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Abstract (French)

Cette thèse, “Dynamique temporelle dans les modèles par arbres et applications aux comportements
de rachat en assurance vie.”, explore l’application de nouveaux modèles statistiques et de straté-

gies innovantes pour étudier la dimension individuelle du comportement de rachat en assurance

vie. Ce travail est une combinaison de deux parties introductives et de trois articles de recherche,

chacun offrant une perspective singulière et diverses contributions à la gestion du rachat ainsi

qu’à l’inclusion d’une dimension temporelle dans les modèles de Machine Learning dits par ar-
bres. Le premier article, “Including individual Customer Lifetime Value and competing risks in
tree-based lapse management strategies”, présente une stratégie de rétention qui va au-delà d’une

simple prédiction du comportement assuré. Cette stratégie est basée sur une méthodologie de

gestion des rachats intégrant les notions de valeur client et de rentabilité, en misant sur une

individualisation des approches existantes. L’étude démontre comment les modèles de survie

par arbres surpassent les approches paramétriques, contribuant ainsi à une gestion des cam-

pagnes de rétention plus efficace et plus informée, pour les assureurs vie. S’appuyant sur ces

travaux, le deuxième article, “A longitudinal framework for lapse management in life insurance”,
souligne l’importance d’une approche incluant la dimension temporelle des comportements as-

surés dans la gestion du rachat. L’article propose un cadre longitudinal pour la gestion des com-

portements de rachat, qui exploite l’ensemble des données historiques passées de chaque assuré,

une ressource souvent négligée mais abondamment disponible dans les systèmes d’information

des assureurs. Cette méthodologie affine davantage la précision du ciblage des assurés à retenir

en portefeuille, améliorant ainsi la compréhension globale des assureurs quant au risque qu’ils

portent. Le dernier article, “Time penalized tree (TpT): a new tree-based data mining algorithm
for time-varying covariates”, présente un nouvel algorithme de construction d’arbre de décision

acceptant des variables évoluant avec le temps sous forme de données structurées longitudinale-

ment. L’article explicite et remet en question les hypothèses classiques des modèles acceptant

uniquement des variables statiques en proposant un algorithme qui permet le partitionnement

récursif des espaces des covariables et du temps, conjointement. Cette méthode innovante aide à

capturer les tendances historiques pertinentes pour l’analyse, permettant une étude plus précise

et interprétable de phénomènes évoluant dans des environnements dynamiques.

Dans l’ensemble, cette thèse offre une approche holistique de l’analyse du comportement de

rachat dans l’assurance vie en intégrant des modèles par arbres avancés et de l’analyse longitu-

dinale. Elle souligne le potentiel de ces stratégies innovantes pour informer les décisions com-

merciales et stratégiques dans l’industrie de l’assurance tout en garantissant leur interprétabilité

et leur explicabilité.
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Abstract (English)

This thesis, “Temporal dynamics in tree-based models and applications to lapse behaviour in life
insurance”, delves into the application of novel statistical models and strategies to study the indi-

vidual nature of lapse behaviour in life insurance. This work is a combination of two introductory

parts and three research articles, each offering a unique perspective and various contributions

to the understanding of lapse management and the inclusion of a time dimension in tree-based

Machine Learning models. The first article, “Including individual Customer Lifetime Value and
competing risks in tree-based lapse management strategies”, presents a retention strategy that goes
beyond a mere prediction of lapse. This strategy is grounded on a lapse management framework

that integrates Customer Lifetime Value and profitability, with a focus on the individualisation of

existing approaches. The study demonstrates how survival tree-based models outperform para-

metric approaches, thereby leading to more efficient and informed management of retention

campaigns, for life insurers. Building on this work, the second article, “A longitudinal framework
for lapse management in life insurance”, emphasises the importance of a time-informed approach

in lapse management. The article proposes a longitudinal lapse management strategy frame-

work that leverages the complete past trajectory of policyholders, a resource often overlooked

yet abundantly available in insurers’ information systems. This methodology further refines the

targeting precision, thereby enhancing the insurers’ understanding of their global portfolio risk.

The final article, “Time penalised tree (TpT): a new tree-based data mining algorithm for time-
varying covariates”, introduces a novel decision tree algorithm that accounts for time-varying

covariates within longitudinally structured datasets. The article challenges the traditional static

assumption of covariates by proposing an algorithm that allows recursive partitioning of the

features space together with time. This innovative method helps to capture relevant historical

trends for analysis, enabling a more accurate and interpretable study of phenomena evolving in

dynamic environments.

Overall, this thesis provides a global approach to lapse behaviour analysis in life insurance by

integrating advanced tree-based models and longitudinal analysis. It underscores the potential

of these innovative strategies in informing commercial and strategic decisions in the insurance

industry while ensuring their interpretability and explainability.
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1. General introduction

“ There is a story about two friends, who were classmates in high school, talking

about their jobs. One of them became a statistician and was working on population

trends. He showed a reprint to his former classmate. The reprint started, as usual,

with the Gaussian distribution and the statistician explained to his former classmate

the meaning of the symbols for the actual population, for the average population,

and so on. His classmate was a bit incredulous and was not quite sure whether the

statistician was pulling his leg. “How can you know that?” was his query. “And what

is this symbol here?” “Oh,” said the statistician, “this is π.” “What is that?” “The ratio

of the circumference of the circle to its diameter.” “Well, now you are pushing your

joke too far,” said the classmate, “surely the population has nothing to do with the

circumference of the circle.”.
1

Eugene P. Wigner”
“However, it does” is the natural answer for a statistician. This insightful short story can be

found as an introduction to the remarkable article, The unreasonable effectiveness of mathemat-
ics in the natural sciences, from Eugene Wigner (Wigner 1960). I remember my first experience

reading this story, and it fits remarkably well with my view of statistics and actuarial science. At

that time, I was a student who identified with the lay student being taught statistical modelling

in the dialogue. Now, this thesis somehow brought me to the other side of this story, and I return

to this anecdote as a reminder of the deep feeling of wonder that the joint product of statistical

research and popularisation can bring.

After these introductory words, I hope humbly to replace the statistician and present my thesis

on the consideration of the time dimension of actuarial problems with tree-based machine learn-

ing (ML) models. The proliferation of ML has had remarkable impacts on business, economics,

management, and the actuarial sciences, it has significantly enhanced risk assessment accuracy,

improved fraud detection methods, and enabled more precise pricing models for instance. A last

example of such impacts, that is of interest within the scope of this thesis is the development

of more accurate and individualised prediction approaches by considering the temporal dynam-

ics of data in decision-making processes. This has been further facilitated by sophisticated ML

techniques allowing the manipulation of large datasets. Consequently, these predictive mod-

els are now considered reliable and useful. This individualisation of predictions enables better

adaptation to the specific needs of individuals and organisations, thereby improving the quality

of decisions. In addition, by integrating the temporal dimension of data, ML enables the cap-

turing of variations and evolutions over time, which is essential for informed and responsive

decision-making. Thus, ML opens up exciting new perspectives in the field of management sci-

ence, enabling predictions to be more individualised, and the temporal dynamics of data to be

more meaningfully included in decision-making processes.
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First, I will provide some context on the development of this work, and then I will explain what

justifies this topic and how it can be beneficial to the field of actuarial science, why we use ar-

tificial intelligence (AI) to solve actuarial problems, why we restrict the analysis to tree-based

models and eventually, what we mean by considering temporal dynamics to modelling. Having

defined the terms of the subject, I will then introduce the rest of the thesis and the objectives it

seeks to achieve.

1.1 Thesis Context

This thesis is part of a partnership between the Actuarial Science Laboratory at Université Claude

Bernard Lyon 1 (UCBL1) and Katholieke Universiteit Leuven (KU Leuven). As such, it was organ-

ised by a joint doctoral agreement that governs the supervision and award of a double doctoral

diploma. If defended and based on a favourable report from the examination committee, this col-

laborative work should be rewarded with a joint doctoral degree in Sciences de Gestion, Mathé-

matiques appliquées—that is, management sciences and applied mathematics—from UCBL1 and

in Business Economics from KU Leuven. This research work has also been conducted within the

research Chaire Digital Insurance and Long-term Risks (DIALog), whose objectives are to explore
AI and ML tools and adapt them for the treatment of actuarial problems with massive data.

The design and construction of this thesis highlight the strong willingness of the author to fulfil

and respect the expectations, as well as the regulations and guidelines, of all involved institutions

in terms of research fields. It merges actuarial science, management science, applied mathemat-

ics, ML, business, and economics, and the proportion to which each domain is represented may

vary across the chapters and sections.

1.2 Why AI in insurance ?

Progress in AI is swift and has the potential to transform strategies and efficiency in the realms

of finance and insurance. An extensive study examining the influence of AI on the insurance

industry, which uses a data compilation of 91 articles and 22 industry reports, can be found in

the 2021 publication by Eling, Nuessle, and Staubli 2021. The researchers inferred that incor-

porating AI into the insurance sector could result in significant cost savings and new income

opportunities. Hence, the conventional insurance business model, which predominantly focuses

on loss compensation, is expected to shift emphasis toward loss prediction and prevention. ML

algorithms offer the unique capability of identifying relationships and intricate non-linear inter-

actions that might not be foreseen by humans or conventional statistical models (see Lestavel

2017). Specifically, these technological solutions enable insurance firms to improve the precision

of loss probability forecasting. This development could potentially solve a fundamental problem

in the industry: the challenge of information asymmetry. Using AI technologies, insurers can

lessen the information imbalance between themselves and their policyholders, resulting in more

accurate and personalised risk evaluations and enhanced decision-making processes.

Actuaries in the insurance sector are progressively utilising AI for model improvement and quick

updating. Numerous leading insurance conglomerates, such as Axa, Allianz, CNP, and Generali,

are investing in AI by setting up data labs and using collaborative ML platforms and solutions.

Conversely, online insurance companies are reaping the benefits of amplified intelligence, en-

abling nearly instantaneous pricing simulations that require extensive processing time. These

advancements will inevitably improve customer satisfaction (see Eling, Nuessle, and Staubli 2021;
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Eckert, Neunsinger, and Osterrieder 2022). Nonetheless, applying self-learning algorithms to tra-

ditional cross-sectional data may not result in a significant improvement in rate precision. To

achieve higher accuracy scores, and thus more precise pricing, longitudinally structured data

or even unstructured data from emails or customer letters can be examined using grammatical

and semantic recognition algorithms. These avant-garde methods permit the analysis of time

effects in data, capture price sensitivities, and adjust prices based on the anticipated individual

behaviour. This transition from traditional clustering or cohort methods towards individualisa-

tion is regarded as promising for tangible applications by insurance companies. This evolution

of the field can also be observed in research in asset management (see Bartram, Branke, and Mo-

tahari 2020), life insurance (see Chancel et al. 2022) or non-life reserving with dedicated research

groups at the Actuarial Studies in Non-life Insurance (ASTIN), for instance.

The integration of AI provides remarkable opportunities but also carries inherent risks. The

importance of maintaining control over the algorithms and critically analysing their outputs in-

stead of blindly relying on the tool cannot be overstated. Actuaries play an indispensable role

in formulating algorithms, confirming data dependability, deciphering the answers generated by

machines, and implementing them in competitive regulated settings. Moreover, they are instru-

mental in illustrating data and popularising findings to convince stakeholders of the pertinence of

the models. As AI persists in moulding the insurance sector, ethical issues must be confronted,

and responsibility must be guaranteed. Upholding human supervision and embedding ethical

standards are crucial for preventing bias and unfair practices. AI should be regarded as a facili-

tator of decision-making, rather than a complete substitute for human judgement.

In conclusion, the finance and insurance sectors are experiencing significant transformations

with the adoption of AI. The potential practical and theoretical benefits of AI in data analysis,

claims processing, risk assessment, asset management, and wealth management consulting are

vast.

1.3 Why Tree-based models (TBMs) ?

Tree-based algorithms in machine learning, like Decision Trees (DT), Random Forests (RF), and

Gradient Boosting Machines (GBM), use a hierarchical structure of decision rules based on fea-

tures to make predictions or decisions (the intricacies of TBMs are discussed in Chapter 4). While

these methods are relatively simple (in the sense that they do not require a large number of

(hyper-)parameters), one might assume that increasing model complexity, with deep learning

(DL) approaches for instance, would enhance overall predictive capability. The rise of highly

complex deep learning models that we are witnessing in all areas of applied AI, such as com-

puter vision (see Simonyan and Zisserman 2015; He et al. 2016), Natural Language Processing

(NLP) (see Devlin et al. 2018; OpenAI 2023), medical research (see Esteva et al. 2017; Rajpurkar

et al. 2017), engineering (see Schulman et al. 2015; Gu et al. 2017) or environmental science (see

Jin et al. 2019; Xie, D. Zhang, and Wang 2019) could suggest so. Not surprisingly, research in ac-

tuarial sciences and finance has not been left behind by the recent proliferation of cutting-edge

literature (see Wüthrich 2018; Frees and Valdez 2019; Q. Shi, Yang, and Li 2020; L. Zhang, Frees,

and Valdez 2020; Chen, Y. Wu, and C. Wu 2020; Teixeira, Ferreira, and Pestana 2020; Belzile

2021; McDonnell et al. 2023 and Tsantekidis et al. 2018; L. Zhang and W. Wu 2019; Dehghani and

Larijani 2023 respectively). These state-of-the-art articles provide insights into the applications

of DL methods in actuarial science and their performance in areas such as mortality modelling,

claim prediction, reservation, pricing, and valuation. This begs the question: why favour the use

of TBMs over DL methods in this thesis?
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Both DL models and TBMs exhibit desirable properties, such as the ability to capture nonlinear

relationships between covariates and target variables, provide insights into the relative impor-

tance of different features, and handle missing values, outliers, and mixed data types. Ultimately,

they are both scalable because they can handle large datasets efficiently and can be parallelised

and distributed across multiple processors or clusters, making them suitable for big data sce-

narios. Thus, with very good predictive performance for specific tasks, one might ask why one

would want to use less complex tree-based models, as was done in our study. The main reason

is that, although neural networks (NNs) have exceptional capabilities on problems that require

unstructured data, tree-based models still outperform DL models in most supervised learning

tasks with tabular data (see Borisov et al. 2021)), as demonstrated using 11 various datasets by

Shwartz-Ziv and Armon 2022 and another set of 45 benchmark tabular datasets from diverse

fields, incorporating both categorical and numerical features (see Grinsztajn, Oyallon, and Varo-

quaux 2022), with a bench-marking methodology for both fitting models and identifying optimal

hyper-parameters. In the field of insurance research, a survey was recently conducted (see Mc-

Donnell et al. 2023) that revealed that the performance of tree-based models and DL methods can

be very close, but using the latter may not be worth the time and computational needs. Recently,

Wuthrich 2019 and Schelldorfer and Wuthrich 2019 suggested the idea of using NNs to correct

a baseline prediction, established with a Generalised Linear Model (GLM) or TBMs, with a NN.

That framework, denoted as combined actuarial neural network (CANN) proposes an innovative

way for actuarial studies to benefit from NNs. A comparative study of such approaches can be

found in Holvoet, Antonio, and Henckaerts 2023.

The broadest survey (Grinsztajn, Oyallon, and Varoquaux 2022) aimed to understand not if, but

why tree-based models are still superior to NNs and revealed two main reasons. First, DL meth-

ods tend to create very smooth prediction functions, whereas the real relationship between the

covariates and the target in tabular datasets is often irregular; NNs are biased toward overly

smooth solutions. Second, NNs are highly sensitive to uninformative features because of their

rotational invariance, whereas the TBMs show greater robustness.

Remark 1.1

Previous remarks of this section are to be nuanced: any real-world application on a sin-

gle specific dataset has unique properties. The No Free Lunch theorem (see Wolpert and

Macready 1997) suggests that it is impossible to determine in advance which model will

consistently yield optimal performance. This uncertainty arises from the fact that, on aver-

age, any two optimisation algorithms are equivalent across all possible problems. In other

words, there is no universal best algorithm that outperforms others across every problem

domain.

That said, we argue that TBMs are a reasonable choice for actuarial purposes that rely on tab-

ular data. In fact, they showed great performance in pricing tasks (see Henckaerts et al. 2021)),

as well as in the prediction of cyber-claims (see Farkas, Lopez, and Thomas 2021) and tornado-

induced claims (see Maillart and Robert 2023). In addition, TBMs have inherent advantages that

contribute to their interpretability, making them highly desirable in management domains, such

as actuarial science, where understanding the decision-making process of the model is crucial.

In terms of interpretability, some key features of DTs exist that justify our thesis orientation.

First, the structure of a decision tree is straightforward and intuitive, and it mimics human or
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company decision-making by considering different features and making choices based on them.

This resemblance to human or company decision processes enhances interpretability because the

reasoning behind the model predictions aligns with human intuition. This advantage is exploited

in the last parts of this thesis, as this does not hold for ensemble methods that are used earlier on.

Secondly, TBMs provide an intuitive measure of feature importance, enabling us to understand

which features have the most significant impact on the model predictions. Features that appear

higher in the tree structures and are involved in more splits are considered more important,

which facilitates the identification of the key drivers of the model decisions. Individual decision

trees can then be visualised graphically, facilitating comprehension and communication of the

model behaviours. Single trees enable tracing of the path from the root node to the leaf nodes and

observing how decisions are made, which can be interpreted as an explanation for an individual

prediction. This property makes DTs’ mechanisms easy to understand, even for non-experts. The

use of familiar concepts, such as branches, nodes, and decision rules, contributes to the model’s

interpretability, making it accessible to a wider audience, including all actors in any decision-

making process. The extension of those interpretability properties to ensemble TBM is an active

area of research.

For now, these mechanisms may not be understood by the lay reader. The next chapter (Chap-

ter 4) is dedicated to detailing tree-based algorithms and illustrating those properties.

1.4 Why focusing on time-dynamic in actuarial applications ?

In the insurance domain, premiums are collected by insurers from policyholders in exchange

for assuming the risk of potential future losses or damages. These premiums form the revenue

stream for insurers, whereas the actual costs incurred, including claim payments, expenses, and

reserves, typically materialise after the premiums have been collected. This fundamental charac-

teristic of the insurance business model gives rise to a temporal disconnection between revenue

collection and cost realisation, resulting in a reverse or delayed production cycle. Consequently,

time plays a critical role in actuarial modelling, enabling a comprehensive understanding and

quantification of risk dynamics. Extensive literature exists in this domain, as exemplified by

notable contributions (see Bauer and Hommel 2007, Tan and Yow 2011, Gao and X. Wu 2013,

Olivieri and Pitacco 2015, Zaks and Sherris 2018). This reverse production cycle in insurance

inherently entails moral hazards (see Holmström 1979). Abbring et al. 2003 argued that dynamic

insurance data surpasses static data that has problems distinguishing between moral hazard and

selection and dealing with dynamic features of actual insurance contracts. In the presence of

moral hazards, experience ratings lead to negative occurrence dependence in which individual

claim intensities decrease as the number of past claims increases. This study also establishes the

possibility of testing for adverse selection even when based on asymmetric learning.

Insurance pricing necessitates the use of historical data and statistical methods to determine

appropriate premium rates. Time is a fundamental component in evaluating the frequency and

severity of past events and facilitating their projection into the future. For instance, Bolancé,

Guillén, and Pinquet 2003 accounted for the seniority of claims by introducing dynamic ran-

dom effects instead of static ones in the context of automobile insurance. P. Shi and Valdez 2014

explored the utility of copulas in modelling the number of insurance claims for individual poli-

cyholders within a longitudinal framework. Recently, Lee and P. Shi 2019 proposed a dependent

modelling framework to examine jointly the frequency and severity components within a longi-

tudinal context by employing a novel copula regression approach. These examples demonstrate
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the integration of policy history into pricing, specifically in terms of the frequency or severity

components.

Estimating liabilities and reserves is a crucial responsibility of insurance companies and pension

funds to fulfil their obligations. Time plays a critical role in projecting future claim payments,

policyholder behaviour, and investment returns. Actuarial models account for the time value of

money, discount future cash flows and incorporate the timing of expected payments.

Actuarial time-dependent models also play a pivotal role in long-term planning, prospective

research, and decision-making. Actuaries analyse demographic trends, mortality rates, eco-

nomic factors, and regulatory changes over time to assess the long-term sustainability of insur-

ance products or pension plans. Noteworthy theoretical and practical applications of dynamic

decision-making processes can be found in Guillén et al. 2012, where time-varying effects are

exhibited in the analysis of customer loyalty as well as in the applications discussed in Chap-

ters 8 and 12 of this thesis.

Another aspect in which time is incorporated is the performance of financial projections used

to evaluate the financial health and solvency of insurance companies, pension funds, and other

financial institutions. These projections involve modelling future cash flows, asset values, li-

abilities, and capital requirements over time. By accounting for the time dimension, actuaries

can assess the adequacy of reserves, capital buffers, and risk-mitigation strategies in the face of

uncertain future events. Research contributions in this area include the examination of portfo-

lio insurance and hedging strategies by Katsikis et al. 2020 and the work of Medvedeva et al. 2021.

Finally, actuarial models incorporate time to analyse the probabilities of future events, such as

claims, lapses, deaths, and financial market fluctuations, and to estimate their associated finan-

cial consequences. Consequently, the use of survival analysis tools to predict time-to-event target

variables is common and can benefit from a dynamic framework, as demonstrated in this thesis.

In summary, the time dimension holds significant importance in actuarial modelling, as it en-

ables the analysis of risk, accurate pricing of policies, estimation of liabilities, long-term plan-

ning, and financial projections. Actuaries rely heavily on time-dependent models to comprehend

and manage the inherent uncertainties within insurance and financial systems.
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2. Research objectives and scope

We now delve into the essence of our research, focusing on the consideration of time-dependent

features in tree-based models, especially their applications to lapse behaviour in life insurance.

Building on the broad motivations established in the previous chapter, where we provided a

foreword on the research topic and outlined its significance, this chapter identifies specific re-

search problems and establishes the objectives and scope of this thesis. We begin by defining the

key concepts in the domains of management, insurance, and life insurance, including churn and

lapse. We recognise the importance of thoroughly understanding these concepts as they serve as

fundamental building blocks for subsequent analyses. We then clearly define the research prob-

lem this thesis addresses and outline the specific research applications discussed.

We recognise the importance of grounding our analysis in a real-world context, and for this

purpose, we will detail compelling application examples in the domain of life insurance. These

examples are all based on the analysis of a unique dataset and serve as illustrative case studies

throughout Parts 3 to 5 of the thesis, enabling us to explore and examine the intricacies of lapse

behaviour in a practical setting. By meticulously studying temporal dynamics and leveraging

the power of tree-based models, we aim to gain deeper insights into the underlying factors in-

fluencing lapses, thereby contributing to enhanced risk assessment and management in the life

insurance industry.

2.1 What is churn?

In business management, churn refers to the phenomenon in which customers discontinue their

relationships with a company or brand. It is a critical metric for businesses across various indus-

tries as it directly impacts customer loyalty, revenue, and long-term sustainability. The impor-

tance of understanding and addressing churn has been widely recognised in the literature. As-

carza et al. 2018 highlights the significance of enhanced customer retention management strate-

gies to mitigate churn and emphasises the need for businesses to manage customer relationships

proactively. To manage churn effectively, accurate prediction of customer churn is essential.

Churn in various industries, including insurance, is often modelled using statistical and ML ap-

proaches. These models aim to capture the underlying patterns and factors that contribute to

churn behaviours. For instance, Duchemin and Matheus 2021 compares the performance of sta-

tistical methods for churn prediction over various evaluation metrics. The commonly used tech-

niques include survival analysis, causal inference, logistic regression, TBMs, NNs, and ensemble

methods. Survival analyses, such as Cox proportional hazards models, are frequently employed

to model the time to a churn event, considering the duration of the customer relationship before

the churn occurs. Using causal inference methods, businesses can assess the impacts of different

strategies or interventions on churn and make informed decisions regarding the actions that are

the most effective in reducing churn rates. They can test the effectiveness of targeted retention
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campaigns, pricing adjustments, and service enhancements in reducing churn. In automobile

insurance, such an approach can be found in Verschuren 2022. Logistic regression is a paramet-

ric approach often used to predict binary churn outcomes based on the relevant predictors (see

Loisel, P. Piette, and C.H.J. Tsai 2021, for instance). Conversely, decision trees, random forests,

and gradient boosting provide non-linear approaches for identifying churn predictors and estab-

lishing decision rules. In addition, NNs offer flexible and powerful methods of capturing complex

relationships and patterns in churn behaviours. Overall, ML techniques have been demonstrated

as effective in this domain and references for approaches leveraging historical data related to

customer characteristics, behaviours, transactional information, or interactions to estimate the

churn likelihood are compiled in this chapter. For example, hybrid NNs have shown promise for

predicting customer churn. C.F. Tsai and Lu 2009 proposes a hybrid neural network approach for

churn prediction, combining the strengths of different neural network architectures. Such hy-

brid models can capture complex nonlinear relationships and improve prediction performance.

Recently, Bogaert and Delaere 2023 conducted a comprehensive analysis of ensemble methods

for customer churn prediction. This analysis demonstrated the ability of ML algorithms to pre-

dict churn, showing that these algorithms surpassed traditional statistical approaches in terms

of accuracy and predictive power.

ML algorithms can leverage vast amounts of customer data to identify patterns and indicators of

potential churns. Geiler, Affeldt, and Nadif 2022 provides a comprehensive survey of ML meth-

ods for churn prediction, highlighting the diverse range of techniques used, including decision

trees, NNs, and ensemble methods. By incorporating various data sources and considering mul-

tiple factors, such as customer demographics, purchase histories, and interaction patterns, ML

models can capture complex relationships and deliver accurate churn predictions. In addition to

traditional data sources, incorporating non-traditional data such as customer-company interac-

tion emails and emotional cues can further improve churn predictions. Coussement and Van den

Poel 2009 explored the integration of emotions from client-company interaction emails, while

Coussement, Dries, and Van den Poel 2010 demonstrated the use of generalised additive models

in marketing decision-making within a churn prediction context. These studies highlight the

potential of leveraging additional data dimensions to enhance churn prediction accuracy.

Predicting churn enables businesses to retain customers proactively and implement targetedmar-

keting strategies. Burez and Van den Poel 2007; Burez and Van den Poel 2009 highlighted the use

of analytical models to reduce customer attrition through targeted marketing and identified var-

ious challenges that arise in such analyses. These studies illustrate how churn prediction can

inform marketing decision-making, enabling businesses to allocate resources effectively and tai-

lor retention initiatives to at-risk customers.

Overall, the definition and understanding of churn coupled with the implementation of effec-

tive customer retention management strategies are crucial for businesses aiming to reduce cus-

tomer attrition and enhance customer loyalty. ML techniques offer powerful tools for predicting

churn, enabling businesses to address customer churn proactively. By leveraging these models,

businesses can gain insights into customer churn dynamics, identify high-risk individuals, and

devise effective retention strategies to mitigate churn and foster long-term customer relation-

ships.
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2.2 Life insurance and lapse management strategies (LMS)

2.2.1 Specificities about life insurance

Life insurance involves a contractual agreement between an individual (or policyholder (PH)) and

an insurance company. It provides financial protection by offering a payout or death benefit to

designated beneficiaries after the death of the policyholder. Life insurance policies often include

provisions for savings or investment components, which enable policyholders to accumulate

cash value over time. The unique nature of life insurance establishes long-term relationships

between customers and insurance companies, typically spanning many years. In a life insurance

customer-company relationship, policyholders pay regular premiums to insurance companies,

ensuring continuous coverage and guaranteeing death benefits. In return, the insurance com-

pany commits to honouring the policy terms and providing agreement benefits to beneficiaries

upon the death of the policyholder. This relationship relies on the understanding that policy-

holders maintain their policies and keep up with premium payments throughout the policy.

However, policyholder behaviours, known as lapses and surrenders, pose challenges to this re-

lationship. A lapse occurs when a policyholder discontinues premium payments, enabling the

policy to be terminated before the intended duration. This situation can occur for various rea-

sons such as financial difficulties, changing priorities, or dissatisfaction with policies. Surrender,

on the other hand, refers to the voluntary termination of the policy by the policyholder, often

resulting in the withdrawal of the accumulated cash values. Throughout this thesis, we will re-

fer to both behaviours using the word “lapse” without distinction. Modelling lapses is critical for

insurers because of their financial and actuarial implications. When policyholders lapse or sur-

render their policies, insurers face financial consequences including the loss of future premium

payments and potential surrender charges. Moreover, lapses disrupt the actuarial calculations

and risk assessments necessary for insurers to price policies accurately and manage their finan-

cial stability. The similarities between lapses in life insurance and churns in any other industry

lie in the fact that it describes the event of customers discontinuing their relationships with a

company. However, significant differences can be noted. In life insurance, the term “lapse” refers

specifically to the termination of an insurance policy, often involving the cessation of premium

payments, and its timing and conditions are often contractually agreed. The critical distinction

is that lapses in life insurance involve the discontinuation of coverage, potentially leaving poli-

cyholders without intended financial protection. By contrast, churn in other industries may not

have such severe consequences in terms of the loss of essential services or benefits.

ML has revolutionised numerous industries, resulting in significant benefits and advancements.

However, the life insurance industry has been relatively slow in adopting ML techniques com-

pared with other sectors. Traditionally, statistical models have been the preferred choice for risk

assessment in life insurance, leading insurers to question the value and effectiveness of AI in

their domain. Although the traditional actuarial methodologies have been effective in survival

modelling, incorporating ML techniques can enhance predictive accuracy and provide additional

insights. By understanding the drivers and patterns of lapses, insurers can develop targeted re-

tention strategies, adjust pricing structures, implement proactive measures to minimise lapses,

optimise policyholder retention, and maintain stable customer portfolios.

2.2.2 About the nature of lapses

Unlike mortality risk, the risk of lapse is based on the asymmetry of choice between the poli-

cyholder and the insurance company (see Pierrick Piette 2019). Under a life insurance policy,
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the company guarantees indefinitely the payment of benefits and profit-sharings based on the

survival or death of individuals. In return, the policyholder pays premiums and fees, but this

commitment is revocable: she can choose to lapse the policy before its natural end, and thus

fully, or partially recover the outstanding amount of her policy. Those behaviours will respec-

tively be denoted as complete lapses and partial lapses. In the actuarial literature, modelling the

structural (linked to constant economic or individual effects) and temporary (linked to changes

in the economic environment or the policyholder’s personal situation) causes and consequences

of these lapses is usually achieved within two stochastic and dynamic frameworks: the interest

rate hypothesis (see Dar and Dodds 1989) and the emergency fund hypothesis (see Outreville

1990). Further references regarding all literature mentioned here are detailed in Sections 8.1 and

12.1.

On the one hand, the interest rate approach is based on the assumption that policyholders are

rational market agents who will maximise their individual profit by taking advantage of any ar-

bitrage opportunity whenever the market interest rates rise. Such a rational policyholder lapses

her life insurance policy to obtain better financial returns on the market. This approach seeks

to explain the causes of lapse, but also their financial consequences by estimating the valuation

of a rational lapse, in a risk-neutral world. In this literature, lapse is modelled as an option (see

Prudent 1996) for which the policyholder optimises her lapse time to maximise her profit .

On the other hand, the emergency fund hypothesis assumes that a life insurance policy is lapsed

in order to deal with an urgent financial need of the policyholder. In that framework, lapse be-

haviours will increase during periods of economic stress (they may be used to overcome financial

difficulties encountered during a period of unemployment, for instance) and will highly depend

on macroeconomic features. Nevertheless, the individual characteristics of the policyholder (the

age and family situation can be indicators of the will to buy a vehicle or a property, for instance),

which may be influenced by the economic cycle, are also considered probable causes of lapse.

Both approaches aim at accounting for structural and temporary lapses and rely on stochastic

and financial tools, which proved to be very useful for understanding the dynamics of lapses.

Nevertheless, they are based on assumptions that do not always reflect reality. In this thesis, we

do not draw on these works.

Alongside these typically actuarial frameworks, numerous empirical studies have been carried

out to analyse life insurance lapses from a statistical point of view. This statistical literature is

more general, in the sense that it can be used to study lapses in life insurance, but also to analyse

churn for any other insurance line of business or any company. The statistical approaches can

be divided into two categories according to the explanatory features they exploit.

On the one hand, a large part of the literature is economic-centred and thus focuses on the im-

pact of macroeconomic factors (such as the evolution of interest rates, the unemployment rate,

or market performances), the specific characteristics of the insurance company (such as its size,

seniority, rating, size or legal form), or variables informing on competitors (such the yield spread

or surrender charges). In this kind of approach, lapses are studied from a systematic and macroe-

conomic point of view.

On the other hand, there also exists a micro-oriented literature, that focuses on seizing the struc-

tural and temporary aspect of lapse through the policyholders’ individual characteristics (such

as the age, gender or family situation, number of insurance contracts detained), as well as in-

formation on her policy (such as the seniority, type of product, and the cash flows generated).

Lapses are said to be structural if their analysis is based on such characteristics.

In this thesis, we study lapse within the statistical, micro-oriented framework, focusing on the

characteristics of each individual and their insurance policy. The predictive methodologies we
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develop in Parts III and IV are also suited to account for macroeconomic features (especially the

longitudinal approach discussed in Chapter 12), yet the applications we propose do not include

them. Merging the economic-centred and micro-oriented frameworks with a statistical approach

in order to seize the systematic as well as the individual nature of lapses could constitute future

research.

2.2.3 Application to lapse management strategy

Throughout this thesis, the contributions are illustrated using real-world applications and case

studies that are directly linked to the management of policy lapses in the life insurance industry.

From the perspective of a life insurer, effective policyholder retention is crucial for maximising

profitability andmanaging risks. Attracting new customers in competitivemarkets is challenging

and requires investments five to six times greater than the cost of preventing existing customers

from churning (see Athanassopoulos 2000). Regardless of the context and specificities of the

insurer, the design of a retention strategy is at least always justified because a high structural

lapse rate automatically translates into customer volatility and leads to increased management

and marketing costs, as new policyholders must be constantly sought. A retention strategy is a

set of actions and initiatives developed and implemented by insurers to encourage policyhold-

ers to continue their policies and minimise lapse probabilities or financial consequences. These

strategies involve understanding the behaviours, preferences, and motivations of policyholders,

enabling insurers to personalise their approaches and provide tailored incentives or services to

retain policyholders.

However, not every policyholder who is likely to lapse should be retained because they may

not generate future profits for the insurer. Despite having a high probability of lapsing, some

policyholders may not contribute significantly to the profitability of the insurer because of low

premiums or other factors. Therefore, insurers must differentiate between policyholders who

are likely to lapse but still generate future profits and those who are less likely to contribute to

profitability. In our research, we address this challenge by developing innovative frameworks

that utilise the concept of customer lifetime value (CLV), a well-established marketing tool that

estimates the potential future value generated by a customer over his or her entire relationship

with a business to estimate the profitability of individual policies. By applying the CLV to life

insurance, we can assess the profitability of each policy by considering factors such as future pre-

mium payments, potential policy upgrades, and the likelihood of policyholder lapses or death.

Given a portfolio, this enables us to identify which policyholders are the most likely to lapse

while generating substantial profits for the insurer. Consequently, we could prioritise retention

efforts and allocate resources effectively, targeting policyholders with higher CLVs and higher

probabilities of lapsing who still contribute significantly to the profitability of the insurer.

Importantly, the inclusion of CLV in the lapse management process ensures a policyholder-
centred analysis. This thesis argues that this approach is to be preferred for several reasons.

First, life insurance policies are distinct financial contracts with unique characteristics including

premium amounts, coverage terms, and policyholder demographics. By focusing on individ-

ual policies rather than on aggregated data, customer-centred analysis enables a more granular

understanding of policyholder behaviours and their effects on profitability. Second, individu-

alised analysis enables insurers to tailor their retention strategies to the specific needs and cir-

cumstances of each policyholder. This approach acknowledges that policyholders have varying

motivations for lapsing or surrendering their policies and that a personalised approach is more

effective in addressing their concerns and retaining their policies.
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Furthermore, if lapse management is individualised to account for variations in behaviour across

policyholders, it should also account for variations over time. We recognise that the likelihood

of lapse or surrender can change over time and that considering the evolving nature of these

behaviours is essential. Therefore, we explore highly individualised methodologies and consider

the use of historical data to capture policyholder behavioural patterns and account for tempo-

ral dynamics. By analysing past policyholder actions, such as premium payment history and

changes in coverage, we can identify patterns that help predict future behaviours and tailor re-

tention efforts accordingly. The incorporation of temporal dynamics into tree-based models is

a central aspect of our study. By considering the time dimension, we can capture the dynamic

nature of policyholder behaviour and make more accurate predictions regarding lapses or sur-

renders. By understanding the evolving patterns and adapting our approaches over time, insur-

ers can proactively address policyholder concerns, maximise policyholder retention, optimise

profitability, and make informed decisions. These techniques provide a structured framework

for analysing and predicting the likelihood of policyholder lapses as well as the expected prof-

itability at stake, considering multiple individualised factors such as policy features, policyholder

demographics, and historical behaviours, thereby enabling insurers to make informed decisions

regarding their retention strategies.

In summary, our research aims to address the challenge of optimising policyholder retention

in a whole-life life insurance portfolio. We developed different frameworks that utilise individu-

alised future CLVs to estimate the profitability generated by any given policy, enabling insurers

to identify and target the policyholders who are the most likely to lapse while still generating

future profits. These applications demonstrate that our research enhances life insurance portfo-

lio management and enables insurers to make data-driven decisions that maximise profitability

and mitigate risks. Overall, through these applications, this thesis emphasises the importance

of a policy-centred analysis in life insurance portfolio management. By employing advanced

tree-based ML methods, the applications show that our frameworks can provide insurers with

individualised insights into policyholder behaviours, enabling the development of effective lapse

management strategies that consider temporal dynamics and maximise profitability.

Lapse management strategies, when implemented effectively by life insurers, can also offer ben-

efits to policyholders in several ways. Firstly, profitable PH might receive incentives or benefits

to encourage them to maintain their policies, it can include premium discounts, bonuses, or ad-

ditional coverage options. Secondly, encouraging PH to retain their policies ensures that they

maintain the financial protection and coverage that the policy originally provided. This conti-

nuity in coverage can be crucial for the policyholder’s financial security and protection of their

beneficiaries. While acknowledging for those advantages from the PH’s perspective, our work

consistently adopts the perspective of the insurer and exploring the viewpoints of an individual,

a broker, or a reinsurer, would be truly insightful but remains out of the scope of this thesis.
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3. Thesis structure, objectives, and con-
tributions

3.1 Thesis structure and objectives

This thesis comprises six main parts.

The first one, in which we currently are, is a general introduction. It serves as a contextualising

part by providing background information, relevant theories, concepts, and previous research

on ML, tree-based algorithms, and insurance; defines our research problem; and evokes the life

insurance application examples that are utilised throughout the following parts.

The second part focuses on introducing theoretical generalities about tree-based ML algorithms.

It provides a historical overview of the classical tree-based algorithms and modelling method-

ologies at our disposal. It then describes the specificities of survival analysis by detailing the

usual notations and introduces tree-based survival methods. Along with the introduction, this

part describes background knowledge rather than presenting novel information. It is intended

to enable an independent understanding of the remaining parts of the manuscript.

The third part is dedicated to defining a policyholder-centred lapse management framework for

life insurers: an LMS. It considers tree-based models and involves a survival analysis with com-

peting risks. After a brief overview of the use of the CLV in management and actuarial science,

this section explores the various benefits of an enlightened, individualised, and profit-driven tree-

based retention strategy based on survival - and time-dependent considerations. This part shows

that time considerations can be beneficial to the field of actuarial lapse management. It is based

on the article Including individual Customer Lifetime Value and competing risks in tree-based lapse
management strategy published by the European Actuarial Journal as a joint work with Xavier

Milhaud and Anani Olympio.

The fourth part suggests that the LMS framework can be adapted to time-varying covariates.

It introduces general notations, presents state-of-the-art longitudinal models, and discusses how

such models could benefit the actuarial field. It defines an LMS longitudinal framework that pro-

vides a time-informed retention strategy. This new methodology constitutes a second temporal

layer that can be included in the LMS framework. Its strengths, flaws, and further improvements

are discussed in various settings. This application is based on the article entitled A longitudi-
nal ML framework for lapse management in life insurance submitted to the Annals of Actuarial

Science. We argue that it provides a valuable contribution to the field of lapse analysis for life

insurers and highlights the importance of using the complete past trajectory of policyholders,

which is often available in the information systems of insurers but is rarely exploited.
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The fifth part is dedicated to the exploration of innovative longitudinal tree-based algorithms that

can handle time-varying covariates. It introduces a new tree-based data mining algorithm: Time-

penalised Tree (TpT), and an application to policyholder-centred lapse analysis is discussed.

The sixth and last section constitutes the general conclusion of this thesis.

Remark 3.1

Before diving into the following parts of the thesis, note that the sections based on pub-

lished, submitted works or working papers include complete and nearly unmodified parts of

the original articles (Chapters 8, 12, and 14). This characteristic provides the advantage that

every part of the manuscript can be read independently, with its corresponding appendix.

However, it also means that notations or contextual elements may be repeated sev-
eral times along this thesis. All passages directly taken from articles are referenced and

contained within clearly identifiable chapters, with the abstracts and keywords of the orig-

inal source included. Nevertheless, most general notations are homogeneous throughout

all chapters and all common mathematical symbols and their meanings can be found in the

list of abbreviations and symbols. This choice was made out of convenience for the future

readers of this work, who may not need nor want to read it all at once.
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List of contributions

Thesis parts III, IV, and V are based on the following publications, submissions, and working

papers:

1. Mathias Valla, Xavier Milhaud, Anani Ayodélé Olympio. Including individual Customer

Lifetime Value and competing risks in tree-based lapse management strategies. European
Actuarial Journal, inPress. 〈hal-03903047v3〉 (Valla, Milhaud, and Olympio 2023)

2. Mathias Valla. A longitudinal ML framework for lapse management in life insurance.

Working Paper. 〈hal-04178278〉 (Valla 2023a)

3. Mathias Valla. Time-penalized trees (TpT): a new tree-based data mining algorithm for

time-varying covariates. Working Paper. 〈hal-04178282〉 (Valla 2023b)

The present thesis and the articles it relies on attempt to address multiple gaps in the actuarial

literature. A list of the main contributions of this work to the field can be found below:

66 Individualised CLV with competing risks

66 Using RSF and GBSM for lapse analysis

67 Development of a new LMS framework

67 Business-oriented discussion

106 New longitudinal LMS framework

106 Use of longitudinal TBM in life insurance

147 Gaps within the longitudinal TBM literature

147 Introduction of TpT
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4. Methodology and methods

4.1 Machine learning methodology

This chapter broadens the extent of Part I by presenting the ML methodology employed to ad-

dress our research questions and introducing classical tree-based models and evaluation metrics

that are used in various applications throughout this thesis. This chapter serves as a comprehen-

sive guide to the techniques, algorithms, and processes employed in our studies.

Statistical models are broadly categorised into two types based on the number of parameters

they use: parametric models and non-parametric models. Parametric models assume a fixed

form of the relationship between inputs and outputs with a predetermined number of param-

eters learned from training data, such as linear regression. On the other hand, non-parametric

models, don’t rely on fixed assumptions about the functional form of the underlying distribu-

tion of variables of interest and have a flexible number of parameters that grow with the data.

Most ML approaches, including TBMs, are non-parametric, and their calibration and evaluation

necessitate a specific methodology, detailed in this part.

Here, we provide a concise overview of the ML methodology, emphasising its fundamental prin-

ciples and underlying concepts. Understanding the core ideas of ML and tree-based models is

crucial for comprehending the subsequent sections, in which we delve into the specific algo-

rithms employed. We outline the steps of the ML pipeline, which encapsulates the entire process

from data collection and preprocessing to model training and evaluation. Each step is discussed

in detail, highlighting the choices made and justifying the decisions based on the research objec-

tives and available resources. Moreover, we focus on model training and evaluation processes,

shedding light on the selection of appropriate performance metrics, cross-validation techniques,

and (hyper)-parameter tuning. These critical steps are essential for optimising the predictive ca-

pabilities and generalisation power of the models.

Furthermore, we present a thorough exploration of the various tree-based algorithms used in

our study with descriptions and illustrations. We cover both traditional algorithms, such as de-

cision trees, and more advanced techniques, such as bagging and boosting ensemble methods.

For each algorithm, we discuss the existing variations, availability, complexity, theoretical un-

derpinnings, suitability in our research context, and potential limitations.

Through this chapter, readers will gain a comprehensive understanding of the ML methodology

and properties of the tree-based models employed in our research, enabling them to evaluate our

approach critically and interpret the results of the subsequent chapters with confidence.
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4.1.1 Training

In this section, we explore the training methodology in detail, revealing the intricate steps, tech-

niques, and considerations involved in the training process. By understanding the essence of

the models and predictions, we can grasp the fundamental purpose and significance of the train-

ing methodology in ML. Subsequently, we introduce the Train/Test/Validation methodology and

justify it by detailing the concepts of bias, variance, over-fitting, and under-fitting.

Model and predictions

Let us assume that we study a dataset, denoted D, with N rows, or observations, each contain-

ing the values of p variables. The vector of covariates corresponding to the i-th observation is

denoted x(i) = (x
(i)
1 , x

(i)
2 , . . . x

(i)
p ), i ∈ [1, . . . , N ]. These variables are called covariates, inputs,

features, or predictors and are shown in equation 4.1. Each row has a corresponding variable

y(i) that can be denoted as a target, response, outcome, label, or output variable. For all inputs

x(i) ∈ X , the covariate space, a unique output ∈ Y , the output space, is provided. If the output
- thus predictions - takes continuous values, this is a regression model; if it takes categorical or

discrete values, this is a classification one. In any case, we denote

X =

∣∣∣∣∣∣∣∣∣
x
(1)
1 x

(1)
2 . . . x

(1)
p

x
(2)
1 x

(2)
2 . . . x

(2)
p

: : : :

x
(N)
1 x

(N)
2 . . . x

(N)
p

∣∣∣∣∣∣∣∣∣ Y =

∣∣∣∣∣∣∣∣
y(1)

y(2)

:

y(N)

∣∣∣∣∣∣∣∣ . (4.1)

X and Y are the input and output matrices of D, with D = {X,Y } =
{
x(i), y(i)

}N
i=1

.

The typical supervised learning task then consists of predicting an output y ∈ Y from an in-

put x ∈ X , where the pairs (x, y) are taken from an unknown joint distribution, J : it is the
process of learning a mapping from X to Y . In other words, a learning algorithm seeks to esti-

mate a function g : X → Y from a finite training dataset Dtrain, consisting of Ntrain samples

fromJ . We refer to the learned function g as a hypothesis function, an element of a space of pos-

sible functions allowed by the model G called the hypothesis space. Then, the learned function g
and the learning algorithmA : (X ×Y)Ntrain → G can be formalised as g ← A(Dtrain). Ideally,
a perfect learning model would yield g = f , where f denotes the hypothetical “true mapping”

from X to Y . In practice, however, f cannot be found explicitly and thus needs to be estimated.

This estimation is provided using a loss - or scoring, or evaluation - function ℓ : X × Y → R
that assigns a score to any prediction made by a given model. We denote L as the space of all

possible loss functions and will discuss this specific topic in more depth in the next sections. The

quality of a predictor g is then assessed by its expected loss (or risk) given by

L(g) = E(x,y)∼D
[
ℓ(g(x), y)

]
.

The chosen model is then the function g ∈ G that produces outputs minimising the expected

loss: g = argmin
g∈G

(L(g)).

However in practice, L(g) can only be estimated as we do not know what the underlying true

joint distribution J is. We can only estimate L(g) from the empirical training error given by

L̂(g) = Ltrain(g) = E(x,y)∼Dtrain

[
ℓ(g(x), y)

]
.

The chosen model is then the function g ∈ G that produces outputs minimising the expected

empirical loss: it is learned by minimising L̂ (g) as a surrogate for L (g). It is what we refer to as
a model and it allows us to make predictions of the target variables given certain features.
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Training methodology, bias-variance and over/under-fitting

Every ML model has its own training specificities (see section 4.2 for a detailed overview of clas-

sical tree-based algorithms); however, a common objective exists regarding the ability of super-

vised learning models for prediction tasks. An optimal model aims to minimise errors committed

to predictions while avoiding over-fitting. Over-fitting is a significant concern in ML. It describes

the phenomenon in which a model learns training data so well that it performs poorly on un-

seen or new data. This situation occurs when a model becomes excessively complex or highly

specialised for the training dataset, effectively memorising the noise or idiosyncrasies present in

the training observations rather than capturing the underlying general patterns that can reliably

be applied to unseen examples.

The common literature on the subject (see Geman, Bienenstock, and Doursat 1992) states that a

model that is too simple will yield highly biased results and under-fit the data, whereas a model

that is too complex will yield predictions with high variance and over-fit the data. Hence, the

widely accepted concept of the bias-variance trade-off predicts a U-shaped test error curve (see

Figure 4.1).

Figure 4.1: Bias-variance trade-off U-shaped curve

The idea is that a model becomes more accurate as it increases in complexity until it over-fits

and loses its generalisation ability. That is, the error committed to the training set Ltrain(g) is
a decreasing function of the model complexity, whereas Ltest(g) first decreases then increases

with the complexity of g. Statistical learning theory (see Vapnik 1998) provides a strong theoret-
ical background supporting the concept of trade-offs for several classic ML models. A concrete

illustration of that idea for ML methods can be found in Geman, Bienenstock, and Doursat 1992.

Formally, the bias of a model is defined as a measure of how close its expected prediction is

to the true underlying function f . For some x ∼ X , the bias is given by:

B (g) = E(x,y)∼Dtrain
[g(x)]− f(x).
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A model with B(g) = 0 is said to be unbiased.

However, the variance of a model is a measure of the variability or spread of its predictions,

where deviations from their expected values result from different samplings of Dtrain.

For some x ∼ X , the variance is given by
1

var (g) = E(x,y)∼Dtrain

[(
g(x)− E(x,y)∼Dtrain

[g(x)]
)2]

.

The intuition behind the concept of generalisation is clear. A good generalisation implies that

the model learns similar functions when trained on different training sets.

In the specific setting, where the squared-loss function is considered as a choice of ℓ, the av-

erage loss that can be expected over different training sets can be derived and decomposed into

bias and variance components as such

LNtrain = εbias + εvariance + εnoise ,

with

E(x,y)∼Dtrain
[εnoise ] = 0, var(εnoise ) = E(x,y)∼Dtrain

[
ε2
noise

]
= σ2εnoise .

Sketch of proof.
For simplicity’s sake, as all expected values are expectations over samples (x, y) drawn from

Dtrain, we will not carry the identifiers in the following steps.

E
[
(y − g(x))2

]
= E

[
(f(x) + εnoise − g(x))2

]
= E

[
(f(x)− g(x))2

]
+ E

[
ε2
noise

]
+ 2E[(f(x)− g(x))εnoise ]

= E
[
(f(x)− g(x))2

]
+ E

[
ε2
noise

]︸ ︷︷ ︸
=σ2

ε
noise

+2E[(f(x)− g(x))]E[εnoise ]︸ ︷︷ ︸
=0

= E
[
(f(x)− f̂(x))2

]
+ σ2εnoise .

Then it follows that,

E
[
(f(x)− g(x))2

]
=E
[
((f(x)− E[g(x)])− (g(x)− E[g(x)]))2

]
=E
[
(E[g(x)]− f(x))2

]
+ E

[
(g(x)− E[g(x)])2

]
− 2E[(f(x)− E[g(x)])(g(x)− E[g(x)])]

=(E[g(x)]− f(x)︸ ︷︷ ︸
=B[g(x)]

)2 + E
[
(g(x)− E[g(x)])2

]︸ ︷︷ ︸
=var(g(x))

− 2(f(x)− E[g(x)])E[(g(x)− E[g(x)])]

=B[g(x)]2 + var(g(x))

− 2(f(x)− E[g(x)])(E[g(x)]− E[g(x)])

=B[g(x)]2 + var(g(x)).

And finally,

E
[
(y − g(x))2

]
= E

[
B (g)2

]
+ E [var (g)] + σ2ϵ .

1

We consider here the regression case where Y = R.
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Remark 4.1

Similar proofs can be found and are detailed for ML methods in Geman, Bienenstock, and

Doursat 1992 for example. Such decompositions show that the Mean Squared Error (MSE)

of a model can be written as a sum of bias and variance terms. For a given constant MSE,

an increase (decrease) in the bias component must be balanced with a decrease (increase) in

the variance component. This insight strongly supports the idea of a bias-variance trade-

off in the statistical learning method. In all generality, recent works (see Neal et al. 2019)

unveil a growing body of empirical evidence demonstrating that bias-variance trade-off and

U-shaped error curves do not always hold true, and these concepts are to be nuanced. The

emerging alternative hypothesis is that the test error curve can follow a “double descent”

curve with empirical examples of that phenomenon in tree-based models (see Belkin et al.

2019).

Remark 4.2

In a classification context, usual loss functions do not allow for such additive bias-variance

decomposition of the general error (see Geurts 2005; Bouckaert 2008). This situation does

not prevent the application of the concept of trade-off but hinders any theoretical insight

in such settings.

Various methodologies and techniques exist to avoid over-fitting and promote better generalisa-

tion. First, the risk of over-fitting can be avoided beforehand, and careful selection of relevant

features can help eliminate irrelevant or noisy features that may introduce over-fitting tenden-

cies (see Hawkins 2004). Regularisation techniques can then be used to control the complexity

of a model and mitigate over-fitting. By adding a regularisation term to the objective function

of the model, the model is encouraged to have simpler and smoother optimal parameter values,

thereby reducing its sensitivity to noise and outliers in the training data (see Ying 2019).

In practice, the most commonly used methodology involves dividing the dataset into two sepa-

rate subsets: a training set used to train the model and a test set used for evaluation purposes.

Several methods for that purpose and references are discussed in Section 4.1.2. Evaluating the

performance of a model on unseen test data can provide an estimate of how well the model is

likely to perform in new instances. This evaluation helps detect over-fitting by identifying a

significant deterioration in performance on the test set compared with the training set. This

general methodology is known as the train–test split, and is an efficient training methodology

whenever the test set has a sufficient sample size to yield statistically significant outcomes, and

is representative of the overall dataset. It is essential to avoid selecting a test set that possesses

characteristics different from those of the training set.

In all generality, if a model performs almost equally well on the test data as it does on the

training data, this characteristic indicates that over-fitting was effectively avoided. Splitting the

training datasets into several subsets is the core idea of optimal tuning strategies. Different train-

ing–testing split variations are discussed in detail in the following section.
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4.1.2 Tuning and evaluation

Tuning and validation

As discussed in the previous section, any ML model requires a strong tuning and validation

strategy. In this section, we briefly introduce the general training–testing split methodology, then

detail and illustrate the mechanisms used in the different applications discussed in this thesis.

We begin with the aforementioned training–testing split and show how it can be modified to

build robust parameter tuning and model evaluation methodologies.

Holdout cross-validation (H-CV): H-CV, also known as simple cross-validation involves

splitting the available dataset into two disjoint subsets: a training set Dtrain and a validation

set, or holdout set Dtest. An illustration of that process is depicted in Figure 4.2. A common

practice is to allocate a high proportion of the data (usually between 60 and 80%) to the training

set and the remaining part to the validation set. Splitting is typically performed randomly to

ensure representativeness.

Figure 4.2: Train-test split procedure

First, themodel is trained using only the training set. Subsequently, it is evaluated using a holdout

set. The model makes predictions based on holdout set instances that are evaluated to assess its

performance. These two steps can be performed on different models with various complexities,

and the evaluation results obtained from the holdout set serve as estimates that can be compared

to provide insight into how well the models generalise to new instances.

This approach offers the advantage of being a simple and straightforward means of estimating

the performance of a model without involving complex resampling techniques. As only one split

was required, the model was built only once and executed quickly. On the other hand, it has

the serious limitation of being very sensitive to the specific instances chosen for the holdout set.

Variations exist in this approach to mitigate this issue.

k-fold cross-validation (kf-CV): The kf-CV overcomes some of the limitations of simple H-

CV. It provides a more reliable and robust estimate of model performance by leveraging multiple

iterations of training and evaluation using different subsets of the dataset. In this approach, the

entire dataset is partitioned into k equally sized subsets. In each iteration, one subset is used as

the validation set, whereas the remaining k − 1 subsets are employed as the training set. The

model is trained and evaluated using the training and validation sets, respectively. This process

is repeated such that each subset is used as a validation set exactly once. Figure 4.3 illustrates

this type of cross-validation.
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Figure 4.3: k-fold cross-validation

By averaging the results from multiple iterations, kf-CV provides a more reliable estimate of

model performance. This reduces the dependency on a single validation set and helps mitigate

the impact of variations in the dataset. Furthermore, a significant portion of the data was set

aside as a holdout set in simple cross-validation, resulting in reduced training data for model

development. In kf-CV, all data points are utilised k−1 times for training and once for validation

across multiple folds, maximising the use of available data and improving the model’s learning

capability. Furthermore, this type of cross-validation can be improved to tune and select models

over highly imbalanced datasets by ensuring that the mean (or class proportions) of the target

variable is constant among all sampled folds. This tuning and evaluation method is the most

common one and is used in parts of the applications presented in Chapters 8 and 12.

Leave-p-out cross-validation (LpO-CV): LpO-CV is a variant of cross-validation where a

predetermined number of samples, p, are left out as the validation set, and the model is trained

on the remaining data. This process is repeated until all the observations are used in both a

training and a testing set. In LpO-CV, all possible ways of drawing p samples from D are con-

sidered (see Figure 4.4), and the model is trained and evaluated for each combination to assess

the model performance comprehensively. This approach is more rigorous but computationally

expensive than traditional k-fold cross-validation because it exhaustively considers all possible

combinations of leaving p instances out.

This approach has been used and studied extensively in the actuarial literature, such as by Lin

Figure 4.4: Leave-p-out cross-validation

et al. 2018 ), who discussed the application of LpO-CV to parameter estimation in severity and

frequency models loss models, and by Y. Zhang and Siu 2019 who explored the use of LpO-CV for

claim count models that involve excess zeros, providing insights into the evaluation of predictive

performance in actuarial studies.

Monte-Carlo cross-validation (MC-CV): MC-CV is another evaluation method in which a

predetermined number of iterated training–testing splits and evaluations are performed. At it-

eration m, the dataset is randomly sub-sampled into training data and test data. Similarly to
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other cross-validation techniques, the common practice is to set the proportion of observations

going inDm
train between 60% to 80% while the remaining instances go intoDm

test. The considered

model is trained on Dm
train, then evaluated on Dm

test. These steps are repeated at each iteration,

as depicted in Figure 4.5.

Figure 4.5: Monte-Carlo CV

All samplings are independent; thus, any given observation can be part of several test sets during

the procedure or none. Finally, the average of all the test errors is evaluated.

This approach is also used in various actuarial applications. For instance, Bevilacqua, Braglia,

and Montanari 2015 employs it for outlier detection in asset valuation, and Nigro and Veltri 2020

utilises it to evaluate risk in dynamic portfolio management modelling. It has also been used in

the applications discussed in Chapter 12.

Rolling cross-validation (R-CV): R-CV, also known as rolling window cross-validation, is

used for time-series or sequential data. Because the order of data is very important for time-

series-related problems, it is not advisable to draw data instances randomly and assign them to

Dtrain or Dtest. The dataset is sequentially split into training and validation sets, which address

the temporal nature of the data by simulating a real-world scenario in which the model is trained

on historical data and tested on future data. A fixed-size window or time period is defined, and

the data are divided into multiple overlapping segments or folds. The model is trained on data

within the window and then evaluated on subsequent data points that fall outside the window

at future time points (see Figure 4.6). The window is then shifted forward by a specified time

or number of data points, and the process is repeated until the entire dataset has been used for

training and testing.

Figure 4.6: Time series rolling CV

R-CV offers a significant advantage in facilitating the evaluation of the performance of a model
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on data points that mirror real-world scenarios. This technique effectively captures the temporal

dynamics inherent in the data, enabling a reliable assessment of the capacity of the model to

generalise and make predictions in a time-dependent manner. By simulating the behaviour of

the model over time, rolling cross-validation enhances the credibility of its predictive capabili-

ties and contributes to a more robust evaluation of its overall performance. See Chen, Li, and

Lin 2020; Liao et al. 2020; Kajikawa and Yamasaki 2019 for actuarial research references that use

R-CV to assess model performance.

These methodologies collectively serve as effective methods to mitigate over-fitting. By utilising

these techniques, an optimal trade-off between model complexity and predictive performance

can be achieved, thereby enhancing the capacity of the model to generate accurate predictions

using previously unseen data. It is important to note that all cross-validation methods require

the selection of an appropriate evaluation metric to assess the performance of a model. This issue

is discussed in the next section.

Metrics

The choice of the evaluation metric holds the utmost significance as it plays a pivotal role in the

comprehensive evaluation of the model’s predictive capabilities. The selection should be made

meticulously, considering the specific research questions and desired objectives of the analysis.

Various evaluation metrics can be considered depending on the nature of the modelling context

(e.g., classification, regression, and survival analysis). A few of these issues are discussed in this

section.

Classification: In simple terms, a classification prediction problem in Machine Learning is

akin to the task of sorting different items into specific boxes based on their characteristics. For

example, you could imagine a system that separates apples from oranges based on their colour

and shape, in the context of this thesis, you could imagine finding a way to differentiate lapsers

from non-lapsers. To answer a classification task, we create a model that can separate data into

different categories based on their individual features. In all generality, with the notations in-

troduced in Section 4.1.1, the supervised learning task is a classification task with J classes if

Y = {0, 1, . . . , J}.

For the simplicity of the explanations, we will illustrate different choices of ℓ for binary clas-

sification (Y = {0, 1}), all of which are based on what’s called, the confusion matrix. All choices

of ℓ detailed in the following paragraphs can be generalised to multi-class classification. With

this in mind, in binary classification, an observation can be well classified or misclassified in

only four ways: a 0 can be classified as such or misclassified as a 1, and a 1 can be classified as

such or misclassified as a 0. A confusion matrix is essentially a table containing the number of

observations N(j, k), (j, k) ∈ (0, 1)2 in the test set that falls in each of those possibilities:

N(j, k) =
N∑
i=1

1
(
yi = j, g(xi) = k

)
.

Table 4.1 is called the confusion matrix and N(1, 1), N(1, 0), N(0, 1), N(0, 0) are respectively
referred to as the number of true positives, false negatives, false positives and true negatives.
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Real outcome y
1 0 Total

Predicted outcome g(x)
1 N(1, 1) N(0, 1) N(−, 1)
0 N(1, 0) N(0, 0) N(−, 0)
Total N(1,−) N(−, 0) N

Table 4.1: Confusion matrix for binary classification

From this number, we can derive several widely used metrics:

Accuracy(g(x), y)) =
N(1, 1) +N(0, 0)

N
,

Precision(g(x), y)) =
N(1, 1)

N(1, 1) +N(0, 1)
=

N(1, 1)

N(−, 1)
,

Recall(g(x), y)) =
N(1, 1)

N(1, 1) +N(1, 0)
=

N(1, 1)

N(1,−)
.

Accuracy(g(x), y)) is undoubtedly the most intuitive performance measure, and it is defined as

the proportion of correctly predicted observations among all observations. It is widely used for

binary classification and churn analysis; however, it appears to be a satisfactory performance

measure only for balanced datasets.

Precision(g(x), y)) measures the proportion of positive observations among the observations

predicted as follows: the higher this metric, the lower the false positive rate.

Recall(g(x), y))measures the proportion of observations that are correctly predicted as 1 among

all the positive observations. The higher this metric, the lower the false negative rate, which is

of great interest for churn predictions.

More complex metrics can be derived from these basic metrics. For example, one can easily

imagine a problem in which any misclassification comes at a cost depending on its nature. Both

the false positive and false negative rates must be minimised and balanced according to their

respective costs. In that case, it can be relevant to consider the FβScore, based on the work of

Rijsbergen 1979, and defined as

FβScore(g(x), y)) =
(
1 + β2

)
· precision − recall

(β2 · precision ) + recall

.

In this case, FβScore(g(x), y)) can be seen as the weighted harmonic mean of precision and re-

call, taking values between 1 (a perfect model) and 0 (the worst possible model). Parameter β rep-

resents the ratio of recall importance to precision importance. Very intuitively, values of β < 1
give more weight to precision, while values of β > 1 favour recall. For example, setting β = 2
makes recall twice as important as precision. And it follows that limβ→0 FβScore = Precision
and limβ→+∞ FβScore = Recall. It is usually more efficient than accuracy in the presence of

uneven class distribution. Accuracy seems to perform better if false positives and false nega-

tives have similar costs. Other metrics such as the Jaccard index (see Jaccard 1912) also exhibit

the property of weighting the misclassification costs but will not be used nor discussed through-

out this thesis.
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Also based on those basic metrics, the Precision-Recall (PR) and the Receiver Operating Char-

acteristic (ROC) Curves (depicted in Figure 4.7) are widely used metrics for evaluating the per-

formance of a classification model in machine learning. On the one hand, the ROC curve is

a graphical representation of how well a classification model can distinguish between classes.

The curve is plotted using the true-positive rate (TPR) against the false-positive rate (FPR) at

various threshold settings. The Area Under the ROC Curve (AUROC) measures the entire two-

dimensional area underneath the entire ROC curve, and it provides an aggregate measure of

performance across all possible classification thresholds. A model whose predictions are 100%

correct has an AUC of 1 while a model whose predictions are 100% wrong has an AUC of 0.

On the other hand, the PR curve is a plot of precision (also known as the positive predictive

value) against recall (also known as sensitivity) for different thresholds. A PR curve is more in-

formative for unbalanced datasets than an ROC curve. The AUC-PR measures the area under the

PR curve and provides a measure of the model performance.

Figure 4.7: Illustration of the Areas under the ROC and PR curves

Eventually, we will introduce a last choice of ℓ for a loss function: the negative log loss

function or cross-entropy, defined as

Log-Loss = − 1

N

N∑
i=0

[
y(i) log

(
g(x(i))

)
+
(
1− y(i)

)
log
(
1− g(x(i))

)]
.

This quantity is not defined as a combination of measures based on the confusion matrix but

rather is derived from maximum likelihood optimisation. It shows various desirable properties.

First, it directly optimises the predicted probabilities to match the actual class labels. This is

beneficial in scenarios in which we care not only about the final class prediction but also about

how confident the model is in its prediction. Second, the logarithmic components of this func-

tion ensure that incorrect predictions are heavily penalised; the penalty grows exponentially,

and the prediction becomes more confident. This encourages the model to make accurate pre-

dictions. The use of logarithms ensures prediction stability and prevents numerical underflow,

which can occur when dealing with extremely small probabilities. Therefore, it is recommended

for churn prediction problems (see Henckaerts and Antonio 2022, in an insurance context). Even-

tually, this function is smooth and differentiable everywhere, which is desirable as it allows the

use of gradient-based optimisation algorithms like eXtreme Gradient Boosting (XGBoost) (see

Section 4.2.2).
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Regression: Various regression loss functions exist (see Wang et al. 2022 for a comprehensive

survey), among these, the loss functions below, to name a few, are prominent:

• The Mean Absolute error (MAE) :

MAE =
1

N

N∑
i=1

∣∣∣y(i) − g(x(i))
∣∣∣ .

• The Mean Absolute Percentage Error (MAPE):

MAPE =
1

N

N∑
i=1

∣∣y(i) − g(x(i))
∣∣

y(i)
· 100.

• The Mean Squared Error (MSE):

MSE =
1

N

N∑
i=1

(
y(i) − g(x(i))

)2
.

• The Huber Loss:

Lδ(y, g(x)) =

{
1
2(y − g(x))

2
for |y − g(x)| ≤ δ

δ|y − g(x)| − 1
2δ

2
otherwise

.

• The Log Cosh Loss:

log cosh(t) =

N∑
i=1

log
(
cosh

(
g(x(i))− y(i)

))
.

• The Poisson Deviance:

D = 2

N∑
i=1

[
y(i) log

(
y(i)

g(x(i))

)
−
(
y(i) − g(x(i))

)]
.

• The Quantile Loss:

LQuantile =
∑

i|y(i)<g(x(i))

(γ − 1)
∣∣∣y(i) − g(x(i))

∣∣∣+ ∑
i|y(i)≥g(x(i))

(γ)
∣∣∣y(i) − g(x(i))

∣∣∣ .
Each of these functions has its domain of superiority; for instance, the MSE is sensitive to out-

liers but easy to compute and differentiate, whereas the absolute error is robust against outliers

but lacks computational efficiency. Log Cosh Loss and Huber Loss are combinations, offering a

balance between robustness against outliers and computational ease. Quantile Loss, on the other

hand, is excellent for predictions involving quantiles. In this thesis, we primarily focus on the

MSE when dealing with regression problems, owing to its simplicity and consistency in provid-

ing comparable results for our applications. However, let us not overlook the fact that the choice

of loss function is highly dependent on the specific task, dataset, and requirements at hand (see

Henckaerts, Côté, et al. 2021).
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4.2 Models description

The subsequent literature review presents a comprehensive examination of tree-based ML mod-

els, which have garnered significant attention in data science owing to their interpretability,

versatility, and robust performance across diverse datasets. The following descriptions delve

into the underlying mechanics of the fundamental tree-based algorithms and elucidate the op-

erational principles that drive their functionality. First, we retrace the historical steps that have

led to the emergence of diverse tree-based models. This review elaborates on the strengths and

weaknesses of these algorithms, thereby providing a balanced evaluation of their efficacy. In

addition, the complexities, variations, and unique characteristics of these models are expounded,

offering a nuanced understanding of their potential applications. The objective of this review

is to provide a historical overview of tree-based methods, underscoring their pivotal role in ad-

vancing ML and predictive analytics and their advantages in management science.

4.2.1 History of decision trees

Static tree structures

Classification and regression trees, commonly referred to as decision trees, are increasingly

utilised in both predictive and exploratory roles. They are particularly valuable for identifying

and managing non-linear impacts on the targeted variables and for uncovering complex inter-

actions among predictors. This section’s objective is to delve into the inner workings of the

Classification and Regression tree algorithm (CART), as showcased in L. Breiman et al. 1984’s

work, to explore the evolution of tree methods that led to its development as well as the evolu-

tions that ensued. This section should enable readers to understand the common concepts behind

their functioning. For complete and comprehensive reviews, consider the early work of Fielding

and O’Muircheartaigh 1977 or the more recent overviews of Ritschard 2013 and Loh 2014. We

will begin with the general concepts and historical review.

In ML and predictive analytics, a decision tree is a powerful iterative model, that makes no as-

sumptions about the underlying distribution of (x, y). It operates based on the principles of

recursive partitioning and is characterised by a tree-like structure. The model divides the feature

space into a series of binary splits, creating a hierarchical structure of nodes representing deci-

sion points. Each split is based on a specific feature and threshold, enabling clear decision rules

to be extracted from the tree. Every tree-based model mentioned throughout this thesis is built

using decision trees; hence, the term TBM. Belson 1959 first proposed the concept of recursive

partitioning. His focus was on the problem of predicting the value of a target variable for homo-

geneous subgroups. He dichotomised the predictors and the outcome variable based on a growth

criterion defined as the difference between the observed count and the expected number under

the no-association assumption. Considering only binary predictors (x1, ..., xp) and outcome y,
at a given node g the best variable to split on, x∗ is selected as

x∗ = argmax
x∈(x1,...,xp)

{ 1

N (g)
·
∑
i∈g

1xi=1 ·
∑
i∈g

1yi=0 −
∑
i∈g

1yi=0,xi=1},

with N (g) the number of observation in node g.

Other early ideas came from Morgan and Sonquist 1963 who introduced the Automatic Interac-

tion Detector (AID) algorithm to build a binary regression tree, and Cellard, Labbe, and Savitsky

1967 who proposed Exploration of Links and Interactions through Segmentation of an Experimental
Ensemble (ELISEE), a binary method for categorical dependent variables.
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These early models enable to generate a graph called decision tree, as an output. Such a tree

illustrates decisions and their possible consequences, providing a graphical view of the decision-

making process (see Figure 4.8).

Figure 4.8: A simple decision tree

The nodes in this structure represent the attributes or features, while the branches correspond

to the decision rules, leading to the leaf nodes that signify the outcome.

The AID method was popularised by Sonquist et al. 1971, with Sonquist 1969 demonstrating

its usefulness alongside multiple correlation analysis
2
, while Bouroche, J.M. and Tenenhaus, M.

1970 popularised ELISEE. Further extensions of AID then emerged, such as Interactive Data Ex-
ploration and Analysis (IDEA), a tree-growing algorithm that allows splits with more than two

child nodes by Press, Rogers, and Shure 1969. Extensions to handle categorical outcomes with

THAID were developed by Messenger and Mandell 1972 and Morgan and Messenger 1973, or to

handle multivariate quantitative outcomes with MAID (see Gillo 1972; Gillo and Shelly 1974). In

parallel and coincidentally, Hunt, Marin, and Stone 1966 proposed a series of classification tree

induction algorithms called Concept Learning Systems.

The primary goal of these initial methods is to understand the relationship and interactions be-

tween the target variable and factor covariates. Apart from Hunt, most authors (see Morgan and

Sonquist 1963, Press, Rogers, and Shure 1969) seek alternatives to the limitations of the linear

model, in which the impact of the explanatory variables is essentially additive. The main focus

was to identify significant interactions, not necessarily to enhance prediction, but to deepen our

understanding of how the target variable relates to covariates. Thus, these early methods aimed

to divide data into groups that showed distinct distributions of the target variable. Therefore,

these methods naturally use measures of correlation between the outcome and split variables as

their splitting criteria. If the outcome is quantitative, as in AID (or MAID), the split that leads to

the largest reduction in the residual sum of squares (or its multivariate generalisation) is chosen.

It is equivalent to the maximisation of a modified version ofR2
, the proportion of explained vari-

2

For a detailed comparison of AID and Belson’s method, refer to Thompson 2018.
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ation. As an illustration, AID’s splitting criterion (as defined in the original work from Morgan

and Sonquist 1963) finds the split that divides the node g into two child nodes gr and gl as the
one that maximises

N (gr)ȳ
2
r +N (gl)ȳ

2
l = N (gr)

( ∑
yr

N (gr)

)2

+ (N (g)−N (gr))

( ∑
yl

N (g)−N (gr)

)2

=
(
∑
yr)

2

N (gr)
+

(
∑
y −

∑
yr)

2

N (g)−N (gr)
,

with yr and yl the values of y in nodes gr and gl, and ȳr and ȳl their respective means.

A variance component can be introduced within that splitting criterion in order to estimate the

explained sum of squares among the total population not merely on the sample provided.

When the target variable is quantitative, the IDEA algorithm (see Press, Rogers, and Shure 1969)

is also based on a scaled R2
. The notion of statistical significance was later introduced in these

splitting procedures, by evaluating the p-value of the modified R2
, first with a permutation test

(see Kass 1975 and Appendix A.0.1), and then with its Chi-square approximation (see Scott and

Knott 1976). Whenever the target variable is categorical, all tree-based algorithms before 1976

rely on a splitting criterion, which is the p-value of Pearson’s chi-square independence test (see

Appendix A.0.2). Most applications of these techniques appear in social science articles; however,

we can also find early TBM works in management science and marketing (see Cellard, Labbe,

and Savitsky 1967, Armstrong and Andress 1970 or Assael 1970). Relying on these strong foun-

dations, Chi-square Automatic Interaction Detector (CHAID) was introduced by Kass 1980 as an

extension of the AID and THAID. It can generate trees with nodes that can split into more than

two child nodes and uses Bonferroni tests to identify the best splits. This approach is currently

the most popular of these earlier statistical supervised tree-growing algorithms and is widely

available; in R, the CHAID package can be used. Although it is rare to see any recent applica-

tions of AID, THAID, ELISEE, or IDEA in the actuarial or management science literature, CHAID

remains competitive among tree algorithms. For example, it has been used for management and

marketing applications in insurance by Onn and Mercer 1998, or for churn prediction in various

applications in Almana 2014.

This historical review now comes to its tipping point as subsequent tree-growing techniques

such as CART, GUIDE, Iterative Dichotomizer 3 (ID3), C4.5 and 5.0, M5, or conditional inference

trees (CTREE), focus on classification and prediction rather than interaction analysis. Thus, they

modified the existing splitting goal that consisted of minimising some between-nodes hetero-

geneity in order to design models that maximise the within-node homogeneity. It changed the

paradigm from minimising variance measures to maximising purity measures. The overview of

subsequent tree-based algorithms can be presented both chronologically and by contributors, as

Breiman, Quinlan, Loh then Hothorn have succeeded one another for the last 40 years.

Breiman’s trees:
Specifically, Breiman’s work, with CART, was pivotal in regenerating interest in the subject as

it also brought new ideas such as pruning or surrogate splits. CART uses a similar top-down

greedy approach as AID and THAID: it starts from an initial node - the root - containing all
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observations in D. Then it finds the covariate xk and the threshold d3 such that they optimise a

splitting criterion. The root is then split into those two child nodes for which the same splitting

process is repeated until a stopping criterion is triggered. Multiple ways of splitting a parent

node gp into the child nodes gr and gl exist. The classification splitting criteria to be maximised,

first considered in the original work of Breiman are

1. Based on an impurity measure I(·):

I(g) +

(
N (gl)

N (gp)
I(gl) +

N (gr)

N (gp)
I(gr)

)
,

where Breiman considered theGini impuritymeasure defined as I(g) = −
∑

i pi,glog(pi,g),
and the entropy defined as I(g) = 1

2

∑
i pi,g(1− pi,g),

2. the Twoing criterion:

N (gl)N (gr)

4 · N 2

[∑
i

|pi,gl − pi,gr |

]2
,

with pi,g the proportion of observation with class i in node g.

Some differences between splits obtained through these criteria are discussed in Section 4.2.3.

The regression splitting criterion originally considered for CART is

MSE(g) +

(
N (gl)

N (gp)
MSE(gl) +

N (gr)

N (gp)
MSE(gr)

)
,

withMSE(g) the MSE of all observations (x, y) contained in g. It is also to be maximised.

Whether it is used in classification or regression contexts, CART is capable of processing both

categorical and numerical data. Once growing the tree is achieved, themaximal tree is obtained.
It has been observed with AID for instance, that such a tree over-fits the data, leading to pre-

dictions made on observations that were not used to grow the tree that are usually inaccurate.

That is why a last refining step is required: the maximal tree is pruned to a sub-tree that has

better generalisation abilities. From an algorithmic perspective, growing a CART following the

original Breiman’s procedure is summarised in Algorithm 1
4
.

A tree is therefore defined by its splitting criterion (SplittingCriterion), its stopping
rule(s) (StoppingRules) and its pruning process (Prune). No or weak stopping rules will

generate a high-variance/low-bias over-fitted tree whereas constraining ones will lead to smaller,

more interpretable low-variance/high-bias under-fitted trees. The idea of cost-complexity prun-

ing developed by Breiman emerged from the need to find a compromise between the two ex-

tremes.

The main idea behind cost-complexity pruning is to consider sub-trees of the maximal tree and

evaluate them with a cost function that increases as the error rate rises and decreases as the

number of leaves drops. When a tree is pruned at a node, the weighted summed error of the

leaves increases while the number of leaves reduces, thus a pruned sub-tree is selected only if

the error gain is counter-balanced by the complexity loss.

3d is a cutoff value if the covariate to split on is numerical and a set of classes if it is categorical.

4

Please note that the specific implementations of all algorithms described in this section can vary depending upon

the programming language and the specific variant of the algorithm one might use.
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Algorithm 1 Grow algorithm for CART

1: Input: Training set D, current node g
2: Consider the current node g, if no current node exists, create a new tree T with a single

initial node g.
3:

4: if StoppingRules(g) = True then let g be a leaf with the prediction fT (g).
5: else
6: for all possible covariates and thresholds do
7: Find the pair (xk, d) that obtains the best SplittingCriterion(D, xk, d).
8: Split the node g along covariate xk at threshold d into two child nodes gr and gl.
9: Grow(D(gr), gr).
10: Grow(D(gl), gl).
11: end for
12: end if
13: Output: Prune(T )

The cost of a tree T is given by

Cα(T ) = R(T ) + αnL(T ), α ≥ 0, (4.2)

with R(T ) is the sum of all error of the leaves of T , weighted by the number of individuals they

represent. The number of leaves of T is denoted nL(T ), and the penalty α is the complexity

parameter: the higher it is, the smaller the pruned tree. The interest of α is that for a fixed

complexity parameter value, there exists a unique smallest sub-tree T of the maximal tree Tmax

that minimises Cα(T ). Thus by decreasing α, we can construct a sequence of pruned optimal

sub-trees [T1, T2, . . . , Tmax] of different sizes. This tree sequence is such that T1 is the root node,
T2 a sub-tree of T with more leaves and accuracy than T1 and so on until Tmax, the unpruned

maximal tree. With Breiman’s notation, we have

Tmax ⊇ · · · ⊇ T2 ⊇ T1.

The optimal complexity parameter value, hence the best tree in the sequence is selected using

cross-validation: this method effectively addresses the issues of under-fitting and over-fitting

that are prevalent in AID and THAID, although it does require more computational power.

Another significant contribution of Breiman’s 1984 work is the suggestion of “ surrogate ” splits

to handle missing values in D. A surrogate split is an alternative to the main split when the

latter cannot be applied due to missing values. This is a split that replicates as best as possible,

the binary partitioning at a given node with another covariate. Moreover, surrogate splits also

serve to derive an importance score for each feature.

The sklearn library in Python includes an implementation of CART
5
, while in R, the part

package (see Therneau, Atkinson, and Ripley 1999) is available for use.

For more details and visualisations regarding the CART procedure, we refer the astute reader

to Section 14.1.

5

See functions DecisionTreeClassifier and DecisionTreeRegressor.
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Quinlan’s trees:
Two years after the work of L. Breiman et al. 1984 was published, Quinlan 1986 proposed another

tree-based algorithm. ID3 uses entropy and information gain for splitting; it can handle categor-

ical data but not numerical data and missing values. Quinlan 1993 subsequently introduced C4.5,

an improvement on ID3. It employs an entropy-based measure of node impurity called the gain

ratio for splitting and can handle both categorical and continuous data. When considering a split

s that divides node g into gr and gl along covariate x, the gain ratio is computed as such

Gain Ratio(g,x) =
Entropy Gain(g,x)

Split information(g,x)
=
E(g)−N (gr) · E(gr)−N (gl) · E(gl)

−
∑

i pi · log2pi
,

with E(g), the entropy of node g.

It also handles missing data and pruning. If, at a given node, an observation is missing the value

of a split variable, it is sent to every child node with weights proportional to the number of non-

missing observations in those nodes. Various applications have demonstrated that C4.5 achieves

excellent prediction performance with low computation time and produces trees that are often

substantially larger than those of other methods (see Lim, Loh, and Shih 2000, Loh 2009). The

C4.5 package, which is compatible with the scikit-learn library, can be used in Python,

and the RWeka package can be used in R. A later extension of C4.5, called C5.0, exists; however,

almost no scientific literature is available on this topic.

Quinlan 1992 also introduced the M5 tree algorithm, which is a decision-tree learner for re-

gression tasks with linear regression functions at terminal nodes that can predict continuous

numerical attributes. The result of M5 is a decision tree with a linear regression that is fitted at

every leaf, as depicted in Figure 4.9.

Figure 4.9: A M5 tree

The Rweka package in R and sklearn in Python can be used for M5.

40



Loh’s trees:
Themain drawback of the greedy search approach of all previous trees is the inclination to favour

certain variables in the selection step, inducing an inherent bias. This flaw was initially pointed

out by Breiman while discussing the CART algorithm. Later, White and Liu 1994 and Kononenko

1995 highlighted the extent of this bias in the C4.5 algorithm. Loh greatly contributed to the

tree-based model literature by introducing a series of algorithms with an unbiased selection of

splitting variables and cut points with statistical tests, that can handle missing values and detect

interactions.

The Fast Algorithm for Classification Tree (FACT) offers unbiased variable selection when all co-

variates are ordered since it applies F-tests and linear discriminant analysis for feature selection.

Nevertheless, it does show a bias towards categorical variables. The Quick, Unbiased and Efficient
Statistical Tree (QUEST) proposed by Loh and Shih 1997 overcomes this bias. Notably, QUEST

outperforms CART in computational efficiency, especially when dealing with categorical vari-

ables with numerous values.

CRUISE, an extension of QUEST, also allows linear splits using all variables and can fit linear

discriminant models within each terminal node (see Kim and Loh 2003). Then Loh proposed a

logistic regression tree (LOTUS) (see Chan and Loh 2004) for fitting models to data with a binary

target variable, which also has a negligible bias in variable selection.

In addition to the selection bias, Loh 2001 found that CART tends to favour variables with more

missing values when making splits, and prefers surrogate variables with fewer missing values.

However, algorithms like CRUISE and QUEST do not show this bias. Building on the strengths

of these algorithms, along with Smoothed and Unsmoothed Piecewise-Polynomial Regression Trees
(SUPPORT) (see Chaudhuri et al. 1994), Loh introduced Generalised, Unbiased, Interaction De-
tection and Estimation (GUIDE) in 2009 (see Loh 2002). GUIDE improves these algorithms by

rectifying their drawbacks. GUIDE constructs piecewise-constant, multiple linear, and simple

polynomial tree models for least-squares, quantile, Poisson, and proportional hazards regression.

CART’s pruning approach is used in all of Loh’s models. No R or Python implementations of

those algorithms exist, but the original codes for CRUISE, GUIDE, and QUEST are freely avail-

able from their author’s web-page.

Hothorn’s trees:
More recently, Hothorn, Hornik, and Zeileis 2006 proposed the implementation of another tree-

growing procedure with unbiased variable selection, called conditional inference trees (CTREE).

As in the algorithm of Loh, the selection of splitting variables at each node relies on statistical

tests. By default, it uses p-values from a quadratic correlation test statistic and the resulting p-

values are Bonferroni-corrected (see Appendix A.0.3) for multiple testing across the number of

regressor covariates. A notable difference from previous procedures is that CTREE does not use

pruning, but rather stops based on the Bonferroni-corrected splitting p-values to determine an

optimal tree size. The party package in R was used to implement this algorithm.

Zeileis, Hothorn, and Hornik 2008 later suggested a new global framework for growing trees:

model-based recursive partitioning (MOB). The idea of this framework is to fit a statistical model

(linear regression, logistic regression, ridge or lasso regression, or generalised linear models

(GLM), for instance) at every node in the tree and find the split that will result in two child

nodes with populations that are as different as possible in the model. Once again, statistical
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tests were performed at each node to select the optimal covariate to split, and then a thresh-

old optimising an objective function was selected for the chosen split covariate. Specifically, in

MOB, a fluctuation test (see Appendix A.0.4) is performed to assess which covariate can lead to

the highest parameter instability, and the split covariate is chosen based on its corresponding

Bonferroni-corrected p-values.

The tree stops growing whenever there is no significant parameter instability and is eventu-

ally pruned based on the Akaike or the Bayesian information criterion (AIC or BIC). Here, the

idea is to partition the covariate space so as not to identify groups of individuals with similar

values of the target variable but rather to identify groups of individuals with similar behaviours

or association patterns. MobTree extends the scope of decision trees by facilitating the incor-

poration of various types of statistical models, thereby broadening their application spectrum

and enhancing the extraction of meaningful insights from diverse and complex datasets. A clear

representation of MOB with an illustration of GLM trees can be found in Dutang and Guibert

2021.

Loh and Hothorn introduced different unbiased tree algorithms that rely on the same strategy of

selecting the variable to be split through statistical testing. The key difference is in the choice of

the test that is used (association tests for CRUISE, QUEST, and GUIDE; conditional inference for

CTREE; and parameter instability tests for MOB), and their relative advantages or disadvantages

are, to the best of our knowledge, not well understood or studied (see Schlosser, Hothorn, and

Zeileis 2019).

Dynamic tree structures

One of the aims of this thesis is to explore existing and innovative tree-basedmethods for dynam-

ical data. Of course, when we think of time-dependent data, we can think of time-to-event data,

and thus survival analysis. There exist TBMs specifically designed for such analysis, and as will

prove themselves critical within our applications, a brief review of survival analysis and trees

can be found in Chapter 5. We can also think of trees that can evolve or be updated with time

as new independent observations are collected. Mondrian trees (see Lakshminarayanan 2016)

or Dynamic regression trees (see Taddy, Gramacy, and Polson 2011) are examples of such time-

evolving trees. It is to be noted that, as time goes by, these models do not allow the introduction

of new observations from subjects already observed at previous times. The trees are dynamic,

not the covariates and response variable, hence we will not detail here the mechanisms of such

trees but refer to the publications mentioned in this paragraph.

4.2.2 Ensemble models

An ensemble tree-based model grows a large number of single “weak” tree-based models and

aggregates them to enhance their predictive accuracy and decrease their individual variabilities.

Each tree in the ensemble is built following the principle of recursive partitioning described in

Section 4.2. Moving forward, this section delves into bagging and boosting—two quintessential

ensemble techniques in ML—celebrating their abilities to improve model stability and accuracy,

but not without drawbacks such as model complexity and potential over-fitting to the training

dataset. For an overview of tree-based ensemble techniques, we refer readers to Berk 2006; Strobl,

Malley, and Tutz 2009.
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Random Forest (RF) and Bagging

The RF algorithm, a form of an ensemble learning method, is a key tool in ML. It leverages the

concept of “bagging”, or bootstrap aggregating, to generate multiple decision trees from ran-

domly selected subsets of training data. Each tree, constructed in an unpruned manner, casts a

unit prediction. The latter are then combined to reach a final prediction, as depicted in Figure 4.10.

Figure 4.10: Mechanisms of a random forest

Algorithm 2 Random Forest Algorithm

1: Input: Training set D, number of trees T , number of features F
2: for t = 1 to T do
3: Create a bootstrap sample Dt of size |D| with replacement

4: Build a decision tree Tt on Dt as follows:

5: for each node of the tree do
6: Randomly select F features without replacement

7: Split the node using the feature that provides the best split according to the objective

function, among the F features

8: end for
9: Add the tree Tt to the set of trees F
10: end for
11: Output: F

The pseudo-code of Algorithm 2 follows the standard random forest algorithm introduced in

L. Breiman 2001, where each tree is trained on a different bootstrap sample of the dataset, and

the best split at each node is chosen among a subset of the features selected at random. Some

variations of the generic algorithm exist and offer more hyper-parameters or include more ran-

domness in the growing process (for example, extremely randomised trees, also known as extra

trees). In any case, the final model is an ensemble of all these individual trees. The prediction for a

new sample is then made by aggregating the predictions of all the trees in the ensemble, typically

by majority voting for classification or averaging for regression. The success of the algorithm
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stems from its ability to diminish over-fitting via reduction of variance, without increasing error

due to bias. It achieves this objective by creating uncorrelated trees to maximise ensemble diver-

sity, thereby producing a robust model that performs well on unseen data. Its inherent ability

to handle large datasets with high dimensionality and missing values and its feature importance

estimation ability make it a versatile tool for a range of prediction tasks.

Remark 4.3

Bagged-ensembles of any tree described in Section 4.2 can be built and implementations

of such forests exist. We refer the astute reader to the works of L. Breiman 2001; Lee et al.

2018; Hothorn, Hornik, Strobl, et al. 2010; Garge, Bobashev, and Eggleston 2013 that discuss

the implementations of forests of CART, C4.5, CTREE and MOB trees respectively.

XGBoost (XGB) and Boosting

Following bagging methods, other ensemble approaches have been proposed to reduce the sen-

sitivity of individual trees. Boosting is an adaptive approach, formalised by Freund and Schapire

1996 and created with this issue in mind. This approach is also a tree aggregation method that,

unlike random forests, does not aggregate models constructed in parallel and randomly on boot-

strapped data copies, but rather aggregates models constructed iteratively, one after the other.

Although this type of algorithm was initially designed to solve binary classification problems,

it has now been adapted to a wider range of problems. This section describes the principles of

boosting as they currently exist and provides the specificities of XGBoost, a tree-based boost-

ing implementation. Tree boosting aims to reduce variance and bias in a single-tree model. To

achieve this objective, boosting is based on the same idea as bagging: the construction of a large

number of model trees, which are then aggregated by a weighted average of their forecasts.

However, the tree-building stage is very different for boosting because it is conducted using an

iterative procedure: a first tree is created, then a second that gives greater weight to observations

poorly predicted by the first, and so on. In other words, each new tree of a boosting ensemble

focuses its predictive efforts on the parts of the sample that were the most difficult for previ-

ous learners to predict. The weights are computed based on a gradient descent algorithm and

depend on the hyper-parameters of the boosting model. All learners built iteratively are eventu-

ally aggregated, generally by a weighted average, according to their goodness of fit. Generally

speaking, the principle of boosting is illustrated in Figure 4.11.

Figure 4.11: Mechanisms of tree boosting
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XGBoost, short for extreme gradient boosting, is a specific tree-based boosting implementation

that is used in some applications of this thesis. Let us provide some details about it, first by

showing a general pseudo-algorithm for this approach as shown in Algorithm 3.

Algorithm 3 XGBoost Pseudo-Algorithm

1: Input: Training set Dtrain = {(xi, yi)}Ni=1, a twice differentiable loss function ℓ(y, F ) and
a learning rate α

2: Initialise with a constant value for ρ: F0(x) = argminρ
∑N

i=1 ℓ(y
(i), ρ)

3: for k = 1 to ntree do
4: for i = 1 to N do
5: Compute g

(i)
k =

∂ℓ(y(i),Fk−1(x
(i)))

∂F (x(i))
and h

(i)
k =

∂2ℓ(y(i),Fk−1(x
(i)))

∂F (x)2

6: end for
7: Fit a regression tree to the targets − g

(i)
k

h
(i)
k

giving terminal regions Rj , j = 1, ..., J

8: for j = 1 to J do
9: Compute ρk = argminρ

∑
x(i)∈Rj

[g
(i)
k + ρh

(i)
k ]

10: end for
11: Update Fk(x) = Fk−1(x) + α

∑J
j=1 ρkI(x ∈ Rj)

12: end for
13: Output: Fntree(x)

XGBoost works similarly to Newton-Raphson’s algorithm unlike general gradient boosting,

which works as a gradient descent in the function space. This connection with the Newton-

Raphson method clearly appears when the second-order Taylor approximation is used in the loss

function. In addition to its specificity, it offers a wide range of hyper-parameters. For instance, it

includes a regularisation term in the loss function, which controls the complexity of the model,

thus preventing over-fitting. It also implements the possibility of performing cross-validation

at each iteration of the boosting process. Owing to this diversity of parameters, total control

over the implementation of gradient boosting is possible. For any observation with a missing

value on a covariate used for a split, the algorithm sends the observation to both child nodes and

learns the path that reduces the loss the most. Eventually, the algorithm is designed to be highly

efficient, flexible, and portable; implements parallel processing; and is notably fast and optimised.

Therefore, solutions based on XGBoost are frequently winning in Kaggle competitions.

4.2.3 Theoretical guarantees

Minimising within-node heterogeneity or maximising between-node heterogeneity

As seen in the previous sections, there are two ways to design a splitting procedure for a given

node. We either want to produce child nodes such that each of them is very homogeneous regard-

ing the response variable, or we want to select a split that divides the dataset into populations

with responses as different as possible. In other terms, we either want to minimise the within-

node heterogeneity (WNH) or maximise the between-node heterogeneity (BNH). In most simple

settings, with most TBM, we can prove that both approaches are equivalent and even precise

in how they relate. This is demonstrated with the derivation of Equation 4.3, in the case of a

regression setting, with MSE as a measure of heterogeneity, as in CART for instance.

We denote ⟨x, y⟩, the scalar product between x and y ∈ R2
, ∥x∥2 = ⟨x, x⟩ and H(x, y) =
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∥x − y∥2. H(x, y) can be seen as a measure of the heterogeneity between x and y. For a given
node g, we denote

ȳ(g) =
1

N (g)

∑
observations i∈g

y(i).

The heterogeneity between two child nodes gl and gr , split from a parent node gp is then given

by

H (gl, gr) = H (ȳ (gl) , ȳ (gr)) ,

which allows us to define the WNH and the BNH. The within-node g heterogeneity is immedi-

ately given by

WNH(g) =
1

N (g)

∑
observations i∈g

H
(
ȳ(g), y(i)

)
,

in other words, the MSE of node g. And the between-nodes gl and gr heterogeneity is given by

BNH (g1, g2) =
N (gl)

N (gp)
H (ȳ (gl) , ȳ (gl ∪ gr)) ,

in other words, the mean of child nodes’ MSEs weighted by the number of observations they

represent.

Remark 4.4

The notion of BNH can be extended to more than 2 nodes. With k nodes, we have:

BNH (g1, . . . , gk) =

k∑
i=1

N (gi)

N (
⋃k

j=1 gj)
H

ȳ (gi) , ȳ
 k⋃

j=1

gj

 .

Those notions being properly defined, we immediately deduce from Koenig-Huygens theorem

the following result:

WNH (gl ∪ gr) =
N (gl)

N (gp)
WNH (gl) +

N (gr)

N (gp)
WNH (gr) +BNH (gl, gr) . (4.3)

And because we consider a disjoint partitioning of gp into gl and gr , we haveWNH (gl ∪ gr) =
WNH (gp). Thus, the maximisation of the BNH is equivalent to the minimisation of the mean

of WNHs in that regression setting, with MSE as a heterogeneity measure.

Remark 4.5

Equation 4.3 can also be extended if gp is divided in k child nodes g1, . . . , gk forming a

disjoint partition, with

WNH

(
k⋃

i=1

gi

)
=WNH (gp)

k∑
i=1

N (gk)

N (gp)
WNH (gk) +BNH (g1, . . . , gk) .
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Remark 4.6

This specific result is not generalisable to all tree-growing procedures. Notably, for all trees

that produce splits based on statistical tests (which will also be relevant for survival trees

of Chapter 5), such equivalence between minimising the mean WNH and maximising BNH

does not exist. To the best of our knowledge, the difference between those two approaches

has not been studied yet in such cases.

Regarding the choice of the impurity function in CART

The last section demonstrated a result for CART in a regression setting where MSE originally

was the intuitive choice of heterogeneity measure. For classification purposes with J classes, we

rather talk about impurity function rather than heterogeneity measure. Conceptually, this is the

same thing but in practice, there is no obvious choice for measuring classification impurity. As

stated in Section 4.2.1, L. Breiman et al. 1984 originally considered the entropy, Gini, and Twoing

criteria and the practical and theoretical differences between them have been well studied in the

literature. In this section, we will mention some of the results derived in Breiman 1996 or Shih

1999.

Let there be J classes numbered 1, . . . , J , and denote the proportions of the classes in node

g by p(g) = p1,g, . . . , pJ,g . Let I(·) be an impurity function, defined and twice differentiable for

x ∈ [0, 1]J . Assume that I(x) is convex and let the impurity of node g be I(g) and the goodness-
of-split be the decrease in impurity from the parent node gp when split into child nodes gl and
gr with split rule s is given by

GoS(s, gp) = I(gp)−
N (gl)

N (gp)
I (gl)−

N (gr)

N (gp)
I (gr) .

Breiman derives the following result (See Theorem 1 from Breiman 1996):

Let α be the vector of the proportions of each class sent to gl such as pj,gl =
αjpj/N (gl) and

thus pj,gr = (1−αj)pj/N (gr). Then the maximum impurity decrease over α ∈ [0, 1]J is achieved

at a vertex of [0, 1]J .

With this result, we can now study which vertex of [0, 1]J corresponds to the optimal α, thus

the optimal split for the different impurity measures considered in CART.

Using the entropy, the best split of gp is chosen by maximising

N (gl)

N (gp)

∑
j

pj,gl log pj,gl +
N (gr)

N (gp)

∑
j

pj,gr log pj,gr . (4.4)

Let Pl =
N (gl)
N (gp)

and Pr =
N (gr)
N (gp)

, for a given vertex, let C0 = {j;αj = 0} , C1 = {j;αj = 1}.

Equation 4.4 becomes

Pl

∑
j∈C1

(
pj
Pl

)
log

(
pj
Pl

)
+ Pr

∑
j∈C0

(
pj
Pr

)
log

(
pj
Pr

)
=
∑
j

pj log pj − Pl logPl − Pr logPr.
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Thus, the vertex at which the optimal split occurs maximises

−Pl logPl − Pr logPr,

and thus, at the best vertex

∣∣Pl − 1
2

∣∣
is minimised. The same result holds for using the Twoing

criterion as it can be seen as applying the entropy criterion after assembling all classes into two

“superclasses”. As a result, entropy and Twoing criteria tend to produce splits that balance the

sizes at the two children nodes.

If we now turn to the Gini impurity measure, we see that the vertex that produces the best

split must minimise

Pl

∑
pj,gl (1− pj,gl) + Pr

∑
pj,gr (1− pj,gr) =

Pl

∑
j∈C1

(
pj
Pl

)(
1− pj

Pl

)
+ Pr

∑
j∈C0

(
pj
Pr

)(
1−

(
pj
Pr

))
,

which corresponds to maximising

1

Pl

∑
j∈C1

p2j +
1

Pr

∑
j∈C0

p2j .

We denote pm = maxj (pj), the proportion of the most represented of all classes. Then the

optimal vertex, according to the Gini criterion tends to send all of class m to gl and all other

observations to gr: the largest class into one pure node, and all others into the other.

Such theoretical results have practical consequences on the trees produced for problems with

a great number of classes. In such cases, entropy or Twoing-based splitting criteria are likely to

produce highly unstable first splits. Indeed, the number of vertices for which Pl ≃ 1
2 grows with

the number of classes, as such there may not be a unique way of choosing the early splits of a

tree. Conversely, a Gini-based criterion is likely to produce unbalanced splits. All those theoret-

ical observations have been confirmed by practical simulations and applications (see Shih 1999

for instance).

Consistency results

Amodel is said to be Bayes consistent when it converges to the Bayes decision rule as the number

of observations in the training set increases (see T. Zhang 2004). CART has been proven to be

Bayes consistent under conditions (as early as in L. Breiman et al. 1984 or Devroye, Gyorfi, and

Lugosi 1996), thus it can approximate any decision boundary arbitrarily well, given a sufficiently

large training dataset.

Recently, an innovative approach by Klusowski and Tian 2023 demonstrated consistency con-

ditions for CART and C4.5 trees both in regression and classification contexts, even when the

number of predictor variables grows exponentially with the sample size. The result is then ex-

tended to random forests of CARTs and C4.5 trees.

With the notations defined in Section 4.1.1 and considering the additive function class

G1 := {g(x) := g1 (x1) + g2 (x2) + · · ·+ gp (xp)} ,

where g1 (x1) , g2 (x2) , . . . , gp (xp) is a set of p univariate and Borel measurable functions. The

consistency results of Klusowski and Tian 2023 are obtained in the generalised additive mod-

elling framework, where G1 is the hypothesis space, i.e the TBM aims at finding a g(·) ∈ G1 such
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that the true model is approximated by g(x).

In that setting, a major result of Klusowski and Tian 2023 (Lemma 4.1 and Theorem 4.2) gives an

empirical risk bound for CART and C4.5, for squared error loss and logistic loss:

Let TK be a depthK ≥ 1 decision tree. Denoting L̂(g) := 1
N

∑N
i=1 ℓ

(
g
(
x(i)
)
, y(i)

)
the empiri-

cal risk and L the true risk of a model (see notations in Section 4.1.1), we have

L̂ (ĝ (TK)) ≤ inf
g(·)∈G1

{
L̂(g) +

V 2(g)

K + 3

}
,

where V (g) is a constant, different for CART or C4.5, specified in Klusowski and Tian 2023,

Lemma 4.1. The theorem presented above asserts that when considering a decision tree with

depth K , CART and C4.5 minimise the empirical risk among the additive function class. This

bound tends to shrink toward the true risk of the model, with a convergence rate of O( 1
K ).

This result is then extended to a consistency result in Corollary 4.4, stating that considering

a sequence of prediction problems with true models {g∗N (·)}∞N=1.

Assume that g∗N (x) =
∑pN

j=1 gj (xj) ∈ G1 and supN ∥g∗N∥∞ < ∞. Suppose that KN → ∞,,
that the aggregated total variation of the individual component functions gjs is o

(√
KN

)
, and

(2KN log2(N) log(NpN ))/N → 0 asN →∞. Eventually, assuming a sub-Gaussian noise, regression

trees are consistent, and classification trees are consistent.

We refer the astute reader to this work for further details and references to other results on TBM

consistency, especially ensemble models, under various conditions (the many works of Biau (see

Biau, Devroye, and Lugosi 2008; Biau 2012; Biau and Cadre 2017) or Scornet (see Scornet, Biau,

and Vert 2015; Scornet 2016) for instance).
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5. Survival analysis

The most natural encounter of a temporal dimension in the data is when the target variable is

itself of a temporal nature. In actuarial science, one can study the time-to-death or lapse in life

insurance, the time to the next claim or its settlement in non-life insurance, disease, recovery,

credit failure, termination of contracts and so on. Such analysis requires the study of the oc-

currence of an event - or events - through time and it requires a specific modelling approach

called survival analysis. Time is measured from the beginning of the follow-up of an individual

until the hypothetical occurrence of the event and is referred to as survival time. Some subjects

will have experienced the event of interest during the follow-up period and some will not. The

latter observations are described as right-censored and this censorship is the main underlying

specificity in the data structure for survival analysis.

5.0.1 Survival notations

For the analysis of survival data, we will focus on studying the individual survival time - or fail-

ure, or event time - until the occurrence of an event, T . This time T can usually be defined as the

time since the individual was born, the time since the individual entered the study, or the time

since a fixed date which would be common to all individuals.

In survival studies, the duration of the follow-up is limited in time and some subjects may be

right-censored. This can happen when an individual leaves the study prematurely, either volun-

tarily or involuntarily - a so-called dropout - or if an individual is still under study but did not

experience an event at the end of the follow-up period.

When the censorship is independent of the event, in other words when the individual’s survival

probability is not linked to the fact that the subject’s data is observable, the survival outcome

is defined using the classical survival notations. Subject i will eventually experience the event

at time

⋆
T (i)

but she is no longer observed after a censoring time C(i)
. We let T (i)

denote the

observed event time for subject i, defined as T (i) = min
( ⋆
T (i), C(i)

)
.

Eventually, we introduce the event indicators:

∆(i) = I
{ ⋆
T (i)≤ C(i)

}
, (5.1)

and,

δ(i)(t) = I
{ ⋆
T (i)≤ t

}
. (5.2)

In other words, we have:

∆(i) =

{
1 if the event is observed i.e. T (i) =

⋆
T (i)

0 if the subject is right-censored i.e. T (i) = C(i)
, (5.3)
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which indicates whether an individual experienced the event or was right-censored. The event

indicator δ(i)(t) indicates whether an individual experienced the event at time t.

An illustration of survival data is shown in Figures 5.1 and 5.2, where the event is not observed

for individuals (1) and (2) at censoring time C , in contrast to individuals (3) and (4) where the
event occurred before time C .

Figure 5.1: Illustration of survival analysis and censorship

Figure 5.1 can also be represented by aligning all subjects’ observation starting times.

Figure 5.2: Illustration of survival analysis and censorship - Starting times aligned

The survival time

∗
T is commonly studied through the analysis of its related survival function

S(t). It represents the probability of not experiencing the event before censorship time and is

defined by

S(t) = Pr[
∗
T> t] = 1− Pr[

∗
T≤ t] = e−Λ(t) = e−

∫ t
0 λ(u)du, (5.4)

where Λ(t) is the cumulative hazard function and λ(u) is the instantaneous hazard rate of the

event. The survival function is defined as a probability function, with values between 0 and 1,
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where S(0) = 1 and S(t) −−→
+∞

0 and t1 ≤ t2 ⇒ S(t1) ≥ S(t2). The distribution function F (t)

can also be derived from the survivor function by

F (t) = 1− S(t) = P (T ≤ t) =
∫ t

0
f(u)du. (5.5)

where f(t) is the density function defined as

f(t) = lim
∆t→0

P (t ≤ T < t+∆t)

∆t
. (5.6)

where ∆t is a small time interval. From that last equation, we can derive that λ(u) = f(u)
S(u) .

We refer the astute reader to the introduction chapters of Devaux 2022 for more details regarding

survival analysis notations and generalities.

5.1 Models

Survival models are required to analyse time-to-event outcomes in the presence of censored

observations. Various tree-based models have been devised for this purpose, providing a non-

parametric approach to this problem. These models offer great flexibility, making them pop-

ular alternatives to their parametric counterparts (see Bou-Hamad, Larocque, and Ben-Ameur

2011). One of their key advantages is their ability to detect intricate relationships and inter-

actions within data automatically, which could be beyond the reach of parametric models (see

Bertsimas et al. 2022). Their tree structure also facilitates the derivation of risk groups. However,

they are not without drawbacks: these models can potentially over-fit the data, especially if not

properly tuned, and their interpretability may not be as straightforward as that of parametric

models.

Survival tree-based models extend the scope of regular tree-based models by modifying the split-

ting criterion to account for censored data. This tailoring enables themodels to handle the unique

challenges introduced by survival analysis more effectively, such as the need to consider not only

whether an event occurred but also when it occurred. For more details about surviving trees, we

refer the reader to the complete review of Bou-Hamad, Larocque, and Ben-Ameur 2011, up to

2011, from which this section is inspired. Thus, these models are important tools in the ML

researcher’s arsenal, offering a nuanced and robust approach to survival analysis.

5.1.1 Inverse probability of censorship weighted (IPCW) models

Molinaro, Dudoit, and van der Laan 2004 proposed a method for building trees with censored

data by modifying the split criterion of a tree built for uncensored observations. Their approach

is based on weighting the impurity function without censoring by the IPCW
1
to adapt it to cen-

soring. They used an IPC-weighted MSE splitting criterion and showed that training a regres-

sion model with this weighted criterion with all the observations considered as fully observed

is equivalent to training a time-to-event model accounting for censorship. They demonstrated

the consistency of their method with fixed covariates and time-to-event outcome (see Vock et al.

2016). With this approach, time-to-event trees can directly take the survival time as the outcome,

which is an alternative to the usual tree-based survival methodology that consists of indirectly

1

More details about IPCW can be found in Section 5.2
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studying hazard functions at each considered split. Unlike the methods detailed in the following

sections, this does not describe a specific model, but rather a framework in which any regression

model can be adapted to account for censorship, via its loss function.

5.1.2 Survival trees

To perform survival analysis, the usual decision-tree algorithm, specifically its splitting proce-

dure, must be modified. Most survival tree algorithms in the literature use survival similari-

ty/dissimilarity measures, e.g. two-sample test statistics such as the log-rank (see Appendix A),

for splitting. Such statistics inherently use the IPCW to account for censorship. At each node,

the idea is to design a split function that selects the split that maximises the separation in terms

of the survival profile between the two child nodes. It depends on the likelihood of the hazard

functions, as the splits are accomplished bymaximising the log-rank statistic (seeMantel 1966 for

insightful details on the statistic, see LeBlanc and Crowley 1992 for a survival tree based on it) or

any other survival distribution distance (such as the Wasserstein metric in Gordon and Olshen

1985 or deviance measure in LeBlanc and Crowley 1992). Similarly, Ciampi, Hogg, and Kates

1986 proposed a general formulation using the likelihood ratio statistic to measure the dissimi-

larity between the two child nodes. In any case, the larger the statistic, the more dissimilar the

two child nodes which is why the splits chosen at each node are those that maximise the statistic.

Algorithm 4 shows a pseudo-algorithm detailing how a log-rank-based survival tree is grown.

Algorithm 4 Survival Tree Pseudo-Algorithm

1: Initialise the root node, which includes the entire dataset D.
2: while stopping criteria not met do
3: for each terminal node do
4: for each variable do
5: for each possible split point of the variable do
6: Calculate the log-rank test statistic between the two resulting nodes.

7: end for
8: Select the variable and split point with the maximum log-rank test statistic.

9: end for
10: Split the terminal node at the selected variable and split point.

11: end for
12: end while
13: Assign survival function to each terminal node using Kaplan-Meier estimates.

The tree starts with a root node that includes the entire dataset. The algorithm then iteratively

splits terminal nodes to maximise the separation of survival times. The splitting criterion is the

log-rank test statistic, a measure of the difference in survival between two groups. Once a stop-

ping criterion is met (e.g., a maximum tree depth is reached or the log-rank test statistic for all

possible splits is below a threshold), the algorithm stops. The final step is to assign the survival

function to each terminal node using Kaplan-Meier estimates, a non-parametric statistic used to

estimate the survival function from lifetime data. Thus, the prediction given by each leaf is not

only a number, as in a regression tree but a whole survival function as illustrated in Figure 5.3.

To make a prediction for a given subject, their data are passed down the tree from the root to a
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Figure 5.3: Illustration of a survival tree

leaf node. The path is determined by the rules at each split, which compare the features of the

subject to the thresholds determined during training. The leaf node where the subject ends up

contains the survival times and event indicators (whether the event of interest occurred) for the

training subjects that ended up in the same leaf node. The survival function is then estimated

using these data.

In such models, the study of the time-to-event outcome is achieved by considering test statis-

tics, where the null hypothesis is that the two groups have identical hazard functions. There-

fore, the indirect study of the time-to-event outcome through its hazard function is how most

models handle the time-dependent outcome in survival analysis. Single survival trees do have

some drawbacks, most notably their instability. Small changes in the data can lead to significant

changes in the tree structure, affecting the predictive accuracy of the trees. They can also be

prone to over-fitting, where the model learns the training data too well and performs poorly on

unseen data.

5.1.3 Random survival forests (RSF)

An RSF, an ensemble method for combining multiple trees, can overcome the aforementioned

limitations of single-survival trees. RSFs generally offer increased prediction accuracy and sta-

bility by averaging the predictions of a multitude of different trees (see Ishwaran et al. 2008).

These characteristics make RSFs popular choices for survival analysis, especially for complex

data structures, because the RSF approach is a flexible continuous-time method that is not con-

strained by strong assumptions on the survival function. A generic pseudo-algorithm exists for

building an RSF, as shown in Algorithm 5.

As described in Section 5.1.2, each tree in a forest generates a survival function for a given sub-

ject. The final survival function for the subject is obtained by averaging the survival functions

of all the trees in the forest. As in any bagging procedure, this averaging process helps make the

prediction more robust and less prone to over-fitting via variance reduction.
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Algorithm 5 Random Survival Forest Pseudo-Algorithm

1: procedure Random Survival Forest(D, ntree, ncov)
2: Initialise an empty set of trees Forest
3: for k = 1 to ntree do
4: Draw a bootstrap sample Dk from the original data

5: Grow a survival tree Tk on Dk as follows:

6: Initialise Tk with a single node containing all observations

7: Repeat:
8: Select ncov covariates at random from all variables

9: Choose the best variable/split-point among the ncov
10: Split the node into two child nodes using the log-rank split statistic

11: Until: Minimum node size is reached

12: Add Tk to Forest
13: end for
14: return Forest
15: end procedure

The formula for the survival function S(t) at time t for a subject with features x(i)
is:

S(t|x(i)) =
1

ntree

ntree∑
k=1

Sk(t|x(i)). (5.7)

Note that similarly to a single survival tree, this prediction does not provide a single time point,

but rather a function that provides the probability of survival over time. This aspect is one of

the key strengths of survival analysis models as it provides a more detailed picture of survival

probabilities than binary classification or regression models.

5.1.4 Gradient Boosting Survival Model (GBSM)

GBSM is also an ensemble learning method that aims to predict the survival probabilities of an

event by combining the predictions of multiple decision trees. In the same way tree boosting

algorithms work, each individual tree is built sequentially and each tree attempts to correct the

errors made by its predecessor. The algorithm uses a loss function suitable for survival data and

applies the gradient descent method to minimise it. The pseudo-algorithm for building a GBSM

is provided in Algorithm 6.

In Algorithm 6, ν is the learning rate, ntree is the number of boosting iterations, Jk is the number

of terminal nodes of the k-th tree, and γjk are the optimal terminal node predictions.

Please note that the loss function ℓ(yi, F (xi)) and the way to compute the optimal terminal

node predictions γjk depend on the specific survival model used. The choice of ℓ is usually the

partial likelihood loss of Cox’s proportional hazards model (see Section A.0.7 of Appendix A, and

γjk can be estimated by solving a scoring equation. The objective is thus to maximise the log

partial likelihood function, modified by replacing the traditional linear part - or the predicted

risk - of the Cox model

(
x(i)⊺ · β(i)

)
with the additive model FGBSM (x(i)), thus selecting the

optimal model g as

g = arg min
FGBSM

N∑
i=1

∆(i)

FGBSM (x(i))− log

 ∑
j∈R(i)

exp(FGBSM (x(j)))

 . (5.8)
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Algorithm 6 Gradient Boosting Survival Model Pseudo-Algorithm

1: Initialise model with a constant value: F0(x) = argminc
∑
ℓ(yi, c), with ℓ an arbitrary

differentiable loss function.

2: for k = 0 to ntree do
3: Compute so-called pseudo-residuals: rik = −

[
∂ℓ(yi,Fk(x

(i)))

∂F (x(i))

]
for i = 1, ..., N.

4: Fit a tree to the pseudo-residuals, i.e., train a tree to predict rik using x(i)
, resulting in

leaf regions Rjk, for j = 1, ..., Jk.
5: for j = 1, ..., Jk do
6: Compute γjk = argminγ

∑
ℓ(yi, Fk−1(x

(i)) + γ) for x(i)
in Rjk.

7: end for
8: Update the model: Fk(x) = Fk−1(x) + ν

∑
γjkI(x ∈ Rjk).

9: end for
10: Output the boosted model: FGBSM (x)

5.2 Survival performance metrics

5.2.1 Brier Score and variations

The Brier Score (BS) (see Brier 1950) is an extension of the mean squared error to right-censored

data, providing a holistic measure of prediction accuracy for survival models.

With a given dataset D and assuming that we are interested in the occurrence of only one

event, any survival model yields Ŝ(t) the predicted survival probability function at any time

t. Let Ĝ(t) = P [C > t] be the Kaplan-Meier (KM) estimate of the censoring distribution (see

Appendix A.0.5 for details regarding KM estimation) and Ŵ (i)(t) the corresponding IPCW, the

BS is given by:

B̂S(t, Ŝ;D) = 1

|D|
∑
i∈D

Ŵ (i)(t)
[
δ(i)(t)− Ŝ (t)

]2
.

With the notations introduced in Section 5.0.1, the IPCW are being computed as follows

Ŵ (i)(t) =

(
1− δ(i)(t)

)
∆(i)

Ĝ
(
T (i)

) +
δ(i)(t)

Ĝ(t)
.

The obtained BS is a vector of scores computed at different time points. In order to get a more

concise evaluation metric, we can also define the integrated Brier Score (IBS), defined as

ÎBS(Ŝ;D) = 1

|D|
∑
i∈D

1

T (i)

∫ T (i)

0
Ŵ (i)(t)

[
δ(i)(t)− Ŝ (t)

]2
dt.

The BS and IBS can be easily derived into the Brier Skill Score (BSS) and the integrated Brier Skill

Score (IBSS) respectively. There are modified versions of BS and IBS that contrast the prediction

accuracy of a model to a reference model. They are defined as

B̂SS(t, Ŝ;D) = 1− B̂S(t, Ŝ;D)
B̂S(t, Ŝref ;D)

,

ÎBSS(Ŝ;D) = 1− ÎBS(Ŝ;D)
ÎBS(Ŝref ;D)

.
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BSS measures the BS improvement of the considered model over some reference one that yields a

survival function Ŝref . We see that it takes positive (or negative) valueswhenever the B̂S(t, Ŝ;D)
- respectively ÎBS(Ŝ;D) - is inferior (or superior) to B̂S(t, Ŝref ;D) - respectively ÎBS(Ŝref ;D).
In definitive, the BSS and IBSS represent the improvement in terms of Brier Score over the naive

model: the higher, the better.

5.2.2 Concordance indices

Harrell’s c-index

The c-index, introduced by Harrell et al. 1982, is one of the most commonly used survival model

evaluation metrics that assess the correlation between predicted risks and actual event times.

A higher c-index indicates better discrimination between instances with higher risks leading to

earlier events, and those with lower risks leading to later events. This metric condenses three

distinct aspects of predictions - risk level, event occurrence, and time - into a single figure, mak-

ing it easier to distinguish effective models from those that perform almost randomly. However,

this succinct nature of the c-index also makes its practical interpretation more challenging com-

pared to classification and ranking metrics. Moreover, not immediately evident in its standard

definition, the c-index inherently depends on time. This often-overlooked aspect is essential for

extracting significant insights about the model’s performance. It is computed as

CH =

∑
i ̸=j

I(T (i) < T (j))I(R(i) < R(j)) + 0.5
∑
i ̸=j

I(T (i) = T (j))I(R(i) < R(j))∑
i ̸=j

I(T (i) < T (j)) +
∑
i ̸=j

I(T (i) = T (j))

where R̂(i)
and R̂(j)

are the predicted risks
2
for instances i and j. If we already mentioned that

for a Cox model, it corresponds to the linear part within the exponential, we voluntarily avoid

detailing how the predicted risk is defined for other specific models as more insights can be found

in Uno et al. 2011 or in Hartman et al. 2023 for instance.

The numerator counts the number of pairs (i, j) for which the subject with the shorter survival

time also has a higher predicted risk, plus half the number of pairs with equal survival times. The

denominator counts all the comparable pairs. The resulting c-index is a proportion that ranges

from 0.5 (random prediction) to 1 (perfect prediction). Despite being extensively used, it has

some limitations, especially in cases of high data censoring or when a specific time range is the

primary focus.

Uno’s index

Uno’s estimator is an alternative to Harrell’s c-index in survival analysis. It behaves better than

Harrell’s c-index when the amount of censoring in the test data is high, making it a more reliable

measure in such situations. The disposal of pairs of censored observations (∆j = 0 ) results in an
upward bias in the estimation of the concordance probability. Therefore, Uno et al. 2011 proposed

a variation of Harrell’s c-index that includes the inverse probability of censoring weighting. In

2

also referred to as the prognostic marker in the biomedical field
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brief, IPCWs are introduced in Harrel’s c-index, leading to the following performance metric:∑
i ̸=j

(I(T (i) < T (j))I(R̂(i) > R̂(j))W (i)W (j) +
1

2

∑
i ̸=j

I(T (i) = T (j))I(R̂(i) = R̂(j))W (i)W (j))∑
i ̸=j

I(T (i) ̸= T (j))W (i)W (j)
.

In summary, Uno’s c is preferable to Harrell’s c-index in the presence of a higher amount of

censoring and uses the Kaplan-Meier estimator for computing the IPCW. This implies that the

censoring is assumed to be independent of the variables.

5.2.3 Dynamic AUC

Eventually, the AUROC defined in Section 4.1.2 has also been adapted to survival analysis. It

has been extended (see Lambert and Chevret 2016) to censored survival times: given a time

point t, it estimates how well a predictive model can distinguish subjects who will experience an

event by time t (sensitivity) from those who will not (specificity). The dynamic AUC represents

the probability that, given two randomly selected subjects one having experienced the event of

interest before time t and the other after, the predicted risks are correctly ranked.

AUC(t) = P
(
R(i) > R(j) | T (i) ≤ t, T (j) > t

)
(5.9)

In simple terms, it is the probability that the risk of occurrence of the event is greater for the

subjects who have already experienced it compared with those who have not yet.

In Part I and II, we have explored the historical evolution and theoretical underpinnings of tree-

based machine learning algorithms, specifically focusing on their adaptation to survival analysis.

Understanding the intricacies and nuances of these algorithms sets the stage for the next phase of

this thesis, where we pivot our attention toward the practical application of these methodologies

within the domain of life insurance. Part III delves into the formulation of an LMS framework,

leveraging economic measures such as CLV in tandemwith tree-based models and survival anal-

ysis. The forthcoming chapters bridge theory with pragmatic implementation, and propose an

insightful and adaptive approach to lapse management.
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6. Contributions of Part III

This part is mainly based on the article “ Including Customer Lifetime Value in tree-based lapse
management strategy ”, written in collaboration with Xavier Milhaud and Anani Olympio and pub-
lished in the European Actuarial Journal1. This work represents a contribution to the interwoven
domains of actuarial science, management science, and business economics. If Parts I and II were
quite encyclopedic - yet necessary to understand and contextualise the rest of the thesis -, Part III is
more of an applied work. This research sheds light on critical aspects of lapse risk assessment and
strategic decision-making. This part unveils novel methodologies and empirical evidence that offer
insightful implications for both academia and industry. A list of various contributions can be found
below:

Contributions 1: Individualised CLV with competing risks

Evaluating existing theories or models and proposing improvements or alternatives
The first significant contribution of the article is the development of a new model for the

individualised future Customer Lifetime Value. This model takes into account the risks

of lapse and death with a new survival approach for which they are treated as mutually

exclusive competing risks. It considers both parametric approaches like Cox cause-specific

and subdistribution models, and tree-based survival models like Random Survival Forest

and Gradient boosting survival analysis. This is central to a customer-centred and profit-

driven decision-making process.

Contributions 2: Using RSF and GBSM for lapse analysis

Application of existing theories or methods in a new context
Another contribution is the novel application of complex tree-based survival models, in-

cluding random survival forest (RSF) and gradient boosting survival model (GBSM). This

innovative use of these models in an actuarial context opens up new avenues for research

and testing in this field, providing new perspectives and insights. In the context of this

Part’s study, applying the gradient-boosting survival model within an actuarial context for

the first time, allowed for the development of more accurate and individualised customer

lifetime value predictions.

1

See Valla, Milhaud, and Olympio 2023.
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Contributions 3: Development of a new LMS framework

Development of a new theoretical framework
A third contribution is the establishment of a new lapse management strategy framework.

This part details a two-step lapse management modelling approach: we fit parametric and

tree-based competing risk individual survival models to estimate individualised future CLVs

that are part of an evaluation metric for tree-based lapse management models. This frame-

work not only predicts lapses but also focuses on maximising profitability and customer

lifetime value, offering a more comprehensive approach to lapse management.

Contributions 4: Business-oriented discussion

Discussion of new empirical results
The final contribution is the business-oriented discussion of the new empirical results achieved

by this framework. This discussion adds a practical dimension usually missing in similar

research, showing the real-world benefits of the model in terms of commercial and strategic

decision-making for life insurers
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7. The Customer lifetime value and its
insights for insurance

“Ultimately, marketing is the art of attracting and keeping profitable customers (see

Kotler 1996). A company should not try to pursue and satisfy every customer.

Kotler and Armstrong define a profitable customer as “a [subject] whose revenues

over time exceed, [...], the company costs of attracting, selling, and servicing that

customer.” This excess is called customer lifetime value (CLV).” Berger and Nasr

1998

CLV is a notion that reflects the net present value of a customer. It serves as an indicator of

the total revenue a business can reasonably expect to be generated by an individual customer,

considering the difference between the revenue the company can earn from a customer and the

company’s predicted expenses for acquiring and servicing that customer, over the lifetime of

the business relationship. CLV is an essential metric as it enables businesses to understand the

economic value, or profit, generated by customers over their lifetime. It allows companies to

identify high-value customers, optimise customer acquisition costs, and enhance the effective-

ness of cross-selling strategies. From a strategic marketing perspective, understanding Customer

Lifetime Value is crucial for companies operating in various sectors. CLV is a concept rooted in

marketing and management science, which became a crucial metric for the insurance industry,

where customer relationships are long-term, and customer retention is of paramount impor-

tance. This brief literature review will delve into the essence of CLV, its emergence in the field of

marketing and management science, and its subsequent use in the insurance sector, particularly

regarding retention strategy.

The concept of CLV emerged in the field of marketing and has been substantially studied in

the late 1980s (see Dwyer 1989) and 1990s (see Wang and Splegel 1994; Keane andWang 1995). It

was introduced as a metric to measure the profitability of customers over their entire relationship

with a company. In management science, the use of CLV became more sophisticated with the ad-

vent of advanced analytical techniques. Various models were proposed to predict CLV, including

regression models, duration models, and models incorporating customer-specific retention prob-

abilities. These models allowed for a more nuanced understanding of CLV, considering factors

such as cross-selling potential, customer satisfaction, and the likelihood of customer defection.

In all generality, the CLV of a subject i aims at capturing the expected profit or loss that will

be generated over the duration T (i)
of her relationship and is expressed as follows, in the gen-

eral time-continuous case:

CLV (i) =

∫ T (i)

τ=0

(Revenues(i)(τ)− Expenses(i)(τ))
ed(τ)·τ

dτ, (7.1)
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with d(τ), the discount rate. Usually, several simplifications are made to ensure this formula is

tractable. First, its temporal dynamic is discretised, considering for instance yearly-cumulated

revenues and expenses. Then, the duration part of the equation T (i)
is replaced by a fixed time

horizon T , and the annual probability that subject i is still a customer at every year τ . Thus,
Equation 7.1 becomes

CLV (i) =

T∑
τ=0

(R
(i)
τ − E(i)

τ ) · r(i)τ

(1 + dτ )
τ , (7.2)

with R and E the yearly revenues and expenses, r
(i)
τ and dτ the yearly retention probability and

discount rate, respectively. Obviously, the CLV can be split into two distinct parts: the past (or

observed) CLV (
PCLV (i)

) and the future CLV (
FCLV (i)

).

Figure 7.1: Past and future CLV

At any evaluation time t, the past part already happened and is fully determined by the financial

flows that were observed during the first t years of the relationship. Thus, we can divide the

formula for CLV as such:

CLV (i)(t) =

t∑
τ=0

(R
(i)
τ − E(i)

τ )

(1 + dτ )
τ︸ ︷︷ ︸

PCLV (i)

+

T∑
τ=t+1

(E[R(i)
τ ]− E[E(i)

τ ]) · r̂(i)τ(
1 + d̂τ

)τ
︸ ︷︷ ︸

FCLV (i)

. (7.3)

Evaluating the future part is usually more difficult as it implies, depending on the type of business

considered, projection models for the revenue, expenses, and retention probabilities (see Fader,

Hardie, and Lee 2005).
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Remark 7.1

The future CLV, as depicted in the second term of Equation 7.3 is very general for insur-

ance purposes but may not be realistic in the specific context of life insurance. Indeed, it

implicitly assumes the independence of the financial flows with the survival probabilities

in the portfolio. This hypothesis is usual within the CLV literature (see Gupta, Hanssens,

et al. 2006), the insurance literature (see Desirena et al. 2019), and even within the life in-

surance framework we draw on (see Loisel, Piette, and C.H.J. Tsai 2021). Accounting for

that dependence will constitute future work.

The insurance sector, with its focus on long-term customer relationships and the significant

costs associated with customer acquisition and servicing, is an ideal context for the application

of CLV. Despite its advantages, implementing CLV in the insurance sector is not without chal-

lenges. These include the complexity of predicting future customer behaviour and the need for

extensive data on customer interactions. The difficulty of estimating the CLV of a policyholder

is threefold.

First, the revenues are the premiums for the insurance coverage, which may vary for vari-

ous reasons. The policyholder (PH) can choose to increase or decrease her level of coverage (for

life insurance for instance), change the object of the insurance (for auto or home insurance for

instance), or add beneficiaries. Other elements such as new regulations, market fluctuations, the

probability of up-selling or cross-selling in a multi-product company, or even results and internal

decisions from the insurer (via profit-sharing or fees for instance) can also influence the amount

of the expected future revenues. For life insurance, the revenues are constituted of the sum of

payments and profit-sharings realised in one’s policy.

Then, the expenses are, on the one hand, the acquisition and management costs and all the

activity-based costs that can be anticipated, and on the other hand, the claims made. For the

typical insurance product, the annual claim amount (the cost of health expenses, car repara-

tion, theft, natural catastrophes, depending on the type of insurance) is unknown and must be

modelled. For life insurance, however, the amount of the claims when ending the policy can

be anticipated as it is equal to the face amount of the policy. However, it is the amount of the

face amount that needs to be modelled. The PH can voluntarily decrease the amount of her cov-

erage, which is known as a partial lapse. By estimating the occurrences and amounts of both

payments and partial lapses, we derive the expected individual face amounts. And by predicting

the difference between the guaranteed rate and the insurer’s profitability rate, we can estimate

the difference between the expected revenues and the expected expenses over time.

Eventually, the retention probabilities are the only remaining source of uncertainty for pre-

dicting
FCLV (i)

once the revenues and expenses can be predicted. In all generality, r
(i)
t rep-

resents the probability for subject i, to still have an active policy at year t. For most insurance

products, it would correspond to the probability that the PH has not churned at year t. In a life

insurance context, one’s policy can only end with the death of the PH or the complete lapse of

the policy. Thus r
(i)
t corresponds to the probability that policyholder i has not died or lapsed her

policy before year t.

The temporal dynamics of each of these elements must be studied to predict accurately the future

CLV. In the application of this part of the thesis, we will focus on the temporal analysis of the
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retention probabilities, estimated with survival models.

Insurance companies have recognised the relevance of CLV in shaping their customer acqui-

sition and retention strategies (see Donkers, Verhoef, and Jong 2007; Loisel, Piette, and C.H.J.

Tsai 2021). By identifying high-value customers and understanding their behaviour, insurance

companies can develop strategies to increase their retention rates. This involves offering tailored

products and services, improving customer care, and increasing efforts to recover high-value cus-

tomers who may be at risk of defection. All the potential impacts that CLV-driven management

strategies can bring to the insurance industry have been reported in the work of Seyerle 2001,

and are depicted in Figure 7.2.

Figure 7.2: The potential of CLV in the insurance industry

Advanced models for predicting CLV in the insurance sector include probabilistic models, dura-

tion models, and multivariate models. These models consider factors such as customer retention,

cross-selling, and service usage. They provide a more comprehensive and accurate prediction of

CLV, allowing insurance companies to make informed decisions about customer acquisition and

retention. High-value customers can be targeted with personalised offers and superior customer

service to increase their loyalty and reduce the likelihood of defection. CLV can also help in-

71



surance companies optimise their cross-selling opportunities (see Desirena et al. 2019). By un-

derstanding the cross-selling potential of their customers, they can offer additional products and

services that are likely to appeal to these customers, thereby increasing their lifetime value.

In light of the marketing literature about CLV, we found that the future CLV should be cen-

tral in the design of any lapse management methodology in life insurance. More precisely, we

suggest in this part of the thesis, the inclusion of an individual Customer Lifetime Value within a

customer-centred and profit-driven lapse management framework. We pay special attention to

the time-to-event modelling part of this framework.
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8. Including individualCustomer Life-
time Value and competing risks in
tree-based lapsemanagement strate-
gies

Abstract. A retention strategy based on an enlightened lapse model is a powerful profitability lever
for a life insurer. Some machine learning models are excellent at predicting lapse, but from the
insurer’s perspective, predicting which policyholder is likely to lapse is not enough to design a reten-
tion strategy. In our paper, we define a lapse management framework with an appropriate validation
metric based on Customer Lifetime Value and profitability.

We include the risk of death in the study through competing risks considerations in parametric
and tree-based models and show that further individualisation of the existing approaches leads to
increased performance. We show that survival tree-based models outperform parametric approaches
and that the actuarial literature can significantly benefit from them. Then, we compare, on real data,
how this framework leads to increased predicted gains for a life insurer and discuss the benefits of
our model in terms of commercial and strategic decision-making.

Key words: Machine Learning, Life insurance, Customer lifetime value, Lapse, Lapse management
strategy, Competing risks, Tree-based models

8.1 Introduction

In life insurance, “lapse risk” or “persistency risk” is the risk that the policyholder will cancel

the contract at a time other than when the issuer expected when pricing the contract (see KPMG

2020). A life insurance policy can lapse if the policyholder stops paying the premiums required

to keep the policy in force. This can happen if the policyholder becomes unable or unwilling

to make the premium payments or if the policyholder chooses to surrender the policy for its

cash value. When a policy lapses, the coverage and benefits the policy provides are no longer

in effect, and the policyholder will not receive any payout if they pass away after the policy has

lapsed. This risk is not considered an insurance risk because the payment to the policyholder “is

not contingent on an uncertain future event that adversely affects the policyholder”. However,

lapse management is still undoubtedly a primary concern for life insurers. Lapses may substan-

tially affect a company’s solvency, its future profits and cash flows (see Buchardt 2014; Buchardt,

Moller, and Schmidt 2015) or its Asset and Liabilities Management (ALM) (see Kim 2005; Gatzert

and Schmeiser 2008; Eling and Kochanski 2013; Eling and Kiesenbauer 2014). The importance of

measuring lapse and churn behaviours is global; it goes from yielding individual estimations of

the Customer Lifetime Values (CLV) to being an estimator of a firm’s profitability (see Gupta and
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Lehmann 2006; Gupta 2009) or strength (see Ascarza et al. 2018). Therefore, this paper focuses on

developing strategies to prevent lapses before they occur: for a life insurer, an enlightened and

proactive lapse management strategy (LMS) is critical for successful monitoring and steering.

This paper is about defining a framework for a life insurer to measure and optimise the future

loss or profit to be expected when applying such an LMS.

Part of the literature on lapse management adopts an economic-centred point of view (see Dar

and Dodds 1989; Kuo, C. Tsai, and W. Chen 2003; Kagraoka 2005; S. Cox and Y. Lin 2006; Kiesen-

bauer 2012; Russell et al. 2013; Sirak 2015; Vasudev, Bajaj, and Escolano 2016; Nolte and Schneider

2017; Poufinas and Michaelide 2018; Yu, Cheng, and T. Lin 2019); we refer the reader to the com-

plete bibliometric analysis on this topic by Shamsuddin, Noriszura, and Roslan 2022 for a sum-

marised view of all these references. This economic-centred research aims to determine lapse

factors like interest rates, gross domestic product, or unemployment rates. They are driven by

economic hypotheses such as the emergency fund hypothesis (lapsing is a way of constituting

an emergency fund), the policy replacement hypothesis (lapsing will occur when one changes its

policy) or the interest rate hypothesis (lapsing depends strongly on rate change and arbitration).

A large part of the literature, however, investigates the individual determinants of lapse with

policyholder-centred approaches. Micro-oriented features such as policyholder’s personal infor-

mation or the policy characteristics have shown to give valuable insights into lapse behaviour

(see Renshaw and Haberman 1986; Milhaud, Loisel, and Maume-Deschamps 2011; Eling and

Kiesenbauer 2014; Hwang, Chan, and J. Tsai 2022). Ćurak, Podrug, and Poposki 2015 as well as

Gemmo and Gotz 2016’s works indicate that policyholders’ features such as age and the number

of beneficiaries are significant lapse factors, whereas Sirak 2015 dismissed those results. A re-

cent work from Loisel, Piette, and C.H.J. Tsai 2021 proposes a comparison of lapse management

strategies based on an innovative evaluation metric derived from the Customer Lifetime Value

(CLV). Hu et al. 2021 investigates the benefits of incorporating spatial analysis in lapse modelling,

and Azzone et al. 2022 shows, with an approach based on random forests, that micro-economic

features such as the company’s commercial approach are determining in the lapse decision. In

contrast, macro-economical features only have a limited effect. This variety of results – some-

times contradicting each other – demonstrates the active interest in this research problem.

This paper focuses on lapse management strategy and retention targeting and will contribute

to the existing literature on the relationship between retention strategy and lapse prediction: as

in Ascarza et al. 2018 and Loisel, Piette, and C.H.J. Tsai 2021, our goal is not only to model the

lapse behaviour but rather to select policyholders that are expected to generate future profit, if

targeted by a retention strategy. This work shows that a well-chosen strategy, based on indi-

vidualised CLV and directed towards a well-chosen target, increases the insurer’s expected prof-

itability. A critical concept that motivates many CLV-driven decisions is that customers should

be judged as assets based on their future profitability for the insurer. Thus, since retention of-

ten serves as the basis for CLV models (see Gupta, Hanssens, et al. 2006; Donkers, Verhoef, and

Jong 2007; Lemmens and Gupta 2020 - sometimes specifically designed for targeting tasks (see

von Mutius and Huchzermeier 2021) - and since CLV considerations should drive retention man-

agement, it seems natural to extend the existing life insurance applications linking those topics

together. We make decision-making a central concern of our work and suggest proactive lapse

management tools allowing the insurer to undertake actions to prevent the causes of lapse; that

is opposed to a reactive management approach where decisions are taken after lapses and aim at

recapturing lost policyholders.
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The goal of this paper is to create an individualised CLV model that will be used to enhance

classical binary churn models. We will then have a model for lapse management strategy and re-

tention targeting that we further improve with tree-based survival analysis and competing risks

considerations. The global framework is directly inspired by Loisel, Piette, and C.H.J. Tsai 2021.

We try in this paper to build from that existing work and extend it. Wemodel an individual future

CLV with a new survival approach for which the risks of death and lapse are treated as mutually

exclusive competing risks. For this purpose, we introduce parametric approaches - Cox cause-

specific and subdistribution models - as well as tree-based survival models - Random Survival

Forest (RSF) and Gradient boosting survival analysis. In a second step, we use the individual CLV

to design a binary outcome representing whether investing in retaining each subject is profitable

or not. For that purpose, we also focus here on tree-based models as they are often considered

state-of-the-art models (see Grinsztajn, Oyallon, and Varoquaux 2022). Thus we introduce tree-

based machine learning algorithms for binary prediction, including classification and regression

tree (CART), random forests (RF), and extreme gradient boosting (XGBoost) to lapse behaviour

modelling. CART and XGBoost (see Milhaud, Loisel, and Maume-Deschamps 2011; Loisel, Piette,

and C.H.J. Tsai 2021) were used in the literature for lapse modelling but have yet to be applied

to predicting life insurance lapses in a competing risk setting. To our knowledge, while random

survival forest has been used for churn prediction recently (see Routh, Roy, and Meyer 2021),

both RSF and gradient boosting survival analysis have never been used for that purpose before

in an actuarial context.

Our contribution to the actuarial literature is twofold. First, we detail a two-step lapse manage-

ment modelling approach: we fit parametric and tree-based competing risk individual survival

models to estimate individualised future CLVs that are part of an evaluation metric for tree-based

lapse management models. Second, this work includes a business-oriented discussion of the re-

sults achieved by this framework, which is missing from existing similar approaches.

The results and discussions show that a CLV-based lapse management strategy very often out-

performs a more classical binary classification approach, even with competing risks and individ-

ualised considerations. When the latter yields profitable retention gain, the former can produce

higher profits, up to more than 60%. If a loss-inducing retention strategy is considered, our

methodology limits the loss considerably, often setting 0 as a floor limit or even turning it into a

profit-inducing retention strategy. Sensitivity analysis explores the influence of conjectural and

structural parameters.

The rest of this paper is structured as follows. We briefly outline the data used in our study

in Section 8.2. In Section 8.3, we then introduce the binary classification models we selected and

detail our study’s methodology, describing the classical and CLV-based performance measures

and discussing substantial parametrisation improvements over existing approaches. Then, Sec-

tion 8.4 details our two-stepmethodology, with the parametric and non-parametric modellings of

individual survival predictions, in a competing risks framework and then their implementation in

the tree-based classification approaches considered. Section 8.5 presents the real-life application

we considered and the different results it produces. Those results are analysed and discussed in

Section 8.6 with commercial and strategical decision-making orientations. Eventually, Section 8.7

concludes this paper.
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8.2 Data

We apply our framework to a real-world insurance portfolio. For privacy reasons, all the data,

statistics, product names and perimeters presented in this paper have been either anonymised

or modified. All analyses, discussions and conclusions remain unchanged.

We illustrate our methodology with a life insurance portfolio from a French insurer contracted

between 1997 and 2018. Each record in the data set represents a unique policy for a unique poli-

cyholder. In the following sections, we will often refer to a unique pair of policy and policyholder

by the term “subject”. The dataset contains 251,325 rowswith 248,737 unique policies and 235,076

unique policyholders. It means that some policies are shared between several policyholders and

that one individual can detain several insurance policies. The dataset contains 43 covariates de-

scribed in Table 8.1.

Table 8.1: Data set description

Covariates (Numerical, Categorical, Date) Description

ID

CDI_ID_PERSONNE Policyholder (PH) unique ID

CDI_ID_CONTRAT Policy unique ID

PH-level information

CDI_DT_NAISSANCE PH’s birth date (main PH when several policyholders own one policy)

Age_souscription PH’s age at subscription

Nb_Contrats Number of different policies owned by the policyholder

CDI_CD_SEXE PH’s gender (1=Female; 2=Male; other=Non precised)

CDI_DESTINATAIRE_COURRIER Anonymised PH’s name

CDI_NUM_ET_NOM_VOIE Anonymised PH’s address

CDI_CD_POSTAL Anonymised PH’s postcode

CDI_COMMUNE Anonymised PH’s city of residence

CDI_TOP_ASSURE Binary: 1 if PH is the main PH on the policy, 0 otherwise

Policy-level information

CDI_TYPE_PRODUIT Type of product (“Top-end product” or “Classical product”)

CDI_NOM_PRODUIT Name of life insurance product (“Product 1”, “Product 2” or “Product 3”)

CDI_PARTENAIRE Name of the insurance distributor

CDI_DATE_DEB_CONTRAT Policy’s start date

CDI_DATE_FIN_CONTRAT Policy’s end date

START_YEAR Policy’s start year

END_YEAR Policy’s end year

SENIORITY Policy’s seniority (final seniority if the policy is ended, current seniority otherwise)

STATE Policy’s state (“Active”, “Lapsed”, or “Death” if the policy ended following PH’s death)

YEAR Last year of observation

External data DISCOUNT RATE Discount rate corresponding to the last year of observation

Policy’s cumulated financial flows

TOTAL_PREMIUM_AMOUNT Total face amount of the policy

TOTAL_EURO_PREMIUM_AMOUNT Face amount of the policy in euros

TOTAL_UC_PREMIUM_AMOUNT Face amount of the policy in units of account

ARBITRATION_EURO Cumulated arbitration amount of the policy in euros

ARBITRATION_UC Cumulated arbitration amount of the policy in units of account

FEES_EURO Cumulated fees amount of the policy in euros

FEES_UC Cumulated fees amount of the policy in units of account

OTHER_EURO Cumulated other parts of the face amount of the policy in euros

OTHER_UC Cumulated other parts of the face amount of the policy in units of account

PREMIUM_EURO Cumulated payments amount of the policy in euros

PREMIUM_UC Cumulated payments amount of the policy in units of account

PROFIT SHARING_EURO Cumulated profit sharing amount of the policy in euros

PROFIT SHARING_UC Cumulated profit sharing amount of the policy in units of account

CLAIM_EURO Cumulated partial or total lapsed amount of the policy in euros

CLAIM_UC Cumulated partial or total lapsed amount of the policy in units of account

Covariates derived from financial flows

%TOTAL_UC_PREMIUM_AMOUNT Percentage of the face amount in units of account

%TOTAL_EURO_PREMIUM_AMOUNT Percentage of the face amount in euros

%CLAIM_UC Percentage of the face amount in units of account that was lapsed

%CLAIM_EURO Percentage of the face amount in euros that was lapsed

%CLAIM Percentage of the total face amount that was lapsed

Target covariate EVENT Policy’s state (0=Active, 1=Lapsed, 2 ended following PH’s death)

The data set represents policies that are majority owned by men (57.4%) for a mean censored

seniority time of 13.4 years. Three products are present in the dataset. Product one was chosen

by 72% of policyholders, product 2 by 25% and product 3 by 3%.

Regarding their state, 61% of the policies are still active, 22% lapsed, and 17% ended after the PH’s

death. We chose here to present the distribution of the variable SENIORITY as it is the response

variable in our survival models. Its modelling has a critical influence on CLV, thus, on our lapse
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management strategy framework. We also chose to show the distribution of the variable TOTAL
PREMIUM AMOUNT representing the most recent observed face amount for every subject, as it

is a known determinant of lapse behaviour. We are aware that this covariate is time-varying as

its value is updated at every payment, total or partial lapse, profit sharing, arbitration, or even

fee movement on a policy, and only considering its most recent value ignores a large part of the

insights it can provide. Without any better option to account for its whole time-varying trajec-

tory, we can only use TOTAL PREMIUM AMOUNT as it is and defer any dynamic considerations

for future work.

The seniorities and most recent face amount recorded before the potential end of the policy

are distributed as in Figure 8.1:

Figure 8.1: Seniorities and face amounts distributions

Without further analysing the data, we can note several things. First, we can see that the mean

censored seniority of 13.4 years is not equally distributed among our subjects. Active contracts

tend to be older than lapsed ones, themselves older than policies that ended with the policy-

holder’s death. That emphasises the importance of several contributions, and the apparent dif-

ference in seniority regarding the cause of the policy’s termination encourages a competing risks

approach to analyse survival. Moreover, if we suspect lapse and death to be highly dependent on

individual characteristics - such as the policyholder’s age - this also supports an individualised

survival analysis. Eventually, we can see that the last face amount observed is significantly lower

for lapsed policies. It confirms our first intuitions and the face amount will be included in our

model.

Among the covariates introduced in Table 8.1, several play a central part in our two-step mod-

elling approach. First, the competing risks survival analysis step where SENIORITY will be the

response variable, and all other covariates, including individual data and financial flows, are po-

tential explanatory variables. The binary classification second step aims at predicting the EVENT
outcome with minor transformations explained in Section 8.3 below. It is equivalent to using

STATE as a target variable, as they are entirely similar. As a result, not all covariates are utilised

and our predictions are solely based on the covariates underlined in Table 8.1 as they appeared

to be of interest to insurers.
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For confidentiality reasons, the exact specificities of the studied products as well as the pro-

portions between “Euro fund” and equity-linked investments made by the policyholders will not

be detailed, nor their impact be analysed within this thesis.

8.3 Framework

This section describes a modelling approach that follows Loisel, Piette, and C.H.J. Tsai 2021’s

work. Our contributions place our work in a framework that differs from it by being only future-

oriented, by a precise and individualised analysis of retention probabilities and by choosing a

classification framework instead of regression. We chose to use a majority of their existing no-

tations here.

Usual lapse management models based on classification aim to predict whether a policyholder

will lapse. They may perform very well at that specific task, but it only reflects some aspects of

this economic problem. Indeed, the literature is clear (see Ascarza et al. 2018), and many pol-

icyholders may be predicted as “lapsers” but may not be profitable to the insurance company

if targeted. In that case, keeping such policyholders would be irrational, and an efficient model

should not predict them as targets. Targeting policyholders is an economic problem that requires

an economic measure to assess. We propose to consider a measure based on the discounted ex-

pected profit of all the policies, in other words, the sum of all (CLVs). Optimising a lapse, churn,

or other prediction tasks with business-related measures is not new. However, to our knowledge,

none of the existing approaches uses individualised future CLVs and models the profit of reten-

tion strategy by accounting for competing risks or using survival tree-based models.

CLV is a well-studied subject in marketing and business economics and has also been modelled

in an insurance context. For a given subject i, her future CLV over horizon T can be modelled

as

FCLV (i)
(
p(i),F (i), r(i),d, T

)
=

T∑
t=0

p
(i)
t F

(i)
t r

(i)
t(

1 + d
(i)
t

)t , (8.1)

with t in years, t = 0 represents the last historical observation point for subject i. The quantity

p
(i)
t is her profitability ratio as a proportion of F

(i)
t , representing her face amount observed at

time t. The quantity r(i)(t) is the i-th subject’s probability of still being active at time t, and

naturally, d
(i)
t is the discount rate at time t, for subject i. We argue that both the profitability ra-

tio and the discount rate should be as individualised as possible - either at the product or policy

level - as
FCLV (i)

reflects the individualised risk of policyholder i to the insurer. It is also worth
mentioning that evaluating discount rates is well beyond the scope of this paper as it is complex

and subject to significant judgement; for further details, we refer the astute reader to a variety

of papers on the subject (see Burrows and Lang 1997, Oh et al. 2018, Blum and Therond 2019).

It is worth pointing out that
FCLV (i)

does not represent the global profit generated by sub-

ject i from her policy’s first year until time T as in Loisel, Piette, and C.H.J. Tsai 2021; it rather

represents the future T years of profit.
FCLV (i)

is not to be compared with the cash surrender

value but rather with the fair market value (FMV) of the outstanding liabilities. The only differ-

ence with the latter is that
FCLV (i)

is based on the insurer’s knowledge of its portfolio, thus

computed with its own profitability and discount parameters rather than with market-consistent

considerations. In our framework, the life insurer is more interested in maximising its own real-

istic profitability rather than a sum of individual market values.
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We suggest a model for the insurer’s estimated profit - or loss - resulting from a lapse man-

agement strategy (LMS). In order to do that, we will compare the expected value of the portfolio

before and after applying a given strategy. We are aware that there could be infinite ways to

design a retention campaign: offering a punctual incentive, recurrent services or more profit

sharing, for instance. Here, we define what we will consider an LMS.

Definition 1 (Lapsemanagement strategy). AT-years lapsemanagement strategy ismod-
elled by the offer of an incentive δ(i) to subject i if she is targeted. The incentive is expressed
as a percentage of her face amount and should not exceed the profitability ratio p(i)t , at any
time point t. Contacting the targeted policyholder has a fixed cost c and after contact, the
incentive is accepted with probability γ(i). A targeted subject who accepts the incentive will
be considered as an “acceptant” who will never lapse. In our dataset, any subject that has
never been observed to lapse is considered as an “acceptant” and her probability of being
active at year t ∈ [0, T ] is denoted r(i)acceptant(t). Conversely, a subject who refuses the incen-
tive and prefers to lapse will be considered as a “lapser”. In our dataset, a subject is labelled
as a lapser whenever she has been observed to lapse at year t = 0, and her probability of
being active at year t is denoted r(i)lapser(t). A lapse management strategy is uniquely defined
by the parameters (p, δ,γ, c, T )

It is to be noted that even if the framework involves a time dimension, it is still a static approach:

the insurer would run all analyses on its portfolio at one given time and apply an appropriate

LMS immediately.

Even if this definition is already a simplification of any real-life insurance retention strategy,

various constraints and the data and tools at the insurer’s disposal do not always allow to con-

duct such a study. In the following section, we consider a simplified version of this framework

by assuming that p
(i)
t , F

(i)
t , and d

(i)
t remain constant across time, and denoted p(i), F (i)

and d(i)

hereafter, with F (i)
being the most recent face amount observed for subject i. Moreover, we set

γ(i) and δ(i) to be the same for all subjects and denoted as γ and δ hereafter. The constraint that
δ < min(p(i)) detailed in Definition 1 still holds. Finally, the last observed state of subject i is
denoted y(i), with y(i) = 1 if the policy is lapsed, y(i) = 0 otherwise.

With those considerations, we can then define the control portfolio’s future value as

FCPV (p, δ, γ, c, T ) =
n∑

i=1

FCLV (i)
(
p(i), F (i), r

(i)
acceptant

, d(i), T
)
· 1
(
y(i) = 0

)
+

n∑
i=1

FCLV (i)
(
p(i), F (i), r

(i)
lapser

, d(i), T
)
· 1
(
y(i) = 1

)
.

(8.2)

It represents the hypothetical value of the portfolio, considering that:

• every subject that did not lapse up to her last observation point - y(i) = 0 at t = 0 - has a

vector of retention probabilities of r
(i)
acceptant

;

• every subject that has been observed to lapse - y(i) = 1 at t = 0 - has a vector of retention

probabilities of r
(i)
lapser

.
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Remark 8.1

It is important to note that this does not reflect the actual future value of the portfolio - as

the future CLV of lapsers should be 0 - but rather its hypothetical expected future value

given the nature (lapser or not) of every subject but not their actual states (actually lapsed

or not). It represents this hypothetical future CLV of all subjects if no customer relationship

management about lapses is carried out.

A classification algorithm would take the lapse indicator y(i) as a target variable and yield

predictions ŷ(i). Given a lapse management strategy and such a classification algorithm, we de-

fine the lapse managed portfolio future value by

FLMPV (p, δ, γ, c, T ) =
n∑

i=1

FCLV (i)
(
p(i), F (i), r

(i)
acceptant

, d(i), T
)
· 1
(
y(i) = 0, ŷ(i) = 0

)
+

n∑
i=1

FCLV (i)
(
p(i), F (i), r

(i)
lapser

, d(i), T
)
· 1
(
y(i) = 1, ŷ(i) = 0

)
+

n∑
i=1

FCLV (i)
(
p(i) − δ, F (i), r

(i)
acceptant

, d(i), T
)
· 1
(
y(i) = 0, ŷ(i) = 1

)
+ γ ·

n∑
i=1

FCLV (i)
(
p(i) − δ, F (i), r

(i)
acceptant

, d(i), T
)
· 1
(
y(i) = 1, ŷ(i) = 1

)
+ (1− γ) ·

n∑
i=1

FCLV (i)
(
p(i), F (i), r

(i)
lapser

, d(i), T
)
· 1
(
y(i) = 1, ŷ(i) = 1

)
−

n∑
i=1

c · 1
(
ŷ(i) = 1

)
.

(8.3)

Clearly, the sums appearing in the formulas above could be grouped to make them more concise.

We chose not to do so for the sake of visualisation: we can distinctly see each possible case in

each summand.

Then, we define the economic metric of the algorithm as the retention gain, the future profit

generated by the retention management strategy over T years as

RG(p, δ, γ, c, T ) = FLMPV(p, δ, γ, c, T )− FCPV (p, δ, γ, c, T ), (8.4)

which can be simplified as

RG(p, δ, γ, c, T ) =

n∑
i=1

[
γ
[
FCLV (i)

(
p(i) − δ, F (i), r

(i)
acceptant

, d(i), T
)

− FCLV (i)
(
p(i), F (i), r

(i)
lapser

, d(i), T
) ]
· 1
(
y(i) = 1, ŷ(i) = 1

)
− FCLV (i)

(
δ, F (i), r

(i)
acceptant

, d(i), T
)
· 1
(
y(i) = 0, ŷ(i) = 1

)]

−
n∑

i=1

c · 1
(
ŷ(i) = 1

)
.

(8.5)
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This evaluation metric can now be derived into an individual retention gain measure. More

specifically, we define z(i) as

z(i) =



− FCLV (i)
(
δ, F (i), r

(i)
acceptant

, d(i), T
)
− c if y(i) = 0

γ ·
[
FCLV (i)

(
p(i) − δ, F (i), r

(i)
acceptant

, d(i), T
)

if y(i) = 1

− FCLV (i)
(
p(i), F (i), r

(i)
lapser

, d(i), T
) ]
− c.

(8.6)

That last equation can seem obscure at first glance. It simply assigns to each individual the ex-

pected profit or loss that would result from targeting her with a given lapsemanagement strategy.

A positive amount for subject imeans that targeting her would generate profit, whereas a nega-

tive one would lead to a loss for the insurer. We can take the example of a hypothetical scenario

where p(i) = 3%, δ = 0.05%, γ = 10% and c = 10 euros. It would generate z(i)s taking values

from −234, 614€ to 53, 066€ with a mean of −218€ and a median of −55€. Different scenarios
would result in very different distributions for the z(i)’s.

Eventually, we define ỹ(i) as a binary target variable indicating for policyholder i if the indi-

vidual expected retention gain resulting from a given retention strategy is a profit or a loss.

More specifically, we define ỹ(i) as

ỹ(i) =

{
1 if z(i) > 0

0 if z(i) ≤ 0
. (8.7)

Remark 8.2

A subject in the dataset for which y(i) = 0 would produce ỹ(i) = 0, whereas one for which
y(i) = 1 could produce ỹ(i) = 0 or ỹ(i) = 1. In other words, it is never profitable for the

insurer to offer an incentive to a subject that would not have lapsed. Conversely, offering

that same incentive to a lapser can be profitable. However, depending on the subject’s

features and the lapse management strategy parameters, it can also lead to a loss.

We can now include ỹ(i) as a new binary target variable in our models and directly consider

RG as the global evaluation metric in the tree-based models we consider.

We can now compare two models: the classical one with y(i) as a target variable and accuracy as
the evaluation metric; and the CLV-augmented one with ỹ(i) as a target variable and RG as the

evaluation metric.

Intuitively, the former tries to predict whether a policyholder will lapse and tune its parameters

by minimising the misclassification rate. On the other hand, the latter aims at predicting whether

applying a given retention strategy to the i-th individual will be profitable for the insurer and

tune its parameters by maximising the global expected retention gain.

8.4 Methodology

In Section 8.3, we described a business-oriented framework, augmenting lapsemanagement strat-

egy with an evaluation metric based on the future CLV of every subject. Evaluating this metric
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requires computing racceptant and rlapser, the matrices of size (n, T +1) containing for every sub-
ject, survival probabilities that we detail below. This individual survival analysis differs from

Loisel, Piette, and C.H.J. Tsai 2021’s work where rlapser is estimated globally and takes the same

value for every policyholder regardless of their characteristics and where racceptant = 1 for any

subject and at any time, ignoring the fact that an “acceptant” ’s policy can end with the policy-

holder’s death.

Given this framework, we propose a two-step methodology: firstly, we detail how this survival

analysis is carried out to model those retention parameters, and secondly, we explain how we

use them for training tree-based classification models.

8.4.1 Step 1: Modelling racceptant and rlapser

We recall that a given subject’s policy can end with lapse or death, and the policy is considered

active if competing events are yet to occur. Furthermore, while a lapser’s policy can end with

lapse or death, whatever comes first, an acceptant one can only end with death.

r
(i)
lapser

(t) represents the probability that the policy of subject i is still active at time t, given that

the subject is labelled as a lapser - EVENT = 1 - at t = 0. Predicting these overall conditional

survival probabilities with competing risks can be achieved by creating a combined outcome: the

policy ends with death or lapse, whichever comes first. To compute rlapser in practice, we recode

the competing events as a combined event. This cause-specific approach has the advantage of

being achievable with any survival analysis method.

Conversely, r
(i)
acceptant

(t) represents the probability that the policy of subject i is still active at

time t, given that the subject is not labelled as a lapser - EVENT = 0 or 2 - at t = 0. This esti-
mation is more complex as we must dissociate the risks of lapse and death. These causes being

mutually exclusive, a competing risks methodology is well-suited to estimate r
(i)
acceptant

Laurent,

Norberg, and Planchet 2016.

It is also important to note that here, r
(i)
lapser

is modelled on subjects that have lapsed in the past -

they may have been offered an incentive in the past, this is unknown - and not on subjects that

have been offered an incentive that they declined. Our framework makes the implicit hypothesis

that both behaviours are alike. It is more intuitive for r
(i)
acceptant

as a subject that has not lapsed in

the past would have accepted any incentive if offered.

Competing risks frameworks

We are aware that improvements of our model over Loisel, Piette, and C.H.J. Tsai 2021’s ap-

proach, require the analysis of both the risks of lapse and death, thus a competing risk setting.

As detailed in Appendix A.1, several regression models exist to estimate the global hazard and

the hazard of one risk in such settings: cause-specific and subdistribution models. They account

for competing risks differently, obtaining different hazard functions and thus have distinct ad-

vantages, drawbacks and interpretations. These differences are discussed in Milhaud and Dutang

2018, where the authors also considered a competing risk framework for lapse prediction.

After discussions detailed in Appendix A.1, the simplicity of a cause-specific approach and the

fact that it can be adapted to any survival method, including tree-based ones, oriented our choice

towards it. We then computed r
(i)
acceptant

and r
(i)
lapser

with three different methods - Cox model,
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random survival forest, and gradient boosting survival model - and retained the best one. These

methods are briefly described in the following sections.

Cox proportional hazard model

One of themost common survival models is the Cox proportional hazard (CPH)model (see D. Cox

1972). It postulates that the hazard function can be modelized as the product of time-dependent

and covariate-dependent functions. The hazard function at time t for subject i with covariate

vector X(i)
, under Cox proportional hazard model can be expressed as

λ(t|X(i)
1 , X

(i)
2 , . . . )︸ ︷︷ ︸

hazard function

= λ(t|X(i)) =

baseline hazard︷ ︸︸ ︷
λ0(t) e

log-partial hazard︷ ︸︸ ︷(
X(i) · β(i)

)
︸ ︷︷ ︸

partial hazard

.

It is crucial to note that in this model, the hazard function is the product of the baseline haz-

ard, which only varies with time, and the partial hazard, which only varies depending on the

covariates. The parameters of this model are the β, and they can be estimated with a maximum

likelihood approach. Their estimation can be carried out without having to model λ0(t) - which
is why CPH is considered semi-parametric.

We use Python and lifelines (see Davidson-Pilon 2019) to implement it. We specify a spline es-

timation for the baseline hazard function. We select the covariates and model parameters using

AIC (see Akaike 1973) and use the concordance index (see Harrell et al. 1982) to compare CPH

to other models. The concordance index - or Harrel’s c-index or simply c-index - is a metric to

evaluate the predictions made by a survival model. It can be interpreted as a generalisation of

the area under a receiver operating characteristic (ROC) curve (see Hanley and McNeil 1982) -

or AUC - in a survival setting with censored data.

Random Survival Forest

Survival trees have been extensively studied for a long time, and a complete review of such exist-

ing methods up to 2011 can be found in Bou-Hamad, Larocque, and Ben-Ameur 2011. The most

important thing to understand is that a survival tree can be created by modifying the splitting

criterion of a regular tree. Most survival tree algorithms are designed with a split function that

aims to maximise the separation of the resulting child nodes in terms of survival profiles. This

separation between nodes is estimated by maximising the log-rank statistic (see Mantel 1966;

LeBlanc and Crowley 1993). Each terminal node of a survival tree contains a survival profile

from which we can derive the survival and cumulative hazard functions.

An RSF is the counterpart of a random forest (see Appendix B.1.2) for such survival trees. It

has been developed in Ishwaran, Kogalur, et al. 2008 and extended for competing risks a few

years after (see Ishwaran, Gerds, et al. 2014). A prediction with RSF for a given subject is made

by getting his/her survival profile in each tree in the forest. His/her corresponding survival and

cumulative hazard function are estimated in each tree with Kaplan-Meier and Nelson-Aalen es-

timators, respectively. Eventually, the aggregation of those single-tree estimates constitutes the

RSF’s prediction.

We use Python and sksurv (see Polsterl 2020) to implement RSF, and we tune and evaluate

our model using the concordance index.
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Remark 8.3

Sksurv allows us to use RSF with a cause-specific consideration of the competing risks. To

this day, sksurv does not have a subdistribution competing risks model, whereas its R

implementation randomForestSRC does (see Ishwaran and Kogalur 2007).

Moreover, a severe limitation of that approach is that predictions can only be made at time

points observed in the training set. Concretely, this prevents us from using RSF to extrap-

olate survival and hazard functions to unobserved time points.

Gradient Boosting Survival Model

In the same way random forest has a survival counterpart, this is also true for gradient boosting

approaches. An essential distinction between classical boosting algorithms (see Appendix B.1.3)

and gradient boosting survival model (GBSM) lies in its loss function. The loss function that

we use with GBSM is the partial likelihood loss of a CPH model, and the optimisation in such a

model is achieved by maximising a slightly modified log-partial likelihood function,

argmin
f

n∑
i=1

δ(i)

f(X(i))− log

∑
j∈g(i)

e(f(X
(j)))

 ,
where δ(i) is the event indicator and f(X(i)) is GBSM’s prediction for the i-th subject, with a

covariate vector X(i)
; g(i) is the tree leaf including subject i.

Similarly to RSF, we use Python and sksurv (see Polsterl 2020) to implement GBSM. We tune

and evaluate our model using the concordance index. Remark 8.3 also applies here.

Final modelling choice

Our analysis, using train-test split validation based on the concordance index, shows that RSF

and GSBM both outperformed a semi-parametric Cox model in our study case. Regarding inter-

pretability, we note that the feature importance analysis is very similar between the threemodels.

All the details about the final concordance index scores, covariates importance and various plots

for further analysis are available in Appendix B.1.

In the following sections, we decide to retain GBSM for the modelling of r
(i)
acceptant

and r
(i)
lapser

as it has the best concordance index.

Remark 8.4

As this study aims to be business-oriented and favour real-life decision-making, it is cru-

cial to note that the computation times for fitting these different models are very different

and could potentially be a huge constraint for real operational deployment. Specific com-

putation times differ greatly depending on various factors, such as the number of subjects

or features considered, the computation power or parallelisation ability at disposal, for in-

stance. However, we can still give here an order of magnitude for those differences. If the

tuning and fitting process for CPH can last a few tens of seconds, it lasts hours for RSF and

tens of hours for GBSM.
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8.4.2 Step 2: Classification tasks

Our work focuses on lapse management with tree-based models. The final classification question

we want to answer is the following: which policyholders would be worth targeting with a lapse

management strategy to maximise the expected T -year profit for the insurer? We will consider

a single tree built with Breiman’s CART algorithm, Random Forest, XGBoost, and RE-EM trees.

The following sections detail how those different approaches work. Those models will be com-

pared on two different classification tasks; and tuned with two different evaluation metrics, a

statistical metric and a business-related one.

On y(i) First, we will use a classical lapse prediction framework to model the policyholder’s

behaviour. Each policyholder in the historical dataset will be labelled as a lapser or a non-lapser

with a binary outcome y(i). Our first batch of models will be trained with y(i) as a response

variable and produce predictions ŷ(i). Accuracy(y, ŷ), which is undoubtedly the most intuitive

performance measure for binary classification, is defined as the proportion of correctly predicted

observations over all observations. It is widely used for churn analysis and appears to be a satis-

fying performance measure for relatively balanced outcomes - 22% of all observed subjects in our

dataset being lapsers - in binary classification problems. We will use it as an evaluation metric

in a 10-fold cross-validation step for tuning our models.

We know that more advanced evaluation metrics are available for binary classification, including

the recall, the Fβ score family (see Chinchor 1992), the AUC under the ROC or the Precision-

Recall curve, the Brier Score (see Brier 1950) and lift curve. They are standard evaluation met-

rics in classification and provide valuable insights into the model’s performance, they are also

frequently used in the applied binary classification literature, especially in the presence of a sig-

nificant imbalance in the data (see He and Garcia 2009). However, in this paper, the mildness of

the imbalance of y(i) and our will to compare a customer-centred framework to representative

real-world practices encourages us to use accuracy as a comparison. One of the goals of this

article is to demonstrate that some of the current practices in real-world applications, based on

statistical metrics such as accuracy can be significantly improved by considering a profit-driven

target variable and evaluation metric. We are aware that accuracy may not be an optimal choice

of evaluation metric for binary prediction in general and churn or lapse analysis specifically,

still, it seems representative of what practitioners use (see Table 2 from Duchemin and Matheus

2021 for example), as it is suggested in Loisel, Piette, and C.H.J. Tsai 2021. We do not aim to

compare our framework against the best existing methods but rather against the most repre-

sentative. Nevertheless, the numerical results of Table 8.3 have also been obtained with recall,

F1-score, and AUC for tuning and cross-validation and some are available in Appendix B.3: the

conclusions obtained with such measures are similar to those obtained with accuracy. Thus, in

this article and as in Loisel, Piette, and C.H.J. Tsai 2021, we will only select, evaluate and discuss

the models in the light of accuracy.

On ỹ(i) Secondly, we will use the CLV-Augmented lapse prediction framework, detailed in Sec-

tion 8.3. Each policyholder will be labelled as a targeted lapser or a non-targeted policyholder

with the binary outcome ỹ(i) and prediction for that outcome are denoted

ˆ̃
y(i).
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Remark 8.5

Note that whenever y(i) = 0, we also have ỹ(i) = 0. In other words, if subject i does not
intend to lapse, it is never worth proposing an incentive: the subject will accept it with

probability 1 and would not have lapsed.

On the other hand, when y(i) = 1, it corresponds to either ỹ(i) = 1 or ỹ(i) = 0. In other

words, if subject i is labelled as a lapser, it does not necessarily mean it is worth targeting

her. From the insurer’s point of view, some policies are better off lapsed. ỹ(i) can be seen

as a more detailed version of y(i) as it carries not only behavioural information regarding

lapse but also a profitability one.

We thus train a second batch of models with ỹ(i) as a response variable. We use RG as an

evaluation metric in a 10-fold cross-validation step for tuning these models.

Summary of our methodology: First, we train a CART, RF and XGBoost models with y(i)

as a binary target variable and accuracy as a tuning evaluation metric.

Then we train them with ỹ(i) as a binary target variable and RG as a tuning evaluation

metric.

Finally, we train and test all six models on different random samples of our dataset and

keep track of the model’s classification performance on all of them and for various re-

tention strategies for comparison’s sake.

The sections below briefly introduce the tree-based model we selected before displaying how

they performed in various lapse management scenarios.

CART

CART (Classification And Regression Trees) is an algorithm developed by Breiman et al. 1984 that

consists of recursively partitioning the covariate space. It is a widespread, intuitive and flexible

algorithm that handles regression and classification problems.

Random forest (RF)

A natural idea to correct CART’s instability and enhance its prediction accuracy is the aggrega-

tion of a significant number of single trees, each grown on different sub-samples of the dataset. A

random forest (see Breiman 2001) is a tree-based bagging procedure where each tree is grown on

randomly drawn observations and contains splits considering only randomly drawn covariates.

XGBoost

Other tree-based approaches have been designed to reduce the instability of a single-tree model.

Model boosting is an adaptive technique, first developed by Freund and Schapire 1996, that does

not rely on the aggregation of independent weaker models but rather on the aggregation of

weak models built sequentially, one after the other. XGBoost (see T. Chen and Guestrin 2016)

is a widespread and performant tree-boosting model that relies on a gradient-boosting step and

provides a very optimised parallelised procedure. It is considered a state-of-the-art library for

various prediction problems.

86



The interested reader can find more detailed explanations about CART, RF and XGBoost mech-

anisms in the aforementioned references. For these modelling approaches, we used Python and

sklearn (see Pedregosa et al. 2011).

8.5 Real-life application

Based on the real life-insurance dataset at our disposal (described in Section 8.2), we use the

survival model we selected and estimate r
(i)
acceptant

and r
(i)
lapser

for every individual. This allows us

to compute the individual CLVs, RGs, z(i)’s and ỹ(i). We have already defined what a strategy

is (see Definition 1), and we can thus apply our classification methodology to various retention

strategies.

8.5.1 Considered lapse management strategies

The strategies considered are based on several criteria. First, we selected realistic strategy pa-

rameters and time horizons based on actual retention campaigns led by life insurers. Moreover,

we chose to present strategies that illustrate the exhaustive list of conclusions and discussions

that are carried out in the next section. Finally, we also incorporated strategies that are “obvi-

ously bad” in the sense that such strategies would necessarily lead to a loss for the insurer. Such

extreme scenarios will supplement our discussions. In any case, we consider p(i) and d(i) to be

constant in our application, as both those parameters were not estimated at the individual level

by the life insurer that provided us with the dataset.

Results related to the 64 considered LMS are given in Appendix B.4. Our analysis showed that all

considered LMS results can be split into 5 categories depending on how applying our framework

impacted their expected retention gain over naive targeting. We have realistic profitable strate-

gies that are improved by our framework, but also highly loss-inducing, moderate loss-inducing,

highly profitable and unrealistically highly profitable strategies. We refer to the LMS displayed

in Table 8.2 as representative strategies as they all belong to one of those categories. Numeri-

cal results regarding the most representative strategies can be found in Section 8.5.2 and related

comments on how to read these tables are given in Section 8.5.3.

Scenarios p δ γ c d T

A-1 2.50% 0.04% 25% 10 1.50% 5

A-5 2.50% 0.04% 5% 10 1.50% 5

A-25 5.00% 0.10% 25% 10 1.50% 5

B-6 2.50% 0.08% 10% 10 1.50% 20

B-27 5.00% 0.20% 20% 100 1.50% 5

Table 8.2: Insightful LMS
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8.5.2 Numerical results

N° time (s) Model % target diff (% of 1’s)

Accuracy Retention gain RG/target

Improvement
y(i) ỹ(i) y(i) ỹ(i) y(i) ỹ(i)

A-1 4949

CART

62.6% (8.2%)

92.3% 85.3% 114 661 219 655 4.48 38.20 91.6%

RF 92.9% 85.4% 232 314 287 884 9.82 56.65 23.90%

XGB 93.4% 85.8% 243 365 324 952 9.61 54.64 33.50%

A-5 4753

CART

86.7% (2.9%)

92.3% 83.6% - 514 477 - 112 372 - 20.08 - 86.48 78.20%

RF 92.9% 83.4% - 323 544 - 3 937 - 13.65 - 28.28 98.80%

XGB 93.4% 83.3% - 383 004 0 - 15.14 0 100.00%

A-25 5379

CART

31.0% (15.2%)

92.3% 89.2% 4 160 423 3 882 623 162.44 241.06 -6.70%

RF 92.9% 89.5% 4 018 432 3 666 219 169.65 249.54 -8.80%

XGB 93.4% 90.0% 4 455 108 4 410 629 176.09 267.87 -1.00%

B-6 5906

CART

36.6% (13.9%)

92.3% 88.8% 705 721 922 490 27.69 60.21 30.70%

RF 92.9% 88.9% 1 352 182 1 269 349 57.11 97.63 -6.10%

XGB 93.4% 89.6% 1 342 882 1 428 722 53.09 96.76 6.40%

B-27 4811

CART

73.9% (5.7%)

92.3% 84.3% - 694 436 751 404 - 27.16 226.99 208.20%

RF 92.9% 84.4% - 13 512 1 018 369 - 0.51 356.48 7637.00%

XGB 93.4% 84.7% - 38 050 1 253 252 - 1.55 345.94 3393.70%

Table 8.3: Means of the results obtained on considered LMS

8.5.3 Comments

Several terms in the two previous tables need to be explained. “% target diff” represents how

different y and ỹ are. It is the percentage of subjects for which y(i) = 1 and ỹ(i) = 0: in other

words, the proportion of lapsers not worth targeting with a given strategy. The quantity “% of

1’s” represents the proportion of ones in ỹ the target variable. It is to be compared with the 22%

of ones in y: the proposed framework’s imbalance increases with “% target diff”.

Then the table shows the 10-fold cross-validated mean accuracies, retention gains and RG/target

with two methodologies: the columns denoted y(i) represent the metrics obtained by a model

with y(i) as a response variable and accuracy as an evaluation metric, and the columns denoted

ỹ(i) represent the metric obtained by a model with ỹ(i) as a response variable andRG as an eval-

uation metric.

RG/target represents the achieved retention gain for every targeted individual, for y(i), it is

RG/
∑

i
ˆy(i), for ỹ(i) it is RG/

∑
i

ˆ̃
y(i). Eventually, “Improvement” represents the percentage

of improvement between the RG obtained with a classification on y(i) and the gain obtained

with a classification on ỹ(i). As the reported financial information was distorted for confiden-

tiality reasons (see Section 8.2), relative measures such as “Improvement” are certainly more

informative than absolute ones such as RG.

Some LMS are worth focusing on. For every strategy, we display its 10-fold cross-validated re-

sults: 10% of the dataset acting as an out-of-sample validation set at every fold. Every model is

tuned by cross-validation within every fold. The box-plots below summarise some typical key

results illustrated by several strategies. Those results will be discussed in Section 8.6.
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Figure 8.2: Strategy n°A-1: (Positive result on y(i) and an improved result on ỹ(i).)

Figure 8.3: Strategy n°A-5: (Very negative result on y(i) and a loss-limiting result on ỹ(i).)
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Figure 8.4: Strategy n°B-27: (Negative result on y(i) and positive one on ỹ(i))

Figure 8.5: Strategy n°B-6: (High positive result on y(i) slightly improved with ỹ(i).)
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Figure 8.6: Strategy n°A-25: (Results on y(i) better than results on ỹ(i).)

Remark 8.6

With considerable computation power and great parallelisation, the results for all strategies

- see other strategies in Appendix B.4 - were obtained with a wall time of less than 4 days

and a CPU time of more than 100 days.

8.6 Discussion

8.6.1 General statements

As expected and shown in the actuarial literature, RF and XGBoost perform globally better than

CART regarding mean accuracy and RG. It is true for all LMS considered in Table B.7. Globally,

XGBoost is more consistent in performance and is the best model in most scenarios, both with

and without the CLV-based measure. It is only outperformed by RF in strategies n°A-7, A-11,

A-14, A-29, B-7, B-14 and B-31.

As expected, by design, the vast majority of strategies, including all the realistic ones, show that

a classification on ỹ(i) produces a targeting that yields better RG than a classification on y(i).
Conversely, a classification on y(i) produces a targeting that delivers better accuracies regarding
whether a policyholder will churn than a classification on ỹ(i). These results were expected be-

cause of the models’ respective objectives. Even if it is not surprising, it once again shows that

for an insurer, lapse prediction and lapse management strategy are two very different prediction

problems, often treated as similar ones.

Our CLV-augmented model shows different behaviour depending on the strategy considered.

As highlighted by Figure 8.2, a model on y(i) is greatly improved by our framework regarding

RG and RG/target. Conversely, its accuracy in lapse prediction is not optimal.

An attractive property of our framework can be observed in Figure 8.3: it yields loss-limiting

targeting. When the LMS considered is too aggressive, it will usually prefer to predict that an
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LMS should not be applied at all (∀i,
ˆ̃
y(i) = 0), thus generating a RG around 0€. This is made

evident in some extreme strategies (LMS n°A-5, A-15, B-11, B-13 and B-16) and explains the pres-

ence of 0’s in Table 8.3.

On less extreme strategies, it shows to yield substantial improvement when classification on y(i)

gives negative RG. That observation confirms what was already pointed out by Loisel, Piette, and

C.H.J. Tsai 2021: it can even turn a negative RG into a positive one (see LMS n°A-8, B-8, B-12,

B-23 and B-27 (Figure 8.4)) .

Our framework also improves a strategy where a classification on y(i) gives high RG. How-

ever, the improvement decreases as the difference between the total number of lapsers and the

number of lapsers that would be profitable if retained is sizeable. An example of that is shown

in Figure 8.5.

Finally, we can generate LMS for which our framework does not improve the expected RG. It

is the case in LMS n°A-13, A-18 or A-27 (See e.g Figure 8.6). In LMS n°A-13, we can see that

the mean of the RG is not improved, but the median is. In all those cases, the RG per target

produced by the CLV-augmented model is greatly improved, indicating that a CLV-augmented

strategy prefers to target fewer policyholders but only those who would generate high future

profits. This last observation explains why a CLV-augmented LMS generates higher RGs when

the cost of contact c is considerable. Indeed, the more costly a contact is, the more precise and

specific a targeting strategy should be.

Generally, we can collate the results of various LMS - excluding LMS n°B-27 that has a very

high improvement ratio - to obtain a mean performance of our framework.

The average observed RG improvement of a CLV-augmented framework over the

classical lapse one is 57,9%
a
. If we weigh these results by the expected RGs, the

average improvement is still 31,7%. As a comparative result, it is reported in Section

6.2 of Loisel, Piette, and C.H.J. Tsai 2021’s work that they obtain improvements over

that same classical framework between 18% and 26%, depending on the considered

strategies. This emphasises that by extending their work, we seem to improve on

their results. Obviously, as we were not able to compare our results on the same data

and strategies, and because our definitions of RG differ, such a conclusion is to be

treated cautiously.

a
Using XGBoost

8.6.2 Marketing decision making

We already pointed out that the improvement of a lapse management strategy including CLV

grows with the proportion of lapsers with a negative CLV (see Appendix B.2). Models resulting

from our framework do not consider them as good targets. In fact, there is a Pearson correlation

coefficient of 77% between RG improvement and the proportion of target differences among the

LMS detailed in Table B.7. Of course, as the improvement ratio has no clear interpretation in

some cases, this analysis should be carried out in more depth, separating the cases where both

RG - with and without the inclusion of CLV - are positive from the cases where one of them

is negative. By doing so, we observe that the Pearson correlation coefficient for LMS yielding

positive RG regardless of the inclusion of CLV is even higher: 83%.
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In terms of targeting, it seems crucial to understand what differentiates a subject for which

y(i) = 1 and ỹ(i) = 0 from the others. An investigation of such policyholder profiles can be

carried out for every lapse management strategy. We take the example of LMS n°A-1, where

62,6% of policyholders were in that case (see Section 8.5.2). With that strategy, the profile of

non-targeted lapsers indicates that

• 57.2% of them are men, similar to the entire dataset,

• 76.4% of them contracted product n°1 whereas 72% of all policyholders chose it,

• the mean seniority of their policy is 10.4 years compared to the 13.4 years for the complete

dataset,

• the mean face amount of such policies is 12,156, whereas the average face amount for all

considered policies is 40,263.

In that strategy, our framework indicates that marketing efforts on low seniority policyholders

with low face amount policies are inefficient. Of course, this conclusion is only valid for the

considered LMS; however, our framework allows us to conduct such analysis for any LMS and

interpret the results at an individualised level.

8.6.3 Management rules decision making

Sensitivity analysis of those results can highly benefit management rules decision-making. This

framework serves as a tool that compares future hypothetical lapse management strategies in

order to choose the best one - among realistic scenarios -. It can also be used to tune a given

strategy by answering questions like:

• For which incentive δ does the retention strategy become profitable ?

• For which acceptance probability γ does the retention strategy become profitable ?

• With a given budget, what is the optimal list of policies that should be targeted?

• At which horizon T , does the retention strategy become profitable ? In other words, when

can the insurer expect a return on investment?

Answering these questions constitutes a 1-parameter sensitivity analysis. In our framework, six

parameters influence the expected retention gain (p, δ, γ, c, d, T ).
We can argue that among them are three structural parameters that are insurer’s dependent and

not linked to the external state of the world: δ, γ and c. Among them, the contact cost c is more

or less fixed and can not be easily changed by the insurer. Conversely, δ and γ are to be chosen

by the insurer. Moreover, they also are correlated with management and commercial efficiency

- an efficient campaign impacts the final γ - and correlated together: the higher the incentive δ,
the higher the probability of acceptance γ.

By fixing all other parameters and trying various combinations of δ and γ we obtain the fol-
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lowing 3D surfaces.

Figure 8.7: 3d plot (δ, γ, RG)

This surface is not surprising and indicates that the higher the acceptance rate and the lower

the incentive, the higher the retention gain. The surface gradient can give powerful insights

regarding the most efficient commercial efforts to make: is it better for the insurer to propose

lower incentives and manage to conserve the same acceptance probability or to put commercial

effort into improving the acceptance probability for the same proposed incentive? This surface

directly addresses this question.

Remark 8.7

Of course, the interdependence of those parameters should make some part of this surface

unrealistic from amanagement decision-making point of view. The insurer should consider

such dependencies when designing a lapse management strategy.

Among the six parameters are also three conjectural parameters that depend on the external

state of the world: the insurer’s profitability p (that depends on competition, macroeconomic

considerations, or regulation), the discount rate d, and the time horizon T (that can be driven

by the insurer’s vision but also by regulation: the ORSA time horizon with the strategic and the

long-term business planning time horizon should be both considered). Among them, we chose

to fix p and let d and T vary. Moreover, p and T are obviously interdependent and considered

through the management’s prospective view of the conjecture’s evolution. A given interest rate

scenario should represent a curve on the following surface.

Figure 8.8: 3d plot (d, T, RG)

This surface is less smooth than the one displayed in Figure 8.7 and seems to indicate a more

unstable relationship between RG and the conjectural parameters. An explanation of that be-

haviour can be that those surface points are generated by running our framework on a random
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sub-sample of our dataset, for computation time considerations. Generating the same surface

with more policyholders is likely to give a smoother behaviour.

Remark 8.8

Of course, the interdependency of T and d should make some part of this surface unrealistic

from an actuarial point of view. Actuarial rate projections would give precise plausible

scenarios on this surface. Such considerations should be taken into account by the insurer

when designing a lapse management strategy.

Remark 8.9

The insurer can also use our framework to measure the retention gain to be expected at

different time horizons obtained by existing retention campaigns. In that case, the insurer

would have to neutralise the effect of the existing LMS in order to estimate the control

portfolio’s future value. We leave this remark as future work for applied risk management

research.

8.7 Conclusion and perspectives

The work carried out in this paper shows that including CLV in lapse management strategy can

largely benefit an insurer’s decision-making ability regarding lapse management strategy. We

showed that survival tree-based models can outperform parametric approaches in such actuarial

contexts. Then, our comparison of tree-based models on different lapse management strategies

indicated that our CLV-based framework leads to increased predicted gains for any realistic sce-

nario and acts as a loss-limiting targeting approach, regardless of the retention strategy. More-

over, the global results obtained in Section 8.6.1 show that our approach significantly improves

on existing ones. Eventually, the discussion section highlighted the fact that our model can give

insights to the life insurer regarding commercial and strategic decision-making.

The framework and methodologies described in this paper suffer some limitations. For instance,

following one single fixed strategy for every policyholder is arguably unrealistic. We could imag-

ine an extension of our models to individualised lapse management strategies that would vary

between subjects and could also be adjusted with time. In the application, we also considered

constant parameters p and δ: a limiting assumption whose impact could be studied. There is also

room for improvement regarding the correlations of LMS parameters: the value of the incentive

and the acceptance probability are evidently interdependent parameters for an insurance com-

pany, and this interdependency could be considered.

This paper defines a practical management tool for life insurers as those models can measure

the RG and improve real strategies used in existing retention campaigns. Finally, our vision of

CLV, and by extension, our whole methodology design could be improved by using longitudinal

data that would yield time-dynamic results. We leave those two last observations for future work.

A real-life comparison between an actual retention strategy targeting and both the naive and

CLV-improved methodologies could be insightful for the insurer.
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8.8 Suggestions for future work

A few properties of the framework that is detailed in this chapter, as well as some additional

suggestions for future work, emerged after the publication of the article it is based on. In this

section, we will introduce some properties of the
FCLV (i)

function as defined in Chapter 8,

then discuss their consequence on the individual expected profit or loss z(i). Eventually, we will
conclude this discussion by suggesting further enrichments to this framework.

8.8.1 z(i) efficiency border

CLV properties

Let us consider the individual
FCLV (i)

function, defined as

FCLV (i)
(
p(i),F (i), r(i),d, T

)
=

T∑
t=0

p(i)F
(i)
t r(i)(t)(

1 + d
(i)
t

)t , (8.8)

with ∀(i, t), d(i)t and F
(i)
t ∈ R+

, p(i) ∈ R, and r(i)(t) ∈ [−1, 1]1. In this version, we consider a

constant individual profitability ratio over time. Here are some trivial properties of this function.

Property 8.8.1. For any given individual, ∀t, p(i)r(i)(t) ≥ 0 (respectively ≤ 0) ⇒ FCLV (i) ≥
0 (respectively ≤ 0). In other words, FCLV (i) has the same sign as p(i)r(i)(t).

Proof. It is trivial to see that the summands always have the same sign as p(i)r(i)(t). The sum of

positive terms stays positive and the sum of negative terms stays negative.

Property 8.8.2. For any given individual,

FCLV (i)
(
p
(i)
1 ,F (i),r(i),d,T

)
+FCLV (i)

(
p
(i)
2 ,F (i),r(i),d,T

)
=FCLV (i)

(
p
(i)
1 +p

(i)
2 ,F (i),r(i),d,T

)
.

In other words, a sum of CLV s with different profitability ratios is itself a CLV with the sum of
the ratios.

Proof. We have immediately that ∀t,

p
(i)
1 F

(i)
t r(i)(t)(

1 + d
(i)
t

)t +
p
(i)
2 F

(i)
t r(i)(t)(

1 + d
(i)
t

)t =
(p

(i)
1 + p

(i)
2 )F

(i)
t r(i)(t)(

1 + d
(i)
t

)t .

Property 8.8.3. For any given individual,

FCLV (i)
(
p(i),F (i),r

(i)
1 ,d,T

)
+FCLV (i)

(
p(i),F (i),r

(i)
2 ,d,T

)
=FCLV (i)(2p(i),F (i),r̄(i),d,T).

With r̄(i)(t), the mean of r(i)1 (t) and r(i)2 (t). In other words, a sum of CLV s with different risk
profiles is itself a CLV with double the profitability ratio and a mean risk profile.

1

For practical applications, r(i)(t) is a probability, hence ∈ [0, 1]. Mathematically, nothing prevents us from

considering negative values for r(i)(t) and it will show to be useful for proving Equation 8.12. Hence the definition

of
FCLV (i)

with r(i)(t) ∈ [−1, 1].
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Proof. We have immediately that ∀t,

p(i)F
(i)
t r

(i)
1 (t)(

1 + d
(i)
t

)t +
p(i)F

(i)
t r

(i)
2 (t)(

1 + d
(i)
t

)t =
p(i)F

(i)
t (r

(i)
1 (t) + r

(i)
2 (t))(

1 + d
(i)
t

)t =
2p(i)F

(i)
t r̄(i)(t)(

1 + d
(i)
t

)t
.

Property 8.8.4. For any given individual, let us assume two risk profiles r(i)1 and r
(i)
2 . ∀t, r(i)1 ≥

r
(i)
2 . Let us assume two profitability ratios p(i)1 and p(i)2 :

p
(i)
1 ≥p

(i)
2 ⇒FCLV (i)

(
p
(i)
1 ,F (i),r

(i)
1 ,d,T

)
+FCLV (i)

(
p
(i)
2 ,F (i),r

(i)
2 ,d,T

)
≥FCLV (i)

(
p
(i)
1 +p

(i)
2 ,F (i),r̄(i),d,T

)
p
(i)
1 ≤p

(i)
2 ⇒FCLV (i)

(
p
(i)
1 ,F (i),r

(i)
1 ,d,T

)
+FCLV (i)

(
p
(i)
2 ,F (i),r

(i)
2 ,d,T

)
≤FCLV (i)

(
p
(i)
1 +p

(i)
2 ,F (i),r̄(i),d,T

)
In other words, a sum of CLV s with different profitability ratios and risk profiles can always be
compared to a CLV with the sum of the profitability ratios and a mean risk profile.

Proof. We assume ∀t, r(i)1 (t) ≥ r(i)2 (t).

Thus r
(i)
1 = r̄(i) +

|r(i)
1 −r

(i)
2 |

2 = r̄(i) + ∆r(i)

2 . Symmetrically, r
(i)
2 = r̄(i) − ∆r(i)

2 .

If p
(i)
1 ≥ p

(i)
2 , we also have p

(i)
1 = p̄(i) + ∆p(i)

2 and p
(i)
2 = p̄(i) − ∆p(i)

2 .

By replacing every term, and using Properties 8.8.2 and 8.8.3, we deduce that

∀t, p
(i)
1 F

(i)
t r

(i)
1 (t)(

1+d
(i)
t

)t +
p
(i)
2 F

(i)
t r

(i)
2 (t)(

1+d
(i)
t

)t =
2p̄(i)F

(i)
t r̄(i)(t)(

1+d
(i)
t

)t +
∆p(i)F

(i)
t ∆r(i)(t)

2
(
1+d

(i)
t

)t .

Summing for every t and using the positivity Properties 8.8.1 concludes the proof.

If p
(i)
1 ≤ p

(i)
2 , signs are switched and we deduce that

∀tp
(i)
1 F

(i)
t r

(i)
1 (t)(

1+d
(i)
t

)t +
p
(i)
2 F

(i)
t r

(i)
2 (t)(

1+d
(i)
t

)t =
2p̄(i)F

(i)
t r̄(i)(t)(

1+d
(i)
t

)t − ∆p(i)F
(i)
t ∆r(i)(t)

2
(
1+d

(i)
t

)t .

Summing for every t and using the positivity Properties 8.8.1 concludes the proof.

Borders conditions on z(i)

We recall that the framework developed in Chapter 8 eventually describes the following expected

profit or loss resulting from targeting PH i as

z(i) =



− FCLV (i)
(
δ, F (i), r

(i)
acceptant

, d(i), T
)
− c if y(i) = 0

γ ·
[
FCLV (i)

(
p(i) − δ, F (i), r

(i)
acceptant

, d(i), T
)

if y(i) = 1

− FCLV (i)
(
p(i), F (i), r

(i)
lapser

, d(i), T
) ]
− c.

(8.9)

The first case only implies that whenever the policyholder has not been observed to lapse, tar-

geting her would inevitably result in a loss for the insurer.

The second case can be further discussed. When the PH has lapsed, we have the following

inequalities, using Property 8.8.4:

γ FCLV (i)(−δ,F (i),r̄(i),d(i),T)−c≤z(i)≤γ FCLV (i)
(
p− δ

2
,F (i),r

(i)
acceptant

−r
(i)
lapser

,T
)
−c. (8.10)
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The first inequality is obtained by considering that

FCLV (i)
(
p(i) − δ, F (i), r

(i)
acceptant

, d(i), T
)
− FCLV (i)

(
p(i), F (i), r

(i)
lapser

, d(i), T
)

= FCLV (i)
(
p(i) − δ, F (i), r

(i)
acceptant

, d(i), T
)
+ FCLV (i)

(
−p(i), F (i), r

(i)
lapser

, d(i), T
)
.

(8.11)

The second one is obtained by considering that

FCLV (i)
(
p(i) − δ, F (i), r

(i)
acceptant

, d(i), T
)
− FCLV (i)

(
p(i), F (i), r

(i)
lapser

, d(i), T
)

= FCLV (i)
(
p(i) − δ, F (i), r

(i)
acceptant

, d(i), T
)
+ FCLV (i)

(
p(i), F (i),−r(i)

lapser
, d(i), T

)
.

(8.12)

The first inequality shows that the lower bound of z(i) is always negative. This result is fully
expected and confirms that there are no LMS parameters that would ensure a profit for the in-

surer. Nevertheless, it does exhibit a lower boundary to the expected loss of an individual. With

d(i) ≥ 0 and r̄(i) ≤ 1, we deduce that

z(i) ≥ −γ(T + 1)δF (i) − c. (8.13)

By denoting
¯F (i)

, the mean of F (i)
over the targeted PH, we conclude that targeting Nt policy-

holders will at worst produce a loss of

Nt[γ(T + 1)δ ¯F (i) + c], (8.14)

which is the undiscounted price of a retention campaign with the offering of an incentive δ, in
the worst case where all targeted policyholders stay in the portfolio T years. This lower bound

simply states that the insurer will at most lose the initial investment of the retention campaign

and not gain anything from it. In other words, with the assumptions of this framework, it is not

possible to design a retention campaign that generates a loss superior to its investment, from

targeting lapsers. This property is expected by design and is not really informative about our

framework.

However, the second inequality is insightful. It gives us a condition ensuring a loss for the insurer.

Indeed, it follows from Equation 8.10 that

γ FCLV (i)

(
p(i) − δ

2
, F (i), r

(i)
acceptant

− r
(i)
lapser

, T

)
− c ≤ 0⇒ z(i) ≤ 0. (8.15)

By majoring in every summand, we deduce that(
∀t, r(i)

acceptant
(t)− r(i)

lapser
(t) ≤ c(1 + d(i))t

γ(p(i) − δ
2)F

(i)(T + 1)

)
⇒ z(i) ≤ 0 (8.16)

Moreover, because r
(i)
acceptant

and r
(i)
lapser

were computed with a cause-specific approach, we have

r
(i)
acceptant

− r
(i)
lapser

is equal to the marginal distribution function for the event of a lapse, (in other

words, it corresponds to 1− exp−
∫ t
0 λT,1(u)du

, with the notations used in Appendix A.1.1). Be-

cause the risks of death and lapse are considered to be independent, this can be interpreted as the

probability for subject i to lapse, if he is not at risk for death, we will call it the risk of pure lapse
which can be estimated from the data. In other words for subject i, we can deduce that if the
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risk of pure lapse is too small at all times, she will not be worth targeting. The framework does

not target individuals for which lapse is unlikely to happen. And the threshold for which it is

too small is increasing with c, d(i) and δ and decreasing with γ, p, F (i)
, and T . Specifically, if the

incentive and/or the cost of contact are too high, it might not be worth targeting PH i. Further-
more, the same conclusion arises if the probability of accepting the incentive and/or the horizon

considered are too low. Those conclusions are perfectly in line with the empirical observations in

Chapter 8 and further indicate that the analysis of the lapse risk alone can be informative enough

for an insurer to circumvent designing retention campaigns leading to unavoidable losses.

8.8.2 Other improvements

Eventually, we also became aware of new ways of improving or extending this framework.

Firstly, this work explicitly states the limitation of the assumption of independence for the pair

of parameters (δ, γ). A first idea on this matter would be to consider that γ is an increasing

function of δ such as a logistic function. To the best of our knowledge, this has never been tried

and some empirical analyses of real retention campaigns could help find realistic parameters for

such a function. A study of price sensitivity such as the works of Guelman and Guillen 2014,

then Lemmens and Gupta 2020; Verschuren 2022 within a causal inference framework could be

adapted to that task. As a matter of fact, the definition of RG, as a difference of profit obtained
with and without lapse management is closely related to the Conditional Average Treatment

Effect (CATE) which would be given by

CATE = E[CPV |X]− E[LMPV |X],

where CPV and LMPV are the so-called response under control and response under treatment.

Another idea for more realistic modelling of the probability of acceptance is to replace the con-

stant γ with the realisation of a random variable following a well-chosen distribution. This was

suggested in other works from Verbraken, Verbeke, and Baesens 2012, or Stripling et al. 2018

within the expected maximum profit measure for customer churn (EMPC) framework. Follow-

ing this idea, the structure of dependence between γ and δ can be modelled by including δ in the

parameters of the distribution of γ. To our knowledge, this has yet to be explored.

Secondly, we noticed that this framework could potentially be used to measure the retention

gains obtained from a real campaign, a posteriori. In practice, this is not possible yet, within the

proposed framework, as the estimation of theRG requires the observation of a control portfolio

(See Chapter 8, Section 3, Equation 2), where no lapse management occurred. This is unob-

servable a posteriori. Once again, the causal inference framework used by Verschuren 2022 is

a possible way of filling that gap and using our framework as a retention campaign’s efficiency

measuring tool.

Eventually, another limitation of the proposed framework is that it considers that all policy-

holders are either lapsers or non-lapsers. In reality, it seems obvious that there are more than

two extreme risk profiles. There exist nuances of lapse risk between policyholders, but also evo-

lutions of one’s PH profiles during her policy’s lifetime. In other words, for any PH, there should

be a continuous set of potential risk profiles, that can evolve through time. This idea, and others,

are tackled with the design of a longitudinal lapse management strategy in Part IV of this thesis.
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9. Contributions of Part IV

This part is based on the article “ A longitudinal Machine Learning framework for lapse manage-
ment in life insurance ”, submitted in the Annals of Actuarial Science1. Part III of this thesis aimed to
introduce a PH-centred and profit-driven lapse management framework with temporal and survival
considerations. Part IV aims to take this framework one step further by adapting it to longitudinally
structured data and making it more dynamic. This work contributes to the fields of actuarial science,
management science, and business economics in several ways:

Contributions 5: New longitudinal LMS framework

Development of a new theoretical framework
The first contribution of this Part is the development of a new longitudinal Lapse Manage-

ment Strategy (LLMS) framework. This new approach enhances the existing lapse man-

agement strategies by incorporating time-informed insights into the analysis. By consid-

ering time-varying features and targets, the framework offers a more precise evaluation of

the stakes of targeting individuals, which is crucial for life insurers to improve their prof-

itability and understand the risks associated with their global portfolio. Importantly, this

framework highlights the value of utilising the complete past trajectory of policyholders,

an often overlooked approach.

Contributions 6: Use of longitudinal TBM in life insurance

Application of existing theories or methods in a new context
The second key contribution is the application of existing longitudinal tree-based models,

specifically left-truncated and right-censored (LTRC) trees and forests, and mixed-effect

tree-based regression models, in a life insurance context. Transposing these existing mod-

els into a new application context is a substantial contribution to actuarial science. By

applying these models to lapse management, the study enhances the precision of retention

targeting and profitability analysis. This innovative approach not only opens up new re-

search avenues but also optimises the use of data available to insurers, thereby potentially

sparking industry-wide advancements

1

See Valla 2023.
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10. Introduction to longitudinal
studies

We define longitudinal data as the data that are obtained from repeated observations of individ-

uals over time
1
. This data type is instrumental in creating more accurate and reliable predictive

models, as it provides a broader and more comprehensive perspective of the variables and their

dynamic relationships. In contrast, cross-sectional data, which is data collected from multiple

subjects at a single point in time, provides a snapshot view of the variables. While it can provide

valuable insights, it lacks the depth and temporal context that longitudinal data offers. Similarly,

time-series data, which tracks the evolution of aggregated numerical features over time misses

the individualised information available (see E. Frees and Miller 2004). In a longitudinal study,

individuals identified by a unique ID are observed at different time points where features are

repeatedly measured: there exist several observations per subject, but every observation is asso-

ciated with one and only one subject.

Remark 10.1

Three types of covariates emerge from a longitudinal study: baseline covariates (that are

non-varying by nature), exogenous longitudinal covariates (their future paths are not di-

rectly affected by the outcome
a
), and endogenous longitudinal covariates (their future paths

are affected by the outcome). As an example, when predicting the occurrence of a lapse for

a life insurance policy, the future values of the discount rate are not affected by the out-

come: the discount rate is an exogenous longitudinal covariate. Conversely, the outstanding

amount of the policy, for instance, is affected by the occurrence of a lapse: the outstanding

amount of the policy is an endogenous longitudinal covariate. It is critical to separate the

two, as the former is easily dealt with in most modelling approaches, whereas the latter

needs specific treatment (see Kalbfleisch and Prentice 2002, Section 6.3).

a
This distinction is also utterly relevant in a survival context, where the outcome of interest is the occur-

rence of an event.

In fields such as actuarial science, the importance of longitudinal data cannot be overstated.

For instance, it allows businesses to understand not just what is happening at a given point in

time, but also how their portfolio and marketing metrics evolve and interact over time. This

could include trends, seasonality, and the impact of specific events or interventions. Despite its

clear benefits, the actuarial literature is scarce on the use of longitudinal data for forecasting.

This is surprising, given that incorporating both cross-sectional and time-based information can

significantly enhance predictive accuracy. It provides a more holistic view of the underlying

1

see the complete description of Rizopoulos 2012
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patterns and trends, which can inform more effective and strategic decision-making. Moreover,

longitudinal studies play a pivotal role in tracking changes in individuals or groups over time.

These studies are particularly important in fields like social science, and medical research, as

they can help to understand the influence of various environmental and social factors on these

changes. For example, a longitudinal study could track a group of individuals’ health habits over

several years to determine the long-term impact of these habits on their health expenses. This

would not be possible with cross-sectional data, which would only provide a snapshot of the

individuals’ health and expenses at a specific point in time. The time-dynamic property is the

main distinguishing feature of longitudinal studies as it aims at modelling the evolution of the

response variable over time, which is why longitudinal methods are used to answer research

questions such as: is there a systematic change over time? Can we compare the trajectories

of different subjects for the same response variable? How does a change in a covariate affect

a change in the outcome? The longitudinal response can either be a discrete, continuous, or a

time-to-event outcome depending on the research question.

Remark 10.2

Even in the presence of a time-to-event outcome, the fact that subjects are being followed

up and covariates are being measured at different times makes the analysis longitudinal.

The nature of a study (survival and/or longitudinal) is determined by the nature of the

outcome of interest and by the structure of the dataset. Thus, studying a time-to-event

response with observations repeatedly measured over time falls under both longitudinal

and survival analyses.

While both cross-sectional and longitudinal data have their merits, the latter offers a more thor-

ough understanding of variables and their interrelationships over time. As such, the use of lon-

gitudinal data can significantly enhance the relevance, accuracy, and utility of predictive models,

providing valuable insights for informed decision-making (see Laird 2022). Actuarial science is

a field where research questions that require longitudinal methods are relatively common yet

rarely explored with non-parametric approaches. Existing works adopting a Machine Learn-

ing approach on subjects like insurance pricing (see Henckaerts, Côté, et al. 2021), telematics

(see Pesantez-Narvaez, Guillen, and Alcañiz 2019; Boucher and Turcotte 2020; Henckaerts and

Antonio 2022), asset-liability management (see Gu, Kelly, and Xiu 2020) and lapse or death pre-

diction (see Loisel, Piette, and Tsai 2021) already exist and would benefit from a time-varying

longitudinal framework. Feeding those models with dynamic policyholder’s information, con-

tact information, or financial flows
2
as - possibly time-varying - covariates is a potentially vast

source of information. Tree-based models are a suitable option for analysing longitudinal time-

dynamic actuarial data, and understanding how to take advantage of them could benefit the field.

As we already noted, it is naturally common in biomedical research to face regression or classifi-

cation problems involving time-varying covariates, time-to-event outcomes, correlated data, or

repeated discrete measurements of individual attributes over time. One can think of follow-up

studies of patients with a pathology where we can observe the evolution of the different biomark-

ers along with the evolution of the pathology. Yet, where longitudinal studies prevail in medical

research, it is still rarely tried in actuarial research.

2

e.g., the outstanding amount of a life insurance policy, payments, premiums, claims, fees, profit sharing, macro-

economic metrics, etc...
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Remark 10.3

An important distinction between biomedical and actuarial studies needs to be addressed.

When dealing with biomarkers, we can only observe a continuously evolving attribute at

discrete time points. Moreover, these discrete observations can be subject to measurement

errors and delays in the measurements. In actuarial science, the majority of the time-

varying attributes are financial flows that are truly evolving discretely and actuaries ob-

tain those evolutions without measurement errors (or extremely rarely) and with a precise

date of their occurrence. It is important to keep this distinction in mind as we progress

through this work: in most actuarial studies, a discrete longitudinal framework is not an

oversimplification of reality.

This is precisely the aim of this part of the thesis: gathering the different ideas in the existing

literature concerning the integration of time-varying covariates and longitudinal response into

tree-based models and bringing it to the actuarial literature. The rest of this part introduces

prerequisite knowledge about longitudinal analysis, then it chronologically retraces how the

non-survival or survival tree-based models deal with the presence of longitudinal data and time-

varying covariates. Eventually, it displays an article that proposes a longitudinal framework and

application for lapse behaviour analysis in life insurance.
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11. Longitudinal models

There are many examples of parametric approaches used to analyse longitudinal data. In this

chapter, we will not dive into the mathematical details of each approach but rather give insights

and references of two major modelling techniques, mixed-models, and the time-varying Cox

model, for regression and survival analysis respectively. Regarding non-parametric approaches,

Section 11.2 retraces the history of tree-based longitudinal analysis, whether in a survival context

or not.

11.1 (Semi)-parametric models

11.1.1 Mixed Models (MMs) and extensions

Mixed models, also known as mixed-effects or multilevel models, are statistical tools used to

analyse data with hierarchical structures or dependencies among observations. They combine

fixed effects (variables with consistent effects across all observations) and random effects (sources

of variation between subjects) within a single framework. They’re employed in research prob-

lems involving clustered data, longitudinal studies, and situations where accounting for both

individual-level and group-level variations is necessary for accurate analysis and inference. Be-

fore going any further, it is important to stress that Linear Mixed Models (LMMs) are simple but

very common in the literature in general but also in the actuarial field (see Antonio, Beirlant,

et al. 2006; Antonio and Beirlant 2008). The idea behind LMMs is to extend the classical linear

regression model to the cases where there is a dependence structure in the data. The presence

of longitudinal data is a clear example where different observations for a given subject are cor-

related. In that case, a classical linear regression - which makes the hypothesis of independence

between observations - would clearly yield unsatisfying results. LMMs assume a baseline be-

haviour common to every subject, but every individual deviates from it in a specific way. On

the one hand, the baseline behaviour is described by the fixed effects. On the other hand, the

individual deviations are described by the random effects. In the end, this models the effects of

the covariates among subjects and among observations within subjects. The random effects’

variance-covariance matrix accounts for the correlation structure of the observation. It can ei-

ther be set explicitly with assumptions (auto-regressive structure or compound symmetry), or it

can be left unspecified. Eventually, the random effects bi can be inferred once the model parame-

ters are estimated. LMMs may have explicit analytic estimators, whereas the more complex and

flexible Generalised Linear Mixed Models (GLMMs) require numerical likelihood optimisation.

11.1.2 Cox model and time-varying covariates

The Cox model can easily be extended to time-varying covariates as they can be directly in-

corporated into the hazard function (given by equation A.8). To be more precise, in light of

remark 10.1, this model can be easily extended to handle exogenous time-dependent covariates
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but not endogenous ones as it has been proven to lead to biased results (see Rizopoulos 2012). As

stated by L. Fisher and D. Lin 1999, this is one of the numerous limitations to this model and the

concrete application of a time-varying Cox model is challenging to handle and can easily lead

to erroneous inferences. We can refer to the works of Meyer 1990, L. Fisher and D. Lin 1999,

and Bover, Arellano, and Bentolila 2002, for results and concrete applications of such modelling

approaches.

A complete implementation of the Cox model, generalised to handle time-varying covariates,

time-varying effects, and more (competing risks, recurring events...), has been brought to the lit-

erature by Scheike andMartinussen 2006; Scheike andM. Zhang 2011 in the R packagetimereg.

Remark 11.1

Flexible models, not based on decision trees, such as Nelson-Aalen (see Nelson 1969; Nelson

1972; Aalen 1978) or Aalen-Johansson (see Aalen and Johansen 1978) allow for the study

of time-to-event outcome with right censorship, left truncation, and competing risks, and

could be considered as benchmark models in our applications. However, as they do not in-

clude covariates and do not allow to produce survival probabilities depending on individual

features, we chose not to. The Cox-Aalen model, obtained by replacing the baseline hazard

function of a Cox proportional hazard model with a covariate-dependent Aalen model (see

Boruvka and Cook 2014), allows for both fixed and dynamic covariate effects while keep-

ing Aalen models’ flexibility. As with other specifications of the Cox model, it can produce

biased results with endogenous time-varying covariates (see Rizopoulos 2012) and lead to

erroneous inference (see L. Fisher and D. Lin 1999).

11.2 Overview of TBMs in a longitudinal setting

The review focuses on techniques involving regression trees that would be trained on a dataset

with both time-varying covariates and fixed covariates and with a time-varying outcome. The

outcome of interest in longitudinal studies can be a continuous numerical outcome or a time-to-

event response. It is critical to stress that those types of responses are different. Estimating the

former with a TBM requires a classical regression approach and is direct as a tree will be built

by optimising a loss function directly depending on the outcome. The latter requires a survival

analysis method as it is usually carried out in the presence of censoring data and predicting such

response is indirect as a tree will be built by optimising a loss model depending on the survival

distributions of the subjects. We will discuss these differences later and will divide our overview

into several sections accordingly. Longitudinal models are compared on their performance for

statistical inference, their ability to provide predictions for any individual after her most recent

observation and to highlight the relevant covariates as well as the relevant time points. This

overview section aims to review the background literature about longitudinal analysis, focusing

on tree-based models, and will be organised into three subsections. In a dynamic longitudinal

framework, we will first see how tree-based models can handle regression problems, in a second

time, we will show how longitudinal TBMs adapt to a survival analysis context, eventually, we

will briefly mention the metrics that can be used to evaluate such models. The goal is mainly to

capture for each approach, what strategy or loss function is used, what prediction problems are

being solved, or what limitation still stands.
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11.2.1 Dynamic regression on a longitudinal outcome with tree-based models

Tree-based models were also used with longitudinal data, and we will keep our focus here on

single tree models even if it can be observed that some of them can be or have been extended

with bagging and boosting techniques. In this section, most models aim to predict a continu-

ous numerical response in the presence of covariates that can be time-varying depending on the

model.

The most naive model would be a static tree-based model (such as the ones described in Sec-

tion 4.2.1), trained on all observations in the dataset without taking the correlation between

observations of the same subject into account. As stated by Segal 1992a, this would simply ig-

nore the capital aspect of dealing with longitudinal data: The co-variation induced by making
several observations of some continuous response on the same unit, as occurs with repeated mea-
sures designs, cluster designs, and longitudinal studies, poses data analytic problems. Analysis of
such designs that ignore the covariance structure is known to produce incorrect variance estimates.

We found other attempts in the literature, based on the idea that every time-varying covariates

could be summarised by a small number of parameters. For instance, one could think of only

keeping the mean value of every longitudinal covariate - or similarly the median, the baseline

value, or the most recent one -ignoring all the remaining information. This obviously leads to a

loss of precious data. A similar idea is to regress every longitudinal covariate against time and

possibly other covariates within subjects to include the regression’s parameters -intercept and

slope - as baseline covariates. If the longitudinal covariates are all strongly linearly associated

with time, which is rarely the case in practice, this kind of alternative solution can be relevant. Of

course, that idea can be extended to more complex regressions, with the recent work of Kundu

and Harezlak 2019 that developed the concept of resuming information contained in the longi-

tudinal covariates by a combination of splits on baseline covariates and implemented it in the R

package LongCART. But the loss of information during the process stands. Moreover, the num-

ber of measurements per subject in real datasets can be too small to obtain satisfying regression

parameters.

Except that, Segal 1992a and De’Ath 2002 proposed independently the first applications that

clearly define an extension to the CART method that considers the correlation problem. Those

applications were designed to run a regression on data with fixed covariates and a longitudinal

outcome. They both suffered limitations as they were intended for cases where all the subjects

were measured at the same observation times, with the same interval between them. On the

one hand, Segal’s model for regression trees consisted of imputing a covariance structure in the

split procedure. This led to many theoretical and practical questions about the definition of that

covariance structure and the complexity of the computations. On the other hand, De’Ath 2002

procedure simply modified the CART algorithm by allowing it to train on multivariate data, con-

sidering a matrix containing all the observations for one subject as a single training example in

the tree. Allowing that was done by using the gain of MSE as a splitting criterion and replacing

the 1-dimensional mean in the MSE with a multidimensional mean modified with a covariance

structure; the prediction given by the tree would then be the multidimensional mean of the ob-

servations in the terminal nodes. In both cases, those methods can be seen as fitting a model to

the longitudinal outcome at every node as part of the splitting criterion. More recent works by

Larsen and Speckman 2004 and Hsiao and Shih 2007 followed and improved the idea of De’Ath

by redefining the node impurity measure with the Mahalanobis distance and estimating the co-

variance matrix from the whole data set.
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For a complete historical review, it is worth mentioning that other works extended the idea of

Segal 1992a, to binary responses and classification trees (see H. Zhang 1998), in a clustering con-

text using deviance as a goodness-of-fit criterion for partitioning (see Abdolell et al. 2002) and

then to every type of longitudinal response - not only continuous or binary - using generalised

estimating equations (GEE) (see Lee 2005; Lee et al. 2005; Lee 2006) in the splitting process. The

latter approach also extends an original idea developed by Chaudhuri et al. 1995 and can be seen

as fitting a GEE with a standard maximum likelihood at each node of the tree. Two groups are

formed depending on the sign of the model residuals at each node, the covariate selected to split

the node is the one with the largest absolute t-statistic - maximising the separation between the

child nodes- and the threshold at which the covariate is split is a weighted average of the covari-

ate means among the two groups.

Finally, other approaches such as Ritschard and Oris 2005 and more recently Moradian et al.

2021 applied trees to data with longitudinal covariates, the former with longitudinal covariates

and categorical response, the latter with longitudinal covariates and a time-to-event response by

using lagged response values as potential predictors, but still not treating either the outcome or

the covariates as inherently dynamic with time.

All of the methods previously cited, except the work of Moradian et al. 2021, cannot be used

to predict the future outcome trajectories of a subject. This is a significant limitation that results

from the fact that it would require observations from future periods to compute the means for

said periods. Lastly, none of these procedures can satisfyingly handle time-varying covariates -

this particular topic is discussed in a dedicated section in Segal’s work.

Sela and J.S. Simonoff 2012, Fu and J;S. Simonoff 2015 as well as Galimberti and Montanari 2002

describe a procedure to build regression trees through an iterative two-step process. This idea is a

direct extension of the two-step fitting procedures used for mixed-effect models first described by

Harville 1977, then developed by Laird andWare 1982, and later, G. Verbeke and G. Molenberghs

2000 with the Expectation-Maximisation (EM) algorithm. Hajjem, Bellavance, and Larocque

2011a; Sela and J.S. Simonoff 2012; Capitaine 2020; Capitaine, Genuer, and Thiébaut 2021 then

Hajjem, Bellavance, and Larocque 2014a; Fu and J.S. Simonoff 2015 - with their Random-Effects

Expectation-Maximisation tree (RE-EM tree) procedure - share the same core idea as Galimberti

and Montanari 2002 but differ from the latter on some key points. Their method consists of as-

suming amixedmodel for the longitudinal outcome, estimating the fixed effect parameters with a

tree-based model, and inferring the random effect parameters. They estimate the random effects

of a mixed model in the first step, then construct a regression tree with the fixed-effect covari-

ates on the original outcome excluding the estimated random effect. The idea is to repeat these

two steps until the convergence of the random effects, similarly to the two-step well-known EM

optimisation procedure. Details, along with a general pseudo algorithm for such mixed effect

tree-based models (METBM) can be found in Chapter 12.

Galimberti and Montanari’s method cannot yield predictions for subjects used to train it. This

critical limitation was clearly identified and addressed by Sela and Simonoff and then by Fu and

Simonoff, and their model allows predictions for new subjects and future observations of subjects

used in the training process. More importantly for our overview, they also allow the presence

of time-varying covariates. We can note that similarly to most of our references, observations

for a given subject can be spread across different leaves and branches of the tree. The predic-

tive power of some METBM was compared to linear mixed models and CART without random

effects. The original RE-EM based on CART outperformed both for large datasets and had com-
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parable results with linear mixed models for smaller ones. In contrast, the unbiased extension

seems to outperform linear mixed models and CART regardless of the dimensions of the dataset.

We will consider RE-EM and its extension state-of-the-art for numerical regression problems,

with time-varying covariates and a longitudinal outcome. This method has been implemented in

the R package REEMtree. In Mixed Effects Regression Trees (MERT, see Hajjem, Bellavance,

and Larocque 2011b), the tree-based model is a single regression tree, in Mixed Effects Random

Forest (MERF, see Hajjem, Bellavance, and Larocque 2014b), it is a random forest, whereas in

RE-EM (see Sela and J.S. Simonoff 2012; Fu and J;S. Simonoff 2015) it can be both. The very re-

cent works of Devaux (see Devaux 2022; Devaux, Genuer, and Peres 2022; Devaux, Helmer, et al.

2023; Devaux, Proust-Lima, and Genuer 2023) contribute to this mixed-effect tree-based model

framework by adding a stochastic term in the MM. Eventually, works such as Wei et al. 2020

combine mixed effects models with regression splines to better capture non-linear trajectories

among the longitudinal covariates.

Independently, Eo and Cho 2014 proposed a model called mixed-effects longitudinal tree (MELT)

and able to handle longitudinal response. The original idea is to fit a mixed-effect model at each

tree node. The sum of the squared difference between subject-specific slopes and the common

slope for all the subjects is then considered as an impurity measure for each node. The selected

split is the one that maximises the impurity gain, in other words, the difference between the

parent node’s impurity and the sum of the child nodes’ impurities. The algorithm, available in

the R package melt, can handle time-varying covariates. As in Segal 1992b, each time-varying

covariate is regressed against time, and then its regression parameters are considered as fixed

covariates. If time-varying covariates are categorical, they are transformed into binary covari-

ates, and the coefficients of a logistic regression are used. Even later, we found references to an

extension of RE-EM by Simonof 2016, which modified the regression tree built in the iteration

step of RE-EM by estimating a regression tree with a linear function of time (β0 + β1 × t) at
each node instead of a constant value. This results in a MODel-basEd RaNdom effects tree, or a

MODERN tree but no implementations of this algorithm exist, to the best of our knowledge.

11.2.2 Longitudinal survival analysis with tree-based models

Survival analysis methods with tree-based models have been detailed in Section 5. Indirectly

studying the time-to-event outcome through its hazard function is how the vast majority of

models handle the time-dependent outcome in survival analysis. We can now focus on how sur-

vival trees can handle time-varying covariates, the actual practical difficulty here.

Bacchetti and Segal 1995 and Huang, Chen, and Soong 1998 had the common idea to allow ev-

ery subject to be potentially divided into pseudo-subjects at each tree node. Let x
(i)
k (t) be a

numerical time-varying covariate. For a regression tree, the splitting rule at a node would then

be x
(i)
k (t) ≤ s1. A subject for which this rule is true ∀t will go to one child node without any

ambiguity. On the other hand, the general case where the rule is true for some periods but false

for anywhere else is unclear and needs to be addressed. The simple idea was that the periods

where the splitting rule is true would go to the left node and the other to the right node, thus

dividing one subject into several pseudo-subjects. This approach cleverly addresses the time-

handling issue but doesn’t answer the correlation problem between several observations of the

same subject - we could argue that it makes it worse by maintaining the correlation between

observations and adding correlation between pseudo-subjects - and creates left-truncated obser-

vations that need special treatment. Generally speaking, this process creates right-censored and

left-truncated (LTRC) data. Any subject can potentially be spread in many different leaves of the

1

or x
(i)
k (t) ∈ S for a categorical time-varying covariate
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tree - even if, at any fixed time, any subject will fall into one unique leaf. The time dynamic is

here considered horizontally within the tree structure.

This left-truncation issue was addressed by Bacchetti and Segal 1995 by modifying two-sample

tests - like the log-rank test - to handle left–truncated data. Huang, Chen, and Soong 1998’s

method for handling the LTRC pseudo-subjects observations assumes a splitting criterion de-

rived from the log-likelihood of a model, which presupposes for each subject that the survival

time distribution is piecewise exponential. Instead of using the classical log-rank statistic to split

every node of a survival tree, a modified log-rank statistic could be used. In 2016, Fu and J.S.

Simonoff 2016a proposed a model based on those ideas: they allowed subjects to be divided into

pseudo-subjects and adjusted the log-rank test in the splitting procedure to accommodate for

LTRC data. This last method has been implemented in the R package LTRCtrees. It has been
later included in an ensemble framework (see W; Yao et al. 2022) and we will consider it a state-

of-the-art method for tree-based survival analysis with time-varying covariates.

Bou-Hamad 2009 presented a discrete-time survival tree-based procedure able to account for

potentially time-varying effects of fixed covariates, meaning that the covariates are fixed but can

have different effects depending on time. That can be very insightful in terms of interpretability

as this allows us to analyse what attributes most influence survival and at which time points.

They then generalised this approach to time-varying covariates (see Bou-Hamad, Larocque, and

Ben-Ameur 2011) again using the pseudo-subject division idea already discussed. As with most

of the survival tree algorithms in the literature (see Section 5), the splitting criteria in the previ-

ously described methods are not based on minimising a loss function but on the maximisation of

a survival dissimilarity measure. Each split hence separates the subjects with different survival

profiles.

It is also worth mentioning that earlier experimental work by Breiman 2002 on survival trees

grown used a splitting criterion in which nodes can split either on time or covariates, giving

insights into the time-varying effects of the covariates on survival and on the time points at

which those effects are the most influential. To the best of our knowledge, no further publica-

tions, implementations or developments following this idea were tried after that. Similarly and

independently, Xu and Adak 2001; Xu and Adak 2002 also proposed a method where a tree is

grown only to find relevant time points in the data. In this work, they were able to detect at

what period the effect of covariates on the outcomes is stronger, thus allowing their model to

have time-varying effects but not to handle longitudinal covariates. The model then fits a piece-

wise Cox model on time intervals found by the tree procedure. This last approach highlights the

need for methods able to analyse relevant time points in the data.

More recently, Kundu and Harezlak 2019 extended the idea of resuming information contained

in the longitudinal covariates by a combination of splits on baseline covariates, and J. Lin, Li,

and Luo 2021a uses a set of scores for every longitudinal covariate and then grows a tree on

those scores. Those complex approaches can be related to the naive strategies we mentioned at

the beginning of this section but are way more sophisticated and enlightened. We already dis-

cussed Kundu and Harezlak 2019’s work in the previous section but it is worth mentioning that

it was adapted to survival analysis with theSurvCART algorithm in the R packageLongCART.

Lastly, recent works on this topic have to be mentioned. RSF, described in Section 5.1.3, is a

TBM designed for survival analysis and was originally unable to handle longitudinal data. It was

then extended to competing risks (see Ishwaran et al. 2014) and very recently to handle longi-
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tudinal covariates (see Wongvibulsin, Wu, and Zeger 2020; J. Lin, Li, and Luo 2021b; J. Lin, Li,

and Luo 2021a; Moradian et al. 2021; Pickett, Suresh, and Campbell 2021). This extension of RSF

(see J. Lin, Li, and Luo 2021b; J. Lin, Li, and Luo 2021a, in particular) is based on summarising

all longitudinal covariates trajectories, for every subject, with univariate scores that can then

be used as baseline covariates by a regular RSF. As seen in other methods, those scores aim to

characterise the changing pattern of the time-varying covariates, and they can yield individual

future survival predictions. This method has been implemented in the R package funest. The
goal of Moradian et al. 2021’s procedure is to estimate the hazard of a subject at some future time

points u for u = t+ 1, t+ 2, . . . , T until a horizon T . Moradian here performs dynamic predic-

tion by calibrating a hazard function on every combination of observation time and prediction

time (t, u) by using lagged response values as potential predictors. This is closely related to the

approach of Pickett, Suresh, and Campbell 2021, where RSF is adapted to landmark procedure,

thus allowing dynamic prediction at given and presupposed horizon times.

All the tree-based models handling time-varying covariates described in this Chapter either ig-

nore the intrinsic time-dynamic dimension of the data or treat it with the pseudo-subject ap-

proach. Further notations and mathematical insights of such models, especially LTRCtrees
and its extensions are further detailed in Chapter 12. Alternatives to the pseudo-subject approach

are discussed in Chapter 14.

11.2.3 Metrics

Models built for longitudinal analysis require a slightly different set of evaluation metrics than

those used for cross-sectional analysis. The fundamental reason for this is the time-dependent

nature of longitudinal data, which introduces auto-correlation and potential non-stationarity

into the data. This can violate the assumption of independence typically made in cross-sectional

models (see Singer and Willett 2003).

Therefore, metrics that can handle these temporal dependencies are necessary for non-survival

longitudinal analysis. One can think of time-series cross-validation (see Hyndman and Athana-

sopoulos 2018 and Section 4.1.2), or the mean absolute scaled error (MASE) (see Hyndman and

Koehler 2006). In MM or random effects models for regression, individual differences or trajec-

tories over time are modelled via random effects. In this case, the cross-sectional metrics (see

Section 4.1.2) can be used without further modifications.

In survival longitudinal analysis, however, very recent works were developed to adapt usual sur-

vival evaluationmetrics to the longitudinal dynamic context. Modifications of the Brier-Score are

detailed inW; Yao et al. 2022. We also use, justify, and detail the formulas for the time-dependent

Brier-Score (td-BS) in Chapter 12. To be exhaustive in regards to the metrics introduced in Sec-

tion 5.2, we refer the astute reader to the adaptations of the C-index (see Hartman et al. 2023)

and the AUC (see Lambert and Chevret 2016; van Geloven et al. 2021).
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12. A longitudinal ML framework for
lapsemanagement in life insurance

Abstract. Developing an informed lapse management strategy (LMS) is critical for life insurers to
improve their profitability, and gain insight into the risk of their global portfolio. When designing
a retention campaign, prior research in actuarial science (see Loisel, Piette, and Tsai 2021; Valla,
Milhaud, and Olympio 2023) has shown that targeting policyholders by maximising their individual
Customer Lifetime Value is more advantageous and informative for the insurer than targeting all
those who are likely to lapse. However, most existing lapse analyses do not take advantage of the fact
that features and targets may vary over time. We propose to define a longitudinal LMS framework,
that provides time-informed insights and leads to increased precision in targeting. The strengths and
flaws of this new methodology are discussed in various settings. This paper contributes to the field of
lapse analysis for life insurers and highlights the importance of using the complete past trajectory of
policyholders, which is often available in insurers’ information systems but has yet to be exploited.

Key words: Lapse management strategy, longitudinal, Machine learning, life insurance, Customer
lifetime value

12.1 Introduction

In this article, we present a novel methodology developed to address the retention challenges

faced by life insurers in a French insurance portfolio consisting of equity-linked whole-life in-

surance policies (see Hardy 2003 for an extensive review on such insurance products). Whole-

life insurance provides coverage for the entire lifetime of the insured individual, rather than a

specified term and when contracting such an insurance plan, policyholders can choose how the

outstanding face amount of their policy is invested between “euro funds” and unit-linked funds.

Understanding the fundamental differences between these investment vehicles is essential to

comprehending the dynamics of the whole-life insurance market. For savings invested in euro

funds, the coverage amount is determined by deducting the policy costs from the total premiums

paid, the financial risk associated with these funds is borne by the insurance company itself. The

underlying assets of euro funds primarily consist of government and corporate bonds, limiting

the potential returns, thus the performance of these funds is directly influenced by factors such

as the composition of the euro fund, fluctuations in government bond yields, and the insurance

company’s profit distribution policy. Additionally, early termination of the policy by the policy-

holder incurs exit penalties, as determined by the insurance company. In contrast, unit-linked

insurance plans operate under a different framework. The coverage amount is determined by

the number of units of accounts held by the policyholder, and the financial risk is assumed by

the policyholders themselves. Unit-linked funds offer a wide range of underlying assets, among

all types of financial instruments, enabling potentially unlimited performance based on the mar-

ket performance of these assets. The investment strategy is tailored to the specific investment
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objectives of the policyholder and while certain limitations exist in terms of asset selection, pol-

icyholders generally face no exit penalties for their underlying investments.

Lapse is a critical risk for whole-life insurance products (see Bacinello 2005 or MacKay et al.

2017), thus, policyholders represent a critical asset for life insurers. Therefore, the ability to

retain profitable ones is a significant determinant of the insurer’s portfolio value (and more gen-

erally a firm’s value, see Gupta, Lehmann, and Stuart 2004). If some historical explanations for

lapse are liquidity needs (see Outreville 1990) and rise of interest rates, it also appears that indi-

vidual characteristics are also insightful (see Eling and Kochanski 2013 for a complete review).

Consequently, policyholder retention is a strategic imperative, and lapse prediction models are a

crucial tool for data-driven policyholder lapse management strategy in any company operating

in a contractual setting such as a life insurer. We build an extension of the framework of Valla,

Milhaud, and Olympio 2023, that defines an LMS as follows:

Definition 2 (Lapsemanagement strategy (LMS)). A lapsemanagement strategy for a life
insurer is modelled by offering an incentive η = (η(1), ..., η(N)) to policyholders (1, ...N).
Their policies, at time t, yield a profitability ratio of pt = (p

(1)
t , ..., p

(N)
t ). The incentive

is accepted with probability γ = (γ(1), ..., γ(N)), and contacting the targeted policyholder
has a fixed cost c. A targeted subject who accepts the incentive, or any subject that will
be predicted as a non-lapser, will be permanently considered as an “acceptant” who will
never intend to lapse in the future, and her probability of being active at year t ∈ [0, T ]
is denoted racceptant(t). Conversely, a subject who refuses the incentive and prefers to lapse
will be permanently considered as a “lapser”, and her probability of being active at year t
is denoted rlapser(t). The parameters (p,η,γ, c, T ) uniquely define a lapse management
strategy, while racceptant(t) and rlapser(t) need to be estimated from the portfolio.

Our goal is not only to model the lapse behaviour but also to select which policyholder to

target with a given retention strategy to generate an optimised profit for the insurer. Such a lapse

management strategy requires estimating what can be considered as the future profit generated

by a given policyholder: the individual customer lifetime value or CLV (see Donkers, P. Verhoef,

and Jong 2007). The individual CLV over horizon T , for the i-th subject aims at capturing the

expected profit or loss that will be generated in the next T years and is expressed as follows, in

the general time-continuous case:

CLV (i) =

∫ T

τ=0

p(i)(τ) · F (i)(τ) · r(i)(τ)
ed(τ)·τ

dτ, (12.1)

with the profitability ratio p(i)(t) being represented as a proportion of the face amount, F (i)(t),
observed at time t. The conditional individual retention probability, r(i)(t), is the i-th observa-

tion’s probability of still being active at time t. In practice, the individualCLV is often discretised

and computed as a sum of annual flows, thus with τ , the time in years,

CLV (i)
(
p(i),F (i), r(i),d, T

)
=

T∑
τ=0

p
(i)
τ · F (i)(τ) · r(i)(τ)

(1 + dτ )
τ . (12.2)

Equation 12.2 is primarily used in the marketing and actuarial literature (see Berger and Nasr

1998 or Loisel, Piette, and Tsai 2021). If we only consider the future T years of CLV, after time
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t, the sum becomes

FCLV (i)
(
t,p(i),F (i), r(i),d, T

)
=

T+t∑
τ=t+1

p
(i)
τ · F (i)τ · r(i)(τ)
(1 + dτ )

τ−t . (12.3)

All the expected future financial flows are discounted, with dt representing the annual dis-

count rate at year t. In definitive, FCLV (i)(t, ...) represents the future T years of profit following

observation at time t.

Given an LMS, a policyholder can either be likely to accept the offer of an incentive and be-

have with an “acceptant” risk profile or she can be likely to reject the offer and thus behave with

a “lapser” risk profile. In this context, acceptants and lapsers will not generate the same CLV as

their respective retention probabilities differ. The CLV of an acceptant or a lapser are estimated

using respectively r
(i)
acceptant and r

(i)
lapser as retention probabilities. The first way we contribute

to this framework is by assuming that individuals with an active policy do not behave with risk

profiles that are either “100% acceptant or “100% lapsers, which was a simplifying assumption in

the existing LMS frameworks. We assume here that each policyholder generates a future life-

time value calculated as a weighted mean of CLVs computed with “acceptant” and “lapser” risk
profiles. The individual weights used to nuance behaviours are discussed in Section 12.2.1.

The analysis of a lapse management strategy, as described in Loisel, Piette, and Tsai 2021, then in

Valla, Milhaud, and Olympio 2023, is a two-step framework. The first step consists of using the

insurer’s data to train survival models and predict yearly retention probabilities for any subject

in the portfolio: we will refer to it as the survival step. The retention probabilities are used to

compute an individual CLV-based estimation of the profit generated from targeting any policy-

holder. This estimation is eventually used as a response variable to fit a model predicting which

kind of subject is likely to generate profit for the insurer: we will refer to it as the regression
step. As in Ascarza et al. 2018 or Guelman, Montserrat, and Pérez-Marín 2012, the goal of such

a CLV-based methodology is not only to model the lapse behaviour but rather to select which

policyholder is worth targeting with a given retention strategy in order to generate an optimised

profit for the insurer. This existing framework relies on the analysis of the time-to-death and

time-to-lapse that can be updated regularly with new information from the policies. It is sum-

marised in Figure 12.1.

At least three limitations of that framework can be addressed. Firstly, it does not consider that

an acceptant can lapse in the future, which is at best a very optimistic assumption, and at worst

a great oversimplification. Secondly, it does not give any information on whether the timing of

the retention campaign is optimal or not. Thirdly, it does not allow tightening the criteria on

which the targeting of each policyholder is decided, depending on the risk the insurer is willing

to take on the uncertainty of the predictions. This work addresses these limitations.

Throughout the lifetime of such insurance policies, a series of significant time-dependent events

shape the interactions between policyholders and insurers. Firstly, premium payments play a

pivotal role in sustaining the policy: these payments are highly flexible, allowing policyholders

to choose their amount and frequency, thus they can be adjusted according to the policyholder’s

financial circumstances and preferences. Additionally, policyholders may decide to reduce their

coverage by withdrawing a portion of their policy. We refer to these events as partial lapses: they

involve a voluntary decrease in the face amount of the policy, enabling policyholders to adjust

their coverage to better align with their changing needs. Such flexibility caters to policyholders’

evolving financial situations and offers them greater control over their insurance plans. Over the

policy’s lifetime, other financial operations can occur, such as the payment of interest or profit

sharing to the policyholder, and the payment of fees to the insurer. Insurance companies’ infor-
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Figure 12.1: General framework for lapse management strategy

mation systems are usually designed to keep track of those operations at the policy level, thus

actuaries and life insurers often have access to the complete history of their policyholders as the

information system is updated in real-time.

In certain instances, a policyholder may choose to lapse their insurance policy entirely. Complete

policy lapse typically occurs when the policyholder decides to terminate her policy and receives

a surrender value, which represents the accumulated value of the premiums paid, adjusted for

fees, expenses, and potential surrender charges. Moreover, the occurrence of a policyholder’s

death also terminates the policy and triggers the payment of the policy’s value, often referred to

as the death benefit or claim, to the designated beneficiaries.

In the context of our research, a policy can only terminate with a complete lapse or the death

of the policyholder, which will be considered as competing risks in the following developments.

If none of these events has happened to a policy, it is still active. The cumulated sum of all the

financial flows occurring during one’s policy timeline, including premiums, claims, fees, inter-

ests, profit-sharing, and lapses, is commonly known as the face amount of the policy. This face

amount represents the total value of the policy over its duration and serves as a measure of the

policy’s coverage and financial benefits. By comprehensively understanding and analysing these

events and their impact on the face amount of a life insurance policy, insurers can effectively de-

velop lapse management strategies that align with policyholders’ preferences and financial goals.

Through our research, we aim to shed light on these dynamics and provide insights to optimise
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Figure 12.2: Example of policyholders timelines

the design of such strategies, ultimately enhancing customer retention and overall portfolio per-

formance in the life insurance industry.

In practice, actuaries often have access to the complete trajectories of every policy and it seems

that not using them in models is ignoring a significant part of the available information. A data

structure where time-varying covariates are measured at different time points is called longitu-

dinal and individual policyholders’ timelines can be illustrated as in Figure 12.2. The dynamical

aspects of covariates have an impact on the performance of lapse prediction models and Risse-

lada, P.C. Verhoef, and Bijmolt 2010 concludes in favour of the development of dynamic churn

models. They showed how the predictive performance of different types of churn prediction

models in the insurance market decays quickly over time: this conclusion arguably applies to

life insurers and in the case of lapse management strategy, we argue that using the complete lon-

gitudinal trajectories of every individual is also justified. Firstly, a change in financial behaviour

- recent and frequent withdrawals for instance - can be an informative lapse predictors. As an

illustration of this point, we can imagine making predictions for two individuals with the exact

same characteristics at the time of study but completely different past longitudinal trajectories:

one is consistently paying premiums for instance, whereas the other stopped all payments for

months and has been withdrawing part of her face amount lately. A prediction model ignoring

longitudinal information would produce the exact same lapse prediction for both individuals.

Conversely, an appropriate model, trained on longitudinal data is likely to seize the differences

between the individuals over time and provide different predictions for the future. Secondly, a

longitudinal lapse management framework allows for dynamic predictions with new informa-

tion. It proves to be insightful in terms of decision-making for the insurer, as it shows how a

change in the policy induces a change in the lapse behaviour. Eventually, existing lapse manage-

ment strategy approaches can only provide the insurer with information on whether targeting a

given individual now is expected to yield profit, not on whether the timing of targeting is opti-

mal. A longitudinal framework can help answer that last question.

In this paper, we want to account for the time-varying aspect of this problem in both steps of that

framework. Firstly, we want to take advantage of the information contained in the historical data

from the portfolio and obtain more accurate predictions for r(i) and thus FCLV (i)
: that is a gain

of precision on the survival step. Secondly, we want to evaluate the expected individual retention

gains over time to derive the optimal timing to offer the incentive: that is a gain of flexibility and

expected profit on the regression step. For that purpose, we introduce tree-based models which

are, to the best of our knowledge, yet to be explored in the actuarial literature. Those models,
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such as left-truncated and right-censored (LTRC) survival trees and LTRC forests by Fu and J.S.

Simonoff 2016b andW. Yao et al. 2020, or mixed-effect tree-based regression models (see Sela and

J.S. Simonoff 2012, Hajjem, Bellavance, and Larocque 2014b, Fu and J;S. Simonoff 2015, Capitaine,

Genuer, and Thiébaut 2021) are considered state-of-the-art and have yet to be exploited in the

actuarial literature. We propose an application of that framework with data-driven tree-based

models but other types of models exist and could fit in this framework (see Appendix C.1)

This extension is not trivial, as time-dependent features and time-dependent response variables

are difficult to implement in parametric or tree-based models. Indeed, conventional statistical or

machine learning models do not readily accommodate time-varying features. This is the case for

most tree-based models as they assume that records are independently distributed. Of course,

this is unrealistic as observations of any given individual are highly correlated. Moreover, time-

varying features can generate bias if not dealt with carefully (see L. D. Fisher and D. Y. Lin 1999

for instance). The use of longitudinal data is already a well-studied topic (see G. Molenberghs

and G. Verbeke 2006), with rare examples within the actuarial literature (see E. W. Frees et al.

2021 for instance) and, to the best of our knowledge, only a few actuarial uses of time-varying

survival trees or mixed-effect tree-based models have been tried or suggested (see Dal Pont 2020,

Campo and Antonio 2022 or Moradian et al. 2022) and no longitudinal lapse analysis framework

based on CLV has been described.

In summary, this work presents a longitudinal lapse analysis framework with time-varying co-

variates and target variables. This framework accommodates for competing risks and relies on

tree-based machine learning models. This work focuses on a lapse management strategy and

retention targeting for life insurers and extends the existing lapse management framework pro-

posed in Loisel, Piette, and Tsai 2021 and Valla, Milhaud, and Olympio 2023. It defers from the

latter by taking advantage of time-varying features, introducing different tree-based models to

the lapse management literature, including the possibility for an acceptant to lapse in the future,

yielding insights regarding individual targeting times, and adding the possibility to adjust the

level of risk which the insurer is willing to take in a retention campaign. The rest of this paper is

structured as follows. We describe the specifics of longitudinal analysis and a new longitudinal

and time-dynamic lapse management framework which is the main contribution of this work in

Section 12.2. This section also includes a brief description of models that can fit in this frame-

work. In Section 12.3, we show a concrete application of our framework on a real-world life

insurance portfolio with a discussion of our methodology and results. Eventually, Section 12.4

concludes this paper.

12.2 Longitudinal framework

12.2.1 Preliminaries on time-varying covariates and longitudinal notations

Weaim to enrich the existing lapsemanagement frameworks (see Definition 2) with time-varying

covariates. To do so, we decide to adapt LMS methods to longitudinal analysis. In order to be

perfectly clear on what we mean by time-varying covariates or longitudinal data, let us introduce
some notations. This section borrows notations from the existing literature including Rizopou-

los 2012 or W; Yao et al. 2022 for instance. Let us assume a very general setting where we want

to build a dataset D, encompassing the information of N individuals from which features are

repeatedly measured over time. These covariates may come in many forms, some of them are

time-varying, and others are time-invariant. We denote ptv , pti the number of covariates in those

respective categories, with p = ptv+pti, the total number of covariates. At time t, the covariates
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matrix is X(t) = (x1, x2, . . . , xpti , xpti+1(t), . . . , xp(t)). In order to simplify the notations, we

write X(t) = (x1(t), x2(t), . . . , xp(t)) with xk(t) = xk, ∀t and ∀k ∈ [1, . . . , pti].

These covariates are available for the N individuals, or subjects, which are observed at discrete

time points. Subject i has been observed n(i) times, at t
(i)
j , j = 0, 1, . . . , n(i) − 1. In our life in-

surance context, t
(i)
0 represents the first measurement of the covariates, i.e the subscription and

times t
(i)
j , j = 1, 2, . . . , n(i) − 1 are the movement dates, i.e times at which a change in the policy

has been recorded. If t
(i)
0 ̸= 0, this means that the baseline information at subscription is missing

and the observation is left-truncated. A given subject i, at time t
(i)
j has a vector of covariates

denoted x
(i)
j =

(
x
(i)
j,1, . . . , x

(i)
j,p

)
and generally, has a matrix of covariates denoted

X(i) =


x
(i)
0,1 · · · x

(i)
0,p

.

.

.

.
.
.

.

.

.

x
(i)

n(i)−1,1
· · · x

(i)

n(i)−1,p

 (12.4)

As stated in Definition 2, the probability of still having an active policy at time t depends on the

policyholder’s risk profile. Acceptants are only at risk for death whereas lapsers are at risk for

both lapse and death and we consider as the event of interest respectively death and the end of

the policy (whatever the cause). Regardless of our outcome of interest, we study the time to an

event ending the policy, thus we use the classical survival notations: subject i will eventually
experience the event at time T

(i)
∗ and she is no longer observed after censoring time C(i)

. We let

T (i)
denote the observed event time for subject i, defined as T (i) = t

(i)

n(i) = min
(
T
(i)
∗ , C(i)

)
.

The notations regarding the time dynamics of our data are now clear, so we can structure this

information in a longitudinal dataset. In order to do so, we assume that the time-varying features

take constant values between two consecutive observations, that is,

x(i)(t) = x
(i)
j , t ∈

[
t
(i)
j , t

(i)
j+1

)
, j = 0, 1, . . . , n(i) − 1.

This assumption is perfectly consistent in an actuarial context where time-varying covariates

such as financial flows are immediately updated. Any covariate update leads to a new observa-

tion and all variables are in fact constant between two consecutive observations. The only limit

of this assumption is that updating the insurer’s database usually takes some time and it proves

to be unrealistic if a policy change has been reported but not yet processed in the information

system.

An insurance policy at any time point is either active or ended. Moreover, it can only end in

two ways: the policyholder either lapses her policy or dies. Thus we define three event indica-

tors. ∆(i)
is the event indicator, defined at the subject level, it denotes whether individual (i) has

experienced an event (and which one) before censoring time,

∆(i) =


0 if T

(i)
∗ > C(i)

1 if T
(i)
∗ ≤ C(i)

and EVENT = lapse

2 if T
(i)
∗ ≤ C(i)

and EVENT = death.

(12.5)

We also introduce δ(i)(t), the event indicator defined at the observation level, it denotes whether

individual (i) has experienced an event (and which one) by time t:

δ(i)(t) = ∆(i) · I
{
t ≥ T (i)

}
. (12.6)
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At the time t = T
(i)
∗ , the true event has occurred and we define the ultimate event indicator as

∆
(i)
∗ =

{
1 if EVENT = lapse at time T

(i)
∗

2 if EVENT = death at time T
(i)
∗ .

(12.7)

It is constant over the observations for a given subject and represents the final value of∆(i)
when

the subject’s policy eventually ends. It can be either equal to 1 or 2. For a subject with an active

policy at the censoring time, the value of∆
(i)
∗ is unknown.

Eventually, let X (i)(t) denote the covariate individual information up to time t, and we define

π
(i)
∗ as the probability that the policy will eventually end with lapse, given all available informa-

tion at observation time T (i)
. Mathematically speaking, we have

π
(i)
∗ = P (∆

(i)
∗ = 1|X (i)(T (i))). (12.8)

We can now build D, a longitudinal dataset encompassing the complete past information of all

N subjects. For a given subject i, covariates are stored in rows, one row per observation window

[t
(i)
j , t

(i)
j+1). Each row contains the unique

(
t
(i)
j , t

(i)
j+1, δ

(i)(t
(i)
j ),x

(i)
j

)
element and is completed

by the subject unique identifier i and her event indicator∆(i)
: each row is called an observation.

It is critical to include all those elements in the longitudinal dataset as all columns are inputs of

longitudinal models used for the survival step.

Any observation only corresponds to one subject and conversely, any subject can be linked

to a set of n(i) observations. We build D as the collection of all observations structured longitu-

dinally :

D =

{(
i,
{
t
(i)
j , t

(i)
j+1,x

(i)
j , δ(i)(t

(i)
j )
}n(i)−1

j=0
,∆(i)

)}N

i=1

,

or, if displayed in a table:

Table 12.1: A longitudinal dataset, in all generality

ID Time window Start Time window End Covariate 1 ... Covariate p Observation event indicator Subject event indicator

1 t
(1)
0 t

(1)
1 x

(1)
0,1 ... x

(1)
0,p δ(1)(t

(1)
0 ) ∆1

1 t
(1)
1 t

(1)
2 x

(1)
1,1 ... x

(1)
1,p δ(1)(t

(1)
1 ) ∆1

1 t
(1)
2 t

(1)
3 x

(1)
2,1 ... x

(1)
2,p δ(1)(t

(1)
2 ) ∆1

1 t
(1)
3 C(1) x

(1)
3,1 ... x

(1)
3,p δ(1)(t

(1)
3 ) ∆1

2 t
(2)
0 t

(2)
1 x

(2)
0,1 ... x

(2)
0,p δ(2)(t

(2)
0 ) ∆2

3 t
(3)
0 t

(3)
1 x

(3)
0,1 ... x

(3)
0,p δ(3)(t

(3)
0 ) ∆3

3 t
(3)
1 t

(3)
2 x

(3)
1,1 ... x

(3)
1,p δ(3)(t

(3)
1 ) ∆3

3 t
(3)
2 t

(3)
3 x

(3)
2,1 ... x

(3)
2,p δ(3)(t

(3)
2 ) ∆3

. . . . . . . . . . . . . . . . . . . . . . . .
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Table 12.1 precisely illustrates what we call a longitudinal dataset, and a real-world example

of such a dataset can be found in Section 12.3, Table 12.3. Adapting a lapse management strategy

framework to a longitudinal setting means we take such a dataset as input and produce enriched

predictions of the individual retention probabilities in the survival step, but also of individual

profit or loss estimated in the regression step.

As in Section 8.2 and for confidentiality reasons, the exact specificities of the studied products as

well as the proportions between “Euro fund” and equity-linked investments made by the policy-

holders will not be detailed, nor their impact be analysed within this thesis.

12.2.2 LMS longitudinal framework

Weadopt Valla, Milhaud, andOlympio 2023’s framework and suggest somemodifications and im-

provements to accommodate for longitudinally structured data. Instead of a top-down approach

that consists of estimating the individual contributions to the insurer’s profit from a global mea-

sure of the portfolio value, we suggest a bottom-up approach and directly evaluate the former

and then derive the latter. Thus, we define the control future value of the policy,
FCV (i)(t, . . . ),

which represents the expected T -year individual profit or loss generated by subject i, after time t:

FCV (i)(t,p,η,γ, c, T ) = FCLV (i)
(
t,p(i),F (i), r

(i)
acceptant

,d, T
)
· (1− π(i)∗ )

+ FCLV (i)
(
t,p(i),F (i), r

(i)
lapser

,d, T
)
· π(i)∗ .

(12.9)

In other words, it simply represents an individual expected future CLV, if no lapse manage-

ment is carried out. It highly depends on the probability for the policyholder to be a lapser.

Let us consider an LMS, let⊚(i)(t) be the individual target vector indicator, designating if subject
i is to be targeted at any time t. Our framework aims to find the optimal list of policyholders to

target, T (t) = {i | ⊚(i)(t) = 1} that maximises the expected profit for the insurer. In order to

evaluate the profit or loss generated by an LMS, we must compare the expected profit obtained

if no LMS was applied, with the expected profit generated by the lapse-managed portfolio. The

former is given by Equation 12.9 and to obtain the latter, we define the lapse managed observa-

tion future value as

FLMV (i)(t,p,η,γ, c, T ) =[
FCLV (i)

(
t,p(i),F (i),r

(i)
acceptant

,d,T
)
·(1−π

(i)
∗ )+FCLV (i)

(
t,p(i),F (i),r

(i)
lapser

,d,T
)
·π(i)

∗

]
·(1−⊚(i)(t))

+

[
FCLV (i)

(
t,p(i)−η(i),F (i),r

(i)
acceptant

,d,T
)

·(1−π
(i)
∗ )+γ(i)· FCLV (i)

(
t,p(i)−η(i),F (i),r

(i)
acceptant

,d,T
)

·π(i)
∗

+(1−γ(i))· FCLV (i)
(
t,p(i),F (i),r

(i)
lapser

,d,T
)

·π(i)
∗ −c

]
·⊚(i)(t).

(12.10)

In simple terms, it is equal to the control future value of the policy (given by Equation 12.9) when

subject i is not targeted, otherwise, it depends on whether she intended to lapse in the first

place and if so, if she accepts the incentive η. If a policyholder that would not have lapsed

(with probability (1 − π
(i)
∗ )) is targeted, she will rationally accept the incentive and gener-

ate the future CLV of an acceptant with profitability p− η . Conversely, for a policyholder that

would have ultimately lapsed, she either accepts the incentive (with probability γ(i)) and gen-

erates the future CLV of an acceptant with profitability p− η , or she refuses (with probability
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(1− γ(i))) and generates profitability p with the risk profile of a lapser .

It follows that the individual expected retention gain obtained by applying an LMS is the dif-

ference between the expected individual CLVs with and without lapse management:

RG(i)(t,p,η,γ, c, T ) = FLMV(i)(t,p(i),η(i),γ(i), c, T )− FCV (i)(t,p(i),η(i),γ(i), c, T ).
(12.11)

that can be simplified as

RG(i)(t,p,η,γ, c, T ) =⊚(i) (t)·

[
π
(i)
∗ γ(i)

[
FCLV (i)

(
t,p(i) − η(i),F (i), r

(i)
acceptant

,d, T
)

− FCLV (i)
(
t,p(i),F (i), r

(i)
lapser

,d, T
) ]

− (1− π(i)∗ ) · FCLV (i)
(
t,η(i),Fi, racceptant ,d, T

)]
− c ·⊚(i)(t).

(12.12)

An evaluation metric is finally derived to obtain the retention gain, at any observation time, if

the policyholder i is targeted. We define z(i)(t) as

z(i)(t) = RG(i)(t,p,η,γ, c, T |⊚(i) (t) = 1)

=

[
π
(i)
∗ γ(i)

[
FCLV (i)

(
t,p(i) − η(i),F (i), r

(i)
acceptant

,d, T
)

− FCLV (i)
(
t,p(i),F (i), r

(i)
lapser

,d, T
) ]

− (1− π(i)∗ ) · FCLV (i)
(
t,η(i),F (i), r

(i)
acceptant

,d, T
) ]
− c.

(12.13)

In terms of intuition, it shows that if a policyholder that would have lapsed (with probability

π
(i)
∗ ) is targeted and accepts the incentive (with probability γ(i)), she generates the future CLV of

an acceptant with profitability p− η instead of her initial future CLV with profitability p and

the risk profile of a lapser . The gain generated by targeting this policyholder is then the differ-

ence between the two. On the other hand, if the policyholder is wrongfully targeted and would

not have lapsed (with probability (1− π(i)∗ )), she rationally accepts the incentive which is then l-

ost for the insurer . In any case, the contact cost of c is spent.

From a practical point of view, we can see that the value of z(i)(t) depends on parameters that

are observed in the portfolio (F (i)
), or assumed by the insurer (p(i),η(i),d, T ), and that only

r
(i)
acceptant

and r
(i)
lapser

need to be estimated. This estimation is the survival step mentioned in Sec-

tion 12.1. We will show in Section 12.3.2 how to concretely estimate these retention probabilities

using time-varying covariates.

Assuming that z(i)
has been estimated for every observation in the survival step, we can move

forward to the regression step and use z(i)
as a target variable in a regression model handling

time-varying covariates to predict whether targeting any policyholder will generate profit, given

her previous observations if any. We will show in Section 12.3.3 how to concretely obtain ẑ(i)
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with mixed-effect tree-based models.

With that in mind, we can update Definition 2 and define our LLMS as follows:

Definition 3 (Longitudinal lapse management strategy (LLMS)). A T -years lapse man-
agement strategy is modelled by offering an incentive η(i) to subject i if she is targeted. The
incentive offered is expressed as a percentage of her face amount at the observation time and
is accepted with probability γ(i). Contacting the targeted policyholder has a fixed cost of
c. Relying on previous implementations of this framework, a targeted subject who accepts
the incentive would be considered an “acceptant” who should theoretically never lapse (and
thus is only at risk for death), and her probability of being active at year t ∈ [0, T ], given
the information available until then, is denoted r(i)acceptant(t | X (i)(t)). Conversely, a subject
who refuses the incentive and prefers to lapse (and thus is at risk for death and lapse) would
be considered a “lapser”, and her probability of being active at year t, given the information
available until then, is denoted r(i)lapser(t | X

(i)(t)). This article assumes that all PH are not
100% lapsers nor 100% acceptants but rather that their true risk profiles lie in between. Thus,
the future profit or loss generated by any policyholder is computed as a weighted sum of
CLVs, respectively calculated with the risk profiles of an “acceptant” and a “lapser”.

Those probabilities are used to derive a dynamical profit-driven measure z(i)(t) based on
CLV (see Equation 12.13). A regression model, allowing for longitudinal data is then used
with z(i)(t) as a target variable, which allows us to estimate ẑ(i)(t) for any new observa-
tions (new observations of known subjects or observations of new subjects). Denoting the
standard error of such a model σz and any confidence parameter α, we define the optimal
longitudinal LMS at time t as

⊚(i)
∗ (t) = I

{
ẑ(i)(t) > α · σz

}
. (12.14)

This is an indicator variable representing whether it is worth targeting policyholder i at
time t, thus, the corresponding list of targeted policyholders is defined as

T (t) =
{
i | ⊚(i)

∗ (t) = 1
}
. (12.15)

For any targeted policyholder and any confidence parameter α desired by the insurer, there
is a unique future time t(i)∗ ≥ T (i) when offering the incentive is optimal, which yields a
maximal profit of ẑ(i)∗ . If all policyholders in T (t) are targeted at time t, the LLMS generates
a profit of

RG(t,p,η,γ, c, T, α) =
∑

i∈T (t)

ẑ(i)(t). (12.16)

If all policyholders are targeted at the optimal time t(i)∗ ≥ t, the LLMS induces a gain for
the life insurer of

∗
RG (t,p,η,γ, c, T, α) =

∑
i∈T (t)

ẑ
(i)
∗(

1 + d
t
(i)
∗

)∆t
, with ∆t = t

(i)
∗ − t. (12.17)

The addition of a confidence parameter α contrasts with previous approaches (see Loisel, Piette,
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and Tsai 2021; Valla, Milhaud, and Olympio 2023). Settingα = 0means that the prediction ẑ(i)(t)
is trusted with 100% confidence by the insurer, whereas letting α take higher values ensures that

ẑ(i)(t) is positive with a given confidence interval. Another novelty here is the time dynamic

of those results. Not only can we predict whether it is worth targeting a given policyholder,

but we can also predict whether there will be some point in the future when targeting her will

be more profitable. Predicting the trajectory of z(i)(t) at future time points requires projecting

the time-varying covariates at those future time points. It can be done by either modelling such

covariates individually or setting assumptions. It is trivial for covariates such as age or year

but more complex for stochastic covariates such as the face amount. This framework does not

aim to answer this question, and we assume in our application that stochastic covariates remain

constant and equal to their last observed value. Regardless of the assumptions, the framework

allows adding a time dimension to the LMS optimisation and marketing decision-making. It is

also worth noting that our developed framework is consistent in the time-invariant case. By de-

sign, it is also fully applicable with uncensored observations, or left-truncated ones. That shows

our two-step framework’s broad effectiveness and applicability regardless of right-censorship,

left-truncation, risk factor, time-varying covariates, or time-varying effects. In that sense, it is a

generalised framework for lapse management strategy in life insurance.

Remark 12.1

Following the proposed longitudinal methodology, a dynamic targeting decision process is

obtained. Nevertheless, no information about the future trajectories of longitudinal covari-

ates can be deduced directly from the framework. Indirectly, one could establish clusters

of individuals based on their lapse behaviour and assume that a policyholder in one cluster

will behave as the other policyholders in the cluster who have been observed longer. That

specific approach is out of the scope of this thesis and will be left as future work.

The proposed framework requires the projection of every term in the future with assump-

tions and/or specific modelling approaches: periodical payments and profit sharing can be

assumed to remain unchanged, while spontaneous payments, partial lapses, or up-sells and

cross-sells can be either ignored or modelled.

Eventually, a projection of every longitudinal covariate along with the response variable

could be considered with the use of joint modelling techniques (see Rizopoulos 2012 for

further details), but again, such considerations lie far beyond the scope of this work.

12.3 Application

12.3.1 Data

Our framework is inspired by a real-world life insurance dataset used in Valla, Milhaud, and

Olympio 2023 (Chapter 8). It initially contains the most recent information from 248 737 unique

policies contracted between 1997 and 2018 and 235 076 unique policyholders. A single row orig-

inally represented a unique pair policy/policyholder, identified by a unique ID and denoted as a

subject. Due to great computation times, we restrain our application on a 10,000-subjects subset

of this original dataset, but the astute reader will find more information about the complete one

in the original article. The 10,000 rows dataset containing the last available information for the

10,000 selected subjects will be denoted Dlast
, here is a subset for illustrative purposes:

Here, we were able to retrieve the longitudinal history of every subject present in Dlast
: this

128



Table 12.2: Dlast
random subset

ID EVENT PRODUCT SEX SENIORITY Fi CLAIM CNTRCTS AGE YEAR

25737 1 1 1 17 0,73 0 2 76 2015

117322 1 1 2 10 4,32 0 1 63 2012

1322 0 1 2 20 9,82 0 1 75 2019

37433 2 1 2 14 0,99 -50,49 1 88 2011

23902 0 1 1 20 32,66 -13,12 2 71 2019

219281 0 2 2 8 7,08 0 2 71 2019

160112 0 1 2 15 0,04 0 1 51 2019

53108 2 1 2 12 13,11 -661.92 1 92 2010

166078 1 2 2 5 9,02 0 1 64 2013

139644 0 1 1 16 5,65 -107,59 1 66 2019

means that for every policy and policyholder, we observe every payment, lapse, fee, profit shar-

ing or discount rate from the policy subscription to the most updated information to date along

with baseline covariates such as gender or age at subscription. For operational reasons, the lon-

gitudinal data are measured and reported yearly and organised as follows
1
:

Table 12.3: Dlong
random subset

ID EVENT START END PRODUCT SEX SENIORITY Fi CLAIM CNTRCTS AGE YEAR

46784 0 0 1 3 2 0 8,38 0 1 66 2013

46784 0 1 2 3 2 1 8,40 0 1 67 2014

46784 0 2 3 3 2 2 8,57 0 1 68 2015

46784 0 3 4 3 2 3 11,90 0 1 69 2016

46784 0 4 5 3 2 4 12,10 0 1 70 2017

46784 0 5 6 3 2 5 12,28 0 1 71 2018

46784 1 6 7 3 2 7 15,06 -15,06 1 72 2019

7825 0 0 1 2 2 0 3,02 0 1 81 2016

7825 0 1 2 2 2 1 3,05 0 1 82 2017

7825 0 2 3 2 2 2 3,10 0 1 83 2018

7825 0 3 5 2 2 5 3,15 0 1 84 2019

264309 0 0 1 3 2 0 2,61 0 1 66 2016

264309 0 1 2 3 2 1 2,64 0 1 67 2017

264309 0 2 3 3 2 2 2,67 0 1 68 2018

264309 0 3 5 3 2 5 3,48 0 1 69 2019

Moreover, all the covariates describing financial flows are observed as cumulated over the years.

As an example, let us assume that a subject subscribed in the year 2000: her payment variable

for the year 2000 observation contains the sum of all payments that occurred in that year, her

payment variable for the year 2001 contains the sum of all payments that occurred up to the year

2001 included (hence 2000 and 2001), and so on for the years after. This longitudinal dataset will

be denoted Dlong
. It contains 126,865 observations, in other words, almost 13 for each subject.

For privacy reasons, all the data, statistics, product names, and perimeters presented in this pa-

per have been either anonymised or modified. All analyses, discussions, and conclusions remain

unchanged.

12.3.2 Application: survival step

Survival analysis with time-varying covariates

The survival step, described in Section 12.2 requires survival tree-based models that can handle

longitudinal time-varying covariates. Most survival tree-based models are analogous to regular

1

But it is worth mentioning that covariates in actuarial datasets are usually updated continuously. In that case,

we could build a continuous longitudinal dataset with one observation per policy change, and not one per year. The

framework detailed here still applies in the continuous case.
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tree-based models: survival trees work similarly to regular decision trees, creating partitions of

the covariate space. What differentiates them is the splitting criterion that splits by maximising

the difference between two considered child nodes. Typically, at each node and for each split

considered, a log-rank test is used to test the null hypothesis that there is no difference between

the child nodes in the probability of an event at any time. The split that minimises the p-value

is then selected. By extension, a random survival forest is a random forest of survival trees.

As regression and classification trees, most survival trees are unable to deal with time-varying

and longitudinal covariates. Indeed, let x1(t) be a numerical time-varying covariate. For a single

tree, the splitting rule should be able to split subjects into two child nodes at each node. It would

then be a rule of the form “x1 ≤ s”. A subject for which this rule is true ∀t will go in one child

node without any ambiguity. On the other hand, the general case where the rule is true for some

periods but false for anywhere else is unclear and needs to be addressed. Note that the same

reasoning can be applied to categorical time-varying covariates as well. A simple idea is that the

subject’s observations in periods where the splitting rule is true would go to the left node, and the

other would go to the right node, thus dividing one subject into several pseudo-subjects. With a

longitudinal dataset, that method just implies considering all rows as independent which creates

correlated right-censored and left-truncated (LTRC) observations that need special treatment. In

such models, any individual can be spread in many different tree leaves - even if, at any fixed

time, any individual will have a single observation that will fall into one unique leaf. Fu and J.S.

Simonoff 2016a proposed a model based on those ideas: they allowed subjects to be divided into

pseudo-subjects and adjusted the log-rank test in the splitting procedure to accommodate for left

truncation and ensure that the independence implicit assumption does not lead to biased results
2
.

LTRC trees and forests yield an estimate of the survival function:

Ŝ
(
t | X (i)(t)

)
= P (T (i) > t | X (i)(t)),

that can directly be used to evaluate the conditional incidence functions for competing risks

(see Appendix A.1.1). Bagging models of such trees then emerged (see W. Yao et al. 2020), with

the usual prediction advantages and interpretability drawbacks of such bagging techniques
3
. In

order to evaluate the survival models’ performance, we chose to use the time-dependent Brier

score (td-BS), integrated Brier score (td-IBS), Brier skill score (td-BSS) and integrated Brier skill

score (td-IBSS) for longitudinal data (as in W. Yao et al. 2020). More details about these metrics

can be found in Appendix 5.2.1.

Comparison settings

We propose here a comparison framework to measure the benefits of including the historical

data in Dlong
, compared to using Dlast

. The matrices rlapser and racceptant are estimated with

the algorithms LTRCRRF and LTRCCIF from the R package LTRCforests
4
. In order to assess

the advantages of that longitudinal model, we compare its results with those obtained with the

gradient boosting survival Model (GBSM) as it proved to be a high-performing non-longitudinal

model on that dataset (See Valla, Milhaud, and Olympio 2023). With T (i)
, the “any event” time

2

See Fu and J.S. Simonoff 2016a for details on that point.

3

Bothmethods have been implemented in the R packagesLTRCtrees andLTRCforests, and are considered
state-of-the-art methods for tree-based survival analysis with time-varying covariates.

4

In the following sections, we consider LTRCRRF and LTRCCIF: LTRC forests respectively based on regular CART

and conditional inference survival tree algorithms. More insights about those models can be found in the references

detailed in Section 12.3.2
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for subject i (that is the censoring time for active policies and the termination time, whatever the

cause, for all others), rlapser and racceptant are estimated from the respective survival functions

Ŝlapser

(
t | X (i)(t)

)
= P (T (i) > t | X (i)(t)),

Ŝacceptant

(
t | X (i)(t)

)
= P (T (i) > t,EVENT = death | X (i)(t)),

with observations that ended with lapse considered as censored in the estimation of Ŝacceptant.

We want to compare the performance of all models trained with and without longitudinal data

but also compare them on different tasks. Typically, predictions onDlast
andDlong

do not answer

the same questions. The former aims at predicting the last observation of the target variable, and

the latter aims at predicting its value at any given point in time. Depending onwhether themodel

has been trained on longitudinal data or only on the most recent observation and with different

prediction goals, this naturally designs four settings that answer four prediction problems:

(a) Models are trained on Dlast
train and evaluated on predictions from Dlast

test

(b) Models are trained on Dlong
train and evaluated on predictions from Dlast

test

(c) Models are trained on Dlast
train and evaluated on predictions from Dlong

test

(d) Models are trained on Dlong
train and evaluated on predictions from Dlong

test

Setting (a) is the classical setting, where any subject has only one measurement, and the predic-

tion task is also to predict a variable at one given time point. Conversely, setting (d) represents

the longitudinal setting, where models are trained with longitudinal time-varying covariates and

where the prediction task aims at retrieving the value of a target variable at any given time point

during a subject’s lifetime. Setting (c) is not insightful as a model trained on aggregated data can-

not retrieve longitudinal information and is expected to perform poorly by design. Intermediate

setting (b) is also insightful as it can be used to highlight the added value of the information con-

tained in longitudinal data when training a model. The comparison is made on a time-varying

survival evaluation metric: the time-dependent Brier Skill Score (td-BSS) for longitudinal data

(see Appendix 5.2.1).

Results

First of all, in order to assess the superiority of longitudinal models in a longitudinal context, we

need to compare all our considered models in the classical aggregated setting: with training and

testing phases on subsets of Dlast
. We can see that in this non-longitudinal setting, GBSM and

LTRC models (LTRCRRF and LTRCCIF) are close in terms of BSS. Figure 12.3 displays the td-BSS

on the y-axis, for which a value of 0means that the score for the predictions is merely as good as

that of a naive prediction
5
and a value of 1 is the best score possible. BSSs are computed for every

time point, meaning that we can observe and compare the performance of models on estimating

retention probabilities for low-seniority policies or high-seniority ones independently.

5

in our application, the empirical estimate of the survival function has been chosen as the naive prediction.
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td-BSS for racceptant td-BSS for rlapser

Figure 12.3: td-BSS (y-axis), as a function of seniority (x-axis) of models trained on Dlast
train and

tested on Dlast
test

The IBSS, the mean of BSSs over all time points (see Appendix 5.2.1), indicates that LTRCRRF

performs slightly better than LTRCCIF, hence we will drop LTRCCIF for the rest of this appli-

cation. In real-world scenarios, the inherent complexity of the true survival distribution might

include time-varying covariates and time-varying effects. The cross-validated Brier scores and

Brier Score Skills graphs can potentially lead decision makers to choose different survival esti-

mations at different time points and not a unique choice of method for all time points.

By contrast, the difference between those models is evident and significant whenever they are

trained on longitudinal data. The graphs below show the difference in terms of BSS over time in

prediction settings (b) and (d):

racceptant rlapser

Figure 12.4: td-BSS (y-axis), as a function of seniority (x-axis) of models trained on Dlong
train and

tested on Dlast
test - Setting (b)

The conclusion regarding prediction richness contained in longitudinal data and accuracy ben-

efits from using dedicated longitudinal methods is clear. Longitudinal models perform signifi-

cantly better, and GBSM brings minor improvement over naive models.

In the end, we select LTRCRRF for estimating the retention probabilities in the survival step as it
shows to be the best model when trained on longitudinal data.

It is to be noted that the results of that modelling approach in terms of global retention gain

(Equation 12.16) are not necessarily better than the results obtained without the use of longitu-

dinal data in the estimation of rlapser and racceptant. In other words, a better performance of the

model used in the survival step does not lead to an increase in the insurer’s expected profit, for a

given LMS but to a more realistic estimation of it as they model the CLV more accurately.

With that, we determine rlapser and racceptant, the conditional retention probabilities for every
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racceptant rlapser

Figure 12.5: td-BSS (y-axis), as a function of seniority (x-axis) for models trained on Dlong
train and

tested on Dlong
test - Setting (d)

observation to derive the trajectory of the observed individual CLV, RG, and eventually z(i)(t)
(see Equation 12.13). The latter can then be used as a longitudinal target variable in a regression

model: this constitutes the regression step, introduced in Section 12.1 and detailed within this

application in the next Section.

Another advantage of using longitudinal data for survival analysis is that it helps study how

a given subject’s retention probabilities are updated with time. We take the example of a ran-

domly selected subject and plot her retention probability at every observation time: The further

racceptant (y-axis), as a function of seniority (x-
axis)

rlapser (y-axis), as a function of seniority (x-
axis)

Figure 12.6: Longitudinally updated retention trajectories for a random subject

in time the observation is, themore pellucid the survival curve is. The individual retention curves

are updated as new measurements are available.

12.3.3 Application: regression step

Regression analysis with time-varying covariates

The regression step of the framework introduced in Section 12.2.2 requires using a regression

model allowing for longitudinal data to produce an estimate of z(i)(t). We chose to use mixed-

effect tree-based models (METBM). First of all, a mixed-effect model is designed to work on

clustered data in general, including longitudinal data (see Geert Verbeke, GeertMolenberghs, and

Geert Verbeke 1997). Sela and J.S. Simonoff 2012, Capitaine, Genuer, and Thiébaut 2021, Fu and

J;S. Simonoff 2015 andHajjem, Bellavance, and Larocque 2014b describe a procedure to fit amixed
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effect model using tree-based models through an iterative two-step process
6
. Mixed effect tree-

based algorithms are designed to take clustered data as input. By considering subjects as clusters,

they can grasp the dependence structure within the different observations of a single subject and

can be used for longitudinal analysis (see Geert Verbeke, Geert Molenberghs, and Geert Verbeke

1997). The underlying idea behindmixed effect tree-based algorithms is to assume amixedmodel

for the longitudinal outcome and estimate the random effect parameters with a tree-based model.

Such approaches estimate the random effects of amixedmodel in the first step, and then construct

a regression tree with the fixed-effect covariates on the original outcome, excluding the estimated

random effect. The idea is to repeat these two steps: themodel parameters and the random effects

are estimated iteratively until convergence, similar to the two-step well-known EM optimisation

procedure. Suppose that we have pf covariates with a fixed effect and ps covariates with a

random effect. Initially, a parametric linear mixed-effect model is given by

z(i) = F (i)⊤β + S(i)⊤b(i) + ϵ(i). (12.18)

where z(i)
is the n(i) × 1 longitudinal vector outcome of subject i, β is the pf × 1 vector of

the fixed effect coefficients and F (i)
is the n(i) × pf design matrix of the covariates with a fixed

effect. The quantity b(i) is the ps × 1 vector of random effects and S(i)
is the n(i) × ps design

matrix of the covariates with a subject-specific effect. By construction, F (i)
and S(i)

are subdi-

visions of the covariate space. The error term ϵ(i) is the n(i) × 1 vector of residuals, assumed to

come from a normal distribution with mean 0 and variance σ2, and we assume b(i) ∼ N (0, D),
ϵ(i) ∼ N (0, σ2 · In(i)). Eventually, D is the ps × ps variance-covariance matrix for the random

effects.

In order to model a longitudinal outcome with non-linear fixed effects, a tree-based model is

included in Equation 12.18, as follows:

z(i) = f(F (i)) + S(i)⊤b(i) + ϵ(i). (12.19)

Here the linear structure of the fixed effect part of the model is generalised: the fixed effects are

described by a function of the fixed-effect covariates f , which is the part that a tree-based model

will estimate. In MERT (see Hajjem, Bellavance, and Larocque 2011b), the tree-based model is

a single regression tree, in MERF (see Hajjem, Bellavance, and Larocque 2014b), it is a random

forest, whereas in RE-EM (see Sela and J.S. Simonoff 2012; Fu and J;S. Simonoff 2015) it can be

both. A general algorithm for such mixed-effect tree-based models can be described as follows:

For further details about all these elements - and notably, the update formulas for σ̂(i)
2

, D̂(i)

andGLL - we refer the astute reader to the work of Hajjem, Bellavance, and Larocque 2014b (see

Section 2 for details on how the between-subject standard error can be estimated from aMETBM).

Once fit, themixed-effect tree-basedmodel can be used to predict the vector ẑ(i)
, the longitudinal

predicted trajectory of an LMS-induced profit for any subject. For subjects with past observations

included in the training dataset, the prediction includes the random effect correction:

ẑ(i) = f̂(F (i)) + S(i)⊤b̂(i).

For a new subject, with a first observation in the testing set, the mixed-effect prediction only

includes the fixed effect:

ẑ(i) = f̂(F (i)).

Moreover, as such models are not informative about the dynamics of the longitudinal covariates,

making predictions with them at given times imposes that we know the value of the longitudinal

6

The algorithms corresponding to their respective work are available in the R packages REEMtree and

LongituRF, the R function “REEMctree” and the Python library MERF.
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Algorithm 7 Mixed effect tree-based model pseudo-code

1: Input: D, a longitudinal dataset with an outcome z(i)
, ∀i ∈ [1 . . . N ]

2: Output: ẑ(i)
, f̂ , b̂(i), ϵ̂(i), σ̂(i)

2

, D̂(i)
, ∀i ∈ [1 . . . N ]

3:

4: Initialise: b̂← 0, σ̂2 ← 1, D̂ ← Ips
5: while GLL < some convergence threshold do
6: 1. z(i) ← z(i) − S(i)⊤bi
7: 2. Fit a tree-based model on z(i)

and obtain f̂
8: 3. Infer the updated random effects parameters b̂(i)

9: 4. Compute ϵ̂(i) = z(i) − f̂(F (i))− S(i)⊤b̂(i)

10: 5. Update σ̂(i)
2

and D̂(i)

11: 6. Update GLL, the generalised log-likelihood criterion used to control for convergence

12: end while

covariates at those times. This implies that to compute future values of z(i)(t), future unknown
values of the longitudinal covariates are needed. In other words, no predictions for any subject

are made beyond that subject’s last observation time value unless we assume future values of

the longitudinal covariates. This reduces the practical usefulness of the model, as it requires

assumptions about the future path of longitudinal covariates. Concretely, predicting the future

profit or loss generated by any PH requires assumptions regarding future payments and partial

lapses, thus necessitating either over-simplifying hypothesis (no spontaneous payments, no par-

tial lapses) or complex sub-models for the evolution of those financial flows. This significant

limitation could be addressed by using models that jointly predict the future path of longitudinal

covariates along the response (see Rizopoulos 2012 for instance).

Results

This section contains the results of the regression step of our framework. In order to model

whether a policyholder is worth targeting or not, we fit a mixed-effect tree-based regression

model to our longitudinal dataset with z(i)
, the vector of n(i) observations as a longitudinal

target variable for every subject i. As z(i)
can take any real value, the mean squared error (MSE)

in the tree-based part of the mixed-effect model is to be preferred. For a given LLMS, the survival

step allows us to compute z(i)
, the longitudinal variable representing the expected trajectory of

the profits or losses generated by subject i. Then, by estimating z(i)
on various LLMS with a

mixed effect tree-based model, we can hope to find an optimal retention strategy in the sense that

it will maximise the expected gain for the life insurer. For this application, we assume parameters

p, η, γ, and d to be constant over all policyholders and over time and we fit a mixed effect random

forest (MERF). We suggest testing five LLMS:

• one that is obviously an extremely bad strategy and would lead to a loss for the insurer, if

applied to a large number of subjects (LLMS n°1)

• one that is unrealistically good, with a small incentive largely accepted and would lead to

a sure profit for the insurer (LLMS n°2)

• three realistic strategies, with various degrees of aggressivity (LLMS n°3, 4 and 5)

We train our targeting mixed-effect random forest model on all observations and their respec-

tive retention probabilities up to 2020 and test it on all subjects with an observation in 2021. We

can note that in 2021, there are predictions on subjects with past observations before 2021 but
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also predictions on new subjects not included in the training set. Overall, the testing set contains

“only” 4,472 unique policyholders, hence the order of magnitude of the retention gains presented

below. We also chose a very conservative risk parameter, that greatly reduces the number of sub-

jects targeted.

Here are the five strategies, and the corresponding expected profit or loss
7
they induce:

Table 12.4: Various LMS results with our framework

LMS n° p η γ c d T RG # targets campaign investment

1 1% 1% 90% 200 2.00% 10 0 0 0

2 5% 0.01% 80% 5 2.00% 20 134,347.54 141 705

3 3% 0.009% 40% 15 1.50% 20 3,112.03 98 1470

4 2.5% 0.005% 15% 10 1.50% 20 2,940.51 94 940

5 3% 0.001% 5% 5 1.50% 20 2,962.68 122 610

Evidently, the main feature proposed by this framework is that it allows the decision maker to

choose the best LLMS among realistic ones. In our application, we immediately see that in terms

of profit for the insurer, strategy n°3 is optimal, compared to LLMS n°4 and 5. On the other

hand, other factors, such as the number of policyholders to target or the cost of the campaign,

are also displayed. they can prove to be critical elements of decisions in a real-world context,

as some life insurers could have a limited commercial workforce or investment budget. For in-

stance, an insurer that can only contact up to 95 policyholders this year would choose LLMS

n°4, and another that would be limited by a 1,000€ budget for retention would choose LLMS n°5.

Moreover, the bad LMS n°1 demonstrates that this framework allows us to detect whenever a

strategy should not be carried out. In that case, the conclusion of the targeting step is not to

target any policyholder, thus limiting the insurer’s loss to 0, which is arguably a desirable fea-

ture. Finally, the unrealistically good LLMS n°2 shows that this framework cannot detect a “too

good to be true” strategy with an unrealistic pair of parameters (η, γ). This emphasises the fact

that taking this interdependency into account directly in the framework should prevent such

unrealistic scenarios and avoid the life insurer the task of selecting in advance a consistent set of

LLMS parameters. Another novelty in this framework is the longitudinal structure of the results.

Indeed, we can easily retrieve the expected individual loss or profit at any future time. For exam-

ple, here is a plot of the expected profits generated by targeting randomly selected policyholders:

Most policyholders have a ẑ(i)
with a decreasing future trajectory. It makes sense as time is

positively correlated with one’s policy probability to end: the more the insurer waits to offer an

incentive to a subject, the less profitable it becomes. Usually, if a policyholder does not generate

profit by being targeted now, it is even less relevant to target her later in time. For specific pro-

files, the lapse risk grows faster than the death risk. It can then become more profitable to offer

an incentive as the lapse risk increases if the death risk is insignificant.

In any case, we show graphically that depending on the level of risk α that the insurer consents

to take, the time at which it is optimal to apply an LLMS to a given policyholder changes. The

longitudinal trajectory being estimated with a linear model, the framework as it stands should

7

As defined in Definition 3
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Figure 12.7: Projections of targeted profits over time

not be used to evaluate the time when offering an incentive is optimal. It rather yields infor-

mation about individual tendencies and answers strategical questions: is it profitable to target

a given policyholder now? If not now, is it likely to become profitable in the future? And if it

is, should the insurer decide quickly or can it wait? The individual intercepts and slopes of the

future estimations of ẑ(i)
answer those questions.

This example of a time-dynamic application shows that including longitudinal data in a lapse

management strategy can benefit a life insurer in terms of prediction accuracy and decision-

making.

12.4 Conclusion, limitations and future work

In conclusion, this paper presents a novel longitudinal lapse management framework that is

tailored specifically for life insurers. The framework enhances the targeting stage of retention

campaigns by selectively applying it to policyholders who are likely to generate long-term prof-

its for the life insurer. Our key contribution is the adaptation of existing methodologies to a

longitudinal setting through the use of tree-based models. The results of our application demon-

strate the advantages of approaching lapse management in a longitudinal context. The use of

longitudinally structured data significantly improves the precision of the models in predicting

lapse behaviour, estimating customer lifetime value, and evaluating individual retention gains.

The implementation of mixed-effect random forests enables the production of time-varying pre-

dictions that are highly relevant for decision-making. The framework is designed to prevent the

application of loss-inducing strategies and allows the life insurer to select the most profitable

LMS, under constraints.

However, our work has several limitations that must be acknowledged:

Firstly regarding the framework: the longitudinal lapse management strategy is defined with

fixed incentive, probability of acceptance and cost of contact, regardless of the time in the fu-

ture. Moreover, the γ parameter is constant for a given policyholder, but it could be seen as

the realisation of a random variable following a chosen distribution. Those points may restrict

the framework’s practical effectiveness. Moreover, we did not account for the interdependence
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between different LLMS parameters, which could lead to the implementation of unrealistic strate-

gies. Additionally, the introduction of the confidence parameter α could be discussed further as

it could be linked with actuarial risk measures such as the Value-at-Risk. Eventually, the article

describes a discrete-time longitudinal methodology, but in general, the insurer has access to the

precise dates of any policy’s financial flows. Thus, a continuous-time framework could also be

implemented.

Secondly regarding the application: a lot of assumptions have been formulated in the appli-

cation we propose such as constant parameters where the framework allows them to vary across

time and policyholders, or the use of MERF where more complex and completely non-linear

models could be tried. It is also important to acknowledge that the longitudinal dataset used

for the application does not contain any macroeconomic longitudinal covariate. The inclusion

of such exogenous time-varying features would allow the merging of the economic-centred and

micro-oriented literature detailed in Section 2.2.2, and will be deferred as future research.

Finally regarding longitudinal tree-based models: the use of LTRC and MERF requires the

management of time-varying covariates with the pseudo-subject approach, which has practical

limitations and prevents the longitudinal data from being predicted alongside the target vari-

able. Future works could address the latter remark using joint models (see Appendix C.1 for

references).

The limitations of the general framework should be discussed and tackled in forthcoming re-

search. Other use-cases and applications, with sensitivity analysis over various sets of param-

eters, models and datasets could constitute an engaging following work. Pseudo-subjects limi-

tations are inherent in the current design of longitudinal tree-based models. Future work will

involve developing innovative algorithms to address these issues. Overall, this article opens the

field of lapse behaviour analysis to longitudinal models, and our framework has the potential to

improve retention campaigns and increase long-term profitability for a life insurer.

In Part IV, we aimed to introduce a longitudinal lapse management framework to the actuarial

literature and display a concrete application of several longitudinal tree-based models to lapse

behaviour analysis. The idea was to improve on the application of Part III and go one step further

into temporal dynamics considerations.

In this chapter, we have critically examined the literature about tree-based models for longi-

tudinal analysis, particularly those with time-varying covariates. We have outlined why and

how actuarial sciences can leverage these methods. Our literature review is bifurcated based

on whether the response variable is time-to-event or not. From this comprehensive review, we

presented a selection of models which we consider state-of-the-art. We posited that actuarial

challenges can be addressed through such tree-based models. For survival analysis, we consider

LTRC-like models to be state-of-the-art approaches in the presence of longitudinal survival data.

For regression purposes, the best models in the literature proved to be mixed-effect tree-based

models (METBM). Both algorithms were detailed in this chapter and included within the lapse

management framework introduced in Part III. The results of the application illustrate the bene-

fits of approaching lapse management in a longitudinal context, as it significantly enhances the

precision of the models when predicting lapse behaviour, estimating customer lifetime value, and

evaluating individual retention gains. METBMs have been implemented to produce time-varying

predictions that are of high relevance for decision-making. The framework aims to prevent loss-

inducing strategies and enables the insurer to select the most profitable LMS under constraints.

This framework as well as the application does still have certain limitations as it is subject to a

lot of practical assumptions. Moreover, longitudinal tree-based models in general are not always
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very interpretable and clear visualisations of the temporal insights they yield would be of high

interest to decision-makers in an insurance company. As we move forward, we must be mindful

of the importance of interpretability and visualisation in actuarial studies.
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13. Contributions of Part V

This part is based on the article “ Time-penalised trees (TpT): a new tree-based data mining algo-
rithm for time-varying covariates ”, submitted in the Annals of Mathematics and Artificial Intelli-
gence1. This work contributes to the fields of machine learning, data mining, and actuarial science
by introducing a new tree-based algorithm handling time-varying covariates and using it in a life
insurance clustering application. In the scope of this thesis, Part V points out the potential drawbacks
of the state-of-the-art longitudinal TBM and proposes a new approach with an innovative design.
The main contributions of Part III and IV reside in the applicative methodology they detail whereas
Part V mainly contributes to the data mining field by designing a novel algorithm that can detect
relevant time points. This last idea is capital: some behaviours will have a different influence on
the outcome, depending on when they have been measured. TpT can be used to tell when a change
in the outcome is more likely to happen, or when a covariate is highly influencing the outcome. A
list of various contributions found in this Part are listed below:

Contributions 7: Gaps within the longitudinal TBM literature

Identification of gaps in the existing literature and proposing solutions
Firstly, Part V identifies gaps in the existing literature about longitudinal tree-based models

and proposes solutions to address these gaps. This critical evaluation enhances the under-

standing of the current limitations in the field, which can lead to undesired properties of the

models in dynamic environments. We argue that existing methods like the pseudo-subject

approach - discussed in more detail in Chapter 14 - are not entirely satisfying in terms of

design and interpretability.

Contributions 8: Introduction of TpT

Development of a new theoretical model
Secondly, the article introduces a new theoretical model named “Time-penalised Tree”

(TpT). This new decision tree algorithm accounts for time-varying covariates in the decision-

making process, distinguishing it from existing longitudinal tree-based algorithms by util-

ising a different structure and a time-penalised splitting criterion. It enables recursive parti-

tioning of both the covariates space and time. We detail this algorithm and demonstrate its

application for life insurance through real data mining and visualisation examples. This in-

novative approach allows for a more interpretable analysis in settings where the covariates

are subject to change over time, expanding its potential applications in various fields.

1

See Valla 2023a.
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14. Time-penalised trees: a new tree-
based datamining algorithm for time-
varying covariates

Abstract. This article proposes a new decision tree algorithm that accounts for time-varying covari-
ates in the decision-making process. Traditional decision tree algorithms assume that the covariates
are static and do not change over time, which can lead to inaccurate predictions in dynamic environ-
ments. Other existing methods suggest workaround solutions such as the pseudo-subject approach,
discussed in the article. The proposed algorithm utilises a different structure and a time-penalised
splitting criterion that allows a recursive partitioning of both the covariates space and time. Rele-
vant historical trends are then inherently involved in the construction of a tree, and are visible and
interpretable once it is fit. This approach allows for innovative and highly interpretable analysis
in settings where the covariates are subject to change over time. The effectiveness of the algorithm
is demonstrated through real-world data analysis, highlighting its potential applications in various
fields, including healthcare, finance, insurance, environmental monitoring, and data mining in gen-
eral.

Key words: decision tree, time-varying covariate, data mining, longitudinal study, algorithm

14.1 Introduction

Decision trees are a popular machine learning tool for data mining as well as classification and

regression predictions. Growing such a tree is a data-driven process based on a set of input co-

variates and a target variable. The most famous decision tree algorithm is arguably Classification

and Regression Trees (CART), introduced by Breiman et al. 1984. CART constructs a binary tree

by recursively partitioning the feature space into smaller and smaller subsets, based on a split-

ting criterion that maximises the separation between the target variable’s values in each subset.

However, traditional decision tree algorithms like CART assume that the input features or co-

variates are static and do not change over time. In many real-world settings, this assumption is

unrealistic, and the time-dynamic nature of the covariates is highly informative and should be

included in the tree construction. In such settings, not accounting for dynamic features results

in information loss, hence a loss of accuracy and richness of analysis.

Other data-driven approaches can already efficiently seize the time dimension of features in pre-

diction and data-mining settings. One can think of neural networks (see Mena et al. 2023 or

Wong et al. 2022 for instance). Yet conventional parametric statistical models or machine learn-

ing approaches such as logistic regression or most tree-based models cannot handle time-varying

covariates straightforwardly. They assume that individual observations are independently dis-

tributed. Because of the longitudinal structure of a time-varying dataset (see Section 14.2.2 for
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more details), this independence hypothesis cannot be met: different observations of a single

subject are naturally strongly correlated. To address this limitation, some existing tree-based

methods suggest workarounds such as the pseudo-subject approach in survival trees (see Fu and

J.S. Simonoff 2016), which create artificial left-truncated and right-censored subjects by pooling

observations over time, or the inclusion of a mixed effect model structure around a tree-based

core (see Hajjem, Bellavance, and Larocque 2011a; Sela and J.S. Simonoff 2012; Hajjem, Bella-

vance, and Larocque 2014). Such computationally intensive methods proved to yield competitive

results in many prediction frameworks, yet we argue in the following sections that they are not

entirely satisfying in terms of interpretability.

In this article, we propose “Time-penalised Tree” (TpT), a new decision tree algorithm that ac-

counts for time-varying covariates in the decision-making process. Our algorithm utilises a dif-

ferent structure and a time-penalised splitting criterion that allows for recursive partitioning of

both time and the features space. We detail the algorithm and show simulated real data-mining

and visualisation applications. However, it is crucial to underscore the inherent limitations in

the current scope of this study. Recognising the need for further refinement, this work primar-

ily concentrates on introducing and demonstrating the applicability of TpT. Nevertheless, two
crucial aspects remain unaddressed: firstly, the imperative need for a comprehensive exploration

into the statistical properties and theoretical foundations of this new tool; and secondly, the es-

sential comparative analysis of TpT results against existing longitudinal techniques, trained on

well-studied datasets and evaluated with consistent indicators. This introduction sets the stage

for future investigations, acknowledging the identified gaps and emphasising their significance

in shaping the future trajectory of our research.

The rest of this paper is structured as follows. We recall the basics about classification and re-

gression trees as well as time-varying covariates analysis in Section 14.2, we also briefly present

existing approaches and frame their interpretability flaws. Then we detail the specificities of

TpT in Section 14.3 and explain its benefits, which is the main contribution of this work. In

Section 14.4, we show a concrete application of our framework on a real-world life-insurance

dataset, with visuals and illustration work, demonstrating the interpretability properties of TpT.
Eventually, Section 14.5 concludes this paper and details future works.

14.2 Preliminaries

14.2.1 Classification and regression trees

In this section, we briefly describe the mechanisms of a simple yet powerful data-mining and

prediction model: decision trees, and more specifically, classification and regression trees or

CART Breiman et al. 1984. Here, we assume that all covariates are time-independent. Let

D = {(x(i), y(i))}Ni=1 be a dataset of N individuals with x(i) =
(
x
(i)
1 , . . . , x

(i)
p

)
, the vector of

p covariates and y(i) the target variable for the i-th subject. The covariates and target spaces

are respectively denoted X and Y . Decision trees create a recursive partitioning of X based on

binary decision rules. This partitioning can be visualised directly in the case where there are

two covariates x1 and x2 (see Figure 14.1). In that case, individual observations are represented

as dots that are eventually clustered into nL distinct, non-overlapping regions of X denoted

(L1, . . . , LnL).
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Figure 14.1: Decision tree recursive partitioning

More generally it can be visualised as a tree (see Figure 14.2), with yes/no questions within each

node and terminal nodes - or leaves - corresponding to the nL regions of the covariates space.

Because the regions defined by leaves are non-overlapping, every individual i belongs to a single
leaf, and a unique prediction is made for all individuals falling in a specific leaf. More generally,

let g be a node, at g, we define D(g) ⊆ D such as D(g) = {(x(i), y(i)) ⊆ D |x(i) ∈ g}, the set
of observations in the node g. The quantityN (g) = |D(g)| is then the number of individuals in

the node.

x1 ≤ d1 ?

x2 ≤ d2 ?

fT (L1) fT (L2)

Yes

x2 ≤ d3 ?

x1 ≤ d4 ?

fT (L3) fT (L4)

x1 ≤ d5 ?

... ...

fT (LnL−1) fT (LnL)

No

Figure 14.2: Decision tree example

In a classification context, the label given by the tree T for subject i, falling in leaf L is given by

fT (x
(i)) = mode

(
{y(i), ∀i | x(i) ∈ L}

)
= fT (L).

In a regression context, the label given by the tree T for subject i in leaf L is given by

fT (x
(i)) = mean

(
{y(i),∀i | x(i) ∈ L}

)
= fT (L).

In both cases, a decision tree yields a single constant label
1
for an entire region: its mode or

mean. The accuracy of a tree is then based on its ability to minimise the error it commits when

assigning labels. Among all possible trees - thus, all possible partitions of X - the optimal one

should maximise a predetermined objective measure (such as the label assignment accuracy, for

instance). Such a tree theoretically exists but cannot generally be found in a computationally

reasonable time. Therefore algorithms like CART use a top-down greedy approach: they start

from an initial node - the root - containing all observations inD. Then they find the covariate xj
and the threshold d2 such that they optimise a splitting criterion. The root is then split into those

two child nodes for which the same splitting process is repeated until a stopping criterion is trig-

gered. Once grown, this tree is called maximal tree. From an algorithmic perspective, growing a

maximal CART can be summarised as such:

1

or prediction, in such contexts

2

The set of classes for categorical covariates
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Algorithm 8 Growing a maximal CART

1: Input: Training dataset D
2: Output: Maximal CART Tmax

3: Initialise the root node g with the entire dataset D
4: Grow(g)
5:

6: Function Grow(g):
7: if Stopping criteria met (e.g., maximum depth, minimum samples) then
8: Let g be a leaf with the prediction fT (g).
9: else
10: For all possible covariates and thresholds find the pair (xk, d) that obtain the best splitting

criterion.

11:

12: Split the node g along covariate xk at threshold d into two child nodes gr and gl.
13: Grow(gr)
14: Grow(gl)
15: end if

Such a tree over-fits the data, and predictions made on observations that were not used to grow

the tree are usually inaccurate. That is why a last step is required: the maximal tree is pruned to

a sub-tree that has better generalisation abilities. The pruning step is described in Section 14.2.1.

A decision tree is therefore defined by its splitting criterion, stopping rule(s), and its pruning

process.

Splitting Criterion

Originally, CART produces, at every node, a split that minimises the heterogeneity regarding

the target variable within each child node. Equivalently, the optimal split is to maximise the

loss of heterogeneity between the considered node and its child nodes: the so-called goodness-
of-split. Therefore, measures of heterogeneity are needed when the target variable is categorical

(for classification tasks) and when it is numerical (for regression tasks).

Classification: In a P -classes classification problem, let us define pl, l ∈ {1, . . . , P} as the
proportion of observations of class l in D. We extend this idea by defining pl(g) as the pro-

portion of observation of class l in D(g). An impurity function ϕ, is a function measuring the

heterogeneity, defined for pl, l ∈ {1, . . . , P}, with pl ≥ 0 and

∑
l pl = 1 such that:

• ϕ(p1, . . . , pP ) ≥ 0,

• The minimum of ϕ is reached whenever any of the pl = 1, then ϕ(p1, . . . , pP ) = 0,

• The maximum of ϕ is reached for ϕ( 1
P , . . . ,

1
P ),

• ϕ is symmetric with regard to its arguments.

For CART, usual classification impurities are the entropy (ϕ(p1, . . . , pK) = −
∑

i pilog(pi)), Gini
(ϕ(p1, . . . , pK) = 1

2

∑
i pi(1 − pi)) or the Twoing measure. For our purposes, no further speci-

ficities are needed and in full generality, the impurity - or heterogeneity - of node g is measured

by I(g) = ϕ(p1(g), . . . pK(g)). At each node of a CART, the optimal split is chosen as the split

that reduces the impurity the most. That is to say, the split that maximises the following gain
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function by splitting the parent node gp into the two child nodes gl and gr is

G(gp; gl, gr) = I(gp)−
(
N (gl)

N (gp)
I(gl) +

N (gr)

N (gp)
I(gr)

)
. (14.1)

Of course, various other criteria and ideas for splitting exist. This paper does not aim to review

all of them but we refer the astute reader to such comparisons of splitting methods (see Mingers

1989, Buntine and Niblett 1992, Breiman 1996, Shih 1999 or Drummond and Holte 2000 for in-

stance). The efficacy of each splitting criterion has been discussed but no definitive consensus

over which one is the finest exists. All measures prove desirable properties in particular scenarios

while demonstrating drawbacks in others.

Regression: In a regression context, the best split can be chosen with the target variable em-

pirical variance or mean squared error, a natural choice of heterogeneity measure. We define

MSE(g) the mean squared error at node g, as

MSE(g) =
∑

{i|x(i)∈g}

(
ȳg − y(i)

)2
, (14.2)

with ȳg = 1
N (g)

∑
{i|x(i)∈g}

y(i).

Then, the gain function to maximise when splitting the parent node gp into the two child nodes

gl and gr is obviously

G(gp; gl, gr) =MSE(gp)−
(
N (gl)

N (gp)
MSE(gl) +

N (gr)

N (gp)
MSE(gr)

)
. (14.3)

Even if technically,MSE is not an impurity function, we clearly see that Equation 14.3 is the re-

gression equivalent of Equation 14.1. Thus in the following sections, we use the general notations

of equation 14.1 with I(g) ≡MSE(g) when the target variable is numerical.

Stopping rules

Stopping rules can be specified. In that case, the growing phase continues until one of them is

met. First of all, a node will not split any further if all observations it contains have the same

target variable value. Other commonly used stopping rules are: a minimum improvement in the

splitting criterion, a maximum depth of the tree (parameter: maxdepth), a minimum number

of observations in a node (parameter: minsplit), or a minimum number of observations in

the hypothetical child nodes that would result from a new split.

Tree pruning

The stopping rules affect the size of the maximal tree. No or weak stopping rules will generate

a high-variance/low-bias over-fitted tree whereas constraining ones will lead to smaller, more

interpretable low-variance/high-bias under-fitted trees. The idea of cost-complexity pruning de-

veloped by Breiman emerged from the need to find a compromise between the two extremes.

The main idea behind cost-complexity pruning is to consider sub-trees of the maximal tree and

evaluate them with a cost function that increases as the error rate rises and decreases as the

number of leaves drops. When a tree is pruned at a node, the weighted summed error of the
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leaves increases while the number of leaves reduces, thus a pruned sub-tree is selected only if

the error gain is counter-balanced by the complexity loss. The cost of a tree T is given by:

Cα(T ) = R(T ) + αψ(nL), α ≥ 0, (14.4)

where R(T ) is the sum of all errors or impurities of the leaves of T , weighted by the number of

individuals they represent. The function ψ is an increasing function of nL, it is originally set to

ψ(nL) = nL in Breiman’s work Breiman et al. 1984, but has demonstrated relevant properties

when set to ψ(nL) =
√
nL in classification settings (see Appendix D.1 for more details and ref-

erences). The penalty α is the complexity parameter: the higher it is, the smaller the pruned tree.

With a reasonable choice of ψ, the interest of α is that for a fixed complexity parameter value,

there exists a unique smallest sub-tree T of the maximal tree Tmax that minimises Cα(T ). Thus
by decreasing α, we can construct a sequence of pruned optimal sub-trees [T1, T2, . . . , Tmax] of
different sizes. This tree sequence is such that T1 is the root node, T2 a sub-tree of T with more

leaves and accuracy than T1 and so on until Tmax, the unpruned maximal tree. With Breiman’s

notation, we have

Tmax ⊇ · · · ⊇ T2 ⊇ T1.

The optimal complexity parameter value, hence the best tree in the sequence is usually selected

using cross-validation.

14.2.2 Longitudinal notations

This paper aims to enrich the growing process of decision trees in the presence of time-varying

covariates. To do so, let us introduce some notations borrowed from the existing longitudinal

literature including works of Rizopoulos 2012 or W; Yao et al. 2022. Let us assume a very general

setting where we want to build a dataset Dlong , encompassing the time-varying features of N
subjects, which are repeatedly measured over time. In all generality, let us assume that among

the p covariates, pTV of them are time-varying and pTI others are time-invariant. At time t, the
set of covariates is given by x(t) = (x1, x2, . . . , xpTI , xpTI+1(t), . . . , xp(t)). In order to simplify

the notations, we consider all constant features as a special case of time-varying covariates, with

x(t) = (x1(t), x2(t), . . . , xp(t)) with xk(t) = xk, ∀t and ∀k ∈ [1, . . . , pTI ]. Let n
(i)

be the num-

ber of distinct times t
(i)
j , j = 0, 1, . . . , n(i) − 1 at which subject i has been observed. At time t

(i)
j ,

subject i has a vector of covariates denoted x
(i)
j =

(
x
(i)
j,1, . . . , x

(i)
j,p

)
.

Classical longitudinal setting: For a given subject i, covariates are stored in rows, one row

per observation window [t
(i)
j , t

(i)
j+1). Each row contains the unique

(
t
(i)
j , t

(i)
j+1,x

(i)
j , y

(i)
j

)
ele-

ments, with y
(i)
j the target variable observed at time t

(i)
j . They are completed by the subject

unique identifier i. Each row represents what we will now call an observation. We buildDlong as

the collection of all observations structured longitudinally :

Dlong =

{(
i,
{
t
(i)
j , t

(i)
j+1,x

(i)
j , y

(i)
j

}n(i)−1

j=0

)}N

i=1

Or, if displayed in a table:

14.2.3 Existing longitudinal tree-based algorithms

The problem when splitting time-varying covariates: Whether they are designed for sur-

vival analysis or not, longitudinal tree-based models exist and propose various methods to in-
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Table 14.1: A longitudinally structured dataset

ID Time window Start Time window End Covariate 1 ... Covariate p Target variable

1 t
(1)
0 t

(1)
1 x

(1)
0,1 ... x

(1)
0,p y

(1)
0

1 t
(1)
1 t

(1)
2 x

(1)
1,1 ... x

(1)
1,p y

(1)
1

1 t
(1)
2 t

(1)
3 x

(1)
2,1 ... x

(1)
2,p y

(1)
2

1 t
(1)
3 t

(1)
4 x

(1)
3,1 ... x

(1)
3,p y

(1)
3

2 t
(2)
0 t

(2)
1 x

(2)
0,1 ... x

(2)
0,p y

(2)
0

3 t
(3)
0 t

(3)
1 x

(3)
0,1 ... x

(3)
0,p y

(3)
0

3 t
(3)
1 t

(3)
2 x

(3)
1,1 ... x

(3)
1,p y

(3)
1

3 t
(3)
2 t

(3)
3 x

(3)
2,1 ... x

(3)
2,p y

(3)
2

. . . . . . . . . . . . . . . . . . . . .

clude time-varying covariates that cannot naturally fit in the tree-growing algorithm described

in Algorithm 8. As an illustrative example, let x1(t) be a numerical time-varying covariate. At

each node, a splitting rule of the form “x1(t) ≤ d”3 should be able to split subjects into two child
nodes. A subject for which this rule is true at all observed times will go in one child node without

any ambiguity. On the other hand, the general case where the rule is true for some periods but

false for anywhere else is unclear and needs to be addressed.

The “eventually not longitudinal” methods: The most naive model would be a regular

CART, trained on all observations in the longitudinal dataset without taking the correlation be-

tween observations of the same subject into account. As stated by Segal 1992, this would simply

ignore the capital aspect of dealing with longitudinal data: “The covariation induced by making
several observations of some continuous response on the same unit, as occurs with repeated mea-
sures designs, cluster designs, and longitudinal studies, poses data analytic problems. Analysis of
such designs that ignore the covariance structure are known to produce incorrect variance estimate.”.
Other naive attempts consist of summarising the longitudinal trajectories of time-varying co-

variates with a small number of parameters. For instance, one could think of only keeping the

mean value of every trajectory, the median, its final slope, the baseline value, or the most re-

cent one, ignoring all the remaining information. This leads to a loss of precious information. A

similar idea is to regress every longitudinal covariate against time and possibly other features,

within-subjects to include the parameters of the regression - intercept and slope - as baseline

covariates. It can be argued that if the longitudinal covariates are all strongly linearly associated

with time, which is rarely the case in practice, this kind of alternative solution can be relevant.

Eo and Cho 2014 proposed a model called mixed-effects longitudinal tree (MELT) able to handle a

longitudinal response by fitting a mixed-effect model at each node of the tree. Subjects are then

split based on the heterogeneity of their slopes. Kundu and Harezlak 2019 extended this idea

of resuming information contained in the longitudinal covariates by a combination of splits on

baseline covariates and implemented it in the R package LongCART. Other approaches (such
as Ritschard and Oris 2005 and more recently Moradian et al. 2021) designed longitudinal trees

that use lagged response values as potential predictors, but still do not treat either the outcome

or the covariates as inherently dynamic with time. Overall, in these methods, information is lost

during the process, and the number of measurements per subject in real datasets can be too small

3

Note that the same reasoning can be applied to categorical time-varying covariates as well.
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to obtain consistent time-invariant surrogates to the time-varying covariates.

The “CART-extended” methods: Segal 1992 and De’Ath 2002 independently proposed the

first applications that clearly define an extension to the CART method and directly account for

correlation in the response variable. They both suffered limitations as they were designed for

a longitudinal response but time-fixed covariates where all the subjects were measured at the

same observation times, with the same interval between them. On the one hand, Segal’s regres-

sion tree consisted of imputing a covariance structure in the split procedure. This led to many

theoretical questions about defining that covariance structure as well as practical ones regarding

the complexity of the computations. On the other hand, De’Ath’s procedure simply modified the

CART algorithm by allowing it to consider an entire matrix containing all the observations for

one subject as a single observation. Allowing that was done by using the gain of MSE as a split-

ting criterion, and replacing the 1-dimensional mean in the MSE with a multi-dimensional mean

modified with a covariance structure; the prediction given by the tree would then be the multi-

dimensional mean of the observation in the terminal nodes. In both cases, those methods can be

seen as fitting a model to the longitudinal outcome at every node as part of the splitting criterion.

More recent works by Larsen and Speckman 2004 as well as Hsiao and Shih 2007 followed and

improved the idea of De’Ath, by redefining the node impurity measure with the Mahalanobis dis-

tance and estimating the covariance matrix from the whole data set. It is worth mentioning that

other articles extended the idea of Segal, to binary responses and classification trees (see Zhang

1998), in a clustering context using deviance as a goodness-of-fit criterion for partitioning (see

Abdolell et al. 2002) and then to every type of longitudinal response - not only continuous or

binary - using Generalised estimating equations (see the works of Lee 2005; Lee et al. 2005; Lee

2006). Such models show advantages in terms of predictive ability and interpretability but do not

handle time-varying covariates.

The “state-of-the-art” methods: In the work of Hajjem, Bellavance, and Larocque 2011b,

Sela and J.S. Simonoff 2012 and their respective extensions (see Hajjem, Bellavance, and Larocque

2014; Capitaine, Genuer, and Thiébaut 2021
4
and Fu and J;S. Simonoff 2015), a general mixed-

effect model is assumed for the longitudinal outcome. The tree-based part only predicts fixed

effects whereas individual estimated parameters account for all the time-varying effects. Such

approaches can estimate longitudinal outcomes but the inclusion of time-varying covariates is

handled via the pseudo-subject workaround detailed in the next paragraph. It relies on the as-

sumption that all the dependency between several observations of the same subject is captured

by the random effect of the mixed model. In a survival setting, Fu and J.S. Simonoff 2016 and its

extensions (see W. Yao et al. 2020) proposed a model based on those ideas: they allowed subjects

to be divided into pseudo-subjects and used an adjusted log-rank test in the splitting procedure

to accommodate for left truncation and ensure that the independence implicit assumption does

not lead to biased results. We refer the astute reader to the works mentioned in this paragraph as

we consider them to be the most advantageous approaches today. The algorithms correspond-

ing to their respective work are the R packages REEMtree, LongituRF, LTRCtrees and

LTRCforests, the R function REEMctree and the Python library MERF.

4

Louis Capitaine also worked on a promising generalisation of decision trees and forests that must be acknowl-

edged. We refer to Appendix D.2 for further details.
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Pseudo-subjects Left-truncated and right-censored (LTRC) trees and forests, as well as mixed-

effect tree-basedmodels (at least their tree-based part), consider the unmodifiedDlong as an input

and run through a CART-like growing process, finding optimal binary decision rules at each node

of the tree. Whenever a split produces an ambiguity as described in Section 14.2.3, the periods[
t
(i)
j , t

(i)
j+1

)
where their splitting rule “x1(t) ≤ d” is true would go to the left node, and the other

would go to the right node, thus dividing one subject into several pseudo-subjects. It cleverly

addresses the time-handling issue when the bias that comes with correlated LTRC observations

is neutralised otherwise. In such models, any individual can be spread in many different tree

leaves - even if, at any fixed time, any individual will have a single observation that will fall into

a unique one. Treating one subject’s observations, not as an indivisible block of information but

rather as multiple pseudo subject’s data leads to a loss of interpretability. In our opinion, none

of these procedures can inherently handle time-varying covariates, while maintaining CART’s

interpretability. A unique trajectory per subject would ensure a clear visualisation of the data: the

algorithm should be designed to separate individualswhose features are significantly diverging
regarding the target variable rather than pseudo-subjects.

14.3 Time penalised trees

We present here the building blocks of a new way to think about decision trees in the presence

of time-varying covariates: time-penalised trees or TpT. Let Dlong be a longitudinal dataset,

and T = [0;max
i;j

(t
(i)
j )] be the continuous observation interval of time. We define D(t) as the

dataset containing, for every subject i, her unique observation with the maximal observation

time t
(i)
j such that t

(i)
j ≤ t and t

(i)

n(i)−1
≥ t, where x(i)(t) ∈ X (t) is the vector of covariates and

y(i)(t) ∈ Y(t) the target variable at time t. Eventually,N (t) = |D(t)| is the total number of sub-

jects under study at time t. Let g be a node, which is also identified with a sub-region of X ×⃝ T
it represents. We thus define D(g), the set of observations in the node g andN (g) = |D(g)| the
number of subjects it contains.

The idea behind TpT is to build a tree that benefits from all the longitudinal information avail-

able and where the concept of time is central: at each node, we chose to split along covariates

and time. As stated in Section 14.2.1, a tree-growing algorithm is defined by its splitting criterion,

stopping rule(s), and pruning process. This applies to TpT and the algorithm we propose can

be described as in Algorithm 9. In the end, a final Time-penalised Tree would look like the tree

depicted in Figure 14.3.
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Algorithm 9 Growing a maximal TpT
1: Input: Training longitudinal dataset Dlong

2: Output: Maximal TpTmax

3: Initialise the root node gp with the entire dataset at time t = 0, Dlong(0)
4: Grow(gp, 0)
5:

6: Function Grow(gp, tp):
7: if Stopping criteria met (e.g., maximum depth, minimum samples) then
8: Let gp be a “terminal leaf”.

9: else
10: For all possible covariates xk, thresholds d and time points tc ≥ tp find the triplet

(xk, d, tc) such that a partitioning of Dlong(tc) along xk, at threshold d obtains the best

splitting criterion.

11:

12: Split the node gp: all subjects with t
(i)

n(i)−1
< tc go to a “duration leaf” gt. All other

subjects - with t
(i)

n(i)−1
≥ tc - are split along covariate xk at threshold d into two child nodes

gr and gl.
13: Grow(gr , tc)
14: Grow(gl, tc)
15: end if

x1 ≤ d1
at t = t1 ?

x2 ≤ d2
at t = t6 ?

x1 ≤ d8
at t = t7 ?

ŷ(t7) ŷ(t7)

x3 ≤ d9
at t = t8 ?

... ...

Yes
x2 ≤ d3

at t = t2 ?

x3 ≤ d4
at t = t3 ?

ŷ(t3) ŷ(t3)

x1 ≤ d5
at t = t4 ?

x3 ≤ d6
at t = t7 ?

... ...

x3 ≤ d7
at t = t5 ?

... ...

No

Duration
< t1

Duration
< t2

Duration
< t2

Duration
< t3

Duration
< t4

Duration
< t7

Duration
< t5

Duration
< t7

Duration
< t8

Time

•

•

•

•

•

•
•

•

•

t0

t1

t2

t3

t4

t5
t6

t7

t8

Figure 14.3: Illustration of a TpT
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Let us detail how to understand the TpT depicted in Figure 14.3. The root node appears in

blue, and leaf nodes appear in green. The root node contains all subjects of D(t0) and is then

split into three nodes:

• a left child node containing all subjects from the root node for whom the covariate x1 is

inferior or equal to the threshold d1, at time t1,

• a right child node containing all subjects from the root node for whom the covariate x1 is
greater than d1, at time t1,

• a third node (depicted horizontally from the root node in Figure 14.3) containing all subjects

from the root node without any observation at time t1 or later. Without any information

about the value of x1 at time t1, such subjects cannot be spread into one of the child nodes.
As this third node cannot be split any further, it constitutes a duration leaves.

The right and left child nodes, thus, each contain non-overlapping subsets of D(t1) and are

themselves split further, along optimal covariates, thresholds, and at times that are ≥ t1. This
iterative splitting process continues until a stopping criterion is met and the nodes cannot be

partitioned any further. The final nodes obtained at the very end of every branch constitute

terminal leaves.

Remark 14.1

A remark about the time notations of Figure 14.3 needs to be made, in order to avoid any

confusion. The time points that figure along the vertical axis on the left of Figure 14.3 can

be understood as the times of arrival to the node: the last time that was used to split the

subjects in the previous node. Conversely, the time point mentioned inside any given node

is part of the decision rule: the optimal time at which the node is split. For instance, all

subjects from D(t0) arrive at the root node (hence the “t0” on the left axis) and the root

node is then split based on the value of covariate x1, at time t1 ≥ t0 (hence the “t1” inside
the root node).

Defining TpT stopping rules is exactly similar to CART (see Section 14.2.1). Its splitting crite-

rion to be optimised at each node, as well as its pruning process, meanwhile, are modified and

discussed in the sections below. Before going into more details, a few comments can be made

about the structure of a TpT. In our methodology, all nodes are forced to split on time, with the

constraint that such split times are chosen to increase with the depth of the tree. Thus time, or

duration, is not considered as a regular covariate but is rather treated as an object of analysis,

or as a second dimension of the response variable which can be reminiscent of survival analysis.

TpT is a consistent approach whenever it is strongly suspected that time is the predominant

variable with the greatest impact in explaining the response variable, or more generally if the

relationship between time and a variable of interest is the primary subject under study.

14.3.1 TpT splitting criterion

The split function for TpT is rather straightforward. We want to select the split on a covariate,

at a threshold and a time that will maximise a time-penalised split criterion. The division of a

node into two child nodes and a duration leaf has been detailed for the root node of Figure 14.3,

and in all generality, a single split of a parent node gp into the three nodes gl (the left child node),
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gr (the right child node), and gt (the duration leaf), is illustrated in Figure 14.4.

gp
-

x1(tc) ≤ d1 ?

gl

Yes

gr

No

Duration leaf: gt
-

Duration < tc

Time

•

•

tp

tc

Figure 14.4: Single split of a TpT

To obtain such a split, we have to define a time-penalised split criterion, as

Gγ(gp; gl, gr, gt) =

[
I(gp)−

(
N (gl)

N (gp)
I(gl) +

N (gr)

N (gp)
I(gr) +

N (gt)

N (gp)
I(gt)

)]
· e−γ·(tc−tp),

(14.5)

with γ ∈ R+
, I(g) an impurity or MSE function as described in Section 14.2.1, tp and tc

the respective times of the parent node and child nodes and γ the penalty parameter. We can

immediately see that this is simply the classical CART splitting criterion with an additional expo-

nential penalty term, depending on how distant in time the considered split is. The exponential

penalty that we propose induces that the more time distance there is between a parent node and

its potential child node, the more penalised the split. Without that penalty term, a TpT would

have early splits at advanced times, andmuch information contained in early observations would

be lost. It ensures that early observations are explored and exploited and that distant splits are

selected early in the tree if and only if they are greatly informative. In other words, splits are

chosen where covariates AND time points are informative about the target variable; we first try

to find close splits if they can detect heterogeneity but distant splits will be considered if they

are very informative. We can find examples of this type of exponential consideration of time in

time series analysis with exponential smoothing (see Brown 1956; Holt 2004), where exponential

functions are used to assign exponentially decreasing weights over time. As far as our knowledge

extends, instances of tree-based modified splitting criteria where exponential weights were in-

troduced are very rare. A first reference can be found in Section 5.5 of the PhD thesis of Bremner

2004, which uses localised splitting criteria that are based on local averaging in regression trees

or local proportions in classification trees, weighted by exponential weights. The weights have

no link to time or a measure of distance from the previous node. Goldstein 2014 also suggested

using exponential weights in tree-based algorithms to promote splits on covariates that were

already used in previous splits over others.

The partitioning procedure of TpT can also be visualised similarly to Figure 14.1, the only differ-

ence is that the iterative splits occur on different versions of the longitudinal dataset. Instead of

partitioning the feature space alone, we need to illustrate how TpT partitions the feature space
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at different times.

Consider two time-varying covariates x1(t) and x2(t) et let us assume that t0 = 0: at depth
0 and t = 0, the tree is only a root andD(0) is not partitioned (as it can be seen on the left side of

Figure 14.5). We can see that on the first iteration of the algorithm, a first split, at t = 0 creates

a division of D(t1)5 such as illustrated on the right side of Figure 14.5.

Figure 14.5: TpT 1-depth recursive partitioning

If we go on with the iterative partitioning, at depth 2 and t = t1, all subjects that have been ob-

served up to t = t2 within each partition, are once again split into two subgroups. This creates

a division of D(t2) such as depicted in Figure 14.6.

Figure 14.6: TpT 2-depth recursive partitioning

5

Please refer to Remark 14.1 for more insights on why the split of subjects observed at a given time occurs at an

ulterior time
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Eventually, a few more steps of the iterative partitioning procedure can be visualised as in Fig-

ure 14.7. It is the representation of a classical binary split procedure, with the inclusion of a time

dimension. The routes of all subjects can be displayed in that representation: the red, blue and

green paths in Figure 14.7 are examples of such individual trajectories.

Figure 14.7: TpT recursive partitioning and individual trajectories
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Remark 14.2

Several things need to be noted regarding the partitioning illustration depicted in Fig-

ure 14.7.

First, duration leaves are not represented here: the red trajectory for instance, does not

split after time t = t1 because the subject it represents has not been observed at time t2 or
later. Its course at time t2 being unknown, it stops in the region of D(t1), which is then a

duration leaf for similar subjects.

Secondly, this illustration shows that divisions of early steps transpose into continuous

partitions in further steps: this is not true in general. The two groups formed by the par-

tition of D(t1) may not be represented by a unique region of D(t2), split at a constant

threshold over one covariate.

To illustrate that point with a concrete example, let us assume that one of the covariates

in D is the subject’s salary. The set of all individuals with a salary ≤ 1, 000 at time t1 is

composed of individuals without any observation at time t2, of subjects with a salary that

increased by t2 and is> 1, 000 and of others still earning≤ 1, 000. A set of subjects within

a unique connected region of the feature space at time t1 generally lies within disconnected
sub-regions of the feature space at time t2.

Eventually, it is also to be noted that not every disjoint region splits at every time step

of the partitioning. There are times when several splits occur, others where only one re-

gion is partitioned, and others where none. All those points are not depicted in Figure 14.7

for simplicity’s sake.

We can already foresee that higher values of γ ensure that the next optimal split is more likely to

be close in time to the previous node (a distant split is to be chosen only if it is very interesting).

The produced TpT will be close to a CART with all longitudinal covariates values blocked at

t = t0. And it can be easily proven that

TpT (Dlong) −→
γ→+∞

CART (Dlong(t0)). (14.6)

It allows aTpT to explore the covariates space but prevents it from exploring the time dimension.

On the contrary, lower values of γ are more likely to produce distant splits and the constructed

TpT will show similarities with a CART where all longitudinal covariates values rapidly ap-

proach their final value. It allows a TpT to split along the time dimension quickly but prevents

it from exploring the covariates space at any given time.

Remark 14.3

Because the impurities of the parent and child nodes can be computed at different time

points, it can happen that Gγ < 0. Such cases imply that a specific stopping rule must

be enforced for TpT: Gγ must be positive for a node to split. Otherwise, it would allow

ineffective splits.
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Remark 14.4

In reality, time-varying features may only occupy a small portion of overall features. If

the time-varying features can be identified a priori, one can think of applying the time

penalty only on splits along time-varying features, and an unpenalised splitting criterion for

baseline covariates. This is equivalent to our approach for any split that does not produce a

duration leaf. Indeed, in that case, a split on a baseline covariate will always be chosen at the

current node time. However, we argue that in the general case where a duration leaf can be

produced, penalising splits on time-fixed features can still reduce the node heterogeneity.

14.3.2 TpT pruning process

For a TpT, the penalty parameter γ affects the tree’s dimensions (depth and number of leaves,

see Section 14.4 for an analysis on the matter). An optimal γ that minimises the impurity of the

tree (the weighted sum of all leaves impurities) can be chosen but it is not a pruning process

comparable to cost-complexity pruning. For a given γ, a maximal TpT can be grown and may

over-fit the data. To control for bias and over-fitting, various pruning strategies can be consid-

ered. First, Breiman’s cost-complexity pruning is still well-defined under the TpT framework,

for a given γ, and can be applied as long as all duration nodes - denoted as gt in previous illustra-

tions and algorithm - are considered as leaves. We suggest a slightly different adaptation of this

pruning strategy to select both α and γ simultaneously. It consists of selecting the pair (α, γ)
that minimises Cα(T ), the cost of the tree. Simpler pruning strategies such as Reduced Error

Pruning (see Quinlan 1987) can also be used. Their advantages and flaws are notably discussed

in Esposito et al. 1997 as well as their tendency to over/under-prune.

14.4 Applications

Such a longitudinal data mining algorithm can prove useful in various fields (medicine, sports

analytics, taxonomy, biology), here we applied it to a life insurance customer segmentation anal-

ysis. For that purpose, we use a real-world dataset of 983 policyholders (PHs), a subset of the

dataset used in Chapters 8 and 12, and we investigate the link between the PH’s characteristics

through time and the final outcome of their policies, a categorical response variable. Throughout

the lifetime of such insurance policies, a series of events can occur. Firstly, one policyholder’s

coverage can be increased with premium payments that are highly flexible, both in terms of

amount and frequency, and are adjusted according to the policyholder’s financial circumstances

and preferences. Additionally, policyholders may decide to reduce their coverage by withdraw-

ing a portion of their policy. We refer to these events as partial lapses, enabling PHs to adjust

their coverage to better align with their changing needs. Other financial operations can occur,

such as the payment of interest or profit sharing from the insurer to the PH, and the payment of

fees from the PH to the insurer. Insurance companies’ information systems are usually designed

to keep track of those operations at the policy level, thus actuaries and life insurers often have

access to the complete history of their policyholders as the information system is updated in

real-time. Eventually, one’s insurance plan ends whenever the PH dies or decides to terminate it

by lapsing. In the end, the timeline of such insurance policies can be illustrated in Figure 14.8
6
,

below. At any given time a policy is either active, has been lapsed by the policyholder, or has

ended because of her death. Among all insurance plans subscribed between 1998 and 2019, in

6

Illustration taken from Valla 2023b
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Figure 14.8: Example of policyholders timelines

our dataset, 57.4% are active, 22.8% ended with the death of the policyholders, and 19.8% lapsed.

We only consider uncensored observations here, we thus have 46% of churned policies and 54%

that ended with death. For this application, our data mining goal is to gain insights into the

PH’s pathways that lead to these different outcomes. We want to find time-dependent clusters of

individuals with similar timelines and outcomes at a given time. This is thus a time-dependent

classification problem, where the target variable is the final outcome of the policies, the tree

grows with the survival time and splits on potentially time-varying covariates such as age, rate,

Customer Lifetime Value (CLV), face amount (FA) or gender. More detailed descriptions of the

dataset used can be found in Valla, Milhaud, and Olympio 2023; Valla 2023b. In all visualisations

of the following sections, all leaves or regions that contain a majority of policies that ended with

the PH’s death are labelled “D”, and all those that contain a majority of policies that ended with

lapse (or churn) are labelled “C”. In terms of colours, the proportion of each class is represented

by a nuance between (for a 100% proportion of “D”) and (for a 100% propor-

tion of “C”). For example, a leaf or region with 50% of churners is represented by the colour

. Since we only consider PHs that were observed until the termination of their policy,

there are no censored observations to consider.

14.4.1 Properties of TpT for the maximal tree

First of all, Table D.1 in Appendix D.3 displays the results obtained by TpT with various choices

for the time penalty parameter γ. It shows the dimensions of TpTs (depth and number of leaves),

their global impurities and costs, the highest time point when a split occurred, and the average

time at which any subject is split. Graphs of those results can be found in Figure D.1. Here we

considered unpruned trees using the time-penalised version of the Gini impurity measure as a

splitting rule (Equation 14.5) and without any stopping criterion. For this application, we com-

puted the cost of the tree with a choice of α =
√

3 log 2
2N , suggested by Scott and Nowak 2006, who

demonstrated for dyadic trees pruned with a square-root penalty, generates a tree whose error

converges optimally to the Bayes error. The pruning process then only consist of selecting γ as

the solution of argmin
γ

Cα(T ).

We can observe that the depth and number of leaves grow with γ. This was to be expected, as

a TpT that does not penalise time-distant splits will quickly find high impurity-gain splits at

distant times thus preventing the exploration of less distant time periods. Conversely, the same

phenomenon explains that the average time when splits occur is a decreasing function of γ. As
the penalty parameters get high values, any future split is heavily penalised and can not com-
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pete with splits at time t0, regardless of their potential unpenalised gain. Eventually and very

interestingly, we observe that the unpenalised TpT, as well as the heavily penalised one, are

not optimal in terms of global impurity. There exists an optimal choice of γ that generates a

TpT minimising the sum of its leaves impurities. This tree has a penalty parameter of 0.2725, a
depth of 17 and a number of leaves of 190 - 173 terminal leaves and 17 duration leaves - and is

displayed in Appendix D.3 as long with more results and graphs obtained with diverse settings,

with various impurity measures.

Such trees, without stopping criterion and post-pruning are useful to discuss the properties of

TpTs but do not yield immediate insights on our dataset. Nevertheless, there is one statistic that

proves to be insightful: the distribution of times when splits occur. Obviously, with an exponen-

tially penalised splitting criterion, the more distant from its parent time tp a split time tc is, the
more penalised it is and the less likely it is to be selected. The a priori probability for a time to

be selected as a split time is ∝ e−γ·(tp−tc)
, which reflects the importance of the time component

of the goodness-of-split. Thus, by weighting the frequency of times when splits occur with an

exponential factor, we balance this bias and retrieve the importance of the time periods. In the

optimal unpruned and unstopped tree, the splitting time points are distributed as such:

Figure 14.9: Split times distribution for the optimal unstopped and unpruned TpT

In the weighted histogram, we can clearly see that some periods seem to be critical split points

that differentiate active policies from lapsers or policies that are likely to end with the policy-

holder’s death. Interestingly, we see that t = 0 and t = 8 are particularly important in terms

of differentiation between policies’ outcomes. For t = 0, the insight is clear: most of the infor-

mation that separates the churners from policies that end with the PH’s death can be retrieved

from the baseline covariates: for instance, it can be seen in the early splits of Figure 14.10 that

the age at subscription seems to be very informative - older PHs are more exposed to the mor-

tality risk - and thus is selected at baseline. Regarding the important splits at t = 8, we see in
Figure 14.10 that they correspond to splits on age, CLV, or FA. CLV is highly dependent on both

age and FA, thus we could argue that age and FA are the most informative covariates at t = 8.
By law, French life insurance plans ensure that when a given policy is at least eight years old,

the policyholder can lapse without any surrender penalty. This is a clear incentive not to churn

before one’s policy reaches 8 years of seniority. It seems consistent to observe that this threshold

is pointed out in our analysis. The third year of seniority comes right after t = 0 and t = 8 in
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terms of temporal importance, which does not have any obvious business justification. However,

every split at t = 3 (see Figure 14.10) is either a split on CLV or the FA of the policy, thus we can

argue that the final outcome of a policy seems dependent on its FA 3 years after subscription.

Similarly, the unpenalised sub-optimal TpT with γ = 0, depicted in Figure 14.12 only splits at

times t = 0, t = 3 or t ≥ 8, with respectively 1, 1 and 24 splits.

This application has also been tried on a larger longitudinal dataset, containing 119,431 observa-

tions of 9,873 PHs. Characteristics of TpTs grown with various γ are described in Figure 14.10

It gives the split times distribution in Figure 14.11. Due to the heavy computation time, all other

analyses are carried out on the smaller dataset.

Figure 14.10: Characteristics of a maximal TpT, trained on 9,873 PHs with various γ

Figure 14.11: Split times distribution for the optimal TpT, trained on 9,873 PHs
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Figure 14.12: Over-fitted unpenalised, unstopped and unpruned TpT

14.4.2 Use-case with a stopping rule

A clear strength of decision trees is their interpretability. Obviously, treeswith hundreds of leaves

each containing a handful of subjects can not be interpreted. Here we decided to investigate the

results obtained by TpTs with various γ, using the time-penalised version of the Gini impurity

measure as a splitting rule and including a stopping criterion: any leaf must contain at least 50

individuals otherwise it does not split. This choice of stopping rule is not close to the default value
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for the minsplit parameter in most CART implementations, but it will generate shorter, less

over-fitted TpTs, better suited for direct interpretability and data analysis. Here are the results

for TpT on our longitudinal dataset, with minsplit= 50. Graphs of those results can be found in

Figure 14.13.

Time penalty γ Runtime Depth # of terminal leaves # of duration leaves Total # of leaves Tree cost Max of split times Mean of split times

0.0000 587.03 4 9 7 16 0.319 15.0 4.309

0.0025 736.31 6 11 6 17 0.306 15.0 2.134

0.0075 730.35 6 11 5 16 0.306 15.0 2.102

0.0200 726.84 6 11 4 15 0.306 15.0 1.97

0.0275 789.2 6 13 6 19 0.300 8.0 2.203

0.0325 784.67 6 13 5 18 0.300 8.0 2.131

0.0350 817.64 6 14 4 18 0.296 9.0 1.762

0.0650 840.38 7 15 3 18 0.297 9.0 1.129

0.0925 841.11 7 15 2 17 0.299 8.0 0.88

0.1100 850.24 7 15 1 16 0.300 8.0 0.564

0.1250 873.15 7 16 1 17 0.298 5.0 0.423

0.1375 873.64 6 15 2 17 0.297 5.0 0.303

0.1900 899.41 6 15 1 16 0.297 3.0 0.157

0.2050 886.07 6 15 1 16 0.298 3.0 0.125

0.7000 752.84 6 15 0 15 0.299 1.0 0.032

0.8000 743.89 6 15 0 15 0.300 0.0 0.0

Table 14.2: Characteristics of TpT (minsplit: 50) depending on the time penalty

Figure 14.13: Characteristics of TpT (minsplit: 50) depending on the time penalty

Among all the different TpTs in table 14.2, we can discuss which one minimises the tree cost.

First of all, we see here that the trees with γ = 0 and γ →∞ are not the best in terms of global

cost. This is a critical result: γ = 0 is the case where the last observed observation points are

quickly considered whereas early periods are not really considered, and high γ represents the

case where a tree is grown only on the baseline values of all time-varying covariates. Thus, TpT
shows that considering the time in the splitting process improves the global purity of the tree,

it better differentiates between individuals with different outcomes and trajectories. In terms of
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interpretability, Figure 14.14 shows that the optimal TpT is a compromise between small TpTs
with time-distant splits and a large baseline tree without any temporal information. Whole-page

versions of those trees can be found in Appendix D.3.3.

Figure 14.14: TpTs with γ = 0, γ = 0.035 and γ →∞, respectively

An important temporal dependence that can be learned from the tree is the fact that there exists

an incentive not to lapse before eight years of seniority. It is clearly depicted in the optimal TpT
- γ = 0.035 - as the duration leaves generated by splits occurring at times≥ 8 contain a majority

of policyholders that did not lapse. It means that regardless of their age, subjects with a seniority

≤ 8 years do not lapse. The TpT with no time penalty - γ = 0 - can capture the same temporal

dependence for splits that occur immediately after 8 years for older PH but fails to do so for

younger ones. This is explained by the fact that for the latter, the unpenalised TpT quickly finds

an excellent split at time t = 15, which prevents splits around 8 years from being found. This is

a compelling argument in favour of a time penalty. Furthermore, the TpT with a very high time

penalty produces a tree that only splits at time t = 0, thus no temporal insights can be found

with it. If we were to conclude from such a tree, we could say that Age is the most important

covariate, and allow for a good partitioning ofD but we cannot have any temporal analysis. This

is an argument in favour of TpT and the suggested γ selection process.

14.4.3 Pathways visualisations

In terms of data mining and clustering, let us focus on the optimal TpT obtained in the previous

section and depicted in Figure 14.15. In the same way a decision tree is a representation of all

observations in a cross-sectional dataset, a TpT is a complete representation of a longitudinal

one and we can highlight the pathway of any given policyholder in the tree. Unlike any other

longitudinal tree-based model, any individual has a unique continuous trajectory in the tree.

The pathways of five policyholders selected at random from our dataset are represented in the

following TpT.
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Figure 14.15: Individual longitudinal trajectories in the optimal TpT (minsplit = 50)
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Thus, the longitudinal dataset and all individual timelines can be easily represented as a parti-

tioning. All PHs are represented on the y-axis and the region of the covariate space where they

belong changes as a function of time, on the x-axis. In this example, the 18 leaves of Figure 14.15

correspond to the 18 final regions of Figure 14.16, as t→∞.

Figure 14.16: Global timeline and individual longitudinal trajectories

The numbers in each region of Figure 14.16, as well as their heights, are the number of PH they

contain, and the five individual trajectories represented as pathways in the tree correspond to

the five horizontal lines within the global timeline. Let us take a few examples to understand this

Figure. In the TpT displayed in Figure 14.15, 520 policyholders are older than 62.5 years old, at

subscription, they all go from the root to the first right node of the tree. At that point, we see

the trajectories of three policyholders (depicted in light blue, red and brown dashed lines) taking

that path to the right. Their trajectories spread after the next split at t = 1. Similarly, those 520

PHs can be found in the lower region of Figure 14.16, with t ∈ [0, 1] on the y-axis. The light

blue, red, and brown dashed paths can be found in that region. After that, when t > 1, these
PHs’ trajectories are never in the same region again, the same way they can never be found in

the same node of the corresponding TpT. This type of visualisation leads to a better analysis of

the periods where changes in the outcome can occur.

14.5 Conclusion, limitations and future work

14.5.1 Conclusion

This paper exhibits TpT, a new tree-based data-mining algorithm that accounts for time-varying

covariates through time-penalised splitting criteria. Our methods handle time-varying covari-

ates as well as longitudinal target variables inherently. Contrary to existing approaches, it does

not need workaround strategies such as the pseudo-subject method and provides a tree that sepa-

rates “complete individuals”, as each subject covariates trajectory corresponds to a single unique

trajectory in the final tree. Pruning strategies were proposed and tested with real datasets and

illustrative examples. The algorithm proves to have appealing data-mining and visualisation

potential in various fields that could be explored more deeply in the future.
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14.5.2 Limitations and future work

Right away, it is crucial to acknowledge the general limitations of this work, before going into

more technical details. First of all, the need for a thorough investigation into the statistical prop-

erties and theoretical underpinnings of the developed tools is evident to ensure their reliability

and robustness. Such theoretical work is critical and constitutes forthcoming research. Secondly,

conducting comprehensive comparisons of TpT with existing longitudinal techniques, employ-

ing well-studied datasets and consistent indicators is pivotal for a more rigorous evaluation of

the proposed methods. These identified gaps in the current work underscore the necessity for

subsequent research on TpT.

Besides those points, and with the algorithm as it is defined for data-mining purposes, many

improvement paths can be considered:

Firstly, the introduction of a penalised splitting criterion, and thus a penalty parameter could

be discussed more thoroughly. The current multiplicative exponential form of penalisation has

been duly justified but one could explore the effects of different approaches. Other distribu-

tions of the future time cut-off penalties such as Gamma (with parameters α < 1, β ≥ 1 or

α = 1, β > 2), Pareto, Weibull (with parameter k < 1) or Log-logistic (β ≤ 1) could be justified

on concrete examples.

Furthermore, we are aware that the exponential formulation, for example, might downplay con-

nections across time that have substantial time lag arising from delayed after-effects (for example,

an increase in lapses days, weeks, or years after a major economic event or after a new regula-

tion). In that case, we argue that the optimal formulation of the time penalty function should

vary depending on the intended application and the anticipated lagged effects.

Moreover, in the algorithm as it stands, every point in time can be considered for a potential cut-

off; some time-horizon limit where distant splits would simply be ignored would have an impact

on the shape of the final tree. Eventually, the possibility of a penalty parameter that changes

along the growth of the tree is yet to be explored. In all those scenarios, the penalty parameter

affects the width and length of the final tree and can even be interpreted as a pre-pruning pa-

rameter. The properties of that pre-pruning as well as the choice of an optimal γ are yet to be

discussed. On a final note, we do not know if any technical properties (see Breiman 1996; Buntine

and Niblett 1992) of the penalised splitting criterion still hold. That knowledge will certainly not

affect the concrete applications of TpT but is more of a theoretical interest.

Secondly, we showed in illustrative applications that time-outliers can be easily miscategorized

as the TpT can send them early in one direction of the tree from which they will not escape. In

addition to that, those observations are likely to end up being isolated in a leaf if the stopping

rules allow it, thus creating either very heterogeneous terminal leaves, or sparse duration leaves.

On the one hand, it forces observation into an early path that may not be consistent with later

observations. On the other hand, this behaviour is linked to an abrupt change of the covariates

and target variable trajectories in time, which is a discriminating feature that can justify that

such subjects end up in a specific leaf. We see two ways to handle this specific property:

• A first idea would be to modify the TpT algorithm to make it less greedy. Instead of

choosing the best split at each node, we could consider finding the best sequence of several

consecutive splits. This multi-step ahead strategy would ensure that abrupt changes in

covariates in the future are anticipated in early splits. In cases where the penalty parameter

is low, this approach also ensures that the TpT does not grow too fast with time.

• Another innovative solution is to introduce the possibility for an outlier in a node to tele-
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port into another one, at a similar depth/split time in the tree. For instance, if it so happens

that a subject trajectory suddenly becomes significantly different from the other ones in

the same node, it can be clever to acknowledge that it is no longer consistent to keep it in

the said node. This solution has drawbacks: it requires testing for outliers in every node,

at every step. If one is found, it can only be teleported if another node within which the

subject would not be an outlier is found. Moreover, it is a straightforward solution for

data mining but other adaptations are necessary if TpT is to be used for predictive tasks.

Despite this, it would still ensure individual trajectories for every subject in the tree and it

would consolidate the global within-node homogeneity.

Other probabilistic approaches could help represent individual paths for circumstances where

subjects fall down incorrect trajectories early on (with an estimation of the uncertainty) or where

subjects fall in sparse duration leaf (with the projection of the covariates beyond the duration of

the observed subject).

Then, our last point raises another capital question: the applications shown in Section 14.4 only

exhibit the potential of TpT for clustering tasks with uncensored data; can it be adapted to pre-

diction ones? And can it be adapted to censorship?

In our context, a prediction is an estimation of a subject’s target variable y(i) at a time t, given its

covariate history up to t. An obvious research path in that direction is to mimic the example of

CART. For a subject in node g, predicting the mean of the target variable at time t of all subjects
emerging from node g is to be tried. It perfectly translates in terms of interpretability: the predic-

tion of an outcome at time t for individual i is the mean of the outcomes at time t of all subjects
taking the same trajectory in the tree. There are several obvious drawbacks to this approach:

there needs to exist observations of other subjects at time t. And even if some exist, the variance

of the prediction is directly linked to the number of such subjects. There are also good reasons

to think that survival analysis can be carried out directly under the TpT framework. Indeed, for

data mining purposes, subjects are distributed in the final tree considering their last observed

time. Censorship and event occurrences are visible in the duration nodes gt. Adapting TpT
for prediction tasks in a survival context would require additional work to account for censor-

ship (by weighting the censored observations by the inverse probabilities of censoring weights

(IPCW) in the splitting criterion, see Vock et al. 2016), but this specific topic is not in the scope of

our paper. Exploring the properties and predictive performance of this approach is left as future

work and other methods such as fitting a longitudinal model
7
at every node, not for splitting but

for prediction purposes are also studied.

Eventually, if prediction is made possible in the future, exploring the performance of ensemble

methods forTpT looks like a reasonable next step. Such approaches are in contradiction with the

research of interpretability that motivated TpT, but competitive predictive performance could

justify them.

Within the specific context of this thesis, we can add some broader thoughts. The elaboration

of the original article on which this part is based naturally arose from the gaps detected in the

longitudinal tree-based models’ literature for data mining and the potential use of TpT for actu-

arial applications. Nevertheless, similar research problems also emerged from different origins,

and answer different research problems. For instance, sequence analysis in social science (see

Liao et al. 2022) or time-sequence/clinical pathway/treatment sequence analysis in the medical

field whether its purpose is data visualisation (see Prodel et al. 2020) or data-mining (see Augusto

7

A mixed effect model in regression or a joint model in survival setting for instance
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et al. 2016; De Oliveira et al. 2020; Chouaid et al. 2022) also deal with individual trajectories of

subjects with time-varying features. Such topics are closely related to our work and demonstrate

a broader interest in analysing time-varying behaviours in any decision-making field. The re-

cent work of W; Yao et al. 2022 (specifically appendices A and B) suggests a survival method that

yields a decision tree that splits along covariates and time points. Such a tree and its similarity

with a TpT can be observed in Figure 14.17. The derivation of the survival function estimate is

described in Appendix B. Appendix A displays a medical application that analyses the COVID

survival probabilities of various groups and how such a tree allows to update their survival func-

tions dynamically. This could be adapted to TpT for survival prediction purposes and future

actuarial research could benefit from such works.

Then, even if references for the exponential penalisation of time-distant splits have been sug-

gested in Section 14.3.1, links to other tree-like structures with an exponential design have been

made through discussion with other researchers on that topic. Specifically, links between TpT
and Yule Processes (see Athreya and Ney 2004, chapter 3, section 11) or Mondrian trees (see Lak-

shminarayanan 2016, chapter 5) could be explored in the future.

Eventually, the consistency results depicted in Section 4.2.3 for TBMs trained on cross-sectional

datasets could be extended for TpT. As a matter of fact, the splitting criterion at each node is

evaluated at a given time point, thus on independent observations and a single deep TpT can be

studied as a concatenation of numerous time-invariant shallow CART. Thus, given a sufficiently

large training set, we obtain sufficiently deep concatenated CARTs, all consistent for a fixed time.

Conditions for the consistency of TpT, in the sense that the trajectory of any individual along

the tree tends to a minimal classification error at each time step, could be derived. The mathe-

matical work that consists of extending the consistency results of cross-sectional TBMs to TpT
constitutes future research.

Figure 14.17: Yao et al. survival decision tree, taken from W; Yao et al. 2022
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15. Final words

The purpose of our conclusion is not to detail once more the contributions of this thesis. In-

deed, these have already been discussed in the abstracts, the introductions and conclusions of

each part. We propose in this general conclusion a very brief reminder of the different themes

addressed in each part of the thesis, and the way in which they are articulated to tell a coherent

story. We then propose some general research perspectives that align with the work presented

and have not been specifically explained in the conclusions of each part.

This thesis focuses on new frameworks, methodologies, and algorithms to analyse lapse be-

haviour in life insurance. It aims to include temporal dynamics of the data in policyholder-

centred modelling approaches. Parts I and II are introductory parts of the thesis arguing why

and how the insurance sector could benefit from customer-centred methods using ML tools that

allow a time-dependent analysis. Recent advancements in ML have significantly enhanced the

efficiency of predictive models, leading to novel uses across various sectors. Nonetheless, the in-

surance industry struggles to work extensively with these innovative tools. On the one hand, it is

due to its fundamental role in safeguarding society from economic losses: any decision-making

process in insurance potentially affects significantly policyholders’ lives. On the other hand, it is

also a consequence of the stringent regulations, implemented to ensure the equitable treatment

of all individuals. These aspects underscore the necessity of explainability and interpretabil-

ity in insurance-related decisions. Moreover, these points stress the need for customer-centred

strategies, firstly tomeet the needs and expectations of PHs, and then to better identify individual

behaviours and their consequences on the insurer’s profitability. Part III introduces a new frame-

work and gives tools for managing lapses in a life insurance portfolio. The temporal dimension

is seized here with the use of survival models and the analysis of time-to-event outcomes. Part

IV further improves on this lapse management strategy framework by allowing the insurer to

use the complete historical data of the policyholders to increase the precision of its predictions,

thus allowing for a deeper inclusion of time in the framework. Eventually, Part V suggests an

innovative way to adapt decision tree algorithms to longitudinal data, providing new ways to

visualise and represent the data.

The research perspectives on the general study of temporal dynamics and the use of longitu-

dinal data in insurance are significant. The use of ML approaches and longitudinal data is rising,

yet still a its commencement. Such techniques can be more difficult to implement, necessitate

more computation power, and must convince insurers that they lead to better decisions, in terms

of prediction accuracy, interpretability and visualisation. This is what we want to show in this

thesis: there could be potential to leverage these emerging modelling techniques while still com-

plying with the distinct needs of the insurance industry. We hope that our research as well as

future works that will follow will participate in bridging the gap between academic discoveries

and practical applications in the insurance sector.
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The research perspectives on the modelling approaches for longitudinal analysis are numerous.

First of all, a major parametric tool for longitudinal analysis has been completely ignored in this

thesis: joint models, a powerful technique allowing for the joint analysis of a survival outcome

and time-varying covariates. It can handle several time-varying features and competing risks

(see van Niekerk, Bakka, and Rue 2021). The book of Rizopoulos 2012 is a great introduction

to this topic and it has already been considered for actuarial purposes and churn analysis (see

Ascarza and Hardie 2013). A machine learning adaptation of joint modelling could be consid-

ered, by growing a mob tree (see Section 4.2.1) that fits a joint model at each child node, one

can obtain a decision tree that separates individuals based on their differences both in terms of

survival profile and longitudinal features and yield predictions for the survival probabilities and

the future values of the longitudinal covariates. This approach will constitute future work.

Secondly, we decided to tackle our research problems with tree-based ML techniques, as argued

in Section 1.3. Despite the opposition to the use of DL for tabular analysis, one might think of

using NN in the framework we proposed. We do not see it as a priority as it would further hinder

the interpretability of our methodologies and require greater computation capabilities without

the guarantee of improved results for insurance applications. That being said, several studies

have shown the potential of NN for insurance applications (see Wuthrich 2019), churn predic-

tion in other sectors (see Tsai and Lu 2009; Zoric 2016), when adding non-tabular data such as

text analysis (see De Caigny et al. 2020), or in combination with tree-based models (see Li, Xia,

and Zhang 2023 or Holvoet, Antonio, and Henckaerts 2023). We have reasons to believe that

neural networks indeed serve as excellent alternatives for processing unstructured text or image

data, but such analyses are perspectives beyond the scope of this thesis. Henckaerts 2021 and

Holvoet, Antonio, and Henckaerts 2023 suggested another outlook of NNs: they could be used as

an adjustment model on top of a baseline, more interpretable, model. It is a promising approach

for pricing, but could also be used for lapse analysis as it can increase predictive performance

without conceding too much explainability from the baseline model.

As I conclude this journey through statistics and probabilities, I’m confident that there’s much

room to improve this research, whether by expanding it or addressing its flaws and uncertain-

ties. While my contribution may seem small, I would like to end this work as it had begun: by

recalling the wisdom of a great figure of science.

“ The worthwhile problems are the ones you can really solve or help solve, the ones

you can really contribute something to. [...] No problem is too small or too trivial if

we can really do something about it.

Richard P. Feynman”
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A. General Appendix

A.0.1 Permutation test

A permutation test, also referred to as a re-randomisation or shuffle test, stands as an exact

statistical method that operates based on disproving a hypothesis. It’s employedwhen examining

two or more samples with, a priori, distributions F andG to test if they originate from the same

distribution. The null hypothesis, denoted as

H0 : F = G,

assumes no distinction between the sample distributions. Under this premise, the test statistic’s

distribution is determined by calculating all potential values resulting from rearrangements of

the observed data, making permutation tests a form of resampling technique.

Permutation tests are interesting as they are non-parametric and only require the exchangeability

assumption: given any permutation function π(·), it is assumed that(
x1, x2, . . . , xN

) d
=
(
xπ(1), xπ(2), . . . , xπ(N)

)
.

The notion of exchangeability plays a crucial role, ensuring that the labels or treatments can be

interchanged without affecting the test outcomes. Consequently, permutation tests yield precise

significance levels under this condition, enabling the derivation of confidence intervals.

Essentially, these tests generate surrogate data by permuting the original observations, reflect-

ing the initial treatment allocation in experimental designs. Originating from the works of Fisher

1935 and Pitman 1937; Pitman 1938, permutation tests deviate from traditional statistical tests as

they do not rely on theoretical probability distributions. They offer an approach that generates

the distribution of a chosen test statistic under the assumption that no distinction exists between

groups based on the measured variable, providing an alternative to parametric tests by deriving

p-values from sample-specific permutation distributions rather than theoretical assumptions.

A.0.2 Pearson’s chi-square test

Pearson’s chi-square test is a statistical method used to either determine the fit of a distribution

or if there is a significant dependence between categorical variables. Most notations of this sec-

tion are directly borrowed from the Pearson’s chi-squared test Wikipédia page 2023.

When used to test for the fit of a given distribution, the value of the test statistic is given by

χ2 =
n∑

i=1

(Oi − Ei)
2

Ei
= N

n∑
i=1

(Oi/N − pi)2

pi
,

or

χ2 =
n∑

i=1

O2
i

Ei
−N,
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where:

• χ2 = Pearson’s cumulative test statistic, which asymptotically approaches a χ2
distribu-

tion,

• Oi = the number of observations of type i,

• Ei = Npi = the expected (theoretical) count of type i, asserted by the null hypothesis

that the fraction of type i in the population is pi,

• n = the number of cells in the table.

The chi-squared statistic can then be used to calculate a p-value by comparing the value of the

statistic to a chi-squared distribution. The number of degrees of freedom is equal to the number

of cells n, minus the reduction in degrees of freedom, p.

When used as a test for statistical independence (also known as a test of homogeneity), it as-

sesses whether the observed frequencies of categorical data differ significantly from the expected

frequencies under a null hypothesis of no association between the variables. The test involves

comparing observed frequencies in a contingency table (which cross-tabulates the categorical

variables) with the frequencies that would be expected if the variables were independent. The

value of the chi-square statistic involves calculating the sum of the squared differences between

observed and expected frequencies, divided by the expected frequencies. The contingency ta-

ble contains r rows and c columns, and the expected frequency for a cell of the table, given the

hypothesis of independence, is

Ei,j = Npi,·p·,j ,

where

pi,. =
Oi,·
N

=
c∑

j=1

Oi,j

N
,

is the proportion of type i observation, ignoring the column attribute (fraction of row totals), and

p·,j =
O·,j
N

=

r∑
i=1

Oi,j

N
,

is the proportion of type j observation ignoring the row attribute. The value of the test statistic

is then given by

χ2 =
r∑

i=1

c∑
j=1

(Oi,j − Ei,j)
2

Ei,j
,

= N
∑
i,j

pi·p·j

(
(Oi,j/N)− pi· · p·j

pi·p·j

)2

.

The null hypothesis for the chi-square test asserts that there is no relationship between the cate-

gorical variables being studied, and the alternative hypothesis corresponds to the variables hav-

ing an association or relationship where the structure of this relationship is not specified.

A.0.3 Bonferroni correction

The Bonferroni correction is a statistical method for correcting the significance threshold in

multiple comparisons. The American mathematician and statistician Olive Jean Dunn worked

on confidence intervals in biostatistics and originally developed the Bonferroni correction as a
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solution to the problem of multiple comparisons. The method is somewhat wrongfully named

after the Italian mathematician Carlo Emilio Bonferroni, although he was not its original author.

The correction procedure works as follows. Let H1, . . . ,Hm be a family of m hypotheses and

p1, . . . , pm their corresponding p-values. Let m be the total number of null hypotheses, and let

m0 be the number of true null hypotheses (a priori unknown). The family-wise error rate (FWER)

is the probability of rejecting at least one trueHi, that is, of making at least one type I error. The

Bonferroni correction rejects the null hypothesis for each pi ≤ α
m , thereby controlling the FWER

at ≤ α. Proof of this control follows from Boole’s inequality, as follows:

FWER = P

{
m0⋃
i=1

(
pi ≤

α

m

)}
≤

m0∑
i=1

{
P
(
pi ≤

α

m

)}
= m0

α

m
≤ α.

This control does not require any assumptions about dependence among the p-values or about

how many of the null hypotheses are true. It is the simplest correction method, although it is

conservative as it carries a substantial risk of type II error. Indeed, this method does not take into

account some information, such as the distribution of p-values for the different comparisons and

has been later extended for those purposes.

A.0.4 Generalised M-Fluctuation Tests

As the mechanisms behind generalised M-Fluctuation tests are too complex to be summarised

in an Appendix subsection, and as their full explanation does not lie within the scope of this

thesis we will not detail them here. However, it is largely complex enough to deserve some more

references in this appendix.

The astute reader can then find all the details about MOB’s inference framework in Zeileis,

Hothorn, and Hornik 2008 but other works such as Merkle and Zeileis 2013 use a more stan-

dard - and accessible - notation as they focus on the maximum likelihood special case. As

stated in Zeileis, Hothorn, and Hornik 2008: “many other test statistics known from the statistics

and econometrics literature are contained as special cases in the rich class of generalised M-

fluctuation tests. Specifically, the residuals-based tests of Kuan and Hornik 1995, the ML score-

based framework of Koning and Hjort 2002 as well as other tests based on F statistics (Andrews

1993; Andrews and Ploberger 1994) are contained. A unifying view is given in Zeileis 2005.”

A.0.5 Lifetime function estimate by Kaplan-Meier

All survival notations being introduced, our focus now turns to the estimation process for S(t).
The first method to estimate S(t) is to model λ(t) by specifying its distribution, a Weibull distri-

bution for instance (see Wang and Hu 2016). Such a model is called “parametric”. On the other

hand, non-parametric estimations exist and consist of deriving an empirical estimate of S(t),
from the observations. The most common non-parametric method that is used throughout this

thesis is the Kaplan-Meier (KM) estimator.

When the data is uncensored, a natural empirical estimator of S(t) is Ŝ(t), the proportion of

individuals with survival times greater than t, or mathematically:

Ŝ(t) = P (T > t) =
1

N

N∑
i=1

I(T (i) > t) (A.1)
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Another approach would be to access S(t) through an estimate of λ(t). Indeed, the instanta-

neous hazard rate can be estimated empirically by the proportion of individuals that experience

the event exactly at time t among the population at risk at that same time:

λ(t) =

∑N
i=1 I(T

(i) = t)∑N
i=1 I(T

(i) ≥ t)
(A.2)

Thus, an estimate of S(t) is given by:

Ŝ(t) =
t−1∏
k=1

[
1− λ(k)

]
=

t−1∏
k=1

[
1−

∑N
i=1 I(T

(i) = k)∑N
i=1 I(T

(i) ≥ k)

]
(A.3)

However, in the presence of censorship, such estimates must be adjusted. A generalisation of

Equation A.3 for censored data has been obtained by Kaplan and Meier 1958 and is given by:

Ŝ(t) = P (T > t) =
∏

i:T (i)≤t

[
1− d(i)

n(i)

]
(A.4)

where d(i) is the number of events at time T (i)
, and n(i) is the number of individuals at risk at

time T (i)
.

Furthermore, the use of the Greenwood variance estimate (see Greenwood 1926) and the as-

sumption od asymptotic normality for Ŝ(t) allows to derive a confidence interval for Ŝ(t), given
by: (

Ŝ(t)± z1−α/2 · σ̂/
√
(n)

)
, (A.5)

Or, to ensure that the interval is bounded between 0 and 1, it can be transformed as:(
Ŝ(t)± ez1−α/2· σ̂

Ŝ(t)lnŜ(t)

)
. (A.6)

The KM estimator is widely used in survival analysis and proves to be useful for simple sur-

vival probability estimations. It is nevertheless limited by the fact that it cannot take covariates

in consideration while parametric survival models or the Cox proportional hazards model (see

Section A.0.7) can.

A.0.6 Log-rank test (Mantel–Cox)

The survival function S(t) can be defined among several groups. Survival probabilities can be

derived for men and women for instance, or among different age classes. A natural question that

arises is to find a statistical test to estimate if two survival functions are significantly different.

In the case of two groups, we denote S1(t) and S2(t) are the survival functions for groups 1

and 2 respectively. If there is no censored observation, any rank test (the Wilcoxon rank sum

for instance) can be used. In the presence of censoring, however, the differences in risk profile

regarding survival can be tested between these two groups using the log-rank test (or Mantel-

Cox test).Harrington and Fleming 1982. We find it relevant to explicit the mechanisms of this

statistical test, as it is internally used in most survival tree-based models, a critical subject of this

thesis that will be discussed in Section 5.1.

The hypothesis of the log-rank test are:
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• H0 : S1(t) = S2(t),∀t

• H1 : S1(t) ̸= S2(t) for at least one t

The log-rank test compares the number of events observed in each group with the number of

events expected under the H0 hypothesis. The test statistic is an χ2
distribution with one degree

of freedom.

To construct a test statistic, let t(1), t(2), . . . , t(k) be the distinct ordered event times in groups 1

and 2 combined, letO1,i andO2,i be the numbers of observations just before time t(i) in samples

1 and 2, with Oi = O1,i +O2,i. Finally, let δ1,i be a variable that takes the value 1 if the event at
time t(i) occurs in sample 1, and 0 otherwise. Then, the log-rank (LR) test is given as:

Zlog−rank =

∑k
i=1 δ1,i −

∑k
i=1

O1,i

Oi√∑k
i=1

O1,iO2,i

O2
i

(A.7)

By the central limit theorem, the distribution of Zlog−rank converges towards a standard normal

distribution as k approaches infinity and therefore can be approximated by the standard normal

distribution for a sufficiently large k.
The null hypothesis can thus be rejected if 2P (N (0, 1) ≥ Zlog−rank) ≤ 0.05.

A.0.7 Cox-Model

One of the most common survival models is the Cox proportional hazard (CPH) model (Cox

1972). It postulates that the hazard function can be modelized as the product of time-dependent

and covariate-dependent functions.

The hazard function at time t for subject i with covariate vector Xi, under Cox proportional

hazard model can be expressed as:

λ(t|X1
i , X

2
i , . . . )︸ ︷︷ ︸

hazard function

= λ(t|Xi) =

baseline hazard︷ ︸︸ ︷
λ0(t) e

log-partial hazard︷ ︸︸ ︷(
x(i) · β(i)i

)
︸ ︷︷ ︸

partial hazard

(A.8)

It is crucial to note that in this model, the hazard function is the product of the baseline hazard,

which only varies with time, and the partial hazard, which only varies depending on the covari-

ates.

The parameters of this model are the β, and they can easily be estimated with a maximum like-

lihood approach. Their estimation can be carried out without having to model λ0(t) - which is

why CPH is considered semi-parametric.

A Cox model can be fit in R, using the packages survival and timereg (see Scheike and

Zhang 2011), and in Python, with the library lifelines (see Davidson-Pilon 2019).

A.1 Competing risk framework

In practice, survival analysis is not limited to a single event, since subjects are likely to be at

risk from several events at the same time, in contrast to multi-state models (see Andersen and

Keiding 2002) where the transition between the different events is possible. When studying a

cyclical event of interest such as death, for example, the different causes are in competition (or
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concurrence), and then when the subject dies from one cause such as cancer, he cannot die from

another. There are several regression models to estimate the global hazard and the hazard of

one risk in settings where competing risks are present: modelling the cause-specific hazard and

the subdistribution hazard function. They account for competing risks differently, obtaining

different hazard functions and thus distinct advantages, drawbacks, and interpretations. Here,

we will introduce those approaches’ theoretical and practical implications and justify which one

we will use in our modelling approaches.

A.1.1 Cause-specific approach

In cause-specific regression, each cause-specific hazard is estimated separately, in our case, the

cause-specific hazards of lapse and death, by considering all subjects that experienced the com-

peting event as censored. Here, t is the traditional time variable of a survival model, with t = 0
being the beginning of a policy. It is not to be confused with the use of t in Sections 8.3 and 8.4.

We remind that JT = 0 corresponds to an active subject that did not experience lapse JT = 1 or
death JT = 2. The cause-specific hazard rates regarding the j-th risk (j ∈ [1, . . . J ]) are defined
as

λT,j(t) = lim
dt→0

P (t ≤ T < t+ dt, JT = j | T ≥ t)
dt

.

We can recover the global hazard rate as λT,1(t) + · · ·+ λT,J(t) = λT (t), and derive the global

survival distribution of T as

P (T > t) = 1− FT (t) = ST (t)

= exp

(
−
∫ t

0
(λT,1(s) + · · ·+ λT,J(s)) ds

)
.

This approach aims at analysing the cause-specific “distribution” function: FT,j(t) = P (T ≤ t, JT = j).
In practice, it is called the Cumulative Incidence Function (CIF ) for cause j and not a distribu-

tion function since FT,j(t) → P (JT = j) ̸= 1 as t → +∞. By analogy with the classical

survival framework, the CIF can be characterised as FT,j(t) =
∫ t
0 fT,j(s)ds

1
, where fT,j is the

improper
2
density function for cause j. It follows that

fT,j(s) = lim
dt→0

P (t ≤ T < t+ dt, JT = j)

dt
= λT,j(t)ST (t).

The equation above is self-explanatory: the probability of experiencing cause j at time t is simply

the product of surviving the previous time periods by the cause-specific hazard at time t. We

finally obtain the CIF for cause j as

FT,j(t) =

∫ t

0
λT,j(s) exp

(
−
∫ s

0
λT (u)du

)
ds.

There are several advantages to that approach. First of all, cause-specific hazard models can be

easily fitwith any classical implementation of CPH by simply considering as censored any subject

that experienced the competing event. Then the CIF is clearly interpretable and summable

P (T ≤ t) = FT,1(s) + · · · + FT,J(s)
3
. On the other hand, the CIF estimation of one given

cause depends on all other causes: it implies that the study of a specific cause requires estimating

1

We suppose that T has a continuous distribution

2

Because derived from the CIF , an improper cumulative distribution function

3

unlike to the function 1− exp
(
−
∫ t

0
λT,j(u)du

)
, when the competing events are not independent.
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the global hazard rate and interpreting the effects of covariates on this cause is difficult. Indeed,

part of the effects on a specific cause comes from the competing causes, but in our setting, we are

only interested in the prediction of the survival probabilities, not their interpretation as such.

A.1.2 Subdistribution approach

We have introduced it at the beginning of this section; another approach is often considered to

analyse competing risks and derive a cause-specificCIF . This other approach called the subdis-

tribution hazard function of Fine and Gray regression, works by considering a new competing

risk process τ . Without loss of generality, let’s consider death as our cause of interest,

τ = T × 1JT=2 +∞× 1JT ̸=2.

It has the same as T regarding the risk of death, P (τ ≤ t) = FT,2(t) and a mass point at infinity

1−FT,2(∞), probability to observe other causes (JT ̸= 2) or not to observe any failure. In other

words, if the previous approach considered every subject that experienced competing events as

censored, this approach considers a new and artificial at-risk population. This last consideration

is made clear when deriving the hazard rate of τ ,

λτ (t) = lim
dt→0

P (t ≤ T < t+ dt, JT = 2 | {T ≥ t} ∪ {T ≤ t, JT ̸= 2})
dt

.

Finally, we obtain the CIF for the risk of death as

FT,2(t) = 1− exp

(
−
∫ t

0
λτ (s)ds

)
.

This subdistribution approach resolves the most important drawback to cause-specific regres-

sion, as the coefficients resulting from it do have a direct relationship with the cumulative inci-

dence: estimating theCIF for a specific cause does not depend on the other causes, whichmakes

the interpretation of CIF easier. The subdistribution hazard models can be fit in R by using the

crr function in the cmprsk package or using the timereg package. Still, to our knowledge,

there is no implementation of a Fine and Gray model in Lifelines or, more generally, Python. We

can also note that these two approaches are linked,Putter, Schumacher, and Houwelingen 2020

and the link between λτ (t) and λT,j(t) is given by

λτ (t) = rj(t)λT,j(t), with rj(t) =
P (JT = 0)
J∑

p ̸=j

P (JT = p)

.

In other words, if the probability of any competing risk is low, the two approaches give very

close results.
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B. Appendix of the first article
(chap. 8)

B.1 Survival analysis results

The quantity r
(i)
lapser(t) represents the probability that the policy of subject i is still active at time

t, given that it was active at its last observed time. Predicting the overall conditional survival

with the competing risks, in that case, can be achieved by creating a combined outcome. The

policy ends with death or lapse, whichever comes first, and to compute rlapser , we recode the

competing events as a combined event. In terms of statistical guarantees, this approach is com-

patible with any survival analysis method.

In the following sections of this appendix, r
(i)
acceptant(t) indicates the probability of survival for

subject i at time t given that it will not lapse. In other words, it is the survival probability re-

garding only the risk of death. As detailed in Section 8.4.1, this corresponds to the cause-specific

survival probability for death. It is to be noted that the density from which we derive our sur-

vival probabilities is improper as it derives itself from theCIF , which is not a proper distribution
function.

1
. Therefore, any conclusion about those probabilities should be drawn with care. Sim-

ilarly to rlapser , covariates selection and tuning are performed by minimising AIC.

All graphs representing survival curves below are plotted with the same axis. The x-axes are the

time in years, the y-axes represent the survival probability.

B.1.1 Cox-model

We first decide to estimate survival with a Cox Proportional hazard model with a spline baseline

hazard from the Python library Lifelines. Covariate selection and tuning are performed by min-

imising AIC. Here is what racceptant, the vector of cause-specific probabilities, looks like, and we
can compare it to rlapser on some subjects.

1

as it does not tend to 1 as t goes to +∞

190



Figure B.1: 10 policyholders’ survival curve for

racceptant with Cox model

Figure B.2: 10 policyholders’ survival curve for

rlapser
The effect of various covariates on the survival outcome can be found below.

Figure B.3: Coefficient plot for rlapser

Figure B.4: rlapser trajectories for different prod-
ucts

Figure B.5: rlapser trajectories by gender

Figure B.6: rlapser trajectories for different ages
Figure B.7: rlapser trajectories for different face
amounts
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Figure B.8: Coefficient plot for racceptant

Figure B.9: racceptant trajectories by gender

Figure B.10: racceptant trajectories for different
ages

Figure B.11: racceptant trajectories for different
face amounts

B.1.2 RSF

We obtain better results than Cox in terms of concordance index at the cost of very high compu-

tation time for one training with one set of parameters - 5 days without parallelisation, 4 hours

with - compared to a few seconds for Cox model.

Some of the results we obtain are displayed below.

Figure B.12: 10 policyholders’ survival curve for

racceptant with RSF

Figure B.13: 10 policyholders’ survival curve for

rlapser with RSF

192



Weight Feature

0.3148 ± 0.0064 Age_souscription

0.0100 ± 0.0008 CDI_CD_SEXE_1

0.0091 ± 0.0014 PRODUIT_2

0.0077 ± 0.0006 TOTAL_PREMIUM_AMOUNT

0.0013 ± 0.0004 Nb_Contrats

0.0010 ± 0.0003 PRODUIT_3

Table B.1: Covariates importance for racceptant with RSF

Weight Feature

0.1838 ± 0.0045 Age_souscription

0.0415 ± 0.0018 TOTAL_PREMIUM_AMOUNT

0.0083 ± 0.0011 CDI_CD_SEXE_1

0.0026 ± 0.0013 PRODUIT_2

0.0022 ± 0.0006 PRODUIT_3

0.0020 ± 0.0006 Nb_Contrats

Table B.2: Covariates importance for rlapser with RSF

B.1.3 XGSB

We obtain better results than Cox and slightly better results than RSF in terms of concordance

index at the cost of even higher computation time for one training with one set of parameters -

10h with great parallelisation - compared to a few seconds for the Cox model.

Some of the results we obtain are displayed below.

Figure B.14: 10 policyholders’ survival curve for

racceptant with GBSM

Figure B.15: 10 policyholders’ survival curve for

rlapser with GBSM

Weight Feature

0.3274 ± 0.0071 Age_souscription

0.0104 ± 0.0006 TOTAL_PREMIUM_AMOUNT

0.0100 ± 0.0008 CDI_CD_SEXE_1

0.0025 ± 0.0005 PRODUIT_2

0.0005 ± 0.0001 Nb_Contrats

0.0000 ± 0.0001 PRODUIT_3

Table B.3: Covariates importance for racceptant with GBSM

193



Weight Feature

0.1872 ± 0.0039 Age_souscription

0.0438 ± 0.0020 TOTAL_PREMIUM_AMOUNT

0.0134 ± 0.0014 PRODUIT_2

0.0076 ± 0.0009 CDI_CD_SEXE_1

0.0051 ± 0.0006 PRODUIT_3

0.0011 ± 0.0004 Nb_Contrats

Table B.4: Covariates importance for rlapser with GBSM

B.1.4 Final survival model

The final concordance index scores are displayed below:

Concordance Index

rlapser racceptant

Cox model 69,5% 80,7%

RSF 71,6% 83,7%

GBSM 73,0% 84,1%

Table B.5: Survival models comparison

B.2 Other results

Figure B.16: Correlation between the proportion of non-targeted lapsers and the improvement
2
of

a CLV-augmented LMS

B.3 Considering various statistical metrics

The table below contains the results of the LMSs listed in Table 8.3, evaluated on accuracy, recall,

F1-score and AUC. For every metric, it displays the results of a classification over y(i) tuned and

cross-validated with each of the metrics - respectively

accuracy

y(i) ,

recall

y(i) ,
F1−score

y(i) and

AUC

y(i) - or over

ỹ(i) which is always tuned and cross-validated with RG.
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N° Model

Accuracy Recall F1-score AUC Retention gain RG/target

accuracy

y(i) ỹ(i)
recall

y(i) ỹ(i)
F1−score

y(i) ỹ(i)
AUC

y(i) ỹ(i)
accuracy

y(i)
recall

y(i)
F1−score

y(i)
AUC

y(i) ỹ(i)
accuracy

y(i)
recall

y(i)
F1−score

y(i)
AUC

y(i) ỹ(i)

A-1

CART 92.3% 85.3% 75.7% 18.0% 76.4% 28.9% 85.6% 58.4% 114,661 128,251 135,085 128,251 219,655 4.48 5.13 5.46 5.13 38.20

RF 92.9% 85.4% 74.7% 14.7% 77.7% 24.9% 85.6% 57.0% 232,314 203,821 203,821 203,821 287,884 9.82 8.66 8.66 8.66 56.65

XGB 93.4% 85.8% 79.6% 18.5% 80.0% 30.1% 87.8% 58.8% 243,365 261,553 266,198 266,198 324,952 9.61 10.25 10.55 10.55 54.64

A-5

CART 92.3% 83.6% 76.8% 2.5% 76.7% 4.8% 86.0% 51.1% -514,477 -497,277 -494,414 -497,277 - 112,372 - 20.08 -19.28 -19.21 -19.28 - 86.48

RF 92.9% 83.4% 74.9% 0.6% 77.9% 1.3% 85.7% 50.3% - 323,544 -323,543 -325,110 -323,543 -3,937 - 13.65 - 13.64 - 13.72 - 13.64 -28.28

XGB 93.4% 83.3% 79.8% 0.4% 80.0% 0.7% 87.9% 50.2% - 383,004 -379,736 -379,736 -379,736 0 - 15.14 -14.88 -14.88 -14.88 0

A-25

CART 92.3% 89.2% 76.2% 50.2% 76.7% 60.1% 85.8% 73.6% 4,160,423 4,322,030 4,267,310 4,322,030 3,882,623 162.44 170.53 251.34 251.34 241.06

RF 92.9% 89.5% 75.3% 47.5% 78.0% 60.3% 85.8% 72.7% 4,018,432 3,687,705 3,687,705 3,687,705 3,666,219 169.65 154.49 154.49 154.49 249.54

XGB 93.4% 90.0% 80.1% 51.2% 80.1% 63.0% 88.0% 74.4% 4,455,108 4,633,404 4,578,684 4,633,404 4,410,629 176.09 179.36 180.16 179.36 267.87

Table B.6: Results of representative LMS with various statistical metrics

It is to be noted that regardless of the evaluation metric used for tuning and validation purposes,

the objective function used with XGB to generate those results is always the log-loss function.

Using the area under the ROC curve or the area under the Precision-Recall curve as an objective

function in this boosting algorithm would surely yield better results when trained on y(i) and
even better on the more unbalanced ỹ(i). As stated in Section 8.4.2, this analysis is not within

the scope of our article.

B.4 Complete LMS numerical results

2

Taking the results of XGBoost and excluding LMS n°B-27 that has a very high improvement ratio.
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LMS p δ γ c d T

A-1 2,50% 0,04% 25% 10 1,50% 5

A-2 2,50% 0,04% 25% 10 1,50% 20

A-3 2,50% 0,04% 25% 100 1,50% 5

A-4 2,50% 0,04% 25% 100 1,50% 20

A-5 2,50% 0,04% 5% 10 1,50% 5

A-6 2,50% 0,04% 5% 10 1,50% 20

A-7 2,50% 0,04% 5% 100 1,50% 5

A-8 2,50% 0,04% 5% 100 1,50% 20

A-9 2,50% 0,10% 25% 10 1,50% 5

A-10 2,50% 0,10% 25% 10 1,50% 20

A-11 2,50% 0,10% 25% 100 1,50% 5

A-12 2,50% 0,10% 25% 100 1,50% 20

A-13 2,50% 0,10% 5% 10 1,50% 5

A-14 2,50% 0,10% 5% 10 1,50% 20

A-15 2,50% 0,10% 5% 100 1,50% 5

A-16 2,50% 0,10% 5% 100 1,50% 20

A-17 5,00% 0,04% 25% 10 1,50% 5

A-18 5,00% 0,04% 25% 10 1,50% 20

A-19 5,00% 0,04% 25% 100 1,50% 5

A-20 5,00% 0,04% 25% 100 1,50% 20

A-21 5,00% 0,04% 5% 10 1,50% 5

A-22 5,00% 0,04% 5% 10 1,50% 20

A-23 5,00% 0,04% 5% 100 1,50% 5

A-24 5,00% 0,04% 5% 100 1,50% 20

A-25 5,00% 0,10% 25% 10 1,50% 5

A-26 5,00% 0,10% 25% 10 1,50% 20

A-27 5,00% 0,10% 25% 100 1,50% 5

A-28 5,00% 0,10% 25% 100 1,50% 20

A-29 5,00% 0,10% 5% 10 1,50% 5

A-30 5,00% 0,10% 5% 10 1,50% 20

A-31 5,00% 0,10% 5% 100 1,50% 5

A-32 5,00% 0,10% 5% 100 1,50% 20

LMS p δ γ c d T

B-1 2,50% 0,08% 20% 10 1,50% 5

B-2 2,50% 0,08% 20% 10 1,50% 20

B-3 2,50% 0,08% 20% 100 1,50% 5

B-4 2,50% 0,08% 20% 100 1,50% 20

B-5 2,50% 0,08% 10% 10 1,50% 5

B-6 2,50% 0,08% 10% 10 1,50% 20

B-7 2,50% 0,08% 10% 100 1,50% 5

B-8 2,50% 0,08% 10% 100 1,50% 20

B-9 2,50% 0,20% 20% 10 1,50% 5

B-10 2,50% 0,20% 20% 10 1,50% 20

B-11 2,50% 0,20% 20% 100 1,50% 5

B-12 2,50% 0,20% 20% 100 1,50% 20

B-13 2,50% 0,20% 10% 10 1,50% 5

B-14 2,50% 0,20% 10% 10 1,50% 20

B-15 2,50% 0,20% 10% 100 1,50% 5

B-16 2,50% 0,20% 10% 100 1,50% 20

B-17 5,00% 0,08% 20% 10 1,50% 5

B-18 5,00% 0,08% 20% 10 1,50% 20

B-19 5,00% 0,08% 20% 100 1,50% 5

B-20 5,00% 0,08% 20% 100 1,50% 20

B-21 5,00% 0,08% 10% 10 1,50% 5

B-22 5,00% 0,08% 10% 10 1,50% 20

B-23 5,00% 0,08% 10% 100 1,50% 5

B-24 5,00% 0,08% 10% 100 1,50% 20

B-25 5,00% 0,20% 20% 10 1,50% 5

B-26 5,00% 0,20% 20% 10 1,50% 20

B-27 5,00% 0,20% 20% 100 1,50% 5

B-28 5,00% 0,20% 20% 100 1,50% 20

B-29 5,00% 0,20% 10% 10 1,50% 5

B-30 5,00% 0,20% 10% 10 1,50% 20

B-31 5,00% 0,20% 10% 100 1,50% 5

B-32 5,00% 0,20% 10% 100 1,50% 20

Table B.7: More LMS
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N° time (s) Model % target diff

Accuracy Retention gain RG/target

Improvement
2

y(i) ỹ(i) y(i) ỹ(i) y(i) ỹ(i)

A-1 4949

CART

62,58%

92,3% 85,3% 114 661 219 655 4,48 38,20 91,57%

RF 92,9% 85,4% 232 314 287 884 9,82 56,65 23,92%

XGB 93,4% 85,8% 243 365 324 952 9,61 54,64 33,52%

A-2 6111

CART

26,66%

92,3% 89,8% 7 092 097 6 142 119 277,00 353,83 -13,39%

RF 92,9% 90,2% 6 596 374 5 696 455 278,47 351,02 -13,64%

XGB 93,4% 90,9% 7 308 721 7 432 688 288,92 404,84 1,70%

A-3 4603

CART

93,50%

92,3% 83,3% - 2 187 622 - 8 224 - 85,52 - 31,09 99,62%

RF 92,9% 83,4% - 1 900 265 45 483 - 80,18 194,35 102,39%

XGB 93,4% 83,5% - 2 032 650 77 481 - 80,39 174,44 103,81%

A-4 5555

CART

55,37%

92,3% 86,5% 4 789 814 5 117 844 187,00 577,74 6,85%

RF 92,9% 86,4% 4 463 796 4 255 175 188,47 566,05 -4,67%

XGB 93,4% 86,8% 5 032 706 5 433 366 198,92 610,26 7,96%

A-5 4753

CART

86,72%

92,3% 83,6% - 514 477 - 112 372 - 20,08 - 86,48 78,16%

RF 92,9% 83,4% - 323 544 - 3 937 - 13,65 - 28,28 98,78%

XGB 93,4% 83,3% - 383 004 0 - 15,14 0 100,00%

A-6 5803

CART

44,27%

92,3% 87,9% 335 810 517 224 13,17 39,91 54,02%

RF 92,9% 87,9% 655 350 661 021 27,68 61,13 0,87%

XGB 93,4% 88,6% 654 219 729 493 25,86 58,22 11,51%

A-7 4241

CART

99,09%

92,3% 83,3% - 2 816 759 - 10 205 - 110,08 - 384,04 99,64%

RF 92,9% 83,3% - 2 456 122 1 013 - 103,65 66,30 100,04%

XGB 93,4% 83,3% - 2 659 020 243 - 105,14 15,92 100,01%

A-8 5164

CART

82,78%

92,3% 84,0% - 1 966 473 - 46 323 - 76,83 - 22,31 97,64%

RF 92,9% 84,0% - 1 477 229 253 885 - 62,32 149,67 117,19%

XGB 93,4% 84,1% - 1 621 796 273 243 - 64,14 117,83 116,85%

A-9 4781

CART

77,60%

92,3% 83,7% - 825 372 - 161 100 - 32,19 - 127,87 80,48%

RF 92,9% 83,4% - 384 736 8 596 - 16,22 32,12 102,23%

XGB 93,4% 83,6% - 498 263 22 337 - 19,70 35,47 104,48%

A-10 6075

CART

29,10%

92,3% 89,7% 4 614 513 4 483 831 180,36 266,33 -2,83%

RF 92,9% 89,9% 4 973 929 4 328 724 210,01 280,90 -12,97%

XGB 93,4% 90,7% 5 354 770 5 368 917 211,69 301,57 0,26%

A-11 4506

CART

96,56%

92,3% 83,2% - 3 127 655 - 118 886 - 122,19 - 2 230,39 96,20%

RF 92,9% 83,3% - 2 517 315 1 340 - 106,22 87,71 100,05%

XGB 93,4% 83,3% - 2 774 278 736 - 109,70 52,00 100,03%

A-12 5534

CART

57,93%

92,3% 86,2% 2 312 231 3 310 314 90,36 412,71 43,17%

RF 92,9% 86,1% 2 841 351 3 129 652 120,01 465,74 10,15%

XGB 93,4% 86,6% 3 078 755 3 825 920 121,69 475,53 24,27%

A-13 4640

CART

92,91%

92,3% 83,3% - 1 201 626 - 163 056 - 46,87 - 1 838,44 86,43%

RF 92,9% 83,3% - 717 620 - 5 339 - 30,28 - 354,24 99,26%

XGB 93,4% 83,3% - 875 378 508 - 34,60 16,26 100,06%

A-14 5739

CART

47,12%

92,3% 87,3% - 1 476 651 - 831 019 - 57,49 - 77,99 43,72%

RF 92,9% 86,0% - 380 683 126 532 - 16,03 21,14 133,24%

XGB 93,4% 85,5% - 644 389 29 382 - 25,47 7,10 104,56%

A-15 4216

CART

99,61%

92,3% 83,3% - 3 503 908 - 97 263 - 136,87 - 2 354,34 97,22%

RF 92,9% 83,3% - 2 850 198 0 - 120,28 0 100,00%

XGB 93,4% 83,3% - 3 151 393 0 - 124,60 0 100,00%

A-16 5096

CART

84,46%

92,3% 83,8% - 3 778 933 - 734 773 - 147,49 - 418,58 80,56%

RF 92,9% 83,5% - 2 513 261 8 914 - 106,03 20,13 100,35%

XGB 93,4% 83,6% - 2 920 405 34 492 - 115,47 45,75 101,18%
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A-17 5390

CART

28,74%

92,3% 89,5% 5 100 456 4 899 479 199,11 279,88 -3,94%

RF 92,9% 89,8% 4 635 482 4 226 648 195,69 276,06 -8,82%

XGB 93,4% 90,2% 5 196 736 5 138 253 205,40 299,27 -1,13%

A-18 6452

CART

12,12%

92,3% 91,3% 52 090 240 47 706 070 2 034,15 2 170,64 -8,42%

RF 92,9% 91,9% 46 171 160 42 049 900 1 949,05 2 082,36 -8,93%

XGB 93,4% 92,5% 51 629 950 52 606 740 2 040,95 2 339,70 1,89%

A-19 4913

CART

64,89%

92,3% 85,2% 2 798 173 3 182 143 109,11 481,60 13,72%

RF 92,9% 85,2% 2 502 903 2 743 070 105,69 554,76 9,60%

XGB 93,4% 85,6% 2 920 720 3 438 303 115,40 576,64 17,72%

A-20 6160

CART

29,03%

92,3% 89,6% 49 787 960 45 366 730 1 944,15 2 616,32 -8,88%

RF 92,9% 90,0% 44 038 580 39 947 830 1 859,05 2 547,89 -9,29%

XGB 93,4% 90,6% 49 353 940 49 789 670 1 950,95 2 796,17 0,88%

A-21 5079

CART

51,69%

92,3% 86,8% 482 682 544 887 18,85 53,99 12,89%

RF 92,9% 86,8% 557 090 554 195 23,52 65,17 -0,52%

XGB 93,4% 87,1% 607 670 624 556 24,01 64,79 2,78%

A-22 6199

CART

23,94%

92,3% 90,2% 9 335 438 8 527 444 364,60 454,78 -8,66%

RF 92,9% 90,6% 8 570 307 7 931 029 361,80 460,42 -7,46%

XGB 93,4% 91,2% 9 518 466 9 581 934 376,27 501,56 0,67%

A-23 4601

CART

89,51%

92,3% 83,6% - 1 819 600 135 305 - 71,15 121,80 107,44%

RF 92,9% 83,5% - 1 575 489 159 620 - 66,48 215,65 110,13%

XGB 93,4% 83,7% - 1 668 346 228 226 - 65,99 208,69 113,68%

A-24 5650

CART

50,83%

92,3% 87,0% 7 033 156 7 124 100 274,60 680,08 1,29%

RF 92,9% 87,0% 6 437 729 6 364 477 271,80 711,89 -1,14%

XGB 93,4% 87,4% 7 242 450 7 840 770 286,27 771,71 8,26%

A-25 5379

CART

30,97%

92,3% 89,2% 4 160 423 3 882 623 162,44 241,06 -6,68%

RF 92,9% 89,5% 4 018 432 3 666 219 169,65 249,54 -8,76%

XGB 93,4% 90,0% 4 455 108 4 410 629 176,09 267,87 -1,00%

A-26 6410

CART

12,52%

92,3% 91,3% 49 612 660 45 948 690 1 937,51 2 083,30 -7,39%

RF 92,9% 91,9% 44 548 720 40 814 960 1 880,59 2 029,68 -8,38%

XGB 93,4% 92,5% 49 676 000 50 549 740 1 963,72 2 260,20 1,76%

A-27 4887

CART

66,67%

92,3% 85,1% 1 858 140 2 575 538 72,44 442,86 38,61%

RF 92,9% 85,0% 1 885 853 2 387 018 79,65 531,25 26,57%

XGB 93,4% 85,4% 2 179 093 2 879 880 86,09 544,35 32,16%

A-28 6047

CART

29,42%

92,3% 89,4% 47 310 370 43 168 880 1 847,51 2 519,41 -8,75%

RF 92,9% 89,9% 42 416 140 38 573 620 1 790,59 2 504,61 -9,06%

XGB 93,4% 90,5% 47 399 990 47 812 830 1 873,72 2 721,63 0,87%

A-29 5070

CART

53,79%

92,3% 86,5% - 204 467 - 5 098 - 7,95 - 1,66 97,51%

RF 92,9% 86,1% 163 014 273 435 6,90 40,30 67,74%

XGB 93,4% 86,8% 115 297 248 982 4,55 28,64 115,95%

A-30 6179

CART

24,36%

92,3% 90,3% 7 522 978 7 058 487 293,94 382,06 -6,17%

RF 92,9% 90,6% 7 534 275 7 068 293 318,08 411,80 -6,18%

XGB 93,4% 91,2% 8 219 857 8 265 167 324,94 442,88 0,55%

A-31 4627

CART

90,18%

92,3% 83,6% - 2 506 749 - 139 983 - 97,95 - 121,44 94,42%

RF 92,9% 83,5% - 1 969 564 73 101 - 83,10 111,49 103,71%

XGB 93,4% 83,6% - 2 160 719 76 641 - 85,45 93,28 103,55%

A-32 5679

CART

51,25%

92,3% 86,8% 5 220 695 5 811 833 203,94 583,55 11,32%

RF 92,9% 86,9% 5 401 696 5 269 505 228,08 605,69 -2,45%

XGB 93,4% 87,4% 5 943 841 6 682 230 234,94 670,03 12,42%
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B-1 4778

CART

75,89%

92,3% 84,0% - 627 165 - 148 913 - 24,46 - 65,19 76,26%

RF 92,9% 83,7% - 280 855 11 973 - 11,84 9,57 104,26%

XGB 93,4% 84,1% - 366 103 25 099 - 14,47 12,30 106,86%

B-2 6074

CART

29,70%

92,3% 89,7% 3 862 156 3 397 247 150,95 203,11 -12,04%

RF 92,9% 89,9% 4 127 224 3 550 730 174,26 230,67 -13,97%

XGB 93,4% 90,6% 4 451 686 4 408 819 175,99 250,17 -0,96%

B-3 4528

CART

96,60%

92,3% 83,2% - 2 929 448 - 85 465 - 114,46 - 1 482,06 97,08%

RF 92,9% 83,3% - 2 413 433 3 724 - 101,84 - 108,33 100,15%

XGB 93,4% 83,3% - 2 642 119 9 092 - 104,47 93,79 100,34%

B-4 5476

CART

60,93%

92,3% 85,9% 1 559 874 2 471 262 60,95 329,63 58,43%

RF 92,9% 85,8% 1 994 645 2 517 111 84,26 422,45 26,19%

XGB 93,4% 86,3% 2 175 670 3 089 897 85,99 422,77 42,02%

B-5 4708

CART

84,33%

92,3% 83,4% - 857 439 - 159 856 - 33,45 - 218,16 81,36%

RF 92,9% 83,3% - 484 459 40 - 20,44 7,23 100,01%

XGB 93,4% 83,3% - 596 203 897 - 23,57 46,96 100,15%

B-6 5906

CART

36,63%

92,3% 88,8% 705 721 922 490 27,69 60,21 30,72%

RF 92,9% 88,9% 1 352 182 1 269 349 57,11 97,63 -6,13%

XGB 93,4% 89,6% 1 342 882 1 428 722 53,09 96,76 6,39%

B-7 4400

CART

98,49%

92,3% 83,2% - 3 159 722 - 39 633 - 123,45 - 1 230,61 98,75%

RF 92,9% 83,3% - 2 617 037 1 024 - 110,44 0,56 100,04%

XGB 93,4% 83,3% - 2 872 219 295 - 113,57 19,31 100,01%

B-8 5278

CART

73,18%

92,3% 84,6% - 1 596 562 169 852 - 62,31 41,78 110,64%

RF 92,9% 84,6% - 780 396 637 625 - 32,89 194,52 181,71%

XGB 93,4% 85,0% - 933 133 780 845 - 36,91 188,79 183,68%

B-9 4601

CART

94,12%

92,3% 83,3% - 2 380 789 - 113 444 - 92,86 - 840,25 95,24%

RF 92,9% 83,3% - 1 403 468 317 - 59,21 7,96 100,02%

XGB 93,4% 83,3% - 1 724 731 3 980 - 68,17 149,44 100,23%

B-10 5947

CART

35,98%

92,3% 89,0% - 760 449 429 196 - 29,35 29,80 156,44%

RF 92,9% 88,5% 1 175 540 1 354 131 49,71 118,11 15,19%

XGB 93,4% 89,8% 871 455 1 456 080 34,48 96,25 67,09%

B-11 4229

CART

99,16%

92,3% 83,3% - 4 683 072 - 48 985 - 182,86 - 1 186,22 98,95%

RF 92,9% 83,3% - 3 536 046 0 - 149,21 0 100,00%

XGB 93,4% 83,3% - 4 000 747 0 - 158,17 0 100,00%

B-12 5391

CART

66,76%

92,3% 85,0% - 3 062 732 - 388 289 - 119,35 - 80,44 87,32%

RF 92,9% 84,7% - 957 039 710 688 - 40,29 220,55 174,26%

XGB 93,4% 85,3% - 1 404 561 834 198 - 55,52 163,88 159,39%

B-13 4493

CART

96,30%

92,3% 83,3% - 2 358 179 - 159 922 - 91,98 - 2 793,13 93,22%

RF 92,9% 83,3% - 1 384 098 0 - 58,40 0 100,00%

XGB 93,4% 83,3% - 1 705 577 0 - 67,42 0 100,00%

B-14 5851

CART

42,98%

92,3% 87,8% - 3 251 762 - 1 761 821 - 126,63 - 143,20 45,82%

RF 92,9% 86,4% - 1 013 089 79 273 - 42,69 11,90 107,82%

XGB 93,4% 83,3% - 1 582 006 4 396 - 62,52 287,68 100,28%

B-15 4040

CART

99,67%

92,3% 83,3% - 4 660 462 - 38 969 - 181,98 - 2 075,03 99,16%

RF 92,9% 83,3% - 3 516 676 0 - 148,40 0 100,00%

XGB 93,4% 83,3% - 3 981 592 161 - 157,42 10,53 100,00%

B-16 5182

CART

77,97%

92,3% 84,2% - 5 554 044 - 1 491 522 - 216,63 - 549,23 73,15%

RF 92,9% 83,6% - 3 145 668 52 475 - 132,69 84,54 101,67%

XGB 93,4% 83,3% - 3 858 022 0 - 152,52 0 100,00%
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B-17 5324

CART

32,66%

92,3% 88,9% 3 361 471 3 037 200 131,25 191,31 -9,65%

RF 92,9% 89,3% 3 241 680 2 911 023 136,86 204,43 -10,20%

XGB 93,4% 89,6% 3 596 593 3 546 671 142,15 222,04 -1,39%

B-18 6411

CART

13,83%

92,3% 91,1% 39 860 670 37 695 680 1 556,66 1 778,71 -5,43%

RF 92,9% 91,7% 35 787 050 32 345 100 1 510,72 1 654,32 -9,62%

XGB 93,4% 92,0% 39 908 670 40 886 810 1 577,61 1 848,71 2,45%

B-19 4853

CART

70,34%

92,3% 84,7% 1 059 189 1 813 631 41,25 392,14 71,23%

RF 92,9% 84,8% 1 109 101 1 808 616 46,86 474,33 63,07%

XGB 93,4% 85,0% 1 320 578 2 141 271 52,15 482,34 62,15%

B-20 5973

CART

31,76%

92,3% 89,2% 37 558 390 34 068 550 1 466,66 2 125,97 -9,29%

RF 92,9% 89,4% 33 654 470 30 032 580 1 420,72 2 072,47 -10,76%

XGB 93,4% 90,1% 37 632 650 38 008 480 1 487,61 2 277,17 1,00%

B-21 5228

CART

41,79%

92,3% 87,7% 1 136 879 1 179 837 44,40 92,50 3,78%

RF 92,9% 88,1% 1 276 808 1 188 256 53,91 104,81 -6,94%

XGB 93,4% 88,7% 1 385 145 1 356 864 54,74 104,76 -2,04%

B-22 6296

CART

19,52%

92,3% 90,7% 18 704 980 17 177 190 730,55 852,81 -8,17%

RF 92,9% 91,1% 17 182 100 15 732 340 725,34 859,29 -8,44%

XGB 93,4% 91,5% 19 071 370 19 050 020 753,90 939,00 -0,11%

B-23 4746

CART

81,36%

92,3% 84,1% - 1 165 404 458 223 - 45,60 172,83 139,32%

RF 92,9% 84,0% - 855 770 525 335 - 36,09 288,55 161,39%

XGB 93,4% 84,1% - 890 871 645 445 - 35,26 310,86 172,45%

B-24 5845

CART

40,47%

92,3% 88,2% 16 402 700 15 013 310 640,55 1 093,43 -8,47%

RF 92,9% 88,4% 15 049 520 13 423 040 635,34 1 122,81 -10,81%

XGB 93,4% 88,9% 16 795 360 17 144 260 663,90 1 247,50 2,08%

B-25 5274

CART

37,42%

92,3% 88,6% 1 607 847 1 839 864 62,84 126,33 14,43%

RF 92,9% 88,7% 2 119 067 1 923 982 89,49 152,71 -9,21%

XGB 93,4% 89,2% 2 237 965 2 194 469 88,45 155,54 -1,94%

B-26 6425

CART

14,83%

92,3% 91,1% 35 238 060 32 690 970 1 376,37 1 558,26 -7,23%

RF 92,9% 91,6% 32 835 370 29 986 540 1 386,17 1 543,12 -8,68%

XGB 93,4% 92,0% 36 328 440 36 803 630 1 436,10 1 688,53 1,31%

B-27 4811

CART

73,92%

92,3% 84,3% - 694 436 751 404 - 27,16 226,99 208,20%

RF 92,9% 84,4% - 13 512 1 018 369 - 0,51 356,48 7636,98%

XGB 93,4% 84,7% - 38 050 1 253 252 - 1,55 345,94 3393,68%

B-28 5995

CART

32,61%

92,3% 89,1% 32 935 780 29 342 930 1 286,37 1 847,71 -10,91%

RF 92,9% 89,4% 30 702 790 27 725 620 1 296,17 1 933,38 -9,70%

XGB 93,4% 90,0% 34 052 420 34 390 060 1 346,10 2 094,90 0,99%

B-29 5143

CART

47,03%

92,3% 87,3% - 363 861 55 985 - 14,12 3,38 115,39%

RF 92,9% 87,4% 377 170 488 284 15,95 49,62 29,46%

XGB 93,4% 88,0% 275 772 491 567 10,89 44,89 78,25%

B-30 6243

CART

20,47%

92,3% 90,7% 14 747 500 13 838 380 576,23 690,22 -6,16%

RF 92,9% 91,1% 14 816 830 13 378 460 625,54 743,34 -9,71%

XGB 93,4% 91,5% 16 146 490 16 169 440 638,30 814,80 0,14%

B-31 4730

CART

83,83%

92,3% 83,7% - 2 666 144 - 487 716 - 104,12 - 267,75 81,71%

RF 92,9% 83,7% - 1 755 409 139 545 - 74,05 102,66 107,95%

XGB 93,4% 83,7% - 2 000 244 134 199 - 79,11 130,13 106,71%

B-32 5865

CART

41,41%

92,3% 88,0% 12 445 210 11 693 070 486,23 884,49 -6,04%

RF 92,9% 88,3% 12 684 250 11 381 260 535,54 971,28 -10,27%

XGB 93,4% 88,8% 13 870 470 14 101 470 548,30 1 048,38 1,67%

2

In order to account for negative retention gains, the improvement is computed with an absolute value for the

denominator. This leads to a rather unintuitive improvement measure whenever one of the models yields negative

RG and the other positive RG.
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C. Appendix of the second article
(chap. 12)

C.1 Note on parametric models

This work focuses on the ability of non-parametric tree-based approaches to perform in both

steps of our framework. For comparison’s sake, a semi-parametric survival model had been fit-

ted in Valla, Milhaud, and Olympio 2023; it is important to explain why we did not investigate

such models here. Time-varying Cox-like models also exist and can even take competing risks

into account. They can be compared and yield survival curves for any individual but only up to

their last observed time. Predicting survival probabilities at future time points is not possible. For

the astute reader, a complete implementation of those techniques can be found in the R package

timereg by Scheike and Martinussen 2006; Scheike and Zhang 2011.

Moreover, other prediction biases can appear in the presence of endogenous longitudinal covari-

ates, with Cox-like models Austin, Latouche, and Fine 2019, which is typically our situation. This

is why we decided to leave such modelling approaches out of this paper.

It is to be noted that a statistical learning approach addressing research questions involving the

association structure between longitudinal data and an event time exists: joint models. This

type of modelling technique is primarily used in time-to-event contexts, with censored data and

can handle multiple exogenous and endogenous longitudinal covariates with possibly multiple

competing risks. Joint models outweigh time-dependent Cox models in terms of prediction; by

predicting both the longitudinal trajectories and the survival probabilities simultaneously, it is

possible to compute the conditional probability of surviving later than the last observed time

for which a longitudinal measurement was available. They have been extensively studied and

extended and have proved to yield competitive predictive results for relatively small datasets. A

complete overview of such models can be found in Rizopoulos 2012, and their implementation

is available in R packages JM, JMBayes and JMBayes2. Joint models are performant but

computationally expensive for large datasets and multiple longitudinal covariates or outcomes.

We did not implement this approach in this paper for those reasons and instead implemented

tree-based models handling time-varying covariates that we will compare to tree-based models

with time-fixed covariates.

C.2 Model selection methodology

Regardless of their size, Dlast
and Dlong

both relate to 10,000 subjects. In order to tune the mod-

els detailed in the next Sections, we adopt a 5-fold Monte-Carlo cross-validation methodology.

We randomly select 80% of subjects’ observations inDlast
andDlong

as training sets, and the re-

maining 20% of subjects’ observations go in testing sets. Models are trained on the training sets
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and tested on both training and testing sets to control for over-fitting. We repeat this step 5 times

such that we obtain 20 different datasets:

kDlast
train,

kDlast
test ,

k
Dlong

train and

k
Dlong

test for k ∈ [1, ..., 5].
We can illustrate this as follows:

Figure C.1: Monte-Carlo cross-validation

In the following Sections, this will be our methodology for studying the mean and variance of all

considered models’ performances. All presented conclusions are the results of a 5-fold Monte-

Carlo cross-validation.
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C.3 Estimation of π∗

Very intuitively, for policyholders linked to a non-active policy, the last observation ended with

either lapse or death and∆(i) ̸= 0. For any observation related to a policyholder that eventually

lapsed π
(i)
∗ = 1. For any observation related to a policy that eventually ended with the policy-

holder’s death, we have π
(i)
∗ = 0. Deriving π

(i)
∗ is more complex for policyholders with an active

policy where we have

π
(i)
∗ = P (∆

(i)
∗ = 1|∆(i) = 0,X (i)(T (i))) =

P
(
∆

(i)
∗ = 1,∆(i) = 0 | X (i)(T (i))

)
P
(
∆(i) = 0 | X (i)(T (i))

) . (C.1)

By treating the competing riskswithin the cause-specific framework, we have that the probability

of having an active policy, in other words having survived every cause of events, is the product of

the cause-specific probabilities (See Heisey and Patterson 2006). Given the risk profiles that we

introduced in Section 8.1, we define r
(i)
lapser(t) the all-causes survival probability of subject i at

time t and r
(i)
acceptant(t) the death survival probability of subject i at time t. Moreover, in practice,

we only have access to a limited history Tmax = max(T (i)), corresponding to the longest time

a policy was ever observed to last. In order to estimate π
(i)
∗ , we will consider that the ultimate

event time T
(i)
∗ is bounded by T . Thus we have

π
(i)
∗ =

1− r
(i)
lapser(Tmax)/

r
(i)
acceptant(Tmax)

r
(i)
lapser(T

(i))/
r
(i)
acceptant(T

(i))

=
r
(i)
acceptant(T

(i))

r
(i)
lapser(T

(i))
·

(
1−

r
(i)
lapser(Tmax)

r
(i)
acceptant(Tmax)

)
. (C.2)
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D. Appendix of the third article
(chap. 14)

D.1 About cost-complexity pruning

Even though the original cost function of the CART algorithm described by Breiman et al. 1984

is penalised proportionally to its number of leaves nL, several works on the matter suggest other

types of penalty. Barron 1991 shows that applying risk bounds to CART implies a penalty with

ψ(nL) =
√
nL. In later works, Mansour and McAllester 2000, Nobel 2002, then Scott and Nowak

2002 also showed that risk bounds with a penalty usingψ(nL) =
√
nL can be derived for classifi-

cation trees whereas penalties proportional to nL can only be derived in specific cases discussed

by Blanchard, Schäfer, and Rozenholc 2004. In summary, square-root penalties appear to have

a much stronger theoretical foundation than nL proportional ones in various contexts, notably

for classification tasks.

D.2 Fréchet trees

Another very interesting and general approach is Fréchet trees - and Fréchet forest - by Capitaine

et al. 2020. It is a tree-building procedure that allows handling data for which input covariates

and the outcome take values in general metric spaces. Concretely, it is designed to handle co-

variates and outcomes that can be any functions and can be, in particular, functions of time. In

this article, they illustrate the prediction ability of Fréchet forests on longitudinal data and the

robustness of their method to missing data and time shifts. Several limitations can be pointed

out: firstly the mathematical assumption of the existence of the Fréchet mean in the output space

must be verified and that meanmust be approximated as precisely as possible. Another limitation

is the interpretability, as it is always the case with bagging techniques, but here it is also true for

individual Fréchet trees: if covariates’ importance can be analysed, relevant threshold and time

points can not be easily observed. Eventually, the computational burden of this algorithm is also

important. This method has been implemented in the R package FrechForest.

D.3 More results

D.3.1 Results without stopping criterion

The maximal unpruned and unstopped TpT, obtained with the time-penalised Gini splitting cri-

terion and an optimal time penalty achieves a depth of 17, has 190 leaves - 173 terminal leaves,

17 duration leaves - and is too large to be fully displayed as a tree here. However, we can still

represent it as a list of decisions describing how the dataset is partitioned:
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The maximum depth ach i eved i s 17

The number o f l e a v e s i s 190

173 t e rm i n a l l e a v e s and 17 du r a t i o n l e a v e s

The t r e e impur i t y i s : 0 . 0 6 2 7 0 7 1 0 0 5 7 4 0 3 0 1 2

The p e n a l i z e d t r e e impur i t y i s : 0 . 3 5 5 6 1 2 4 5 8 6 0 6 6 7 9 7

The maximum time where a s p l i t occured i s 1 0 . 0

The ave rage s p l i t t ime i s 0 . 9 8 0 5 9 2 2 1 4 7 0 5 5 5 6 1

The t r e e i s :

depth = 0 i f Age <= 6 5 . 5 a t t = 0 . 0 , samples : 983

and no du r a t i o n l e a f

then depth = 1 i f Age <= 4 2 . 5 a t t = 0 . 0 , samples : 463

and no du r a t i o n l e a f

then depth = 2 i f GENDER <= 1 . 5 a t t = 0 . 0 , samples : 110

and no du r a t i o n l e a f

then depth = 3 i f Age <= 3 0 . 5 a t t = 0 . 0 , samples : 58

and no du r a t i o n l e a f

then depth = 4 { va l u e : CHURNED, samples : 2 9 }

e l s e depth = 4 i f CLV <= 9 . 1 6 a t t = 0 . 0 , samples : 29

and no du r a t i o n l e a f

then depth = 5 { va l u e : CHURNED, samples : 9 }

e l s e depth = 5 i f FACE_AMOUNT <= 7 1 9 7 . 1 9 a t t = 2 . 0 , samples : 20

and no du r a t i o n l e a f

then depth = 6 i f FACE_AMOUNT <= 3 6 5 4 . 2 2 a t t = 2 . 0 , samples : 9

and no du r a t i o n l e a f

then depth = 7 i f Age <= 3 9 . 5 a t t = 2 . 0 , samples : 5

and no du r a t i o n l e a f

then depth = 8 { va l u e : CHURNED, samples : 3 }

e l s e depth = 8 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 7 { va l u e : DEATH, samples : 4 }

e l s e depth = 6 { va l u e : CHURNED, samples : 1 1 }

e l s e depth = 3 { va l u e : CHURNED, samples : 5 2 }

e l s e depth = 2 i f GENDER <= 1 . 5 a t t = 0 . 0 , samples : 353

and no du r a t i o n l e a f

then depth = 3 i f Age <= 5 3 . 5 a t t = 0 . 0 , samples : 154

and no du r a t i o n l e a f

then depth = 4 i f Age <= 5 2 . 5 a t t = 0 . 0 , samples : 53

and no du r a t i o n l e a f

then depth = 5 i f CLV <= 1 3 . 1 1 a t t = 0 . 0 , samples : 47

and no du r a t i o n l e a f

then depth = 6 i f FACE_AMOUNT <= 3 1 9 6 . 4 4 a t t = 3 . 0 , samples : 10

and du r a t i o n l e a f has 1 samples . L abe l i s : CHURNED 1 . 0

then depth = 7 { va l u e : CHURNED, samples : 7 }

e l s e depth = 7 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 6 i f CLV <= 8 8 . 4 a t t = 0 . 0 , samples : 37

and no du r a t i o n l e a f

then depth = 7 i f Nb_Contra t s <= 1 . 5 a t t = 0 . 0 , samples : 14

and no du r a t i o n l e a f

then depth = 8 i f CLV <= 4 0 . 0 5 a t t = 0 . 0 , samples : 12

and no du r a t i o n l e a f

then depth = 9 i f Age <= 4 5 . 5 a t t = 0 . 0 , samples : 8

and no du r a t i o n l e a f

then depth = 1 0 { va l u e : DEATH, samples : 3 }

e l s e depth = 10 i f CLV <= 1 7 . 0 3 a t t = 0 . 0 , samples : 5

and no du r a t i o n l e a f

then depth = 1 1 { va l u e : DEATH, samples : 2 }

e l s e depth = 1 1 { va l u e : CHURNED, samples : 3 }

e l s e depth = 9 { va l u e : DEATH, samples : 4 }

e l s e depth = 8 { va l u e : CHURNED, samples : 2 }

e l s e depth = 7 i f CLV <= 5 9 1 . 4 6 a t t = 0 . 0 , samples : 23

and no du r a t i o n l e a f

then depth = 8 i f CLV <= 3 5 2 . 2 8 a t t = 0 . 0 , samples : 18

and no du r a t i o n l e a f

then depth = 9 i f CLV <= 1 5 5 . 3 a t t = 0 . 0 , samples : 16

and no du r a t i o n l e a f

then depth = 10 i f CLV <= 1 9 0 . 4 a t t = 1 . 0 , samples : 9

and no du r a t i o n l e a f

then depth = 1 1 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 1 1 { va l u e : CHURNED, samples : 7 }

e l s e depth = 10 i f CLV <= 1 7 8 . 0 a t t = 0 . 0 , samples : 7

and no du r a t i o n l e a f

then depth = 1 1 { va l u e : DEATH, samples : 2 }

e l s e depth = 11 i f CLV <= 2 5 9 . 6 6 a t t = 0 . 0 , samples : 5

and no du r a t i o n l e a f

then depth = 1 2 { va l u e : CHURNED, samples : 3 }

e l s e depth = 1 2 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 9 { va l u e : DEATH, samples : 2 }

e l s e depth = 8 { va l u e : CHURNED, samples : 5 }

e l s e depth = 5 { va l u e : CHURNED, samples : 6 }

e l s e depth = 4 i f CDI_NOM_PRODUIT <= 1 . 5 a t t = 0 . 0 , samples : 101

and no du r a t i o n l e a f

then depth = 5 i f FACE_AMOUNT <= 10 3 2 5 . 8 8 a t t = 4 . 0 , samples : 83

and du r a t i o n l e a f has 3 samples . L abe l i s : DEATH 1 . 0
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then depth = 6 i f CLV <= 1 6 . 2 8 a t t = 4 . 0 , samples : 41

and no du r a t i o n l e a f

then depth = 7 i f Age <= 6 0 . 5 a t t = 6 . 0 , samples : 8

and du r a t i o n l e a f has 1 samples . L abe l i s : CHURNED 1 . 0

then depth = 8 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 8 { va l u e : DEATH, samples : 5 }

e l s e depth = 7 i f CLV <= 8 9 . 0 4 a t t = 4 . 0 , samples : 33

and no du r a t i o n l e a f

then depth = 8 { va l u e : CHURNED, samples : 8 }

e l s e depth = 8 i f CLV <= 1 0 0 . 4 a t t = 4 . 0 , samples : 25

and no du r a t i o n l e a f

then depth = 9 { va l u e : DEATH, samples : 2 }

e l s e depth = 9 i f CLV <= 1 8 1 . 9 6 a t t = 4 . 0 , samples : 23

and no du r a t i o n l e a f

then depth = 1 0 { va l u e : CHURNED, samples : 5 }

e l s e depth = 10 i f CLV <= 3 1 0 . 2 7 a t t = 5 . 0 , samples : 18

and no du r a t i o n l e a f

then depth = 1 1 { va l u e : DEATH, samples : 3 }

e l s e depth = 11 i f Age <= 6 8 . 5 a t t = 5 . 0 , samples : 15

and no du r a t i o n l e a f

then depth = 12 i f FACE_AMOUNT <= 3 9 7 2 . 5 4 a t t = 5 . 0 , samples : 11

and no du r a t i o n l e a f

then depth = 1 3 { va l u e : DEATH, samples : 3 }

e l s e depth = 13 i f CLV <= 7 4 8 . 3 a t t = 6 . 0 , samples : 8

and no du r a t i o n l e a f

then depth = 1 4 { va l u e : CHURNED, samples : 4 }

e l s e depth = 14 i f CLV <= 9 1 7 . 3 7 a t t = 6 . 0 , samples : 4

and no du r a t i o n l e a f

then depth = 1 5 { va l u e : DEATH, samples : 2 }

e l s e depth = 1 5 { va l u e : CHURNED, samples : 2 }

e l s e depth = 1 2 { va l u e : CHURNED, samples : 4 }

e l s e depth = 6 i f FACE_AMOUNT <= 17 8 9 4 . 4 3 a t t = 4 . 0 , samples : 39

and no du r a t i o n l e a f

then depth = 7 { va l u e : DEATH, samples : 8 }

e l s e depth = 7 i f Age <= 6 5 . 5 a t t = 5 . 0 , samples : 31

and no du r a t i o n l e a f

then depth = 8 i f CLV <= 1 7 4 5 . 9 2 a t t = 5 . 0 , samples : 17

and no du r a t i o n l e a f

then depth = 9 i f FACE_AMOUNT <= 2 1 6 1 6 . 0 a t t = 5 . 0 , samples : 5

and no du r a t i o n l e a f

then depth = 1 0 { va l u e : DEATH, samples : 3 }

e l s e depth = 1 0 { va l u e : CHURNED, samples : 2 }

e l s e depth = 9 i f CLV <= 3 1 7 2 . 4 1 a t t = 5 . 0 , samples : 12

and no du r a t i o n l e a f

then depth = 1 0 { va l u e : CHURNED, samples : 6 }

e l s e depth = 10 i f FACE_AMOUNT <= 64 7 6 6 . 8 9 a t t = 6 . 0 , samples : 6

and no du r a t i o n l e a f

then depth = 1 1 { va l u e : DEATH, samples : 3 }

e l s e depth = 1 1 { va l u e : CHURNED, samples : 3 }

e l s e depth = 8 i f FACE_AMOUNT <= 20 9 3 1 . 1 6 a t t = 6 . 0 , samples : 14

and du r a t i o n l e a f has 1 samples . L abe l i s : DEATH 1 . 0

then depth = 9 { va l u e : CHURNED, samples : 2 }

e l s e depth = 9 i f CLV <= 1 0 9 4 8 . 2 1 a t t = 9 . 0 , samples : 11

and du r a t i o n l e a f has 4 samples . L abe l i s : DEATH 1 . 0

then depth = 10 i f CLV <= 5 5 3 9 . 8 6 a t t = 9 . 0 , samples : 4

and no du r a t i o n l e a f

then depth = 1 1 { va l u e : DEATH, samples : 2 }

e l s e depth = 1 1 { va l u e : CHURNED, samples : 2 }

e l s e depth = 1 0 { va l u e : DEATH, samples : 3 }

e l s e depth = 5 i f CLV <= 3 . 3 7 a t t = 0 . 0 , samples : 18

and no du r a t i o n l e a f

then depth = 6 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 6 i f CLV <= 2 1 . 3 a t t = 0 . 0 , samples : 16

and no du r a t i o n l e a f

then depth = 7 { va l u e : CHURNED, samples : 6 }

e l s e depth = 7 i f CLV <= 3 6 3 . 4 4 a t t = 0 . 0 , samples : 10

and no du r a t i o n l e a f

then depth = 8 { va l u e : CHURNED 0 . 5 , samples : 4 }

e l s e depth = 8 i f CLV <= 2 0 6 8 . 2 1 a t t = 0 . 0 , samples : 6

and no du r a t i o n l e a f

then depth = 9 { va l u e : CHURNED, samples : 4 }

e l s e depth = 9 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 3 i f CDI_NOM_PRODUIT <= 1 . 5 a t t = 0 . 0 , samples : 199

and no du r a t i o n l e a f

then depth = 4 i f Age <= 6 0 . 5 a t t = 0 . 0 , samples : 167

and no du r a t i o n l e a f

then depth = 5 i f Age <= 4 3 . 5 a t t = 0 . 0 , samples : 115

and no du r a t i o n l e a f

then depth = 6 i f CLV <= 8 2 . 1 2 a t t = 0 . 0 , samples : 4

and no du r a t i o n l e a f

then depth = 7 { va l u e : DEATH, samples : 2 }

e l s e depth = 7 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 6 i f CLV <= 2 1 4 5 . 9 2 a t t = 3 . 0 , samples : 111
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and du r a t i o n l e a f has 1 samples . L abe l i s : DEATH 1 . 0

then depth = 7 i f FACE_AMOUNT <= 28 2 8 8 . 5 2 a t t = 3 . 0 , samples : 94

and no du r a t i o n l e a f

then depth = 8 i f CLV <= 9 1 0 . 6 7 a t t = 3 . 0 , samples : 92

and no du r a t i o n l e a f

then depth = 9 i f CLV <= 8 4 0 . 5 3 a t t = 3 . 0 , samples : 80

and no du r a t i o n l e a f

then depth = 10 i f FACE_AMOUNT <= 12 5 1 2 . 2 2 a t t = 6 . 0 , samples : 78

and no du r a t i o n l e a f

then depth = 11 i f CLV <= 2 1 7 . 8 1 a t t = 8 . 0 , samples : 65

and du r a t i o n l e a f has 4 samples . L abe l i s : CHURNED 0 . 5

then depth = 12 i f Age <= 6 6 . 5 a t t = 8 . 0 , samples : 24

and no du r a t i o n l e a f

then depth = 13 i f Age <= 5 4 . 5 a t t = 8 . 0 , samples : 20

and no du r a t i o n l e a f

then depth = 14 i f Age <= 5 5 . 5 a t t = 1 0 . 0 , samples : 7

and du r a t i o n l e a f has 1 samples . L abe l i s : CHURNED

1 . 0

then depth = 1 5 { va l u e : CHURNED, samples : 3 }

e l s e depth = 1 5 { va l u e : DEATH, samples : 3 }

e l s e depth = 14 i f CLV <= 7 4 . 8 7 a t t = 8 . 0 , samples : 13

and no du r a t i o n l e a f

then depth = 1 5 { va l u e : CHURNED, samples : 1 0 }

e l s e depth = 1 5 { va l u e : CHURNED 0 . 6 7 , samples : 3 }

e l s e depth = 13 i f Age <= 6 7 . 5 a t t = 8 . 0 , samples : 4

and no du r a t i o n l e a f

then depth = 1 4 { va l u e : DEATH, samples : 2 }

e l s e depth = 1 4 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 12 i f Age <= 5 3 . 0 a t t = 8 . 0 , samples : 37

and no du r a t i o n l e a f

then depth = 1 3 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 13 i f FACE_AMOUNT <= 3 8 4 8 . 4 8 a t t = 1 0 . 0 , samples : 35

and du r a t i o n l e a f has 5 samples . L abe l i s : CHURNED

0 . 8

then depth = 14 i f FACE_AMOUNT <= 3 0 8 6 . 4 1 a t t = 1 0 . 0 , samples : 8

and no du r a t i o n l e a f

then depth = 1 5 { va l u e : CHURNED, samples : 6 }

e l s e depth = 1 5 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 1 4 { va l u e : CHURNED, samples : 2 2 }

e l s e depth = 11 i f Age <= 6 0 . 5 a t t = 7 . 0 , samples : 13

and du r a t i o n l e a f has 1 samples . L abe l i s : DEATH 1 . 0

then depth = 12 i f FACE_AMOUNT <= 16 0 3 7 . 2 8 a t t = 8 . 0 , samples : 8

and no du r a t i o n l e a f

then depth = 1 3 { va l u e : DEATH, samples : 3 }

e l s e depth = 13 i f Age <= 5 7 . 5 a t t = 8 . 0 , samples : 5

and no du r a t i o n l e a f

then depth = 1 4 { va l u e : DEATH 0 . 6 7 , samples : 3 }

e l s e depth = 1 4 { va l u e : CHURNED, samples : 2 }

e l s e depth = 1 2 { va l u e : CHURNED, samples : 4 }

e l s e depth = 1 0 { va l u e : DEATH, samples : 2 }

e l s e depth = 9 { va l u e : CHURNED, samples : 1 2 }

e l s e depth = 8 { va l u e : DEATH, samples : 2 }

e l s e depth = 7 { va l u e : CHURNED, samples : 1 6 }

e l s e depth = 5 i f Age <= 6 4 . 5 a t t = 0 . 0 , samples : 52

and no du r a t i o n l e a f

then depth = 6 i f CLV <= 2 5 1 . 4 8 a t t = 0 . 0 , samples : 43

and no du r a t i o n l e a f

then depth = 7 i f FACE_AMOUNT <= 7 3 . 3 4 a t t = 3 . 0 , samples : 29

and no du r a t i o n l e a f

then depth = 8 { va l u e : DEATH, samples : 3 }

e l s e depth = 8 i f CLV <= 1 1 9 . 4 5 a t t = 3 . 0 , samples : 26

and no du r a t i o n l e a f

then depth = 9 i f CLV <= 5 4 . 4 6 a t t = 4 . 0 , samples : 11

and no du r a t i o n l e a f

then depth = 1 0 { va l u e : CHURNED 0 . 6 7 , samples : 3 }

e l s e depth = 1 0 { va l u e : CHURNED, samples : 8 }

e l s e depth = 9 i f FACE_AMOUNT <= 3 3 3 1 . 5 4 a t t = 3 . 0 , samples : 15

and no du r a t i o n l e a f

then depth = 1 0 { va l u e : DEATH, samples : 2 }

e l s e depth = 10 i f CLV <= 4 4 5 . 5 5 a t t = 3 . 0 , samples : 13

and no du r a t i o n l e a f

then depth = 1 1 { va l u e : CHURNED, samples : 3 }

e l s e depth = 11 i f CLV <= 7 0 9 . 3 4 a t t = 3 . 0 , samples : 10

and no du r a t i o n l e a f

then depth = 12 i f CLV <= 6 2 2 . 0 4 a t t = 3 . 0 , samples : 4

and no du r a t i o n l e a f

then depth = 1 3 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 1 3 { va l u e : DEATH, samples : 2 }

e l s e depth = 12 i f FACE_AMOUNT <= 16 8 6 3 . 7 6 a t t = 3 . 0 , samples : 6

and no du r a t i o n l e a f

then depth = 1 3 { va l u e : CHURNED, samples : 3 }

e l s e depth = 1 3 { va l u e : DEATH 0 . 6 7 , samples : 3 }

e l s e depth = 7 i f Nb_Contra t s <= 1 . 5 a t t = 0 . 0 , samples : 14
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and no du r a t i o n l e a f

then depth = 8 i f FACE_AMOUNT <= 22 2 2 9 . 9 4 a t t = 1 . 0 , samples : 11

and no du r a t i o n l e a f

then depth = 9 { va l u e : DEATH 0 . 6 7 , samples : 3 }

e l s e depth = 9 { va l u e : DEATH, samples : 8 }

e l s e depth = 8 { va l u e : CHURNED, samples : 3 }

e l s e depth = 6 i f CLV <= 6 3 3 . 1 8 a t t = 0 . 0 , samples : 9

and no du r a t i o n l e a f

then depth = 7 { va l u e : CHURNED, samples : 7 }

e l s e depth = 7 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 4 i f CLV <= 2 0 8 1 . 3 9 a t t = 0 . 0 , samples : 32

and no du r a t i o n l e a f

then depth = 5 i f Age <= 6 3 . 5 a t t = 0 . 0 , samples : 30

and no du r a t i o n l e a f

then depth = 6 i f FACE_AMOUNT <= 37 4 3 3 . 9 4 a t t = 3 . 0 , samples : 26

and du r a t i o n l e a f has 2 samples . L abe l i s : CHURNED 1 . 0

then depth = 7 { va l u e : CHURNED, samples : 2 1 }

e l s e depth = 7 { va l u e : CHURNED 0 . 6 7 , samples : 3 }

e l s e depth = 6 i f Age <= 6 4 . 5 a t t = 0 . 0 , samples : 4

and no du r a t i o n l e a f

then depth = 7 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 7 { va l u e : CHURNED, samples : 2 }

e l s e depth = 5 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 1 i f Age <= 7 2 . 5 a t t = 0 . 0 , samples : 520

and no du r a t i o n l e a f

then depth = 2 i f CLV <= 2 . 7 3 a t t = 0 . 0 , samples : 180

and no du r a t i o n l e a f

then depth = 3 i f CLV <= 9 9 . 7 a t t = 2 . 0 , samples : 13

and no du r a t i o n l e a f

then depth = 4 i f CLV <= 1 1 . 9 7 a t t = 3 . 0 , samples : 11

and no du r a t i o n l e a f

then depth = 5 { va l u e : CHURNED, samples : 9 }

e l s e depth = 5 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 4 { va l u e : DEATH, samples : 2 }

e l s e depth = 3 i f CLV <= 2 9 8 2 . 2 4 a t t = 0 . 0 , samples : 167

and no du r a t i o n l e a f

then depth = 4 i f Nb_Contra t s <= 2 . 5 a t t = 0 . 0 , samples : 165

and no du r a t i o n l e a f

then depth = 5 i f CDI_NOM_PRODUIT <= 1 . 5 a t t = 0 . 0 , samples : 159

and no du r a t i o n l e a f

then depth = 6 i f CLV <= 1 5 3 . 5 1 a t t = 0 . 0 , samples : 146

and no du r a t i o n l e a f

then depth = 7 i f Nb_Contra t s <= 1 . 5 a t t = 1 . 0 , samples : 61

and no du r a t i o n l e a f

then depth = 8 i f Age <= 7 0 . 5 a t t = 1 . 0 , samples : 58

and no du r a t i o n l e a f

then depth = 9 i f GENDER <= 1 . 5 a t t = 1 . 0 , samples : 30

and no du r a t i o n l e a f

then depth = 10 i f CLV <= 1 5 2 . 4 9 a t t = 1 . 0 , samples : 17

and no du r a t i o n l e a f

then depth = 1 1 { va l u e : DEATH, samples : 1 0 }

e l s e depth = 11 i f CLV <= 2 1 2 . 3 3 a t t = 1 . 0 , samples : 7

and no du r a t i o n l e a f

then depth = 1 2 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 1 2 { va l u e : DEATH, samples : 5 }

e l s e depth = 10 i f FACE_AMOUNT <= 3 4 7 5 . 1 2 a t t = 1 . 0 , samples : 13

and no du r a t i o n l e a f

then depth = 11 i f FACE_AMOUNT <= 1 4 9 9 . 9 2 a t t = 1 . 0 , samples : 7

and no du r a t i o n l e a f

then depth = 1 2 { va l u e : DEATH, samples : 2 }

e l s e depth = 12 i f Age <= 6 9 . 5 a t t = 1 . 0 , samples : 5

and no du r a t i o n l e a f

then depth = 1 3 { va l u e : CHURNED, samples : 3 }

e l s e depth = 1 3 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 11 i f CLV <= 1 9 5 . 5 1 a t t = 1 . 0 , samples : 6

and no du r a t i o n l e a f

then depth = 1 2 { va l u e : DEATH, samples : 4 }

e l s e depth = 1 2 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 9 i f FACE_AMOUNT <= 2 3 0 7 . 9 3 a t t = 1 . 0 , samples : 28

and no du r a t i o n l e a f

then depth = 10 i f CLV <= 3 5 . 7 3 a t t = 1 . 0 , samples : 6

and no du r a t i o n l e a f

then depth = 1 1 { va l u e : DEATH, samples : 4 }

e l s e depth = 1 1 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 1 0 { va l u e : DEATH, samples : 2 2 }

e l s e depth = 8 { va l u e : CHURNED 0 . 6 7 , samples : 3 }

e l s e depth = 7 i f CLV <= 1 6 1 . 6 2 a t t = 0 . 0 , samples : 85

and no du r a t i o n l e a f

then depth = 8 { va l u e : CHURNED, samples : 2 }

e l s e depth = 8 i f CLV <= 1 1 8 5 . 7 8 a t t = 0 . 0 , samples : 83

and no du r a t i o n l e a f

then depth = 9 i f CLV <= 1 0 7 2 . 6 a t t = 0 . 0 , samples : 69

and no du r a t i o n l e a f
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then depth = 10 i f Nb_Contra t s <= 1 . 5 a t t = 0 . 0 , samples : 67

and no du r a t i o n l e a f

then depth = 11 i f CLV <= 2 9 6 . 6 6 a t t = 0 . 0 , samples : 61

and no du r a t i o n l e a f

then depth = 12 i f CLV <= 2 4 0 . 5 6 a t t = 0 . 0 , samples : 22

and no du r a t i o n l e a f

then depth = 13 i f CLV <= 3 9 6 . 7 2 a t t = 1 . 0 , samples : 14

and no du r a t i o n l e a f

then depth = 14 i f CLV <= 3 4 2 . 3 7 a t t = 1 . 0 , samples : 7

and no du r a t i o n l e a f

then depth = 1 5 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 1 5 { va l u e : DEATH, samples : 5 }

e l s e depth = 14 i f CLV <= 4 2 8 . 3 a t t = 1 . 0 , samples : 7

and no du r a t i o n l e a f

then depth = 1 5 { va l u e : CHURNED, samples : 3 }

e l s e depth = 15 i f GENDER <= 1 . 5 a t t = 1 . 0 , samples : 4

and no du r a t i o n l e a f

then depth = 1 6 { va l u e : DEATH, samples : 2 }

e l s e depth = 1 6 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 1 3 { va l u e : DEATH, samples : 8 }

e l s e depth = 12 i f CLV <= 5 2 2 . 2 4 a t t = 0 . 0 , samples : 39

and no du r a t i o n l e a f

then depth = 13 i f CLV <= 3 8 8 . 6 5 a t t = 0 . 0 , samples : 24

and no du r a t i o n l e a f

then depth = 14 i f Age <= 7 0 . 5 a t t = 0 . 0 , samples : 12

and no du r a t i o n l e a f

then depth = 15 i f CLV <= 3 0 8 . 2 3 a t t = 0 . 0 , samples : 8

and no du r a t i o n l e a f

then depth = 1 6 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 1 6 { va l u e : DEATH, samples : 6 }

e l s e depth = 15 i f CLV <= 3 2 0 . 3 3 a t t = 0 . 0 , samples : 4

and no du r a t i o n l e a f

then depth = 1 6 { va l u e : CHURNED, samples : 2 }

e l s e depth = 1 6 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 14 i f CLV <= 4 2 7 . 1 8 a t t = 0 . 0 , samples : 12

and no du r a t i o n l e a f

then depth = 1 5 { va l u e : CHURNED, samples : 4 }

e l s e depth = 15 i f CLV <= 5 0 7 . 1 9 a t t = 0 . 0 , samples : 8

and no du r a t i o n l e a f

then depth = 16 i f GENDER <= 1 . 5 a t t = 0 . 0 , samples : 6

and no du r a t i o n l e a f

then depth = 1 7 { va l u e : DEATH, samples : 3 }

e l s e depth = 1 7 { va l u e : CHURNED 0 . 6 7 , samples : 3 }

e l s e depth = 1 6 { va l u e : CHURNED, samples : 2 }

e l s e depth = 13 i f CLV <= 7 3 5 . 1 3 a t t = 0 . 0 , samples : 15

and no du r a t i o n l e a f

then depth = 1 4 { va l u e : DEATH, samples : 8 }

e l s e depth = 14 i f CLV <= 7 6 7 . 9 2 a t t = 0 . 0 , samples : 7

and no du r a t i o n l e a f

then depth = 1 5 { va l u e : CHURNED, samples : 2 }

e l s e depth = 15 i f FACE_AMOUNT <= 47 5 2 7 . 8 8 a t t = 1 . 0 , samples : 5

and no du r a t i o n l e a f

then depth = 1 6 { va l u e : DEATH, samples : 3 }

e l s e depth = 1 6 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 1 1 { va l u e : DEATH, samples : 6 }

e l s e depth = 1 0 { va l u e : CHURNED, samples : 2 }

e l s e depth = 9 i f Age <= 7 1 . 0 a t t = 0 . 0 , samples : 14

and no du r a t i o n l e a f

then depth = 1 0 { va l u e : DEATH, samples : 1 1 }

e l s e depth = 1 0 { va l u e : DEATH 0 . 6 7 , samples : 3 }

e l s e depth = 6 i f FACE_AMOUNT <= 7 9 0 5 . 4 4 a t t = 2 . 0 , samples : 13

and no du r a t i o n l e a f

then depth = 7 i f FACE_AMOUNT <= 1 3 8 5 . 4 1 a t t = 3 . 0 , samples : 8

and du r a t i o n l e a f has 2 samples . L abe l i s : CHURNED 1 . 0

then depth = 8 { va l u e : DEATH, samples : 2 }

e l s e depth = 8 { va l u e : CHURNED, samples : 4 }

e l s e depth = 7 { va l u e : DEATH, samples : 5 }

e l s e depth = 5 i f Nb_Contra t s <= 4 . 5 a t t = 1 . 0 , samples : 6

and no du r a t i o n l e a f

then depth = 6 { va l u e : CHURNED, samples : 4 }

e l s e depth = 6 { va l u e : DEATH, samples : 2 }

e l s e depth = 4 { va l u e : CHURNED, samples : 2 }

e l s e depth = 2 i f CLV <= 2 4 . 1 9 a t t = 0 . 0 , samples : 340

and no du r a t i o n l e a f

then depth = 3 i f CLV <= 2 3 . 7 7 a t t = 0 . 0 , samples : 70

and no du r a t i o n l e a f

then depth = 4 i f Age <= 8 1 . 5 a t t = 0 . 0 , samples : 68

and no du r a t i o n l e a f

then depth = 5 i f Age <= 7 6 . 5 a t t = 0 . 0 , samples : 53

and no du r a t i o n l e a f

then depth = 6 i f CDI_NOM_PRODUIT <= 1 . 5 a t t = 0 . 0 , samples : 32

and no du r a t i o n l e a f

then depth = 7 i f CLV <= 1 . 7 2 a t t = 0 . 0 , samples : 24
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and no du r a t i o n l e a f

then depth = 8 i f CLV <= 2 . 8 6 a t t = 1 . 0 , samples : 7

and no du r a t i o n l e a f

then depth = 9 { va l u e : DEATH, samples : 3 }

e l s e depth = 9 { va l u e : CHURNED 0 . 5 , samples : 4 }

e l s e depth = 8 { va l u e : DEATH, samples : 1 7 }

e l s e depth = 7 i f GENDER <= 1 . 5 a t t = 4 . 0 , samples : 8

and du r a t i o n l e a f has 2 samples . L abe l i s : CHURNED 0 . 5

then depth = 8 { va l u e : CHURNED, samples : 2 }

e l s e depth = 8 i f CLV <= 5 6 . 7 1 a t t = 4 . 0 , samples : 4

and no du r a t i o n l e a f

then depth = 9 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 9 { va l u e : DEATH, samples : 2 }

e l s e depth = 6 i f CLV <= 1 . 5 a t t = 0 . 0 , samples : 21

and no du r a t i o n l e a f

then depth = 7 { va l u e : CHURNED, samples : 3 }

e l s e depth = 7 i f CLV <= 1 0 1 . 4 9 a t t = 3 . 0 , samples : 18

and du r a t i o n l e a f has 1 samples . L abe l i s : DEATH 1 . 0

then depth = 8 i f Age <= 7 9 . 5 a t t = 3 . 0 , samples : 13

and no du r a t i o n l e a f

then depth = 9 { va l u e : CHURNED, samples : 2 }

e l s e depth = 9 i f GENDER <= 1 . 5 a t t = 3 . 0 , samples : 11

and no du r a t i o n l e a f

then depth = 10 i f CLV <= 2 4 . 9 3 a t t = 3 . 0 , samples : 4

and no du r a t i o n l e a f

then depth = 1 1 { va l u e : DEATH, samples : 2 }

e l s e depth = 1 1 { va l u e : CHURNED, samples : 2 }

e l s e depth = 10 i f Age <= 8 0 . 5 a t t = 3 . 0 , samples : 7

and no du r a t i o n l e a f

then depth = 1 1 { va l u e : DEATH 0 . 6 7 , samples : 3 }

e l s e depth = 1 1 { va l u e : DEATH, samples : 4 }

e l s e depth = 8 { va l u e : CHURNED, samples : 4 }

e l s e depth = 5 { va l u e : DEATH, samples : 1 5 }

e l s e depth = 4 { va l u e : CHURNED, samples : 2 }

e l s e depth = 3 i f CDI_NOM_PRODUIT <= 1 . 5 a t t = 0 . 0 , samples : 270

and no du r a t i o n l e a f

then depth = 4 i f Age <= 7 4 . 5 a t t = 0 . 0 , samples : 240

and no du r a t i o n l e a f

then depth = 5 i f CLV <= 3 0 3 . 9 9 a t t = 0 . 0 , samples : 41

and no du r a t i o n l e a f

then depth = 6 i f Age <= 7 3 . 5 a t t = 0 . 0 , samples : 23

and no du r a t i o n l e a f

then depth = 7 i f CLV <= 3 9 1 . 4 3 a t t = 2 . 0 , samples : 6

and no du r a t i o n l e a f

then depth = 8 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 8 { va l u e : DEATH, samples : 4 }

e l s e depth = 7 { va l u e : DEATH, samples : 1 7 }

e l s e depth = 6 i f CLV <= 3 3 4 . 9 7 a t t = 0 . 0 , samples : 18

and no du r a t i o n l e a f

then depth = 7 { va l u e : CHURNED, samples : 3 }

e l s e depth = 7 i f CLV <= 1 3 8 0 . 4 7 a t t = 0 . 0 , samples : 15

and no du r a t i o n l e a f

then depth = 8 { va l u e : DEATH, samples : 1 3 }

e l s e depth = 8 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 5 i f Age <= 8 9 . 5 a t t = 0 . 0 , samples : 199

and no du r a t i o n l e a f

then depth = 6 i f FACE_AMOUNT <= 65 2 2 9 . 8 4 a t t = 3 . 0 , samples : 192

and du r a t i o n l e a f has 2 samples . L abe l i s : DEATH 1 . 0

then depth = 7 i f FACE_AMOUNT <= 5 8 5 8 . 1 6 a t t = 3 . 0 , samples : 160

and no du r a t i o n l e a f

then depth = 8 i f FACE_AMOUNT <= 5 6 9 3 . 4 a t t = 4 . 0 , samples : 27

and du r a t i o n l e a f has 3 samples . L abe l i s : DEATH 1 . 0

then depth = 9 { va l u e : DEATH, samples : 2 2 }

e l s e depth = 9 { va l u e : CHURNED, samples : 2 }

e l s e depth = 8 i f Age <= 7 8 . 5 a t t = 3 . 0 , samples : 133

and no du r a t i o n l e a f

then depth = 9 i f FACE_AMOUNT <= 14 6 2 0 . 9 6 a t t = 3 . 0 , samples : 13

and no du r a t i o n l e a f

then depth = 10 i f CLV <= 7 4 3 . 2 1 a t t = 3 . 0 , samples : 5

and no du r a t i o n l e a f

then depth = 1 1 { va l u e : DEATH, samples : 3 }

e l s e depth = 1 1 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 1 0 { va l u e : DEATH, samples : 8 }

e l s e depth = 9 i f Age <= 8 1 . 5 a t t = 3 . 0 , samples : 120

and no du r a t i o n l e a f

then depth = 10 i f Age <= 8 0 . 5 a t t = 3 . 0 , samples : 49

and no du r a t i o n l e a f

then depth = 1 1 { va l u e : DEATH, samples : 3 3 }

e l s e depth = 11 i f CLV <= 1 3 3 7 . 1 9 a t t = 3 . 0 , samples : 16

and no du r a t i o n l e a f

then depth = 12 i f CLV <= 1 2 3 6 . 1 2 a t t = 3 . 0 , samples : 7

and no du r a t i o n l e a f

then depth = 1 3 { va l u e : DEATH, samples : 5 }
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e l s e depth = 1 3 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 1 2 { va l u e : DEATH, samples : 9 }

e l s e depth = 1 0 { va l u e : DEATH, samples : 7 1 }

e l s e depth = 7 i f Age <= 7 9 . 5 a t t = 3 . 0 , samples : 30

and no du r a t i o n l e a f

then depth = 8 i f CLV <= 6 4 6 9 . 4 4 a t t = 3 . 0 , samples : 6

and no du r a t i o n l e a f

then depth = 9 { va l u e : CHURNED, samples : 2 }

e l s e depth = 9 { va l u e : DEATH, samples : 4 }

e l s e depth = 8 i f CLV <= 4 6 9 7 . 7 8 a t t = 4 . 0 , samples : 24

and du r a t i o n l e a f has 2 samples . L abe l i s : DEATH 1 . 0

then depth = 9 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 9 { va l u e : DEATH, samples : 2 0 }

e l s e depth = 6 i f GENDER <= 1 . 5 a t t = 0 . 0 , samples : 7

and no du r a t i o n l e a f

then depth = 7 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 7 { va l u e : DEATH, samples : 5 }

e l s e depth = 4 i f Age <= 8 0 . 5 a t t = 0 . 0 , samples : 30

and no du r a t i o n l e a f

then depth = 5 i f GENDER <= 1 . 5 a t t = 0 . 0 , samples : 11

and no du r a t i o n l e a f

then depth = 6 i f Age <= 7 5 . 5 a t t = 0 . 0 , samples : 4

and no du r a t i o n l e a f

then depth = 7 { va l u e : CHURNED 0 . 5 , samples : 2 }

e l s e depth = 7 { va l u e : DEATH, samples : 2 }

e l s e depth = 6 i f Age <= 7 9 . 5 a t t = 0 . 0 , samples : 7

and no du r a t i o n l e a f

then depth = 7 { va l u e : CHURNED, samples : 4 }

e l s e depth = 7 { va l u e : CHURNED 0 . 6 7 , samples : 3 }

e l s e depth = 5 { va l u e : DEATH, samples : 1 9 }

The unstopped and unprunedTpTs, obtained with the time-penalized gini splitting criterion,

and various time penalties yields the following results:

Figure D.1: Characteristics of unstopped and unpruned TpT depending on the time penalty

The unstopped and unpruned TpTs, obtained with the time-penalised entropy splitting cri-

terion, and various time penalties yield the following results:
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Time penalty γ Runtime Depth # of terminal leaves # of duration leaves Total # of leaves Tree cost Max of split times Mean of split times

0.0000 719.07 7 27 17 44 0.412 20.0 5.768

0.0025 733.95 7 27 16 43 0.411 20.0 5.276

0.0050 732.73 7 27 15 42 0.408 20.0 5.192

0.0100 725.95 9 30 15 45 0.410 20.0 5.429

0.0125 795.26 10 35 19 54 0.416 20.0 4.832

0.0175 862.99 11 35 21 56 0.416 20.0 3.81

0.0200 883.2 11 35 20 55 0.414 20.0 3.599

0.0300 868.98 11 35 20 55 0.415 20.0 3.601

0.0325 1007.65 11 55 33 88 0.413 20.0 4.315

0.0350 970.33 11 53 27 80 0.421 20.0 3.977

0.0450 1046.33 10 61 30 91 0.421 20.0 3.763

0.0500 1062.24 10 71 36 107 0.424 20.0 4.175

0.0625 1069.06 10 69 36 105 0.422 20.0 4.209

0.0650 1141.95 11 79 47 126 0.425 18.0 4.277

0.0700 1137.4 11 81 49 130 0.426 18.0 4.282

0.0775 1117.22 11 83 44 127 0.417 18.0 4.272

0.0800 1122.76 11 87 46 133 0.417 18.0 4.26

0.0825 1133.39 11 87 45 132 0.416 18.0 4.238

0.0850 1165.53 11 89 46 135 0.416 18.0 3.947

0.0900 1287.23 15 98 49 147 0.408 18.0 3.579

0.0950 1350.29 15 105 51 156 0.390 18.0 3.085

0.1025 1340.77 15 106 50 156 0.389 18.0 3.083

0.1050 1346.53 15 104 44 148 0.378 18.0 2.906

0.1075 1349.57 15 104 44 148 0.379 18.0 2.898

0.1125 1351.12 15 105 44 149 0.380 18.0 2.888

0.1200 1347.56 15 105 43 148 0.375 18.0 2.929

0.1300 1378.96 15 112 41 153 0.374 16.0 2.929

0.1400 1561.86 15 118 48 166 0.385 16.0 2.645

0.1425 1559.3 15 122 44 166 0.381 16.0 2.416

0.1475 1685.14 17 124 43 167 0.377 16.0 2.129

0.1500 1712.25 15 128 40 168 0.375 15.0 1.778

0.1525 1677.49 16 130 39 169 0.377 15.0 1.76

0.1550 1709.18 16 131 39 170 0.378 15.0 1.749

0.1575 1692.19 16 137 38 175 0.371 14.0 1.773

0.1700 1686.58 16 137 36 173 0.370 14.0 1.762

0.1775 1687.16 16 140 35 175 0.370 13.0 1.663

0.1850 1695.6 15 143 33 176 0.369 13.0 1.647

0.1925 1687.49 15 144 33 177 0.370 13.0 1.64

0.1950 1704.68 15 146 33 179 0.367 13.0 1.608

0.1975 1704.85 15 146 33 179 0.363 13.0 1.618

0.2075 1679.89 15 149 33 182 0.364 12.0 1.617

0.2100 1721.42 15 150 32 182 0.366 12.0 1.521

0.2125 1741.25 15 152 31 183 0.366 12.0 1.519

0.2150 1740.3 15 155 29 184 0.367 12.0 1.502

0.2175 1746.67 15 157 29 186 0.368 12.0 1.492

0.2275 1730.43 15 158 28 186 0.365 12.0 1.465

0.2350 1717.29 15 160 28 188 0.366 12.0 1.457

0.2375 1724.14 15 161 27 188 0.366 12.0 1.455

0.2500 1796.99 15 165 25 190 0.359 14.0 1.184

0.2525 1809.4 15 168 23 191 0.359 13.0 1.158

0.2550 1810.04 15 169 22 191 0.359 13.0 1.143

0.2575 1832.64 15 169 21 190 0.357 13.0 1.142

0.2675 1854.5 19 169 23 192 0.360 11.0 1.198

0.2725 1850.47 17 173 17 190 0.356 10.0 0.981

0.2775 1857.1 17 174 16 190 0.356 10.0 0.965

0.2875 2025.16 17 173 11 184 0.358 10.0 0.645

0.2900 2045.07 17 174 10 184 0.358 10.0 0.648

0.3050 1976.4 17 175 10 185 0.359 10.0 0.639

0.3125 1969.5 17 176 9 185 0.361 10.0 0.635

0.3250 1960.95 17 176 10 186 0.362 10.0 0.64

0.3300 1949.79 17 176 10 186 0.360 10.0 0.606

0.3325 1976.88 17 177 9 186 0.359 10.0 0.604

0.3375 1965.69 17 176 9 185 0.357 11.0 0.534

0.3425 1953.18 17 179 5 184 0.358 6.0 0.267

0.3475 1947.54 18 181 4 185 0.358 5.0 0.265

0.3650 1962.15 18 181 4 185 0.359 5.0 0.236

0.3900 1918.64 18 183 4 187 0.360 5.0 0.226

0.4325 1809.19 18 183 4 187 0.361 5.0 0.223

0.4625 1683.22 18 185 3 188 0.362 5.0 0.216

0.4725 1651.89 18 187 3 190 0.364 5.0 0.213

0.4950 1620.57 18 188 3 191 0.363 5.0 0.199

0.5000 1626.91 18 189 2 191 0.365 5.0 0.111

0.5500 1636.21 18 193 1 194 0.374 5.0 0.057

0.6000 1629.73 18 193 1 194 0.375 5.0 0.055

0.7000 1572.03 18 194 1 195 0.377 5.0 0.021

0.8000 1566.33 18 194 0 194 0.378 5.0 0.016

0.9000 1571.42 18 197 0 197 0.382 5.0 0.007

1.0000 1575.33 18 198 0 198 0.383 5.0 0.006

1.1000 1549.67 18 199 0 199 0.384 5.0 0.005

1.3000 1509.43 18 200 0 200 0.384 5.0 0.004

1.4000 1511.22 18 201 0 201 0.385 5.0 0.003

Table D.1: Characteristics of TpT depending on the time penalty
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Time penalty γ Runtime Depth # of terminal leaves # of duration leaves Total # of leaves Tree cost Max of split times Mean of split times

0.0000 671.79 7 26 16 42 0.743 20.0 5.689

0.0025 703.08 7 27 15 42 0.740 20.0 5.306

0.0050 796.89 8 30 17 47 0.721 20.0 4.366

0.0100 939.1 10 40 23 63 0.704 20.0 3.835

0.0125 937.04 10 40 24 64 0.704 20.0 3.837

0.0250 940.39 10 41 24 65 0.702 20.0 3.933

0.0275 944.95 10 43 25 68 0.692 20.0 4.277

0.0300 1034.06 10 53 31 84 0.680 20.0 3.933

0.0425 1054.6 10 54 32 86 0.677 20.0 3.875

0.0450 1058.25 10 55 32 87 0.675 20.0 3.845

0.0475 1056.82 10 59 34 93 0.674 20.0 3.84

0.0500 1246.9 14 73 45 118 0.620 19.0 3.613

0.0525 1354.92 14 69 40 109 0.620 20.0 2.419

0.0575 1383.59 14 77 41 118 0.598 20.0 2.484

0.0600 1389.81 14 82 44 126 0.587 19.0 2.666

0.0650 1383.68 14 82 43 125 0.583 19.0 2.639

0.0700 1379.63 14 83 43 126 0.574 19.0 2.605

0.0750 1427.5 15 86 44 130 0.569 19.0 2.581

0.0775 1427.62 15 87 42 129 0.566 19.0 2.606

0.0950 1421.46 15 91 42 133 0.561 19.0 2.591

0.0975 1421.71 15 92 42 134 0.560 19.0 2.606

0.1000 1420.78 15 93 42 135 0.557 19.0 2.549

0.1075 1447.24 15 95 41 136 0.551 19.0 2.712

0.1150 1438.93 15 97 40 137 0.545 19.0 2.688

0.1175 1447.51 15 97 37 134 0.549 19.0 2.657

0.1200 1458.82 15 98 38 136 0.547 19.0 2.674

0.1250 1502.87 15 114 45 159 0.506 18.0 2.643

0.1300 1504.6 15 115 45 160 0.506 18.0 2.628

0.1375 1504.56 17 119 45 164 0.494 15.0 2.647

0.1400 1647.49 17 121 46 167 0.488 15.0 2.672

0.1425 1724.77 17 124 43 167 0.468 15.0 2.119

0.1475 1750.56 17 125 44 169 0.467 17.0 1.787

0.1500 1756.44 17 132 44 176 0.464 17.0 1.78

0.1525 1766.5 17 135 44 179 0.455 15.0 1.63

0.1550 1791.99 18 135 37 172 0.452 15.0 1.633

0.1575 1798.21 18 136 35 171 0.449 15.0 1.638

0.1600 1800.5 18 136 34 170 0.450 15.0 1.636

0.1625 1844.87 18 143 28 171 0.438 15.0 1.415

0.1650 1825.93 18 143 29 172 0.436 15.0 1.416

0.1675 1884.66 18 154 23 177 0.412 11.0 1.187

0.1750 1889.17 18 155 22 177 0.407 11.0 1.158

0.1775 1910.45 19 156 18 174 0.394 11.0 1.003

0.1825 1901.92 19 157 17 174 0.395 11.0 1.003

0.1875 1940.97 19 164 13 177 0.390 11.0 0.865

0.1950 1938.27 19 166 13 179 0.398 11.0 0.846

0.1975 1909.02 19 166 13 179 0.401 11.0 0.843

0.2050 1931.62 19 165 12 177 0.398 11.0 0.809

0.2100 1921.77 19 165 11 176 0.399 11.0 0.807

0.2175 1938.66 21 165 9 174 0.395 12.0 0.844

0.2200 1940.89 21 166 9 175 0.401 12.0 0.828

0.2250 1946.0 21 166 8 174 0.400 12.0 0.818

0.2375 1941.67 21 167 9 176 0.402 12.0 0.819

0.2450 1939.31 21 160 16 176 0.428 14.0 1.059

0.2475 1917.16 21 161 16 177 0.430 14.0 1.05

0.2575 1920.18 19 162 18 180 0.435 14.0 1.013

0.2600 1916.36 19 163 17 180 0.437 14.0 1.007

0.2625 1968.98 19 172 10 182 0.408 11.0 0.771

0.2650 1965.17 20 172 17 189 0.422 13.0 0.849

0.2675 1969.52 21 173 16 189 0.423 13.0 0.85

0.2700 1960.23 21 174 14 188 0.421 13.0 0.85

0.2725 1997.83 21 175 14 189 0.424 13.0 0.817

0.2775 1977.08 21 176 13 189 0.420 13.0 0.816

0.2800 2194.84 24 182 11 193 0.419 13.0 0.791

0.2850 2167.05 24 179 6 185 0.410 7.0 0.649

0.2925 2138.61 24 179 6 185 0.411 7.0 0.647

0.3125 2115.89 24 179 5 184 0.411 7.0 0.641

0.3225 2088.42 24 178 5 183 0.410 7.0 0.626

0.3300 2076.5 24 178 5 183 0.413 7.0 0.612

0.3650 2027.6 24 180 4 184 0.412 7.0 0.596

0.3750 2051.34 24 180 4 184 0.413 7.0 0.584

0.4000 2079.19 24 181 4 185 0.413 7.0 0.56

0.4025 2015.83 24 186 5 191 0.419 7.0 0.444

0.4325 1864.67 24 187 5 192 0.420 7.0 0.431

0.4475 1757.62 19 182 5 187 0.420 7.0 0.095

0.4575 1731.83 19 183 3 186 0.420 4.0 0.092

0.4800 1577.62 19 187 3 190 0.420 4.0 0.057

0.5500 1577.43 19 188 3 191 0.420 4.0 0.053

0.6500 1577.71 19 189 3 192 0.425 4.0 0.048

0.7000 1573.9 19 190 2 192 0.427 4.0 0.045

0.8000 1578.4 19 193 1 194 0.433 4.0 0.04

0.9000 1589.0 19 192 0 192 0.447 3.0 0.032

1.0000 1592.38 19 195 0 195 0.445 3.0 0.022

1.1000 1576.86 19 195 0 195 0.447 2.0 0.02

1.3000 1576.14 19 196 0 196 0.446 2.0 0.015

Table D.2: Characteritics of unstopped and unpruned entropy TpTs depending on the time

penalty
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D.3.2 Results with minsplit = 25

The maximal unpruned and unstopped TpTs, obtained with the time-penalized entropy splitting

criterion, minsplit= 25, and various time penalties yields the following results:

Time penalty γ Runtime Depth # of terminal leaves # of duration leaves Total # of leaves Tree cost Max of split times Mean of split times

0.0000 668.38 5 14 8 22 0.664 15.0 5.722

0.0025 690.38 5 14 7 21 0.664 15.0 5.172

0.0050 782.22 6 17 8 25 0.638 15.0 4.346

0.0100 840.15 7 16 8 24 0.646 15.0 3.552

0.0150 914.61 8 17 8 25 0.637 15.0 3.301

0.0250 912.15 8 18 9 27 0.636 15.0 3.307

0.0275 917.44 8 18 7 25 0.640 15.0 3.033

0.0300 978.72 8 18 8 26 0.637 15.0 2.347

0.0400 1085.14 8 25 10 35 0.618 15.0 1.953

0.0475 1102.22 8 27 12 39 0.613 15.0 1.959

0.0500 1216.25 8 31 14 45 0.586 9.0 1.578

0.0575 1213.44 8 31 15 46 0.584 9.0 1.568

0.0675 1213.17 8 31 13 44 0.585 9.0 1.5

0.0850 1205.48 9 31 15 46 0.581 10.0 1.52

0.1000 1196.86 9 32 14 46 0.571 10.0 1.434

0.1125 1194.82 9 32 13 45 0.569 10.0 1.418

0.1175 1195.85 8 30 11 41 0.581 11.0 1.244

0.1200 1253.33 11 33 9 42 0.562 9.0 0.823

0.1350 1242.11 11 33 9 42 0.561 9.0 0.807

0.1625 1345.51 11 34 9 43 0.562 9.0 0.714

0.1700 1321.99 11 34 8 42 0.562 9.0 0.708

0.1925 1288.5 11 34 9 43 0.563 9.0 0.689

0.1950 1279.26 11 34 8 42 0.567 9.0 0.651

0.2000 1304.58 11 34 5 39 0.565 9.0 0.38

0.2050 1323.32 11 34 4 38 0.563 8.0 0.316

0.2400 1333.81 11 34 3 37 0.567 6.0 0.275

0.2525 1340.74 11 33 3 36 0.568 6.0 0.242

0.3150 1358.63 11 32 1 33 0.570 3.0 0.173

0.3725 1310.12 11 32 0 32 0.574 2.0 0.045

0.3750 1350.37 11 32 0 32 0.575 2.0 0.014

Table D.3: Characteristics of Entropy TpTs (minsplit=25) depending on the time penalty
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Figure D.2: Characteristics of Entropy TpTs (minsplit=25) depending on the time penalty
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D.3.3 Results with minsplit = 50

Figure D.3: Gini TpT (minsplit=50) with γ = 0
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Figure D.4: Gini TpT (minsplit=50) with the optimal time penalty
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Figure D.5: Gini TpT (minsplit=50) with γ →∞

218



LIST OF FIGURES

4.1 Bias-variance trade-off U-shaped curve . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Train-test split procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 k-fold cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Leave-p-out cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Monte-Carlo CV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.6 Time series rolling CV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.7 Illustration of the Areas under the ROC and PR curves . . . . . . . . . . . . . . . . 33

4.8 A simple decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.9 A M5 tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.10 Mechanisms of a random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.11 Mechanisms of tree boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Illustration of survival analysis and censorship . . . . . . . . . . . . . . . . . . . . . 51

5.2 Illustration of survival analysis and censorship - Starting times aligned . . . . . . . 51

5.3 Illustration of a survival tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1 Past and future CLV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2 The potential of CLV in the insurance industry . . . . . . . . . . . . . . . . . . . . . 71

8.1 Seniorities and face amounts distributions . . . . . . . . . . . . . . . . . . . . . . . 77

8.2 Strategy n°A-1: (Positive result on y(i) and an improved result on ỹ(i).) . . . . . . . 89
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