
HAL Id: tel-04511471
https://hal.science/tel-04511471v2

Submitted on 28 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid combinatorial optimization and machine learning
algorithms for energy efficient water networks

Amirhossein Tavakoli

To cite this version:
Amirhossein Tavakoli. Hybrid combinatorial optimization and machine learning algorithms for energy
efficient water networks. Optimization and Control [math.OC]. Université Côte d’Azur, 2023. English.
�NNT : 2023COAZ4121�. �tel-04511471v2�

https://hal.science/tel-04511471v2
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
Algorithmes hybrides d’optimisation

combinatoire et d’apprentissage
automatique pour l’efficacité

énergétique des réseaux d’eau potable

Amirhossein TAVAKOLI
Centre de mathématiques appliquées, Mines Paris-PSL

20 décembre 2023

Présentée en vue de l’obtention
du grade de docteur en Contrôle,
Optimisation, Prospective
d’Université Côte d’Azur

Dirigée par : Sophie DEMASSEY, maître-
assistante, Mines Paris-PSL
Co-dirigée par : Valentina SESSA, Chargée
de recherche, Mines Paris-PSL
Soutenue le : 20 décembre 2023

Devant le jury, composé de :
Dominique QUADRI, Professeure, Univer-
sité Paris Saclay
Ambros GLEIXNER, Professeur, HTW
Berlin
Laurent VERCOUTER, Professeur, INSA
Rouen Normandie
Viet Hung NGUYEN, Professeur, Univer-
sité Clermont Auvergne

ALGORITHMES HYBRIDES D’OPTIMISATION COMBINATOIRE ET
D’APPRENTISSAGE AUTOMATIQUE POUR L’EFFICACITÉ

ÉNERGÉTIQUE DES RÉSEAUX D’EAU POTABLE

Hybrid combinatorial optimization and machine learning algorithms
for energy efficient water networks

Amirhossein TAVAKOLI

▷◁

Jury :

Rapporteurs
Dominique QUADRI, Professeure, Université Paris Saclay
Ambros GLEIXNER, Professeur, HTW Berlin

Examinateurs
Laurent VERCOUTER, Professeur, INSA Rouen Normandie
Viet Hung NGUYEN, Professeur, Université Clermont Auvergne

Directeur de thèse
Sophie DEMASSEY, maître-assistante, Mines Paris-PSL

Co-directeur de thèse
Valentina SESSA, Chargée de recherche, Mines Paris-PSL

Université Côte d’Azur

Résumé

Les réseaux de distribution d’eau potable sont des systèmes énergivores, en raison
principalement du pompage. Cependant, ils offrent des opportunités de réduction
et de report de charge, grâce aux châteaux d’eau et à leur capacité de stockage.
La gestion opérationnelle optimisée du pompage et du stockage dans les réseaux
d’eau, dite aussi ≪ ordonnancement du pompage ≫, est donc est un levier avan-
tageux pour les réseaux électriques, mais c’est aussi un problème d’optimisation
mathématique complexe. L’objet de cette thèse est la conception d’algorithmes de
résolution efficaces pour un modèle mathématique détaillé, discret et non-convexe.
Contrairement à l’essentiel de la littérature sur le sujet, l’accent est mis sur le cal-
cul de solutions strictement réalisables, éventuellement optimales, pour le modèle
mathématique. Par ailleurs, l’étude s’efforce de lever la complexité algorithmique
du problème engendrée spécifiquement par les contraintes couplantes de stockage et
présente différentes approches pour opérer et exploiter la décomposition temporelle
et spatiale du modèle. Une première contribution porte ainsi sur la conception de
techniques de prétraitement par renforcement de bornes et génération de coupes.
Bornes et coupes sont obtenues par optimisation de relaxations détaillées, mais par-
tielles (sur un horizon temporel tronqué ou une partie du réseau), et permettent de
renforcer une relaxation plus simple (continue et linéaire), mais générale, sur laque-
lle est construit un algorithme d’optimisation globale. Une seconde contribution
porte sur le développement d’un algorithme original d’optimisation locale, de type
≪ Alternating Direction Method ≫, consistant à raffiner progressivement un profil
de stockage jusqu’à aboutir à un ordonnancement du pompage valide associé. En
fixant les contraintes couplantes de stockage, à chaque itération, le modèle discret
non-convexe restreint peut en effet être résolu de manière exacte, par décomposition
temporelle et spatiale. L’algorithme consiste ainsi à reconstruire une solution (un
plan de pompage) réalisable à partir d’une solution (un profil de stockage) approchée
quasi optimale. Si de nombreuses heuristiques de la littérature peuvent être invoquées
pour générer cette solution approchée initiale, nous proposons de l’obtenir en con-
struisant un modèle de données. La troisième contribution de la thèse porte ainsi
sur le développement d’un modèle d’apprentissage profond pouvant s’appuyer sur
l’historique des opérations d’un réseau donné et résultant en un modèle de données
complémentaire au modèle mathématique auquel il est hybridé. Une originalité de
l’approche porte sur son potentiel de mise à l’échelle permettant d’apprendre une
solution pour une discrétisation temporelle fine à partir d’un jeu de données pour
une discrétisation temporelle grossière, et remédier ainsi à la difficulté de génération
des données d’apprentissage. À noter enfin que cet algorithme hybride d’optimisation
combinatoire et de machine learning trouve des applications à d’autres problèmes de
contrôle optimal discret de systèmes avec stockage. L’évaluation empirique a donné

iii

lieu à la génération de jeux de données étendus d’apprentissage et d’expérimentation
sur des réseaux de la littérature et a mis en évidence la performance des algorithmes
exact et approché.

Mots-clés: optimisation mathématique, apprentissage, réseaux hydrauliques

iv

Abstract

Drinking water distribution networks are energy-intensive systems, mainly due to
pumping. However, they offer opportunities for load reduction and shifting, thanks
to water towers and their storage capacity. Optimized operational management of
pumping and storage in water networks, also known as “pump scheduling”, is there-
fore an advantageous lever for electricity networks, but it is also a complex mathemat-
ical optimization problem. The object of this thesis is the design of efficient resolution
algorithms for a detailed, discrete, and non-convex mathematical model. Unlike most
of the literature on the subject, the emphasis is placed on the calculation of strictly
feasible, possibly optimal, solutions of the mathematical model. Furthermore, the
study strives to mitigate the algorithmic complexity of the problem due specifically
to the coupling storage constraints and presents different approaches to operate and
exploit the temporal and spatial decomposition of the model. A first contribution
thus concerns the design of preprocessing techniques for bound tightening and cut
generation. Bounds and cuts are obtained from detailed partial (on a truncated time
horizon or a part of the network) relaxations and make it possible to reinforce a
simpler (continuous and linear) general relaxation, the basis of a global optimization
algorithm. A second contribution concerns the development of an original local opti-
mization algorithm, of the “Alternating Direction Method” type, which progressively
refines a storage profile until reaching the associated valid pump schedule. Indeed,
by fixing the coupling storage constraints at each iteration, the restricted non-convex
discrete model can be solved exactly, by temporal and spatial decomposition. The
algorithm thus recovers a feasible solution (a pumping plan) from a near-feasible
near-optimal solution (a storage profile). If many heuristics from the literature can
be invoked to generate this initial solution, we propose to obtain it by building a data
model. The third contribution of the thesis thus concerns the development of a deep
learning model, relying on the history of operations of a given network, and resulting
in a data model complementary to the hybridized mathematical model. Scalability
is an original feature of the approach, making it possible to learn a solution with a
fine temporal discretization from a dataset for a coarse temporal discretization, thus
remedying the difficulty of dataset generation. Finally, note that this hybrid combina-
torial optimization and machine learning algorithm applies to other discrete optimal
control problems of systems with storage. The empirical evaluation went through the
generation of extensive training and experimentation datasets on networks from the
literature and highlighted the performance of the exact and approximate algorithms.

Keywords: mathematical optimization, machine learning, water networks

v

Acknowledgments

Bewilderingly fast my time for this journey has been over and I am still in the state
of awe and wonder.

I am deeply grateful to Sophie and Valentina for their trust and for offering me
this wonderful position. Words cannot express how fulfilling this job has been for
me, nor can I imagine being as fortunate in the future to find a similar opportunity.
Beyond their intellectual and scientific guidance, I owe them a debt of gratitude for
their unbounded support and patience from the very beginning to the end of my PhD
journey, Thank you!

My appreciation extends to Prof. Dominique Quadri and Prof. Ambros Gleixner
for their invaluable feedback and encouraging words about my PhD manuscript. I
also wish to thank Prof. Laurent Vercouter and Prof. Viet Hung Nguyen for the
interesting and inspiring discussions during my dissertation.

I am thankful to 3IA Côte d’Azur for their generous financial support, which
greatly facilitated our research endeavors. The intellectually vibrant environment at
our institution has been nothing short of inspiring.

My heartfelt gratitude goes out to all the senior researchers at CMA, the direc-
tor, Prof. Nadia Mäızi, the administration, Alice and Amel, the informatics unit,
Sébastien and Damien, and my fellow PhDs and Post-Docs for creating such a splen-
did environment. The meetings and gatherings were invigorating throughout these
years.

A special thanks to my friends, my parents, Hamid and Monireh, and my sister,
Fatemeh, for their unconditional support and for being my haven during difficult
times.

vii

Contents

Résumé . iii

Abstract . v

Acknowledgments . vii

List of Figures . xiii

List of Tables . xv

List of Abbreviations . xvii

Notation . xix

1 Introduction . 1
1.1 Mitigation of energy consumption in water supply networks 1
1.2 The pump scheduling problem . 2
1.3 Mathematical challenges and opportunities 4
1.4 Contributions and organization of the thesis 6

I The Pump Scheduling Problem 8

2 Mathematical Formulation . 9
2.1 Elements of a water network . 9

2.1.1 Nodes . 10
2.1.2 Arcs . 11
2.1.3 Power cost . 15

2.2 Nonconvex MINLP formulation . 15
2.3 A bilevel formulation . 17

2.3.1 The equilibrium problem . 17
2.3.2 Dynamic network and Extended Analysis 19
2.3.3 Graph partition . 20
2.3.4 Bilevel formulation of the pump scheduling 21

2.4 State of the Art . 22

ix

3 Benchmark and Dataset Generation 25
3.1 Existing networks and instances . 25
3.2 Benchmark for optimization . 27
3.3 Historical dataset for supervised learning 29

II Preprocessing for Global Optimization 31

4 The Branch-and-Check Algorithm 33
4.1 Branch-and-Check for Pump Scheduling 34
4.2 Discussion and enhancements . 36
4.3 MILP Relaxations of the Head-Flow Relation 37

4.3.1 Study of the resistance function 37
4.3.2 Convex outer-approximation 38
4.3.3 Piecewise linear relaxation 40
4.3.4 Discretization and disjunctive formulation 41

4.4 Strengthening the Relaxation . 42

5 Bound Tightening . 45
5.1 Optimization-based Bound Tightening 47

5.1.1 Principle . 47
5.1.2 Steady-state relaxation with floating demand 48
5.1.3 Steady-state relaxation with fixed demand profiles 50
5.1.4 Multi-period relaxation for the state variables 51
5.1.5 Probing on related pairs network elements 54
5.1.6 Extended probing and disjunctive programming 54

6 Valid Inequalities Generation . 59
6.1 Minimum cardinality cuts . 59
6.2 Cutset-based inequalities . 61

6.2.1 Coefficient reduction . 62
6.2.2 Mixed Integer Rounding . 63
6.2.3 Flow cover inequalities . 63
6.2.4 Difficulties of minimum cardinality cut generation 65

6.3 Surrogate model . 65

7 Numerical Results . 71
7.1 Computational setup . 71
7.2 Parameters to control bound tightening and cut generation 72
7.3 Effect of preprocessing on selected networks 73

7.3.1 Simple network . 73
7.3.2 Poormond . 74
7.3.3 van Zyl . 83

x

III Combining Machine Learning and Mathematical De-
composition 87

8 Motivation and Literature Review 89
8.1 Decomposition for pump scheduling 89
8.2 Opportunity for machine learning 91
8.3 Literature review on hybrid methods 92

9 An Alternating Direction Method for Pump Scheduling 97
9.1 Principle of ADM and state-of-the-art 97
9.2 Adaptation to the pump scheduling problem 100

10 A Supervised Deep Learning Model 105
10.1 A deep learning approach . 105
10.2 Learning the near-optimal state profiles 107
10.3 Generating multiple starting points for the decomposition algorithm 109
10.4 Scaling to extrapolate the missing dataset 109

11 A Physics Informed Deep Learning Model 113
11.1 A supervised penalty approach . 113
11.2 Training and architecture . 115

11.2.1 A surrogate model to represent physical constraints 116
11.2.2 Data augmentation to train surrogate model 117

12 Numerical Experiments . 119
12.1 Numerical results of the hybrid approach: supervised deep-learning

and decomposition algorithm . 119
12.1.1 Experimental setup . 119
12.1.2 Performance of the supervised learning 121
12.1.3 Performance of the hybrid algorithm 123
12.1.4 Performance of the scaling approach 125

12.2 Numerical results of the hybrid approach: physics informed deep-
learning and decomposition algorithm 126
12.2.1 Experimental setup . 126
12.2.2 Performance of the supervised penalty approach 127
12.2.3 Performance of the hybrid penalty approach 127

13 Conclusions and Prospective for Future Work 131

Bibliography . 135

A Background on the selected deep learning architectures 147
A.1 Long-Short Term Memory (LSTM) 147
A.2 Convolutional Neural Network (CNN) 149

xi

List of Figures

2.1 Typical head-flow relationship in pipes. 13

3.1 van Zyl water network distribution. 26

3.2 Poormond water network distribution 26

3.3 Raw consumption data and the corresponding trend over one year. . 28

3.4 Daily seasonality over a week. 29

4.1 Outer approximation for nonlinear flow-head relationship. 39

5.1 A nonlinear constraint (orange curve) and the OA relaxations com-
puted with the initial bounds of the flow variables (orange space), and
with improved bounds (green space). 46

5.2 A nonlinear constraint (black curve), the OA relaxation computed from
the initial bounds on q (orange), the new relaxation derived from dis-
joint domain intervals for q (blue). 56

6.1 Example of a cutset made of one tank A served by 1 valve a and 4
pumps b, c, d, e. 61

6.2 The graph simplifications and supernodes in Poormond network to
establish new relaxation as a surrogate model. 67

7.1 Bidirectional pipes in Poormond network: the direction of the flow
and, consequently, the outer approximation is dependent on linking
controllable arcs. 77

10.1 Simplified scheme of the proposed CNN-LSTM architecture. 108

11.1 Structure of physics informed model 115

12.1 CNN-LSTM prediction and credible interval w.r.t the ground truth
storage profile. 123

12.2 Comparison of the cost associated with the solution computed by the
hybrid approach using FFW or LSTM-CNN over the test instance
VZ12. 123

12.3 Cumulative instances to find a first feasible solution over benchmarks
VZ24 (left) and VZ48 (right). 126

xiii

A.1 An LSTM cell. 148
A.2 An example of 2D CNN [1] . 150

xiv

List of Tables

3.1 Details of the water networks used as a benchmark. 27

7.1 Effect of the different formulations on the branch-and-check algorithm
for Simple Network with T = 48. 74

7.2 Performance of the bound tightening in terms of domain improvement
Poormond network. 76

7.3 Percentage of dual bounds improvements for Poormond. 79
7.4 Effect of the different formulations on the branch-and-check algorithm

for Poormond with T = 12. 80
7.5 Effect of the different formulations on the branch-and-check algorithm

for Poormond with T = 24. 81
7.6 Effect of the different formulations on the branch-and-check algorithm

for Poormond with T = 48. 82
7.7 Performance of the bound tightening in terms of computational time

and iterations for van Zyl. 84
7.8 Performance of the bound tightening in terms of domain improvement

van Zyl. 84
7.9 Effect of the different formulations on the branch-and-check algorithm

for van Zyl with T = 12. 85
7.10 Effect of the different formulations on the branch-and-check algorithm

for van Zyl with T = 24. 85

12.1 Comparison of the prediction accuracy of CNN-LSTM network and the
FFW network over test instances VZ12. 122

12.2 Performance: computation time in seconds. 124
12.3 Performance: estimated optimality gap in %. 125
12.4 Prediction accuracy of the physics-informed network for predicting the

binary variable over the test instances VZ12. 128
12.5 Performance: computation time in seconds. 128
12.6 Performance: estimated optimality gap in %. 129

xv

List of Abbreviations

ADM Alternating Direction Method
ADMM Alternating Direction Method of Multipliers
BB Branch and Bound
CNN Convolutional Neural Network
DL Deep Learning
DWDN Drinking Water Distribution Network
EAA Extended Analysis Algorithm
FC Fully Connected layer
FFW Feed ForWard
HA Hybrid Algorithm
KKT Karush–Kuhn–Tucker
LSTM Long-Short Term Memory
MAE Mean Absolute Error
MSE Mean Square Error
MINLP Mixed Integer Nonlinear Programming
MIR Mixed Integer Rounding
ML Machine Learning
NN Neural Network
OBBT Optimization-based Bound Tightening Techniques
PADM Penalty Alternating Direction Method
PWL PieceWise Linear

xvii

Notation

A Arcs
AL Pipes
AK Pumps
AV Valves

Ȧ Controllable arcs (Ȧ = AK

⋃
AV)

J Nodes
C Reservoirs
S Service nodes

Ċ Tanks
T Discretized time horizon (T = {0, ..., T − 1})
T Number of periods (T = |T |)
T̄ Extended time horizon (T̄ = T ∪ T)
Eaj Incidence matrix of a graph defined for all a ∈ A and j ∈ J
qta Flow through a ∈ A at t ∈ T
qJtj Inflow at j ∈ J and t ∈ T (qJtj =

∑
a∈ȦEajqta)

htj Hydraulic head at j ∈ J and t ∈ T̄
Htj Hydraulic head at j ∈ C and t ∈ T̄
vta Head loss through a ∈ A at t ∈ T (vta = −

∑
j∈J Eajhtj)

Dtj Forecasted water demand at j ∈ S and t ∈ T
xta Status of the controllable arcs a ∈ Ȧ and t ∈ T (xat ∈ {0, 1})
Ct Tariff at t ∈ T

xix

Chapter 1

Introduction

1.1 Mitigation of energy consumption in water

supply networks

Given that water demand is expected to increase up to 50% globally by 2050 based
on UN estimation, the water utilities are under great strain to supply the increasing
demand. Growing population and climate change are the main factors driving the
continued growth in demand. The sustainability of such infrastructure requires an
optimal design and operation of the water network. Approximately 4% of all electric-
ity consumption in OECD areas is merely devoted to water network facilities [2]. As a
result, a slight improvement in the operation of water networks leads to a substantial
reduction in energy consumption and cost reduction.

The primary focus of this thesis is the optimal operation of the pumps in drinking
water distribution networks. The aim of this decision-making problem is to plan
the pumping operations to minimize the energy bill over a future period, e.g., a day
ahead. The complexity of the problem increases when considering an electricity tariff
and water demands varying over the period. Dynamic tariffs are designed to flatten
the global energy consumption peaks and to mitigate the induced carbon emissions.
Indeed, they provide a major incentive for load shifting in flexible energy-intensive
industries, i.e., they motivate the operators to shift the energy consumption to low
tariff periods.

Since the demands for drinking water and electricity share the same dynamic of

1

the human local activity, load shifting in drinking water distribution networks means
decoupling pump operation and water supply. It is made possible by the storage
capacity provided by the elevated water tanks. The water tanks provide an oppor-
tunity to leverage the low tariff periods and avoid pumping during peak hours when
the demand for water and the cost of electricity are both high. Therefore, plan-
ning the pumping regarding dynamic tariffs and demand forecasts with the objective
of minimizing the electricity bill yields an implementation of optimal load shifting in
drinking water distribution networks. As a result, it has both economic and ecological
impacts.

Historically, the pumping operations were driven by the two-rates day/night elec-
tricity tariffs. In this scheme, pumps are operated at night to fill in the water tanks,
but they need to be operated at a higher day rate if the tank capacities do not cover
the water demand for the whole day. The optimal management relies then on a dif-
ferent automated strategy based on the use of trigger levels: the decision bears on
the minimum and maximum levels of water in the tanks to activate and stop the
pumps [3]. This strategy does not apply to more dynamic electricity tariffs, which
involves renewable energy sources integrated into electricity production [4].

In a non-automated setting, human operators rely on their expertise and on-
demand forecasts to operate the pumps in real-time. Their decision can be assisted
or simulated in real-time, e.g., with a Reinforcement Learning approach [5], or in
anticipation, given a plan of pumping over a future period, typically the day ahead.
Such a plan results from solving an optimization problem named the pump schedul-
ing problem. Depending on the accuracy of the model and of the forecasts, pump
scheduling optimization could also be attached to a controller and integrated into
a fully automated system. However, the computational complexity of an accurate
representation of this optimization problem jeopardizes this strategy.

1.2 The pump scheduling problem

Namely, the pump scheduling problem is defined as an optimal control problem over
a discrete-time finite horizon. The activity of the pumps, and also of the valves,
must be decided at every step of the time horizon in order to satisfy the forecasted
demand on each period and to minimize the pumping electricity cost over the whole
horizon. The decision is discrete, as pumps and gate valves are either on or off at every
time instant. The activity of a variable-speed pump or a pressure-reducing valve also
depends on a continuous characteristic (the variable speed or the pressure reduction),
but these types of elements are not considered in the present thesis (neither in the

2

major part of the literature on pump scheduling).

The transport of water in the network is assumed stationary on each period. It is
represented as a flow through the network arcs (pipes, pumps, valves) induced by the
potentials at the network nodes (sources, tanks, service nodes). The potential also
called the hydraulic head, is a measure of energy. Due to frictions, a pipe provides
resistance to the water passing through it and induces a head loss between its bounds.
On the contrary, a pump (if on) converts electrical energy into hydraulic energy,
inducing a head gain between its bounds. The relationship between the flow and the
head loss/gain through an arc is usually nonlinear.

A demand profile is attached to each service node, fixing the inflow supplied to
the node at each time step. The water tanks are not mere passive entities, but
dynamic elements with variable stored volumes, subject to lower and upper limits. It
is commonly assumed that the hydraulic head at a tank is linearly dependent on the
volume stored.

Many other physical concerns can be integrated into the problem definition, like
pump aging prevention, water quality, water leakage, limited sources, etc. However,
the pump scheduling problem is already hard in its simplest definition.

Clearly, the dimension of the tanks plays a significant role in the difficulty of this
problem: if tanks are oversized compared to the demand, they can be considered
as infinite buffers and loaded at low-price periods. Still, even if realistic (which it
is not), the uncapacitated variant of pump scheduling is challenging because of the
nonlinear/nonconvex behavior of the pumps. The limited capacity of the tanks also
interferes with the dimension of the pumps, their binary status (on/off), and the
granularity of the time discretization. Indeed, the capacity of a small tank could be
systematically exceeded when switching on a powerful pump for the duration of a
time step. A fine-grained time resolution is then required to give enough flexibility
to the schedule, but the scale of the problem increases proportionately. Finally,
storage management at tanks yields temporal interdependencies, which prevent the
decomposition of the problem into single-period static subproblems.

In summary, the pump scheduling problem appears as a large-scale discrete non-
convex problem intertwined through both temporal and spatial dimensions. This
is further emphasized in networks with abundant physical elements (pumps, pipes,
tanks, etc.), each of which brings its layer of complexity and, collectively, exacerbates
the computational challenge. We described how the water tanks act as pivotal bot-
tlenecks in the optimization schema due to their inherent capacity limits and induced
temporal dependency. Yet, the central role of the tanks in the seeming complexity
and underlying structure of the pump scheduling problem unveils opportunities to

3

help solve the problem. One purpose of this thesis is to explore, after others, these
opportunities.

1.3 Mathematical challenges and opportunities

Despite recent impressive advances in mathematical optimization, simultaneous han-
dling of nonlinearity/nonconvexity and integrality remains intractable for relatively
small-scale problems. The pump scheduling problem allows a formulation as a non-
convex mixed-integer nonlinear program (MINLP). Off-the-shelf nonconvex MINLP
solvers (or global optimization solvers, when exact) could tackle only toy instances [6]
and quickly struggle to even find feasible solutions as the instance size increases. As
a result, to realize the optimization of the pump scheduling problem, some machi-
nations must be taken. In general, the approaches to tackling this problem can be
categorized into two major classes.

In mathematical programming approaches, the computational complexity is re-
duced by approximating the nonlinear resistance relations (typically as linear or
piecewise linear functions) or by ignoring the integrality constraints. More accurate
approximations induce a higher possibility of ending up with an operable solution, but
simultaneously, less efficient algorithms. An acceptable trade-off between accuracy
and complexity may not always be found.

In metaheuristics approaches, the nonlinear constraints are handled accurately
with a stand-alone hydraulic simulator, but the search in the discrete space of the
solutions is incomplete and is unaware of the global structure of the problem. Previous
works in this line also often overcome the feasibility issue by softening the tank limits,
i.e., they relax and penalize the violations in the objective. Hence, the computed
solutions are provided without a certificate of optimality or even feasibility.

Still, the metaheuristic approaches exploit an important characteristic of the pump
scheduling problem: when the binary scheduling decisions are all fixed (i.e., the status
of the pumps is known at every period), the resulting nonlinear restricted problem
has at most one possible solution, which is easy to compute by applying (through
a hydraulic simulator such as EPANET [7]) a Newton method on the successive
periods, while updating the tank levels/heads progressively. In this framework, the
pump scheduling problem is seen as a bilevel program with the binary variables at
the upper level and the nonlinear constraints at the lower level.

This property has also been considered in mathematical programming approaches

4

(but without formulating the bilevel model explicitly): Naoum-Sawaya et al. [8] drive
the search in the upper-level space with logic Benders decomposition, Costa et al. [9]
evaluate all the binary schedules explicitly. Several works implement an implicit
(but possibly exhaustive) search by evaluating only the schedules feasible for a given
mixed-integer linear programming (MILP) relaxation tackled with either cut gener-
ation (in the manner of Outer-Approximation) [10, 11] or branch-and-bound (in the
manner of Branch-and-Check) [6, 12]. These last approaches benefit from very com-
petitive MILP solvers to navigate the discrete search space and simulation to tackle
the nonlinear constraints efficiently. Still, they highly depend on the quality of the
MILP relaxation: schedules that are feasible for the MILP relaxation but not for the
nonconvex MINLP problem are evaluated in vain, and these approaches suffer from
the scarcity and sparsity of the nonconvex feasible solutions. Moreover, optimizing
over the MILP relaxation alone is often already challenging for modern MILP solvers
due to its scheduling nature with many symmetries and a dense objective function.
Finally, because of a lack of benchmark test sets, it is hard to compare empirically
all these methods.

In light of all these works, the pump scheduling problem appears as a very challeng-
ing nonconvex MINLP problem, mainly because of its dynamic (sequence-dependent)
and combinatorial nature. However, this property provides a strong opportunity both
to decompose the problem and to process the nonconvex constraints. This attribute
can be found in other water optimization problems, such as in the static pipe lay-
out/design problem and in different energy infrastructural systems (e.g., for crude
oil or natural gas), which share the same potential-driven flow network structure.
Studies on the pump scheduling problem may thus benefit other practical problems.
On another note, computing a strictly feasible solution for this MINLP is already a
challenge by itself, which is often neglected in previous approaches, probably because
it is less of an issue in practice. However, computing feasible solutions is important
when the goal is to develop reliable MINLP algorithms, not just to address a practical
problem.

Finally, learning algorithms emerged in this domain, not only to forecast the de-
mand but also to operate the water networks by drawing on the history of the op-
erations. A data-based model could be complementary to a mathematical model,
and ways to combine them are yet to be deeply investigated for nonconvex MINLP
optimization in general, and for the pump scheduling problem in particular.

5

1.4 Contributions and organization of the thesis

This thesis contributes to the pump scheduling problem in various aspects in response
to the above observations.

The primary goal is to take advantage of the near-decomposable structure of the
problem to devise or enhance optimization algorithms. We consider two algorithms,
exact and heuristic, focusing on the strict feasibility of the solutions regarding the
MINLP formulation. In the exact algorithm, we address the limitations of the branch-
and-check approaches by improving the MILP relaxation with optimization-based
bound tightening and cut generation. By “optimization-based”, we mean to solve
auxiliary optimization problems to derive bounds and cuts. These auxiliary problems
are built to take advantage of the problem decomposition. Regarding the heuristic,
we devise an original variable-splitting algorithm akin to the classical alternative
direction method (ADM). In this context, we also present two deep-learning (DL)
architectures tailored to the pump scheduling problem, capable of learning a subset
of the optimal solution. As a natural way to combine the decomposition algorithm
with a learning strategy, we propose initializing ADM with the DL approximate
solutions. From a different perspective, this strategy can also be seen as the use of
ADM to recover feasibility from the DL approximate solutions.

On the sidelines, we make several theoretical and practical contributions to the
study of the pump scheduling problem. From the theoretical side, we notably exhibit
the bilevel structure of the problem and the relation with the general concepts of
nonlinear flow networks and monotropic programming [13]. From the practical side,
we developed a benchmark test set to compare optimization algorithms, as well as a
methodology to build datasets from benchmark networks to train learning algorithms
when no historical operational data is available. All our codes are available online.

Finally, we discuss bridges between our algorithms and optimization problems be-
yond pump scheduling. Hence, some cutting-planes that we present are not only valid
for water network distribution but also for other types of capacitated flow networks.
Moreover, our variable-splitting algorithm applies to various discrete control problems
of systems which includes storage.

The present document is organized as follows:

We present the pump scheduling problem in Part I. The problem is defined and
formulated as a MINLP in Chapter 2. We also exhibit the bilevel formulation and

6

relate it to the concepts of nonlinear flow networks. We then review some mathemat-
ical optimization approaches in the literature. Chapter 3 describes the benchmark
test set and the dataset generation.

Part II is dedicated to the exact algorithm. We recall the branch-and-check al-
gorithm of [6] in Chapter 4 and discuss its limitation, regarding the strength of the
MILP relaxation in particular. We present our Optimization-Based Bound Tightening
(OBBT) techniques in Chapter 5 and our cut generation in Chapter 6. Computational
experiments are presented in Chapter 7.

Part III is dedicated to the heuristic algorithm. In Chapter 8, we detail the moti-
vation behind our algorithm and review the recent literature on the hybridization of
machine learning and mathematical optimization. We present the principle of ADMs
and our variable splitting approach in Chapter 9. We present two different DL archi-
tectures in Chapter 10 and Chapter 11. Computational experiments are presented in
Chapter 12.

Finally, a conclusion and some perspectives for future works are discussed in Chap-
ter 13.

Some background on deep learning is provided in Appendix A.

Part II (exact algorithm with OBBT and cut generation) has been partly published
in the proceedings of the conference ICAE 2022 (International Conference on Applied
Energy) [14]. Part III (heuristic algorithm with ADM and DL) has been partly
submitted to the AAAI’2023 conference.

7

Part I

The Pump Scheduling Problem

8

Chapter 2

Mathematical Formulation

This chapter introduces the pump scheduling problem and its standard mathematical
formulation. A good description of the physical meanings of this mathematical model
can be found in [6, 15]. The appellation pump scheduling covers many variants, and
we study, in this thesis, one of the most common variant, which includes: discretized
horizon with stationary operations, only fixed speed-drive pumps and gate valves,
aging constraints, no leakage, no maximum withdrawal, etc. In Section 2.3, we also
explicit a bilevel formulation of the problem including the nonlinear flow equilibrium
problem at the inner level.

2.1 Elements of a water network

A Drinking Water Distribution Network, DWDN, is represented as a simple directed
graph G = (J ,A) with nodes J and arcs A ⊆ J × J (see e.g. Figures 3.1 and 3.2).
Let E ∈ {0, 1,−1}A×J denote the incidence matrix of G, defined for all arc a ∈ A
and node j ∈ J by:

Eaj =

1 if arc a enters node j (i.e. a ∈ J × {j}),
−1 if arc a leaves node j (i.e. a ∈ {j} × J),
0 otherwise.

Nodes J are categorized into service nodes S and reservoirs C, and reservoirs are
divided into tanks Ċ and sources C \ Ċ. Arcs A are divided into pipes AL, pumps

9

AK and valves AV . Pumps and valves are said to be controllable, AK

⋃
AV = Ȧ.

The scheduling horizon is discretized in T periods, t ∈ T = {0, ..., T − 1} of fixed
length ∆ (for example, we may consider one day with T = 24 and ∆ = 1 hour). We
denote T = T ∪{T}. We assume that the network is in a stationary state during each
period t ∈ T . In particular, the controllable arcs can be commanded only at time
instants t ∈ T , and we neglect the turbulence due to the change of state between two
consecutive periods.

The transport of the water in the network is then characterized by the flow qta ∈ R
(measured, e.g., in liter per second, L/s) going through each arc a ∈ A during a
period t ∈ T , with the convention that qta ≥ 0 if water flows in the direction of the
arc, and qta ≤ 0 if water flows in the opposite direction. We assume that qta ≥ 0
if arc a is unidirectional. The inflow (L/s) at a node j ∈ J is then defined as
qJtj =

∑
a∈AEajqta.

The movement of the water is induced by its potential or pressure at the nodes of
the network. The potential is also known as the hydraulic or piezometric head (in
meters), which measures the sum of the geographical elevation and the water pressure
head. As for the flow, we assume that the hydraulic head htj ∈ R+ is constant during
each period t ∈ T for each node j ∈ J . The head loss (in meters) through an arc
a ∈ A, i.e., the difference of head between its origin and destination, is then defined
as vta = −

∑
j∈J Eajhtj.

2.1.1 Nodes

Service nodes. A node j ∈ S represents either an arc junction or a service node
from which the water is delivered to groups of consumers. Flow conservation and
demand satisfaction at these kind of nodes are enforced as follows:

qJtj = Dtj, ∀t ∈ T , j ∈ S

where Dtj ∈ R denotes the forecasted demand (in L/s) on period t ∈ T if j ∈ S is a
service node or Dtj = 0 if it is a simple junction. Besides, the water has to be served
within a certain pressure range (given in m):

htj ∈ [Hj, Hj] ⊂ R+, ∀t ∈ T , j ∈ S

10

Sources. They are represented as nodes j ∈ C \ Ċ from which the water is supplied
to consumers. The source nodes are assumed to have a known hydraulic head (given
in meters) at any time, which we model as:

htj ∈ [H tj, H tj], with H tj = H tj ∈ R+, ∀t ∈ T , j ∈ C \ Ċ

Tanks. They are utilities to store and discharge the water in the network. We
assume tanks are cylinders of known surface lying at a known elevation. Consequently,
the hydraulic head at a tank node j ∈ Ċ is linearly related to the height of the water
in the cylinder, thus to the volume and the inflow. Therefore, flow conservation at
these nodes can be written as follows:

σjq
J
tj = h(t+1)j − htj ∀t ∈ T , j ∈ Ċ,

where σj = ∆
Sj
∈ R+ (with Sj the surface of the tank) is the linear factor between

volume and head variation during a time period.

The tanks have limited capacities (in volume/height), which can be written as
lower and upper bounds (in m) on the head values:

htj ∈ [Hj, Hj] ⊂ R+ ∀t ∈ T , j ∈ Ċ.

Pump scheduling is typically repeated every day, and the initial volume of the tanks
at t = 0 is assumed to be known from the day before. In addition, the objective to
minimize the energy costs tends to empty the tanks at the end of the schedule. With
a high forecasted demand to satisfy at the beginning of the consecutive day, there
would be a risk that pumps are not able to fulfill the requested consumption; there
ought to be enough stored water in the tanks to intervene. It is thus reasonable to
enforce that the levels of the tanks at the end of the horizon are not below their initial
levels:

hTj ≥ h0j = H0j ∀j ∈ Ċ.

In a tank j ∈ Ċ, a positive inflow qjt ≥ 0 is considered as water storage and a negative
inflow as discharge.

2.1.2 Arcs

Pipes. They are responsible for transporting the water inside the network. They
are represented as arcs a ∈ AL in the graph, directed according to the orientation

11

of the water. In particular, if a pipe a = (i, j) ∈ AL is unidirectional, then water is
assumed to pass from node i to j and the flow value is positive, otherwise, if the pipe
is bidirectional, the water may also pass from j to i, and then the flow value would
be negative. Hence, we have the following constraint for unidirectional pipes:

qta ≥ 0 ∀t ∈ T .

The flow passing through a pipe creates friction, inducing a head loss between the
extremities of the pipe. Typically the head loss relationship is described by Darcy-
Weisbach equation:

vta =
8Laτaqa|qa|
π2gD5

a

and the Hazen-Williams equation:

10.7Laqa|q0.852a |
κ1.852a D4.8704

a

In this thesis, following [6, 16, 17], the nonlinear relation of the head loss through a
pipe are fitted as quadratic relationships:

vta = ψa(qta) = Aaqta|qta|+Baqta ∀t ∈ T , aAL.

The parameters Aa > 0 and Ba ≥ 0 are obtained by extrapolating the experiments to
have injective function representing the head loss relationship. This guarantees the
strict convexity of the solution and the uniqueness of the head-flow relationship (see
Section 2.3.1).

Gate valves. They are used to fully opening and closing a pipe. Note, that in this
thesis, we do not consider other types of valves like ball valves or pressure-reducing
valves. Since gate valves are implemented on pipes, we model an integrated pair of
pipe and valve as one controlled arc a = (i, j) ∈ AV inheriting from the characteristics
of the pipe (in particular the resistance function ψa). A gate valve has two possible
states: when closed, water passes through it, and when open, water is stopped, and
the hydraulic heads upstream and downstream are decoupled. The states are modeled
as binary variables: xta = 1 if the valve a ∈ AV is closed at period t ∈ T , and xta = 0
if the valve is closed. Therefore, flow and head loss through a pipe equipped with a

12

Figure 2.1: Typical head-flow relationship in pipes.

valve a ∈ AV are modeled as for simple pipes, but with a boolean condition:

xta ∈ {0, 1}, qta ∈ R, vta ∈ R ∀t ∈ T , a ∈ AV

xta = 0 =⇒ qta = 0, ∀t ∈ T , a ∈ AV

xta = 1 =⇒ vta = ψa(qta), ∀t ∈ T , a ∈ AV

Pumps. They are powered to increase the hydraulic head at some network nodes.
They are represented as controllable arcs a ∈ AK , directed according to the flow (i.e.,
qta ≥ 0 for all t ∈ T). In this thesis, we only consider fixed-speed pumps with only
two possible states (on or off), which can be changed only at time steps t ∈ T . As
for gate valves, we thus model the status of the pumps with binary variables:

xta ∈ {0, 1}, ∀t ∈ T , a ∈ AK .

When a pump a = (i, j) ∈ AK is off (i.e., xta = 0), it acts like an open valve (as if the
arc were removed from the graph). When the pump is on (i.e., xta = 1), it permits
the flow to pass from i to j, in the operational limits [Q

a
, Qa] ⊆ R+ of the pump.

Together with the pump status, these limits can be modeled as follows:

xta = 0 =⇒ qta = 0, ∀t ∈ T , a ∈ AK

xta = 1 =⇒ qta ∈ [Q
a
, Qa], ∀t ∈ T , a ∈ AK .

13

Following [15, 18], we model the head increase (i.e., the opposite of the head loss
vta) as a quadratic function of the flow q ≥ 0 passing through the pump:

−ψa(q) = Aaq
2 +Baqa + Ca.

in which we assume strictly concave function to describe head gain. The conditional
relation between status, head and flow, can then be modeled as follows:

xta = 1 =⇒ vta = ψa(qta), ∀t ∈ T , a ∈ AK .

Following [15] for fixed speed pumps again, we assume that the electric power
consumption (kW) of a pump is linear in the flow q passing through it, with an
additional cost when the pump is active (x = 1):

γa(x, q) = γ0ax+ γ1aq

where γ0a, γ
1
a > 0 are parameters computed empirically and provided by the pump

manufacturer.

To mitigate the aging of the pumps, we may consider additional constraints on the
number and frequency of operations. To this purpose, Ghaddar et al. [4] introduced
the following constraints:∑

t∈T

uta ≤ N, ∀a ∈ AK

uta ≥ xta − x(t−1)a, ∀t ∈ T , a ∈ AK

uta ≤ xt′a, ∀t, t′ ∈ T : 0 < t ≤ t′ ≤ t+ τ 1a , a ∈ AK

wta ≥ x(t−1)a − xta, ∀t ∈ T , a ∈ AK

wta ≤ 1− xt′a ∀t, t′ ∈ T : 0 < t ≤ t′ < t+ τ 0a , a ∈ AK

uta, wta ∈ {0, 1} ∀t ∈ T , a ∈ AK ,

where the additional binary variables (uta and wta) models the switching operation
(on and off) of a pump a ∈ AK at time step t ∈ T . The first constraint sets
a maximum number of times N ∈ Z∗

+ that a pump can be switched on. The other
constraints fix the minimum number of consecutive periods that a pump has to remain
on (τ 1a ∈ Z∗

+) and off (τ 0a ∈ Z∗
+). These constraints define a discrete set modeled as

an integer polyhedron Xa ⊆ {0, 1}T , which defines the domain of the schedule for a
given pump a ∈ AK :

(xta)t∈T ∈ Xa.

14

2.1.3 Power cost

The prime objective for the water network operator is to satisfy the demand while
minimizing the energy bill. When following a given electricity tariff profile C ∈ RT

(kWh), this objective ties up with optimizing the energy consumption by limiting
and delaying the pumping thoroughly on the time horizon.

We then consider the following objective function to be minimized [6]:∑
t∈T

∑
a∈AK

c0taxta + c1taqta,

with cita = Ct∆γ
i
a,∀t ∈ T , a ∈ AK , i = {0, 1}.

2.2 Nonconvex MINLP formulation

We can elaborate a mathematical program for the pump scheduling problem after re-
formulating the logical relations involving the binary variables as analytical functions.
There are different ways to handle logical relations of the following type:

x = 1 =⇒ f(y) ≤ 0, x ∈ {0, 1}, y ∈ Rn,

where f is a non-constant function. The above relation indicates that the inequality
is deactivated when the binary variable x is zero.

The most famous modeling trick in MILP is the big-M reformulation or indicator
constraints [19]:

f(y) ≤M(1− x)

which requires knowing a valid upper bound M on f , i.e., f(y) ≤M for any solution
(x, y) of the problem such that x = 0. Indeed, if f is linear, the big-M reformulation
remains linear, however, obtaining a valid bound M is not always trivial. Further-
more, ifM must be chosen as a large value (compared to the other data in the model)
to be valid, then it may induce a poor LP relaxation as well as possible numerical
issues.

15

In the context of nonlinear programming, one may use the complementary refor-
mulation instead:

f(y)x ≤ 0

which creates a nonlinear nonconvex constraint involving a bilinear term xy, for ex-
ample, if f is linear.

Finally, note that indicator constraints are now available in the API of several
off-the-shelf MILP solvers when f is linear. Their implementation, for instance, in
the SCIP solver [20] leads to the reformulation:

f(y) ≤ s, s ≥ 0, SOS1(x, s)

This introduces a slack variable s, and the Special Ordered Set of type 1 (SOS1)
condition enforces at most one of x and s to be nonzero.

In the literature on pump scheduling, the big-M reformulation is often observed, in
particular, in MILP approaches based on piecewise linear relaxations or approxima-
tions of the nonlinear constraints. In this context, big-M values of reasonable size can
be easily retrieved from the analysis of the problem. Computing tight big-M values
is precisely the topic of our work presented in Chapter 5.

We first formulate the pump scheduling as a MINLP using big-M reformulations
of the indicator constraints. We then introduce bounds [Q,Q] and [V , V] on the flow
q and head loss v variables, which are either specified exogenously or computed at a
preprocessing step. Also, we homogenize the nodal constraints by introducing time-
indexed bounds on the head variables h. If not specified, the lower bounds H is set
to −∞, and upper bounds H to +∞.

To get a unified notation and a synthetic model, we introduce a constant xta = 1
for each non-controllable arc (i.e., simple pipe) a ∈ AL = A \ Ȧ and for each time
t ∈ T . We thus use the notation (xta)t∈T ∈ Xa, with Xa = {(1)t∈T } for a simple pipe
a ∈ AL, and Xa = {0, 1}T for a pipe with valve a ∈ AV . The cost function is also
extended to pipes by setting c0ta = c1ta = 0 for all a ∈ AL ∪ AV .

16

The pump scheduling is then formulated as the following MINLP:

(P) :min
x,q,h

∑
t∈T

∑
a∈A

(c0taxta + c1taqta) (2.2)

s.t: qJtj = Dtj, ∀j ∈ S,∀t ∈ T (2.3)

qJtj = σj(h(t+1)j − htj), ∀j ∈ Ċ,∀t ∈ T (2.4)

V ta(1− xta) ≤ vta − ψa(qta) ≤ V ta(1− xta) ∀a ∈ A,∀t ∈ T (2.5)

Q
ta
xta ≤ qta ≤ Qtaxta, ∀a ∈ A,∀t ∈ T (2.6)

H tj ≤ htj ≤ H tj, ∀j ∈ J ,∀t ∈ T (2.7)

xa ∈ Xa ⊆ {0, 1}T ∀a ∈ A. (2.8)

The above problem is quadratically constrained and nonconvex.

2.3 A bilevel formulation

If the monolithic MINLP above is the most encountered formulation for the pump
scheduling problem, a large share of the literature dedicated to this problem considers
implicitly a bilevel formulation in the solution process. This is the case in many
simulation-based metaheuristics and in decomposition or exact approaches [6, 21]. All
these methods rely on the fact that once all binary variables are fixed, the problem
reduces to compute a flow-head equilibrium at every time step sequentially. Therefore,
the problem can be seen as a bilevel program with binary variables (the scheduling
decisions) at the upper level and nonlinear constraints (the resistance relations) at
the lower level, which are the KKT conditions of an inner strictly convex subproblem.

2.3.1 The equilibrium problem

Given any vectors H ∈ RC, D ∈ RS , we define the equilibrium problem on graph G as
computing an element in the following set:

E(H,D) = {(q, h) ∈ RA × RS : (2.9)

va = ψa(qa), ∀a ∈ A, (2.10)

qJj = Dj, ∀j ∈ S} (2.11)

17

where qJj :=
∑

a∈AEajqa the inflow at node j ∈ J and va := −
∑

j∈S Eajhj −∑
j∈C EajHj the head loss on arc a ∈ A.

The elements of E(H,D) are the primal/dual optimal pairs of the following NLP:

(EP (H,D)) : min
q∈RA

{ f(q) :=
∑
a∈A

Ψa(qa) +
∑
j∈C

Hjq
J
j : qJj = Dj, ∀j ∈ S }.

where Ψa is the antiderivative of ψa passing through 0 for each arc a ∈ A.

Indeed, (EP (H,D)) is a linearly-constrained convex NLP, thus strong duality holds
and the primal/dual pairs are the stationary point of the Lagrangian function

L(H,D)(q, h) = f(q)+
∑
j∈S

hj(q
J
j −Dj) =

∑
a∈A

(Ψa(qa)+
∑
j∈C

EajHjqa+
∑
j∈S

Eajhjqa)−
∑
j∈S

Djhj

Thus,

L(H,D)(q, h) =
∑
a∈A

(Ψa(qa)− vaqa)−
∑
j∈S

Djhj,

and its stationary points (q, h) ∈ RA×S are defined by ∂L
∂qa

(q, h) = ψa(qa) − va = 0

and ∂L
∂hj

(q, h) = qJj − Dj = 0. The set E(H,D) is then the set of KKT solutions of

the NLP (EP (H,D)).

The objective function f is actually a measure of the total energy dissipation in
the network induced by the resistance on the arcs, thus the equilibrium corresponds
to a flow with minimal energy dissipation.

Under our assumption, the functions ψa are bijective on R for every a ∈ A, and
their antiderivatives Ψa are strictly convex. As a consequence, the objective function
f(q) is strictly convex and the optimal/dual solution is thus unique. Furthermore,
because it is separable, we easily obtain the dual formulation. Indeed, for any dual
vector h ∈ RS , L(H,D)(., h) reaches its minimum at q = (ψ−1

a (va))a∈A, thus the La-
grangian dual problem can be written as follows (taking the opposite optimum value):

(ED(H,D)) : max
h∈RS

min
q∈RA

L(q, h) = min
h∈RS

g(h) :=
∑
a∈A

Ψ∗
a(va) +

∑
j∈S

Djhj.

where Ψ∗
a : v ∈ R 7→ maxq∈R(vq − Ψa(q)) = −Ψa(ψ

−1
a (v)) + vψ−1

a (v) is the convex
conjugate of Ψa, ∀a ∈ A.

The results above have been studied in the more general context of nonlinear flow

18

networks and monotropic programming by Rockafellar [13]. In [13], models (EP)
and (ED) are referred to, respectively, optimal distribution and optimal differential
problems, where Ψa are the nonlinear flow cost functions on each arc a. Collins [22]
also studied these models in the context of hydraulic networks, referring to them as
the content and co-content models.

The equilibrium problem above is the base of hydraulic simulation tools, such as
EPANET [7]. It is usually solved with the Newton-Raphson technique to compute
(q, h) as a solution of the equation system ∇L(q, h) = 0, that is, following the algo-
rithm formalized by Todini and Pilati [23].

2.3.2 Dynamic network and Extended Analysis

The pump scheduling problem appears as solving the equilibrium problem in a dy-
namic network, where vectors H and D change at each time step, so as the graph
changes with the activation of the controllable arcs. Precisely, given a schedule
x ∈ {0, 1}T A of the pumps and valves over the whole horizon, we can check if it
corresponds to a feasible solution for the pump scheduling problem by, progressively,
for each t ∈ T , computing a solution (qt, ht) of an equilibrium problem in the active
subgraph of G defined by xt. Afterward, we can update the tank heads ht+1 according
to (2.4). This is known as the Extended Analysis Algorithm [24] as detailed below in
Algorithm 1. Note that the given schedule is unfeasible if the value of the hydraulic
heads does not satisfy the tank capacities (2.7) at some t.

We first introduce the following notation for restricting the equilibrium problem
to the subgraph of G defined by a vector x ∈ {0, 1}A, with H ∈ RC and D ∈ RS:

E(H,D, x) = {(q, h) ∈ RA × RS : (2.12)

qa = 0, ∀a ∈ A : xa = 0, (2.13)

va = ψa(qa), ∀a ∈ A : xa = 1, (2.14)

qJj = Dj, ∀j ∈ S} (2.15)

19

Algorithm 1 Extended Analysis Algorithm

Input H0 ∈ RC, x ∈ {0, 1}T A

Output a feasible solution of P or the first period for a violation

1: for t ∈ T do:
2: compute (qt, ht) ∈ E(Ht, Dt, xt)

3: compute Ht+1 = Ht +
qJt
σ

4: if Ht+1 ̸∈ [H t+1, H t+1] then:
5: return t
6: end if
7: end for
8: return (x, q, h)

2.3.3 Graph partition

In addition to temporal decomposition, we can spatially decompose the pump schedul-
ing problem once the level of the tanks is known, following a graph partition along
the reservoirs. The rationale is that the flow and head of arcs and nodes belonging
to a subgraph are only determined by pump status and levels of the tanks in the
subgraph at each time step.

Precisely, the equilibrium problem is separable given any partition of G along nodes
in C. Indeed, consider a partition of G into subgraphs Gb = (J b,Ab) ⊆ G for b ∈ B,
such that A =

⊔
b∈B Ab (disjoint union) and J b ∩ J b′ ⊆ C, ∀b, b′ ∈ B, b ̸= b′. Since

any arc a ∈ A and node j ∈ S belongs to exactly one subgraph Gb, then (q, h) is an
equilibrium on G if and only if its restriction is an equilibrium on every subgraph Gb,
that is:

(q, h) ∈ E(H,D) ⇐⇒ (qb, hb) ∈ E(Hb, Db) ∀b ∈ B,

where b ∈ B as an exponent denotes the restriction of the vectors to elements of Gb,
i.e., qb = (qa)a∈Ab , hb = (hj)j∈S∩J b , Db = (Dj)j∈S∩J b and Hb = (Hj)j∈C∩J b .

20

2.3.4 Bilevel formulation of the pump scheduling

Finally, we can reformulate the pump scheduling problem as follows:

(P) : min
x,q,h,H

∑
t∈T

∑
a∈A

(c0txta + c1t qta) (2.16)

s.t: (qt, ht) ∈ E(Ht, Dt, xt), ∀t ∈ T (2.17)

qCtj = σj(H(t+1)j −Htj), ∀j ∈ Ċ,∀t ∈ T (2.18)

H tj ≤ Htj ≤ H tj, ∀j ∈ C,∀t ∈ T (2.19)

xa ∈ Xa ⊆ {0, 1}T ∀a ∈ A. (2.20)

In this model, we distinguish heads at service nodes (denoted by h), which only appear
in the lower level program (as dual variables), and heads at reservoirs (denoted by
H), which appear in the upper level program.

21

2.4 State of the Art

The pump scheduling problem is the subject of a vast literature. A popular opti-
mization approach is based on metaheuristics, mainly evolutionary algorithms, that
were a zeitgeist for a long period since the mid 90’s. For instance, in [25], the authors
employ a genetic algorithm to solve an instance with a night/day tariff profile, and
a single demand profile stands for average daily consumption. In [26], a hybrid ap-
proach combining a genetic algorithm with a local search strategy was developed. The
ranking function in the genetic algorithm is an inverse version of the cost penalized
by constraint violation. In [27], the authors have developed an ant colony algorithm
in which the ranking function prioritizes the less infeasible solutions. With additional
maintenance constraints, the search space is drastically reduced, and their model uses
the duration a particular pump stays on as a decision variable. The method is exper-
imented over networks with a single demand profile. Other references are described
in [28, 29]. Beyond the fact that metaheuristics do not provide information about
the quality of the cost of the computed solution, in many applications to the pump
scheduling problem, some of the functional constraints, in particular on the capacity
of the tanks, are relaxed and penalized in the fitness function. On the other hand,
they usually evaluate precisely the nonlinear resistance constraints by integrating a
hydraulic simulator.

This is often the opposite in mathematical programming approaches for the pump
scheduling. Global optimization solvers are not able to compute feasible solutions for
even small-scale networks with a slightly high number of periods [4, 12, 30, 31].

Hence, in [32], a piecewise linearization of the resistance relationships is employed
to approximate the optimal solution of the problem. Different numbers of pieces are
considered to mimic the initial non-linear curve, and then a polyhedral approximation
is passed to a MILP solver. The impact of the number of pieces can be observed in
two different directions. More accurate approximation induces less violation and a
higher possibility of ending up with a configuration, but simultaneously, less and less
efficient algorithm.

Gleixner et al. [33] tackle the global optimality of the static operation problem
over a single time-step. In other words, they assume a constant pressure at each tank
and neglect the dynamic variations in the levels. Interestingly, they have proposed
presolving methods, to mitigate the issue of large-scale and non-linear constraints.
They deploy constraint propagation to reduce the domain of the variables in the
MINLP formulation, or introduce dependencies constraints to break symmetries in
the pumping station (parallel identical pumps). Global optimality is then achieved

22

by deploying a spatial branch-and-bound through the SCIP solver. As pointed out by
the authors, the approach becomes intractable when the full-scale operation problem
is considered with only two or three time periods.

Ghaddar et al. [4] take advantage of the fact that flow conservation at tanks are
the only time-coupling constraints in the MINLP model. Therefore, dualizing this
constraint decomposes each time interval formulation. The authors apply Lagrangian
relaxation, solving each single-step subproblem with a MINLP solver, and the dual
problem with a cutting-plane algorithm. While the lower bound of the Lagrangian
relaxation is still valid for the original formulation, the solution found through this
decomposition may be infeasible due to the relaxation. To recover feasibility and to
enforce the time-coupling constraints on the aging of the pumps, the authors combine
improved Limited Discrepancy Search (ILDS) with a branch-and-bound algorithm.

Naoum-Sawaya et al. [8] suggest a simulation-based optimization approach. A
master MILP is responsible for finding binary schedules, while the follower checks their
feasibility against the nonlinear equilibrium subproblems. Unfeasibility is reported
progressively to the master program as combinatorial Benders cuts. This led to a
better performance over Poormond benchmark.

Costa et al. [9] also apply an optimization-simulation approach, but evaluates
explicitly all possible binary schedules. This may work for small networks, but the
scalability of the method might be an issue.

Bonvin et al. [31] consider a branched network with parallel pumps located at the
root. They show that a MILP relaxation provides an exact formulation when all
pumps are identical. In other cases, a relaxed solution can easily be turned into a
feasible solution by propagating the head loss correction along the branches, and the
optimality gap is bounded.

Shi et al. [10] consider optimization-simulation within an outer-approximation
framework: the master program is partially tightened by piecewise linear outer cuts,
while the follower subproblems and the number of pieces are automatically refined
during the search.

Fooladivanda and Taylor [34] introduce a second order cone relaxation and show
conditions (presence of pressure valves and variable speed pumps) for the relaxation
to be exact. To find high quality solution, an ADMM-based algorithm is developed.

Bonvin and Demassey [35] propose an extended continuous reformulation of the
problem by allowing changing pump configurations during the time steps. The de-
cision variables become the durations of each configuration within each time step.

23

By ignoring the impact of the tank levels on the output of the configurations, they
propose a 3-step approach: (i) generate the configurations and check the hydraulic
equilibrium (ii) populate the columns of the LP approximation with the feasible
configurations (iii) apply a Variable Neighborhood Search heuristic based on mathe-
matical programming and inspired from [8] to recover a feasible solution.

Vieira et al. [11] consider a polyhedral relaxation, refined progressively by adding
breakpoints within a given error level. The solution computed by branch-and-cut
might not be feasible, so they apply two specific heuristics to recover feasibility. The
corrective actions are implemented in case of irregular pressure at a node and when
the final tank levels are lower than the initial ones.

Bonvin et al. [6] introduce a tailored MILP relaxation and deploy a branch-and-
check approach: at each feasible (integer) node of the branch-and-bound, the feasibil-
ity of the associated binary schedule is checked against the equilibrium subproblems.
If unfeasible, a combinatorial nogood cut is generated, otherwise the cost of the fea-
sible solution is computed and recorded as the new incumbent. The framework is
also developed for pump scheduling with variable-speed pumps or pressure-reducing
valves. In this context, the subproblem is tackled with a nonlinear program solver.
Finally, in order to speed up the search, the authors also introduce an original primal
heuristic to compute near-feasible solutions by adjusting the duration of the activity
of the pumps. This is formulated as a MINLP but solved iteratively as a sequence of
restricted linear programs.

More recently, Tassef et al. [12] investigate a similar approach enhanced with a
more aggresive bound tightening and the progressive refinement of the relaxation
of the resistance functions, with OA cuts, and with strong duality cuts [36] issuing
from the linearization of the strong duality condition. the optimal pump scheduling
problem by applying bound tightening techniques. These techniques have led to a
domain reduction over feasible flows and the generation of cuts for decision variables.

Finally, we may refer to related works applying MINLP to other optimization
problems in the context of water networks, including pipe dimensioning in gravity-fed
networks [30, 37] or pump dimensioning in pressurized networks [38], or in the context
of other energy infrastructural systems, in particular, gas networks [39, 40, 41, 42, 43].
These energy systems can also be represented as a potential-driven networks, and the
equilibrium problem appears as a subproblem. Hence, due to some resemblance in
the mathematical formulations, some ideas can be interchangeably adopted. Still,
the dynamic nature of the pump scheduling, where water tanks act as storage devices
and induce temporal interdependencies, make this problem particularly intractable.

24

Chapter 3

Benchmark and Dataset

Generation

3.1 Existing networks and instances

Several water networks are considered in the literature. In the context of design
of gravity-fed networks, the moderate instances [12] are shamir, blacksburg, hanoi,
foss-poly-0, and foss-iron and among the large instances we can enumerate fosspoly1,
pescara, andmodena. However, for the pump scheduling problem, only a few networks
are covered in the literature. One of the most analyzed is a toy network called simple
network (or FSD), which comprises three symmetrical pumps parallel to each other.
A pipe after the pump station transports water to a storage tank, and a connecting
pipe is attached to a demand node. While this network may be too small to represent a
real-scale counterpart, its underlying mechanism bears a resemblance to various other
practical applications. Another case is represented by van Zyl water network [44]. As
shown in Fig. 3.1, it consists of a pump station with two parallel symmetrical pumps
and a booster pump to feed two tanks with different capacities. The booster pump
and the tanks are in an acyclic loop and the same gravity line. The two demand nodes
are located in this acyclic loop. Originally, the van Zyl network includes a pressure
reduction valve. Following [45], we propose to change it to a gate valve.

One of the largest networks considered in the literature is Poormond, initially
consisting of six cascading tanks supplying different pressure zones, with a primary
water source coming from boreholes within the lowest zone [26]. To the best of our
knowledge, the literature indicates this network as the most difficult to handle. We

25

Figure 3.1: van Zyl water network distribution.

consider the version used in [6, 12] with five storage tanks depicted in Figure 3.2.

Figure 3.2: Poormond water network distribution

We show in Table 3.1 details about the networks considered in this work in terms
of discretization of the time horizon, number of nodes and arcs.

A known issue in the optimization of the pump scheduling problem is the lack of
a sufficient number of instances (i.e., actual time series of demand and tariff) to be
used for proving the effectiveness of a proposed resolution method. In the original
description of each of these networks, a single demand profile representing the average
day consumption was considered [27, 44]. The demand at each node within the set
S is established based on a fixed scaling factor. This implies that a demand profile
is expressed as a vector rather than utilizing a matrix where each element represents
demand profiles at individual nodes. The idea behind the constant proportionate

26

Network T |J | |A| |Ȧ| |Ċ| |S|
FSD {12, 24, 48} 6 5 3 1 1

van Zyl {12, 24, 48} 16 18 4 2 2
Poormond {12, 24, 48} 52 55 11 5 11

Table 3.1
Details of the water networks used as a benchmark.

demand among different nodes likely has a basis in real-world observations. For tariff
profiles, [4, 6] have added instances to the benchmark by considering dynamic tariff
profiles instead of the simple day/night tariffs used before.

In Section 3.2, we first propose to consolidate a benchmark testset for the pump
scheduling problem based on these networks. In Section 3.3, in order to investigate a
supervised learning approach, we propose a method to generate a varied collection of
instances (i.e. daily demand and tariff profiles) for any given network, by regression
from the historical data of the real network studied in [38]. This network is operated
in a touristic zone in Brittany, France, and the real consumption data show a high
seasonality.

The generated instances (the benchmark set and the data set), corresponding so-
lutions, and the generation code are made publicly available at: https://github.

com/amirhtavakoli94/bench_pmpscheduling

3.2 Benchmark for optimization

We have generated new instances for the networks of Table 3.1 by using empirical
consumption and tariff data. The electricity tariff is taken from Belgian spot market
data, considering a reference period from 2007 to 2013. The demand profiles are
drawn from real consumption considered in [38]. The raw consumption is sampled
every 10 minutes for three years of data.

When mapped to a given network, we first sample and scale up the raw consump-
tion data to the known average demand value for this network. Given that tanks and
pumps are correctly dimensioned in these networks, an instance is often feasible if,
on each period, the demand can be satisfied whatever the initial level of the tanks.
To secure the feasibility of the demand profiles we generate, we solve a single-period
optimization problem where the levels of the tanks are relaxed, and the objective
function is the sink flow at demand nodes. In a second step, we solve the MILP

27

https://github.com/amirhtavakoli94/bench_pmpscheduling
https://github.com/amirhtavakoli94/bench_pmpscheduling

relaxation of the pump scheduling problem with T = 12. We reject the instance if
unfeasibility is detected within a short time limit.

We summarize how we have generated demand profiles with a 2-hour time step for
various networks from raw empirical data:

1. Since the raw data are sampled with a time step of 10 minutes, for each profile,
we sum twelve consecutive demand values to obtain demand profiles with a 2-hour
time step.

2. Each demand profile is then normalized by considering the root-mean-square of
the total demand over one year.

3. We compute the maximum and the minimum demand values by solving the single-
period problems:

Dtj = max{qJtj |(qt, ht) ∈ E(Ht, Dt, xt), Ht ∈ [H,H], xt ∈ {0, 1}A} ∀t ∈ T , j ∈ S.

Similarly, for the minimum value Dtj.

4. We scale the demand values to be inside the computed bounds, in particular, we
require Dtj ∈ [1.05Dtj, 0.95Dtj], ∀t = 1, ..., T − 1, j ∈ S

5. We solve the MILP relaxation of the generated instance with T = 12 for ten
seconds and keep the instance if a feasible solution is found. Otherwise, we add
Gaussian noise to the demand values belonging to the first and third quartiles.

To visualize the variability of the raw consumption data, we applied a seasonal-
trend decomposition [46] and derived the profiles in Figures 3.3 and 3.4. The second

Figure 3.3: Raw consumption data and the corresponding trend over one
year.

profile in Figure 3.3 shows well how the demand increases during the touristic period,
in spring and even more during summer.

28

Figure 3.4: Daily seasonality over a week.

By looking at the daily seasonality over one week in Figure 3.4, we recognize the
typical daily profile with a peak demand at midday.

Finally, we care to mention that we keep the time synchronization of the demand
and tariff profiles. This allows us to match the seasonality and trend effects of the
two profiles.

We also create instances for T = 24 and T = 48. To do that, we hold the value of
the demand at a given time over two or four consecutive periods. Hence, we create
piecewise constant demand profiles.

From generated data, we have selected six different instances for each network
representing various trends in consumption and added to the benchmark available in
https://github.com/amirhtavakoli94/bench_pmpscheduling

3.3 Historical dataset for supervised learning

To develop a learning model for the pump scheduling problem within a supervised
learning framework, we need a training and test dataset, including inputs (i.e. feasible
instances) and correct outputs (optimal solutions). Considering the van Zyl network
with T = 12 as our testbed, we thus need to generate feasible instances and solve
them to optimality.

29

https://github.com/amirhtavakoli94/bench_pmpscheduling

We have generated instances (demand and tariff profiles) corresponding to six
years of daily data by following the steps presented in the previous section. In the
original van Zyl instance, the tanks are initially 95% full (H0 = 0.95H). The range
of demand values satisfying the levels of the tanks at the very beginning and the
end of the horizon are thus fairly restrictive. With respect to the benchmark in the
literature, we have changed the initial level of the tank T6 in van Zyl network to 70%
full at the initial stage of the scheduling problem.

To obtain optimal solutions, we solve each instance with our branch-and-check
algorithm enhanced with preprocessing (described in Part II). If no solution is found
within 5 minutes, we consider the instance infeasible and discard it from the dataset.

With this procedure, we generated a collection of 2113 unique daily observations
(D,C,H), each given as T = 12 period profiles: the input features are the demand

and tariff profiles (D,C) ∈ RT ×RT , and the target is the tank level profiles H ∈ RĊT

corresponding to an optimal solution of (P) for input (D,C). Then, we split the
dataset into 75 percent training, 15 percent validation, and a 10 percent test.

For finer temporal resolution T = 24 or T = 48, finding even feasible solutions is
not always possible in a reasonable time. This limits the application of supervised
learning. As mentioned in Part III, we integrate a scaling mechanism in our deep
learning framework to tackle high temporal resolution instances from low temporal
resolution data.

Finally, as a byproduct of this dataset, we generated an extended benchmark set by
selecting 50 new daily instances with high variability. The benchmark sets (denoted
VZ12, VZ24, and VZ48) are also available online.

30

Part II

Preprocessing for Global

Optimization

31

Chapter 4

The Branch-and-Check Algorithm

Several algorithms are suggested in the literature to tackle general nonconvex
MINLPs [47]. Spatial branch and bound [48] based on the Reformulation-
Linearization Technique (RLT), and its variants (e.g., branch and reduce [49]), are
usually the backbone of global optimization solvers. They solve an automatic MILP
relaxation (the RLT relaxation) and recursively apply branching not only to integer
variables, but also by partitioning the domain of continuous variables [50] involved
in nonconvex constraints. Numerical experiments of direct applications to pump
scheduling are, however, not encouraging [30, 31, 33].

These general-purpose solvers do not yet implement the advanced machinery (pre-
processing, branching strategies, primal heuristics, etc.), which is available in the
most sophisticated MILP solvers. They are de facto currently not able to detect
and exploit some major characteristics of the pump scheduling problem. Firstly, the
nonconvex constraints, arising from quadratic one-dimension functions, are easy to re-
lax as convex/polyhedral constraints without introducing auxiliary variables, as RLT
would do. Secondly, as described in Section 2.3, the pump scheduling problem has
this very strong property: the model has exactly zero or one feasible solution for any
complete instantiation of the binary variables (a binary schedule), and the solution is
easy to compute by simulation (implementing the extended analysis algorithm EAA).
As a consequence, a full enumeration of the binary schedules, either explicit or, more
reasonably, implicit, leads to a global optimum (or the proof of unfeasibility). Several
studies (e.g., [8, 9, 12, 42]) exploit this property by addressing the bilevel structure
of the problem.

Among these works, Bonvin et al. [6] employ a branch-and-check approach to
obtain an exact solution to problem (P) through a MILP relaxation, solved with a

33

branch-and-bound, coupled with simulation to check the nonlinear constraints only at
the integer nodes. We took their method as the starting point to derive a more efficient
global optimization approach for the pump scheduling problem by strengthening the
MILP relaxation in a new preprocessing step.

In this chapter, we first present the algorithm in [6] (for the case of fixed-speed
pumps) and the associated MILP relaxation. We then devise two stronger MILP
relaxations that we use in our preprocessing.

4.1 Branch-and-Check for Pump Scheduling

The algorithm in [6] starts with a MILP relaxation of reasonable size (R) of the
nonconvex MINLP (P). The MILP relaxation (R) is then solved with a slightly
modified LP-branch-and-bound.

Each integer node of the search tree hence built, corresponds to a binary schedule
X ∈ {0, 1}T ×A that is feasible for the relaxation (R), i.e., there exists an approximate
flow/head equilibrium (q, h) such that (X, q, h) is a feasible solution of (R). To check
the feasibility of the complete assignmentX regarding the actual nonlinear constraints
and to compute the actual cost of the solution, the extended analysis algorithm (EAA)
is run to solve the restricted nonconvex NLP (P(X)). EAA computes progressively
at each t ∈ T , the flow-head equilibrium (qt, ht) ∈ E(Dt, Ht, Xt), then the resulting

levels H(t+1)j = Htj +
qCtj
σj

in the tanks j ∈ Ċ.

EAA stops prematurely if ever a tank capacity is exceeded at some iteration t̄ ∈
T , i.e., Ht̄+1 ̸∈ [H t̄+1, H t̄+1]. Since the schedule X is then unfeasible, the MILP
solver is asked to prune the current search node. To this purpose, we add to the
MILP relaxation a combinatorial nogood cut that invalidates the partial schedule
until period t̄:

t̄∑
t=0

∑
a:Xta=1

(1− xta) +
∑

a:Xta=0

xta ≥ 1. (4.1)

Otherwise, EAA has computed a feasible solution (X, q, h) for the problem (P), and
its cost c(X, q, h) may be strictly greater than the cost c(X, q̄, h̄) of the relaxed MILP
solution. This relaxed cost is thus not a valid upper bound, and the relaxed solution
must also be ignored. Suppose the actual cost c(X, q, h) does not improve upon the
incumbent. In that case, the integer node is pruned, using the same combinatorial
nogood cut as above, but covering the whole time horizon, i.e., taking t̄ = T − 1
in (4.1). Otherwise, the MILP solver is asked to set the actual solution associated

34

with the current integer node as the new incumbent and its cost as the best upper
bound so far. The MILP solver then continues the search until closing the optimality
gap between the best lower and upper bounds or if no open search node remains.

This algorithm is exact as the branch-and-bound explores a search space which
initially contains all feasible schedules for (R), thus all feasible schedules for (P),
and maintains, as the incumbent, a list of feasible schedules for (P) in decreasing
order of cost. The search space is progressively restricted by pruning only schedules
that are either unfeasible for (P) or feasible for (P) but not strictly better than the
incumbent, thus not optimal. Finally, the lower bound computed by the MILP solver
at each node (continuous, integer feasible, or integer unfeasible) is valid for (P).

Algorithm 2 presents the framework of this algorithm.

Algorithm 2 Branch-and-Check

Input (R) a MILP relaxation
Output the optimal solution

1: solve (R) with a branch-and-cut such that:
2: for each integer node X ∈ {0, 1}T A do:
3: run algorithm EAA 1 with input X
4: if x unfeasible then:
5: get first violated period t
6: add the linearized nogood cut

∑t
t′=0 ||xt −Xt||1 ≥ 1

7: else get solution (q, h)
8: compute cost c = c0x+ c1q
9: if c < UB then:
10: update UB = c, x∗ = x
11: end if
12: add a cut z ≥ c− c||x−X||1
13: end if
14: end for

Communication with the MILP solver during the search is possible by using the
callback functionality.

35

4.2 Discussion and enhancements

The above algorithm follows the bilevel structure of the pump scheduling problem,
where the binary decisions appear at the upper level and the nonlinear constraints
(i.e., the equilibrium) at the lower level. Unfeasibility and suboptimality at the lower
level are communicated to the upper level through combinatorial nogood cuts, as in
the branch-and-check algorithm described by [51] for general optimization problems
(beyond the format of mathematical programming, including, e.g., the format logic
programming).

Being able to identify the early part of a schedule that is unfeasible by itself to
generate a smaller, then stronger nogood cut (4.1) (when t̄ < T) is a basic but
effective enhancement of this method. This exploits the property that the tank heads
are fixed at time t = 0 and then fixed at time t = t̄ + 1, in every solution extending
a partial schedule from 0 to t̄. Note that it is probably not trivial to improve this
cut by identifying some minimum (as a set) unfeasible partial schedule without this
property.

The nonconvexity of the lower level also prevents the generation of more effi-
cient cuts, like Benders cuts (based on duality) in Benders decomposition or outer-
approximation (OA) based cuts (based on supporting planes) in LP/NLP-branch-
and-bound. Precisely, we could actually generate OA cuts when a point falls on the
”convex side” of a nonlinear constraint by adding a supporting plane of the convex
component of the constraint that separates the point. This strategy is employed by
Tassef [52] both for the pipe sizing and pump scheduling problems. In our implemen-
tation, as in the original one [6], we do not generate these constraints dynamically,
but only statically, when building the MILP relaxation (R). This allows for better
control of the size of the MILP relaxation, as well as of the numeric errors induced by
the generation of constraints, which would be too close (considering also the required
rounding). Moreover, violations of the nonlinear constraints occur more on the con-
cave side (where the relaxation is weaker) than on the convex side, then it could be
counterproductive to try to detect improbable violated OA cuts.

A framework similar to this branch-and-check algorithm is discussed in [39], also
in the context of hydraulic network optimization, but for the pipe sizing problem.
One major difference in the context of pump scheduling is that the cost of the relaxed
solution does not correspond to the cost of the NLP solution. This requires managing
the bounds, especially the incumbent, carefully beside the MILP solver.

This algorithm is not restricted to the condition that the relaxation (R) is linear.

36

In particular, we could apply the exact same algorithm using a convex quadratic
relaxation instead. However, convex quadratically-constrained MINLP solvers are
not yet, at that time, as sophisticated as pure MILP solvers.

Finally, it is not possible to get a polyhedral relaxation of the nonlinear con-
straints (2.5) without knowing the domain of the involved variables. While the flow
through a pump is bounded according to the operation of the pump, there are no
bounds enforced on the flow through a pipe (except the lower bound 0 for unidirec-
tional pipes). Bonvin et al. [6] implement a judicious bound tightening technique,
considering the single time-step subproblem, as a preprocessing to derive the missing
bounds, then to formulate the relaxation (R). The bound preprocessing is a keystone
of the algorithm as it is a determinant of the strength of the relaxation (R), then
of the efficiency of the branch-and-check. Their relaxation is presented in the next
section, while their bound tightening technique is discussed in the following chapter,
as well as our own contribution to improving these bounds.

4.3 MILP Relaxations of the Head-Flow Relation

There exist several MILP relaxations of (P), which depend on the polyhedral relax-
ation chosen for the nonlinear relations vta = ψa(qta). We first present the MILP
relaxation introduced in [6] to run their algorithm, then two other stronger but larger
MILP relaxations we use in our preprocessing described in the next chapters.

4.3.1 Study of the resistance function

In our problem, we consider resistance functions of the following type:

ψ : q ∈ R 7→ Aq|q|+Bq + C

with A,B,C ∈ R, A > 0, and we look for either a continuous or an integer polyhedral
relaxation of the set:

Ψ = {(q, v) ∈ R2, h = ψ(q), q ∈ [Q,Q]}

where [Q,Q] are imposed or induced bounds on the flow value q.

Proposition 4.3.1. Let ψ(q) = Aq|q| + Bq + C with A,B,C ∈ R, A > 0, defined

37

on R, then ψ is continuously differentiable on R, convex on R∗
+ and concave on R∗

−.

Proof. ψ is differentiable and its derivative ψ′(q) = 2A|q|+B is continuous on R. Its

second derivative is defined on R∗ by: ψ′′(q) =

2A ∀q > 0

−2A ∀q < 0
so it is positive (and

ψ is convex) on R∗
+ and it is negative (and ψ is concave) on R−

+.

4.3.2 Convex outer-approximation

The relaxation considered in [6] relies on computing an envelope on the resistance
function, as depicted in Figure 4.1 and defined in the following proposition:

Proposition 4.3.2. Let ψ(q) = Aq|q| + Bq + C with A,B,C ∈ R, A > 0, defined

on I = [Q,Q] ⊆ R, with Q < Q then

ψ ≤

{
fq∗ ,∀q∗ ≤ min(Q,Q(1−

√
2)) if Q < Q(1−

√
2)

g[Q,Q], otherwise

ψ ≥

{
fq∗ ,∀q∗ ≥ max(Q,Q(1−

√
2)) if Q > Q(1−

√
2)

g[Q,Q], otherwise

where fq∗(q) = ψ′(q∗)(q − q∗) + ψ(q∗) denotes the tangent of ψ for any q∗ ∈ R, and,
g denotes the straight line intersecting ψ at Q and Q.

Remark that if Q ≥ 0, the resistance function ψ is convex on its domain, and fq∗
are the supporting planes on the convex (under) side of ψ, while g[Q,Q] is the chord

on the concave (upper) side ψ. Then ψ = max(fq∗) is an underestimator of ψ and

ψ = g[Q,Q] is an overestimator of ψ. The case is antisymmetric when Q ≤ 0 (i.e. ψ is

concave with ψ = g[Q,Q] and ψ = max(fq∗)). In these two cases, we can manage the

size of the relaxed model regarding the relaxation gap.

Proposition 4.3.3. If Q ≥ 0, then the minimum number of hyperplanes fq∗ required

in the definition of the underestimator ψ to have a bounded difference between the

projection of any feasible relaxed solution and the nonlinear quadratic function ψ less

than a tolerance ϵ is ⌈ Q−Q

2
√

ϵ
A

⌉.

38

Proof. mean value theorem.

The proposition holds also if Q ≤ 0. When Q < 0 < Q, the difference between the
projected relaxed solution and the nonlinear curve might exceed the defined tolerance
ϵ on the interval [Ql(1−

√
2), Q

l
(1−

√
2)].

Figure 4.1: Outer approximation for nonlinear flow-head relationship.

The MILP relaxation (ROA) is then obtained by replacing Constraints (2.5) in (P)
with:

ψa(qta) + V ta(1− xta) ≤ vta ≤ ψa(qta) + V ta(1− xta) ∀a ∈ A, ∀t ∈ T.

The envelope of the resistance function being convex, this relaxation requires no
additional binary variables.

39

4.3.3 Piecewise linear relaxation

The relaxation above requires no additional binary variables, but it can be loose on
the ”nonconvex side” of the resistance constraints. To tighten the relaxation on this
side, we consider, as an alternative, a PWL envelope relaxation. Because this envelope
is not convex, the relaxation requires auxiliary binary variables. By increasing the
number of auxiliary binary variables, the PWL relaxation can mimic more accurately
the exact nonlinear Ψ at the cost of complicating the relaxation.

Now, the maximum error ϵ can be controlled on both sides of function ψ, by
defining the sufficient number of pieces. Furthermore, we can easily implement this
relaxation for a given error by using modeling tools available in most MILP solvers,
based on the definition of Special Ordered Set of Type 2 (SOS2) (see, e.g., [53]). While
it is transparent for the modeler, this functionality introduces both linear constraints
and binary variables for each piece of the approximation.

Consider the curve ψ restricted to [max(0, Q), Q], where it is convex. Then, a

piecewise linear overestimator ψ(q) is defined by N segments linking consecutive
points (q̄p, ψ(qp))p=1,...,N+1 distributed on the curve. The constraint v ≤ ψ(q) can then
be relaxed as the nonlinear constraint v ≤ ψ(q) or, equivalently, by (q, v) ∈ PWO(ψ),
where:

PWO(ψ) = {(q, v) ∈ R2 : q =
N∑
p=1

λpq̄p + λpq̄p+1 (4.2a)

v ≤
N∑
p=1

λpψ(q̄p) + λpψ(q̄p+1) (4.2b)

n∑
p=1

zp = 1 (4.2c)

zp = λp + λp ∀p ∈ {1, ..., N} (4.2d)

λp ≥ 0, λp ≥ 0 ∀p ∈ {1, ..., N} (4.2e)

zp ∈ {0, 1} ∀p ∈ {1, ..., N} }. (4.2f)

When considering the concave part of curve ψ on the interval [Q,min(0, Q)], we

similarly derive a PWL underestimator ψ(q).

Proposition 4.3.4. A convex function ψ can be relaxed by a set of overestimators

such as SOS2(ψ,N) ≤ 0 and SOS2(ψ,N) ≥ ϵ while there is no need to introduce

auxiliary binary variables zi. In this situation, the nonlinear curve can be relaxed

40

by the envelope constructed by such under and overestimators, and the number of

minimum required pieces is controlled by ϵ is ⌈ Q−Q

2
√

ϵ
A

⌉

For bidirectional pipes, this minimum number of pieces might not be sufficient
to ensure that no feasible solution is not eliminated during the construction of the
envelope. Our proposal is initially to divide the head-flow function into two regions:
one for q ≤ 0 and q ≥ 0. Therefore, for a positive flow, we have a convex curve, while
for a negative flow, the function is concave.

4.3.4 Discretization and disjunctive formulation

The domain of the flow variable can be represented as consecutive intervals:

q ∈ [Q,Q(1)] ∪ [Q(1), Q(2)] ∪ ... ∨ [Q(N−1), Q].

We can then construct an envelope of the resistance function ψ on each interval
individually and relate the active intervals with additional binary variables z(n), n =
1, ..., N . The envelope is then modeled as follows:

q =
N∑

n=1

q(i) (4.3a)

v =
N∑

n=1

v(i) (4.3b)

Qn−1.z(n) ≤ q(n) ≤ Qn.z(n) ∀n = 1..N (4.3c)

ψ(n)ϵ.q(n) ≤ v(n) ≤ ψ
(n)ϵ

.q(n) ∀n = 1, ..., N, (4.3d)

N∑
n=1

z(n) = x (4.3e)

z(n) ∈ {0, 1} ∀n = 1..N (4.3f)

where the over- and under-estimators in (4.3e) are generated for the given interval
[Qn−1, Qn] as in Proposition 4.3.2. Condition (4.3f) enforces that at most one of the
possible regions is activated. In case of inactivity of the arc (i.e., x = 0), obviously,
none of the regions can be active.

Using this envelope improves the MILP relaxation. However, this comes at the
price of defining additional binary and continuous variables and numerous constraints.

41

As for the previous PWL relaxation, we will use this kind of relaxation only in some
specific bound tightening techniques.

4.4 Strengthening the Relaxation

The branch-and-check algorithm discussed above relies on a branch-and-bound ap-
plied to the MILP relaxation (R), which solves its LP relaxation iteratively at each
node of the search tree. The efficiency of the algorithm then heavily depends on the
strength and the size of the LP relaxation: too loose and the number of iterations
increases; too large and the computational time of each iteration increases.

Off-the-shelf MILP branch-and-bound solvers already implement highly elaborate
automatic techniques to improve LP relaxation. The main techniques are run in a
preprocessing phase, before and during the resolution of the root node, and concern
the domain reduction of variables and the generation of valid inequalities. These
techniques exploit the knowledge of the integrality constraints to identify feasible
regions of the LP relaxation that do not contain any feasible MILP solution. These
regions are then excluded from the LP relaxation, either by tightening the variable
bounds or by adding linear constraints.

In our MINLP branch-and-bound algorithm, intensifying the preprocessing phase
with our own domain reduction and valid inequalities generation techniques is of
paramount importance.

First, and above all, we build the MILP relaxation itself directly from the known
bounds of the variables involved in the nonlinear constraints of our MINLP model,
namely the flow and head variables defining the resistance relation vta = ψa(qta) for
each period t ∈ T and each arc a ∈ A. Tightening the bounds of these variables
specifically is then a priority. Indeed, by reducing the domain of the flow variables
(i.e., the length Qta − Qta

), we reduce the number of supporting planes required to
relax the convex side of the constraints for a chosen tolerance value, and we also
reduce the relaxed area on the concave side.

Furthermore, we can enforce some propagation effect: tightened bounds for one
variable may help to infer bound tightening for another variable. In the context of
pump scheduling, the feasible flow-head equilibrium on a period t ∈ T depends on
the levels of the tanks at the beginning of the period Ht and, in turn, it impacts the
levels at the end of the period Ht+1. We thus propose to exploit this interdependency
between variables q, h,H to force the propagation effect. Also, conditional bounds

42

appear as big-M values in the constraints (2.5) linearizing the logical relations between
the status of an arc (active/inactive) and the flow/head through the arc. Considering
the interdependency between variables q, h, x during the bound-tightening process
allows for improving those big-M values and, thus, the LP relaxation. Our bound-
tightening algorithm is presented in Chapter 5.

On another note, as our algorithm directly acts on the MILP branch-and-bound
(particularly when adding the nogood cuts), then the automatic preprocessing (in
particular, the valid inequalities generation) is restrained by the MILP solver to pre-
vent conflicts or numerical issues. More importantly, the underlying MILP solver
is not aware of the original nonlinear constraints. It then might overlook some de-
ductions (which are based only on the integrality constraints). In branch-and-check,
shrinking the LP relaxation of the nonlinear constraints implies fewer integer nodes
to check. Finally, because our algorithm is dedicated to the pump scheduling prob-
lem, we can even infer reductions from our own knowledge of the practical problem
for a given network topology or a given demand/tariff pattern. This knowledge is
particularly useful for detecting impossible combinations of active elements. We are
then able either to fix some binary variables or generate valid linear equalities on
these binary variables to exclude these invalid combinations. Our valid inequalities
generation process is presented in Chapter 6.

43

Chapter 5

Bound Tightening

In mathematical programming, bound tightening refers to techniques for reducing
the (interval) domains of variables in a model without altering the optimal value:
the reduced domain product must contain at least one, if not all, the original opti-
mal solutions (optimality-oriented techniques), or even all original feasible solutions
(feasibility-oriented techniques).

Bound-tightening is a major component of preprocessing for MILP branch-and-
bound. By improving the MILP relaxation, it reduces the size of the search tree:
fixing binary variables directly reduces the number of choices and branches, and it
mitigates the effect of the relaxation of the corresponding integrality constraints while
adjusting the continuous domains increases the LP lower bounds and the possibility
to fathom search nodes. Furthermore, modifying the variable bounds in a MILP
does not affect the size and the structure of the LP relaxation (by opposition to cut
generation), nor does it affect the processing time of each search node.

Bound-tightening is even doubly important in our context as we build the MILP
relaxation specifically from the bounds of the variables involved in the nonlinear
constraints: both for approximating functions ψa (with piecewise linear functions)
and for linearizing the disjunctive relations (with big-M constraints). Figure 5.1
illustrates the impact of the flow bounds on the strength of the OA relaxation. For
the same OA tolerance ϵ, and with the improved bounds, the feasible space of the
OA relaxation on the concave side of the curve is drastically shrunk, and the number
of planes defining the convex side is also reduced. This implies fewer constraints in
the MILP relaxation. The impact on the PWL relaxation is even more visible as it
also limits the number of auxiliary binary variables.

45

Figure 5.1: A nonlinear constraint (orange curve) and the OA relaxations
computed with the initial bounds of the flow variables (orange space), and
with improved bounds (green space).

In the original algorithm [6], the authors propose a preprocessing phase to tighten
the bounds on the flow/head variables before formulating the MILP (OA) relaxation.
They rely on Optimization-Based Bound Tightening (OBBT) techniques [54, 55], i.e.,
they derive bound improvements by solving a certain mathematical programming
relaxation of the problem. We call this kind of relaxation, the OBBT relaxation or
OBBT problem, and we denote (O) the optimization problem and O its feasible set by
opposition to the MILP and LP relaxations used in the branch-and-check algorithm,
denoted, respectively, (R) and (R) with feasible sets R and R.

In this chapter, we first recall the principle of OBBT and its application in [6]
using a steady-state relaxation of the pump scheduling problem. We then investigate
ways to improve the process. In particular, we index the relaxation to each period
independently, then focus on the bounds of the time-coupling variables, i.e., the level
of the tanks. Finally, we compute bounds conditionally to the status of related
network elements. These conditional bounds may be enforced as big-M constraints
in the MILP relaxation of branch-and-check. Finally, we describe how the procedure
is iterated to propagate any bound improvement by updating the subsequent OBBT
relaxations.

46

We assume that the demand scenario in (P) is standard and adapted to the network
dimension. In other words, we assume that, for all t ∈ T , Dt ∈ [D,D] ⊆ RS, an
absolute range of possible demand configurations, such that any feasible solution of
(P) naturally satisfies also the bounds on the flow values defined by the operational
domain of the pumps or by the direction of the pipes, as well as the minimum head
values at the service nodes. The design of the network makes that these bounds
are much less constraining than the capacity of the tanks. Hence, we consider the
following initial domains for the variables in (P):

qta ∈ [Qa, Qa] ⊆ R, vta ∈ [Va, Va] ⊆ R ∀a ∈ A, t ∈ T .

We can thus linearize the conditional constraints (2.13) and (2.14), as big-M con-
straints

Q
a
xa ≤ qa ≤ Qaxa, ∀a ∈ A, (5.1)

ψa(qa)xa + V a(1− xa) ≤ va ≤ ψa(qa)xa + V a(1− xa), ∀a ∈ A, (5.2)

to formulate the relaxation Ẽ ⊇ E , then get the relaxation R ⊇ P by replacing (2.17)
with:

(qt, ht) ∈ Ẽ(Ht, Dt, xt), ∀t ∈ T . (5.3)

Also, we denote {X,X} ⊆ {0, 1}T A the initial bounds on the x variables. Note that
X ta = X ta = 1 when arc a ∈ A cannot be set inactive, in particular, when a is a simple
pipe, and X ta = X ta = 0 when arc a ∈ A cannot be set active (e.g., for maintenance)
at period t ∈ T . These initial conditions are represented in Constraints (2.8) in (P).

5.1 Optimization-based Bound Tightening

5.1.1 Principle

There are mostly two approaches to computing valid lower and upper bounds of a
variable in the mathematical program (P): by local inference (as for domain con-
sistency and constraint propagation in constraint programming) or by minimizing/-
maximizing the variable over a set O which includes either all the optimal solutions
(optimality-oriented) or all the feasible solutions of (P) (feasibility-oriented). The

47

second approach, which can be seen as global inference, is called Optimization-based
Bound Tightening (OBBT). The efficacy and efficiency of OBBT are highly depen-
dent on the choice of the relaxation O: too tight and solving one OBBT problem (O)
may be as hard as solving (P), too loose and it provides no new information to the
MILP relaxation (R) that the optimization process cannot infer alone. Therefore, we
should find a trade-off between these two to keep the computational cost of prepro-
cessing under control. At the same time, the ultimate relaxation gleaned from these
bound-tightening techniques improves the runtime of the branch-and-check process.

5.1.2 Steady-state relaxation with floating demand

In [6], the authors propose to preprocess the branch-and-check algorithm and derive
the MILP relaxation (R) by applying feasibility-oriented OBBT to the variables in-
volved in the nonlinear constraints (2.13) and (2.14), namely the flow and head loss
variables q and v. In any feasible solution of (P), the values of q and v at a given
time period are entirely determined by the equilibrium constraints E associated with
this period. In other words, by relaxing the time-coupling constraints in (P), we may
consider a relaxation in which the scope is restricted to a single t:

E ′ = {(x, q, h) : (q, h) ∈ E(H,D, x), x ∈ X ∈ {0, 1}A, H ∈ [H,H], D ∈ [D,D]},

where [H,H] ⊆ RC denotes, as before, the range of tank capacities, and [D,D] ⊆
RS includes any possible (static) demand scenario for this network, in particular the
demand scenario of the instance under scrutiny:

Dtj ∈ [Dj, Dj] ∀j ∈ S, ∀t ∈ T .

In practice, these values are obtained from the historical data of the given water
network.

For these ranges, we thus have the following relation:

(x, q, h) ∈ P =⇒ (xt, qt, ht) ∈ E ′, ∀t ∈ T ,

then the bounds obtained by optimizing over this set are valid for all periods and even
for all instances of the pump scheduling problem associated with a given network. For
example, minimizing a flow variable qa over this set provides a lower bound for all

48

the flow variables qat, t ∈ T in (P):

(x, q, h) ∈ P =⇒ qta ≥ Q′
a
= min{qa : (x, q, h) ∈ E ′} ∀t ∈ T ,∀a ∈ A.

The number of decision variables in E ′ is smaller than in P as we only consider a
single period. Still, optimizing over this exact nonconvex MINLP might be expensive
(for a comprehensive view on the single-time pump scheduling problem with fixed
demand, the reader can refer to [33]). However, this makes it possible to consider
instead very tight relaxations. Obviously, the two previous formulae remain true
when replacing E ′ by any relaxation O ⊇ E ′. In our experiments, we considered the
piecewise linear MILP relaxation with a fine discretization step O = PWL(E ′) built
from the initial domains of the variables.

Finally, the bounds on the flow and head loss variables only appear as big-M values
in the relaxation (R) for the conditional constraints (2.13) and (2.14), and they must
be computed accordingly to the possible status on the associated arc. Indeed, the arc
flow bounds Q

at
, Qat are active in constraints (2.13) only if arc a is active at time t

(xat = 1), otherwise the flow qat is null. Similarly, the head-loss bounds V at, V at are
active in constraint (2.14) only if arc a is inactive at time t (xat = 0), otherwise the
head loss vat is between ψ(Qat

) and ψ(Qat).

We thus enforce the condition xa = 1 (resp. xa = 0) by adding it to O when
computing the flow bounds (resp. head loss bounds). It happens that this condition
makes the OBBT problem infeasible. For example, if, when computing the flow
bounds, we observe that Oxa=1 = O ∩ {(x, q, h) : xa = 1} = ∅, this implies that arc
a can never be active, i.e., that xat = 0 is a valid constraint of (P) for any t ∈ T .
This principle, known as probing [56], allows reducing both the big-M values and the
number of binary variables in P (thus in R).

The preprocessing is detailed in Algorithm 3. Here, τ denotes the tolerance for
solving the OBBT subproblem (e.g., |La − min{qa : (x, q, h) ∈ Oxa=1}| < τ), and
we consider this safety margin to update the bounds (e.g., Q

a
:= max(Q

a
, La − τ)).

Ideally, a larger tolerance value should be taken when solving the branch-and-check
relaxation (R) built from these bounds. Note that improving flow bounds Q

a
, Qa

at a given iteration could be propagated to tighten the relaxation O (by computing
new approximations ψ, ψ) in the next iterations. However, when considering a tight
relaxation from the outset, we should not expect much improvement in the bound
computation. On the contrary, keeping the iterations independent allows for the
parallelization of this algorithm.

49

Algorithm 3 static OBBT for the arc variables

Input O ⊇ E ′ a single-period relaxation of P , optimization tolerance τ > 0

Output [Q,Q] ⊆ RA, [V , V] ⊆ RA, {X,X} ⊆ {0, 1}A

1: for a ∈ A, Xa = 1 do:

2: compute La := min{qa : (x, q, h) ∈ Oxa=1}, Ua := max{qa : (x, q, h) ∈ Oxa=1}
with tolerance τ

3: if infeasible then:

4: Xa = 0

5: else update Q
a
:= max(Q

a
, La − τ), Qa := min(Qa, Ua + τ)

6: end if

7: end for

8: for a ∈ A, Xa = 0 do:

9: compute La := min{va : (x, q, h) ∈ Oxa=0}, Ua := max{va : (x, q, h) ∈ Oxa=0}
with tolerance τ

10: if infeasible then:

11: Xa = 1

12: else update V a := max(V a, La − τ), V a := min(V a, Ua + τ)

13: end if

14: end for

5.1.3 Steady-state relaxation with fixed demand profiles

The previous preprocessing is fast, as it is both time-independent, instance-
independent and can be fully parallelized: it consists of solving at most four small
MILPs for every arc, independently, and it has to be done once for all for a given
network and does not need to be run for every instance. Still, probing and strong
bound reduction are unlikely to occur without considering the exact demand scenario
for a given instance (P). Given D ∈ RT S , we can actually apply Algorithm 3 to each
time t ∈ T after enforcing D = Dt in the single-time model E ′, then using the OBBT
relaxation:

Ot ⊇ {(x, q, h) : (q, h) ∈ E(H,Dt, x), x ∈ X ⊆ {0, 1}A, H ∈ [H,H]}

The nature and size of the OBBT problems do not change, and the iterations remain
independent. Still, their number is multiplied by T . One trivial improvement is
aggregating the time instants with the same demand values.

50

Algorithm 4 dynamic OBBT for the arc variables

Input (Ot)t∈T single-period relaxations of (P), optimization tolerance τ > 0
Output [Q,Q] ⊆ RT A, [V , V] ⊆ RT A, {X,X} ⊆ {0, 1}T A

1: for t ∈ T do:
2: call Algorithm 3 with input O := Ot and τ
3: update [Q

t
, Qt], [V t, V t], {X t, X t}

4: end for

5.1.4 Multi-period relaxation for the state variables

Besides flow and head loss variables q and v, which appear in the nonlinear constraints
in (P), the tank level variablesH which appear in the time-coupling constraints (2.18)
are also serious candidates for bound-tightening. Indeed, the main feasibility issue in
(P) comes from these time-coupling constraints and tank capacities, thus, tightening
these bounds could directly help to fathom search nodes (including integer nodes) in
the branch-and-bound.

Furthermore, the solution of the equilibrium problems E(Ht, Dt, xt) is fully deter-
mined by the tank levels Ht, which reveal all scheduling activities so far x0, . . . , xt−1.
Tightening the bounds [H t, H t] ∈ RC could thus also have a great impact on the
steady-state relaxations considered in the previous OBBT subproblems:

Ot ⊇ {(x, q, h) : (q, h) ∈ E(H,Dt, x), x ∈ X ⊆ {0, 1}A, H ∈ [H t, H t]},

and could then contribute to the whole preprocessing algorithm. Hence, we propose
to apply OBBT also to the variables H and to iterate Algorithm 4 so that any bound
improvement is propagated by updating the relaxation O in the subsequent OBBT
problems.

Bounding the tank inflow. First, remark that the tank level variables Htj are
uniquely determined by the (fixed) initial tank levels H0j and by the tank inflow
values q0j, . . . , q(t−1)j according to (2.18). Since these inflow variables are deter-
mined by the equilibrium problem for each period (as the sum of incident arc
flows), we can also apply OBBT on the single-period relaxations, as previously, to
handle their bounds. Because inflows result as the sum of positive and negative
flows, this direct application of OBBT to the tank inflow variables is not redundant
with OBBT applied to the arc flow variables. In practice, the bounds [QC

tj
, QC

tj]

are significantly tighter than summing the limits on the incident flow variables
[
∑

a∈Amin(EajQta
, EajQta),

∑
a∈Amax(EajQta

, EajQta)], typically when both ingoing

51

arcs (Eaj = −1) and outgoing arcs (Eaj = +1) are incident to tank j. Algorithm 5
illustrates the bounding procedure for the tank inflow.

Algorithm 5 dynamic OBBT for the arc and tank variables

Input (Ot)t∈T single-period relaxations of P , optimization tolerance τ > 0

Output [Q,Q] ⊆ RT A, [V , V] ⊆ RT A, [QC, Q
C
] ⊆ RT C {X,X} ⊆ {0, 1}T A

1: for t ∈ T do:
2: call Algorithm 3 with input O := Ot and τ
3: update [Q

t
, Qt], [V t, V t], {X t, X t}

4: for j ∈ Ċ do:
5: compute L := min{qCtj : (x, q, h) ∈ Ot}, U := max{qCtj : (x, q, h) ∈ Ot}

with tolerance τ
6: update QC

tj
:= max(QC

tj
, L− τ), QC

tj := min(Q
C
tj, U + τ)

7: end for
8: end for

Bounding the tank head. Still, the steady-state relaxation is not relevant for
applying OBBT to variables Ht since they depend on the decisions made at t − 1
and before. In order to capture this dependency, we propose to consider multi-period
relaxations (M[ts,te]) of (P), restricted to some time interval [ts, te] ⊆ T , and including
all the time-coupling constraints on this interval:

M[ts,te] ⊇{(qt, ht) ∈ Ẽ(Ht, Dt, xt), ∀t ∈ [ts, te] (5.4)

qCtj = σj(H(t+1)j −Htj), ∀j ∈ Ċ,∀t ∈ [ts, te] (5.5)

H tj ≤ Htj ≤ H tj, ∀j ∈ C,∀t ∈ [ts, te + 1] (5.6)

x ∈ {0, 1}[ts,te]×A}. (5.7)

We also denote the continuous relaxation of the mentioned set as M̄ by replacing
the constraint x ∈ {0, 1} with x ∈ [0, 1].

To compute bounds for Ht′j for a given tank j ∈ Ċ and time t′ ∈ T , we need to
capture the trajectory of the tank level from the start of the schedule to time t′, then
consider the OBBT relaxation M[0,t′−1]. Remember that the relaxation Ẽ includes
constraints (5.1) and (5.2), thus M[0,t′−1] relies on the bounds [Q

t
, Qt] and [V t, V t]

for all t ∈ [0, t′ − 1]. Therefore, obtaining tighter bounds for Ht may propagate (by
updating Ot) tighter bounds over qt, vt, xt as well, which in turn may propagate (by
updatingM[0,t]) on Ht+1. Algorithm 6 catches this propagation effect. However, after
several iterations, the improvement following each iteration may become a blunt and

52

ineffective tool. If the average improvement is smaller than a certain amount, we can
stop the bound tightening. We will discuss this in numerical experiment chapter 7.

Algorithm 6 OBBT propagation between arc and tank variables

Input (Ot)t∈T , (M[0,t])t∈T single and multiple period relaxations of P , optimization

tolerance τ > 0

Output [Q,Q] ⊆ RT A, [V , V] ⊆ RT A, [QC, Q
C
] ⊆ RT Ċ, [H,H] ⊆ RT R, {X,X} ⊆

{0, 1}T A

1: call Algorithm 5 with input (Ot)t∈T and τ

2: while sufficient bound improvement do:

3: for t ∈ T , j ∈ Ċ do:

4: update the bounds inM[0,t]

5: compute L = min{h(t+1)j : (x, q, h) ∈M[0,t]}, U = max{h(t+1)j : (x, q, h) ∈
M[0,t]}, with tolerance τ

6: update H(t+1)j := max(H(t+1)j, L− τ), H(t+1)j := min(H(t+1)j, U + τ)

7: end for

8: update the bounds in (Ot)t∈T

9: call Algorithm 5 with input (Ot)t∈T and τ

10: end while

The multi-period OBBT problems (M) might take a significant time to be solved
when they cover a long time interval. In addition, the inference capacity decreases be-
tween temporally distant events. Hence, instead of variable-length intervals [0, t], we
also considered in our experiments on the largest instances, multi-period relaxations
of fixed length M[t−δ,t]. Furthermore, while we enforce tight approximations of the
nonlinear constraints in the single-period relaxation used for computing the bounds on
the static variables – including the bounds on the inflow variables which are enforced
in M – we can employ a much looser relaxation of these nonlinear relations when
computing the bounds on the tank levels. Similarly, the integrality constraints (5.7)
inM[t−h,t] do not affect much the resulting bounds, but their number increases lin-
early with h, and the computational time for solving the OBBT relaxation increases
exponentially. Therefore, we propose relaxing these integrality constraints inM when
considering large time intervals and large networks.

Bounding the difference of tank heads. By taking the reasoning further, the
flow passing through an arc depends on the difference of heads upstream and down-
stream. In response to this fact, we apply bound tightening to the difference of

53

heads in pairs of tanks j, j′ ∈ C connected to each other by a sequence of arcs
(with no other reservoirs in-between). To this purpose, we also employ the multi-
period relaxation, for t ∈ T \ {0}: H tjj′ = min{Htj − Htj′ : (x, q, h) ∈ M[t−δ,t−1]},
H tjj′ = max{Htj −Htj′ : (x, q, h) ∈M[t−δ,t−1]}.

These bounds are then enforced in the branch-and-bound relaxation (R) with the
additional constraints:

H tjj′ ≤ Htj −Htj′ ≤ H tjj′ .

5.1.5 Probing on related pairs network elements

We can also apply probing to related network elements. For instance, we can consider
the situation when some pump or valve a ∈ A regulates the filling/draining of a tank
j ∈ Ċ. We can compute the bounds on the tank inflow variables qj depending on
the status xa ∈ {0, 1}, then enforce the following lower bounding constraint (and
similarly for the upper bound):

qCtj ≥ Qa1

tj
x(t−1)a +Qa0

tj
(1− x(t−1)a),

where Qa1

tj
, Qa0

tj
are the lower bounds on inflow in the tank j computed conditionally

to the status of the pump a at the period t ∈ T . Note that for one of these two
bounds (say Qab

tj
with b ∈ {0, 1}), we can use the bound QC

tj
computed in Algorithm 6

if x(t−1)a = b in the associated OBBT solution1. In this case, only the second OBBT

problem has to be solved: Qa(1−b)

tj
= min{qtj : (xt, qt, ht) ∈ Ot, xta = 1− b}.

Obviously, the related elements to inspect should be chosen thoroughly so as not to
multiply unfruitful probes. The resulting constraint should be added to the branch-
and-bound relaxation (R) only if probing leads to a significant bound improvement,
e.g., if the gap Qa(1−b)

jt
−QC

jt
exceeds a given value.

5.1.6 Extended probing and disjunctive programming

The probing approach is not restricted to pairs of variables. We can also consider
combinations of several network elements and their possible configurations on one or
several periods in order to examine their impact on the bounds of a related variable

1This happens if xta ∈ {0, 1} is enforced in the selected OBBT relaxation

54

in P . The domain of the variable can thus be restricted to the union of the resulting
intervals. We can linearize this information by applying disjunctive programming
techniques via big-M or convex-hull formulations [57, 58].

Application to state variables. Consider, for example, extending the previous
constraint by relating the tank inflow qCtj, or equivalently the tank level Htj, with
a pump a ∈ A standing upstream and its status on the two consecutive time-steps
t and t + 1. Assume that we are able to derive a high lower bound H10

tj >> H tj

for Htj when enforcing both xta = 1 and x(t+1)a = 0 in the OBBT relaxation, e.g.,
H10

tj = min{htj : (x, q, h)[t,t+1] ∈ M[t,t+1], xta = 1, x(t+1)a = 0}. Then, we can enforce
this bound in (R) through the following linear constraint:

Htj ≥ H10
tj x̃ta +H tj(1− x̃ta) (5.8)

after introducing an auxiliary binary variable x̃ta ∈ {0, 1} defined as x̃ta = 1 ⇐⇒
xta = 1 ∧ x(t+1)a = 0. In turn, this latter condition must be linearized in the MILP
relaxation (R) as:

x̃ta ≤ xta, x̃ta ≤ 1− x(t+1)a, x̃ta ≥ xta − x(t+1)a

Note that, in this particular case, the auxiliary variable x̃ta may already exist in the
model of the non-aging constraints (2.8).

Application to control variables. Another interest in this approach, which is
favorable in our context, comes from its application to derive conditional bounds on
the arc flow variables. Indeed, if by probing, we are able to restrict the domain of a
variable qta to the union of disjoint intervals

⋃
c[Q

c, Q
c
], then we could greatly improve

the OA relaxation of the relation vta = ψa(qta) by computing tighter under- and over-
estimators ψc

a
and ψ

c

a independently on each interval, as depicted in Figure 5.2. Again,
by introducing one auxiliary binary variable xc for each interval c, we can linearize

55

Figure 5.2: A nonlinear constraint (black curve), the OA relaxation com-
puted from the initial bounds on q (orange), the new relaxation derived from
disjoint domain intervals for q (blue).

the disjunction in (R) as the following big-M formulation:∑
c∈C

Qcxc ≤ qta ≤
∑
c∈C

Q
c
xc (5.9)∑

c∈C

(ψc

a
(qta)− V a)x

c + V a ≤ vta ≤
∑
c∈C

(ψ
c

a(qta)− V a)x
c + V a (5.10)∑

c∈C

xc = xta. (5.11)

Another option is also to introduce copies qc, vc of the continuous variables on

56

each interval c as in the following convex-hull formulation:

Qcxc ≤ qc ≤ Q
c
xc, ψc

a
(qc) ≤ vc ≤ ψ

c

a(q
c) ∀c∑

c∈C

xc = xta,
∑
c∈C

qc = qta

∑
c∈C

vc + V a(1− xta) ≤ vta ≤
∑
c∈C

vc + V a(1− xta).

The LP relaxation of the convex-hull formulation is known to be stronger than for
the big-M formulation [59]. In addition, to strengthen the relaxation (R), we can
relate the auxiliary variables xc with the condition enforced in the OBBT relaxation
that led to the domain reduction [Qc, Q

c
].

A special case (illustrated in Figure 5.2) is when applying this approach to a
bidirectional pipe by computing the bounds on the arc flow according to the direction
of the flow through the pipe. The conditional bounds of a variable qta are then
computed after enforcing either qta ≤ 0 ∧ xta = 1 or qta ≥ 0 ∧ xta = 1 in the OBBT
relaxation Ot. This results in two intervals, one in R−, the other one in R+, associated
with two auxiliary binary variables, say x− and x+. Then, the relation between these
variables and their respective conditions qta ≤ 0 and qta ≥ 0 is actually already
modeled in the disjunctive formulation above.

Another special case is when introducing auxiliary variables can be evaded. For
instance, consider a pipe outgoing from a pumping station made of some parallel
pumps and valves a ∈ PS ⊆ A. The constraints (2.8) typically include interdepen-
dencies between these elements, which limit the number of possible configurations
to examine: |C| << 2|PS|. Furthermore, if an element a ∈ PS is set on (or off) in
only one of these configurations, say ca ∈ C, then the status variable xat can be used
as the indicator of this configuration, rather than adding an auxiliary variable xca .
More importantly, in this specific case, the conditional bounds [Qc, Q

c
] on the flow

outgoing the pump station can be inferred from the conditional bounds on the flows
in the pumps and valves of the pumping station. Hence, they do not ask for solving
additional OBBT problems.

57

Chapter 6

Valid Inequalities Generation

In this chapter, we show how to adapt several techniques of valid inequalities gen-
eration, such as minimum cardinality, cutset-based, and flow cover inequalities in
the context of pump scheduling. These valid inequalities are computed during the
preprocessing phase, after the OBBT algorithm, as they are usually based on some
computed bounds. All constraints hence generated are added to the MILP relax-
ation (R) before running the branch-and-check algorithm. As in [6], and contrarily
to [39, 60], we do not generate cuts others than nogoods during the tree search. In
particular, we do not generate locally valid inequalities, as it is not allowed by the
MILP solver we employed (Gurobi). Finally, because we generate nogood cuts within
the branch-and-check, the MILP solver hinders its built-in cut-generation process.
We expect that generating our own valid inequalities can mitigate this loss.

6.1 Minimum cardinality cuts

We take advantage of the time horizon restriction by considering a subset of time
intervals, and we focus on pushing the dual/lower bound on the objective. Instead
of directly bounding the objective function, we propose considering the least number
of pumps required to be activated. The first motivation is that the number of pumps
activated on the whole time horizon provides a good approximation of the solution
cost. Then, we expect that pushing up this bound will mechanically increase the
dual bound. Indeed, the inequalities can be lifted along the storage of the tanks. We
exploit the integrality of these values to strengthen the bound with the Mixed-Integer
Rounding (MIR) technique [61].

59

Let us compute, for a restricted time horizon T ′ ⊆ T and for a subset of pumps
Ȧ′ ⊆ Ȧ the OBBT bound: X ′ = min{

∑
t∈T ′

∑
a∈Ȧ′ xta : (x, q, h) ∈MT ′}, whereMT ′

denotes the multi-period relaxation introduced in Section 5.1.4. Then, the following
inequality is valid in (R): ∑

t∈T ′

∑
a∈Ȧ′

xta ≥ X ′.

Considering a restricted set of pumps and a restricted time horizon has two purposes:
(i) to make the OBBT subproblem MT ′ more tractable by reducing its size while
enforcing a tight relaxation of the nonlinear constraints, and (ii) to obtain better
deductions (minima, we need that X ′ ≥ 1) by focusing on interdependent pumps and
periods with high demand.

In particular, we propose to apply this technique when a group of pumps Ȧ′ ⊆ Ȧ
serves one given branch of the network, possibly together with a tank j ∈ Ċ anywhere
on the branch. In this case, we can strengthen the valid inequalities by lifting it
regarding the tank level variable.

Let consider a time interval T ′ = [ts, tf − 1] and compute the lower bound after
fixing the tank level arbitrarily to Hs and Hf at times ts and tf , respectively, as
follows

X ′ = min
{∑

t∈T ′

∑
a∈Ȧ′

xta : Htsj = Hs, Htf j = Hf , (x, q, h) ∈MT ′}.

If the OBBT relaxation MT ′ is continuous, we also get the dual optimal values µs,
µf of the tank level constraints.

Proposition 6.1.1. The following inequality∑
t∈T ′

∑
a∈Ȧ′

xta ≥
−1

b− ⌊b⌋
(µsH̃tsj + µfH̃tf j) + ⌈b⌉ (6.1)

is valid, with

H̃tj :=

{
Htj −H tj if µ ≥ 0

−Htj +H tj, otherwise

and

b = X ′ + |µs(Hs −H tsj)|+ |µ
f (Hf −H tf j

)|.

60

Proof. By duality, the following inequality is valid:∑
t∈T ′

∑
a∈Ȧ′

xta ≥ X ′ + µs(Htsj −Hs) + µf (Htf j −Hf).

Let denote µ̃ = µsH̃tsj+µ
fH̃tf j. Note that µ̃ is non-negative and that

∑
t∈T ′

∑
a∈Ȧ′ xta

takes only integer values. Then, we can consider the disjunctive conditions∑
t∈T ′

∑
a∈Ȧ′ xta ≤ ⌈b⌉ − 1 and

∑
t∈T ′

∑
a∈Ȧ′ xta ≥ ⌈b⌉, then apply the arguments

in [62], we obtain the desired inequality:

∑
t∈T ′

∑
a∈Ȧ′

xta ≥
−1

b− ⌊b⌋
µ̃+ ⌈b⌉. (6.2)

6.2 Cutset-based inequalities

We consider a connected subgraph of G made of one tank r′ ∈ Ċ, all the pumps and
valves Ȧ′ ⊆ Ȧ deserving tank r′, as well as all the pipes A′ ⊆ A\Ȧ′ and service nodes
S ′ ⊆ S in-between. An example is depicted in Figure 6.1: r′ is the tank labelled A,
Ȧ′ is made of one valve (labelled a) and 4 pumps (labelled b, c, d, e), then A′ and S ′

are the pipes and service nodes delimited or crossed by the dashed line.

Figure 6.1: Example of a cutset made of one tank A served by 1 valve a
and 4 pumps b, c, d, e.

61

By summing all the flow conservation constraints on the nodes J ′ := {r′} ∩ S ′ in
the cutset, we obtain:∑

j∈S′

∑
a∈A

Eajqta +
∑
a∈A

Ear′qtr′ =
∑
j∈S′

Dtj + σr′(h(t+1)r′ − htr′).

Each arc in A′ connects two nodes in the cutset, while each arc in a ∈ Ȧ′ either enters
the cutset (

∑
j∈J ′ Eaj = 1) or leaves the cutset (

∑
j∈J ′ Eaj = −1). By denoting

E ′
a =

∑
j∈J ′ Eaj, we get:∑

a∈Ȧ′

E ′
aqta + σr′(htr′ − h(t+1)r′) =

∑
j∈S′

Dtj. (6.3)

6.2.1 Coefficient reduction

Remember that pumps and valves are unidirectional arcs directed by flow, then
0 ≤ Q

ta
xta ≤ qta ≤ Qtaxta for all a ∈ Ȧ′, and the equation (6.3) above can be

relaxed as follows:∑
a∈Ȧ′

+

Qtaxta + σr′(htr′ − h(t+1)r′) ≥
∑
j∈S′

Dtj +
∑
a∈Ȧ′

−

qta,

where we distinguish the entering arcs Ȧ′
+ = {a ∈ Ȧ′ : E ′

a = 1} and leaving arcs

Ȧ′
− = {a ∈ Ȧ′ : E ′

a = −1}. By summing this inequality for consecutive periods
t ∈ T ′ = {ts, tf − 1}, we get:∑

t∈T ′

∑
a∈Ȧ′

+

Qtaxta + σr′(htsr′ − htf r′) ≥
∑
j∈S′

∑
t∈T ′

(Dtj +
∑
a∈Ȧ′

−

qta).

Now consider a time interval such that htsr′ ≥ H tsr′ ≥ H tf r′
and any non-negative

lower bound d ≥ 0 of the right-hand side, then we can apply the coefficient reduction
technique introduced in [63] to further tighten the inequality as follows:∑

t∈T ′

∑
a∈Ȧ′

+

min(Qta, d)xta + σr′(htsr′ −H tf r′
) ≥ d. (6.4)

62

6.2.2 Mixed Integer Rounding

We now propose to apply the Mixed Integer Rounding (MIR) technique [64, 65, 66]
to equality (6.3).

As above, we can relax (6.3) as:∑
a∈Ȧ′

+

Qtaxta −
∑
a∈Ȧ′

−

Q
ta
xta + σr′(htr′ −H(t+1)r′) ≥

∑
j∈S′

Dtj.

We can reformulate the terms −Q
ta
xta in the second added as Q

ta
(x̄ta − 1), by con-

sidering the complementary binary variables x̄ta = 1−xta, so that all binary variables
have now a non-negative coefficient. We then obtain an inequality with the following
structure: ∑

k

ckzk + s ≥ d,

where all binary variables zk (either xta or x̄ta) have non-negative coefficients ck ≥ 0, s
includes a positive continuous variable (here htr′) and d ≥ 0 is a non-negative constant
right hand side. The coefficient reduction related to MIR consists of replacing each
coefficient ck and constant d by their fractional part, c′k = ck −⌊ck⌋ and d′ = d−⌊d⌋,
then to partition the variables as follows:∑

k:c′k<d′

c′kzk + d′
(∑
k:c′k≥d′

zk +
∑

k:c′k<d′

⌊ck⌋zk
)
+ s ≥ d′. (6.5)

To be effective, the inequality can be normalized (by dividing ck, s, d with a positive
constant) such that there exists at least one binary variable zk with c′k ≥ d′.

6.2.3 Flow cover inequalities

We now propose to generate cover subsets [64, 66, 67, 68], when considering a cutset
as above. In this case, the tank inflow and the storage must be higher than the
demand and the outflow from the cutset.

As before, we relax and reformulate (6.3) by introducing complementary binary

63

variables, then we sum over a time interval T ′ = {ts, . . . , tf − 1}:∑
t∈T ′

∑
a∈Ȧ′

+

Qta(1− x̄ta)−
∑
t∈T ′

∑
a∈Ȧ′

−

Q
ta
xta + σr′(htsr′ −H(tf)r′

) ≥
∑
t∈T ′

∑
j∈S′

Dtj,

or, equivalently, by rearranging the terms, we obtain a knapsack constraint with
non-negative coefficient on the binary variables:∑
t∈T ′

∑
a∈Ȧ′

+

Qtax̄ta +
∑
t∈T ′

∑
a∈Ȧ′

−

Q
ta
xta − σr′(htsr′ −H tf r′

) ≤ −
∑
t∈T ′

∑
j∈S′

Dtj +
∑
t∈T ′

∑
a∈Ȧ′

+

Qta.

We choose a cover that exceeds the right hand side, i.e. C+ ∈ T ′ × Ȧ′
+ and

C− ∈ T ′ × Ȧ′
− such that:

λ =
∑

(t,a)∈C+

Qta +
∑

(t,a)∈C−

Q
ta
− (−

∑
t∈T ′

∑
j∈S′

Dtj +
∑
t∈T ′

∑
a∈Ȧ′

+

Qta) ≥ 0

after simplifications, we have λ =
∑

t∈T ′
∑

j∈S′ Dtj +
∑

t∈T ′
∑

a∈C−
Q

ta
−∑

t∈T ′
∑

a∈C′
+
Qta, where C

′
+ is the complement of C+ in T ′ × Ȧ′

+, and we can order

the values in subsets C− and C ′
+ in decreasing order.

Hence: ∑
(t,a)∈C′

+

Qta(1− x̄ta)−
∑

(t,a)∈C−

Q
ta
(1− xta) ≤ −λ+ σr′(htsr′ −H tf r′

)

then applying the coefficient reduction:∑
(t,a)∈C′

+

min(Qta, λ)xta −
∑

(t,a)∈C−

min(Q
ta
, λ)(1− xta) ≤ −λ+ σr′(htsr′ −H tf r′

)+

By lifting variables from sets C ′
+ and C−:∑

(t,a)∈C′
+

min(Qta, λ)xta −
∑

(t,a)∈C−

min(Q
ta
, λ)(1− xta)

−
∑

(t,a)∈C′
+

Φ(Qta)(1− xta)−
∑

(t,a)∈C−

Φ(Q
ta
)xta

+ σr′(htsr′ −H tf r′
)+ ≥ λ (6.6)

64

with Φ defined as:

Φ(a) =

iλ if Ai ≤ a ≤ Ai+1 − λ
iλ+ (a− Ai), ifAi − λ ≤ a ≤ Ai

pλ+ (a− Ap) Ap − λ ≤ a

and λ = d+
∑

ta∈C−
Q

ta
−
∑

ta∈C′
+
Qta ≥ 0, values in subsets C ′

+ and C− are sorted

in decreasing order and each member of them are bigger than λ.

{i ∈ C ′
+ ∪ C− : ai > λ} = {1, 2, ..., p}, Ai =

i∑
k=1

ak

Obviously, the strength of the cutset inequalities is highly dependent on the bounds
of the flow variables. If the bounds are loose then the obtained inequalities can even
be looser than the original equality. Another important aspect is how to find the
cover and pack set. This will impact the strength of the flow cover inequality.

6.2.4 Difficulties of minimum cardinality cut generation

The most time-consuming valid inequalities to generate are to determine the minimum
number of pumps are required to be generated until a certain time step to fulfill the
demands and satisfy constraints such as tanks levels. It can push up the objective cost
function since the number of active pumps directly contributes to the cost. However,
this may have major drawbacks: the generation of such valid inequalities may demand
a significant computational resources though most of the valid inequalities have been
obtained for decomposed problems (e.g., for time step 0 to t’ so effectively there is
no impact of variables belong to larger time steps.)

6.3 Surrogate model

Generating tight inequalities based on the same MILP formulation implemented in the
branch-and-check algorithm may take unaffordable computational efforts. Moreover,
generating valid inequalities derived from the same relaxation as the one deployed
for the branch-and-check algorithm may not be so informative. In response to these

65

issues, a new relaxation is introduced as complementary to the previously defined
MILP relaxations constructed via outer approximation of the head-flow relationship.

We introduce a lighter relaxation of the previous formulation. For each linking
branch between two tanks, we can define new types of relaxation by projecting out
the majority of flow variables using the capacities of the arcs. This is analogous to
the method defined in cutset-based inequalities and establishing supernodes. In fact,
the surrogate model is a simplified representation of the original one materialized by
collapsing some nodes and introducing subgraphs. This yields a graph with fewer arcs
and nodes and a new relaxation of the problem. This less detailed model might yield
a weak lower estimation for the original problem, in particular for cases where the
difference between the upper and lower bounds of the flow variable (flow capacities
of the arcs) is relatively large. For these cases, to control the loose relaxation of
the conservation of the flows by using capacities of the arcs (max and min possible
passing flows), We propose to associate the flow bounds to the difference in the levels
of adjacent tanks (i.e., two tanks connected through arcs with no other reservoir in
between.) The rationale is to restrict more the capacities of the arcs. The difference in
the levels of the tanks are discretized into some intervals and, for each interval, we have
associated flow bounds. As a result, for a branch linking two tanks, if the difference
in the levels of the tanks is discretized to N intervals, we have N corresponding lower
and upper bound capacities, as if these N arcs are located parallel to each other and
at each time at most one of them can be activated.

Let us suppose a simple topology that the tank j′ ∈ J is fed by a pump or a
valve going out from the tank j ∈ J , a = (j, j′). The bounds of the flow through a
pump being in a connecting path from tank j to tank j′ is qjj′ ∈ [Q

tjj′
, Qtjj′] which

can be discretized by associating the differences of the tank j and j′ levels to flow
bounds. Hence, we discretize the bound interval corresponding to the difference of
the levels in two adjacent tanks Htj − Htj′ ∈ [H tjj′ , H tjj′] then we apply probing
on the conditional bounds of flows over steady-state relaxation. If we discretize the
difference of the levels of the tanks in N intervals and we find the corresponding
feasible bounds, then:

Htjj′ = Htj −Htj′ ∈ [H
(1)
tjj′ , H

(1)

tjj′] ∨ ... ∨ [H
(N)
tjj′ , H

(N)

tjj′]

and
if Htj −Htj′ ∈ [H

(n)
tjj′ , H

(n)

tjj′] then qtjj′ ∈ [Q(n)

tii′
, Q

(n)

tjj′],

More precisely for each arc a = (j, j′), j, j′ ∈ Ċ connecting the tank j and j′ we can

obtain corresponding discrete bounds: Q
(n)

ta = max{qta|(qt, ht) ∈ E(Ht, Dt, xt), xt ⊆
{0, 1}A, Htj − Htj′ ∈ [H

(n)
tjj′ , H

(n)

tjj′], xta = 1} and Q(n)

ta
= min{qta|(qt, ht) ∈

66

E(Ht, Dt, xt), xt ⊆ {0, 1}A, Htj − Htj′ ∈ [H
(n)
tjj′ , H

(n)

tjj′], xta = 1}. Conspicuously, dis-
cretizing more the difference between levels of the tanks connected by a controlled
arc in between creates more accurate relaxations at the price of more complicated
combinatorial problem.

The trade-off between the accuracy of the relaxation and the integral complexity
can be tuned by considering the bounds of the flow over the controllable arcs and the
complexity of the original model (e.g., the number of time steps, pumps, and valves).

To illustrate better the way of constructing this surrogate model and establish-
ing the simplified version of the graph G, we have shown the procedure over the
Poormond network. As shown in Figure 6.2, the surrogate model defined below can

Figure 6.2: The graph simplifications and supernodes in Poormond net-
work to establish new relaxation as a surrogate model.

be represented as a multigraph with various parallel edges connecting each pair of
supernodes.

Surrogate model for Poormond. The Poormond network can morph into several
supernodes comprising aggregated demands and storage tanks. The link between
every two tanks with no reservoir between them can be represented as a controllable
arc or a set of parallel arcs. The capacity (i.e., upper and lower flow passing through
them if they are active) of each one of these parallel arcs is associated with the
difference in the intervals of the tanks. If the controllable arc is on, then exactly one
of these parallel control arcs can be activated. Apart from associating capacities to the
difference of the levels of the tanks, from source reservoir to the central tank (i.e., tank
A), there are several controllable arcs with relatively large bound variations; makes

67

it difficult to simplify the network and at the same time maintain the tightness of the
relaxation. Considering different combinations of the activity of the controllable arcs
facilitates to obtain a relatively small difference between the lower and upper bound
for each combination. This leads to a tighter relaxation without discretizing further
the levels of the tanks. Precisely, there are five possible combinations: i.(xo, xr), ii.
(xo, xs), iii. (xo, xp, xr), iv. (xo, xp, xs), v. (xq). While once the xq = 1 (combination
v is active) then all flow is passing through the arc is only satisfying a demand node
(so there would be no inflow to tank A from the pump stations.) As a result, all arcs
located at these pump stations and nodes can be collapsed and only be considered as
parallel arcs which their flows upper and lower bound can be computed by enforcing
the activity of each possible combination. The flow variable is only defined for in-
outgoing of the tanks. In Chapter 7, We have introduced 7 discrete capacities between
tank A and B and 3 between tank A and D. For other pathways we do not add any
further auxiliary binary variables since the lower and higher capacities of the branches
are very close to each other and the potentials of the tanks are not affected much by
the flow variations in the arcs. Precisely, the relative difference of an upper and lower
bounds of the linking arcs with respect to capacity of the destination or source tank is
considered as an indicator for the number of required discretization. In this way the
potential-based flow relaxation is modeled as a flow network with fictitious parallel
arcs representing the difference of the storage in the tanks. All flow variables are
excluded except the inflow and outflow of the storage tanks. As a result the number
of continuous variables corresponding to arcs and nodes reduces significantly, thus
instead of having flow variables for each element at each time step and the cutting
planes determining the outer-approximation of the flow-head relationship, we have
merely flows corresponding to storage tanks. We can write the new formulation for
the simplified multi graph G ′(J ,A) as below ∀t ∈ T \ {0}:

68

H tij ≤ Htij ≤ H tij ∀(i, j) ∈ Ȧ
H tj ≤ Htj ≤ H tj ∀j ∈ Ċ∑
n∈Na

xnta ≤ 1 ∀a ∈ Ȧ

xnta ∈ {0, 1} ∀a ∈ Ȧ,∀n ∈ NA

Htij ≤ H
(n)

tij x
(n)
tij +H tij(1− x(n)tij) ∀i, j ∈ Ċ, a = (i, j) ∈ A,∀n ∈ Na

Htij ≥ H
(n)
tij x

(n)
tij +H tij(1− x

(n)
tij) ∀i, j ∈ Ċ, a = (i, j) ∈ A,∀n ∈ Na

qta ≤
∑
n∈Na

x
(n)
ta Q

(n)

ta ∀a ∈ Ȧ

qta ≥
∑
n∈Na

x
(n)
ta Q

(n)

ta
∀a ∈ Ȧ

qJtj =
∑
a∈A+

qta −
∑
a∈A−

qta −Dtj ∀j ∈ Ċ,∀a ∈ A

qJtj = σj(Htj+1 −Htj) ∀j ∈ Ċ

QJ
tj
≤ qJtj ≤ Q

J
tj ∀j ∈ Ċ

69

Chapter 7

Numerical Results

In this section, we compare the effect of our preprocessing on the branch-and-check
algorithm introduced in [6]. In the following, we first describe the computational
resources and networks used as benchmarks. Then, we illustrate the impact of bound
tightening and cut generation in the global optimization framework of the drinking
water networks considered in this thesis.

7.1 Computational setup

We deploy various levels of preprocessing on different networks. Three networks are
considered for evaluation of each formulation, namely simple networks FSD, Poor-
mond, and van Zyl with time horizons T = 12, 24, and 48. The details about the
networks are given in Table 3.1. The instances for FSD and Poormond are taken
from [6]. The demand profiles of the instances belonging to van Zyl are from [26]
while the tariff are different (they had considered only a single day/night tariff).

Below, we describe the different formulations of preprocessing to be combined with
the branch-and-check algorithm.

C0. This formulation is used in the branch-and-check algorithm by Bonvin et al.
in [6]. This may tighten the bounds more than what is calculated as the capacity
of each arc based on the assumption of the lumped elements, usually obtained
by considering the size and the material of the pipes to avoid wave propagation
through the medium. We reconstruct the C0 reformulation by applying bound

71

tightening over steady-state relaxation with floating demand. The demand is
assumed to vary from 80% of the minimum to 120% of the maximum of the
given instance demand profile. The reason behind considering larger margins
is that the initial bound should be able to handle everyday forecast demand
profiles without removing feasible solutions.

C1. This formulation is derived after applying bound tightening over each variable
(no compound variables or extended disjunctive programming), that is by using
the techniques presented in Section 5. The type of relaxations in the prepro-
cessing and the number of iterations are mentioned specifically for each network
in the sections below.

C2. This formulation is derived after bound tightening, probing, and disjunctive
programming introduced in Chapter 5.

C3. This formulation is obtained after adding problem-specific cut generation, pre-
sented in Chapter 6. The details are provided for each network in the sections
below.

7.2 Parameters to control bound tightening and

cut generation

The efficacy and effectiveness of the bound tightening and cut generation can be
controlled through several parameters.

Steady-state relaxation with bound tightening. For the relaxation of the non-
convex head-flow constraint ψ : q ∈ R −→ Aq|q| + Bq + C, we have considered two
main options: the outer approximation (OA(E)), which implements a polyhedral re-
laxation of the equality constraint for the head-flow relationship, and a piecewise
linear relaxation (PWLR(E)) viable via auxiliary binary variables. The complexity
of these relaxations (i.e., the number of cutting planes to establish outer approxima-
tion and auxiliary binary variables) is controlled by the maximum tolerance between
the relaxation and the exact nonlinear function.

Multi-period bound tightening. We evaluate the impact of the bound tighten-
ing on domain reduction over the levels of the tanks and the difference of adjacent
ones considering multi-period relaxations. The propagation and resulting domain
reduction are also assessed over the domains of the other variables.

72

Number of iterations and stopping criteria Bound tightening is implemented
in a sequential manner and the number of iterations can affect the domain reduction
of the variables. However, in general, increasing the number of iterations significantly
raises the computational cost of the preprocessing without tangible improvement of
the domain reduction.

All algorithms are implemented in Python, and the numerical experiments are
executed on an Intel Core(TM) 6148 1.10GHz i7-10810U and 32 GB memory.
Gurobi 9.5 was used to solve the MILP relaxations and in the implementation of
the branch-and-check algorithm. All the implementations can be found at https:

//github.com/amirhtavakoli94/pmpscheduling_branch_and_check

The effect of the bound tightening is assessed over variable domains. The improve-
ment is reported as the percentage with respect to those derived by the formulation
C0.

7.3 Effect of preprocessing on selected networks

7.3.1 Simple network

We begin by briefly commenting on the effect of preprocessing on the most difficult
instances of the Simple Network (FSD), which is the case with T = 48. The impact
of the formulations presented above on the branch-and-check algorithm is reported in
Table 7.1. In this table and similar ones to be shown below, we indicate the name of
the network and the time horizon, the type of formulation, and the reference of the
instance solved. Moreover, we display the best upper and lower bounds computed as
’ub’ and ’lb,’ respectively. The column titled ‘gap’ reports the optimality gap (and the
computational time when the gap is closed). To have a fair comparison, we consider
a longer run time for C0 formulation. For FSD network, the first feasible solution is
always obtained quickly (less than a few seconds), so we have not reported it in the
table.

The results show that formulation C0 cannot close the optimality gap for four over
five instances within the time limit of 4800s. We also consider formulation C1 and
set a maximum computational time for the bound tightening equal to five minutes.
Since this bound tightening is fairly quick, we considerM[0,48], that a for multi-period
relaxation over all the periods. In this case, we can solve three instances to optimality
and reduce the optimality gap of the remaining. Finally, in formulation C3, we apply

73

https://github.com/amirhtavakoli94/pmpscheduling_branch_and_check
https://github.com/amirhtavakoli94/pmpscheduling_branch_and_check

cut generations consisting of minimum cardinality cuts with MILP formulation and
the lifted version while the solution of the LP relaxation is utilized. The generation
of cuts takes less than 950s. This formulation can find a global solution for all the
considered instances.

network-T formulation instance ub lb gap
FSD48 C0 1 150.9 150.9 0%(1960)

2 155.7 154.8 0.4%
3 168.6 167.1 0.9%
4 176.0 175.6 0.2%
5 145.6 144.6 0.7%

FSD48 C1 1 150.9 150.9 0%(1059)
2 155.7 155.7 0%(2729)
3 168.6 167.9 0.4%
4 176.0 176.0 0% (799)
5 145.6 144.9 0.5%

FSD48 C3 1 150.9 150.9 0%(182)
2 155.7 155.7 0%(1720)
3 168.6 168.6 0%(250)
4 176.0 176.0 0% (220)
5 145.6 145.6 0%(3237)

Table 7.1
Effect of the different formulations on the branch-and-check algorithm for

Simple Network with T = 48.

7.3.2 Poormond

We compare the effect of the bound tightening over Poormond network. The first
evaluation is on the effect of the type of relaxation, either piecewise relaxation or
outer-approximation, with a tolerance of 0.01 on the single-period relaxation. The
relative domain reductions of the variables and the time requirement to run each
relaxation are crucial indicators of the efficacy and effectiveness of the method. We
compare these two relaxations only considering the steady-state relaxation with no
update of levels of the tanks.

The steady-state PWL relaxation takes 323 s to be completed for one iteration in
the case T = 12 (PM12). The relative reductions of the bounds of the flow variables in

74

the controllable arcs and pipes are 53% and 27%. In comparison, each iteration of the
bound tightening with outer-approximation is quicker and in the first iteration takes
58 s. However, the improvement in the bounds is smaller, that is, around 40% and
26%. After six consecutive iterations, which require 325 s, the bound improvement
of the flow variables in arcs is only 51%. For T = 24 (PM24) after the first iteration
with a run time of 473 s, the amount of improvement is 51% for the controllable
arcs. While in outer-approximation, the first iteration takes 125 s and the domain
reduction is 39%. After 5 iterations taking less than 600 s the improvement reaches
49%. The same trend is also seen for T = 48 (PM48).

In summary, the above results show that while outer-approximation requires a
smaller computational effort than PWL relaxation to complete one iteration, the
same amount of domain reduction is achieved with multiple iterations. Indeed, the
computational results suggest that iteratively applying bound tightening over steady-
state relaxation without updating the levels of the tank is not effective, and it does
not improve the bounds for tight steady-state relaxation. We assess the improvements
after bound tightening the levels of the tanks after each evaluation of the steady-state
relaxation. For instances with T = 12 at periods closer to the initialization of the
scheduling (e.g., t = 1, 2), we encounter substantial reductions over levels of the tanks
since the initial levels of the tanks are known. The domain reduction over levels of the
tanks is propagated to other variables and may tighten the steady-state relaxation.

Adding multi-period bound tightening enhances the bound propagation through
the steady-state relaxation. The relative difference between bounds in the formulation
C0 and the ones obtained from C1 is considered as a way to indicate the improvement.
This is shown in Table 7.2. Note that if the average improvement of the flow bounds in
two consecutive iterations is less than 0.5%, we do not run another iteration of bound
tightening. With this strategy, the bound tightening requires three iterations and a
computational time of 847 s, 1739 s, and 2963 s for T = 12, 24, and 48, respectively.
Table 7.2 shows that a remarkable decrease in the flow domains is obtained, both
over the controllable arcs (QȦ) and the pipes (QAL

). Good results are also shown for
the head loss of the controllable arc, denoted as VȦ.

The relative improvement seems less remarkable for the levels of the tanks, de-
noted as HJ . However, any shrinkage over these bounds propagates and impacts the
single-period bound tightening. Therefore, its effect cannot be deemed merely by
the reduction of the capacities of the tanks. For multi-period relaxationM[ts,te], we
have not considered all periods but only a small neighborhood around each t ∈ T .
In particular, we have considered three steps before and after for any t far from the
beginning and the end of the time horizon. The domain reduction is not very different
from the situation in which all periods are considered; however, the computational
effort is substantially lower. For instance, for PM12, the required time to M[0,12]

75

network-T QȦ QAL
VȦ HJ

PM12 64.9% 36.2% 49.4% 17.9%
PM24 63.2% 33.4% 47.7% 12.2%
PM48 62.5% 33.0% 47.3% 12.1%

Table 7.2
Performance of the bound tightening in terms of domain improvement

Poormond network.

and two iterations and the same configurations as reported parameters is more than
4600 s. Instead, when a smaller number of periods is considered, M[t−3,t+3], the
computational time for the same number of iterations is less than 600 s.

The formulation C2 involves the application of probing and disjunctive program-
ming techniques. For each tank in this network, we have enforced different configu-
rations of the controllable arcs attached to the tanks, as presented in equations (5.8).
For each one that has more than one period, we have lifted the decision variables to
model the cut. For the tanks located at the end of the graph (i.e., three tanks in this
network), there is no reason to enforce inactivity of the feeding controllable arcs since
the amount of the flow exiting the tanks, while the feeding pump is off, is equal to
the demand and cannot be affected by the potential nodes. This conditional bound
tightening overall does not take more than one minute (e.g., for T = 24, it takes
around 35 s). The Poormond graph gives many opportunities to enforce extended
probing and disjunctive programming, represented in (5.11). The flow bound of each
of the arcs located after pumps stations can be further tightened by considering pos-
sible combinations of controllable arcs activities. Therefore, the outer-approximation
of the head-flow relationship in these arcs can be associated to the activity of each
combination and be modeled by disjunctive programming. Therefore, for each arc
the number of outer-approximations is associated to the lifted binary variables rep-
resenting each combination. The directions of the flow through bidirectional arcs are
also dependent on the activity of the control arcs (except for one pipe connected to
the central storage tank, for which the direction is also dependent on the levels of
the tanks). This can be deduced directly from the flow conservation and the derived
bounds of the active control. Instead of running one conditional bound tightening
by enforcing the direction of the flow through the arc, we simply relate the condi-
tional bounds to the activity of controllable arcs and the conservation of the flow. For
PM24, finding these conditional bounds to apply extended probing and disjunctive
programming only takes less than 30s.

The formulation C3 is obtained after enforcing cuts described in Chapter 6. For
each tank and at each t, lifted minimum cardinality inequalities have been generated

76

Figure 7.1: Bidirectional pipes in Poormond network: the direction of
the flow and, consequently, the outer approximation is dependent on linking
controllable arcs.

for levels of the tank solution of the LP relaxation and their associated Lagrangian
multipliers. Moreover, the minimum cardinality cuts are generated for the number of
active pumps located in the pump stations from the source to the central storage tank,
that is |A′| = 4 and all relatively bigger pumps |A′| = 5 and for each subset of time
steps T ′ = [0, t] with t ∈ {1, ..., T}. For t far from the beginning of the scheduling
horizon, closing the gap of the auxiliary optimization problem is computationally
expensive, and it makes it unreasonable to be applied at the preprocessing. Besides,
extracting inequalities from the same relaxation which will be applied in branch-and-
check algorithm may not be so informative. To find a tight bound in a reasonable
amount of time, we have constructed the surrogate model presented in Section 6.3.

To generate cutset-based inequalities, we suggest projecting out the flow variables
and using supernodes. The supernodes are established for each tank located in the
network. For tanks directly connected to the demand node, a cutset-based inequality
such as (6.4) is enforced. Similar inequalities are generated by aggregating consecutive
periods (i.e., |T ′| is set equal to 2, 3, or 4 in numerical experiments). For instance,
we can see in Figure 7.1 that tank B is fed by a pump and is connected to a demand
node separated from the rest of the network by the tank itself. We apply cutset-based
inequalities for several aggregated periods. For storage tanks connected to in-outgoing
controllable arcs, inequalities such as (6.4) can be enforced. For each tank fed by
control arcs we have enforced such inequalities to exploit the integrality constraints.
To enforce these inequalities, a supernode established by aggregating all the demand
satisfied directly by the storage in the tank A. To have tighter representation of the
flow variables of the in-outgoing arcs, the possible combinations of active controllable
arcs at the pump stations are considered (similar to surrogate model example in 6)The

77

capacities of a subset of in-outgoing arcs are considered as a cover and remaining ones
are entered via lifting. This subset is obtained based on the LP relaxation at the root
node.

The first sign of improvement in the mathematical formulation after enforcing
bound tightening and cut generation can be observed in the improvement of dual
bound at the root node illustrated in Table 7.3. On average for all the instances, by
applying bound tightening on variables (i.e., formulation C1), the bound is improved
around 4%. However, the extended probing and disjunctive programming does not
dramatically change the LP relaxation. The reason can stem from the fact that the
tighter polyhedral relaxations are modeled by introducing auxiliary binary variables
or by relating them to the existing ones (see Chapter 5), and consequently, in an
LP relaxation, the tighter polyhedra may be compromised by fractional values. On
the other hand, formulation C3 allows us to obtain promising results. In one of the
instances, the improvement with respect to formulation C0 even reaches 19%. The
reason for the efficacy of formulation C3 might be related to the fact that the cutting
planes proposed in Chapter 6 directly act on the relaxation of the binary variables
considered in the relaxed formulations.

In Tables 7.4, 7.5, and 7.6, we report the impact on the branch-and-check algorithm
of formulations C1, C2, and C3. The notation is similar to that used in a previous
table, and we also add the column titled ’1st’ to indicate the time to acquire the first
feasible solution. The progress can be observed in various aspects: the optimality
gap and the time to compute the first feasible solution. We also look at the number
of instances with certified optimality.

For some instances, even finding a feasible solution is in limbo, and in practice,
it might exacerbate the situation for an operator to plan for a day ahead. This
situation can be observed in Table 7.4 for the case T = 12, where the formulation C0
has difficulties finding any feasible solution for the instances of PM12. On the other
hand, employing the formulation C1 makes it possible to obtain a feasible solution
for all instances and close the optimality gap for one of them. A great improvement
can be observed in formulation C2 as all instances can be solved to optimality. The
performance of the branch-and-check algorithm for the scheduling problems T = 24
with different formulation is illustrated in Table 7.5. The optimality gap is around
4.4% on average in formulation C0 and 2.8%, 2.3% and 2.1% on average in C1, C2
and C3, respectively. The average time to obtain the first feasible solution shrinks
from around 700 s to 100 s on average. A similar improvement rate can be observed
in Table 7.6 for the case T = 48. The results of the instances in PM24 and PM48
clearly illustrate the advantage of powerful preprocessing. The formulations C2 and
C3 outperform C0 and C1 in both upper and lower bounds.

78

network-T instance C0 C1 C2 C3
Value % Impr. Value % Impr. Value % Impr.

PM12 1 89.26 94.50 5.87 94.62 6.00 - -
2 90.79 96.40 6.18 96.58 6.37 - -
3 100.27 106.45 6.16 106.74 6.44 - -
4 110.88 116.96 5.49 117.07 5.59 - -
5 82.12 88.19 7.39 88.26 7.47 - -

PM24 1 89.27 93.14 4.32 93.30 4.51 103.23 15.63
2 90.80 94.91 4.52 95.13 4.77 105.44 16.11
3 100.27 104.50 4.21 104.86 4.57 117.24 16.93
4 110.90 115.33 4.00 115.49 4.15 127.60 15.06
5 75.30 78.30 3.98 78.37 4.07 89.78 19.25

PM48 1 89.27 93.11 4.30 93.26 4.46 102.23 14.53
2 90.80 94.87 4.49 95.10 4.74 103.74 14.25
3 100.27 104.44 4.16 104.82 4.54 115.86 15.54
4 110.90 115.31 4.24 115.47 4.41 126.64 14.30
5 75.33 78.26 3.89 78.35 4.01 87.70 16.42

Table 7.3
Percentage of dual bounds improvements for Poormond.

The improvement in the LP relaxation has not always been as impressive in the
branch and bound algorithm. In particular the performance of branch and check
algorithm from C1 to C2 is significant whereas the improvement in LP relaxation is
not so impressive. On the contrary, in some instances remarkable improvements in LP
relaxation cannot proportionally be translated to improvement in the performance.
This can be partially the result of the fact that the cuts generated in C3 might overlap
with built-in cutting planes.

79

network-T formulation instance ub lb gap 1st
PM12 C0 1 NA 110.7 NA% NA

2 NA 113.5 NA% NA
3 NA 123.9 NA% NA
4 NA 137.2 NA% NA
5 NA 112.5 NA% NA

PM12 C1 1 114.6 112.7 1.7% 727
2 117.7 115.7 1.8% 86
3 133.9 126.9 5.3% 2493
4 141.6 141.6 0%(1517) 243
5 118.0 114.8 2.7% 2149

PM12 C2 1 114.1 114.1 0%(757s) 40.6
2 117.5 117.5 0%(2088s) 67.6
3 130.3 130.3 0%(3982s) 211.8
4 141.6 141.6 0%(916s) 180.6
5 117.1 117.1 0%(938s) 45.3

Table 7.4
Effect of the different formulations on the branch-and-check algorithm for

Poormond with T = 12.

80

network-T formulation instance ub lb gap 1st
PM24 C0 1 113.2 107.8 4.8% 572

2 114.4 110.6 3.2% 125
3 126.0 121.5 3.6% 319
4 140.0 134.6 4.5% 2001
5 96.1 92.8 5.8% 450

PM24 C1 1 111.9 108.0 3.5% 117
2 114.2 110.4 3.3% 463
3 125.3 122.4 2.3% 27
4 138.0 134.5 2.6% 104
5 96.1 93.8 2.3% 150

PM24 C2 1 111.0 108.3 2.4% 48.6
2 113.8 111.3 2.2% 159
3 125.3 122.4 2.3% 74
4 138.5 134.9 2.6% 44
5 96.1 94.1 2% 204

PM24 C3 1 111.8 108.9 2.5% 94
2 114.0 111.6 2.0% 164
3 125.7 123.2 2.0% 110
4 138.8 136.1 2.0% 104
5 96.1 94.4 1.8% 49

Table 7.5
Effect of the different formulations on the branch-and-check algorithm for

Poormond with T = 24.

81

network-T formulation instance ub lb gap 1st
PM48 C0 1 109.4 106.9 2.3% 1041

2 112.9 109.1 3.4% 259
3 125.9 120.5 4.3% 1017
4 135.4 132.9 1.9% 585
5 94.5 90.6 4.0% 166

PM48 C1 1 110.3 107.2 2.8% 214
2 113.3 109.4 3.3% 235
3 124.3 121.4 2.4% 252
4 136.9 133.5 2.5% 353
5 93.9 91.2 2.9% 62

PM48 C2 1 109.4 107.4 1.8% 118
2 112.2 109.6 2.3% 158
3 124.1 121.3 2.2% 163
4 135.9 133.6 1.7% 124
5 93 91.3 1.9% 114

PM48 C3 1 109.5 107.4 1.9% 869
2 111.9 109.7 2.0% 242
3 123.6 121.4 1.8% 265
4 136.2 133.7 1.9% 93
5 93.6 91.6 2.1% 347

Table 7.6
Effect of the different formulations on the branch-and-check algorithm for

Poormond with T = 48.

82

7.3.3 van Zyl

We show that the use of bound tightening significantly impacts the domain of the
variables in van Zyl (VZ) network. We stop the bound tightening algorithm when
the improvement of flows through the arcs in the current iteration with respect to
the previous one is less than 0.5% percent. Table 7.7 shows the number of iterations
and the computational time in seconds to reach this stopping criterion.

When the single-period relaxation in the bound tightening is considered, the re-
duction in the domain of the flow bounds over the controllable arcs is about 26%,
29%, and 32% in VZ12, VZ24, and VZ48, respectively. Table 7.8 reports the im-
pressive results on the domain reduction derived from multi-period bound tightening.
The bound tightening over levels of the tanks are deployed after other bound tight-
enings (i.e., after bound tightening over steady state relaxation) at each iteration.
The improvement of the capacities of the tanks can be an indicator of the subsequent
improvements. If there is no reduction in the bounds of the levels of the tanks, no
further improvement may be achievable for other variables.

In formulation C2, we consider extended probing and disjunctive programming.
In this network, there are four controllable arcs at each time step. We have intro-
duced auxiliary binary variables by the lifting approach to model multilinear terms
representing each possible combination of activity of controllable arcs. On top of the
bound tightening procedures in C1, we have applied conditional bound tightening
for each combination. We have applied steady-state PWL relaxation for probing to
obtain these conditional bounds. For T = 12, 24, and 48, the computational time
required to run probing is 73 s, 170 s, and 410 s, respectively.

In formulation C3, the minimum cardinality cuts are implemented to further
tighten the polyhedral relaxations. We devise different relaxations to derive the cuts,
different from the one deployed in the branch-and-check algorithm. The network can
be split into two subgraphs (see graph partition in Chapter 2). The first subgraph
comprises pumps and valves. The polyhedral outer-approximation can be further
tightened only by relating the activity of these controllable arcs to polyhedral outer-
approximations. However, the other part is isolated by two tanks. Therefore, the
polyhedral relaxation may not be tightened by relating the activity of the control-
lable arcs. We define new relaxations according to the difference in the levels of the
tanks. For the arcs between these two tanks, we have computed new bounds by dis-
cretizing the difference in the levels of the tanks. Then, for each discretized interval,
new flow bounds have been associated with the tank intervals with implied binary
variables. The outer-approximation is built up based on these new bounds with dis-
junctive programming as shown in Section 4.3.4. Then, we use this relaxation to find

83

network-T # iterations required time

VZ12 3 205 s
VZ24 4 1045 s
VZ48 5 1300 s

Table 7.7
Performance of the bound tightening in terms of computational time and

iterations for van Zyl.

network-T QȦ QAL
VȦ HJ

VZ12 50.9% 32.8% 64.0% 35.6%
VZ24 48.0% 30.6% 62.1% 39.0%
VZ48 43.8% 27.0% 62.3% 35.7%

Table 7.8
Performance of the bound tightening in terms of domain improvement van

Zyl.

the minimum number of pumps needed to be activated from t = 0 to t′ ∈ T . For
VZ24, we have used five intervals to discretize the difference of levels of the tanks,
and for VZ48, we have two intervals for all periods t ∈ T \ {0}.

In Tables 7.9 and 7.10, we show the effect of the different formulations on the
branch-and-check algorithm. The notation is similar to the experiments performed
on the other networks. For the case with T = 12 in Table 7.9, formulation C0 has
difficulties solving instances to optimality. Within one hour of runtime, the branch-
and-check algorithm leaves two instances without proof of optimality. It takes around
2600s and 3000s to solve two instances to optimality. The bound tightening can
significantly improve the branch-and-check algorithm. The proof of optimality for all
instances with C1 formulation is given in less than a few minutes. For formulation
C2, all instances are solved in less than 70s. The results suggest the importance of
the preprocessing stage in overall computational cost.

The preprocessing also substantially improves the global optimality of VZ24, as
shown in Table 7.10. While the branch-and-check algorithm cannot obtain any feasi-
ble solution within the given maximum computational time with formulation C0, the
optimality gaps shrink to approximately 2% in formulation C3. The other interesting
result is that using more sophisticated relaxation by applying more cutting planes for
outer-approximation of the head-flow relationship and introducing binary variables,
have not improved the performance. It is difficult to claim that the formulation C2
outperforms C1. Probably, a trade-off is required to control deployments of the cuts.

84

network-T Formulation instance ub lb gap 1st
VZ12 C0 1 265.3 263.5 0.7% NA

2 274.9 271.3 1.3% NA
3 302.4 302.4 0%(3076s) NA
4 340.6 340.6 0%(2672s) NA

VZ12 C1 1 265.3 265.3 0%(31s) NA
2 274.9 274.9 0%(54s) NA
3 302.4 302.4 0%(301s) NA
4 340.6 340.6 0%(34s) NA

VZ12 C2 1 265.3 265.3 0%(40s) NA
2 274.9 274.9 0%(72s) NA
3 302.4 302.4 0%(15s) NA
4 340.6 340.6 0%(41s) NA

Table 7.9
Effect of the different formulations on the branch-and-check algorithm for

van Zyl with T = 12.

network-T Formulation instance ub lb gap 1st
VZ24 C0 1 NA 237.6 NA NA

2 NA 249.8 NA NA
3 NA 251.5 NA NA
4 NA 289.2 NA NA

VZ24 C1 1 267.5 259.6 3% 245
2 278.3 274.3 1.5% 72
3 279.1 276.1 1.1% 31
4 324.7 316.2 2.7% 75

VZ24 C2 1 266.9 258.6 3.3% 25
2 280.1 271.8 3.3% 62
3 283.0 274.7 2.9% 30
4 325.6 315.1 3.3% 18

VZ24 C3 1 265.4 259.7 2.1% 85s
2 278.3 273.1 1.9% 306
3 282.4 276.2 2.2% 23s
4 324.4 316.8 2.3% 91

Table 7.10
Effect of the different formulations on the branch-and-check algorithm for

van Zyl with T = 24.

85

If we were to implement the formulation like the one from which we derived car-
dinality cuts (introducing implied binary variables to indicate the difference of the
levesl of the tanks), It not only would fail to improve the performance but also would
exacerbate the optimality gap. This may be related to the introduction of implied
binary variables, which increases the complexity of the formulation. For instance,
by defining five new binary variables for discretizing the differences of levels of the
tanks and new outer-approximation based on these discrete differences, both lower
and upper bounds obtained after one hour of branch-and-check algorithm are worse
than the formulation C2. Therefore, this relaxation might not be appropriate and too
heavy for the branch-and-check algorithm. The surrogate model for VZ24 is built by
dividing the possible difference of the two tanks at each time step into ten discrete
values. The time required to enforce bound tightening is less than 120 s, and finding
the bounds for cardinality cuts for all time steps t ∈ T requires around 400 s. For
VZ48, the formulation C0 cannot find any feasible solution. However, even employing
bound tightening and cutting planes does not allow finding any upper bound. This
indicates the limitation of the proposed bound tightening and preprocessing.

86

Part III

Combining Machine Learning and

Mathematical Decomposition

87

Chapter 8

Motivation and Literature Review

8.1 Decomposition for pump scheduling

For a long period, the pump scheduling has been solved only approximately, us-
ing linear or piecewise linear approximations of the resistance constraints. Another
body of research focused on feasibility at the expense of optimality. Metaheuristics
based on evolutionary algorithms have been a predominant method to find feasible
solutions for pump scheduling problems, as shown in the review paper [28]. Among
others, we indicate genetics algorithms [69] possibly paired with a local search strat-
egy [26], simulated annealing [70], or ant colony algorithms [27]. These are often
simulation-based optimization methods, which exploit the bilevel structure of the
pump scheduling problem and the subsequent time decomposition of the inner-level
problem (see Section 2.3.2). They search (incompletely) candidate solutions (binary
schedules x ∈ {0, 1}T |A|) and evaluate each candidate by applying a hydraulic simula-
tor (such as EPANET [71] or the extended analysis algorithm) to solve the inner-level
problem. Except for the fitness value computed, no additional information guides the
search.

The matheuristic of Ghaddar et al. [4] exploits the bilevel structure and time
decomposition in two-way communication. They dualize the time-coupling con-
straints (2.4) in the MINLP (P) and solve the resulting Lagrangian relaxation with
a cutting-plane algorithm so that the dual information is then used to guide the
search. However, the proposed decomposition leads to solving, iteratively, indepen-
dent single-period subproblems (studied in [54]) far being as simple as the equilibrium
problem. Indeed, the solution of a subproblem is a fixed configuration of both pumps

89

and tank levels (i.e., xt ∈ {0, 1}A and Ht ∈ RĊ) such that the associate equilib-
rium solution (qt, ht) ∈ E(Ht, Dt, xt) minimizes some penalized objective function.
Furthermore, after solving the Lagrangian relaxation, a second stage is required (a
Limited-Discrepancy Search is used in [4]) to restore a feasible solution from the so-
lution of the Lagrangian relaxation. The time-coupling constraints (2.1) for limiting
the aging of the pumps are ignored in the first stage and enforced in the second stage.

In [72], Ulanicki et al. propose a two-stage algorithm relying on the following
assumption, based on numerical experiments and industrial experience (e.g., [73]):
the reservoir trajectories from a continuous solution are sufficiently close to optimal
reservoir trajectories of the mixed-integer solution. They propose to solve the
continuous relaxation of (P) in the first stage, then to derive a discrete schedule
tracking the optimal tank trajectories in the second stage, using time decomposition
and local branch and bound. The paper describes an efficient alternative to solve
the continuous relaxation using dynamic optimization and Sequential Quadratic
Programming, but it does not describe, nor experiment, the second stage. The
authors argue that experienced network operators can manually translate the relaxed
continuous solution and resulting tank-level trajectories into a practical pump
schedule. Still, it is not trivial to get a feasible solution of the theoretical model (P)
based on this.

The present work follows this line of research. We exploit the separability of the
pump scheduling problem into single-period subproblems to derive strictly feasible so-
lutions of (P) of good quality (but possibly sub-optimal). Contrary to metaheuristics
and similarly to Lagrangian relaxation, we aim to use the solutions of the subproblems,
not just their costs, to guide the search. But, contrary to the Lagrangian relaxation
approach in [54], we also exploit the simplicity of the equilibrium subproblems once
the tank level trajectories are known.

Our proposition, detailed in Chapter 9, is to solve the same Lagrangian relaxation
(dualizing the time-coupling constraints), but in an approximate way, using a variable-
splitting approach by iterating over two restrictions: (1) fix the tank level trajectories
and get the best schedule and associate flows; (2) fix the flows and recompute the tank
level trajectories. As the tank levels are fixed, the subproblem (1) is separable both
in time and space, as seen in Section 2.3. It then becomes possible to enumerate the
configurations of pumps independently on each graph component, and subproblems
(1) (as well as the linear subproblems (2)) can be solved quickly. Our application of
variable splitting thus appears as an option for solving the second stage in Ulanicki’s
approach, i.e., to derive a feasible solution for (P) starting from given tank level
trajectories. However, to initialize our algorithm, instead of solving the continuous
relaxation in the first stage, we propose to predict the tank trajectories by learning

90

from the history of the water network operations.

8.2 Opportunity for machine learning

In practice, the pump scheduling problem is solved on a daily basis. This means that
for a given network, an operator can gather a considerable amount of data sets, such
as a (sub-)optimal schedule corresponding to given demand and tariff profiles. Such
a repetitive and data-rich environment leads us to devise a data-driven approach for
the pump scheduling problem.

Reinforcement learning absorbs some attention. In [5, 74], authors propose a se-
quential optimal decision making. In the presence of uncertainties, the agent modifies
the decisions (activity of the pumps or their speed) after receiving new measurements
or updates on forecast demand. This provides a reasonable framework for tackling
uncertainties.

On the other hand, in the pump scheduling problem, the difference between in-
stances only stands in the input data (demand and tariff), while the topology of
the network remains the same. Therefore, the problem can be represented as super-
vised learning, which aims to map (approximately) from the input data to optimal
solutions.

Recent advances in Machine Learning (ML) algorithms and their applications to
optimization problems reinforce this idea of developing a learning-based algorithm to
derive the solutions, i.e., the idea of building a data model instead of (or in addition
to) solving a mathematical model. This approach does not provide certificates of
optimality, but it may, in some applications, result in feasible solutions. However, in
some applications, such as pump scheduling problems, even finding a feasible solution
is a difficult task. Indeed, feasible decisions are usually sparse and scarce in the space
of solutions {0, 1}T A, especially when the pumps are big, the tanks are small, or the
time steps are long. In ML-based optimization, a post-processing stage is required to
recover feasibility from an approximate learned solution. The decomposition method
we proposed can be seen as a feasibility-recovery post-processing stage.

In this work, we propose two learning approaches to approximate the (sub-)optimal
partial solution of the pump scheduling problem.

The first approach, to be presented in detail in Chapters 10, is to use ML to learn
the state variable H (the level of the tanks) instead of the control decision x (the

91

schedule), as usually done in the literature. This is motivated first by the similar
assumption as in [72], that the optimal tank level trajectories in approximate models
are close to the optimal tank level trajectories in the exact model. On the contrary,
the neighborhood of a learned vector x is likely to contain no feasible solution. Also,
it allows for smoother (continuous vs. discrete) local moves when exploring the neigh-
borhood. As we will show in the numerical section (Chapter 12), when this learning
approach is combined with the proposed decomposition method, feasible solutions of
good quality (i.e., with a small objective function value) can be obtained.

The second learning approach is still designed to predict the state variable as the
final goal. However, two main differences can be found. One is in the implementation
of an intermediary step, which involves learning the control variables. The other
aspect is the introduction of the physical constraints in the learning architecture.
Also, in this case, we will combine the output of the learning approach with the
decomposition algorithm. As shown in Chapter 12, this combination allows obtaining
feasible solutions in a shorter computational time but with a lower quality.

8.3 Literature review on hybrid methods

Before describing and experimenting with our hybrid machine learning / mathemat-
ical programming in the next chapters, we review some works in this category.

The use of machine learning for enhancing mathematical programming has at-
tracted lots of attention in both communities. In particular, in combinatorial opti-
mization, the development of learning algorithms to guide the optimization process
can be categorized at various stages, as explained below.

Significant efforts have been devoted to speeding up branch and bound algorithms
to find the best variables and nodes to branch on. Alvarez et al. [75, 76] employ
supervised learning to approximate strong branching with a small computational
cost to speed up the Oracle process time. The concept behind the work is similar to
shallow explorations to investigate which part of the branch and bound tree search is
better to focus on. Khalil et al. [77] develop a framework for data-driven, on-the-fly
design of variable selection strategies by deploying a supervised approach. The aim is
to build a surrogate function able to mimic strong branching with lower computational
cost by solving a learning-to-rank problem common in machine learning. A similar
approach can be seen in Hansknecht et al. [78]. They analyze the branching problem
to solve the time-dependent travel salesman problem, in which a ranking surrogate
function decides on variable branching. In the seminal work of Gasse et al. [79], MILP

92

problems are encoded as a graph neural network [80] model. It leverages the variable-
constraint bipartite graph representation of integer linear programming. This may
emancipate the need for hand-craft feature engineering.

Learning algorithms have also been developed for the problem of node selection in
branch and bound algorithms as a way to trade-off between depth first and breadth
first strategies. In this context, we can mention the research works He et al. [81],
Song et al. [82] using imitation learning to mimic quickly the Oracle decisions in node
selection.

Recently, learning algorithms have been employed to guide solvers to cut selection.
Tang et al. [83] present a reinforcement learning formulation for an intelligent adap-
tive selection of Gomory’s cutting planes. Turner et al. [84] develop a reinforcement
learning framework realized via graph neural network (see also [79]) for learning pa-
rameters decisive in cut selection. Baltean-Lugojan et al. [85] deploy a neural network
model to select subsets of cutting planes to approximate the semidefinite constraints
used in the relaxation formulation of quadratic optimization problems. Cutting rank-
ing and selection are also implemented in Huang et al. [86] by learning a scoring
function based on instance-specific features. The novelty introduced in that paper is
the implementation of a score not applied to single cuts but to bags of cuts.

The other major direction in combining learning algorithms with optimization has
been specified to learn directly the solution of mathematical optimization problems.
This is known as end-to-end learning [87]. Most of these methods in combinato-
rial optimization were devoted to problems where feasibility is less of an issue than
optimality.

Several studies have focused on Traveling Salesman Problems (TSP) and Vehicle
Routing Problems (VRP). Kool et al. [88] implement a pointer network with atten-
tion layers to learn strong heuristics for different combinatorial optimization problems.
Emami and Ranka [89] use an actor-critic neural network to devise a reinforcement
learning agent to solve TSPs. Problems with harder constraints, such as scheduling
problems with strict resource, time, or regulatory constraints, particularly handling
simultaneously nonlinearity and integrality, had seen less focus on end-to-end learn-
ing methods, but interest has been growing. Nair et al. [90] address MILP problems
with general structure by using two parallel neural networks. One generates multiple
partial assignments for integer variables in a MILP problem, which allows solving
a smaller sub-MILP by an off-the-shelf MILP solver. The other neural network is
trained to imitate a full strong branching policy. The idea of partial assignment is
also employed in Ding et al. [91]. The MILP instances are represented as tripartite
graphs where the three sets of nodes are the variables, the constraints, and the ob-
jective function. A subset of variables deemed as stable by the learning model are

93

fixed to their predicted values, and a branch and bound algorithm solve the remaining
sub-MILP. Yilmaz and Buyuktahtakin [92] devise a bi-directional LSTM framework
for decision-making in single-item capacitated lot-sizing problems. The learning al-
gorithm is a regression problem that predicts binary variables with a value in the
interval [0, 1]. Based on a predefined percentage, the binary variables are fixed to the
closest integer value, and a MILP solver solves the consequent sub-MILP. For an ar-
bitrary given percentage, that is, for a fixed subset of binary variables, the sub-MILP
might be infeasible. It is observed that the number of infeasible instances increases
by considering larger instances. Splitting the subset of binary variables into fixed and
unfixed is also done in Masti and Bemporad [93]. In fact, the chance of getting a
feasible configuration increases in this framework.

Applications in the domain of energy also exist. Anderson et al. [94] design a
generative adversarial architecture for a deep neural network to learn directly binary
decision variables for the MILP formulation of decision-making in gas networks. The
consequent predicted solution is used as a warm start for the MILP solver. The
physical constraints are softened in the mathematical model, i.e., their violation is
only penalized in the objective function. The learned solution is thus de facto feasible
in this model. This penalization is also employed in the AC Optimal Power Flow
(OPF) context. The OPF problem is a nonlinear and nonconvex (but continuous)
optimization problem that determines the generator setpoints for power and voltage,
given a set of load demands. It is often solved repeatedly under various conditions
in real-time or large-scale studies. Neel Guha et al. [95] propose an end-to-end
learning implemented as a neural network mapping a given input, a load profile at
demand nodes, to an optimal voltage magnitude and active power injections of the
generators. The rest is again retrieved by a MILP solver. Zamzam and Baker [96]
propose learning not all variables, but a subset of them (the voltage and active power).
To increase the chance of feasibility, the output of the neural net is restricted to the
given box constraints, and then, for a predicted value, the associated NLP is solved.
The paper [97] proposes a new approach to predicting the OPF of an electrical power
system. The deep learning model used in the paper learns to predict the OPF solution
by minimizing the Lagrangian dual function while adding a penalty term to the
objective function.

More relevant to our work, the authors in [98] propose a learning approach to
guide an alternating direction method of multipliers (ADMM) search based on the
network partition. They propose a novel way to learn the consensus parameters
in the ADMM algorithm using machine learning. The machine learning model is
trained on a dataset of previously solved OPF problems. The model learns to predict
the consensus parameters that lead to fast convergence of the ADMM algorithm.
The linear separability of the model, in this case, guarantees the convergence of
the algorithm to a feasible solution. Furthermore, as the model is continuous, the

94

predictions cover both primal and dual optimal solutions, and the predicted dual
solutions serve to initialize the penalties in ADMM.

95

Chapter 9

An Alternating Direction Method

for Pump Scheduling

9.1 Principle of ADM and state-of-the-art

Initially conceived in the mid-20th century [99], the Alternating Direction Method
(ADM) has undergone various modifications and has found applications across diverse
fields [100, 101]. The core principle of ADM involves decomposing a high-dimensional
or intricate optimization problem into a sequence of simpler sub-problems. ADM is a
powerful approach for solving complex optimization problems by decomposing them
into more manageable sub-problems. The method alternates between optimizing
different subsets of variables, holding one subset constant while optimizing the other
[100]. This decoupling feature enables ADM to tackle large-scale problems efficiently,
making it well-suited for parallel computing and distributed systems [101].

The classical ADM considered in [102] is a solution method for optimization prob-
lems with a clear partition of the decision variables in two sets, as in the following
mathematical program:

(PS) : min{f(u, v) : u ∈ U , v ∈ V},

where the objective function f is convex, and it is optimized over two disjoint feasible
sets. In [103], the authors consider the extension to biconvex objective functions.

The main steps of ADM are presented in Algorithm 7.

97

Algorithm 7 Standard Alternating Direction Method

Input initial values (u0, v0) ∈ U × V
Output a partial minimum solution (u∗, v∗) of (PS)

1: while (ui, vi) is not a partial minimum do:
2: Compute: ui+1 ∈ argminu{f(u, vi) : u ∈ U}
3: Compute: vi+1 ∈ argminv{f(ui+1, v) : v ∈ V}
4: end while

In [102], the authors state that for two disjoint compact sets U and V , and having
a continuous objective function, the sequence (ui, vi)i≥0 may have several convergent
subsequences. Any limit point of the alternating approach is a point (u∗, v∗), called
a partial minimum solution of (PS), in a way that:

f(u∗, v∗) ≤ f(u, v∗) ∀u ∈ U
f(u∗, v∗) ≤ f(u∗, v) ∀v ∈ V .

Once the algorithm meets such criteria, alternating between two (or several) subprob-
lems is terminated. The concept of partial minimum is a rather weak property. The
partial minimum may not even be a local minimum. If either the optimization of the
first or second subproblem has a unique solution, then the ADM algorithm converges
to a partial minimum. This is given as a theorem in [53].

Under certain further assumptions, stronger implications can be derived from the
result of the algorithm. If the objective function is continuously differentiable, then
the algorithm converges to a stationary point. If the objective function and the
constraint set are convex, then the partial minimum is the global one [103].

Let us assume now that the problem is provided with constraints that make it
nonseparable (or quasi-separable), that is

(P) : min{f(u, v) : gi(u, v) = 0, hi(u, v) ≥ 0, u ∈ U , v ∈ V}.

Then, the coupling constraints impede the implementation of the ADM algorithm
in its original format. The ADM algorithm has been extended for nonseparable and
quasi-separable cases by slight changes in the formulation. This has been realized
through the well-known Alternating Direction Method of Multipliers (ADMM) ini-
tially proposed for convex problems.

The ADMM can be seen as an extension of the ADM approach and Lagrangian
multipliers. While it decouples the two sets of constraint sets, it enforces a con-
sensus (coupling constraints) between u and v, which allows ADMM to be used for
distributed optimization. This is realized by incorporating both penalty terms and

98

Lagrange multipliers. The theoretical convergence of the ADMM for the strict convex
subproblems and affine coupling constraint is illustrated in [104]. Boyd et al. [105]
show the possibility of parallelization of the optimization problem and the scalability
for large-scale problems and ADMM application in solving machine learning prob-
lems. The possibility to solve each subproblem independently at each iteration and
the straightforward update policy for Lagrangian multipliers of the linking constraint
absorbed lots of attention in large-scale convex problems with relatively sparse rep-
resentation. Recently, research has been conducted on extending the convergence
for nonconvex and nonsmooth subproblems. In [106], the theoretical convergence is
proved for nonconvex and nonsmooth subproblems while two sets are linearly split.
However, to the best of our knowledge, there exists no general proof for nonconvex
optimization problems with nonlinearly coupled ADMM.

The other variant of ADM is based on the penalization of the coupling constraints.
The Penalized Alternating Direction Method (PADM) [53, 107] is the ADM applied
after penalizing the coupling constraints, that is,

(PPADM) : min{f(u, v) +
m∑
i=1

ρi|gi(u, v)|+
p∑

i=1

µi[hi(u, v)]
− : u ∈ U , v ∈ V},

where the penalized objective function is denoted by ϕ(u, v; ρ, µ). Algorithm 8
illustrates the mechanism of PADM.

Algorithm 8 Penalized Alternating Direction Method

Input initial values (u0,0, v0,0) ∈ U × V , (ρ0, µ0) ∈ Rm × Rp
+

Output a partial minimum solution (u∗, v∗) of (P)

1: for k = 0, 1, ... do:
2: while (uk,i, vk,i) is not a partial minimum do:
3: Compute: uk,i+1 ∈ argminu{ϕ(u, vk,i; ρk, µk) : u ∈ U}
4: Compute: vk,i+1 ∈ argminv{ϕ(uk,i+1, v; ρk, µk) : v ∈ V}
5: i←− i+ 1
6: end while
7: update penalty terms µk, ρk

8: end for

PADM was initially introduced in [53] for the power-constraint gas problem. While
the conventional method, such as using MILP relaxation, is reported to help solve
gas transport problems, adding power constraints impedes finding satisfactory results.
The authors show that the ADM is a promising approach to acquiring feasible solu-
tions. The PADM is also employed as a primal heuristic for supply chain problems
[108], bilevel optimization [107], and gas network [109]. Despite ADMM, in PADM,

99

the partial minimum of (PPADM) concept may violate some coupling constraints;
therefore, the convergence of the inner iteration does not necessarily lead to a feasible
solution. On the other hand, the convergence proof in the PADM framework requires
weaker assumptions. As long as the solution of one of the subproblems is unique, the
inner loop converges to a partial minimum.

The success of the algorithm to find a good solution depends heavily on two fea-
tures. First, the updating policy of the penalty terms. The other crucial point is the
initial point to launch the algorithm.

9.2 Adaptation to the pump scheduling problem

We now present our application of the Alternating Direction Method to the pump
scheduling problem, modeled as follows:

(P ′) : min
x,q,H

∑
t∈T

ct(xt, qt) =
∑
t∈T

∑
a∈A

(c0txta + c1t qta) (9.1)

s.t: qt ∈ E ′(Ht, Dt, xt), ∀t ∈ T (9.2)

qCtj = σj(H(t+1)j −Htj), ∀j ∈ Ċ,∀t ∈ T (9.3)

H tj ≤ Htj ≤ H tj, ∀j ∈ C,∀t ∈ T (9.4)

xt ∈ Xt ⊆ {0, 1}A ∀t ∈ T . (9.5)

The main difference with the original bilevel formulation (2.16)-(2.20) lies in the
constraints (9.5). In this model, we ignore the time-dependent constraints related to
pump aging, but we may enforce interdependency relations between the activity of
valves and pumps on each period. The head loss variables ht are also dropped as
they are not needed in this formulation. Here, the set E ′(Ht, Dt, xt) is defined as the
projection of E(Ht, Dt, xt) from (qt, ht) to qt.

The proposed algorithm has a more general scope than pump scheduling. In [110],
we describe the algorithm in the context of a discrete-time dynamic optimal con-
trol problem with discrete control and storage. The variable split concerns the con-
trol variables and the storage state variables. They respectively correspond to the
scheduling/flow variables (x, q) and the tank level variables H in pump scheduling.
The property of easily solving the equilibrium subproblems is given as an additional
assumption on the control problem in question. This is formalized below.

100

Assumption (A0). The steady-state sub-problems with known initial state variables

(Pt(Ht)) : min
xt,qt
{ft(xt, qt) | qt ∈ E ′(Ht, Dt, xt), xt ∈ Xt ⊆ {0, 1}A}

are easy for all t ∈ T and Ht ∈ RC, and for any linear function ft.

In the context of pump scheduling, the subproblems (Pt(Ht)) are linearly separa-
ble, when considering the network partition (Gb)b∈B along the tanks, as described in
Section 2.3.3:

(Pt(Ht)) :
∑
b∈B

min
xb
t ,q

b
t

{f b
t (x

b
t , q

b
t) | qbt ∈ E ′(Hb

t , D
b
t , x

b
t), x

b
t ∈ X b

t ⊆ {0, 1}A
b}.

As the subnetworks Gb usually contain a reasonable number |Ȧb| of pumps and valves,
we can envisage enumerating all possible configurationsX ∈ X b

t , and evaluating them,
independently, by computing (e.g., with a Newton method) the unique solution in
E ′(Hb

t , D
b
t , X), which we denote q(Hb

t , D
b
t , X). The steady-state subproblem is then

solved as:
Pt(Ht) :

∑
b∈B

min
X∈X b

t

f b
t (X, q(H

b
t , D

b
t , X)).

Hence, assumption (A0) holds in the context of pump scheduling when the number
of pumps and valves is limited in every subnetwork.

This assumption also holds in other contexts of dynamic control problems. Typ-
ically, (Pt(Ht)) involves simulating E ′(Ht, Dt, X) over each allowed steady-state de-
cision X ∈ Xt, and knowing the initial state Ht while ignoring the outcome (and
the final state Ht+1). Because the nonlinear network equilibrium problem E ′ arises
in many other contexts, ranging from electric circuits or thermodynamic systems to
traffic congestion (see [13, p. 350]), we think that model (P ′) with assumption (A0)
is quite general. Thus, there is broad applicability for the decomposition method to
be presented below.

The optimization problem (P ′) can be decomposed temporally after dualizing the
storage time-coupling constraints (9.3) as in Lagrangian relaxation or after penalizing
their violations as in the following model. Given ℓ1 penalty and multipliers ρ ∈ RkT

+ ,
we define

(Lρ) : min
x,q,H
{l(x, q,H, ρ) : (9.2), (9.4), (9.5)},

with l(x, q,H, ρ) =
∑
t∈T

(
ct(xt, qt, Ht) +

∑
j∈Ċ

ρtjdtj(q,H)
)
,

and dtj(q,H) = |H(t+1)j − (Htj + qCtj)| ∀t ∈ T , j ∈ Ċ.

101

Still, such relaxed models, even if separable as T independent subproblems, may
remain difficult to solve because of the complexity of optimizing over each subsystem
E ′(Ht, Dt, xt) when Ht is variable.

Instead, we propose solving approximately (Lρ) with a variable-splitting approach
based on a storage/control split for leveraging Assumption (A0). The penalty ρ
is updated iteratively and the algorithm stops at the first feasible solution of (P ′)
within a given tolerance on constraints (9.3) and (9.4). Conceptually, the algorithm
iterates over the tank level profiles H, which are feasible regarding the capacities, and
attempts to derive a matching schedule (x, q) by gradually reconciling the storage
state Ht + qCt after time t, with the state assumed Ht+1 at time t+ 1.

The steps of the proposed algorithm are given in Algorithm 9.

Algorithm 9 Partial storage/control splitting for (P ′)

1: Input: i = 0, tank profiles H0 ∈ RT Ċ, penalty ρ0, tolerance ε, ε′ > 0
2: Output: a feasible solution (x, q,H) of (P ′)
3: for k = 0, 1, ... do:
4: while ∥H i+1 −H i∥∞ ≥ ε′ do:
5: (xi+1, qi+1) ∈ arg min(x,q){l(x, q,H i, ρk) : (9.2), (9.5)}
6: H i+1 ∈ arg minH{l(xi+1, qi+1, H, ρk) : (9.4)}
7: if dtj(q

i+1, H i+1) < ε ∀t ∈ T , j ∈ Ċ then:
8: return (xi+1, qi+1, H i+1)
9: end if
10: i← i+ 1
11: end while
12: update the penalty term ρk

13: end for

This algorithm has the same framework as PADM when considering the variable
split (x, q) and H. However, we do not dualize/penalize here the nonlinear coupling
constraint (9.2). Indeed, the first step at each iteration (Line 5) solves (Lρ) with
respect to the control variables (x, q) and, according to Assumption (A0), solving
this nonlinear problem is easy. In return, solving (Lρ) with respect to the state
variables H in the second step is much harder as this corresponds to a sequence
of possibly infeasible inverse problems, namely: find the initial state Ht for a given
control (xt, qt) for each period t. Instead, we propose to relax the coupling equilibrium
constraints (9.2) in the second subproblem (Line 6) and keep the storage capacities
(9.4) as the only constraints to satisfy. It results in a simple linear program with T
variables and only box constraints.

102

As we deliberately maintain the nonlinear coupling relation (9.2) in the first sub-
problem, we lose the guarantee, in general, provided by PADM, to converge to a
stationary point. The known theoretical convergence results for ADMM do not hold
either with nonconvex-constrained variable sets. However, in doing so, we take ad-
vantage of assumption (A0) to not impoverish the first subproblem. While possibly
losing mild theoretical guarantees (the convergence to solutions that may not always
be feasible), we expect to gain strong practical results.

We observed that the efficiency of this algorithm is highly dependent on the initial
tank level profiles H0. For this reason, as we show in the next chapter, we design a
deep learning model to predict near-feasible near-optimal profiles.

103

Chapter 10

A Supervised Deep Learning

Model

10.1 A deep learning approach

Deep learning (DL) has significantly impacted various domains, from computer vi-
sion to natural language processing. The key feature that sets deep learning apart
from shallow machine learning algorithms is the ability to learn hierarchical features
from raw data automatically [111]. In contrast, traditional machine learning methods
often rely on manual feature engineering, which is not only labor-intensive but may
also introduce biases and limitations [112]. Deep learning models, neural networks
(NN) with many layers, can learn intricate patterns and structures. This capability
is afforded by the nonlinear transformations and hierarchical feature learning across
layers [1]. Backpropagation1 efficiently computes gradients of the loss function with
respect to the model parameters, enabling optimization algorithms like stochastic gra-
dient descent to update the weights in the network [113]. The significant challenge in
DL is the issue of overfitting, especially given that these models often have numer-
ous parameters. This problem becomes even more pronounced when the amount of
training data is limited [114]. Techniques such as dropout, ℓ1,ℓ2 regularization, and

1Backpropagation, short for ‘backward propagation of errors,’ is the training algorithm used in
neural networks for adjusting the weights. In the output layer, the error between the predicted and
the true values is computed. Subsequently, this error signal is propagated backward through the
lower layers of the network. In this context, backpropagation can be seen as a descent algorithm
that strives to minimize the error with each iteration. The network weights are modified by the
learning algorithm in a manner that decreases the error along a descent path.

105

early stopping are commonly employed to mitigate overfitting. Furthermore, due to
their complexity and depth, deep learning models typically require a large volume of
labeled data for training. This data-hungry nature of deep learning models can be
a significant limitation in scenarios where collecting or labeling data is expensive or
impractical.

Despite these challenges, DL offers a unique advantage, especially for complex tasks
like predicting the solution of combinatorial optimization problems. Unlike traditional
methods that often require a series of hand-engineered steps, deep learning models
can learn to approximate complex decision-making rules directly from raw data. This
is particularly attractive in combinatorial optimization problems, where the problem
size is usually large and computationally challenging [115].

The prediction of an optimal solution differs from typical machine learning prob-
lems, in which the target is a single scalar or category. In our case, the output to
be predicted (i.e., the optimal tank profiles) can be seen as a (temporal) sequence.
As mentioned, each instance differs from the other via tariff and demand profiles.
The learning hypothesis may need to capture the local similarities in the input data:
the repetitive patterns in small consecutive periods in demand and tariff profiles
occurring in different instances. However, the same pattern occurrence in different
periods could produce different results. Thus, the learning algorithm should consider
both local patterns and their temporal dependencies. The shallow machine learning
hypothesis usually cannot capture the complexity of the problem. The feedforward
architecture requires flattening the input data, which might fade the importance of
temporal dependencies.

Given this context, the focus of this chapter is to introduce a novel DL architecture
for the pump scheduling problem, integrating the capabilities of Long Short-Term
Memory (LSTM) networks for sequence understanding and Convolutional Neural
Networks (CNNs) for spatial pattern recognition [1]. In what follows, we present
the rationale for using these artificial neural networks. In Appendix A, we provide
technical details of the DL architecture.

LSTMs are a type of Recurrent Neural Network (RNN) that are well-suited for
tasks involving sequential data, such as natural language processing and time-series
forecasting. RNNs are neural networks having feedback loops, which allow them to
learn temporal dependencies in the data. However, RNNs can suffer from a problem
known as the vanishing gradient2 problem, which makes it difficult to train RNNs

2The vanishing gradient problem is a challenge in deep learning where gradients (derivatives of the
loss function with respect to model parameters) become exceedingly small as they are backpropa-
gated through the layers of a neural network during training. When gradients become too small, it
hinders the ability to update the network weights effectively, leading to slow or stagnated training
and difficulty in capturing long-range dependencies in sequential data.

106

on long sequences of data. LSTMs address the vanishing gradient problem by using
a gating mechanism to control the flow of information through the network. The
gating mechanism consists of three gates: the input gate, the forget gate, and the
output gate. These gates control how much information is passed into the LSTM cell,
how much information is forgotten from the LSTM cell, and how much information
is output from the LSTM cell.

Convolutional Neural Networks (CNNs) are primarily recognized for their efficacy
in image data recognition, classification, and other computer vision tasks. Yet, they
can also be utilized for sequential data by focusing on the temporal dependencies
within the sequence. Typically, one-dimensional convolutional (1Dconv) layer NNs
are employed in sequential data. Each 1Dconv consists of several kernels (filters) re-
sponsible for learning features in the input data. A kernel, i.e., a weight matrix, slides
across the period of the input sequence, identifying local temporal patterns using the
element-wise inner operation between kernel weights and input data. Indeed, multi-
ple kernels can extract different types of temporal features. Each kernel sliding over
input data can have a different window size. This variety of sizes and the number of
kernels will produce different feature maps, enabling the model to recognize various
patterns in the sequence.

10.2 Learning the near-optimal state profiles

We design a deep learning architecture to predict multiple (sub-)optimal state profiles
(the tank levels) for each instance of the MINLP (P ′). The training of the model is
devised in the supervised learning framework. Our deep learning algorithm aims at
building a hypothesis function H mapping to each input feature, i.e., demand and
tariff profiles (D,C) ∈ RT S×RT , its target, i.e., the tank level profile H(D,C) ∈ RT C

in an optimal solution of the problem (P ′) with input (D,C). The map is built, given a
precomputed collection {((Di, Ci), Hi)}Ni=1 of input/target tuples withHi = H(Di, Ci)
∀i, by approximately minimizing a loss function, which is the mean square error
between each element of the tank profiles as commonly used in regression problems:

Lloss(H(D,C), H(D,C)) =
1

N

N∑
i=1

||H(Di, Ci)−Hi||22.

To fulfill this aim, we blend the capabilities of CNNs and Bidirectional LSTM
Networks (Bi-LSTM) [116]. The combination of these two kinds of neural networks
can be found in several works, e.g., [117, 118]. The capability of Bi-LSTM lies in

107

Figure 10.1: Simplified scheme of the proposed CNN-LSTM architecture.

its ability to handle information in both forward and backward temporal directions.
This attribute is crucial in our application due to the dynamic relations spanning the
entire planning horizon T .

Our CNN comprises parallel convolutional layers with different kernel size win-
dows, with their outputs exclusively linked to neighboring areas within the input
(i.e., demand and tariff profiles). This arrangement is accomplished by sliding a ker-
nel across the input and the product between the weight matrix and the input data.
This design enables the model to acquire filters to identify distinct patterns within
the input dataset [1, 119].

Several conv1Ds with different kernel sizes are located parallel to each other with
zero padding. The kernel sizes (here 4, 6, 8, and 10) and the number of kernels of
the conv1D layers are chosen relative to the scheduling time horizon (i.e., here we
experimented over scheduling problem with T = 12). We have considered 32 kernels
for each conv1D. To consider the temporal dimension of the target (the output target
is related to the number of periods and the number of tanks), the output of the CNNs
layers are passed through a hidden layer with ReLU activation functions, and their
outputs are concatenated, reshaped and fed into a Bi-LSTM (see Figure 10.1. In the
output layer, the prediction Htj for all t ∈ T and j ∈ Ċ results from a fully connected
layer with a linear activation function placed after the Bi-LSTM unit.

108

10.3 Generating multiple starting points for the

decomposition algorithm

As mentioned, we propose to restart the decomposition algorithm (Algorithm 9) from
different predicted points. To generate multiple warm starting points, we employ
Monte Carlo (MC) dropout [120]. As shown in [120], MC dropout approximates
Bayesian variational inferences3.

The dropout method is widely recognized as an effective regularization tech-
nique [114]. It works by randomly dropping out (setting to zero) a fraction of the
hidden units of a neural network model during training. Each dropout generates a
model. In alignment with [120], we apply dropout not only during training but also
during the testing phase. The dropout layers are placed both before the Bi-LSTM
unit and just before the last fully connected layer that yields the outputs. This ap-
proach yields a collection of distinct models arising from masked neurons. As a result,
for a given input pair (D,C), we obtain multiple outcomes Ĥ one from each model.

10.4 Scaling to extrapolate the missing dataset

The main drawback of supervised learning for predicting the solutions to an optimiza-
tion problem is the need of a sufficient quantity of data to train the learning model.
The limitation arises from the computational complexity of the problem and from the
requirement to solve the optimization problem on a significant number of instances
to build the dataset from which the learning model will be trained (and tested).

In the application context of pump scheduling, we argue that a dataset can be
generated from the history of the daily operations of a given hydraulic network.
However, this does not hold if no history is available or if, as in the context of this
thesis, we consider a data-based alternative to the theoretical MINLP model (P ′)
instead of the digital twin of a real system. Hence, in our case, for generating a
dataset, we need to compute optimal solutions of the MINLP (P ′) for a large number
of instances. However, as shown in our numerical results of Chapter 7, even acquiring
a feasible solution is in jeopardy when considering large scheduling horizons (e.g.,

3A Bayesian model is a statistical model incorporating Bayesian probability theory to represent
uncertainty in data and make probabilistic inferences. These models usually have a prohibitive
computational cost, and then, in general, approximations have to be considered. Dropout neural
networks are an example of this approximation.

109

T = 48). This limitation is also indicated in [91, 121] and its influence on the learning
process.

A recent approach to generalize the learning algorithm for unseen structures con-
sists of using graph neural networks in the context of MILP optimization. In this
framework, the MILP structure is encoded into a bipartite [79, 90] (or tripartite [91])
graph with variables on one side and constraints on the other side. This captures the
complexity of MILPs well and makes it possible to learn from MILPs with different
structures. In particular, for handling travelling salesman problems (TSP) of different
scales, the authors in [118] have developed a hierarchical reinforcement learning via
graph pointer network to map from the state of the TSP to the optimal solution.
Implementing graph neural networks for MINLP optimization is not as direct as for
MILPs.

Another option is to emancipate from having pre-solved instances and, conse-
quently, from a supervised learning framework. The self-supervised learning ap-
proach is a different path to train neural networks directly without using pre-solved
instances [122, 123].

Finally, the learning model can simply be trained on an approximate dataset of
approximate solutions computed from an approximate model. In our context, this
approach is all the more meaningful in that the solutions obtained from the most accu-
rate learning models might not be feasible anyway (contrary to the TSP, for example,
where any permutations of the graph nodes are feasible solutions). When learning
from an approximate model, the prediction error accumulates the inaccuracies of the
learning model and the approximate model.

Regarding the pump scheduling problem, our numerical experiments showed that
the MILP approximations (based either on a polyhedral convex relaxation or a PWL
linear approximation of the nonlinear constraints) are neither accurate nor much
easier to solve, in particular, for the largest instances (i.e., with large horizons) for
which generating a dataset is itself a challenge. For handling these instances, we thus
propose to build our approximate dataset with a different approach, i.e., by exploiting
the property of elasticity of the scheduling horizon.

Indeed, as we consider daily schedules, the number of periods T only refers to the
choice of temporal discretization. Scheduling using a coarse temporal resolution (e.g.,
T = 12) is more tractable, but it has little flexibility. Suppose a hydraulic network
includes powerful pumps, tanks with narrowed capacities, or service nodes with a
highly dynamic demand. In that case, there is no feasible schedule if the tempo-
ral resolution is too low (see, for instance, our numerical results on the Poormond

110

network). Conversely, a fine temporal discretization (e.g., T = 48 periods of a half-
an-hour time step) describes better the actual dynamic of the hydraulic networks,
but the mathematical models become intractable.

Thus, we propose to build the dataset of a given hydraulic network G by only
considering coarse-time resolution pump scheduling instances (with typically T = 12)
as described in Chapter 2. The dataset DG = ((Di, Ci), Hi)

N
i=1 is thus made of N

instances of the pump scheduling problem on the network G. Each instance i ∈
{1, . . . , N} is defined by its input data (Di, Ci) ∈ RT S × RT . Note that tariff and
demand profiles are originally provided having a fine-time discretization (a half-hour
time step). To use this data in the learning model, we first must resample these input

data by averaging the consecutive time steps. The target Hi ∈ RT Ċ corresponds
to the tank level profiles in an optimal solution of (P ′(Di, Ci)) computed using our
branch-and-bound method described in Chapter 4 of Part II. Our deep-learning model
is then trained on this dataset alone.

To apply (and experiment) our decomposition to the problem (P ′) on an instance
(D′, C ′) ∈ RT ′S × RT ′

having a finer-time discretization |T ′| > |T |, we need demand
and tariff profiles (as exogenous input values) and a tank profile (as a starting value)
definite over T ′. Regarding the initial storage profile, say H ′ ∈ RT ′C, we resample and
linear interpolate the tank profile predicted by the deep learning model. As explained
above, this model produces multiple approximated profiles of the (sub)-optimal tank
profiles. All of these are then downscaled in time and used to initialize Algorithm 9.

111

Chapter 11

A Physics Informed Deep Learning

Model

11.1 A supervised penalty approach

In supervised learning, the classical loss function indicates the distance between pre-
dicted and ground truth values. As mentioned in the previous chapter, the (partial)
solution predicted by the learning architecture does not guarantee to satisfy the hard
constraints of the pump scheduling problem. While some simple restrictions on vari-
ables (e.g., box constraints) can be enforced within a DL architecture, in general, there
is no straightforward way to integrate all integer and nonlinear constraints within the
architecture [123]. The supervised penalty approach (e.g., [124]) is a method for end-
to-end learning of optimization problems that integrates the constraints within the
learning model. It works by adding penalty terms to the loss function that penal-
izes violations. The penalty terms are typically weighted by hyperparameters that
control the trade-off between minimizing the prediction error and feasibility. Dur-
ing training, the neural network learns to adjust its weights so that the combination
of distance of the predicted and ground truth targets and violations are minimized.
An approach to integrate optimization problems, in particular, linearly constrained
quadratic programming, as a layer in neural networks (OptNet) is introduced in [125].
In [124, 126], a physics-informed neural network (NN) is implemented for the opti-
mal power flow. The loss function of an NN architecture is defined by adding to the
classical square error, also a violation measure of the KKT conditions, that has to
be minimized. Their numerical experiments, which required High-Performance Com-
puting (Intel Xeon E5-2650 v4 processor and 256 GB RAM) for training their model,

113

show that the physics-informed neural network is more likely to predict solutions
with smaller infeasibility violations. In [123], a framework to predict and correct the
solution for continuous nonlinear optimization problems is proposed. The algorithm
first predicts a partial solution to an optimization problem. Then, the full set of vari-
ables is retrieved by the satisfaction of the equality constraints. Finally, the partial
solution is corrected to satisfy the inequality constraints while continuing to satisfy
the equality ones.

The major difference in our work is the presence of a discrete feasible set, which
impedes the differentiability through backpropagation; this deviates the work from
some continuous optimization frameworks, such as [125]. Embedding integrality con-
straints may make the backpropagation intractable.

Alternatively, in this work, we propose a continuous surrogate model for network
analysis problems to embed simultaneously the underlying structure of the problem
and not hinder the differentiability of the neural network. To some extent, this is
analogous to [127], in which the authors suggest continuous relaxation of the integral
constraints and then rounding the fractional solution. However, we propose a new
type of relaxation and tightening, which takes leverage from the one-to-one relation-
ship between binary decision variables and storage states in the fixed speed pump
scheduling problem, presented as an equilibrium problem in Section 2.3.1.

Given the demand and tariff profiles, we aim to build a model that can accu-
rately predict a (sub-)optimal solution (as before, the state variables). However, the
approach proposed here integrates the physical constraints of the problem into the
learning algorithm to better guide the output of the learning model. Instead of ex-
plicitly entering the constraints of the extended network analysis (see Section 2.3.2),
which involves discrete variables, we develop a continuous surrogate model realized
via a neural network to map from control arc configurations X to tank storage H.

We design a DL model which includes two main blocks. The first is to predict the
binary variables via classification given the load and demand profiles. The following
block builds a map from the predicted binary values, together with the load profile,
to the tank profile. It is in this second block that physical constraints are taken into
account.

114

Figure 11.1: Structure of physics informed model

11.2 Training and architecture

To construct a learning hypothesis capturing the constraints of the pump scheduling
problem, we propose a neural network consisting of two main sub-blocks. The first
block of the proposed model builds a hypothesis function H1 mapping each input
feature, i.e., load and tariff profiles (D,C) ∈ RT S×RT , to its target, i.e., the configu-

ration of the pumps X ⊂ [0, 1]Ȧ×T . The second sub-block is responsible for mapping

the predicted configuration to the associated profile of the tanks H(L,X) ⊂ RĊ×T .
This is done by building a hypothesis function H2.

For the first hypothesis H1, we have modified the CNN-LSTM architecture previ-
ously developed. The binary configuration is predicted using a supervised classifica-
tion method. Therefore, we replaced the shape of the output layer with a sigmoid
activation function to produce values inside the interval [0, 1], and the number of
outputs is based on the number of periods (e.g., 12 for VZ12) and control arcs (e.g.,
4 for VZ12).

The second hypothesis H2 is a surrogate model realized as a neural network to map
each configuration to its associated tank profile. The hypothesis H2 approximates
the underlying structure of the pump scheduling problem: it replicates the extended
analysis problem, where the demand profile and the pump configurations are its input
and the tank profile is its output. The second block consists of LSTM units and feed-
forward layers with ReLU activation functions. The recurrent architecture of the
model is analogous to the dynamic structure of the extended analysis. In Figure
11.1, the way that these models are connected is depicted.

115

In a typical supervised learning framework, a loss function for this problem can be
a combination of binary cross entropy (for the approximation of the binary variables)
and quadratic error (for the approximated tank profile). However, for our problem,
we define the following loss function:

Lloss = LCE(X, X̂(L,C)) + p[Ĥ(L,C)−H]− + p[H − Ĥ(L,C)]−, (11.1)

where LCE
1denotes the binary cross entropy loss measurement, and parameter p is a

hyperparameter to control the compromise between minimization of the binary pre-
diction and violation of the physical constraints. Indeed, our network is designed
to track the optimal binary solution. To compensate for the error generated by the
first block, which usually leads to infeasible solutions (w.r.t. the tank capacity), we
introduce the second term of the loss function. This guides the predicted pump config-
urations towards those that privilege feasibility for the storage profile at the expense
of optimality. Note that differently from the approach described in the previous chap-
ter, here we do not track the optimal tank profile, but we only require feasibility. The
shape of the tank profile is dictated by the map H2 built on the physical constraints.

11.2.1 A surrogate model to represent physical constraints

To explicitly incorporate the physical constraints of the optimization problem into
the deep learning model, we introduce a hypothesis H2 to represent the underlying
structure of the problem. In the fixed pump speed version of the problem, for each
instance, given the configuration X, only a single corresponding pressure exists in
nodes and a flow in arcs (based on the equilibrium problem). All the possible infea-
sibilities can be detected as violations of the tank capacities. This means that the
violation of the arc capacities or pressure of other nodes only occurs if the pressure
in tanks is violated (i.e., hjt /∈ [Hjt, Hjt]).

We define the hypothesis function H2, realized via an LSTM-based neural network,
mapping from decision variables X and the demand profile D to its corresponding
storage profile H. This is designed to mimic the extended network analysis of the
problem.

1The Binary Cross-Entropy (also known as Binary Log Loss) is defined as follows:

LCE(X, X̂) = − 1

N

N∑
i=1

Xi log(X̂i) + (1−Xi) log(1− X̂),

where Xi is the target binary label in a dataset of N samples and X̂i is the fractional prediction
[0,1] of a point belonging to the class 0 or 1.

116

The training set consists of input features, i.e., demand profiles and (sub-)optimal

decision variables (D,X) ∈ RT S × {0, 1}T Ȧ and the target, i.e., the tank profile

H(D,C) ∈ RT Ċ.

We implement two practices to obtain a model H2 with a good performance. The
first is known as fine tuning [128] in the deep learning community. In this framework,
the training of the complete model H consists of two phases. We first train the
network for building H2 offline. Then, the resulting model H2 is integrated into the
complete architecture. In the training phase of the complete network (i.e., to build
H), the weights of the model H2 are considered frozen, and only the weights of the
network which models H1 are updated. The second idea is based on the use of a data
augmentation approach. Indeed, while the training of H2 is implemented by using
binary configuration as an input feature beside the demand profile, the output of H1,
which is upstream in the overall architecture, is usually fractional (as it is the output
of a sigmoid function). We then train the network for building H2 over an augmented
training set, which also considers fractional input features, a method resembles data
augmentation in deep learning community. A detailed presentation is given in the
following section.

11.2.2 Data augmentation to train surrogate model

As mentioned before, the output of a neural network used for predicting binary vari-
ables, that is, model H1, is generally a fractional value in the interval [0, 1]. For this
reason, we train the surrogate model H2 not only with binary values provided in the
pre-solved instances but also with fictitious fractional configurations while the target
remains the same.

We introduce minor changes (perturbations) to the input data to produce new
training examples. This technique effectively increases the size and diversity of the
training dataset. Due to the presence of only fixed-speed pumps and checked valves,
the perturbation of the input data, i.e., pump status, may not change the inherent
target values. As a result, in data augmentation, for each binary configuration in the
training data, we add (subtract) a random variable from a uniform distribution in
the interval of [0, 0.5] to 0 (from 1) while the target value (the tank profiles) is kept
the same. This technique generates 200 more data sets for each binary configuration
while the targets are fixed. The resulting MAE and MSE of the model over the test
data are 0.11 and 0.027, respectively. This indicates the accuracy of the surrogate
model H2 to mimic the extended analysis problem, even for fractional status.

117

Chapter 12

Numerical Experiments

In this section, we evaluate the performance of the hybrid approach to find good-
quality solutions. As explained, the hybrid approach considers one of the two deep
learning models presented in Chapters 10 and 11 and the decomposition algorithm
discussed in Chapter 9. The computational time to acquire the first feasible solution
and the quality of the solution are two major indicators to judge the efficacy of the
proposed algorithm.

Concerning the proposed DL architectures, we also evaluate the accuracy perfor-
mance via conventional error measurements for regression and classification problems.

12.1 Numerical results of the hybrid approach: su-

pervised deep-learning and decomposition al-

gorithm

12.1.1 Experimental setup

To train CNN-LSTM, we have set the batch size equal to 32 and a maximum number
of epochs equal to 1350. For conv1D units, we have used l2 regularization with a coef-
ficient equal to 0.02 and selected 32 filters. The number of hidden layers of Bi-LSTM

119

is set to 16. For the experimental comparison, we designed a conventional feedfor-
ward (FFW) neural network with a proportional depth and number of parameters.
In particular, the FFW network consists of 8 hidden layers with ReLU activation
functions and pyramid architecture. We have also considered regularization with a
coefficient equal to 0.01 and dropout layers with a rate between 0.2 and 0.5 after
each hidden layer to mitigate overfitting and generate several starting points for the
decomposition algorithm. We train FFW within a maximum number of epochs set
to 250. CNN-LSTM and FFW have 45k and 63k parameters, respectively.

The Adam optimizer [129] with default initial learning rate of 10−3 is used to
minimize the regularized Mean Square Error loss function.

Due to the complexity of the model, the relatively low number of training data,
and the need for diversification, we have selected a high dropout rate (0.75) for layers
of input and output of the Bi-LSTM (one layer before a fully connected layer, the
outcome of the network). We took 80 Monte Carlo dropout samples and computed
the component-wise mean.

Regarding the setup of the decomposition method, Algorithm 9 is run sequentially
(but it can be parallelized) from at most 35 initial points H0 until a feasible solution
of (P ′) is reached. The first trial is the component-wise mean from deep learning.
Other trials are randomly picked from the 80 other generated samples.

The feasibility tolerance εa (line 7 of Algorithm 9) is set to 10−6 similar to the
branch-and-check algorithm. The other parameter values were chosen after a short
numerical evaluation process. For the stopping criteria, we set A = 5, B = 85 and
εb = 10−3. For the penalty update policy, we increase the penalty term as a function of
the iteration number, the time value, and the tank generating the constraint violation.
Precisely, we set (at line 14)

(ρti)
a+1 =

{
5ξe(

−a
10

)ρati + 1 if dti(y
b+1, sb+1) > εa

2ξe(
−a
10

)ρati + 1 otherwise
(12.1)

for each t ∈ T and each tank i ∈ Ċ, with ξ being randomly generated from the uniform
distribution in the interval [0.75, 1]. The updating policy deviates from previous works
in [109, 130] in which the penalty terms at each iteration are uniformly increased.
Our approach is instead related to the interdependency of constraints across the
periods. Indeed, this approach provides the necessary differentiated guidance to the
decomposition to balance between making a constraint feasible at one period versus
its cascading effects on other periods. Finally, we evaluate our hybrid algorithm under
different uniform values for the penalty ρ0 initialization (line 1). In particular, we
consider ρ0 = 2 and ρ0 = 50.

120

We evaluate the performance of our hybrid algorithm (HA) in the operational con-
text of pump scheduling on the van Zyl hydraulic network [44]. The hybrid algorithm
is evaluated on the case T = 12, denoted also in this chapter as VZ12. The scaling
approach discussed in Section 10.4 is instead applied to the same network but with
a finer time discretization, i.e., T = 24 and T = 48. We use the notation VZ24 and
VZ48, respectively.

For comparison and also to generate the dataset, we use the dedicated branch-and-
check global optimizer (BC) from [6] based on the MILP solver Gurobi (v10.0.1). As
this solver struggles with proving optimality or even finding a feasible solution for
a significant number of the largest instances, we implemented a heavy but efficient
preprocessing, including bound-tightening and cut generation techniques discussed in
the previous chapters and tailored for the van Zyl network.

All algorithms are implemented in Python, and experiments are executed on an
Intel(R) Xeon(R) 6148 2.40GHz and 128 GB memory. The DL models CNN-LSTM
and FFW are built using Tensorflow API version 2.12.0 on Jupyter notebook in
Google Colab with GPU A100. All the implementations can be found at https:

//github.com/amirhtavakoli94/hybrid_pmpscheduling.git

12.1.2 Performance of the supervised learning

Prediction error. To assess the effectiveness of the CNN-LSTM, we first compute
the prediction error between the outcome and the target over the test set, using
the classical metrics for regression problems, i.e., Mean Absolute Error (MAE)1 and
Mean Square Error (MSE)2. Since the range of possible values for predicted variables
is different, we also report the normalized MAE (nMAE) with respect to the range
of the actual value (i.e., MAE divided by the range of the actual value). Finally, we

1The Mean Absolute Error measures the errors between the observation Y and the output of a
prediction model Ŷ . It is formally defined as follows:

MAE(Y, Ŷ) =

∑N
i=1 |Yi − Ŷ |

N

2The Mean Square Error measures the quadratic errors between the observation Y and the output
of a prediction model Ŷ . It is formally defined as follows:

MSE(Y, Ŷ) =

∑N
i=1(Yi − Ŷ)2

N

121

https://github.com/amirhtavakoli94/hybrid_pmpscheduling.git
https://github.com/amirhtavakoli94/hybrid_pmpscheduling.git

also report the Pearson coefficient (R)3, which is a coefficient measuring the linear
correlation between the ground truth and the predicted profiles.

In Figure 12.1, we illustrate the profiles predicted by CNN-LSTM architecture and
the corresponding target in the test data. We also depict the credible interval, which
indicates the level of uncertainty around the prediction.

The metrics reported in Table 12.1 illustrate that the CNN-LSTM architecture
outperforms the FFW architecture in predicting the ground truth values in all the
metrics considered in this work.

MAE MSE nMAE R

CNN-LSTM 0.53 0.64 9.2% 0.772
FFW 0.89 1.56 12.7% 0.724

Table 12.1
Comparison of the prediction accuracy of CNN-LSTM network and the

FFW network over test instances VZ12.

Distance to a feasible solution. As optimal solutions of (P ′) are not unique, these
metrics only show the ability of the DL model to approach one possible target. As
mentioned, the predicted storage profiles do not necessarily correspond to an optimal
or feasible solution of (P ′). We now measure the potentiality of the predictions to lead
to feasible solutions when used as a starting point in Algorithm 9. We evaluate the
impact of the initial prediction H0 in our algorithm (with ρ0 = 50) when computed
with either the CNN-LSTM or the FFW architecture. When CNN-LSTM is used, the
hybrid algorithm finds a feasible solution for 49 out of the 50 instances in benchmark
VZ12, while only nearly half of the instances (27 out of 50) with FFW. As shown in
Figure 12.2, for the 26 instances for which both the algorithms can compute a feasible
solution, the associated objective function value derived with CNN-LSTM is smaller
for all but two instances, with an average 4.8% decrease. This suggests that a better
prediction is not only more likely to end up with a feasible configuration but also the
quality of the solution could be higher.

3The Pearson coefficient applied to N samples in a dataset consisting of the ground true Y and
predicted values Ŷ is defined as

R =

∑N
i=1(Yi − Ȳi)(Ŷi − ¯̂

Yi)√∑N
i=1(Yi − Ȳi)2

√∑N
i=1(Ŷi − ¯̂

iY)2
,

where Ȳi is the sample mean of Y ; and analogously for
¯̂
Yi.

122

Figure 12.1: CNN-LSTM prediction and credible interval w.r.t the ground
truth storage profile.

Figure 12.2: Comparison of the cost associated with the solution computed
by the hybrid approach using FFW or LSTM-CNN over the test instance
VZ12.

12.1.3 Performance of the hybrid algorithm

The experiments above provide a first insight into the efficiency of the proposed hybrid
algorithm. They suggest that better predictions in the first phase may increase the

123

#solved Med Mean std Min Max

VZ12 HA50 49 114 254 359 6 1570
HA2 44 114 305 438 6 1577
BC 48 39 121 160 1 681
BCpre 50 125 124 4 116 137

VZ24 HA50 50 183 285 281 18 1257
HA2 50 169 279 304. 16 1711
BC 5 425 1097 1215 272 3117
BCpre 50 755 809 268 601 2430

VZ48 HA50 50 309 776 1294 37 7069
HA2 49 322 1014 1435 31 5548
BC 1 - - - - -
BCpre 32 1892 2517 1371 1397 6404

Table 12.2
Performance: computation time in seconds.

chance of finding feasible solutions of good quality.

We now validate the capability of HA to compute good feasible solutions on the
simple benchmark VZ12, for which the branch-and-check solver is usually able (with
preprocessing) to even provide feasible solutions with optimality proof. We compare
the hybrid algorithm with two penalty values, ρ = 50 (HA50) and ρ = 2 (HA2), with
the branch-and-check with (BCpre) and without (BC) advanced preprocessing. Each
algorithm stops after the first computed feasible solution and within a limit of 1800
seconds.

In Table 12.2, for each algorithm, we report statistics on the computational time
(in seconds) over the instances for which the algorithm computes a feasible solution.
In Table 12.3, we report statistics, on these same subsets of instances, about the
solution quality: the estimated optimality gap, measured as the deviation in % of the
solution cost to the best known lower bound computed with BCpre. First, note that
branch-and-check always quickly reaches high-quality feasible solutions, at least with
preprocessing (which requires a minimum of 100 seconds).

Without preprocessing, the results are comparable with the hybrid algorithm. The
hybrid algorithm is globally outperformed, but it already performs well on this bench-
mark. With ρ = 50, it solves all except one instance in half an hour (half of them
are solved in less than 2 minutes). With ρ = 2, the number of solved instances drops
to 44, but the quality of the solutions improves significantly, as the violations weigh
less in the objective of (Lρ).

124

#solved Med Mean std Min Max

VZ12 HA50 49 6.6 6.6 4.1 0.0 21.2
HA2 44 4.3 4.6 2.7 0.0 11.3
BC 48 4.9 5.4 2.9 1.6 12.5
BCpre 50 3.5 4.3 2.7 0.4 12.4

VZ24 HA50 50 9.6 9.5 4.0 3.3 23.4
HA2 50 7.6 8.4 3.1 3.4 16.3
BC 5 11.7 11.1 2.2 7.2 12.6
BCpre 50 6.5 7.5 6.0 2.4 39.6

VZ48 HA50 50 8.9 9.8 3.9 3.8 21.0
HA2 49 10.2 10.3 3.9 4.4 19.7
BC 1 - - - - -
BCpre 32 6.4 6.4 1.5 3.4 8.9

Table 12.3
Performance: estimated optimality gap in %.

12.1.4 Performance of the scaling approach

Tables 12.2 and 12.3 provide the same comparative results for the cases T = 24 (VZ24)
and T = 48 (VZ48), where the computational time limits are increased, respectively,
to 3600 and 7200 seconds to cope with the higher complexity. The scaling mechanism
is now activated in the hybrid algorithm to initialize ADM. Although we do not
directly predict these initialization points through a learning strategy, meaning that
we do not implement a model to predict the profile for the cases T = 24 and T = 48,
we still refer to the warm-started PADM as the hybrid algorithm. The reason is that
we exploit the prediction results obtained with a coarser-time discretization (T = 12),
and we resample these results (i.e., the storage level profiles) by linear interpolation.

The hybrid algorithm can now compute a feasible solution for all the instances
within an average 10% estimated optimality gap. Note that it is a rough overesti-
mation, as the lower bound is probably far below the actual optimum value for these
instances. HA50 is more robust, even if the results are improved with HA2 in a
few instances (particularly in VZ24). In comparison, the performance of the branch-
and-check algorithm falls dramatically. Without a tailored preprocessing phase, the
algorithm cannot compute even one feasible solution for most of the instances within
the maximum given time. Preprocessing strongly improves the performance of this
algorithm and allows computing feasible solutions for all instances for T = 24. The
solutions are also often substantially better than with the hybrid algorithm, but the
average computational time is about six times larger, see Figure 12.3. In VZ48, for

125

Figure 12.3: Cumulative instances to find a first feasible solution over
benchmarks VZ24 (left) and VZ48 (right).

those 18 remaining instances for which we could not find a feasible solution through
the branch-and-check algorithm, the median time to acquire a feasible solution with
the hybrid algorithm is 500 seconds.

12.2 Numerical results of the hybrid approach:

physics informed deep-learning and decom-

position algorithm

12.2.1 Experimental setup

Although the physical constraints are explicitly integrated into the proposed deep
learning architecture, the final output is not guaranteed to be feasible for the original
optimization problem (P ′). For this reason, we use an approach similar to the pre-
vious chapter. Hence, the predicted output is used to warm-start the decomposition
algorithm (Algorithm 9).

A similar setup has been used for experimental results in the decomposition algo-
rithm. The policy update is given in (12.1), and the initial penalty for the decompo-
sition algorithm is set to ρ0 = 50.

To train the supervised penalty model H, the maximum number of epochs is set

126

to 300 number. We have considered several penalty coefficients, particularly p =
0, 0.05, 0.1 in the loss function (11.1). Furthermore, with the penalty value, p = 0.05
we also consider more restricted tank capacities with the margin equal to 0.1 of the
actual constraint (i.e., p[Ĥ(L,C)−1.05H]−+p[0.95H−Ĥ(L,C)]−). We indicate this
last as the robust case.

Similarly, we have used the MC dropout method to generate more than one initial
start point for the decomposition algorithm. All hyperparameters are identical to the
previous configurations.

All algorithms are implemented in Python, and experiments are executed on an
Intel(R) Core(TM) i7-10810U 1.10GHz and 32 GB memory. The deep learning models
CNN-LSTM and surrogate model are built using Tensorflow API version 2.12.0 on
Jupyter notebook in Google Colab with GPU A100. All the implementations can be
found at https://github.com/amirhtavakoli94/hybrid_pmpscheduling

12.2.2 Performance of the supervised penalty approach

Prediction error. The first indicator of the capability of the supervised penalty
approach H is its accuracy in approximating the (sub-)optimal solutions. We have
already discussed the accuracy of the surrogate model H2 in Section 11.2.1, so here
we focus on the accuracy of the H for predicting binary variables. This means that
we look at the output of H1, but we consider the learning procedure of the overall
network H. The accuracy here is measured through the binary classification error
(the closer the error value is to 1, the more accurate the model is).

In Table 12.4, we illustrate the effect of the three values of the penalization pa-
rameter p considered and the robust case. The results suggest that increasing the
penalty parameter in the model decreases the accuracy of the approximation of the
(sub-)optimal binary solution.

12.2.3 Performance of the hybrid penalty approach

We assume that the penalty term integrated into the loss function of the DL model
worsens the accuracy of the predictions of the binary variable in favor of binary
configurations, leading to tank profiles within the physical limits. To prove this

127

https://github.com/amirhtavakoli94/hybrid_pmpscheduling

classifier Accuracy

CNN-LSTM-p0 0.84
CNN-LSTM-p0.05 0.75
CNN-LSTM-p0.1 0.74
CNN-LSTM-p0.05-rob 0.74

Table 12.4
Prediction accuracy of the physics-informed network for predicting the

binary variable over the test instances VZ12.

numerically, we investigate the performance of the hybrid algorithm when warm-
started with the physics-informed network. In the tables below, this version of the
hybrid algorithm combined with physics-informed deep learning is denoted as PIHA.
As before, the metrics to evaluate the efficacy of each configuration are the number
of feasible solutions, the time required to obtain the first feasible, and their quality.
The tables below show that in terms of the number of computed feasible solutions,
the best performance of PIHA is with p = 0.05. Only the branch-and-check algorithm
with extensive preprocessing (BCpre) could find all the feasible solutions. However,
when it comes to the computational time, Table 12.5 shows that PIHA is, on average,
ten times faster than BCpre. The reader can compare these results with Table 12.2.
On the other hand, since the physics-informed DL model is not trained to predict
optimal profiles, the solutions obtained by PIHA are not necessarily of good quality.

The physics-informed deep learning architecture is designed to predict feasible
solutions to the optimal problem (P ′). Although this is not guaranteed, in general,
the predictions are (quasi-)feasible. When they are used to initialize the PADM
algorithm, this latter algorithm requires a few iterations to terminate with a feasible
solution. We believe this approach could be interesting in the preprocessing phase
of a global optimization algorithm, such as the branch-and-check, to have a good
initialization point.

#solved Med Mean std Min Max

VZ12 PIHA-p0 49 59 131 152 2 510

PIHA-p0.05 50 10 33 71 2 392

PIHA-p0.1 49 11 45 92 2 438

PIHA-p0.05-rob 50 11 27 39 2 169

Table 12.5
Performance: computation time in seconds.

128

#solved Med Mean std Min Max

VZ12 PIHA-p0 49 4.1 4.8 2.9 0.0 12.8

PIHA-p0.05 50 10.5 11.1 5.6 3.2 22.3

PIHA-p0.1 49 12.1 10.9 6.4 2.1 23.7

PIHA-p0.05-rob 50 15.8 16.1 6.9 5.6 31.6

Table 12.6
Performance: estimated optimality gap in %.

129

Chapter 13

Conclusions and Prospective for

Future Work

This thesis explores various ways to improve optimal operations of the drinking water
network distribution while the hard constraints of the problem are still intact. We
have shown that the MINLP formulation of the pump scheduling problem quickly
becomes intractable. On the other hand, solutions derived from approximation or
relaxation usually violate the physical constraints. From these circumstances, we
have presented different preprocessing techniques to be coupled with a branch-and-
check algorithm. Our results suggest a substantial improvement in the performance
of the branch-and-check algorithm, both in closing the optimality gap and finding
the first feasible solution after applying the proposed preprocessing. These methods
are not only effective on the performance of the branch-and-check algorithm, but also
efficient and relatively quick to be generated. The computational effort and its impact
on the branch-and-check algorithm with some different configuration settings exhibit
the fact that relaxations and definitions of each (conditional) bound tightening have
been superior to any arbitrary selection. Based on previous works in flow network
design and graph theory, we have also considered simplifications in the graphs by
means of supernodes and cutset-based inequalities. This approach is not only useful
for the cut generation, but also can be considered as new relaxations in the branch-
and-check algorithm.

To our knowledge, our results are the best-reported over the real-scale Poormond
network in the literature. However, the proposed method has some evident limita-
tions. For instance, the formulation obtained after heavy bound tightening cannot
find a feasible solution for van Zyl with T = 48. Moreover, the dedicated methods to
efficiently generate cuts and bound tightening still require considerable computational

131

effort. We have introduced the graph partition, but except for conditional bound
tightening (probing and its extended version materialized with disjunctive program-
ming), we have not used it at the preprocessing stage in particular for steady-state
relaxation. Therefore, considering this property is a straightforward way to mitigate
the computational effort in the bound-tightening procedure. Apart from implications
derived from the underlying structure of the problem, one might take leverage from
historical data and learn the best configuration settings for bound tightening and
cut generation. Generating some of the proposed cutting planes requires an inten-
sive computational cost. In addition, the impact of some of these inequalities is very
sensitive to the subset of variables we have considered or the condition that they are
based on. It might be difficult to draw a clear reasoning for the generation of each
subset of them, especially in light of the fact that commercial solvers may generate
similar inequalities. We can indicate the recent work in optimization of the power
system [131] in which authors have developed a learning algorithm to decide whether
to apply heavy bound tightening for some nodes in the power network.

The other part of this work is dedicated to problem-specific heuristics to find
high-quality feasible solutions. The proposed heuristic method is devised based on
a variable-splitting decomposition algorithm; however, the quality of the solution is
highly dependent on the initialization of the algorithm. To enhance the performance
of this algorithm, we have designed deep-learning models that provide near (sub)
optimal initial points. By exploiting both local patterns (via CNNs) and temporal
dependencies (via Bi-LSTM) induced by storage, our deep learning model is shown
to extract relevant features from the given input (tariff and demand profiles) and
then exploit them to predict near-optimal solutions accurately. This combination of
deep learning and decomposition methods successfully found good solutions within
a short computational time. As a byproduct of developing a heuristic approach, a
considerable number of instances are generated for pump scheduling problems, which
may be used as a benchmark for the community. We have also investigated the quality
of the initial levels of the tanks on the performance of the heuristics. However, there
might be other ways to boost the performance.

Since all storage levels do not have the same importance regarding optimality or
feasibility, the success of the decomposition algorithm is related not only to the ini-
tialization point but also to the initialization of the penalty parameters and their
updating policy, which weighs constraint violations. These parameters can steer the
decomposition trajectory. Differently from what was found in the literature, we have
proposed to increase more the value of the penalties at a period where the viola-
tion occurs. In this way, we try to perturb the convergence towards an infeasible
solution. A possible research direction could be investigating an intelligent (or learn-
able) methodology to update the penalty parameters. This is done in [98], where the
dual variables (multipliers) and the coupled variables in the ADMM algorithm are

132

learned. However, their approach is not directly applicable to our case due to the lack
of convergence of our proposed decomposition algorithm. Alternatively, the problem
can be addressed by a sequential-based optimization approach such as reinforcement
learning or multi-arm bandit.

The main caveat of the supervised learning framework is to collect a high number of
training data for hard-to-solve instances. We addressed this difficulty with a tailored
scaling method for higher-temporal resolution problems. Our numerical experiments
showed a substantial improvement in the computational runtime for finding the first
feasible solution for the problem and highlighted the efficiency of the approach. An-
other possibility might be a modification of the loss function. This can be considered
an extension of the proposed supervised penalty approach (physics-informed neu-
ral network). In particular, the part of the loss function measuring the error with
respect to the true solution can be replaced by the objective function of the optimiza-
tion problem (P ′) itself. This new version of the loss function eliminates the need for
pre-solved instances and can be helpful in cases where finding even feasible solutions
is computationally demanding. This approach is used in optimal power flow and is
known as the self-supervised framework [122].

One major advantage of the decomposition method to obtain good solutions is the
possibility of parallelization. Each penalized problem at each period can be solved
independently as the coupling constraints are obtained from the second subproblem.
In this way, we can take advantage of all the processing capacity of the processors.
On the contrary, the advantage of having many processing cores in branch and bound
tree search fades. Thus, it would be more convenient to implement the decomposition
algorithm in a high-performance machine.

Applying the decomposition based on penalizing the coupling constraints at each
period is not the only way to framework the problem. While finding the optimal
solution for each small subproblem is relatively easy, reaching a consensus (i.e., no
violation) could require many iterations. We can shift complexity towards each sub-
problem and probably lift a bit of the burden by reducing the number of linking
variables. It would be interesting to analyze other formulations derived by aggregat-
ing several time intervals. A similar approach can be found in [132]. The coupling
temporal constraints are relaxed at some periods instead of all. Therefore, to solve
each subproblem, we cannot simply enumerate the possible configuration and its pe-
nalized cost, but it might be solved with the branch-and-check algorithm. On the
other hand, coupling constraints could be reduced significantly.

Future research could also be dedicated to the integration of the proposed hybrid
algorithm into the branch-and-cut algorithm as a primal heuristic. Finding a good
solution using a hybrid approach can be used simply in a root node as a warm start.

133

This may prune many branches with weaker lower bounds and facilitate the conver-
gence. The decomposition can also be activated in some nodes in branch-and-bound
search tree nodes. For instance, for some infeasible integer nodes encountered in
the branch-and-bound algorithm, the decomposition algorithm can restore feasibil-
ity by flipping a few decision variables. However, the current implementation of the
branch-and-check within Gurobi does not allow us to develop this method. It could
be interesting to investigate an on-the-fly learning algorithm to take control of the
activation of this heuristic at some infeasible node.

134

Bibliography

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[2] IEA, “Water energy nexus: Excerpt from the world energy outlook,” tech. rep.,
2016.

[3] D. Wu, V. Nguyen, M. Minoux, and H. Tran, “An integer programming model
for minimizing energy cost in water distribution system using trigger levels
with additional time slots,” in RIVF International Conference on Computing
and Communication Technologies, 2021.

[4] B. Ghaddar, J. Naoum-Sawaya, A. Kishimoto, N. Taheri, and B. Eck, “A La-
grangian decomposition approach for the pump scheduling problem in water
networks,” Eur. J. Oper. Res., vol. 241, no. 2, pp. 490–501, 2015.

[5] H. Donâncio, L. Vercouter, and H. Roclawski, “The pump scheduling
problem: A real-world scenario for reinforcement learning,” arXiv preprint
arXiv:2210.11111, 2022.

[6] G. Bonvin, S. Demassey, and A. Lodi, “Pump scheduling in drinking water
distribution networks with an LP/NLP-based B&B,” Optim. & Engin., vol. 22,
pp. 1275–1313, 2021.

[7] L. H. Rossman, M. Woo, F. Tryby, R. Shang, R. Janke, and T. Haxton,
EPANET 2.2 User Manual, 2020.

[8] J. Naoum-Sawaya, B. Ghaddar, E. Arandia, and B. Eck, “Simulation-
optimization approaches for water pump scheduling and pipe replacement prob-
lems,” European Journal of Operational Research, vol. 246, no. 1, pp. 293–306,
2015.

[9] L. H. M. Costa, B. de Athayde Prata, H. M. Ramos, and M. A. H. de Castro, “A
branch-and-bound algorithm for optimal pump scheduling in water distribution
networks,” Water resources management, vol. 30, pp. 1037–1052, 2016.

135

http://www.deeplearningbook.org

[10] H. Shi and F. You, “Energy optimization of water supply system scheduling:
Novel minlp model and efficient global optimization algorithm,” AIChE Jour-
nal, vol. 62, no. 12, pp. 4277–4296, 2016.

[11] B. S. Vieira, S. F. Mayerle, L. M. Campos, and L. C. Coelho, “Optimizing
drinking water distribution system operations,” Eur. J. Oper. Res., vol. 280,
no. 3, pp. 1035–1050, 2020.

[12] B. Tasseff, Optimization of Critical Infrastructure with Fluids. PhD thesis, 2021.

[13] R. T. Rockafellar, Network Flows and Monotropic Optimization. Athena Scien-
tific, 1999.

[14] S. Demassey, V. Sessa, and A. Tavakoli, “Strengthening mathematical mod-
els for pump scheduling in water distribution,” in Proc. of 14th Int. Conf. on
Applied Energy, 2022.

[15] J. Burgschweiger, B. Gnädig, and M. C. Steinbach, “Optimization models for
operative planning in drinking water networks,” Optimization and Engineering,
vol. 10, pp. 43–73, 2009.

[16] F. Pecci, E. Abraham, and I. Stoianov, “Quadratic head loss approximations for
optimisation problems in water supply networks,” Journal of Hydroinformatics,
vol. 19, no. 4, pp. 493–506, 2017.

[17] B. J. Eck and M. Mevissen, “Valve placement in water networks: Mixed-integer
non-linear optimization with quadratic pipe friction,” Report No RC25307
(IRE1209-014), IBM Research, vol. 70, 2012.

[18] A. Morsi, B. Geißler, and A. Martin, “Mixed integer optimization of water
supply networks,” Mathematical optimization of water networks, pp. 35–54,
2012.

[19] P. Belotti, P. Bonami, M. Fischetti, A. Lodi, M. Monaci, A. Nogales-Gómez,
and D. Salvagnin, “On handling indicator constraints in mixed integer program-
ming,” Comput. Optim. Appl., vol. 65, pp. 545–566, 2016.

[20] T. Achterberg, “Scip: solving constraint integer programs,” Mathematical Pro-
gramming Computation, vol. 1, pp. 1–41, Jul 2009.

[21] B. Geißler, A. Morsi, L. Schewe, and M. Schmidt, “Solving power-constrained
gas transportation problems using an mip-based alternating direction method,”
Computers & Chemical Engineering, vol. 82, pp. 303–317, 2015.

[22] M. Collins, L. Cooper, R. Helgason, J. Kennington, and L. LeBlanc, “Solving
the pipe network analysis problem using optimization techniques,” Management
science, vol. 24, no. 7, pp. 747–760, 1978.

136

[23] E. Todini and S. Pilati, “A gradient algorithm for the analysis of pipe networks,”
in Computer Applications in Water Supply, vol. 1, Research Studies Press Ltd.,
1988.

[24] R. O. Salgado-Castro, Computer modelling of water supply distribution networks
using the gradient method. PhD thesis, Newcastle University, 1988.

[25] G. Mackle, “Application of genetic algorithms to pump scheduling for water
supply,” in 1st Int. Conf. Genet. Algorithms Eng. Syst. Innov. Appl. GALESIA,
vol. 1995, (Sheffield, UK), pp. 400–405, IEE, 1995.

[26] J. E. van Zyl, D. A. Savic, and G. A. Walters, “Operational Optimization
of Water Distribution Systems Using a Hybrid Genetic Algorithm,” J. Water
Resour. Plan. Manag., vol. 130, no. 2, pp. 160–170, 2004.

[27] M. López-Ibáñez, T. D. Prasad, and B. Paechter, “Ant colony optimization for
optimal control of pumps in water distribution networks,” J. of Water Res.
Planning and Mgmt., vol. 134, no. 4, pp. 337–346, 2008.

[28] H. Mala-Jetmarova, N. Sultanova, and D. Savic, “Lost in optimisation of water
distribution systems? A literature review of system operation,” Environ. Model.
Softw., vol. 93, pp. 209–254, 2017.

[29] R. Z. Ŕıos-Mercado and C. Borraz-Sánchez, “Optimization problems in natural
gas transportation systems: A state-of-the-art review,” Appl. Energy, vol. 147,
pp. 536–555, 2015.

[30] C. D’Ambrosio, A. Lodi, S. Wiese, and C. Bragalli, “Mathematical program-
ming techniques in water network optimization,” Eur. J. Oper. Res., vol. 243,
no. 3, pp. 774–788, 2015.

[31] G. Bonvin, S. Demassey, C. Le Pape, N. Mäızi, V. Mazauric, and A. Samperio,
“A convex mathematical program for pump scheduling in a class of branched
water networks,” Applied Energy, vol. 185, pp. 1702–1711, 2017.

[32] R. Menke, E. Abraham, P. Parpas, and I. Stoianov, “Exploring optimal pump
scheduling in water distribution networks with branch and bound methods,”
Water Resour Manage, vol. 30, no. 14, pp. 5333–5349, 2016.

[33] A. M. Gleixner, H. Held, W. Huang, and S. Vigerske, “Towards globally optimal
operation of water supply networks,” Numer. Algebra Control Optim., vol. 2,
no. 4, pp. 695–711, 2012.

[34] D. Fooladivanda and J. A. Taylor, “Energy-optimal pump scheduling and wa-
ter flow,” IEEE Transactions on Control of Network Systems, vol. 5, no. 3,
pp. 1016–1026, 2017.

137

[35] G. Bonvin and S. Demassey, “Extended linear formulation of the pump schedul-
ing problem in water distribution networks,” in 9th Int. Network Optim. Conf.,
pp. 13–18, 2019.

[36] S. Demassey, “Enhanced branch & check for pump scheduling in water net-
works,” in MINLP workshop, 2021.

[37] B. Tasseff, R. Bent, M. A. Epelman, D. Pasqualini, and P. Van Hentenryck,
“Exact mixed-integer convex programming formulation for optimal water net-
work design,” ArXiv Prepr. ArXiv201003422, 2020.

[38] G. Bonvin, S. Demassey, and W. de Oliveira, “Robust design of pumping sta-
tions in water distribution networks,” in Optimization of Complex Systems:
Theory, Models, Algorithms and Applications. Advances in Intelligent Systems
and Computing (WCGO’19), pp. 957–967, 2019.

[39] A. U. Raghunathan, “Global optimization of nonlinear network design,” SIAM
J. Optim., vol. 23, no. 1, pp. 268–295, 2013.

[40] C. B. Sanchez, R. Bent, S. Backhaus, S. Blumsack, H. Hijazi, and P. Van Hen-
tenryck, “Convex optimization for joint expansion planning of natural gas and
power systems,” in 2016 49th Hawaii Int. Conf. Syst. Sci. HICSS, pp. 2536–
2545, IEEE, 2016.

[41] C. Borraz-Sánchez, R. Bent, S. Backhaus, H. Hijazi, and P. V. Hentenryck,
“Convex relaxations for gas expansion planning,” Inf. J. Comput., vol. 28, no. 4,
pp. 645–656, 2016.

[42] F. Wu, H. Nagarajan, A. Zlotnik, R. Sioshansi, and A. M. Rudkevich, “Adaptive
convex relaxations for gas pipeline network optimization,” in 2017 American
Control Conference (ACC), pp. 4710–4716, 2017.

[43] H. Nagarajan, M. Lu, E. Yamangil, and R. Bent, “Tightening mccormick relax-
ations for nonlinear programs via dynamic multivariate partitioning,” in Prin-
ciples and Practice of Constraint Programming, pp. 369–387, Springer Interna-
tional Publishing, 2016.

[44] J. E. Van Zyl, D. A. Savic, and G. A. Walters, “Operational optimization of
water distribution systems using a hybrid genetic algorithm,” Journal of water
resources planning and management, vol. 130, no. 2, pp. 160–170, 2004.

[45] R. Menke, E. Abraham, P. Parpas, and I. Stoianov, “Approximation of sys-
tem components for pump scheduling optimisation,” Procedia Eng., vol. 119,
pp. 1059–1068, 2015.

138

[46] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “Stl: A
seasonal-trend decomposition,” J. Off. Stat, vol. 6, no. 1, pp. 3–73, 1990.

[47] S. Burer and A. Saxena, “The milp road to miqcp,” Mixed integer nonlinear
programming, pp. 373–405, 2011.

[48] G. P. McCormick, “Computability of global solutions to factorable nonconvex
programs: Part i—convex underestimating problems,” Mathematical program-
ming, vol. 10, no. 1, pp. 147–175, 1976.

[49] H. S. Ryoo and N. V. Sahinidis, “A branch-and-reduce approach to global
optimization,” Journal of global optimization, vol. 8, pp. 107–138, 1996.

[50] E. M. Smith and C. C. Pantelides, “Global optimisation of nonconvex minlps,”
Computers & Chemical Engineering, vol. 21, pp. S791–S796, 1997.

[51] E. S. Thorsteinsson, “Branch-and-check: A hybrid framework integrating mixed
integer programming and constraint logic programming,” in International
Conference on Principles and Practice of Constraint Programming (CP’01),
vol. 2239 of Lecture Notes in Computer Science, pp. 16–30, 2001.

[52] B. Tasseff, “Optimization of Critical Infrastructure with Fluids,” 2021.

[53] B. Geissler, A. Martin, A. Morsi, and L. Schewe, “Chapter 6: The MILP-
relaxation approach,” in Evaluating Gas Network Capacities, pp. 103–122,
SIAM, 2015.

[54] A. M. Gleixner, T. Berthold, B. Müller, and S. Weltge, “Three enhancements
for optimization-based bound tightening,” J Glob Optim, vol. 67, no. 4, pp. 731–
757, 2017.

[55] Y. Puranik and N. V. Sahinidis, “Domain reduction techniques for global NLP
and MINLP optimization,” Constraints, vol. 22, no. 3, pp. 338–376, 2017.

[56] M. W. P. Savelsbergh, “Preprocessing and probing techniques for mixed integer
programming problems,” ORSA Journal on Computing, vol. 6, no. 4, pp. 445–
454, 1994.

[57] E. Balas, “Disjunctive programming: Properties of the convex hull of feasible
points,” Discrete Appl. Math., vol. 89, no. 1-3, pp. 3–44, 1998.

[58] P. Bonami, A. Lodi, A. Tramontani, and S. Wiese, “On mathematical program-
ming with indicator constraints,” Math. Program., vol. 151, no. 1, pp. 191–223,
2015.

139

[59] A. Vecchietti, S. Lee, and I. E. Grossmann, “Modeling of discrete/continuous
optimization problems: characterization and formulation of disjunctions and
their relaxations,” Computers & chemical engineering, vol. 27, no. 3, pp. 433–
448, 2003.

[60] B. Tasseff, R. Bent, C. Coffrin, C. Barrows, D. Sigler, J. Stickel, A. S. Zamzam,
Y. Liu, and P. Van Hentenryck, “Polyhedral Relaxations for Optimal Pump
Scheduling of Potable Water Distribution Networks,” 2022.

[61] O. Günlük and Y. Pochet, “Mixing mixed-integer inequalities,”Math. Program.,
vol. 90, no. 3, pp. 429–457, 2001.

[62] M. Conforti, G. Cornuéjols, G. Zambelli, et al., Integer Programming, vol. 271.
Springer, 2014.

[63] H. Crowder, E. L. Johnson, and M. Padberg, “Solving large-scale zero-one linear
programming problems,” Oper. Res., vol. 31, no. 5, pp. 803–834, 1983.

[64] Z. Gu, G. L. Nemhauser, and M. W. Savelsbergh, “Lifted cover inequalities
for 0-1 integer programs: Computation,” INFORMS Journal on Computing,
vol. 10, no. 4, pp. 427–437, 1998.

[65] Q. Louveaux and L. A. Wolsey, “Lifting, superadditivity, mixed integer round-
ing and single node flow sets revisited,” Quarterly Journal of the Belgian, French
and Italian Operations Research Societies, vol. 1, pp. 173–207, 2003.

[66] A. Atamtürk, “Flow pack facets of the single node fixed-charge flow polytope,”
Operations Research Letters, vol. 29, no. 3, pp. 107–114, 2001.

[67] A. Atamtürk, “Cover and pack inequalities for (mixed) integer programming,”
Ann. Oper. Res., vol. 139, no. 1, pp. 21–38, 2005.

[68] R. D. Carr, L. K. Fleischer, V. J. Leung, and C. A. Phillips, “Strengthening
integrality gaps for capacitated network design and covering problems,” tech.
rep., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); San-
dia, 1999.

[69] D. A. Savic and G. A. Walters, “Genetic Algorithms for Least-Cost Design of
Water Distribution Networks,” J. Water Resour. Plan. Manag., vol. 123, no. 2,
pp. 67–77, 1997.

[70] G. McCormick and R. Powell, “Derivation of near-optimal pump schedules for
water distribution by simulated annealing,” Journal of the Operational Research
Society, vol. 55, no. 7, pp. 728–736, 2004.

[71] L. A. Rossman et al., “Epanet 2: users manual,” 2000.

140

[72] B. Ulanicki, J. Kahler, and H. See, “Dynamic optimization approach for solving
an optimal scheduling problem in water distribution systems,” Journal of Water
Resources Planning and Management, vol. 133, no. 1, pp. 23–32, 2007.

[73] P. L. M. Bounds, K. Ulanicka, B. Ulanicki, B. Dacre, and G. Cummings, “Op-
timal scheduling of south-staffordshire water supply system using the finesse
package,” Water supply management, pp. 283–292, 2003.

[74] G. Hajgató, G. Paál, and B. Gyires-Tóth, “Deep reinforcement learning for real-
time optimization of pumps in water distribution systems,” Journal of Water
Resources Planning and Management, vol. 146, no. 11, p. 04020079, 2020.

[75] A. M. Alvarez, Q. Louveaux, and L. Wehenkel, “A machine learning-based
approximation of strong branching,” INFORMS Journal on Computing, vol. 29,
no. 1, pp. 185–195, 2017.

[76] A. Marcos Alvarez, L. Wehenkel, and Q. Louveaux, “Online learning for strong
branching approximation in branch-and-bound,” 2016.

[77] E. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina, “Learning to
branch in mixed integer programming,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 30, 2016.

[78] C. Hansknecht, I. Joormann, and S. Stiller, “Cuts, primal heuristics, and
learning to branch for the time-dependent traveling salesman problem,” arXiv
preprint arXiv:1805.01415, 2018.

[79] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, “Exact combina-
torial optimization with graph convolutional neural networks,” ArXiv Prepr.
ArXiv190601629, 2019.

[80] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The
graph neural network model,” IEEE transactions on neural networks, vol. 20,
no. 1, pp. 61–80, 2008.

[81] H. He, H. Daume III, and J. M. Eisner, “Learning to search in branch and
bound algorithms,” Advances in neural information processing systems, vol. 27,
2014.

[82] J. Song, R. Lanka, A. Zhao, A. Bhatnagar, Y. Yue, and M. Ono, “Learning to
search via retrospective imitation,” arXiv preprint arXiv:1804.00846, 2018.

[83] Y. Tang, S. Agrawal, and Y. Faenza, “Reinforcement Learning for Integer Pro-
gramming: Learning to Cut,” ArXiv190604859 Cs Math Stat, 2020.

141

[84] M. Turner, T. Koch, F. Serrano, and M. Winkler, “Adaptive cut selection in
mixed-integer linear programming,” Open Journal of Mathematical Optimiza-
tion, vol. 4, pp. 1–28, 2023.

[85] R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani, “Scoring pos-
itive semidefinite cutting planes for quadratic optimization via trained neural
networks,” pp. 1–41.

[86] Z. Huang, K. Wang, F. Liu, H.-L. Zhen, W. Zhang, M. Yuan, J. Hao, Y. Yu,
and J. Wang, “Learning to select cuts for efficient mixed-integer programming,”
Pattern Recognit., vol. 123, p. 108353, 2022.

[87] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial
optimization: A methodological tour d’horizon,” Eur. J. of Op. Res., vol. 290,
no. 2, pp. 405–421, 2021.

[88] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing
problems!,” arXiv preprint arXiv:1803.08475, 2018.

[89] P. Emami and S. Ranka, “Learning permutations with sinkhorn policy gradi-
ent,” arXiv preprint arXiv:1805.07010, 2018.

[90] V. Nair, S. Bartunov, F. Gimeno, I. Von Glehn, P. Lichocki, I. Lobov,
B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang, et al., “Solving
MIPs using neural networks,” ArXiv Prepr. ArXiv201213349, 2020.

[91] J.-Y. Ding, C. Zhang, L. Shen, S. Li, B. Wang, Y. Xu, and L. Song, “Accel-
erating primal solution findings for mixed integer programs based on solution
prediction,” in Proc. AAAI Conf. Artif. Intell., vol. 34, pp. 1452–1459, 2020.

[92] D. Yilmaz and İ. E. Büyüktahtakın, “Learning optimal solutions via an LSTM-
optimization framework,” in Oper. Res. Forum, vol. 4, p. 48, Springer, 2023.

[93] D. Masti and A. Bemporad, “Learning binary warm starts for multiparametric
mixed-integer quadratic programming,” in 2019 18th Eur. Control Conf. ECC,
pp. 1494–1499, IEEE, 2019.

[94] L. Anderson, M. Turner, and T. Koch, “Generative deep learning for decision
making in gas networks,” Math. Methods of Operations Research, vol. 95, no. 3,
pp. 503–532, 2022.

[95] N. Guha, Z. Wang, M. Wytock, and A. Majumdar, “Machine learning for AC
optimal power flow,” ArXiv Prepr. ArXiv191008842, 2019.

[96] A. S. Zamzam and K. Baker, “Learning optimal solutions for extremely fast
AC optimal power flow,” in Int. Conf. SmartGridComm, pp. 1–6, IEEE, 2020.

142

[97] F. Fioretto, T. W. Mak, and P. Van Hentenryck, “Predicting ac optimal power
flows: Combining deep learning and lagrangian dual methods,” in Proceedings
of the AAAI conference on artificial intelligence, vol. 34, pp. 630–637, 2020.

[98] T. W. Mak, M. Chatzos, M. Tanneau, and P. Van Hentenryck, “Learning re-
gionally decentralized AC optimal power flows with ADMM,” IEEE Trans. on
Smart Grid, 2023.

[99] J. Douglas and H. H. Rachford, “On the numerical solution of heat conduc-
tion problems in two and three space variables,” Transactions of the American
mathematical Society, vol. 82, no. 2, pp. 421–439, 1956.

[100] J. Eckstein, “Parallel alternating direction multiplier decomposition of convex
programs,” Journal of Optimization Theory and Applications, vol. 80, no. 1,
pp. 39–62, 1994.

[101] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed opti-
mization and statistical learning via the alternating direction method of multi-
pliers,” Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1–122,
2011.

[102] R. E. Wendell and A. P. Hurter, “Minimization of a non-separable objective
function subject to disjoint constraints,” Operations Research, vol. 24, no. 4,
pp. 643–657, 1976.

[103] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimization with
biconvex functions: a survey and extensions,” Math. Meth. Oper. Res., vol. 66,
pp. 373–407, 2007.

[104] P. D. Bertsekas and T. J. N., Parallel and Distributed Computation: Numerical
Methods. Prentice Hall, 1989.

[105] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[106] Y. Wang, W. Yin, and J. Zeng, “Global convergence of admm in nonconvex
nonsmooth optimization,” J. Sci. Comput., vol. 78, pp. 29–63, 2019.

[107] T. Kleinert and M. Schmidt, “Computing feasible points of bilevel problems
with a penalty alternating direction method,” INFORMS J. on Computing,
vol. 33, 2020.

[108] L. Schewe, M. Schmidt, and D. Weninger, “A decomposition heuristic for mixed-
integer supply chain problems,” Operations Research Letters, vol. 48, no. 3,
pp. 225–232, 2020.

143

[109] B. Geißler, A. Morsi, L. Schewe, and M. Schmidt, “Penalty alternating direction
methods for mixed-integer optimization: A new view on feasibility pumps,”
SIAM J. Optim., vol. 27, no. 3, pp. 1611–1636, 2017.

[110] A. Tavakoli, S. Demassey, and V. Sessa, “Strengthening mathematical for-
mulation for global optimization of the operational water network distribu-
tion,” in 24ème édition du congrès annuel de la Société Française de Recherche
Opérationnelle et d’Aide à la Décision - ROADEF 2023, 2023.

[111] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[112] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”
Journal of machine learning research, vol. 3, no. Mar, pp. 1157–1182, 2003.

[113] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[114] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The
journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[115] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial
optimization with reinforcement learning,” arXiv preprint arXiv:1611.09940,
2016.

[116] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE
Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, 1997.

[117] A. Borovykh, S. Bohte, and C. W. Oosterlee, “Conditional time series fore-
casting with convolutional neural networks,” arXiv preprint arXiv:1703.04691,
2017.

[118] X. Ma and E. Hovy, “End-to-end sequence labeling via bi-directional lstm-cnns-
crf,” arXiv preprint arXiv:1603.01354, 2016.

[119] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proc.
of the IEEE conf. on computer vision and pattern recognition, pp. 1–9, 2015.

[120] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Represent-
ing model uncertainty in deep learning,” in Proc. of the 33rd Int. Conf. Machine
Learning, vol. 48 of ICML’16, pp. 1050–1059, JMLR.org, 2016.

[121] W. Chen, S. Park, M. Tanneau, and P. Van Hentenryck, “Learning optimization
proxies for large-scale security-constrained economic dispatch,” Electric Power
Systems Research, vol. 213, p. 108566, 2022.

144

[122] S. Park and P. Van Hentenryck, “Self-supervised primal-dual learning for con-
strained optimization,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 37, pp. 4052–4060, 2023.

[123] P. L. Donti, D. Rolnick, and J. Z. Kolter, “Dc3: A learning method for opti-
mization with hard constraints,” arXiv preprint arXiv:2104.12225, 2021.

[124] R. Nellikkath and S. Chatzivasileiadis, “Physics-informed neural networks for
ac optimal power flow,” Electric Power Systems Research, vol. 212, p. 108412,
2022.

[125] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a layer in
neural networks,” in International Conference on Machine Learning, pp. 136–
145, PMLR, 2017.

[126] R. Nellikkath and S. Chatzivasileiadis, “Physics-informed neural networks for
minimising worst-case violations in dc optimal power flow,” in 2021 IEEE Inter-
national Conference on Communications, Control, and Computing Technologies
for Smart Grids (SmartGridComm), pp. 419–424, IEEE, 2021.

[127] B. Wilder, B. Dilkina, and M. Tambe, “Melding the data-decisions pipeline:
Decision-focused learning for combinatorial optimization,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, pp. 1658–1665, 2019.

[128] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Got-
way, and J. Liang, “Convolutional neural networks for medical image analysis:
Full training or fine tuning?,” IEEE transactions on medical imaging, vol. 35,
no. 5, pp. 1299–1312, 2016.

[129] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[130] B. Geißler, A. Morsi, L. Schewe, and M. Schmidt, “Solving highly detailed gas
transport minlps: block separability and penalty alternating direction meth-
ods,” INFORMS Journal on Computing, vol. 30, no. 2, pp. 309–323, 2018.

[131] F. Cengil, H. Nagarajan, R. Bent, S. Eksioglu, and B. Eksioglu, “Learning to
accelerate globally optimal solutions to the ac optimal power flow problem,”
Electric Power Systems Research, vol. 212, p. 108275, 2022.

[132] J. Grübel, T. Kleinert, V. Krebs, G. Orlinskaya, L. Schewe, M. Schmidt, and
J. Thürauf, “On electricity market equilibria with storage: Modeling, unique-
ness, and a distributed admm,” Computers & Operations Research, vol. 114,
p. 104783, 2020.

145

Appendix A

Background on the selected deep

learning architectures

This section provided technical details of the artificial neural networks used in this
work. The content is designed for the reader with basic knowledge of deep learning.
More details can be found in [1].

A.1 Long-Short Term Memory (LSTM)

As mentioned above, LSTM networks are an improved version of the classical recur-
rent neural network designed to capture not only short-time but also long-time rela-
tions in data. In LSTM architecture, the classical hidden layers of an ordinary neural
network are replaced by a more sophisticated cell, which is shown in Figure A.11.

This cell has three inputs: the current input vector x(t), the previous state of the
short-term memory c(t− 1), and the output of the previous cell h(t− 1). These three
values are passed through the cell, producing the new cell state c(t) and hidden state
h(t). The system of gating controlling the flow of information is described as follows.

Input Gate. The gate regulates the flow of new information into the cell. It decides
what information from the current input and the previous hidden state should

1From https://databasecamp.de/en/ml/lstms

147

https://databasecamp.de/en/ml/lstms

Figure A.1: An LSTM cell.

be stored in the memory cell. This is implemented by

i(t) = sigmoid(U ix(t) +W ih(t− 1) + bi),

where bi, U i, and W i are biases, input weights, and recurrent weights defining
the set of learnable parameters for the input gate.

Forget gate. It determines what information in the memory cell should be discarded
or forgotten. It considers the current input and the previous hidden state to
calculate a forgetting factor. This is implemented through the following function

f(t) = sigmoid(bf + U fx(t) +W fh(t− 1)),

where bf , U f , and W f are biases, input weights, and recurrent weights define
the set of learnable parameters for the forget gate. In the next step, a potential
updated vector for the cell state is computed considering the current input and
the previous hidden state by

˜c(t) = tanh(bc + U cx(t) +W ch(h− 1)).

Finally, the cell state is updated by the following equation

c(t) = f(t)⊙ c(t− 1) + i(t)⊙ ˜c(t),

where ⊙ denotes the element-wise product. It is c(t) that enables the effec-
tive learning of long-term dependencies. This arises from the linear interactions
within the remaining LSTM cell, which allow it to preserve and store informa-
tion without significant alteration over extended sequences of time steps.

Output gate It decides what information to expose as the output by using the

148

following equation:

o(t) = sigmoid(bo + U ox(t) +W oh(t− 1)),

where bo, U o, and W o are the learnable parameters for the output gate. The
hidden state is then computed as

h(t) = tanh(c(t))⊙ o(t).

The architecture of the LSTM network used in this thesis is bidirectional. This
means that the output of the network at time t depends on the whole input sequence
x. In this context, a prediction o(t) not only needs information from the past, that is
from t = 1 to t−1, but it also looks at the future. To implement this kind of network,
two kinds of LSTM networks are combined in a way that one moves forward in time
and the other moves backward.

A.2 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are deep learning models specifically designed
for processing and analyzing visual data. The main difference with traditional neural
networks is that they use the mathematical operation called convolution instead of
general matrix multiplication. So as shown in Figure A.2 the convolution involves
two terms, an input (e.g., an image) and a so-called kernel (i.e., the learnable weight
matrix). The output of the convolution operation is sometimes referred to as the
feature map.

CNNs are characterized by sparse interactions, also known as sparse connectivity.
This sparsity is achieved by using smaller kernels than the input data. This results in
a more selective and localized pattern detection mechanism. For instance, in the case
of images with a thousand pixels, the CNN can detect small, meaningful features and
allows only to retain a small ’portion’ of the images.

149

Figure A.2: An example of 2D CNN [1]

A layer of a CNN usually consists of three operations. The first performs several
convolutions in parallel with different kernel sizes. Depending on the size and the
number of kernels, different aspects and properties of input data can be extracted, and
different feature maps can be created. The outputs are then sent to a set of nonlinear
activation functions. Indeed, since convolution is a linear operation (and images are
far from linear), non-linearity layers are often placed directly after the convolutional
layer to introduce non-linearity to the activation map. The final operation is the
application of a so-called pooling function (such as max pooling), which provides a
summary statistic of the nearby outputs.

When the kernel window slides over the input data, the number of steps to perform
is known as stride. When we use kernels smaller than the input, we can observe that
the size of the corresponding output reduces. To maintain the dimension of output
as in input, we use a technique called padding. Padding is a process of adding zeros
to the input matrix symmetrically.

150

	Résumé
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Notation
	Introduction
	Mitigation of energy consumption in water supply networks
	The pump scheduling problem
	Mathematical challenges and opportunities
	Contributions and organization of the thesis

	I The Pump Scheduling Problem
	Mathematical Formulation
	Elements of a water network
	Nodes
	Arcs
	Power cost

	Nonconvex MINLP formulation
	A bilevel formulation
	The equilibrium problem
	Dynamic network and Extended Analysis
	Graph partition
	Bilevel formulation of the pump scheduling

	State of the Art

	Benchmark and Dataset Generation
	Existing networks and instances
	Benchmark for optimization
	Historical dataset for supervised learning

	II Preprocessing for Global Optimization
	The Branch-and-Check Algorithm
	Branch-and-Check for Pump Scheduling
	Discussion and enhancements
	MILP Relaxations of the Head-Flow Relation
	Study of the resistance function
	Convex outer-approximation
	Piecewise linear relaxation
	Discretization and disjunctive formulation

	Strengthening the Relaxation

	Bound Tightening
	Optimization-based Bound Tightening
	Principle
	Steady-state relaxation with floating demand
	Steady-state relaxation with fixed demand profiles
	Multi-period relaxation for the state variables
	Probing on related pairs network elements
	Extended probing and disjunctive programming

	Valid Inequalities Generation
	Minimum cardinality cuts
	Cutset-based inequalities
	Coefficient reduction
	Mixed Integer Rounding
	Flow cover inequalities
	Difficulties of minimum cardinality cut generation

	Surrogate model

	Numerical Results
	Computational setup
	Parameters to control bound tightening and cut generation
	Effect of preprocessing on selected networks
	Simple network
	Poormond
	van Zyl

	III Combining Machine Learning and Mathematical Decomposition
	Motivation and Literature Review
	Decomposition for pump scheduling
	Opportunity for machine learning
	Literature review on hybrid methods

	An Alternating Direction Method for Pump Scheduling
	Principle of ADM and state-of-the-art
	Adaptation to the pump scheduling problem

	A Supervised Deep Learning Model
	A deep learning approach
	Learning the near-optimal state profiles
	Generating multiple starting points for the decomposition algorithm
	Scaling to extrapolate the missing dataset

	A Physics Informed Deep Learning Model
	A supervised penalty approach
	Training and architecture
	A surrogate model to represent physical constraints
	Data augmentation to train surrogate model

	Numerical Experiments
	Numerical results of the hybrid approach: supervised deep-learning and decomposition algorithm
	Experimental setup
	Performance of the supervised learning
	Performance of the hybrid algorithm
	Performance of the scaling approach

	Numerical results of the hybrid approach: physics informed deep-learning and decomposition algorithm
	Experimental setup
	Performance of the supervised penalty approach
	Performance of the hybrid penalty approach

	Conclusions and Prospective for Future Work
	Bibliography
	Background on the selected deep learning architectures
	Long-Short Term Memory (LSTM)
	Convolutional Neural Network (CNN)

