in this introduction, the sec-
tion entitled “Preservation of DNA privacy during the large scale detection of Covid-19” poses the blueprint
of novel types of tests allowing to detect viral presence without leaving persisting traces of the patient’s DNA.

2.2 Experimental Mathematics

Quite early in my work, the interesting online project called The Ramanujan Machine had attracted my at-
tention. I found it interesting because it promised to use the latest advancements in artificial intelligence and
machine learning to mimic the thought process of the Indian mathematician Srinivasa Ramanujan, whomade
significant contributions to number theory and other areas of mathematics in the early 20th century.

The Ramanujan Machine is a specialized software tool that aims to discover new mathematical formulae.
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The machine has produced several mathematical conjectures and some of them have been proved to be true,
while others remain as unproven. The software was conceptualized and developed by a group of undergraduate
students at the Technion under the guidance of a faculty member. The details of the machine were published
in [Raayoni, 2021] in 2021.

I found the potential for the project to contribute to the field of artificial intelligence by creating a machine
that can think mathematically extremely exciting. We hence looked into the conjectures found by the group
and attempted to generalize and explain them. Fortunately, our efforts bore fruit and, in a thread of successive
papers included in this manuscript, we explained several of the stated conjectures, found a plethora of new ones
that got recognized by the RamanjuanMachine team1.

Figure 1.1: Announcement of new results on the RamanujanMachine website - January 2023

Wewere pleased to see that the discoveries reported in this thesis were recently reported in a follow-up paper
by the RamanujanMachine [Elimelech, 2023].

2.3 Practical Contributions to Information Security

In this section, the readerwill find five contributions to computer security. The first is a conjecture (proved later
by [Zhang, 2022]) in algebra. The second is a practical attack onmathematical software presented at BlackHat
2022. We also provide a curious observation about the sinulatability of zero knowledge, and an application of
short signatures to secure medications against counterfeiting.

1http://www.ramanujanmachine.com/suggested-new-results-by-the-community
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3 Background and Definitions

Since this thesis dealswith various topics related to combinatorics, information security and experimentalmath-
ematics, this section will provide a brief introduction to some of the major notions necessary for the chapters
to follow.

3.1 Covid-19-Related Research Background

3.1.1 Indistinguishability under chosen-plaintext attack (IND-CPA)

In order for a cryptosystem to be considered secure, it needs to be able towithhold possible attacks. The Chosen-
Plaintext Attack is a method of attack that assumes the attacker has access to specific plaintext-ciphertext pairs.
This attack aims to extract information that compromises the security of the encryption scheme and uncover
details about the encryption key. The notion of indistinguishabilitymeans that it is impossible for an adversary
to distinguish pairs of ciphertexts based on the message they encrypt.

Indistinguishability under chosen-plaintext attack (IND-CPA)means that given an encryption of amessage
randomly chosen from a two-element message space determined by the adversary, the adversary will not be able
to identify themessagewith a higher probability than a randomguess (probability of 1

2 ). In otherwords, should
communication between two parties be encrypted, any passive adversary eavesdropping on this communication
should be unable to interpret or obtain any information.

Indistinguishability under chosen plaintext attack can be described as a game played between an adversary
and a challenger:

• The challenger generates a key-pair pk, sk based on some security parameter k (e.g., a key size in bits),
and publishes pk to the adversary. The challenger keeps sk a secret.

• The adversary may perform a polynomially bounded number of encryptions or other operations.

• The adversary hands the challenger two distinct chosen plaintexts: m0,m1.

• After randomly choosing a bit b ∈ {0,1}, the challenger sends back the ciphertext c= Enc(pk,mb).

• The adversary may perform any number of additional computations or encryptions.

• The adversary then guesses the value of b.

An attacker is considered to have an advantage in distinguishing the ciphertext, if they can successfully
distinguish between the chosen ciphertext with a probability significantly greater than 1

2 . Such a scheme is
therefore not considered to be secure in terms of indistinguishability.

While this description is specific to an asymmetric key cryptosystem, it can be adapted to the symmetric
case.

3.1.2 Information Entropy

Information entropy is amathematicalmeasure used to assess the level of randomness or uncertainty in a system.
It provides a quantification of how much information is needed to describe the outcomes of random events
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within the system. When a system exhibits high randomness, the information entropy is also high. On the
other hand, in deterministic systems or situations with no randomness, the information entropy is zero.

One of the significant applications of information entropy is in cryptography, where it is used to measure
the strength of cryptographic keys or secret information. It allows for the evaluation of the security level of
cryptographic algorithms. However, information entropy finds use in various other fields. It is employed in
data compression techniques to optimize storage and transmission of information. Additionally, information
entropy plays a role in anomaly detection, networking analysis, and other security-related contexts.

The concept of information entropy is closely related to the occurrence distribution of events in a system. It
dependson thenumberofpossible outcomes (alphabet size) and theprobabilities associatedwith eachoutcome.

3.2 Experimental Mathematics

Experimental mathematics is the practice of usingmathematical computations to investigate and exploremath-
ematical objects, rather than just using them to prove mathematical notions. This approach utilizes the power
of computers to run complex calculations and simulations, often using a trial-and-error method, to discover
patterns, identify numbers and sequences, and gather evidence to support specific mathematical assertions.

One of the main goals of experimental mathematics is to use computation to gain insight into mathemat-
ical phenomena that might be difficult or impossible to understand using traditional mathematical methods.
For example, using computer simulations to explore the properties of large or complex mathematical objects,
testing the validity of mathematical conjectures using numerical calculations, or using computational algebraic
techniques to prove theorems.

Another important aspect of experimentalmathematics is the use of visualization techniques to help under-
stand mathematical concepts and problems. For example, creating graphical representations of mathematical
objects or data, or using animation and other interactive tools to explore mathematical phenomena. This field
has become increasingly important in recent years, as it allows mathematicians to study problems that are too
difficult to solve using traditional methods.

3.2.1 The Birthday Paradox

The Birthday Paradox, also known asThe Birthday Problem is a veridical paradox coming from probability the-
ory, in which the actual probability is counter-intuitive, and therefore surprising when calculated. The ques-
tion is quite simple: given a set of n randomly chosen people, what is the probability that at least two will share
a birthday? The probability of a shared birthday exceeds 50% in a group of only 23 people. This result is
achieved by comparing birthday dates between every possible pair of individuals. With 23 individuals, there
are 23×22

2 = 253 pairs to consider. Given that there are 365 days a year, this number is greater than half the
possible birthdays.

The birthday problem is commonly attributed to Harold Davenport, who came across it around 1927.
However, Davenport did not publish his findings at the time, and did not take credit for discovering it as he
believed it must have been previously stated. The first published account of the problem appeared in 1939, by
Richard vonMises [VonMises, 1939].

Since then, the birthday problem has been studied by many mathematicians and statisticians, and has been
applied in various fields, including probability theory, statistics, and computer science. The problem has also
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been generalized to include various variations, such as the birthday problem with different calendars, or with
different numbers of days in a year.

The Birthday paradox has implications relevant to a cryptographic attack called the Birthday Attack. The
Birthday Attack uses a probabilistic model that reduces the complexity of finding a collision (like a shared birth-
day) for a hash function, and calculating risks of hash collisions in a given size of population. For example, see
[Wagner, 2002].

3.2.2 Mersenne Numbers

AMersenne number is a positive integer that is one less than a power of two. These numbers are named after
the French mathematicianMarinMersenne, who studied them in the 17th century. An example of aMersenne
number is 23− 1 = 7, but there are infinitely many Mersenne numbers. Mersenne numbers have a number
of interesting properties, and have been studied in many branches of mathematics, including number theory,
cryptography, and computer science. Not all values of the exponent (p) yield a prime Mersenne number; A
Mersenne numberMp = 2p−1 is prime if and only if p is prime.

3.2.3 Continued Fractions

Continued fractions are a remarkable and unique representation of real numbers. They are expressed as an
infinite or finite sequence of fractions, with an integer as the first term and subsequent terms as fractions with
integer denominators and often unit numerators. Unlike decimal or fractional representations, continued frac-
tions use an infinite sequence of nested fractions to approximate a real number. For instance, the continued
fraction representation of a real number x is denoted as [a0;a1,a2,a3, . . .], where a0 is the integer part, and
a1,a2,a3, . . . represent the successive terms. An example of a continued fraction is

√
2 = [1;2,2,2, . . .]. The

history of continued fractions dates back to the ancient Greeks, with the great mathematician Euclid being
credited with the first known algorithm for computing continued fractions. Later, the Indian mathematician
Bhaskara II made significant contributions to continued fractions in the 12th century, followed by the work of
mathematicians like Leonhard Euler and Joseph Lagrange in the 18th century.2

One of the most remarkable properties of continued fractions is their ability to provide the best rational
approximations for real numbers. Each convergent of a continued fraction [a0;a1,a2, . . . ,an] is an increasingly
accurate rational approximation of x. In fact, the convergents of a continued fraction are the best possible
rational approximations, meaning that no other fraction with a smaller denominator can be closer to the real
number x.

Example: The continued fraction representation of the irrational number
√

2 is [1;2,2,2, . . .], which can
2Note that Euler was the PhD supervisor of Lagrange, who was the supervisor of Poisson, who was the supervisor of Chasles, who

was the supervisor of Darboux, who was the supervisor of Picard, who was the supervisor of Hadamard, who was the supervisor of
Fréchet, who was the supervisor of Fortet, who was the supervisor of Cohen, who was the supervisor of David Naccache, who is my
co-supervisor.

9



be written as:
√

2 = 1+
1

2+
1

2+
1

2+
1
. . .

Continued fractions possess fascinating properties closely tied to the Euclidean algorithm, which applies
to both integers and real numbers. Any rational number p/q can be represented by two related expressions
as a finite continued fraction, wherein the coefficients ai are derived through the application of the Euclidean
algorithm to the pair (p, q). The numerical value of an infinite continued fraction is irrational, defined as the
limit of a sequence of finite continued fraction values extracted from its infinite sequence of integers. Each finite
continued fraction in the sequence is constructed by utilizing a finite prefix of the infinite continued fraction’s
defining integer sequence. Furthermore, every irrational numberα can be expressed as a unique infinite regular
continued fraction, with coefficients obtained through the non-terminating version of the Euclidean algorithm
applied to the incommensurable values α and 1. This method of representing real numbers, whether rational
or irrational, is known as their continued fraction representation.

Continued fractions play a crucial role in variousmathematical algorithms. They are employed in the fields
of cryptography, signal processing, and error correction codes, among others. The theory of continued fractions
is also deeply connected to the Farey fractions, which are rational numbers with denominators bounded by a
fixed positive integer.

3.2.4 Catalan Constant and Catalan Numbers

The Catalan constant, denoted asG,K , or C , is a significant mathematical constant found in various mathe-
matical fields, includingnumber theory and combinatorics. It is named after theBelgianmathematicianEugéne
Charles Catalan.

G is approximately equal to 0.91596559. It appears in diverse mathematical contexts, but one notable area
is its application in counting specific combinatorial structures. For instance, it helps calculate the number of
valid arrangements of parentheses in well-formed expressions. Beyond its role in combinatorics, theG is related
to othermathematical constants and functions. It arises in the evaluation of definite integrals and in the context
of polylogarithm functions. While G may not enjoy the same widespread recognition as other mathematical
constants, it holds significantmathematicalmeaning and finds applications in variousmathematical disciplines,
making it an intriguing constant.

On the other hand, Catalan numbers form a sequence of natural numbers that have various applications in
combinatorial problems. These numbers, first studied byCatalan in the 19th century, follow a specific recursive
formula and represent the count of valid combinations or structures in different scenarios. For example, Cata-
lan numbers come into play in parentheses expressions, where they represent the number of properly nested ar-
rangements of n pairs of parentheses. Additionally, they are associated with Dyck paths [Labelle, 1990], which
arepaths consistingofnup steps andndown steps that never gobelow thex-axis. Triangulations of convexpoly-
gons are also linked to Catalan numbers. The sequence of Catalan numbers starts with 1,1,2,5,14,42,132,
and continues infinitely. Each Catalan number depends on the previous numbers, resulting in intriguing pat-
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terns and relationships. These numbers find applications in various fields, including computer science, discrete
mathematics, and combinatorial optimization. Their remarkable properties make them a fascinating subject of
study in their own right, continuing to intrigue mathematicians worldwide.

In that respect, I would like to quote an excerpt of a very recent beautiful recent paper [Sloane, 2023] by
Sloane:

“I could have chosen a simpler example, like the Fibonacci numbers, but I have a particular reason for choosing
the Catalan numbers. When the OEIS was new, people would sometimes say to me that they had a sequence they
were trying to understand, and would I show them how to use the database. At least twice when I used the Catalan
sequence as an illustration, they said, ‘Why, that is my sequence! How on earth did you know?’ It was no mind-
reading trick. The Catalan numbers are certainly the most common sequence that people don’t know about. This
entry is the longest – and one of the most important – in the whole database.”
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4 Résumé de la thèse en français

4.1 Recherches liées au Covid-19

Alors que l’humanité peine à contenir l’infection mondiale de la Covid-19, les actions prophylactiques sont
grandement ralenties par la pénurie de kits de dépistage. Les gouvernements ont pris plusieurs mesures pour
pallier cette pénurie : la FDAest devenueplus libérale dans l’approbationdes tests de laCovid-19 auxÉtats-Unis.
Au Royaume-Uni, des mesures d’urgence ont permis d’augmenter le nombre quotidien de kits de test produits
localement à 100 000. La Chine a récemment lancé un vaste programme de fabrication de tests. Cependant,
tous ces efforts sont très insuffisants et de nombreux pays pauvres sont encoremenacés. Uneméthode populaire
pour réduire le nombre de tests consiste à regrouper des échantillons, c’est-à-dire à mélanger des échantillons de
patients et à tester les échantillons mélangés une fois. Si tous les échantillons sont négatifs, le regroupement
réussit à un coût unitaire. Cependant, si un seul échantillon est positif, l’échec n’indique pas quel patient est
infecté.

Le premier article de ce chapitre décrit comment détecter de manière optimale les patients infectés dans
des groupes, c’est-à-dire en utilisant un nombre minimal de tests pour les identifier précisément, compte tenu
des probabilités a priori que chacun des patients soit en bonne santé. Ces probabilités peuvent être estimées à
l’aide de questionnaires, d’apprentissage automatique supervisé ou d’examens cliniques. Les algorithmes résul-
tants, qui peuvent être interprétés comme des stratégies de diviser pourmieux régner, sont non intuitifs et assez
surprenants.

Le second article constituant ce chapitre adresse des stratégies de test qui approchent de manière prouvée
la meilleure stratégie possible - optimale dans le sens où aucune autre stratégie ne peut fournir des résultats
exacts avecmoins de tests. Nos algorithmes garantissent un résultat complet et exact pour chaque individu, sans
dépasser fois le nombre de tests que la stratégie optimale nécessiterait. Ce seuil est arbitraire : des algorithmes
plus proches de la limite optimale peuvent être décrits, mais leur complexité augmente, ce qui les rend moins
pratiques. De plus, lamanière dont les algorithmes traitent les échantillons permet de connaître plus tôt le statut
de certains patients, ce qui permet de tenir compte de l’urgence lors de l’attribution des patients aux tests.

Enfin, le chapitre adresse les préoccupations concernant la vie privée émergent du confinement, du traçage
et des tests. Le débat scientifique concernant la vie privée des efforts de traçage de la Covid-19 fut intense,
en se concentrant notamment sur le choix entre les applications de traçage centralisées et décentralisées. Les
préoccupations concernant la confidentialité de l’ADNdu patient, cependant, n’ont cependant pas reçu autant
d’attention, même si la menace potentielle vie privée en jeu est sans doute encore plus élevée. Les tests de la
Covid-19 nécessitent la collecte d’échantillons. Ces échantillons contiennent éventuellement du matériel vi-
ral mais inévitablement aussi de l’ADN humain. L’ADN du patient n’est pas nécessaire pour le test, mais il est
techniquement impossible d’éviter de le collecter. La conservation illégale, ou l’utilisation abusive, de ces échan-
tillons à grande échelle peut donc divulguer des informations sur l’ADN du patient avec des conséquences de
grande portée. Inspiré par le concept cryptographique « d’indistinguabilité sous attaque à clair choisi », cet
article pose les bases de nouveaux types de tests permettant de détecter la présence virale sans laisser de traces
persistantes de l’ADN du patient.
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4.2 Mathématiques expérimentales

Le projet de la Machine Ramanujan détecte de nouvelles expressions liées à des constantes d’intérêt, telles que
les valeurs de la fonction ζ , γ et des nombres algébriques (pour n’en citer que quelques-uns).

En particulier, le projet énumère un certain nombre de conjectures impliquant des valeurs de fonction ζ
paires et impaires, des logarithmes, etc.

Nous montrons que de nombreuses relations détectées par le projet de la Machine Ramanujan découlent
d’une observation algébrique spécifique et montrons comment en générer un nombre infini. Ainsi, un pre-
mier article dans ce chapitre fournit une preuve automatisée et/ou une explication de nombreuses relations
répertoriées comme conjectures par le projet (bien que pas toutes). Le second article constituant ce chapitre
présente les résultats d’expériences de reconnaissance de motifs sur des expressions mathématiques. Nous don-
nons quelques exemples de résultats conjecturés. Aucun d’entre eux n’a été vérifié en détail pour son caractère
novateur. Nous n’avons pas tenté de prouver toutes les relations trouvées et nous nous sommes concentrés sur
leur génération.

Une troisième contribution concerne un article [Heap, 2015] où Heap et Lindqvist donnent une formule
asymptotique pour le 2k-ème moment d’une somme de variables de Steinhaus multiplicatives. Cela a fourni
une équivalence asymptotique avec lesmoments des variables de Steinhaus. Dans [Heap, 2015], une conjecture
est formulée sur une espérance liée à un ensemble de variables aléatoiresXp, réparties uniformément sur le cercle
de l’unité avec une variance de 1 pour les nombres premiers p. Cette note améliore la borne donnée dans [Heap,
2015].

On notera qu’il est maintenant connu [Harper, 2020] que E|Sx| ≍
√

x
log logx .

La quatrième contribution du chapitre décrit une observation découverte lors d’une tentative infructueuse
de cryptanalyse.

Soit P (x,y) un polynôme bivarié avec des coefficients dans C. Formons les matrices n×n Ln dont les
éléments sont définis par P (i,j). Définissons les matricesMn = Ln− IDn.

Il semble que µ(n) = (−1)n det(Mn) soit un polynôme en n que nous n’avons pas caractérisé.
Nous fournissons un exemple numérique.
La cinquième contribution du chapitre concerne les fractions continues ayant pour numérateur (v+ 1+

n)(v+ 2+n)(v+ 3+n)(v+ 4+n).
Soit an,v = (v+ 1+n)(v+ 2+n)(v+ 3+n)(v+ 4+n) pour v ∈ {0,−1} et soit bn,v,c,t = c((3+

v+n)2− t) pour t ∈ {0,1}.
Nous considérons les fractions continues :

Q(v,c, t) =
∞

K
n=1

(
an,v
bn,v,c,t

)

En notant d=
√
c2 + 4, nous observons que :

Q(v,c, t) = t

2
(d− c)(5v+ 8)+ (t−1)(v+ 3)(−3c3 + 3

√
d3 + c(v−13))

c2(v−2)− (v−3)2

Comme nous ne fournissons pas une preuve des relations données ici, nous ne prétendons pas qu’elles sont
des théorèmes, cependant elles ont été intensivement vérifiées par machine
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Enfin, ce chapitre de la thèse se termine par l’étude détaillée d’une collection de fractions continues im-
pliquant la constante de Catalan. Ce dernier article fournit des formules générales gouvernant ces fractions
continues. En distinguant différents cas associés à des régions dans le plan, nous surnommons ces fractions
continues « Les Balkans », car elles se divisent en zones qui sont liées mais néanmoins différentes par nature.

Là aussi, étant donné que nous ne fournissons pas de preuves formelles de ces formules construites par
machine, nous ne prétendons pas qu’elles soient des théorèmes. Néanmoins, chaque formule proposée a été
testée de manière extensive numériquement.

SoitG= 0.91596559 . . . la constante de Catalan et soitCn le n-ème nombre de Catalan.

Notons, pour n impair:

n!! =

n+1
2∏

k=1
(2k−1)

Définissons pour j impair et κ,c ∈N la fraction continue:

Qj,κ,c = j(2− j+ 2κ)+
∞

K
n=1

(−2n(c+n)(j+n−1)(1− j+ 2κ+n)

j(2− j+ 2κ)+ (3+ 4κ)n+ 3n2

)
Le résultat, auquel il est fait référence, est un procédé permettant de calculerQj,κ,c de manière exacte. Ce

procédé, dont la mise au point fut très complexe, est le suivant:
Si j ≥ 2κ+ 3: calculerQj,κ,c par sommation directe:

Qj,κ,c = j(2− j+ 2κ)+
j−2κ−1

K
n=1

(−2n(c+n)(j+n−1)(1− j+ 2κ+n)

j(2− j+ 2κ)+ (3+ 4κ)n+ 3n2

)
Si 3+κ≤ j ≤ 2κ+ 1:
Effectuer le changement de variable j′ = 2(κ+ 1)− j et calculerQj′,κ,c à l’aide des procédés suivants:
Si j = 1: Définir:

∆κ,c(α,β) =


α+βc si c < 2

−2c(2c−1)(2(c−κ)−1)2∆κ,c−2(α,β) si c≥ 2

+(8c2 +(2−8κ)c−2κ+ 1)∆κ,c−1(α,β)

Γκ,c(α,β) = (2c−1)!!2G+∆κ,c−1(α,β) ·
κ−1∏
i=0

(2(c− i)−1)

δκ =
4κ−1

(2κ−1)Cκ−1
et ρκ =

δκ(−1)κ(1−2κ)
(2κ)!(2κ−3)!!

ακ = ρκ∆1,κ−1(1,−2) et βκ = −ρκ(2κ−3)2∆2,κ−1(1,12)−ακ

Retourner Q1,κ,c =
δκ(2c)!

Γκ,c(ακ,βκ)

Si 3≤ j ≤ κ+ 2:
Définir:
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ϱ(j) = 2j
(
j−1

2
!
)2
C j−3

2

α

αj+2 =


−1 si j = 3
4
(α

αj(j−4)(j−1)j(2j−5)(2j−3)−(3j−2)ϱ(j)
)

(j−4)(j−1)(j+1) si j > 3

β

αj+2 =


115j−341 si 3≤ j ≤ 5

4
(
β

αjj(2j+1)(j−1)(2j−5)(j−4)−(3j3−17j2+11j+18)ϱ(j)

)
(j−4)(j−3)(j+1) si j > 5

α

βj+2 =


−1

3 si j = 3
4
(α

βj(j−6)(j−4)(j−2)j(j−1)(2j−7)(2j−5)−12(j2−4j+2)ϱ(j)

)
(j−6)(j−4)2(j−1)(j+1) si j > 3

Définir:

ϑ1(j) = (j−6)(j−4)(j−2)(j−1)j(2j−7)(2j−5)(−1−3j+ 2j2)

ϑ2(j) = 4(−390+ 312j+ 653j2−942j3 + 442j4−87j5 + 6j6)

ϑ3(j) = (j−6)(j−4)2(j−1)(1+ j)(13−11j+ 2j2)

β

βj+2 =


−14

3 si j = 3

4
(
β

βjϑ1(j)−ϑ2(j)ϱ(j)

)
ϑ3(j)

si j > 3

A l’aide de ces formules, itérer sur j pour calculer
α
αj ,

β
αj ,

α
βj ,

β
βj .

Définir:

π(j,κ) =

j−3
2∏

i=0
(κ− i)(2κ−2i−1)2

ℓ(n,j,κ) = (−1)κ+1(2κ)!2

κ!23κ−2(2κ− j)(2κ−1)(n((2κ− j−2)(3−2κ)−1)+ 1) ·π(j,κ)

η(n,j,κ) = (2κ+ 2j−9−2n)(2κ+ j−8−2n)(−2κ+ 5− j)(2κ+ j−6)

ϕ(n,j,κ) = 8κ2 +κ(10j−48−8n)+ 3j2− (28+ 4n)j+ 68+ 18n
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∆̄n,j,κ(α,β) =

α+βκ si κ < 2

η(n,j,κ) · ∆̄n,j,κ−2(α,β)+ϕ(n,j,κ) · ∆̄n,j,κ−1(α,β) si κ≥ 2

À l’aide des valeurs
α
αj ,

β
αj ,

α
βj ,

β
βj calculer:

αj,κ =
∆̄0,j,κ−j+2(

α
αj ,

β
αj)

ℓ(0,j,κ)
et βj,κ =

∆̄1,j,κ−j+2(
α
βj ,

β
βj)

ℓ(1,j,κ)
−αj,κ

Définir:

∆j,κ,c =


αj,κ +βj,κc si c < 2

−2c(2c− j)(2c−2κ+ j−2)(2c−2κ−1)∆j,κ,c−2 si c≥ 2

+(8c2 +(2−8κ)c+(j−2)(2κ− j))∆j,κ,c−1

fj,κ,c = C j−3
2
Cκ−1(j−2)(2κ−1)(2c−1)!!2

j−1
2∏

i=1
(2c−2κ+ 2i−1)(κ− i+ 1)

gj,κ,c = (2c)!2
j+4κ−7

2

j−1
2∏

i=1
(2c−2i+ 1)(2κ−2i+ 1)

hj,κ,c =

j−3
2∏

i=0
(2c−2i−1)

κ−1∏
i=0

(2c−2i−1)

Retourner:

Qj,κ,c =
g(j,κ,c)

∆j,κ,c−1 ·h(j,κ,c)+ f(j,κ,c) ·G

4.3 Contributions pratiques à la sécurité informatique

La première contribution du chapitre introduit un nouveau vecteur d’attaque applicable à un outil de calcul
symbolique couramment utilisé par les cryptographes (Mathematica).

L’attaque tire parti du fait que l’interface utilisateur très riche de cet outil permet d’afficher des formules en
couleur invisible ou en taille de police zéro. Cela permet de rendre invisibles certaines parties du code lorsqu’elles
sont ouvertes à l’aide de l’outil.

Nous mettons en œuvre une attaque par fautes classique grâce à ce mécanisme trompeur, mais d’autres
attaques cryptographiques ou non cryptographiques (par exemple, le formatage du disque de la victime ou
l’installation de rootkits) peuvent être facilement menées en utilisant des techniques identiques.

Cela souligne l’importance de créer des logiciels de détectionde logicielsmalveillants pour les outils de calcul
symbolique. De telles protections n’existent pas à ce jour.

Nous insistons sur le fait que notre observation n’est pas une vulnérabilité dans Mathematica mais plutôt
un abus des riches possibilités offertes par le logiciel.
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La seconde contribution du chapitre fut observée pendant la conception d’une nouvelle primitive inspirée
par Squash. Ce faisant, nous sommes accidentellement tombés sur l’observation décrite dans cette partie de la
thèse.

Soit n un nombre deMersenne de k bits dont les facteurs sont inconnus. Considérons un nombre secret x
de ℓ bits tel que x= 2k/2a+ b. Nous observons qu’il existe des configurations de paramètres où une partie de
la valeur b2 est divulguée même si k < 2ℓ.

Cette observation ne met en danger aucun schéma connu et en particulier pas Squash.
La troisième contribution du chapitre concerne la transformation de Fiat-Shamir. La transformation de

Fiat-Shamir est une technique classique permettant de transformer tout Σ-protocole à connaissance nulle en
un schéma de signature.

Essentiellement, l’idée sous-jacente à cette transformation est le fait quedériver le défiduhachagede l’engagement
supprime la possibilité de simulation et fournit donc des preuves non interactives d’interaction.

Il découle de cette observation que si l’on souhaite préserver la réfutabilité, la taille du défi (par tour) doit
être maintenue basse. Par exemple, dans le protocole Fiat-Shamir original, les auteurs recommandent 18 bits
mais suggèrent que la taille du défi puisse être augmentée pour réduire l’effort de communication, par exemple
la valeur de 20 est proposée dans [Micali, 1990].

Nous montrons qu’avec des tailles de défi relativement petites, la réfutabilité pratique peut être détruite en
contraignant artificiellement le vérifieur à utiliser une fonction de hachage ralentie ou en recourant à une agence
de confiance proposant un service de destruction la réfutabilité.

La quatrième contribution du chapitre décrit une méthode pour protéger les médicaments contre la falsifi-
cation, un problème ayant un fort impact en matière de santé publique.

Nous combinons plusieurs technologies existantes pour atteindre cet objectif. Les éléments de base util-
isés sont le hasard physique inhérent généré pendant le processus d’emballage, la vision artificielle, de courtes
signatures numériques et des codes QR.

Enfin, la thèse se termine par une observation sur un récent ePrint où Brown et Monico [Brown, 2023]
proposent de nouvelles attaques contre le schéma de signature tropical de Chen, Grigoriev et Shpilrain [Chen,
2023]. Nous proposons une nouvelle contre-mesure contre ces attaques. Ainsi, nous déplaçons (temporaire-
ment ?) le feu de l’algorithme de signature pour rediriger les attaques sur le problème de la clé et sur la factori-
sation des polynômes tropicaux.
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Chapter 2
Covid-19 Related Research

1 Introduction and Motivation

1.1 Testing for Covid-19 Infection

In 2020, the Covid-19 (Coronavirus Disease 2019) pandemic was rapidly spreading, significantly impacting
healthcare systems. As the readers know, stay-at-home and social distancing orderswere enforced inmany coun-
tries in an attempt to the control of the disease’s spread, while causing turmoil in the economic balance and in
social structures [Baker, 2020]. Rapid detection of cases and contactswas an essential component in controlling
the spread of the pandemic. In the U.S., the estimations were that at least 500,000Covid-19 tests were needed
to be performed daily in order to successfully reopen the economy[Lee, 2020]. Unfortunately, as humanity
attempted to limit the global Covid-19 infection, prophylactic actions were grandly slowed-down by the severe
shortages of Covid-19 testing kits [Ellis, 2020].

In order to put things in context, let us first provide a short background on tests for Covid-19. There are
two main types of tests for Covid-19 [FDA, 2023]:

• Diagnostic tests that detect the presence of sars-cov-2 nucleic acids in human samples. A positive result
of these tests indicates the presence of the virus in the body. Covid-19 diagnostic tests are divided into
two main sub-types:

– Molecular tests, such as polymerase chain reaction (PCR) and other nucleic acid amplification tests
(NAATs) tests, which detect genetic material called RNA from the virus.

– Antigen tests (rapid tests), which detect proteins called antigens from the virus.

• Antibody (Serological) tests that identify antibodies (e.g., IgM, IgG) to sars-cov-2 in clinical specimens
[Wang, 2020]. Serological tests canbe helpful in identifying not only thosewho are ill, but also thosewho
have been infected, as antibodies are still present in their blood. This identificationmay be important for
several reasons. First, this test can differentiate those who are immune to the virus and those who are
still at risk. Secondly, identifying populations who have antibodies can facilitate research on the use of
convalescent plasma in the development of a cure for Covid-19 [Hahn, 2020].
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As mentioned, at the early stages of the pandemic, both tests were in very short supply. Governments were
taking several measures to work around this shortage: the FDA1 had become more liberal on the approval of
Covid-19 tests via the EUA (EmergencyUse Authorization) [Hahn, 2020]; in the U.S. and the U.K. there were
attempts to boost the number of locally produced test kits to reach a throughput of 100,000 kits per day. Those
efforts could not, however, be followed by many countries and entire swaths of Africa, Asia and Latin America
appeared to be under concrete threat.

1.2 Pool Testing

One of the strategies which were considered in order to optimize the use of available tests, reduce costs and save
time, was Pool Testing (also called Group Testing). The concept is credited to Dorfman [Dorfman, 1943] who
who suggested it to detect syphilis in the U.S. military. In the technique of pool testing, several samples are
combined and analyzed together using the same resources and materials that would have been needed to test
each sample individually. This approach allows for efficient testing of multiple samples simultaneously while
conserving resources. However, when at least one sample in the pool is positive, then the pool test fails. This
means that (at least) one sample in the pool is positive, but the test gives no information about which one. The
most naive approach is then to re-test individually each sample, which can be costly and time consuming.

In Dorfman’s approach, pools of identical sizes are formed, and positive pools are retested one by one.
Using pools of size n, for a homogeneous population ofN individuals and a positive probability p, Dorfman’s
method performs on average

N

n
(1+n(1− (1−p)n))

tests. This can be inverted to yield the optimal pool size n⋆, whichmaximizes the number of tested individuals.
Dorfman shows that

n⋆ =
2

ln(1−p)
W

(
−1

2

√
− ln(1−p)

)
whereW is the LambertW function2.

Following Dorfman, many variants and improvements were suggested [Morris, 2006]. For example, Lit-
vak’s halvingmethod for pool testing involves dividing the population into pools, testing eachpool, and if a pool
tests positive, splitting it into two halves and repeating the process until individual positive cases are identified,
minimizing the number of tests required. [Litvak, 1994]. Some extensions which can leverage a priori knowl-
edge of some heterogeneity in the population [McMahan, 2012; Bilder, 2010; Black, 2012]; and combinatorial
algorithms, such as [Li, 1962; Du, 2000]. Section 2 of this chapter will provide another example. The work of
[Sterrett, 1957; Sobel, 1959] are important refinements of Durfman’s work. [Aldridge, 2019] provides a recent
survey of the topic and [Du, 2000] is the reference book on the topic. Hwang’s generalised binary-splitting
algorithm [Hwang, 1972] works by performing a binary search on groups that test positive, and is a simple al-
gorithm that finds a single defective in no more than the information-theoretic lower-bound number of tests.
This has been improved by Allemann in 2013, with an algorithm performing 0.255d+ 1

2 log2(d)+ 5.5 tests
above the information lower boundwhenn/d≥ 38 and d≥ 10, where d is the quantity of positive individuals
[Allemann, 2013].

1United States Food and Drug Administration
2This function is defined for any z ∈ C as follows: z = wew ⇐⇒ w =W (z).
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It is important to distinguish between two types of pool tests: Adaptive tests where the tested samples de-
pend on previously tested ones andNon-adaptive tests, where all the tests are planned in advance. All the testing
strategies discussed so far are adaptive, in the sense that they may retest individuals based on the result of pre-
vious tests. The search for efficient and near-optimal non-adaptive tests is still a very open problem, motivated
by the desire to perform tests in parallel and at scale, and can also be approached from an information-theoretic
angle [Coja-Oghlan, 2019].

Pool tests are also classified as either probabilistic or combinatorial. In essence, probabilistic models assume
a probability distribution and seek to optimize the average number of tests required to test all the patients. By
opposition, combinatorial algorithms seek to minimize the worst-case number of tests when the probability
distribution governing the infection is unknown.

1.2.1 Pool Testing and Shannon Entropy

The connection between pool testing and information theory was first made by Sobel andGroll in 1959 [Sobel,
1959; Aldridge, 2019]. We recall here their argument for the sake of clarity.

We consider a population, with each individual being either positive (+) or negative (−). We do not assume
anything about what this labeling means medically. However we consider that it is possible to pool-test a group
of individuals: by “mixing together” their samples, and testing the resulting mix, we obtain a certain outcome
(+ or −). If any of the samples from this pool is +, then the outcome is +. Alternatively, if the pool-test
outcome is−, then no individual from the tested group is+.

This method is well-known and practical within technical and ethical limits which are not within the scope
of this thesis. We assume that the tests have negligible error rates. We also do not take into account dilution
effects (i.e. the fact that the greater the pool is, the greater the chance is for false negative).

If the total population consists of n individuals, each carrying one information bit (whether they are+ or
−), then there is an n-bit string S describing the status of every individual. Testing one individual reveals the
corresponding bit ofS. Naturally, testing all individuals one by one reveals the complete stringS. Trivially, any
binary test (such as pool testing) reveals, again, at most one bit of information.

Shannon’s entropy measures H(S), the amount of bits necessary to describe S. Therefore, any testing
strategy providing complete and correct information on S must perform, on average, at leastH(S) tests. An
“optimal” testing strategy would perform no more thanH(S) tests. A near-optimal strategy approaches this
situation arbitrarily closely, within a ratio of 1− ϵ. In this section we chose ϵ = 0.01 to keep the exposition
simple and concrete.

Advanced testing strategies better approaching the optimum exist, but their description is more intricate
and would only result in marginal practical advantages over the strategies described in this thesis.

Finally, adaptive pool testing in the presence of a large percentage of positives is best done by individual
testing, rather than by pooling. However, the positiveness probability making individual testing optimal is not
known with certainty.

1.2.2 Related Research

Pool testing has already been used to screen large portions of the population in scarcely-infected areas (or as
a best-effort measure, when test availability was low). Pool testing has been successfully used to identify viral
diseases, such as HIV [Nguyen, 2019; Emmanuel, 1988], Zika [Bierlaire, 2017], Chlamydia [Currie, 2004],
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Malaria [Taylor, 2010], and Influenza [Van, 2012]. In addition, pool testing has been suggested as a screening
method for routine HCV, HBV, and HIV-1 PCR donors for a blood-bank [Roth, 1999].

During the Covid-19 pandemic, due to the urging need to test vast number of subjects, and with the un-
certainty about prophylactic measures, the absence of efficient treatment, atop the threat on lives and hospital
capacity, the idea of pool testing has become more and more appealing, to a point of becoming an area of in-
tense interest. To this day, testing remains the only way to catch carriers of sars-cov-2 at an early stage, which
greatly increases the hope of limiting contagion, as well as successful recovery for the individual [Ghebreyesus,
2020].

While relatively efficient and precise tests were quickly developed, producing them at scale and distributing
themwasmore of an issue. Test shortages [Erdman, 2020] and financial constraints made it necessary to reduce
the costs associatedwithmass testing, whichmade pool testing an attractive solution [Hogan, 2020; Yelin, 2020;
Sinnott-Armstrong, 2020; Shani-Narkiss, 2020; Torres, 2020; Eberhardt, 2020]. In several countries, such as
Israel [Ben-Ami, 2020], Germany [Liu, 2020], South Korea[Chang-won, 2020], and some US3 [Ryan, 2020]
and Indian4 states5 [India-Today, 2020] pool testing became the official testing procedure.

Field research focusing on reducing the number of tests [Farfan, 2020; Assad, 2020; Gollier, 2020] did
not analyse prior information strategies but instead provided simulation (or small sample) results showing the
benefits of pool testing. In most cases, the existing literature only uses pooling as a way to screen the infection
in an emerging context, not as a precise approach to identify which individuals are infected and which are not.

We also note projectsmeant to reduce the amount ofwork required for pool testing: e.g. theOrigamiAssays
[Woolf, 2020] Project, a collection of open source pool testing designs for standard 96well plates. TheOrigami
XL3 design tests 1120 patients in 94 assay wells.

Yelin et al. [Yelin, 2020] demonstrated that pool testing can be used effectively to identify one positive sars-
cov-2 result within 32 samples, and possibly within 64 samples if the cycles are amplified, with an estimated
false-negative rate of 10%. [Täufer, 2020] uses a strategy consisting in running “cross batches”, where the same
individuals are tested several times but in different pools, which eventually leads to positive sample identifica-
tion. The resulting approach ends up using more tests overall (since it tests every individual more than once)
than the strategy proposed in this work and does not exploit prior information. Similarly, Sinnott-Armstrong
et al. [Sinnott-Armstrong, 2020] suggested to identify low-risk individuals (i.e. asymptomatic and mild cases)
and to test them as a pool using a matrix-based method, so as to reduce the number of tests required by up to
eight-fold, depending on the prevalence.

Albeit the obvious advantages in pool testing, this approach does have practical limitations that make its
applicability sub-optimal: dilution while poolingmakes detection in large pools difficult6; retesting individuals
may be difficult, impossible or undesirable; the construction of the mixtures, which is done by technicians
by hand, can be time-consuming and error-prone; error rates of actual tests may be sensitive to the marker’s
concentration, and pooling may cause the result to be unexploitable due to large error margins.

This chapter is based on assumption that a successful emergency application of the refined pool testing
3e.g Nebraska.
4e.g. Uttar Pradesh, West Bengal, Punjab, Chhattisgarh, Maharashtra.
5Indian Council of Medical Research, Advisory on feasibility of using pooled samples for molecular testing of Covid-19, April 13,

2020.
6For sars-cov-2, RT-PCR tests can work with pools of size about 32 [Yelin, 2020], which is far beyond what currently done in

practice, around 5 to 10 [Hogan, 2020].
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procedures described here would improve the Covid-19 testing capacity significantly.
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2 Optimal Covid-19 Pool Testing with A Priori Information

Based on commonworkwithMarcBeunardeau, ÉricBrier,NoémieCartier, AislingConnolly,NathanaëlCourant,
Rémi Géraud-Stewart and David Naccache.

This section deals with adaptive probabilistic tests; it departs from the above approaches by assuming the
availability of extra information - the a priori probability that each given test is negative. In practice, we may
either assume that such probabilities are given, estimated from patient trust metrics, or are learned from past
Covid-19 tests. We assume in this work that these probabilities are known.

We show that it is possible to find positive samples in an optimal way, i.e., by performing on average the
minimumnumber of tests. This turns out to be faster thanblinddivide-and-conquer testing in the vastmajority
of settings.

A concrete consequence of this research is the design of testing procedures that are faster and more cost-
effective.

2.1 Intuition

Before introducing models and general formulae, let us provide the intuition behind our algorithms.
Let us begin by considering the very small case of two samples. These can be tested individually or together,

in a pool. Individual Covid-19 testing claims aminimum two units of work—check one sample, then check the
other. Pool-testing them requires a minimum of one Covid-19 test. If it is highly probable that both samples
are negative, then pool testing is interesting: If both samples are indeed negative, we canmake a conclusion after
one test and halve the Covid-19 test’s cost. However, if that fails, we are nearly back to square one: One of these
samples (at least) is positive, and we don’t know which one.

In this section, we identify when to check samples individually, and when to pool-test them instead—
including all possible generalizations when there are more than two samples. We assume that the probability of
a sample being positive is known to us in advance. The result is a testing “metaprocedure” that offers the best
alternative to sequential and individual testing.

To demonstrate: the testing procedure that always works is to test every sample individually, one after the
other: This gives the “naive procedure”, which always performs two Covid-19 tests, as illustrated in Figure
2.1. In this representation, the numbers in parentheses indicate which samples are being tested at any given
point. The leaves indicate which samples are negative (denoted 1) or positive (denoted 0), for instance the leaf
01 indicates that only the second sample is healthy. Note that the order in which each element is tested does
not matter: There are thus two equivalent naive procedures, namely the one represented in Figure 2.1, and the
procedure obtained by switching the testing order of (1) and (2).

(1)

(2)

0001

(2)

1011

Figure 2.1: The “naive procedure” for n= 2 consists in testing each entity separately and sequentially.
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Alternatively, we can leverage the possibility to test both samples together as the set {1,2}. In this case,
pooling the pair {1,2} must be the first step: Indeed, testing {1,2} after any other test would be redundant,
and the definition of testing procedures prevents this from happening. If the test on {1,2} is negative, both
samples are negative and the procedure immediately yields the outcome 11. Otherwise, wemust identify which
of the samples 1 or 2 (or both) is responsible for the test’s positiveness. There are thus two possible procedures,
illustrated in Figure 2.2.

(1,2)

(1)

(2)

0001

10

11

(1,2)

(2)

(1)

0010

01

11

Figure 2.2: Two pooling testing procedures having (1,2) as root.

Intuitively, the possibility that this procedure terminates early indicates that, in some situations at least,
only one test is performed, and is thus less costly than the naive procedure. However, in some situations up to
three tests can be performed, in which case it is more costly than the naive procedure.

Concretely, we can compute howmanyCovid-19 tests are performed on average by each approach, depend-
ing on the probability x1 that the first sample is positive, and x2 that the second is positive. To each procedure,
naive,pool-left,pool-right, we associate the following polynomials representing the expected stopping time:

• Lnaive = 2

• Lpool-left = (1−x1)(1−x2)+ 2(1−x1)x2 + 3x1(1−x2)+ 3x1x2

• Lpool-right = (1−x1)(1−x2)+ 3(1−x1)x2 + 2x1(1−x2)+ 3x1x2

It is possible to see analytically which of these polynomials evaluates to the smallest value as a function of
(x1,x2). Looking at Figure 2.3, we use these expectations to define zones in [0,1]2 where each algorithm is
optimal (i.e. the fastest on average). More precisely, the frontier between zones C and B has equation x1 =

x2, the frontier between A and B has equation x2 = (x1− 1)/(x1− 2), the frontier between A and C has
equationx2 = (2x1−1)/(x1−1), and the three zonesmeet atx1 = x2 = (3−

√
5)/2, a well-known cutoff

value observed as early as 1960 [Ungar, 1960].
Having identified the zones, we can write an algorithm which, given x1 and x2, identifies in which zone

of Figure 2.3 (x1,x2) lies, and then apply the corresponding optimal testing sequence. In the specific case
illustrated above, three algorithms out of three were needed to define the zones; however, for any larger scenario,
we will see that only a very small portion of the potential algorithms will be carefully selected.

Our objective is to determine the zones, and the corresponding testing algorithms, for arbitrary n, so as to
identify which samples in a set are negative andwhich are not, whileminimizing the expected number of testing
operations.
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B

C

A

x1

x2

0 1
0

1

Figure 2.3: Optimality zones for n = 2. A : naive procedure; B : pooling procedure (right); C : pooling
procedure (left).

2.2 Preliminaries

This section will formalize the notion of a testing procedure, and the cost thereof, so that the problem at hand
can be mathematically described. We aim at the greatest generality, which leads us to introduce ‘and-tests’, a
special case of which are samples that can be pool tested.

2.2.1 Testing Procedures

We consider a collection ofn samples. Let [n] denote {1, . . . ,n}, and Ω = P([n])\{∅}, whereP is the power
set (ie. P(X) is the set of subsets ofX).

Definition 2.1 (Test). A test is a function ϕ : Ω→{0,1}, that associates a bit to each subset of Ω.

We focus in this work on the following:

Definition 2.2 (And-Tests). An and-test ϕ : Ω→{0,1} is a test satisfying the following property:

∀T ∈Ω, ϕ(T ) =
∧
t∈T

ϕ({t}).

In other terms, the result of an and-test on a set is exactly the logical and of the test results on individual
members of that set.

Remark 1. Note that “or-tests”, where∧ is replaced by∨ in the definition, are exactly dual to our setting. “xor-
tests” can be defined as well but are not investigated here. Although theoretically interesting by their own right,
we do not address the situation where both and-tests and or-tests are available, since we know of no concrete
application where this is the case.

Elements ofΩ canbe interpreted asn-bit strings, with the natural interpretationwhere the i-th bit indicates
whether i belongs to the subset. We call selection an element of Ω.

Definition 2.3 (Outcome). The outcome Fϕ(T ) of a test ϕ on T ∈Ω is the string of individual test results:

Fϕ(T ) = {ϕ(x),x ∈ T} ∈ {0,1}n.

When T = [n], Fϕ will concisely denote Fϕ([n]).
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Ourpurpose is to determine the outcomeof a given testϕ, byminimizing in the expected number of queries
to ϕ. Note that this minimal expectation is trivially upper bounded by n.

Definition 2.4 (Splitting). Let T ∈Ω be a selection and ϕ be a test. Let S be a subset of Ω. The positive part
of S with respect to T , denoted S⊤

T , is defined as the set

S⊤
T = {S|S ∈ S,S∧T = T} .

where the operation ∧ is performed element-wise. This splits S into two. Similarly the complement S⊥
T =

S −S⊤
T is called the negative part of S with respect to T .

We are interested in algorithms that find Fϕ. More precisely, we focus our attention on the following:

Definition 2.5 (Testing procedure). A testing procedure is a binary tree T with labeled nodes and leaves, such
that:

• The leaves of T are in one-to-one correspondence with Ω in string representation;

• EachnodeofT which is not a leaf has exactly two children, (S⊥,S⊤), and is labeled (S,T )whereS⊆Ω
and T ∈Ω, such that

– S⊥∩S⊤ = ∅

– S⊥⊔S⊤ = S

– S⊥ = S⊥
T and S⊤ = S⊤

T .

Remark 2. It follows from the definition 2.5 that a testing procedure is always a finite binary tree, and that no
useless calls to ϕ are performed. Indeed, doing so would result in an empty S for one of the children nodes.
Furthermore, the root node has S = Ω.

2.2.2 Interpreting and representing pooling procedures

S = Ω,
T = (1,2)

(1)

(2)

(3)

000001

(3)

010011

(3)

100101

(3)

110111

Figure 2.4: Graphical representation of a testing procedure. The collection is [3] = {1,2,3}, Ω =
{{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}, the initial set of selections is S = Ω. Only the T labels are
written on nodes. Only the S labels are written for leaves.
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Consider a testing procedure T , defined as above. T describes the following algorithm. At each node
(S,T ), perform the test ϕ on the selection T of samples. If ϕ(T ) = 0, go to the left child; otherwise go to the
right child. Note that at each node of a testing procedure, only one invocation of ϕ is performed.

The tree is finite and thus this algorithm reaches a leaf Sfinal in a finite number of steps. By design, Sfinal =
Fϕ.

Remark 3. From now on, we will fix ϕ and assume it implicitly.

Remark 4. We represent a testing procedure graphically as follows: Nodes (in black) are labeledwithT , whereas
leaves (in blue) are labeled with S written as a binary string. This is illustrated in Figure 2.4 for n= 3.

This representation makes it easy to understand how the algorithm unfolds and what the outcomes are:
Starting from the root, each node tells us which entity is tested. If the test is positive, the right branch is taken,
otherwise the left branch is taken. Leaves indicate which samples tested positive and which samples tested neg-
ative from now on.

Remark 5. The successive steps of a testing procedure can be seen as imposing new logical constraints. These
constraints ought to be satisfiable (otherwise one setS is empty in the tree, which cannot happen). The formula
at a leaf is maximal in the sense that any additional constraint would make the formula unsatisfiable. This
alternative description in terms of satisfiability of Boolean clauses is in fact strictly equivalent to the one that we
gave.

In that case, T is understood as a conjunction
∧

T [i]=1 ti, S is a proposition formed by a combination of
terms ti, connectors ∨ and ∧, and possibly ¬. The root has S = ⊤. The left child of a node labeled (T ,S)
is labeled S⊥

T = S ∧ (¬T ); while the right child is labeled S⊤
T = S ∧T . At each node and leaf, S must be

satisfiable.

2.2.3 Probabilities on trees

To determine how efficient any given testing procedure is, we need to introduce a probability measure, and a
metric that counts howmany calls to ϕ are performed.

We consider the discrete probability space (Ω,Pr). The expected value of a random variableX is classically
defined as:

E[X ] =
∑
ω∈Ω

X(ω)Pr(ω)

Let T a testing procedure, and let S ∈Ω be one of its leaves. The length ℓT (S) of T over S is the distance on
the tree from the root of T to the leaf S. This corresponds to the number of tests required to find S if S is the
outcome of ϕ. The expected length of a testing procedure T is defined naturally as:

LT = E [ℓT ] =
∑
ω∈Ω

ℓT (ω)Pr(ω)

It remains to specify the probabilities Pr(ω), i.e. for any given binary string ω, the probability that ω is the
outcome.

If the different tests are independent, we can answer this question directly with the following result:

Lemma 1. Assume that the events “ϕ({i}) = 1” and “ϕ({j}) = 1” are independent for i ̸= j. Then,∀ω ∈Ω,

29



Pr(ω) can be written as a product of monomials of degree 1 in x1, . . . ,xn, where

xi = Pr(ϕ({i}) = 1) = Pr(i-th bit of ω = 1).

ThusLT is a multivariate polynomial of degree nwith integer coefficients.

In fact, or-tests provide inherently independent tests. Thereforewewill safely assume that the independence
assumption holds7.

Example 2.1. Let n= 5 and ω = 11101, then Pr(ω) = x1x2x3(1−x4)x5.

Remark 6. LT is uniquely determined as a polynomial by the integer vector of length 2n defined by all its
lengths: ℓ(T ) = (ℓT (0...0), . . . ,ℓT (1...1)).

2.3 Optimal Pool Tests

We have now introduced everything necessary to state our goal mathematically. Our objective is to identify the
best performing testing procedure T (i.e. having the smallest LT ) in a given situation, i.e. knowing Pr(ω) for
all ω ∈Ω.

2.4 Generating all procedures

We can now explain how to generate all the testing procedures for a given n≥ 2.
One straightforward method is to implement a generation algorithm based on the definition of a testing

procedure. Algorithm 1 does so recursively by using a co-routine. The complete list of testing procedures is
recovered by calling FindProcedure(Ω,Ω \{∅}).

7In practice, it may be that this assumption is too optimistic: members of a given household or community are more likely to have
similar results, see [Sinnott-Armstrong, 2020]. Choosing test subjects at random rather than geographically makes this assumption
more likely to be verified.
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Algorithm 1: FindProcedure

Input: S ∈Ω,C ∈Ω.
Output: A binary tree.

• if |S|== 1 then return S

• S′
⊥ = S′

⊤ = C′ = ∅

• for each c ∈ C

• S⊥ = S⊥
c

• S⊤ = S⊤
c

• if S⊥ /∈ S′
⊥ and S⊤ /∈ S′

⊤

• S′
⊥ = S′

⊥∪{S⊥}

• S′
⊤ = S′

⊤∪{S⊤}

• C′ = C′∪{c}

• for i ∈ {1, . . . , |C′|}

• C = C−C′[i]

• for each T⊥ ∈ FindProcedure(S′
⊥[i],C)

• for each T⊤ ∈ FindProcedure(S′
⊤[i],C)

• yield (C′[i],T⊥,T⊤)

We implemented this algorithm (in Python) The result of testing procedure generations for small values of
n is summarized in Table 2.1. The number of possible testing procedures grows very quickly with n.

Table 2.1: Generation results for some small n

n Number of procedures Time

1 1 0
2 4 ∼ 0
3 312 ∼ 0
4 36585024 ∼ 30 mn

An informal description of Algorithm 1 is the following. Assuming that you have an unfinished procedure
(i.e. nodes at the end of branches are not all leaves). For those nodes S, compute for each T the sets S⊤

T and
S⊥

T . If either is empty, abort. Otherwise, create a new (unfinished) procedure, and launch recursively on nodes
(not on leaves, which are such that S has size 1).

Algorithm 1 terminates because it only calls itself with strictly smaller arguments. We will discuss this algo-
rithm further after describing some properties of the problem at hand.

2.5 Metaprocedures

Once the optimality zones and the corresponding testing procedures, have been identified, it is easy to write an
algorithm which calls the best testing procedure in every scenario. At first sight, it may seem that nothing is
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gained from doing so— but as it turns out that only a handful of procedures need to be implemented.
This construction is captured by the following definition:

Definition 2.6 (Metaprocedure). AmetaprocedureM is a collection of pairs (Zi,Ti) such that:

• Zi ⊆ [0,1]n,Zi∩Zj = ∅whenever i ̸= j and
⊔

iZi = [0,1]n.

• Ti is a testing procedure and for any testing procedure T ,

∀x ∈ Zi, LTi(x) ≤ LT (x).

A metaprocedure is interpreted as follows: Given x ∈ [0,1]n find the unique Zi that contains x and run the
corresponding testing procedure Ti. We extend the notion of expected length accordingly:LM = miniLTi ≤
n.

One way to find the metaprocedure for n, is to enumerate all the testing procedures using Algorithm 1,
compute all expected lengthsLT from the tree structure, and solve polynomial inequalities.

Surprisingly, a vast majority of the procedures generated are nowhere optimal: This is illustrated in Ta-
ble 2.2. Furthermore, amongst the remaining procedures, there is a high level of symmetry. For instance, in the
case n = 3, eight procedures appear 6 times, one procedure appears 3 times, and one procedure appears once.
The only difference between the occurrences of these procedures—which explains why we count them several
times— is the action of the symmetric group S6 on the cube (see section2.11 for a complete description).

The metaprocedure for n = 3 cuts the unit cube into 52 zones, which correspond to a highly symmetric
and intricate partition, as illustrated in Figures 2.5, 2.6, and 2.7. An STLmodel was constructed and is available
upon request.

The large number of suboptimal procedures shows that the generate-then-eliminate approach quickly runs
out of steam: Generating all procedures for n = 6 seems out of reach with Algorithm 18. The number of
zones, which corresponds to the number of procedures that are optimal in some situation, is on the contrary
very reasonable.

Lemma 2 (Number of naive procedures). Let n≥ 1, then there are

P (n) =
n∏

k=1
k2n−k

equivalent naive procedures.

Proof. By induction on n: There are (n+1) choices of a root node,P (n) choices for the left child, andP (n)
choices for the right child. This gives the recurrence P (n+ 1) = (n+ 1)P (n)2, hence the result.

This number grows rapidly and constitutes a lower bound for the total number of procedures (e.g. for
n = 8 we have P (n) > 2184). On the other hand, the naive procedure is the one with maximal multiplicity,
which yields a crude upper boundC2kP (n) on the number of procedures, whereCt is the t-thCatalan number
defined by:

8n= 6 is still very far from the current sars-cov-2 test pooling capacity of n= 32 or n= 64 mentioned in the introduction.
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Figure 2.5: Slices of the cube decomposition for the n = 3 metaprocedure, each colour corresponds to a dif-
ferent strategy, which is optimal at this position. The slices are taken orthogonally to the cube’s main diagonal,
with the origin at the center of each picture. Each color corresponds to a procedure. The symmetries are par-
ticularly visible.

Ct =
1

t+ 1

(
2t
t

)
∼ 4n

n3/2√π

n Number of procedures Zones

1 1 1
2 4 3
3 312 52
4 36585024 181
5 8.926 ·1020 ?
6 2.242 ·1055 ?

Table 2.2: Procedures and metaprocedures for some values of n. The number of zones for n= 5 and 6 cannot
be determined in a reasonable time with the generate-then-eliminate approach.

The zones can be determined by sampling precisely enough the probability space. Simple arguments about
the regularity of polynomials guarantee that this procedure succeeds, whenworkingwith infinite numerical pre-
cision. In practice, although working with infinite precision is feasible (using rationals), we opted for floating-
point numbers, which are faster. The consequence is that sometimes this lack of precision results in incorrect
results on the zone borders— however this is easily improved by increasing the precision or checking manually
that there is no sub-zone near the borders.
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Figure 2.6: Slices through the cube at the z = 0.17 (left) and the z = 0.33 (right) planes, showing themetapro-
cedure’s rich structure. Each colour corresponds to a different strategy, which is optimal at this position. The
origin is at the top left.

Figure 2.7: A 3D visualisation of the cube. Left: exterior, where it is visible that each face has the same de-
composition as the 2D problem; Middle: with the naive algorithm region slightly removed, showing that it
accounts for slightly less than half of the total volume; Right: exploded view of the 52 substructures (looking
from (−1,−1,−1)).
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2.6 Pruning the Generation Tree

We now focus on some of the properties exhibited by testing procedures, which allows a better understanding
of the problem and interesting optimizations. This in effect can be used to prune early the generation of pro-
cedures, and write them in a more compact way by leveraging symmetries. We consider in this section a testing
procedure T .

Lemma 3. Let B0 and B1 be two binary strings of size n, that only differ by one bit (i.e. B0[i] = 0 and
B1[i] = 1 for some i). Then ℓT (B0) ≤ ℓT (B1).

Proof. First notice that for all T , T ′, and b,b′ ∈ {⊤,⊥} we have (Sb
T )

b′
T ′ = (Sb′

T ′)b
T . We will denote both by

Sbb′
T T ′ .
We have the following : If there exists k, T1, . . . ,Tk, and β1, . . . ,βk such that

(Ω)β1···βk
T1···Tk = {B1}

then there exists i≤ k such that
(Ω)β1···¬βi···βk

T1···Ti···Tk = {B0}

Indeed there exists i≤ k such that βi = ⊤ and Ti = {i0}∪E where for all j inE,B0[j] = B1[j] = 0. This
yields

(Ω)
β1···βi−1βi+1···βk
T1···Ti−1Ti+1···Tk = {B0,B1}

and the result follows.

Remark 7. Proposition 3 indicates that testing procedures are, in general, unbalanced binary trees: The only
balanced procedure being the naive one.

Lemma 4. IfN is the naive procedure, then for any testing procedureT and for allx1, . . . ,xn such thatxi >
1
2 ,

LN (x1, . . . ,xn) ≤ LT (x1, . . . ,xn) .

In other terms {∀i ∈ [n], 1
2 ≤ xi ≤ 1} is contained in the naive procedure’s optimality zone.

Proof. An immediate corollary of Proposition 3 is that for all i ∈ [n], we have ∂xiLT (x1, . . . ,xn) ≥ 0, where
∂xi indicates the derivative with respect to the variable xi. Since the native procedure has a constant length, it
suffices to show that it is optimal at the point {1

2 , . . . , 1
2}. Evaluating the length polynomials at this point gives

LT

(1
2

, . . . , 1
2

)
=

1
2n

∑
ω∈Ω

ℓT (ω) =
∫
[0,1]n

LT dx.

Now remember that the naive procedure gives the only perfect tree. It suffices to show that unbalancing this
tree in any way results in a longer sum in the equation above. Indeed, to unbalance the tree one needs to:

• Remove two bottom-level leaves, turning their root node into a leaf

• Turn one bottom-level leaf into a node

• Attach two nodes to this newly-created leaf
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The total impact on the sum of lengths is+1. Hence the naive algorithm is minimal at {1
2 , . . . , 1

2}, and there-
fore, in the region {∀i ∈ [n], 1

2 ≤ xi ≤ 1}.

Remark 8. This also shows that if we assume that the probabilities are supposed to be uniform (ie. we assume
no a priori knowledge) the optimal procedure is the naive one. Therefore we can see that the gain for n = 3
is approximately 0.34 since the optimal procedure in average gives 2.66. In percentage the gain is 15%. If the
probabilities are very low we have a gain of almost 2, which is 3 times faster. As expected, it is much more
interesting if we think that the samples have a good chance to be negative, which is the case in most real life
scenarii.

Lemma 5. If the root has a test of cardinality one, then the same algorithms starting at both sons have same
expected stopping time. This applies if the next test is also of cardinal one.

Proof. Without loss of generalitywe can assume that the test is{1}. Wehave{0,1}n⊤

{1} = {0b2 · · ·bn|b2 · · ·bn ∈
{0,1}n−1} and {0,1}n⊥

{1} = {1b2 · · ·bn|b2 · · ·bn ∈ {0,1}n−1}. A test T that does not test 1 applied on those
sets will give the same split for both, and the probability that the test answers yes or no is the same. This is also
true for the sets and the tests T such that i is not in T for i in {1, . . . ,k}. {0kb2 · · ·bn|b2 · · ·bn ∈ {0,1}n−k}
and {01kb2 · · ·bn|b2 · · ·bn ∈ {0,1}n−k}. A test T such that there exists i in T {1, . . . ,k} brings no infor-
mation for the set of possibilities {01kb2 · · ·bn|b2 · · ·bn ∈ {0,1}n−k}, but testing this i is useless for the set
{0kb2 · · ·bn|b2 · · ·bn ∈ {0,1}n−k}. So we can apply the test T −{1, . . . ,k}.

Corollary 1. If the root has a test of cardinal one, then an optimal algorithm can always apply the same test for
the right and left child. If this test is also of cardinal one then the property is still true.

This result helps in identifying redundant descriptions of testing procedures, and can be used to narrow
down the generation, by skipping over obvious symmetries of the naive procedure (see Figure 2.8).

(1)

(3)

(2)

000010

(2)

001011

(2)

(3)

100101

(3)

110111

Figure 2.8: Naive algorithm, where the order of tests are unimportant in the left and right branches.

To further accelerate generation we can only keep one representative of each algorithms that have the same
expected length for all xi.

Lemma 6. If a node labeled T1 has two children that are both labeled T2, then we can interchange T1 and T2

without changing the testing procedure’s expected length.

Yet another simple observation allows to reduce the set of subsets T at each step:

Lemma 7. Consider a node labeled (T ,S). Assume that there is i ∈ [n] such that, for all S in S , i /∈ S. Then
we can replace T by T ∪{i}.

Proof. We can easily see that S⊤
T = S⊤

T ∪{i} and S
⊥
T = S⊥

T ∪{i}.
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Finally we can leverage the fact that the solutions exhibit symmetries, which provides both a compact en-
coding of testing procedures, and an appreciable reduction in problem size.

Lemma 8. Let σ ∈Sn be a permutation on n elements. If we apply σ to each node and leaf of T , which we
can write σ(T ), then

Lσ(T )(x1, . . . ,xn) = LT (σ (x1, . . . ,xn)) .

Proof. Note that for any S ∈ Ω and T ∈ Ω \{∅} we have σ
(
S⊤

T

)
= S⊤

σ(T ) and σ
(
S⊥

T

)
= S⊥

σ(T ), where σ
operates on each binary string. It follows that for any leaf S, ℓT (S) becomes ℓT (σ(S)) under the action of σ,
hence the result.

Lemma 9. Let S be a simplex of the hypercube, T a procedure,E = {σ(T )|σ ∈Sn}, then there exists T0 in
E, such that for all x in S, T1 inE we have

LT0(x) ≤ LT1(x).

Moreover we have for all σ inSn, x in σ(S), T1 inE

Lσ(T0)(x) ≤ LT1(x).

Remark 9. The last two propositions allow us to solve the problem on a simplex of the hypercube (of volume
1/n!) such as {p1, . . . ,pn | 1≥ p1 · · · ≥ pn ≥ 0}.

2.7 Best Testing Procedure at a Point

We examine the following problem: Find the testing procedure T for a given k ≤ n, (pi1 , . . . ,pik) ∈ [0,1]n,
and a selection P ⊆ 2[k] that satisfies:

• ST = P ,

• T is optimal at point (pi1 , . . . ,pik)

This can be computed using a dynamic programming technique, by examining the outcome of each possible
test that is the root node of the testing procedure T , which gives Algorithm 2.

The same dynamic programming algorithm can also be used to compute the number of testing procedures
(including those leading to duplicate polynomials) that exist in a given dimension. It is actually even easier, since
there is a huge number of symmetries that can be exploited to count.9

Definition 2.7 (Decided point). We say thatx is adecided point forS a set of selections if either of the following
is true:

• x ∈ S for all S ∈ S

• x ̸∈ S for all S ∈ S

In the first case, we will say that x is a positive decided point, and a negative decided point in the second case.
We denote byD+

S the set of positive decided points of S ,D−
S its set of negative decided points, andDS =

D+
S ∪D

−
S its set of decided points.

9Indeed, we can apply the algorithm to an even higher dimension than our solution to the given point problem.
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Algorithm 2: FindOptimal

Input: k ≥ 0, (p1, . . . ,pk) ∈ [0,1]k, S ⊂ 2[k].
Output: The optimal testing procedure T at point (p1, . . . ,pk) which satisfies ST = S .

1. if k == 0 then return the naive algorithm

2. if |DS |> 0

3. U ←{u1, . . . ,uℓ}= [k] \DS

4. R← {{r1, . . . ,rp} | {ur1 , . . . ,urp}∪D+
S }

5. T ← FindOptimal (ℓ, (pu1 , . . . ,puℓ),R)

6. replace {t1, . . . , tr} by {ut1 , . . . ,utr} in T

7. replace {ℓ1, . . . ,ℓr} by {uℓ1 , . . . ,uℓr}∪D+
S in T

8. else

9. W ←∅

10. for each T ⊆ [k]

11. S⊥←S⊥
T

12. S⊤←S⊤
T

13. if S⊥ = ∅ or S⊤ = ∅ then continue

14. T⊥← FindOptimal(k, (p1, . . . ,pk),S⊥)

15. T⊤← FindOptimal(k, (p1, . . . ,pk),S⊤)

16. W ←W ∪{(T ,T⊥,T⊤)}

17. return the best algorithm inW at point (p1, . . . ,pn)

Counting the number of algorithms in a given dimensionworks the sameway; the only difference is that there is
no need to look at the probabilities, and thus, the resultingAlgorithm 3 does fewer recursive calls and is faster.10

10We are not aware of a closed-form formula providing the same values as this algorithm.
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Algorithm 3: CountAlgorithms

Input: k ≥ 0, S ⊂ 2[k].
Output: The number of testing procedures which satisfy ST = S .

1. if k == 0 then return 1

2. if |DS |> 0

3. U ←{u1, . . . ,uℓ}= [k] \DS

4. R= {{r1, . . . ,rp} | {ur1 , . . . ,urp}∪D+
S }

5. return CountAlgorithms(ℓ,R)

6. c← 0

7. for each T ⊆ [k]

8. S⊥←S⊥
T

9. S⊤←S⊤
T

10. if S⊥ = ∅ or S⊤ = ∅ then continue

11. c⊥← CountAlgorithms(k, (p1, . . . ,pk),S⊥)

12. c⊤← CountAlgorithms(k, (p1, . . . ,pk),S⊤)

13. c← c+ c⊤c⊥

14. return c

2.8 Enumerating procedures for n = 3

All the procedures for n= 3 that are optimal at some point, up to symmetries, are represented in Figure 2.9.

2.9 Conclusion and Open Questions

We have introduced the question of optimal pool testing with a priori probabilities, where one is given a set of
samples and must determine in the least average number of operations which samples are negative, and which
are not. We formalized this problem and pointed out several interesting combinatorial and algebraic properties
that speed up the computation of an optimal sequence of operations — which we call a metaprocedure. We
determined the exact solution for up to 4 samples.

For larger values, our approach requires too many computation to be tractable, and thus an exact solution
is out of reach; however we gave several heuristic algorithms that scale well. We showed that these heuristics
are sub-optimal in all cases, but they always do better than standard screening. The existence of a polynomial-
time algorithm that finds optimal metaprocedures for large value of n is an open question— although there is
probably more hope in finding better heuristics. An alternative would be to modify our generation algorithm
to kill branches when the resulting expected lengths are all worse than some already-known procedure.

Once the metaprocedure for a given n is known, which only needs to be computed once, implementation
is straightforward and only invokes a handful of (automatically generated) cases.

Finally, in ourmodel we do not consider false positives and false negatives. In other words, tests are assumed
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to be 100% accurate. Integrating in the model false positive and false negative probabilities is an interesting
research challenge.

Besides the performance gain resulting from implementing metaprocedures for sample testing, the very
general framework allows for applications in medical and engineering tests.

2.10 Approximation Heuristics

The approach consisting in generatingmany candidates, only to select a few, is wasteful. In fact, for large values
of n (even from 10), generating all the candidates is beyond reach, despite the optimizations we described.

Instead, one would like to obtain the optimal testing procedure directly. It is a somewhat simpler problem,
and we can find the solution by improving on our generation-then-selection algorithm (see subsection 2.7).
However if we wish to address larger values of n, we must relax the constraints and use the heuristic algorithms
described below, which achieve near-optimal results. This would be useful in real life scenarii for Covid-19 tests
since we would like to test hundreds or more samples to have real gain.

2.10.1 Information-Based Heuristic

We first associate a “cost” to each outcome S, and set of outcomes S :

cost(S,S) = f(S,S)+ g(S,S)

f(S,S) = #{i ∈ [n] s.t. s[i] = 1 and ∃S ∈ S,S′[i] = 0}

g(S,S) =

1 if ∃i ∈ {i ∈ [n] s.t. S[i] = 0},∃S′ ∈ S,S′[i] = 1

0 otherwise

This function approximates the smallest integern such that there existsn calls toϕwith argumentsT1, . . . ,Tn,
and β1, . . . ,βn in {⊥,⊤} with Sβ1,...,βn

T1···Tn = {S}. This function is used to define a “gain” function evaluating
howmuch information is gathered when performing a test knowing the set of outcomes:

gain(T ,S) =
∑

S∈S⊤
T

(
1− cost(S,S⊤

T )

cost(S,S)

)
Pr(S)+

∑
S∈S⊥

T

(
1− cost(S,S⊥

T )

cost(S,S)

)
Pr(S)

Intuitively, we give higher gains to subsets T on which testing gives more information. Note that, if a call to ϕ
does not give any information (i.e. S⊤

T or S⊥
T is empty), then gain(T ,S) = 0.

This heuristic provides us with a greedy algorithm that is straightforward to implement. For given values
x1, . . . ,xn we thus obtain a testing procedure TH .

2.10.1.1 Testing the heuristic. We compared numerically TH to the metaprocedure found by exhaustion
in the case n= 3. The comparison consists in sampling points at random, and computing the sample mean of
each algorithm’s length on this input. The heuristic procedure gives a mean of 2.666, which under-performs
the optimal procedure (2.661) by only 1%.

2.10.1.2 Counter-example to optimality. In some cases, the heuristic procedure behaves very differently
from themetaprocedure. For instance, forn= 3, x1 = 0.01, x2 = 0.17, x3 = 0.51, the metaprocedure yields
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a tree which has an expected length of 1.889. The heuristic however produces a tree which has expected length
1.96. Both trees are represented in Figure 2.10.

Beyond their different lengths, the main difference between the two procedures of Figure 2.10 begin at
the third node. At that node the set S is the same, namely {010,011,100,101,110,111}, but the two
procedures settle for a different T : The metaprocedure splits S, with T = {1,3}, into S⊥

T = {010} and
S⊤

T = {011,100,101,110,111}; while the heuristic chooses T = {1} instead, and gets S⊥
T = {010,011}

and S⊤
T = {100,101,110,111}.

To understand this difference, first notice that besides 010 and 011, all leaves are associated to a very low
probability. The heuristic fails to capture that by choosing T = {1,3} early, it could later rule out the leaf 010
in one step and 011 in two. There does not seem to be a simple greedy way to detect this early on.

2.10.2 Pairing Heuristic

Another approach is to use small metaprocedures on subsets of the complete problem. Concretely, given n
samples to test, place them at random into k-tuples (from some small value k, e.g. 5). Then apply the k-
metaprocedure on these tuples. While sub-optimal, this approach does not yield worst results than the naive
procedure.

In cases where it makes sense to assume that all the xi are equal, then we may even recursively use the
metaprocedures, i.e. the metaprocedures to be run are themselves placed into k-tuples, etc. Using lazy eval-
uation, only the necessary tests are performed.

2.11 Equivalences and Symmetries for n = 3

Aprocedure can undergo a transformation that leaves its expected length unchanged. Such transformations are
called equivalences. On the other hand, Lemma 8 shows that some transformations operate a permutationσ on
the variables xi — such transformations are called symmetries.

Equivalences and symmetries are responsible for a large part of the combinatorial explosion observed when
generating all procedures. By focusing on procedures up to symmetry, we can thus describe the complete set in
a more compact way and attempt a first classification.

In the following representations (Figures 2.11, 2.12, and 2.13), blue indicates a fixed part, and red indicate
a part undergoing some permutation. Double-headed arrows indicate that swapping nodes is possible. The
number of symmetries obtained by such an operation is indicated under the curly brace below.
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Figure 2.9: Optimal procedures (without permutations) for each zone when n= 3.
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Figure 2.10: The optimal metaprocedure tree (left), and heuristic metaprocedure (right) for the same point
x= (0.01,0.17,0.51). Theoptimal procedurehas expected length1.889, as compared to1.96 for theheuristic
procedure.
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Figure 2.11: Trees representation with a grouping by one element on the root. For a fixed element, we have 22

possible permutations. Since we have 4 patterns, we get 22×4 possible permutations for one grouping. Hence,
we finally have 22×4×3 for all possible groupings by one element.
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Figure 2.12: Tree representations with a grouping by two elements on the root. For 10 fixed elements, we have 2
possible permutations, for 2 fixed elements, we have 2 possible permutations, and for 2 possible permutations,
we have 6 possible permutations. Hence, we finally have 2× 10+ 4× 2+ 6× 2 for all possible groupings by
two elements.
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Figure 2.13: Trees representation with a grouping by three elements on the root. For a fixed element at the
upper left corner side, we have 22 possible permutations. For the upper right corner side, we get 22. We replace
the subroot of the fixed trees and get (22 + 22)× 3. We also have the 40× 3 trees from the grouping of two
(g = 2). Hence, we have 40×3+(22 + 22)×3
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3 Near-Optimal Pool Testing Under Urgency Constraints

Based on common work with Éric Brier, Megi Dervishi, Rémi Géraud-Stewart and David Naccache.

3.1 Introduction and Motivation

In this section, we discuss pool testing strategies from an information-theoretic perspective. From this point of
view, any single test tells us something about the status—positive or negative—of individuals in a population.
Since there is no way to learn in this fashionmore information than there is, a natural figure of merit for a given
testing strategy is to measure what proportion of the total information it collects.

We shall say throughout this section that a strategy is near-optimal when this proportion (better described
as the ratio of the average number of tests to the entropy of the tested population) exceeds 99%. Note that
this threshold is arbitrary and serves to give a concrete instantiation of our methods, yielding relatively simple
strategies.

The rest of this section describes testing strategies that are near-optimal in a range of simplified, but realistic
situations.

Our aim is to describe these strategies in a way that is immediately applicable to real-world situations, such
as detection of sars-cov-2. Their near-optimality is easy to check, and we introduce a compact graphical
notation for them.

Near-optimality does not necessarily imply optimality; however by definition no strategy can outperform
ours by more than 1% in terms of number of tests performed.

The mathematical methods and theory that enabled us to design these testing strategies are highly non-
trivial, and we defer their complete description to another research.

3.2 Preliminaries

The following subsections will describe a set of testing strategies, called algorithms and will provide a high-level
summary of the resulting performances. All mathematical computations providing performance estimates are
deferred to the appendices of this section.

3.2.1 Graphical Representation of Algorithms

To describe the proposed procedures without ambiguity, we adopt the following graphical representation:

• Each algorithm is represented as a tree read from left to right. Each node has two branches, top and
bottom, whose precise meaning is described below.

• Letters at the edges (e.g.,A,B, etc.) stand for individuals being pool-tested together at each testing step.

• Leaves indicate samples that are determined negative (denoted −) or positive (denoted +). We write
(+,−,−,+, . . . ) to mean thatA is+,B andC are−,D is+ etc.

• A bar over a letter (e.g.,A) denotes introduction, namely the operation consisting in randomly drawing
a new individual from the queue and assigning to it the concerned letter (e.g. Ameans: “draw a random
individual from the queue and denote it byA”). See Fig. 2.14.
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A
(+)
(−)

Figure 2.14: A unary test: draw a random individual from the queue and test it.

• When more than one population is sampled, the use of uppercase and lowercase letters is used to distin-
guish between the two populations.

• Branches to the bottom represent negative results, and aremarked in green. Branches to the top represent
positive results, and are marked in red. For instance, Fig. 2.14 shows the classical test of one patient.

• A leaf labeled with the letter Rmeans that the concerned individual ought to be “recycled” (or re-pooled)
in a subsequent test. The reader may be surprised that we re-pool, and may be worried that, in doing so,
we somehow lose information. However, this is not the case: as we will detail further below, since in fact,
no information was learnt about this patient.

• Finally, edges can carry orange labels (e.g., L4:A,B,C). This allows jumping to the concerned edge
and repeating a tree branch again. Note that labels are always associated with barred letters (redraw and
resume).

Remark 10. The number of individuals being tested (because of introduction), as well as the number of results
obtained out of our algorithms (because of re-pooling), depend on successive test results. Thus our algorithms
are best interpreted as “streaming” tests that progressively consume an untested population and produce indi-
vidual test results. As mentioned earlier, “untested” is to be understood in an information-theoretical sense,
and is therefore equivalent to stating that we know nothing of its test result. This operation is illustrated in
Fig. 2.15.

Untested population Tested populationA

In
tro

.

Repoolings

Figure 2.15: A high-level overview of a step during a population test, using one of our algorithms denoted here
A.

Remark 11. It may happen in practice that one or several introductions fail, due to the lack of available untested
individuals. This can only happen when the remaining untested population is small, which in practical terms
means at most a couple of times. When that happens, we can skip the introduction or equivalently we can draw
an already-tested, known-to-be-negative individual. The final result is unaffected, as is the total number of tests
performed.

3.2.2 Dealing with Urgency Constraints

Unlike other pool-testing strategies where a positive result in a pool yields no information about the individuals
consisting the pool, thismethod allows to guarantee that certain individuals in the pool will get a result. We can,
therefore, predict for which position(s) in the testing scheme results are guaranteed. This allows to prioritize
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individuals within the testing process without delaying the results of other individuals or adding more load to
the system.

For example, in Algorithm A3 below, the individuals C and E are guaranteed to receive a testing result
(negative or positive), whereas other individuals contribute information to the pool, but themselves may be
returned to the group of individuals awaiting the test, and will be tested again with another pool. In Algorithm
A4, for example, it is individualD who is guaranteed to get testing results.

3.2.3 Homogeneous and Non-homogeneous Populations

We assume prior knowledge of a risk level, in the form of a probabilityx that an individual tests positive. Several
models can be considered:

• In the homogeneous populationmodel, x is the same for every individual;

• In the non-homogeneous populationmodel, x depends on the individual being considered (e.g. weight);

• In the stratified population model, the population is divided into subgroups, which are assumed to be
homogeneous (e.g. age group).

Depending on the model and on the values of x, certain strategies are better than others. At the beginning, we
focus on the homogeneous model, providing a set of algorithms that achieve above 99% optimality in a large
range of values of x. Then we address the stratifiedmodel where we show how to combine the aforementioned
algorithms to achieve again at least 99% optimality in a large range of values of x.

3.3 Homogeneous Population Algorithms

The algorithms in this section perform tests in a homogeneous population. Wefirst describe “basic” algorithms,
which are then used to generate an infinite family of “compound” algorithms. Finally, we discuss the ranges of
probability x over which these algorithms achieve 99% optimality.

3.3.1 Basic Algorithms

3.3.1.1 AlgorithmA1.
This algorithm consists in the unary test of a single individual.

3.3.1.2 AlgorithmA2.
This algorithm performs a pairwise test with re-pooling, see Fig. 2.16.

A,B
A

(+,R)

(−,+)

(−,−)

Figure 2.16: AlgorithmA2.
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3.3.1.3 AlgorithmA3.
This algorithm performs an initial three-wise test, with subsequent introductions and re-pooling, see Fig. 2.17.

A,B,C

C,D

D,E

C

D
(R,R,+,+,R)

(R,R,+,−,+)

B
(R,+,−,+,R)

(+,−,−,+,R)

(R,R,+,−,−)

B
(R,+,−,−)
(+,−,−,−)

(−,−,−)

Figure 2.17: AlgorithmA3.

3.3.1.4 AlgorithmA4.
This algorithmperforms an initial four-wise test, then adopts a divide-and-conquer strategywhichwe generalise
below (in Section 3.3.2), see Fig. 2.18. Let us detail the operation of this algorithm. If the first test is negative,
we conclude that none ofA,B,C andD are infected and proceedwith a new set of four subjects. If the first test
is positive, we testC andD together. If this second test is positive, we conclude thatC ,D or both are infected:
we testD and conclude as before. If the second test is negative, we conclude thatC andD are not infected: we
testB and conclude as before.

A,B,C,D

C,D
D

(R,R,R,+)

(R,R,+,−)

B
(R,+,−,−)
(+,−,−,−)

(−,−,−,−)

Figure 2.18: AlgorithmA4. Note thatD is never re-pooled.

3.3.1.5 AlgorithmA5.

This algorithm is the most complex of the basic ones, and begins with a five-wise test, see Fig. 2.19.
Let us consider we are testing individualsA,B,C ,D andE together.

• If the first test is negative, we conclude that none of the five subjects is infected and can restart the algo-
rithm with a new set of individuals. Otherwise, we testA andB together.

• If the second test is positive, we re-injectC ,D andE to the pool of individuals to be tested, testB and
conclude as before forA andB. Otherwise, we conclude that at least one subject betweenC ,D andE
is infected.
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• We pick two new subjects, say F andG, and testE, F andG together.

• If the third test is negative, we conclude that E, F and G are not infected, and that C , D or both are
infected and conclude after testingC . Otherwise, we then testC ,D andG altogether.

• If this fourth test is negative, we conclude thatC ,D andG are not infected, implying thatE is infected
(sinceCDE was positive) SinceE is infected theEFG test brings no information aboutF , whichmust
be re-injected into the pool of subjects to be tested.

• If the fourth test is positive, we then testG. Otherwise, we conclude thatC ,D or both are infected (since
CDG test was positive) and thatE, F or both are infected (sinceEFG test was positive). We then test
D individually and F individually and conclude as before.

• We are left with the case where the test onG alone is positive. While we easily conclude thatG is infected,
we also conclude that theEFG andCDG tests do not bring any information aboutC ,D,E andF . It
remains however the knowledge that CDE had a positive test. We can thus go back to the position we
were after the second test, and restart the process with a new individualG′ replacingG.

Remark 12. The loopback in the process occurs rarely; the probability that this loop is taken several times
is extremely small, however it is not zero. In practice, there may be a limit on the number of times a given
individual can be tested. To avoid running in such issues it is possible to abort early by testing C alone, orD
andE together.

3.3.2 Compound Algorithms

Using the basic algorithms described in the previous section, we can build new algorithms as follows: choose an
algorithmAn, and instead of applying algorithmAn to individuals, we apply it on samples resulting from pairs
of individuals. The outputs ofAn will then need to be re-interpreted: a negative result means both members
of the pair are negative, but a positive output for a mix AB means that either A, B or both are infected. As
before, we testB. If the test onB is positive, B is infected and we gained no information aboutA. If test on
B is negative,B is not infected butA is infected.

Remark 13. This generic construction yieldsA2 andA4 fromA1 andA2 respectively. Therefore, these basic
algorithms can be considered redundant.

Starting with the sets of algorithms {A1,A3,A5}, we get an infinite family of algorithms:

A1,A2,A3,A4,A5,A6,A8,A10,A12,A16,A20,A24,A32,A40,A48,A64, . . .

3.3.3 Complexity Analysis

LetAn be one of the algorithms described above (basic or compound), we are interested in the number fn(x)

which counts howmany tests per person are needed on average to get the definitive status (positive or negative)
of every individual, as a function of the population risk level x.

3.3.3.1 AlgorithmA1. We have, obviously, f1(x) = 1.
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Figure 2.19: AlgorithmA5.
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3.3.3.2 Algorithm A3. We first compute the probability of each leaf of the graph. For example, the leaf
(−,−,−) is reached if, and only if,A,B andC are not infected, which has probability (1−ρ)3. As a second
example, the leaf (R,R,+,−,−) is reachedwhenC is infected, whileA andB are not, disregarding the status
ofA andB. As a result, the probability to reach this leaf of the graph is ρ(1−ρ)2. Summing the number of
tests needed to reach each leaf, weighted by the probability to reach this leaf, gives the average number of test
per run of the algorithm. In the same vein, summing the number of known status, weighted by the probability
to reach this leaf, gives the average number of patients whose status is discovered, per run of the algorithm.
Dividing those two average numbers yields the desired value of average number of tests needed to get the status
of one patient. For algorithmA3, the result is:

f3(x) =
2x4−6x3 + 2x2 + 6x+ 1

x3−3x2 +x+ 3
.

3.3.3.3 AlgorithmA5. Analysis is similar toA3, with one additional complication: indeed, there is a pos-
sible loop back in the algorithm. A simple way to circumvent this is to expand the loop back and consider an
infinite but rather simple graph and proceed as for f3. The infinite series that appear have closed loop expres-
sions (and are well known). We end up with:

f5(x) =
3x6−18x5 + 36x4−24x3−8x2 + 13x+ 1

(x2−x−1)(x3−5x2 + 8x−5)
.
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3.3.3.4 AlgorithmsA2n. For compound algorithms, we can express f2n as a function of fn. Let us denote
x2 the probability that at least one individual of a pair is infected, which is a simple function of x: x2 = 1−
(1−x)2 = 2x−x2.

The cost of the execution of An on a pair is on average α = fn(x2) to get the status of one pair. With
probability (1−x)2, we get the (negative) status of two patients at the cost of α tests on average. With prob-
ability x(1−x), we get the (mixed) status of two patients at the cost of α+ 1 tests in average. Finally, with
probability x, we get the (positive) status of one patient at the cost of α tests in average. The average cost for
one run is x2 + fn(x2), while the average number of statuses determined in one run is 2−x. We thus have:

f2n(x) =
x2 + fn(x2)

2−x
.

In particular, this allows us to express f2 and f4:

f2(x) =
x2−2x−1
x−2

, f4(x) =
2x4−8x3 + 12x2−8x−1

(x−2)(x2−2x+ 2)
.

54



3.3.4 Cut-off Points for Basic Algorithms

Using the functionsfn described above,we can identifywhich algorithm is thebest at a given value ofx. Because
all the fn are rational functions in x, these regions of dominance are finite unions of intervals — and in this
particular case, they are simple intervals. In other terms, we can describe an algorithm’s dominance region by
specifying a “cutoff value” at which another algorithm becomes superior.

The value γ1 is the one at which algorithmsA1 andA2 have the same performances, i.e., it is a root of the
numerator of the difference f1−f2. Therefore:

γ2
1 −3γ1 + 1 = 0

Similarly, γ2 is the cut-off point betweenA2 andA3, thus a root of f3(x)−f2(x), which yields the equation:

γ3
2 −4γ2

2 + 5γ2−1 = 0

Following this approach we obtain equations satisfied by all the cut-off points:

A2/A1 : γ2
1 −3γ1 + 1 = 0

A3/A2 : γ3
2 −4γ2

2 + 5γ2−1 = 0

A4/A3 : 2γ3
3 −7γ2

3 + 7γ3−1 = 0

A5/A4 : γ9
4 −10γ8

4 + 42γ7
4 −96γ6

4 + 127γ5
4 −91γ4

4 + 21γ3
4 + 14γ2

4 −9γ4 + 1 = 0

A6/A5 : γ9
5 −10γ8

5 + 44γ7
5 −112γ6

5 + 179γ5
5 −178γ4

5 + 98γ3
5 −16γ2

5 −8γ5 + 1 = 0

which correspond to approximate values:

γ1 = 0.381966011250105, γ2 = 0.245122333753307, γ3 = 0.170516459041503,

γ4 = 0.149636955876700, γ5 = 0.113817389150325

These values are illustrated on Fig. 2.20.

x

A
5

A
4

A
3

A
2

A
1

0 1
2

γ5 γ4 γ3 γ2 γ1

Figure 2.20: Region in which each elementary algorithm reaches > 99% optimality, as a function of probability
x.

Fig. 2.20 seems to point two shortcomings of basic algorithms: the region below γ5 and the region above
x = 1/2. For the former, we will discuss below how compound algorithms can provide a solution; for the
latter, we formulate the following:

Conjecture 1. There is no better homogeneous population algorithm thanA1 when x > γ1: patients are to
be tested individually.

Over their respective regions of dominance, we can compute the optimality of each algorithmwith respect
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to the information-theoretical bound: A1 reaches 95.9 % forA1, andA2 throughA5 all exceed 99%.
Finally, for every x < 0.23, there exists n and k ∈ 1,3,5 such thatA2nk reaches 99 % optimality. Unfortu-

nately, this fact does not help in selecting which values of n and k to choose for a given value of x.

3.4 Stratified Population Algorithms

The results of theprevious sections are very efficient forhomogeneouspopulationswith low risk level. However,
they may be sub-optimal (by several percents) across some higher risk level ranges.

This section addresses strategies consisting in mixing two groups. When facing more than two groups, the
strategies described here can also be used on pairs of groups. Further algorithms can be derived based on the
principles described in this section.

Once again, we focus on reaching the (arbitrary) minimal performance of 99%. To avoid unnecessary com-
plexity, we restrict ourselves to consider two populations, with risk levelsx and y satisfyingx< y and y < 0.23.
This ensures that we already have at hand a quasi-optimal (i.e., performance above 99%) algorithm for homo-
geneous populations with risk level y.

We also assume that the low risk population is much larger than the high-risk one. The strategy consists,
therefore, of using a mix of subjects to deal with the high-risk ones. Then, we will be left with excess of low-risk
patients, that we suggest to deal with as a homogeneous population.

3.4.1 Basic Algorithms

3.4.1.1 AlgorithmM1.
This algorithm tests pairs of typeAbwith risk level x forA and risk level y for b. Each time such test is negative,
one concludes thatA and b are not infected. Each time the testAb is positive, b is sent to a pool of patients with
probability z= y/(x+y−xy). This secondpool is tested using the best available algorithm for homogeneous
populationwith risk level z. Then, as usual, if bhappens to be negative, we conclude thatA is positive andwhen
b happens to be positive, we re-poolA.

Fig. 2.21 describes this algorithm, with test b in purple to highlight it is not a direct test on a unique sample.
Let us noteφ(z) the cost function for best available algorithm for homogeneous population with risk level

z. The function φ can be picked amongst the cost functions detailed in Section 3.3.3. The cost for execution
of algorithmM1 is then

1+(x+ y−xy) ·φ
(

y

x+ y−xy

)
.

One execution of algorithmM1 brings surely knowledge about patient b’s status and brings knowledge about
patient awith probability 1−y. As such, the overall performance ofM1 is

(1−y)H(x)+H(y)

1+(x+ y−xy) ·φ( y
x+y−xy )
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Figure 2.21: AlgorithmM1. Mixed pair test with re-pooling

3.4.1.2 AlgorithmM2.
The algorithmM2 is described in Fig. 2.22.

A,b
b,c

A

b
(+,+,R)

(+,−,+)

(−,+,R)

(+,−,−)
(−,−)

Figure 2.22: AlgorithmM2. Mixed pair test with re-pooling

3.4.1.3 AlgorithmM3.
We consider a patient A with risk level x and the other patients with risk level y. We will start with testing A
and b together. If the result is positive, we will determine the status of b, by testing b with other patients with
risk level y. See Fig. 2.23. The cost of running the algorithm is once:

(1+ y)(1+x−xy)
1−y

The algorithm provides knowledge aboutAwith probability (1−y) and the average number of patients with
risk level y whose status is determined is:

(1+x−xy)
1−y

As a result, the performance of the algorithm, in terms of average information obtained per test is

(1−y)2H(x)+ (1+x−xy)H(y)

(1+ y)(1+x−xy)

3.4.2 Combining AlgorithmsM1,M2 andM3

Depending on the values of x and y, one will choose algorithmM1,M2,M3 orM1 applied to patients
with risk level x and pairs of patients with risk level y, followed by an additional test when a pair is found to be
positive.

For all risk levels 31.25% < x < 44.18% and all risk levels 11% < y < 22%, a performance of at least
99% can be reached by one of those four algorithms. For lower risk levels y, the same technique is applied using
groups of 2n patients. There always exist n such that the probability of a group of 2n has at least one of them
infected falls in the range 31.25% < x < 44.18% and the tests needed to split the 2n groups in 2n−1 have
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Figure 2.23: AlgorithmM3. Mixed population recursive testing
.

average entropy above 99%.
As a final result, for all risk levels 31.25% < x < 44.18% and all risk levels y ≤ 22%, we have built an

algorithm that ensures at least 99% optimality.

3.4.3 AlgorithmsM4,n

Wewill now define a family of algorithms that generalizes the algorithmM1. The algorithmM4,n starts with
testing one patientA having risk levelx togetherwithn patients bi each having risk level y. If the test is negative,
the n+1 patients are negative, and we are done. In case the test is positive, we test bn then bn−1 then bn−2 and
so on. Each of these patients is tested using one of the algorithms developed for homogeneous population,
using the fact it has an a posteriori probability zi which is a function of x and y. If one of these tests is positive,
the patient bi is positive, patients bi+1 to bn are negative, and we have to re-pool patientsA and b1 to bi+1. The
remaining case is that all tests until b1 are negative. We then conclude thatA is positive.

In Section 3.4.2 we addressed the “window” x ∈ [0.3125,0.4418], where no known homogeneous algo-
rithm reaches 99% performance. The second “window” where we do not have a quasi-optimal algorithm (99%
performance) is the interval [0.2345,0.25809]. In this case, usingM4,2,M4,3,M4,4 orM4,5, we can reach
99% performance provided that the risk level y is between 6% and 18% and the associated population is “large
enough”. For cases where y is lower than 6%, we use recursively the same trick as before, creating a virtual pop-
ulation of risk level y′ = 2y−y2 by considering pairs of patients. When a pair is found positive, we test as usual
on element of the pair and conclude as in algorithmM2.

As a final result, for all risk levels 23.45% < x < 25.809% and all risk levels y ≤ 22%, we have built an
algorithm that ensures at least 99%.

Combining with Section 3.4.2, as soon as sufficiently large population with risk level y below 18% is avail-
able, we can manage a population with any risk level below 50% with efficiency at least 99%.

3.5 Alternative Compound Strategies

This part of the chapter slightly improves performance, at the price of increasing the testing design complexity.
When drawing performance curves, one can notice that algorithm A16 seems inefficient compared to its

neighbours, even if it fares better on a range of values for x. Instead of usingA16, we considerA15:

• It starts with testing groups of 15 subjects. When the first test is positive, we test a subgroup of 6 subjects.
We thus end up with a group of 6 or 9 subjects, at least one of which is infected.
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• For subgroups of 6, we test the first one using one of the algorithmA3. If negative, we test the second
one, again with algorithmA3. Either we identified an infected subject, or we are left with a subgroup of
4 subjects where one of which is infected. We perform two halving steps to conclude.

• For subgroups of 9, we split them in subgroups of 4 or 5 by testing a set of 4 patients. Groups of 5 are
again managed by testing one patient withA3. So either we are done, or we are again left with a group
of 4 patients and we apply two halving steps.

Over the range of risk level ρwhereA16 outperformsA12 andA20, the new algorithmA15 outperformsA16.
As a result, an improved sequence of algorithms is:

A1,A2,A3,A4,A5,A6,A8,A10,A12,A15,A20,A24,A30,A40,A48,A60, . . .

Another construction allows for some optimization. The technique is to deal recursively with groups of 5
subjects. When the result is positive, one has to test the first subject of the group of 5, again using recursively
previously known algorithm. If this individual is positive, one has to re-pool the other four. If this individual
is not infected, we are left with a group of 4 subjects, of which at least one is infected. Two halving steps are
performed to conclude.

Still another construction allows for some optimization. The technique is to deal recursively with groups
of 9 subjects. When the result is positive, one has to test the first individual of the group of 9, again using
recursively the previously known algorithm. If this individual is positive, one has to re-pool the other four. If
the individual is not infected, we are left with a group of 8 subjects, one of which is infected. Three halving
steps are performed to conclude.

3.6 Open Questions

Beyond the conjectures formulated in the course of this work, there are interesting questions left open for fur-
ther research:

• We assume perfect knowledge of the population risk x to select the best algorithm. It seems that a slight
error in the value of xmay in some situations cause us to select one of the neighbouring algorithms. Be-
cause the fn are rational (and hence continuous) this should have a limited effect, however this intuition
should be formalised: what is the effect of having an uncertainty on x?

• Our work builds on the assumption that dilution effects are negligible, and that tests are perfectly accu-
rate. Lifting these hypotheses is left as a question for further research.

• Assume that there are two variants V1 and V2 of a disease, and we have testsG (“generic”) and S (“spe-
cific”), so thatGdetects either of the variants andS detects only one. What are the optimal strategies then
to correctly identify individuals carrying V1 and those carrying V2? What if both variants can coexist?
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4 Preservation ofDNAPrivacyDuring the Large ScaleDetection ofCovid-19

Based on common work with Marcel Hollenstein, David Naccache, Peter B Rønne, Peter YA Ryan, and Robert
Weil.

4.1 Privacy Issues Related to Covid-19

In the attempt to control the virus’ spread during theCovid-19 pandemic,mobile software applications (tracing
apps) were developed. These apps use digital tracking that monitor contact between individuals, so as to easily
identify possible exposure to the virus. Some of these apps are based on tracking the geographical location of
app users, thus raising privacy concerns.

The scientific debate concerning privacy of the Covid-19 tracing efforts were intense, especially regarding
the choice between centralised and decentralised tracing apps [Vaudenay, 2020], and it has had political impli-
cations, such as Germany changing to a decentralised approach [Schwartz, 2020]. Oddly, the privacy concerns
regarding Covid-19 testing, however, have not received as much attention even though the privacy at stake is
arguably even higher, potentially compromising the privacy of one’s DNA.

4.2 The DNA Privacy Problem

In both types of tests (Diagnostic tests and Serological tests), the collected specimen contains the tested per-
son’s DNA. DNA is the molecule that carries the genetic instructions of all living organisms. Screening of vast
populations for the presence of the virus, inevitablymeans providing the testing agencies (clinics, governments,
airlines, etc.) with sensitive genetic information on a considerable number of individuals. Even if the sample
contains a very small amount of DNA, PCR can be used to amplify the DNA and reveal the genome [Kang,
2011]. A USB portable device, the MinION, developed by Zaaijer et al. [Zaaijer, 2017] can accurately iden-
tify human cells (“DNA re-identification”) by comparing an unknown DNA sample to a collection of known
DNA profiles, with 99.9% confidence, within three minutes of DNA sequencing.

DNA samples collected as part of Covid-19 tests are not supposed to be analyzed, and in any case, sensitive
medical information is expected to be kept confidential. However, it is common practice to preserve medical
samples to be used in further research or for prognosis monitoring.

Often times, tested individuals do not know how these samples will be used in the future. For example, in
2009, it was discovered that Texas had been collecting and storing blood andDNA samples taken frommillions
of newborns without the parents’ knowledge or consent. These samples were used by the state for genetic
experiments and for the set up of a database [Waldo, 2010].

DNA databases, or biobanks, are being maintained in many countries in the world [Williams, 2018] and
they are being used for forensic [Kayser, 2011] and research purposes. An analysis from 2012 indicates that
there is no consensus on the the need for consent to use information in biobanks [Master, 2012]. Despite the
matter’s sensitivity, the information can be accessed. In a research conducted in 2016, 95.7% of 46 biobanks
surveyed by [Capocasa, 2016] gave other researchers permission to access their samples. Despite laws and regula-
tions intended to prohibit the re-identification of anonymized data, such as Privacy Rule fromHIPAA (Health
Insurance Portability and Accountability Act of 1996), the Common Rule from the DHHS (Department of
Health and Human Services), and the Human Subject Protection Regulations and 21st Century Cures Act
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from the FDA [Lee, 2000], there have been numerous incidents of data breaches (including database hacks and
ransomware attacks) in healthcare systems [Pecci, 2017; Monica, 2017; CBC, 2016].

DNA samples stored in databases are usually coded so as to reduce their identifiability. However, it is not
impossible to track down the individual “behind” the DNA. For example, Malin and Sweeney [Malin, 2000;
Malin, 2001] demonstrated that even if kept confidential, and without being linked to identifying personal or
demographic details, DNA information can be traced to the tested patients using inferences drawn from the
DNA information.

The fact that stored DNA can be linked to the person is especially problematic given the possible use there
could be for this information. Knowing a person’s DNA provides information about racial features, potential
diseases or life span expectancy. This information can attribute to genetic discrimination. For example, an
employermay refuse to hire someone based on the likelihood that they will become ill. Similarly, exposing one’s
genetic information may impact their eligibility to life or health insurance, or to increase their premia [Board,
1998]. In this sense, the potential transfer of sensitive genetic information to a third party raises significant
ethical and legal issues [Cambon-Thomsen, 2004]. Moreover, the collection of DNA into databases can “raise
human rights concerns, including potential misuse of government surveillance (for example, identification of
relatives and non-paternity) and the risk of miscarriages of justice” [Cannataci, 2016].

Beyond the discrimination against individuals based on their genetic profiles, human rights activists have
been protesting against the mass collection of DNA samples from citizens by governments. In the past years,
China has been collectingDNA samples from citizens as part ofmandatorymedical examinations [Feng, 2017].
HumanRightsWatch activists areworried about the use of this information for “surveillance of persons because
of ethnicity, religion, opinion or other protected exercise of rights like free speech” [Haas, 2017].

The gathering ofDNA information by countries has raised concern regarding the way this information can
beused to impact populations basedongenetic characteristics. Moreover, this informationmaybedeployednot
only domestically, but internationally [Mosher, 2019a]. DNA information can be used to attack strategically
identified persons, such as diplomats, politicians, high-ranking federal officials, or military leadership, or even
to bio-engineer a disease that would be fatal to some races but not to others [Mosher, 2019b].

Refusal to undergo medical tests or procedures because of the fear of exposing genetic information to hos-
tile entities may hinder medical and scientific attempts to treat diseases and learn about them for the sake of
mankind. During the pandemic, for example, it has been reported that Israel had revoked a deal with a com-
pany selling Covid-19 testing equipment out of concern about granting the company access to Israelis’ genetic
information [Schulman, 2020]. Especially during the pandemic, when Covid-19 tests were prevalent and even
became mandatory in different settings (e.g. prior to international flights) [Cripps, 2020], the need to find a
way to conduct these tests without compromising our genetic information’s safety arises. The fact that test
samples are often sent to be analyzed in another country, e.g. [BBC, 2020], reinforces the need to form a testing
method that ensures that the samples sent do not contain identifiable DNA traces.

The rest of the section is organized as follows: in the next subsection, we describe a theoretical safety model
inspired by the cryptographic notion of Indistinguishability under Chosen Plaintext Attack. In 4.3, we describe
a testing scheme applying the theoretical safety model to create privacy preserving medical tests, and elaborate
on different approaches that could be applied. Finally, subsection 4.4 concludes the topic.
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4.3 Suggested Solution - Theoretical Model

Before describing the solution, let us provide the intuition behind our idea.
We aim to develop a DNA privacy-preserving test, or in other words, a test method that would yield the

same results, but that the DNA in the specimen tested, or in any residue of the specimen collected, will be
undetectable. We hence wish to develop a test procedure T such that:

T (DNA ♯ V ) = {positive, respositive(DNA,V )} and T (DNA) = {negative, resnegative(DNA)}

The positive and negative denote the virus’ presence or absence, respectively (the test’s result). ♯ denotes
mixing substances11. res denotes the test’s residue, i.e. whatever is left after the test procedure has been com-
pleted. While some protocols may require this residue to be treated as bio-hazardous waste and be destroyed,
residues are often preserved for future research or other purposes. Therefore, res is where unwantedDNAmay
be present, and is our main concern.

InCovid-19 tests, the sequence of operations is independent of the virus’ presence. However, in other types
of tests, the virus’ presencemay influence the sequence of operations done during the test, hence in all generality
we distinguish two types of residues in our model. In any case, the residue will differ by the remains of the virus
(or lack thereof).

The attacker’s definition (A) is inspired by the cryptographic notion of Indistinguishability under chosen-
plaintext attack (IND-CPA):
A selects two DNA samples DNA0 and DNA1 and submits them to a challenger C. C picks a random

b ∈ {0,1} and manufactures the samples:

σb,positive = DNAb ♯ V and σb,negative = DNAb

C runs T on σb,positive,σb,negative and gets:

T (σb,positive) = {positive, respositive} and T (σb,negative) = {negative, resnegative}

A gets {positive, respositive},{negative, resnegative}, performs any state of the art analyses and outputs a
guess b′.
A’s advantage is defined as:

Adv= 2|Pr[b= b′]− 1
2
|

WhenA has no advantage in learning DNA information, his only strategy is to guess b′ at random. In that
case, Pr[b′ = b] = 1

2 and hence Adv= 0.

WhenA always correctly determines b′, we have Pr[b′ = b] = 1, i.e. Adv= 1.

Note that whenA is always wrong, we have Pr[b′ = b] = 0 and hence Adv = 1. Such anA is effectively
as powerful as an A who always finds the correct answer as it suffices to negate his response to get a perfect
adversary.

11e.g. water ♯CO2 = soda
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In other words, 0≤ Adv≤ 1. The higher the advantage, the more powerfulA is.
We define T as IND-C.DNA.A12 secure13 if Adv< 10−3.

4.4 How to Build IND-C.DNA.A Tests?

We assume that the test procedure needs to be built in such a way that the tested person can trust that once the
specimen is collected, the DNA will not be identifiable. Therefore, we suggest to add a testing procedure, step
T0, which will be performed in the patient’s presence. We suggest two approaches in which this step can be
done: Mixing and Destroying.

4.4.1 DNAMixtures

We suggest to use a testing kit containing amixturem ofDNA samples, thusmaking itmore difficult to analyze,
or profile.

The complexity of a DNA mixture is determined by the number of people who contributed DNA to the
mixture, the amount ofDNA that each of them contributed, and the level ofDNAdegradation. More contrib-
utors make a mixture more complex, and therefore, more difficult to interpret [Press, 2019]. DNA profiling
requires the comparison of short segments of DNA, called alleles, which vary from person to person. As part
of the DNA profiling process, the DNA is amplified and the alleles are represented on a graph showing peaks.
The positions of those peaks indicate which alleles are present, and thus the graph is a visual representation
of the DNA in question. The DNA profiling task is based on the comparison of the pattern of those peaks.
Small amounts of DNA derived from various contributors add “noise”, called drop-in, which makes the com-
parison process more complicated. The greater the number of contributors is, themore complicated the task of
identifying which peaks go with which contributor. In addition, the PCR process during copying reaction by
the DNA polymerase creates small peaks, called stutter products, which are sometimes the same lengths as PCR
products. This can make the determination of whether a small peak is a real peak from a minor contributor or
a stutter products even more difficult.

We propose, therefore, to increase this complexity by adding a DNA mixture to the specimen collected.
Any analysis performed will be done on the mixture, and not on the individual DNA sample, thus making it
more difficult to profile the DNA.

There are four possible scenarii in attempting to identify the DNA in the mixture:

1. TheDNAof the victimx is known, and the composition of themixturem is also known. The challenge
is to determine if x is in the mixturem ♯ x or not.

2. The DNA of the victim x is known, but the composition of the mixturem is unknown. The challenge
is to determine if x is in the mixturem ♯ x or not.

3. The DNA of the victim x is unknown, but the composition of the mixturem is known. The challenge
is to isolate the DNA of the victim, x.

12Indistinguishable under Chosen DNAAttack.
13The limit can be changed according to the test’s acceptable level.
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scenario victim DNA x hiding mixturem attacker’s goal
A known known confirm x

B known unknown confirm x

C unknown known learn x
D unknown unknown learn14x

Table 2.3: Attack and protection scenarii.

4. The DNA of the victim x is unknown, and the composition of the mixturem is also unknown. The
challenge is to profile (separate) all the ∥m∥+ 1 DNAs in the mixturem ♯ x so as to learn the DNA of
the victim xwith probability 1

∥m∥+1 .

As is the case in cryptology, the above scenarii could be generalized and refined. For instance, one may
consider a scenario whereA is allowed to perform v (potentially adaptive) experiments with different mixtures
m0, . . . ,mv−1 and an identical target DNA x etc. Whilst interesting in theory, we did not consider such exten-
sions very relevant to “real world” settings.

Scenarii A and B represent a situation where the DNA of the individual is already known, and the
challenge is to authenticate its presence in the mixture. Authentication methods are commonly used in the
forensics field, where DNA found in a crime scene is compared to that of a suspect. For example, Homer et. al
[Homer, 2008] have demonstrated that it is possible to identify the presence of genomic DNA of specific indi-
viduals within a series of highly complex genomicmixtures, includingmixtures where an individual contributes
less than 0.1% of the total genomic DNA.

In this section, we address the option of attempting to identify the DNA of the individuals in the mixture
when they are unknown to the attacker (scenarii C and D ). Identification methods are intended to reveal
the identity of one contributor in amixture. Currently, thesemethods are achievedby comparingDNAsamples
to knownprofiles in a database. Wepropose solutions to prevent the possibility of identifying the genetic profile
of an individual by an attacker.

Before we proceed, we would like to introduce a subtle distinction between the equality relationship (=)
in mathematics and the chemical relationship≃ consisting in comparing two molecular mixtures.

We denote by a = b an exact equality between the chemical components a and b. However, a ≃ b will
denote the fact that a cannot be distinguished from b using current laboratory equipment with very high prob-
ability (e.g. 99%).

4.4.1.1 Dilution (scenario C ):

The idea behind this technique is to add the sample into a pre-preparedmixture containing other samples or
otherDNAs, thusmakingDNA less identifiable: misleadAby reducing his advantage, exploiting the difference
between = and ≃. The most plausible way to do so consists in adding to T , a fixed mixture of k (e.g. k =

20) human DNAs taken from existing DNA samples, or animal DNA. Adding the DNA sample to a fixed
mixture of DNA would make the process of identification significantly more complicated. However, using a
fixed mixture of DNA grants a few possible advantages toA. First, if the composition of the mixture is known

14with probability 1
∥m∥+1 .
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toA, identification of the added sample would be a relatively simple task. Second, even without being familiar
with the mixture’s composition, the characteristics of the contributors need to be taken into consideration to
avoid easy identification. For example, race factors can influence the ease with which a sample can be identified.
Thus, using a fixed DNAmixture will make the distinguishing of the DNA of the victim xmore complicated,
but not impossible.

4.4.1.2 Randomizing (scenario D ):
Another workaround, frequently used in cryptology, consists in adding randomness to T . The idea behind
randomizing is using a randommixture ofDNAintowhich the sample is added. Bydoing so, anyfixedDNAde-
fines thedistributions of residuesDpositive,DNA = {respositive(DNA,V )} andDnegative,DNA = {resnegative(DNA)}
obtained by testing this specific fixed DNA over and over again using T .

We design T in such a way that ∀DNA, the following distributions are indistinguishable:

respositive(DNA,V ) ∼ respositive and resnegative(DNA) ∼ resnegative

This mixture is not known to A, and even the number of contributors comprising the mixtures varies.
This preventsA from learning through repeated experimentation. Randomizingmakes the profiling taskmore
complicated, becauseA will have no prior knowledge about the DNA characteristics. In DNA profiling, this
is referred to as lack of Framework of Circumstances, [Forensic-Science-Regulator, 2018], which is one of the
factors that hinder DNA profiling.

The model here assumes that whenm is manufactured, each individual test kit is randomized (e.g. by the
addition of a different random assortment ofDNAmaterial) so that different tests of the same patient will yield
residues that do not leak information about the patient’s DNA.

Current profilingmethods in use in forensics allow analyzing amixture ofDNAand determining the num-
ber of DNA samples mixed into the mixture. However, separating an individual DNA from a mixture of an
unknown number of contributors of unknown DNA profiles is a much more complicated task. In order to
profile complex DNAmixtures, a software is used for computing the probability distribution for the number
of contributors [Taylor, 2014]. If the number of contributors is unknown, the computational load will be con-
siderably higher. Therefore, the Randomizing method could be applied to mask DNA and achieve our goal.

Another way of masking the DNA in question by adding randomization to the solution is to add an allelic
ladder directly to the sample solution. An allelic ladder is an artificial mixture of the common alleles present in
the human population, and it is commonly used to identify alleles in genetic profiles by comparisonwith peaks.

4.4.2 Destruction (all scenarii):

Another way to ensure that an attacker cannot access the DNA is to destroy it, thus making it unidentifiable.
We start by observing that IND-C.DNA.A cannot exist if ∃DNA0,DNA1 such that:

respositive(DNA0,V ) ̸≃ respositive(DNA1,V ) or resnegative(DNA0) ̸≃ resnegative(DNA1)

Simply becauseA can run the test by himself and compare the resulting residue to the challenger’s residue,
it follows that T0 must destroy human DNAwhile allowing subsequent testing of V .

To ensure that no DNA traces remain in the sample we suggest to destroy the DNA, leaving the RNA
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intact for the test. We propose, therefore, a model in which all human DNA is destroyed before the rt-PCR
amplification. This can be done by treating the samples with DNase, an enzyme that selectively degrades DNA
[Sato, 2014]. DNase eliminates DNA from RNA preparations prior to sensitive applications, such as rt-PCR.
Within 10 to 20 minutes [Huang, 1996; Biolabs, 2020] there will be no identifiable DNA. To ensure that viral
RNA remains intact, the DNase then needs to be inactivated by inclusion of removal reagents [Ambion, ] or
by using heat inactivation [Wiame, 2000].

Following this process, we suggest a verification of the DNase’s effectiveness. This verification process can
be done by inducing reaction causing a colour changewhich could be visible by the patient. Oneway of doing so
could be by applying gold nano-particles (AuNPs) interconnected byDNAduplexes. Without DNase activity,
the AuNPs tend to cluster, displaying a blue colour. When DNase is present, it cleaves these duplexes, causing
them to spread, which leads to a colour change fromblue to red [He, 2017; Baptista, 2008; Xu, 2007]. Another
method that could be applied is using a fluorophore-quencher system [Su, 2013]. In the absence of DNase, the
fluorophore is in close proximity of the quencher and hence no fluorescence is visible. In the presence ofDNase,
DNA is hydrolyzed and the fluorophore is free to circulate in the solution, creating a fluroscentic reactionwhich
can be easily monitored and detected as an output signal. The patient can witness the change in colour and be
convinced that all DNA has been removed. Once this step is complete, the patient is free to go, and the sample
is ready for testing.

Before we conclude, we have to consider the case of mutually distrusting parties. In this scenario, the tester
wants to ensure that the test provides accurate information (i.e. that the virus will be detected, if present), while
the patient may not trust the tester or the test kit. Theoretically speaking, we could have the patients provide
their ownDNase. Putting aside the practical logistic difficulties and unlikelihood of this solution, this solution
poses a risk of a patient intentionally using a chemical killing both DNA and virus (for example, in a scenario
of being virus-free as a condition to board a flight or enter a country). On the other hand, if the DNase is
provided by the testing agency, the patient may suspect that another chemical is used that simply emulates the
colour change. To solve this dilemma, we can have the patient be sampled twice using a classical “cut-&-choose”
approach. To both samples theDNase and supplementary chemicals are added. The tested person then chooses
one of the samples randomly, and adds his own chemical to verify the presence of DNase. The other sample is
then used for testing. This allows the tested person to detect a maliciously generated test kit with probability 1

2 ,
and of course these odds can be improved, but at the cost of multiplying the number of samples used.

To ensure the integrity of the process, a positive process control method could be integrated. This could be
done, for example, by identifying, at the end of the process, a specific reagent or a known human target which
will be deposited at the beginning of the analytical process. The presence of the target at the end of the process
will allow concluding that a negative result obtained is stemming from absence of the virus, and not from a
malfunction in the reaction or process.
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Figure 2.24: Testing followingDNAdestruction: 1 Sample is taken from the patient using swab⇒ 2 DNase
is applied to the sample, destroying DNA⇒ 3 A colourimetric method is applied⇒ 4 This demonstrates
that no DNA traces are present (Blue indicates DNA traces, red means that DNA was properly destroyed)⇒
5 The patient is now convinced that the sample can be analyzed without risk of exposing his DNA.

Note that we could also audit test kits in general, but this relies on trusted third parties, or a public proce-
dure.

4.5 Discussion

This section described a methodology in which biological specimens containing DNA taken from patients can
be processed while securing the safety and confidentiality of the DNA information contained in the specimen.
Our model relieves the patient of the expectation to trust the testing entity.

While themedical system is still based on the patients’ confidence and trust in the clinician, in the past years
there has been a shift towards more informed patients expecting to have more involvement and control over
processes and decision-making [Rowe, 2006].

Mass Covid-19 testing performed all over the world nowadays highlights the need for more secure types
of tests. The model proposed in this section can be applied not only to Covid-19, but to other types of tests
where DNA is extracted but not necessary to obtain test results. As DNA is present in any specimen collected
from the human body, every lab test has the potential of exposing one’s sensitive genetic information. The idea
described in this section will need to be adapted so as to provide protection to other types of tests.

While public awareness regarding the need to protect genetic information grows, the ability to perform
successful profiling using smaller amounts of DNA increases. The recent developments in the field of DNA
profiling now allows to analyze evenminute amounts ofDNA, called traceDNA or touchDNA. Small amounts
of DNA can be found on any surface; people shed DNA on any object or surface they touch. In this sense, one
may claim that protecting DNA information is impossible. However, it is important to note the difference
between analyzing trace amounts of DNA, and analyzing the content of a test tube containing body fluids or
mucosa. Let us consider a hypothetical case in which an attacker is interested in the DNA of a specific person.
An attacker could try to retrieve trace DNA from objects touched by that person, a cup the person drank from
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etc., but the amount of DNA retrieved would be much smaller, and the process of analyzing this DNAwould
be significantly more difficult. In addition, it is important to note that since, in the case of medical tests, the
specimen is sent for analysis in a lab, the likelihood of theDNA to be profiled increases, thus increasing the risk.

At this stage, we only offer a theoretical blueprint. Futureworkwill include laboratory experiments demon-
strating that the validity of the test is not negatively impacted by the added security phase T0 (i.e. DNAmixture
or DNA destruction).
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Chapter 3
Experimental Mathematics

1 A Note on the Ramanujan Machine

Based on common work with Éric Brier and David Naccache.

1.1 Introduction

TheRamanujanMachine project [Raayoni, 2021; David, 2021; Raayoni, 2019] detects new expressions related
to constants of interests, such as ζ function values, γ and various algebraic numbers (to name a few).

In particular the project lists several of conjectures1 concerning values of the ζ function.
We show that many of the relations detected by the RamanujanMachine Project stem from a specific alge-

braic observation and show how to generate and machine-prove infinitely many.
This provides an automated proof and/or an explanation of many of the relations listed as conjectures by

the project (although not all of them).

1.2 Theoretical Preamble

Consider continued fractions defined by the formulae

pn = bnpn−1 +anpn−2

qn = bnqn−1 +anqn−2
with the initial conditions:

p−1 = 1

p0 = b0
and

q−1 = 0

q0 = 1

Let f and g be two functions from which we build ∀n≥ 1:


an = −f(n)2

bn =
f(n+ 1)g(n+ 1)+ f(n)g(n−1)

g(n)

with the initial condition: b0 = f(1)g(1)

We further require f and g to be nonzero for positive integers.
1http://www.ramanujanmachine.com/wp-content/uploads/2022/07/results_different_zeta_orders.pdf
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Define the sequence Fn by:

Fn =
n+1∏
i=1

f(i) with the initial conditions: F−1 = 1 and F0 = f(1)

Wewill now prove by induction that

∀n≥−1,pn = Fng(n+ 1)

The above initial conditions ensure this equality for n=−1 and n= 0. Assume that the hypothesis holds
true for all values below n and let us compute:

pn = bnpn−1 +anpn−2

= bnFn−1g(n)−f(n)2Fn−2g(n−1)

= Fn−1(f(n+ 1)g(n+ 1)+ f(n)g(n−1))−f(n)Fn−1g(n−1)

= Fn−1f(n+ 1)g(n+ 1)

= Fng(n+ 1)

as desired, thereby proving a closed form for the convergents pn.
We will now handle qn by first remarking that:

qn

pn
− qn−1
pn−1

=
qnpn−1− qn−1pn

pnpn−1

The recurrence conditions for pn and qn ensure that:

qnpn−1− qn−1pn = −an(qn−1pn−2− qn−2pn−1)

Induction yields:

qnpn−1− qn−1pn = (
n∏

i=1
−an)(q−1p−2− q−2p−1)

The last term is equal to 1 given the initial conditions. The n-term product is, by the definition of the
sequence an, equal to (Fn−1)2.

We hence get:

qn

pn
− qn−1
pn−1

=
(Fn−1)2

pnpn−1

=
(Fn−1)2

Fng(n+ 1)Fn−1g(n)

=
1

f(n+ 1)g(n)g(n+ 1)

Once again, by induction (taking into account the initial values), we get:
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qn

pn
=

n∑
i=0

1
f(i+ 1)g(i)g(i+ 1)

The limitL of the continued fraction is thus given by the equation:

1
L
=

∞∑
n=0

1
f(n+ 1)g(n)g(n+ 1)

It suffices now to resort to standard partial fraction decomposition to get relations such as those given by
the RamanujanMachine Project. This is done automatically by symbolic computation software such asMath-
ematica to avoid tedious yet standard formula manipulation by hand.

Example 1.1: The Ramanujan Machine identity ζ(4)+ 4ζ(3)−8

Consider the Ramanujan Project identitya where an = −n8 and bn = n4 +(n+ 1)4 + 2(n2 +(n+

1)2). Posing g(n) = η1n+ η0 and identifying we get:

bng(n)− ((n+ 1)4g(n+ 1)+n4g(n−1)) = (1+ 2n+ 2n2)(2η0−η1) = 0

Which gives the solution {η1,η0}= {2,1} (the first example processed by our code).
aNote that our notations of an and bn are reversed with respect to theirs

The last step connecting the observation and the Ramanujan Machine Project is somewhat technical we
hence break it down into successive steps:

1.2.0.1 Step 1: TheRamanujanMachine Project considers that the an,bn defining the continued fraction
are polynomials. Because nothing in our analysis imposes that the an,bn are polynomials we can write:

1
L

=
f (1)g(1)+ f (0)g(−1)

g(0)
−

f (1)2

f (2)g(2)+f (1)g(0)
g(1) −

f (2)2

f (3)g(3)+f (2)g(1)
g(2) −

f (3)2

f (4)g(4)+f (3)g(2)
g(3) −

f (4)2

f (5)g(5)+f (4)g(3)
g(4) − ·· ·

1
L

=
f (1)g(1)+ f (0)g(−1)

g(0)
−

g(1)f (1)2

f (2)g(2)+f (1)g(0)
1 −

g(2)g(1)f (2)2

f (3)g(3)+f (2)g(1)
1 −

g(3)g(2)f (3)2

f (4)g(4)+f (3)g(2)
1 −

g(4)g(3)f (4)2

f (5)g(5)+f (4)g(3)
1 − ·· ·
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g(0)
L

=
f (1)g(1)+ f (0)g(−1)

1
−

g(1)g(0)f (1)2

f (2)g(2)+f (1)g(0)
1 −

g(2)g(1)f (2)2

f (3)g(3)+f (2)g(1)
1 −

g(3)g(2)f (3)2

f (4)g(4)+f (3)g(2)
1 −

g(4)g(3)f (4)2

f (5)g(5)+f (4)g(3)
1 − ·· ·

g(0)
L

= f (1)g(1)+ f (0)g(−1)−
g(1)g(0)f (1)2

f (2)g(2)+ f (1)g(0)−
g(2)g(1)f (2)2

f (3)g(3)+ f (2)g(1)−
g(3)g(2)f (3)2

f (4)g(4)+ f (3)g(2)− ·· ·

1.2.0.2 Step 2: In the Ramanujan Project many formulae have an an (in our notations, i.e. bn in theirs)
of the form Q = (n+α)2(n+ β)(n+ γ), i.e. with a total degree of 4 and a term having a power of two.
In many other cases the an can be written as ϕ1(n)2ϕ2(n)ϕ3(n) for some functions ϕ1,ϕ2,ϕ3. The form
(f(n)2g(n−1)g(n)) at the numerator of the continued fraction obtained in Step 1 explains why:

1.2.0.3 Step 3: Operate the change of variable n0 = n+α to get:

Q= n0
2(n0−α+β)(n0−α+γ)

1.2.0.4 Step 4: Operate the change of variables β1 = −α+β, γ1 = −α+γ to get:

Q= n0
2(n0 +β1)(n0 +γ1)

1.2.0.5 Step 5: Operate the change of variable n0 = n1(γ1−β1) to get:

Q= (n1(γ1−β1))
2(n1(γ1−β1)+β1)(n1(γ1−β1)+γ1)

1.2.0.6 Step 6: Kick the parasite factor (γ1− β1)2 out of the continued fraction and integrate it in the
limit. We get:

Q′ =
Q

(γ1−β1)2 = n1
2(n1(γ1−β1)+β1)(n1(γ1−β1)+γ1)

1.2.0.7 Step 5: Declare f(n1) = ID(n1) = n1 and g(n1) = n1(γ1−β1)+β1 to get:

Q′ = f(n1)
2g(n1)(n1(γ1−β1)+γ1)

1.2.0.8 Step 7: Observe that:

g(n1−1) = (n1−1)(γ1−β1)+γ1 = (γ1−β1)n1 +β1

and hence:
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Q′ = f(n1)
2g(n1)g(n1−1)

1.2.0.9 Step 8: Replace in the simplified continued fraction the terms of the form:

f(n)g(n)+ f(n−1)g(n−2)

by their variable-changed expression in n1.

1.2.0.10 Step 9: Light an altar candle hoping that the variable changes did not alter the initial conditions.
If so a new relation of the form an = (n+α)2(n+β)(n+γ) and bn = polynomial was found.

Remark 14. Non Polynomial Rational Fractions: Nothing in the preamble assumed that f and g are poly-
nomials or rational fractions, hence any functions satisfying the few properties announced can be used to derive
“magic” continued fractions provided that there is a way to write the infinite sum under a fancy closed form.
We give a few examples in the next section.

1.3 Implementation

The implementation assumes that f(0) = 0 to enforce the initial conditions2, sets:

an = −f(n)2 and bn =
f(n+ 1)g(n+ 1)+ f(n)g(n−1)

g(n)

and prints:

L= g(0)2
∞∑

i=0

1
f(i+ 1)g(i)g(i+ 1)

As well as the approximate numerical values of both the exact expression and the continued fraction (to
visually compare both).

For the sake of compactness we displayL and not its inverse.
The code takes f and g from an example list Ex into which the reader can plug any desirable function to

generate new relations at wish. In the listing above we changed the order of the printed formulae to fit the
longest examples in a landscape layout. In the formulaeC stands for Catalan’s constant.

2It is also possible to tweak the code to work with other initial conditions provided that q−1p−2 − q−2p−1 = 1, we did not do
this here.
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1

2 Ex={{z^4,1+2z},{z^3,z+1},{z^7,z+1},{z^4/(z+2),(z+3)},{z^5(z+1),z+1},{z^6/(z+2),(z+1)/(z^2+1)},{z^4(z
+1)/(z+2),(z+1)/(z^2+1)},{z^2,(1+Sqrt[2](z^2+z))},{z^4,(1−Sqrt[2](z^2+z))},{z^6,(1+29(z^2+z))},{z
^5,(1+4(z^2+z))},{E^(−8−2z)z^3,E^z},{E^(−8−2z)z(2+5z+2z^2)^2,E^z},{E^(−2−2z)z(1+z)^2,E^z},{E
^(−2z)z(2+z)^2,E^z},{E^(−2−2z)z(1+4z)^2,E^z},{E^(−2z)z(z+z^2)^2,E^z},{E^(−2z)z(1+2z+z^2)^2,E^z
},{E^(−2−2z)z(z+2z^2)^2,E^z},{E^(−2z)z(3z+4z^2)^2,E^z},{9z/Exp[z],Exp[z]},{(−2−3z)z,(2+z)
^10},{(−2−2z)z,(2+z)^10},{(−3−z)z,(2+z)^10},{−2z,(2+z)^10},{z(−2+3z),(2+z)^10},{3z^2,(2+z)^10},{z
(1+3z),(2+z)^10},{(2z+1)/E^z,E^z},{(2z+3)/E^z,E^z},{(2z^2+z)/E^z,E^z},{(2z^2+3z+1)/E^z,E^z},{z
^2,1+z},{z(1+2z),1+z},{z(1+3z),1+z},{z(2+z^2),2+z},{z(2+z+z^2),3+z},{z(2+2z+z^2),4+z},{z(2+4z+z
^2),3+z},{z(4+2z^2),2+z},{z(z+3z^2),1+z},{z(2z+3z^2),1+z},{z(4z+3z^2),1+z},{z(3z+4z^2),1+z},{z(3z
+4z^2),2+z}};

3

4 F:=Function[{w,x},x[[1]]/.{z−>w}];
5 G:=Function[{w,x},x[[2]]/.{z−>w}];
6 For[ i=1,i<=Length[Ex],
7 v=.;
8 CF=(F[v+1,Ex[[i]]] G[v+1,Ex[[i]]]+F[v,Ex[[ i ]]] G[v−1,Ex[[i ]]]) /G[v,Ex[[ i ]]];
9 st=N[{1,0,CF/.v−>0,1},10000];
10 For[n=1,n<= 1000,n++,
11 bn=CF/.v−>n;
12 an=−F[n,Ex[[i]]]^2;
13 st={{0,0,1,0},{0,0,0,1},{an,0,bn,0},{0,an,0,bn}}.st ];
14 formalexpr=G[0,Ex[[i ]]]^2/F[t+1,Ex[[i ]]]/ G[t,Ex[[ i ]]]/ G[t+1,Ex[[i ]]];
15 closedform=Simplify[Sum[formalexpr, {t,0,Infinity }]];
16 approxform=N[st[[4]]/st [[3]],1000];
17 Print[{closedform,N[closedform,100],N[approxform,100]}];
18 i++]

{
v
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}
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1.4 Using Formal Manipulations

Mathematica is powerful enough to take into account parametric summations. If we remove from our code
the numerical part and add parameters to the input we can get general forms in which we later set parameters
at wish.

In the following example we arbitrarily broke the result into several pieces to fit in the page:

1 Ex={{((a z)^4+(c z)^3)u,d+b(2+2z)}};
2 F:=Function[{w,x},x[[1]]/.{z−>w}];
3 G:=Function[{w,x},x[[2]]/.{z−>w}];
4 For[ i=1,i<=Length[Ex],v=.;
5 CF=(F[v+1,Ex[[i]]]G[v+1,Ex[[i]]]+
6 F[v,Ex[[ i ]]] G[v−1,Ex[[i ]]]) /G[v,Ex[[ i ]]];
7 formalexpr=
8 G[0,Ex[[ i ]]]^2/F[t+1,Ex[[i ]]]/ G[t,Ex[[ i ]]]/ G[t+1,Ex[[i ]]];
9 closedform=Simplify[Sum[formalexpr,{t,0,Infinity }]];
10 Print[{closedform}];
11 i++]

result =
ℓ1 + ℓ2 + ℓ3 + ℓ4 + ℓ5 + ℓ7 + ℓ6

6c9d3u(2b+d)2 (2bc3 −a4d) (2bc3 −a4(2b+d))

ℓ1 = 96b3
c

9(2b+d)ψ(0)
(
d

2b
+ 1
)(

bc
3
(

4b2 + 6bd+ 3d2
)

− 2a4
(

2b3 + 4b2
d+ 3bd2 +d3

))
ℓ2 = +6a16

d
3(2b+d)4ψ(0)

(
c3

a4
+ 1
)

+
(

2bc3 −a
4
d
)

ℓ3 = 384γb6
c

6
(
c

3 −a
4
)

− 32b5
c

3
d
(

6γa8 +
(

24γ−π
2
)
a

4
c

3 +
(
π

2 − 24γ
)
c

6
)
+a4

d
6
(

−6γa8 +π2
a

4
c

3 − 6c6
ζ(3)
)

ℓ4 = −16b4
d

2
(

6γa12 +
(

24γ−π
2
)
a

8
c

3 + 2a4
c

6
(

3ζ(3)− 2π2 + 18γ
)

− 2c9
(

3ζ(3)− 2π2 + 18γ
))

ℓ5 = 8b3
d

3
(

−24γa12 + 4
(
π

2 − 9γ
)
a

8
c

3 − 6a4
c

6
(

4ζ(3)−π
2 + 4γ

)
+ c9
(

18ζ(3)− 5π2 + 18γ− 6
))

ℓ6 = −2bd5
(

24γa12 + 2
(

3γ− 2π2
)
a

8
c

3 −a
4
c

6
(
π

2 − 24ζ(3)
)

− 6c9
ζ(3)
)

ℓ7 = −8b2
d

4
(

18γa12 + 3
(

4γ−π
2
)
a

8
c

3 +a4
c

6
(

18ζ(3)− 2π2 + 3γ
)
+ c9
(
π

2 − 9ζ(3)
))

This is much more practical than the blind exploration of values. Whilst the code does nothing with CF,
we left it in the program to explicit the continued fraction being calculated. The chosen example has nothing
fundamental or conceptual in it and was chosen at random for illustrative purposes.

1.5 Conclusion & Further Challenges

Given the above it appears that several of the Ramanujan Project conjectures3 can be explained and/or auto-
matically machine-proved with virtually no effort.

We did not machine-prove the online conjectures one by one as this implies retyping their polynomials, a
retro-solving for f and g by identification and computing the closed forms using formal summation to infinity.
Nonetheless, many such relations can be generated automatically quasi-instantaneously on a simple PC.

An interesting question is that of reversing continued fractions from a target constant. For instance, deter-
mine an and bn such that the continued fraction converges to a constant chosen a priori, e.g.:

3We did not exhaust all the relations listed online.
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1
L
=

100∑
i=2

ζ(i)

We did not research this challenge and leave it to readers interested in pursuing this line of investigation.
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2 Pattern Recognition Experiments on Mathematical Expressions

Based on common work with David Naccache.

2.1 Introduction

Pattern recognition is a process that involves identifying rules in data and matching them with particular case
information. Pattern recognition can be seen as a type of machine learning, as it uses machine learning algo-
rithms to recognize patterns in data. This process is characterized by the ability to learn from data, recognize
familiar patterns, and recognize patterns even if they are partially visible.

Very schematically, there are three main types of pattern recognition heuristics: statistical pattern recogni-
tion, syntactic pattern recognition, and neural pattern recognition.

• Statistical pattern recognition involves using particular case data to learn from examples and generalize
rules to new observations.

• Syntactic pattern recognition (a.k.a structural pattern recognition), involves identifying patterns based on
simpler sub-patterns called primitives. For example, opcodes can be seen as primitives that connect to
form programs.

• Neural pattern recognition relies on artificial neural networks, which are made up of many simple pro-
cessors and their connections. These networks can learn complex nonlinear input-output relationships
and adapt to data through sequential training procedures.

Most pattern recognition heuristics proceed by two steps:

• An Explorative Stage that seeks to identify patterns

• ADescriptive Stage that categorizes patterns found during exploration

In this workwe provide the results of the explorative stage of syntactic pattern recognition onmathematical
expressions. Given the nature of the objects we work on (conjectures) the descriptive stage is left to a human.

We give a few examples of conjectured results. None of which was thoroughly checked for novelty. We did
not attempt to prove all the relations found and focused on their generation.

2.2 The Pattern Recognition Algorithm

The pattern recognition algorithm has two components called the generalizer and the identifier.
The generalizer departs from a known continued fraction or a mathematical expression (a particular case)

and automatically parameterizes parts of it. The parameterized parts are target ingredients tagged by the user.
For each set of particular parameter values (taken over search space), approximated values of the formula are
collected for later analysis.

Target ingredients are replaced by progressions, denoted by µu(i), which can be constant, (alternating)
arithmetic, geometric, harmonic or exponential depending on the parameter choices. Those are captured by
the general formula:

µu(i) = u4i
u5 +(u0 + iu1)

u3ui
2
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For instance, the RamanujanMachine Project [Raayoni, 2021; David, 2021; Raayoni, 2019] re-discovered
an already known relation involving eπ . Namely, that the continued fraction defined by bn = n2 + 4 and
an = 2n+ 1 converges to:

2 (eπ + 1)
eπ−1

= 1+
12 + 4

3+
22 + 4

5+
32 + 4

7+
42 + 4

9+
. . .

A natural tagging query of this identity for search by the user might hence be:

Q(u) = µu(0)+
µv(0)

µu(1)+
µv(1)

µu(2)+
µv(2)

µu(3)+
µv(3)

µu(4)+
. . .

With
u = {Q,Q,1,1,0,0} and v = {Z,0,1,1,Q,N}

That is:

µu(i) = (Q+ iQ) and µv(i) = QiN +Z

When this is done, theprogramvaries theprogressions’ parameters over the chosen search spaces and collects
sequences of resulting values. The tests that we list here are of course non limitative and many other variants
can be added to the proposed heuristic.

Remark 15. Obviously, we are quickly limited by the increasing complexity due to nested loops running over
the parameters of the expressions (i.e. the uis).

Remark 16. At the risk of overlooking some gold nuggets, when we explore Q we start by exploring N and if
the search is conclusive, we refine it by increments of 1/6 which have the advantage of exploring units, halves
and thirds at the cost of a small multiplicative factor of 6. If interesting results are found with increments of 6
the step is refined to 1/30 and to Farey sequences.

The sequences obtained by varying those parameters are fed into the identifier for possible recognition. To
detect conjectures the identifier performs a number of tests on the obtained sequences. Tests belong to two
categories: morphological tests and serial tests. Morphological tests are applied to very few individual results and
try to spot their characteristics. Serial tests are applied tomore results and seek to discover relationships between
them.

Algebraic number identification (ANI): Collect 10 convergence limits Q0,Q1, . . .Q9 and, using LLL
[Lenstra, 1982], check if any of thoseQis is the root of a small degree (≤ 10) polynomial. If so, check that RNI
failed before returning true to avoid multiple alerts as rationals are also algebraic. This is a morphological test.
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The degree 10was chosen arbitrarily and can be changed at wish (provided that the precision is matched to the
degree).

Rational number identification (RNI): Collect 10 convergence limits Q0,Q1, . . .Q9 and, using LLL,
check if any of thoseQis is a good approximation of a rational number having a (abnormally) small numerator
and a small denominator. This is a morphological test.

Constant presence identification (CPI): Collect 10 convergence limitsQ0,Q1, . . .Q9. Consider the 45
pairsP1,P2 formed from thoseQis. Using LLL, check the assumption that there is at least one pair of the form:

P1 =
a1 + b1U

c1 +d1U
and P2 =

a2 + b2U

c2 +d2U

WhereU ̸∈Q and a1,b1,c1,d1,a2,b2,c2,d2 ∈Z.
Solving forU and equating we get:

a2b1−a1b2 +(b2c1−a2d1)P1 +(a1d2− b1c2)P2 +(c2d1− c1d2)P1P2 = 0

Hence, when called with on input 1,P1,P2,P1P2 LLL will return an abnormally short vector if the coef-
ficients are small (as is usually the case in remarkable identities). This is a morphological test.

Constant to exponent identification (CEI): Collect 10 convergence limitsQ0,Q1, . . .Q9. Consider the
7 quadruples P1,P2,P3,P4 formed by successiveQis4.

Here we assume that at successive ranks the limits are of the form:

Pk =
ak + bkU

k

ck +dkUk

Which implies that:

Uk =
ak− ckPk

dkPk− bk

If follows that:

U =
(ak+1− ck+1Pk+1)(dkPk− bk)

(dk+1Qk+1− bk+1)(ak− ckQk)

(ak+3− ck+3Pk+3)(dk+2Pk+2− bk+2)

(dk+3Pk+3− bk+3)(ak+2− ck+2Pk+2)
=

(ak+1− ck+1Pk+1)(dkPk− bk)

(dk+1Pk+1− bk+1)(ak− ckPk)

Let:

S1 = {Pk,Pk+1,Pk+2,Pk+3}

S2 = {PkPk+1,PkPk+2,Pk+1Pk+2,PkPk+3,Pk+1Pk+3,Pk+2Pk+3}

S3 = {PkPk+1Pk+2,PkPk+1Pk+3,PkPk+2Pk+3,Pk+1Pk+2Pk+3}

S = S1∪S2∪S3∪{1,PkPk+1Pk+2Pk+3}
4namely: {0,1,2,3},{1,2,3,4},{2,3,4,5},{3,4,5,6},{4,5,6,7},{5,6,7,8},{6,7,8,9}

85



Whencalledwith on inputS LLLwill return an abnormally short vector (as is usually the case in remarkable
identities). This is a morphological test.

Remark 17. Both CPI and CEI can be generalized to detect the presence of multiple unknown constants in an
expression (i.e. U1,U2, . . .) or even the presence of common constants in different continued fractions. We did
not implement this generalization. Following those tests we can compute a numerical approximation ofU and
attempt to look it up5.

Known constant identification (KCI): LetL be the following set of usual constants:

L= {1,
√
π,π,π2,π3,ζ(3),ζ(5),ζ(7),

√
e,e,e2,e3,ϕ2,γ,G, ln2, ln3, ln5}

Collect 10 convergence limitsQ0,Q1, . . .Q9. Check using LLL if any of theQi is a number of the form:

Qi

∑
j

ajLj =
∑

j

bjLi for a1,a2, . . . ,b1,b2 . . . ∈Z

If the solution only involves 1, a false is returned. Note that asL increases the required precisionmust also
be increased to prevent spotting artefacts. In practice we (manually) select only a subset of L before running
the KCI test according to the nature of the constants appearing in the particular case. Note that KCI and CPI
can have overlapping responses.

Rational fraction progression (RFP): In this test we seek to see if when all ui except one (say ū) are kept
constant, the continued fraction’s limitQ(ū) is a ratio of two polynomials in ū with integer coefficients. This
is done by a non linear model fit. The fit residuals serve as a measure of the verdict’s likelihood. This is a serial
test.

Exponential function progression (EFP): In this test we seek to see if when all ui except one (say ū) are
kept constant, the continued fraction’s limit Q(ū) is a function of the form baū with rational coefficients.
This is done by a non linear model fit and rationality detection on a,b. The fit residuals serve as a measure of
the verdict’s likelihood. If ab= 0 return false to avoid reporting the same result as the RFP. This is a serial test.

Inverse exponential progression (IEP): In this test we seek to see if when all ui except one (say ū) are kept
constant, the continued fraction’s limitQ(ū) is a function of the form ba1/ū with rational coefficients. This
is done by a non linear model fit and rationality detection on a,b. The fit residuals serve as a measure of the
verdict’s likelihood. If ab= 0 return false to avoid reporting the same result as the RFP. This is a serial test.

Power plus constant progression (PCP): In this test we seek to see if when all ui except one (say ū) are
kept constant, the continued fraction’s limitQ(ū) is a function of the form būa + cwith rational coefficients.
This is done by a non linear model fit and rationality detection on a,b,c. The fit residuals serve as a measure of
the verdict’s likelihood. If b= 0 return false to avoid reporting the same result as the RFP. This is a serial test.

Root plus constant progression (RCP): In this test we seek to see if when all ui except one (say ū) are
kept constant, the continued fraction’s limitQ(ū) is a function of the form b a

√
ū+cwith rational coefficients.

This is done by a non linear model fit and rationality detection on a,b,c. The fit residuals serve as a measure of
the verdict’s likelihood. If ab= 0 return false to avoid reporting the same result as the RFP. This is a serial test.

5e.g. on https://wayback.cecm.sfu.ca/projects/ISC/ISCmain.html
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ANI RNI CPI CEI KCI RFP EFP IEP PCP RCP
7 3 3 3 7 7 7 7 7 3

Table 3.1: Test results

2.3 Continued Fractions Converging to 2u(euπ+ 1)/(euπ−1)

It appears that the relation:

2 (eπ + 1)
eπ−1

= 1+
12 + 4

3+
22 + 4

5+
32 + 4

7+
42 + 4

9+
. . .

is the first in an infinite family:

2u (euπ + 1)
euπ−1

= 1+
12 + 4u2

3+
22 + 4u2

5+
32 + 4u2

7+
42 + 4u2

9+
. . .

Indeed, (RCP) linear variations in u cause identifiableO(
√
u) variations in the limit. This is because very

quickly:

lim
u→∞

euπ + 1
euπ−1

= 1

This has the somewhat adverse effect of making the RNI positive very quickly as well.
The final form is detected thanks to the CEI test.

2.3.1 By-product:

Because this holds for u ∈ C∗, we get a few seemingly “mysterious” corollary identities such as:

2 (e+ 1)
π(e−1)

= 1+
12 + 4/π2

3+
22 + 4/π2

5+
32 + 4/π2

7+
42 + 4/π2

9+
. . .
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6ln2
π

= 1+
12 + 4ln2 2/π2

3+
22 + 4ln2 2/π2

5+
32 + 4ln2 2/π2

7+
42 + 4ln2 2/π2

9+
. . .

2.3.2 Implementation

1 f [x_, {m_, d_}] := m/(d + x);
2 For[t = 0, t <= 5,
3 den = Table[2 n + 1, {n, 1, 20000}];
4 num = Table[n^2 + (2 t)^2, {n, 1, 20000}];
5 r = 1 + (Fold[f, Last@num/Last@den, Reverse@Most@Transpose@{num, den}]);
6 e = 2 t (1 + (E^Pi)^t)/((E^Pi)^t − 1);
7 Print[{e, 2 n + 1, n^2 + (2 t)^2, N[{r, e}, 20]}];
8 t += 1/2];
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2.4 Continued Fractions With Numerator (v+ 1+n)(v+ 2+n)(v+ 3+n)(v+ 4+n)

Let an and bn be two nonzero polynomials and consider the continued fraction:

Q=
∞

K
n=1

(
an

bn

)
Trivially, if ak = 0 for some k, the nested summation stops and we immediately getQ.
In particular ∀bn, an,v = (v+ 1+n)(v+ 2+n)(v+ 3+n)(v+ 4+n) and v ≤−6:

Q(v) =
∞

K
n=1

(
an,v
bn

)
=

−v−5

K
n=1

(
an,v
bn

)
For−5≤ v ≤−2,Q(v) = 0. It is thus interesting to examine what happens for v ∈ {0,−1}.
Because we do not provide a proper peer-reviewed proof of the relations given here we do not claim them

to be theorems, they were however intensively machine-checked.
Defining bn,v,c,t = c((3+ v+n)2− t), denoting d=

√
c2 + 4 and

Q(v,c, t) =
∞

K
n=1

(
an,v
bn,v,c,t

)
it appears that for v ∈ {0,−1} and t ∈ {0,1}:

Q(v,c, t) = t

2 (d− c) (5v+ 8)+
(t−1)(v+ 3)

(
−3c3 + 3

√
d3 + c(v−13)

)
c2(v−2)− (v−3)2

With:

ℓ(v, t) = lim
c→∞

cQ(v,c, t) = (t−1)(3+ v)(5+ v)

v−2
+ t(5v+ 8)

As checked by the following code:

1 Union[Flatten[
2 Table[Expand[((−1 + t) (−3 c^3 + 3 Sqrt[(4 + c^2)^3] +
3 c (−13 + v)) (3 + v))/(−(−3 + v)^2 + c^2 (−2 + v)) +
4 1/2 (−c + Sqrt[4 + c^2]) t (8 + 5 v)] ==
5 Expand[RootApproximant[
6 N[ContinuedFractionK[(1 + X + v)∗(2 + X + v)∗(3 + X + v)∗(4 +
7 X + v), c ((3 + v + X)^2 − t), {X, 1, 1000}], 20]]], {t, 0,
8 1}, {v, −1, 0}, {c, 1, 10}]]][[1]]

A better readable split-form is given in Table 3.2.

2.4.1 Generating specific radicals

Inspired by [Chan, 2013], one might want to look forQ(v,c, t) featuring only specific radicals. We illustrate
how to generate such relations with:
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v t an,v bn,v,c,t Q(v,c, t) ℓ(v, t)

0 0 (1+n)× . . .× (4+n) c(3+n)2
3
(

−3c3+3
√

(c2+4)3−13c

)
−2c2−9

15
2

0 1 (1+n)× . . .× (4+n) c((3+n)2−1) 4
(√

c2 + 4− c
)

8

−1 0 n× . . .× (3+n) c(2+n)2
2
(

−3c3+3
√

(c2+4)3−14c

)
−3c2−16

8
3

−1 1 n× . . .× (3+n) c((2+n)2−1) 3
2

(√
c2 + 4− c

)
3

Table 3.2: The conjectured relations.

Q(0,c,0) =
∞

K
n=1

(
(1+n)(2+n)(3+n)(4+n)

c(3+n)2

)
=
−39c−9c3 + 9

√
(4+ c2)3

9+ 2c2

If τ (c2 + 4) is a square6 thenQ(0,c,0) contains the radical
√
τ .

Note that there are several direct ways to efficiently generate specific radicals, e.g. Q(0,c,0) values related
to the golden ratio areQ(0, |q5(i)|,0) where:

q5(i) =

−1 if i≤ 1

−3q5(i−1)− q5(i−2) otherwise.

This yields identities such as, e.g. 41Q(0,4,0) = 88Q(0,1,0)−348.
Similarly, to provoke the appearance of a

√
2 use:

q2(i) =

12i+ 2 if i≤ 1

6q2(i−1)− q2(i−2) otherwise.

Another possibility is to generate the fast increasing sequences:

ck,i =

(k+ √k2 + 4
2

)2i+1


Where ∀i ∈N each k value generates inQ(0,ck,i,0) a radical
√
τ where τ is the square-free part of (k2 +

4)/4k+1 mod 2 (OEIS A013946).
The exact same observations are also valid for {v, t}= {0,1},{−1,0},{−1,1}.

2.4.2 Further investigations

The above indicates that it might be interesting to study thoroughly the behavior of continued fractions having
a an of the form:

an,v,κ = (v+κn)(v+ 1+κn)(v+ 2+κn)(v+ 3+κn)

6i.e. a solution of the generalized Pell equation τ (c2 + 4) = y2.
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Table 3.3: Radicals
√
τ appearing for all i ∈N inQ(0,ck,i,0) for 1≤ k ≤ 15.

k causes the appearance inQ(0,ck,i,0) of the radical
√
τ

1,4,11
√

5
2,14

√
2

3
√

13
5

√
29

6
√

10
7

√
53

8
√

17
9

√
85

10
√

26
12

√
37

13
√

173
15

√
229

One such algebraic continued fraction is given in [Chan, 2013], hence it is very likely that more could be
discovered by automatic or algebraic exploration.

2.5 Continued Fractions Converging to Polynomial Roots

It is very well known that:

√
5−1
2

=
1
1 +

1
1 +

1
1 +

1
1 +

1
1 +

1
1 +

1
1 +

1
1 + · · ·

We tag7:

Q(u) = 1+ µu(0)
µu(0) +

µu(0)
µu(0) +

µu(0)
µu(0) +

µu(0)
µu(0) +

µu(0)
µu(0) +

µu(0)
µu(0) +

µu(0)
µu(0) + · · ·

With:

u = {Q,0,1,1,0,0}⇒ µu(i) = Q

It appears that for u ∈ Q/[−4,0] LLL identifies that the limit is a root of a second degree polynomial,
namely:

Q(u) = 1+ u

u +
u

u +
u

u +
u

u +
u

u +
u

u +
u

u + · · ·

Q(u)2 +u(Q(u)−1) = 0

Which is trivial to prove by pushing the u into the continued fraction.
TheCPI is positive because foru= 1 andu= 5 the respective values ofQ(u) comprise the common value√

5.
7Adding a 1+ by commodity which does not change anything about the infinite convergence.
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ANI RNI CPI CEI KCI RFP EFP IEP PCP RCP
3 7 3 3 7 7 7 7 7 7

Table 3.4: Test results

2.5.1 Implementation

1 f [x_, {m_, d_}] := m/(d + x);
2 For[L = −20, L <= 20 ,
3 If [−4 <= L <= 0, L = 2/3];
4 num = den = Table[L, {n, 1, 200}];
5 r = Fold[f, Last@num/Last@den, Reverse@Most@Transpose@{num, den}];
6 Print[{L, N[r^2 + L (r − 1)]}];
7 L += 2/3];

2.6 Continued Fractions Converging to e2/κ

The following relations are well-known8:

e= 2+ 1
1 +

1
2 +

1
1 +

1
1 +

1
4 +

1
1 +

1
1 +

1
6 + · · ·

√
e= 1+ 1

1 +
1
1 +

1
5 +

1
1 +

1
1 +

1
9 +

1
1 +

1
1 +

1
13 + · · ·

3
√
e= 1+ 1

2 +
1
1 +

1
1 +

1
8 +

1
1 +

1
1 +

1
14 +

1
1 +

1
1 +

1
20 + · · ·

We hence tag the ones as constants, the progression as arithmetic and let the algorithm monitor the evolu-
tion of the limits.

Let bn = 1. Define µ(u) = κ(u+ 1/2)−1 for κ ∈R and:

an =

µ(n/3) = κ(2n+3)
6 −1 if n mod 3≡ 0

1 otherwise.

In other words, an is the sequence:

an = {µ(0),1,1,µ(1),1,1,µ(2),1,1,µ(3),1,1,µ(4),1,1, · · ·}

Then we detect that the continued fraction generated by an,bn converges to e2/κ.
The CEI is positive because, for instance (e2/κ)2 = e2/κ′ implies that 2/κ = κ′ which is satisfied for

several pairs of integer values.
8https://link.springer.com/content/pdf/bbm:978-94-91216-37-4/1.pdf
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ANI RNI CPI CEI KCI RFP EFP IEP PCP RCP
7 7 7 3 7 7 7 3 7 7

Table 3.5: Test results

2.6.1 Implementation

1 f [x_, {m_, d_}] := m/(d + x);
2 For[k = −10, k <= 10,
3 phi = Table[k n + k/2 − 1, {n, 0, 2000 − 1}] ;
4 num = Table[1, {n, 1, 2000}];
5 den = Take[
6 Flatten[Table[{phi[[ i ]], {1, 1}}, {i , 1, Floor[2000/3] + 1}]], {1,
7 2000}];
8 r = 1 + (Fold[f, Last@num/Last@den, Reverse@Most@Transpose@{num, den}]);
9 v = E^(2/k);
10 Print[{k, v, N[{r, v}, 20]}];
11 k += 1/2];

2.7 Classical Continued Fractions Involving Catalan’s Constant

It is well known that:

2G= 2− 12

3 +
22

1 +
22

3 +
42

1 +
42

3 +
62

1 +
62

3 +
82

1 +
82

3 + · · ·
We define:

∆(u,v) = 1
2v
×
(

12

u +
22

v +
22

u +
42

v +
42

u +
62

v +
62

u +
82

v +
82

u + · · ·

)

For all the following we observe that ∆(u,v) = ∆(v,u).

2.7.1 For u= 1

An exploration foru = {0,N,N,N,Z,0} reveals that foru0 = 0,u1 = 2,u2 = 1,u3 = 2,u4 =−1,u5 = 0
we get identities when v = 4i2−1 with the convergence values given in Table 3.6:

Where the general formula for i > 1 is:

∆(1,4i2−1) = (−1)i+1
(

i−1∑
k=0

(−1)k

(2k+ 1)2 −G
)

2.7.1.1 Implementation
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u i v = 4i2−1 ∆(u,4i2−1) = ∆(1,4i2−1)
1 0 -1 1−G
1 1 3 −8/9+G

1 2 15 209/225−G
1 3 35 −10016/11025+G

1 4 63 91369/99225−G
1 5 99 −10956424/12006225+G

1 6 143 1863641881/2029052025−G

Table 3.6: The first convergence values for u= 1

ANI RNI CPI CEI KCI RFP EFP IEP PCP RCP
7 7 3 7 3 7 7 7 7 7

Table 3.7: Test results

1 f [x_, {m_, d_}] := m/(d + x);
2 For[ i = 1, i < 40,
3 {u, v} = {1, 4 i^2 − 1};
4 num = Take[
5 Prepend[Flatten[Table[{(2 n)^2, (2 n )^2}, {n, 1, 100000}]], 1] ,
6 100000];
7 den = Flatten[Table[{u, v}, {n, 1, 100000/2}]];
8 r = Fold[f, Last@num/Last@den, Reverse@Most@Transpose@{num, den}]/2/v;
9 val = (−1)^(i + 1) (Sum[(−1)^k/(2 k + 1)^2, {k, 0, i − 1}] − Catalan);
10 Print[{ i , v, val , N[{val, r}, 30]}];
11 i++];

Remark 18. Note that the denominators of the numbers:

η(i) =
i−1∑
k=0

(−1)k

(2k+ 1)2

are interesting by their own right. At first sight theymight seem perfect squares but in reality somemay contain
very small prime factors to an odd power.

2.7.2 For u= 3

The exploration in this section is interesting. It was done manually but we would have never had the idea to
probe in that specific direction without the insight for the case u= 1 produced in the previous section.

The sequence f(i) is nearly the absolute value of the OEIS sequence A0063099:

1,5,21,33,65,85,133,161,261,341,481,533,645,705,901,���XXX12803,1281,

1541,1633,1825,���XXX14615,���XXX11537,2581,3201,3333 . . .

9https://oeis.org/A006309.
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u i f(i) ∆(3,f(i))
3 0 1 ∆(1, −1)
3 1 5 ∆(1, 3)
3 2 21 ∆(1, 35)
3 3 33 ∆(1, 63)
3 4 65 ∆(1,143)
3 5 85 ∆(1,255)

Table 3.8: The first convergence values for u= 3

An unexplained phenomenon occurs for the “abnormally larger” OEIS sequence A006309 values 12803,
14615, 11537 that remains unmatched by any η(i) value. We do not have an explanation for this phenomenon
that requires further research.

2.7.2.1 Implementation

The following implementationwas purposely left unoptimized for the sake of clarity. We start by generating
the target values for u= 3 and store them in an array. Then we re-generate the values for u= 1 and match the
array’s contents.

1 AbsA006309 =
2 Abs[{1, 5, −21, 33, −65, 85, −133, 161, 261, −341, −481, 533, −645,
3 705, 901, −12803, −1281, −1541, 1633, −1825}];
4 t = {};
5 f [x_, {m_, d_}] := m/(d + x);
6 For[ i = 1, i <= Length[AbsA006309],
7 {u, v} = {3, AbsA006309[[i]]};
8 num = Take[
9 Prepend[Flatten[Table[{(2 n)^2, (2 n)^2}, {n, 1, 40000}]], 1],
10 40000];
11 den = Flatten[Table[{u, v}, {n, 1, 40000/2}]];
12 r = Fold[f, Last@num/Last@den, Reverse@Most@Transpose@{num, den}]/2/
13 v;
14 AppendTo[t, {AbsA006309[[i]], N[r, 30]}];
15 i++];
16

17 For[ j = 1, j <= Length[AbsA006309],
18 If [ t [[ j , 1]] == 12803,
19 Print[”Exception,␣the␣value␣12803␣is␣skipped.”],
20 For[ i = 1, i <= 1000000,
21 {u, v} = {1, 4 i^2 − 1};
22 den = Flatten[Table[{u, v}, {n, 1, 40000/2}]];
23 r = Fold[f, Last@num/Last@den, Reverse@Most@Transpose@{num, den}]/
24 2/v;
25 val = (−1)^(i + 1) (Sum[(−1)^k/(2 k + 1)^2, {k, 0, i − 1}] −
26 Catalan);
27 If [Abs[t[[ j , 2]] − r] < 10^(−6),
28 Print[{ i , N[r, 30], N[t[[ j , 2]], 30]}, ”Entry␣”, j , ”:␣”, val ,
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u v ∆(u,v)
5 7 ∆(1, 15)
5 39 ∆(1,143)
5 51 ∆(1,255)
7 9 ∆(1, 35)
9 11 ∆(1, 63)
11 13 ∆(1, 99)
13 15 ∆(1,143)

Table 3.9: Other convergence values.

29 ”␣matched␣with␣Delta[3,”, t[[ j , 1]], ”]” ];
30 i = Infinity ];
31 i++]];
32 j++];

2.7.3 Subsequent u values.

Table 3.9 provides some additional examples for various u,v combinations.

2.7.4 Variations in the numerator.

Let, for instance, (u,v) = (1,3). Removing the 1/(2v) factor in ∆ and replacing the (2n)2 by (n− i)2 we
get convergence to:

1, 4
5

, 31
51

, 16
33

, 355
883

, 11524
33599

, 171887
575075

, 10147688
38326363

, . . .

With the limits being quickly reached after a constant number of terms in the continued fraction.

2.7.4.1 Implementation

1 For[ i = 1, i < 20,
2 f [x_, {m_, d_}] := m/(d + x);
3

4 num = Take[
5 Prepend[Flatten[Table[{(n − i)^2, (n − i)^2}, {n, 1, 400}]], 1] ,
6 400];
7 den = Flatten[Table[{1, 3}, {n, 1, 400/2}]];
8 r = (Fold[f, Last@num/Last@den, Reverse@Most@Transpose@{num, den}]);
9 Print[ r ];
10 i += 1]

2.8 Generalized Cloître Series

In an unpublished note [Cloître, ], Benoît Cloître gives a beautiful BBP formula for π2 based on the identity:
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i/ℓ j/ℓ 1/ℓ
11 5 8
14 6 10
23 9 16
26 10 18

22/5 8/5 3
31 9 20
28 8 18
19 5 12
16 4 10
13 3 8

Table 3.10: Example relations for which i+ j = 2

i/ℓ j/ℓ 1/ℓ
76 16 30
46 10 18
41 9 16
26 6 10
21 5 8

Table 3.11: Example relations for which i+ j ̸= 2

∞∑
k=1

cos(ikπ) (2cos(jπ))k

k2 = (ℓπ)2

Here are some i,j,ℓ combinations detected automatically:
A simple rule allowing to generate many identities consists in fixing a factional step 1/u, letting i = κ/u

for π/3≤ i≤ 2π/3 and calculating the limit for {i,j}= {κu,2−κu} (e.g. Table 3.10). However, limits for
which i+ j ̸= 2 exist as well (e.g. Table 3.11).

2.9 Conclusion & further research

The results given in this section show that pattern matching can obviously be of help in detecting new math-
ematical conjectures. The very basic processes described in the previous sections can be improved and gener-
alized in a number of ways. The first is obviously an enriching of the collection of tests. The second is deeper
exploration which is highly dependent on the computational capabilities at hand. Finally the interpretation of
results and the early pruning of less probable branches in the potential conjecture tree can also bring efficiency
and pertinence in the discovered relations.

ANI RNI CPI CEI KCI RFP EFP IEP PCP RCP
7 7 3 3 3 7 7 7 7 7

Table 3.12: Test results
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3 A Note on Moments of Random Multiplicative Functions and Truncated
Characteristic Polynomials

Based on common work with David Naccache.

3.1 Introduction

At section 7 of [Heap, 2015], Heap and Lindqvist provide a conjectured bound:

E(|Sx|) ≤ (1+ o(1)) ·0.9036020036 . . .
√
x

To avoid unnecessarily reproducing the context we refer the reader to [Heap, 2015] and include here only
novel ideas improving the above bound. This note can hence be read as a continuation of [Heap, 2015].

We denote by pi the i-th prime.
Note that it is now known [Harper, 2020] that E|Sx| ≍

√
x

log logx which reduces the interest of this note to
exploring the limits of the Cauchy-Schwarz strategy.

3.2 The improvement strategy

For understanding the improvement strategy we remark the following:
Let P (Xℓ(1), . . . ,Xℓ(t)) be a multivariate polynomial.
Consider the operatorReplace takingP and substituting all occurrences ofX2

ℓ(i) by 1 and all occurrences
ofXℓ(i) by 1/ℓ(i).

Form the rational fraction F in the variables vℓ(1), . . . ,vℓ(t):

F (vℓ(1), . . . ,vℓ(t)) =
Replace

(∏t
i=1(1−vℓ(i)Xℓ(i))

2
)

∏t
i=1(1−v2

ℓ(i))

The minimum of F over [0,1]t is reached for:

v̄ℓ(i) = ℓ(i)−
√
ℓ(i)2−1

To see why, develop first

∆ = Replace
(

t∏
i=1

(1−vℓ(i)Xℓ(i))
2
)

= Replace
(

t∏
i=1

(1−2vℓ(i)Xℓ(i)+ v2
ℓ(i)X

2
ℓ(i)

)

= Replace
(

t∏
i=1

(1−2vℓ(i)Xℓ(i)+ v2
ℓ(i))

)

=
t∏

i=1
(1−2

vℓ(i)

ℓ(i)
+ v2

ℓ(i))
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Which gives:

F (vℓ(1), . . . ,vℓ(t)) =
t∏

i=1

1−2vℓ(i)
ℓ(i) + v2

ℓ(i)

1−v2
ℓ(i)

Hence:

∂F

∂vℓ(u)
=

4ℓ(u)vℓ(u)−2(1+ v2
ℓ(u))

ℓ(u)(v2
ℓ(u)−1)2

∏
i ̸=u

1−2vℓ(i)
ℓ(i) + v2

ℓ(i)

1−v2
ℓ(i)

And:

∂F

∂vℓ(u)
= 0⇒ v̄ℓ(u) = ℓ(u)±

√
ℓ(u)2−1

Substituting back the second root ℓ(u)−
√
ℓ(u)2−1 we get:

F (v̄ℓ(1), . . . , v̄ℓ(t)) =

√√√√ t∏
i=1

ℓ(i)2−1
ℓ(i)2 < 1

Hence, when ℓ(i) = pi we have that:

lim
t→∞

F (v̄ℓ(1), . . . , v̄ℓ(t)) =

√
1

ζ(2)
=

√
6
π

The above improves the upper bound on the Steinhaus expectation for k = 1/2 given in [Heap, 2015].
To seewhy, let0≤ vℓ(1), . . . ,vℓ(t)≤ 1 and letSx =

∑
n≤xXn as in [Heap, 2015]. By theCauchy–Schwarz

inequality we have:

E[|Sx|]2 ≤ E[|
t∏

i=1
(1−vℓ(i)Xℓ(i))Sx|2] ·E(|

t∏
i=1

(1−vℓ(i)Xℓ(i))|−2)

=
E[|

∏t
i=1(1−vℓ(i)Xℓ(i))Sx|2]∏t

i=1(1−v2
ℓ(i))

= F (vℓ(1), . . . ,vℓ(t))

whose minimumwas given before.
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t bound exact expression comment
2 0.816497

√
2/3 bound of [Heap, 2015]

3 0.800000 4/5
4 0.791795 16

√
3/35

5 0.788516 96
√

2/5/77
6 0.786180 384

√
3/35/143

7 0.784818 4608
√

6/35/2431
8 0.783731 55296

√
3/7/46189

9 0.782989 663552/(96577
√

77)
10 0.782524 1327104

√
30/11/2800733

...
...

...

∞ 0.779697
√

6/π

Table 3.13: Convergence to
√

6/π
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4 A Conjecture From a Failed Cryptanalysis

Based on common work with David Naccache.

4.1 Introduction

During a failed cryptanalysis of multivariate signature scheme we stumbled on the following observation.
Let P (x,y) be a bivariate polynomial with coefficients in C. Form the n×nmatricesLn whose elements

are defined by P (i,j). Define the matricesMn = Ln− IDn.
It appears that µ(n) = (−1)n det(Mn) is a polynomial in n that we did not characterize.
If we replace the definition of µ by µ(n) = (−1)n+1 det(Mn) then a similar phenomenon occurs with

Mn = Ln + IDn.
We did not research the reasons for this behavior but noted it for those who wish to further investigate it.

The conjecture was later proved by Zhang [Zhang, 2022].

4.2 Example

Let

P (x,y) = hx2y+ gy2x+ fy2 + ex2 +dxy+ax+ by+ c

Then

µ(n) = (−1)n det(Mn) =
9∑

i=0
ηin

i

η9 =
def + cgh−afh− beg

2160

η8 = −
gh

240

η7 = −
eg+ fh+ gh

60
−6η9

η6 =
ah+ bg−de−df

72
− 4ef

45
− 7eg+ 7fh

120
− 7gh

360

η5 =
ah+ bg−de−df −eg−fh

24
+
cg+ ch−af − be

12
− ef

6
+ 9η9

η4 =
cd+ eg+ fh−ab

12
+
de+df −ah− bg+ 7ef

36
+

13gh
720

− g+h

4
+ η5−9η9

η3 = −
d+ e+ f

3
− g+h

2
−η5−η9−η7

η2 =
ab− cd

12
− a+ b+d+ e+ f

2
− ef

60
−η5 + η6−2η7 + 2η8−3η9−

g+h

4
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η1 = −
a+ b

2
− c− d+ e+ f

6

η0 = 1

TheMathematica code generating those polynomials is very simple:

M := Function[n,
P := Function[{x, y},
h x^2 y + g y^2 x + f y^2 + e x^2 + d x y + a x + b y + c];

Table[P[i, j] , {i, 1, n}, {j, 1, n}] - IdentityMatrix[n]]

t = Table[ Det[(-1)^(k) M[k]], {k, 1, 20}];
mu = Collect[Expand[InterpolatingPolynomial[t, n]], n];
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5 The Balkans Continued Fraction

Based on common work with David Naccache.

5.1 Introduction

In a previous escapade [Naccache, 2023d] we gave a collection of continued fractions involving Catalan’s con-
stant. This section provides

provides more general formulae governing those continued fractions. Having distinguished different cases
associated to regions in the plan, we nickname those continued fractions “The Balkans” as they divide into areas
which are related but still different in nature.

Because we do not provide formal proofs of those machine-constructed formulae we do not claim them to
be theorems. Still, each and every proposed formula was extensively tested numerically.

All the programs included in this article are self-contained, i.e. any code snippet can be run independently
of the others to fully illustrate the encoded formula. This renders the code longer but has the great advantage
of allowing the reader to run and modify each snippet directly by just cutting and pasting it into Mathematica
without requiring any other module10. The code was compacted for the sake of concision but loading it into
Mathematica’s editor re-indents it automatically.

The code in this paper is necessary. Because we do not provide proofs explaining the discovered structures,
any slight LATEXmisprint would be impossible to fix. Hence readers can consider the code as an unambiguously
tested version of the proposed formulae.

5.2 Notations

We denote by n!! the semifactorial of, i.e. the product of all the integers from 1 up to n having the same parity
as n:

n!! =
⌈n2 ⌉−1∏

k=0
(n−2k) = n(n−2)(n−4) · · ·

Because in all the following we will only apply semifactorials to odd numbers, this can be simplified as:

n!! =

n+1
2∏

k=1
(2k−1) = n(n−2)(n−4) · · ·3 ·1

We denote by Catalan’s constant byG= 0.91596559 . . . and letCn be the n-th Catalan number:

Cn =
1

n+ 1

(
2n
n

)
=

(2n)!
(n+ 1)!n!

=
n∏

k=2

n+k

k
for n≥ 0

The first Catalan numbers are:

1,1,2,5,14,42,132,429,1430,4862,16796,58786, . . .
10Each snippet ends by a ClearAll["Global`*"]; commandwhose purpose is to makeMathematica “forget” all passed history.
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5.3 The target

We define for odd j and κ,c ∈N the following quantity nicknamed “The Balkans continued fraction”:

Qj,κ,c = j(2− j+ 2κ)+
∞

K
n=1

(−2n(c+n)(j+n−1)(1− j+ 2κ+n)

j(2− j+ 2κ)+ (3+ 4κ)n+ 3n2

)
The question asked is that of finding a general process allowing to computeQj,κ,c without resorting to nu-

merical simulations or integer relation algorithms. The reason for this is that while integer relation algorithms
allow us to “magically” discover relations, they do not provide general information about the underlying struc-
ture of the constants found. Why? Because we’re in it for the thrill of discovery, not just themagic of shortcuts.

5.3.1 The contribution

The main contribution of this paper is a collection of formulae computing Qj,κ,c without requiring any nu-
merical simulation for positive j,κ,c and odd j.

5.3.2 Why this formula in particular?

The Ramanjuan Machine Project [Raayoni, 2021; Cohen, 2022], lists a few continued fractions involving G
detected in 2020. We do not knowwhy the project did not resort to (rather basic) integer relation algorithms to
discover more relations. We hence decided to play detective and unleashed LLL that found a few hundreds of
continued fractions involvingG in a few intensive calculation days. All continued fractions were of the form:

ϵ+
∞

K
n=1

(−2n(n+ τ )(n+ η)(n+µ)

ϵ+ δn+ 3n2

)
=

a0
a1 +a2G

where a0,a1,a2 ∈Z

We performed two natural tests on the coefficient vectors (δ,ϵ,τ ,η,µ): a PCA to determine if the coeffi-
cients can be expressed as linear combinations of less than 5 variables and a Hough transform to detect affine
relations in the dataset.

PCArevealed that, whenprojectedon (δ,τ ,η,µ), nearly all datawas governedby three linear dimensions11.
We hence understood that we were facing a linear behavior in a large region (Balkans) plus some sporadic cases
(see Remark 30). This was also confirmed by the Hough transform that detected several parallel plans in the
3D-space. We thus decided to focus our efforts on the main plans in the 3D-space and understand them.

5.3.3 How formulae were reverse-engineered

Now comes the real adventure. The process that allowed us to reverse-engineer the formulae given in this paper
is interesting by its own right. A quick look at many examples of the three quantities a0,a1,a2 forming the
fractions:

Qj,κ,c =
a0

a1 +a2G
where a0,a1,a2 ∈Z

11To which we gave the names j,κ,c.
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showed that the ais are products of small prime factors and a few large prime factors. This suggested that
ais were initially12 of some form:

ai = expression(j,κ,c) =
∏u−1

i=0 ϕ
′
i(j,κ,c)∏v−1

i=0 ϕi(j,κ,c)

where the ϕi are functions such as (an+ b)!, 2an+b, (an+ b)!!, Can+b, Pochhammer symbols of linear
combinations of the parameters j,κ,c etc. and a few unknown “mixing” functions causing the appearance of
the large prime factors, e.g. polynomials or recurrence relations.

Fortunately, integer relation algorithms allow us to collect many instances of such forms for diverse j,κ,c
values. Hence the problem at hand consists in identifying which ϕis are compatible with the cancellations due
to the division. If a given ϕ is present in the expression then it is reasonably assumed that when tried for many
j,κ,c the new expression:

expression1(j,κ,c) = expression(j,κ,c)
ϕ(j,κ,c)

or

expression1(j,κ,c) = expression(j,κ,c) ·ϕ(j,κ,c)

will feature less small factors and hence stand-out as an outlier.
The process can hence be repeatedwith proper backtracking until all the combinatorialϕis were peeled-off.

Then it remains to detect what the remaining “mixing” functions are which is done by monitoring the average
growth rate of those surviving constants to emit hypotheses on the type of recurrence relations (or polynomials)
at hand or resorting to a variety of integer sequence recognition tools to identify the hidden culprits.

• We started our exploration with the simplest case of Bosnia & Herzegovina where a2 = 0. We chose
Bosnia & Herzegovina as a launchpad because it is the simplest finite Balkan continued fraction. We
(rightfully) hoped that analyzing it will give us insight about the Balkans’ structure before hell breaks
loose with infinite continued fractions spittingGs into the convergence values.

• Having reverse-engineeredBosnia&Herzegovinawemoved toCroatia forwhicha2 = 0 aswell. Because
Croatia is a more complex version of Bosnia & Herzegovina, the insight gained in Bosnia & Herzegov-
ina proved very helpful to derive further characteristics of Croatia . We thus stress that the distinction
between Bosnia &Herzegovina and Croatia is paedagogic rather than scientific.

• The insight gained in Croatia guided our software to the formula for which is simpler than Kosovo and
Serbia given that Montenegro corresponds to j = 1.

• Having inferredMontenegro wemoved on toKosovowhose symmetry13 with Serbia was quickly noted.

Thisworkdemonstrates the interest of statistical classifiers such asMaximumLikelihoodEstimation (MLE)
and Support Vector Machines (SVM) in mathematical exploration.

12i.e., before simplification intervenes.
13This symmetry simply comes from the fact that the equation j(2−2j+2κ) = x(2−2x+2κ) has the two solutions x= j and

x= κ− j+ 1.

107



Area Domain Qj,κ,c is in
Croatia j ≥ 2κ+ 5 Q

Bosnia &Herzegovina j = 2κ+ 3 Q

Serbia 2κ+ 1≥ j ≥ κ+ 3 R

Kosovo κ+ 2≥ j ≥ 3 R

Montenegro j = 1 R

Table 3.14: Areas. We list fractions involvingG as being in R although it is currently unknown ifG ∈Q (this
is a major open question).

As will be shown, this “gradient descent” method proved itself very well, although it required a few thou-
sands of computation hours on a very powerful cluster.

We estimate that 80% of the discovery effort was done by the machine. The remaining 20% being human
“piloting” that, we are convinced, is already at the reach of today’s most powerful LLMs, such as Gemini.

It appears much better to read the coming sections first to understand what prey we are stalking and then
refer to Section 5.12 describing the hunting process.

5.4 Kosovo, Serbia, Croatia, Montenegro, Bosnia & Herzegovina

.
As we will see, we distinguish five cases that we call Kosovo, Serbia, Croatia, Montenegro and Bosnia &

Herzegovina after the regions of interest in the (j,κ)-space shown in Figure 3.1. In each region c runs over the
integers.

A first restriction of our study will be to focus on odd j that produceQj,κ,c values involvingG. Note that:

Qj,c,κ =


a0

a1 +a2G
if j is odd

a0
a1 +a2 log2

if j is even

Note as well that j,κ,c can be negative. In the examples given here we adopt the notation:

a0
a1 +a2 · constant

= T (0)+
∞

K
n=1

(
P (n)

T (n)

)
This paper does not treat the even j case (a follow-up paper dealing with those cases is underway). Negative

j,κ,c are of little interest as the Balkan’s numerator is defined as −2n(c+n)(j+n− 1)(1− j+ 2κ+n)

hence, if c < 0 the term (c+n) will hit zero for n = −c and subsequently render the summation finite. The
same happens for negative j with the term (j+n−1) and for negative κwith the term (1− j+ 2κ+n).

5.5 The Montenegro Conjecture

We startwith the first j,κ space calledMontenegro. Montenegro corresponds to the case j = 1. In otherwords:

Q1,κ,c = 2κ+ 1+
∞

K
n=1

( −2n2(n+ 2κ)(n+ c)

3n2 +(3+ 4κ)n+ 2κ+ 1

)
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Define the functions:

∆κ,c(α,β) =


α+βc if c < 2

−2c(2c−1)(2(c−κ)−1)2∆κ,c−2(α,β) if c≥ 2

+(8c2 +(2−8κ)c−2κ+ 1)∆κ,c−1(α,β)

Γκ,c(α,β) = (2c−1)!!2G+∆κ,c−1(α,β) ·
κ−1∏
i=0

(2(c− i)−1)

δκ =
4κ−1

(2κ−1)Cκ−1
and ρκ =

δκ(−1)κ(1−2κ)
(2κ)!(2κ−3)!!

ακ = ρκ∆1,κ−1(1,−2) and βκ = −ρκ(2κ−3)2∆2,κ−1(1,12)−ακ

Then ∀κ,c ∈N2, Q1,κ,c =
δκ(2c)!

Γκ,c(ακ,βκ)

Q1,κ,c is hence an explicitly computable fraction of the form:

Q1,κ,c =
a0

a1 +a2G
where a0,a1,a2 ∈Z

The code snippet testing this formula over the square 1≤ κ,c≤ 14 is entitled "1. Montenegro".
In summery in Montenegro we do not need to resort to any integer relation algorithms to computeQ1,κ,c

for all κ,c values.

Remark 19. Note that, as described here, the complexity of ∆κ,c is exponential in c, however, using classical
Fibonacci memoization, this complexity can be reduced toO(c logc) thereby resulting in a very efficient algo-
rithm for computingQ1,κ,c.

5.6 The Bosnia & Herzegovina Conjecture

Bosnia &Herzegovina corresponds to the line 2κ= j−3, that is:

Qj, j−3
2 ,c = −j+

∞

K
n=1

(−2n(n−2)(n+ c)(n+ j−1)
3n2 +(2j−3)n− j

)
= 2+ 2c− j

We start by defining:

αj = 1 and βj = 15−4j

And let:

∆j,c(αj ,βj) =


αj +βjc if c < 2

−2c(2c− j)(2c+ 1)(2c− j+ 2)∆j,c−2(αj ,βj) if c≥ 2

+(8c2 +(14−4j)c−3(j−2))∆j,c−1(αj ,βj)
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g(j,c) = (2c)!
2

j−1
2∏

i=1
(2+ 2i− j) and h(j,c) =

j−5
2∏

i=1
(2c−2i−1)

Then:

Qj, j−3
2 ,c =

g(j,c)
∆j,c−1(αj ,βj) ·h(j,c)

∈Q

Hence, in Bosnia & Herzegovina as well we do not need to resort to any integer relation algorithms to
computeQj, j−3

2 ,c which is an explicitly computable fraction in Q.
The corresponding code snippet is "2. Bosnia".

Note thatQj, j−3
2 ,c = 2+ 2c− j gives a non-recursive formula for ∆j,c(1,15−4j).

This “long detour” for computing Qj,(j−3)/2,c which is a finite continued fraction (exactly computable
by summation) is extremely useful as it unveiled the ∆ structure and the basic ϕis that repeatedly intervene in
other Balkan areas.

5.7 Roadmap

We are now ready to describe the roadmap that will govern the rest of this paper.

5.7.1 Areas governed by one running variable

As we have just seen, Montenegro and Bosnia & Herzegovina follow similar behaviors. This pattern revolves
around the “magic” values α,β which are formally known for Montenegro and Bosnia & Herzegovina. Both
regions are lines parameterized by a single running variable (κ forMontenegro and j for Bosnia&Herzegovina).

5.7.2 The c-level master formula for all Balkans except Montenegro

Except Montenegro (whose case was settled) all other areas obey a common c-level master formula that we will
provide below. ComputingQj,κ,c for any cusing this c-levelmaster formula requires knowledge of two rational
parameters: αj,κ and βj,κ.

The cornerstone of the rest of this paper is thus the quest for αj,κ and βj,κ for all Balkan areas exceptMon-
tenegro.

αj,κ,βj,κ can always be inferred by computing numerically14 Qj,κ,c1 andQj,κ,c2 for two values c1 ̸= c2

and solving a system of two equations in the unknowns αj,κ,βj,κ.
When αj,κ,βj,κ are foundQj,κ,c can be computed for any other c ̸∈ {c1,c2}.
Using this process requires resorting twice to integer relation algorithms such as LLL [Lenstra, 1982],HJLS

[Håstad, 1986], PSOS [Bailey, 1989; Ferguson, 1988] or PSLQ [Ferguson, 1999] for each (j,κ)-pair. This
works perfectly in practice but is not entirely satisfactory because the process has a “blind spot” which is the
integer relation oracle. We would like to avoid such blind spots as much as possible and dispose of a fully alge-
braic process for computing eachQj,κ,c. The ideal situation being, of course, a direct algebraic computation
ofQj,κ,c from the data j,κ,c alone.

14i.e. using an integer relation algorithm.
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We completely achieve the goal of computing allQj,κ,c values in an exact algebraic way all over the Balkans.
Note that we do not need to bother withCroatia whereQj,κ,c is a finite continued fraction computable exactly
by summation. This simply stems from the fact that as we increase n the (1− j + 2κ+ n) component of
Balkan’s continued fraction will necessarily hit 0 in Bosnia &Herzegovina and in Croatia.

The snippet "3. Northern Balkans" illustrates the process with all areas except Montenegro. The
snippet validates the c-level master formula on the 3D volume 3≤ j ≤ 13, 1≤ κ≤ 6, 1≤ c≤ 7 (Figure 3.16)
stretching over parts of Croatia, Bosnia & Herzegovina, Serbia and Kosovo. In each case the program derives
the corresponding αj,κ,βj,κ and allows the computing ofQj,κ,c for any c. The formally computed results are
then successfully compared to numerical ones.

As we will later see, for Serbia and Kosovo we have more powerful master formulae operating at the κ-level
and the j-level.

The c-levelmaster formula15 is defined as follows, assuming that we are somehow given themagic constants
αj,κ,βj,κ.

Let:

∆j,κ,c(αj,κ,βj,κ) =


αj,κ +βj,κc if c < 2

−2c(2c− j)(2c−2κ+ j−2)(2c−2κ−1)∆j,κ,c−2(αj,κ,βj,κ) if c≥ 2

+(8c2 +(2−8κ)c+(j−2)(2κ− j))∆j,κ,c−1(αj,κ,βj,κ)

fj,κ,c = C j−3
2
Cκ−1(j−2)(2κ−1)(2c−1)!!2

j−1
2∏

i=1
(2c−2κ+ 2i−1)(κ− i+ 1)

gj,κ,c = (2c)!2
j+4κ−7

2

j−1
2∏

i=1
(2c−2i+ 1)(2κ−2i+ 1)

hj,κ,c =

j−3
2∏

i=0
(2c−2i−1)

κ−1∏
i=0

(2c−2i−1)

Then:

Qj,κ,c =
g(j,κ,c)

∆j,κ,c−1(αj,κ,βj,κ) ·h(j,κ,c)+ f(j,κ,c) ·G

Remark20. ForBosnia&Herzegovina andCroatiafj,κ,c = 0. This happens automatically given the definition
of fj,κ,c.

5.8 The Serbia conjecture

Montenegro, Kosovo and Serbia feature internal symmetries illustrated by the arches in Figures 3.1 where con-
nectedQ values are identical. We will also provide a formula connecting their α,β values over the plan. This
means that any formula applicable to Kosovo will also settle the case of Serbia (given thatMontenegro is settled

15valid for all areas except Montenegro whose case was anyhow previously settled.
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and given that Montenegro provides the values for the upper border line of Serbia).
Because:

Q1+2i,κ,c =Q2κ+1−2i,κ,c valid for κ= 2,3, . . . and 0≤ i≤
⌊
k

2

⌋
−1

To compute any value in Serbia, we can just compute its symmetric correspondent in Kosovo.

5.9 The Kosovo Conjecture

Kosovo is very specific in that it has a κ-level master formula. This means that for each j, knowledge of four
upper-level rational constants16:

{αj ,βj}=
{
{
α
αj ,

β
αj},{

α
βj ,

β
βj}

}
allows to generate αj,κ,βj,κ for all κ values along a j-line within Kosovo.
Findingαj ,βj for a given j requires solving a systemof equationsusing four knownαj,κ1 ,βj,κ1 ,αj,κ2 ,βj,κ2

for someκ1 ̸= κ2. To determine the twoαj,κi ,βj,κi pairs17 we can solve two systems of equations (each in two
unknowns) using anyQj,κ1,c1 ,Qj,κ1,c2 ,Qj,κ2,c3 andQj,κ2,c4 . Note that there is no opposition to take c1 = c3

and c2 = c4. This process is illustrated in Figure 3.5.

5.9.1 The Kosovo κ-level master formula

The κ-level master formula for Kosovo allows to infer αj,κ,βj,κ from αj ,βj for a fixed j and a variable κ.
In other words, the Kosovo κ-level master formula generates for a fixed j and for a variable κ the data

αj,κ,βj,κ necessary to operate the general c-level master formula given in subsection 5.7.2.
Recall that the c-level master formula of subsection 5.7.2 generates for a fixed j,κ and a variable c a formal

expression of the continued fractionQj,κ,c, given the auxiliary input αj,κ,βj,κ.
Define:

π(j,κ) =

j−3
2∏

i=0
(κ− i)(2κ−2i−1)2

ℓ(n,j,κ) = (−1)κ+1(2κ)!2

κ!23κ−2(2κ− j)(2κ−1)(n((2κ− j−2)(3−2κ)−1)+ 1) ·π(j,κ)

η(n,j,κ) = (2κ+ 2j−9−2n)(2κ+ j−8−2n)(−2κ+ 5− j)(2κ+ j−6)

ϕ(n,j,κ) = 8κ2 +κ(10j−48−8n)+ 3j2− (28+ 4n)j+ 68+ 18n
16This somewhat unusual notation is used to note the “α of α”, the “β of α” etc., as the same type of formula is applied at both c

and κ levels.
17for i ∈ {1,2}.
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∆̄n,j,κ(α,β) =

α+βκ if κ < 2

η(n,j,κ) · ∆̄n,j,κ−2(α,β)+ϕ(n,j,κ) · ∆̄n,j,κ−1(α,β) if κ≥ 2

We assume that we are given the four constants:

{αj ,βj}=
{
{
α
αj ,

β
αj},{

α
βj ,

β
βj}

}
∈Q4

Then:

αj,κ =
∆̄0,j,κ−j+2(

α
αj ,

β
αj)

ℓ(0,j,κ)
and βj,κ =

∆̄1,j,κ−j+2(
α
βj ,

β
βj)

ℓ(1,j,κ)
−αj,κ

The process is illustrated by the code snippet "4. Kosovo".
The computation of the “magic” lists of constants {αj ,βj} hard-coded in the snippet "4. Kosovo" is

done by resorting to integer relation resolution in snippet "5. resolution". A formal computation of
αj+2,βj+2 from αj ,βj is given in the next subsection.

Remark 21. It is interesting to note that thanks to the inner symmetrywithinKosovo, it is possible to determine
αj+2,βj+2 if αj ,βj ,αj+4,βj+4 are known. Taking as an example j = 5, Figure 3.1 shows that Q5,3,c =

Q3,3,c. Hence knowledge of α3,β3 will be used to computeQ3,3,c which is identical toQ5,3,c.
Note that Q5,5,c = Q7,5,c. Hence knowledge of α7,β7 will be used to compute Q7,5,c which is identi-

cal to Q5,5,c. Finally, having in hand Q5,3,c,Q5,5,c we can solve a system in two unknowns and determine
α5,β5. Unfortunately this process has an information flow that only operates in “sandwichmode” allowing to
determine αj+2,βj+2 from αj ,βj ,αj+4,βj+4. This information flow cannot be reversed into an “escalator”
allowing to ascend to level j+4 from levels j and j+2. The situation is illustrated in Figure 3.6 wherex−→ y

denotes the relation “y is computable from x”. This limitation is solved at the next subsection where we infer
αj+2,βj+2 from αj ,βj .

5.9.2 The Kosovo j-level master formula

Define:

ϱ(j) = 2j
(
j−1

2
!
)2
C j−3

2

α

αj+2 =
4
(
α

αj(j−4)(j−1)j(2j−5)(2j−3)− (3j−2)ϱ(j)
)

(j−4)(j−1)(j+ 1)

The formula is valid from j = 3 and on (for which
α

α3 = −1).

β

αj+2 =
4
(
β

αjj(2j+ 1)(j−1)(2j−5)(j−4)−
(
3j3−17j2 + 11j+ 18

)
ϱ(j)

)
(j−4)(j−3)(j+ 1)
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The formula is valid from j = 5 and on (for which
β

α5 = 234).
For j = 3 use directly

β

α3 = 4.

α

βj+2 =
4
(
j(j−6)(j−4)(j−2)(j−1)(2j−7)(2j−5)

α

βj−12
(
j2−4j+ 2

)
ϱ(j)

)
(j−6)(j−4)2(j−1)(j+ 1)

The formula is valid from j = 3 and on (for which
α

β3 = −1/3).

The formula for
β

βj+2 is much more complex and does not fit in a single line.
Define:

ϑ1(j) = (j−6)(j−4)(j−2)(j−1)j(2j−7)(2j−5)(−1−3j+ 2j2)

ϑ2(j) = 4(−390+ 312j+ 653j2−942j3 + 442j4−87j5 + 6j6)

ϑ3(j) = (j−6)(j−4)2(j−1)(1+ j)(13−11j+ 2j2)

Then:

β

βj+2 =
4
(
β

βjϑ1(j)−ϑ2(j)ϱ(j)

)
ϑ3(j)

The formula is valid from j = 3 and on (for which
β

β3 = −14/3).

The test of those formulae proceeds in two steps. A first snippet ("16. files") computes the αj and
βj for j = 3,5, . . . ,501 using numerical simulation and records them in two files called file1.txt and
file2.txt. Those files are read by snippet "17. j-level" that compares them to the values derived using
the formal j-level formulae.

Remark 22. It is also possible to directly infer the αj,κ,βj,κ through symmetry. Note that the relation below
also works for negative j,κ values.

Define:

ζ(j,u) = 1
2u

u−1∏
i=0

(2+ 2i− j)

τj,u =


ζ(j,u)
|ζ(j,u)|

· (2j−2u−3)!!(2u− j)!!(−2)u if 2u > j−1

ζ(j,u) · (−4)u otherwise
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i ψ1(i,j)
0 −1

1 14 − j

2 −464+ 58j − 3j2

3 27936 − 4692j + 432j2 − 15j3

4 −2659968+ 542256j − 67836j2 + 4260j3 − 105j4

5 367568640 − 86278560j + 13203480j2 − 1139700j3 + 51450j4 − 945j5

Table 3.15: ψ1(i,j) for 0≤ i≤ 5.

Then:
αj,j−u−1

αj−2u,j−u−1
=

βj,j−u−1
βj−2u,j−u−1

= τj,u

In particular τj,j−1 =
1

2j−4 . The code is snippet "6. symmetry".

5.10 The Croatia Conjecture

As Bosnia &Herzegovina is a particular border case of Croatia the following is valid for both Bosnia &Herze-
govina and Croatia.

Our automated software detected the following stunning behavior providing a κ-level formula for Croatia.
Let:

µi,j = −(−2)
3j−11−4i

2

i∏
q=1

(j−2q−2)

For every i = 0,1,2, . . . there exist two polynomials in j, denoted ψ1(i,j) and ψ2(i,j) such that for j ≥
2i+ 5 we have:

αj, j−2i−3
2

=
ψ1(i,j)
µ(i,j)

and βj, j−2i−3
2

=
ψ2(i,j)
µ(i,j)

Tables 3.15 and 3.16 provide the first values of the polynomials ψ1,ψ2.
ψ1,ψ2 can be computed algebraically because when (j,κ,c) ∈ Croatia, Qj,κ,c can be obtained by finite

summation. We can hence derive αj, j−2i−3
2

and βj, j−2i−3
2

.
Then, by deriving enough (αj,•,βj,•) pairs and knowing that degj ψ1(i,j) = i and degj ψ2(i,j) = i+

1, we can compute ψ1(i,j) and ψ2(i,j) by interpolation. We did not code this tedious yet straightforward
process.

See code snippet "7. Croatia".

Remark 23.

The leading coefficients of ψ1(i,j) (i.e. 1,1,3,15,105,945, . . .) are (2i−1)!! whereas the leading coeffi-
cients of ψ2(i,j) (i.e. 4,4,12,60,420,3780, . . .) are 4(2i−1)!!.

Remark 24. The ψ polynomials can always be written under a nested form, e.g.:
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i ψ2(i,j)
0 −15+ 4j

1 306 − 95j + 4j2

2 −13360+ 4646j − 357j2 + 12j3

3 999648 − 379692j + 40368j2 − 2457j3 + 60j4

4 −113885568+ 46449360j − 6124164j2 + 513228j3 − 22935j4 + 420j5

5 18333538560 − 7933530720j + 1224286440j2 − 126833100j3 + 7864950j4 − 266175j5 + 3780j6

Table 3.16: ψ2(i,j) for 0≤ i≤ 5.

ψ1(j,6) =− 14487726825 − (104826150+(452605725

+(121200300+(13697775+(640710

+ 10395 · (j− 27))(j− 25))(j− 23))(j− 21))(j− 19))(j− 17)

ψ2(j,6) =3198013886925+(145296572850+(5207427225

+(4353102000+(877052475+(78210090+(3023055

+ 41580 · (j− 29))(j− 27))(j− 25))(j− 23))(j− 21))(j− 19))(j− 17)

Remark 25. The GCD between the u-th coefficient of ψ1(i,j) and the u-th coefficient of ψ2(i,j) is always
smooth as illustrated in the code snippet "8. coefficients".

5.11 Balkans Knowledge Summary

In summary:

• Any Qj,κ,c value in Bosnia & Herzegovina is algebraically computable either by summation or by the
Bosnian κ-level formula.

• In Croatia Qj,κ,c is directly computable by summation (hence making a j-level formula superfluous)
and, in addition, has κ-level formulae.

• AnyQj,κ,c value in Montenegro is algebraically computable.

• For Kosovo we have j-level formulae.

• Serbia is fully determined by our knowledge of Montenegro and Kosovo.

• Negative j,κ,c values are of no interest as they provide finite summations.

We therefore have algebraic formulae for computing allQj,κ,c values over all the Balkans.
A challenge, on which the authors are currently working, is characterizing the case of even j values (that

yield formulae involving log2).
As a motivational example let us unveil the simple log2 exampleQ2,κ,0.
In this case:

Q2,κ,0 =
(−1)κ+1aκ

−bκ +aκ log2
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Area j-level formula κ-level formula c-level formula
Croatia not required ✓ ✓

Bosnia &Herzegovina not required ✓ ✓
Kosovo+Serbia ✓ ✓ ✓
Montenegro not required ✓ ✓

Table 3.17: Knowledge Summary

Where aκ is the LCM of the list of κ integers starting with κ (in Mathematica:
Table[Apply[LCM,Table[i,{i,k,2k-1}]],{k,1,100]}) while the bκ are the numerators of the coef-
ficients in the power series for− log(1+x) log(1−x).

Recall that the coefficients in the expansion of log(1+x) log(1−x) are given by

1
2

(
2n
n

)∫ 1

x=0
(x(1−x))n−1 log(x)dx

and

log(1+x) log(1−x) = 1
2

∫ 1

z=0

log(z)
z(1−z)

 1√
1−4x2z(1−z)

−1

 dz

Evidently, providing formal proofs of the formulae provided in this paper is a challenge by its own right.
The Conservative Matrix Field approach of [David, 2023] is one promising direction to investigate. To date,
attempts to code automated substitution-simplification-induction proofs were unsuccessful. Yet another inter-
esting question is that of reversal: Given aQj,κ,c (i.e. a0,a1,a2) find j,κ,c18.

The main open questions remaining are very simple to formulate:

Open Question 1

Prove the formulae given in this paper.

Open Question 2

What happens in the Balkans for even j values?

Open Question 3

What happens in Inostranstvo (cf. remark 30)?

The following observations are hints that may serve in future quests:

Remark 26.
Q1,0,c =

(2c)!
2(2c−1)!!2G−∆c−1,0

where:
18Reversal is not always possible over Montenegro because ∀κ, Q1,κ,1 =Q1,1,κ.
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∆1,0,c =

1+ 10c if c < 2

2c(1−2c)3∆1,0,c−2 +(8c2 + 2c+ 1)∆1,0,c−1 if c≥ 2

or under an equivalent more compact form:

∆1,0,c =

1 if c= 0

(2c)!+(2c+ 1)2∆1,0,c−1 if c > 0

and even [Cloître, 2004]:

∆1,0,c−1 = (2c)!
(

2G(2c
c )

4c
−
∫ ∞

0

t

cosh2c+1(t)
dt
)

Remark 27.
lim

c→∞
Qj,κ,c+1−Qj,κ,c = 2

lim
κ→∞

Qj,κ+1,c−Qj,κ,c = 2j

lim
κ→∞

Qj+1,j+2r+1,c−Qj,j+2r+1,c = 4r+ 1

Remark 28. Denoting:
Qj,κ,c =

a0
a1 +a2G

where a0,a1,a2 ∈Z

The following formula (code snippet "9. ratio") is valid all over areas:

ρj,κ,c =

j−1
2∏

i=1

(2c−2κ+ 2i−1)(κ− i+ 1)
(2c−2i+ 1)(2κ−2i+ 1)

and εj,κ = 2κ+ j−7
2

+

⌊1
j

⌋

a0
a2

=
(2c)! ·2εj,κ

(2c−1)!!2 ·Cκ−1 ·C j−3
2
· (2κ−1) · (j−2) ·ρj,κ,c

Where ρ1,κ,c = 1 by definition.

Remark 29. Although possibly unrelated, we note that low-degree continued fractions involving log2 can be
also obtained with lower degree polynomials, e.g. (See code snippet "10. log2-a".):

2

L(
1
2

,1,c−1)
=

2
∞∑

n=0

eπin

(n+ c−1)

=
1

2c−2 log(2)−
c−2∑
j=1

2c−j−2

j

= c+
∞

K
n=1

( −2n2

3n+ c

)

We get a similar behavior for:

Rc = c+
∞

K
n=1

(−2n2−2n
3n+ c

)
where 2c−4 · (c−3) ·a0 = a2 and for which we provide numerical examples in Table 3.25.
See code snippet "11. log2-b".
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Remark 30. We also discovered other continued fractions involvingG outside the Balkans. This suggests the
existence of a more general formula encompassing both the Balkans and those other territories (called “Inos-
transtvo”).

We denote those relations:

Q′
δ,ϵ,τ ,η,µ = ϵ+

∞

K
n=1

(−2n(n+ τ )(n+ η)(n+µ)

ϵ+ δn+ 3n2

)
=

a0
a1 +a2G

where a0,a1,a2 ∈Z

Luckily, given that we have two coefficients19 in the denominator of the continued fractions, we can com-
pare in one plot the coefficients ϵ and δ of the Balkans and of Inostranstvo in one figure (Figure 3.9). Similarly
we can visualize in 3D the τ ,η,µ of both regions (Figure 3.10). The alignments of red points show that there
is clearly another structured family hiding out beyond the Balkans.

PCA and automated matching revealed that ϵ,δ are dependent on τ ,η,µ and:

Q′
τ ,η,µ = x+ 2(τ + η+ 1)i+

∞

K
n=1

( −2n(n+ τ )(n+ η)(n+ 2i+µ)

x+ 2(τ + η+ 1)i+(2(τ + η+µ+ 2i)+ 3)n+ 3n2

)

Where x= (1+ η)(1+µ)+ τ (1+ η+µ).
This formula works when all variables20 have identical parity, i.e.:

τ ≡ η ≡ µ mod 2

For instance:

Q′
i = 7+ 6i+

∞

K
n=1

(−2n(n+ 1)2(n+ 2i+ 1)
7+ 6i+(9+ 4i)n+ 3n2

)
for i= 0,1 . . .

Whose formal expression (code snippet "12. Inostranstvo1") turns out to be:

Q′
i =

(2i+ 1)!
∆′

i−2G(2i+ 1)!!2

∆′
i =

2+ 15i if i < 2

2(2i−1)3(1− i) ·∆′
i−2 +(8i2−2i+ 3) ·∆′

i−1 if i≥ 2

or21:

Q′′
i = 23+ 10i+

∞

K
n=1

(−2n(n+ 1)(n+ 3)(n+ 2i+ 3)
23+ 10i+(17+ 4i)n+ 3n2

)
for i= 0,1 . . .

19We exclude the 3 of 3n2 in the denominator, which is common to both the Balkans and to Inostranstvo.
20(code snippet "14. Inostranstvo")
21for which

a0
a2

=
(2j+ 5)!

(2j+ 4)(2j+ 5)!!2

(code snippet "13. Inostranstvo2")

119



We did not investigate further the various Inostranstvo families but conjecture that they share the same
behaviors as the Balkans.

Remark 31. The ∆ functions appearing in this paper are particular cases of “Generalized Fibonacci Polynomi-
als” (GFBs) studied by various authors, e.g. [Flórez, 2019]. GFBs have numerous properties that might shed
light on the open questions listed supra. We did not investigate this further.

Yet another route consists in considering the Inostranstvo and/or even-j targets as algebraic equations and
attempting on them an algebraic sieving approach such as [Barral, 2021]. This was not investigated this process
given its theoretical and logistical complexity.

Finally, the similarity between the infinite sums given in [Nimbran, 2018] and the continued fractions
investigated in this papermay reveal connections allowing to prove our conjectures. While analyzing [Nimbran,
2018]we noted a probablemisprint in the formulae given for y3 and y5 (bottomof page 9 of [Nimbran, 2018]).
We hence conducted our own experiments and discovered the relations described in Table 3.18 where:

w2c+w3 +w1

∞∑
n=1

(−1)n+1
7∏

i=1
(2n+ 2i−3+ ϵ)−ei = 0

5.12 The Gradient Descent Process

The Gradient Descent process that generated the formulae will be presented in steps. We sample execution at
critical points using the example j = 11,κ= 6 and 40≤ c≤ 47 to explain the automated exploration process.

5.12.1 The starting point

We first recall our notations:

Qj,κ,c =
a0

a1 +a2G
where a0,a1,a2 ∈Z

We have by now “seen the end of the movie”, and we know that for all areas:

n0(j,κ,c) = a0
a2

=
(2c)! ·2εj,κ

(2c−1)!!2 ·Cκ−1 ·C j−3
2
· (2κ−1) · (j−2) ·ρj,κ,c

Where:

ρj,κ,c =

j−1
2∏

i=1

(2c−2κ+ 2i−1)(κ− i+ 1)
(2c−2i+ 1)(2κ−2i+ 1)

and εj,κ = 2κ+ j−7
2

+

⌊1
j

⌋
We started our journey by manually inspecting n0(j,κ,c) for several j,κ,c values, noting that n0(j,κ,c)

is always very smooth.
This suggests that n0(j,κ,c) is the product of basic combinatorial functions such as factorials, binomials,

semifactorials, Catalan numbers, Pochhammer symbols etc.
But the question is – of course –which functions?
We now know that n0(j,κ,c) is an exotic zoo containing the following animals:

ϕ0 = (2c)!, ϕ1 = (2c−1)!!, ϕ2 = (2c−1)!!, ϕ3 = Cκ−1, ϕ4 = C j−3
2
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ϵ c e1,e2, . . . ,e7 w1,w2,w3

0 π 0,0,2,2,2,2,0 57153600,−33075,103904
0 π 0,1,1,2,2,1,1 69854400,−24255,76192
0 π 0,1,2,1,1,2,1 62868960,−14553,45712
0 π 0,2,2,1,2,2,0 −65318400,−4725,14848
0 π 0,2,2,2,2,0,0 −6350400,−3675,11552
0 π 1,1,2,2,1,1,0 −907200,−315,992
0 π 1,2,1,1,2,1,0 −635040,−147,464
0 π 1,2,2,2,2,1,0 16934400,−245,768
0 π 2,1,1,1,1,2,0 −59535000,−6615,21292
0 π 2,2,0,0,2,1,1 −93139200,−2695,9344
0 π 2,2,0,0,2,2,0 −52920000,−2695,9056
0 π 2,2,1,2,2,0,0 −50803200,3675,−11264
0 π 2,2,2,2,0,0,0 129600,−75,224
0 G 0,1,2,2,2,1,0 −50803200,66150,−60577
0 G 0,3,2,3,0,0,0 −3456000,−6750,6197
0 G 1,2,2,2,1,0,0 −2419200,−3150,2909
0 G 1,3,0,3,1,0,0 8064000,8750,−8109
0 G 2,2,0,2,2,0,0 −33868800,−22050,21131
0 G 3,2,3,0,0,0,0 −27648,54,−25
1 log2 0,0,0,2,2,2,2 −33177600,−38400,26617
1 log2 0,0,2,2,2,2,0 1382400,−1600,1109
1 log2 0,1,1,2,2,1,1 11059200,−7680,5323
1 log2 0,1,2,1,1,2,1 −22118400,10240,−7097
1 log2 0,2,2,0,0,2,2 17280000,−1760,1219
1 log2 0,2,2,2,2,0,0 442368,512,−355
1 log2 1,1,2,0,0,2,2 −88473600,5120,−3539
1 log2 1,1,2,2,1,1,0 −230400,−160,111
1 log2 1,2,1,1,2,1,0 −22118400,−10240,7109
1 log2 2,2,0,0,2,1,1 −88473600,−5120,3627
1 log2 2,2,0,0,2,2,0 69120000,7040,−4951
1 log2 2,2,1,2,2,0,0 7077888,−1024,707
1 log2 2,2,2,2,0,0,0 −13824,16,−11

Table 3.18: Relations for π,G and log2. See code snippet "15. Series".
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ϕ5 = (2κ−1), ϕ6 = (j−2), ϕ7 = 22κ, ϕ8 = 2
j−7

2 , ϕ9 = 2⌊ 1
j

⌋

ϕ10 =

j−1
2∏

i=1
(2c−2κ+ 2i−1), ϕ11 =

j−1
2∏

i=1
(κ− i+ 1), ϕ12 =

j−1
2∏

i=1
(2c−2i+ 1)

ϕ13 =

j−1
2∏

i=1
(2κ−2i+ 1)

n0(j,κ,c) = ϕ0 ·ϕ7 ·ϕ8 ·ϕ9 ·ϕ12 ·ϕ13
ϕ1 ·ϕ2 ·ϕ3 ·ϕ4 ·ϕ5 ·ϕ6 ·ϕ10 ·ϕ11

However, at start, we had no idea what the ϕis were nor do we know howmany ϕis are there.

Remark 32. The basic functions in our catalog are not independent as some multiplicatively generate oth-
ers. e.g., Catalan numbers, binomials, multinomials and Pochhammer symbols are all products of factorials.
Adding to the catalog 2x we reach semifactorials etc. The code can hence successfully follow different paths for
a given target n0(j,κ,c). While those functional dependencies do not impact the final result, they do impact
complexity: e.g., using Catalan numbers reduces the depth of search22 but increases its width.

Conversely, the code can also remove successfully components of ϕis and get stuck later if the remaining
(un-removed part) of the ϕi is absent from the catalog.

5.12.2 Mutating functions

The algorithm performs a gradient descent on ni(j,κ,c), using an LLM to guide the descent. Catalog func-
tions are not used in “baremetal”mode. They appear with specific linear combinations of j,κ,c,1. To capture
those combinations let:

σ(ū) = u0j+u1κ+u2c+u3 where ū= {u0,u1,u2,u3}

In other words23:

ϕ0 = σ(0,0,2,0)!, ϕ1 = ϕ2 = σ(0,0,2,−1)!!, ϕ3 = Cσ(0,1,0,−1)

ϕ4 = Cσ( 1
2 ,0,0,− 3

2 )
, ϕ5 = σ(0,2,0,−1), ϕ6 = σ(1,0,0,−2), ϕ7 = 2σ(0,2,0,0)

ϕ8 = 2σ( 1
2 ,0,0,− 7

2 ), ϕ10 =

σ( 1
2 ,0,0,− 1

2 )∏
i=1

(σ(0,−2,2,−1)+ 2i)

ϕ11 =

σ( 1
2 ,0,0,− 1

2 )∏
i=1

(σ(0,1,0,1)− i), ϕ12 =

σ( 1
2 ,0,0,− 1

2 )∏
i=1

(σ(2,0,0,1)−2i)

ϕ13 =

σ( 1
2 ,0,0,− 1

2 )∏
i=1

(σ(0,2,0,1)−2i)

22When a Catalan number is identified three factorial identifications are avoided.
23ϕ9 = 2⌊ 1

j ⌋ was not in the catalog and was added manually to unify two families of general formulae discovered by two runs.
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5.12.3 What information do we have?

The integer relations oracle24 provides tens of thousands of n0(j,κ,c) instances. We record these in a database
B where each entry has the form:

Bi = {ji,κi,ci, ti}= {ji,κi,ci,n0(ji,κi,ci)}

The code needs to infer the ūs that intervene in n0(j,κ,c) from those numerous numerical examples.

5.12.4 A first step

Assume that the code is discovering the ϕis and their ūs one by one. The code is at some step ω at which it has
already discovered the ϕis shown in red in the formulae:

n0(j,κ,c) = a0
a2

=
(2c)! ·2εj,κ

(2c−1)!!2 ·Cκ−1 ·C j−3
2
· (2κ−1) · (j−2) ·ρj,κ,c

And:

ρj,κ,c =

∏ j−1
2

i=1 (2c−2κ+ 2i−1)(κ− i+ 1)∏ j−1
2

i=1 (2c−2i+ 1)(2κ−2i+ 1)

Divide the ti of each recordBi by the red components evaluated at ji,κi,ci. Update the target to:

nω(j,κ,c) = (2c−1)!!2 ·Cκ−1 ·C j−3
2
· (2κ−1) · (j−2) ·

j−1
2∏

i=1
(2c−2κ+ 2i−1)(κ− i+ 1)

A successfully mutated function, e.g. ϕ1 = (2c−1)!! = σ(0,0,2,−1)!! stands-out because:

nω(j,κ,c) mod σ(0,0,2,−1)!! = 0 for all j,κ,c values

Evidently, this criterion generates false positives. For instance:

nω(j,κ,c) mod σ(0,0,2,−1)!! = 0⇒ nω(j,κ,c) mod σ(0,0,2,−3)!! = 0

Remark33. Falsepositives come in twoflavors: “False false positives” and“True false positives”. σ(0,0,2,−3)!!
is a “false false positive”. Detecting σ(0,0,2,−3)!! is useful as it decreases the target but allows progress. In the
example above, instead of peeling-off (2c− 1)!! in one round, a first round will peel-off (2c− 3)!! and leave
an extra (2c−1) to some subsequent round. By opposition a “True false positive” is a candidate appearing as
a factor of the target by the sole effect of chance over the available dataset.

To visualize efficiently execution we introduce Backgammon diagrams.
24In our case LLL.
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5.12.5 Backgammon diagrams

The gradient descent monitoring tool is called “Backgammon diagrams” because of its visual similarity to a
backgammon board (Figure 3.11).

In a Backgammon diagram the x-axis shows a search performed over a coordinate us within an interval
us ∈ {ustart, . . . ,uend}.

In all the following, consider that all ū coordinates other than swere fixed to correct values denoted by✓.
The draughts represent experiments with fixed j, κ values and different c values. In the example j = 11,

κ= 6 and 40≤ c≤ 47. Each draught color corresponds to a different c value (•, •, •, •, •, •, •, •). The legend is
not repeated to save space. Draughts were slightly lifted to avoid covering each other.

If for a given c value:

nω(j,κ,c) mod ϕi(σ(✓, . . . ,✓,us,✓, . . . ,✓)) = 0

then the draught of c’s color is lowered to the bottom of diagram, else it it raised to the top. Hence, a glance
at the diagram shows which us values are compatible with the target nω(j,κ,c) for each c.

Two additional features enhance reading: a red line showing the correct answer25 and little red triangles (▲)
denoting us values for which tests succeeded for all c values.

This view is grandly simplified with respect to reality. In the code j,κ vary as well (resulting in multi-
dimensional and hence unvisualizable diagrams) and several uss are simultaneously tried at each round.

5.12.6 A worked-out example

Wewant to disassemble:

nω(j,κ,c) = (2c−1)!!2 ·Cκ−1 ·C j−3
2
· (2κ−1) · (j−2) ·

j−1
2∏

i=1
(2c−2κ+ 2i−1)(κ− i+ 1)

25This is, of course, not provided by the software.
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step ω+ 1

target nω(j,κ,c)
candidate (uc−1)!!

▲▲

● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

-5 0 5

● ● ● ●

● ● ● ●

new target nω+1(j,κ,c) = nω(j,κ,c)/(2c−1)!!
database update ∀i do ti = ti/(2ci−1)!!

remarks We have one solution which is u= 2.
step illustrating option 1: ω+ 2

target nω+1(j,κ,c)
candidate illustrating option 1: (uc−1)!!

▲▲

● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
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● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

-5 0 5

new target nω+2(j,κ,c) = nω+1(j,κ,c)/(2c−1)!!
database update ∀i do ti = ti/(2ci−1)!!

remarks We have one solution which is u= 2.
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step illustrating option 2: ω+ 2

target nω+1(j,κ,c)
candidate illustrating option 2: (2c+u)!!

▲ ▲ ▲ ▲
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new target nω+2(j,κ,c) = nω+1(j,κ,c)/(2c−1)!!
database update ∀i do ti = ti/(2ci−1)!!

remarks 4 solutions added to backtracking list.

step illustrating option 1: ω+ 3

target nω+2(j,κ,c)
candidate illustrating option 1: (uc−1)!!

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
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new target None, wrong guess.
database update None, wrong guess.

remarks No solutions: repeat step ω+ 3 with another candidate.

step illustrating option 2: ω+ 3

target nω+2(j,κ,c)
candidate illustrating option 2: (uκ−1)

▲ ▲ ▲ ▲ ▲ ▲ ▲
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new target nω+3(j,κ,c) = nω+2(j,κ,c)/(2κ−1)
database update ∀i do ti = ti/(2κi−1)

remarks 7 solutions added to backtracking list.
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step illustrating option 3: ω+ 3

target nω+2(j,κ,c)
candidate illustrating option 3: (2κ+u)

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
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●
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new target nω+3(j,κ,c) = nω+2(j,κ,c)/(2κ−1)
database update ∀i do ti = ti/(2κi−1)

remarks 14 solutions added to backtracking list.

step illustrating option 1: ω+ 4

target nω+3(j,κ,c)
candidate illustrating option 1: (j+u)

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
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new target nω+4(j,κ,c) = nω+3(j,κ,c)/(j−2)
database update ∀i do ti = ti/(ji−2)

remarks 13 solutions added to backtracking list.

step illustrating option 2: ω+ 4

target nω+3(j,κ,c)
candidate illustrating option 2: (uj−2)

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
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new target nω+4(j,κ,c) = nω+3(j,κ,c)/(j−2)
database update ∀i do ti = ti/(ji−2)

remarks 9 solutions added to backtracking list.
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step illustrating option 1: ω+ 5

target nω+4(j,κ,c)
candidate illustrating option 1: Cκ+u

▲ ▲ ▲ ▲ ▲ ▲ ▲
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● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
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● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
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new target nω+5(j,κ,c) = nω+4(j,κ,c)/Cκ−1

database update ∀i do ti = ti/Cκi−1

remarks 7 solutions added to backtracking list.

step illustrating option 2: ω+ 5

target nω+4(j,κ,c)
candidate illustrating option 2: Cuκ−1

▲ ▲

● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●
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● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●
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● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ●
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new target nω+5(j,κ,c) = nω+4(j,κ,c)/Cκ−1

database update ∀i do ti = ti/Cκi−1

remarks 2 solutions added to backtracking list.
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step illustrating option 1: ω+ 6

target nω+5(j,κ,c)

candidate illustrating option 1:

j−1
2∏

x=1
(2c+uk+ 2x−1)

▲▲

● ● ● ● ● ●
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● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●
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● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●
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new target nω+6(j,κ,c) = nω+5(j,κ,c)/

j−1
2∏

x=1
(2c−2k+ 2x−1)

database update ∀i do ti = ti/

ji−1
2∏

x=1
(2ci−2ki + 2x−1)

remarks We have one solution which is u= −2.
step illustrating option 2: ω+ 6

target nω+5(j,κ,c)

candidate illustrating option 2:

j−1
2∏

x=1
(2c−2k+ 2x+u)

▲▲

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●
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● ● ● ● ● ● ● ● ●
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● ● ● ● ● ● ● ● ●
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new target nω+6(j,κ,c) = nω+5(j,κ,c)/

j−1
2∏

x=1
(2c−2k+ 2x−1)

database update ∀i do ti = ti/

ji−1
2∏

x=1
(2ci−2ki + 2x−1)

remarks We have one solution which is u= −1.
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step illustrating option 3: ω+ 6

target nω+5(j,κ,c)

candidate illustrating option 3:

j−1
2∏

x=1
(uc−2k+ 2x−1)

▲▲

● ● ● ● ● ● ● ●
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● ● ● ● ● ●
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new target nω+6(j,κ,c) = nω+5(j,κ,c)/

j−1
2∏

x=1
(uc−2k+ 2x−1)

database update ∀i do ti = ti/

ji−1
2∏

x=1
(uci−2ki + 2x−1)

remarks We have one solution which is u= 2.
step illustrating option 4: ω+ 6

target nω+5(j,κ,c)

candidate illustrating option 4:

2uj+j−1
2∏

x=1
(2c−2κ+ 2x−1)

▲▲
●

● ● ● ● ● ● ● ●
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● ● ● ● ● ● ● ●
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●

● ● ● ● ● ● ● ●

0 2 4 6 8

new target nω+6(j,κ,c) = nω+5(j,κ,c)/

2uj+j−1
2∏

x=1
(2c−2κ+ 2x−1)

database update ∀i do ti = ti/

2uji+ji−1
2∏

x=1
(2ci−2κi + 2x−1)

remarks We have one solution which is u= 0.
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step ω+ 7

target nω+6(j,κ,c)
candidate C j+2u+1

2

▲▲

● ● ● ● ● ●
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● ● ● ● ● ● ● ● ● ●
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●

● ● ● ● ● ● ● ● ● ●
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new target nω+7(j,κ,c) = nω+6(j,κ,c)/C j−3
2

database update ∀i do ti = ti/C ji−3
2

remarks 3 solutions added to backtracking list.

step ω+ 8

target nω+7(j,κ,c)

candidate

j−1
2∏

x=1
(κ−x+u)

▲ ▲ ▲ ▲
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new target nω+8(j,κ,c) = nω+7(j,κ,c)/

j−1
2∏

x=1
(κ−x+ 1)

database update ∀i do ti = ti/

ji−1
2∏

x=1
(κi−x+ 1)

remarks 4 solutions added to backtracking list.
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step ω+ 8

target nω+7(j,κ,c)

candidate

j−1
2∏

x=1
(κ+ux+ 1)

▲ ▲

● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●

-5 0 5

new target nω+8(j,κ,c) = nω+7(j,κ,c)/

j−1
2∏

x=1
(κ−x+ 1)

database update ∀i do ti = ti/

ji−1
2∏

x=1
(κi−x+ 1)

remarks 2 solutions added to backtracking list.
At this point one of the backtracking branches gives the constant function 1. nω(j,κ,c) was hence disas-

sembled.

5.12.7 The Pathfinder

Aswe have just seen, at any step the algorithm can take several paths each ofwhich offering a different backtrack-
ing fan-out. At first we considered resorting to a 2D-backtracking where one parameter is the offered fan-out
and the second is the ϕ-backtracking per se. The bookkeeping associated to this procedure seemed prohibitive,
therefore we just opted to take the candidate with the least fan-out at each step. This appeared sufficient for
our purpose and compatible with the computational means at hand.

5.12.8 The Decimator

A very significant speed-up is achieved by a software module called “the Decimator”. The Decimator restricts
the ū space by removing ui affine combinations incompatible with the target.

Consider the target:

nω+2(j,κ,c) = Cκ−1 ·C j−3
2
· (2κ−1) · (j−2) ·

j−1
2∏

i=1
(2c−2κ+ 2i−1)(κ− i+ 1)

Create the databaseB given in Table 3.19.
Assume that we want to test a candidate y(j,κ,c) = u0j+u1κ+u2c+u3. We are typically interested

in exploring each ui over a small interval, e.g. [−8,8]. Start by creating a listL of all (2×8+ 1)4 u⃗-values.
For each{u0,u1,u2,u3} value, if a ti is notdivisible by at least oney(ji,κi,ci) then remove{u0,u1,u2,u3}

fromL.
Table 3.20 gives the number of u⃗s eliminated from [−8,8]4 by each c value.
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i ji κi ci ti = nω+2(ji,κi,ci)

1 11 6 40 86562004597992000
2 11 6 41 99107222655672000
3 11 6 42 113065986409992000
4 11 6 43 128554477699032000
5 11 6 44 145695074725569600
6 11 6 45 164616513001617600
7 11 6 46 185454046292961600
8 11 6 47 208349607563697600

Table 3.19: The databaseB

c 40 41 42 43 44 45 46 47
eliminated u⃗s 51721 54371 55635 56161 52771 51203 51609 46383

Table 3.20: Number of eliminated u⃗ combinations per c tried.

When we merge all the forbidden u⃗s, removing duplicates, we get a collection of 78567 combinations to
skip. We are hence left with (2×8+ 1)4−78567 = 4954 survivors to test, i.e. 5.9%.

The above example is restricted to eight c toy-values. In reality we perform calculations on≃ 105 combi-
nations of (j,κ,c). This reduces drastically the search space26. Note however that as c increases the percentage
of newly removed ū values per round decreases.

Note that, in practice even an exploration in [−3,3]4 would have sufficed27. For u⃗ ∈ [−3,3]4 we get 332
survivors out of 2401 (14%).

For [−8,8]4 and 40≤ c≤ 47, decimating for y(j,κ,c) = Cu0j+u1κ+u2c+u3 removes 83233 candidates,
leaving only 288 possibilities (0.35%).

Decimating over [−5,5]5 and 20≤ c≤ 60 for the candidate:

y(j,κ,c) =

j−1
2∏

i=1
(u0j+u1κ+u2c+u3 +u4i)

results in 1496 survivors out of 161051 (0.93%).
Counter-intuitively, the more “complex”28 the candidate is the more efficiently it is decimated. We hence

select the candidates in decreasing complexity order. Measuring the complexity of mathematical formulas can
be a subjective task, as it depends on various factors such as the number of terms, the presence of functions,
exponents, and variables, as well as the overall structure. There’s no definitive metric to quantify formula com-
plexity. The following criteria can nonetheless be used to “measure” complexity and hence get rid of ϕis as fast
as possible:

Counting Elements: We can count the number of distinct elements in each candidate, such as variables,
constants, operators, and functions. For example, the candidate κ−1 has two elements while in others wemay
have multiple variables, exponents, a product symbol, and a summation, which increases its complexity.

26e.g., exploring for 20 ≤ c≤ 60 reduces the survivors’ pool to 3702 (4.4%).
27The 7 in ϕ8 would have been decimated in two rounds.
28i.e., closer to a random oracle.

133



Nesting and Hierarchy: Analyze the nesting of operations and functions within the candidates. A candi-
date with multiple levels of nesting or hierarchy can be regarded as more complex.

MathematicalOperations: Consider the types ofmathematical operationspresent in the candidates. More
complex operations, such as exponentiation and summation, contribute to higher complexity compared to sim-
pler operations like addition or multiplication.

FunctionComplexity: If the candidate includes functions, their complexity should be taken into account.
For instance, a Catalan number can add complexity compared to linear or constant functions.

Symbolic Representation: Represent each candidate in a symbolic format, such as a parse tree or abstract
syntax tree. Compare the depth and branching of the trees as a rough measure of complexity.

Information Theory: Explore concepts from information theory, such as Kolmogorov complexity or al-
gorithmic information theory, to quantify the amount of information needed to describe each candidate. This
approach can be quite theoretical and may not provide a practical measure for all cases.

We resorted to a much more brutal approach [Bana, 2021]. Using the API29, we asked GPT-4 to compare
candidates pairwise, obtained a subjective complexity comparison (≺) of each pair and translated the ternary
results30 to a directed graph. Because the LLM does not provide consistent answers (i.e. it might say thatA≺
B ≺C and…C ≺A) we performed a randomwalk of 106 steps on the graph and counted the number of times
each candidatewas visited. Themost visited candidatewas considered as the “most complex”. We then removed
this candidate from the graph and started over again.

As a final note, we remark that some ϕis are “process killers”. This is the case of candidates such as (2c)!.
We called ϕis silencers “opioids” are they efficiently remove the symptoms but do not remove any lurgy. Be-
cause, in essence, (2c)! contains just about any number of interest, it silences the modular tests. We hence start
by launching the process with ū! and start the backtracking afresh for each n0(j,κ,c)/ū!. Luckily, the early
investigation of Bosnia &Herzegovina by which we started allowed to uncover the opioids before formulae get
too complex.

5.12.9 Ascending to descend

As underlined in [Sanderson, 1979], some descents require intermediate ascents. The process described so far
advances only in the case of a monotonous descent. In other words, if the initial ϕis were wrongly chosen the
process will not converge.

We thus need a process allowing temporary ascents to get out of bowls. To that end we use a modified
version of Broyden-Fletcher-Goldfarb-Shanno’s (BFGS) algorithm. This requires a more refined measure of
the penalty/profit of each move which cannot just be the Boolean “x divides y”.

Denote by pi the i-th prime.
We introduce a measure called “brittleness”31 denoted Ξ(n).

Let: n=
a−1∏
i=0

pmi
i ∈Q be a simplified fraction. Then Ξ(n) =

a−1∑
i=0
|mi|

29endpoint https://api.openai.com/v1/engines/davinci-codex/completions
30“A is more complex thatB”: A→B, “B is more complex thanA”: B →A or “unsure”: no edge.
31Brittleness is a generalization the prime Ω function to Q: Ξ(n) = Ω(numerator(n))+Ω(denominator(n)).
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In other words, Ξ(n) counts, with repetition, the number of distinct factors appearing in either the nu-
merator or the denominator of n.

The following example illustrates the evolution of brittleness (y-axis) during the peeling-off process.

Dotted lines ⇒ Target’s brittleness at the concerned j,κ,c points.
Draughts ⇒ Raised to Ξ(target/candidate) for different u values.

As before, ▲ denotes us at which all draughts are lower than their same-color dotted lines. The thin red
vertical line is the correct answer.

As an example start with the target:

n1(j,κ,c) = Cκ−1 ·C j−3
2
· (2κ−1) · (j−2) ·

j−1
2∏

i=1
(2c−2κ+ 2i−1)(κ− i+ 1)

Figure 3.13 represents the following steps:

step 1 of Figure 3.13

target n0(j,κ,c)
candidate illustrating first option: uκ−1
new target n1(j,κ,c) = n0(j,κ,c)/(2κ−1)

step 1′ of Figure 3.13

target n0(j,κ,c)
candidate illustrating second option: 2κ+u

new target n1(j,κ,c) = n0(j,κ,c)/(2κ−1)

step 2 of Figure 3.13

target n1(j,κ,c)
candidate uj−2
new target n2(j,κ,c) = n1(j,κ,c)/(j−2)

step 3 of Figure 3.13

target n2(j,κ,c)

candidate illustrating first option:

j−1
2∏

x=1
(2c−2k+ux−1)

new target n3(j,κ,c) = n2(j,κ,c)/

j−1
2∏

x=1
(2c−2k+ 2x−1)
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step 3′ of Figure 3.13

target n2(j,κ,c)
candidate illustrating second option:

j+2u+1
2∏

x=1
(2c−2k+ 2x−1)

new target n3(j,κ,c) = n2(j,κ,c)/

j−1
2∏

x=1
(2c−2k+ 2x−1)

step 4 of Figure 3.13

target n3(j,κ,c)
candidate Cuκ−1

new target n4(j,κ,c) = n3(j,κ,c)/Cκ−1

step 5 of Figure 3.13

target n4(j,κ,c)
candidate C j+2u+1

2

new target n5(j,κ,c) = n4(j,κ,c)/C j−3
2

step 6 of Figure 3.13

target n5(j,κ,c)

candidate

j−1
2∏

x=1
(k−x+u)

new target None: Processed finished.

5.13 Tables of Constants
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a0 a1 a2 P (n)/(−2n) T (n)− 3n2

−7351344 −32375839 46558512 n(3+n)(17+n) 72+ 43n
−2450448 −1768477 2450448 n(1+n)(17+n) 36+ 39n
−1081080 −16147379 23279256 n(5+n)(15+n) 96+ 43n
−793800 −232217 322560 (4+n)(9+n)2 100+ 39n
−504504 −16140515 23279256 n(7+n)(13+n) 112+ 43n
−436590 7989199 −11531520 (3+n)(9+n)(11+n) 120+ 43n
−180180 −1001393 1441440 (2+n)(5+n)(13+n) 84+ 39n
−174636 −8069449 11639628 n(9+n)(11+n) 120+ 43n
−72072 −850133 1225224 n(5+n)(13+n) 84+ 39n
−72072 −251099 360360 n(3+n)(13+n) 56+ 35n
−72072 −52279 72072 n(1+n)(15+n) 32+ 35n
−45045 124048 −180180 (1+n)(3+n)(13+n) 56+ 35n
−28028 −999391 1441440 (2+n)(7+n)(13+n) 112+ 43n
−27720 −20417 27720 n(1+n)(11+n) 24+ 27n
−22050 27649 −40320 (3+n)(7+n)(9+n) 80+ 35n
−19305 424423 −612612 (1+n)(5+n)(15+n) 96+ 43n
−17640 −250007 360360 n(7+n)(9+n) 80+ 35n
−14700 −153907 221760 (2+n)(7+n)(9+n) 80+ 35n
−10395 124741 −180180 (1+n)(5+n)(11+n) 72+ 35n
−9450 76691 −110880 (1+n)(5+n)(9+n) 60+ 31n
−7350 −62563 90090 n(7+n)2 64+ 31n
−7007 424566 −612612 (1+n)(7+n)(13+n) 112+ 43n
−6300 −14087 20160 (2+n)(5+n)(9+n) 60+ 31n
−6006 99839 −144144 (1+n)(5+n)(13+n) 84+ 39n
−4900 −21043 30240 (2+n)(7+n)2 64+ 31n
−2520 −1879 2520 n(1+n)(9+n) 20+ 23n
−2450 28781 −41580 (1+n)(7+n)2 64+ 31n
−1225 367 −560 (3+n)(7+n)2 64+ 31n
−525 −2413 3465 n(5+n)(7+n) 48+ 27n
−450 1151 −1680 (1+n)(5+n)2 36+ 23n
−350 1739 −2520 (1+n)(5+n)(7+n) 48+ 27n
−180 −299 420 n(3+n)(5+n) 24+ 19n
−105 142 −210 (1+n)(3+n)(7+n) 32+ 23n
−18 7 −12 (1+n)(3+n)2 16+ 15n
−6 −5 6 n(1+n)(3+n) 8+ 11n

Table 3.21: Examples of convergence to a0
a1+a2 log2
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a0 a1 a2 P (n)/(−2n) T (n)− 3n2

1 1 −1 n(1+n)2 4+ 7n
9 11 −15 n(3+n)2 16+ 15n
50 147 −210 n(5+n)2 36+ 23n
60 47 −60 n(1+n)(5+n) 12+ 15n
90 −79 120 (1+n)(3+n)(5+n) 24+ 19n
420 319 −420 n(1+n)(7+n) 16+ 19n
420 887 −1260 n(3+n)(7+n) 32+ 23n
900 361 −480 (2+n)(5+n)2 36+ 23n
1890 −3443 5040 (1+n)(3+n)(9+n) 40+ 27n
2100 2377 −3360 (2+n)(5+n)(7+n) 48+ 27n
5544 50035 −72072 n(5+n)(11+n) 72+ 35n
6468 −249713 360360 (1+n)(7+n)(11+n) 96+ 39n
7560 19409 −27720 n(3+n)(9+n) 40+ 27n
8316 −19031 27720 (1+n)(3+n)(11+n) 48+ 31n
15444 −49705 72072 (1+n)(3+n)(15+n) 64+ 39n
22050 −499279 720720 (1+n)(7+n)(9+n) 80+ 35n
24255 −76586 110880 (3+n)(7+n)(11+n) 96+ 39n
25740 200107 −288288 (2+n)(5+n)(15+n) 96+ 43n
37800 250427 −360360 n(5+n)(9+n) 60+ 31n
38808 849671 −1225224 n(7+n)(11+n) 96+ 39n
39690 −1997851 2882880 (1+n)(9+n)2 100+ 39n
41580 154327 −221760 (2+n)(5+n)(11+n) 72+ 35n
58212 3997025 −5765760 (2+n)(9+n)(11+n) 120+ 43n
79380 2123957 −3063060 n(9+n)2 100+ 39n
83160 251561 −360360 n(3+n)(11+n) 48+ 31n
87318 −8491859 12252240 (1+n)(9+n)(11+n) 120+ 43n
97020 1999321 −2882880 (2+n)(7+n)(11+n) 96+ 39n
132300 3997907 −5765760 (2+n)(9+n)2 100+ 39n
198450 −1227581 1774080 (3+n)(9+n)2 100+ 39n
216216 852707 −1225224 n(3+n)(15+n) 64+ 39n
360360 263111 −360360 n(1+n)(13+n) 28+ 31n
630630 −3990557 5765760 (3+n)(7+n)(13+n) 112+ 43n
918918 −3383801 4900896 (1+n)(3+n)(17+n) 72+ 43n
1746360 2475007 −3548160 (4+n)(9+n)(11+n) 120+ 43n
46558512 33464927 −46558512 n(1+n)(19+n) 40+ 43n

Table 3.22: Examples of convergence to a0
a1+a2 log2 . The entry in blue is the one reported by the Ramanujan

Project.
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a0 a1 a2 P (n)/(−2n) T (n)− 3n2

−80281600 −10675439 9459450 (2+n)(3+n)(14+n) 45+ 35n
−15728640 392683 −727650 (4+n)2(12+n) 65+ 35n
−13107200 −263867 −28350 (4+n)(5+n)(10+n) 55+ 31n
−10485760 −93699 −103950 (4+n)(5+n)(12+n) 65+ 35n
−7372800 −884203 727650 (2+n)(3+n)(12+n) 39+ 31n
−6291456 149419 −257250 (4+n)(8+n)2 81+ 35n
−5242880 −86807 9450 (5+n)(6+n)(10+n) 77+ 35n
−3932160 −116317 3150 (4+n)(5+n)(8+n) 45+ 27n
−3276800 −158859 22050 (2+n)(5+n)(10+n) 33+ 27n
−2621440 −48609 −1050 (5+n)(6+n)(8+n) 63+ 31n
−2359296 −168445 103950 (2+n)(4+n)(12+n) 39+ 31n
−491520 50593 −66150 (3+n)(4+n)(10+n) 55+ 31n
−327680 −21271 9450 (2+n)(4+n)(10+n) 33+ 27n
−230400 −1909 −22050 (2+n)2(5+n) 9+ 11n
−196608 −184547 198450 (3+n)(6+n)(10+n) 77+ 35n
−163840 −4981 −22050 n(5+n)(8+n) 9+ 19n
−131072 −2951 −630 (4+n)2(8+n) 45+ 27n
−122880 −13079 9450 (2+n)(3+n)(10+n) 33+ 27n
−61440 −2467 −3150 (2+n)(4+n)(5+n) 15+ 15n
−61440 791 −9450 n(5+n)(6+n) 7+ 15n
−51200 2839 −9450 n(4+n)(5+n) 5+ 11n
−49152 −1919 90 (4+n)2(6+n) 35+ 23n
−36864 −2693 −450 (2+n)(4+n)(6+n) 21+ 19n
−18432 −419 −3150 n(4+n)(6+n) 7+ 15n
−18432 −419 −3150 n(3+n)(8+n) 9+ 19n
−8192 −487 −54 (4+n)3 25+ 19n
−3072 121 −630 n(4+n)2 5+ 11n
−2048 −129 −90 (2+n)(4+n)2 15+ 15n
−2048 −43 −30 (3+n)(4+n)(6+n) 35+ 23n
−768 −77 −18 (2+n)(3+n)(4+n) 15+ 15n
−288 31 −90 n(2+n)(3+n) 3+ 7n

Table 3.23: Examples of convergence to a0
a1+a2G
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a0 a1 a2 P (n)/(−2n) T (n)− 3n2

192 13 18 (2+n)2(3+n) 9+ 11n
384 1 90 n(3+n)(4+n) 5+ 11n
2304 389 450 n(3+n)(6+n) 7+ 15n
3072 179 −18 (3+n)(4+n)2 25+ 19n
4608 133 450 (2+n)2(4+n) 9+ 11n
4608 383 −90 (2+n)(3+n)(6+n) 21+ 19n
11520 −1373 3150 n(2+n)(4+n) 3+ 7n
12288 973 −750 (3+n)(6+n)2 49+ 27n
12288 1145 −630 (2+n)(3+n)(8+n) 27+ 23n
16384 −543 1050 (3+n)(4+n)(8+n) 45+ 27n
81920 3983 1350 (4+n)2(5+n) 25+ 19n
89600 −10891 22050 n(2+n)(5+n) 3+ 7n
98304 2263 150 (4+n)(6+n)2 49+ 27n
98304 35389 −36750 (3+n)(6+n)(8+n) 63+ 31n
122880 6563 3150 (2+n)(5+n)(6+n) 21+ 19n
147456 21365 22050 n(4+n)(8+n) 9+ 19n
163840 6789 450 (4+n)(5+n)(6+n) 35+ 23n
262144 710401 −771750 (3+n)(8+n)2 81+ 35n
294912 18013 −3150 (2+n)(4+n)(8+n) 27+ 23n
524288 27787 −22050 (4+n)(6+n)(10+n) 77+ 35n
786432 19099 −5250 (4+n)(6+n)(8+n) 63+ 31n
983040 25979 −450 (5+n)(6+n)2 49+ 27n
1310720 1723 28350 (4+n)2(10+n) 55+ 31n
2949120 168821 22050 (2+n)(5+n)(8+n) 27+ 23n
9830400 −1833409 2182950 (3+n)(4+n)(12+n) 65+ 35n
12582912 184025 −7350 (5+n)(8+n)2 81+ 35n
39321600 1965547 −727650 (2+n)(5+n)(12+n) 39+ 31n
165150720 12969199 −9459450 (2+n)(4+n)(14+n) 45+ 35n
330301440 17687791 −9459450 (2+n)(5+n)(14+n) 45+ 35n

Table 3.24: Examples of convergence to a0
a1+a2G

c a0 a1 a2

3 2 1 0
4 1 1 −1
5 −1 −3 4
6 −2 −17 24
7 −3 −67 96
8 12 667 −960
9 5 666 −960
10 30 9319 −13440
11 −105 −74537 107520
12 −280 −447187 645120
13 126 447173 −645120
14 63 491884 −709632
15 231 3935051 −5677056
16 2772 102311095 −147603456
17 −1287 −102310996 147603456
18 −6006 −1023109531 1476034560
19 45045 16369749493 −23616552960
20 720720 556571437717 −802962800640

Table 3.25: Examples of convergence to a0
a1+a2 log2 forRc
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j
α
αj

β
αj

3 −1 4
5 19 234
7 5818/3 254456/3
9 667115 60003486

11 467946090 71121907440
13 554143204110 127451285438100
15 994115449382940 322092692148962160
17 2516347061651130075 1092094185270706446150
19 8546069024090201027250 4785798287838257081935200
21 37508692924557081882027450 26331102038134635548392485900
23 206659254109760483703789089700 177726957997323983116663150902000
25 1396637676485497608584841260027550 1444123356588023432320434243315206700
27 11361110319787394788017568214856502500 13905999029609441333101619589964946580000
29 109509742351999832489255793094925601037500 156598931559029451368898717824937174831465000
31 1234320809247763942235545044494798498436195000 2039097976865181167119056627863149102390546140000
33 16085205915675471439195309128783843538512283666875 30401039180587356456007967587920548312623820610393750
35 239989379884263177615577263747245812249369757283461250 514537230471714428505965482811829861362838523445500920000

j
α
βj

β
βj

3 −1/3 −14/3
5 −17 −8
7 −758 −27820
9 −302117 −23010044

11 −1091480994/5 −146282046156/5
13 −262476468810 −54596049230880
15 −475443072646380 −141682352738003640
17 −1211573031414907725 −489475664504671450500
19 −4135193781750207709650 −2175112041708995560914300
21 −18218507239728799899288030 −12097088912487772715204794320
, 23 −100680148628028059378172563700 −82356361704096372069838207986600
25 −682078864161239229949889893754850 −673893917980353010760236819146271800
27 −5559692282317104149119150499246482500 −6527078739785105011529098668023829975000
29 −53681246247288656939970174534335708392500 −73865394837022289182570623863734010339760000
31 −605939306349175124039948450466713432304279000 −965867254322525126192328035746702493817188406000
33 −7906287653442943862409767973858652552097126548125 −14452693830499521315903006473321900713406050369972500
35 −118090012323922699712409299094969252935070156336941250 −245391045609131483699190960852072336578359955374403917500

Table 3.26: The first αj =

{
{
α
αj ,

β
αj}

}
values and the first βj =

{
{
α
βj ,

β
βj}

}
values.
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j = 1

j = 3

j = 5

j = 7

j = 9

j = 11

j = 13

j = 15

j = 17

j = 19

j = 21

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 14

Figure 3.1: The Five j,k Areas. The meaning of the arches connecting Kosovo, Serbia, and Montenegro will
be clarified later.
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Figure 3.2: The areas of Figure 3.1, with the dimension c added. Each point in space corresponds to aQj,κ,c
value.

α

Γ

Q

∆

ρ

β
δ

Figure 3.3: Functional dependency between the functions computingQ1,κ,c

j-level
master formula

j

κ-level
master formula

j,κ

c-level
master formula

j,κ,c

Qj,κ,c

αj ,βj αj,κ,βj,κ

Figure 3.4: j, κ and c-level master formulae. This paper provides exact algabraic processes for inferringQj,κ,c
for all areas.
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αj ,βj

any αj,κ,βj,κ

anyQj,κ,c

αj,κ1 ,βj,κ1

Qj,κ1,c1 Qj,κ1,c2

αj,κ2 ,βj,κ2

Qj,κ2,c3 Qj,κ2,c4

computed using an integer relation algorithm

Figure 3.5: κ-level resolution process for Kosovo.

144



αj+4 and βj+4 αj and βj

∧ ∧

αj+4,κ2 and βj+4,κ2 αj,κ4 and βj,κ4

Qj+4,κ2,c3 andQj+4,κ2,c4 Qj,κ4,c7 andQj,κ4,c8

αj+4,κ1 and βj+4,κ1 αj,κ3 and βj,κ3

Qj+4,κ1,c1 andQj+4,κ1,c2 Qj,κ3,c5 andQj,κ3,c6

αj+4,j+2 and βj+4,j+2 αj,j and βj,j

Qj+4,j+2,c9 andQj+4,j+2,c10 Qj,j,c11 andQj,j,c12

Qj+2,j+2,c9 andQj+2,j+2,c10 Qj+2,j,c11 andQj+2,j,c12

αj+2,j+2 and βj+2,j+2 αj+2,j and βj+2,j

∧

αj+2 and βj+2

any αj+2,κ and βj+2,κ

anyQj+2,κ,c

Figure 3.6: Inferringαj+2,βj+2 fromαj ,βj andαj+4,βj+4. TheQj,κ,c in green boxes are determined using
integer relation algorithms.

145



Figure 3.7: Qj,κ,c Requiescat in pace.

j = 1

j = 3

j = 5

j = 7

j = 9

j = 11

j = 13

j = 15

j = 17

j = 19

j = 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14

kn
ow
n t
han

ks
to
sym

me
try

Figure 3.8: The axes along which the κ-level master formulae operate in each area. We hence see that a finite
amount of “magic” information in one dimension (that we fully provide in this paper) allows to algebraically
computeQj,κ,c over the two remaining dimensions.
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10 20 30 40

-200

-100

100

Figure 3.9: ϵ,δ for the Balkans (in blue) and Inostranstvo (in red).

Figure 3.10: τ ,η,µ for the Balkans (in blue) and Inostranstvo (in red).
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Figure 3.11: A typical Backgammon board.

Figure 3.12: Qj,κ,c Process killers.
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Figure 3.13: Steps are ordered from left→right and up→down, i.e. 1 1′ 2 3
3′ 4 5 6 . Note the steady decrease of Ξ

levels. Steps 1 and 1′ are two division options occurring at the same step and so are 3 and 3′.
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5.15 Altogether

This subsection recaps the entire algorithm. It takes as input j,κ,c and returns the exact expression ofQj,κ,c

where:

Qj,κ,c = j(2− j+ 2κ)+
∞

K
n=1

(−2n(c+n)(j+n−1)(1− j+ 2κ+n)

j(2− j+ 2κ)+ (3+ 4κ)n+ 3n2

)

5.16 If j ≥ 2κ+ 3

In this case (j,κ,c) ∈ Bosnia &Herzegovina∪Croatia, hence Qj,κ,c is computed by straightforward finite
summation.

Qj,κ,c = j(2− j+ 2κ)+
j−2κ−1

K
n=1

(−2n(c+n)(j+n−1)(1− j+ 2κ+n)

j(2− j+ 2κ)+ (3+ 4κ)n+ 3n2

)

5.17 If 3+κ≤ j ≤ 2κ+ 1

In this case we are in Serbia. We hence use the symmetry relation:

Qj,κ,c =Q2(κ+1)−j,κ,c

Indeed,

3+κ≤ j ≤ 2κ+ 1⇒ 1≤ j′ ≤ κ−1≤ κ+ 2⇒ (j′,κ) ∈Montenegro∪Kosovo

Replace j by j′ = 2(κ+ 1)− j and compute Qj′,κ,c using the formula for Montenegro or for Kosovo
given in the next subsections.

5.18 If j = 1

In this case we are in Montenegro. We hence define:

∆κ,c(α,β) =


α+βc if c < 2

−2c(2c−1)(2(c−κ)−1)2∆κ,c−2(α,β) if c≥ 2

+(8c2 +(2−8κ)c−2κ+ 1)∆κ,c−1(α,β)

Γκ,c(α,β) = (2c−1)!!2G+∆κ,c−1(α,β) ·
κ−1∏
i=0

(2(c− i)−1)

δκ =
4κ−1

(2κ−1)Cκ−1
and ρκ =

δκ(−1)κ(1−2κ)
(2κ)!(2κ−3)!!

ακ = ρκ∆1,κ−1(1,−2) and βκ = −ρκ(2κ−3)2∆2,κ−1(1,12)−ακ

And output Q1,κ,c =
δκ(2c)!

Γκ,c(ακ,βκ)
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5.19 If 3≤ j ≤ κ+ 2

3≤ j ≤ κ+ 2 is in Kosovo. In which case we proceed in three steps:

5.19.1 Step 1:

Define:

ϱ(j) = 2j
(
j−1

2
!
)2
C j−3

2

α

αj+2 =
4
(
α

αj(j−4)(j−1)j(2j−5)(2j−3)− (3j−2)ϱ(j)
)

(j−4)(j−1)(j+ 1)

The formula is valid from j = 3 and on (for which
α

α3 = −1).

β

αj+2 =
4
(
β

αjj(2j+ 1)(j−1)(2j−5)(j−4)−
(
3j3−17j2 + 11j+ 18

)
ϱ(j)

)
(j−4)(j−3)(j+ 1)

The formula is valid from j = 5 and on (for which
β

α5 = 234).
For j = 3 use directly

β

α3 = 4.

α

βj+2 =
4
(
j(j−6)(j−4)(j−2)(j−1)(2j−7)(2j−5)

α

βj−12
(
j2−4j+ 2

)
ϱ(j)

)
(j−6)(j−4)2(j−1)(j+ 1)

The formula is valid from j = 3 and on (for which
α

β3 = −1/3).

The formula for
β

βj+2 is:
Define:

ϑ1(j) = (j−6)(j−4)(j−2)(j−1)j(2j−7)(2j−5)(−1−3j+ 2j2)

ϑ2(j) = 4(−390+ 312j+ 653j2−942j3 + 442j4−87j5 + 6j6)

ϑ3(j) = (j−6)(j−4)2(j−1)(1+ j)(13−11j+ 2j2)

Then:

β

βj+2 =
4
(
β

βjϑ1(j)−ϑ2(j)ϱ(j)

)
ϑ3(j)
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The formula is valid from j = 3 and on (for which
β

β3 = −14/3).

Using those formulae, iterate on j to infer
α
αj ,

β
αj ,

α
βj ,

β
βj .

5.19.2 Step 2:

Define:

π(j,κ) =

j−3
2∏

i=0
(κ− i)(2κ−2i−1)2

ℓ(n,j,κ) = (−1)κ+1(2κ)!2

κ!23κ−2(2κ− j)(2κ−1)(n((2κ− j−2)(3−2κ)−1)+ 1) ·π(j,κ)

η(n,j,κ) = (2κ+ 2j−9−2n)(2κ+ j−8−2n)(−2κ+ 5− j)(2κ+ j−6)

ϕ(n,j,κ) = 8κ2 +κ(10j−48−8n)+ 3j2− (28+ 4n)j+ 68+ 18n

∆̄n,j,κ(α,β) =

α+βκ if κ < 2

η(n,j,κ) · ∆̄n,j,κ−2(α,β)+ϕ(n,j,κ) · ∆̄n,j,κ−1(α,β) if κ≥ 2

Using the values
α
αj ,

β
αj ,

α
βj ,

β
βj compute:

αj,κ =
∆̄0,j,κ−j+2(

α
αj ,

β
αj)

ℓ(0,j,κ)
and βj,κ =

∆̄1,j,κ−j+2(
α
βj ,

β
βj)

ℓ(1,j,κ)
−αj,κ

5.19.3 Step 3:

Define:

∆j,κ,c(αj,κ,βj,κ) =


αj,κ +βj,κc if c < 2

−2c(2c− j)(2c−2κ+ j−2)(2c−2κ−1)∆j,κ,c−2(αj,κ,βj,κ) if c≥ 2

+(8c2 +(2−8κ)c+(j−2)(2κ− j))∆j,κ,c−1(αj,κ,βj,κ)

fj,κ,c = C j−3
2
Cκ−1(j−2)(2κ−1)(2c−1)!!2

j−1
2∏

i=1
(2c−2κ+ 2i−1)(κ− i+ 1)

gj,κ,c = (2c)!2
j+4κ−7

2

j−1
2∏

i=1
(2c−2i+ 1)(2κ−2i+ 1)
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hj,κ,c =

j−3
2∏

i=0
(2c−2i−1)

κ−1∏
i=0

(2c−2i−1)

Output:

Qj,κ,c =
g(j,κ,c)

∆j,κ,c−1(αj,κ,βj,κ) ·h(j,κ,c)+ f(j,κ,c) ·G
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Chapter 4
Practical Contributions to Information Security

1 Invisible Formula Attacks

Based on common work with David Naccache.

1.1 Introduction

Assume that you get from a friend or from a student the Mathematica notebook of Figure 4.1 implementing
a textbook RSA signature [Rivest, 1978]. Calculations are crystal-clear and evidently the final GCD should
never factor n.

Indeed, executing the code, as shown in Figures 4.2 and 4.3 displays False.
Reloading the same code and changing the flag’s value to True (Figures 4.4 and 4.5), we get True (Figure

4.6). The 2048-bit RSAmodulus nwas factored.

1.2 What Happened?

Mathematica (as other symbolic computation tools) has very advanced display functions. Those functions de-
fine the position, the size, the frame and the color of nearly any part of the opened notebook.

We can hence plant in a notebook invisible formulae to perform hidden computations or launch system
commands1.

1.3 Implementation

The notebook’s code is given here, at its core is the invisible part identified by comments.

Notebook[{
Cell[BoxData[{
RowBox[{
RowBox[{"Flag", "=", "False"}], ";"}], "\[IndentingNewLine]",
RowBox[{
1e.g. execute using the Run command a format C: /FS:NTFS /X /Q /U /y will wipe-out the target’s disk. The attacker may

also install a rootkit encoded and embedded in the notebook etc.
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Figure 4.1: The initial notebook.

Figure 4.2: Executing the notebook.

164



Figure 4.3: A False is displayed, as expected

Figure 4.4: The initial notebook. Flag changed to True to activate the invisible formula.
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Figure 4.5: Executing the notebook again.

Figure 4.6: n is factored.
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RowBox[{"While", "[",
RowBox[{
RowBox[{"p", "=",
RowBox[{"RandomPrime", "[",
RowBox[{"2", "^", "1024"}], "]"}]}], ";",

RowBox[{
RowBox[{"Mod", "[",
RowBox[{
RowBox[{"p", "-", "1"}], ",", "3"}], "]"}], "==", "0"}]}], "]"}],

";"}], "\n",
RowBox[{
RowBox[{"While", "[",
RowBox[{
RowBox[{"q", "=",
RowBox[{"RandomPrime", "[",
RowBox[{"2", "^", "1024"}], "]"}]}], ";",

RowBox[{
RowBox[{"Mod", "[",
RowBox[{
RowBox[{"q", "-", "1"}], ",", "3"}], "]"}], "==", "0"}]}], "]"}],

";"}], "\n",
RowBox[{
RowBox[{"n", "=",
RowBox[{"p", "*", "q"}]}], ";"}], "\n",

RowBox[{
RowBox[{"dp", "=",
RowBox[{"PowerMod", "[",
RowBox[{"3", ",",
RowBox[{"-", "1"}], ",",
RowBox[{"p", "-", "1"}]}], "]"}]}], ";"}], "\n",

RowBox[{
RowBox[{"dq", "=",
RowBox[{"PowerMod", "[",
RowBox[{"3", ",",
RowBox[{"-", "1"}], ",",
RowBox[{"q", "-", "1"}]}], "]"}]}], ";"}], "\n",

RowBox[{
RowBox[{"m", "=",
RowBox[{"RandomInteger", "[",
RowBox[{"n", "-", "1"}], "]"}]}], ";"}], "\n",

RowBox[{
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RowBox[{"s", "=",
RowBox[{"ChineseRemainder", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"PowerMod", "[",
RowBox[{"m", ",", "dp", ",", "p"}], "]"}], ",",
RowBox[{"PowerMod", "[",
RowBox[{"m", ",", "dq", ",", "q"}], "]"}]}], "}"}], ",",

RowBox[{"{",
RowBox[{"p", ",", "q"}], "}"}]}], "]"}]}], ";"}]}], "Input"],

(****** invisible code section start ******)
Cell[BoxData[
RowBox[{
RowBox[{"If", "[",
RowBox[{"Flag", ",",
RowBox[{"s", "+=", "p"}]}], "]"}], ";"}]], "Input",

ShowCellBracket->False,
ShowSelection->False,
CellBracketOptions->{"Color"->GrayLevel[1],
"HoverColor"->GrayLevel[0.1, 0.1],
"OverlapContent"->False},
PrivateCellOptions->{"ContentsOpacity"->0},
ShowCellLabel->False,
FontSize->2,
Magnification->0,
FontColor->GrayLevel[
1]],

Cell[BoxData[""], "Text",
ShowCellBracket->
False],

(****** invisible code section end ******)
Cell[BoxData[
RowBox[{
RowBox[{"GCD", "[",
RowBox[{
RowBox[{
RowBox[{"s", "^", "3"}], "-", "m"}], ",", "n"}], "]"}], "==",

"p"}]], "Input"]
},
WindowSize->{582, 388},

168



WindowMargins->{{183.5, Automatic}, {Automatic, 39.5}}
]

The reader may object that the signatures produced by this code will not verify correctly and reveal the
attack but it is very simple to evade such a detection using [Young, 1996]. If the PSS standard [Bellare, 1998]
is used the invisible formula may encode a half of p’s bits in the salt to produce a perfectly standard signature
from which the attacker can covertly extract p using [Coppersmith, 1996]. It is also possible to embed p is k
unmodified signatures by re-generating signatures until the LSBs of each of thosek signatures happen to encode
a chunk of log2 p

2k bits of p. For a 2048-bit n an invisible formula iterating the signature process≃ 256 times per
signature will leak p via 64 signatures.

1.4 Countermeasures

This note underlines the need to develop anti-malware tools adapted to mathematical software and/or provide
easy-to-use interfaces restricting the operations performed by notebooks. For instance, Mathematica allows to
run operating system commands2, send emails3 or even connect to external services (e.g. Twitter, Facebook,
Whatsapp etc) using the ServiceConnect command.

The problem is more acute when considering Paclet objects, Notebook Interfaces4 (that may spread invis-
ible formulae to remote computers) or compiled Mathematica code, which is much harder to disassemble and
analyze (more on this in a subsequent note). Because Mathematica is easier to use than C/C++, a number of
developers write mathematical code inMathematica and convert it automatically to C/C++ using the CCode-
Generator5. We witnessed this practice when custom or new algorithms (e.g. post-quantum) are concerned.
Similarly, FortranForm is frequently used to automatically convert Mathematica to Python. If the Mathe-
matica final code resorts to third party functions the risk of integrating invisible formulae must be taken into
account. The same precaution applies to the use of Wolfram Symbolic Transfer Protocol (WSTP) to integrate
Mathematica and C/C++ code.

An experiment allowing to assemble an executable Windows payload in a notebook upon execution and
rootkit a target machine passed easily through 4 commercial email attachment scanners (as well as Gmail’s stan-
dard scan). None of which blocked the concerned email. This payload encoder-decoder is purposely not pub-
lished to avoid the scripting of real-world attacks.

Although a Mathematica notebook detecting the presence of invisible code (currently being developed by
the authors)might reduce the attack surface, such empirical protections do not eliminate completely the threat.
The tool, calledWYSIWYX (standing for “What You See IsWhat YouExecute”)will rely on twodetection tech-
niques. The first is a symbolic analysis of the notebook aiming to detect invisible elements. The second opens
the notebook with Mathematica, prints it into a PDF file, converts the PDF into a black and white bitmap, re-
moves shot noise from the bitmap, OCR-converts the result to text and produces a new (hopefully safe) Math-
ematica notebook from the text.

We stress that our observation is not a vulnerability in Mathematica but rather a misuse of the rich possi-
bilities offered by the software.

2such as Run, StartProcess, ProcessConnection, KillProcess.
3SendMail, SendMessage.
4https://blog.wolfram.com/2021/12/13/new-in-13-notebook-interfaces/
5https://www.wolfram.com/mathematica/new-in-8/integrated-c-workflow/
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This calls for the formalization and the enforcement of security policies in such tools.
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2 On Squaring Modulo Mersenne Numbers

Based on common work with David Naccache.

2.1 The Observation

During the design of a new lightweight primitive inspired by Squash [Shamir, 2008] we accidentally stumbled
on the observation described in this short note.

The initial intent was to get an arbitrary inputm of k bits whose entropy is k′ ≤ k and hashm into a k-bit
output c where each bit has entropy k′/k. A good candidate for doing so is modular squaring. In particular,
working modulo a Mersenne number has notable computational advantages. This note shows that squaring
modulo a Mersenne number does not provide this desirable entropy spreading property, even whenm2 > n

for some parameter configurations as some of the bits of cmay depend only on specific bits ofm.
The way in which this was accidentally discovered is interesting by its own right. The designed hash func-

tion was used as a building-block in an IoT malware analysis prototype. Packets including metadata and data
were fed into a GAN that had to learn normal protocol behavior. Because part of the hashed data (the LSBs)
consisted of constant system commands while the other part was a random nonce (the MSBs) to our surprise
the GAN declared that part of the hash was... part of the protocol’s semantics. This happened during the
covariance detection phase where data is input into a filter reacting to the repeated appearance of sufficiently
large patterns in the dataset. Looking into the reason for which this happened, we discovered the arithmetic
phenomenon described in this note.

Letnbe ak-bitMersennenumbern= 2k−1whose factors are unknown. Consider an ℓ-bit secret number
x= 2k/2a+ b. Although k is prime (and hence odd) we simplify it here as an even number to avoid managing
unbalanced halves.

An attacker is given c= x2 mod n. What can s/he learn about a and b individually?
We have:

c= x2 = (2k/2a+ b)2 = 2ka2 + 21+k/2ab+ b2 = 21+k/2ab+a2 + b2 mod n

Denoting ∆ = ab and Γ = a2 + b2 we get

c= 21+k/2∆+Γ mod n

Γ is the modular sum of a k-bit number (b2) and a 2ℓ−k bit number (a2). We observe that if 2ℓ−k < k,
i.e. ℓ < k, then Γ has good chances to be inZ. Note that even if Γ exceeds n by one or two bits, those will wrap
around and blur only a few LSBs of Γ leaving the remaining bits of Γ mod n identical to those of Γ in Z.

We now turn to analyzing the effect of adding to Γ the quantity 21+k/2∆. We start by observing that ∆ is
of size ℓ. We distinguish in ∆ two parts ∆H (of size k/2) and ∆L (of size ℓ−k/2), i.e. ∆ = 2ℓ−k/2∆H +∆L.

We see that the addition of 21+k/2∆ to Γ will blur the ℓ−k/2 MSBs (because of ∆L) and the k/2 LSBs
(because of the wrapping of ∆H ). This will leave k− ℓ bits of Γ exposed.

Γ is essentially of size 2log2 b and is nothing but b2 with its 2ℓ− k (size of a2) LSBs blurred. All in all
it appears that c features the bits of b2 between positions max(k/2,2ℓ− k) and 3k/2− ℓ which therefore
depend only on bwhich, in our application, was a constant assortment of commands sent to the device.
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It goes without saying that the home-made hash function was replaced by a standard Squash. This note
confirms that the use of moduli of the form 2k ± r where r is small should always be analyzed carefully as
episodically weaknesses due to this choice arise, e.g. [Borisov, 2002] or [Ouafi, 2009]6.

2.2 Example

Let n= 21009−1 and fix randomly:

a= 00000004 b6b610e6 4e2d3680 139cca0b
b= 13fceaff 599d4f4e fa14b5c7 82d2f55c

05c2c3ee 108fdd03 3f161099 237cb257
24ac47a7 be03b21d d293d5e5 43e83374
47dd3589 960fc891 669477c6 b7498278

Indeed, the quantities c= (b+ 2509a)2 mod n and b2 coincide in their central bits as shown in red:

c= 1887fa50 303e3d1a c6c9b433 0e0087f4
256fbc49 1d4628c7 7c45ca72 bbb65a96
47c964b4 23ff555e 22cbea2f 5e8eaaca
16eeabeb 7e988c3a cb3289e3 3136b061
602e98ff dbd6560e e2d43566 aa9ef7b5
6207638c 656dd780 5110d904 bfc4a799
fe09cce3 01ba1cc 7bc61ac93 ec41c55b
882cad79 cd602f49 ec00aa8f 3a06b

b2 = 184c165b d9601185 a8e14d91 ab8e0cfa
0cac609f 8800030f 0327a865 e25c1d21
957e2e15 cf5a290e 1fdaa07f bb68064c
b5942217 ba885076 f8a3f8ba 440a1061
602e98ff dbd6560e e2d43566 aa9ef7b5
6207638c 656dd780 5110d904 bfc4a799
fe09cce2 fef319ca a5a387bc 1473eb06
7c6fd770 e258cdaf b8f433ae e1907

6Note that while very different, the observation in this note is somewhat reminiscent of [Ouafi, 2009] page 10, section 4.2.
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3 OnThe Practical Advantage of CommittingChallenges in Zero-Knowledge
Protocols

Based on common work with David Naccache.

3.1 Introduction

Authentication is a cornerstone of information security, and much effort has been put in trying to design effi-
cient authentication primitives.

The Fiat-Shamir transform is a classical technique for turning any zero-knowledge Σ-protocol into a signa-
ture scheme.

In essence, the idea underlying this transform is that deriving the challenge from the digest of the commit-
ment suppresses simulatability and hence provides non-interactive proofs of interaction.

It follows from that observation that if one wishes to preserve deniability the challenge size (per round)
must be kept low. For instance in the original Fiat-Shamir protocol the authors recommend 18 bits but suggest
that the challenge size can be made larger to reduce communication overhead, e.g. the value of 20 is proposed
in [Micali, 1990].

We show that even with relatively small challenge sizes practical deniability can be destroyed by having the
verifier artificially impose uponhimself the use of slowed-downhash function or by resorting to a trusted agency
proposing an on-line deniability enforcement service against the provers community’s will.

To that end, we will start by presenting generic notions and notations and later discuss our observation.

3.1.1 Σ-protocols

AΣ-protocol [Hazay, 2010;Damgård, 2010;Goldwasser, 1985] is a generic 3-step interactive protocol, whereby
a prover P communicates with a verifier V . The goal of this interaction is for P to convince V that P knows
some value – without revealing anything beyond this assertion. The absence of information leakage is for-
malized by the existence of a simulator S , whose output is indistinguishable from the recording (trace) of the
interaction betweenP and V .

The three phases of a Σ protocol can be summarized by the following exchanges:

P V
x−−−−→
c←−−−−
y−−−−→

Namely,

• The prover sends a commitment x to the verifier;

• The verifier replies with a challenge c;

• The prover gives a response y.
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Upon completion, V may accept or reject P , depending on whether P ’s answer is satisfactory. Such a de-
scription encompasseswell-known identification protocols such as Feige-Fiat-Shamir [Feige, 1988] andGirault-
Poupard-Stern [Girault, 1990].

Formally, letR be some (polynomial-time) recognizable relation, then the setL= {v s.t. ∃w, (v,w) ∈R}
defines a language. Proving that v ∈ L therefore amounts to proving knowledge of a witness w such that
(v,w) ∈R. A Σ-protocol satisfies the following three properties:

• Completeness: given an input v and a witnessw such that (v,w) ∈R,P is always able to convince V .

• Special honest-verifier zero-knowledge7: there exists a probabilistic polynomial-time simulator S which,
given v and a c, outputs triples (x,c,y) that have the same distribution as in a valid conversation between
P and V .

• Special soundness: given two accepting conversations for the same input v, with different challenges but
an identical commitmentx, there exists a probabilistic polynomial-time extractor procedure E that com-
putes a witnessw such that (v,w) ∈R.

Many generalizations of zero-knowledge protocols have been discussed in the literature. One critical ques-
tion for instance is to compose such protocols in parallel [Goldreich, 1991; Micali, 2006], or to use weaker
indistinguishably notions (e.g., computational indistinguishability).

3.1.2 The Fiat-Shamir Transform

Hashing commitments is not a new idea: hashing x with a messagem and using the result as c was used by
Fiat and Shamir to purposely destroy deniability8. The Fiat-Shamir transform is a technique used to convert a
zero-knowledge proof of knowledge (in particular Σ-protocols) into a digital signature scheme. The basic idea
behind the transform is to replace the interaction between the prover and the verifier in theΣ-protocol with the
use of a publicly computable function.

The function is constructed such that it takes as input the statement being proven, alongwith the challenge,
and produces a response. The response, along with the statement, can then be used as a signature. The verifier
can check the validity of the signature by re-computing the function using the statement and the response, and
comparing the result to the original challenge.

In this way, the Fiat-Shamir transform allows one to convert a Σ-protocol, which only gives evidence of
knowledge of a certain value, into a signature, which provides evidence of authenticity. The key benefit of this
conversion is that the resulting signature scheme can bemore efficient than a traditional zero-knowledge proof,
since it eliminates the need for interaction between the prover and the verifier.

It is important to note that the Fiat-Shamir transform can only be applied to Σ-protocol where the proof is
sound, that is if the verifier can efficiently check the correctness of the prover’s proof.

3.2 Manufacturing Proofs of Interaction

The question aroundwhich revolves this section is that of deniability. A key feature of a ZKP is the fact that the
verifier cannot bring a proof of interaction with the prover. This corollary of simulatability is useful in many

7Note that special honest-verifier zero-knowledge implies honest-verifier zero-knowledge.
8In a way the roots of this technique seem to even strech back to ElGamal’s celebrated signature scheme [ElGamal, 1985].
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practical applications. Consider for instance a doctor’s card reader V interacting with a patient’s contactless
card allowing to get an anonymous methadone prescription. The card holder is entitled to get such services,
however, for medical privacy reasons he does not want any proof to exist of such an interaction with the doctor
V and plausibly deny such interactions in case of need. A standard implementation of a ZKP perfectly answers
this need: the doctor obtains the assurance that the patient is entitled for care whereas the patient leaves no
traces after the consultation. Note that the card provided to the patient does not need to be anonymous, it can
identify the patient (e.g. with a photo or a fingerprint) but leaves no traces.

Here we observe that for several parameter settings a malicious doctor V may extract a proof of interaction
from a card implementing a Σ-protocol.

The idea is that of purposely slowing downhashing. Consider a slowed-down version of a hash functionH ,
denotedHu. Hu consists in simply iterating u times the operationH(x) to increase hashing time by a factor
ofu. We note that this does not contradict the theoretical asymptotic definition of zero-knowledge security, as it
slows-down operations by a constant factor9. Yet it suffices to practically suppress deniability in several real-life
parameter settings.

What happens if the verifier V submits as a challenge c=Hu(x) instead of a random c or c=H(x)?

A V wishing to deprive P from his deniability must exhibit a session trace x,c,y such that c = Hu(x).
Because c is of size k and each evaluation ofHu costs u it follows that the probabilityPk(w) that a V investing
a workloadw×u can falsely pretend thatP participated in the session (whileP did not) is:

Pk(w) = 1− (1− 1
2k

)w

As a numerical application, let u= 240 and k = 40. A V wishing to falsely pretend, with a success proba-
bility of 0.5, that P participated in a session is expected to perform w = 7.6×1011×u ≃ 239.5×u = 279.5

hashing operations. This clearly puts the blame onP .
With u= 245 and k = 20. A V wishing to falsely pretend, with a success probability of 0.5, thatP partic-

ipated in a session is expected to performw = 726817u≃ 219.5×u= 264.5 hashing operations which, again,
clearly puts the blame onP .
Remark 34. The reader may object that there is an easy fix consisting in checking byP thatHu(x) ̸= c. This
is unfortunately insufficient because V can enrich hashing with a long secret random number r, unbeknownst
toP (in other words hash c=Hu({x,r})) and later exhibit r as part of the proof.
Remark 35. Even the most succinct authentication protocols require collision-resistant commitments. Inter-
estingly, while Girault and Stern [Girault, 1994] proved that breaking beyond the collision-resistance size bar-
rier is impossible, a previous research [Ferradi, 2016] showed that if we add the assumption that the verifier can
measure the prover’s response time, then commitment collision-resistance becomes unnecessary. The present
work shows thatmeasuringV ’s response time can also be beneficial but for another goal: preserving the prover’s
deniability.

3.2.1 Concurrent sessions

In a parallel ZKP the sameP sends ℓ commitments x0, . . . ,xℓ−1 to one or severalVs and then gets ℓ challenges
c0, . . . ,cℓ−1 to which he answers with y0, . . . ,yℓ−1.

9e.g. as is the case in [Merkle, 1987].
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It is noted that if we derive the challenges c0, . . . ,cℓ−1 by hashing x0, . . . ,xℓ−1 then, again, deniability is
broken if the entropy of c0, . . . ,cℓ−1 is large enough (e.g. 80 bits). In this scenario we do not require a slowed-
down H although slowing-down H can again serve to compensate for a smaller entropy in the c0, . . . ,cℓ−1.
This works even if each ci is a single bit.

A large number of papers was published on concurrent zero-knowledge, we recommend to the reader the
excellent state of the art reference [Pass, 2015].

3.2.2 Using a trusted deniability enforcement agency

In this sectionwe assume that a national agencyA opposed to undeniability proposes an online service allowing
verifiers to obtain and keep proofs of interaction with provers. We note that such a service can also be proposed
by an associationopposed toundeniability for ideological reasons. HereA is not opposed to the fact that provers
are able to prove their identities, but proposes a service allowing verifiers to generate proofs of their interactions
with the provers even without the provers’ consent or knowledge. It is important to underline thatA does not
“cheat” or “collude” in any way but just honestly performs the service it advertises to the verifiers’ community.

When V gets a commitment x from a proverP , V forwards x andP ’s public-key (denoted pkP ) toA.
A keeps a table counting the number of requests performedby verifiers for eachpkP , we denote this counter

byωP . When anωP exceeds a limit η,Awill stop answering queries concerning pkP . The goal of the bound η
is to prevent verifiers from forging proofs of interaction without actually interacting with targeted provers.

If ωV < η,Awill increase ωP and answer the query with a signature σ on the data x,pkP .
V will keep σ as a proof and derive the challenge c from σ by hashing.
At a later stage, V can exhibit σ and prove the interaction under the hypothesis thatA played by the rules.

Indeed A will not sign more than η commitments per verifier and this rules-out the possibility of exhaustive
search by V .

Evidently, if a central A is insufficient in terms of public trust, A can be replaced by any group signature
involving a multiparty protocol that ascertains that several agencies or entities collaborated to produce σ. The
odds that all such agencies cheat diminishes the probating value ofP ’s future deniability claims.

For k = 40 and η = 220 (i.e. the possibility to use A’s services one million times per prover), the odds
that a V exhibiting a proof of interaction is falsely accusing P drops to 2−20. Thereby, again, destroying P ’s
undeniability without evenP knowing about this.

Remark 36. To avoid resistance movements from floodingAwith signature requests associated to a given pkP

and hence protectP10,Amay charge a fee for each signature and/or request V to identify himself and blacklist
dishonestVs as soon as those provides toomany incorrect yis corresponding to thexis onwhich they requested
A’s signatures. This opens yet another resistance strategy onP ’s behalf consisting in purposely failing authenti-
cation attempts. A fix can be implemented by having verifiers refuse to identify anyP whoseωP reached η (i.e.
aP for whichA denies signatures). Hence we see that this scenario is hybrid adversarial scenario involving both
information securitymeasures and cryptographic strategies. Yet in real-world settings it can be problematic and
of practical significance.

10by pushing artificially the counter ωP to the limit η.
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3.3 Mitigation

Protections against those deniability deprivation scenarios revolve around three mitigation measures:

• Reducek (preferably to say less than 8 bits) so as to preserve simulatabilitywhile preservingP ’s efficiency.

• Add to the protocol the extra specification that a time-out between the sending of x and the receiving of
cmust be respected. If such a time-out is not respectedP is instructed to abort and not send y.

• Concurrent sessions should be avoided, i.e. P should agree to open a new session onlywhen the previous
is over (or consider a current session as interrupted11 as soon as a new challenge yi+1 arrives).

In particular, countering the trusted deniability enforcement agency scenario requires reducing k and re-
peating the protocol to achieve the desired security level.

3.4 A generic mitigation

A further, less trivial and more generic mitigation, consists in banning concurrent interactions and modifying
the protocol as follows:

P V
c′

←−−−−
x−−−−→
c←−−−−
y−−−−→

Here c′ is a commitment on c. This prevents V from feeding P with a doctored c and allows using any k
becauseP will abort12 if c does not correspond to the c′ received at the protocol’s start. If the entropy of c is low
V can generate a sufficiently long random r and define c′ =H(r,c) with r being revealed at the commitment
opening stage (this requires r to be added along with c and the third exchange.

This idea can also be used to derive a deniable zero-knowledge mode of operation for any public-key cryp-
tosystem (denoted F and F−1). Consider first the following protocol:

P V
F (c)←−−−−

c−−−−→

This protocol is obviously not zero-knowledge becauseV may select asF (c) a number presenting a redun-
dancy which destroys deniability. A first solution consists in selecting c featuring a redundancy and have P
check that c was indeed chosen honestly before returning it. This setting is trivial to simulate but it requires a
random oracle or specific assumptions on the padding function used to introduce redundancy into c.

A more elegant approach not resorting to random oracles consists in jointly agreeing about a common
challenge c1⊕ c2. There are two ways of doing so. We will now use two one-way permutationsU ,W that can

11i.e. P will not agree to send the yi anymore.
12i.e. not send y.
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be of the same family asF to avoid requiring additional complexity assumptions13. The first (insecure) protocol
is:

P V
W (c1)−−−−→
W (c2)←−−−−

c1−−−−→
c2←−−−−

y=F −1(c1⊕c2)−−−−−−−−−→

It is easy to see that this does not guarantee deniability, indeed, having receivedP ’s commitment firstV may
manufacture c2 = U (W (c1)), which would result in a y = F−1(c1⊕U (W (c1))). Because V is unable to
invert F his only solution is to pick a random pre-image α and solve the equation α = x⊕U (W (x)) which
is impossible. Hence exhibiting a solution demonstrates that using P is the only way in which the proof of
interaction was obtained, which in turn destroysP ’s deniability.

Consider now the same protocol in which V speaks first:

P V
W (c2)←−−−−
W (c1)−−−−→

c2←−−−−
c1−−−−→

y=F −1(c1⊕c2)−−−−−−−−−→

The situation is now radically different. We see that, having committed himself on c2
14 V must work with

c2 intowhich he cannot inject any information coming fromP in subsequent deniability destruction attempts.
We can now note that the last steps of the above protocol are communications from P to V and hence

simplify the protocol into a 4-move one:

P V
W (c2)←−−−−
W (c1)−−−−→

c2←−−−−
c1,y=F −1(c1⊕c2)−−−−−−−−−−−→

To simulate the protocol,V canpick in advance a random ȳ, computeF (ȳ), pick a random c̄1 and compute
c2 = ȳ⊕ c̄1. V is now able to complete the simulation by computing the commitmentsW (c̄1),W (c2) to
output:

13There remains the technical question of generating the public parameters forU ,W that we skip here as there are several algorith-
mic ways to do so. For instance in the case of RSA very long moduli extracted from a public constant such as π can be used thereby
ascertaining that with high probability roots cannot be computed by anybody.

14and given that the protocol will fail if this commitment is subsequently found to be false by P
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{W (ȳ⊕ c̄1),W (c̄1), ȳ⊕ c̄1, ȳ}

We now note, as a last simplification step, that the transmission of c1 at the last step is superfluous. Indeed,
V can easily derive from y the quantity c1⊕ c2 and, knowing c2, derive c1. He can hence checkW (c1) and
complete the protocol. This results in the simplified version:

P V
W (c2)←−−−−
W (c1)−−−−→

c2←−−−−
y=F −1(c1⊕c2)−−−−−−−−−→

3.5 Conclusion

In this sectionwe underlined the practical risk that stems from the use of too long challenges in zero-knowledge
protocols. We show that for practical purposes, even 20 or 40 bit challenges can result in situations where the
prover’s deniability is compromised. A generic solution, ascertaining that the challenge was chosen randomly
seems to cleanly settle the issue and, given its simplicity, we recommend to implement it in practical settings
where deniability is of importance.
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4 Authenticating Medications with QR-Codes and Compact Digital Signa-
tures

Based on common work with Julien Jainsky, Bassem Ouni and David Naccache.

4.1 Introduction

A recent article15 [Overstreet, 2019] reports that a the $200 billion pharma counterfeit drug market is growing
by 20% per annum.

The issue of fake medications poses a significant and widespread global concern, endangering the health
and well-being of countless individuals. According to the World Health Organization (WHO) [World Health
Organization, 2017], approximately 10.5% of medicines available worldwide may be counterfeit with this fig-
ure reaching an alarming levels in some regions. For example, In 2017, theWHO reported issues with 33.6% of
hypertension, cancer, epilepsy, analgesic uterotonics and immunosuppressants drugs from 75 low- andmiddle-
income countries (LMIC) [World Health Organization, 2017]. On top of these, it is estimated that approxi-
mately 50% of the drugs sold via the internet are fake [Clark, 2015]. These counterfeit drugs not only fail to
provide the intended therapeutic benefits but can also lead to adverse health effects, drug resistance, and even
fatalities.

These revelations serve as a resounding call to action, emphasizing the imperative need for robust prod-
uct verification and tracking capabilities within the healthcare realm. Hence, any cheap technological solution
allowing to control or mitigate the problem is welcome.

4.2 The solution

We seek to design a blister packaging solution which is cheap to manufacture, easy to check electronically and
allows patients and pharmacists to instantly detect fakes. Ideally, such a solution should not include a chip in
the medication’s package (as this is costly) and rely on an application running on the patient’s mobile phone.

Under such constraints, what comes to mind naturally is the use of QR codes, digital signatures and some
unique hardly reproducible physical features. We will overview the different components of the proposed so-
lution and combine them to reach the desired goal.

4.2.1 Drawing inherent randomness

Using the inherent characteristics of disordered systems is not new at all and solutions leveraging this idea were
re-invented over and over again. In 1983, Bauder [Bauder, 1983] made one of the earliest documented refer-
ences to such systems, followed closely by Simmons in 1984 [Simmons, 1984; Simmons, 1991]. Building on
these pioneering works, Naccache and Frémanteau introduced an authentication scheme specifically tailored
formemory cards [Naccache, 1992]. We hence naturally looked for already existing inherent randomness in the
packaging process. We will describe here two such ideas.

4.2.1.1 Two colored pills.
Current packaging techniques such as the one shown in Figure 4.7 provide some randomness. However, given

15https://bit.ly/3BZPWPE
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Figure 4.7: A 10-bit random pattern formed naturally during packaging.

Figure 4.8: Using k= 2 stripes to encode information in capsules (left) andDiameter detection (right). Source:
https://smart.servier.com/smart_image, modified by the authors.

that pills are usually packed by n = 10 to 20 relying on the pills’ orientation alone does not provide enough
entropy: Let T be the number of genuine packages needed to collect all 2n pill combinations. It is known
(coupon collector’s problem) that:

E(T ) = 2nn log2+γ2n +
1
2
+O(2−n) and Pr (|T −E(T )| ≥ c2n) ≤

π2

6c2

where γ ≃ 0.5772 is the Euler–Mascheroni constant.
Entropy can be cheaply increased (Figure 4.8, left), by randomly decorating each pill with k bars on one

of the pill’s sides. This adds 2k+1 bits per pill and an overall entropy of 2(k+1)n−1 bits per package16. For
(k,n) = (3,10) we get 239 combinations and anE(T ) ≃ 239 log239 ≃ 243.76.

This solution offers only amodest form of security as a moderately sophisticated fraudster could still come-
up with a manufacturing process placing the right pills in the right order to match a configuration copied from
a genuine package.

4.2.1.2 Orientation in circular pills.
Another simple method consists in using the diameter naturally present in most pills as an angle encoding in-
formation. If thismethod is chosen, the packaging should be tight enough to forbid pills from spinning around
after packaging. This is illustrated in Figures 4.8 (right) and Figure 4.9.

The detection of the pills’ orientation is easy to extract using existing image processing tools. In our exper-
iment, we placed 8 Prednisone pills on a black surface and photographed them using a common Samsung A5
smartphone.

16The−1 in the exponent comes from the fact that by rotating a package upside-down one more combination can be gained by the
forger.
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Figure 4.9: 30 pills encoding information using diameter orientation (illustration). Source: https://smart.
servier.com/smart_image, modified by the authors.
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Figure 4.10: Pill identification attempt in the absence of artefacts.

The resulting image was named image0.png. image0 was passed through a gradient filter17 to generate
image1. We then extracted 8 lines from image118 and superimposed the extracted lines on image1 to get
image219. Indeed, all the angles were easily detected. Repeating the experiment (with MaxFeatures->18) in
the presence of artefacts proved insufficient and required further filtering but such artefacts will not exist during
field deployment.

The industrializationof this solution requires some easy technical refinements todealwithborderline angles
using error correction on the signed data embedded into the QR-code and seems much harder to circumvent.

4.2.2 Packaging and QR-code printing

A QR can be either printed on the back of the blister package or on the back of the paper box containing the
medications if the box is equipped with a transparent plastic window (such as the one shown in Figure 4.12)
allowing the scanning of the QR code from outside the box using the smartphone.

If a standard box is used, we recommend to use micro QR-codes that can store up to 128 bits of informa-
tion, such codes are shown in Figure 4.13. Such a solution requires compressing the signature on the inherent
randomness into 16 bytes or spreading the signature over several micro QR-codes.

Ideally, a second (constant) QR-code present on the box would allow the patients to install the application,
thereby avoiding version issues.

An option, that we do not recommend, is to encode in theQR-code aURL redirecting to a digital signature
stored online. Note that an online digital signature database is not expected to grow indefinitely as it could be

17image1=GradientFilter[image0,10]//ImageAdjust
18lines=ImageLines[EdgeDetect[image1],MaxFeatures->8]
19image2=HighlightImage[image1,Orange,lines]
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Figure 4.11: Pill identification attempt in the presence of artefacts.

Figure 4.12: Simple paper box with a window.
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Figure 4.13: Micro QR-codes on medications printed on a medication package. Source: http://www.
chinatimes.com/newspapers/20140805000894-260113

sanitizedwhenmedications expire. This solution has the additional advantage of allowing to count the number
of accesses to any given signature and hence blacklist copied URLs after too many verifications (e.g. 10). We
discard this solution as it requires an online communication which might not always be available.

4.3 Short signatures

The current record in terms of signature size seems to be 110 bits, held by [Mohamed, 2016]. Truncating sig-
natures to reduce their size was treated previously by [Naccache, 2001] and [Pornin, 2022], resulting in shorter
DSA-like signatures without loss of security. Using those approaches, signature size is linearly reduce at the cost
of additional exponential computations on the signer and/or the verifier side.

[Naccache, 2001] proposed a solution for reducing the size of theDSA-like signatures by2ℓbits at anO(2ℓ)

work by signer and by the verifier. Typically 32 ≤ ℓ ≤ 40 bits. [Pornin, 2022] improves this by requiring the
2ℓ effort to be done only at the verifier’s side. As [Pornin, 2022] “frees” the signer again, we can now have the
signer make a 2ℓ effort to squeeze ℓ more bits by varying the DSA nonce k and searching for a short r. Note
that because r does not depend on the message, a library of “good” r values could be constructed offline and
used upon signing. Regularizing the flow of such r values during production can be important and there are
known techniques for doing so, e.g. [Ferradi, 2015].

All in all, we can hence achieve a 3ℓ shortening gain at the cost ofO(2ℓ) operations by the signer and the
verifier.

A typical EC-DSA signature is 56 bytes long, whichmeans that choosing ℓ= 40 yields a 41 byte signature.
Legacy DSA produces 40 bytes signatures, in which case, with ℓ= 40 bits will shorten the signature size to 25
bytes.

Note that another interesting way of shortening DSA-like signatures (to the best of our knowledge not re-
ported so far) is the following: The signer generates 2ℓ elements r and stops when a specific r is found. The
form of this r is the following something|α|α where α is any ℓ-bit string. Because there are 2ℓ possible α val-
ues a good r is expected to be found in O(2ℓ). By transmitting only the “something” part, the verifier can,
using 2ℓ verifications, retrieveα and verify the signature. This alternative to the discrete logarithm approach of
[Pornin, 2022] shortens a signature by 2ℓ bits at the cost ofO(2ℓ) work by both parties and its constant factor
might prove smaller than the constant factor of [Pornin, 2022] (unchecked). In additionDSAverifications lend
themselves to batching which might also result in some constant gains [MRaı̈hi, 1996].
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4.4 Conclusion & an open question

Wehave described a way to protectmedications against falsification, a long-standing problem in the world. The
proposed solution does not require the inclusion of chips in packages and relies on cheap existing technologies.
The building-blocks used are inherent physical randomness generated during the packaging process, artificial
vision, short digital signatures and QR-codes.

From a conceptual standpoint, the following question remains: Given the collection of signature shortening
ideas published so far can a Schnorr-like signature be shortened by more than 3ℓ bits at the cost ofO(2ℓ) effort per
party without loss of security?

We conjecture that such is not the case given that all our attempts to combine different 2ℓ solutions ended-
up in a total gain of 3ℓ at best. [Neven, 2009] is a useful reference to consult in that respect.
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5 Fiat-Shamir Goes Tropical

Based on common work with Rémi Géraud-Stewart and David Naccache.

5.1 Introduction

This section can be read as a continuation of a thread of papers on a tropical signature scheme proposed by
Chen, Grigoriev and Shpilrain (CGS) [Chen, 2023]. We refer the readers to [Brown, 2023; Kim, 2005; Panny,
2023], for the previous episodes of this saga. Further useful references on the topic are given in [Muanalifah,
2021] and its bibliography.

5.1.1 Chen–Grigoriev–Shpilrain signature

Denote by S[t] the set of polynomials in t, with (min,+) as addition and multiplication respectively, which
we henceforth write⊕ and⊗ respectively. S[t], extended with amultiplicatively neutral element ϵ, is called the
tropical polynomial semiring. Denote byPr,d the subset of tropical polynomials with coefficients in [0,r] and
degree d.

Key generation: The signer chooses r,d appropriately and selectsX,Y ∈R Pr,d. The public key is:

pk := (r,d,M =X⊗Y ) .

Signature: The signer hashes amessagem intoH ∈Pr,d, picksU ,V ∈R Pr,d, and computes the signature:

σ := (H,H⊗X⊗U ,H⊗Y ⊗V ,U ⊗V )

= (H,A,B,N ).

Verification: Given σ = (H,A,B,N ) andm, the following verifications are performed:

• V1: hash(m)
?
=H ∈ Pr,d

• V2: A,B
?
∈ P3r,3d

• V3: N
?
∈ P2r,2d

• V4: NeitherA norB is a constant tropical multiple ofH⊗M orH⊗N .

• V5: A⊗B ?
=H⊗H⊗M ⊗N

If any step fails then the signature is considered invalid, otherwise it is considered valid.

5.1.2 Security and fix

As pointed out in the references above, the Chen–Grigoriev–Shpilrain (CGS) signature is insecure, as there
are multiple attacks allowing for forgery. Our approach consists in using a tropical version of the Fiat–Shamir
identification scheme as a building block to re-engineerCGS and dodge all known attacks. In doing so, we hope
to redirect attacks on the key and on tropical polynomial factorization, which is believed to be hard in general.
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5.2 Tropicalized Fiat-Shamir

The first fix is interesting in that it translates directly a classical factoring-based scheme into a similar (hopefully)
post-quantum scheme.

5.2.1 Standard Fiat–Shamir protocol

Weuse here the standard notations of [Fiat, 1987]. The problemwith the classical Fiat–Shamir is that obtaining
s2v= 1 mod n requires amodular inversion during key generation. It is easy towork around this limitation by
defining s2 = v mod n instead, which is equivalent up to relabeling s by its inverse, and results in the following
scheme:

1. The prover starts by picking randomly an r ∈R Z;

2. The prover sends a commitment x= r2 mod n;

3. The verifier replies with a challenge bit b;

4. The prover responds with y = sbr mod n;

5. The verifier checks that y2 ?
= vbx mod n.

5.2.2 Tropical Fiat–Shamir protocol

We can now translate directly: the secret key becomes S ∈R Pr,d, and the public key becomes V = S⊗S ∈
P2r,2d. We introduce an auxiliary selection function for L0,L1 ∈ P⋆,⋆ and b ∈ {0,1}: ∆b(L0,L1) = Lb.
Here’s the protocol:

1. The prover starts by picking randomly anR ∈R Pr,d;

2. The prover sends a commitmentX = R⊗R;

3. The verifier replies with a challenge bit b;

4. The prover responds with Y = ∆b(R,S⊗R);

5. The verifier checks if Y ⊗Y ?
= ∆b(X,V ⊗X).

The verifier also checks that V ,X
?
∈ P2r,2d and Y

?
∈ P(1+b)r,(1+b)d.

5.2.3 Signature from TFS

To get a signature scheme from this zero-knowledge protocol one can just apply the Fiat-Shamir transform.
We note that the Chen, Grigoriev and Shpilrain differs from the above protocol in two points: the first is

that it corresponds to a tropicalized Fiat–Shamir where the challenge b is always stuck to 1. The second is that
squares are not used but the operation r2 is replaced by r1r2.
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Table 4.1: Protocol modification to accommodate simulation.

when the challenge is b= 1 S V R X Y

legitimate protocol Pr,d P2r,2d P2r,2d P4r,4d P3r,3d

simulator Pr,d P2r,2d Pr,d P4r,4d P3r,3d

Table 4.2: Protocol modification to accommodate simulation.

when the challenge is b= 0 S V R X Y

legitimate protocol Pr,d P2r,2d P2r,2d P4r,4d P2r,2d

simulator Pr,d P2r,2d P2r,2d P4r,4d P2r,2d

5.2.4 Security

Wedonot knowhowto simulate the tropicalizedFiat-Shamir for the following reason. Following the traditional
modus operandi the case b= 0 is trivial. For b= 1 we would useX = R⊗R⊗V and Y = R⊗V :

Y ⊗Y ?
= V ⊗X

Indeed:
(R⊗V )⊗ (R⊗V ) = V ⊗ (R⊗R⊗V )

However, nowX ∈ P4r,4d and Y ∈ P3r,3d which violates the verification conditions. This does not mean
that the tropicalized Fiat-Shamir version is insecure but only that, do date, we don’t know how to simulate it
and prove that it is zero-knowledge.

A potential way to get around this problemmight be to increase in the legitimate protocol specifications to
R ∈ P2r,2d. In which case the simulator could use “shorter than normal”Rs and the situation will be:

While this fixes the size problem, nothing guarantees that the (X,Y ) distributions of the parties and of
the simulator are strictly identical. Nonetheless this gives hope to prove the protocol secure in the statistical
zero-knowledge rather than in the perfect zero-knowledge sense. We did not explore further this point.

Note that while CGS security relied on the conjectured hardness of factoring polynomials inS[t], the Fiat-
Shamir variant relies on both the hardness of factoring polynomials in S[t] and on the conjectured hardness
of computing square roots in S[t], a problem which might turn out to be easier than factoring polynomials in
S[t]20.

5.3 Fiat-Shamirization of Chen, Grigoriev and Shpilrain

The fixing strategy will consist in translating the Fiat-Shamir protocol into the tropical realm (first fix) and by
applying the Fiat-Shamir Transform (FST) to CGS (second fix).

For the sake of convenience we will denote for any collection of objectsLi:

L⃗= (L0,L1, . . . ,Lτ−1)

Any operation ⋆ between arrowed variables is to be understood component wise, e.g.
20Note, for instance that 2P (0) = (P ⊗P )(0) and that the same occurs on the leading coefficients of both P and P ⊗P . It is

unclear if this can be used to unravel P from P ⊗P .
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L⃗ ⋆ L⃗′ = (L0 ⋆L
′
0,L1 ⋆L

′
1, . . . ,Lτ−1 ⋆L

′
τ−1)

We denote hash(m, i) =Hi ∈ Pr,d.

Key generation remains unchanged with respect to the original CGS.
To sign a message, generate U⃗ , V⃗ ∈R (Pr,d)

τ and compute (A⃗,B⃗,N⃗ ) as in the original CGS. Let C⃗ =

A⃗⊗ B⃗. Here C⃗ will act as a non-interactive commitment on A⃗ and B⃗.

h= hash(r,d,m,M , C⃗,N⃗ ) mod 2τ

We start by including in the signature N⃗ .
We now use the τ bits of h as indicators pointing which commitments to open.

{
if hi = 0 add to the signature Ui,Vi,Ci

if hi = 1 add to the signature Ai,Bi

The verifier can hence reconstruct C⃗ in full. Either they getAi,Bi and can hence computeCi (casehi = 1)
or they getCi directly (case hi = 0). The verifier can hence recompute h from the signature.

At each hi = 1 coordinate the verifier performs tests V1,V2,V3,V4 and V5.

At each hi = 0 coordinate the verifier checks thatUi,Vi ∈ Pr,d andNi ∈ P2r,2d.
This idea can come in several flavors e.g. a different Xi,Yi can be used per coordinate. In a more daring

variant we can aggregate the different signature components.
In this variant we modify the definition of h to:

h= hash(r,d,m,M , C̄,N̄ ) mod 2τ where C̄ =
τ⊗

i=0
Ci and N̄ =

τ⊗
i=0

Ni

Let:

Ā1 =
⊗
hi=1

Ai and B̄1 =
⊗
hi=1

Bi and C̄0 =
⊗
hi=0

(Ai⊗Bi) =
⊗
hi=0

Ci

N̄0 =
⊗
hi=0

Ni and N̄1 =
⊗
hi=1

Ni and M τ =
τ−1⊗
i=0

M

If the signature was correctly generated we should have:

Ā1⊗ B̄1⊗ C̄0 = N̄ ⊗M τ ⊗
τ⊗

i=0
(Hi⊗Hi)

Ā1⊗ B̄1⊗ C̄0 = N̄0⊗ N̄1⊗M τ ⊗
τ⊗

i=0
(Hi⊗Hi)

We can hence provide as a signature:

Ā1,B̄1, C̄0,N̄1, plus all theUi,Vi couples for which hi = 0
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How to generateUi,Vi? In all the abovewe assumed for the sake of clarity that U⃗ , V⃗ are randomly generated.

The second (aggregated) variant uses ⊗ as a hash function which is bad because ⊗ is commutative. We
hence enforce an extra protection to thwart element permutation attacks (see e.g. [Benhamouda, 2017]). The
protection consists in generating each Ui,Vi pair from a common random seed σi and by including in the
process transforming σi into Ui,Vi both σi and the index i. To reveal a given Ui,Vi pair the signer reveals
σi. This protection is mandatory in the aggregated scheme and recommended as an extra precaution for the
non-aggregated version.

5.4 Tropicalizing other cryptosystems

The “tropicalization” strategy described for Fiat-Shamir casemay apply to a variety of classical cryptosystems
as long as during all computations21 the following holds:

• There is no need to invert and;

• Multiplication depth remains reasonable.

The first condition stems from the (conjectured) absence of efficient tropical inversion. The second is due
to the fact that the degree and the coefficients of the involved polynomials grows as we keep⊗ing.

At a first glance those conditions do not seem to apply to schemes such asDiffie-Hellman. Fortunately, two
interesting observations may still still salvage the situation.

First we observe that if Pi ∈ Pr,d then:

ℓ−1⊗
i=0

Pi ∈ Pℓr,ℓd

It follows that even ifmultiplicationdepth is huge, e.g. in a tropicalDiffie-Helmanwith1024-bit exponents,
coefficients will be large but manageable. The degree of the resulting polynomial is however problematic as, in
the example given, we would end-up with polynomials of degree (ℓd)2 = 22048d2.

The workaround may consist in reducing the resulting polynomials modulo xq , i.e. working in S[t]/(tq)
chopping all terms whose degree exceeds q. e.g., one could consider q = 10d. Working modulo polynomials
more complex than xq (e.g. S[t]/(tq±1)) is yet another option and has the advantage of recycling the “most
significant” information of the polynomials while preserving size. Such approaches would allow tropicalizing
cryptosystems with high multiplication depth such as Diffie-Hellman. This rough and general blueprint re-
quires a deeper analysis because the coefficients of the polynomial Gx in S[x] are, in essence, very close to a
small constant times x. Reducing each coefficient modulo some small prime modulus e seems to avoid this
problem but might create others.

The case of ElGamal variants where inversion is not required is interesting. Such variants exist (e.g. EG I.3
or EG I.4 in [Horster, 1994]) but now the s part of the signaturemust be given inZ whichmight be vulnerable
and deserves further investigations and/or new countermeasures.

21Be it signature, verification, encryption or decryption.
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5.5 Implementation

We implemented all the algorithmsmentioned above, aswell asCGS, to obtain rough estimates of the associated
overheads.

5.5.1 Timings.

The timings provided belowwere obtained as the median of 100 runs on an 8-th generation Intel Core i7, after
a 3 second warmup. All algorithms are implemented in Rust and compiled with rustc version 1.77.

Tropical Diffie–Hellman. Key-exchange is performed in 514ms for (r,d,q) = (32,32,64).
CGS.Key generation is performed in 318µs, signature is performed in 2.15ms and verification is performed

in 7.49ms for (r,d) = (127,150).
FS-CGS. Key generation is performed in 318µs, signature is performed in 630ms and verification is per-

formed in 647ms for (r,d,τ ) = (127,150,128).
Tropical FS. Key generation is performed in 310µs, commit phase takes 304µs, response phase takes 160ns

and verification is performed in 312µs for (r,d) = (127,150).

5.5.2 Additional details.

Weuse SHAKE128 (instead of SHA-512) for fast hashing to polynomials. This, the use of a compiled language,
and a more straightforward implementation of tropical operations result in a 20–25× speedup compared to
the reference implementation of [Chen, 2023], despite the workstation being much less powerful. FS-CGS
is the “vanilla” version. Tropical Diffie–Hellman uses simple truncation above degree q and does not validate
parameters (this would not have a large impact on timings).

5.5.3 Comments.

Assuming the chosenparameters provide the expected security level,CGS,FS-CGS, and tropicalDiffie–Hellman
seem to be far too slow for practical deployment. Tropical Fiat–Shamir identification is 100 times slower than
“standard” Fiat–Shamir. The Rust code is available from the authors upon request.
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Chapter 5
Conclusions and Perspectives

1 Conclusions

Within this thesis, we have uncovered the profound impact of mathematical ingenuity in addressing real-world
challenges. Our journey through the research findings and contributions attempts to seamlessly connect the
dots:

We initiated our exploration with a deep dive into optimal pool testing, harnessing mathematical princi-
ples to efficiently identify negative and positive samples. This approach not only extends to exact solutions for
smaller sample sizes but also offers heuristic algorithms for larger sets. Although the quest for a polynomial-time
algorithm for larger sets remains an open question, the simplicity of implementation once a metaprocedure is
established is promising. This has significant implications for fields likemedicine and engineering testing, where
optimizing performance by addressing false positives and false negatives is crucial. Our exploration then led us
to adaptive pool testing, where we discovered the potential to accelerate result acquisition and dynamically in-
fluence the sequence of results. This dynamic approach reshapes testing procedures, enhancing their efficiency.
Remaining in the realm of solutions to issues related to Covid-19 tests, we introduced an innovative method to
safeguard the privacy of DNA information within patient biological samples during processing. By addressing
critical data security and confidentiality concerns, this mathematical solution holds the potential to improve
healthcare practices.

Transitioning to mathematical conjecture validation, our research demonstrated the efficiency of automat-
ing the validationof numerous conjectures. This approach eliminates theneed for laborious individualmachine
proofs. Furthermore, we harnessed the power of pattern matching to uncover fresh mathematical conjectures,
thereby showing the usefulness of pattern matching in conjecture detection and mathematical exploration.

Lastly, our research spotlighted a practical concern within zero-knowledge protocols. It became evident
that even brief challenges of 20 or 40 bits can compromise the prover’s deniability in practical contexts. To
address this issue, we recommended a solution: the verification of random challenge selection. This clean and
effective resolution can be readily implemented in scenarios where deniability is paramount.

While spreading over very diverse sub-areas this theses illustrates one main narrative: the joy of discovering
howmathematical innovation plays a pivotal role in addressing real-world challenges.
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2 Perspectives and Further Research

The following questions can be used as a basis for further research subsequent to our work:

2.1 Pool Testing Research Challenges

• What is the optimal pool size and composition to balance sensitivity and cost-effectiveness in different
population settings?

• What statistical approaches can be developed to accurately estimate infection prevalence and individual
testing probabilities within pooled samples?

• How can dynamic pooling strategies be implemented to adjust pool sizes and compositions in real-time
based on infection prevalence?

• What are the challenges and solutions for extendingpool testing to complex sample types, such aswastew-
ater and environmental samples? What if the test reacts in proportion to a viral load according to some
probability distribution and is not binary?

• How can pool testing data be integrated into epidemiological models to assess its impact on disease con-
trol and surveillance?

• Create adaptive pooling algorithms that can dynamically adjust pool sizes based on the observed preva-
lence of the disease. This requires real-time decision-making to balance sensitivity and efficiency.

• Investigate matrix sampling techniques, where samples are grouped into matrices to enable efficient test-
ing. Develop mathematical approaches to minimize the number of tests required when using matrix-
based pooling.

• Address the issue of overlapping pools, where a single sample may be part of multiple pools. Develop
mathematical methods to resolve potential interference and accurately identify positive cases.

• Analyze the asymptotic properties of pool testing procedures as the number of samples and pool sizes
become large. Investigate limit theorems, consistency, and efficiency of estimators in this context.

• Determine the optimal allocation of testing resources, including the number of samples to pool, the size
of pools, and the frequency of testing, to minimize costs while meeting desired sensitivity levels.

2.2 Experimental Mathematics Research Challenges

Evidently, the following list covers only the open questions that stem from our thesis work. This is only a very
small part of the extremely wide realm of experimental mathematics.

• Prove the relations detected computationally that we list in this thesis. If possible provide a way to auto-
mate the generation of such proofs.

• What happens in the Balkans for even j values?

• What happens in Inostranstvo?
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• Reverse the continued fraction generation process to match a target constant as mentioned in section
1.5.

• Investigate the existence of continued fractions having an an of the form

an = (v+κn)(v+ 1+κn)(v+ 2+κn)(v+ 3+κn)

As mentioned in sub-section 2.4.2

• What is the relation between OEIS sequence A006309 and f(x)mentioned in sub-section 2.7.2? Why
are the elements 12803, 14615 and 11537 missing?

2.3 Information Security Research Challenges

In addition to the above, the following two challenges add-up to the list of open question raised by this thesis:

• Is there away to shorten signatures bymore than 3ℓbits under anO(2ℓ)work constraint by both parties?

• Is there a way to to extend the shortening strategies explored in this thesis to non-randomized signature
schemes such as Gui?
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Rapport sur la Thèse de M. Ofer Stav-Ifrach : "Tests par lots rapides et privés et contributions aux 
mathématiques expérimentales" 

Par Naïla Hayek, Professeur de Mathématiques Appliquées à l’Université Paris Panthéon-Assas. 12 place 
du Panthéon 75005  

 

 

La thèse de M. Ofer Stav-Ifrach couvre un spectre très vaste de sujets, allant de la recherche sur la Covid-19 
à l'expérimentation mathématique et à la sécurité de l'information. Ce rapport présente les principales 
contributions du candidat et souligne la qualité de son travail.  

1. Recherches liées à la Covid-19 :  

La première partie de la thèse explore la recherche liée à la Covid-19 avec une approche innovante. 
L'auteur se penche sur l'optimisation des tests par lots de dépistage avec des informations a priori, 
incorporant des notions mathématiques et combinatoires complexes. Il généralise ces tests en 
introduisant également une notion d’urgence. Il examine également la préservation de la 
confidentialité des données ADN lors de la détection à grande échelle du virus. L'adaptation réussie 
de concepts classiques de cryptographie témoigne de l'originalité de l'auteur. 

2. Mathématiques expérimentales :  

La deuxième partie de la thèse s'intéresse à la "Machine Ramanujan" d'un point de vue mathématique 
et informatique. L'auteur apporte une explication de la raison pour laquelle la Machine Ramanujan 
arrive à détecter certaines relations. Il réalise des expériences de reconnaissance de motifs sur des 
expressions mathématiques, proposant des conjectures vérifiées numériquement avec une grande 
précision. L'étude approfondie de la "fraction continue des Balkans" est impressionnante, démontrant 
la capacité de l'intelligence artificielle à générer de nouvelles conjectures. 

3. Contributions pratiques à la sécurité de l'information :  

La dernière partie de la thèse aborde des questions de sécurité de l'information en s’intéressant aux 
"attaques par formules invisibles" présentées à la conférence "BlackHat". Cette attaque consiste à 
utiliser des fonctions de visualisation intelligente afin d’insérer du code malveillant dans des 
programmes.  L'auteur explore également des aspects pratiques tels que l'authentification des 
médicaments via des codes QR et des signatures numériques compactes. 

 

                              12 place du Panthéon 75231 Paris cedex 05 – Tél. :+33(0)1 44 41 57 00 – Fax : +33(0)44 41 55 13 – www.u-paris2.fr 



 

Évaluation :  

La thèse de M. Ofer Stav-Ifrach offre une perspective interdisciplinaire très riche, couvrant des domaines 
allant de la biologie aux mathématiques expérimentales et à la sécurité de l'information. La diversité 
thématique, la profondeur des résultats obtenus, et la clarté de l'écriture témoignent d'une grande maîtrise. 
L'auteur se révèle être un scientifique ayant de grandes compétences et une boîte à outils scientifique 
impressionnante. 

 

Pour toutes ces raisons, je recommande chaleureusement la défense de cette thèse. M. Ofer Stav-Ifrach a non 
seulement démontré une compréhension approfondie des sujets abordés mais aussi une capacité rare à 
aborder des problèmes variés avec clarté et précision. Je suis convaincue qu’il continuera à contribuer 
significativement à la recherche académique ou industrielle en tant que futur enseignant-chercheur ou 
chercheur. 

Paris le 22 Janvier 2024 
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Paris, le 22 décembre 2023

Objet : Mémoire de doctorat d’Ofer Yifrach-Stav

Madame, Monsieur,

Le traitement efficace et la sécurisation des données joue un rôle pré-
pondérant dans la mise en œuvre pratique de nombreuses applications.
Ainsi, lorsqu’un test sur des données est coûteux ou prend du temps, une
approche connue est de recourir aux tests par lots. Plusieurs échantillons
sont regroupés dans un même lot et le test est effectué sur ce lot au prix
d’un unique test. Le but est de minimiser le nombre total de tests tout en
garantissant individuellement l’exactitude du test pour chacun des échan-
tillons. La thèse d’Ofer Yifrach-Stav s’intéresse aux tests par lots dans le
cadre du dépistage de la Covid-19. Ainsi, en faisant des hypothèses a priori
sur la probabilité qu’un patient est porteur ou non du virus, l’auteur déve-
loppe des méthodes quasi-optimales pour détecter la présence ou non de
charge virale. Une problématique connexe dans le traitement de données,
en particulier pour les données médicales, est de préserver leur caractère
privé. Dans ce contexte, l’auteur adapte les notions d’indistingabilité em-
ployées dans la définition des algorithmes de chiffrement afin de garantir la
confidentialité des données traitées lors des tests de dépistage.

L’avènement des ordinateurs et des logiciels de calcul scientifique de
type Mathematica a vu l’émergence d’une branche des mathématiques
connue sous le nom de «mathématiques expérimentales». La thèse d’Ofer
Yifrach-Stav s’intéresse ici à la machine de Ramanujan. Cette machine vise
à découvrir de nouvelles formules mathématiques. Elle a ainsi permis de dé-
velopper de nombreuses conjectures mathématiques, vérifiées numérique-
ment avec une grande précision. Dans cette partie, l’auteur tire partie de la
puissance des techniques d’apprentissage, en particulier des méthodes de
descente de gradient, pour expliquer et généraliser les conjectures établies
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par la machine de Ramanujan. L’auteur rapporte également une multitude
de nouvelles conjectures. On note les jolies formules obtenues pour une
variété de fractions continues.

Dans une dernière partie, la thèse d’Ofer Yifrach-Stav traite de la sécu-
rité de l’information. L’auteur présente une série de contributions concrètes,
à savoir des attaques de formules invisibles dans Mathematica, des motifs
dans le calcul de carrés modulo un nombre deMersenne, le risque lié aux
défis choisis dans les protocoles de preuve à divulgation nulle, les codes
QR pour l’authentification des médicaments et les signatures numériques
courtes.

Le manuscrit de thèse, par ailleurs très bien écrit, est organisé suivant
les trois parties décrites plus haut : les travaux liés à la Covid-19, les mathé-
matiques expérimentales et la sécurité de l’information. Le manuscrit inclut
également un chapitre concluant les différentes contributions et offrant
des perspectives de futures recherches pour chacune des trois parties.
Certains résultats obtenus ont donné lieu à des publications dans des confé-
rences internationales avec comité de relecture. D’autres résultats sont
disponibles sous la forme de preprints. Le format original de la thèse est
en partie dû aux circonstances exceptionnelles liées à la pandémie. Les
recherches du candidat sur la Covid-19 n’étaient évidemment pas prévues
initialement. Il y a néanmoins une unité dans l’approche d’aborder les pro-
blèmes et de les solutionner. On retrouve également une unité dans la thèse
elle-même. La thématique de façon générale peut se résumer à l’étude du
traitement de l’information, de sa sécurisation et de sa généralisation.

Ce travail met en évidence la capacité du candidat à travailler sur des
sujets très variés et pluridisciplinaires. Ses travaux démontrent une matu-
rité scientifique certaine. Il emprunte des outils et concepts de différents
domaines des mathématiques et du traitement de l’information au sens
large et les applique avec succès.

Ainsi, au vu des contributions apportées par ce mémoire, j’émets sans
réserve un avis favorable à la soutenance.

Jevouspried’agréer,Madame,Monsieur,messalutations lesmeilleures.

Cordialement,

Marc Joye, PhD, HDR
Chief Scientist @ Zama
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MOTS CLÉS

Sécurité de l'information, Tests par lots, Mathématiques expérimentales, Confidentialité de l'ADN, Covid-19

RÉSUMÉ

Cette thèse est le fruit de recherches menées entre 2019 et 2023, réparties en trois parties. Dans la première partie, nous étudions des questions

liées à la pandémie du Covid-19, telles que les tests par lots, un domaine bien établi dans lequel les échantillons de plusieurs patients sont

mélangés pour effectuer des tests collectifs. Un telle procédure permet de réduire les coûts et d'économiser du temps. Nous proposons des

algorithmes tenant compte des probabilités a priori que les tests individuels soient positifs. De telles probabilités peuvent être évaluées lors

d'un examen clinique préalable du patient. Nous examinons également les tests par lots en situation d'urgence, où certains échantillons doivent

être analysés en priorité. Dans les deux cas, nous proposons de nouveaux algorithmes et les analysons en détail. Cette section traite également

de la préservation de la confidentialité de l'ADN dans les tests de dépistage du Covid-19. Dans la deuxième partie, nous présentons nos

résultats en mathématiques expérimentales, où nous avons découvert plusieurs nouvelles conjectures sur les fractions continues grâce à des

explorations automatisées. Toutes ces conjectures ont été testées numériquement pour évaluer leur plausibilité. Enfin, dans la troisième partie

de la thèse, nous abordons divers résultats dans le domaine de la sécurité informatique, tels qu'une attaque inconnue jusqu'à présent sur le

logiciel Mathematica, un nouveaumécanisme de protection contre les médicaments contrefaits, et des nouvelles observations sur les preuves à

divulgation nulle.

ABSTRACT

This thesis is the culmination of research conducted between 2019 and 2023. It is divided into three parts. In the first part, we explore

algorithms related to the Covid-19 pandemic, such as Pool Testing, a well-established technique where samples from multiple patients are

pooled for collective testing, allowing for cost reduction and time savings. We propose algorithms taking into account the a priori probabilities

that individual tests are positive, which can be evaluated during a prior clinical examination of the patient. We also examine Pool Testing in

emergency situations, where certain samples need to be analyzed according to some prescribed priority order. In both cases, we propose

new algorithms and analyze them in detail. This section also deals with DNA privacy preservation in Covid-19 tests. In the second part, we

present our results in experimentalmathematics, wherewe have discovered several new conjectures on continued fractions through automated

exploration. All those conjectures have been numerically tested to assess their plausibility. Finally, the third part of this thesis is devoted

to various results in the field of computer security, such as a previously unknown attack on the Mathematica software, a new protection

mechanism against counterfeit medication, and new observations on zero-knowledge proofs.

KEYWORDS

Information Security, Pool Testing, Experimental Mathematics, DNA Privacy, Covid-19
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