
HAL Id: tel-04506903
https://hal.science/tel-04506903v2

Submitted on 29 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mathematical 3D modelling of connective tissues
architecture emergence

Pauline Chassonnery

To cite this version:
Pauline Chassonnery. Mathematical 3D modelling of connective tissues architecture emergence.
Human health and pathology. Université Paul Sabatier - Toulouse III, 2023. English. �NNT :
2023TOU30354�. �tel-04506903v2�

https://hal.science/tel-04506903v2
https://hal.archives-ouvertes.fr


THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 3 - Paul Sabatier

 

Présentée et soutenue par

Pauline CHASSONNERY

Le 19 décembre 2023

Modélisation mathématique en 3D de l'émergence de
l'architecture des tissus conjonctifs

Ecole doctorale : BSB - Biologie, Santé, Biotechnologies

Spécialité : BIO-INFORMATIQUE, GENOMIQUE ET BIOLOGIE DES SYSTEMES 

Unité de recherche :

RESTORE 

Thèse dirigée par

Louis CASTEILLA et Diane PEURICHARD

Jury

Mme Raluca EFTIMIE, Rapporteure

M. Sébastien BENZEKRY, Rapporteur

M. Giacomo DIMARCO, Rapporteur

M. Louis CASTEILLA, Directeur de thèse

Mme Diane PEURICHARD, Co-directrice de thèse

Mme Noélie DAVEZAC, Présidente





THESIS
In order to become

DOCTOR FROM THE UNIVERSITY OF TOULOUSE

Awarded by the Université Toulouse 3 - Paul Sabatier

Presented and defended by

Pauline CHASSONNERY

On December 19th, 2023

Mathematical 3D modelling of connective tissues
architecture emergence

Doctoral school : BSB - Biologie, Santé, Biotechnologies

Academic field : BIO-INFORMATIQUE, GÉNOMIQUE ET BIOLOGIE DES
SYSTÈMES

Research unit :
RESTORE

Thesis supervised by
Louis CASTEILLA and Diane PEURICHARD

Committee

Mme Raluca EFTIMIE, Referee
M. Sébastien BENZEKRY, Referee
M. Giacomo DIMARCO, Referee
M. Louis CASTEILLA, Supervisor

Mme Diane PEURICHARD, Co-supervisor
Mme Noélie DAVEZAC, President



COLOPHON

Doctoral dissertation entitled “Mathematical 3D modelling of connective tissues architecture
emergence”, written by Pauline Chassonnery, completed on December 19th, 2023, typeset with the

document preparation system LATEX.



This thesis has been prepared at

Laboratoire RESTORE

Université Toulouse III – Paul Sabatier
4bis Avenue Hubert Curien
Bâtiment INCERE
31100 Toulouse
France

T +33 5 34 60 95 01
Website https://restore-lab.fr/

Laboratoire Jacques-Louis Lions

Sorbonne Université
Campus Pierre et Marie Curie
4 place Jussieu
75005 Paris
France

T +33 1 44 27 42 98
Website https://ljll.math.upmc.fr/

It was partially funded by

• the Institut national de recherche en informatique et en automatique

• the Cancer, Ageing & Rejuvenation graduate school

• the Alliance Sorbonne Université through the Emergence project MATHREGEN under grant
number S29-05Z101

• the Agence Nationale de la Recherche under grant number ANR-22-CE45-0024-01 and ANR-
18-EURE-0003 in the framework of the Programme des Investissements d’Avenir.

https://restore-lab.fr/
https://ljll.math.upmc.fr/




Parfois, les scientifiques changent d’avis. De nouveaux
développements suscitent de nouvelles réflexions. Si cela
vous ennuie, pensez aux dommages causés au monde par
ceux chez qui de nouveaux développements ne suscitent

nulle réflexion d’aucune sorte.

Terry Pratchett, Ian Stewart & Jack Cohen
La Science du Disque-monde
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Résumé

Dans cette thèse, nous nous interrogeons sur la possibilité que des interactions mécaniques locales
simples entre un nombre limité de composants puissent régir l’émergence de l’architecture 3D des tissus
biologiques. Pour explorer cette hypothèse, nous développons deux modèles mathématiques. Le premier,
ECMmorpho-3D, vise à reproduire un tissu conjonctif non-spécialisé réduit à la matrice extra-cellulaire,
c’est à dire à un réseau 3D de fibres interconnectées dynamiquement. Le second, ATmorpho-3D, est ob-
tenu par ajout de cellules sphériques qui apparaissent et croissent spontanément dans ce réseau de fibres
afin de modéliser la morphogenèse du tissu adipeux, un tissu conjonctif spécialisé ayant une grande
importance sur le plan biomédical.

Pour analyser les données produites par ces deux modèles, nous construisons un outil générique
permettant de visualiser en 3D des systèmes composés d’un mélange d’éléments sphériques (cellules) et
de bâtonnets (fibres) et de détecter automatiquement dans de tels systèmes des amas d’objets sphériques
séparés par des bâtonnets. Cet outil peut également être utilisé pour traiter des images biologiques issues
de microscopie en 3D, permettant ainsi une comparaison directe entre les structures in vivo et in silico.

L’étude des structures produites par le modèle ECMmorpho-3D via des simulations numériques
montre que ce modèle peut générer spontanément différents types d’architectures, que nous identifions et
caractérisons grâce à notre outil d’analyse. Une analyse paramétrique approfondie nous permet d’identi-
fier une variable émergente, le nombre de liens par fibre, qui explique et, dans une certaine mesure, prédit
le devenir du système modélisé. Une analyse temporelle révèle que l’échelle de temps caractéristique
de ce processus d’auto-organisation est fonction de la vitesse de remodelage du réseau et que tous les
systèmes suivent la même trajectoire évolutive.

Enfin, nous utilisons le modèle ATmorpho-3D pour explorer l’influence de cellules sphériques sur
l’organisation d’un réseau de fibres dynamique, en prenant comme référence le modèle ECMmorpho-3D.
Nous montrons que le nombre de cellules influence l’alignement local des fibres mais pas l’organisation
globale du réseau. Par ailleurs, les cellules s’organisent spontanément en amas entourés de feuillets de
fibres, dont les caractéristiques morphologiques sont très proches de celles des structures cellulaires in

vivo. De plus, la distribution des différentes morphologies d’amas cellulaires est similaire dans les sys-
tèmes in silico et in vivo. Ceci suggère que le modèle est capable de produire des morphologies réa-
listes non seulement à l’échelle d’un amas mais aussi à l’échelle du système entier, en reproduisant les
variabilités structurelles observées dans les échantillons biologiques. Une analyse paramétrique révèle
que la proportion de chaque morphologie dans un système in silico est gouvernée principalement par
les capacités de remodelage du réseau de fibres, pointant le rôle essentiel des propriétés de la matrice
extra-cellulaire dans l’architecture et le fonctionnement du tissu adipeux (ce qui concorde avec plusieurs
constatations biologiques ainsi que des résultats antérieurs en 2D).

Le fait que ces modèles mathématiques très simples puissent générer des structures réalistes corro-
bore notre hypothèse selon laquelle l’architecture des tissus biologiques pourrait émerger spontanément
à partir d’interactions mécaniques locales entre les composants du tissu, indépendamment des phéno-
mènes biologiques complexes se déroulant dans ce tissu. Ce travail ouvre de nombreuses perspectives
quant à notre compréhension des principes fondamentaux gouvernant la manière dont l’architecture d’un
tissu émerge durant l’organogenèse, est maintenue au cours de la vie et peut être affectée par diverses
pathologies. Les applications potentielles vont de l’ingénierie tissulaire à la possibilité de promouvoir la
régénération chez les mammifères adultes.

Mots clefs : Biologie mathématique ; Modèles individu-centrés ; Visualisation et segmentation en 3D ;
Tissus conjonctifs ; Réseaux de fibres dynamiques en 3D ; Tissus adipeux.
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Abstract

In this thesis, we investigate whether simple local mechanical interactions between a reduced set of
components could govern the emergence of the 3D architecture of biological tissues. To explore this
hypothesis, we develop two mathematical models. The first one, ECMmorpho-3D, aims at reproducing
a non-specialised connective tissue and is reduced to the extra-cellular matrix component, that is a 3D
dynamically connected fibre network. The second, ATmorpho-3D, is built by adding to this network
spherical cells which spontaneously appear and grow in order to mimic the morphogenesis of adipose
tissue, a specialised connective tissue with major biomedical importance.

We then construct a unified analysis framework to visualise, segment and quantitatively characterise
the fibrous and cellular structures produced by our two models. It constitutes a generic tool for the 3D
visualisation of systems composed of a mixture of spherical (cells) and rod-like (fibres) elements and for
the automatic detection in such systems of clusters of spherical objects separated by rod-like elements.
This tool is also applicable to biological 3D microscopy images, enabling a comparison between in vivo

and in silico structures.
We study the structures produced by the model ECMmorpho-3D by performing numerical simula-

tions. We show that this model is able to spontaneously generate different types of architectures, which
we identify and characterise using our analysis framework. An in-depth parametric analysis leads us to
identify an intermediate emerging variable, the number of crosslinks per fibre, which explains and partly
predicts the fate of the modelled system. A temporal analysis reveals that the characteristic time-scale of
the organisation process is a function of the network remodelling speed, and that all systems follow the
same, unique evolutionary pathway.

Finally, we use the model ATmorpho-3D to explore the influence of round cells over the organisation
of a fibre network, taking as reference the model ECMmorpho-3D. We show that the number of cells
can influence the local alignment of the fibres but not the global organisation of the network. On the
other hand, the cells inside the network spontaneously organise into clusters with realistic morphological
features very close to those of in vivo structures, surrounded by sheet-like fibre bundles. Moreover, the
distribution of the different morphological types of clusters is similar in in silico and in vivo systems,
suggesting that the model is able to produce realistic morphologies not only on the scale of one cluster
but also on the scale of the whole system, reproducing the structural variability observed in biological
samples. A parametric analysis reveals that the proportion in which each morphology is present in an in

silico system is governed mainly by the remodelling characteristic of the fibres, pointing to the essential
role of the extra-cellular matrix properties in adipose tissue architecture and function (in agreement with
several biological results and previous 2D findings).

The fact that these very simple mathematical models can produce realistic structures supports our
hypothesis that biological tissues architecture could emerge spontaneously from local mechanical inter-
actions between the tissue components, independently of the complex biological phenomena taking place
around them. This opens many perspectives regarding our understanding of the fundamental principles
governing how biological tissue architecture emerges during organogenesis, is maintained throughout life
and can be affected by various pathological conditions. Potential applications range from tissue engin-
eering to therapeutic treatment inducing regeneration in adult mammals.

Keywords : Mathematical biology ; Individual-based models ; 3D visualisation and segmentation ;
Connective tissues ; 3D dynamical fibre networks ; Adipose tissues.
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1. Motivation : Why model the emergence of 3D architecture in bio-

logical tissues ?

Mathematical biology can be defined as the use of tools from applied mathematics to study biological
systems. Over the last decades, this field has seen rapid growth due to the conjunction of an increasing
volume and complexity of biological data, an increasing availability of computing capability and a lot of
efforts to popularise mathematics. Mathematical biology has now emerged as one of the prominent areas
of interdisciplinary research [1, 2].

This field is usually divided in two main branches : data processing and modelling. The first consists
in applying sophisticated numerical tools to conduct in-depth analysis of large and/or complex datasets
such as those derived from genetic sequencing (e.g. single-cell analysis) or three-dimensional tissue
imaging (e.g. light-sheet imaging) and render them in an understandable form. The second involves
constructing mathematical representations of biological systems and performing computer simulations
to investigate the principles governing their structure, development and behaviour. These two branches
are highly intertwined, data processing being the two-way link between modelling and reality : complex
processing is usually required to compare simulation results to biological data and demonstrate the rel-
evance of a model, while a detailed analysis of biological data provides insights on a system that can in
turn be used to improve modelling (see Figure 1.1).

Biology

Mathematics

Biological
experiments

In vivo and
in vitro data

Interpretations
and insight

Mathematical
model

In silico

data

Interpretations
and insight

A
nalysis
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Figure 1.1: The cycle of mathematical biology.

Mathematical models offer a number of advantages over biological experiments :

• One can control all their input parameters freely.

• They allow to isolate a specific process or system from its intricate overall biological setting, which
simplifies its study and makes it easier to understand.
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• Because they are built in a general framework, they are often not specific to the system or process
for which they were initially designed but can be applied to many other cases (e.g. molecular
diffusion and population migration can be described by the same equations).

• By merely modifying a few parameters, they can be used to test several hypothesis and explore
various scenarios, making in silico experiments cheaper and quicker to conduct than in vivo or in

vitro ones.

• In silico experiments are also less risky (no use of toxic reagent, no risk of accidental release
of bacteria, etc.) and raise fewer ethical issues (no animal testing). Although they do not alto-
gether replace biological experiments, the information they provide allow experimenters to focus
on promising avenues.

However, one of the most interesting properties of mathematical models is their ability to explore
emerging phenomena. “Emergence” is defined as the fact that simple local rules generate complex overall
structures in an unpredictable way [3] : that is, there is a causal link between the rules and the structures,
but we are not able to determine which structure will emerge from a given set of rules apart by actually
enacting those rules and looking at what happens. Writing a mathematical model and computing its
solution(s) is a way of doing that. Thereafter, depending on the nature of the gap between the local rules
and the observed structures, it may be possible to construct a logical narrative linking the two.

Emerging phenomena appear in many fields, but especially in biology [4,5]. In a sense, it can be said
that all biological systems exhibit emerging behaviours. For example, it seems that the architecture of
a biological tissue is mainly due to local mechanical interactions, but how these interactions result in a
given architecture is not well understood. The question of the architecture of a tissue is not a trivial matter
since it is now well known that, in biology, architecture dictates function : every biological architecture
fulfils one or more functions, and every biological function is performed by a specific architecture. This
architecture/function relationship is a fundamental concept in biology [6, 7]. Of course, it also applies to
many systems outside the field of biology, but not as systematically.

Furthermore, tissue architecture must be considered in all its 3D complexity. Until recently, the only
available descriptions of biological tissue were essentially 2D, because tissue-scale imaging techniques
only produced 2D images. However, improvements in 3D imaging techniques have shown that, in many
cases, the 3D architecture was significantly more complex than biologists had thought based on 2D data.
This encourages the development of 3D mathematical models and 3D data processing techniques to study
these tissues.

In this thesis, we will investigate the hypothesis that the 3D architecture of biological tissues, and
more specifically connective tissues, could be driven by simple mechanical interactions between the
Extra-Cellular Matrix (ECM) and the surrounding cells.

2. Existing mathematical models for biological tissues

Before designing our own 3D model for the emergence of biological tissue architecture, we will give
a quick overview of the two main classes of mathematical models that can be found in the literature
for modelling biological tissue and discuss their pros and cons depending on the modelled system and
the purpose of the model. A comprehensive review of the different types of mathematical models and
methods used in biology can be found in [1].
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2.1. Microscopic scale : Individual-Based Models

The principle behind Individual-Based Models (IBMs) is to represent a system by describing each of
its components, called individuals or agents (hence the alternative name of Agent-Based Models), and
the rules governing their actions and interactions. This is why IBMs are said to be microscopic models,
even though the actual size of the components may be very large depending on the system modelled.
Examples cover various scientific fields and range from molecular interactions inside a cell to flocking
birds to clusters of stellar bodies :

• In atomic or molecular models, the agents would be protons, neutrons and electrons.

• In cellular models, the agents would be organelles and molecules (RNA, proteins, chemical signal,
etc).

• In tissue or organ models, the agents would be various types of cells and molecules.

• In population models, the agents would be living beings.

• In astronomical models, the agents would be stars, planets, black-holes, etc.

The description of an agent consists in a list of features such as its size, mass, shape, position, speed,
orientation, angular momentum, age, sex, infectious status, opinion, etc. As implied above, the same
model can contain multiple types of agents, each type having its own list of features.

The second key element of an IBM is the set of rules describing how all these features vary over time.
The choice of these rules is based on observations of real systems but also on the context and hypotheses
underlying the model : a phenomenon that is prominent in one context may be negligible in another. All
these rules are usually formalised as functions whose variables can be various features of the different
agents, as well as external influences such as random processes, and can be continuous or discrete in time.

IBMs are the most widely used models in mathematical biology [8,9]. They are very simple to design
and their description is usually quite intuitive. They are also very flexible and can take into account
multiple aspects of a problem on multiple scales, discrete local properties and local random processes
that do not average out over time or on a global scale.

Because of their design, IBMs are especially adapted to study the emergence of complex collective
properties and behaviours from simple individual ones, including biological tissues self-organisation.
This topic has given rise to numerous models of interacting cells and/or fibres. Some focus on cellular
interactions in an environment where the ECM is either absent or acts as an external force, for instance
when studying tumour growth [10]. Others focus on the properties of fibre networks where beams with
various degrees of flexibility are connected by crosslinks [11–16]. Lastly, interactions between cells
and fibres can involve one way or reciprocal mechanical interactions [17], contact guidance (the fibres
providing directional information for cell motion) [18] or crosslink remodelling through cell action [19,
20].

2.2. Macroscopic scale : Continuous Models

Continuous models, on the other hand, simplify systems made up of a large number of components by
only taking into account their average features and interactions, and do not explicitly model the individual
components. They rely on the theory of the propagation of chaos which states that, as the number of
components in a system tends to infinity, the behaviour of each component will become independent of
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the rest of the system : this makes looking at each component individually meaningless to understand
the global features. For example, pressure and temperature are macroscopic features emerging from the
random motion of many particles, and the exact trajectory of one particle is totally irrelevant.

This is why continuous models are said to be macroscopic : they only look at the big (macroscopic)
picture and neglect the granularity of the system. The prerequisite for this class of models is that the
modelled system must be composed of a very high number of components and show small changes on
the length scale of a single component.

Contrarily to IBMs where the features are spatially discrete (with one value per component), in con-
tinuous models the features are continuous in space, meaning that the variables representing them are
scalar fields or vector fields instead of scalars or vectors. They can be roughly separated into two types :
those that express the average of individual components features (e.g. average size, average speed or
average age) and those that emerge from the components collective actions (e.g. temperature, pressure or
viscosity). As for IBMs, the rules governing the features temporal evolution are formalised as functions
of these features, and their choice depends both on empirical observations and on the context and hypo-
theses of the model. They are often derived from conservation relations such as the law of conservation
of mass or the law of conservation of energy.

[21] gives numerous examples of continuous models from different biological fields : population
models for single or multiple interacting species, reaction-diffusion models for chemotaxis, propagation
models for infectious diseases or parasite invasions, etc.

In the more specific case of biological tissues, continuous models can be used to describe the beha-
viour of large cohorts of cells [22] and of large swaths of fibrous materials. For example, the ECM can
be represented as a poroelastic environment [23], a two-phase viscous fluid or an active polar gel [24],
while a strained muscle or sinew can be modelled as an assembly of undulating fibres hooked between
two edges and subjected to tensile load [25].

2.3. Link between the two scales

For the most part, the distinction between an IBM and a continuous model is a matter of resolution : do
the user want or need a resolution high enough to distinguish the individual components of a system, and
up to which limit ? After all, everything is made of atoms and elementary particles, so the most accurate
way to model any system would be to describe it down to the last electron... except that in most cases
this is neither feasible nor relevant.

For an IBM, the computational cost of a numerical simulation scales with the number of agents
modelled, which itself often scales with the size of the system through a quadratic (in 2D) or cubic (in
3D) law. On the other hand, the computational cost of a continuous model is independent of the size of
the simulated system, enabling the study of large spatial and/or temporal scales. Moreover, continuous
models are easier to analyse theoretically, which allows to predict some of their properties without going
through numerical simulations. Their main downside is of course their lesser resolution, that is the loss
of information at the microscopic level, which can be problematic.

The choice of a class of model is thus mostly a matter of evaluating the resolution needed for each
part of the system studied and balancing them with the technical constraints induced by the global scale
of the study. This can lead to mixed models where some components are modelled by individual agents
and other by continuous fields. For example, [26] presents a model for the organisation of ECM fibres
into aligned structures in which the ECM is represented as a (continuous) vector field whose direction is
locally modified by the motion of (discrete) fibroblasts.

As stated above, continuous models are mainly used for large-scale systems (compared to the size
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of a typical component) with little need for a microscopic resolution, whereas IBMs are used when
microscopic accuracy is necessary for the purpose of the study, even if it means reducing the scale of
the system studied. Difficulties arise when one need to study a large-scale system up to a microscopic
resolution. For instance, studying the architecture of a biological tissue requires a resolution at the cellular
level on the scale of the whole tissue. This technical constraint is all the more acute given that we want
to study the 3D architecture.

This is one of the reasons why most of the computational models developed thus far for the study of
biological tissue architecture are two-dimensional [11,12,14–17,27–31]. Few studies have been conduc-
ted on 3D models [13, 19, 32–36], although these are expected to yield different, more realistic results
than 2D ones since they better mimic biological architectures themselves immersed in 3D environments.
Another reason is the lack of high quality data in 3D : this impeded the development of 3D mathem-
atical models because their results could not have been validated against biological data. However, the
recent emergence of high resolution 3D imaging technologies and their wider availability has removed
this obstacle.

The usual practice for dealing with such a dilemma can be summarised as follows : try to design
an IBM with a manageable cost, and if not possible design a continuous model as accurate as possible.
The first step includes optimising the algorithmic implementation of the model, but also reducing its
intrinsic complexity by neglecting or simplifying some phenomena in a first approach, even if it makes
it less realistic. The simplified model is then used as a stepping stone : if it produces completely false
results, then perhaps its founding hypotheses are wrong and should be abandoned altogether or one of
the neglected phenomena was predominant. If it produces results accurate enough for our needs, then the
phenomena neglected were not strictly necessary to answer the original question and hence should not be
included according to Occam’s razor. If it produces relatively good, but not accurate enough results, then
some of the neglected phenomena may need to be integrated in the model, and the additional numerical
cost is justified by the expectancy of better results.

An example of this strategy is to precede a 3D IBM by a 2D version : this reduced model, although
less realistic, would also be much less costly and could serve as a concept proof, guiding the development
of its 3D successor. Of course, this is not systematic : sometimes the adjunction of the third dimension
does not increase the computational cost so much (e.g. with sparse systems such as in astronomy) and
sometimes, or rather often, the adjunction of the third dimension greatly changes the fundamental prop-
erties of a system (e.g. a random walk on a 2D grid will almost surely pass again through its starting
point, but a random walk on a 3D grid only have a 34% chance to do so). The success (or failure) of a
2D model is thus not always a reliable indicator for 3D.

Concerning biological tissue architecture, the computational gains of using a 2D (instead of 3D)
model is very high, but the relevance of the 2D approach is questionable, e.g. because it is unlikely
that linear elements such as the ECM fibres have similar behaviour in 2D and 3D environments. On the
other hand, until recently there was a lack of 3D biological data to which the results of a 3D model may
have been confronted for validation and calibration. Hence, for tissues such as the adipose tissue, whose
3D architecture was believed to be qualitatively equivalent to its 2D representation, the 2D approach is
natural. And indeed, the results obtained by Peurichard and al. with their 2D model were strikingly
impressive [17, 37] (see section 4.3 for a summary). However, the 3D architecture of adipose tissue have
recently been shown to be much more complex than what was suggested by the observation of 2D data.
The combination of these two facts justifies the investment of human and computational resources in
the development of a 3D model for adipose tissue architecture derived from [17], and thus leads to the
present thesis.
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The second step may be enacted even if the numerical cost of the IBM is manageable. It consists
in deriving a continuous model from an IBM through a change of scale in space and time [38, 39] :
this process is called a micro-macro (or mean-field) derivation. The results of the ensuing continuous
model can be compared to that of its parent IBM to see if the emerging properties and structures were
preserved through the derivation. The continuous model will then either replace the IBM (if the cost
of the IBM is intractable and/or if the continuous model is accurate enough to answer the initial issue)
or be used alongside it to quickly perform large scale simulations that will later be refined by slower,
more detailed small-scale simulations. Examples of micro-macro derivations in the context of biological
tissues modelling can be found in [27–31, 40–42].

Rigorously establishing the link between the microscopic and macroscopic scales is the main aim
of the kinetic theory [1, 21, 38, 39]. However, when modelling complex biological systems, it is not
uncommon for classical techniques to fail due to the nature of the agent interactions, namely : the lack of
conservation relations, the existence of multiple equilibria and symmetry-breaking phase transitions and
the appearance of correlations preventing the propagation of chaos.

3. Data processing in 3D

As mentioned before, the other main branch of mathematical biology besides modelling is data pro-
cessing. In the last decades, both the volume and complexity of biological data have increased sig-
nificantly. As a result, data processing is more and more often becoming a bottleneck for biological
research [43].

In this section, we will discuss two aspects of data processing that are relevant to our work and are
particularly complex in a 3D setting : data rendering (or visualisation) and structures segmentation. The
development of an appropriate 3D data processing framework represented an important part of this thesis
and will be detailed in chapter 3.

3.1. Data visualisation

First, a little terminology. We say that data is rendered in 3D, or that a visualisation is three-dimensional,
when the resulting visual is itself three-dimensional. However, these three dimensions are not in any
way compelled to represent the three spatial dimensions. In the same way that a 2D visual can either be
a photography or a graphic showing the dependance between two variables (e.g. medication dose and
efficiency), a 3D visual can either be a spatial representation of the (3D) system under study or a graphic
representing the dependance between multiple variables. For the sake of clarity, we will speak of images
(whether they are 2D or 3D) in the first case and of graphics in the second.

Data visualisation is sometimes treated as an optional step mostly aimed at aesthetics, but it is in
fact a crucial tool for transforming data into knowledge [44, 45]. It has three main uses : (i) checking
for errors or misconceptions when developing and implementing a new analysis protocol, (ii) ascertain
that an analysis protocol is appropriate for the data under study, and (iii) conveying knowledge to fellow
researchers and the general public.

While points (i) and (iii) are fairly well known, point (ii) tends to be overlooked. Let us give two
practical examples :

• Concerning numerical quantification, the relevance of a quantifier such as the mean depends on
how the data are distributed. If the visual shows that the data points form a regular point cloud
around their mean value, then the mean (together with the standard deviation) is indeed a good
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Figure 1.2: Why visualisation is necessary to interpret data. Example of two point clouds with different
distributions but similar mean and standard deviation (STD). The data on the left was sampled from a
gaussian distribution centred on (0, 0) with scale 1, while the data on the right was sampled from two
gaussian distributions of respective centres (−1,−1) and (1, 1), and identical scale 0.3.

quantifier. But if the visual shows the presence of two distinct clusters of points, then the mean is
probably not appropriate and can even be misleading. An illustration is shown in Figure 1.2.

• Concerning objects segmentation, the segmentation protocols usually involve a number of paramet-
ers for which the appropriate values may not be obvious or deducible from empirical knowledge.
Hence, the only way to gauge the influence of these parameters and to determine their appropriate
values is to visualise the result of the segmentation to check whether or not it corresponds to the
expected result. This question is addressed in more details in the next section, where it is illustrated
with Figure 1.5.

It is important to understand that visualisation is a double-edged sword : a well done visual can be a
very powerful tool for interpreting data, but a badly done one can lead to biased interpretations. This is
even more true in the case of 3D visuals, because most visualisation devices (piece of paper, computer
screen) are themselves 2D : a good 3D visual is thus very difficult to produce. The recent development
and increased availability of technologies such as virtual reality [46,47] or 3D printing [48,49] are making
this less of an obstacle, but do not remove it entirely.

For this reason, mathematicians tend to discourage the use of 3D visuals when they are not strictly
necessary. However, there are indeed numerous cases where 3D rendering is necessary, particularly
when the object being studied is itself 3D : if a system unfolds in a 3D space, it is unlikely that 2D
visuals will be enough to get a good idea of its layout (especially for non-specialists). This is the case for
most biological systems, which are fundamentally three-dimensional and can only be understood as such.
Figure 1.3 gives an example of both a 3D graphic and a 3D image, together with their 2D counterparts.
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Figure 1.3: Why 3D visualisation is sometimes necessary : 3D structures can be difficult to grasp from
2D visuals. A : Images of a large portion of a mouse subcutaneous adipose tissue depot, acquired at
the Restore Institute using light-sheet imaging on a lectin-stained tissue. The 2D slices (top row) are
combined using the Paraview software to produce the 3D view (bottom row). B : Example of a 3D
parametric curve (on the left) and of two of its planar projections (on the right).

3.2. Structures segmentation

In its most general meaning, structure segmentation (or data clustering) is the process of partitioning data
into multiple subsets, so that each subset forms a coherent set designated as a structure or object. More
commonly, the term refers to the same process applied to images. The process in itself extracts a lot of
informations from the data and facilitates further analysis (e.g. by comparing the subsets between them),
but also allows to create visuals that are more meaningful and easier to interpret. Structure segmentation
is a wide-spread problem which have given rise to a major branch of data analysis.

It must be noted that segmenting structures, and creating words to designate them, is the very basis of

9



the spontaneous human approach to understanding our environment. It is also the basis of the scientific
approach. Humans continuously and unconsciously perform structure segmentation, e.g. to identify from
their field of vision meaningful structures such as roads, walkways, buildings, pedestrians and so on.
This same process is at work when a doctor identify bones, organs or cancer tumours in CT scans. When
studying tissue architecture, biologists will try to identify (and then proceed to name) basic architectural
units such as planes of fibres or clusters of cells (see sections 4.1 and 4.2 below).

Automatic structure segmentation (performed by a computer rather than a human) covers distinct
issues depending on whether the task could have been carried out manually or not : the gains and obstacles
are different. First of all, it is easier to evaluate the performance of an algorithm if we can compare its
results to what a human would have made. Otherwise, ascertaining the validity of the segmentation
performed by an algorithm can be very difficult.

When automating a process that can be performed by a human, the main gains to be expected are in-
creased speed (and consequently the capacity to treat much larger volume of data) and increased accuracy
or reduced bias (although algorithms can “inherit” the human bias of their developers). Consider the ex-
ample of cancer tumours : there is lot of important informations that a doctor can extract from a CT scan,
such as the tumour size and shape, its proximity with a sensitive organ, its solid or infiltrating status... To
acquire these information, the doctors have to separate the tumour from the rest of the image, something
they do easily thanks to their training and experience. However, doctors usually segment only one (or at
best a few) 2D slices of a 3D scan, because processing every slices is tedious - but it allows to compute
the volume of the tumour, which is a more accurate quantifier of its scale and potential dangerousness
than its average diameter on a few slices. Moreover, different doctors will not segment a tumour in the
exact same way, which makes it difficult to compare data acquired by different individuals in a medical
survey. Automating the segmentation with a dedicated software will thus provide many advantages.

When the segmentation can not be performed by a human, something which often happens with 3D
data, then the gain is obvious : the algorithm will make possible what was not before.

In any cases, a segmentation algorithm may uncover previously unknown structures, opening the way
to new interpretations and hypotheses. Many methods have been developed to solve the problem of data
segmentation. We list below some of the most widely used.

Model-based segmentation assumes that the structures of interest have, or tend to have, a specific shape.
Therefore, one can look for groups of points that fit this shape and evaluate the significance of such fit (e.g.
the probability of it being due to a random distribution) [50]. An example is the RANSAC (RANdom
SAmple Consensus) algorithm [51] which can be summarised as follows :

1. Consider a dataset containing N points and a shape that can be fully defined from n points (with
n≪ N );

2. Randomly select n points in the dataset and draw the corresponding shape;

3. Count how many points of the dataset fit this shape according to a preset tolerance threshold;

4. Repeat steps (2) and (3) a preset number of times, each time retaining the best fit (i.e. the fit
containing the most points);

5. Finally, check if the best fit is valid, e.g. if it contains more points than what could have been
obtained with a random gaussian dataset of N points.

An illustration is displayed in Figure 1.4 : it can be seen that the classic linear regression method
is not appropriate, because the data does not contain a single linear structure but two. The RANSAC
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method will detect the largest of these structures (by number of points) and, if run again on the remaining
unfitted points, will also detect the smallest.

One of the advantages of RANSAC is that it can detect structures among a large number of outliers (it
is thus robust to noise). Another is that the user does not have to predict the number of structures present
in the data : running RANSAC recursively until the structures detected are no longer valid automatically
determines this number. One of its downsides is that it is a single model method (it can search for lines or
circles, but not for both at once), so that if more than one type of shapes (or models) coexist in the data,
RANSAC may fail to detect either of them.

Figure 1.4: Example of model-based segmentation (here line detection) in a dataset using RANSAC.
Left : raw data. Right : data fitted either by a linear regression (in blue) or two successive RANSAC
regressions (respectively in green and red).

Centroid-based or k-means clustering consists in partitioning a dataset into an chosen number of
clusters in a way that minimises the distance between each point and the centre of its assigned cluster [52].
As for connectivity-based clustering, here the notion of distance can involve many parameters other than
spatial distance. This can be seen as choosing the optimal locations for a chosen number of sources (the
centre of the clusters) to supply specific spots (the data points). However, this seemingly simple problem
is extremely hard to solve and algorithms usually resort to heuristic approaches which may converge
towards a local optimum instead of the global solution. For example, the classic k-mean algorithm [53]
can be summarised as follows :

1. Consider a dataset that should be partitioned into k groups;

2. Pick k cluster centres;

3. Assign each data point to the cluster whose centre is closest;

4. Recompute each cluster centre as the mean of all the data point assigned to that cluster;

5. Repeat steps (3) and (4) until the process converges (i.e. no points change cluster anymore).

The main downside of this algorithm is that the quality of the solution reached is highly dependent on
the choice of the number of clusters and of the initial cluster centres. On the other hand, it is guaranteed
to converge and has a comparatively very small computational cost, which makes it easy to apply to
large datasets. Moreover, its shortcomings can be improved by various optimisation procedures, such as
running it with different values of k and retaining the best segmentation (based on a quality-assessment of
the clusters), or using prior knowledge of the dataset to select the initial cluster centres. See first column
of Figure 1.5 for an illustration.
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Connectivity-based or hierarchical clustering consists in grouping data points together based on their
respective distance, producing a hierarchy of clusters that gradually merge together at increasing con-
necting distances [54]. The final partition requires the user to chose either the connecting distance or the
number of clusters to produce.

Note that the definition of the distance function can include many parameters apart from purely spatial
distance, such as pixel colour and intensity (for an image). These methods can detect structures with very
different shapes and sizes, but are sensible to outliers which will either show up as autonomous clusters
or cause other clusters to merge by artificially connecting them (see second column of Figure 1.5 for an
illustration).

Density-based segmentation assumes that the structures of interest define areas of higher density than
the remainder of the dataset. Therefore, all points in the same structure can be linked by a densely packed
path, i.e. a series of points that are close to each other and have a dense neighbourhood [55]. This is
called “density-reachability”. In contrast to many other methods, density-based segmentation allows the
simultaneous segmentation of various arbitrary shapes. The most widely used method is DBSCAN [56],
which has a low computational cost. It only requires the user to choose a connecting distance and a
minimal density to connect, not to predict the number of structures in the dataset.

The main drawback of these methods is that dense structures are assumed to be separated by sparser
areas, so that nearby or overlapping structures can not be distinguished (see third column of Figure 1.5
for an illustration).

Spectral graph clustering consists in segmenting a dataset based on the eigenvectors of its similarity
matrix [57, 58]. It can be summarised as follows :

1. Measure the “similarity” or “affinity” between each pair of data points and compile these measures
in the form of a matrix;

2. Compute the eigenvalues of this matrix and retain the k largest;

3. Map the original data points to R
k using the k associated eigenvectors;

4. Group the resulting vectors based on their largest components (i.e. to which eigenvector does the
original data point contribute the most).

Note that some variants of this algorithm automatically determine the optimal number of clusters k
from the distribution of the eigenvalues, for example by maximising the drop (called eigengap) between
the last retained eigenvalue and the first rejected one. See fourth column of Figure 1.5 for an illustration.

Watershed transformation is an image segmentation method based on the geographical concept of
water catchment basins [59]. The image is seen as a topographic surface where water placed on a “high”
pixel will run downhill towards a local minimum. Pixels draining to the same point define a catchment
basin, and each catchment basin is a separate structure. This is the method we finally retained to segment
our data; it will be described more fully in chapter 3.
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Figure 1.5: Illustration of the results produced by various segmentation methods on some typical test
data. From left to right : k-means clustering with user-defined number of clusters (2 for the first case,
3 for the second and third cases); Agglomerative hierarchical clustering with user-defined number of
clusters (2 for the first case, 3 for the second and third cases); DBSCAN density-based clustering with
automatic computation of the number of clusters; Spectral clustering with automatic computation of the
number of clusters from the eigengap.

4. Biological tissue architecture supports their functions

In this section, we will give a brief overview of the fundamental principles underlying biological tissues
architecture. Given that an adequate architecture is mandatory for the efficient physiological function
of any organ, it is crucial to understand how this architecture emerges during the organogenesis and is
maintained throughout life.

4.1. Connective tissues : importance of the extra-cellular matrix

Animal biological tissues are classified into four main types [60] : (i) muscle tissues that ensure the
individual’s mobility, (ii) nervous tissues that ensure communication inside the body and between the
organism and its environment, (iii) epithelial tissues that form a protective barrier between the organism
and its external environment (covering e.g. the skin, the digestive track or the airways) and (iv) connective
tissues. The latter are the most abundant, accounting for approximately two thirds of the body volume.
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As the term implies, “connective tissue” is a generic name given to several body tissues that connect,
support and bind together other tissues. They are composed of stromal cells, fibres whose arrangement
form the Extra-Cellular Matrix (ECM) and interstitial fluid [61]. The proportions of these three compon-
ents (cells, ECM and fluid) vary greatly from one connective tissue to another. Connective tissues thus
form a very heterogeneous family ranging from blood (a fluid nearly deprived of ECM) to soft adipose
tissue to highly stiff bone tissue (due to a calcified ECM).

Connective tissues constitute the basic brick of all organs. They provide mechanical and biochem-
ical support for the functional cells, sustain and connect together the various parts of an organ and the
various organs of the body, but also transport nutrients and wastes, store energy or mineral and parti-
cipate in immune defence [62]. Depending on their role, they are usually subdivided into connective
tissues proper (loose or dense) and specialised connective tissues (comprising blood, cartilage, bones and
adipose tissue).

Due to their great diversity, connective tissues can be affected by numerous pathologies, ranging
from surgical conditions (e.g. tendon tears and bony fractures) to autoimmune diseases (e.g. scleroderma
and rheumatoid arthritis) and genetic disorders (e.g. joint hyper-mobility syndrome and brittle bone dis-
ease) [61, 62]. Moreover, their dysfunctions have been shown to be involved in several pathologies such
as fibrosis and cancer.

While all tissues contain ECM, connective tissues hold the greatest part, enabling their mechanical
and architectural roles [63]. The ECM is a three-dimensional network of macromolecules (divided into
fibrous proteins and proteoglycans) connected by various types of enzymatic and non-enzymatic cross-
linking agents (among which glycoproteins) [64, 65]. Collagen fibres are the most abundant component,
accounting for around 90% of the ECM, and can represent up to 30% of the total protein mass in ver-
tebrates. To date, more than 20 types of collagens have been identified in vertebrates [66]. They can
self-assemble but also bind to other ECM components, and provide tensile strength to tissues [67, 68].
Collagens are associated with elastin, the main component of elastic fibres : it is a fibrous, insoluble, hy-
drophobic and extremely stable protein which provides recoil to tissues. A third major type of ECM fibre
is the fibronectin, which forms a mechanical link between the ECM and the cells and plays a key role in
cell adhesion and migration. Proteoglycans on the other hand are structural macromolecules composed
of a protein core covalently linked to one or more glycosaminoglycans (a type of carbohydrate chain).
They are very hydrophilic and, accordingly, form a hydrated gel which fills the ECM interstitial space
and enables tissues to withstand high compressive forces.

The composition and spatial structure of the ECM varies over time in response to various cells activ-
ity : ECM components are continuously synthesised and spatially reorganised, mainly by fibroblasts, and
at the same time degraded by a number of enzymes [69]. Their mechanical properties and crosslinks
can also be altered. Moreover, crosslinks can unbind spontaneously or under tension, which leads to
viscoplastic material responses such as softening and tension relaxation [70].

This dynamic nature of the ECM has been shown to be crucial to maintain tissue integrity and func-
tion.

The mechanical support provided by the ECM is twofold : it operates as a buffer against traction and
compression loads, and it creates sheet-like deposits on which functional cells can rest. This latter point
means that the ECM is indeed the skeleton on which the spatial organisation of a tissue is built.

Moreover, beyond the purely physical question of resistance to tensile stress, the mechanical prop-
erties (e.g. stretching and bending ability) of the ECM have a deep impact on the tissue function : they
participate in the regulation of many cellular processes such as cell migration, cell differentiation, cell
proliferation, cell death and gene expression (the last point being not yet fully understood). These proper-
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ties can vary by several orders of magnitude depending on the network architecture, which itself depends
on many factors such as the relative proportion of collagen and elastin fibres (e.g. a 9 to 1 ratio in bones).
Overall, collagens fibres are mainly involved in rigidity, elastin fibres in elasticity and proteoglycans in
viscosity.

As a whole, understanding the fundamental principles behind the ECM three-dimensional architecture
is crucial to comprehend many physiological and pathological conditions (e.g. degenerative diseases or
tumour invasion [71]). Pathologies may affect the nature and/or synthesis of the ECM (collagenopathies,
fibrosis), or its remodelling (arthrosis, cancer, fibrosis) [72, 73]. For example, ageing is characterised
by decreasing secretion of elastin fibres and increasing secretion of crosslinking molecules [74, 75], a
combination leading to a stiffer ECM with less remodelling ability [71]. As a result, the ECM becomes
less organised and more fragmented, hence weakening tissue integrity and strength [76, 77].

4.2. The adipose tissue : a specialised connective tissue with biomedical import-

ance

The Adipose Tissue (AT) is one of the four types of specialised connective tissues. For decades, it has
been studied only for its role energy storage. However, with the discovery of the leptin in the 1990s,
our vision of this tissue changed considerably. Indeed we know now that adipose tissue, through its
endocrine activity, interacts with the rest of the body and contributes to many physiological functions,
notably thermoregulation, lipid homeostasis, immune responses and reproduction. This explains why the
slightest dysfunction of AT can have major pathological consequences.

Cellular composition and physiological roles

The main functional cell type of AT is the adipocyte or fat cell, whose primary function is to absorb
carbohydrates and lipids from the blood to store them into their cytoplasm as triglycerides droplets, and to
release glycerol and free fatty acids into blood circulation as the result of triglycerides hydrolysis. Adipo-
cytes thus contribute to regulate energy availability within the body according to metabolic needs. The
whole process is finely controlled by hormones such as insulin (to which adipocytes react by increasing
their storage and decreasing their release) or adrenalin (which has the opposite effect) and also by innerv-
ation from the autonomous nervous system. In addition, adipocytes release numerous specific proteins
(e.g. leptin, ghrelin, adiponectin, cytokines) involved in energy balance [78,79], appetite regulation [80],
immune function [81], reproduction, etc.

Adipocytes represent around 50% of all cells in AT and make up for most of its volume. The re-
mainder (called the stromal vascular fraction) is made of different cell types : adipocyte precursors (or
pre-adipocytes), mesenchymal stem cells, fibroblasts, vascular endothelial cells (which make up blood
vessel walls) and a large variety of immune cells (e.g. macrophages, lymphocytes, eosinophils or mast
cells) [82].

Two types of adipocytes, white and brown, are generally described in literature, allowing a rough clas-
sification of AT depots according to their “colour”. White adipocytes specialise in energy storage [83],
but also displays major endocrine and immunological functions [84]. They contain a single lipid droplet
that can swell until it represents≈ 90% of their volume, giving the cell a spherical shape and a very large
diameter (up to 100 µm) [85].

Brown adipocytes are smaller than white adipocytes (typically between 15 µm and 50 µm in dia-
meter) [85] and contain several small lipid droplets. They also contain more numerous and larger mito-
chondria [86]. Moreover, these mitochondria exhibit in their inner membrane a uniquely high concentra-
tion of thermogenin (also called uncoupling protein 1 or UCP-1) [87, 88], a protein that interferes with
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the classic ATP energy-production process to generate heat. Brown adipocytes thus specialise in adaptive
non-shivering thermogenesis, a fundamental process in maintaining body temperature [89].

However, this cell dichotomy (and consequently the dichotomy of AT depots) is not so strict. Indeed,
since the 1990s an intermediate type of adipocyte, called beige or brite (for “brown in white”), have
been described [90–92]. These adipocytes have characteristics from both white and brown adipocytes
and display phenotypic plasticity : in resting conditions they are closer to white adipocytes, but they can
“brown” (i.e. acquire a brown phenotype with numerous mitochondria and small lipid droplets supporting
a thermogenic activity) through cold exposure [93,94], diet [95] or exercise [96] and “whiten” again in a
warm environment [97, 98], thus suggesting a real cell plasticity.

In addition, marrow [99] and pink [100] adipocytes (found in bone marrow and mammary glands
respectively) have also been described with characteristic of both white and brown adipocytes, further
complicating the landscape of the “adipocytes field”.

Anatomy of adipose depots

White AT depots (defined as containing white adipocytes) represent the largest volume of AT in most
mammals, including humans. They can be found as a more or less developed subcutaneous layer through-
out the entire body and around major blood vessels and organs (e.g. heart, digestive tract, kidney and
eye-balls). This visceral fat is mostly located in the abdominal cavity (it is sometimes called abdominal
fat) and protects organs against mechanical impacts. The subcutaneous layer on the other hand provides
thermal insulation for the body and contains very large adipocytes.

Brown AT depots (defined as containing brown adipocytes) are mostly present in infant (which are
nearly deprived of subcutaneous AT and have not yet acquired diet-induced shivering) and/or hibernating
mammals. Although it was long thought that these depots disappeared after birth, their presence has
recently been demonstrated in the abdominal and thoracic cavities of adult humans, where they can rep-
resent 4.3% of all AT [101, 102]. These depots are more vascularised and innervated by the sympathetic
nervous system than white ones [89]. Their exact nature, brown or beige, is still debated.

One of the characteristics of all these adipose depots is their extraordinary plasticity. Indeed, they are
capable of massive expansion or reduction in response to changes in energy balance (from 5% to 60% of
body mass). The reversibility of these changes depends on their amplitude. In the case of energy excess,
AT depots expand through the swelling of white adipocytes, a phenomenon called hypertrophy. It also
causes beige adipocytes to whiten [95,103]. When existing adipocytes are no longer able to absorb excess
energy, this hypertrophic phase is followed by an hyperplasia (differentiation of pre-adipocytes into new
adipocytes) which results in a quasi-permanent increase of the number of adipocytes in the body [104]. In
the case of an energy deficit, the reduction of the AT size is mainly due to adipocyte shrinkage following
triglycerides hydrolysis, with no major change in adipocyte number.

Finally, despite their distinct locations, specific vascular and nerve supplies and distinctive metabolic
abilities, all AT depots are now considered to form a single large soft “organ” [103, 105, 106].

Architecture of adipose tissues

The first description of adipose tissue architecture was made by Wassermann in 1965 on the basis of
2D photonic microscopy images. It evidenced the existence of ellipsoidal clusters of adipocytes (called
lobules) surrounded, but not totally separated, by well organised sheets of ECM (called fascia), each
of them irrigated by a tree-like vascular system [107]. Usually, mature white AT depots contain large,
compact lobules densely packed together, while brown AT depots contain smaller and better separated
lobules. Nevertheless, since Wassermann’s observations most of the studies concerning AT have focused
on its cellular composition and anatomical location rather than its architecture. Studies on tissular organ-
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isation of AT depots remain descriptive without investigating its origin. The question of the emergence
of AT architecture is therefore entirely neglected.

For several years, Pr. Casteilla’s team investigated adipose tissue architecture, confirming the exist-
ence of strong heterogeneity between depots (some have a clear lobular architecture and others do not)
and from one area to another inside the same depot. Indeed, exploration of the whole subcutaneous AT in
mice have evidenced a strong regionalisation of the lobular architecture, associated with different brown-
ing ability of the adipocytes [108]. Adipocytes in the inner region display high browning ability and are
organised in a network of interconnected lobules, while the periphery is a shapeless, unstructured layer
of very large adipocytes with poor browning ability [108]. Moreover, image segmentation of autofluor-
escence or vascularisation signals revealed that the lobules have an unexpectedly complex 3D shape with
several ellipsoidal lobes and many digitations [109], far from the grain of rice or olive pit observed on
2D sections. In addition, the poly-lobed units can be grouped, on the basis of their connectivity, into two
clusters harbouring distinct molecular profiles and thermogenic ability [109].

These results highlight the importance of the architecture/function relationship.

Development of adipose tissues

AT is the last tissue to be formed during embryonic development. An intrascapular depot of brown
adipose tissue appears just before birth (between embryonic days 18 and 19 out of 21 in mice [110,111])
so as to protect the newborn against the thermal shock of the birth. Brown adipose depots decline as the
individual ages, but do not disappear completely. White adipose tissue appears just after birth (first three
postnatal days in mice) and continue to develop throughout life.

Figure 1.6 illustrates the successive development stages of subcutaneous AT in mice.

• At birth or postnatal day 0 (P0), the depot is made of small, rounded, well-delineated and rather
spaced clusters of small adipocytes (see Figure 1.6.P0). Higher magnification allows to distinguish
the significant space between lobules and the tree-like organisation of the vasculature.

• Following birth, the lobules begin to swell and merge together, likely under the conjugated effects
of adipocytes growth (hypertrophy) and pre-adipocytes differentiation (hyperplasia). The inter-
lobular spacing thus diminishes and the boundaries between lobules are less well-defined (see
Figure 1.6.P1).

• Several days later, the lobules are so densely packed that they are hard to distinguish from each
other (see Figure 1.6.P3) even with higher magnification. The tree-like organisation of the vascu-
lature also becomes less apparent.

The fact that the lobular architecture is present from the start is questioning. However, as previously
mentioned, the questions of how and why this specific spacial structure emerges have not been studied.

Obesity and adipose tissue dysfunctions

As mentioned above, white adipocytes participate in long-term energy storage by accumulating en-
ergy intake exceeding daily metabolic needs and releasing it during periods of food shortage or intense
physical exercises. Brown adipocytes, for their part, participate in the control of energy expenditure by
storing and burning energy excess. All adipose tissue depots thus play a key role in the control of energy
balance, and any AT dysfunction will necessarily lead to the disruption of energy homeostasis and the
development of miscellaneous diseases such as obesity.

Obesity is defined as an abnormal or excessive accumulation of fat (body mass index greater that
30), which is detrimental to health. According to the World Health Organisation (WHO), the prevalence
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Figure 1.6: Images of a subcutaneous adipose tissue depot in juvenile mice, with adipocytes in yellow
(bodipy staining) and vasculature in red (lectin staining). The white scale bars at the bottom right cor-
respond to 1000 µm. From top to bottom : birth (P0), first day after birth (P1) and third day after birth
(P3).
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of obesity has nearly tripled since 1975, affecting 13% of all adults (over 650 million people) in 2016
while 39% (over 1.9 billion people) were overweight, with strong geographical disparities [112, 113].
Obesity is considered as the main risk factor for many metabolic diseases such as type 2 diabetes, arterial
hypertension, atherosclerosis, fat liver disease and chronic kidney disease. It is also associated with
an increased risk of cancer (including breast, uterine and liver cancers) or neurodegenerative diseases.
Obesity is therefore responsible for at least 2.8 million deaths per year, making it the fifth leading cause
of death according to the WHO [113].

Excessive weight in itself exerts on the body a major mechanical strain with many detrimental con-
sequences, but is at first protective against metabolic diseases, because it prevents excess lipids from
being stored in cells that are not suitable for this purpose. In most cases of obesity, despite its expansion
the AT is no longer capable of efficiently storing lipids or expending energy. This leads to ectopic lipid
deposition, for example in the liver or muscles, which in turn cause lipotoxicity, insulin resistance and
inflammatory state development. This is why body mass index alone does not accurately reflect obesity-
related risks : individuals who are able to greatly increase their amount of functional AT are clinically
healthier than comparatively lighter individuals with dysfunctional AT.

In addition, histological studies of AT from obese induced mice or obese patients have revealed the
existence of fibrosis [114–116]. This excessive ECM deposition must exert mechanical constrains that
inhibit adipocyte hypertrophy, thereby contributing to AT dysfunction [117–119].

Taking into account that the architecture plays a key role in the function of the tissue, a better under-
standing of the rules governing the development and preservation of AT architecture is thus essential in
the fight against the epidemics of obesity-associated diseases.

Conclusion

The AT is a good starting point for a study on the emergence of biological tissues architecture for at
least three reasons. First, it has a relatively simple architecture, meaning that it can reasonably be expec-
ted to be easy to reproduce with a mathematical model. Second, lobular architectures can be found in
many other biological tissues such as the liver (hepatic lobules), lungs (pulmonary alveoli) and pituitary
gland, making AT a generalist object of study. Third, this connective tissue plays a key physiological
role and is thus involved in diseases with a high prevalence. Considering the importance of the architec-
ture/function relationship, a mathematical model providing a better understanding of how AT architecture
emerges should have a positive impact on the medical field.

4.3. Description of a 2D model for adipose tissue self-organisation

We will now give a detailed example of mathematical model for adipose tissue self-organisation : the
two-dimensional individual-based model for adipose tissue morphogenesis and regeneration created by
Peurichard et al. [17, 37] (subsequently abbreviated as ATmorpho-2D). We will describe the model con-
struction and give a brief summary of the results obtained with it. This model was validated against
biological data and served as the basis for our 3D models for the self-organisation of connective tissues
(see chapter 2).

The goal of the model ATmorpho-2D was to reproduce the emergence of the overall architecture
of mature white AT and to identify the parameters driving the type of structure produced. The starting
hypothesis was that the structures observed in white AT (clusters of adipocytes wrapped in thin sheets
of well-organised extra-cellular matrix) could emerge merely from mechanical interactions between the
adipocytes and the ECM fibres (hence the need of a microscopic model). This hypothesis has been
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validated in [17], where the authors showed that their model produces architectures that compare quant-
itatively well to experimental observations, and that, counter-intuitively, modelling the vascular system
was not necessary.

In [37], the authors showed that this relatively simple model can also be used to explain the way
adipose tissue is reconstructed after injury, leading either to regeneration (the tissue regains its original
functionalities) or scarring (the new tissue is not fully functional) depending on a few key parameters.

The main features of the model ATmorpho-2D are summarised in Figure 1.7. In the following dis-
cussion, we consider a finite, rectangular spatial domain Ω ⊂ R

2 with periodic border. Although the
present text draws heavily from [17,37], a number of notations were changed so as to harmonise with the
description of our own models.

Figure 1.7: Scheme of all the biological processes and mechanical interactions included in the model
ATmorpho-2D [17].

4.3.1. Description of the model

Agents

It is assumed that, in white AT, the agents contributing the most to the global mechanical balance
are the extra-cellular matrix, which provides mechanical support to the whole tissue, and the adipocytes,
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which are bigger and more numerous than all other types of cells. Both these other cells and the vas-
cularisation network are therefore not represented by specific agents, although their biological functions
are not neglected.

The ECM is modelled as a network of identical rigid line segments that can spontaneously link to-
gether. The linking mechanism account both for actual biological crosslink between ECM fibres and for
the complex mechanical properties of said fibres : several “fibre units” linked end-to-end can be seen as
a single ECM fibre that can stretch (by the addition of a new unit), shorten (by breaking an existing link)
and bend (by having two linked units rotate in relation to each other). Since no limits were imposed to
the number of links per fibre unit, the fibres can also branch out and adopt complex geometries. Please
note that the agents considered in the model are the fibre units, hereafter refer to merely as fibres for the
sake of simplicity. They are characterised by the position of their centre Yk(t) ∈ Ω and by the angle
θk(t) ∈]− π/2, π/2] that they make with a reference axis. Their total number is denoted Nfib.

Adipocytes being round cells, they are modelled by disks of centre Xi(t) ∈ Ω and radius Ri(t) ∈ R
+∗,

with 1 6 i 6 Nad(t) and Nad(t) the number of adipocytes in the system.
These data are collected in two sets : F(t) = {(Yk(t), θk(t)), k ∈ J1, NfibK} for the ECM fibres and

A(t) = {(Xi(t), Ri(t)), i ∈ J1, Nad(t)K} for the adipocytes.

Fibre crosslinking

Crosslink creation is modelled by a random Poisson process of intensity νlink between any pair of
intersecting fibres, and crosslink breakage by a Poisson process of intensity νunlink. The set of all cross-
linked fibre pairs (k,m) at time t is denoted L(t). The ratio χlink =

νlink

νlink + νunlink

, called the equilibrium

linked fibre fraction, corresponds to the proportion of linked fibres among all pairs of intersecting fibres
at dynamical equilibrium.

As long as two fibres remain linked, they must keep intersecting at the same point. This set of
constraints is written as :

Φlink(F ,L) :=
(
Yk + llink

k,mω(θk)− Ym − llink
m,kω(θm)

)
(k,m)∈L

= 0, (1.1)

with llink
k,m the position of the crosslink on fibre k, that is the distance between the centre of fibre k and the

intersection point with fibre m at the time of the crosslink creation.

Fibre stiffness

Constraint (1.1) does not dictate anything about the angle θk − θm between two linked fibres k and
m. In fact, this angle may vary depending on the interactions of the two fibres with the other agents in
the system. However, since the collagen fibres this model seeks to replicate are not infinitely flexible but
exhibit a certain level of stiffness, the authors assume that two linked fibre will tend to align with each
other. This is translated into an alignment potential Wal(θk, θm) = W̃al sin

2(θk − θm) which is maximum
if the fibres are perpendicular and vanishes if they are aligned.

Steric exclusion between adipocytes

Adipocytes are assumed to be incompressible and non-deformable objects which can not overlap.
This means that, for all i, j ∈ J1, NadK such that i 6= j, the distance ‖Xi −Xj‖ between the centres of
adipocytes i and j must be greater than the sum Ri +Rj of their radii. This steric exclusion constraint is
expressed by the following condition :

Φsteric(A) :=
(
‖Xi −Xj‖2 − (Ri +Rj)

2
)
16i<j6Nad

> 0. (1.2)
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Fibre resistance to pressure

From a strict biological point of view, the ECM fibres should not overlap either between themselves
or with adipocytes. However, strict steric exclusion constraints like the one defined above would make
fibre crosslink as it was defined impossible. Therefore, these constraints are converted into a short-ranged
repulsion potential Wrep emitted by each fibre. We denote by d0 the maximal repulsion range (set to 2Rfib

for a fibre-fibre interaction and to Rfib + Ri for an interaction between a fibre and an adipocyte i) and by
W̃k the maximal intensity of the repulsion potential (which is achieved on the fibre segment and increases
linearly with the local fibres alignment). The interaction between a fibre k and an adipocyte i generates
a potential Wrep(Xi, Yk, θk, Rfib +Ri, W̃k), while the interaction between two non-linked fibres k and m

generates a total potential Wrep(Ym, Yk, θk, 2Rfib, W̃k) +Wrep(Yk, Ym, θm, 2Rfib, W̃m).
It is assumed that linked fibres do not repel each other, as this would be in direct contradiction with

their linking constraint. It may be noted that fibre-fibre repulsion was not included in the basal model
described in [17]. The simulations presented in the article body were conducted with fibres both long
and large (compared to the adipocytes) : smaller fibres would have been more biologically relevant, but
this would have required a greater number of such fibres and thus lead to exceedingly time-consuming
simulations. In appendix F of [17], the authors justified their approach by showing that their primary
results were similar to those obtained with smaller fibres and a fibre-fibre repulsive interaction. It was
observed that in both cases fibres tended to bundle together : without fibre-fibre repulsion, fibres were
fully overlapping so the width of a cluster (a.k.a the width of the repulsive zone perceived by the adipo-
cytes) was typically equal to 2Rfib. On the other hand, when fibres were repelling each other the typical
cluster width was larger than 2Rfib. Thus, adipocytes would be affected in the same way by clusters of
small autorepulsive fibres and clusters of large non-autorepulsive fibres.

Tissue growth through fat storage

The storage of additional fat is modelled by the volumic growth of existing adipocytes and the differ-
entiation of immature cells into new adipocytes. Energy release and the ensuing adipocytes shrinking is
not taken into account as the aim is to model AT morphogenesis (through fattening), and not homeostasis
nor fasting.

Adipocyte growth is assumed to be essentially linear in volume with an average growth rate Kgrowth ∈
R

+∗ and to stop when adipocytes reach a given maximum radius Rmax
ad . Stem cells being not represented

individually, their differentiation is modelled by the creation (or “insemination”) of a new adipocyte of
minimal radius Rmin

ad at a position randomly selected according to an uniform distribution in Ω. Successive
insemination times follow a Poisson process of frequency νins.

Synthesis and numerical implementation

The total mechanical energy of the system can be written as the sum of all elementary alignment and
repulsion potentials :

W(A,F ,L) =
∑

(k,m)∈L

Wal(θk, θm) +
∑

16i6Nad

16k6Nfib

Wrep(Xi, Yk, θk, Rfib +Ri, W̃k)

+
∑

(k,m)/∈L

(
Wrep(Ym, Yk, θk, 2Rfib, W̃k) +Wrep(Yk, Ym, θm, 2Rfib, W̃m)

)
. (1.3)

At each time-step, the system will tend towards its minimum energy state under the constraints (1.1)

22



and (1.2), that is :

(A(t),F(t)) = argmin
Ã, F̃

(
W(Ã, F̃ ,L)

∣∣∣ Φlink(F̃ ,L) = 0, Φsteric(Ã) > 0

)
. (1.4)

This constrained minimisation problem is solved using a type of Arrow-Hurwicz-Uzawa algorithm [120]
whose implementation is detailed in appendix B4 and B5 of [17]. The four “biological” random processes
(fibre crosslinking, fibre unlinking, adipocyte growth and adipocyte insemination) are updated between
each “mechanical” time-step.

In order to reduce the computation time, the domain Ω is divided into sub-squares or “boxes” whose
side length Lbox scales with the maximum range of interactions. This allows interactions (both soft
potentials and strict constraints) to be computed not between every pairs of agents but only between
agents located in neighbouring boxes (since agents further apart than Lbox do not interact). Periodic
boundary conditions are implemented by adding on each border of the domain a layer of “ghost” boxes
which replicate the content of the “real” boxes located on the opposite side.

4.3.2. Application to adipose tissue morphogenesis and reconstruction

In [17], the authors show that their model can produce three different types of tissue architecture : com-
pact clusters of adipocytes wrapped either in a disordered fibre network (A) or in bundles of aligned
fibres defining thick flexible threads (B), and elongated clusters not-quite separated by long, thin, rigid
fibre threads (C). Comparison with biological data demonstrates that the various morphologies generated
can be fitted to different regions of mice subcutaneous AT. Although (B), illustrated in Figure 1.8, is the
most biologically relevant morphology, (A) and (C) can also be observed.

Figure 1.8: Illustration of an adipose tissue morphology of type (B), that is compact clusters of adipocytes
wrapped in bundles of aligned fibres defining thick flexible threads. Left : in silico system generated by
the model ATmorpho-2D. The adipocytes are shown in red, the fibres in blue and the crosslinks appear
as green crosses. Right : Corresponding in vivo data, with adipocytes in red (fluorescence with bodipy
staining) and collagen fibres in green (collagen second harmonic generation). The white scale bar at the
bottom right correspond to 150 µm. Data from Peurichard and al. [17].

The authors also show that the morphology obtained in their simulations is mainly determined by
the crosslinking dynamics of the ECM via parameters νlink and νunlink (or equivalently χlink and νunlink).
For instance, morphology (B) is achieved with an equilibrium linked fibre fraction χlink = 0.35 and an
unlinking frequency νunlink ∈ [0.01, 0.1]. These results support the hypothesis that ECM properties (and
the induced mechanical forces) are prominent in tissue structuring, a result that agrees well with recent
biological findings [121].
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Incidentally, these results suggest that the spatial fluctuations observed in the architecture of an
adipose tissue depot could be modelled by making the making parameters χlink and νunlink vary across
space.

The authors also took a first step towards modelling the vascularisation network by biasing adipocyte
insemination so that the new adipocytes had higher probability to be inseminated near pre-existing ones.
This idea was that, since adipocytes need to be supplied by the vascularisation, the location already oc-
cupied by adipocytes could be assumed to be vascularised and thus more likely to see the differentiation
of new adipocytes. However, the simulations showed that this spatially biased insemination process had
no impact on the resulting architecture, leading to the surprising conclusion that accounting for the vas-
cularisation was not necessary in a model aimed at reproducing tissue architecture. This in turn leads to
the biological hypothesis that the vascularisation network could be secondary to tissue architecture.

In [37], the authors use a modified version of the model presented above to emulate tissue reconstruc-
tion after injury. The system is initialised with a type (B) morphology from which all agents in a central
slice have been removed. The presence of a wound is characterised by a high gradient in the local density
of both agent types (adipocytes and fibres). This generates inflammatory chemical signals prompting for
the insemination of new fibres on the wound boundaries. This goes on until the wound closes (disappear-
ance of the chemical signals). Concomitantly, new adipocytes are inseminated in areas already occupied
by a not-too-much crosslinked ECM. The whole process is illustrated in Figure 1.9.

Figure 1.9: Modelling adipose tissue reconstruction after injury using a variant of the model
ATmorpho-2D. The adipocytes are shown in red, the fibres in blue, the crosslinks in green and the
inflammatory chemical signals in purple. Data from Peurichard and al. [37].

The authors show that the reconstructed section can either take the morphology of a scar (fibrosis with
a highly crosslinked fibre network containing few adipocytes) or regain its original morphology (regener-
ation with similar features and number of adipocytes than before injury). Parametric analysis shows that
the simulation outcome is mainly decided by the fibre insemination rate and the crosslinking probability
during fibre insemination, leading to the hypothesis that the ECM reconstruction properties are the key
driver of repair processes. This hypothesis opens up the prospect of a treatment window during which
pharmacological action could steer tissue reconstruction towards regeneration.

Overall, these results constitute a convincing proof of concept regarding the possibility to reproduce
and explain the emergence of biological tissues architecture with a mathematical model based on local
mechanical interactions between a reduced set of components. Because in vivo tissues display complex
3D architectures, extending the model to 3D and confronting it to 3D biological data is highly necessary.
However the transition to a 3D setting is not trivial : it involves many conceptual and technical challenges
detailed in the previous sections of this chapter. This project constitutes the subject of the present thesis.
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In this thesis, we study the mechanisms governing the emergence of the three-dimensional archi-
tecture of two types of connective tissues : a non-specialised connective tissue, which we reduce to its
Extra-Cellular Matrix (ECM) component, and a specialised one, the Adipose Tissue (AT). To this end,
we followed the methodology presented in Figure 1.10. This thesis was carried out in close collaboration
with biologists and was co-hosted by a biological research unit, the Restore Institute (Toulouse), and a
mathematical research unit, the Laboratoire Jacques Louis-Lions (Paris).

We first perform a thorough review of the literature on the various aspects of our subject : the math-
ematical modelling of biological tissues architecture, the challenges introduced by the transition from
2D to 3D and the current state of biological knowledge about the 3D architecture of connective tissues.
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This review constitutes the present general introduction chapter 1. It shows that tissue architecture, and
in particular the mechanisms governing its emergence, is largely understudied even though it is known
to be a determining factor in tissue functionality. Recent improvements of 3D biological imaging tech-
niques reveal that even the architecture of “simple” connective tissues like AT is much more complex
than what biologists had believed until now. This makes us question the reliability of the conclusions
achieved through otherwise validated 2D models such as [17] : would a similar 3D model be able to
reproduce the intricate 3D architecture of AT ? Moreover, 2D models suffer from intrinsic limitations
due to their dimensionality. In the case of [17] for example, it is not clear at all whether fibrous elements
that are essentially 1D could envelop and delimitate groups of cells in 3D. Would they be able to organise
themselves into planar structures ?

Based on the guidelines established above and on the heuristic rules deduced from biological observa-
tions, we design and implement two 3D Individual-Based Model for connective tissue self-organisation
adapted respectively to a non-specialised connective tissue and to the Adipose Tissue. A comprehensive
description of these models and of their optimised implementation is presented in chapter 2.

In chapter 3, we detail the unified analysis framework that we developed to investigate both the
numerical simulations produced with our models and the biological data acquired at the Restore Institute,
and compare them together. It contains :

• A common visualisation pipeline for in silico and in vivo data using the Paraview software. This
pipeline was first developed in collaboration with three bachelor students, Charlotte Brunet, Juyeon
Kim and Marion Saint-Pée, under the direction of Pr. Sinan Haliyo from the “Multiscale Interac-
tions” team of the Institute of Intelligent Systems and Robotics (ISIR) at Sorbonne University.

• Two similar lobules segmentation protocols, both based on the watershed segmentation method
but including different pre-processing steps depending on the type of data analysed (in vivo or in

silico), and two quantifiers to characterise the shape of the lobules thus segmented. The in vivo

segmentation was developed in collaboration with Laetitia Pierruccioni and Mathieu Vigneau from
the CERT team of the Restore Institute at Toulouse III University.

• The description of two quantifiers enabling to characterise the local and global organisation of the
fibre networks produced by our models.

In chapter 4, we conduct an in-depth study of the model ECMmorpho-3D by performing numerical
simulations. The choice of the parameters tested is guided by the results of the 2D model ATmorpho-2D :
we prioritise the parameters that were shown to have a predominant impact on the final architecture and,
for each of them, we explore a wide range of values. We use the numerical quantifiers described in the
previous chapter to identify and characterise the various architectures emerging in the modelled systems.
We distinguish (i) aligned networks with a strong organisation of the fibres around one main direction,
(ii) curved networks with a median, locally heterogeneous alignment of the fibres and a wide range of
allowed directions living in a plane and (iii) unorganised networks with very low local alignment of the
fibres and no preferential direction. A parametric analysis enables us to determine the influence of each
parameter and to identify an intermediate emerging variable, namely the connectivity of the fibre network
(expressed as the number of crosslinks per fibre), which explains and to some extent predicts the type
of architecture produced. This gives us insight on the fundamental principles governing the emergence
of biological tissues architecture and suggests a new therapeutic target to control tissue morphogenesis.
Finally, we perform a temporal analysis which reveals that the characteristic time-scale of the organisa-
tion process is a function of the network remodelling speed and that there exists a unique evolutionary
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pathway common to all systems.

In chapter 5, we study the structures produced by the model ATmorpho-3D. We first explore the in-
fluence of the cells over the organisation of the fibre structures, taking as reference the fibre-only systems
characterised in the previous chapter. We show that the number of cells did not impact significantly the
global organisation of the fibre network, though it could increase or decrease the local alignment of the
fibres by at most 15%. We then characterise the cellular structures found in the simulations, which we
classify into three morphological types : solid and elongated cell clusters possibly with multiple lobes
(SE), solid and rounded cell clusters (SR) and branching cell clusters with many digitations (Br). Com-
paring these structures to those segmented from in vivo tissue samples, we show that they display very
close morphological characteristics and that their distribution is similar, with many in vivo and in silico

(SE) lobules, fewer (SR) lobules and even less (Br) lobules. Moreover, the proportion in which each
morphology appears in a system is controlled mainly by the remodelling characteristic of the fibres, in
agreement with the previous finding in 2D [17] and with several biological results demonstrating the
impact of the ECM over AT architecture and function. This striking concordance suggests that the emer-
gence of AT architecture is indeed controlled by local mechanical interactions between the adipocytes
and the ECM fibres, and more generally that biological tissue architecture could follow much simpler
organising principles than what was though until now.
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Chapter 2

3D Individual-Based Models for connective

tissues architecture emergence

In this chapter, we present two mathematical models that were developed during this thesis to study
the emergence of the 3D architecture of two types of connective tissues : a non-specialised one which
reduces to its Extra-Cellular Matrix (ECM) component and a specialised one, namely the Adipose Tissue
(AT). These models will be thoroughly tested, and their results analysed and compared to biological data,
in chapters 4 and 5 respectively.

The first section of the present chapter discusses some general modelling considerations that relate
to both models. The next two sections are dedicated to the description of the models, highlighting the
biological or numerical relevance of the various choices made during their conception. Finally, the fourth
section addresses the details of the numerical implementation of these models, and in particular the
optimisation strategies that were employed.

Summary of the chapter
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1. Introduction : choice of the type of model

Because of the architecture of any biological tissue is fundamental to its functions, modelling the emer-
gence of a tissue architecture will greatly improve our understanding of this tissue biology and plasticity
in physiological or pathological conditions. In this thesis, we want to test the hypothesis that the archi-
tecture of a tissue could emerge spontaneously from simple local mechanical interactions between its
components.

Numerous models for biological tissue can be found in the literature. Due to their simplicity and
flexibility, the most widely used models are Individual-Based Models (IBMs), which describe the beha-
viour of each element (e.g. cell, fibre, protein) and its interactions with the surrounding elements over
time [8, 9]. However, IBMs have a high numerical cost (in term of both memory space and computation
time) which can become intractable when studying large scales, either spatial or temporal or for systems
composed of too many elements. In such cases, continuous or mean-field kinetic models [21] may be
preferred because they are less costly, at the expense of a loss of resolution at the microscopic level.

However, in our case this level of description can not be ignored for at least two reasons. The first
is that our hypothesis focuses on local interactions. The second is that the macroscopic properties of the
ECM, which are a key factor in the emergence of tissues architecture, have been shown to be modulated
by microstructure configurations [122].

To ensure the relevance of our study, we must therefore face the computational cost of an IBM, while
paying close attention to optimisation opportunities during the design and implementation stages (see
section 4).

In view of the major impact of the ECM, we decided to first develop a model to study the self-
organisation of this three-dimensional macrostructure inside a non-specialised connective tissue, so as to
gain insights on the general principles driving the emergence of the various types of tissue architecture.
In addition, such a model can serve as the basis for constructing more specific models, and indeed we
use it to develop a second model aimed at mimicking the emergence of AT architecture. This tissue has
major biomedical importance and is also a generalist object of study, with a relatively simple structure
observed in other organs. Therefore, though we developed them with specific target tissues in mind,
the two models presented in this chapter are in fact quite generic and can be adapted to other types of
biological tissues.

Many models of fibre network account for the complex mechanical properties of the fibres by repres-
enting them as strings of beads connected either by elastic springs [16, 25, 27, 34, 35] or Euler-Bernoulli
beams [13–15, 32, 123, 124]. Following a similar logic, Peurichard and al. [17, 37] discretised the fibres
into small rigid segments linked at their intersection. In this approach, the mechanical properties did not
stem from the segments themselves but from the fact that the links between them were dynamical and
could spontaneously appear or break. Note that, among existing models, few of them feature dynamical
crosslinking of ECM components. In [13, 19, 20], various models of 3D fibrous networks composed of
permanent or transient crosslinks are proposed. However, these models feature ECM remodelling in re-
action to external factors (applied load [13], migrating cells [19], contractile cells [20]), and the literature
so far provides little cues on the mechanisms underlying fibre self-organisation. Considering that this is
the central issue of our work, we choose to follow [17,37] approach and account for spontaneous, random
remodelling of the ECM network.

The vascular system, which like the ECM is a common characteristic of all biological tissues, is
vital to create and maintain tissue functions. Its complex layout emerges together with the global tissue
architecture and is consubstantial to it. A lot of efforts have been devoted to study whether it is the pattern
of the vascularisation network that drives the emergence of tissue architecture, or the tissue architecture
that guides the development of the vascularisation network. This question remains open and could well be
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akin to the chicken-and-egg dilemma. However, [17] showed that the 2D architecture of the subcutaneous
white adipose tissue could be mimicked in silico without accounting for the vascularisation network.
Based on their results, we choose to treat the development of the vascularisation network as secondary to
the emergence of tissue architecture and did not represent it explicitly in our models.

Connective tissues host various types of stromal cells. Considering the small size of these cells, we
choose to neglect their mechanical impact in a first approach and, like for the vasculature, we did not
model them by individual agents (though we did account indirectly for some of their biological effects).

2. Modelling the Extra-Cellular Matrix

2.1. Model introduction and summary : discretisation of the fibre network

As described in chapter 1 (section 4.1), the ECM is a dynamical three-dimensional network of interacting
fibres that provide a mechanical and biochemical support to surrounding cells as well as to the whole
tissue, and is considered to be the key factor determining a tissue architecture.

In this thesis, we want to test the hypothesis that this macrostructure could spontaneously emerge
from simple local mechanical interactions between dynamically interconnected fibres. To this aim, we
construct an IBM model which accounts mainly for the local mechanical constraints and in which the
complex chemical and biological processes are represented as simply as possible. We give here a brief
description of this model, subsequently referred to as ECMmorpho-3D, before going into details in the
following sections.

We choose to model the ECM fibres by discretising them into a large number Nfib of fibre units,
consisting of non-stretching and non-flexible spherocylinders of uniform fixed length Lfib and radius Rfib.
These fibre units have the ability to spontaneously link and unlink from their neighbours closer than a
catching distance dmax

link , according to Poisson processes of respective frequencies νlink and νunlink. As a
result, the linked fibre ratio χlink = νlink

νlink+νunlink
represents the equilibrium fraction of linked fibres among

the pairs of neighbouring fibres. This dynamical crosslinking mechanism allows us to model both the
overall temporal plasticity of the network and the complex physical properties of biological fibres such as
elongation, bending, branching and growth, thus compensating our minimalistic description of the fibre
units. Crosslinks are modelled as linear spring with constant stiffness κrest and equilibrium length deq

link,
controlling the extension of long fibres made of a string of successively linked fibre units. They also
have a constant rotational stiffness (or flexural modulus) αalign which controls the resistance to bending
of long fibres. In addition, we suppose that overlapping fibre units repel each other, modelling volume-
exclusion effects. This is achieved via a repulsive force based on Hertzian theory, whose maximum
intensity Erep controls the amount of overlap tolerated between fibres. Finally, as the Reynolds number
in most biological tissues is very small, we suppose that inertial forces can be neglected and we consider
an over-damped regime for fibre motion and rotation, associated with a dynamic viscosity of the fibres
µfib.

All these features are summarised in Figure 2.1 and the corresponding parameters listed in Table 2.1.
We now turn to the details of each of the model components.
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Figure 2.1: Scheme of all the biological processes and mechanical interactions included in the model
ECMmorpho-3D.

Parameter Domain Dimension Description

Fibre characteristics

Nfib N N/A Number of fibres in the system.

Lfib R
+∗ L Fibre length.

Rfib R
+∗ L Fibre radius.

Crosslink processes

νlink R
+ T−1 Fibre linking frequency.

νunlink R
+ T−1 Fibre unlinking frequency.

deq

link [2Rfib,+∞[ L Link equilibrium length.

dmax
link [deq

link,+∞[ L Link maximum catching distance.

Mechanical interactions

Erep R
+ M.L−1.T−2 Elastic modulus of the fibre-fibre contact.

κrest R
+ M.T−2 Link stiffness.

αalign R
+ M.L2.T−2 Maximum intensity of the alignment torque

between linked fibres.

µfib R
+ M.L−1.T−1 Dynamic viscosity of fibres.

Table 2.1: Summary of all the parameters of the model ECMmorpho-3D.

2.2. Biological phenomena : fibre linking and unlinking

As previously mentioned, we discretise the ECM fibres into Nfib non-stretching and non-flexible sphero-
cylindrical units of uniform fixed length Lfib and radius Rfib (see Figure 2.2 for a schematic represent-
ation). These fibre units are represented by the position of their centre Yk(t) ∈ Ω (with Ω ⊂ R

3 the
finite spatial domain inside which the modelled tissue is developing) and by their unitary, non-oriented
directional vector ωk(t) ∈ S

+
2 (with S

+
2 the unit half-sphere). Figure 2.2 gives a schematic representation

of one fibre unit and summarises the associated mathematical notations. Note that, for the sake of sim-
plicity, we will tend to refer to fibre units merely as fibres.
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Figure 2.2: Schematic representation of a fibre unit, modelled by a spherocylinder of centre Yk ∈ Ω and
directional vector ωk ∈ S

+
2 , with fixed length Lfib ∈ R

+∗ and radius Rfib ∈ R
+∗.

The various types of fibres that make up the ECM are flexible materials with the ability to stretch and
bend. They can grow and branch through the secretion of new baseline molecules by the surrounding
cells, and also shrink due to degradation by specialised enzymes [67]. Moreover, ECM fibres are inter-
connected by molecular bonds that confer connectivity and elasticity throughout the whole network [68].

We modelled all these properties by means of a single crosslinking mechanism which randomly cre-
ates and destroys elastic springs between close-by fibres. Several consecutively crosslinked fibre units
would model a long fibre with the ability to bend and/or stretch at the connection points. Spontaneous
linking of an additional unit at the end of a string models fibre elongation [125], while spontaneous
linking between two neighbouring strings models the natural biological crosslinking mechanism due to
glycoproteins. On the other hand, spontaneous unlinking of a pair of crosslinked units allows for fibre
breakage and, in a roundabout way, for fibre turnover (modelling at the same time degradation of linked
fibres by metalloproteinases and secretion of new, still unlinked fibre material by fibroblast cells).

In practice, we decided that two fibre units whose central segments are closer than a catching distance
dmax

link could develop a link according to a Poisson process of frequency νlink. This link could then broke at
anytime according to a Poisson process of frequency νunlink. As long as the link exists, the two fibres can
not link together a second time (but they can link with other fibres). We denote by pk,m(t) ∈ {0, 1} the
linking state of fibres k and m at time t (equal to 1 if they are linked and to 0 otherwise) and by dk,m the
distance between them (see later for details of its computation). With these notations, the probability of a
link being created in the time-interval [t, t+∆t] between two fibres which, at time t, are within catching
distance and not already linked, is equal to :

P

(
pk,m(t+∆t) = 1

∣∣∣ pk,m(t) = 0 and dk,m(t) 6 dmax
link

)
= 1− e−νlink∆t. (2.1)

Similarly, the probability that a link existing at time t breaks during the time-interval [t, t + ∆t] is
equal to :

P

(
pk,m(t+∆t) = 0

∣∣∣ pk,m(t) = 1
)
= 1− e−νunlink∆t. (2.2)

The difference between dmax
link and the distance 2Rfib under which fibres overlap can be seen as a meas-

ure of the “reach” of the crosslinking molecules. We did not limit the number of crosslinks attached to
the same unit so as to account for fibre branching. However, we limited the number of crosslinks between
two given units to one, so as to account for the geometric and steric constraints on the attachment of the
crosslinking molecules. In our model, two long fibres (made a several consecutively crosslinked fibre
units) running parallel can link together at numerous points but not twice along the same pair of fibre
units, meaning that the average distance between two successive crosslinks will be equal to the length
Lfib of one unit.

Computation of two fibres closest points

We describe here the actual computation of the distance dk,m between two fibres k and m and of the
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corresponding closest points Yk,m and Ym,k between these fibres. Readers not interested by technical
details can go directly to the next section.

We define dk,m as the minimal distance between the two fibres k and m central segments. Paramet-
rising the central segment of a fibre k by Fk =

{
Yk + uωk

∣∣ u ∈ [−Lfib/2, Lfib/2]
}

, we obtain :

dk,m = min
u,v∈

[
−

Lfib

2
,
Lfib

2

]‖Yk + uωk − (Ym + vωm)‖. (2.3)

We denote by (lk,m, lm,k) the argument pair minimising this equation, so that Yk,m = Yk + lk,mωk is
the point of the central segment of fibre k that is closest to the central segment of fibre m and Ym,k =
Ym+lm,kωm its counterpart on fibre m. Note that these two points may not be uniquely defined if the two
fibres have parallel axes (ωk = ±ωm). In that case, we arbitrarily chose the solution with the smallest
|lk,m| value, i.e. where Yk,m is closest to the fibre centre Yk.

The analytical expression of (lk,m, lm,k) depends on a number of conditions. We list below the various
possible configurations and the corresponding expressions for (lk,m, lm,k). An illustration of each case is
given in Figure 2.3.

1. General case ωk 6= ±ωm : problem (2.3) admits a unique minimiser.

We denote by (u∗, v∗) the positions (with respect to points Yk and Ym respectively) of the closest
points of the two infinite lines passing through the fibre axes. Their analytical expression is :





u∗ =
ωk · (Ym − Yk)− (ωk · ωm)(ωm · (Ym − Yk))

1− (ωk · ωm)2
,

v∗ =
(ωk · ωm)(ωk · (Ym − Yk))− ωm · (Ym − Yk)

1− (ωk · ωm)2
.

(2.4)

(a) If (u∗, v∗) ∈
[
−Lfib

2
,
Lfib

2

]2
then the (infinite) lines optimum coincide with the (finite) seg-

ments optimum (see Figure 2.3(1a)). In other words, we have :




lk,m = u∗ ∈
[
−Lfib

2
,
Lfib

2

]

lm,k = v∗ ∈
[
−Lfib

2
,
Lfib

2

]

(Yk,m − Ym,k) ⊥ ωk,ωm

(b) One of the optimal points is located at the extremity of its fibre (see Figure 2.3(1b)). In that
case we have either





lk,m = sign(u∗)
Lfib

2

lm,k = (Yk + lk,mωk − Ym) · ωm ∈
[
−Lfib

2
,
Lfib

2

]

(Yk,m − Ym,k) ⊥ ωm

or 



lm,k = sign(v∗)Lfib/2

lk,m = (Ym + lm,kωm − Yk) · ωk ∈
[
−Lfib

2
,
Lfib

2

]

(Yk,m − Ym,k) ⊥ ωk
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(c) Both optimal points are located at the extremity of their fibres (see Figure 2.3(1c)). In that

case we have lk,m = sign((Ym − Yk) · ωk)
Lfib

2
and lm,k = sign((Yk − Ym) · ωm)

Lfib

2
.

2. Degenerate case ωk = ±ωm : problem (2.3) may admit an infinite number of minimisers, among
which we choose the one with the smallest |lm,k| value.

(a) If
∣∣(Yk − Ym) · ωm

∣∣ 6 Lfib

2
(see Figure 2.3(2a)), then according to our definition lk,m = 0,

lm,k = (Yk − Ym) · ωm and (Yk,m − Ym,k) ⊥ ωk,ωm.

(b) If
Lfib

2
<

∣∣(Yk − Ym) · ωm

∣∣ 6 Lfib (see Figure 2.3(2b)), then according to our definition

lk,m = (Ym−Yk) ·ωk±
Lfib

2
, lm,k = sign((Yk−Ym) ·ωm)

Lfib

2
and (Yk,m−Ym,k) ⊥ ωk,ωm.

(c) If Lfib <
∣∣(Yk −Ym) ·ωm

∣∣ (see Figure 2.3(2c)) then problem (2.3) admits a unique argument

of the minimum, whose analytical expression is lk,m = sign((Ym − Yk) · ωk)
Lfib

2
and lm,k =

sign((Yk − Ym) · ωm)
Lfib

2
.

Figure 2.3: Illustration of all possible configurations for the closest points Yk,m and Ym,k of two finite
segments of respective centre Yk and Ym. We denote by lk,m (resp. lm,k) the signed distance between
Yk,m and Yk (resp. Ym,k and Ym)
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2.3. Mechanical interactions

In the following paragraphs, we will describe all the mechanical interactions between the fibres. These
interactions generate both translational forces (that alter the position of the fibres) and rotational torques
(that alter the direction of the fibres).

Fibres resistance to pressure and steric repulsion

From a physical point of view, the ECM fibres represented in our model are solid, possibly deformable
objects : each of them occupies a certain volume from which other objects are excluded. This steric
exclusion can have various effects upon contact between pairs of fibres (e.g. bouncing, deformation,
contact stress, etc). We choose to model it using Hertz’s theory for non-adhesive elastic contact between
curved surfaces [126, 127].

According to this theory, two deformable solids coming into contact will deform and flatten against
each other, creating a contact stress (or repulsive force) proportional to their contact radius rc (that is the
characteristic size of their contact area) and to their indentation depth δ (that is the depth of the overlap
that would have happen in the absence of deformation). However, including agent deformation in our
model would make it overly complicated as it would require to keep track of a complex 3D shape for
each agent (instead of the quite simple mathematical representation given above). Therefore, we took
a simplified approach where we do take into account the repulsive force generated by the contact, but
do not modify the shape of the agents and instead allow them to overlap. Note that, because we do not
register agent deformation upon contact, these deformations do not feed back on each other : a contact
between two fibres will always be a contact between two spherocylinders, even if these fibres are already
in contact with (and should be deformed by) many other agents.

A contact between two spherocylinders is not a standard case and is not described in the literature.
We can divide it into three sub-cases :

• contact between the half-sphere extremities of the two spherocylinders;

• contact between the extremity of one spherocylinder and the cylindrical body of the other;

• contact between the cylindrical bodies of the two spherocylinders;

The first two sub-cases can be solved explicitly. The third one have an implicit solution which de-
pends on the angle between the two fibres axes. Either way, except in the very marginal case of a contact
between the cylindrical bodies of two perfectly parallel fibres (which is unlikely even with the tend-
ency towards alignment of linked fibres, see below), the contact radius will be linearly proportional to√
Rfibδ . For the sake of simplicity, we will ignore the multiplicative factor and take the simplest possible

expression, that is rc =
√

Rfibδ .
As above, we denote by Yk,m and Ym,k the closest points of the central segments of the two fibres k

and m. If the two fibres touch each other then their indentation depth is δ = 2Rfib − ‖Yk,m − Ym,k‖ > 0
and, according to the Hertzian theory, fibre m exerts on its neighbour k a repulsive force equal to :

F
rep

k,m =





4

3
Erep

√
Rfib (2Rfib − ‖Yk,m − Ym,k‖)3/2

Yk,m − Ym,k

‖Yk,m − Ym,k‖
if ‖Yk,m − Ym,k‖ 6 2Rfib,

0 otherwise,
(2.5)

with Erep the effective elastic modulus, whose dimension is a mass per length per time squared (M.L−1.T−2).
Note that this physical factor depends on the intrinsic elastic properties of the agents involved in the in-
teraction, properties which we assumed to be the same for all fibre units.
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This force is applied at point Yk,m and so induces on fibre k a rotational torque with respect to its
centre-of-mass :

T
rep

k,m = lk,mωk ∧ F
rep

k,m. (2.6)

Crosslink elasticity

Following one of the two standard approaches to modelling fibre crosslinking [13, 16, 27, 34, 35], we
choose to represent the link between two fibres by an elastic spring of stiffness κrest and equilibrium length
deq

link, tied to the points of both fibre central segments that were closest at the time of the link creation. Note
that the other classic approach is to model crosslinks by hinges [11, 12, 14, 20, 28, 32, 33, 40, 123, 124],
either stiff or freely rotating.

Given two fibres k and m which develop a crosslink at time tlink, we denote by (llink
k,m, l

link
m,k) the position

(relative to their respective centre) of these two fibres closest points at time tlink. We assumed that the
link does not slide along the fibres axes, or in other words that it remains tied to the same attachment
sites Y link

k,m = Yk(t) + llink
k,mωk(t) and Y

link
m,k = Ym(t) + llink

m,kωm(t). Its length under load is thus equal to∥∥Y link
k,m − Y

link
m,k

∥∥ and, according to Hooke’s law, it exerts on fibre k an elastic restoring force of the form :

F
link
k,m = κrest

(
deq

link −
∥∥Y link

k,m − Y
link
m,k

∥∥) Y
link
k,m − Y

link
m,k∥∥Y link

k,m − Y
link
m,k

∥∥ . (2.7)

This force is applied at point Y link
k,m and so induces on fibre k a rotational torque :

T
link
k,m = llink

k,mωk ∧ F
link
k,m. (2.8)

Note that, to ensure coherence between the various elements of our model (namely steric repulsion,
link elasticity and link creation), we prescribed that 2Rfib 6 deq

link 6 dmax
link .

Fibre stiffness

The ECM fibres we seek to simulate are not infinitely flexible but exhibit a certain level of stiffness.
We modelled this by applying to linked fibres a rotational torque that will tend to make them adopt and
maintain the same direction. Considering that our fibres are non-oriented, we want this alignment pro-
cess to be nematic, i.e. we want fibres to close their smallest relative angle (see Figure 2.1). Given
two linked fibres k and m, we want ωk to rotate towards ω̃m = ωm if arccos(ωk · ωm) 6 π/2 and
towards ω̃m = −ωm otherwise. Total alignment would be achieved by rotating the fibre k by an angle
arcsin(‖ωk ∧ ω̃m‖) around the axis ωk ∧ ω̃m. Using Rodrigues’s rotation formula [128], the correspond-
ing rotation matrix is :

Rk,m = I + [ωk ∧ ω̃m]∧ +
1− ωk · ω̃m

‖ωk ∧ ω̃m‖2
[ωk ∧ ω̃m]

2
∧, (2.9)

where I is the 3 × 3 identity matrix and [u]∧ =




0 −uz uy

uz 0 −ux

−uy ux 0


 the matrix form of the cross

product by the vector u (i.e. u ∧ v = [u]∧ · v for all v ∈ R
3).

If this rotation were to occur instantly, the variation of the vector ωk would be equal to ∆ωk =
ω̃m − ωk = Rk,m · ωk − ωk = (Rk,m − I) · ωk. However, such instantaneous alignment would amount
to the combination of two linked fibre units displaying an infinite stiffness, thereby defeating one of our
main purposes in introducing fibre crosslinking into our model (namely to account for fibre bending).
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Thus, denoting αalign the maximum angular momentum per unit of time produced by our alignment
torque, the alignment torque T

align

k,m sustained by fibre k due to the flexural stiffness of its link with fibre
m is such that :

T
align

k,m ∧ u = αalign

(
[ωk ∧ ω̃m]∧ +

1− ωk · ω̃m

‖ωk ∧ ω̃m‖2
[ωk ∧ ω̃m]

2
∧

)
· u ∀u ∈ R

3, (2.10)

where αalign is the maximum angular momentum per unit of time produced by the alignment interaction,
whose dimension is M.L2.T−2.

Over-damped regime

From a biological point of view, the fibres we model move in a thick, viscous medium made of the
interstitial fluid and of all the small cells that we did not represent by individual agents. Friction is there-
fore a major phenomenon and we can reasonably assume that the system is in an over-damped regime,
i.e. that any movement will almost instantaneously reach terminal velocity. Under this assumption, the
acceleration of any agent can be considered to be null.

We also assume that the agents move at relatively low speeds. Together with the high viscosity of
the substrate, this hypothesis imply that the medium exhibits a Stokes flow (i.e. its Reynolds number is
very small compared to 1). This allows us to determine the form of the friction force sustained by the
fibres. We denote by µfib the friction coefficient (or dynamic viscosity) of the fibres with the substrate,
expressed as a mass per length per time (M.L−1.T−1). The friction force experienced by a fibre k can be
approximated by the expression :

F
fric

k (t) = −µfibLfib

dYk

dt
(t), (2.11)

which is associated to the torque :

T
fric

k (t) = −µfibL
3
fibωk(t) ∧

dωk

dt
(t). (2.12)

Note that, with this (very rough) approximation, we totally neglect the fibres anisotropy and treat
fibres as spheres of radius Lfib. Since it is known that the friction phenomenon is highly dependent of the
shape of the object considered, a more adequate modelling would be to replace the scalar coefficient µfib

by a tensor Mk = µ
||
fibωk ⊗ ωk + µ⊥

fib(I − ωk ⊗ ωk) depending on the direction of the fibre and on two

friction coefficients µ||
fib and µ⊥

fib for motion either parallel or perpendicular to the fibre axis.

2.4. Equations of motion of the fibres

Under the assumption of an over-damped regime, Newton’s second law of motion (a.k.a the fundamental
principle of dynamics) states that the sum of the forces and the sum of the torques applied to any agent
of the system are null :





F
fric

k (t) +

Nfib∑

m=1
m 6=k

(
F

rep

k,m(t) + pk,m(t)F
link
k,m(t)

)
= 0

T
fric

k (t) +

Nfib∑

m=1
m 6=k

(
T

rep

k,m(t) + pk,m(t)(T
link
k,m(t) + T

align

k,m (t))
)
= 0

∀k ∈ J1, NfibK. (2.13)
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We denote by F(t) the coordinates of all fibre units in the modelled system at time t and by L(t) the
coordinates of all crosslinks, that is :

F(t) =
{
(Yk(t),ωk(t))

∣∣ 1 6 k 6 Nfib

}
,

L(t) =
{
(k,m, llink

k,m, l
link
m,k)

∣∣ 1 6 k < m 6 Nfib and pk,m(t) = 1
}
.

Since the friction forces depend linearly on the derivatives
dYk

dt
(t) of the position of the agent centres

while the other mechanical interactions can be directly computed from the sets F(t) and L(t), the first

line of the above system can be easily reformulated as
dYk

dt
(t) = Fk(F(t),L(t)).

The second line of system is a little trickier to reformulate. Given that, for all k ∈ J1, NfibK, the
directional vector ωk(t) lives on the surface of the unit half-sphere S

+
2 , we know first that ‖ωk(t)‖ = 1

and second that ωk(t) ⊥
dωk

dt
(t). Thus, we have

(
ωk(t) ∧

dωk

dt
(t)

)
∧ ωk(t) =

dωk

dt
(t) for all fibres k

and at all times t.
Using all this, we can rewrite the system (2.13) as follows :





dYk

dt
(t) =

1

µfibLfib

Nfib∑

m=1
m 6=k

(
F

rep

k,m(t) + pk,m(t)F
link
k,m(t)

)

dωk

dt
(t) =

1

µfibL3
fib

Nfib∑

m=1
m 6=k

(
T

rep

k,m(t) + pk,m(t)(T
link
k,m(t) + T

align

k,m (t))
)
∧ ωk(t)

∀k ∈ J1, NfibK. (2.14)

It is important to note that this deterministic system apply only between the jumps of the various
Poisson processes included in our model (fibres linking and fibres unlinking). In reality, our model is
not described by a system of deterministic, Ordinary Differential Equations (ODEs) but by a system of
Stochastic Differential Equations (SDEs). However, since there is no continuous components (e.g. a
brownian motion) in the stochastic processes involved, but only jump components, the deterministic and
stochastic part of the model can be solved separately (see section 4.1 below). It is thus simpler to write
them separately.

3. Modelling the Adipose Tissue

3.1. Model introduction and summary : addition of adipocytes to the ECM

As described in chapter 1 (section 4.2), the 3D architecture of a mature Adipose Tissue is primarily made
of clusters of fat-storing cells called adipocytes, surrounded but not quite separated by well-organised
sheets of ECM. As in the case of the ECM, we want to explore whether this simple architecture can
be achieved merely through local mechanical interactions between the adipocytes and the ECM. To
test it, we constructed a three-dimensional IBM describing the insemination and growth of round cells
in a network of dynamically interconnected fibres. This was done by adding adipocytes to the model
ECMmorpho-3D described in the previous section, hereby creating a new model called ATmorpho-3D.

We give here a brief summary of the additional features associated to this model and refer the readers
to the next sections for a full description. The adipocytes are represented by non-deformable spheres
of variable radius. New adipocytes of minimum radius Rmin

ad are inseminated randomly according to a
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Poisson process of frequency νins until a maximum number Nmax
ad is reached, and existing adipocytes

undergo a linear volumic growth at constant speed Kgrowth until they reach the maximum radius Rmax
ad .

Both phenomena allow to model energy storage, respectively via hyperplasia and hypertrophy. All these
adipocytes exert on each other and on the surrounding fibres a short-ranged repulsive force modelling
volume-exclusion effects. This force is based on Hertzian theory and its maximum intensity EAA

rep (resp.
EAF

rep ) controls the amount of overlap tolerated between adipocytes (resp. between an adipocyte and a
fibre). Finally, as for the fibres, we consider an over-damped regime for adipocyte motion associated
with a dynamic viscosity µad.

Apart from adipocytes, the adipose tissue hosts various cell types including adipocyte precursors,
fibroblasts, vascular cells, nerves, multipotent mesenchymal stem-like cells and a large variety of immune
cells. Two things must be noted. Firstly, mature adipocytes are much larger (between 50 and 100 µm in
diameter) than any other type of cells (typically around 15 µm in diameter) and can thus reasonably be
assumed to exert a far greater mechanical action on an individual level. Secondly, as a group adipocytes
represent most of the volume of a mature adipose tissue. For these two reasons, we considered that the
mechanical impact of individual cells other than adipocytes was negligible and did not represent these
cells by agents. However, we did take their global impact into account by considering that they formed a
viscous medium exerting a friction force over the modelled agents (see below). We also assumed that they
were homogeneously distributed in space and time, implicitly fulfilling their biological roles as needed
for any of the biological processes explicitly included in our model.

All the features of the model ATmorpho-3D are summarised in Figure 2.4 and the corresponding
parameters listed in Table 2.2. We now turn to the details of the model components.

Figure 2.4: Scheme of all the biological processes and mechanical interactions included in the model
ATmorpho-3D.
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Parameter Domain Dimension Description

Agent characteristics

N init
ad J0, Nmax

ad K N/A Initial number of adipocytes in the system.

Nmax
ad N N/A Maximum number of adipocytes in the system.

Rmin
ad R

+∗ L Minimum adipocyte radius (= radius at insem-

ination).

Rmax
ad [Rmin

ad ,+∞[ L Maximum adipocyte radius.

Nfib N N/A Number of fibres in the system.

Lfib R
+∗ L Fibre length.

Rfib R
+∗ L Fibre radius.

Adipocyte processes

νins R
+ T−1 Adipocyte insemination frequency.

Kgrowth R
+ L3.T−1 Adipocyte volume growth per unit of time.

Crosslink processes

νlink R
+ T−1 Fibre linking frequency.

νunlink R
+ T−1 Fibre unlinking frequency.

deq

link [2Rfib,+∞[ L Link equilibrium length.

dmax
link [deq

link,+∞[ L Link maximum catching distance.

Mechanical interactions

EAA
rep R

+ M.L−1.T−2 Elastic modulus of the adipocyte-adipocyte

contact.

EAF
rep R

+ M.L−1.T−2 Elastic modulus of the adipocyte-fibre contact.

EFF
rep R

+ M.L−1.T−2 Elastic modulus of the fibre-fibre contact.

κrest R
+ M.T−2 Link stiffness.

αalign R
+ M.L2.T−2 Maximum intensity of the alignment torque

between linked fibres.

µad R
+ M.L−1.T−1 Dynamic viscosity of adipocytes.

µfib R
+ M.L−1.T−1 Dynamic viscosity of fibres.

Table 2.2: Summary of all the parameters of the model ATmorpho-3D.

3.2. Biological phenomena : adipocyte differentiation and growth

Adipocytes being relatively spherical cells, we choose to represent them by spheres of centre Xi(t) ∈ Ω
and radius Ri(t) ∈ R

+∗ (see Figure 2.5.A). Figure 2.5 gives a schematic representation of the two type of
agents included in the model ATmorpho-3D and summarises the associated mathematical notations. We
denote by :

A(t) =
{
(Xi(t), Ri(t))

∣∣ 1 6 i 6 Nad(t)
}

the coordinates of the Nad(t) adipocytes present in the modelled system at time t.
The main role of AT is to maintain the body energy balance by storing excess energy (carbohydrates
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Figure 2.5: Schematic representation of the two types of agents found in the model ATmorpho-3D. A :

adipocytes are modelled by spheres of centre Xi ∈ Ω and radius Ri ∈ R
+∗. B : Fibres are modelled

by spherocylinders of centre Yk ∈ Ω and directional vector ωk ∈ S
+
2 , with fixed length Lfib ∈ R

+∗ and
radius Rfib ∈ R

+∗.

and lipids) as triglyceride droplets inside adipocyte cells and releasing it according to metabolic needs.
Since we want to model the emergence of AT architecture, we are specifically interested in AT morpho-
genesis, that is the creation of a new layer of adipose tissue to store a continued (not occasional) excessive
influx of energy. For this reason, we will only include in our model energy storage and not energy release.

This storage has two direct consequences : adipocytes increase in volume as they store more fat
(hypertrophy), and pre-adipocyte cells differentiate into full-fledged adipocytes (hyperplasia). We ac-
count for the latter phenomenon by inseminating a new adipocyte with a small radius Rmin

ad at a position
randomly selected according to an uniform distribution in the domain Ω (thus assuming an uniform re-
partition of the progenitor cells). We generate the successive insemination times using a Poisson process
of frequency νins.

We model adipocyte growth, in a simplified way, by a linear volume growth of constant rate Kgrowth

capped by a maximal adipocyte radius Rmax
ad :

R3
i (t+∆t) = max

(
R3

i (t) +Kgrowth∆t, (Rmax
ad )3

)
. (2.15)

To avoid overcrowding the modelled tissue, we set a maximal domain occupancy rate for adipocytes
pad, from which we determine the maximal number of adipocytes allowed in the system :

Nmax
ad = pad ×

3|Ω|
4π(Rmax

ad )3
. (2.16)

We stop the insemination process when Nad(t) reaches Nmax
ad .

Note that this is equivalent to assuming that a vascularisation network was implicitly developing
“behind the scene” in the modelled system, in a way that supported all the biological phenomena we
explicitly modelled. For instance, we assumed that all adipocytes always received all the oxygen and
nutrients necessary to their survival. Note that this is equivalent to assuming an infinite influx of nutrients
everywhere in the tissue : it is an extremely rough and unrealistic approximation. However, modelling
a realistic vascularisation network and metabolism is a complex project, outside the scope of the current
work. Moreover, as stated in introduction, [17] showed that spatially biasing the biological processes to
account for an heterogeneous distribution of the vasculature did not impact the architectures generated
by their model.
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3.3. Mechanical interactions

Similarly to the fibres, the adipocytes modelled here are physical objects occupying a given volume from
which other objects are excluded. Adipocytes undoubtedly classify as deformable objects because their
cell walls, cytoplasm and triglyceride droplets are elastic (with an average overall cell stiffness lesser than
1 kPa [129]), so that two adipocytes coming into contact will deform and flatten against each other. We
thus once again use Hertz’s theory for non-adhesive elastic contact between curved surfaces [126,127] to
model the interaction between two adipocytes or an adipocyte and a fibre.

According to this theory, the deformation of two elastic spheres pushing on each other creates a
contact area in the shape of a disk and a contact stress proportional to the radius of that disk and the
indentation depth. Given two adipocytes i and j that touch each other, their indentation depth is δ =

Ri + Rj − ‖Xi −Xj‖ > 0 and the radius of their contact area is
√
Reffδ , with Reff =

RiRj

Ri +Rj

the

effective radius. Therefore, according to the Hertzian theory, adipocyte j exerts on its neighbour i a
repulsive force equal to :

F
AA
i,j =





4

3
EAA

rep

√
RiRj

Ri +Rj

(Ri +Rj − ‖Xi −Xj‖)3/2
Xi −Xj

‖Xi −Xj‖
if ‖Xi −Xj‖ 6 Ri +Rj,

0 otherwise,
(2.17)

with EAA
rep the adipocyte-adipocyte effective elastic modulus. As for the fibres, we assume that all adipo-

cytes have the same elastic properties, so that this physical factor does not depend on the agent involved.

To model the repulsion between an adipocyte and a fibre, we assumed that the geometry of a contact
between a sphere and a spherocylinder was similar to that of a contact between two spheres. This is
obviously exact if the contact happens at one of the hemispherical end of the fibre, and is a reasonable
approximation if the contact happens along the cylindrical body of the fibre.

Given an adipocyte i and a fibre k, we denote by Yk,i the point on the central segment of the fibre
which is closest to the centre of the adipocyte, i.e. the orthogonal projection of Xi on segment Fk :

Yk,i = Yk + lk,iωk = Yk + Sat((Xi − Yk) · ωk)ωk, (2.18)

with Sat the saturation function over [−Lfib/2, Lfib/2] :

Sat(x) =





−Lfib

2
if x < −Lfib

2
,

x if x ∈
[
−Lfib

2
,
Lfib

2

]
,

Lfib

2
if x >

Lfib

2
.

If the two agents are in contact then their indentation depth is δ = Ri + Rfib − ‖Xi − Yk,i‖ > 0

and the radius of their contact area is
√

Reffδ , with Reff =
RiRfib

Ri +Rfib

the effective radius. Following the

Hertzian theory, fibre k exerts on adipocyte i a repulsive force equal to :

F
AF
i,k =





4

3
EAF

rep

√
RiRfib

Ri +Rfib

(Ri +Rfib − ‖Xi − Yk,i‖)3/2
Xi − Yk,i

‖Xi − Yk,i‖
if ‖Xi − Yk,i‖ 6 Ri +Rfib,

0 otherwise,
(2.19)
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with EAF
rep the adipocyte-fibre effective elastic modulus. Conversely, adipocyte i exerts on fibre k a re-

pulsive force equal to F
FA
k,i = −F AF

i,k according to Newton’s third law. This force is applied at point Yk,i,
inducing a rotational torque with respect to the fibre centre-of-mass Yk of the form :

T
FA
k,i = lk,iωk ∧ F

FA
k,i , (2.20)

with ∧ the cross product.

For the sake of standardisation, we rename the fibre-fibre effective elastic modulus introduced in the
model ECMmorpho-3D from Erep to EFF

rep . Similarly, in this model the repulsive interaction between two
fibres k and m will be denoted F

FF
k,m and the associated torque T FF

k,m (defined by equations (2.5) and (2.6)
respectively).

3.4. Equations of motion of the agents

We denote by µad the friction coefficient (or dynamic viscosity) of the adipocytes with the substrate.
Using the same hypotheses as in the model ECMmorpho-3D, we assume that the acceleration of all
adipocytes is null and that the friction force experienced by an adipocyte i is equal to :

F
fric,A
i (t) = −µadRi(t)

dXi

dt
(t). (2.21)

For the sake of standardisation, we rename the friction force sustained by a fibre k as F fric,F
k and the

corresponding torque as T fric,F
k (see equations (2.11) and (2.12)). Applying the fundamental principle of

dynamics, we obtain a system of equations :





Nad∑

j=1
j 6=i

F
AA
i,j (t) +

Nfib∑

k=1

F
AF
i,k (t) + F

fric,A
i (t) = 0 ∀i ∈ J1, NadK,

Nad∑

j=1

F
FA
k,j (t) +

Nfib∑

m=1
m 6=k

(
F

FF
k,m(t) + pk,m(t)F

link
k,m(t)

)
+ F

fric,F
k (t) = 0 ∀k ∈ J1, NfibK,

Nad∑

j=1

T
FA
k,j (t) +

Nfib∑

m=1
m 6=k

(
T

FF
k,m(t) + pk,m(t)(T

link
k,m(t) + T

align

k,m (t))
)

+T
fric,F
k (t) = 0 ∀k ∈ J1, NfibK,

(2.22)
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which, as in the case of the model ECMmorpho-3D, can be rewritten as follows :





dXi

dt
(t) =

1

µadRi(t)




Nad∑

j=1
j 6=i

F
AA
i,j (t) +

Nfib∑

k=1

F
AF
i,k (t)


 ∀i ∈ J1, NadK,

dYk

dt
(t) =

1

µfibLfib




Nad∑

j=1

F
FA
k,j (t) +

Nfib∑

m=1
m 6=k

(
F

FF
k,m(t) + pk,m(t)F

link
k,m(t)

)

 ∀k ∈ J1, NfibK,

dωk

dt
(t) =

1

µfibL3
fib

[
Nad∑

j=1

T
FA
k,j (t)

+

Nfib∑

m=1
m 6=k

(
T

FF
k,m(t) + pk,m(t)(T

link
k,m(t) + T

align

k,m (t))
)

∧ ωk(t) ∀k ∈ J1, NfibK.

(2.23)

Again, it is important to note that this deterministic system apply only between the jumps of the vari-
ous Poisson processes included in our model (adipocyte insemination, fibres linking and fibres unlink-
ing). In practice, the deterministic and stochastic part of the model are solved separately (see section 4.1
below).

4. Numerical implementation

In this section, we will describe the main features (including cost-optimisation ones) of the algorithm we
wrote to conduct numerical simulations of the model ATmorpho-3D. Note that the model ECMmorpho-3D
can be simulated using the same algorithm by merely setting the number of adipocytes to 0. The overall
structure of the algorithm is outlined in Figure 2.6. The implementation was done in Fortran 90, a low
level programming language offering two major advantages :

• its extremely good performances which enable us to keep numerical costs at a manageable level;

• its optimised mathematical libraries, some of which have no equivalent in other languages.

The resulting program is available on GitHub.

4.1. Euler-Maruyama scheme

The solution of the system (2.23) can be well approximated numerically using an explicit Euler scheme
with adaptive time-step. The hypothesis of an over-damped regime therefore has the side benefit of saving
computational resources at the level of the discretisation scheme. But, as mentioned above, our model
does not reduce to system (2.23) : it also includes time-dependent stochastic processes.

Models involving both deterministic and stochastic components, the former usually modelling mech-
anical interactions and the latter chemical or biological processes, are now common in the field of math-
ematical biology. They are usually formulated as SDEs and there exists various numerical schemes to
approximate their solutions, which are typically based on Taylor-type approximations [130]. The simplest
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Initialisation : t = 0
Allocate variables, generate initial agents configuration and attribute boxes.

t < Tfinal ?

Compute sum of all forces and torques
(right-hand part of eq. (2.23))

Compute adaptive time-step dt
(eq. (2.26) and (2.27))

Move all agents to their new position
and account for boundary conditions

Every Tsave, save current system state

Cell growth between t and t+ dt (eq. (2.15))

Cell insemination between t and t+ dt

Update box configurations

Update link configurations between
t and t+ dt (eq. (2.1) and (2.2))

t← t+ dt

Finalisation

Yes

No

Solving
mechanical
interactions

Updating
biological
processes

Figure 2.6: Flowchart of the algorithm for the model ATmorpho-3D. Parallelised sections are enclosed
in dashed lines.
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of these is the Euler-Maruyama schemes, which is an extension to SDEs of the classic Euler method for
ODEs. Consider the following SDE :

dX

dt
(t) = a(t,X(t)) + b(t,X(t))

dS

dt
(t) ∀t ∈ [t0, T ], (2.24)

where a, b are continuous functions and S is a stochastic process independent of the configuration of the
system. Given a discretisation t0 < t1 < ... < tN = T of the time-interval [t0, T ] and a sample function
or realisation S̃ of S, the Euler-Maruyama iterative scheme is defined by :

{
X0 = X(t0),

Xn+1 = Xn + a(tn, Xn)(tn+1 − tn) + b(tn, Xn)(S̃(tn+1)− S̃(tn)) ∀n ∈ J0, N − 1K.
(2.25)

The resulting sequence (Xn)06n6N is a time discrete approximation of the continuous time stochastic
process which is solution of (2.24).

The time-steps dtn = tn+1 − tn must be adapted to the quickest phenomenon of the model, either
deterministic or stochastic. A special case occurs when the stochastic part of the SDE is not a continuous
process (e.g. a brownian motion) but a jump process (e.g. a Poisson process) evolving on a much longer
time-scale than the deterministic part. The two parts can then be dissociated in the following way :

• At a given time tn, randomly draw the time tn+1 of the next jump.

• Discretise the interval [tn, tn+1] in Nn + 1 steps tn = tn,0 < tn,1 < ... < tn,Nn
= tn+1 using a

time-step adapted to the deterministic components of the model.

• Compute the approximated solution at time t−n+1 using a classic, deterministic iterative scheme.

• Add the contribution due to the jump of the stochastic process to obtain the approximated solution
at time tn+1.

In our model however, the linking and unlinking processes are not independent of the system config-
uration. It is especially true for the linking processes, which explicitly depend on the relative position
of the fibres. The unlinking processes, on the other hand, only depend on it insofar as a new stochastic
process spawns each time a link is created.

Thus, the sample function S̃ can not be generated in advance and we must be very careful as to when
the jumps are applied, to ensure that the approximated solution (Xn)06n6N is a succession of (relative)
mechanical equilibria. Indeed, one must see that, in our model, the stochastic processes are essentially
disrupting the mechanical equilibrium that would otherwise be reached through the deterministic sys-
tem (2.23). For instance, suppose that at time tn none of the agents overlap and all links are at their
equilibrium length : the system is thus in a perfect mechanical equilibrium and the contribution of the
mechanical interactions between tn and tn+1 will reduce to 0. Suppose now that during the interval
[tn, tn+1] a number of links are created or destructed and that adipocytes are inseminated at positions
already occupied by other agents. Then, at time tn+1, the position of all agents will be exactly the same
as that of time tn (plus the new adipocytes), but the system will be very far from mechanical equilibrium.
This is not a realistic configuration and it should be quickly reorganised by the newly generated inter-
actions, but meanwhile it is not correct to store it as a point Xn+1 on the trajectory of the approximated
solution.

A more correct approach would be to take the jumps into account before computing the mechanical
interactions. If the time-step is constant this is easily done, but an Euler scheme with constant time-step
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usually produces poor results (due to the build-up of truncation errors) and switching to an adaptive time-
step is the very first step to take to improve accuracy. In that case, since the time-step dtn = tn+1 − tn
is generally not know before computing the mechanical interactions, the jumps must be generated with
respect to the previous time-step dtn−1 = tn− tn−1. The resulting modified Euler-Maruyama scheme is :

(i) Considering an equilibrated configuration Xn at time tn, randomly draw the stochastic jumps that
happened during the interval [tn−1, tn] based on Xn.

(ii) Apply them to obtain the non-equilibrated configuration X+
n at time t+n .

(iii) Compute the mechanical interactions in configuration X+
n .

(iv) Evaluate the appropriate time-step dtn.

(v) Compute the equilibrated configuration Xn+1 at time tn+1 = tn+dtn by applying the classic Euler
scheme to configuration X+

n .

Since the initial randomly generated configuration can be considered a non-equilibrated state, in
practice our algorithm start at step (iii), as can be seen on the flowchart in Figure 2.6.

In the next section, we will discuss the choice of the adaptive time-step.

4.2. Adaptive time-step

The adaptive time-step is chosen according to two constraints : two agents must not be allowed to swap
positions or “teleport” behind each other without ever coming into contact, and the probability of any
given Poisson process (adipocyte insemination, pair-wise fibre linking or pair-wise fibre unlinking) to
trigger more than once during a single time-step must be negligible.

The first condition is met if the mobility of the agents is restricted to half their smallest dimension
per time-step. We also restrict the rotation of a fibre to arctan(0.1) ≈ 5.71◦. This leads to the following
upper limits for the computational time-step :





dtad(t) = min
16i6Nad

(
Ri

2
× µadRi

‖dXi/dt‖

)
,

dtfib(t) = min
16k6Nfib

(
Ri

2
× µfibLfib

‖dYk/dt‖

)
,

dtrot(t) = min
16k6Nfib

(
0.1×

µfibL
3
fib

‖dωk/dt‖

)
.

(2.26)

Regarding the second condition, we arbitrarily considered as negligible a probability of less than 0.1.
Given a Poisson process of frequency ν, the probability to have more than two occurrences in a time-span
dt is equal to p>2(dt) = 1 − e−νdt − νdte−νdt. The function p>2 is increasing over the interval [0,+∞[
and p>2(0.5/ν) ≈ 0.09, so p>2(dt) < 0.1 for all dt 6 0.5/ν. Applying this to the Poisson processes of
our model gives :

dtPoisson(t) =





min

(
0.5

νins

,
0.5

νlink

,
0.5

νunlink

)
while Nad(t) < Nmax

ad ,

min

(
0.5

νlink

,
0.5

νunlink

)
after completion of the insemination process.

(2.27)
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Finally, the computational time-step is chosen as the minimum of all these upper-limits (with a reas-
onable floor value dtmin to prevent the program from being overly slow) :

dtn = max(min(dtad(tn), dtfib(tn), dtrot(tn), dtPoisson(tn)), dtmin). (2.28)

Note that the limits defined in (2.26) depend on the actual configuration of the system and must be
recomputed at each step, which is why the time-step is said to be “adaptive” and not constant. The limit
dtPoisson on the other hand is a piecewise constant function that changes value only once (at the end of the
adipocyte insemination process) throughout the simulation.

4.3. Data recording and disk access management

In the absence of a reliable and objective criterion to assert that a system has reached its equilibrium state,
we chose to run the numerical simulations for an arbitrary, user-defined period of time. This total time
of evolution is denoted Tfinal and is given in Ut. It differs from the computational time of the simulation,
which is the real-life run time of the simulation.

To follow the temporal evolution of the system, its state (namely the value of each variable cor-
responding to the datasets A(t), F(t) and L(t)) is recorded at regular intervals of duration Tsave. The
computational time-step is adjusted so that the algorithm saves data at exactly the times pTsave (p ∈ N) :
this makes it much easier to post-process the data and to display them as a dynamical sequence (see
chapter 3). In other words, if at a given iteration n of the Euler scheme we have :





pTsave 6 tn < (p+ 1)Tsave,

tn + dtn > (p+ 1)Tsave,

then the actual value of the time-step dtn is reduced to (p + 1)Tsave − tn so that the next iteration occurs
at time tn+1 = (p+ 1)Tsave.

Let Nsave =

⌈
Tfinal

Tsave

⌉
be the number of recording intervals in the total time of evolution (with ⌈·⌉ the

ceil function). For each 0 6 p 6 Nsave, the algorithm will produce :

• a file cellsp.dat containing Nad(pTsave) rows with the position and radius of all adipocytes (only
if the system includes adipocytes, i.e. Nmax

ad > 0);

• a file fibresp.dat containing Nfib rows with the position and direction of all fibres (only if the
system includes fibres, i.e. Nfib > 0);

• a file linksp.dat containing Nlinks = |L(t)| rows with the indexes k and m of the linked fibres
and the positions lk,m and lm,k of their attachment sites (only if the links are dynamical, i.e. νlink or
νunlink 6= 0).

All these files will be placed in a folder created at the beginning of the simulation, whose name is a
user-defined string followed by the current date and time in the format yy.MM.dd_HH.mm.

Producing these files in real time when reaching t = pTsave is the easiest and most straightforward
method, but requires to make frequent disk access requests. This will not be a problem on most machines.
However, due to their high computational cost, simulations of IBM are usually ran on computation servers
with two peculiarities :
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• As their name indicates, they are designed for high performance calculations and not for data
management, so they are not able to perform a large number of simultaneous disk accesses.

• For safety reasons (e.g. in case of power outage or network connection loss), their operating system
disables cache write. In other words, it ensures that the data is actually written to the hard disk, and
not simply in a cache, before moving on to the next operation or giving hand back to the user.

Therefore, because the standard practice is to take full advantage of a server by having multiple
processes running simultaneously (whether they be launched by the same person or by several users), a
bottleneck may appear at the data saving step. This is called a data contention : the various processes
have to pause while waiting to be granted access to the disk, sometimes resulting in a significant increase
of the run time.

A way of bypassing this problem is to manually create a cache buffer, storing the data into dedicated
variables and writing them in the disk only at the end of the simulation or when the RAM allocated to
this buffer is full. Grouping the writing operations reduce the probability of interfering with the requests
of another process, and thus the risk of bottleneck. The gain from this operation varies greatly depending
on the server load and is thus difficult to quantify.

4.4. Cell linked-list for neighbour detection

To further reduce the computational time of our algorithm, we used a “Cell linked-list” approach to locate
all agents on a numerical grid and decrease the number of pair-wise interactions to be computed at each
time-step. The method is classic and widely used when implementing IBMs [131–134]. We describe it
here in full for the sake of completeness.

The general idea is as follows. Consider a system of N agents interacting through mechanical
forces of maximum range pmax. The straight-forward way to compute all pair-wise interactions has a
O(N2) = O(ρ2agent|Ω|2) complexity (with ρagent the average agent density and |Ω| the volume of the do-
main). Increasing either the agent density (within a fixed domain) or the domain size (at fixed agent
density) leads to a quadratic increase of the computational cost. While nothing can be done regarding the
first case, the second case is not consistent with the mathematical number of interactions for short-ranged
forces : since there is no interaction between agents further apart than pmax, a large number of the N2

calculations are unnecessary.
Instead, let us divide the domain into identical rectangular cuboid boxes of side lengths greater than

pmax. The number of boxes Nbox will scale with the size of the whole domain, whereas the volume of a
single box Vbox will be fixed by the model parameters. It can be seen that, for a given agent, interactions
need to be computed only with agents located in the same box or one of its 26 neighbours. The number
of agents in one box being on average N/Nbox = ρagentVbox, the algorithmic complexity is reduced to
O(N2/Nbox) = O(ρ2agent|Ω|Vbox). As stated above the complexity is still a quadratic function of the agent
density, but it has become linear with respect to the domain size. The study of large-sized systems being
one of the major issues with IBMs, this gain is particularly appreciable.

We now turn to the technical implementation of this concept. Let Ω = [−Lx, Lx] × [−Ly, Ly] ×
[−Lz, Lz] be a domain centred on the origin and divided into Nbox boxes of side length dx, dy and dz.
We arbitrarily chose to preserve the symmetry of the domain with respect to the origin of the coordinate
system by imposing an even number of boxes in each direction. We denote by Nx (resp. Ny and Nz) the
half number of boxes in the direction x (resp. y and z), so that Nbox = 8NxNyNz. Taking into account the
fact that these numbers must be integers, that the side lengths must be greater than pmax and that reducing
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Vbox (i.e. increasing Nbox) reduce the algorithmic complexity, we have :

Na =

⌊
La

pmax

⌋
and da =

La

Na

∀a ∈ {x, y, z}, (2.29)

where ⌊·⌋ is the floor function. The procedure is illustrated in Figure 2.7. Note that, in our case, the
maximum range of the mechanical interactions is equal to :

pmax = max



2Rmax

ad︸ ︷︷ ︸
ad-ad
steric

repulsion

, Rmax
ad +

Lfib

2
+Rfib

︸ ︷︷ ︸
ad-fib steric repulsion

, Lfib + 2Rfib︸ ︷︷ ︸
fib-fib steric

repulsion

, Lfib + dmax
link︸ ︷︷ ︸

fibre
crosslinking



. (2.30)

Lx = 3 pmax

⇒ Nx = 3

Ly = 2.4 pmax

⇒ Ny = 2

dx = Lx/3 = pmax

dy = Ly/2 = 1.2 pmax

Figure 2.7: Scheme (in 2D) of the division of a domain into rectangular boxes. Only the subset [0, Lx]×
[0, Ly], which represents a quarter of the domain, is drawn.

The boxes are indexed starting from 1 in the corner (−Lx,−Ly,−Lz). Each box is therefore assigned
a unique triplet (ix, iy, iz) of coordinates along the three axes and a unique index l ∈ [1, Nbox] given by :

l = 1 + ix + 2Nxiy + 4NxNyiz. (2.31)

An agent located at point X = (x, y, z) is thus inside the box of coordinates (ix, iy, iz) defined by :

ix =

⌊
x+ Lx

dx

⌋
, iy =

⌊
y + Ly

dy

⌋
et iz =

⌊
z + Lz

dz

⌋
. (2.32)

We will now see how to organise the agents in the various boxes. To do that, we typically use four
lists :

• BoxFirstAgent (of size Nbox) which contains the index of the first agent in each box;

• BoxLastAgent (of size Nbox) which contains the index of the last agent in each box;

• LinkedAgentList (of size N ), where each cell j contains the index of the next agent in the same
box as agent j;

• AgentBox (of size N ), which contains the index of the box each agent is in.

The agents are indexed starting from 1, so that a 0 in BoxFirstAgent indicates an empty box and
a 0 in LinkedAgentList means there is no more agent in the box. For instance, the system depicted on
the left of Figure 2.8 leads to the lists on the right, constructed using algorithm 1 (which has a O(N) =
O(ρagent|Ω|) complexity). They can be read as follows :
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• box No. 1 contains agents 3 and 4;

• box No. 9 contains agents 1, 2, 5 and 7;

• box No. 11 contains agents 6, 9 and 10;

• box No. 15 contains agent 8;

• all other boxes are empty.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24 BoxFirstAgent : 3 0 1 0 6 0 8 0

LinkedAgentList : 2 5 4 0 7 9 0 0 10 0

BoxLastAgent : 4 0 7 0 10 0 8 0

AgentBox : 9 9 1 1 9 11 9 15 11 11

Figure 2.8: Example of agents localisation using the Cell linked-list method. Left : domain Ω divided in
24 boxes (numbered in blue) and containing a total of 11 agents (marked with black dots). Right : linked-
lists constructed with algorithm 1. The dashed parts indicate multiple successive zero-valued cells.

Algorithm 1 Attribute each agent to a box.
BoxFirstAgent : [0]*Nbox

BoxLastAgent : [0]*Nbox

LinkedAgentList : [0]*N

AgentBox : [0]*N

for i = 1, . . . , N do

l = index of the box containing agent i ⊲ See eq. (2.31) and (2.32).

if BoxFirstAgent(l) = 0 then

BoxFirstAgent(l) = i ⊲ Store i as the first agent in box l.

else

LinkedAgentList(LastAgent(l)) = i ⊲ Add i at the end of the linked-list of box l.

end if

BoxLastAgent(l) = i

AgentBox(i) = l ⊲ Store value of l to avoid future recalculations.

end for

The sum of all mechanical interactions sustained by any agent can now be computed and stored in
the list Grad using algorithm 2. Note that the list AgentBox has been added to save time by limiting
recalculations in algorithm 2.
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Algorithm 2 Compute all pair-wise interactions.
Grad : [0]*(N ,3)

for i = 1, . . . , N do

for all (δx, δy, δz) ∈ {−1, 0, 1}3 do

lneigh = AgentBox(i) + δx +Nxδy +NxNyδz ⊲ lneigh is a neighbour of box

AgentBox(i). See section 4.5 for the handling of boundary conditions.

j = BoxFirstAgent(lneigh) ⊲ Get first agent in box lneigh.

while j 6= 0 do ⊲ There are still unvisited agents in the box.

if j > i then ⊲ Pair-wise interactions only need to be computed once per pair.

Compute force F exerted by agent j over agent i

Grad(i, :) = Grad(i, :) + F

Grad(j, :) = Grad(j, :)− F ⊲ Reciprocal interaction.

end if

j = LinkedAgentList(j) ⊲ Get next agent in the box.

end while

end for

end for

4.5. Periodic boundary conditions

When modelling a system, an important question is the choice of the domain of modelling : it can be
either finite or infinite and, in the former case, must be associated with boundary conditions.

For IBMs (which by definition contains a finite number of agents), an infinite domain is appropriate
only if the system modelled can reasonably be assumed to be isolated from other entities by a large
amount of empty space : a flock of birds in the sky, a cluster of stellar bodies in the void, etc. Non isolated
systems may be modelled in a finite domain with various types of boundary conditions representing their
interaction with the outside world. When the modelled system is too big (in term of the number of
agents) to be numerically simulated as a whole, the usual method is to resort to a finite domain with
periodic boundary conditions : this is equivalent to assuming that the exact same system is duplicated ad
infinitum in every directions, as if the small system was immersed in a larger one.

Our model belongs to the last category. To implement the periodic boundary conditions, we used a
combination of the “ghost boxes” and “periodic wrapping” approaches described below.

The ghost boxes approach, illustrated on Figure 2.9, consists in copying the external layer of boxes
(hereafter referred to as the “frontier layer”) of the domain, as well as all the agents within, and to
paste them on the opposite border. The extended domain is denoted ΩBC = [−Lx − dx, Lx + dx] ×
[−Ly − dy, Ly + dy] × [−Lz − dz, Lz + dz] and contains 8(Nx + 1)(Ny + 1)(Nz + 1) boxes numbered
starting from corner (−Lx − dx,−Ly − dy,−Lz − dz) with the same convention as before. An agent
located in the frontier layer is copied :

• 1 times if in a face-box of Ω (an edge-box in 2D),

• 3 times if in an edge-box of Ω (a vertex-box in 2D),

• 7 times if in a vertex-box of Ω.
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The copies, called “ghost agents”, are referenced in the data structure in the same way as their parent
agent and inherit all their properties except their position (which must be translated to account for the
copy/paste process).

Hence, the data structure must allow for the existence of as much as eight times the real number N
of agents in the system (in the worst case where all real agents are located in vertex-boxes). This high
memory cost is the main drawback of the ghost boxes approach. Its advantage, on the other hand, is
that it makes it extremely easy to account for boundaries in algorithm 2 : the for loop iterates only
over the N real agents, located in real boxes which always have 27 neighbouring boxes (including them-
selves). Agents in the frontier layer will have ghost boxes and so ghost agents among their neighbours
(see Figure 2.9 for examples), accessible through the extended BoxFirstAgent and LinkedAgentList
variables. The only modification to make is to test if j is a real agent (i.e. j ∈ J1, NK) before storing the
reciprocal interaction in the variable Grad.

kk1

k2k3

j j1
m

Inside zone

Frontier layer

Ghost layer

Ω
ΩBC

Figure 2.9: Scheme of the implementation of periodic boundary conditions on all sides of a 2D domain
Ω. Inside zone : subset of the primary domain Ω that does not interact with the periodic boundaries.
Frontier layer : subset of the primary domain Ω, composed of the outer layer of boxes, that does interact
with the periodic boundaries. Agents located in this zone generate copies in the ghost layer. Ghost layer :
extraneous layer of boxes added to the primary domain Ω to produce the extended domain ΩBC (i.e.
ΩBC

∖
Ω).

For instance : agent k generates three ghosts k1 (horizontal), k2 (vertical) and k3 (diagonal), while agent
j only generates one ghost j1 (horizontal). Agent m does not generate any ghost. Agents j an m interact
naturally, while agents j and k interact through the periodic boundaries via the pairs (j, k1) and (k, j1).

The periodic wrapping approach, on the other hand, is more efficient and does not create any addi-
tional memory cost, but is also more complex to implement. It consists of identifying all pairs (Bi, Bj) of
boxes of the frontier layer that interact through the periodic boundaries. We denote by qj→i the wrapping
vector from Bj to Bi, that is the correction to be applied to the coordinates of box Bj to wrap it around the
domain to the neighbourhood of Bi. The pair-wise distance between two agents Xi ∈ Bi and Xj ∈ Bj

can thus be computed as ‖Xj + qj→i −Xi‖.
This method allows to compute interactions through the periodic boundaries without having to ac-

tually duplicate agents. The trouble is how to store the pairs (Bi, Bj) and the corresponding wrapping
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vectors in a way that is both algorithmically efficient and easily readable.

In our code, we used the periodic wrapping method and solved the aforementioned problem by pick-
ing up the idea of the extended domain ΩBC from the ghost boxes method. We did increase the number of
boxes to include ghost boxes in the lists BoxFirstAgent and BoxLastAgent, but we did not duplicate
the data by creating ghost agents : instead, ghost boxes point to the same agents as the real boxes they
mimic and we only store the translation vector that should have been applied according to the ghost boxes
method, which is really the wrapping vector of the periodic wrapping method.

Since each ghost box lghost only mimics a single real box lreal (but a real box can be mimicked by
multiple ghost boxes), the first part is done by setting BoxFirstAgent(lghost) = BoxFirstAgent(lreal)
at the end of algorithm 1 (alternatively, we could have stored a pointer from lghost to lreal). The second
part is done by creating a list BoxType which stores the type (0 for real and 1 for ghost) of each box and
a list BoxWrap which stores their wrapping vectors (0 for real boxes).

The correspondence between ghost and real boxes is as follows : a box has the type ghost if any
of its coordinates ia (with a ∈ {x, y, z}) is equal to its maximum (2Na + 1) or minimum (0) allowed
value. The corresponding coordinate ĩa of the associated real box is then the penultimate element on the
other end of the definition interval (i.e. 1 or 2Na) and the wrapping vector along the a-axis is equal to
(ia− ĩa+1)da = ±(La+da). Note that the lists BoxType and BoxWrap are constructed at initialisation
and do not need to be updated during the simulation.

With this approach, algorithm 2 only needs to be slightly modified so that, if BoxType(lneigh) = 1,
the distance between agents i and j is not ‖Xj −Xi‖ but ‖Xj +BoxWrap(lneigh)−Xi‖.

4.6. Parallelisation

Despite the optimisation of the two most time-consuming features (namely calculating the pair-wise
interactions and recording the data, see sections 4.3 and 4.4 above), our algorithm takes a long time to
run.

For instance, in chapter 5 we explore the behaviour of our model by conducting numerical simula-
tions on a comparatively small domain (Lx = Ly = Lz ≃ 2pmax), up to a final time Tfinal = 2000 Ut

allowing us to reasonably expect that the system will have reached equilibrium. The maximal adipocyte
density and fibre density tested are both equal to 50%, corresponding respectively to 955 and 2578 agents.
Simulations with such densities and intermediate linking dynamics (νlink = 0.01 and χlink = 0.4) take an
average of 18 hours to complete. Parallelising the two main for loops of our algorithm (the computation
of all forces and torques and the update of the linking configuration, see Figure 2.6) reduces this compu-
tational time to 1.85 hours !

Such parallelisation can easily be implemented in a Fortran 90 program using the library OpenMP
(Open Multi-Processing) : the programmer only needs to add banners (respectively !$OMP PARALLEL DO

and !$OMP END PARALLEL DO) at the beginning and end of the for loop they want to parallelise. How-
ever, this simplicity is misleading and hides two main traps : data dependency and concurrent memory
access, both leading to what is called a race condition.

Let us start with a brief explanation of how parallelisation works. Each instance (or ongoing execu-
tion) of a program is called a “process”. Each process is independent from other processes running on the
same machine and can not communicate with them. A “thread” on the other hand is the unit of execution
inside a process. Sequential processes are single-threaded, while parallel processes can have any number
of threads. Contrary to multiple processes on the same machine, threads within the same process share
memory and resources.
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In a parallel process, the number of threads is usually not constant. Sequential regions of the program
will be single-threaded. Upon reaching the start banner of a parallel for loop, the “master thread” will
spawn multiple sub-threads and distribute the various iterations of the loop between them. This is called
“scheduling” and can be done in three ways : static, dynamic and guided. Static scheduling splits the
iterations evenly between the threads and is best suited for regular tasks (i.e. when each iteration of
the loop takes approximately the same time). Dynamic scheduling splits the iterations into chunks (i.e.
contiguous non-empty subsets) of fixed size and distributes them along the way to threads that have
finished their previous task. It is better suited for irregular tasks because it allows a thread to complete
a large number of quick tasks while another performs a small number of slow tasks. Guided scheduling
operates in the same way except that the chunk size is not constant : it decreases with each successive
allocation in order to reduce the end time difference between the various threads. The default behaviour is
compiler-dependent. When all iterations of the loop are done, sub-threads merge into the master thread.
Note that scheduling requires the total number of iterations, or loop trip count, to be known : while loops
are thus not eligible to parallelisation.

Parallel loops can be nested : each sub-thread will then become the master thread of its own batch
of sub-threads. The maximal number of threads created on each occasion can be set globally with the
function omp_set_num_threads (with the possibility to define different values depending on the nesting
level) or specified in the start banner of each loop. The default value is environment-dependent : it is
usually either equal to 1 (i.e. no parallelisation) or to the number of Central Processing Unit (CPU) cores
of the machine the process is running on.

Obviously, all these are technical considerations that should only affect the program run time, not its
final outcome. When it is not the case, that is when the program outcome does depend on the order in
which the iterations are carried out, it is referred to as a race condition.

Because the order in which the various iterations of the loop are accomplished depends on many
factors, such as the choice of the scheduling method, the number of allocated threads and the run time of
each iteration, it is very hard to predict. Hence all the loop iterations must be independent of each other,
otherwise the behaviour of the program can not be guaranteed. This is why time-loops, where the state
of a given iteration depends on the results of the previous ones (in sequential ordering), are not suitable
for parallelisation. Such cases of data dependency are usually easily identifiable and may or may not be
bypassed, depending on the circumstances.

The second main catch to parallelisation is the problem of concurrent memory access. This happens
when two (or more) sub-threads perform a read-and-write operation on the same memory address at
nearly the same time. A typical example would be a simple counter var = var + 1 : if a thread tries to
perform this instruction while another one is already in the process of doing so, then the value initialising
both operations will be the same because the stored value of var will not yet have been modified by the
first thread when the second one reads it. The variable var will thus be updated twice with the value
var + 1 instead of reaching var + 2.

An example of concurrent memory access can be found in algorithm 2, where the same cell of the
array Grad may be accessed simultaneously by different sub-threads. For instance, if one thread is
computing the interaction between agents i = 1 and j = 8 while another is computing the interaction
between agents i = 8 and j = 12, both threads will update the value of the variable Grad(8) with the
result of their own computation, resulting in a race condition.

There are various ways to solve this issue :

1. If possible, modify the initial algorithm to circumvent the problem. In our case, it can be done by
removing the “if j > i” condition and not computing the reciprocal interaction (see algorithm 3).
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This roughly doubles the number of operations in the loop, but allows for a safe parallelisation
without other additional cost. The final result (when parallelising over 10 threads) is a 5-fold gain.

Algorithm 3 Dissociation of the computation of the two reciprocal interactions of the agent pair (i, j).
if j 6= i then ⊲ No self-interaction

Compute force F exerted by agent j over agent i

Grad(i) = Grad(i) + F

end if

2. Put the banners !$OMP CRITICAL and !$OMP END CRITICAL around the lines Grad(i) = Grad(i)+
F and Grad(j) = Grad(j) − F , so that only one sub-thread at a time can execute these instruc-
tions. This option would be interesting if the threads did not encounter the critical region very often
(for example, if we were counting the occurrences of a rare phenomenon), but in our case it create
such a bottleneck that we lose nearly all gains from the parallelisation.

3. Put a banner !$OMP ATOMIC UPDATE before each of the two problematic lines. The instructions
will then be performed atomically, i.e. allowing only one thread at a time to access a particular
memory location. Compared to a critical construct, an atomic construct reduces the bottleneck
issue because different threads can access different cells of the array Grad simultaneously, but it
can only be used for simple instructions of the form x = x op exp, with op being either +,−, ∗, /
or a binary operator and exp an expression which does not involve x. However, the strong memory
flush performed by atomic operations make them more costly than normal ones, a problem which
increases with parallelisation. In our case, when parallelising over 10 or 20 threads, algorithm 2
with atomic operations has the same performances (in term of run time) than algorithm 3.

For the sake of simplicity, we settled on solution (1) (which has the best performances, ex-aequo with
solution (3)).

Another important thing to note is that the variables used in a parallelised loop are either “shared”
(between all threads) or “private” (a separate copy being created for each thread). For instance, in al-
gorithm 2 the variables i, δx, δy, δz, lneigh, j and F should be private because they are used to store
values specific to each iteration of the loop. On the other hand, the variables AgentBox, Nx, Ny,
BoxFirstAgent, Grad and LinkedAgentList should be shared since they contain values common to
all iterations. Apart from Grad, whose case is discussed above, all these variables are never modified
inside the loop so there is no risk of concurrent memory access.

Unintentional sharing of variables is a common source of race condition. Hence, it is crucial that
the programmer declares as private all the variables that should be so (by default, only the loop index
is private). In the same way that one should avoid implicit typing of variables, a good practice is to
explicitly indicate the shared or private status of all variables (either at the beginning of the program or
in the start banner of the parallel region) instead of relying on the implicit sharing behaviour.

Finally, an often overlooked point is the way pseudorandom generators behave in a parallel setting.
All pseudorandom generators work by using a seed and a function to produce a random-looking number
and the next seed. Because the seed value must be retained between two calls of the generator, the
variable storing it is not local but global. For non thread-safe generators, different threads read from
and write to the same memory address, compromising the performance of the generator and creating a
race condition. In our case, we used the function random_number which, together with the gfortran

compiler, ensures that the seed variable is private to each thread and that each copy is initialised with a
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different value in a way that minimise the probability of aliasing. This generator has a period of 2256− 1,
so each thread (up to a maximal number of 2128 ≈ 3.1038) can generate 2128 ≈ 3.1038 random numbers
before any aliasing occurs.
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Chapter 3

Analysis framework

In this chapter, we present the data processing framework that we developed to analyse the results of
our two mathematical models ECMmorpho-3D and ATmorpho-3D presented in chapter 2, as well as the
in vivo data acquired at the Restore Institute.

We start with the challenges and tools around 3D data visualisation, and present a new Paraview
visualisation pipeline that we developed in collaboration with Charlotte Brunet, Juyeon Kim, Marion
Saint-Pée and Sinan Haliyo from the Institute of Intelligent Systems and Robotics (ISIR) at Sorbonne
University. We then present the segmentation methods we developed for the automatic detection of cell
clusters from either in silico or in vivo 3D images, in collaboration with Laetitia Pieruccioni and Mathieu
Vigneau from the Centre for Expertise and Technological Resources (CERT) at the Restore Institute,
Toulouse. These two sections gave rise to a computational tool in the form of two Paraview macros and
a Python module, which will be submitted as a methodological article (currently in preparation) and is
freely available on GitHub.

Finally, the third section is devoted to the two numerical quantifiers that we developed to characterise
the in silico fibre structures produced by our models.

Throughout this chapter, we will illustrate the discussion with both in silico and in vivo data :

• Simulation 1 : numerical simulation of the model ECMmorpho-3D.

• Simulation 2 : numerical simulation of the model ATmorpho-3D.

• Biological sample : light-sheet imaging of a mouse subcutaneous adipose tissue depot.
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1. 3D data visualisation

As discussed in chapter 1, the visualisation of tridimensional data, whether produced by mathemat-
ical models (typically through numerical simulations) or acquired from biological samples using tri-
dimensional imaging techniques, is a complex issue. A number of softwares include specific features to
plot 3D data on screen and manipulate the view. In this section, we will present our successive attempts
at data visualisation with a computational software (Matlab®), a biological data processing software
(Imaris) and a polyvalent visualisation engine (Paraview). The elements to visualise are the spherical
cells and the spherocylindrical fibres described in chapter 2.

1.1. Using a computational software : Matlab®

When they need to visualise data, modellers tend to turn first towards computational softwares such as
Python or Matlab, with which they are familiar and which provides specific libraries for data visualisa-
tion, including 3D data. However, as we will see from the illustrations below, these libraries are mainly
intended for mathematical data such as parametric curves, surface plots, point clouds, etc., potentially
2D images in .png or .jpeg format. They can display polygonal 3D objects and allow interactive manipu-
lation of the view angle, but they will quickly begin to lag as the number of displayed objects increases.
Moreover, they do not have tools for performing operations such as slicing, clipping or thresholding :
these results may be obtained by manual implementation, but this is cumbersome and can be very time-
consuming if not well optimised.

Figure 3.1.A shows a visual of a simulation of our model ATmorpho-3D using Matlab, where we
represented the adipocytes with red spheres (using sphere, a native Matlab function) and the fibres
with blue spherocylinders (using the spherocylinder function by Sathish Sanjeevi [135]). As one
can see, the result is too dense to distinguish anything beyond the outer layer, even when making the
face of the displayed objects slightly transparent. This is due to the fact that the parameters chosen
for this simulation (and for most of our simulations) produce a very dense system with closely packed
agents and non-negligible amounts of overlap between agents. Moreover, although Matlab allows to
interactively manipulate the view of a 3D visual by zooming, panning and rotating, these operations are
made extremely slow by the large number of objects to alter and cause typical laptops to lag.

Figure 3.1: Visualisation of simulation 2 with Matlab. A : 3D image of the whole system, with fibres
represented by spherocylinders. B : 3D image of the whole system, with fibres represented by segments.
C : 3D image of the adipocytes. D : 3D image of the fibres, represented by segments.

In Figure 3.1.B, we show another visual where the fibres are only represented as line segments : the
rendering is better but still hard to manipulate. In Figure 3.1.C and D, we display only one type of agents
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at a time (adipocytes in panel C and fibres in panel D). With this last strategy the visualisation is much
less obstructed, but the sense of perspective is still bad, the view manipulation very slow and we lack
tools such as slicing.

1.2. Using a microscopic data processing software : Imaris

Another software tool to visualise data is the Imaris (Interactive Microscopy Image Analysis) software
commonly used by the biological community. It is a specialised software especially adapted to data
produced by biological imaging techniques, with a strong focus on 3D and 4D (temporal) rendering. It
also includes modules for segmentation and morphological operations, making it both a visualisation and
an analysis tool. This software is used at the Restore Institute to visualise the data obtained through light-
sheet imaging of biological samples (see Figure 3.2.A). Since one of our goals is to compare the results
of our numerical simulations with these in vivo data, it would be a real advantage to be able to visualise
the two types of data (in vivo and in silico) using the same software. However, as many other biological
data processing softwares (which are often paired with the equipment acquiring the data), Imaris is very
restrictive concerning the format of the input data : it can only read pixelated images (2D), stacks of
pixelated images (3D) or several stacks of pixelated images (4D), whereas the natural way to register the
state of an IBM is to list the features of every components (see chapter 2, section 4.3). To use Imaris
we thus had to manually create, from our raw simulation data, stacks of pixelated images representing
successive slices of the system.

We display in Figure 3.2.B one such slice (created using Matlab) of a system simulated by our model
ATmorpho-3D, with adipocytes represented in red and fibres in blue. For illustration purpose, here the
two types of agents (cells and fibres) are represented on the same image with semi-transparent cores and
solid edges. In practice, we created two stacks of black-and-white images, one for the adipocytes and
one for the fibres (with objects in white and background in black), which we supplied to Imaris as two
separate colour channels. This allowed us to interactively modify the colour and the level of transparency
of each type of agent via Imaris colour setting.

After overcoming the initial difficulty of the input format, we could explore the various 3D visualisa-
tion tools provided by Imaris. Figure 3.2.C displays an example of 3D view of a simulation of our model
ATmorpho-3D which, like in our previous attempt with Matlab, is rather obstructed. Figure 3.2.D dis-
plays the same view with application of Imaris interactive slicing tool, allowing to observe the inside of
the system. Another possibility is to use the section view illustrated in Figure 3.2.D, that is synchronised
slices along the three orthogonal directions.

Finally, it is possible to supply to Imaris several files at the same time if these files follow a nomen-
clature of the type "CommonName_Cxxx_Tyyy" where the C prefix references colour channels and the T

prefix references time series. The time series allow us to visualise the temporal evolution of a system,
while the colour channels can be used to manage separately the display characteristics (colour, transpar-
ency, etc.) of different components. As mentioned above, we used the latter feature to manage separately
the visualisation of the adipocytes and the fibres.

Like Matlab, Imaris has the two disadvantages of being a commercial software and of being quite
slow on laptops. Moreover, the pre-processing step needed to create the input image stack(s) is a huge
drawback :

• It is computationally costly.

• It requires the use of a computational software in addition to Imaris, making the pipeline more
complex.
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• Achieving a satisfying resolution requires a high number of pixels in the images, leading to the
production of rather large files (which must be stored and possibly transferred to another computer,
see previous point).

• Including any supplementary information, such as which adipocyte pertains to which lobule, can
only be done via a colour code, thus inducing the creation of one image stack per supplementary
information, with no easy way of switching between the representations.

Figure 3.2: Visualisation with Imaris. A : 3D image of the biological sample. B : 2D slice of the system
for simulation 1 (image created with Matlab). C : 3D image of simulation 1. D : Application of the slicer
tool to simulation 1. E : Section view of simulation 1.

1.3. Using a polyvalent visualisation software : Paraview

Our aim is to develop a visualisation pipeline adapted to both in silico data and in vivo images, with
seamless interactive view manipulation and as user-friendly as possible. All these objectives can be met
using the software Paraview. It is a powerful, open-source software designed for the interactive visualisa-
tion of large datasets. The user-interface is quite intuitive and offers a large number of predesigned filters
to construct and customise 2D or 3D representation from data files, as well as an easy way to create mac-
ros for the automation of established protocols. Paraview is a front-end application of the Visualisation
Toolkit (VTK), a well-maintained software platform containing an expansive set of native functionalities
and providing a robust foundation for scientific visualisation.

In collaboration with Pr. Sinan Haliyo (head of the “Multiscale Interactions” team of the Institute
of Intelligent Systems and Robotics (ISIR) at Sorbonne University), Charlotte Brunet, Juyeon Kim and
Marion Saint-Pée (students of the L3 CMI Mécanique of Sorbonne University), we developed a fully
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automated 3D visualisation pipeline for data in the form of text files listing the properties of either spher-
ical or rod-like objects.

This protocol uses Paraview Sphere filter to represent spherical objects (in our case, the adipocytes)
and the Arrow filter to represent rod-like objects (in our case, the fibres). The latter choice was made
after careful consideration of the two following points :

• In most of our simulations, the agent density is such that depicting each fibre by a full-fledged
spherocylinder produces a very crowded image in which it is difficult to actually see anything past
the outer layer, as was seen during our first visualisation with Matlab.

• In practice, spherocylinders as well as line segments convey a poor sense of depth.

The two issues can be solved by using thin double-headed arrows. Note that double-headed arrows
are not among the predesigned glyphs proposed by Paraview (as of version 5.10), but can be obtained
using two single-headed arrows per object.

The whole process implies several steps, but Paraview has an integrated tool to automatise such
sequences by recording the user’s actions through one manual iteration and saving them as a macro. This
macro takes the form of a .py file (written in pvpython, the underlying language of Paraview and VTK)
which can be integrated into any Paraview setup. In our case, we created two macros, one for displaying
spherical objects and the other for rod-like objects (i.e. the adipocytes and fibres), because the data for
these two types of agents were originally stored in separate files (see chapter 2, section 4.3). These
macros, edited with ParaView-5.10, are available online at this address.

The result is displayed in Figure 3.3.A. Notice how the shading on the sphere glyphs enhances the
sense of perspective. The user can easily switch to a fibre-only or adipocyte-only view (Figure 3.3.B and
C) by simply ticking a box. The view can be manipulated smoothly through actions such as zooming,
panning and rotating but also slicing and thresholding. The latter takes as input any feature registered
in the data file provided to Paraview : thus, if we add to the data files produced by our simulations
numerical quantifiers such a those described in section 3, we will be able to selectively display agents
with a quantifier value above or below a given threshold. In the same way, each glyph (sphere or arrow)
can be coloured depending on the value of any registered feature.

In addition Paraview can, like Imaris, display the temporal evolution of system by loading a sequence
of files (with the same name except for a number) as a time-series. Any processing done to the series is
in fact applied to each file separately : this can be a little slow if the number of files is high, but once
the computation is done the visual rendering will be seamless. As an illustration, movies displaying the
temporal evolution of a few simulations using Paraview can be found online at this address.

Finally, Paraview can display our biological sample images nicely : the data only need to be converted
from their native proprietary format (czi) to a format readable by Paraview (e.g. tiff). The result is
illustrated in Figure 3.3.E. As with our in silico data, the 3D view as well as the colour intensity and
transparency can be controlled at will. Depending on the number of pixels in the image the operations
may be slow or overflow a laptop memory. This can be circumvented either by using a workstation or by
downsizing the image before visualisation.
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Figure 3.3: Visualisation of our three datasets with Paraview. A : 3D images of simulation 2. Adipocytes
are represented by spheres, fibres by double-headed arrows and the edges of the spatial domain Ω are
drawn in black. The left-hand panel displays the whole system, the central panel only the adipocytes and
the right-hand panel only the fibres. B : 3D image of simulation 1. Fibres are represented by double-
headed arrows and the edges of the spatial domain Ω are drawn in black. C : 3D image of the biological
sample.

2. Characterisation of the cellular structures : lobules segmentation

in 3D

As described in chapter 1 (section 4.2), the main structural block of AT is the lobule, i.e. a complex-
shaped cluster of adipocytes more or less enveloped in a sheet of ECM, with a poly-lobed core surrounded
by multiple string-like appendages called digitations which connect it to its neighbours.

The first step towards validating our model is thus to check if the architectures it produces do contain
lobule-like structures. The second is to compare these in silico lobules, if they exist, to real in vivo

lobules. To achieve these two objectives, we need a protocol to identify clusters of adipocytes in our in

silico data and another, as similar as possible, to do the same with in vivo data. Note that this issue, and
the solution we came up with, are not specific to our problem but can be generalised to any system or
model where the agents organise in clusters (e.g. organoid, tumour, collective motion, etc).

There was a number of technical and theoretical obstacles :

1. We actually lack a clear and precise definition of what is a lobule : while 2D images suggested that
they were well separated, ellipsoid-shaped clusters, 3D images revealed that they are in fact com-
plex, interconnected poly-lobed structures. This makes the evaluation of a segmentation difficult
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and at any rate subjective.

2. At first (and for nearly a year), we lacked of a clear, practical way to visualise our data in 3D. We
were thus unable to check the relevance of the segmentations performed by our algorithms.

3. Concerning our in silico data, the fact that we choose to apply periodic boundary conditions in
our model (see chapter 2) means that, most probably, some clusters will straddle the border of the
simulation domain. Our in silico segmentation protocol thus has to be able to deal with periodic
boundary conditions.

We gave in chapter 1 (section 3.2) a brief overview of the various existing methods to solve the wide-
spread problem of objects segmentation and clustering. We tried a few of them, which proved to be
inappropriate for various reasons :

• As the lobules have complex poly-lobed shapes, we can not define a “model” of their shape to
supply to a model-based segmentation algorithm;

• Because they are all interconnected, connectivity-based segmentation methods give poor results;

• Because they are densely nested together, the separation between them are better characterised by
the presence of fibres than a high distance between the cells, which makes density-based segment-
ation methods fail.

The solution we finally constructed rely on the watershed transformation which, as will be explained
below, can divide a continuous shape into several regions based on the presence of cores or bulks : this
property makes it ideally suited to our lobule segmentation issue. In this section, we will first outline
the general principle of the watershed transformation, then explain how we adapted it to the two cases
at hand (namely segmenting lobules in our numerical simulations and in biological sample images) and
finally introduce our numerical quantifiers for the lobules thus segmented.

2.1. Image segmentation using the watershed transformation

The watershed transformation is based on the geographical concept of watershed ridges (or drainage
divide), that is the lines separating neighbouring catchment (or drainage) basins. There are multiple
definitions (and correspondingly multiple algorithms) [59] for how the catchment basins should be de-
limited :

• Watershed by flooding : water sources are placed at each local minimum of the map and gradually
flood the entire map. Watershed lines are drawn where water from different sources meet.

• Watershed by water runoff : watershed lines are drawn at points from which a drop of water could
flow down towards distinct minima.

• Watershed by topographic distance : a point of the map is in the catchment basin of its nearest
local minimum in terms of topographic distance, that is the point located at the end of the path of
steepest descent.

We choose to use Matlab watershed function, which is based on Meyer’s flooding algorithm [136].
An example of the classic use of this function is displayed in Figure 3.4, with two equivalent representa-
tion of the same data : in panel A, a matrix of dimension 2 is seen as an altitude map for a 3D landscape,
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Figure 3.4: Illustration of the classic use of the watershed transformation. A : 3D landscape with colour
indicating the altitude and isolines drawn in black. One can note the presence of three holes constituting
local minima. There is actually a fourth local minima in the top left corner of the landscape. B : Land-
scape segmented into four catchment basins using Matlab watershed function, with colour indicating
the basins and watershed lines drawn in white. C : Landscape viewed as a 2D grayscale image, with
“isocolour” lines drawn in red for the sake of comparison. D : segmentation into four catchment basins
viewed as a 2D RGB image, with watershed lines drawn in white.

whereas in panel C the same matrix is seen as a 2D grayscale image. Panels B and D display the result
of Matlab watershed function applied to this matrix using both representations.

The watershed transformation is often used in the field of image analysis to divide a contiguous
region of a black-and-white image into several touching objects or structures. The process, illustrated in
Figure 3.5, can be described as follows :

• Consider white shapes over a black background (see Figure 3.5.A).

• For each white pixel, compute its Euclidean distance to the nearest black pixel. This creates a
distance map, that is a grayscale image with a black background and grey shapes growing whiter
away from their edges.

• Invert this distance map so that the shapes are now “valleys” (lower elevation than the baseline)
instead of “mountains” (higher elevation than the baseline), with one or more local minima inside
each shape (see Figure 3.5.B).
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• Apply the watershed function to this grayscale image to obtain a labeled region map (see Fig-
ure 3.5.C). Note that the background is also divided between the different regions. It can be re-
moved by setting the value of all original background pixels back to 0 (see Figure 3.5.D).

Figure 3.5: Illustration of the use of the watershed transformation to segment objects in an image. A :

Two 2D black-and-white images with objects in white over a black background. B : Euclidean distance
transform of these images computed using Matlab bwdist function. C : Region maps obtained by ap-
plying Matlab watershed function to the previous distance maps. D : Same region maps with original
background pixels set to 0.

Watershed can be applied in exactly the same way to 3D images, using the 3D Euclidean distance
and flooding in the three dimension simultaneously. This amounts to considering 3D images as 4D
landscapes.

As one can see with the second example in Figure 3.5, the main drawback of the watershed trans-
formation is its marked tendency to over-segmentation compared to what a human would typically expect.
This comes from the fact that small irregularities and mere non-convexity on the edges of the shapes can
create additional local minima. This is especially troublesome when the data includes noise. The issue
can be solved by removing shallow minima from the list of water sources. Of course the definition of a
shallow minima depends on the context and on prior knowledge of the data (e.g. estimation of the noise
intensity and of the size of the objects to segment). It is usually recommended to only remove minima
that are a few pixels deep, otherwise there is a non-negligible risk of sub-segmentation.

When using a pre-implemented watershed algorithm (especially if the function is proprietary, as is
the case with Matlab), one of the easiest ways to remove shallow minima is to smooth the distance map
beforehand. In Matlab this can be done using the imhmin function, which operates a preliminary flooding
of the map up to a user-defined level. This fill up all local minima of depth inferior to that level, without
modifying the rest of the image.
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2.2. Application to our in silico data

To apply the watershed transformation to the systems produced by our numerical simulations of the
model ATmorpho-3D, three steps were required : transform our data into a 3D black-and-white image,
chose an appropriate smoothing value to avoid both over- and sub-segmentation, and above all periodise
the transformation over the image edges to account for the periodic boundary conditions in the simula-
tions.

For the first step, we defined a 3D pixelated image where all pixels were initially set to 0 (black) and in
which we inserted the adipocytes by putting to 1 (white) all pixels whose centre was located at a distance
less than Ri from the adipocyte centre Xi. To restrict the numerical cost of this insertion operation, it
was not performed on the whole 3D image but only on the portion contained in the bounding box of the
spherical adipocyte.

We noted that our in silico adipocytes, being non-deformable objects which repulsed each other,
tended to leave small holes between themselves even in the core of densely packed structures. Since these
holes would have caused the apparition of multiple local minima in the core of a lobule, resulting in over-
segmentation by the watershed transformation, we had to remove them. Hole-filling image operations
performing poorly on this specific case, we instead chose to “dilate” the radius of the adipocytes by a
factor coeff_dil before inserting them in the images. After testing, the value of this factor was fixed to 1.5
so as to ensure a full overlap inside dense structures while not allowing the largest adipocytes to expand
right to the other side of a neighbouring fibre (i.e. 0.5Rmax

ad < 2Rfib in our simulations).
On the other hand, because the fibres act as separator between the different lobules, we chose to put

all pixels pertaining to a fibre back to 0 even if they were also inside an adipocyte (due to adipocyte-fibre
overlap). This ensured that our previous dilatation did not accidentally merge two neighbouring clusters
across the fibres separating them and also smoothed the bumpy edges of the clusters, further reducing the
risk of over-segmentation.

We initially expected the watershed transform to be likely to over-segment our data precisely because
of the bumpy aspect of the cluster edges : many adipocytes located at the periphery of their lobule would
be sufficiently protruding for the distance map to have a local minima at their centre. This would lead
to the segmentation of individual adipocytes all around the periphery of the lobules. However, using
the fibres to trim the border of the lobules solved this issue almost entirely, leaving only slightly jagged
edges. We merged the multiple neighbouring local minima produced by these irregularities by applying
a preliminary flooding whose level flood was determined empirically from our data : we tested several
flooding levels on several simulations and retained one which was both small (compared to the charac-
teristic size of the agents) and allowed to greatly reduce the number of local minima (dividing it by 10 on
average). This retained value is equal to 0.5 length unit.

We turn now to the issue of the periodic boundary conditions. This setting is commonly used in
mathematical modelling because of its numerous conceptual and computational advantages, but rarely
occur in the physical world – and, when it does, it is not photographable (e.g. a world map has periodic
edges but is not a photography). In consequences, pre-implemented image operations never include an
option for periodic boundary conditions. This in turn entails that it is not trivial to implement a proper
segmentation protocol for systems produced by a mathematical model with periodic boundary conditions.

In our case, the proper approach would have been to use a periodised version of both the Euclidean
distance transform and the watershed transform, so that water reaching the edge of the image would flood
the pixels located on the opposite side. However, because Matlab pre-implemented watershed function
is a black box, we have no way to modify it. We thus took an indirect approach which consists in rep-
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licating our system in all three directions before applying watershed, and then automatically merging the
various replica of each region (i.e. regions representing the same data replicated through the periodic
boundaries). This approach is illustrated in Figure 3.6. It is computationally costly since it involves con-
ducting all the segmentation steps (Euclidean distance transform, pre-flooding and watershed transform)
over an image 33 = 27 times larger, in number of pixels, than the initial one. To keep the computational
costs at a manageable level, we selected the largest pixel size (and accordingly the smallest number of
pixels) guaranteeing a reasonable representation of all the agents.

The complete segmentation pipeline can be summarised as follows :

1. Create a 3D binary image with a user-chosen pixel size (parameter pixelsize), containing the system
replicated in all three directions so that each agent is represented 27 times (step B of Figure 3.6).

• Considering a user-chosen pixelsize and a simulation domain Ω = [−Lx, Lx] × [−Ly, Ly] ×
[−Lz, Lz], create an 3D matrix of size 6Lx

pixelsize
× 6Ly

pixelsize
× 6Lz

pixelsize
filled with 0.

• Set to 1 all pixels located at a distance less than coeff_dil×Ri from the point Xi+2kxLxex+
2kyLyey + 2kzLzez, with kx, ky, kz ∈ {−1, 0, 1} (each adipocyte is thus represented 27
times).

• Set back to 0 all pixels located both inside an adipocyte and a fibre.

2. Compute the Euclidean distance transform using Matlab bwdist function.

3. Flood the resulting map up to a level flood using Matlab imhmin function with threshold flood

pixelsize
.

4. Apply the watershed transformation using Matlab watershed function and number all the resulting
regions (step C of Figure 3.6, illustrated on one of our simulations in Figure 3.7.A).

5. Attribute to each replica of an adipocyte the number of the region to which it pertains.

6. Considering that all the replica of an adipocyte ultimately pertain to the same cluster, merge the
clusters containing (replica of) the same adipocytes.

(a) List all the clusters containing at least one “real” adipocyte (not a replica) (step D of Fig-
ure 3.6).

(b) Consider as their size the number of real adipocytes they contain.

(c) Select the largest cluster and reattribute to it all real adipocytes having a replica inside it. For
each reattributed adipocyte, save the position of said replica as its “cluster position”. Remove
the cluster treated from the list.

(d) Recompute the number of real adipocytes inside each cluster after the reattribution step.

(e) Iterate the last two steps until the list is empty.

7. Consider as “isolated cells” all adipocytes pertaining to clusters of less than MinNumberOfOb-

jects= 10 objects, and consequently attribute them the number 0.

8. List all the (merged) clusters containing at least one real adipocyte and renumber them continuously
starting from 1 (step E of Figure 3.6, illustrated on one of our simulations in Figure 3.7.B).
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Figure 3.6: Scheme (in 2D) of the protocol developed to segment lobules in a periodic space. A : Initial
binary image, with stylised shapes in white over a black background. B : Replication of this image in
the ±x and ±y directions. C : Regions segmented by watershed transformation. D : Cropping to keep
only the regions that pass through the central area. E : Merging of the various replica of each shape,
i.e. regions representing the same data replicated through the periodic boundaries. F : Cropping to the
central area, resulting in a periodic segmentation map of the initial image. G : Alternative representation
of the system where each segmented region is represented by its replica having the largest intersection
with the central area, instead of being split in several components strictly contained in the initial image.

The segmented system can then be visualised by displaying all adipocytes, coloured according to
their cluster number, either at their real position (step G of Figure 3.6, illustrated on a simulation in Fig-
ure 3.7.C) or at their “cluster position” identified at step 6(c) of the above algorithm (step H of Figure 3.6,
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illustrated on one of our simulations in Figure 3.7.E).
This pipeline, which was originally implemented in Matlab, has been rewritten as an open-source

Python module and is freely available on GitHub.

Figure 3.7: Illustration on simulation 2 of our periodised watershed segmentation protocol. A : Repres-
entation of the system at step D. Each cluster passing through the central area is coloured in a specific
shade and the border of that central area are drawn in black lines. Because of the large number of clusters
at that step (53), the different shades can be hard to distinguish. B : Representation of the system at step
E. The various replica of the same cluster are coloured in the same shade and the border of the central
area are drawn in black lines. After merging, only 23 distinct clusters are left. C : Representation of the
system at step F. Each adipocyte is displayed only once, at its real position and coloured according to
the cluster to which it pertains. The border of the central area are drawn in black lines. With this rep-
resentation the simulation domain Ω is preserved, but the shapes of the clusters are hard to picture. D :

Representation of the system at step G. Each adipocyte is displayed only once, at the position of one of
its replica and coloured according to the cluster to which it pertains. The border of the central area drawn
in black lines. With this representation the clusters extend over the borders of the simulation domain Ω,
but their shapes are clearly visible.

2.3. Application to our in vivo data

Compared to the in silico case, the technical challenges posed by the in vivo data were very different :
there was obviously no question of periodic boundary conditions but, on the other hand, the native images
could not be directly segmented and required several pre-processing steps, illustrated in Figure 3.8. We
described here the complete pipeline applied to these in vivo data, starting from their acquisition.

The in vivo data are acquired through light-sheet imaging of a mouse subcutaneous adipose tissue de-
pot. The tissue samples were collected by different members of the Restore Institute, then prepared and
imaged by Laetitia Pieruccioni (CERT, Restore Institute). The tissue is first embedded in Agarose Low
Melting 1% (to prevent it from oscillating during the image acquisition), then transparized by immersion
in a mixture of methanol, benzyl alcohol and benzyl benzoate (to homogenise the refractive indices to
a final value of 1.55), and finally imaged using a light-sheet microscope “Light sheet Z7” from Zeiss.
The sample is placed in a tank containing transparizer medium. The illumination (5x) and detection
(5x) lenses are set to correct to a refractive index of 1.55. To image the whole depot with a sufficient
resolution, the area to acquire is split into a mosaic of small square tiles (with a theoretical overlap of
10% between neighbouring tiles). Each tile is then imaged at several different depths. Due to technical
constraints, the distance between two successive “slices” is greater than the pixel size in the image of one
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slice. The resulting 3D image will thus have cuboid, not cubic, pixels. The same values were used for
all samples, namely 0.92 µm in the x and y directions and 10 µm in the z direction. The total size of the
image depends on the sample. Figure 3.8.A displays an example of a tissue thus imaged and recombined
over the whole mosaic, both in 2D (single slice) and 3D view.

Once the images are acquired, several digital processing operations are performed by Mathieu Vign-
eau (CERT, Restore Institute) to transform them into black-and-white images on which we can apply our
watershed segmentation algorithm.

The first step aims to improve image quality and is carried out using Fiji software [137]. It consists
in applying, on each tile of the mosaic, a 3D median filter with ellipsoidal kernel (to remove noises)
followed by a background subtraction using the rolling ball algorithm (to enhance contrast). The second
step is the detection of adipocytes in the image using the cyto2 machine learning model of the Cellpose
software [138,139]. The model only works on 2D images and have a high computational cost which can
be reduced by working on each tile separately, instead of trying to treat the whole mosaic at once. The
model is trained on several slices from several tiles, with manual annotation of false positives (detection
of inexistent adipocytes) and false negatives (undetected adipocytes). Once trained, it is applied to each
slice of each tile of the image to generate a prediction map. The average diameter of the objects to detect
is set to 60 pixels, that is ≈ 55 µm.

The third step consists in separating the inside of the lobules from the interlobular spaces and is
performed using Fiji software. For each tile, the adipocyte prediction map is binarised to create a black-
and-white 3D image representing the adipocytes in white and all the rest, that is the data background, the
interlobular spaces and the adipocyte membranes, in black. This image is treated with a hole-filling oper-
ation to turn white all black regions smaller than 5000 pixels (≈ 42 000 µm3), considered to correspond
to adipocyte membranes.

Finally, the various tiles are fused to reconstruct the whole mosaic. In theory, this last step should
be straightforward. However, because the total acquisition time is very long (approximately 10 hours)
and the sample very large, it gradually slips from the clamp holding it : as a result, the tiles are slightly
(or badly) misaligned and do not all have the same overlap rate. Accurate automatic reconstruction is
achieved using the Stitching plugin [140] of the Fiji software. An example of the resulting image is dis-
played in Figure 3.8.B in both 2D and 3D view.

Having reached this stage, we can apply the classic watershed segmentation protocol for black-and-
white images. Note that all the above operations, and especially adipocyte detection, require images
with the highest possible resolution. The watershed algorithm on the other hand performs well on lower-
resolution images. Since its computational cost scales with the number of pixels, we choose to downsize
the data by a factor 20 in the plane (x, y), so that the 3D pixels are now 18.4 µm ×18.4 µm ×10 µm. We
also clean the image to remove all objects smaller than the maximum adipocyte volume (≈ 1.4 ·106 µm3),
which correspond to isolated cells on the border of the tissue.

We then compute the Euclidean distance map in 3D, using a modified distance function bwdist [141]
which accounts for the pixels anisotropy (see above), and apply to that map a pre-flooding of 100 µm
(that is approximately the diameter of one adipocyte) using the imhmin function. Finally, we use the
watershed function to obtain a segmented map of the lobules (see Figure 3.8.C for an illustration).
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A. Original data B. Segmentation of the C. Segmentation of
lobular spaces individual lobules

Figure 3.8: Illustration of the complete lobules segmentation pipeline for in vivo samples. A : Image ac-
quisition using light sheet imaging, by Laetitia Pieruccioni (CERT, Restore Institute). B : Identification of
the lobule components (adipocytes and their membranes) using several image processing algorithms, by
Mathieu Vigneau (CERT, Restore Institute). C : Segmentation of the lobules using a watershed algorithm
with pre-flooding up to 100 µm, by Pauline Chassonnery.

2.4. Ellipsoidal fit on the lobules

Finally, we will characterise the size and shape of the lobules segmented both from in vivo and in silico

data. To enable a systematic classification and comparison of the lobules, we want this characterisation
to be as simply as possible.

To that end, we will not take into account the possible digitations and focus on the core of each
lobules. Moreover, though in vivo lobules are polylobed, it has been observed that all the lobes of one
lobule tend to be arranged in the same direction. The general shape of its core is therefore a good first
approximation for describing the shape of a lobule.

A criterion commonly used by biologists is the elongation of the lobules, which can be computed
in several manners. Considering that our in silico lobules are composed of a relatively small number of
cells, most of these manners would be very sensitive to the presence of peripheral digitations or surface
irregularities : this is not what we are interested in. In consequence, we choose to fit each lobule with
an ellipsoid and compute the elongation (or eccentricity) of that ellipsoid. This is done using Matlab
regionprops3 function, which performs an ellipsoidal fit on each region of the segmented lobule map
(see section 2.2 above) and compute many characteristics of the regions and ellipsoids such as their
volume, centre-of-mass, orientation, elongation, etc.

One of these characteristics is the region solidity, which measures its deviation from convexity. It
is expressed as the ratio between the volume of the region and the volume of its convex hull (i.e. the
smallest convex polygon containing the region). This quantifier is useful to distinguish between lobules
with similar elongation (see first three panels of Figure 3.9). It especially allows to identify, in our in

silico data, lobules with loose, non-compact and convoluted shapes which are quite unrealistic (see first
panel of Figure 3.9).
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We will thus characterise our lobules using three scalar quantifiers : their elongation Elob ∈ [0, 1]
(equal to 0 is the lobule as no preferred direction and to 1 if it is strictly unidirectional), their solidity
Slob ∈ [0, 1] (equal to 1 is the lobule is convex) and their volume Vlob (expressed as a percentage of the
total number of cells in the system). They are illustrated on a few in silico lobules in Figure 3.9.

Figure 3.9: Illustration of the quantifiers Elob, Slob and Vlob over a few in silico lobules generated by the
model ATmorpho-3D. Note that these lobules come from different simulations.

3. Characterisation of the fibrous structures

The goal of this section is to define quantifiers allowing to quantitatively describe the local and global
organisation of the fibre network observed in the numerical simulations of our models ECMmorpho-3D
and ATmorpho-3D. We will first describe how we quantify the local alignment of the fibres by computing
the fraction anisotropy Alk of the fibre directional vectors in a neighbourhood of fibre k, then present a
quantifier Amax for the fibres organisation on a global scale, obtained from the stereographic projection
of all fibres directional vectors.

3.1. Local alignment indicator of the fibres

In healthy adipose tissue, the fibres of the ECM form long, aligned bundles that surround the lobules. To
check if and how much this kind of organisation is present in our results, we define a numerical quantifier
for the local alignment of the fibres, which we call the alignment indicator. It is computed as follows.

Let Rinteract denote the maximum interaction distance between two fibres : in our models, it is equal
to the maximum crosslinking distance dmax

link , which is always greater or equal to the repulsion range 2Rfib

(see Table 2.1 in chapter 2). That is, two fibres whose closest points are more than Rinteract apart can not
interact. For any fibre k, we define its interaction neighbourhood Bk as the set of all fibres with which it
can interact, plus itself. The projection matrix on the directional vector of a fibre m is pm = ωm ⊗ ωm,
with ⊗ the outer product. The mean of the projection matrices of the fibres in Bk is thus given by :

Pk =
1

Nk

∑

m∈Bk

pm, (3.1)
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where Nk denotes the number of fibres in Bk and is at least equal to 1. The eigenvalues λ1, λ2, λ3 of Pk

can be used to quantify the level of alignment of fibre k with its neighbours via the fractional anisotropy
formula [142] :

Alk =

√
3

2
× λ2

1 + λ2
2 + λ2

3 − 3λ̄2

λ2
1 + λ2

2 + λ2
3

, (3.2)

with λ̄ = (λ1 + λ2 + λ3)/3. Alk is called the local alignment indicator of fibre k.
In order to demonstrate a few properties of this quantifier, let us first list the following points :

• As a sum of symmetric positive-definite matrices, Pk is itself symmetric positive-definite and its
eigenvalues are in R

+.

• As projectors over 1-subspaces, the matrices pm have traces equal to 1. By linearity of the trace
function Pk has itself a trace of 1, so the sum of its eigenvalues is equal to 1 (and 3λ̄2 = 1/3).

• Combined, the two above properties imply that λ1, λ2, λ3 ∈ [0, 1].

• Studying the extrema of the function f : (x, y, z) 7→ x2+y2+z2 under the constraints x, y, z ∈ [0, 1]
and x+ y + z = 1 demonstrates that λ2

1 + λ2
2 + λ2

3 ∈ [1/3, 1].

• Pk has eigenvalues {0, 0, 1} (i.e. it is a projector over a 1-subspace) if and only if all the fibres in
Bk have the same directional vector.

• Pk has eigenvalues {1/3, 1/3, 1/3} if and only if the directional vectors of the fibres in Bk are
equally distributed in the three directions.

In consequence, the quantifier Alk is in the range [0, 1], is equal to 1 if all the neighbours of fibre k
have the same directional vector, and is equal to 0 if on the contrary the fibres in Bk display no preferred
direction.

Figure 3.10 shows the same simulations as Figures 3.3.A and B, but here the fibres have been col-
oured as a function of their local alignment indicator. This enables us to distinguish areas with higher or
lower level of alignment and can highlight the presence of interesting local structures such as the rotating
node in the centre of panel A. In the next chapters, we will use this quantifier as a visualisation tool to
support the qualitative observation of locally organised states in our numerical simulations.

Note that, if the directional vectors of the fibres in Bk are randomly distributed according to an
uniform law in S

+
2 , then Alk = 0 theoretically, but in practice it is rarely the case.

This is because the actual sampling of an uniform law is usually not fully isotropic, especially if the
number of elements in the sample is small. Figure 3.11 displays the value of the alignment indicator
obtained for various distribution of fibres and various sample sizes : it can be seen that an uniform
distribution produces alignment indicators ranging from 0.1 (when the sample size is large) to as much
as 0.55 (when the sample size is small), and that there is a large discrepancy between different samples.

These biases are much smaller for non-isotropic distributions : for mainly two- or one-directional
distributions, the values computed are nearly the same regardless of the sample size and the discrepancy
between different samples is small. For a two-directional distribution (i.e. when the fibre directional
vectors describe a disk), the eigenvalues on the mean projection matrix are theoretically {0, 1/2, 1/2},
leading to a theoretical alignment indicator of 1/

√
2 ≈ 0.707. This is very close to the value observed

in our calibration tests (see the yellow curve on Figure 3.11). Nearly two-directional distributions, where
the fibre directional vectors describe a “band” or thick disk, give lower and lower alignment indicator as
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the prominence of the third direction (i.e. the band width) increases (see the green curves on Figure 3.11).
Likewise, conical distributions, which are mainly one-directional, give an alignment indicator close to 1
which becomes lower and lower as the aperture angle of the cone increases (see the red curves on Fig-
ure 3.11).

Figure 3.10: Illustration of the local alignment indicator Alk on two simulations. A : 3D view of the fibre
network at the end of simulation 1, with edges of the spacial domain Ω drawn in black and each fibre
represented by a double-headed arrow coloured according to its local alignment indicator (from blue :
Alk = 0, to red : Alk = 1). This system has an mean alignment indicator Alsim = 0.965. B : Same
view for simulation 2 (adipocytes are not represented for a better visibility). This system has an mean
alignment indicator Alsim = 0.906.

Figure 3.11: Calibration of the local alignment indicator on random sets of directional vectors, for various
distribution laws and sample sizes. The displayed values correspond to the average and standard deviation
over 10 random draws with the same characteristics.
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In the next chapters, we will use the mean alignment indicator of all the fibres in the system, denoted

Alsim =
Nfib∑
k=1

Alk, to characterise the state of local organisation of the fibre networks produced by our

models : Alsim is high if, in general, the fibres are locally aligned, and low if they are locally disorganised.
When needing to account for the stochastic variability of our models, we will use the mean and standard
deviation of Alsim over 10 simulations conducted with the same set of parameters, denoted by Almean and
AlSTD.

3.2. Stereographic projection of the fibres

The alignment indicator is a good quantifier to describe the local organisation of the fibres, but it can
not be used to distinguish large-scale structures. Indeed, in the simulation displayed in Figure 3.10.B
the fibres are organised in structures that are very aligned locally (with high values of Alk) but rotate on
the length scale of the whole system. To achieve a characterisation of this large-scale organisation, we
designed a global numerical quantifier Amax which can be roughly described as the “size” of the point
cloud defined by the fibres directional vectors. We describe it in details below.

Figure 3.12: Illustration of the stereographic projection. The orientation axis are shown for reference. A :

Natural distribution of the fibres directional vectors on the unit sphere S2, with main direction indicated
by a red line. B : Rotation of the vectors set so that its main direction (in red) now lies along the z-axis.
The definition-space of the vectors have been reduced by central symmetry to the “north hemisphere”,
that is to the subset S+

2 in the new rotated coordinates system. The equatorial plane is shown in dark-grey.
C : Projection of the vectors onto the equatorial plane, shown in 3D perspective.

Disregarding the spatial position of the fibres (that is, the position of their centres), we can observe
the distribution of their directional vectors in the unit sphere S2 as shown in Figure 3.12.A. However, this
is not very practical as it implies a 3D visualisation which, in the present case, can be avoided. Indeed,
there is multiple ways to transform a sphere (which is ultimately a 2D surface) into a plane. We choose
the stereographic projection, a transformation which locally preserves shapes (though not distances nor
areas). We also use the fact that the fibres are non-oriented to restrict the definition-space of the directional
vectors to a half-sphere (by applying a central symmetry to vectors located in the unretained half), so that
the image of the projection will be a disk instead of the whole plane. The half in question is not chosen
at random : to reduce the risk of interesting structures being located on the edge of the half-sphere, and
so cut into two parts when symmetrising, we retain the half-sphere whose pole is the main direction of
the set of vectors.
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More precisely, we define the main direction of the fibres as the eigenvector associated to the largest
eigenvalue of their total projection matrix :

Ptot =
1

Nfib

Nfib∑

k=1

ωk ⊗ ωk. (3.3)

In the unlikely case that there is two or three equally represented directions (associated to equal
eigenvalues), one of them is randomly selected. This main direction is represented on Figure 3.12.A by a
red line.

We then rotate the set of directional vectors so that its main direction lies on the z-axis and apply to
the (rotated) vectors located in the “south hemisphere” a central symmetry, so that the definition-space is
now restricted to the “north hemisphere” of the unit sphere. Finally, we apply to our set of (rotated and
symmetrized) directional vectors the projection :

pstereo :



x
y
z


 7→




x

1 + z
y

1 + z


, (3.4)

that is a stereographic projection from the south pole onto the equatorial plane (see Figure 3.12.C).

Figure 3.13: Illustration of the global quantifier Amax on two simulations. A : Stereographic projection
of the fibres directional vectors at the end of simulation 1, with the unit circle drawn in black solid line
and the covariance ellipse of the point cloud in red dashed line. This covariance ellipse has a semi-major
axis length Amax = 0.654. B : Stereographic projection of the fibres directional vectors at the end of
simulation 2, with the unit circle drawn in black solid line and the covariance ellipse of the point cloud
in red dashed line. This covariance ellipse has a semi-major axis length Amax = 0.764.

Figure 3.13 shows the stereographic projection of the two simulations displayed in Figures 3.3.A and
B. As one can observe, in both cases the dots are not uniformly distributed but densely packed at the
centre of the unit circle, indicating the existence of a main preferential direction in the two networks.
However, not all fibres have a directional vector close to this main direction : a non negligible number
of dots are distributed all around the circle, meaning that all possible directions are represented in these
networks. Furthermore, a closer look at Figure 3.13.A reveals the presence of a “circular branch” in the
top-right part of the point cloud and allows to identify the locally twisting structure that can be observed
at the centre of the network in Figure 3.3.A : in this part of the system, nearby fibres have similar but
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gradually shifting directional vectors such that, on the scale of the whole structure, the fibres directional
vectors describe a circle (in the domain S

+
2 ).

Thus, this representation enables us to quickly grasp the distribution of the fibres directional vectors
around one or more poles. It must be noted that proximity on the stereographic projection indicates
similar directional vectors, but not necessarily spatial proximity. Nonetheless, we can gain insights into
the overall architecture of the network by characterising the distribution of the fibre directional vectors via
this stereographic point cloud. We found that, whether or not adipocytes were present in the system, the
stereographic point cloud was usually quite concentrated around the centre of the unit circle with limited
sub-clustering. It is thus relevant to fit it with a single ellipse. We used the 3σ-confidence ellipse, that is
the ellipse which would enclose 98.9% of the points if the data were randomly distributed according to a
gaussian law. This ellipse can be characterised by a number of variables : its semi-major and semi-minor
axis lengths, its area, its eccentricity, etc. In practice, we will mostly use the semi-major axis length Amax,
which gives a good idea of the dispersion of the point cloud and so of the global organisation of the fibre
network : if Amax is small the fibre directional vectors are concentrated around a main direction and the
network exhibits a strong global organisation, whereas if Amax is large the directional vectors display at
least a two-directional, and possibly a three-directional distribution with no global organisation of the
network.
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Chapter 4

Study of dynamically cross-linked fibre

networks : how matrix connectivity drives

the emergence of ordered structures

In this chapter, we investigate the behaviour of the dynamically connected fibres networks produced
by the model ECMmorpho-3D presented in chapter 2. We observe the emergence of various types of 3D
structures that we characterise using the tools developed in chapter 3. We show that these structures can
be explained by the network connectivity, which is an emerging variable of the system, and also partly
by the link life-expectancy, which is a parameter of the model. We also show that the structures emerge
homogeneous in space and on a timescale controlled by the network remodelling characteristics.

This work gave rise to a scientific paper titled “Fiber crosslinking drives the emergence of order
in a 3D dynamical network model”, written with Jenny Paupert, Anne Lorsignol, Childérick Sévérac,
Marielle Ousset, Pierre Degond, Louis Casteilla and Diane Peurichard [143], which has been accepted
under minor revision at the Royal Society Open-Science journal.

The present text is closely based on the accepted version.
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1. Introduction and motivation

As explained in chapter 1, the adequate architecture of any organ is mandatory for their efficient physiolo-
gical function and any change is associated with function impairment and putative developing dysfunc-
tions and diseases [69,144,145]. The tissue architecture depends mainly on the mechanical forces exerted
by the Extra-Cellular Matrix (ECM) which provides spatial information for cells and largely participate
to mechanical constraints [63] (see section 4.1 in chapter 1). For example, alignment as well as accumu-
lation of ECM observed in fibrosis lead to a loss of function [69,144]. Because the global architecture of
fibre networks seems to be fundamental for controlling tissue functions, modelling the process of ECM
structure emergence will greatly improve our understanding of tissue biology and plasticity in physiolo-
gical or pathological conditions.

Despite the great variability of proteins that make up the ECM (macromolecules such as collagen,
glycoproteins etc), it can be seen as a dynamic physical network of fibres interconnected by molecular
bonds, i.e. crosslinks, generating a connected and elastic environment for the surrounding cells [69].

In the present work, we test the hypothesis that this macrostructures could spontaneously emerge
without appealing to contact guidance or external mechanical challenges, as a result of simple mechanical
interactions between the fibre elements composing the ECM network.

We assess this hypothesis using the three-dimensional Individual-Based Model (IBM) for the self-
organisation of ECM that we presented in chapter 2 (section 2). ECM fibres are discretised into non-
stretching and non-flexible units with the ability to spontaneously link to and unlink from their close
neighbours. This dynamical crosslinking mechanism allows us to model both the overall temporal plasti-
city of the network and the complex physical properties of biological fibres such as elongation, bending,
branching and growth, thus compensating our minimalistic description of the fibre units. The relevance
of such discretisation was previously validated in the frame of adipose tissue morphogenesis and regen-
eration in 2D [17, 37].

Through computational simulations and exhaustive parametric analysis, we demonstrate that organ-
ised macrostructures can spontaneously emerge without external guidance. Overall, this study provides
a comprehensive view on the role of ECM connectivity on tissue architecture emergence.

• The model first reveals that dynamic remodelling is essential for the generation of ordered ECM
structures.

• We surprisingly find that, for dynamical networks, tissue architecture at equilibrium is simply con-
trolled by the number of crosslinks per fibre in the network, an emerging variable not directly linked
to the model parameters. This simple emerging variable therefore becomes an important putative
target to control and predict the development of the architecture of biological tissues. Because of
its simplicity, this variable is amenable to experimental measurements and could represent a ma-
jor target for the development of therapeutic drugs to induce tissue recovery after injury, prevent
tissue degradation during ageing, or help in the design of engineering collagen scaffolds for tissue
regeneration.

• A deep exploration of the model parameters reveals that this emerging variable, and therefore the
global organisation abilities of tissues, depend on a complex interplay between the model paramet-
ers related to the crosslinks, i.e their remodelling speed and their linked fibre fraction. These results
rationalise how even subtle changes in ECM dynamical crosslinking can drive tissue reorganisation
and suggest that the development of biological crosslinkers to control ECM connectivity as a target
for tissue reconstruction must carefully account for different parameters such as tissue remodelling
activities.
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2. Description of the experiments

To test our hypothesis, we perform numerical simulations of our model ECMmorpho-3D, that we briefly
recap here (see chapter 2, section 2 for a full description of the model components).

The ECM fibres are discretised into Nfib rigid spherocylindrical fibre units of fixed uniform length Lfib

and radius Rfib. Overlapping fibres (linked or not) exert on each other a steric repulsion force of maximal
intensity Erep. Moreover, fibres closer than dmax

link can crosslink with each other according to a Poisson
process of frequency νlink. Existing crosslinks can break spontaneously according to a Poisson process
of frequency νunlink. As a result, the linked fibre fraction χlink =

νlink

νlink + νunlink

represents the equilibrium

fraction of linked fibres among the pairs of neighbouring fibres. Each crosslink is represented by an
elastic spring of stiffness κrest and unloaded length deq

link. Linked fibres are also subjected a nematic
alignment torque proportional to the flexural modulus αalign. Finally, all fibres are subjected to a friction
force (with dynamic viscosity µfib) large enough to nullify their acceleration.

All this leads to the differential system (2.14), which we repeat below :




dYk

dt
(t) =

1

µfibLfib

Nfib∑

m=1
m 6=k

(
F

rep

k,m(t) + pk,m(t)F
link
k,m(t)

)

dωk

dt
(t) =

1

µfibL3
fib

Nfib∑

m=1
m 6=k

(
T

rep

k,m(t) + pk,m(t)(T
link
k,m(t) + T

align

k,m (t))
)
∧ ωk(t)

∀k ∈ J1, NfibK. (2.14)

This system and all the stochastic processes included in our model are numerically solved using the
algorithm described in chapter 2, section 4. The spatial domain of the simulations is Ω = [−Lx, Lx] ×
[−Ly, Ly] × [−Lz, Lz] with periodic boundary conditions. At initialisation, all Nfib fibres are randomly
inseminated according to a uniform law for both their position in Ω and their directional vector in S

+
2 .

The latter is obtained by generating the polar and azimuth angles (θ, φ) of each vector according to the
following law :

P(θ = x, ϕ = y) =
sin(y)

2π
∀x, y ∈ [0, π]. (4.1)

The physical scaling of all the parameters of the simulations are described in Table 4.1. A few points
may be noted :

• the maximum distance for link creation dmax
link and the link unloaded length deq

link are both equal to
their minimum acceptable value 2Rfib;

• the domain is relatively small compared to the agents (its side length is approximately 4 times the
size of a fibre along its main axis);

• the fibre aspect-ratio
Lfib

2Rfib

= 6 is quite small compared to the values used in other models of the

ECM, which usually varies between 250 and 104 [25, 34, 35]. This compensates the fact that these
models directly account for fibre bending and/or fibre elongation, as one elastic fibre from such
models amounts to a large number of end-to-end crosslinked rigid fibre units from our model.

We denote by φfib the fibre density of the network, that is the ratio between the total volume of fibres
(without overlapping) and the volume of the spatial domain :

φfib =
NfibVfib

|Ω| =
Nfib

(
πR2

fibLfib + (4/3)πR3
fib

)

8LxLyLz

, (4.2)
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Parameter Value Dimension Description

Agents characteristics

Nfib [1500, 3000] N/A Number of fibres

Lfib 6 L Fibre length

Rfib 0.5 L Fibre radius

Mechanical interactions

Erep 13.26 M.L−1.T−2 Magnitude of the repulsion force

κrest 5.0 M.L−2 Magnitude of the elastic restoring force

αalign 2.0 M.L2.T−2 Magnitude of the alignment torque

dmax
link 1.0 L Perception distance for link creation

deq

link 1.0 L Link equilibrium length

µfib 1.0 M.L−1.T−1 Dynamic viscosity of the fibres

Link processes

νlink [0, 10] T−1 Network remodelling speed

χlink [0.1, 0.9] N/A Equilibrium linked fibre fraction

Numerical parameters

Lx = Ly = Lz 15 L Side half-length of the cuboid domain

Tfinal 5.104 T Total time of simulation

Table 4.1: Model and numerical parameters used for the simulations.

where Vfib is the volume of one fibre and |Ω| the volume of the spatial domain.
The quantity φfib can be compared to the packing density, that is the maximal fraction of the domain

that can be occupied by densely packed, non-overlapping fibres. When considering an ordered packing,
the optimal configuration for spherocylinders is to have parallel cylindrical stems and alternated (quinc-
unx) half-spheres, as represented in Figure 4.1.A in a 2D perspective. The space is thus divided into
alternating slices that are either :

• occupied by cylinders, with a packing density equal to
π

2
√
3

(same as circles in 2D) and a height

Lfib (in green on the scheme);

• occupied by half-spheres, with a packing density equal to
π

3
√
2

(same as whole spheres) and a

height
√
3Rfib (in blue on the scheme).

The result is an overall average packing density equal to :

φorder =

(
π

2
√
3
Lfib +

π

3
√
2

√
3Rfib

)
× 1

Lfib +
√
3Rfib

(4.3)

which in our case gives φorder = 0.89.
However, since in our model fibres are randomly inseminated, the situation is closer to what is called

a random or amorphous packing : particles are generated randomly with a volume exclusion constraint
until it is no longer possible to inseminate another one. Examples of such configurations can be found in
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Figure 4.1.B. The average density reached at the end of the insemination process is called the maximal
random packing density φrandom. For spherocylinders with an aspect-ratio of 6, the literature gives us
φrandom ≈ 0.4 [146].

Thus, we may say that a system is “sparse” if its fibre density is below φrandom, “dense” if it is between
φrandom and φorder, and “hyperdense” if it is above φorder. For this set of experiments, we fix the size of the
domain and test two types of systems : dense systems containing Nfib = 3000 fibres (φfib = 0.58) and
sparse systems with Nfib = 1500 fibres (φfib = 0.29).

A. B.

Figure 4.1: A : Scheme in 2D of the optimal packing for spherocylinders. B (from [146], Fig. 1) :

Images (ray tracings) of tightly packed isotropic spherocylinders for several aspect ratios. Aspect ratios
of (clockwise from top left) α = 0 (spheres), α = 0.4, α = 40.0 and α = 2.0. For α = 0.4, the highest
packing density φ = 0.70 is achieved (see [146], Fig. 2). The packing for α = 2.0 is already to the
right of the density maximum, and has a density φ = 0.616, which is close to that of the random sphere
packings.

For each of the three types of mechanical interactions in the system, we define the “characteristic
interaction time” as the time needed, for two isolated fibres submitted only to this interaction and ini-
tially positioned in the most unfavourable configuration, to reach 99% of the (asymptotic) equilibrium
configuration.

• Trep is the time needed for two fully overlapped fibres (Y1 = Y2 and ω1 // ω2) to move apart by
99% of their equilibrium distance 2Rfib (i.e. ||Y1 − Y2|| = 0.99× 2Rfib) due to the repulsion force
alone.

• Trest is the time needed for two fibres that are initially fully overlapping and crosslinked at their
centre to move apart by 99% of their equilibrium distance deq

link due to the elastic restoring force
alone.

• Talign is the time needed for two perpendicularly intersecting fibres (Y1 = Y2 and ω1 ⊥ ω2)
crosslinked at their centre to reach a relative angle arccos(ω1 · ω2) = 0.9◦ due to the alignment
torque alone.
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Explicit computation leads to the following formula (numerical values correspond to the parameters
given in Table 4.1) : 




Trep =
27µfibLfib

4
√
2 Rfib Erep

= 4.32Ut,

Trest = ln(100)
µfibLfib

κrest

= 5.53Ut,

Talign = 4.8
µfibL

3
fib

αalign

= 523Ut.

(4.4)

It may be noted that the alignment interaction is much slower than the repulsive and elastic restoring
forces.

3. Results

3.1. Characterisation and quantitative assessment of various 3D architectures

In Figure 4.2, we present an overview of the various structures that can be obtained with the model
ECMmorpho-3D by playing on the parameters in the ranges indicated in Table 4.1 (see later sections
for the influence of the parameters). We use the data processing framework described in chapter 3 :
3D visualisation using Paraview (see chapter 3, section 1) with fibres coloured according to their local
alignment indicator Alk (see chapter 3, section 3.1) and stereographic projection of the fibres directional
vectors (see chapter 3, section 3.2). We recall that Alsim denotes the average alignment indicator of all
the fibres and Amax the semi-major axis length of the stereographic projection covariance ellipse.

The structures obtained at equilibrium range from highly organised systems with high alignment
indicator and one clear main direction, referred to as “aligned states” (Figure 4.2.A), to disordered sys-
tems with a low alignment indicator and no preferential direction, referred to as “unorganised states”
(Figure 4.2.C). An intermediate state that emerges consists in curved patterns with a median, locally
heterogeneous alignment indicator and a wide range of directional vectors describing a plane (see Fig-
ure 4.2.B). We will refer to these last structures as “curved states”. These three different types of stable
structures display very different distribution of fibres directional vectors, as observed in the stereographic
projections shown below their respective 3D visualisations. As expected, the fibres directional vectors
are very concentrated around the centre of the disk for “aligned states” (Figure 4.2.D), homogeneously
distributed on the disk for “unorganised states” (Figure 4.2.F), and distributed along a preferential axis
(corresponding to the plane in which the curve-patterns unfold) for “curved states”, with complete deple-
tion in the direction perpendicular to this axis (Figure 4.2.E).

The conclusion is that the different states of our networks can be fully characterised by combining
a quantifier for local structuring such as Alsim and a quantifier for global organisation such as Amax.
We considered a system to be locally aligned if the local distribution of its fibres directional vectors was
mainly unidirectional, that is Alsim above 0.7 (see calibration of the quantifier Alk in chapter 3, section 3).
At the same time, we considered that a system was globally aligned, in the sense that it displayed a global
main direction, if its stereographic projection covariance ellipse had a semi-major axis smaller than 0.45
(implying that the point cloud covers less than 20% of the whole projection disk). We therefore classified
the simulations outcomes into three different states (unorganised, curved and aligned) using Table 4.2.
We ran a total of 1080 numerical simulations, exploring various values of the parameters νlink, χlink and
Nfib in the broad ranges indicated in Table 4.1, and counted among their outcomes : 180 unorganised
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states (all occurring in non dynamical systems, i.e. νlink = 0), 661 curved states and 239 aligned states
(among which only 12 occurred in sparse systems).

Figure 4.2: Illustration of the three types of structure obtained at final time. Top row : 3D visualisation
with each fibre coloured according to its local alignment indicator, from blue (Alk = 0) to red (Alk = 1).
Bottom row : Stereographic projection of the fibres directional vectors (black dots) and its covariance
ellipse (red dashed line).

Amax

6 0.45 > 0.45

Alsim

> 0.7
Aligned state : alignment both local

and global.

Curved state : alignment local but

not global.

< 0.7 (alignment global but not local)
Unorganised state : no alignment,

either local or global.

Table 4.2: Classification of the simulations outcomes into different states based on the local quantifier
Alsim and the global quantifier Amax. The case {Alsim < 0.7 & Amax 6 0.45} never occurs in our
simulations and is thus unnamed.
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Figure 4.3: A : Alignment indicator Alsim versus semi-major axis length of the covariance ellipse of the
stereographic projection Amax, for each simulation of either dense systems (Nfib = 3000, on the left)
or sparse systems (Nfib = 1500, on the right). The limits between each class of structures are drawn
in dashed lines. B–M : Equilibrium state (3D view and stereographic projection) of a few simulations
illustrating either typical or borderline cases. Their position on the corresponding diagram, as well as
that of the simulations previously displayed in Figure 4.2, are indicated with a black star.
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The top panels of Figure 4.3 compare the values of quantifiers Alsim and Amax when the simulation
has reached equilibrium. The simulations already displayed in Figure 4.2 are indicated with a black
star : it can be seen that they are quite typical of their respective states in terms of the quantifiers Alsim

and Amax. Twelve other simulation outcomes are singled out with black stars and illustrated with a 3D
view and stereographic projection in the panels B to M below : the first four (panels B–E) correspond to
borderline cases of dense systems, the other eight (panels F–M) to both typical and borderline cases of
sparse systems.

We first observe that the unorganised states form a small, compact group of points with large semi-
major axis length while the aligned states make a long thin group with very high alignment indicator. On
the other hand, the curved states form a scattered cloud of points with a broad range of values for both
the semi-major axis length and the alignment indicator.

It can be seen that the transition between unorganised and curved states is very sharp : notice the gap
between the two groups of points in both panels. Indeed, no simulation displays an alignment indicator
at equilibrium between 0.65 and 0.77, and there is a marked difference between the least aligned of the
curved states (illustrated in Figure 4.3.D for dense systems and Figure 4.3.K for sparse systems) and the
most aligned of the unorganised states (illustrated in Figure 4.3.E and Figure 4.3.L for dense and sparse
systems respectively). This strengthens our choice of 0.7 for the threshold value between unorganised
and curved states and makes the partition objective since any value in the range [0.65, 0.77] would give
the same result. On the contrary, the transition from curved to aligned states is not a clear switch but a
continuum of structures that can be illustrated by the two borderline cases in Figure 4.3.B and C for dense
systems and Figure 4.3.G and H for sparse systems. Thus, one must be aware that the partition between
curved and aligned states is partly arbitrary and depends on the choice for the threshold.

Finally, we notice that aligned states are quite common among dense systems (representing 42% of the
simulations outcomes) but are very rare among sparse systems (only 2.2% of the simulations outcomes),
which tend to favour curved states.

The following sections are devoted to the parametric analysis of our model, in order to identify the
role of the parameters in the shape of the emerging structures.

3.2. ECM architecture emergence is driven by a complex interplay between the

model parameters

Following the results of [17], which served as a basis for our own model, we studied the impact of the net-
work remodelling dynamics on the different tissue architectures (aligned/curved/unorganised) obtained
with our model. In Figure 4.4, we show the distribution of the simulations outcomes at equilibrium,
depending on the values of the network remodelling speed νlink, the linked fibre fraction χlink and the
number of fibres Nfib.

The first observation is that systems with non-dynamical crosslinks (νlink = νunlink = 0, far left column
of panels A and B) are systematically unorganised, independently of the equilibrium linked fibre fraction
or the fibre density. This major result shows that non-dynamical networks are locked in mechanically
constrained configurations, preventing the system from reorganising on a local or global scale. On the
contrary, dynamical networks (νlink > 0) never equilibrate in an unorganised state : their plasticity (i.e.
their ability to rearrange their connections) favours the formation of more organised states than non-
dynamical networks. This shows that the discontinuous phase transition between unorganised and curved
equilibrium states, revealed in Figure 4.3, is controlled by νlink.

Note that the number of neighbours of a fibre is very stable throughout all our simulations. It ranges
from 20 to 25 in dense systems and from 10 to 15 in sparse systems. Non-dynamical networks display
mean alignment indicators between 0.3 and 0.45 for dense systems and between 0.4 and 0.65 for sparse

89



Figure 4.4: Distribution of the outcomes of all the simulations between the different categories (unorgan-
ised, curved and aligned). To account for the stochastic components of our model, we ran 10 simulations
for each set of parameters. We tested 2 values of Nfib, 6 values of νlink and 9 values of χlink, for a total
of 1080 simulations. A and B : Each bar gives the percentage of each category among the outcomes of
the 90 simulations conducted with a given value of νlink (on the x-axis) and Nfib (dense for panel A and
sparse for panel B). C and D : Each bar gives the percentage of each category among the outcomes of
the 60 simulations conducted with a given value of χlink (on the x-axis) and Nfib (dense for panel C and
sparse for panel D).

systems : these values are comparable to those observed in our calibration tests for an uniform distribution
with similar sample size.

In contrast, the transition between curved and aligned state is not controlled by a unique model para-
meter but is the interplay between several parameters. Indeed, we first observe in Figure 4.4 that dense
dynamical networks seem to have a greater ability to create aligned states than sparse networks, which
tend to favour curved states (compare the red zones between the left and right panels). Moreover, we also
observe that, for both fibre densities, networks with a moderate remodelling speed (νlink ≈ 0.01) seem
to have a greater ability to reorganise into aligned states than low dynamical networks (νlink ≈ 0.001) or
fast remodelling networks (νlink > 0.1) (compare the red zones between each bar within panels A and B).
These results suggest that there exists a remodelling speed maximising the network alignment.

Looking at the impact of the equilibrium linked fibre fraction χlink, we observe different behaviours
depending on the fibre density of the system. For sparse networks (Figure 4.4.D), increasing the equilib-
rium linked fibre fraction tends to favour a higher level of organisation by increasing slightly the number
of aligned states. On the contrary, dense networks (Figure 4.4.C) exhibit a more complex behaviour
where intermediate fibre fraction χlink ∈ [0.4, 0.6] generate more aligned states, implying that there exists
an equilibrium linked fibre fraction maximising the alignment of the system.
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These results show that the overall ability of our model to generate different types of tissue architec-
tures is mainly controlled by the network remodelling speed νlink and the linked fibre fraction χlink, but
the relationship between these two parameters is not trivial and also depends on the fibre density.

3.3. ECM architecture emergence can be explained by the network connectivity

Figure 4.5: Value of Almean according to Nmean
linkperfib at equilibrium, with vertical and horizontal error-bars

indicating the standard deviations AlSTD and N STD
linkperfib respectively. The value of the fibre density is

indicated with marker, that of νlink with colour and, inside each colour series, χlink is increasing with
Nmean

linkperfib. The grey dashed-line indicates the critical threshold Ncritic and the black dashed-lines the three
logarithmic fits obtained for Nmean

linkperfib < Ncritic.

Since the equilibrium state of a system depends both on the crosslinks characteristics and the system
density, the network connectivity or mean number of links per fibre Nlinkperfib(t) = Nlinks(t)/Nfib could
play a significant role in the simulation outcome. If the system is in a state of dynamical equilibrium,
this connectivity is theoretically equal to Ncatch(t) × χlink/Nfib, with Ncatch(t) the current number of pair
of fibres that could be (and potentially are) crosslinked because they are closer than the link catching
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distance dmax
link . Note that Ncatch(t) directly depends on the spatial configurations of the system components

at the current time and is thus not easily predictable, which means that the connectivity of a network can
not be known in advance (except for non-dynamical networks, which keep the same number of links
throughout the simulation). Moreover, when the system is not at equilibrium, the number of links also
depends on the spatial configurations of the system at earlier times (that is, the number of links depends
on the system history) and is not equal to its theoretical value. Since we could not predict the value of
Nlinkperfib directly with the parameters, we resorted to measuring it.

To account for stochastic variability (due to the random initial condition and the stochastic linking
and unlinking processes), we computed the mean and standard deviation of Alsim over 10 simulations
conducted with the same set of parameters, denoted by Almean and AlSTD. Similarly, we denote by Nmean

linkperfib

and N STD
linkperfib the average and standard deviation over 10 simulations of the mean number of links per fibre

Nlinkperfib.
Figure 4.5 presents Almean as a function of Nmean

linkperfib at final time : we can see that there is a striking
correlation between these two quantities. First, when Nmean

linkperfib is inferior to a critical threshold Ncritic ≈
0.7 links per fibre, there is a logarithmic relationship between the network connectivity and its alignment
indicator :

Almean ≈ α log(Nmean
linkperfib) + β, (4.5)

with

• α = 0.037, β = 1.006 and coefficient of determination r2 = 0.87 for dynamical systems (non-blue
markers);

• α = 0.129, β = 0.651 and coefficient of determination r2 = 0.96 for sparse non-dynamical
networks (blue triangles);

• α = 0.042, β = 0.433 and coefficient of determination r2 = 0.985 for dense non-dynamical
networks (blue dots).

All these correlations are shown on Figure 4.5 with black dashed lines. Then, when Nmean
linkperfib > Ncritic,

we observe an abrupt drop of the equilibrium value of Almean.
Our interpretation is that, when the number of links per fibre is small, the network is weakly con-

strained. In this configuration, an increase in the number of links per fibre improves the transmission of
information in the network and thus enhances the alignment process. The logarithmic scaling indicates
that the higher the number of links per fibre, the less prominent this feature becomes, until the gain (in
terms of the equilibrium alignment indicator) becomes null. The system then shifts into a constricted
regime where each new link adds to the constriction of the network and impedes its reorganisation, thus
decreasing its final alignment indicator.

Surprisingly and very interestingly, for dynamical systems (νlink > 0) there is no difference in align-
ment induced by the fibre density or the link characteristics νlink and χlink : the correlation observed is
the same for all sets of points. This means that, as long as a network is slightly dynamical, it can reach
an equilibrium state with an extremely high level of local alignment if its connectivity is around the
threshold value Ncritic.

The second major observation from Figure 4.5 is the difference between non-dynamical and dynam-
ical networks at equilibrium. In agreement with the results of section 3.2, we see that non-dynamical
networks, which have a fixed connectivity, are systematically less aligned than dynamical ones, inde-
pendently of the other model parameters. Moreover, although we do find the same type of relationship
between the fibre local alignment and the network connectivity, for non-dynamical networks this correl-
ation significantly depends on the fibre density.
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Altogether, these results show that the emergence of local network architecture is mainly controlled
by the network connectivity, playing the role of an ordering parameter.

For completion, in the next section we studied the impact of the life-expectancy of the links.

3.4. ECM architecture emergence is partly driven by the link life-expectancy

Here, we explore whether the network organisation abilities could be partly controlled by the link life-
expectancy, which depends of both νlink and χlink (but not Nfib) via the following relation :

Tlink-life =
1

νunlink

=
χlink

(1− χlink)νlink

. (4.6)

Because Tlink-life does not take into account the fibre density, we can not expect it to explain the
emerging architecture as well as Nmean

linkperfib. However, it would have the great advantage to be predictable
(i.e. entirely determined by the simulation parameters) instead of being an emerging variable.

Figure 4.6: Value of Almean according to Tlink-life at equilibrium for either dense (Nfib = 3000, panel
A) or sparse systems (Nfib = 1500, panel B), with vertical error-bars indicating the inter-simulation
standard deviation AlSTD. The value of νlink is indicated with colour and, inside each colour series, χlink is
increasing with Tlink-life. The characteristic time of the alignment interaction Talign = 523Ut is indicated
with a grey dashed-line for the sake of comparison.
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Figure 4.6 displays the value of Almean at equilibrium as a function of Tlink-life. We observe that,
in the case of dense systems (panel A), the alignment indicator displays a flat maximum for Tlink-life ∈
[10, 500] Ut, whereas for sparse system (panel B) it reaches its highest value at Tlink-life ≈ 500 Ut. This can
be explained by the fact that, when the average life-expectancy of a link Tlink-life is very small compared to
the characteristic time of the alignment interaction Talign = 523 Ut, the links do not persist long enough
to fully exert their aligning influence and the equilibrium alignment indicator is lesser. This is especially
true for sparse systems, which display a clear drop for Tlink-life < 500 Ut. For dense systems, the drop is
slower and less pronounced.

On the other hand, when Tlink-life is large compared to Talign, the links last on average longer than
necessary to wield their full effect and lock the system in non-optimal configurations by obstructing the
action of other links. Though these locally locked structures will disappear over time, others will appear -
or, to put it another way, the transmission of information (i.e. the fibre direction) in the network is too slow
for all the agents to synchronise and the system will not be able to reach an extremely aligned equilibrium
state. Going to the extreme, when Tlink-life = +∞ the links are non-dynamical and the communication
lines are totally frozen, making the system unable to align even locally.

The link life-expectancy Tlink-life is thus a relatively good predictor of the simulation equilibrium state,
even if it does not explain the discrepancy between the behaviour of dense and sparse systems.

It must be noted that all these considerations only relate to the equilibrium state reached by the
systems on a long time-scale. Thus, although some parameters have little or no influence on the final
state of the system, they may still have a major impact on its time dynamics. This is discussed in the next
section.

3.5. ECM local alignment emerges on a timescale controlled by its remodelling

characteristics

In this section, we study the evolution of the quantifier Almean over time. Figure 4.7 displays this evolution
for dense systems with various values of νlink and χlink.

Our main observation is that, for all parameters, the alignment indicator follows an inverted exponen-
tial growth, that is a quick initial growth followed by a slow convergence towards an asymptotic value.
We computed the time-constant τAl of this growth, whose classical definition is the time needed for the
quantifier to reach 63% of its asymptotic value, and plotted it on the corresponding curve with a black
circle. It can be seen that, in our case, it corresponds approximately to the time at which Almean crosses
the 0.7 threshold between unorganised and curved states.

We observe that, for a given value of νlink, the shorter the time-constant, the higher the equilibrium
value of the alignment indicator (compare the curves inside each panel). By comparing the panels from
left to right, we see that the faster the remodelling of the network, the faster the convergence of the system
towards its equilibrium value. Moreover, by comparing the extreme cases χlink = 0.1 (blue curve) with
χlink = 0.9 (pink curves) of panels A and C, we see that the dependence of the reorganisation time τAl on
the equilibrium linked fibre fraction is not trivial. Indeed, fast remodelling networks seem to reorganise
faster when the equilibrium linked fibre fraction is large than low, while the reverse is observed for slow
remodelling networks. Altogether, these results suggest that for each network dynamics, there exists a
most efficient range of equilibrium linked fibre fraction allowing for quicker convergence to equilibrium.

To explore in more details the dependence between the convergence speed and the parameters of the
networks, in Figure 4.8 we plot τAl as a function of χlink, for different values of νlink. The left panel
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Figure 4.7: Temporal evolution the quantifier Almean for dense systems (Nfib = 3000) and various linking
dynamics (νlink = 0.001 for panel A, νlink = 0.01 for panel B and νlink = 0.1 for panel C), with shading
indicating the inter-simulation standard deviation AlSTD. The time-constant τAl of this inverted exponen-
tial growth is indicated with a black circle and the limit between unorganised and curved or aligned states
is drawn with a dashed line.

Figure 4.8: Time-constant τAl of the average alignment indicator (Almean) according to the equilibrium
linked fibre fraction χlink, with colour depending on the remodelling speed νlink and marker depending on
the fibre density. Left : Results for all tested sets of parameters, whatever the outcomes of the simulations.
Right : Results for all tested sets of parameters which lead, on average, to an aligned state.

displays the value of τAl for each set of parameters while the right panel only shows τAl for the sets of
parameters leading, on average over 10 simulations, to an aligned equilibrium state.

We can first see on the left panel that τAl decreases when νlink increases according to a non-linear
relationship which saturates for νlink > 0.1 (compare the different colour points). These results show that
fast remodelling networks relax faster to their steady-states than slow-dynamical networks. Moreover,
sparse systems organise quicker than dense systems at low linking dynamics (νlink 6 0.01, compare the
dot and triangle markers for the green and yellow populations), whereas there is no difference between
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dense and sparse systems for fast remodelling networks (νlink > 0.1 where dot and triangle markers are
superimposed).

For each value of νlink, there is a most efficient range of equilibrium linked fibre fraction χlink allowing
for a lower value of τAl and so a quicker convergence to equilibrium. For slow remodelling networks
(νlink = 0.001, green markers) this range lays between χlink = 0.2 and χlink = 0.3, because systems
with too much crosslinks will undergo stiffening and take longer to relax, but systems with too few
crosslinks will have difficulty to align themselves. As one can observe, the range of χlink allowing the
fastest convergence to equilibrium shifts towards 1 as the network remodelling speed νlink increases. As
the network remodelling increases, a greater number of crosslinks will then promote a quicker alignment.

When looking only at parameter sets which, on average, lead to aligned equilibrium states (right panel
of Figure 4.8), we can see that these parameter sets cover all remodelling dynamics and correspond to
the range of equilibrium linked fibre fraction leading to fastest convergence for each remodelling speed.
We conclude that the most efficient systems (which organise the fastest) are also those that align most.

3.6. ECM architecture emergence follows a unique evolutionary path

In this section, we study the temporal evolution of the spatial structures : this gives us more insights
into the role of the parameters in tissue structuring. We use the time-constant τAl, that emerged from the
analysis in the previous section, as a time-scale for the temporal evolution of the system in the following
discussion.

Movies displaying the full temporal evolution of a few simulations are available online at this ad-
dress. In Figure 4.9.A–A”’ and B–B”’, we show the 3D view and stereographic projection of two of these
simulations (respectively from Movie3.mp4 and Movie4.mp4) at a few well chosen time frames (namely
0.5τAl, τAl, 3τAl and Tfinal). They correspond to dense systems with χlink = 0.8 and two different cross-
link dynamics : fast remodelling network νlink = 0.1 (panels A–A”’, Movie3.mp4) and slow remodelling
network νlink = 0.001 (panels B–B”’, Movie4.mp4). These screenshots enable us to answer the important
question of how the network global structure emerges. It is not by accretion around a few structured areas
that gradually merge together, but by an overall homogeneous structuring. Indeed, one can observe that
the directional vectors gradually concentrate around a main direction without creating clustered points
that merge together. This behaviour can be observed both for very aligned networks (panels A-A”’) or
curved states (panels B–B”’), and in fact in all our simulations, independently on the network density.
Therefore, our model suggests that the emergence of tissue architecture occurs on a global scale.

We turn now towards the analysis of the time trajectories of the spatial structures observed within our
different networks. Panels C–C” of Figure 4.9 display the trajectory in the phase plane Amax vs Alsim of
individual simulations conducted with various set of parameters. We chose this one-run representation
instead of the usual 10-runs average because the two quantifiers exhibit a non-negligible inter-simulations
variability, so that plotting the standard deviation AlSTD as shading would blur the graphic but plotting
only the average value Almean would give a limited and partial view of the situation.

It can be seen that all the trajectories follow a common pattern. It begins with a sharp increase of the
alignment indicator (from 0.15 to between 0.4 and 0.5) while maintaining a quasi-constant semi-major
axis length : this corresponds to the partial depletion of one direction (denoted d1) in the family of the
fibres directional vector, thus shifting from the initial uniform distribution to a mainly two-directional
distribution (see chapter 3, section 3 for more details on this interpretation). Non-dynamical networks,
which are not represented on these graphics, do not go past that first stage.

The trajectories then diversify : the alignment indicator keeps increasing while the semi-major axis
length either decreases, stays constant or slightly increases. The first case is the most common and
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Figure 4.9: Temporal evolution of dense systems. A–A”’ and B–B”’ : 3D view and stereographic pro-
jection of the system at various times, for one simulation with χlink = 0.8 and either νlink = 0.1 (A–A”’)
or νlink = 0.001 (B–B”’). C–C” : Trajectory in the plane Amax–Alsim of a few individual simulations. The
limits between each class of structures are drawn in dashed lines. D–D” : Evolution of Nmean

linkperfib, with
shading indicating the inter-simulation standard deviation N STD

linkperfib. The critical value Ncritic is marked
with a dashed line.
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indicates that, while direction d1 keeps depleting until near extinction, one of the two remaining directions
starts to deplete as well. This diversification happens on the scale of the time-constant τAl of the alignment
indicator (marked on the trajectories of Figure 4.9.C–C” with a black circle).

Lastly, simulations ending in an aligned state and part of those ending in a curved state display a stage
of condensation of the fibres directional vectors around a main direction. This is marked by a shrinking
of the covariance ellipse and a slow increase of the alignment indicator, which has already nearly reached
its steady state (compare with the stabilisation of Almean in Figure 4.7). This last point comes from the
local quality of the quantifier Alsim (and by extension Almean) : a system can be very aligned locally, but
not globally, if the main direction of the local structures varies smoothly across space. Thus, the trans-
ition between a curved and an aligned state is mostly characterised by a gradual shifting of multiple local
structures towards the same direction, a phenomenon better registered by the quantifier Amax than Alsim.

Finally, we observe that the number of links per fibre (displayed in Figure 4.9.D–D”) undergoes a
transient increase followed by a two-stage exponential decay (appearing as a piece-wise linear decrease
on the semi-logarithmic scale). The initial accumulation of crosslinks is more pronounced, in the sense
that the peak is higher and the subsequent decrease slower, when χlink is high and νlink is low. For
the extreme case of slow remodelling networks with a large linked fibre fraction (νlink = 0.001 and
χlink = 0.9), the phenomenon is so strong that only the first stage of exponential decay is observed during
the time of the simulation. On the other hand, for fast remodelling networks (νlink = 0.1, panel D”) and/or
small equilibrium linked fibre fraction (χlink = 0.1, blue curve on each panel), we do not observe any
crosslinks accumulation.

This behaviour can be explained by comparing the linking dynamics to the characteristic time of the
repulsive interaction Trep = 4.32 Ut. Parameter χlink describes the proportion of linked fibres among all
linkable fibres at equilibrium, but this equilibrium takes time to establish (inversely proportional to νlink).
If the repulsion interaction operates faster than the links remodelling (i.e. Trep ≪ 1/νlink), then the link-
able configurations will change before the linking/unlinking processes could equilibrate on the current
configuration : new links will appear between newly overlapping fibres while former overlapping fibres
will still be linked even if not overlapping anymore, leading to an accumulation of links in the system.
This happens all the more if the disparity between the frequencies νlink and νunlink is more favourable to
linking than unlinking (νlink > νunlink, i.e. if χlink > 0.5).

The system thus exhibits a global, macroscopic relaxation phenomenon which emerges from its vari-
ous local, microscopic properties. It can be seen that the characteristic time-scale of this relaxation is
comparable to the time-constant of the alignment indicator τAl (see position of the black circles on the
curves in Figure 4.9.D–D”, which indicates the value of τAl for the corresponding set of parameters).

We conclude that slow remodelling networks with a high equilibrium linked fibre fraction χlink first
build up increasing stress and stiffen before slowly relaxing, whereas networks with low χlink or fast
remodelling networks exhibit stress relaxation and do not undergo high stiffening. As a result, these last
types of networks reach higher local alignment at equilibrium.

These results demonstrate a nonlinear dependence between the network properties and the type and
proportion of its crosslinks. A high number of long lasting crosslinks promotes crosslink accumulation
resulting in medium/low alignment, while fast remodelling reduces the mechanical action of the indi-
vidual links on the overall network, resulting in lowly connected networks being unable to align. The
network alignment ability therefore requires a number of links adapted to its remodelling speed : fast
remodelling networks need a high equilibrium linked fibre fraction to quickly reach a high alignment
indicator, whereas slow remodelling networks need a low equilibrium linked fibre fraction to prevent
crosslink accumulation and the increase of matrix stiffness.
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4. Discussion

In this work, we have implemented a 3D model for fibre networks composed of fibre elements capable to
dynamically crosslink or unlink each others, to align with each others at the crosslinks and to repel their
nearest neighbours to prevent fibres from cluttering. We showed that this model can spontaneously gener-
ate various types of macrostructures whose emergence can be finely described. The model reveals that the
different macrostructures (i) can be easily explained by a single emerging intermediate variable, namely
the connectivity of the ECM network, (ii) emerge homogeneously in space and not in a fragmented way,
and (iii) follow the same unique evolutionary path for all structures and not multiple paths.

To our knowledge, this work is the first exhaustive study questioning the mechanisms of tissue archi-
tecture emergence via a simple mechanical model of dynamical fibre networks in 3D. This framework
reveals that the different tissue architectures at equilibrium is directly controlled by a simple intermediary
variable, the network connectivity (see section 3.3). Our interpretation is that, when the number of links
per fibre is inferior to the critical threshold Ncritic, the network is weakly constrained. In this configura-
tion, an increase in the number of links per fibre improves the transmission of information in the network
and thus enhances the alignment process. The logarithmic scaling indicates that the higher the number
of links per fibre, the less prominent this feature becomes, until the gain (in terms of the equilibrium
alignment indicator) becomes null. The system then shifts into a constricted regime where each new link
adds to the constriction of the network and impedes its reorganisation, leading to a decrease of the local
alignment.

The fact that we observe the same correlation for all dynamical networks means that, as long as a
network is slightly dynamical, its final alignment is mostly controlled by its connectivity rather than
by its remodelling dynamics or its density. On the other hand, non-dynamical networks are locked in
mechanically constrained configurations, preventing the system from reorganising efficiently compared
to dynamical ones and leading to a much lower level of alignment. However, we showed that non-
dynamical networks still contain some degrees of freedom allowing for spatial matrix reorganisation, and
that this organisation is controlled again by the network connectivity but also by the matrix density, which
becomes an important factor. Indeed, denser networks are even less organised than sparse networks : this
is due to the fact that denser networks are overcrowded, preventing any reorganisation of their fibres.

The existence of a simple emerging variable such as the network connectivity to control tissue struc-
turing can have major therapeutic implications in systems where the architecture of the ECM is impacted
(scarring, fibrosis, ageing), but can also prove very useful in the field of tissue engineering. It is note-
worthy that this variable is not prescribed by model parameters but emerges from the initial simple rules
as a combination of ECM remodelling dynamics, linked fibre fraction and fibre spatial organisation, in-
dependently of supplementary complex interactions involving external factors such as migrating cells,
contractile forces etc. However, the correlation between network connectivity and fibre alignment only
gives local information on the long-time structures (mean local alignment of the fibres at equilibrium).

The second major contribution lies in the analysis of the fine time evolution of the spatial structures.
This documents the different temporal evolution of the structures as function of the ECM remodelling
speed and reveals an unique trajectory for all architecture combined with internal and transient temporal
windows during which they self-organise.

The equilibrium structures obtained with our model can be classified into three types : (a) aligned
states with a strong organisation around one main direction, (b) curved states with a median, locally het-
erogeneous alignment indicator and a wide range of directional vectors living in a plane, named curved
patterns and (c) unorganised states with very low alignment indicator and no preferential direction. Unor-
ganised states were exclusively obtained for non-dynamical networks composed of permanent crosslinks
(νlink = 0), whose plasticity was very low due to their inability to rearrange their crosslinks. In contrast,

99



dynamical networks exhibited a mixture of aligned and curved states. These results point to the essential
role of matrix remodelling in ECM structuring, consistent with several results in the literature (see [147]
and references therein).

In emerging systems, the characteristics of the final outcome cannot be predicted from the initial
rules of the system and the paths from the initial interactions to the final equilibrium can be numer-
ous and complex corresponding to a stochastic evolution. This is not completely the case in our model
because, if indeed the emerging macrostructures cannot be predicted from the initial rules and the emer-
gence must be understood as a whole, the path is simple and unique and can be strongly predicted by an
intermediate emerging variable (the connectivity of the ECM network). Our study suggests that the very
aligned structures observed in fibrotic tissues could be mainly due to excess accumulation of crosslinks,
consistent with the alterations of ECM structure observed as a consequence of increased crosslinking in
lung fibrosis [148] or cancer [71], or again with previous studies on tissue-induced alignment of fibrous
ECM [144,149]. Such deciphering of the emergence would open numerous perspectives for future invest-
igations. Indeed, because of its simplicity, this emerging variable (the connectivity of the ECM network)
is amenable for experimental measurements and represents a new putative target for the development of
therapeutic drugs one could develop to restore the architecture of various biological tissues after external
or internal alterations. In vivo experiments must be conducted to definitively validate this hypothesis and
are out of the scope of this manuscript.

Finally, the temporal evolution of the structures revealed that dynamical networks composed of long-
lasting links exhibited a phase of crosslink accumulation followed by a “relaxation” phase (reduction of
the network connectivity) associated with a spatial reorganisation of its fibres, whereas fast remodelling
networks exhibited only the “relaxation” phase. These results suggest possible mechanisms for crosslink
accumulation observed for instance in ageing tissues [76]. Moreover, the new insights into the temporal
evolution of the structures as function of the ECM remodelling speed could prove useful in the field of
tissue engineering, where there is a need to design efficient biological crosslinkers [150, 151].

5. Perspectives

An in-depth exploration of the structures produced by our model revealed the existence of a rare, second-
ary type of curved state which can be described as a twist or an helicoid : at equilibrium, the directional
vectors of the fibres display a fully planar (two-directional) distribution, and the direction of one fibre
depends on its position along the axis perpendicular to that plane. Figure 4.10 displays one such case
where the structure is especially striking because it happens to be nearly aligned with the axes of the
simulation domain : the fibres are all perpendicular to the y-axis, but their directional vector varies ±x
to ±z according to their position along this same y-axis. In order to highlight this continuous twisting,
the fibres in the image are coloured not according to their local alignment indicator (which is uniformly
high) but according to the magnitude of the z-coordinate of their directional vector. It can be seen that
this quantity varies smoothly along the y-axis (including across the periodic border), being equal to 0 near
the plane {y = 0} (the fibres are then perpendicular to the z-axis) and to 1 near the planes {y = ±Ly}
(the fibres are then oriented along the z-axis).

The planar distribution of the fibres directional vectors is evidenced by their stereographic projection,
which describe a thin band of nearly uniform width spanning the whole length of the unit circle (see
Figure 4.10). Indeed, helicoidal states are characterised by their very high semi-major axis length Amax

(equal to 0.9675 for the simulation displayed Figure 4.10) which are among the twenty highest registered
in all dense simulations (including number one, two and four). They also display very high local align-
ment indicator Alsim (equal to 0.9924 for the system displayed in Figure 4.10). Since all the fibres are
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almost perfectly aligned with their neighbours, these structures are very stable once they have emerged.
However, their emergence itself is very sensitive to the stochastic variability of our model. Among

the six parameters sets that produced an helicoidal state, only one did it twice out of ten independent
simulations. Figure 4.11 displays the trajectories in the plane Amax vs Alsim of all the simulations ending
in an helicoidal states. It can be seen that they all exhibit a sharp bifurcation during their third phase of
evolution, which should have lead them towards an aligned state : as the covariance ellipse had begun to
condense, it suddenly expand again while maintaining a quasi-constant alignment indicator. This shows
that helicoidal states occur when a curved structure evolving towards an aligned state randomly happens
to “close” on itself before the fibres directional vectors can condensate around a single main direction.
From this point on, the helicoid will only strengthen itself and will never break down.

Figure 4.10: Illustration of an helicoidal state. Left : 3D view of the system with fibres coloured accord-
ing to the magnitude of the z-coordinate |ωz| of their directional vector. The axis are indicated at the
bottom right corner of the domain. Right : Stereographic projection of the fibres directional vectors.

Figure 4.11: Trajectories in the plane Amax–Alsim of the seven simulations ending in an helicoidal state.
The simulation illustrated in Figure 4.11 correspond to the purple curve. Note that helicoidal states only
occur in dense systems (Nfib = 3000) and that two of them resulted from the same parameters set.

It would be very interesting to study these structures in more details. One thing to do would be to run
a large number of simulations around the range of parameters which produced them, to better delineate
the range in which they can be formed and accurately compute their probability of occurrence.

However, we first need to make sure that helicoidal states are a genuine, intrinsic outcome of our
model and not an artefact produced by the periodic boundary conditions in a small-sized domain. Indeed,
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because the side-length of the simulation domain is only about 4 times the length of a fibre, the boundary
conditions enforces strong constraints on the network and can reasonably be expected to facilitate the
occurrence of locked rotating structures. The question is whether helicoidal states could emerge in a
larger, less constraining spatial domain.

More generally, the small size of the simulation domain is a clear limitation of our study. It was
chosen as a reasonable balance between the risk of interferences from the boundary conditions and the
computational cost of our model, which allowed use to explore a large range of parameters. Now that
we have clearly outlined the structures produced by our model, an important validation step would be to
reproduce these results in a larger spatial domain.

In this study, we demonstrated the ability of fibre networks to spontaneously self-organise as function
of the kinetics of their crosslinks. Our model features active crosslinks, i.e crosslinks that generate an
alignment of the fibres they are attached to. As a result, our fibre networks self-organise without needing
to be subjected to any external mechanical stimuli. However, it would be interesting to study how they
react to mechanical stimuli such as tensile/compressive stress, shear, etc. sustained before or after having
reached their autonomous equilibrium state. For example, it is natural to expect that an aligned and
a curved network will not displays the same overall elastic moduli when subjected to tensile stress.
Moreover, the dynamic aspect of our model obviously raise the issue of its plasticity : will a network
regain its former state once the stimuli stops ? It could be presumed that quickly remodelling networks
would oppose low resistance to any type of stimuli, resulting in an irreversible (plastic) deformation
even at low stress, whereas slow remodelling networks would exhibit a more elastic (rather than plastic)
response. On the other hand, the plastic or elastic nature of the deformation may be more related to the
duration of the stimuli compared to the remodelling speed of the network. For instance, all dynamical
networks sustaining a compressive stress should exhibit stress-stiffening due to crosslink accumulation
when their density increase. Quickly remodelling networks would stiffen very quickly, resisting the
compression and deforming little, but also relaxing quickly after the end of the stimuli. At the same time,
slow remodelling networks would undergo crosslink accumulation only under prolonged compression,
but the phenomenon may then be quasi-permanent, preventing them from returning to their initial size.

Future works will be devoted to studying the mechanical properties of the dynamical networks pro-
duced by our model. Another interesting perspective would be to add cells having the ability to generate
locally biophysical cues such as tension, stiffness and fibre production/degradation and study these ef-
fects on the structure and mechanical properties of the ECM networks. As first step in this direction has
already been taken with the introduction, in the model ATmorpho-3D, of spherical cells exerting a steric
pressure on the neighbouring fibres. The consequences over the network organisation of the addition of
this new type of agent are studied in chapter 5.

Finally, it is noteworthy that our model features networks composed of only one type of crosslinks
(permanent or transient with a given life expectancy). A natural perspective of our works would be to
study the self-organisation abilities of networks composed of heterogeneous crosslinks, following the
works of [20]. One could represent the various crosslinking molecules of the ECM by different type of
crosslinks, each with its own linking and unlinking dynamics but also mechanical properties.

For example, one could imagine a blend of very elastic, long reaching crosslinks (with low κrest and
large dmax

link ) and stiff, short reaching crosslinks (with high κrest and small dmax
link ).
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Chapter 5

Study of adipose tissue architecture

emergence

In this chapter, we investigate the behaviour of the systems produced by the model ATmorpho-3D,
which are composed of a dynamically connected fibres network inside which spherical cells appear and
grow. This model is aimed at reproducing the emergence of Adipose Tissue (AT) architecture and is fully
described in chapter 2.

We observe the emergence of lobule-like clusters of cells that we segment and characterise using the
tools developed in chapter 3. We show that the cells have a marginal impact on the global organisation
of the fibre network, whereas the intrinsic properties of the fibre network exert a major influence on both
this network organisation and the shape of the cell clusters, in agreement with previous 2D findings [17].
Lastly, we show that our in silico lobules compare quantitatively well to in vivo lobules segmented in AT.

We end the chapter with a discussion on the major findings and the many perspectives of this work.
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1. Introduction and motivation

In this chapter, we aim to investigate numerically the 3D Individual-Based Model for Adipose Tissue
architecture emergence (ATmorpho-3D). This model is presented in full in chapter 2 (section 3) and
briefly summarised in the next section of the present chapter.

As in our previous study (chapter 4), we aim to explore whether tissue architecture emergence could
be mainly driven by simple mechanical interactions between the tissue core components and a few
well-chosen biological phenomena (Extra-Cellular Matrix (ECM) remodelling, cell differentiation and
growth). As mentioned in the introduction of this manuscript (chapter 1, section 4.2), studies on AT
have been mostly focusing on its cellular composition and on the molecular pathways driving cell dif-
ferentiation rather than on its architecture. As a result, studies on tissular organisation of AT depots are
scarce and descriptive, and the basic mechanisms driving the emergence of its architecture remain poorly
understood. The model ATmorpho-3D is built on a different viewpoint and aims to identify the main
mechanisms at play in AT architecture emergence. It is closely based on the model for fibre networks
ECMmorpho-3D analysed in the chapter 4, which has been extended to account for the appearance and
growth of a population of spherical cells in a 3D dynamical ECM network.

As mentioned in chapter 1 (section 4.2), the seminal works of Wassermann [107] revealed that, during
development, the AT architecture emerges from primitive structures constituted of a disorganised fibre
network containing endothelial cells and fibroblast-like cells (believed to be pre-adipocytes). In adult
AT, mature adipocytes (cells responsible for fat storage and release) are organised in 3D clusters called
lobules, separated from each other by well-structured sheets of ECM called septa [107]. These struc-
tures are robust throughout adult life and large perturbations of this tissue architecture, for instance the
increased fibrosis observed in excessive development of AT occurring during obesity, is associated with
adipocyte dysfunctions [117–119]. Therefore, modelling the process of lobule emergence could greatly
improve our understanding of AT biology and plasticity in physiological or pathological conditions and
give insights into the link between tissue architecture and function.

In this chapter, we demonstrate that the simple 3D model we propose is able to produce realistic
lobule-like structures of cells surrounded by fibres organised in sheet-like structures. Quantitative com-
parison between in silico and in vivo lobules is achieved via the definition of appropriate morpholo-
gical quantifiers (solidity and elongation) for the segmented cell structures, using the tools presented in
chapter 3. These major results show that 3D tissue architecture emergence could indeed be mainly driven
by mechanical interactions between the ECM network and its functional cells (here adipocytes). In ad-
dition, via an in-depth sensibility analysis of the model parameters, we find that the overall architecture
of the system (shape of the lobules and alignment of the ECM), is mostly controlled by the parameters
related to the ECM network (namely its remodelling rate and its connectivity), and that cells have a sec-
ondary impact on the global architecture of the tissue. These results point to the essential role of matrix
remodelling in tissue structuring. We end this chapter by discussing these results in the light of recent
findings in the literature.

2. Description of the experiments

To test our hypothesis, we perform numerical simulations of our model ATmorpho-3D presented in
chapter 2, that we briefly recap here.

The ECM fibres are discretised into Nfib rigid spherocylindrical fibre units of fixed uniform length Lfib

and radius Rfib, while the adipocytes are represented by rigid spheres of variable radius. We include the
following biological phenomena : (i) Fibre linking/unlinking : as with the model ECMmorpho-3D, fibres

104



closer than dmax
link can crosslink with each other according to a Poisson process of frequency νlink. Existing

crosslinks can break spontaneously according to a Poisson process of frequency νunlink. As a result,
the linked fibre fraction χlink =

νlink

νlink + νunlink

represents the equilibrium fraction of linked fibres among

the pairs of neighbouring fibres. (ii) Adipocyte differentiation and growth : the cells undergo a linear
volumic growth of constant rate Kgrowth (modelling adipocyte hypertrophy) until they reach a maximum
radius Rmax

ad . In addition, new adipocytes of minimum radius Rmin
ad are inseminated randomly inside the

spacial domain (modelling adipocyte hyperplasia) according to a uniform law in space and a Poisson
process of frequency νins in time, until the number Nad(t) of adipocytes in the modelled system reaches
its maximum value Nmax

ad . Together, these two processes allow to model the creation and expansion of a
new AT depot due to excessive energy intake.

Concerning the mechanical interactions, we consider that overlapping agents exert on each other a
steric repulsion force of maximal intensity EFF

rep for a fibre-fibre contact, EAF
rep for an adipocyte-fibre

contact and EAA
rep for a contact between two adipocytes. Each crosslink is represented by an elastic

spring of stiffness κrest and unloaded length deq

link. Linked fibres also sustain a nematic alignment torque
proportional to the flexural modulus αalign. Finally, all agents are subjected to a friction force (with
dynamic viscosity µfib for fibres and µad for adipocytes) large enough to nullify their acceleration.

Using Newton’s second law of motion in an over-damped regime, cell motion, fibre motion and fibre
rotation follow the differential system (2.23), which reads as :





dXi

dt
(t) =

1

µadRi(t)




Nad∑

j=1
j 6=i

F
AA
i,j (t) +

Nfib∑

k=1

F
AF
i,k (t)


 ∀i ∈ J1, Nad(t)K,

dYk

dt
(t) =

1

µfibLfib




Nad∑

j=1

F
FA
k,j (t) +

Nfib∑

m=1
m 6=k

(
F

FF
k,m(t) + pk,m(t)F

link
k,m(t)

)

 ∀k ∈ J1, NfibK,

dωk

dt
(t) =

1

µfibL3
fib

[
Nad∑

j=1

T
FA
k,j (t)

+

Nfib∑

m=1
m 6=k

(
T

FF
k,m(t) + pk,m(t)(T

link
k,m(t) + T

align

k,m (t))
)

∧ ωk(t) ∀k ∈ J1, NfibK.

(2.23)

This system and all the stochastic processes included in our model are numerically solved using the
algorithm described in chapter 2, section 4. As in the previous chapter, which was concerned with the
model ECMmorpho-3D, we consider a spatial domain Ω = [−Lx, Lx] × [−Ly, Ly] × [−Lz, Lz] with
periodic boundary conditions. At initialisation, the number of adipocytes is null (Nad(0) = 0) and all
Nfib fibres are randomly inseminated according to a uniform law for both their position in Ω and their
directional vector in S

+
2 (see chapter 4).
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Parameter Value Dimension Description
Agents characteristics

N init
ad 0 N/A Initial number of adipocytes in the system

φad [0.3, 0.5] N/A Maximum adipocytes density
Rmin

ad 0.1 L Minimum adipocyte radius (= radius at
insemination)

Rmax
ad 1.5 L Maximum adipocyte radius.
φfib [0.3, 0.5] N/A Fibres density
Lfib 6 L Fibre length
Rfib 0.5 L Fibre radius

Mechanical interactions

EAA
rep 5.0 M.L−1.T−2 Magnitude of the adipocyte-adipocyte re-

pulsion force
EAF

rep 8.9 M.L−1.T−2 Magnitude of the adipocyte-fibre repul-
sion force

EFF
rep 12.5 M.L−1.T−2 Magnitude of the fibre-fibre repulsion

force
κrest 5.0 M.L−2 Link stiffness
αalign 2.0 M.L2.T−2 Magnitude of the alignment torque

between linked fibres
dmax

link 1.2 L Perception distance for link creation
deq

link 1.0 L Link equilibrium length
µad 1.0 M.L−1.T−1 Dynamic viscosity of the adipocytes
µfib 1.0 M.L−1.T−1 Dynamic viscosity of the fibres

Adipocyte processes

νins 1 T−1 Adipocyte insemination frequency.
Kgrowth 0.05 L3.T−1 Adipocyte volume growth per unit of

time.
Link processes

νlink [0, 0.1] T−1 Network remodelling speed
χlink [0.1, 0.8] – Equilibrium linked fibre fraction

Numerical parameters

Lx = Ly = Lz 15 L Side half-length of the cuboid domain
Tfinal 2000 T Total time of simulation

Table 5.1: Model and numerical parameters used for the simulations.

The physical scaling of all the parameters of the simulations are described in Table 5.1. A few points
may be noted :

• A new adipocyte is inseminated every tins = 1/νins = 1 Ut on average, and subsequently takes

tgrowth =
(Rmax

ad )3 − (Rmin
ad )3

Kgrowth

= 67.5 Ut to grow up to its maximum radius. These numbers are

difficult to relate to actual biological time scales because adipocyte growth rate and differentiation
rate are highly variable from one individual to another, depending on many factors such as age, sex,
diet and body mass index but also on an innate tendency to favour either adipocyte hypertrophy
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(growth) or hyperplasia (insemination). However, it as been shown that adipocyte turnover (i.e.
the proportion of the total number of adipocytes renewed each year) is relatively homogeneous
between individuals independently of all the above-mentioned factors, and is approximately equal
to 10% per year [152, 153]. Given that the total number of adipocytes in our simulations varies
between 573 (φad = 0.3) and 955 (φad = 0.5), a turnover of 10% per year would be roughly
equivalent to the production of 100 adipocytes per year, that is tins = 1 Ut ≈ 3 days. This value
will serve as a reference time scale for the present study.

• The fibre network can be regarded as having undergone significant remodelling when 10% of its
linkable configurations (i.e. existing links and non-linked neighbouring fibre pairs) have been
renewed through link creation and/or destruction. Given that each configuration is remodelling
independently of the others, and considering that νlink and νunlink are of the same order of magnitude,
a tenth of the crosslinking processes will activate in tremodelling = 0.1/νlink on average. Excluding
the case of non-dynamical networks, this remodelling time ranges from 3 to 300 days, which is
around the estimated ECM remodelling time of 15 days [154].

• The total time of simulation Tfinal is chosen to be at least twice as long as the total adipocyte insem-
ination time Nmax

ad tins. In contrast, it is too short for the fibre networks, except the fastest remodelling
ones, to fully equilibrate. This choice was made because long time-scales (compared to the total
adipocyte insemination time) are more related to tissue homeostasis than tissue morphogenesis,
which is the subject of the present study.

• Recalling that the average diameter of a fully grown white adipocyte in the subcutaneous depot
is 100 µm (see chapter 1, section 4.2), we can estimate the length scale of our simulations to be
Ul = 33 µm.

• From this length scale, we see that the fibre units considered here are 2Rfib = 33 µm wide, in
agreement with the measures of the width of collagen fibril bundles in loose connective tissues
such as adipose tissue [155].

• On the other hand, the length Lfib = 200 µm of the fibre units is twice the size of fully grown
adipocytes. In our model, the flexibility of the fibre network is entirely due to the crosslinks since
the fibre units themselves are treated as rigid. Thus, in order for our network to be able to bend
around the adipocytes like actual collagen fibres, the length of the fibre units should be about the
diameter of an adipocyte. This means that, in practice, the fibre networks modelled here are stiffer
(on the length scale the adipocytes) than they should. However, using shorter fibre units while
maintaining the same fibre density would imply a higher number of agents, leading to intractable
computational costs (see chapter 1, section 2.3).

• Contrarily to the previous experiments with the model ECMmorpho-3D, here the maximum dis-
tance for link creation dmax

link is slightly larger than its minimum acceptable value of 2Rfib. This
allows fibres to link together even if the pressure exerted by the adipocytes tend to move them
apart.

• In the absence of empirical data concerning the dynamic viscosity of adipocytes and ECM fibres,
we make the simplifying assumption that µad = µfib.

We denote by φad the maximum adipocyte density of the modelled system, that is the ratio between
the maximum volume of adipocytes (after full insemination and growth, without overlapping) and the
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volume of the spatial domain :

φad =
Nmax

ad × 4
3
π(Rmax

ad )3

8LxLyLz

. (5.1)

Similarly, we denote by φfib the fibre density of the network (see chapter 4). The number of agents are
chosen so that both of these densities are in the range [0.3, 0.5]. These values can be compared to that of
the fibre networks presented in chapter 4, which varied between φfib = 0.29 and 0.58. The fibre networks
studied in the present chapter have similar densities, but are immersed in an environment which is at least
dense (with a total agent density φtot = 0.6) and at most hyperdense (φtot = 1), guaranteeing a high level
of mechanical stress.

For each type of mechanical interactions in the system, we define the “characteristic interaction time”
as the time needed for two isolated agents submitted only to this interaction and initially positioned in
the most unfavourable configuration to reach 99% of the (asymptotic) equilibrium configuration. Explicit
computation leads to the following formula (numerical values are given for the parameters presented in
Table 5.1).

• TAA
rep is the time needed for two fully overlapped adipocytes of equal radius to move apart by 99%

of their equilibrium distance (i.e. from Xi = Xj to ||Xi −Xj|| = 0.99(Ri + Rj), with Ri = Rj)
due to the repulsion force alone.

TAA
rep =

27µad

4EAA
rep

= 1.35Ut. (5.2)

• TAF
rep is the time needed for a fibre and an adipocyte fully overlapped to move apart by 99% of their

equilibrium distance (i.e. from Xi = Yk to ||Xi − Yk|| = 0.99(Rmax
ad + Rfib)) due to the repulsion

force alone.

TAF
rep =

27

2
√
Rmax

ad Rfib EAF
rep

× µadR
max
ad µfibLfib

µadR
max
ad + µfibLfib

= 2.10Ut. (5.3)

• T FF
rep is the time needed for two fully overlapped fibres to move apart by 99% of their equilibrium

distance (i.e. from Yk = Ym to ||Yk − Ym|| = 0.99 × 2Rfib, with ωk ‖ ωm) due to the repulsion
force alone.

T FF
rep =

27µfibLfib

4
√
2RfibEFF

rep

= 4.58Ut. (5.4)

• Trest is the time needed for two fibres that are initially fully overlapping and crosslinked at their
centre to relax their link to 99% of its equilibrium length deq

link due to the elastic restoring force
alone.

Trest = ln(10)
µfibLfib

κrest

= 2.76Ut. (5.5)

• Talign is the time needed for two perpendicularly intersecting fibres (Yk = Ym and ωk ⊥ ωm)
crosslinked at their centre to reach a relative angle arccos(ωk · ωm) = 0.9◦ due to the alignment
torque alone.

Talign = − ln

(√
2 sin

(
0.9◦

2

))
µfibL

3
fib

2αalign

= 462Ut. (5.6)

It may be noted that TAA
rep < TAF

rep < T FF
rep : although their elastic modulus is lesser (indicating a

lesser resistance to pressure), adipocytes are technically less prone to overlap than fibres. As before, the
alignment interaction is much slower than the repulsive and elastic restoring forces.
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3. Overview of the various possible structures

In Figure 5.1, we present an overview of the various structures that can be obtained with the model
ATmorpho-3D by playing on the parameters in the ranges indicated in Table 5.1 (see later sections for
the influence of the parameters). We use the data processing framework described in chapter 3 : 3D visu-
alisation using Paraview (see chapter 3, section 1) with fibres coloured according to their local alignment
indicator Alk (see chapter 3, section 3.1) and adipocytes coloured according to the lobule number and
located at their “lobule coordinates” (see chapter 3, section 2.2). For more visibility, we represented the
same system three times, displaying either both type of agents (in the first column) or only one of them
(adipocytes in the second column and fibres in the third column).

The first thing to note is that lobules, here defined as cell clusters containing at least 10 cells, appear
in all the simulations. Though most of them are relatively elongated, they display various shapes ranging
from branching structures with many digitations (see Figure 5.1.A) to non-branching ellipsoidal (see
Figure 5.1.B) or poly-lobed (see Figure 5.1.C) structures. Moreover, some of them are compact while
others exhibit holes between their constituent cells (see for example the khaki lobule on the right-hand
side of Figure 5.1.A).

The fibres structures on the other hand range from locally well organised networks exhibiting a global
preferred direction (see Figure 5.1.A) or no preferred direction at all (see Figure 5.1.B) to disordered
networks with low local alignment (see Figure 5.1.C).

As with the model ECMmorpho-3D (see chapter 4), the local alignment rate of the fibres is quite
homogeneous inside one system : contrarily to our expectation, the presence of cells does not cause any
significant heterogeneity. However, the spacial distribution of the fibres is not homogeneous, especially
in locally aligned networks. In these networks (see Figure 5.1.A and B), fibres seem to bundle and
form locally planar structures bending around lobules, which could be likened to biological fascia (see
chapter 1, section 4.2).

Visually it seems that the lobules are relatively homogeneous inside one simulation, so that studying
the average of the quantifiers Elob and Slob introduced in chapter 3 (which characterise respectively the
elongation and the solidity of an individual lobule) over all the lobules of a system could inform us on
the overall cellular architecture of this system. However, it is not so : all systems display similar average
value of Elob and Slob, and the variation observed between different systems are of the same order of
magnitude then the typical standard deviation inside one system. To be exact, if we denote by Esim and
Ssim the average eccentricity and solidity of all the lobules of a system, we find that :

• Esim varies between 0.80 and 0.94 (with an average value over all simulations equal to 0.88), but
the typical variation of Elob between lobules pertaining to the same system is 0.06;

• Ssim varies between 0.21 and 0.47 (with an average value over all simulations equal to 0.37), but
the typical variation of Slob between lobules pertaining to the same system is 0.08.

This means that we will not be able to characterise the organisation of a system based on the aver-
age characteristics of its lobules. Instead, we will study the lobules individually and try to classify them
into different morphological categories that could be related to the biological observations given in in-
troduction of this manuscript (see chapter 1, section 4.2). Indeed, from a biological viewpoint it is more
significant to look at how lobule morphologies are distributed inside a system than to look at the average
morphology.

109



Figure 5.1: Illustration of the various types of structures generated by the model ATmorpho-3D. Each
row displays the 3D view of the system at the end of one simulation, with fibres coloured according to
their local alignment rate (blue: Alk = 0, red: Alk = 1) and adipocytes coloured according to their lobule
number and translated according to their lobule coordinates. The left panels display both types of agents,
the middle panels only the fibres and the right panels only the adipocytes. For each simulation, the value
of a few quantifiers are given. Note that we denote by Esim (resp. Ssim) the average value of the quantifier
Elob (resp. Slob) over all the lobules of a system.

In the following sections, we will first explore qualitatively the influence of the presence of cells over
the organisation of the fibre network, taking as a basis our study of fibre-only systems in the previous
chapter. We will then turn to the quantitative characterisation of the lobule-like structures produced by
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the model ATmorpho-3D, studying both their distribution according to the model parameters and their
heterogeneity inside one simulation. Finally, we will compare these structures to the lobules segmented
in a few in vivo samples.

4. Characterisation of the fibre structures : comparison with the

model ECMmorpho-3D

Each row of Figures 5.2 and 5.3 illustrates the fibre structures produced by systems with the same set of
parameters except for the adipocyte density, which increases from left to right (with φad = 0, φad = 0.3
and φad = 0.5 for each column respectively). Figure 5.2 focus on systems with a high fibre density
(φfib = 0.5) and Figure 5.3 is the equivalent for systems with a low fibre density (φfib = 0.3). The first row
of these two figures displays non-dynamical, moderately crosslinked networks (νlink = 0 and χlink = 0.3),
the second and third rows display slow remodelling networks (νlink = 0.001) with either moderate or high
linked fibre fraction (χlink = 0.3 and 0.8 respectively), and the last two rows display quickly remodelling
networks (νlink = 0.1) again with either moderate or high linked fibre fraction (χlink = 0.3 and 0.8
respectively).

As can be seen by comparing the three columns of Figure 5.2, the presence of adipocytes does not
have much impact on the organisation of dense fibre networks : all that can be noted is that it may de-
crease slightly the local alignment rate of the fibres (compare the various panels in the second, fourth
and fifth rows of Figure 5.2). The influence of the number of adipocytes is more pronounced over sparse
fibre networks (Figure 5.3), where it can be noted that a medium adipocyte density may increase the level
of local and global organisation of networks with small crosslinked fibre fraction (compare the left and
middle panels of the second and fourth rows of Figure 5.3) whereas a high adipocyte density decreases
the level of organisation especially in non-dynamical (first row) or highly crosslinked (third and fifth row)
networks.

We recall that the local organisation of a fibre network can be characterised by its mean alignment
rate Alsim (defined in chapter 3, section 3.1) and its global organisation by the semi-major axis length of
its stereographic projection covariance ellipse Amax, (defined in chapter 3, section 3.2). To take account
of the stochastic variability of our model, parametric analyses are done on the average Almean and Amean

max

of these two quantifiers over 10 simulations conducted with the same set of parameters.
Hence, to investigate the impact of the adipocytes over the fibres organisation in a systematical man-

ner, we plotted in Figure 5.4 the variations of the quantifiers Almean and Amean
max according to the value of

the adipocyte density φad, all other parameters being fixed (values given in the legend). To facilitate the
comparison of the various curves, we took as reference the value of these quantifiers for φad = 0 (no
adipocyte in the modelled system). That is, for a given set of parameters (excluding φad), we plotted
Almean(φad) − Almean(0) (with errorbars corresponding to AlSTD(φad)) and Amean

max (φad) − Amean
max (0) (with

errorbars corresponding to ASTD
max (φad)) as functions of φad. These curves are displayed in Figure 5.4.

The first observation is that the adipocyte density does not have a significant impact on the degree
of global organisation of the fibre network : the variations observed for the quantifier Amean

max (top row of
Figure 5.4) are largely covered by the standard deviations between simulations with the same parameters,
which measure the stochastic variability due to the random initialisation and the random processes in-
cluded the model ATmorpho-3D. In other word, the influence of the number of adipocytes on the global
organisation of the fibre networks is not distinguishable from the stochastic variations due to the random
components of the models.
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Figure 5.2: Illustration of the impact of the presence of cells on the structure of the fibre network, for
systems with high fibre density (φfib = 0.5) and various linking dynamics. Each panel display a 3D view
of the fibre network at the end of the simulation (Tfinal = 2000 Ut), with fibres coloured according to
their alignment rate (blue: Alk = 0, red: Alk = 1), and the corresponding stereographic projection with
covariance ellipse drawn in red dashed line. From left to right : no cell (φad = 0), low cell density
(φad = 0.3) and high cell density (φad = 0.5).
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Figure 5.3: Illustration of the impact of the presence of cells on the structure of the fibre network, for
systems with low fibre density (φfib = 0.3) and various linking dynamics. Each panel display a 3D view
of the fibre network at the end of the simulation (Tfinal = 2000 Ut), with fibres coloured according to
their alignment rate (blue: Alk = 0, red: Alk = 1), and the corresponding stereographic projection with
covariance ellipse drawn in red dashed line. From left to right : no cell (φad = 0), low cell density
(φad = 0.3) and high cell density (φad = 0.5).
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Figure 5.4: Variations of the quantifiers Amean
max (top row) and Almean (bottom row) as a function of the

adipocyte density φad, compared to their value for φad = 0. Each curve represents the variation for a
fixed set of parameters (excluding parameter φad), with colour indicating the network remodelling rate
νlink and line type indicating the linked fibre fraction χlink. Vertical errorbars indicate the value of ASTD

max

and AlSTD respectively. Left column : Variation for sparse fibre networks (φfib = 0.3). Right column :

Variation for dense fibre networks (φfib = 0.5).

On the contrary, the adipocyte density does have a significant, negative impact on the local alignment
of dynamical fibre networks, measured by the quantifier Almean (see panels B and B’ of Figure 5.4). Non-
dynamical fibre networks, on the other hand, are unaffected by the presence of adipocytes (see blue curves
in Figure 5.4.B and B’). The amplitude of the variations is stronger for dense networks (up to −0.34, see
Figure 5.4.B’) than sparse networks (up to −0.17, see Figure 5.4.B), and for networks with low linked
fibre fraction (compare the curves with the same colour inside Figure 5.4.B and B’). We interpret this
behaviour in terms of steric hindrance : the addition of adipocytes exerting a high repulsion force (see
discussion on the parameters values in section 2) locally increases the fibre density by pushing the fibres
together into bundles. Since dense fibre networks are, as their name indicates, relatively dense structures
by themselves, the addition of adipocytes tend to make them overly constricted, quickly hindering their
ability to align locally. Meanwhile, sparse fibre networks are less constricted to begin with and thus less
sensitive to the congestion created by adipocytes. Alternatively, networks with a high linked fiber fraction
are rigid enough to resist pressure from adipocytes and undergo a lesser increase in local fiber density
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than networks with low linked fiber fraction.
Lastly, there is no discernible correlation between the quantifiers Almean and the values of φad + φfib,

φad

φfib

or
φad

φfib + φad

(data not shown). This means that the increase in local fibre density can not be easily

related to the value of φad due to the influence of other structuring parameters such as νlink and χlink.

From all this, we conclude that the addition of round, growing cells to a dynamical fibre network (i)
causes the fibres to bundle together in clusters with higher local fibre density than the overall density φfib,
(ii) can modify the local alignment of the fibres by up to ±0.15 and (iii) does not influence the global
organisation of the fibres. This is a more limited impact than what could have been expected. However,
this analysis remains mostly qualitative. The next step would be to measure the effective local fibre
density of the systems, in order to quantitatively assess firstly the influence of the adipocyte density φad

over the spacial distribution of the fibres and secondly the relationship between the local fibre density
and the quantifier Almean. An in-depth study of the ability (or not) of these potential fibre bundles to form
planar structures is also required.

It should be noted that we did not recover the striking correlation between the number of links per
fibre Nmean

linkperfib and the average alignment rate Almean at equilibrium that was found in the previous chapter
for fibre-only systems (data not shown). This may be because the networks considered here are not
at equilibrium (see discussion on the parameters values in section 2). On the other hand, the transient
crosslink accumulation phenomenon that we identified previously for networks with small unlinking fre-
quency νunlink can be expected to play a predominant role in the network organisation on short time scale
and to be reinforced by an increased local fibre density. This phenomenon thus have to be investigated to
see if, for example, it can prevent the fibre bundles to organise into planar structures.

We will now turn to the study of the lobule-like structures produced by our model and show that,
whereas the cells have little impact on the organisation of the fibres, the intrinsic properties of the fibre
network exert a major influence on the cell clusters.

5. Characterisation of the lobules : comparison with in vivo data

Figure 5.5.A displays the repartition of the 266 420 lobules produced in our 12600 simulations (that is
an average of 21 lobules per modelled system) in the plane Slob versus Elob, with colour indicating the
lobules volume Vlob (expressed in number of cells). For a better readability of both the density of lobule
and average lobule volume at a given point of the phase plane, the diagram is presented in the form of
a pixelated map (where each pixel is coloured according to the average volume of the lobules that fall
within it) overlaid with density isolines indicating the number of lobules in the pixels. A few individual
lobules are displayed below the diagram for illustration.

The first point to note is that the volume of the lobules is strongly correlated with their solidity :
the larger the lobules, the less solid they are. This is counter-intuitive because discretisation bias would
tend to have the opposite effect, considering that groups made of many spherical elements should have
less difficulty describing a regular shape than groups made of only a few elements. It means that the
observed correlation reflects a real geometrical difference between large lobules with irregular shapes
(holes, digitations, etc.) and small lobules with regular, compact shapes. This can be seen by comparing
the lobules n◦6, 10 and 11 to the n◦9, 14 and 15 in Figure 5.5.B.

On the other hand, there is no correlation between the volume of the lobules and their elongation :
both small and large lobules range from round shapes (Elob ≈ 0.4) to unidirectional shapes (Elob ≈ 1).

The second observation is that the distribution of the lobules in the plane Slob–Elob shows a single,

115



A. Figure 5.5: Characterisation of the various
lobule morphologies produced by the model
ATmorpho-3D. A : Distribution of all in silico lob-
ules in the plane Slob–Elob. Each pixel is coloured
according to the average volume (expressed in num-
ber of cells) of the lobules that fall within it, with a
logarithmic scaling. Density isolines, indicating the
number of lobules in the pixels, are drawn in white
solid lines and the limits between each class of struc-
tures (branching (Br), solid elongated (SE) and solid
rounded (SR)) in black dashed lines. The numbered
black dots correspond to the lobules displayed in the
table below. B : 3D view of a few isolated lobules
from various simulations.

B.

very large peak centred on Slob = 0.34 and Elob = 0.9, meaning that the vast majority of our in silico

lobules are moderately solid and very elongated. Based on this repartition, we choose to classify the
lobules into three categories : (i) branching lobules (denoted as “Br”) located on the left of the peak
delineated by the 2000-isoline, that is Slob < Scritic = 0.257; (ii) rounded solid lobules (denoted as “SR”)
located below the peak, that is Slob > Scritic and Elob < Ecritic = 0.851; and (iii) elongated solid lobules
(denoted as “SE”) corresponding to the peak itself (Slob > Scritic and Elob > Ecritic). The limits between
these three categories are drawn on Figure 5.5.A in black dashed lines.

Note that branching lobules correspond almost exclusively to very large lobules, which as explained
above have irregular shapes (see lobules n◦6, 10 and 11 in Figure 5.5.B). Non-branching lobules, on the
other hand, have fairly regular appearances with possibly a few short digitations. Rounded solid lobules
do look round (see lobules n◦12 to 16 in Figure 5.5.B) while elongated solid lobules have more complex
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shapes sometimes evoking several lobes (see lobules n◦1 to 5 and 7 to 9 in Figure 5.5.B). In fact, visually
this category corresponds surprisingly well to the biological observations [109].

Figure 5.6: Distribution of the three categories of lobule morphology according to the model parameters.
Each pixel of a map represents the percentage of lobules from a given morphological category (from top
to bottom : branching (Br), solid rounded (SR) and solid elongated (SE)) found in all the simulations
conducted with the indicated parameters. The overall colour bar, common to all panels, is displayed on
the right-hand side of the figure. Left column : Distribution according to the agent densities φad (in
abscissa) and φfib (in ordinate). Each pixel represents the average value over 360 simulations. Right

column : Distribution according to the linking characteristics χlink (in abscissa) and νlink (in ordinate).
Each pixel represents the average value over 350 simulations.

Figure 5.6 displays heat-maps of the percentage of each type of lobules (from top to bottom : branch-
ing, solid rounded and solid elongated) in the system according to model parameters (agent densities φad

and φfib on the left and fibre linking properties νlink and χlink on the right). All heat-maps use the same
colormap displayed on the right-hand side of the figure, with the appropriate range magnified on the right
of each panel.
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First, we note that solid elongated lobules are rather homogeneously distributed across the range of
parameters tested, representing in average between 58% and 77% of all the lobules of a system.

Exploring the influence of the agent densities φad and φfib (left column of Figure 5.6), we see that
branching lobules occur quasi-exclusively in systems containing more fibres than cells (φfib > φad),
whereas solid rounded lobules occur more often in systems containing more cells than fibres and solid
elongated lobules slightly favour dense, balanced systems (φad ≈ φfib > 0.4). Our interpretation is that
the presence of a majority of fibres creates strong mechanical constraints on the cells which have to fit
between them, promoting the formation of loose, dislocated branching cluster of cells not really spatially
segregated from the fibres. On the other hand, a majority of cells will push back the fibres and form round
clusters, which is the optimal geometric configuration for round agents. When the two types of agents are
present in balanced quantities, mechanical constraints tend to separate them into distinct areas, creating
bundles of fibres and clusters of cells, and the tendency towards alignment of the fibre bundles will force
the cell clusters to take on elongated shapes.

Turning now to the analysis of the influence of the fibre linking properties νlink and χlink (right column
of Figure 5.6), we observe a similar transition between the three lobule categories. Branching lobules
occur either in non-dynamical fibre networks or in quickly remodelling, lowly crosslinked fibres net-
works. The former have very limited remodelling abilities which prevent them from making room for
the cells, so that there will be no clear segregation between the two types of agents. The latter combine
a low rigidity with an ability to self-organise rather quickly (see chapter 4, section 3.5), so that they will
already have reached a high local alignment rate by the time a significant number of cells have appeared
in the system. Their low rigidity will then prevent them from forcing the cells to organise into compact
clusters, but they will also tend to maintain their local alignment which constitutes a local mechanical
equilibrium. In consequence, there will again be no clear segregation between the two types of agents and
the lobules will take tortuous geometries, branching around the fibre threads. On the other hand, solid
rounded lobules occur preferentially in highly crosslinked, slowly remodelling fibre networks which we
know (see chapter 4, section 3.5) are slow to self-organise, meaning that the cells appear in a rigid, nearly
disordered environment exerting a strong, isotropic pressure. This leads to the formation of solid lobules
with isotropic (i.e. round) shapes. Lastly, “balanced” networks which organise at moderate speed and
have a moderate rigidity tend to favour the formation of solid lobules with elongated shapes dictated by
fibre alignment.

Having characterised the different lobule morphologies produced by the model ATmorpho-3D, we
can compare them to the morphologies of actual in vivo lobules. Figure 5.7.A displays the distribution in
the plane Slob–Elob of the 55 in vivo lobules we segmented in four biological samples, using the protocol
presented in chapter 3 (section 2.3). The limits between the three morphological classes defined above
(branching, solid elongated and solid rounded) are drawn in black for comparison.

It can be seen that the distribution these in vivo lobules corresponds strikingly well to that of our in

silico lobules, with a large majority of solid elongated lobules (74.5%), some solid rounded lobules (20%)
and only a few branching lobules (5.5%). The existence of extremely elongated lobules, with Elob ≈ 1,
may be noted. These lobules all pertain to the same biological sample, which was extracted from an older
mouse than the other three samples (5 months instead of 2 months). Moreover, as the tissue sample was
larger, it was not technically possible to image it entirely and most of the segmented lobules are truncated
(they touch the border of the image). Hence, the specific lobule morphology observed in this sample
may reflect a real, age-induced morphological difference or be due merely to the lowest quality of the
segmentation. This calls for further investigation. In any case, collecting more biological samples would
enable a more quantitative comparison between in silico and in vivo lobule morphologies.

On the other hand, the in vivo lobules do not exhibit any correlation between their shape and their

118



A.
Figure 5.7: Characterisation of the various lob-
ule morphologies observed in our in vivo samples.
A : Distribution of the 55 lobules segmented in our
in vivo samples in the plane Slob–Elob, colored ac-
cording to their volume Vlob (in µm3). The limits
between each class of structures (branching (Br),
solid elongated (SE) and solid rounded (SR)) are
drawn in black dashed lines. The numbered black
circles correspond to the lobules displayed in the
table below. B : 3D view of a few isolated lobules
from one sample, compared to the in silico lobule
with the closest morphological characteristics.

B.

volume, contrarily to what was found in our in silico data. This may mean that the correlation produced
by the model ATmorpho-3D does not match any biological reality, but it may also be an effect of the
small amount of biological data used for this comparison and/or of the small size of the simulation
domain. Indeed, we did not expect to be able to compare the volume of the in silico and in vivo structures
given that the spatial domain used for the simulations have a side length equivalent to 1 mm whereas
the biological samples are approximately 8 times larger. In consequences, the largest in silico lobule
recorded have a volume Vlob = 356 cells ≈ 2.108 µm3 comparable to that of the smallest in vivo lobules.

As in the previous chapter, the small size of the simulation domain is a clear limitation to our study
but a necessary choice considering the computational cost of our model. It allowed use to explore a large
range of parameters, observing and characterising the various types of structures that can be generated by
the model and their dependance to the parameters. An important validation step would be to reproduce
these results in a larger spatial domain and to compare them to more numerous biological samples. It
is already noteworthy that the difference between the smallest and the largest lobules is of the order of
a 1 : 50 ratio for both the in vivo and in silico data, indicating that the size variability of our model is
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comparable to that found in biological tissues.
Figure 5.7.B illustrates the various lobule morphologies that can be found in a single biological

sample and compares them to the in silico lobule with the closest values of Elob and Slob. It can be seen
that these structures compare qualitatively well, except in the case n◦3 where the difference in volume is
too high to allow the in silico lobule to display a real poly-lobed shape. This highlights the relevance of
the morphological quantifiers Elob and Slob, which enable a quantitative comparison between in vivo and
in silico lobules.

6. Discussion

In this work, we have implemented a 3D model for a growing population of cells evolving in an inter-
connected and dynamical ECM fibre network. Our mathematical model is able to reproduce, in 3D, a
tissue architecture composed of clustered adipocytes in lobular units, surrounded by sheet-like structures
of ECM fibres, with morphological characteristics similar to the ones computed on experimental images
of mature AT tissues. The originality of the model lies in its apparent simplicity. It demonstrates that
the emergence of the 3D architecture of a complex biological tissue such as the AT could be the result
of a self-organisation process driven by simple mechanical interactions between few components, here
the adipocyte cells and the ECM fibres, with very few biological phenomena – namely fibre remodel-
ling (chemical crosslinking/unlinking), cell insemination (pre-adipocyte differentiation) and cell growth
(lipid storage). Furthermore, the emergent architecture appears as mainly driven by fibre interactions,
suggesting a secondary role for cells in this process.

To our knowledge, our model is the first 3D individual-based model interfaced with experimental
data for cells interacting within a dynamical fibrous network. This model is the natural extension of
the 2D model of AT morphogenesis studied in [17], which focused on the cross-sectional organisation
of the lobules. Although restricted to the 2D case, this previous model represented a proof-of-concept
that lobular organisation in tissue morphogenesis could be mainly driven by mechanical interactions
between the cells and the ECM. It was later extended to study the mechanisms of tissue reconstruction
after injury [37], again pointing to the crucial role of ECM connectivity in the fate of injury outcome.
This led to the development of a combined study involving in silico and in vivo experiments, which
suggested a new putative target for controlling ECM connectivity to induce regeneration in otherwise
scarring tissues [156], conferring to the 2D model a “digital twin” aspect. The extension to 3D that
is presented in this thesis represents an important and necessary step forward in the conception of a
physiologically relevant model of tissue architecture. Indeed, growing amount of evidence highlight
great differences in cell function and behaviour between 2D and 3D cultures (see [157] and references
therein). Therefore, 3D models for tissue structuring could prove to be invaluable tools for studying
real biological systems, with applications in particular to cell migration [158], cancer invasion [159]
and more generally in the field of tissue engineering [160]. It is noteworthy that our 3D model is able
to generate realistic tissue architectures without the need for a complex geometric representation of the
individual fibres. Indeed, the model produces septa (fibrous sheet-like structures surrounding the lobular
cell clusters) emerging from mechanical interactions between spherocylindrical crosslinked units (fibre
elements) and spherical objects (adipocytes). The fact that this simple modelling of the fibre units is able
to produce complex two-dimensional surfaces surrounding cell clusters constitutes another surprising and
major result of this study.

Our model can spontaneously generate various types of macrostructures. We classified the different
cell clusters morphologies into three types : solid and elongated clusters (SE), solid and round clusters
(SR), and branching structures with many digitations (Br). By coupling image segmentation techniques
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and morphological quantifiers, we found that the lobules segmented from experimental images belonged
mostly to the first category (SE), a few to the second (SR) and even less to the third (Br). Surprisingly, the
different structures emerging from our model by playing on the different parameters followed the same
repartition. The model was therefore able to reproduce different lobule geometries, with the same char-
acteristics and distribution as the ones observed in real tissues. We note however that some experimental
samples showed a higher number of very elongated lobules compared to our simulations.

A profound parametric analysis of the model enabled us to disentangle the respective role of the
different parameters on the tissue architecture. We first found that, surprisingly, the presence of cells
in the ECM did not impact significantly the ECM global organisation, although it could decrease the
local alignment of the fibres according to the type of network they evolve into. Indeed, we found that
cells could negatively impact the local alignment quantifier in dense and sparse ECM by 35% and 17%
respectively. The segregation of the spherical objects (cells) and spherocylindrical units (fibre elements)
and the emergence of a nematic order (fibre alignment) revealed in our model is consistent with several
theoretical and experimental studies on binary mixtures of isotropic and anisotropic agents in 3D [161–
163]. In particular, several simulations featuring hard spherocylinders and spheres [164, 165] showed
that the addition of the spherical crowders have a negative impact upon the stability of rod-like particles
in a nematic phase (alignment). In all these works, the phase behaviour is regarded as entropically
driven via excluded volume effects, known as “depletion interaction” or “macromolecular crowding”,
between differently shaped particles. The different arrangements of fibres and cells in our model bear
evident analogies with these observations, although the interactions in our model stem from soft-repulsive
potentials instead of volume exclusion effects. As a result, our model is able to generate segregation in
the absence of noise because the interaction remains active even without noise, contrary to the case of
sole volume exclusion effects. Another fundamental difference compared to previous studies is the active
nematic alignment of the rod-like elements due to the alignment torque at the (dynamical) crosslinks.
This enables to study the impact of spherical particles in actively remodelling networks and points to the
essential role of ECM rigidity on tissue architecture, results not accessible in binary mixture of passive
particles interacting only via volume exclusion effects. Finally, the previous studies focused on the
nematic order of the rod-like particles with little interest in the morphology of the clusters composed
by the spherical particles. Here, we also provide a deep analysis of the cell structures, showing that the
nematic ordering of the ECM network reflects in the elongation of the spherical particles clusters. This
constitutes an interesting result and, to our knowledge, a novel quantitative exploration of this effect.

The parametric analysis on the cell structures showed that the different lobule morphologies were
mostly controlled by the ECM network remodelling characteristics. Indeed, (Br) structures, although
rarer in general, were favoured by networks with a low proportion of crosslinks (lowly constrained net-
works), while (SR) structures were found more often in slow remodelling networks with a large propor-
tion of crosslinks (very constrained networks, rigid). Finally, the more common lobule structures (SE)
were found more often in highly dynamical networks with a large proportion of crosslinks (moderately
constrained networks with large plasticity). Altogether, these results showed that ECM rigidity was de-
terminant in the shape of the lobule structures, by transmitting mechanical constraints to the growing cell
population. Indeed, lowly constrained networks did not seem to exert enough mechanical action on the
cell population, favouring the appearance of less organised cell clusters with tortuous geometries (Br).
On the contrary, the fibre structures in rigid networks were less able to spontaneously self-organise, lead-
ing to more disordered networks exerting high mechanical pressure isotopically on the cell population.
As a result, the cells were forced to regroup into compact and round clusters (SR). In dynamical and
highly crosslinked networks however, fibres could arrange more easily into organised structures thanks
to the torque acting on crosslinked fibres, imposing local directional constraints to the cell clusters, and
favouring cell cluster elongation (SE). All these results point again to the major role of ECM mechanical
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constraints in tissue architecture, and are consistent with several results demonstrating the impact of the
ECM and its dysregulation (fibrosis) on AT functions [166].

Further improvements of the model could be made. If the choice of modelling cells as non-deformable
3D spheres proved to be sufficient for reproducing realistic AT architectures, considering more realistic
deformable cell models such as [167] would enable to generalise the model to different systems where cell
deformation plays an important role [168–170]. On the biological viewpoint, designing new experiments
allowing for in vivo tracking of ECM organisation and cell positions during AT development would
provide invaluable data on the time dynamics of the morphogenesis process, and enable to quantitatively
compare the model predictions with the fibrous structures in normal or pathological conditions.

A key issue about the relevance of our model is the observation that, during development, newly
differentiated adipocytes appear close to the existing differentiated adipocytes, suggesting key local cues
for lobule emergence potentially associated with energy partitioning due to vasculature that generates
heterogenous and gradient distribution. In our 3D model, the energy required for cell growth and ECM
remodelling is prescribed and equally partitioned across the whole volume of the simulation. However, in
the 2D model we previously demonstrated that random or biased insemination led to the same structuring,
suggesting that the most efficient vasculature architecture compatible with lobule emergence has been
selected during evolution. From an evolutionary point of view, the vasculature structure should be a
consequence of mechanical constraints. Such hypothesis should also be tested in the 3D model.

In the same vein, the model could be extended to account for energy exchanges and metabolism to
model the long-term evolution of tissue architecture (ageing, changes due to diet, obesity, etc). These
aspects will be the subject of future works and promise exciting challenges such as the determination of
complex feedback loops between energy intakes and local growth laws. Moreover, the model showed
that cells had a relatively small mechanical impact on the ECM global architecture and that rather the
main mechanical driver of tissue structuring lied in ECM rigidity. However, the model did not account
for chemical interactions between the cell and the ECM. A natural perspective of this work would
be to consider cells having chemical interactions with the ECM. For instance, one could consider the
linking/unlinking of the fibres to be dependent on the local density of cells, to model matrix degradation
by metalloproteinase generated by the adipocytes as evidenced in several biological systems [171]. Size
or pressure-dependent growth laws for the cells and for matrix remodelling could also be implemented,
with the aim to explore the coupling between energy exchanges and mechanics, in light of several results
in the literature [172–174].

On the mathematical viewpoint, the derivation of macroscopic models for the cell and/or fibrous
phases of the present model would produce a computationally efficient continuous model containing as
much as possible the mechanisms of the microscopic scale, enabling us to address the question of the
architecture at the level of the whole tissue. A step in this direction has been made in [42] where a
continuum model for crosslinked fibre was derived from an individual-based model and further analysed
in [175]. Several continuum models for the cell phase have also been derived from interacting particle
systems [176–180], but major works still remain to explore how specific microscopic effects translate at
the macroscopic scale for binary mixtures of isotropic and anisotropic particles.

Whatever the case and whatever the outlook, our model appears as relevant to mimic the emergence
of tissue architecture and to decipher its basic rules. Its simplicity questions about its links with molecular
cues usually investigated in biology but represents a key advantage for its manipulation and its use to test
numerous hypotheses.
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Conclusion

In this thesis we studied the emergence of the 3D architecture of biological tissues, and especially con-
nective tissues which are the most abundant in animals. We developed two Individual-Based Mod-
els (IBMs), one aimed at reproducing a non-specialised connective tissue and reduced to the Extra-
Cellular Matrix (ECM) component, and another designed for a type of specialised connective tissue : the
Adipose Tissue (AT). Both models are based on the hypothesis that a tissue architecture could emerge
from local mechanical interactions between its components, with a minimalistic representation of the
biological processes involved.

To visualise the structures produced by our models, we developed an automated visualisation pipeline
using the Paraview software, presented in chapter 3. In order to compare the cell clusters observed in our
numerical simulations with those found in biological tissue samples, we developed a Python segmentation
protocol to automatically detect cell clusters from both in vivo and in silico 3D images. These two tools
are highly generic and can be used to study any system made of spherical and/or rod-like objects, in and
outside the field of biology. During their development, we have taken great care to make them as user-
friendly as possible and to compel with open-source format. They are freely available online along with
detailed user manuals, and will be submitted as a methodological article. We also constructed various
numerical quantifiers to characterise both the fibrous and cellular structures produced by our two models.

The first model, ECMmorpho-3D, is studied in detail in chapter 4 of the present manuscript. It en-
abled us to identify the key mechanisms governing the self-organisation of 3D dynamical fibre networks
and to suggest an emerging variable, namely the number of crosslinks per fibre (or network connectivity),
as decisive for the fate of the simulation and a potential therapeutic target for regulating the architecture
of biological fibre networks.

The second model, ATmorpho-3D, is studied in chapter 5 and confronted to biological data acquired
through 3D imaging of in vivo tissue samples. We showed that our model generates 3D cellular structures
whose morphological characteristics are very close to those of the structures segmented from in vivo

samples. The fact that this very simple mathematical model yields results close to what has hitherto
appeared to be a complex biological reality calls for two considerations. Firstly, the biological complexity
may only be apparent and cover simple general organising principles. Secondly, the founding hypotheses
of the model seem to be correct concerning these underlying principles : biological tissue architecture
could stem simply from local mechanical interactions.

In this respect, it should be noted that the only modification we carried out concerned mechanical
repulsion interactions, which were initially modelled by linear forces. This emphasises the key role of
mechanical forces in ours models. In the initial version, the effect of the repulsion forces depended on
the relative size of the agents in a non-physical manner. This prompted us to change for a more complex,
but physically more relevant, modelling based on the Hertzian theory of contact. This need for accuracy
regarding the mechanical interactions again underlines their predominant role in the emergence of tissue
architecture.

For the future, several perspectives can be proposed. First, it would be very interesting to try to apply
our models to other types of biological tissues. The structures produced by the model ATmorpho-3D
could be compared to tissues displaying a lobular architecture similar to that of subcutaneous AT : vis-
ceral AT depots, liver, pancreas, etc. Minimalistic modifications, bearing not on the core of the models but
on the boundary conditions used during numerical simulations, could enable us to mimic tissues subjected
by their environment to major mechanical constraints. For example, coupling the model ECMmorpho-3D
with Neumann boundary conditions (i.e. elements located on the border can not move) on two opposite
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sides of the simulation domain could allow us to mimic muscles and sinews. Applying Dirichlet bound-
ary conditions (i.e. no element can pass through the border) on one side of the domain could model the
presence of a physical frontier for the tissue, such as the skin or a nearby gland. Additionally, the imple-
mentation of these new types of boundary conditions would enable us to conduct tension/compression
and shearing experiments to characterise the mechanical properties of our in silico systems, such as their
elasticity, plasticity and potential breakdown limit.

Another perspective is to confer other properties to the cellular agents to induce local heterogeneity
in the mechanical interactions, such as the ability to modify the linking and unlinking probabilities of
nearby fibres according to the cell size. Another change would be to enable physical links between cells
and fibres to mimic the adhesion capacities of certain cells.

Lastly, another possible direction for future works would be to adapt the models (and their potential
variations) to other contexts beyond that of tissue morphogenesis. For instance, they could be used to
study tissue reconstruction after injury, following the work of [37] in 2D.

All this discussion highlights the generic aspect of our models, which can potentially be adapted to
many types of tissues and biological contexts. This opens exciting perspectives concerning our under-
standing of how biological tissue architecture emerges and how alteration of basic mechanical properties
in various diseases can lead to a loss of tissue architecture and function.
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Mots clefs : Biologie mathématique ; Modèles individu-centrés ; Visualisation et segmentation en 3D; Tissus conjonctifs ; Réseaux de
fibres dynamiques en 3D; Tissus adipeux.
Résumé : Cette thèse porte sur l’hypothèse que des interactions mécaniques locales simples entre un nombre limité de composants puissent
régir l’émergence de l’architecture 3D des tissus biologiques. Pour explorer cette possibilité, nous développons deux modèles mathéma-
tiques. Le premier, ECMmorpho-3D, vise à reproduire un tissu conjonctif non-spécialisé réduit à la matrice extra-cellulaire, c’est-à-dire à
un réseau 3D de fibres interconnectées dynamiquement. Le second, ATmorpho-3D, est obtenu par ajout de cellules sphériques apparais-
sant et croissant spontanément dans ce réseau de fibres afin de modéliser la morphogenèse du tissu adipeux, un tissu conjonctif spécialisé
ayant une grande importance sur le plan biomédical. Pour analyser les données produites par ces deux modèles, nous construisons un outil
générique permettant de visualiser en 3D des systèmes composés d’un mélange d’éléments sphériques (cellules) et de bâtonnets (fibres) et
de détecter automatiquement dans de tels systèmes des amas d’objets sphériques séparés par des bâtonnets. Cet outil peut également être
utilisé pour traiter des images biologiques issues de microscopie en 3D, permettant ainsi une comparaison directe entre les structures in

vivo et in silico. L’étude des structures produites par le modèle ECMmorpho-3D via des simulations numériques montre que ce modèle
peut générer spontanément différents types d’architectures, que nous identifions et caractérisons grâce à notre outil d’analyse. Une analyse
paramétrique approfondie nous permet d’identifier une variable émergente, le nombre de liens par fibre, qui explique et, dans une cer-
taine mesure, prédit le devenir du système modélisé. Une analyse temporelle révèle que l’échelle de temps caractéristique de ce processus
d’auto-organisation est fonction de la vitesse de remodelage du réseau et que tous les systèmes suivent la même trajectoire évolutive. Enfin,
nous utilisons le modèle ATmorpho-3D pour explorer l’influence de cellules sphériques sur l’organisation d’un réseau de fibres dynamique,
en prenant comme référence le modèle ECMmorpho-3D. Nous montrons que le nombre de cellules influence l’alignement local des fibres
mais pas l’organisation globale du réseau. Par ailleurs, les cellules s’organisent spontanément en amas entourés de feuillets de fibres, dont
les caractéristiques morphologiques sont très proches de celles des structures cellulaires in vivo. De plus, la distribution des différentes
morphologies d’amas cellulaires est similaire dans les systèmes in silico et in vivo. Ceci suggère que le modèle est capable de produire
des morphologies réalistes non seulement à l’échelle d’un amas mais aussi à l’échelle du système entier, en reproduisant les variabili-
tés structurelles observées dans les échantillons biologiques. Une analyse paramétrique révèle que la proportion de chaque morphologie
dans un système in silico est gouvernée principalement par les capacités de remodelage du réseau de fibres, pointant le rôle essentiel des
propriétés de la matrice extra-cellulaire dans l’architecture et le fonctionnement du tissu adipeux (ce qui concorde avec plusieurs consta-
tations biologiques ainsi que des résultats antérieurs en 2D). Le fait que ces modèles mathématiques très simples puissent générer des
structures réalistes corrobore notre hypothèse selon laquelle l’architecture des tissus biologiques pourrait émerger spontanément à partir
d’interactions mécaniques locales entre les composants du tissu, indépendamment des phénomènes biologiques complexes se déroulant
dans ce tissu. Ce travail ouvre de nombreuses perspectives quant à notre compréhension des principes fondamentaux gouvernant la manière
dont l’architecture d’un tissu émerge durant l’organogenèse, est maintenue au cours de la vie et peut être affectée par diverses patholo-
gies. Les applications potentielles vont de l’ingénierie tissulaire à la possibilité de promouvoir la régénération chez les mammifères adultes.

Keywords : Mathematical biology ; Individual-based models ; 3D visualisation and segmentation ; Connective tissues ; 3D dynamical
fibre networks ; Adipose tissues.
Abstract : In this thesis, we investigate whether simple local mechanical interactions between a reduced set of components could govern
the emergence of the 3D architecture of biological tissues. To explore this hypothesis, we develop two mathematical models. The first one,
ECMmorpho-3D, aims at reproducing a non-specialised connective tissue and is reduced to the extra-cellular matrix component, that is a 3D
dynamically connected fibre network. The second, ATmorpho-3D, is built by adding to this network spherical cells which spontaneously
appear and grow in order to mimic the morphogenesis of adipose tissue, a specialised connective tissue with major biomedical importance.
We then construct a unified analysis framework to visualise, segment and quantitatively characterise the fibrous and cellular structures
produced by our two models. It constitutes a generic tool for the 3D visualisation of systems composed of a mixture of spherical (cells)
and rod-like (fibres) elements and for the automatic detection of in such systems of clusters of spherical objects separated by rod-like
elements. This tool is also applicable to biological 3D microscopy images, enabling a comparison between in vivo and in silico structures.
We study the structures produced by the model ECMmorpho-3D by performing numerical simulations. We show that this model is able
to spontaneously generate different types of architectures, which we identify and characterise using our analysis framework. An in-depth
parametric analysis lead us to identify an intermediate emerging variable, the number of crosslinks per fibre, which explains and partly
predicts the fate of the modelled system. A temporal analysis reveals that the characteristic time-scale of the organisation process is
a function of the network remodelling speed, and that all systems follow the same, unique evolutionary pathway. Finally, we use the
model ATmorpho-3D to explore the influence of round cells over the organisation of a fibre network, taking as reference the model
ECMmorpho-3D. We show that the number of cells can influence the local alignment of the fibres but not the global organisation of the
network. On the other hand, the cells inside the network spontaneously organise into clusters with realistic morphological features very
close to those of in vivo structures, surrounded by sheet-like fibre bundles. Moreover, the distribution of the different morphological types
of clusters is similar in in silico and in vivo systems, suggesting that the model is able to produce realistic morphologies not only on
the scale of one cluster but also on the scale of the whole system, reproducing the structural variability observed in biological samples.
A parametric analysis reveals that the proportion in which each morphology is present in an in silico system is governed mainly by the
remodelling characteristic of the fibres, pointing to the essential role of the extra-cellular matrix properties in adipose tissue architecture and
function (in agreement with several biological results and previous 2D findings). The fact that these very simple mathematical models can
produce realistic structures supports our hypothesis that biological tissues architecture could emerge spontaneously from local mechanical
interactions between the tissue components, independently of the complex biological phenomena taking place around them. This opens
many perspectives regarding our understanding of the fundamental principles governing how biological tissue architecture emerges during
organogenesis, is maintained throughout life and can be affected by various pathological conditions. Potential applications range from
tissue engineering to therapeutic treatment inducing regeneration in adult mammals.
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