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Abstract

Sensors, portable devices, and crowdsensing applications generate massive amounts
of user-related, and usually geo-tagged, data on a daily basis. The manipulation
of such data is useful in numerous application domains including traffic monitor-
ing, intelligent building, and healthcare. A high percentage of these data carry
information of user activities and other personal details, and thus their manipula-
tion and sharing raise concerns about the privacy of the individuals involved. To
enable the secure—from the user privacy perspective—data sharing, researchers
have already proposed various seminal techniques for the protection of user privacy
while accounting for data utility and quality. However, the continuous fashion in
which data are generated nowadays and the high availability of external sources of
information, pose more threats and add extra challenges to the problem due to the
inevitable presence of data correlation. It is therefore essential to design solutions
that guarantee sufficient user privacy protection and maximize data utility, while
providing configurability by considering the context and user preferences.

Initially, we study the literature regarding data privacy in continuous data
publishing, and report on the proposed solutions, with a special focus on solu-
tions concerning location or geo-referenced data. As a matter of fact, a wealth
of algorithms has been proposed for privacy-preserving data publishing, either
for microdata or statistical data. In this context, we seek to offer a guide that
would allow readers to choose the proper algorithm(s) for their specific use case
accordingly. We provide an insight into time-related properties of the algorithms,
e.g., if they work on finite or infinite data, or if they take into consideration any
underlying type of data correlation.

Thereafter, we proceed to propose a novel type of data privacy, called
landmark privacy. We observe that in continuous data publishing, events are
not equally significant in terms of privacy, and hence they should affect the
privacy-preserving processing differently. Differential privacy is a well-established
paradigm in privacy-preserving time series publishing. The existing differential
privacy protection levels protect either a single timestamp, or all the data per user
or per window in the time series; however, considering all timestamps as equally
significant. The novel notion that we propose, landmark privacy, is based on
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ii ABSTRACT

differential privacy and allocates the available privacy budget at each timestamp
while taking into account significant events (landmarks) in the time series. This
allows for better data utility by optimizing the privacy budget allocation, and thus
avoiding the injection of unnecessary noise into the data releases. We design three
landmark privacy schemes and further extend them by enhancing the privacy
protection of the landmark set with the design of a dummy landmark selection
module that renders the actual landmarks indistinguishable with the addition of
regular events to the landmark set.

Finally, we evaluate the proposed landmark privacy schemes and dummy land-
mark selection module on real and synthetic data sets. We assess the impact
on data utility for several possible landmark distributions, with emphasis on sit-
uations under the presence of temporal correlation. Overall, the results of the
experimental evaluation and comparative analysis of landmark privacy validate its
applicability to several use case scenarios and showcase the improvement, in terms
of data utility, over the existing privacy protection levels. Particularly, the dummy
landmark selection module achieves better landmark protection, provoking only a
minor data utility decline. In terms of temporal correlation, we observe that under
moderate and strong correlation, greater average regular–landmark event distance
causes greater overall privacy loss.

Keywords: data quality, data privacy, continuous data publishing, crowdsens-
ing, privacy-preserving data processing



Résumé

Les capteurs, les appareils portables et les applications crowdsensing génèrent quo-
tidiennement des quantités massives de données, généralement géolocalisées, liées
aux utilisateurs. La manipulation de ces données est utile dans de nombreux
domaines d’application, notamment la surveillance du trafic, les bâtiments intelli-
gents, et la santé. Un pourcentage élevé de ces données contiennent des informa-
tions sur les activités des utilisateurs et d’autres détails personnels, et donc leur
manipulation et leur partage soulèvent des inquiétudes quant à la confidentialité
des personnes concernées. Pour permettre le partage sécurisé—du point de vue
de la confidentialité des utilisateurs—des données, les chercheurs ont déjà proposé
diverses techniques fondamentales pour la protection de la confidentialité des util-
isateurs tout en tenant compte de l’utilité et de la qualité des données. Cependant,
la manière continue avec laquelle les données sont générées et la haute disponibilité
des sources d’information externes, posent plus de menaces et ajoutent des défis
supplémentaires au problème en raison de la présence inévitable de la corrélation
des données. Il est donc essentiel de concevoir des solutions qui garantissent une
protection suffisante de la confidentialité des utilisateurs et maximisent l’utilité
des données, tout en offrant une configurabilité en tenant compte du contexte et
des préférences des utilisateurs.

Initialement, nous étudions la littérature concernant la confidentialité des don-
nées dans la publication de données en continu, et rapportons les solutions pro-
posées, avec un accent particulier sur les solutions concernant la localisation ou
les données géo-référencées. En fait, une multitude d’algorithmes ont été proposés
pour la publication de données préservant la confidentialité, que ce soit pour des
microdonnées ou des données statistiques. Dans ce contexte, nous cherchons à
offrir un guide qui permettrait aux lecteurs de choisir en conséquence le ou les
algorithmes appropriés pour leur cas d’utilisation spécifique. Nous donnons un
aperçu des propriétés temporelles des algorithmes, par exemple, e.g., s’ils fonc-
tionnent sur des données finies ou infinies, ou s’ils prennent en considération tout
type sous-jacent de corrélation de données.

Par la suite, nous proposons un nouveau type de confidentialité des données,
appelé confidentialité landmark. Nous observons que dans la publication de don-
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iv RÉSUMÉ

nées en continu, les événements ne sont pas aussi importants les uns aux autres
en termes de confidentialité et devraient donc affecter différemment le traitement
préservant la confidentialité. La confidentialité différentielle est un paradigme bien
établi dans la publication de séries temporelles préservante la confidentialité. Les
niveaux de protection existants de la confidentialité différentielle protègent soit un
seul horodatage, soit toutes les données par utilisateur ou par fenêtre dans la série
temporelle ; cependant, en considérant tous les horodatages comme également
significatifs. La nouvelle notion que nous proposons, confidentialité landmark,
est basée sur la confidentialité différentielle et alloue le budget de confidentialité
disponible à chaque horodatage tout en tenant compte des événements significat-
ifs (landmarks) dans la série temporelle. Cela permet une meilleure utilité des
données en optimisant l’allocation du budget de confidentialité et en évitant ainsi
l’injection de bruit inutile dans les publications de données. Nous concevons trois
schémas de confidentialité landmark et les étendons davantage en améliorant la
protection de la confidentialité de l’ensemble landmark avec la conception d’un
module de sélection de landmark factice (dummy) qui rend les landmarks réels
indiscernables avec l’ajout d’événements réguliers à l’ensemble de landmarks.

Enfin, nous évaluons les schémas de confidentialité landmark proposés et le
module de sélection de landmarks factices sur des ensembles de données réelles et
synthétiques. Nous évaluons l’impact sur l’utilité des données pour plusieurs distri-
butions de landmarks possibles, en mettant l’accent sur les situations en présence
de corrélation temporelle. Dans l’ensemble, les résultats de l’évaluation expéri-
mentale et de l’analyse comparative de la confidentialité landmark valident son
applicabilité à plusieurs scénarios de cas d’utilisation et montrent l’amélioration,
en termes d’utilité des données, par rapport aux niveaux de protection de la confi-
dentialité existants. En particulier, le module de sélection de landmark factice as-
sure une meilleure protection landmark, provoquant seulement une baisse mineure
de l’utilité des données. En termes de corrélation temporelle, nous observons que
sous une corrélation modérée et forte, une distance moyenne plus grande entre les
événements réguliers et landmark entraîne une perte globale de confidentialité plus
importante.

Mots clés : confidentialité des données, qualité des données, publication con-
tinue des données, crowdsensing, traitement des données préservant la confiden-
tialité, correlation temporelle
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Chapter 1

Introduction

Data privacy is becoming an increasingly important issue, both at a techni-
cal and at a societal level, and introduces various challenges ranging from the
way we share and publish data sets to the way we use online and mobile ser-
vices. Personal information, also described as microdata, acquired increasing value
and is in many cases used as the ‘currency’ [eco16] to pay for access to various
services, i.e., users are asked to exchange their personal information with the ser-
vice provided. This is particularly true for many Location-Based Services (LBSs),
e.g., Google Maps [gma21], Waze [waz21], etc. These services exchange their ‘free’
service with collecting and using user-generated data, such as timestamped geolo-
calized information. Besides navigation and location-based services, social media
applications, e.g., Facebook [fac21], Twitter [twi21], Foursquare [fou21], etc. take
advantage of user-generated and user-related data, to make relevant recommenda-
tions and show personalized advertisements. In this case, the location is also part
of the important required personal data to be shared. Last but not least, data bro-
kers, e.g., Experian [exp21], TransUnion [tra21], Acxiom [acx21], etc. collect data
from public and private resources, e.g., censuses, bank card transaction records,
voter registration lists, etc. Most of these data are georeferenced and contain di-
rectly or indirectly location information; protecting the location of the user has
become one of the most important privacy goals so far.

On the one hand, these different sources and types of data give useful feed-
back to the involved users and/or services, and on the other hand, when combined
together, provide valuable information to various internal/external analytical ser-
vices. While these activities happen within the boundaries of the law [Tan16], it
is important to be able to protect the privacy (by anonymizing, perturbing, en-

This chapter was presented during the 11th International Workshop on Information Search,
Integration, and Personalization [KTK16] and at the DaQuaTa International Workshop [KTK17],
as well as at the São Paulo School of Advanced Science on Smart Cities [KCTK16].
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2 CHAPTER 1. INTRODUCTION

crypting, etc.) the corresponding data before sharing, and to take into account
the possibility of correlating, linking, and crossing diverse independent data sets.
Especially the latter is becoming quite important in the era of Big Data, where
the existence of diverse linked data sets is one of the promises; as an example,
one can refer to the discussion on Entity Resolution problems using Linked Open
Data in [ESC15]. In some cases, personal data might be so representative that
even if de-identified, when integrated with a small amount of external data, one
can trace back to their original source. An example case is shown in [DMHVB13],
where it was discovered that four mobility traces are enough to identify 95% of the
individuals in a data set. The case of location is actually one of great interest in
this context, since space brings its own particular constraints. The ability to com-
bine and correlate additional information impacts the ways we protect sensitive
data and affects the privacy guarantees we can provide. Besides the explosion of
online and mobile services, another important aspect is that a lot of these services
actually rely on data provided by the users (crowdsourced data) to function, with
prominent example efforts being Wikipedia [wik21], and OpenStreetMap [osm21].
Data from crowdsourced based applications, if not protected correctly, can be eas-
ily used to identify personal information, such as location or activity, and thus
lead indirectly to cases of user surveillance [Lyo14].

Privacy-preserving processes usually introduce noise in the original or the ag-
gregated data set in order to hide the sensitive information. In the case of mi-
crodata, a privacy-protected version, containing some synthetic data as well, is
generated with the intrinsic goal to make the users indistinguishable. In the case
of statistical data, i.e., the results of statistical queries over the original data sets„
a privacy-protected version is generated by adding noise on the actual statistical
values. In both cases, we end up affecting the quality of the published data set.
The privacy and the utility of the ‘noisy’ output are two contrasting desiderata
which need to be measured and balanced. Furthermore, if we want to account for
external additional information, e.g., linked or correlated data, and at the same
time to ensure the same level of protection, we need to add additional noise, which
inevitably deteriorates the quality of the output. This problem becomes particu-
larly pertinent in the Big Data era, as the quality or Veracity is one of the five
dimensions (known as the five ‘V’s’ ) that define Big Data and where there is an
abundance of external information that cannot be ignored. Since this needs to
be taken into account prior to the publishing of the data set or the aggregated
statistics there of, introducing external information into privacy-preserving tech-
niques becomes part of the traditional processing flow while keeping an acceptable
quality to privacy ratio.

As we can observe in the examples mentioned above, there are many cases
where data are not protected at source (what is also described as local data privacy
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protection) for various reasons, e.g., the users do not want to pay extra, it is
impossible due to technical complexity, because the quality of the expected service
will be deteriorated, etc. Thus, the burden of the privacy-preserving process falls
on the various aggregators of personal/private data, who should also provide the
necessary technical solutions to ensure data privacy for every user (what is also
described as global data privacy protection).

The discussion so far explains and justifies the current situation in the privacy-
preserving scientific area. As a matter of fact, a wealth of algorithms have been
proposed for privacy-preserving data publishing, either for microdata or statistical
data. Moreover, privacy-preserving algorithms are designed specifically for data
published at one point in time (used in what we call snapshot data publishing) or
data released over or concerning a period of time (used in what we call continuous
data publishing). In that respect, we need to be able to correctly choose the proper
privacy algorithm(s), which would allow users to share protected copies of their
data with some guarantees. The selection process is far from trivial, since it is
essential to:

1. select an appropriate privacy-preserving technique, relevant to the data set
intended for public release;

2. understand the different requirements imposed by the selected technique and
tune the different parameters according to the circumstances of the use case
based on, e.g., assumptions, level of distortion, etc. [KM11];

3. get the necessary balance between privacy and data utility, which is a signif-
icant task for any privacy algorithm as well as any privacy expert.

Selecting the wrong privacy algorithm or configuring it poorly may put at risk the
privacy of the involved individuals and/or end up deteriorating the quality and
therefore the utility of the data set.

In data privacy research, privacy in continuous data publishing scenarios is the
area that is concerned by studying the privacy problems created when sensitive
data are published continuously, either infinitely, e.g., streaming data, or by mul-
tiple continuous publications over a known period of time, e.g., finite time series
data. This specific subfield of data privacy becomes increasingly important since
it:

(i) includes the most prominent cases, e.g., location (trajectory) privacy prob-
lems, and

(ii) provides the most challenging and yet not well charted part of the privacy
algorithms since it is rather new and increasingly complex.
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Figure 1.1: Value of data for decision-making over time from less than seconds to
more than months [MGM16].

Additionally, data in continuous data publishing use cases require a timely pro-
cessing because their value usually decreases over time depending on the use case
as demonstrated in Figure 1.1. For this reason, we provide an insight into time-
related properties of the algorithms, e.g., if they work on finite or infinite data, or
if they take into consideration any underlying data dependence. The importance
of continuous data publishing is stressed by the fact that, commonly, many types
of data have such properties, with geospatial data being a prominent case. A few
examples include—but are not limited to—data being produced while tracking the
movement of individuals for various purposes (where data might also need to be
privacy-protected in real-time and in a continuous fashion); crowdsourced data
that are used to report measurements, such as noise or pollution (where again we
have a continuous timestamped and usually georeferenced stream of data); and
even isolated data items that might include location information, such as pho-
tographs or social media posts. Typically, in such cases, we have a collection of
data referring to the same individual or set of individuals over a period of time,
which can also be infinite. Additionally, in many cases, the privacy-preserving
processes should take into account implicit correlations and restrictions that ex-
ist, e.g., space-imposed collocation or movement restrictions. Since these data are
related to most of the important applications and services that enjoy high uti-
lization rates, privacy-preserving continuous data publishing becomes one of the
emblematic problems of our time.
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1.1 Contribution

Our objective is to study the problems around the subject of two contrasting
desiderata: quality and privacy in user-generated Big Data. We consider the
scenario where data are processed/published in a continuous manner and envision
a configurable privacy technique that we can tune depending on the use case
requirements.

The main challenge in this setting is maintaining a balance between privacy and
utility. Furthermore, we consider the presence of temporal correlation, which is
inherent in continuous data publishing schemes and can lead to additional privacy
loss.

Privacy, space and time The first contribution of this thesis is the sur-
vey [KTK19] of the existing literature regarding methods on privacy-preserving
continuous data publishing, which appeared in the special feature on Geospatial
Privacy and Security in the 19th journal of Spatial Information Science. We study
works that were published over the past two decades and provide a guide that
will navigate its users through the available methodology and help them select
the algorithms that are fitting best their needs.

We categorize the works that we review depending on if they deal with mi-
crodata or statistical data. Then, we group them based on the duration of the
processing/publishing that they aim for. Furthermore, we document in detail the
privacy protection characteristics of each reviewed method.

Landmark privacy Our second contribution is the proposal and formal defini-
tion of a novel privacy notion, landmark privacy. Contrary to the existing privacy
protection levels, our notion differentiates events between regular and events that
a user might consider more privacy-sensitive, i.e. landmarks. The introduction of
landmarks, allows for a configurable privacy protection.

First, we design and implement three landmark privacy schemes, accounting
for landmarks spanning a finite time series. Thereafter, we investigate landmark
privacy under temporal correlation, which is inherent in time series publishing,
and study how landmarks can affect the propagation of temporal privacy loss.

Dummy landmark selection The third contribution of this thesis is the design
of a module that extends our landmark privacy schemes and provides additional
protection to landmarks. In other words, we answer the question ‘How can we
protect the fact that we care more about certain events?’.

We design an additional differential privacy mechanism, based on the expo-
nential mechanism, that we can easily plug in to the proposed landmark privacy
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schemes. We provide an optimal solution to this problem, which we improve by
adopting a heuristic approach, and then implement a more efficient module that
relies on partitioning.

We extensively evaluate the methods that we propose by conducting experi-
ments on real and synthetic data sets. We compare landmark privacy with event-
and user-level privacy protection, and investigate the behavior of the overall pri-
vacy loss under temporal correlation for different distributions of landmarks. Fur-
thermore, we estimate the impact of the privacy-preserving dummy landmark se-
lection module on the utility of our privacy scheme.

The second and the third contributions are described in the article [KTK22],
which will appear at the research papers track of the 12th ACM conference on
Data and Application Security and Privacy.

1.2 Structure

This thesis is structured as follows:

Chapter 2 introduces some relevant terminology and information around the
problem of quality and privacy in user-generated Big Data with a special focus
on continuous data publishing. First, in Section 2.1, we categorize user-generated
data sets and review data processing in the context of continuous data publish-
ing. Second, in Section 2.2, we define information disclosure in data privacy. We
list the categories of privacy attacks, the possible privacy protection levels, the
fundamental privacy operations that are applied to achieve data privacy, and fi-
nally we provide a brief overview of the basic notions for data privacy protection.
Third, in Section 2.3, we focus on the impact of correlation on data privacy. More
particularly, we discuss the different types of correlation, we document ways to ex-
tract data correlation from continuous data, and we investigate the privacy risks
that data correlation entails with special focus on the privacy loss under temporal
correlation.

Chapter 3 reviews works that deal with privacy under continuous data publish-
ing covering diverse use cases. We present the relevant literature based on two
levels of categorization. First, we group works with respect to whether they deal
with microdata or statistical data as input. Then, we further group them into two
subcategories depending on if they are designed for the finite or infinite observation
setting.
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Chapter 4 puts forward a novel configurable privacy scheme, landmark privacy
(Section 4.1), which takes into account significant events (landmarks) in the time
series and allocates the available privacy budget accordingly. We propose three
privacy schemes that guarantee landmark privacy. To further enhance our privacy
methodology, and protect the landmark position in the time series, we propose
techniques to perturb the initial landmark set (Section 4.2).

Chapter 5 presents the experiments that we performed in order to evaluate
landmark privacy (Chapter 4) on real and synthetic data sets. Section 5.1 contains
all the details regarding the data sets the we used for our experiments along with
the system configurations. Section 5.2 evaluates the data utility of the landmark
privacy schemes that we designed in Section 4.1 and investigates the behavior of
the privacy loss under temporal correlation for different distributions of landmarks.
Section 5.3 justifies our decisions while designing the privacy-preserving landmark
selection module in Section 4.2 and the data utility impact of the latter. Finally,
Section 5.4 concludes this chapter by summarizing the main results derived from
the experiments.

Chapter 6 concludes the thesis and outlines possible future directions.
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Chapter 2

Preliminaries

In this chapter, we introduce some relevant terminology and information around
the problem of quality and privacy in user-generated Big Data with a special
focus on continuous data publishing. First, in Section 2.1, we categorize user-
generated data sets, that we consider in a tabular form, and review data processing
in the context of continuous data publishing. Second, in Section 2.2, we define
information disclosure in data privacy. Thereafter, we list the categories of privacy
attacks, the possible privacy protection levels, the fundamental privacy operations
that are applied to achieve data privacy, and finally we provide a brief overview
of the basic notions for data privacy protection. Third, in Section 2.3, we focus
on the impact of correlation on data privacy. More particularly, we discuss the
different types of correlation, we document ways to extract data correlation from
continuous data, and we investigate the privacy risks that data correlation entails
with special focus on the privacy loss under temporal correlation.

2.1 Data sets and data publishing

In this section, we categorize user-generated data sets in terms of their form and
their processing and publishing.

2.1.1 Data categories

In this thesis, we are interested in data that contain information about individuals
and their actions, as these are highly privacy-sensitive. A typical category of such
data are user-generated data which are the outcome of users–services interactions,
e.g., social media, location-based services (LBS), etc. These interactions result
in the generation of data items which are tuples that typically contain a user
identifier, a timestamp, and context information (e.g., location, activity, etc.) We

9
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Name Age Location Status

Donald 27 Le Marais at work
Daisy 25 Belleville driving
Huey 12 Montmartre running
Dewey 11 Montmartre at home
Louie 10 Quartier Latin walking
Quackmore 62 Opéra dining

(a) Microdata

Location Count

Belleville 1
Quartier Latin 1
Le Marais 1
Montmartre 2
Opéra 1

(b) Statistical data

Figure 2.1: Example of raw user-generated (a) microdata, and the related (b) sta-
tistical data for a specific timestamp.

firstly classify data based on their form in:

• Microdata (Figure 2.1a) are the data items in their raw, usually tabular,
form pertaining to individuals.

• Statistical data (Figure 2.1b) are the outcome of statistical processes on
microdata, e.g., average, count, sum, etc.

To accompany and facilitate the descriptions in this chapter, we provide Ex-
ample 2.1.1 as a running example.

Example 2.1.1. Users interact with an LBS by making queries in order to retrieve
some useful location-based information or just reporting user-state at various lo-
cations. This user–LBS interaction generates user-related data, organized in a
schema with the following attributes: Name (the unique identifier of the table),
Age, Location, and Status (Figure 2.1a). The ‘Status’ attribute includes infor-
mation that characterizes the user state or the query itself, and its value varies
according to the service functionality. Subsequently, the generated data are aggre-
gated (by issuing count queries over them) in order to derive useful information
about the popularity of the venues during the day (Figure 2.1b).

An example of microdata is displayed in Figure 2.1a, while an example of
statistical data in Figure 2.1b. Data, in either of these two forms, may have a
special property called continuity, i.e., their values change and can be observed
through time. Observing the evolution of the data attribute values over time
may offer valuable insight regarding the underlying population not only about the
past but also both about the present and future. Depending on the span of the
observation, we categorize data in:
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Name Age Location Status

Donald 27 Le Marais at work
Daisy 25 Belleville driving
Huey 12 Montmartre running
Dewey 11 Montmartre at home
Louie 10 Quartier Latin walking
Quackmore 62 Opéra dining

t1

Name Age Location Status

Donald 27 Montmartre driving
Daisy 25 Montmartre at the mall
Huey 12 Quartier Latin sightseeing
Dewey 11 Opéra walking
Louie 10 Quartier Latin at home
Quackmore 62 Montmartre biking

t2

. . .

(a) Microdata

Location Count
t1 t2 . . .

Belleville 1 0 . . .
Quartier Latin 1 2 . . .
Le Marais 1 0 . . .
Montmartre 2 3 . . .
Opéra 1 1 . . .

(b) Statistical data

Figure 2.2: (a) Microdata, and (b) the corresponding statistics at multiple times-
tamps.

• Finite data are observed during a predefined time interval.

• Infinite data are observed in an uninterrupted fashion.

Example 2.1.2. Extending Example 2.1.1, Figure 2.2 shows an example of contin-
uous data, by introducing one data table for each consecutive timestamp. The two
data tables over the time span [t1, t2] are an example of finite data. Infinite data
are the whole series of data obtained over the period [t1,∞) (infinity is denoted by
‘. . . ’).

We further define two sub-categories, which are not exhaustive, i.e., not all
data sets belong to the one or the other category, applicable to both finite and
infinite data:

• Sequential data have variable values that change depending on their previous
values. For example, trajectories are finite sequences of location stamps, as
naturally the position at each timestamp is connected to the position at the
previous timestamp.
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• Incremental data are augmented at each subsequent timestamp with supple-
mentary information. For example, trajectories can be considered as incre-
mental data when at each timestamp we consider all the previously visited
locations by an individual incremented by the individual’s current position.

2.1.2 Data processing and publishing

We categorize data processing and publishing based on what entity has access to
the raw data in the following schemes:

• Global scheme (Figure 2.3a) dictates the collection, processing and privacy-
protection, and then publishing of the data by a central (trusted) entity,
e.g., [McS09,BBDS13,JNS18].

• Local scheme (Figure 2.3b) requires the storage, processing and privacy-
protection of data on the side of data generators before sending them to any
intermediate or final entity, e.g., [ABCP13,EPK14,KLPT17].

In the case of location data privacy, data processing and publishing methods
are divided in service- and data-centric [CM11]. The service-centric methods cor-
respond to scenarios where individuals share their privacy-protected location with
a service to get some relevant information (local publishing scheme). The data-
centric methods relate to the publishing of user-generated data to data consumers
(global publishing scheme).

There is a long-standing debate whether the local or the global architectural
scheme is more efficient with respect to not only privacy, but also organizational,
economic, and security factors [Kin83]. On the one hand, in the global privacy
scheme (Figure 2.3a), the dependence on third-party entities poses the risk of
arbitrary privacy leakage from a compromised data publisher. Nonetheless, the
expertise of these entities is usually superior to that of the majority of (non-
technical) data generators’ in terms of understanding privacy permissions/policies
and setting-up relevant preferences. Moreover, in the global architecture, less
distortion is necessary before publicly releasing the aggregated data set, naturally
because the data sets are larger and users can be ‘hidden’ more easily. On the
other hand, the local privacy scheme (Figure 2.3b) facilitates fine-grained data
management, offering to every individual better control over their data [Gol98].
Nonetheless, data distortion at an early stage might prove detrimental to the
overall utility of the aggregated data set. The so far consensus is that there is no
overall optimal solution among the two designs. Most service-providing companies
prefer the global scheme, mainly for reasons of better management and control
over the data, while several privacy advocates support the local privacy scheme
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(a) Global scheme

(b) Local scheme

Figure 2.3: The usual flow of user-generated data, optionally harvested by data
publishers, privacy-protected, and released to data consumers, according to the
(a) global, and (b) local privacy schemes.



14 CHAPTER 2. PRELIMINARIES

that offers users full control over what and how data are published. Although
there have been attempts to bridge the gap between them, e.g., [BEM+17], the
global scheme is considerably better explored and implemented [Sat17].

We distinguish publishing modes for private data between:

• Snapshot mode (also appearing as one-shot or one-off publishing) processes
and releases a data set at a specific point in time and thereafter is not
concerned anymore with the specific data set. For example, in Figure 2.4a
(ignore the privacy-preserving step for the moment) individuals send their
data to an LBS provider, considering a specific timestamp. The use cases
of continuous data publishing abound, with the proliferation of the Internet,
sensors, and connected devices, which produce and send to servers huge
amounts of continuous personal data in astounding speed.

• Continuous mode computes and publishes augmented or updated versions
of one data set in different timestamps, and without a predefined duration.
In the context of privacy-preserving data publishing, privacy preservation is
tightly coupled with the data processing and publishing stages.

We further categorize continuous publishing mode into:

– Batch mode (Figure 2.4b) considers data in groups in specific time in-
tervals. It is performed (usually offline) over both finite and infinite
data

– Streaming mode (Figure 2.4c) processes data per timestamp, infinitely.
It is by definition connected to infinite data (usually in real-time).

2.2 Data privacy

In this section we first study the notion of information disclosure and focus on
the privacy attacks that can lead to it. Furthermore, we investigate the possible
privacy protection levels in continuous data publishing. Finally, we identify the
most common privacy operations and the seminal works for privacy-preserving
data publishing.

2.2.1 Information disclosure

When personal data are publicly released, either as microdata or statistical data,
individuals’ privacy can be compromised, i.e, an adversary becomes certain about
an individual’s sensitive attribute, i.e., personal information, with a probability
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(a) Snapshot mode

(b) Batch mode (c) Streaming mode

Figure 2.4: The different data processing and publishing modes of continuously
generated data sets. (a) Snapshot publishing, (b) continuous publishing–batch
mode, and (c) continuous publishing–streaming mode. ooox denotes the privacy-
protected version of the data set Dx or statistics thereof, while ‘. . . ’ denote the
continuous data generation and/or publishing, where applicable. Depending on
the data observation span, n can either be finite or tend to infinity.
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higher than a desired threshold. In the literature, this incident is known as infor-
mation disclosure and is usually categorized [LLV07,WCFY10,NS08] as:

• Presence disclosure takes place when the participation or absence of an in-
dividual in a data set is revealed.

• Identity disclosure links an individual to a particular record.

• Attribute disclosure reveals information (attribute value) about an individ-
ual.

In the literature, identity disclosure is also referred to as record linkage, and
presence disclosure as table linkage. Notice that identity disclosure can result in
attribute disclosure, and vice versa.

To better illustrate these definitions, we provide some examples based on Fig-
ure 2.1. Presence disclosure appears when by looking at the (privacy-protected)
counts of Figure 2.1b, we can guess if Quackmore has participated in Figure 2.1a.
Identity disclosure appears when we can guess that the sixth record of (a privacy-
protected version of) the microdata of Figure 2.1a belongs to Quackmore. At-
tribute disclosure appears when it is revealed from (a privacy-protected version
of) the microdata of Figure 2.1a that Quackmore is 62 years old.

2.2.2 Attacks to privacy

Information disclosure is typically achieved by combining supplementary (back-
ground) knowledge with the released data or by setting unrealistic assumptions
while designing the privacy-preserving algorithms. In its general form, this is
known as adversarial or linkage attack. Even though many works directly re-
fer to the general category of linkage attacks, we distinguish also the following
sub-categories:

• Sensitive attribute domain knowledge can result in homogeneity and skewness
attacks [MGKV06, LLV07], when statistics of the sensitive attribute values
are available, and similarity attack, when semantics of the sensitive attribute
values are available.

• Complementary release attacks [Swe02b] take place when attackers take into
account previous releases of different versions of the same and/or related data
sets. In this category, we also identify the unsorted matching attack [Swe02b],
which is achieved when two privacy-protected versions of an original data set
are published in the same tuple ordering. Other instances include: (i) the
join attack [WF06], when tuples can be identified by joining (on the non
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uniquely identifying attributes, i.e., quasi-identifiers) several releases, (ii) the
tuple correspondence attack [FWFP08], when in case of incremental data
certain tuples correspond to certain tuples in other releases, in an injective
way, (iii) the tuple equivalence attack [HBN11], when tuples among different
releases are found to be equivalent with respect to the sensitive attribute,
and (iv) the unknown releases attack [ST15], when the privacy preservation
is performed without taking into account previous data releases.

• Data correlation that may exist either within one data set or among one
data set and previous data releases, and/or other external sources [KM11,
CFYD14, LCM16, ZZP17]. We will look into this category in more detail
later in Section 2.3.

The first sub-category of attacks has been mainly addressed in works on snap-
shot microdata publishing, but is also present in continuous publishing; however,
algorithms for continuous publishing typically accept the proposed solutions for
the snapshot publishing scheme (see discussion over k-anonymity and l-diversity
in Section 2.2.5). This kind of attacks is tightly coupled with publishing the
(privacy-protected) sensitive attribute value. An example is the lack of diversity
in the sensitive attribute domain, e.g., if all users in the data set of Figure 2.1a had
running as their Status (the sensitive attribute). The second and third subcate-
gories are attacks emerging (mostly) in continuous publishing scenarios. Consider
again the data set in Figure 2.1a. The complementary release attack means that
an adversary can learn more things about the individuals (e.g., that there are
high chances that Donald was at work) if he/she combines the information of two
privacy-protected versions of this data set. By the data correlation attack, the
status of Donald could be more certainly inferred, by taking into account the sta-
tus of Dewey at the same moment and the dependencies between Donald’s and
Dewey’s status, e.g., when Dewey is at home, then most probably Donald is at
work. In order to better protect the privacy of Donald in case of attacks, the data
should be privacy-protected in a more adequate way (than without the attacks).

2.2.3 Levels of privacy protection

In continuous data publishing we consider the privacy protection level with respect
to not only the users, but also to the events occurring in the data. An event is a
pair of an identifying attribute of an individual and the sensitive data (including
contextual information) and we can see it as a correspondence to a record in a
database, where each individual may participate once. Data publishers typically
release events in the form of sequences of data items, usually indexed in time order
(time series) and geotagged, e.g., (‘Dewey’, ‘at home at Montmartre at t1’), . . . ,
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(‘Quackmore’, ‘dining at Opéra at t1’). We use the term ‘users’ to refer to the
individuals, also known as participants, who are the source of the processed and
published data. Therefore, they should not be confused with the consumers of the
released data sets. Users are subject to privacy attacks, and thus are the main
point of interest of privacy protection mechanisms. The possible privacy protection
levels are:

(a) Event-level [DNPR10, DNP+10] limits the privacy protection to any single
event in a time series, providing high data utility.

(b) User-level [DNPR10,DNP+10] protects all the events in a time series, provid-
ing high user privacy.

(c) w-event-level [KPXP14] provides privacy protection to any sequence of w
events in a time series. privacy protection.

Figure 2.5 demonstrates the application of the possible protection levels on
the statistical data of Example 2.1.2. For instance, in event-level (Figure 2.5a) it
is hard to determine whether Quackmore was dining at Opéra at t1. Moreover,
in user-level (Figure 2.5b) it is hard to determine whether Quackmore was ever
included in the released series of events at all. Finally, in 2-event-level (Figure 2.5c)
it is hard to determine whether Quackmore was ever included in the released series
of events between the timestamps t1 and t2, t2 and t3, etc. (i.e., for a window
w = 2).

(a) Event-level (b) User-level (c) 2-event-level

Figure 2.5: Protecting the data of Figure 2.2b on (a) event-, (b) user-, and (c) 2-
event-level. A suitable distortion method can be applied accordingly.

Contrary to event-level, which provides privacy guarantees for a single event,
user- and w-event-level offer stronger privacy protection by protecting a series of
events. Event- and w-event-level better fit scenarios of infinite data observation,
whereas user-level is more appropriate when the span of data observation is finite.
w-event- is narrower than user-level protection due to its sliding window processing
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methodology. In the extreme cases where w is equal either to 1 or to the length
of the time series, w-event- matches event- or user-level protection, respectively.
Although the described levels have been coined in the context of differential pri-
vacy [DMNS06], a seminal privacy method that we will discuss in more detail in
Section 2.2.5, they are used for other privacy protection techniques as well.

2.2.4 Privacy-preserving operations

We identify the following privacy operations that can be applied on the original
data to achieve privacy preservation:

• Aggregation combines multiple rows of a data set to form a single value which
will replace these rows.

• Generalization replaces an attribute value with a parent value in the attribute
taxonomy (when applicable).

• Suppression deletes completely certain sensitive values or entire records.

• Perturbation disturbs the initial attribute value in a deterministic or proba-
bilistic way. The probabilistic data distortion is referred to as randomization.

For example, consider the table schema User(Name, Age, Location, Status). If
we want to protect the Age of the user by aggregation, we may group the data by
Location and report the average Age for each group; by generalization, we may
replace the Age by Age intervals; by suppression we may delete the entire table
column corresponding to Age; by perturbation, we may augment each Age by a
predefined percentage of the Age; by randomization we may randomly replace each
Age by a value taken from the probability density function of the attribute.

It is worth mentioning that there is a series of algorithms (e.g., [BCHL09,
KL10, CWL+14]) based on the cryptography operation. However, the majority
of these methods, among other assumptions that they make, have minimum or
even no trust to the entities that handle the personal information. Furthermore,
the amount and the way of data processing of these techniques usually burden
the overall procedure, deteriorate the utility of the resulting data sets to a point
where they are completely useless, and thus restrict their usage by third-parties.
Our focus is limited to techniques that achieve a satisfying balance between both
participants’ privacy and data utility.

2.2.5 Basic notions for privacy protection

For completeness, in this section we present the seminal works for privacy-
preserving data publishing, which, even though originally designed for the
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snapshot publishing scenario, have paved the way of privacy-preserving continu-
ous publishing as well.

Microdata

Sweeney coined k-anonymity [Swe02b], one of the first established works on data
privacy. A released data set features k-anonymity protection when the values of
a set of identifying attributes, called the quasi-identifiers, is the same for at least
k records in the data set. In a follow-up work [Swe02a], the author describes a
way to achieve k-anonymity for a data set by the suppression or generalization of
certain values of the quasi-identifiers.

Several works identified and addressed privacy concerns on k-anonymity.
Machanavajjhala et al. [MGKV06] pointed out that k-anonymity is vulnerable
to homogeneity and background knowledge attacks. Thereby, they proposed
l-diversity, which demands that the values of the sensitive attributes are ‘well-
represented’ by l sensitive values in each group. Principally, a data set can be
l-diverse by featuring at least l distinct values for the sensitive field in each group
(distinct l-diversity). Other instantiations demand that the entropy of the whole
data set is greater than or equal to log(l) (entropy l-diversity) or that the number
of appearances of the most common sensitive value is less than the sum of the
counts of the rest of the values multiplied by a user defined constant c (recursive
(c, l)-diversity). Later on, Li et al. [LLV07] indicated that l-diversity can be void
by skewness and similarity attacks due to sensitive attributes with a small value
range. In such cases, θ-closeness guarantees that the distribution of a sensitive
attribute in a group and the distribution of the same attribute in the whole data
set is ‘similar’. This similarity is bound by a threshold θ. A data set features
θ-closeness when all of its groups satisfy θ-closeness.

The main drawback of k-anonymity (and its derivatives) is that it is not toler-
ant to external attacks of re-identification on the released data set. The problems
identified in [Swe02b] appear when attempting to apply k-anonymity on continu-
ous data publishing (as we will also see next in Section 3.1). These attacks include
multiple k-anonymous data set releases with the same record order, subsequent
releases of a data set without taking into account previous k-anonymous releases,
and tuple updates. Proposed solutions include rearranging the attributes, set-
ting the whole attribute set of previously released data sets as quasi-identifiers or
releasing data based on previous k-anonymous releases [SNE17].

Statistical data

While methods based on k-anonymity have been mainly employed for releasing
microdata, differential privacy [DMNS06] has been proposed for releasing high
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utility aggregates over microdata while providing semantic privacy guarantees that
characterize the output data. Differential privacy is algorithmic, it characterizes
the data publishing process, which passes its privacy guarantee to the resulting
data. It ensures that any adversary observing a privacy-protected output, no
matter their computational power or auxiliary information, cannot conclude with
absolute certainty if an individual is included in the input data set (Definition 1).

Definition 1 (Neighboring data sets [DMNS06]). Two data sets are neighboring
(or adjacent) when they differ by at most one tuple, i.e., one can be obtained by
adding/removing the data of an individual to/from the other.

Moreover, differential privacy quantifies and bounds the impact that the ad-
dition/removal of an individual to/from a data set has on the derived privacy-
protected aggregates thereof. More precisely, differential privacy quantifies the
impact of the addition/removal of a single tuple in D on the output ooo of a privacy
mechanismM that perturbs the result of a query function f . The distribution of
all ooo, in some range O, is not affected substantially, i.e., it changes only slightly due
to the modification of any one tuple in all possible D ∈ D. Formally, differential
privacy is given in Definition 2.

Definition 2 (Differential privacy [DMNS06]). A privacy mechanism M, with
domain D and range O, satisfies ε-differential privacy, for a given privacy budget
ε, if for every pair of neighboring data sets D,D′ ∈ D and all sets O ⊆ O:

Pr[M(D) ∈ O] ≤ eε Pr[M(D′) ∈ O]

Pr[·] denotes the probability ofM generating an output from O ⊆ O, when given
D as input. The privacy budget ε is a positive real number that represents the
user-defined privacy goal [McS09]. As the definition implies,M achieves stronger
privacy protection for lower values of ε since the probabilities of D and D′ being
true worlds are similar, but the utility of the output is reduced since more ran-
domness is introduced byM. The privacy budget ε is usually set to 0.01, 0.1, or,
in some cases, ln 2 or ln 3 [LC11].

The applicability of differential privacy mechanisms is inseparable from the
query’s function sensitivity. The presence/absence of a single record should only
change the result slightly, and therefore differential privacy methods are best for
low sensitivity queries (see Definition 3) such as counts. However, sum, max, and
in some cases average queries can be problematic, since a single, outlier value
could change the output noticeably, making it necessary to add a lot of noise to
the query’s answer.

Definition 3 (Query function sensitivity [DMNS06]). The sensitivity of a query
function f for all neighboring data sets D,D′ ∈ D is:

∆f = max
D,D′∈D

∥f(D)− f(D′)∥1
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The notion of differential privacy has highly influenced the research community,
resulting in many follow-up publications ([MT07, KM11, ZCP+17] to mention a
few). We distinguish here Pufferfish [KM14]. Pufferfish is a framework that
allows experts in an application domain, without necessarily having any particular
expertise in privacy, to develop privacy definitions for their data sharing needs. To
define a privacy mechanism using Pufferfish, one has to define a set of potential
secrets X , a set of distinct pairs Xpairs, and auxiliary information about data
evolution scenarios B. X serves as an explicit specification of what we would like
to protect, e.g., ‘the record of an individual x is (not) in the data’. Xpairs is a subset
of X × X that instructs how to protect the potential secrets X , e.g., (‘x is in the
table’, ‘x is not in the table’). Finally, B is a set of conservative assumptions about
how the data evolved (or were generated) that reflects the adversary’s belief about
the data, e.g., probability distributions, variable correlation, etc. When there is
independence between all the records in the original data set, then ε-differential
privacy and the privacy definition of ε-Pufferfish(X ,Xpairs,B) are equivalent.

Popular privacy mechanisms A typical example of a differential privacy
mechanism is the Laplace mechanism [DR+14]. It draws randomly a value from
the probability distribution of Laplace(µ, b), where µ stands for the location
parameter and b > 0 is the scale parameter (Figure 2.6). In our case, µ is equal to
the original output value of a query function, and b is the sensitivity of the query
function divided by the privacy budget ε. The Laplace mechanism works for any
function with range the set of real numbers.
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Figure 2.6: A Laplace distribution for location µ = 0 and different scale values b.

A specialization of this mechanism for location data is the Planar Laplace mech-
anism [ABCP13,CPS15], an adaptation of differential privacy for location data in
snapshot publishing (Geo-indistinguishability). It is based on l-privacy, which of-



2.2. DATA PRIVACY 23

fers to individuals within an area with radius r a privacy level of l (Figure 2.7).
More specifically, l is equal to εr if any two locations within distance r provide
data with similar distributions. This similarity depends on r because the closer
two locations are, the more likely they are to share the same features. Intuitively,
the definition implies that if an adversary learns the published location for an in-
dividual, the adversary cannot infer the individual’s true location, out of all the
points in a radius r, with a certainty higher than a factor depending on l. The
technique adds random noise drawn from a multivariate Laplace distribution to
individuals’ locations, while taking into account spatial boundaries and features.

Figure 2.7: Geo-indistinguishability: privacy level l varying with the protection
radius r.

For query functions that do not return a real number, e.g., ‘What is the most
visited country this year?’, or in cases where perturbing the value of the output
will completely destroy its utility, e.g., ‘How many patients in the ICU?’, most
works in the literature use the Exponential mechanism [MT07]. Initially, a utility
function u, with sensitivity ∆u, maps pairs of the input value x and output value
r to utility scores. Thereafter, the mechanism M selects an output value r from a
set of possible outputs R with probability proportional to exp( εu(x,r)

2∆u
).

Figure 2.8: The internal mechanics of the exponential mechanism.

Another technique for differential privacy mechanisms is the randomized re-
sponse [War65]. It is a privacy-preserving survey method that introduces proba-
bilistic noise to the statistics of a research by randomly instructing respondents to
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answer truthfully or ‘Yes’ to a sensitive, binary question. The technique achieves
this randomization by including a random event, e.g., the flip of a fair coin. The re-
spondents reveal to the interviewers only their answer to the question, and keep as
a secret the result of the random event (i.e., if the coin was tails or heads). There-
after, the interviewers can calculate the probability distribution of the random
event, e.g., 1

2
heads and 1

2
tails, and thus they can roughly eliminate the false re-

sponses and estimate the final result of the research. Based on this methodology,
the Random response mechanism [WCFY10] returns the true or flipped answer
value x with a probability p proportional to the privacy budget ε (Figure 2.9).

Figure 2.9: The internal mechanics of the random response mechanism.

A special category of differential privacy-preserving mechanisms is that of pan-
private algorithms [DNP+10]. Pan-private algorithms hold their privacy guaran-
tees even when snapshots of their internal state (memory) are accessed during their
execution by an external entity, e.g., subpena, security breach, etc. There are two
intrusion types that a data publisher has to deal with when designing a pan-private
mechanism: single unannounced, and continual announced intrusion. In the first,
the data publisher assumes that the mechanism’s state is observed by the external
entity one unique time, without the data publisher ever being notified about it. In
the latter, the external entity gains access to the mechanism’s state multiple times,
and the publisher is notified after each time. The simplest approach to deal with
both cases is to make sure that the data in the memory of the mechanism have
constantly the same distribution, i.e., they are differentially private. Notice that
this must hold throughout the mechanism’s lifetime, even before/after it processes
any sensitive data item(s).

In what follows, we present some primordial properties of differential private
mechanisms that rule their composition and post processing.

Composition Mechanisms that satisfy differential privacy are composable,
i.e., the combination of their results satisfy differential privacy as well. In this
section, we provide an overview of the most prominent composition theorems
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that instruct data publishers how to estimate the overall privacy protection when
utilizing a series of differential privacy mechanisms.

Theorem 1 (Composition [McS09]). Any combination of a set of independent dif-
ferential privacy mechanisms satisfying a corresponding set of privacy guarantees
shall satisfy differential privacy as well, i.e., provide a differentially private output.

Generally, when we apply a series of independent (i.e., in the way that they
inject noise) differential privacy mechanisms on independent data, we can calculate
the privacy level of the resulting output according to the sequential composition
property [McS09,SCDF16].

Theorem 2 (Sequential composition on independent data [McS09]). The privacy
guarantee of m ∈ Z+ independent privacy mechanisms, satisfying ε1-, ε2-, . . . ,
εm-differential privacy respectively, when applied over the same data set equals to∑m

i=1 εi.

Asking a series of queries may allow the disambiguation between possible data
sets, making it necessary to add even more noise to the outputs. Keeping the
original guarantee across multiple queries that require different/new answers re-
quires the injection of noise proportional to the number of the executed queries,
and thus destroying the utility of the output. For this reason, after a series of
queries exhausts the available privacy budget the data set has to be discarded.

Notice that the sequential composition corresponds to the worst case scenario
where each time we use a mechanism we have to invest some (or all) of the available
privacy budget. In the special case that we query disjoint data sets, we can take
advantage of the parallel composition property [McS09,SCDF16], and thus spare
some of the available privacy budget.

Theorem 3 (Parallel composition on independent data [McS09]). When m ∈ Z+

independent privacy mechanisms, satisfying ε1-, ε2-,. . . , εm-differential privacy
respectively, are applied over disjoint independent subsets of a data set, they provide
a privacy guarantee equal to maxi∈[1,m] εi.

When the users consider recent data releases more privacy-sensitive than dis-
tant ones, we estimate the overall privacy loss in a time fading manner according
to a temporal discounting function, e.g., exponential, hyperbolic, [Far20].

Theorem 4 (Sequential composition with temporal discounting [Far20]). A set of
m ∈ Z+ independent privacy mechanisms, satisfying ε1-, ε2-,. . . , εm-differential
privacy respectively, satisfy

∑m
i=1 g(i)εi differential privacy for a discount function

g.
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When dealing with temporally correlated data, we handle a sequence of w ≤
t ∈ Z+ mechanisms (indexed by m ∈ [1, t]) as a single entity where each mech-
anism contributes to the temporal privacy loss depending on its order of appli-
cation [CYXX17]. The first (m − 1 if w ≤ 2 or m − w + 1 if w > 2) and last
(m) mechanisms contribute to the backward and forward temporal privacy loss
respectively (see also Section 2.3.4). When w is greater than 2, the rest of the
mechanisms (between m − w + 2 and m − 1) contribute only to the privacy loss
that is corresponding to the publication of the relevant data.

Theorem 5 (Sequential composition under temporal correlation [CYXX18]).
When a set of w ≤ t ∈ Z+ independent privacy mechanisms, satisfying εm∈[1,t]-
differential privacy, is applied over a sequence of an equal number of temporally
correlated data sets, it provides a privacy guarantee equal to:{

αB
m−1 + αF

m w ≤ 2

αB
m−w+1 + αF

m +
∑m−1

i=m−w+2 εi w > 2

Notice that the estimation of forward privacy loss is only pertinent to a setting
under finite observation and moderate correlation. In different circumstances, it
might be impossible to calculate the upper bound of the temporal privacy loss,
and thus only the backward privacy loss would be relevant.

Post-processing Every time a data publisher interacts with (any part of) the
original data set, it is mandatory to consume some of the available privacy budget
according to the composition theorems 2 and 3. However, the post-processing of a
perturbed data set can be done without using any additional privacy budget.

Theorem 6 (Post-processing [McS09]). The post-processing of any output of an
ε-differential privacy mechanism shall not deteriorate its privacy guarantee.

Naturally, using the same (or different) privacy mechanism(s) multiple times to
interact with raw data in combination with already perturbed data implies that the
privacy guarantee of the final output will be calculated according to Theorem 2.
That is, we add up the privacy budgets attributed to the outputs from previous
mechanism applications with the current privacy budget.

Example 2.2.1. To illustrate the usage of the microdata and statistical data tech-
niques for privacy-preserving data publishing, we revisit Example 2.1.2. In this
example, users continuously interact with an LBS by reporting their status at vari-
ous locations. Then, the reported data are collected by the central service, in order
to be protected and then published, either as a whole, or as statistics thereof. Notice
that in order to showcase the straightforward application of k-anonymity and dif-
ferential privacy, we apply the two methods on each timestamp independently from
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Name Age Location Status

* > 20 Paris at work
* > 20 Paris driving
* > 20 Paris dining

* ≤ 20 Paris running
* ≤ 20 Paris at home
* ≤ 20 Paris walking

Name Age Location Status

* > 20 Paris driving
* > 20 Paris at the mall
* > 20 Paris biking

* ≤ 20 Paris sightseeing
* ≤ 20 Paris walking
* ≤ 20 Paris at home

. . .

t1 t2

Figure 2.10: 3-anonymous event-level protected versions of the microdata in Ta-
ble 2.2a.

Location Count

Belleville 1
Quartier Latin 1
Le Marais 1
Montmartre 2
Opéra 1

(a) True counts

Noise−−−→

Location Count

Belleville 1
Quartier Latin 0
Le Marais 2
Montmartre 3
Opéra 1

(b) Perturbed counts

Figure 2.11: (a) The original version of the data of Figure 2.2b, and (b) their
1-differentially event-level private version.

the previous one, and do not take into account any additional threats imposed by
continuity.

First, we anonymize the data set of Figure 2.2a using k-anonymity, with k = 3.
This means that any user should not be distinguished from at least 2 others. Status
is the sensitive attribute, thus the attribute that we wish to protect. We start by
suppressing the values of the Name attribute, which is the identifier. The Age and
Location attributes are the quasi-identifiers, so we proceed to adequately generalize
them. We turn age values to ranges (≤ 20, and > 20), and generalize location to
city level (Paris). Finally, we achieve 3-anonymity by putting the entries in groups
of three, according to the quasi-identifiers. Figure 2.10 depicts the results at each
timestamp.

Next, we demonstrate differential privacy. We apply an ε-differentially private
Laplace mechanism, with ε = 1, taking into account the count query that generated
the true counts of Figure 2.2b. The sensitivity of a count query is 1 since the
addition/removal of a tuple from the data set can change the final result of the
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query by maximum 1 (tuple). Figure ?? shows how the Laplace distribution for
the true count in Montmartre at t1 looks like. Figure 2.11b shows all the perturbed
counts that are going to be released.

2.3 Data correlation
In this Section we study the most prominent types of correlation, practices for
extracting correlation from continuous data, privacy risks of correlation with a
special emphasis on temporal correlation.

2.3.1 Types of correlation

The most prominent types of correlation are:

• Temporal [Wei06]—appearing in observations (i.e., values) of the same object
over time.

• Spatial [Leg93,Ans95]—denoted by the degree of similarity of nearby data
points in space, and indicating if and how phenomena relate to the (broader)
area where they take place.

• Spatiotemporal—a combination of the previous categories, appearing when
processing time series or sequences of human activities with geolocation char-
acteristics, e.g., [GDSB09].

Contrary to one-dimensional correlation, spatial correlation is multi-
dimensional and multi-directional, and can be measured by indicators
(e.g., Moran’s I [Mor50]) that reflect the spatial association of the concerned
data. Spatial autocorrelation has its foundations in the First Law of Geography
stating that “everything is related to everything else, but near things are more
related than distant things” [Tob70]. A positive spatial autocorrelation indicates
that similar data are clustered, a negative that data are dispersed and are close to
dissimilar ones, and when close to zero, that data are randomly arranged in space.

2.3.2 Extraction of correlation

A common practice for extracting correlation from continuous data with depen-
dence, is by expressing the data as a stochastic or random process. A random
process is a collection of random variables or bivariate data, indexed by some set,
e.g., a series of timestamps, a Cartesian plane R2, an n-dimensional Euclidean
space, etc. [Sko05]. The values a random variable can take are outcomes of an
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unpredictable process, while bivariate data are pairs of data values with a possible
association between them. Expressing data as stochastic processes allows their
modeling depending on their properties, and thereafter the discovery of relevant
data dependence.

Some common stochastic processes modeling techniques include:

• Conditional probabilities [Gut13]—probabilities of events in the presence of
other events.

• Conditional Random Fields (CRFs) [LMP01]—undirected graphs encoding
conditional probability distributions.

• Markov processes [RW00]—stochastic processes for which the conditional
probability of their future states depends only on the present state and it is
independent of its previous states (Markov assumption). We highlight the
following two sub-categories:

– Markov chains [Gag17]—sequences of possible events whose probability
depends on the state attained in the previous event.

– Hidden Markov Models (HMMs) [BP66]—statistical Markov models of
Markov processes with unobserved states.

2.3.3 Privacy risks of correlation

Correlation appears in dependent data:

• within one data set, and

• among one data set and previous data releases, and/or other external
sources [KM11,CFYD14,LCM16,ZZP17].

In the former case, data tuples and data values within a data set may be cor-
related, or linked in such a way that information about one person can be inferred
even if the person is absent from the database. Consequently, in this category we
put assumptions made on the data generation model based on randomness, like
the random world model, the independent and identically distributed data (i.i.d.)
model, or the independent-tuples model, which may be unrealistic for many real-
world scenarios. This attack is also known as the deFinetti’s attack [Kif09].

In the latter case, the strength of the dependence between a pair of variables
can be quantified with the utilization of correlation [Sti89]. Correlation implies
dependence but not vice versa, however, the two terms are often used as synonyms.
The correlation among nearby observations, i.e., the elements in a series of data
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points, are referenced as autocorrelation or serial correlation [PP18]. Depending on
the evaluation technique, e.g., Pearson’s correlation coefficient [Sti89], a correlation
can be characterized as negative, zero, or positive. A negative value shows that
the behavior of one variable is the opposite of that of the other, e.g., when the one
increases the other decreases. Zero means that the variables are not linked and
are independent of each other. A positive correlation indicates that the variables
behave in a similar manner, e.g., when the one decreases the other decreases as
well.

Wand et al. [WXJ+21] examined why current differential privacy methods
that either increase the noise size to offset the privacy leakage caused by the
correlation (model-based) or transform correlated data into independent series
to another domain and process them independently (transform-based) are inap-
plicable for correlated data publishing. They prove that the privacy distortion,
which they quantify using entropy, after filtering out the independent and identi-
cally distributed noise from the correlated data by utilizing the data correlation
(correlation-distinguishability attack) is equal to that of conditional probability in-
ference. They conclude that the problem stems from the difference of correlation
between the noise that the current methods inject and the output data.

2.3.4 Privacy loss under temporal correlation

Cao et al. [CYXX17] propose a method for computing the temporal privacy loss
(TPL) of a differential privacy mechanism in the presence of temporal correlation
and background knowledge. The goal of their technique is to guarantee privacy
protection and to bound the privacy loss at every timestamp under the assump-
tion of independent data releases. It calculates the temporal privacy loss as the
sum of the backward and forward privacy loss minus the default privacy loss ε of
the mechanism (because it is counted twice in the aforementioned entities). This
calculation is done for each individual that is included in the original data set
and the overall temporal privacy loss is equal to the maximum calculated value
at every timestamp. The backward/forward privacy loss at any timestamp de-
pends on the backward/forward privacy loss at the previous/next timestamp, the
backward/forward temporal correlation, and ε.
Definition 4 (Temporal privacy loss (TPL) [CYXX18]). The potential privacy loss
of a privacy mechanism at a timestamp t ∈ T due to a series of outputs (oooi)i∈T
and temporal correlation in its input Dt with respect to any adversary, targeting
an individual with potential data items xt (or x′

t) and having knowledge Dt equal
to Dt − {xt} (or D′

t − {x′
t}), is defined as:

αt = sup
xt,x′

t,(oooi)i∈T

ln
Pr[(oooi)i∈T |xt,Dt]

Pr[(oooi)i∈T |x′
t,Dt]

(2.1)
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By analyzing Equation 2.1 we get the following:

(2.1) = sup
xt,x′

t,(oooi)i∈[min(T ),t]

ln
Pr[(oooi)i∈[min(T ),t]|xt,Dt]

Pr[(oooi)i∈[min(T ),t]|x′
t,Dt]︸ ︷︷ ︸

Backward privacy loss (αB
t )

+ sup
xt,x′

t,(oooi)i∈[t,max(T )]

ln
Pr[(oooi)i∈[t,max(T )]|xt,Dt]

Pr[(oooi)i∈[t,max(T )]|x′
t,Dt]︸ ︷︷ ︸

Forward privacy loss (αF
t )

− sup
xt,x′

t,ooot

ln
Pr[ooot|xt,Dt]

Pr[ooot|x′
t,Dt]︸ ︷︷ ︸

Present privacy loss (εt)

(2.2)

Definition 5 (Backward privacy loss (BPL) [CYXX18]). The potential privacy
loss of a privacy mechanism at a timestamp t ∈ T due to outputs (oooi)i∈[min(T ),t]

and temporal correlation in its input Dt with respect to any adversary, targeting
an individual with potential data items xt (or x′

t) and having knowledge Dt equal
to Dt − {xt} (or D′

t − {x′
t}), is called backward privacy loss and is defined as:

αB
t = sup

xt,x′
t,(oooi)i∈[min(T ),t]

ln
Pr[(oooi)i∈[min(T ),t]|xt,Dt]

Pr[(oooi)i∈[min(T ),t]|x′
t,Dt]

(2.3)

From differential privacy we have the assumption that (oooi)i∈[min(T ),t] are in-
dependent events. Therefore, according to the Bayesian theorem, we can write
Equation 2.3 as:

(2.3) = sup
xt,x′

t,(oooi)i∈[min(T ),t]

ln
Pr[(oooi)i∈[min(T ),t−1]|xt,Dt] Pr[ooot|xt,Dt]

Pr[(oooi)i∈[min(T ),t−1]|x′
t,Dt] Pr[ooot|x′

t,Dt]

= sup
xt,x′

t,(oooi)i∈[min(T ),t−1]

ln
Pr[(oooi)i∈[min(T ),t−1]|xt,Dt]

Pr[(oooi)i∈[min(T ),t−1]|x′
t,Dt]

+ sup
xt,x′

t,ooot

ln
Pr[ooot|xt,Dt]

Pr[ooot|x′
t,Dt]

(2.4)

Applying the law of total probability to the first term of Equation 2.4 for all the
possible data xt−1 (or x′

t−1) and Dt−1 we get the following:
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(2.4) = sup
xt,x′

t,(oooi)i∈[min(T ),t−1]

ln

∑
xt−1

Pr[(oooi)i∈[min(T ),t−1]|xt,Dt,xt−1,Dt−1] Pr[xt−1,Dt−1|xt,Dt]∑
x′t−1

Pr[(oooi)i∈[min(T ),t−1]|x′
t,Dt,x′

t−1,Dt−1] Pr[x′
t−1,Dt−1|x′

t,Dt]

+ sup
xt,x′

t,ooot

ln Pr[ooot|xt,Dt]
Pr[ooot|x′

t,Dt]
(2.5)

Since Dt is equal to Dt−{xt} (or D′
t−{x′

t}), and thus is constant and independent
of every possible xt (or x′

t), ∀t ∈ T , Equation 2.5 can be written as:

(2.5) = sup
xt,x′

t,(oooi)i∈[min(T ),t−1]

ln

∑
xt−1

Pr[(oooi)i∈[min(T ),t−1]|xt,Dt,xt−1,Dt−1] Pr[xt−1|xt,Dt] Pr[Dt−1|xt,Dt]∑
x′t−1

Pr[(oooi)i∈[min(T ),t−1]|x′
t,Dt,x′

t−1,Dt−1] Pr[x′
t−1|x′

t,Dt] Pr[Dt−1|x′
t,Dt]

+ sup
xt,x′

t,ooot

ln Pr[ooot|xt,Dt]
Pr[ooot|x′

t,Dt]

= sup
xt,x′

t,(oooi)i∈[min(T ),t−1]

ln

∑
xt−1

Pr[(oooi)i∈[min(T ),t−1]|xt,Dt,xt−1,Dt−1] Pr[xt−1|xt] Pr[Dt−1|Dt]∑
x′t−1

Pr[(oooi)i∈[min(T ),t−1]|x′
t,Dt,x′

t−1,Dt−1] Pr[x′
t−1|x′

t] Pr[Dt−1|Dt]

+ sup
xt,x′

t,ooot

ln Pr[ooot|xt,Dt]
Pr[ooot|x′

t,Dt]

= sup
xt,x′

t,(oooi)i∈[min(T ),t−1]

ln

∑
xt−1

Pr[(oooi)i∈[min(T ),t−1]|xt,Dt,xt−1,Dt−1] Pr[xt−1|xt]∑
x′t−1

Pr[(oooi)i∈[min(T ),t−1]|x′
t,Dt,x′

t−1,Dt−1] Pr[x′
t−1|x′

t]

+ sup
xt,x′

t,ooot

ln Pr[ooot|xt,Dt]
Pr[ooot|x′

t,Dt]
(2.6)

The outputs (oooi)i∈[min(T ),t] and xt (or x′
t) are conditionally independent in the pres-

ence of xt−1 (or x′
t−1), and thus Equation 2.6 can be written as:

(2.6) = sup
xt,x′

t,(oooi)i∈[min(T ),t−1]

ln

∑
xt−1

Pr[(oooi)i∈[min(T ),t−1]|xt−1,Dt−1] Pr[xt−1|xt]∑
x′
t−1

Pr[(oooi)i∈[min(T ),t−1]|x′
t−1,Dt−1]︸ ︷︷ ︸

αB
t−1

Pr[x′
t−1|x′

t]︸ ︷︷ ︸
PB
t−1

+ sup
xt,x′

t,ooot

ln
Pr[ooot|xt,Dt]

Pr[ooot|x′
t,Dt]︸ ︷︷ ︸

εt

(2.7)

Definition 6 (Forward privacy loss (FPL) [CYXX18]). The potential privacy loss
of a privacy mechanism at a timestamp t ∈ T due to outputs (oooi)i∈[t,max(T )] and
temporal correlation in its input Dt with respect to any adversary, targeting an
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individual with potential data item xt (or x′
t) and having knowledge Dt equal to

Dt − {xt} (or D′
t − {x′

t}), is called forward privacy loss and is defined as:

αF
t = sup

xt,x′
t,(oooi)i∈[t,max(T )]

ln
Pr[(oooi)i∈[t,max(T )]|xt,Dt]

Pr[(oooi)i∈[t,max(T )]|x′
t,Dt]

(2.8)

Similar to the way that we concluded to Equation 2.7 from Equation 2.3 we
can write Equation 2.8 as follows:

(2.8) = sup
xt,x′

t,(oooi)i∈[t+1,max(T )]

ln

∑
xt+1

Pr[(oooi)i∈[t+1,max(T )]|xt+1,Dt+1] Pr[xt+1|xt]∑
x′
t+1

Pr[(oooi)i∈[t+1,max(T )]|x′
t+1,Dt+1]︸ ︷︷ ︸

αF
t+1

Pr[x′
t+1|x′

t]︸ ︷︷ ︸
PF
t+1

+ sup
xt,x′

t,ooot

ln
Pr[ooot|xt,Dt]

Pr[ooot|x′
t,Dt]︸ ︷︷ ︸

εt

(2.9)

Equations 2.2, 2.7, and 2.9 apply to the global publishing schema. In the
local schema, D (or D′) is a single data item and is the same with x (or x′),
i.e., the possible data item of an individual user. Therefore, we calculate the extra
privacy loss under temporal correlation, due to an adversary that targets a user
at a timestamp t, based on the assumption that their possible data are Dt or D′

t.
More specifically, the calculation of TPL (Equation 2.2) becomes:

sup
Dt,D′

t,(oooi)i∈[min(T ),t]

ln
Pr[(oooi)i∈[min(T ),t]|Dt]

Pr[(oooi)i∈[min(T ),t]|D′
t]︸ ︷︷ ︸

Backward privacy loss (αB
t )

+ sup
Dt,D′

t,(oooi)i∈[t,max(T )]

ln
Pr[(oooi)i∈[t,max(T )]|Dt]

Pr[(oooi)i∈[t,max(T )]|D′
t]︸ ︷︷ ︸

Forward privacy loss (αF
t )

− sup
Dt,D′

t,ooot

ln
Pr[ooot|Dt]

Pr[ooot|D′
t]︸ ︷︷ ︸

Present privacy loss (εt)

(2.10)
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The calculation of BPL (Equation 2.7) becomes:

sup
Dt,D′

t,(oooi)i∈[min(T ),t−1]

ln

∑
Dt−1

Pr[(oooi)i∈[min(T ),t−1]|Dt−1, ] Pr[Dt−1|Dt]∑
D′

t−1

Pr[(oooi)i∈[min(T ),t−1]|D′
t−1, ]︸ ︷︷ ︸

αB
t−1

Pr[D′
t−1|D′

t]︸ ︷︷ ︸
PB
t−1

+ sup
Dt,D′

t,ooot

ln
Pr[ooot|Dt]

Pr[ooot|D′
t]︸ ︷︷ ︸

εt

(2.11)

The calculation of FPL (Equation 2.9) becomes:

sup
Dt,D′

t,(oooi)i∈[t+1,max(T )]

ln

∑
Dt+1

Pr[(oooi)i∈[t+1,max(T )]|Dt+1] Pr[Dt+1|Dt]∑
D′

t+1

Pr[(oooi)i∈[t+1,max(T )]|D′
t+1]︸ ︷︷ ︸

αF
t+1

Pr[D′
t+1|D′

t]︸ ︷︷ ︸
PF
t+1

+ sup
Dt,D′

t,ooot

ln
Pr[ooot|Dt]

Pr[ooot|D′
t]︸ ︷︷ ︸

εt

(2.12)

The authors propose solutions to bound the temporal privacy loss, under the
presence of weak to moderate correlation, in both finite and infinite data publishing
scenarios. In the latter case, they try to find a value for ε for which the backward
and forward privacy loss are equal. In the former, they similarly try to balance
the backward and forward privacy loss while they allocate more ε at the first and
last timestamps, since they have higher impact on the privacy loss of the next and
previous ones. This way they achieve an overall constant temporal privacy loss
throughout the time series.

According to the technique’s intuition, stronger correlation result in higher
privacy loss. However, the loss is less when the dimension of the transition matrix,
which is extracted according to the modeling of the correlation (in this work they
use Markov chains), is greater due to the fact that larger transition matrices tend to
be uniform, resulting in weaker data dependence. The authors investigate briefly
all of the possible privacy levels; however, the solutions that they propose are
applied only on the event-level. Last but not least, the technique requires the
calculation of the temporal privacy loss for every individual within the data set
that might prove computationally inefficient in real-time scenarios.



Chapter 3

Related work

In this chapter, we survey works that deal with privacy under continuous data
publishing covering diverse use cases. We present 48 published articles spanning
16 years of research from 2006 to 2021, with 2015 being the median, based on two
levels of categorization (Figure 3.1).

Figure 3.1: Number of reviewed published articles on continuous data publishing
of microdata and statistical data per year.

First, we group works with respect to whether they deal with microdata or sta-
tistical data (see Section 2.1.1 for the definitions) as input. The works are equally

This chapter appeared in the special feature on Geospatial Privacy and Security of the 19th
journal of Spatial Information Science [KTK19].
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divided between the two data categories, while 55% of them propose location-
specific techniques. Then, we further group them into two subcategories, whether
they are designed for the finite or infinite (see Section. 2.1.2) observation setting.
59% of the reviewed literature deals with finite data observation, 57% implements
the streaming publishing mode, while 77% applies the global publishing scheme.
Finally, we identify the privacy-related aspects of each work in terms of the method
and protection level that they apply, as well as the privacy attacks that they are
considering with emphasis on the underlying data correlation (see Figure 3.2 for
the detailed cumulative statistics).

(a) Privacy method (b) Protection level

(c) Privacy attack (d) Data correlation

Figure 3.2: The privacy-related aspects of the reviewed literature in terms of
(a) the privacy method utilized, (b) the protection level provided, (c) the privacy
attack considered, and (d) data correlation therein.

Our work, which we present subsequently in Section 4, focuses primarily on
microdata for its use case. However, it is possible to deal with statistical data in
specific scenarios. For simplicity, we limit the conversation in microdata and plan
to investigate more diverse settings in our future work.
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3.1 Microdata

Table 3.1 summarizes the literature for the Microdata category. Each reviewed
work is abstractly described in this table, by its category (finite or infinite), its
publishing mode (batch or streaming) and scheme(global or local), the level of pri-
vacy achieved (user, event, w-event), the attacks addressed, the privacy operation
applied, and the base method it is built upon. We observe that privacy-preserving
algorithms for microdata rely mostly on k-anonymity or derivatives of it. Ganta et
al. [GKS08] revealed that k-anonymity methods are vulnerable to complementary
release attacks (or composition attacks in the original publication). Consequently,
the research community proposed solutions based on k-anonymity, focusing on
different threats linked to continuous publication, as we review later on. How-
ever, notice that only a couple [LBS+16,ST15] of the following works assume that
data sets are privacy-protected independently of one another, meaning that the
publisher is oblivious of the rest of the publications. On the other side, algo-
rithms based on differential privacy are not concerned with so specific attacks as,
by definition, differential privacy considers that the adversary may possess any
kind of background knowledge. Moreover, more recent works consider also data
dependencies to account for the extra privacy loss entailed by them.

We begin the discussion with the works designed for microdata as finite ob-
servations (Section 3.1.1), to continue with the infinite observations setting (Sec-
tion 3.1.2).

3.1.1 Finite observation

Wang and Fung [WF06] address the problem of anonymously releasing different
projections (i.e., subsets of the attributes) of the same data set in subsequent
timestamps. More precisely, the authors want to protect individual information
that could be revealed from joining various releases of the same data set. To do so,
instead of locating the quasi-identifiers in a single release, the authors suggest that
the identifiers may span the current and all previous releases of the (projections
of the) data set. Then, the proposed method uses the join of the different releases
on the common identifying attributes. The goal is to generalize the identifying
attributes of the current release, given that previous releases are immutable. The
generalization is performed in a top down manner, meaning that the attributes
are initially over-generalized, and step by step are specialized until they reach the
point when predefined quality and privacy requirements are met. The privacy
requirement is the so-called (X, Y )-privacy for a threshold k, meaning that the
identifying attributes in X are linked with at most k sensitive values in Y , in the
join of the previously released and current data sets. The quality requirement can
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Microdata

Article

Data Protection

Category
Publishing

Level Attack Operation Method
Mode Scheme

(k, δ)-anonymity finite batch global user complementary generalization, k-anonymity
[ABN+08] (sequential) release randomization
Li et al. finite batch global user compl. release generalization, l-diversity
[LBS+16] (unknown releases) randomization
Erdogdu and finite batch/ local user correlation randomization -
Fawaz [EF15] streaming (temporal)
Jiang et al. finite batch global event linkage perturbation differential
[JSB+13] (sequential) (Laplace) privacy
Chen et al. finite batch global user linkage perturbation differential
[CFD11] (sequential) (Laplace) privacy
Xiao et al. finite batch local user correlation perturbation (multi- differential
[XX15] (sequential) (temporal) variate Laplace) privacy
Promesse finite batch local event linkage perturbation -
[PMLB15] (sequential)
DP-Star finite batch global user linkage perturbation differential
[GLTY18] (sequential) (Laplace) privacy
FGS-Pufferfish finite batch local event correlation perturbation differential
[OQL+18] (sequential) (temporal) (Laplace) privacy

(X, Y )-privacy infinite batch global user compl. release generalization, k-anonymity
[WF06] (sequential) (join) specialization
BCF-anonymity infinite batch global user compl. release (tuple generalization, k-anonymity
[FWFP08] (incremental) correspondence) specialization
m-invariance infinite batch global user compl. release generalization, l-diversity
[XT07] synthetic data
e-equivalence infinite batch global user compl. release generalization l-diversity
[HBN11] (tuple equivalence) synthetic data
Shmueli and infinite batch global user compl. release generalization, l-diversity
Tassa [ST15] (sequential) (unknown releases) permutation
Zhou et al. infinite streaming global event same with generalization, k-anonymity
[ZHP+09] k-anonymity [Swe02b] randomization
MaskIt infinite streaming local event correlation suppression -
[GNG12] (temporal)
PLP infinite streaming local event correlation suppression -
[MZZ+17] (spatiotemporal)
Al-Dhubhani and infinite streaming local event correlation perturbation (multi- geo-indistin-
Cazalas [ADC18] (sequential) (temporal) variate Laplace) guishability
Ghinita et al. infinite streaming local/ event correlation generalization, -
[GDSB09] (sequential) global (spatiotemporal) perturbation
Ye et al. infinite streaming global event linkage generalization l-diversity
[YLX+17] (sequential)
Cao et al. infinite streaming global user/ correlation perturbation differential
[CYXX17] [CYXX18] (w-)event (temporal) (Laplace) privacy
ON-OFF privacy infinite streaming local event correlation randomization -
[NYER19] [YNER19] (sequential) (serial)
[YNR20] [YNER21]

Table 3.1: Summary table of reviewed privacy-preserving algorithms for continuous
microdata publishing.
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be tuned into the framework. Namely, the authors propose three alternatives: the
reduction of the class entropy [Qui14, Sha01], the notion of distortion, and the
discernibility [BA05]. The anonymization algorithm for releasing a data set in the
existence of a previously released data set takes into account the scalability and
performance problems that a join among those two may entail. Still, when many
previous releases exist, the complexity would remain high.

Fung et al. [FWFP08] introduce the problem of privately releasing continuous
incremental data sets. As a reminder, the invariant of this kind of releases is that
at every timestamp ti, the records previously released at tj (j < i) are released
again together with a set of new records. The authors first focus in two consecutive
releases and describe three classes of possible attacks, which fall under the general
category of complementary attacks. They name these attacks correspondence at-
tacks because they rely on the principle that all tuples from an original data set
D1, from timestamp t1, correspond to a tuple in the data set D2, from timestamp
t2. Naturally, the opposite does not hold, as tuples added at t2 do not exist in D1.
Assuming that the attacker knows the quasi-identifiers and the timestamp of the
record of a person, they define the backward, cross, and forward (BCF ) attacks.
They show that combining two individually k-anonymized subsequent releases us-
ing one of the aforementioned attacks can lead to ‘cracking’ some of the records in
the set of k candidate tuples rendering the privacy level lower than k. Except for
the detection of cases of compromising BCF anonymity between two releases, the
authors also provide an anonymization algorithm for a release ooo2 in the presence of
a private release ooo1. The algorithm starts from the most possible generalized state
for the quasi-identifiers of the records in D2. Step by step, it checks which combi-
nations of specializations on the attributes do not violate the BCF anonymity and
outputs the most possible specialized version of the data set. The authors discuss
how the framework extends to multiple releases and to different kinds of privacy
methods (other than k-anonymity). It is worth noting that to maintain a certain
quality for a release, it is essential that the delta among subsequent releases is
large enough; otherwise the needed generalization level may destroy the utility of
the data set.

Abul et al. [ABN+08] defined (k, δ)-anonymity for enabling high-quality
moving-objects data sets publishing. The authors claim that the classical
k-anonymity framework cannot be directly applied to such kind of data from a
data-centric perspective. The traditional distortion techniques in k-anonymity,
i.e., generalization or suppression, yield great loss of information. On the one
hand, suppression diminishes the size of the database. On the other hand,
generalization demands the existence of quasi-identifiers, the values of which
are going to be generalized. In trajectories, however, all points can be equally
considered as quasi-identifiers. Obviously, a generalization of all the trajectories
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points would yield great levels of distortion. For this reason, a new, spatial-based
distortion method is proposed. After clustering the trajectories in groups of at
least k elements, each trajectory is translated into a new one, in a vicinity of a
predefined threshold δ. Of course, the newly generated trajectories should still
form a k-anonymous set. The authors validate their theory by experimentally
showing that the resulting distance of count queries executed over a data set and
its (k, δ) version, remains low. However, a comparative evaluation to existing
clustering techniques, e.g., k-means would have been interesting, to better support
the contributions on this part of the solution as well.

Erdogdu and Fawaz [EF15] consider the scenario where privacy-conscious indi-
viduals separate the data that they generate into sensitive, and non-sensitive. The
individuals keep the former unreleased, and publish samples of the latter to a ser-
vice provider. Privacy mapping, implemented as a stochastic process, distorts the
non-sensitive data samples locally, and a separable distortion metric (e.g., Ham-
ming distance) calculates the discrepancy of the distorted data from the original.
The goal of the privacy mapping is to find a balance between the distortion and
privacy metric, i.e., achieve maximum released data utility, while offering sufficient
privacy guarantees. The authors assume that there is a data dependence (modeled
with an HMM) between the two data sets, and thus the release of the distorted
data set can reveal information about the sensitive one. They investigate both a
simple attack setting, and a complex one. In the simple attack, the adversary can
make static assumptions, based only on the so far made observations that cannot
be later altered. In the complex attack, past, and future data releases affect dy-
namically the assumptions that an adversarial entity makes. In both cases, the
framework quantifies the information leakage at any time point using a privacy
metric that measures the improvement of the adversarial inference of the sensitive
data set, which the individual kept secret, after observing the data released at that
particular point. Throughout the process, the authors consider both the batch,
and the streaming processing schemes. However, the assumption that individuals
are privacy-conscious can drastically limit the applicability of the framework. Fur-
thermore, the metrics that the framework utilizes for the evaluation of the privacy
guarantees that it provides are not intuitive.

Xiao et al. [XT07] consider the case when a data set is (re)published in different
timestamps in an update (insert/delete tuple) manner. More precisely, they ad-
dress data anonymization in continuous publishing by implementing m-invariance.
In a simple k-anonymity (or l-diverse) scenario the privacy of an individual exist-
ing in two updates can be compromised by the intersection of the set of sensitive
values. In contrast, an individual who exists in a series of m-invariant releases is
always associated with the same set of m different sensitive values. To enable the
publishing of m-invariant data sets, artificial tuples (counterfeits) may be added
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in a release. To minimize the noise added to the data sets, the authors provide
an algorithm with two extra desiderata: limit the counterfeits, and minimize the
quasi-identifiers’ generalization level. Still, the choice of adding tuples with specific
sensitive values disturbs the value distribution with a direct effect on any relevant
statistics analysis.

In the same update setting (insert/delete tuple), He et al. [HBN11] introduce
another kind of attack, namely the equivalence attack, not taken into account
by the aforementioned m-invariance technique. The equivalence attack allows for
sets of individuals to be considered equivalent as far as the sensitive attribute is
concerned, in different timestamps. In this way, all the members of the equivalence
class will be harmed, if the sensitive value is learned even for only one member.
For a number of releases to be private, they have to be both m-invariant and e-
equivalent (e < m). The authors propose an algorithm incorporating m-invariance,
based on the graph optimization min cut problem, for publishing e-equivalent data
sets. The proposed method can achieve better levels of privacy, in comparable
times and quality as m-invariance.

Shmueli and Tassa [ST15] identified the computational inefficiency of anony-
mously releasing a data set, taking into account previous ones, in scenarios of
continuous data publishing. The released data sets contain subsets of attributes
of an original data set, while the authors propose an extension for attribute ad-
dition. Their algorithm can compute l-diverse anonymized releases (over different
subsets of attributes) in parallel by generating l − 1 so-called fake worlds. A fake
world is generated from the base data set by randomly permutating non-identifier
and sensitive values among the tuples, in such a way that minimal information
loss (quality desideratum) is incurred. This is partially accomplished by verifying
that the permutation is done among quasi-identifiers that are similar. Then, the
algorithm creates buckets of tuples with at least l different sensitive values, in
which the quasi-identifiers will then be generalized in order to achieve l-diversity
(privacy protection desideratum). The generalization step is also conducted in an
information-loss efficient way. All different releases will be l-diverse because they
are created assuming the same possible worlds, with which they are consistent.
Tuples/attributes deletion is briefly discussed and left as an open question. The
article is contrasted with a previous work [STW+12] of the same authors, claim-
ing that the new approach considers a stronger adversary (the adversary knows
all individuals with their quasi-identifiers in the data set, and not only one), and
that the computation is much more efficient, as it does not have an exponential
complexity with respect to the number of previous publications.

Li et al. [LBS+16] identified a common characteristic in most of the privacy
techniques: when anonymizing a data set all previous releases are known to the
data publisher. However, it is probable that the releases are independent from each
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other, and that the data publisher is unaware of these releases when anonymizing
the data set. In such a setting, the previous techniques would suffer from composi-
tion attacks. The authors define this kind of adversary and propose a hybrid model
for data anonymization. More precisely, the publisher/adversary knows that an
individual exists in two different anonymized versions of the same data set, he has
a hold of the anonymized versions, but the anonymization is done independently
(i.e., without considering the previously anonymized data sets) for each data set.
The key idea in fighting a composition attack is to enforce the probability that
the matches among tuples from two data sets are random, linking different rather
than the same individual. To do so, the proposed privacy protection method
exploits three preprocessing steps before applying a traditional k-anonymity or
l-diversity algorithm. First, the data set is sampled so as to blur the knowledge of
the existence of individuals. Then, especially in small data sets, quasi-identifiers
are distorted by noise addition before the classical generalization step. The noise
is taken from a normal distribution with the mean and standard deviation val-
ues calculated on the corresponding quasi-identifier values. In the case of sparse
data, the sensitive values are generalized along with the quasi-identifiers. The
danger of composition attacks is less prominent when using this method on top of
k-anonymity rather than without, while having comparable quality results. The
authors also provide a comparison to data set release using ε-differential privacy,
demonstrating that their techniques are superior with respect to quality because in
the opponent algorithm the noise is added up for each of the sensitive attribute to
be protected. Even though the authors use in the experiments two different values
for ε, a better experiment would have been to compare the quality/privacy ratio
between the two methods. This is a good attempt to independently anonymize
multiple times the same data set; nevertheless, the scenario is restricted to releases
over the same database schema, using the same perturbation, and generalization
functions.

Jiang et al. [JSB+13] focus on ship trajectories with known starting and termi-
nal points. More specifically, they study different noise addition mechanisms for
publishing trajectories with differential privacy guarantees. These mechanisms in-
clude adding global noise to the trajectory, and local noise to either each location
point or the coordinates of each point of the trajectory. The first two mecha-
nisms sample noisy radius from an exponential distribution, while the latter adds
noise drawn from a Laplace distribution to each coordinate of every location. By
comparing these different techniques, they conclude that the latter offers better
privacy guarantee and smaller error bound. Nonetheless, the resulting trajectory
is noticeably distorted due to the addition of Laplace noise to the original co-
ordinates. To tackle this issue, they design the Sampling Distance and Direction
(SDD) mechanism. This mechanism allows the publishing of optimal next possible
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trajectory point by sampling, from the probability distribution of the exponential
mechanism, a suitable distance and direction at the current position, while taking
into account the ship’s maximum speed constraint. Due to the fact that SDD
utilizes the exponential mechanism, it outperforms the other three mechanisms,
and maintains a good utility-privacy balance.

Chen et al. [CFD11] propose a non-interactive data-dependent privacy-
preserving algorithm to generate a differentially private release of trajectory
data. The algorithm relies on a noisy prefix tree, i.e., an ordered search tree data
structure used to store an associative array. Each node represents a location,
from a set of possible locations that any user can be present at, of a trajectory
and contains a perturbed count, which represents the number of individuals at
the current location, with noise drawn from a Laplace distribution. The privacy
budget is equally allocated to each level of the tree representing a timestamp.
At each level, and for every node, the algorithm seeks for the children nodes
with non-zero number of trajectories (non-empty nodes) to continue expanding
them. An empty node has a noisy count lower than a threshold that is dependent
on the available privacy budget and the height of the tree. All children nodes
associate with disjoint data subsets, and thus the algorithm can utilize for every
node all of the available budget at every tree level, according to the parallel
composition theorem of differential privacy. To generate the anonymized database,
it is necessary to traverse the prefix tree once in post-order, paying attention
to terminating (empty) nodes. During this process, taking into account some
consistency constraints helps to avoid erroneous trajectories due to the noise
injection. Namely, each node of a path should have a count that is greater than
or equal to the counts of its children, and each node of a path should have a count
that is greater than the sum of the counts of all of its children. Increasing the
privacy budget results in less average relative error because less noise is added
at each level, and thus improves quality. By increasing the height of the tree,
the relative error initially decreases as more information is retained from the
database. However, after a certain threshold, the increase of height can result in
less available privacy budget at each level, and thus more relative error due to the
increased perturbation.

Xiao et al. [XX15] propose another privacy definition based on differential pri-
vacy that accounts for temporal correlations in geo-tagged data. Location transi-
tions between two consecutive timestamps are determined by temporal correlations
modeled through a Markov chain. A δ-location set includes all the probable lo-
cations a user might appear at, excluding locations of low probability. Therefore,
the true location is hidden in the resulting set, in which any pair of locations are
indistinguishable. The lower the value of δ, the more locations are included and
hence, the higher the level of privacy that is achieved. The authors use the Pla-
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nar Isotropic Mechanism (PIM) as perturbation mechanism, which they designed
upon their proof that l1-norm sensitivity fails to capture the exact sensitivity in
a multidimensional space. For this reason, PIM utilizes instead sensitivity hull,
an independent notion of the context of location privacy. In [XXZC17], the au-
thors demonstrate the functionality of their system LocLok, which implements the
concept of δ-location.

Primault et al. [PMLB15] proposed Promesse, an algorithm that builds on
time distortion instead of location distortion when releasing trajectories. Promesse
takes as input an individual’s mobility trace comprising of a data set of pairs of
geolocations and timestamps, and a parameter ε. The latter indicates the de-
sired distance between the location points that will be publicly released. Initially,
Promesse extracts regularly spaced locations, and interpolates each one of the lo-
cations at a distance depending on the previous location and the value of ε. Then,
it removes the first and last locations of the mobility trace, and assigns uniformly
distributed timestamps to the remaining locations of the trajectory. Hence, the re-
sulting trace has a smooth speed, and therefore places where the individual stayed
longer, e.g., home, work, etc., are indistinguishable. The algorithm needs to know
the starting and ending point of the trajectory; thus, it can only apply to offline
scenarios. Furthermore, it works better with fine grained data sets because in this
way it can achieve optimal geolocation and timestamp pairing. Moreover, the def-
inition of ε cannot provide versatile privacy protection since it is data dependent.

Gursoy et al. [GLTY18] designed DP-Star, a differential privacy framework that
publishes synthetic trajectories featuring similar statistics compared to the origi-
nal ones. By utilizing the Minimum Description Length (MDL) principle [Grü07],
DP-Star eliminates redundant data points in the original trajectories, and gener-
ates trajectories containing only representative points. In this way, it is necessary
to allocate the available privacy budget to far less data points, striking a bal-
ance between preciseness and conciseness. Moreover, the algorithm constructs a
density-aware grid, with granularity that adapts to the geographical density of
the trajectory points of the data set and preserves the spatial density despite any
necessary perturbation. Then, DP-Star preserves the dependence between the tra-
jectories’ start and end points by extracting (through a first-order Markov mobility
model) the trip distribution, and the intra-trajectory mobility. Finally, a Median
Length Estimation (MLE) mechanism approximates the trajectories’ lengths, and
the framework generates privacy and utility preserving synthetic trajectories. Ev-
ery phase of the process consumes some predefined privacy budget, keeping the
respective products of each phase private and eligible for publishing. The authors
compare their design with that of [CAC12] and [HCM+15] by running several tests,
and ascertain that it outperforms them in terms of data utility. However, due to
DP-Star’s privacy budget distribution to its different phases, for small values of ε
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the framework’s privacy performance is inferior to that of its competitors.
Ou et al. [OQL+18] designed FGS-Pufferfish for publishing temporally corre-

lated trajectory data while protecting temporal correlation. FGS-Pufferfish trans-
forms a user’s daily trajectories into a set of sine and cosine waves of different fre-
quencies along with the corresponding Fourier coefficients. Then, it adds Laplace
noise to the Fourier coefficients’ geometric sum. The authors obtain the optimal
noisy Fourier coefficients by solving the constrained optimization problem via the
Lagrange Multiplier method depending on the available privacy budget. They
evaluate both the location data utility and the temporal correlation utility. The
experimental evaluation shows that FGS-Pufferfish outperforms CTS-DP [WX17]
in terms of the trade-off between privacy and location utility.

3.1.2 Infinite observation

Zhou et al. [ZHP+09] introduce the problem of infinite private data publishing,
and propose a randomized solution based on k-anonymity. More precisely, they
continuously publish equivalence classes of size greater than or equal to k contain-
ing generalized tuples from distinct persons (or identifiers in general). To create
the equivalence classes they set several desiderata. Except for the size of a class,
which should be greater than or equal to k, the information loss occurred by the
generalization should be minimal, whereas the delay in forming and publishing
the class should be kept low as well. To achieve these requirements, they built
a randomized model using the popular structure of R-trees, extended to accom-
modate data density distribution information. In this way, they achieve a better
quality/publishing delay ratio for the released private data. On the one hand, the
formed classes contain data items that are close to each other (in dense areas),
while on the other hand, classes with tuples of sparse areas are released as soon as
possible so that the delay will remain low.

Gotz et al. [GNG12] developed MaskIt, a system that interfaces the sensors
of a personal device, identifies various sets of contexts, and releases a stream of
privacy-preserving contexts to untrusted applications installed on the device. A
context represents the circumstances that form the setting for an event, e.g., ‘at
the office’, ‘running’, etc. The individuals have to define the sensitive contexts that
they wish to be protected, and the desired level of privacy. The system models the
individuals’ various contexts, and transitions between them. It captures temporal
correlations, and models individuals’ movement in the space using Markov chains
while taking into account historical observations. After the initialization, MaskIt
filters a stream of individual’s contexts by checking for each context whether it
is safe to release it or it is necessary to suppress it. The authors define δ-privacy
as the privacy model of MaskIt. More specifically, a system preserves δ-privacy
if the difference between the posterior and prior knowledge of an adversary after
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observing an output at any possible timestamp is bounded by δ. After filtering all
the elements of an input stream, MaskIt releases an output sequence for a single
day. The system can repeat the process to publish longer context streams. The
expected number of released contexts quantifies the utility of the system.

Ma et al. [MZZ+17] propose PLP (Protecting Location Privacy), a crowd-
sensing scheme that protects location privacy against adversaries that can extract
spatiotemporal correlations from crowdsensing data. PLP filters an individual’s
context (location, sensing data) stream while it takes into consideration long-range
dependencies among locations and reported sensing data, which are modeled by
CRFs. It suppresses sensing data at all sensitive locations while data at non-
sensitive locations are reported with a certain probability defined by observing the
corresponding CRF model. On the one hand, the scheme estimates the privacy of
the reported data by the difference δ between the probability that an individual
would be at a specific location given the supplementary information versus the
same probability without the extra information. On the other hand, it quantifies
the utility by measuring the total amount of reported data (more is better). An
estimation algorithm searches for the optimal strategy that maximizes utility while
preserving a predefined privacy threshold.

Al-Dhubhani and Cazalas [ADC18] propose an adaptive privacy-preserving
technique based on geo-indistinguishability, which adjusts the amount of noise
required to obfuscate an individual’s location based on its correlation level with
the previously published locations. Before adding noise, an evaluation of the ad-
versary’s ability to estimate an individual’s position takes place. This process
utilizes a regression algorithm for a certain prediction window that exploits pre-
vious location releases. More concretely, in areas with locations presenting strong
correlations, an adversary can predict the current location with low estimation er-
ror. Consequently, it is necessary to add more noise to the locations prior to their
release. Adapting the amount of injected noise depending on the data correlation
level might lead to a better performance, in terms of both privacy and utility, in
the short term. However, alternating the amount of injected noise at each times-
tamp, without ensuring the preservation of the features (including correlations)
present in the original data, might lead to arbitrary utility loss.

Ghinita et al. [GDSB09] tackle attacks to location privacy that arise from
the linkage of maximum velocity with cloaked regions when using an LBS. The
authors propose methods that can prevent the disclosure of the exact location
coordinates of an individual, and bound the association probability of an individual
to a sensitive location-related feature. The first method is based on temporal
cloaking and utilizes deferral, and postdating. Deferral delays the disclosure of
a cloaked region that is impossible for an individual to have reached based on
the latest region that she published and her known maximum speed. Postdating



3.1. MICRODATA 47

reports the nearest previous cloaked region that will allow the LBS to return
relevant results with high probability, since the two regions are close. The second
method implements spatial cloaking. First, it creates cloaked regions by taking
into account all of the user-specified sensitive features that are relevant to the
current location (filtering of features). Then, it enlarges the area of the region
to satisfy the privacy requirements (cloaking). Finally, it defers the publishing of
the region until it includes the current timestamp (safety enforcement) similar to
temporal cloaking. The system measures the quality of service of both methods
in terms of the cloaked region size, time and space error, and failure ratio. The
cloaked region size is important because larger regions may decrease the utility of
the information that the LBS might return. The time and space error is possible
due to delayed location reporting and region cloaking. Failure ratio corresponds
to the percentage of dropped queries in cases where it is impossible to satisfy
the privacy requirements. Although both methods experimentally prove to offer
adequate quality of service, the privacy requirements and metrics that the authors
consider do not offer substantial privacy guarantees for commercial application.

Ye et al. [YLX+17] present an l-diversity method for producing a cloaked area,
based on the local road network, for protecting trajectories. A trusted entity di-
vides the spatial region of interest based on the density of the road network, using
quadtree structures, until every subregion contains at least l road segments. Then,
it creates a database for each subregion by generating all the possible trajectories
based on real road network information. The trusted entity uses this database,
when individuals attempt to interact with an LBS by sending their current loca-
tion, to predict their next locations. Thereafter, it selects the l − 1 nearest tra-
jectories to the individual’s current location, and constructs a minimum cloaking
region. The resulting cloaking area covers the l nearest trajectories and ensures a
minimum area of coverage. This method addresses the limitations of k-anonymity
in terms of continuous data publishing of trajectories. The required calculation of
every possible trajectory, for the construction of a trajectory database for every
subregion, might require an arbitrary amount of computations depending on the
area’s features. Nonetheless, the utilization of quadtrees can limit the overhead of
the searching process.

Cao et al. [CYXX17,CYXX18] propose a method for computing the temporal
privacy loss of a differential privacy mechanism in the presence of temporal cor-
relations and background knowledge. The goal of their technique is to guarantee
privacy protection and to bound the privacy loss at every time point under the
assumption of independent data releases. It calculates the temporal privacy loss
as the sum of the backward and forward privacy loss minus the default privacy
loss ε of the mechanism (because it is counted twice in the aforementioned enti-
ties). This calculation is done for each individual that is included in the original
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data set, and the overall temporal privacy loss is equal to the maximum calculated
value at every time point. The backward/forward privacy loss at any time point
depends on the backward/forward privacy loss at the previous/next instance, the
backward/forward temporal correlations, and ε. The authors propose solutions to
bound the temporal privacy loss, under the presence of weak to moderate corre-
lations, in both finite and infinite data publishing scenarios. In the latter case,
they try to find a value for ε for which the backward and forward privacy loss
are equal. In the former, they similarly try to balance the backward and forward
privacy loss while they allocate more ε at the first and last time points, since they
have higher impact on the privacy loss of the next and previous ones. This way
they achieve an overall constant temporal privacy loss throughout the time se-
ries. According to the technique’s intuition, stronger correlations result in higher
privacy loss. However, the loss is smaller when the dimension of the transition
matrix, which is extracted according to the modeling of the correlations (here it is
Markov chain), is larger due to the fact that larger transition matrices tend to be
uniform, resulting in weaker data dependence. The authors investigate briefly all
of the possible privacy levels; however, the solutions that they propose are suitable
only for the event-level. Last but not least, the technique requires the calculation
of the temporal privacy loss for every individual within the data set which might
prove computationally inefficient in real-time scenarios.

Naim et al. [NYER19,YNER19,YNR20,YNER21] proposed the notion of ON-
OFF privacy according to which, users require privacy protection only at certain
timestamps over time. They investigate the privacy risk due to the correlation
between a user’s requests when toggling the privacy protection ON and OFF. The
goal is to minimize the information throughput and always answer users’ requests
while protecting their requests to online services when privacy is set to ON. They
model the dependence between requests using a Markov chain, which is publicly
known, where each state represents an available service. Setting privacy to ON, the
user obfuscates their original query by randomly sending requests to (and receiving
answers from) a subset of all of the available services. Although this randomization
step makes the original query indistinguishable while making sure that the users
always get the information that they need, there is no clear quantification of the
privacy guarantee that the scheme offers over time.

Our work is directly applicable to microdata, and thus it applies to most of the
scenarios that we discussed in this section. Most microdata methods in continuous
data publishing rely on k-anonymity and its derivatives, and therefore their main
point of failure is the linkage and background knowledge related attacks. Since
we base our privacy notion on differential privacy, we can efficiently tackle this
challenge. Finally, quite a few of the reviewed article consider data dependence and
particularly temporal correlation, which is inherent in continuous data publishing.
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3.2 Statistical data

As in Section 3.1, we summarize the literature for the Statistical Data category
in Table 3.2, which we structure identically as Table 3.1. For a reminder, each
reviewed work is abstractly described in this table, by its category (finite or infi-
nite), its publishing mode (batch or streaming) and scheme(global or local), the
level of privacy achieved (user, event, w-event), the attacks addressed, the privacy
operation applied, and the base method it is built upon.

As witnessed in Table 3.2, when continuously publishing statistical data, usu-
ally in the form of counts, the most widely used privacy method is differential
privacy, or derivatives of it. In theory differential privacy makes no assumptions
about the background knowledge available to the adversary. In practice, data
dependencies (e.g., correlations) arising in the continuous publication setting are
frequently (but without it being the rule) considered as attacks in the proposed
algorithms.

We begin the discussion with the works designed for microdata as finite ob-
servations (Section 3.2.1), to continue with the infinite observations setting (Sec-
tion 3.2.2).

3.2.1 Finite observation

Kellaris et al. [KP13] pointed out that in time series, where users might contribute
to an arbitrary number of aggregates, the sensitivity of the query answering func-
tion is significantly influenced by their presence/absence in the data set. Thus, the
Laplace perturbation algorithm, commonly used with differential privacy, may pro-
duce meaningless data sets. Furthermore, under such settings, the discrete Fourier
transformation of the Fourier perturbation algorithm (another popular technique
for data perturbation) may behave erratically, and affect the utility of the out-
come of the mechanism. For this reason, the authors proposed their own method
involving grouping and smoothing for one-time publishing of time series of non-
overlapping counts, i.e., the aggregated data of one count does not affect any other
count. Grouping includes partitioning the data set into similar clusters. The size
and the similarity measure of the clusters are data dependent. Random grouping
consumes less privacy budget, as there is minimum interaction with the original
data. However, when using a grouping technique based on sampling, which has
some privacy cost but produces better groups, the impact of the perturbation is
decreased. During the smoothing phase, the average values for each cluster are
calculated, and finally, Laplace noise is added to these values. In this way, the
query sensitivity becomes less dependent on each individual’s data, and therefore
less perturbation is required.

Chen et al. [CAC12] exploit a text-processing technique, the n-gram model,
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Statistical data

Article

Data Protection

Category
Publishing

Level Attack Operation Method
Mode Scheme

Kellaris et al. finite batch global event linkage perturbation differential
[KP13] (Laplace) privacy
Chen et al. finite batch global user linkage perturbation differential
[CAC12] (sequential) (Laplace) privacy
Hua et al. finite batch global user linkage perturbation (ex- differential
[HGZ15] (sequential) ponential, Laplace) privacy
Li et al. finite batch global user linkage perturbation differential
[LZZX17] (sequential) (Laplace) privacy
DPT finite batch global user correlation perturbation differential
[HCM+15] (sequential) (spatial) (Laplace) privacy
Song et al. finite batch global event correlation perturbation pufferfish
[SWC17] (Laplace)
Fan et al. finite streaming global user correlation perturbation differential
[FXS13] (sequential) (spatiotemporal) (Laplace) privacy
FAST finite streaming global user linkage perturbation differential
[FX14] (Laplace) privacy
CTS-DP finite streaming global event correlation perturbation differential
[WX17] (serial) (Laplace) privacy

Chan et al. finite/ streaming global event linkage perturbation differential
[CSS11] infinite (Laplace) privacy
l-trajectory infinite streaming global w-event linkage perturbation differential
[CY15] (sequential) (Laplace) privacy
Bolot et al. infinite streaming global w-event linkage perturbation differential
[BFM+13] (Laplace) privacy
Kellaris et al. infinite streaming global w-event linkage perturbation differential
[KPXP14] (Laplace) privacy
RescueDP infinite streaming global w-event correlation perturbation differential
[WZL+16] (serial) (Laplace) privacy
RAPPOR infinite streaming local user linkage randomization (ran- differential
[EPK14] domized response) privacy
PrivApprox infinite streaming global event linkage randomization (ran- differential
[QBB+17] domized response) privacy
Li et al. infinite streaming global event correlation randomization -
[LSP+07] (serial)
PeGaSus infinite streaming global event linkage perturbation differential
[CMHM17] (Laplace) privacy
Errounda et al. infinite streaming local w-event linkage randomization (ran- differential
[EL18] (sequential) domized response), privacy

perturbation
(Laplace)

DP-PSP infinite streaming global w-event linkage perturbation (ex- differential
[WSN18] (sequential) ponential, Laplace) privacy
RPTR infinite streaming global w-event linkage perturbation differential
[MZL+19] (sequential) (Laplace) privacy
Farokhi infinite streaming global user linkage perturbation differential
[Far20] (Laplace) privacy

Table 3.2: Summary table of reviewed privacy-preserving algorithms for continuous
statistical data publishing.



3.2. STATISTICAL DATA 51

i.e., a contiguous sequence of n items from a given data sample, to release sequential
data without releasing the noisy statistics (counts) of all of the possible sequences.
This model allows the publishing of the most common n-grams (n is, typically, less
than 5) to accurately reconstruct the original data set. The privacy technique that
the authors propose is suitable for count queries and frequent sequential pattern
mining scenarios. In particular, one of the applications that the authors consider
concerns sequential spatiotemporal data (i.e., trajectories) of individuals. They
group grams based on the similarity of their n values, construct a search tree, and
inject Laplace noise to each node value (count) to achieve user-level differential
privacy protection. Instead of allocating the available privacy budget based on the
overall maximum height of the tree, they estimate each path adaptively based on
known noisy counts. The grouping process continues until the desired threshold
of n is reached. Thereafter, they release variable-length n-grams with certain
thresholds for the values of counts and tree heights, allowing to deal with the
trade-off of shorter grams having less information than longer ones but less relative
error. They use a set of consistency constraints, i.e., the sum of each node’s noisy
count has to be less than or equal to its parent’s noisy count, and all the noisy
counts of leaf nodes have to be within a predefined threshold. These constraints
improve the final data utility since they result in lower values of n. On the one
hand, this translates into higher counts, large enough to deal with noise injection
and the inherent Markov assumption in the n-gram model. On the other hand, it
enhances privacy when the universe of all grams with a lower n value is relatively
small resulting in more common sequences, which, nonetheless, is rarely valid in
real-life scenarios.

Hua et al. [HGZ15] use, similar to the scheme proposed in [CAC12], the n-
grams modeling technique for publishing trajectories containing a small number of
n-grams, thus, sharing few or even no identical prefixes. They propose a differen-
tially private location-specific generalization algorithm (exponential mechanism),
where each position in the trajectory is one record. The algorithm probabilistically
partitions the locations at each timestamp with probability proportional to their
Euclidean distance from each other. They replace each partition with its centroid
and therefore, they offer better utility by creating groups of locations belonging to
close trajectories. They optimize the algorithm for time efficiency by using classic
k-means clustering. Then, the algorithm releases the new trajectories by observ-
ing the generalized location partitions, and their perturbed counts (i.e., sum of the
same locations at each timestamp) with noise drawn from a Laplace distribution.
The process continues until the total count of the published trajectories reaches
the size of the original data set. They can limit the total number of the possible
trajectories by taking into account the individual’s moving speed. The authors
have measured the utility of distorted spatiotemporal range queries by measuring
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the Hausdorff distance from the original results and concluded that the utility
deterioration is within reasonable boundaries considering the offered privacy guar-
antees. Similar to [CAC12], their approach works well for a small location domain.
To make it applicable to realistic scenarios, it is essential to truncate the original
trajectories in an effort to reduce the location domain. This results in a coarse
discretization of the location area, leading to the arbitrary distortion of the spatial
correlations that are present in the original data set.

Li et al. [LZZX17] focus on publishing a set of trajectories, where, contrary
to [HGZ15], each one is considered as a single entry in the data set. First, using
k-means clustering they partition the original locations based on their pairwise
Euclidean distances. The scheme represents each location partition by their mean
(centroid). A larger number of partitions, in areas where close centroids exist,
results in fewer locations in each partition, and thus lower trajectory precision
loss. Before adding noise, they randomly select partition centroids to generate
trajectories until they reach the size of the original data set. Then, they generate
Laplace noise, which they bound according to a set of constraints, and they add
it to the count of locations of each point of every trajectory. Finally, they release
the generalized trajectories along with the noisy count of each location point. The
authors prove experimentally that they reduce considerably the trajectory merging
time at the expense of utility.

He et al. present DPT (Differentially Private Trajectory) [HCM+15], a system
that synthesizes mobility data based on raw, speed-varying trajectories of indi-
viduals, while providing ε-differential privacy protection guarantees. The system
constructs a Hierarchical Reference Systems (HRS) model to capture correlations
between adjacent locations by imposing a uniform grid at multiple resolutions
(i.e., for different speed values) over the space, keeping a prefix tree for each res-
olution, and choosing the centroids as anchor points. In each reference system,
anchor points have a small number of neighboring points with increasing (by a
constant factor) average distance between them, and fewer children anchor points
as the grid resolution becomes finer. DPT estimates transition probabilities only
for the anchor points in proximity to the last observed location, and chooses the
appropriate reference system for each raw point so that the consecutive points of
the trajectory are either neighboring anchors or have a parent-child relationship.
The system generates the transition probabilities by estimating the counts in the
prefix trees. Thereafter, it chooses the appropriate prefix trees, perturbs them with
noise drawn from the Laplace distribution, and adaptively prunes subtrees with
low counts to improve the resulting utility. DPT implements a direction-weighted
sampling postprocessing strategy for the synthetic trajectories to avoid the loss of
directionality of the original trajectories due to the perturbation. Nonetheless, as
with all other similar techniques, the usage of prefix trees limits the length of the
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released trajectories, which results into an uneven spatial distribution.

Song et al. [SWC17] propose the Wasserstein mechanism, a technique that ap-
plies to any general instantiation of Pufferfish (see Section 2.2.5). It adds noise
proportional to the sensitivity of a query F , which depends on the worst case dis-
tance between the distributions P (F (X)|si, d) and P (F (X)|sj, d) for a variable X,
a pair of secrets (si, sj), and an evolution scenario d. The Wasserstein metric func-
tion calculates the worst case distance between those two distributions. The noise
is drawn from a Laplace distribution with parameter equal to the quotient resulting
from the division of the maximum Wasserstein distance of the distributions of all
the pairs of secrets by the available privacy budget ε. For optimization purposes,
the authors consider a more restricted setting. This setting, utilizes an evolution
scenario for the data correlations representation, and Bayesian networks for the
correlation modeling. The authors state that in cases where Bayesian networks
are complex, the Markov chains are a more efficient alternative. A generalization
of the Markov blanket mechanism, the Markov quilt mechanism, calculates data
dependencies. The dependent nodes of any node consist of its parents, its children,
and the other parents of its children. The present technique excels at data sets
generated by monitoring applications or networks, but it is not suitable for online
scenarios.

Fan et al. [FXS13] propose a real-time framework for releasing differentially
private multi-dimensional traffic monitoring data. At every timestamp, the Per-
turbation module injects noise drawn from a Laplace distribution to the data.
Then, the Estimation module post-processes the perturbed data to improve the
accuracy. The authors propose a temporal, and spatial estimation algorithm. The
former estimates an internal time series model for each location to improve the
utility of the perturbation’s outcome by performing a posterior estimation that
utilizes Gaussian approximation and Kalman filtering[Kal60]. The latter reduces
data sparsity by grouping neighboring locations using a spatial indexing structure
based on quadtree. The Modeling/Aggregation module utilizes domain knowl-
edge, e.g., road network and density, and has a bidirectional interaction with the
other two in parallel. Although the authors propose the framework for real-time
scenarios, they do not deal with infinite data processing/publication, which limits
considerably its applicability.

In another work, Fan et al. designed FAST [FX14], an adaptive system that
allows the release of real-time aggregate time series under user-level differential
privacy. These were achieved by using a Sampling, a Perturbation, and a Filtering
module. The Sampling module samples on an adaptive rate the aggregates to be
perturbed. The Perturbation module adds noise to each sampled point according
to the allocated privacy budget. The Filtering module receives the perturbed data
point and the original one and generates a posterior estimate, which is finally
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released. The error between the perturbed and the released (posterior estimate)
point is used to adapt the sampling rate; the sampling frequency is increased
when data is going through rapid changes and vice-versa. Thus, depending on the
adjusted sampling rate, not every single data point is perturbed, saving in this way
the available privacy budget. While the system considers the temporal correlations
of the processed time series, it does not attempt to deal with the privacy threat
that they might pose.

Wang and Zu [WX17] defined Correlated Time Series Differential Privacy
(CTS-DP). The scheme guarantees that the correlation between the perturba-
tion that is introduced by a Correlated Laplace Mechanism (CLM), and the orig-
inal time series is indistinguishable (Series-Indistinguishability). CTS-DP deals
with the shortcomings of independent and identically distributed (i.i.d.) noise
under the presence of correlations. I.i.d. noise offers inadequate protection, be-
cause refinement methods, e.g., filtering, can remove it. Most privacy-preserving
methods choose to introduce more noise in the presence of strong correlations
thus, diminishing the data utility. An original and a perturbed time series sat-
isfy Series-Indistinguishability if their normalized autocorrelation functions are the
same; hence, the two time series are indistinguishable and the published time series
satisfies differential privacy as well. The authors consider the fact that, in signal
processing, if an i.i.d. signal passes through a filter, which consists of a combina-
tion of adders and delayers, it becomes non-i.i.d. Hence, they design CLM, which
uses four Gaussian white noise series passed through a linear system, to produce
a correlated Laplace noise series according to the autocorrelation function of the
original time series. Although the authors prove experimentally that the imple-
mentation of CLM outperforms the current state-of-the-art methods, they do not
test its robustness against any filter, which they keep as future work.

3.2.2 Infinite observation

Chan et al. [CSS11] designed continuous counting mechanisms for finite and infi-
nite data processing and publishing, satisfying ε-differential privacy. Their main
contribution lies in proposing the Binary and Hybrid mechanisms, which do not
have any upper bound temporal requirements. The mechanisms rely on the release
of intermediate partial sums of counts at consecutive timestamp intervals, called
p-sums, and the injection of noise drawn from a Laplace distribution. The Binary
mechanism constructs a binary tree where each node corresponds to a p-sum, and
adds noise to each released p-sum proportional to its corresponding length. The
Hybrid mechanism publishes counts at sparse time intervals, i.e., timestamps that
are a power of 2. Both mechanisms offer event-level protection (pan-privacy) un-
der single unannounced and continual announced intrusions by adding a certain
amount of noise to every p-sum in memory. They can facilitate continual top-k
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queries in recommendation systems, and multidimensional range queries. Further-
more, they are able to support applications that require a consistent output, i.e., at
each timestamp the counter increases by either 0 or 1.

Cao et al. [CY15] developed a framework that achieves personalized l-trajectory
privacy protection by dynamically adding noise at each timestamp, which exponen-
tially fades over time. Each individual can specify, in an array of size l, the desired
protection level for each location of his/her trajectory. The proposed framework is
composed of three components. The Dynamic Budget Allocation component allo-
cates portions of the privacy budget to the other two components: a fixed one to
the Private Approximation, and a dynamic one to the Private Publishing compo-
nent at each timestamp. The Private Approximation component estimates, under
a utility goal and an approximation strategy, whether it is beneficial to publish
approximate data or not. More precisely, it chooses an appropriate previous noisy
data release and republishes it if it is similar to the real statistics planned to be
published. The Private Publishing component takes as inputs the real statistics,
and the timestamp of the approximate data, generated by the Private Approxima-
tion component, to be republished. If the timestamp of the approximate data is
equal to the current timestamp, then the current data with Laplace noise are pub-
lished. Otherwise, the data at the corresponding timestamp of the approximate
data will be republished. The utilized approximation technique is highly suitable
for streaming processing, due to the implementation of approximation that can re-
duce significantly the privacy budget consumption. However, the framework does
not take into account privacy leakage stemming from data dependencies, which
limits considerably its applicability in real life data sets.

Bolot et al. [BFM+13] introduce the notion of decayed privacy in continual
observation of aggregates (sums). The authors recognize the fact that monitoring
applications focus more on recent events, and data, therefore, the value of previous
data releases exponentially fades. This leads to a schema of privacy with expira-
tion, according to which, recent events, and data are more privacy-sensitive than
those preceding. Based on this, they apply decayed sum functions for answering
sliding window queries of fixed window size w on data streams. Namely, window
sum compute the difference of two running sums, and exponentially decayed and
polynomial decayed sums estimate the sum of decayed data. For every consecutive
w data points the algorithm generates binary trees where each node is perturbed
with Laplace noise with scale proportional to w. Instead of maintaining a bi-
nary tree for every window, the algorithm considers the windows that span two
blocks as the union of a suffix and a prefix of two consecutive trees. This way, the
global sensitivity of the query function is kept low. The proposed techniques are
designed for fixed window sizes, hence, when answering multiple sliding window
queries with variable window sizes they have to distribute the available privacy
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budget accordingly.

Based on the notion of decayed privacy [BFM+13], Kellaris et al. [KPXP14]
defined w-event privacy in the setting of periodical release of statistics (counts) in
infinite streams. To achieve w-event privacy, the authors propose two mechanisms
(Budget Distribution, and Budget Absorption) based on sliding windows, which
effectively distribute the privacy budget to sub-mechanisms (one sub-mechanism
per timestamp) applied on the data of a window of the stream. Both algorithms
may decide to publish a new noisy count for a specific timestamp, based on the
similarity level of the current count with a previously published one. Moreover,
both algorithms have the constraint that the total privacy budget consumed in a
window is less than or equal to ε. The Budget Distribution algorithm distributes
the privacy budget in an exponential-fading manner following the assumption that
in a window most of the counts remain similar. The budget of expired timestamps
becomes available for the next publications (of next windows). The Budget Ab-
sorption algorithm uniformly distributes from the beginning the budget to the
window’s timestamps. A publication uses not only the by-default allocated bud-
get but also the budget of non-published timestamps. In order to not exceed
the limit of ε, adequate number of subsequent timestamps are ‘silenced’ after a
publication takes place. Even though one can argue that w-event privacy could
be achieved by user-level privacy, it is nevertheless non-practical because of the
rigidity of the budget allocation that would finally render the output useless.

Wang et al. [WZL+16] propose RescueDP for the publishing of real-time user-
generated spatiotemporal data, utilizing differential privacy with w-event-level pro-
tection. RescueDP uses a Dynamic Grouping module to create clusters of regions
with small statistics, i.e., areas with a small number of samples. It estimates the
similarity of the data trends of these regions by utilizing the Pearson’s correlation
coefficient, and creates groups accordingly. The data of each group pass from a
Perturbation module that injects Laplace noise to them. The grouping of the pre-
vious phase results into the increase of the sample size of each group of regions,
which minimizes the error due to the noise injection. The implementation of a
Kalman Filtering [Kal60] module further increases the utility of the released data.
A Budget Allocation module distributes the available privacy budget to sampling
points within any successive w timestamps. RescueDP saves part of the available
privacy budget by approximating the non-sampled data with previously released
perturbed data. During the whole process, an Adaptive Sampling module adjusts
the sampling interval according to the difference in the released data statistics over
the previous timestamps while taking into account the remaining privacy budget.

Erlingsson et al. [EPK14] presented RAPPOR (Randomized Aggregatable
Privacy-Preserving Ordinal Response) as a solution for privacy-preserving collec-
tion of statistics. RAPPOR makes all the necessary data processing on the side
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of the data generators by applying the method of randomized response, which
guarantees local differential privacy. The product of each local privacy-preserving
processing is a report that can be represented as a bit string. Each bit corresponds
to a randomized response to a logical predicate on an individual’s personal data,
e.g., categorical properties, numerical and ordinal values, or categories that
cannot be enumerated. Initially, RAPPOR hashes a sensitive value into a Bloom
filter [Blo70]. It creates a binary reporting value, which keeps in its memory
(memoization) and reuses for future reports (permanent randomized response).
Memoization offers long-term longitudinal privacy protection for privacy-sensitive
data values that do not change over time or that are not dependent. RAPPOR
deals with tracking externalities by reporting a randomized version of the
permanent randomized response (instantaneous randomized response). Although
this adds an extra layer of randomization to the reported values, it might
lead to an averaging attack that may allow an adversary to estimate the true
value. Finally, the authors propose a decoding technique that involves grouping,
least-squares solving, and regression. This way, they effectively make up for the
loss of information due to the randomization of the previous steps and allow
the extraction of useful information when observing the generated bit strings.
They test their implementation with both simulated and real data, and show
that they can extract statistics with high utility while preserving the privacy of
the individuals involved. However, the fact that the privacy guarantees of their
technique are valid only for stationary individuals that produce independent data
on top of the relatively complex configuration, renders their proposal impractical
for many real-world scenarios.

Le Quoc et al. [QBB+17] propose PrivApprox, a data analytics system for
privacy-preserving stream processing of distributed data sets that combines sam-
pling and randomized response. The system distributes the analysts’ queries to
clients via an aggregator and proxies, and employs sliding window computations
over batched stream processing to handle the data stream generated by the clients.
The clients transmit a randomized response, after sampling the locally available
data, to the aggregator via proxies that apply (XOR-based) encryption. The
combination of sampling and randomized response achieves zero-knowledge based
privacy, i.e., proving that they know a piece of information without in fact disclos-
ing its actual value. The aggregator collects the received responses and returns
statistics to the analysts. The query model expresses the responses of numeri-
cal queries as counts within histogram buckets, whereas, for non-numeric queries
it specifies each bucket by a matching rule or a regular expression. A confidence
metric quantifies the results’ approximation from the sampling and randomization.
PrivApprox achieves low latency stream processing and enables a synchronization-
free distributed architecture that requires low trust to a central entity. Since it
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implements a sliding window methodology for infinitely processing series of data
sets, it would be purposeful to investigate how to achieve w-event-level privacy
protection.

Li et al. [LSP+07] attempt to tackle the problem of privacy preservation in
numerical data streams taking into account the correlations that may appear con-
tinuously among multiple streams and within each one of them. Firstly, the au-
thors define the utility, and privacy specifications. The utility of a perturbed data
stream is the inverse of the discrepancy between the original and the perturbed
measurements. The discrepancy is set as the normalized Forbenius norm, i.e., a
matrix norm defined as the square root of the sum of the absolute squares of its
elements. Privacy corresponds to the discrepancy between the original and the
reconstructed data stream (from the perturbed one), and consists of the removed
noise and the error introduced by the reconstruction. Then, correlations come into
play. The system continuously monitors the data streams for trends to track cor-
relations, and dynamically perturbs the original numerical data while maintaining
the trends that are present. More specifically, the Streaming Correlated Additive
Noise (SCAN) module updates the estimation of the local principal components
of the original data, and proportionally distributes noise along the components.
Thereafter, the Streaming Correlation Online Reconstruction (SCOR) module re-
moves all the noise by utilizing the best linear reconstruction. SCOR is a represen-
tation of the ability of any adversarial entity to post-process the released data and
attempt to reconstruct the original data set by filtering out any distortion. Over-
all, the present technique offers robustness against inference attacks by adapting
randomization according to data trends, but fails to efficiently quantify the overall
privacy guarantee.

Chen et al. [CMHM17] developed PeGaSus, an algorithm for event-level dif-
ferentially private stream processing that supports different categories of stream
queries (counts, sliding window, and event monitoring) over multiple stream res-
olutions. It consists of a Perturber, a Grouper, and a Smoother modules. The
Perturber consumes the incoming data stream, adds noise εp, which is part of the
available privacy budget ε to each data item, and outputs a stream of noisy data.
The data-adaptive Grouper consumes the original stream and partitions the data
into well-approximated regions using, also part of the available privacy budget, εg.
Finally, a query specific Smoother combines the independent information produced
by the Perturber and the Grouper, and performs post-processing by calculating the
final estimates of the Perturber’s values for each partition created by the Grouper
at each timestamp. The combination of the Perturber and the Grouper follows
the sequential composition and post-processing properties of differential privacy,
thus, the resulting algorithm satisfies (εp + εg)-differential privacy.

Errounda et al. [EL18] proposed a algorithm for sharing w-event local dif-
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ferentially private statistics over infinite streams of location data. The decision
mechanism determines the similarity between the current data of every individual
and the most recent release, with respect to a predefined threshold. Using the ran-
domized response mechanism, it perturbs the result of this comparison and decides
whether to perform an approximation based on the most recent release or calculate
and release the current statistics after injecting to them Laplacian noise. Within
the sliding window of size w, the privacy budget allocation mechanism estimates
the overall privacy budget that the algorithm has allocated at any timestamp and
decides how to optimally allocate the remaining budget in the future timestamps.
The evaluation of the algorithm show that, according to the relevant literature on
local differential privacy, the author’s work achieves the the same utility as the
centralized approach of differential privacy.

Wang et al. [WSN18] presented DP-PSP, an approach for publishing differen-
tially private statistics over infinite streams of trajectory data. DP-PSP segments
trajectories by taking into account points of interest in road networks. A start
and end point (anchor) represents a segment and each data point in the trajec-
tory data is calibrated to the nearest anchor. This segmentation facilitates a less
computationally intensive statistical processing and more efficient privacy budget
allocation. The authors designed a private k nearest neighbors algorithm by uti-
lizing the exponential mechanism, which uses the Gaussian weighted Euclidean
distance for utility function, to generate the connected segments for each segment.
Thus, at some timestamps, they can predict accurately the upcoming statistics,
and therefore save part of the available privacy budget by releasing an approxi-
mation instead of perturbing the original data. DP-PSP allocates the available
privacy budget, in an exponentially decaying fashion, in a sliding window with a
user-defined size w, satisfying w-event-level privacy. Statistics over the trajectory
combined with Laplacian noise are released in the end of the process by DP-PSP.
From the implementation, it is not clear how DP-PSP takes into consideration all
of the user preferences regarding the size of w while releasing statistics of the data
of all of the sample.

Ma et al. [MZL+19] implemented RPTR, a w-event differential privacy mech-
anism for protecting statistics of vehicular trajectory data in real time. RPTR
adapts the rate with which it samples data according to the accuracy with which
it can predict future statistics based on historical data and position transfer prob-
ability matrix and according to how much the original data change through time
based on Pearson coefficient. Before releasing data statistics, the mechanism per-
turbs the original values with Laplacian noise the impact of which is mitigated
by using Ensemble Kalman filtering. The combination of adaptive sampling and
filtering can improve the accuracy when predicting the values of non-sampled data
points, and thus saving more privacy budget (i.e., higher data utility) for data
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points that the mechanism decides to release. The mechanism detects highly fre-
quented map regions and, using a quad-tree, it calculate the each region’s privacy
weight. In their implementation, the authors assume that highly frequented re-
gions tend to be more privacy-sensitive, and thus more noise (i.e., less privacy
budget to invest) needs to be introduced before publicly releasing the users’ data
falling into these regions. The efficiency (both in terms of user privacy and data
utility) of the mechanism depends on the number of regions that it divides the
map, and therefore the challenge of its optimal division is an interesting future
research topic.

Farokhi [Far20] proposed a relaxation of the user-level protection of differential
privacy based on the discounted utility theory in economics. More specifically,
at each timestamp, the scheme of temporally discounted differential privacy as-
signs different weights to the privacy budgets that have been invested in previous
timestamps. These weights decrease the further that we observe in the past. The
author implements an exponentially and a hyperbolic discounted scheme. In the
former, the discount factor, which is positive and less than 1, and in the latter,
the discounting coefficient, which is greater or equal to 0, allows the adjustment of
temporal discounting. Increasing the discount factor offers stronger privacy protec-
tion, equivalent to that of user-level. Whereas, increasing the discount coefficient
resembles the behavior of event-level differential privacy. Selecting a suitable value
for the privacy budget and the discount parameter allows for bounding the overall
privacy loss in an infinite observation scenario. However, the assumption that all
users discount previous data releases limits the applicability of the the current
scheme in real-world scenarios for statistical data.

Most of the proposed methods in this section utilize differential privacy, on
which we base our work. However, few of them account for data dependence and
particularly temporal correlation, which is inherent in time series. In this thesis, we
generally investigate the presence of correlation in data and we propose a method
that accounts for temporal correlation throughout finite time series. Last but not
least, although the use case of our work focuses on microdata, it can adapt to
scenarios that requite data aggregation, and thus extend its applicability.

3.3 Summary

In this chapter, we surveyed the literature around the domain of privacy-preserving
continuous data publishing in microdata and statistical data. We further catego-
rized the works in terms the span of the data observation in finite and infinite.
Moreover, we summarize the methods for each data category in tabular form (with
detailed attributes) aiming to offer a guide that would allow its users to choose
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the proper algorithm(s) for their specific use case. Such a documentation becomes
very useful nowadays, due to the abundance of continuously user-generated data
sets that could be analyzed and/or published in a privacy-preserving way, and the
quick progress made in this research field.

Since the domain of data privacy is vast, several surveys have already been pub-
lished with different scopes. A group of surveys focuses on specific different families
of privacy-preserving algorithms and techniques. For instance, Simi et al. [SNE17]
provide an extensive study of works on k-anonymity and Dwork [Dwo08] focuses on
differential privacy. Another group of surveys focuses on techniques that allow the
execution of data mining or machine learning tasks with some privacy guarantees,
e.g., Wang et al. [WLZL09], and Ji et al. [JLE14]. In a more general scope, Wang
et al. [WCFY10] analyze the challenges of privacy-preserving data publishing, and
offer a summary and evaluation of relevant techniques. Additional surveys look
into issues around Big Data and user privacy. Indicatively, Jain et al. [JGK16], and
Soria-Comas and Domingo-Ferrer [SCDF16] examine how Big Data conflict with
pre-existing concepts of privacy-preserving data management, and how efficiently
k-anonymity and ε-differential privacy deal with the characteristics of Big Data.
Others narrow down their research to location privacy issues. To name a few,
Chow and Mokbel [CM11] investigate privacy protection in continuous LBSs and
trajectory data publishing, Chatzikokolakis et al. [CEP+17] review privacy issues
around the usage of LBSs and relevant protection mechanisms and metrics, Pri-
mault et al. [PBMB18] summarize location privacy threats and privacy-preserving
mechanisms, and Fiore et al. [FKZ+19] focus only on privacy-preserving publish-
ing of trajectory microdata. Finally, there are some surveys on application-specific
privacy challenges. For example, Zhou et al. [ZPL08] have a focus on social net-
works, and Christin et al. [CRKH11] give an outline of how privacy aspects are
addressed in crowdsensing applications.



62 CHAPTER 3. RELATED WORK



Chapter 4

Landmark privacy

The plethora of sensors currently embedded in personal devices and other in-
frastructures have paved the way for the development of numerous crowdsensing
services (e.g., Ring [rin21], TousAntiCovid [tou21], Waze [waz21], etc.) based on
the collected personal, and usually geotagged and timestamped data. User–service
interactions gather personal event-like data, which are tuples of an identifying at-
tribute of an individual and the—possibly sensitive—information with a timestamp
e.g., (‘Quackmore’, ‘dining’, ‘Canal Saint-Martin’, 17:00). When the interactions
are performed in a continuous manner, we obtain time series of events. Ex-
ample 4.0.1 is an example of a user–service interaction that results in retrieving
location-based information or reporting user-state at various locations.

Example 4.0.1. Figure 4.1 shows a finite sequence of spatiotemporal data, gener-
ated by Quackmore, during an interval of 8 timestamps. Events in gray correspond
to significant events that Bob has defined beforehand, because they are related to
his home (around Élysée), his workplace (around the Louvre), and his hangout
(around Canal Saint-Martin).

Figure 4.1: A time series with landmarks (highlighted in gray).

This chapter will appear in the proceedings of the 12th ACM conference on Data and Ap-
plication Security and Privacy [KTK22].

63
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The regulation regarding the processing of user-generated data sets [Tan16]
requires the provision of privacy guarantees to the users. To accomplish this, var-
ious privacy techniques perturb the original data or their statistical output at the
expense of the overall utility of the final output. Meanwhile, it is essential to
provide data of high utility to the final consumers of the privacy-preserving pro-
cess. A widely recognized method that introduces probabilistic randomness to the
original data, while quantifying with a parameter ε (‘privacy budget’ [McS09]) the
privacy/utility ratio, is ε-differential privacy [DMNS06]. Due to its composition
property, i.e., the combination of differentially private outputs satisfies differential
privacy as well, differential privacy is suitable for privacy-preserving time series
publishing. Event, user [DNPR10], and w-event [KPXP14] comprise the possible
levels of privacy protection. Event-level limits the protection to any single event,
user-level protects all the events of any user, and w-event provides protection to
any sequence of w events. In every case, privacy protection boils down to allocating
to events an overall privacy budget that does not exceed ε.

In this chapter, we propose a novel configurable privacy scheme, landmark
privacy (Section 4.1), which takes into account significant events (landmarks) in
the time series and allocates the available privacy budget accordingly. We propose
three privacy schemes that guarantee landmark privacy. To further enhance our
privacy methodology, and protect the landmarks position in the time series, we
propose techniques to perturb the initial landmarks set (Section 4.2).

4.1 Significant events

The privacy mechanisms for the user, w-event, and event levels that are already
proposed in the literature, assume that in a time series any single event, or any
sequence of events, or the entire series of events is equally privacy-significant for the
users. In reality, this is an assumption that deteriorates unnecessarily the utility
of the released data. The significance of an event is related to certain user-defined
privacy criteria, or to its adjacent events, as well as to the entire time series. We
term significant events as landmark events or simply landmarks, following relevant
literature [GWO00].

Identifying landmarks in time series can be done in an automatic or manual
way. For example, in spatiotemporal data, places where an individual spent
some time denote points of interest (POIs) (called also stay points) [Zhe15].
Such events, and more particularly their spatial attribute values, can be less
privacy-sensitive [PBMB18], e.g., parks, theaters, etc., or, if individuals frequent
them, they can reveal supplementary information, e.g., residences (home ad-
dresses) [GKdPC10], places of worship (religious beliefs) [FB15], etc. POIs can
be an example of how we can choose landmarks, but the idea is not limited to
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these. Another example is the detection of privacy-sensitive user interactions by
contact tracing applications. This can be practical in decease control [EK03],
similar to the recent outbreak of the Coronavirus disease 2019 (COVID-19)
epidemic [AMX+20]. Last but not least, landmarks in smart grid electricity
usage patterns may not only reveal the energy consumption of a user but also
information regarding activities, e.g., ‘at work’, ‘sleeping’, etc., or types of
appliances already installed or recently purchased [KHLF10]. We stress out that
landmark identification is an orthogonal problem to ours, and that we consider
landmarks given as input to our problem.

We argue that protecting only landmark events along with any regular event
is sufficient for the user privacy protection, while it improves data utility with
respect to the conventional user-level privacy. Considering landmarks can prevent
over-perturbing the data in the benefit of their final utility. Revisiting the scenario
in Figure 4.2, if we want to protect the landmark points, we have to allocate at
most a budget of ε to the landmarks, while saving some for the release of regular
events. Essentially, the more budget we allocate to an event the less we protect it,
but at the same time the more we maintain its utility. With landmark privacy we
propose to distribute the budget by accounting only for the landmarks when we
release an event of the time series, i.e., allocating ε

5
(4 landmarks +1 regular point)

to each event (see Figure 4.2). This way, we still guarantee that the landmarks are
adequately protected, as they receive a total budget of 4ε

5
< ε. At the same time,

we avoid over-perturbing the regular events, as we allocate to them a higher total
budget (4ε

5
) than in user-level ( ε

2
), and thus less noise. Hence, at any timestamp

we achieve an overall privacy protection bounded by ε in the event set consisting
of the released event and the landmarks.

Example 4.1.1. Continuing Example 4.0.1, Quackmore cares about protecting his
landmarks (p1, p3, p5, p8) along with every release that he makes, however he is not
equally interested for the other regular events in his trajectory. More technically,
he cares about allocating a total budget of ε on any set of timestamps containing
the landmarks and one regular event. Event-level protection is not suitable for this
case, since it can only protect one event at a time. So, let us assume that we apply
user-level privacy1, by distributing equal portions of ε to all the events, i.e., ε

8
to

each one (see Figure 4.2). Indeed, we have protected the landmark points plus one
regular event at any release as expected; we have allocated a total of 5ε

8
< ε to these

5 events.
However, perturbing by ε

8
each one of the regular points deteriorates the data

utility unnecessarily; any budget lower than or equal to 4ε
8

would be sufficient for
covering the user privacy requirements. On the other hand, our proposed privacy

1In this scenario, in order to protect all the landmarks from timestamp 1 to 8, w must be set
to 8, which makes w-event privacy equivalent to user-level.
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Figure 4.2: User-level and landmark ε-differential privacy protection for the time
series of Figure 4.1.

model, landmark privacy, directly considers only the 5 events of interest (4 land-
marks +1 current event) in every release, thus changing the scope from all the time
series to a significant subset of events. Subsequently, it allocates ε

5
to each one of

these events. Consequently, we still achieve to protect all the significant events,
while the utility of a perturbed event is higher than in the case of user-level privacy
( ε
5
> ε

8
).

4.1.1 Contribution

In this section, we formally define a novel privacy notion that we call landmark
privacy. We apply this privacy notion to time series consisting of landmarks and
regular events, and we design and implement three landmark privacy schemes.
We investigate landmark privacy under temporal correlation, which is inherent in
time series publishing, and discuss how landmarks can affect the propagation of
temporal privacy loss.

4.1.2 Problem definition

In this section, we introduce a new privacy definition.

Setting

Our problem setting consists of three entities: (i) data generators (users), (ii) data
publishers (trusted non-adversarial entities), and (iii) data consumers (possibly
adversarial entities). Users generate a finite series of sensitive data over time,
which are processed in batch mode in a secure and private way locally (or by a
trusted curator) and are later published in order to be consumed by potentially
adversarial data analysts. Data are produced as a series of events, which we call
time series.
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(i) Data generators (users) entity Eg interacts with a crowdsensing applica-
tion and produces continuously privacy-sensitive data items in an arbitrary
frequency during the application’s usage period T = (i)i∈N. Thus, at each
timestamp t, Eg generates a data set Di ∈ D where each of its members
contributes a single data item.

(ii) Data publishers (trusted non-adversarial) entity Ep receives the data sent
by Eg in the form of a series of events in T . Following the global processing
and publishing scheme, Ep collects at t a data set Di and privacy-protects
it by applying the respective privacy mechanism Mi. Mi uses independent
randomness such that it satisfies εi-differential privacy.

(iii) Data consumers (possibly adversarial) entity Ec receives the result oi of
the privacy-preserving processing of Di by Ep. According to Theorem 2, the
overall privacy guarantee of the outputs of M is equal to the sum of all
the privacy budgets of the respective privacy mechanisms that composeM,
i.e.,

∑
i∈T εi.

We assume that all the interactions between Eg and Ep are secure and private,
and thus Ep is considered trusted and non-adversarial by Eg. Notice that, in a
real life scenario, Eg and Ec might overlap with each other, i.e., data producers
might be data consumers as well.

Privacy goal

We argue that in continuous user-generated data publishing, events are not equally
significant in terms of privacy. We term a significant event—according to user- or
data-related criteria—as a landmark event. The identification of landmark events
can be performed manually or automatically, and is an orthogonal problem to
ours. First, we consider the landmark timestamps, i.e., their position in time, non-
sensitive and provided by the user as input along with the privacy budget ε. For
example, events p1, p3, p5, p8 in Figure 4.1 are landmark events. In Definition 7, we
formally introduce landmarks in the context of privacy-preserving data publishing.

Definition 7 (Landmark event). A landmark event is a significant—according to
user- or data-related criteria—user-generated data item.

Definition 8 extends the notion of neighboring data sets (see Section 2.2.5) to
the context of landmarks.

Definition 8 (Landmark neighboring time series). Two time series of the same
length, with common starting and ending timestamps, are landmark neighboring
when their elements are pairwise, i.e., at the same timestamps, equal or neighboring
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and their neighboring elements are on common landmarks and/or at most on one
regular event.

In Definition 9, we proceed to propose landmark privacy, a configurable varia-
tion of differential privacy for time series with significant events.

Definition 9 (Landmark privacy). Let M be a privacy mechanism with range O
and domain ST being the set of all time series with length |T |, where T is a sequence
of timestamps. M satisfies landmark ε-differential privacy (or, simply, landmark
privacy) if for all sets O ⊆ O, and for every pair of landmark-neighboring time
series ST , S ′

T , it holds that

Pr[M(ST ) ∈ O] ≤ eεPr[M(S ′
T ) ∈ O]

User-level privacy can achieve landmark privacy, but it over-perturbs the final
data by not distinguishing between landmark and regular events. Theorem 7 states
how to achieve the desired privacy goal for the landmarks and any event, i.e., a
total budget less than ε, and at the same time provide better utility overall.

Theorem 7 (Landmark privacy). LetM be a mechanism with input a time series
ST , where T is the set of the involved timestamps, and L ⊆ T be the set of landmark
timestamps. M is decomposed to ε-differential private sub-mechanisms Mt, for
every t ∈ T , which apply independent randomness to the event at t. Then, given
a privacy budget ε, M satisfies (ε, L)-landmark privacy if for any t it holds that∑

i∈L∪{t}

εi ≤ ε

Proof. All mechanisms use independent randomness, and therefore for a time series
ST = (Di)i∈T and outputs (oooi)i∈T ∈ O ⊆ O it holds that

Pr[M(ST ) = (oooi)i∈T ] =
∏
i∈T

Pr[Mi(Di) = oooi]

Likewise, for any landmark-neighboring time series S ′
T of ST with the same

outputs (oooi)i∈T ∈ O ⊆ O

Pr[M(S ′
T ) = (oooi)i∈T ] =

∏
i∈T

Pr[Mi(D
′
i) = oooi]

According to Definition 8, there exists L ∪ {t} ⊆ T such that Di = D′
i for

i ∈ L ∪ {t}. Thus, we get

Pr[M(ST ) = (oooi)i∈T ]

Pr[M(S ′
T ) = (oooi)i∈T ]

=
∏

i∈L∪{t}

Pr[Mi(Di) = oooi]

Pr[Mi(D′
i) = oooi]
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Di and D′
i are neighboring for i ∈ L ∪ {t}. Mi is differential private and from

Definition 2 we get that Pr[Mi(Di)=oooi]
Pr[Mi(D′

i)=oooi]
≤ eεi . Hence, we can write

Pr[M(ST ) = (oooi)i∈T ]

Pr[M(S ′
T ) = (oooi)i∈T ]

≤
∏

i∈L∪{t}

eεi = e
∑

i∈L∪{t} εi

For any O ∈ O we get Pr[M(ST )∈O]
Pr[M(S′

T )∈O]
≤ e

∑
i∈L∪{t} εi . If the formula of Theorem 7

holds, then we get Pr[M(ST )∈O]
Pr[M(S′

T )∈O]
≤ eε. Due to Definition 9 this concludes our

proof.

4.1.3 Achieving landmark privacy

In this section, we propose the methodology for achieving landmark privacy.

Landmark privacy mechanisms

Uniform Figure 4.3 shows the implementation of the baseline landmark privacy
scheme for Example 4.1.1 which distributes uniformly the available privacy budget
ε. In this case, it is enough to distribute at each timestamp the total privacy
budget divided by the number of timestamps corresponding to landmarks, plus
one, i.e., ε

|L|+1
. Consequently, at each timestamp we protect every landmark, while

reserving a part of ε for the current timestamp.

Figure 4.3: The Uniform application scenario of landmark privacy.

Skip One might argue that we could skip the landmark data releases as we
demonstrate in Figure 4.4, by republishing previous, regular event releases. This
would result in preserving all of the available privacy budget for regular events,
equivalently to event-level protection, i.e., εi = ε, ∀i ∈ T \ L.

In practice, however, this approach can eventually pose arbitrary privacy risks,
especially when dealing with geotagged data. Particularly, sporadic location data
publishing or misapplying location cloaking could result in areas with sparse data
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Figure 4.4: Application scenario of the Skip landmark privacy scheme.

points, indicating privacy-sensitive locations [GKdPC10, Rus18]. We study this
problem and investigate possible solutions in Section 4.2.3.

Adaptive Next, we propose an adaptive privacy scheme (Figure 4.5) that ac-
counts for changes in the input data by exploiting the post-processing property of
differential privacy (Theorem 6).

Figure 4.5: Concept of Adaptive landmark privacy.

Initially, its budget management component reserves uniformly the available
privacy budget ε for each future release o. At each timestamp, the processing
component decides to either sample from the time series the current input and
publish it with noise or release an approximation based on previous releases. In
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the case when it publishes with noise the original data, the analysis component
estimates the data trends by calculating the difference between the current and the
previous releases and compares the difference with the scale of the perturbation,
i.e., ∆f

ε
[KPXP14]. The outcome of this comparison determines the adaptation of

the sampling rate of the processing component for the next events: if the difference
is greater it means that the data trends are evolving, and therefore it must increase
the sampling rate. In the case when the mechanism approximates a landmark
(but not a regular timestamp), the budget management component distributes
the reserved privacy budget to the next timestamps. Due to the post-processing
property of differential privacy (Theorem 6), the analysis component does not
consume any privacy budget allowing for better final data utility.

Landmark privacy under temporal correlation

From the discussion so far, it is evident that for the budget distribution it is not
the positions, but rather the number of the landmarks that matters. However, this
is not the case under the presence of temporal correlation.

The Hidden Markov Model scheme (as used in [CYXX18]) stipulates two im-
portant independence properties: (i) the future (or past) depends on the past (or
future) via the present, and (ii) the current observation is independent of the rest
given the current state. Hence, there is independence between an observation at a
specific timestamp and previous/next data sets under the presence of the current
input data set. Intuitively, knowing the data set at timestamp t stops the propa-
gation of the Markov chain towards the next or previous timestamps in the time
series.

In Section 2.2.5 we showed that the temporal privacy loss αt at a timestamp
t is calculated as the sum of the backward and forward privacy loss, αB

t and αF
t ,

minus the privacy budget εt, to account for the extra privacy loss due to previous
and next releases ooo of M under temporal correlation. By Theorem 7, at every
timestamp t we consider the data at t and at the landmark timestamps L. When
sequentially composing the data releases for each timestamp i in L∪{t} we consider
the previous releases in the whole time series until the timestamp i− that is exactly
before i in the ordered L∪{t}, and the next data releases in the whole time series
until the timestamp i+ that is exactly after i in the ordered L ∪ {t}. Figure 4.6
illustrates i− and i+ in Example 4.0.1).

Therefore, in Definition 10, we formulate the landmark temporal privacy loss
as follows.

Definition 10 (Landmark temporal privacy loss). Given a landmark set L in
a set of timestamps T , the potential overall temporal privacy loss of a privacy
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Figure 4.6: The timestamps exactly before (−) and after (+) every timestamp,
where that is applicable, for the calculation of the temporal privacy loss.

mechanism M at any timestamp in L ∪ {t} is∑
i∈L∪{t}

αi

where for i−, i+ ∈ L ∪ {t} being the timestamps exactly before and after i, αi

is equal to

ln
Pr[(ooo)i∈[i−+1,i]|Di]

Pr[(ooo)i∈[i−+1,i]|D′
i]︸ ︷︷ ︸

αB
i

+ ln
Pr[(ooo)i∈[i,i+−1]|Di]

Pr[(ooo)i∈[i,i+−1]|D′
i]︸ ︷︷ ︸

αF
i

− ln
Pr[oooi|Di]

Pr[oooi|D′
i]︸ ︷︷ ︸

εi

(4.1)

As presented in [CYXX18], the temporal privacy loss of a time series (without
landmarks) can be bounded by a given privacy budget ε. Intuitively, by Equa-
tion 4.1 the temporal privacy loss incurred when considering landmarks is less than
the temporal loss in the case without the knowledge of the landmarks. Thus, the
temporal privacy loss in landmark privacy can be also bounded by ε.

4.2 Selection of events

In Section 4.1, we introduced the notion of landmark events in privacy-preserving
time series publishing. The differentiation among regular and landmark events
stipulates a privacy budget allocation that deviates from the application of existing
differential privacy protection levels. Based on this novel event categorization, we
designed three schemes (Section 4.1.3) that achieve landmark privacy. For this,



4.2. SELECTION OF EVENTS 73

we assumed that the timestamps in the landmark set L are not privacy-sensitive,
and therefore we used them in our models as they were.

This may pose a direct or indirect privacy risk to the users. For the former,
we consider the case where we desire to publish L as complimentary information
to the release of the event values. For the latter, a potentially adversarial data
analyst may infer L by observing the values of the privacy budget, which is usually
an inseparable attribute of the data release as an indicator of the privacy guarantee
to the users and as an estimate of the data utility to the analysts. Hence, in both
cases, a user-defined L, which is supposed to facilitate the configurable privacy
protection of the user, could end up posing a privacy risk to them.

In Example 4.2.1, we demonstrate the extreme case of the application of the
Skip landmark privacy scheme from Figure 4.4, where we approximate landmarks
with the latest data release and invest all of the available privacy budget to regular
events.

Example 4.2.1. Figure 4.7 shows the privacy risk that the application of a land-
mark privacy scheme that nullifies or approximates outputs, similar to Skip, might
cause. We point out in red the details that might cause indirect information infer-
ence. In this extreme case, the minimization of the privacy budget in combination
with nullifying the output (either by not publishing or by adding a lot of noise)
or approximating the current output with previously released outputs might hint to
any adversary that the current event is a landmark.

Figure 4.7: The privacy risk (highlighted in red) that the application of the land-
mark privacy Skip scheme might pose.

Apart from the privacy budget that we invested at landmarks, we can observe
a pattern for the budgets at regular events as well. Therefore, an adversary who
observes the values of the privacy budget can easily infer not only the number but
also the exact temporal position of the landmarks.
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4.2.1 Contribution

In this section, we extend the threat model, that we defined in Section 4.1.2,
by taking into account the landmark set L as well. Simply put, we answer the
question ‘How can we protect the fact that we care more about certain events?’.
We design an additional differential privacy mechanism, based on the exponential
mechanism (see Section 2.2.5 for more details), that we can easily plug-in to the
existing landmark privacy mechanisms that we presented in Section 4.1.3.

4.2.2 Problem definition

The problem setting is similar to the one that we described in detail in Sec-
tion 4.1.2. The main difference in this case lies in our threat model where we
consider, in addition to the values of the regular and landmark events, the land-
mark timestamps L as privacy-sensitive as well.

One approach would be to utilize the randomized response (described in detail
in Section 2.2.5) and randomize the answer to the question ‘Is the current event
a landmark?’ for every timestamp in T ⊇ L of the time series ST . However, this
could result in a new landmark set L′ that does not include all (or even any) of the
timestamps in L. This contradicts the main idea of landmark privacy, i.e., take
into account all landmarks at every timestamp.

4.2.3 Protecting landmarks

The main idea of the privacy-preserving dummy landmark selection module is to
privately select extra landmark event timestamps, i.e., dummy landmarks, from
the set of timestamps T \ L of the time series ST and add them to the original
landmark set L. Selecting extra events, on top of the actual landmarks, as dummy
landmarks, can render the actual ones indistinguishable. The goal is to create a
new set L′ such that L ⊂ L′ ⊆ T .

First, we generate a set of dummy landmark set options by adding regular
event timestamps from T \L to L (Section 4.2.3). Then, we utilize the exponential
mechanism, with a utility function that calculates an indicator for each of the
options in the set, based on how much it differs from the original landmark set
L, and randomly select one of the options (Section 17). This process provides an
extra layer of privacy protection to landmarks, and thus allows the processing, and
thereafter releasing, of landmark timestamps.

Dummy landmark selection

Algorithms 1 and 2 approach this problem with an optimal and heuristic method-
ology, respectively. Function evalSeq evaluates the result of the union of L and
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a timestamp combination from T \ L by, e.g., estimating the standard deviation
of all the distances from the previous/next landmark. getOpts returns all the
possible valid sets of combinations opt such that larger options contain all of the
timestamps that are present in smaller ones. Each combination contains a set
of timestamps with sizes |L| + 1, |L| + 2, . . . , |T |, where each one of them is a
combination of L with x ∈ [1, |T | − |L|] timestamps from T .

Optimal The Optimal algorithm (Algorithm 1) generates every possible combi-
nation (options) of landmark sets L′ containing one set from every possible size,
i.e, |L| + 1, |L| + 2, . . . , |T |. Each L′ contains the original landmarks along with
timestamps of regular events from T \ L (dummy landmarks). Then, it evaluates
each option by comparing each of its sets with the original landmark set L and
estimating an overall similarity score for each option (Lines 4–11). We discuss
possible utility score functions later on in Section 17. It finds the option that is
the most similar to the original (Lines 7-11), i.e., the option that has an evalu-
ation that differs the least from that of the sequence T with landmarks L. The
goal of this process is to select the option that contains the combination of dummy
landmark sets that achieve the best score.

Algorithm 1: Optimal dummy landmark set options generation
Data: the time series timestamps T , the landmark set L
Output: the selected landmark set options opts

1 evalOrig ← evalSeq(T, ∅, L)
2 diffMin ← ∞
3 opts ← []
4 foreach opt ∈ getOpts(T, L) do
5 evalCur ← 0
6 foreach opti ∈ opt do
7 evalCur ← evalCur + evalSeq(T, opti, L)/#opt
8 diffCur ← |evalCur − evalOrig|
9 if diffCur < diffMin then

10 diffMin ← diffCur
11 opts ← opt
12 return opts

Algorithm 1 guarantees to return the optimal option with regard to the original
set L. However, it is rather costly in terms of complexity. In more detail, given
|T \ L| regular events and a combination of size r, it requires O(C(|T \ L|, r) +
2C(|T\L|,r)) time and O(r ∗ C(|T \ L|, r)) space. Next, we present a Heuristic
solution with improved time and space requirements.
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Heuristic The Heuristic algorithm (Algorithm 2) follows an incremental
methodology and at each step it selects a new timestamp, corresponding to a
regular event from T \ L′. In this case, the elements of L′ at each step differ by
one from the one that the algorithm selected in the previous step. Similar to
the Optimal, it selects a new set based on a predefined similarity metric until it
selects a set that is equal to the size of the series of events, i.e., L′ = T .

Algorithm 2: Heuristic dummy landmark set options generation
Data: the time series timestamps T , the landmark set L
Output: the selected landmark set options opts

1 evalOrig ← evalSeq(T, ∅, L)
2 opts ← []
3 L′ ← L
4 while L′ ̸= T do
5 diffMin ← ∞
6 optimi ← Null
7 foreach reg ∈ T \ L′ do
8 evalCur ← evalSeq(T, reg, L′)
9 diffCur ← |evalCur − evalOrig|

10 if diffCur < diffMin then
11 diffMin ← diffCur
12 optimi ← reg
13 L′.add(optimi)
14 opts.append(L′ \ L)
15 return opts

Similar to Algorithm 1, it selects new options based on a predefined metric
(Lines 8-12). This process (Lines 4-14) goes on until we select a set that is equal
to the size of the series of events, i.e., L′ = T . In terms of complexity, given |T \L|
regular events, the Heuristic requires O(|T \ L|2) time and space. Note that the
reverse process, i.e., starting with T landmarks and removing until |L′| = |L|+ 1,
performs similarly.

Partitioned We improve the complexity of the Heuristic algorithm by parti-
tioning the landmark timestamp sequence L. The novelty of this algorithm lies
in the fact that it deals with the event series as a histogram which allows it to
take advantage of its relevant features and methodology. Particularly, it uses the
Freedman-Diaconis rule, which is resilient to outliers and takes into account the
data variability and data size [MI15], and generates a histogram from the landmark
set L. This way, it achieves an improved complexity, compared to the Heuristic,
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that is dependent on the histogram’s bin size. Algorithm 3 demonstrates the
overall process.

Algorithm 3: Partitioned dummy landmark set options generation
Data: the time series timestamps T , the landmark set L
Output: the selected landmark set options opts

1 hist, h ← getHist(T, L)
2 histCur ← hist
3 opts ← []
4 while sum(histCur) ̸= len(T) do
5 diffMin ← ∞
6 opt ← histCur
7 foreach hi in histCur do
8 if hi + 1 ≤ h then
9 histTmp ← histCur

10 histTmp[i] ← histTmp[i] + 1
11 diffCur ← getDiff(hist, histTmp)
12 if diffCur < diffMin then
13 diffMin ← diffCur
14 opt ← histTmp
15 histCur ← opt
16 opts ← opt
17 return opts

Function getHist generates a histogram with bins of size h for a given time
series timestamps T and landmark set L. For every new histogram version, the
getDiff function (Line 11) finds the difference from the original histogram; for
this operation it utilizes the Euclidean distance (see Section 5.3.1 for more details).
In Lines 7-14, the algorithm checks every histogram version by incrementing each
bin by 1 and comparing it to the original (Line 12). In the end, it returns opts
which contains all the versions of hist that are closest to the original hist for all
possible bin sizes of hist.

Privacy-preserving option selection

The algorithms that we presented in Section 4.2.3 return a set of possible versions
of the original landmark set L by adding extra timestamps in it from the series of
events at timestamps T \L. In the next step, we randomly select a set by utilizing
the exponential mechanism (Section 2.2.5). For this procedure, we allocate a small
fraction of the available privacy budget, i.e., 1% or even less (see Section 5.3.2
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for more details), which adds up to that of the publishing scheme according to
Theorem 2.

Utility score function Prior to selecting a landmark timestamp set including
the original along with dummy landmarks, the exponential mechanism evaluates
each set using a utility score function. We present here two ways of doing so.

One way to evaluate each set is by taking into account the temporal position of
the events in the sequence. Events that occur at recent timestamps are more likely
to reveal sensitive information regarding the users involved [KPXP14]. Hence,
indicating the existence of dummy landmarks nearby actual landmarks can increase
the adversarial confidence regarding the location of the latter within a series of
events. In other words, sets with dummy landmarks with less average temporal
distance from actual landmarks achieve better utility scores.

Another approach for the utility score function is to consider the number of
events in each set. Sets with more dummy landmarks may render actual landmarks
more indistinguishable, and therefore provide less utility. Consequently, more
dummy landmarks lead to distributing the privacy budget to more events, and
therefore leading to more robust overall privacy protection.

Option release In the last step, the privacy-preserving dummy landmark selec-
tion module releases a new landmark set (including the original landmarks along
with the dummy ones) from the options that were generated in the previous step,
by utilizing the exponential mechanism.

The options generated by the Optimal and Heuristic algorithms contain ac-
tual timestamps that can be utilized directly by the landmark privacy schemes
that we presented in Section 4.1.3. However, the Partitioned algorithm returns
histograms instead of timestamps. Therefore, we need to process the result of
the exponential mechanism further by sampling without replacement from the set
T \ L according to the selected histogram’s probability density function.

4.3 Summary

In this chapter, we presented landmark privacy for privacy-preserving time series
publishing, which allows for the protection of significant events while improving
the utility of the final result compared to user-level differential privacy. We pro-
posed three schemes for landmark privacy, and quantified the privacy loss under
temporal correlation. Furthermore, we designed a module to enhance our privacy
notion by protecting the actual timestamps of the landmarks. We differ the exper-
imental evaluation of our methodology to Chapter 5 we experiment with real and
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synthetic data sets to demonstrate the applicability of the landmark privacy mod-
els by themselves (Section 5.3) and in combination with the landmark selection
component (Section 5.2).
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Chapter 5

Evaluation

In this chapter, we present the experiments that we performed in order to eval-
uate landmark privacy (Chapter 4) on real and synthetic data sets. Section 5.1
contains all the details regarding the data sets the we used for our experiments
along with the system configurations. Section 5.2 evaluates the data utility of the
landmark privacy schemes that we designed in Section 4.1 in comparison to user-
and event-level, and investigates the behavior of the privacy loss under temporal
correlation for different distributions of landmarks. Section 5.3 justifies our deci-
sions while designing the privacy-preserving dummy landmark selection module in
Section 4.2 and the data utility impact of the latter. Finally, Section 5.4 concludes
this chapter by summarizing the main results derived from the experiments.

5.1 Setting, configurations, and data sets

In this section we list all the relevant details regarding the evaluation setting
(Section 5.1.1), and we present the real and synthetic data sets that we used
(Section 5.1.2) along with the corresponding configurations (Section 5.1.3).

5.1.1 Machine setup

We implemented our experiments1 in Python 3.9.7 and executed them on a ma-
chine with an Intel i7-6700HQ at 3.5GHz CPU and 16GB RAM, running Manjaro

This chapter will appear in the proceedings of the 12th ACM conference on Data and Ap-
plication Security and Privacy [KTK22].

1Source code available at https://git.delkappa.com/manos/the-last-thing
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Linux 21.1.5. We repeated each experiment 100 times and we report the mean
over these iterations.

5.1.2 Data sets

We performed experiments on real (Section 5.1.2) and synthetic data sets (Sec-
tion 5.1.2).

Real data sets

For uniformity and in order to be consistent, we sample from each of the following
data sets the first 1, 000 entries that satisfy the configuration criteria that we
discuss in detail in Section 5.1.3.

Copenhagen [SSLL19] data set was collected via the smartphone devices of
851 university students over a period of 4 weeks as part of the Copenhagen Net-
works Study. Each device was configured to be discoverable by and to discover
nearby Bluetooth devices every 5 minutes. Upon discovery, each device registers
(i) the timestamp in seconds, (ii) the device’s unique identifier, (iii) the unique
identifier of the device that it discovered (−1 when no device was found or −2
for any non-participating device), and (iv) the Received Signal Strength Indicator
(RSSI) in dBm. Half of the devices have registered data at at least 81% of the
possible timestamps. 3 devices (449, 550, 689) satisfy our configuration criteria
(Section 5.1.3) within their first 1, 000 entries. From those 3 devices, we picked
the first one, i.e., device with identifier ‘449’, and utilized its 1, 000 first entries
out of 12, 167 unique valid contacts.

HUE [Mak18] contains the hourly energy consumption data of 22 residential
customers of BCHydro, a provincial power utility in British Columbia. The mea-
surements for each residence are saved individually and each measurement contains
(i) the date (YYYY-MM-DD), (ii) the hour, and (iii) the energy consumption in
kWh. In our experiments, we used the first residence, i.e., residence with identifier
‘1’, that satisfies our configuration criteria (Section 5.1.3) within its first 1, 000
entries. In those entries, out of a total of 29, 231 measurements, we estimated
an average energy consumption equal to 0.88kWh and a value range within [0.28,
4.45].

T-drive [YZZ+10] consists of 15 million GPS data points of the trajectories
of 10, 357 taxis in Beijing, spanning a period of 1 week and a total distance of 9
million kilometers. The taxis reported their location data on average every 177
seconds and 623 meters approximately. Each vehicle registers (i) the taxi unique
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identifier, (ii) the timestamp (YYYY-MM-DD HH:MM:SS), (iii) the longitude,
and (iv) the latitude. These measurements are stored individually per vehicle. We
sampled the first 1, 000 data items of the taxi with identifier ‘2’, which satisfied
our configuration criteria (Section 5.1.3).

Synthetic data sets

We generated synthetic time series of length equal to 100 timestamps, for which
we varied the number and distribution of landmarks. In this way, we have a
controlled data set that we can use to study the behavior of our proposal. We take
into account only the temporal order of the points and the position of regular and
landmark events within the time series. In Section 5.1.3, we explain in more detail
our configuration criteria.

5.1.3 Configurations

We vary the landmark percentage (Section 5.1.3), i.e., the ratio of timestamps that
we attribute to landmarks and regular events, in order to explore the behavior of
our methodology in all possible scenarios. For each data set, we implement a
privacy mechanism that injects noise related to the type of its attribute values
and we tune the parameters of each mechanism accordingly (Section 5.1.3). Last
but not least, we explain how we generate synthetic data sets with various degrees
of temporal correlation so as to observe the impact on the overall privacy loss
(Section 5.1.3).

Landmark percentage

In the Copenhagen data set, a landmark represents a timestamp when a specific
contact device is registered. After identifying the unique contacts within the sam-
ple, we achieve each desired landmarks to regular events ratio by considering a
list that contains a part of these contact devices. In more detail, we achieve 0%
landmarks by considering an empty list of contact devices, 20% by extending the
list with [3, 6, 11, 12, 25, 29, 36, 39, 41, 46, 47, 50, 52, 56, 57, 61, 63, 78, 80], 40%
with [81, 88, 90, 97, 101, 128, 130, 131, 137, 145, 146, 148, 151, 158, 166, 175,
176], 60% with [181, 182, 192, 195, 196, 201, 203, 207, 221, 230, 235, 237, 239,
241, 254], 80% with [260, 282, 287, 289, 290, 291, 308, 311, 318, 323, 324, 330,
334, 335, 344, 350, 353, 355, 357, 358, 361, 363], and 100% by including all of the
possible contacts.

In HUE, we consider as landmarks the events that have energy consumption val-
ues below a certain threshold. That is, we get 0%, 20% 40%, 60%, 80%, and 100%
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landmarks by setting the energy consumption threshold to 0.28kWh, 1.12kWh,
0.88kWh, 0.68kWh, 0.54kWh, and 4.45kWh respectively.

In T-drive, a landmark represents a location where a vehicle spend some time.
We achieved the desired landmark percentages by utilizing the method of Li et
al. [LZX+08] for detecting stay points in trajectory data. In more detail, the
algorithm checks for each data item if each subsequent item is within a given
distance threshold ∆l and measures the time period ∆t between the present point
and the last subsequent point. After analyzing the data and experimenting with
different pairs of distance and time period, we achieve 0%, 20% 40%, 60%, 80%,
and 100% landmarks by setting the (∆l in meters, ∆t in minutes) pairs input to
the stay point discovery method as [(0, 1000), (2095, 30), (2790, 30), (3590, 30),
(4825, 30), (10350, 30)].

We generated synthetic data with skewed (the landmarks are distributed to-
wards the beginning/end of the series), symmetric (in the middle), bimodal (both
end and beginning), and uniform (all over the time series) landmark distributions.
In order to get landmark sets with the above distribution features, we generate
probability distributions with restricted domain to the beginning and end of the
time series, and sample from them, without replacement, the desired number of
points. For each case, we place the location (centre) of the distribution accord-
ingly. That is, for symmetric we put the location in the middle of the time series
and for left/right skewed to the right/left. For bimodal we combine two mirrored
skewed distributions. Finally, for the uniform distribution we distribute the land-
marks randomly throughout the time series. For consistency, we calculate the scale
parameter of the corresponding distribution depending on the length of the time
series by setting it equal to the series’ length over a constant.

Privacy parameters

For all of the real data sets, we implement ε-differential privacy by selecting a
mechanism, from those that we described in Section 2.2.5, that is best suited for
the type of its sensitive attributes. To perturb the contact tracing data of the
Copenhagen data set, we utilize the random response technique [WBLJ17] and
we report truthfully at each timestamp, with probability p = eε

eε+1
, whether the

current contact is a landmark or not. We randomize the energy consumption in
HUE with the Laplace mechanism [DR+14]. For T-drive, we perturb the location
data with noise that we sample from a Planar Laplace distribution [ABCP13].

We set the privacy budget ε = 1 for all of our experiments and, for simplicity, we
assume that for every query sensitivity it holds that ∆f = 1. For the experiments
that we performed on the synthetic data sets, the original values to be released
are not relevant to what we want to observe, and thus we ignore them.
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Temporal correlation

Despite the inherent presence of temporal correlation in time series, it is challenging
to correctly discover and quantify it. For this reason, and in order to create a more
controlled environment for our experiments, we chose to conduct tests relevant to
temporal correlation using synthetic data sets. We model the temporal correlation
in the synthetic data as a stochastic matrix P , using a Markov Chain [Gag17]. P is
an n×n matrix, where the element Pij represents the transition probability from a
state i to another state j, ∀ i, j ≤ n. It holds that the elements of every row j of P
sum up to 1. We follow the Laplacian smoothing technique [SCOL+04], as utilized
in [CYXX18], to generate the matrix P with a degree of temporal correlation s > 0
equal to

(In)ij + s∑n
k=1((In)jk + s)

where In is an identity matrix of size n. The value of s is comparable only for
stochastic matrices of the same size and dictates the strength of the correlation;
the lower its value, the stronger the correlation degree. In our experiments, for
simplicity, we set n = 2 and we investigate the effect of weak (s = 1), moderate
(s = 0.1), and strong (s = 0.01) temporal correlation degree on the overall privacy
loss.

5.2 Landmark events

In this section, we present the experiments that we performed, to test the method-
ology that we presented in Section 4.1.3, on real and synthetic data sets.

With the experiments on the real data sets (Section 5.2.1), we show the per-
formance in terms of data utility of our three landmark privacy schemes: Skip,
Uniform and Adaptive. We define data utility as the mean absolute error in-
troduced by the privacy mechanism. We compare with the event- and user-level
differential privacy protection levels, and show that, in the general case, landmark
privacy allows for better data utility than user-level differential privacy while bal-
ancing between the two protection levels.

With the experiments on the synthetic data sets (Section 5.2.2) we show how
the temporal privacy loss, i.e., the privacy budget ε with the extra privacy loss
because of the temporal correlation, changes when tuning the size and statistical
characteristics of the input landmark set L. We observe that a greater average
landmark–regular event distance in a time series can result into greater temporal
privacy loss under moderate and strong temporal correlation.
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5.2.1 Landmark privacy schemes

Figure 5.1 exhibits the performance of the three schemes, Skip, Uniform, and
Adaptive applied on the three data sets that we study. Notice that, in the cases
when we have 0% and 100% of the events being landmarks, we get the same
behavior as in event- and user-level privacy respectively. This happens due to
the fact that at each timestamp we take into account only the data items at the
current timestamp and ignore the rest of the time series (event-level) when there
are no landmarks. Whereas, when each timestamp corresponds to a landmark we
consider and protect all the events throughout the entire series (user-level).
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Figure 5.1: The mean absolute error (a) as a percentage, (b) in kWh, and (c) in
meters of the released data for different landmark percentages.

For the Copenhagen data set (Figure 5.1a), Adaptive has an overall consistent
performance and works best for 60% and 80% landmarks. We notice that for 0%
landmarks, it achieves better utility than the event-level protection due to the
combination of more available privacy budget per timestamp (due to the absence
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of landmarks) and its adaptive sampling methodology. Skip excels, compared to
the others, at cases where it needs to approximate 20%, 40%, or 100% of the
times. In general, we notice that, for this data set and due to the application of
the random response technique, it is more beneficial to either invest more privacy
budget per event or prefer approximation over introducing randomization.

The combination of the small range of measurements ([0.28, 4.45] with an
average of 0.88kWh) in HUE (Figure 5.1b) and the large scale in the Laplace
mechanism, allows for schemes that favor approximation over noise injection to
achieve a better performance in terms of data utility. Hence, Skip achieves a
constant low mean absolute error. Regardless, the Adaptive scheme performs by
far better than Uniform and balances between event- and user-level protection for
all landmark percentages.

In T-drive (Figure 5.1c), Adaptive outperforms Uniform by 10%–20% for all
landmark percentages greater than 40% and Skip by more than 20%. The lower
density (average distance of 623m) of the T-drive data set has a negative impact
on the performance of Skip because republishing a previous perturbed value is
now less accurate than perturbing the current location.

Principally, we can claim that the Adaptive is the most reliable and best
performing scheme, if we take into consideration the drawbacks of the Skip mech-
anism, particularly in spatiotemporal data, e.g., sporadic location data publish-
ing [GKdPC10, Rus18] or misapplying location cloaking [xss21], that could lead
to the indication of privacy-sensitive attribute values. Moreover, implementing a
more advanced and data-dependent sampling method that accounts for changes
in the trends of the input data and adapts its rate accordingly, would result in a
more effective budget allocation that would improve the performance of Adaptive
in terms of data utility.

5.2.2 Temporal distance and correlation

As previously mentioned, temporal correlation is inherent in continuous publishing,
and it is the cause of supplementary privacy loss in the case of privacy-preserving
time series publishing. In this section, we are interested in studying the effect that
the distance of the landmarks from every regular event has on the privacy loss
caused under the presence of temporal correlation.

Figure 5.2 shows a comparison of the average temporal distance of the events
from the previous/next landmark or the start/end of the time series for various
distributions in our synthetic data. More specifically, we model the distance of an
event as the count of the total number of events between itself and the nearest
landmark or the time series edge.

We observe that the uniform and bimodal distributions tend to limit the regular
event–landmark distance. This is due to the fact that the former scatters the
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Figure 5.2: Average temporal distance of regular events from the landmarks for
different landmark percentages within a time series in various landmark distribu-
tions.

landmarks, while the latter distributes them on both edges, leaving a shorter space
uninterrupted by landmarks. On the contrary, distributing the landmarks at one
part of the sequence, as in skewed or symmetric, creates a wider space without
landmarks. This study provides us with different distance settings that we are
going to use in the subsequent temporal privacy loss study.

Figure 5.3 illustrates a comparison among the aforementioned distributions
regarding the temporal privacy loss under (a) weak, (b) moderate, and (c) strong
temporal correlation degrees. The line shows the overall privacy loss—for all cases
of landmark distribution—without temporal correlation.

In combination with Figure 5.2, we conclude that a greater average landmark–
regular event distance in a distribution can result into greater temporal privacy
loss under moderate and strong temporal correlation. This is due to the fact that
the backward/forward privacy loss accumulates more over time in wider spaces
without landmarks (see Section 2.3). Furthermore, the behavior of the privacy
loss is as expected regarding the temporal correlation degree: a stronger corre-
lation degree generates higher privacy loss while widening the gap between the
different distribution cases. On the contrary, a weaker correlation degree makes it
harder to differentiate among the landmark distributions. The privacy loss under
a weak correlation degree converge with all possible distributions for all landmark
percentages.
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Figure 5.3: The temporal privacy loss for different landmark percentages and
distributions under (a) weak, (b) moderate, and (c) strong degrees of temporal
correlation. The line shows the overall privacy loss without temporal correlation.
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5.3 Selection of landmarks

In this section, we present the experiments on the methodology for the dummy
landmark selection presented in Section 4.2.3, on the real and synthetic data sets.
Due to the high complexity of the Optimal and Heuristic algorithms, we choose
to evaluate only the Partitioned, which is the optimized solution that we de-
signed. With the experiments on the synthetic data sets (Section 5.3.1) we show
the normalized Euclidean and Wasserstein distance metrics (not to be confused
with the temporal distances in Figure 5.2) of the time series histograms for vari-
ous distributions and landmark percentages. This allows us to justify our design
decisions for our concept that we showcased in Section 4.2.3. With the experi-
ments on the real data sets (Section 5.3.3), we show the performance in terms of
utility of our three landmark schemes in combination with the privacy-preserving
dummy landmark selection module, which enhances the privacy protection that
our concept provides.

5.3.1 Dummy landmark selection utility metrics

Figure 5.4 demonstrates the normalized distance that we obtain when we utilize
either (a) the Euclidean or (b) the Wasserstein distance metric to obtain a set of
landmarks including regular events.
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Figure 5.4: The normalized (a) Euclidean, and (b) Wasserstein distance of the
generated landmark sets for different landmark percentages.

Comparing the results of the Euclidean distance in Figure 5.4a with those of
the Wasserstein in Figure 5.4b we conclude that the Euclidean distance provides
more consistent results for all possible distributions. The maximum difference per
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landmark percentage is approximately 0.2 for the former and 0.15 for the latter
between the bimodal and skewed landmark distributions. Overall, the Euclidean
distance achieves a mean normalized distance of 0.3, while the Wasserstein distance
a mean normalized distance that is equal to 0.2. Therefore, and by observing
Figure 5.4, Wasserstein demonstrates a less consistent performance and less linear
behavior among all possible landmark distributions. Thus, we choose to utilize
the Euclidean distance metric for the implementation of the privacy-preserving
dummy landmark selection module in Section 4.2.3.

5.3.2 Privacy budget tuning

In Figure 5.5, we test the Uniform mechanism with real data by investing dif-
ferent ratios (1%, 10%, 25%, and 50%) of the available privacy budget ε in the
dummy landmark selection module and the remaining in perturbing the original
data values, in order to figure out the optimal ratio value. Uniform is our baseline
implementation, and hence allows us to derive more accurate conclusions in this
case. In general, we are expecting to observe that greater ratios will result in more
accurate, i.e., smaller, landmark sets and less accurate values in the released data.

The application of the randomized response mechanism, in the Copenhagen
data set (Figure 5.5a), is tolerant to the fluctuations of the privacy budget and
maintains a relatively constant performance in terms of data utility. For HUE
(Figure 5.5b) and T-drive (Figure 5.5c), we observe that our implementation per-
forms better for lower ratios, e.g., 0.01, where we end up allocating the majority
of the available privacy budget to the data release process instead of the dummy
landmark selection module. The results of this experiment indicate that we can
safely allocate the majority of ε to the data publishing process, and therefore
achieve better data utility, while guaranteeing more robust privacy protection.

5.3.3 Privacy schemes and dummy landmark selection

Figure 5.6 exhibits the performance of Skip, Uniform, and Adaptive schemes
(presented in detail in Section 4.1.3) in combination with the landmark selection
module (Section 4.2.3).

In comparison with the utility performance without the dummy landmark se-
lection module (solid bars), we notice a slight deterioration for all three schemes
(markers). This is natural since we allocated part of the available privacy bud-
get to the privacy-preserving dummy landmark selection module, which in turn
increased the number of landmarks, except for the case of 100% landmarks. There-
fore, there is less privacy budget available for data publishing throughout the time
series. Skip performs best in our experiments with HUE (Figure 5.6b), due to
the low range in the energy consumption and the high scale of the Laplace noise
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Figure 5.5: The mean absolute error (a) as a percentage, (b) in kWh, and (c) in
meters of the released data for different landmark percentages. We apply the
Uniform landmark privacy mechanism and vary the ratio of the privacy budget ε
that we allocate to the dummy landmark selection module.
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Figure 5.6: The mean absolute error (a) as a percentage, (b) in kWh, and (c) in
meters of the released data, for different landmark percentages from Figure 5.1.
The markers indicate the corresponding measurements with the incorporation of
the privacy-preserving landmark selection module.
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that it avoids due to the employed approximation. However, for the Copenhagen
data set (Figure 5.6a) and T-drive (Figure 5.6c), Skip attains high mean abso-
lute error, which exposes no benefit with respect to user-level protection. Overall,
Adaptive has a consistent performance in terms of utility for all of the data sets
that we experimented with, and almost always outperforms the user-level privacy
protection. Thus, Adaptive is selected as the best scheme to use in general.

5.4 Summary
In this chapter we presented the experimental evaluation of the landmark privacy
schemes and the dummy landmark selection module, that we developed in Chap-
ter 4, on real and synthetic data sets. The Adaptive scheme is the most reliable
and best performing scheme, in terms of overall data utility, with minimal tuning
across most of the cases. Skip performs optimally in data sets with a smaller tar-
get value range, where approximation fits best. The dummy landmark selection
module introduces a reasonable data utility decline to all of our schemes; however,
the Adaptive handles it well and bounds the data utility to higher levels compared
to user-level protection. In terms of temporal correlation, we observe that under
moderate and strong temporal correlation, a greater average regular–landmark
event distance in a landmark distribution causes greater temporal privacy loss.
Finally, the contribution of the landmark privacy on enhancing the data utility,
while preserving ε-differential privacy, is demonstrated by the fact that the se-
lected Adaptive scheme provides better data utility than the user-level privacy
protection.



Chapter 6

Conclusion and future work

Continuous publishing of data, also known as time series, has found over the
past decades several application domains, including healthcare, smart building,
and traffic monitoring. In many cases, time series contain personal details, which
are usually geotagged, and thus their processing entails privacy concerns. Sev-
eral methods have been proposed in order to protect the privacy of individuals
while processing their data, but cannot avoid to deteriorate arbitrarily the quality
therein. Out of these methods, we distinguish differential privacy, which quantifies
the balance between user protection and data utility by a factor ε.

In this thesis, we have concentrated on continuous user-generated data publish-
ing. Particularly, we focused on providing differential privacy over finite time series
while accounting for privacy-significant future and past events. We have studied
the relevant literature with special emphasis on data correlation. Furthermore, we
explored ways to provide configurable protection in such settings and developed
relevant solutions.

Next, we summarize this thesis in the individual chapters by describing our
contribution to the problems surrounding quality and privacy in continuous data
publishing. Subsequently, we discuss interesting perspectives and open questions
for future research.

6.1 Thesis summary

This thesis revolves around the topic of quality and privacy in user-generated
Big Data, focusing on the problems regarding privacy-preserving continuous data
publishing that we summarize below.

Survey on continuous data publishing We reviewed the existing literature
regarding methods on privacy-preserving continuous data publishing, spanning the
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past two decades, while elaborating on data correlation. Our contributions are:

• We categorized the works that we reviewed based on their input data in
either microdata or statistical data and further separated each data category
based on its observation span in finite and infinite.

• We identified the privacy protection algorithms and techniques that each
work is using, focusing on feature like the privacy method, operation, attack,
and protection level.

• We organized the reviewed literature in a tabular form to allow for a more
efficient indexation of the related works, using a number of relevant features.

This work appeared in the special feature on Geospatial Privacy and Security of
the 19th journal of Spatial Information Science [KTK19].

Configurable privacy protection for time series We presented (ε, L)-
landmark privacy, a novel privacy notion that is based on differential privacy
allowing for better data utility in the presence of significant events. Our
contributions are:

• We introduced the notion of landmark events in privacy-preserving data
publishing and differentiated events between regular and events that a user
might consider more privacy-sensitive (landmarks).

• We designed and implemented three landmark privacy schemes for landmarks
spanning a finite time series.

• We studied landmark privacy under temporal correlation, which is inherent
in time series, and observed the effect of landmarks on the temporal privacy
loss propagation.

• We designed an additional differential privacy mechanism, based on the ex-
ponential mechanism, for providing protection to the temporal position of
the landmarks by generating dummy landmark set options.

• We experimentally evaluated our proposal on real and synthetic data sets,
and compared landmark privacy schemes with event- and user-level privacy
protection, for different landmark percentages. We showed that our method-
ology can provide adequate differential privacy guarantees while achieving
better data utility than the user-level scheme.

This work will appear in the proceedings of the 12th ACM conference on Data and
Application Security and Privacy [KTK22].
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6.2 Perspectives

In this section, we outline possible perspectives to this thesis regarding the different
topics that we addressed.

Diversification of event categories With the proposal of landmark privacy
we introduced landmark events in privacy-preserving continuous data publishing.
The categorization in regular and significant events enabled the development of a
configurable differential privacy notion for time series. The variation of the existing
event categories, e.g., weighted landmarks, or the introduction of new ones, would
allow for an even more fine-grained configuration of privacy protection and the
development of different versions of landmark privacy.

Global landmark privacy For now, we have applied landmark privacy in the
local scheme and for microdata due to the advantages of the local scheme over the
global as we discussed in detail in Section 2.1.2. Since we can easily adapt landmark
privacy to the global processing and publishing scheme, it would be interesting to
observe it in more diverse scenarios (including statistical data publishing) and
develop suitable methodology.

Landmark privacy over infinite event sequences So far, we considered for
our problem setting finite time series that are processed in batch mode. This
was a decision that we made for reasons of clarity in order to facilitate a more
straightforward definition of landmark privacy. In the future, fellow researchers
can explore more dynamic scenarios where data are processed and published in
streaming mode, which will lead to the adoption of time critical crowdsensing
applications.

Landmark privacy and spatiotemporal continuity In mereology, the for-
mal study on the relation between parts and the entities they form, it is generally
held that the identity of an observable object depends to its spatiotemporal con-
tinuity [Wig67, Sca81,HC01], i.e., the property of well-behaved objects that alter
their state in harmony with space and time. Considering events that span the
entirety of the user-generated series of events thereof ensures the spatiotemporal
continuity of the users. This way, it is possible to acquire more information re-
garding individuals’ identities, and thus design privacy schemes that offer improved
privacy and utility guarantees.

Consideration of other data correlation types In the current state of our
work, we consider landmarks as one-dimensional elements in our problem setting.
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Consequently, we have explored landmark privacy under temporal correlation and
examined the behavior of temporal privacy loss for different landmark percentages
and distributions. Accounting for other possible dimensions, e.g., location, can
introduce more aspects to the current use case of landmark privacy. Indicatively, as
we have extensively studied in Section 2.3, there are many types of data correlation
in time series to further research in the context of landmark privacy.

Incorporation of machine learning Until now, we consider the landmark
discovery and selection process orthogonal to our work. In the future, we aim to
work on automatically learning the initial landmark set by analyzing the input
data sets, semantics, and user preferences. We also plan to introduce learning
for the tuning of our Adaptive scheme parameters, which will further improve its
sampling component and overall utility performance.
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