
HAL Id: tel-04501905
https://hal.science/tel-04501905v2

Submitted on 16 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Information per unit of interaction in stochastic
sequential decision making

Fabien Pesquerel

To cite this version:
Fabien Pesquerel. Information per unit of interaction in stochastic sequential decision making. Ma-
chine Learning [cs.LG]. Université de Lille, 2023. English. �NNT : 2023ULILB048�. �tel-04501905v2�

https://hal.science/tel-04501905v2
https://hal.archives-ouvertes.fr

.

Th
ès

e
de

do
ct

or
at

Information per unit of interaction in
stochastic sequential decision making

Quantité d’information par unité
d’interaction en apprentissage

séquentiel stochastique
Thèse de doctorat de l’Université de Lille

préparée à INRIA Lille Nord-Europe

École doctorale n◦631 Mathématiques-Sciences du numérique et de leurs
interactions, (MADIS)

Spécialité de doctorat: Informatique

 Thèse préparée sous la direction de Odalric-Ambrym Maillard par

 FABIEN PESQUEREL
 Soutenue le 04 décembre 2023

Composition du Jury :

Bruno Gaujal
Directeur de recherche, INRIA (POLARIS) Président du jury

Alexandra Carpentier
Professeur, Université de Potsdam (IFM) Rapportrice

Alexandre Proutière
Professeur, KTH (EES) Rapporteur

Bruno Gaujal
Directeur de recherche, INRIA (POLARIS) Examinateur

Claire Vernade
Chargé de recherche, Université de Tübingen (Lifelong
Reinforcement Learning) Examinatrice

Odalric-Ambrym Maillard
Chargé de rercherche, INRIA (SCOOL) Directeur de thèse

Acknowledgments

I dedicate this manuscript to my loved ones. To my parents, Thierry and Isabelle, whose unwavering support

from the very beginning of my life is immeasurable. To my sister, Floriane, whose guidance and support have

helped me overcome many hardships. To Cannelle, whose significance in my life is truly unfathomable.

I express my deep gratitude to my advisor, Odalric-Ambrym, for placing trust in me and guiding me through

my journey in research during my PhD. Your mentorship has been invaluable, and I am grateful for the

opportunities you have provided.

To you, the reader, I extend my appreciation for dedicating your time to read this manuscript. I sincerely

hope that the content within proves to be meaningful and insightful.

Fabien Pesquerel

Preface

The process of solving

When pondering about the concepts of question and answer, one may delve into well established scientific

fields as well as discover our own way to question and answer those very concepts. When asking a dictionary

what a question is (or more precisely, means) one can read that "a question is an utterance which serves as a

request for information". Let’s emphasize the fact that the dictionary is the mean of interaction with the

environment through which we gained access to the desired information, a definition. The environment is

the set of all existing words (is such a set really known?). The definition is the answer to the question what is
the answer?, and the dictionary is the answer to the question how did we find the information?. If we were to

answer the question how long to find the answer?, we could say that a dictionary sorted in alphabetical order is

an efficient mean of information retrieval.
*

We could then ask how the dictionary was built in the first place.

This would take us to the fields of linguistics and philosophy of language and make emerge at least three

definitions: a semantic one, a pragmatic one and a syntactic one. While interesting, we will not investigate

those concepts from the field of linguistic. Rather, we will adopt a more symbolic approach. We will use a

language having a coherent and strong syntax, being incredibly pragmatic, and having a semantic power

that allows for a large variety of models: mathematics. In this thesis, mathematics will be the way to model

problems and the way to answer the problems.

In this thesis, we will be interested in mathematically model the process of solving. We will not follow

the path of logician nor study set and category theories. We will adopt a physicist mindset and try to model

something that is, hopefully, closer to what is being done as of writing those lines, trials and errors: an
empirically motivated model of process solving. Scientists, such as linguists and physicists, often have

objects that they want to study. To study those object, scientists have tools, be it abstract or concrete, that

allows them to inspect and interact with the objects. Scientists also have ways to assess and express the validity
and scientific interest of their findings. For instance, the new model may be more powerful or the new results

may explain something that was not explained until now.

Modeling how the scientific mind solve natural questions about the world is the main motivation of this

thesis’ author.

The physics of learning

In this thesis, we will emphasize some ways of thinking that are rarely seen in the machine learning

community. However, those methods are the bread and butter of the physics community. In particular, we

will sometimes write about machine learning and reinforcement learning as if we were describing a natural

phenomenon and uncovering the natural laws of learning. Since most of the things we study in this thesis

stems from mathematical constructions, this idea may seem preposterous to some, but I genuinely think that

there is a lot of insight to earn from adopting a physicist lens. In particular, it allows to phrase the theorem in

a way to makes them easier to grasp with the mind.

For instance, when dealing with the complexity of a sequential learning problem, I will introduce and

talk about information per unit of interaction or progress per unit of interaction. After reading those

expressions, a reader should already have an image of what they will refer to, at least at an intuitive level.

When talking about unit of interaction, we give a unit, or dimension, to the quantity named interaction. Indeed,

another tool that we will take from the physicist toolbox is the dimensional analysis. Usually in mathematics,

quantities are dimensionless. However, if we assign a fictitious dimension to some quantities of interest, one

can check the soundness of some formulas and even guess what a formula should look like. For instance, it

*
when you think about it, we all learned about prefix tree and dichotomy at a very young age.

would be strange to have an entropy-dimension equating a probability-dimension. With those two previous ideas

in mind, we can start thinking about the derivative of entropy with respect to the number of samples. While this

sentence may not have a clear mathematical meaning, it really helps to build a strong physical sense for the

tools and theorems we are manipulating.

A last important tool that we will use is scaling. In particular, we will at some point use the concept of

intensive and extensive properties. When studying a physical system, one can ask how would quantities

of interest varies if we were to multiply the size of the system. Intensive properties, such as pressure or

temperature, will not change. Extensive properties, such as volume, will change proportionally with the

size of the system. Obviously, not all quantities are extensive or intensive, but it is nonetheless useful to ask

the following question when solving a problem: if we were to multiply the size of the problem by a factor,

how should my quantities of interest change? For instance, when solving a sequential learning problem, we

strongly advocate that no explicit reference of the origin of time should be used in algorithms. While it

may not pose any mathematical problem, we do think that it does not make sense from physical standpoint.

In particular, we think that doing so can only impair finite time performances of algorithms. Such an intuition

is confirmed by experimental results.

Knowing why, knowing what

When solving a sequential stochastic optimization problem such as a bandit problem, there is a difference

between knowing why and knowing what. What we mean by that is that you can know what to play without a

perfect knowledge of the system, without exactly knowing why. In other words, playing optimally is different
from having a good estimation. While it may sound trivial, I think that it is an important message that

should be emphasized. Often, when solving a bandit problem, we estimate the expected returns of different

actions, and we use that information to know what to play as the next action. It is almost an automatism, but

it should not necessarily be the case. After all, the information needed to know what to play is different from

the information needed to estimate the expected returns of the actions. Because those objectives are quite

close in most of the studied cases, these two objectives seems highly intertwined, but it does not have to be the

case. I will illustrate this fact in this thesis. However, I think that it could be a good thing for the community

to develop more tools, mathematical and algorithmic, to directly tackle the problem of knowing what rather

than using more and more refined knowing why tools that are often more concerned about estimating and

concentration than sequential problem-solving.

Résumé

Dans cette thèse, nous nous interrogeons sur la vitesse à laquelle on peut résoudre un problème stochastique

inconnu. À cette fin, nous introduisons deux domaines de recherche connus sous le nom de Bandit et

d’Apprentissage par Renforcement. Dans ces deux champs d’étude, un agent doit séquentiellement prendre

des décisions qui affecteront un signal de récompense qu’il reçoit. L’agent ne connaît pas l’environnement

avec lequel il interagit, mais pourtant souhaite maximiser sa récompense moyenne à long terme. Plus

précisément, on étudie des problèmes de décision stochastique dans lesquels l’agent cherche à maximiser sa

récompense moyenne. Dans ces problèmes dit d’apprentissage stochastique, l’agent interagit séquentiellement

avec un système dynamique, sans aucune réinitialisation, dans une suite unique, infinie et ininterrompue

d’observations, d’actions et de récompenses tout en essayant de maximiser ses récompenses totales accumulées

au fil du temps.

Nous commençons par présenter le problème de Bandit, dans lequel l’ensemble des décisions est constant,

et définissons ce que l’on entend par résoudre le problème. Parmi ces agents, certains sont meilleurs que

tous les autres et sont dits optimaux. Nous nous concentrons d’abord sur la manière de tirer le maximum

d’information de chaque interaction avec le système en revisitant un algorithme optimal et en réduisant sa

complexité numérique. Tout en conservant l’optimalité de la méthode initiale, la méthode proposée réduit

la complexité numérique et permet donc d’extraire d’avantage d’information d’un échantillon par unité

de temps de calcul. Nous étudions ensuite un problème structuré intéressant dans lequel il est possible

d’exploiter la structure sans l’estimer.

Ensuite nous nous consacrons à l’Apprentissage par Renforcement, dans lequel les décisions qu’un agent peut

prendre dépendent d’une notion d’état. Chaque fois qu’un agent prend une décision, il reçoit une récompense

et l’état change selon une loi de transition sur les états. Sous une certaine hypothèse, dite ergodique, un

taux optimal de résolution par unité d’interaction est connu et nous introduisons un algorithme dont nous

pouvons prouver qu’il est optimal et nous montrons qu’il est numériquement efficace. Dans un dernier

chapitre, nous tentons de mieux comprendre ce qu’implique la supression de l’hypothèse d’ergodicité. Nous

considérons le problème a priori plus simple où les transitions sont connues. Cependant, même sous cette

hypothèse, il n’est pas évident de comprendre correctement la vitesse à laquelle des informations peuvent

être acquises sur une solution optimale.

Abstract

In this thesis, we wonder about the rate at which one can solve an unknown stochastic problem. To this

purpose we introduce two research fields known as Bandit and Reinforcement Learning. In these two settings,

a learner must sequentially makes decision that will affect a reward signal that the learner receive. The learner

does not know the environment with which it is interaction, yet wish to maximize its average reward in the

long run. More specifically, we are interested in studying some form of stochastic decision problem under

the average-reward criterion in which a learning algorithm interacts sequentially with a dynamical system,

without any reset, in a single and infinite sequence of observations, actions, and rewards while trying to

maximize its total accumulated rewards over time.

We first introduce Bandit, in which the set of decision is constant and introduce what is meant by solving the
problem. Amongst those learners, some are better than all the others, and called optimal. We first focus on

how to make the most out of each interaction with the system by revisiting an optimal algorithm, and reduce

its numerical complexity. Therefore, the information extracted from each sample, per-time-step, is larger

since the optimality remains. Then we study an interesting structured problem in which one can exploit the

structure without estimating it.

Afterward we introduce Reinforcement Learning, in which the decision a learner can make depend on a

notion of state. Each time a learner makes a decision, it receives a reward and the state change according to

transition law on the set of states. In some setting, known as ergodic, an optimal rate of solving is known and

we introduce a knew algorithm that we can prove to be optimal and show to be numerically efficient. In a

final chapter, we make a step in the direction of removing the ergodic assumption by considering the a priori
simpler problem where the transitions are known. Yet, correctly understanding the rate at which information

can be acquired about an optimal solution is already not easy.

Contents

Acknowledgments iii

Preface v

Résumé vii

Abstract viii

Contents ix

1 The complexity of solving a problem 1
1.1 Deterministic problems . 1

1.2 Stochastic problems . 6

1.3 Problematic problems . 10

2 Summary of contributions 15

Bandit 19

3 A set of choices: Bandit 21
3.1 A zeroth order model of decision-making . 21

3.2 Solving the problem . 65

3.3 Algorithms in the literature . 75

3.4 Summary of contributions . 80

4 Towards an optimal information usage 83
4.1 Space, time, & sample complexities . 83

4.2 From intuition to algorithms: Fast MED algorithms . 98

4.3 Online portfolio optimization: OMED & OIMED . 117

4.4 Partial proof & open question . 126

4.5 Empirical results . 139

4.5.1 Comparison of MED and IMED versions . 144

4.5.2 Stability of OIMED with respect to the learning rate 146

4.5.3 IMED with discretized rewards . 148

4.6 Conclusion . 150

5 Groups of similar arms 151
5.1 Structured Bandit . 152

5.2 Group of similar arms . 154

5.3 Knowledge of the groups . 158

5.4 Regret lower bound . 164

5.5 IMED-EC . 170

5.6 Regret of IMED-EC . 173

5.7 Experiments . 175

5.8 Fairness . 179

5.9 Conclusion . 183

Reinforcement Learning 185

6 A group of choices: reinforcement learning 187
6.1 A first order model of decision-making . 187

6.2 Planning . 194

6.3 Reinforcement Learning . 196

6.4 Summary of contributions . 199

7 IMED RL 201
7.1 Regret lower bound . 203

7.2 From Bandit to Reinforcement Learning . 206

7.3 The IMED-RL Algorithm . 206

7.4 Regret of IMED-RL . 210

7.5 Skeleton and finite time performances . 215

7.6 Computing the IMED-RL index . 217

7.7 Numerical experiments . 220

8 Exploiting dynamics knowledge with IMED-KD 233
8.1 Known dynamics model . 235

8.2 Problem formulation . 238

8.3 Rarely-switching Algorithms . 243

8.4 Regret decomposition for rarely-switching learners . 247

8.5 Expected finite time average reward and gain . 250

8.6 Cover times and episode lengths . 252

8.7 The IMED-KD strategy . 256

8.8 IMED-KD: Regret upper bound . 259

8.9 IMED-KD: Finite Time Analysis . 261

8.9.1 Notations . 262

8.9.2 Algorithm-based empirical bounds . 262

8.9.3 Non-reliable current best stationary policy . 264

8.9.4 Reliable current gains and current best stationary policy 265

8.9.5 Upper bounds on the numbers of pulls of suboptimal policies 267

8.10 Concentration inequalities . 270

8.11 Bounded subsets of times (Proof of Lemma 8.9.5) . 272

8.12 Choice of policies . 276

8.13 Numerical experiments . 278

8.14 Conclusion . 283

Conclusion 285

9 A meaningful research path 287
9.1 Information per unit of computation . 287

9.2 Structure of policy space . 288

Bibliography 291

List of Figures

1.1 Progress-of-Solving functions for the max-element problem . 3

1.2 Claude Elwood Shannon . 3

1.3 Henri-Léon Lebesgue . 4

1.4 Félix Édouard Justin Émile Borel . 4

1.5 Recursive call tree for the max-element problem . 5

1.6 Call stack for the max-element problem . 5

1.7 Weighted graph: weights as rewards . 6

1.8 One-shot learning under supports separation . 8

1.9 Learning with overlapping supports . 8

1.10 John von Neumann . 11

1.11 Measure & Uncertainty: no free-lunch . 12

1.12 Ueda attractor . 14

3.1 Illustration of a Bandit problem . 35

3.2 Solomon Kullback . 51

3.3 Richard Leibler . 51

4.1 Pierre Simon de Laplace . 90

4.2 DSSAT distributions . 93

4.3 Convexity of EF . 99

4.4 Cyclic permutation of action set . 105

4.5 Experiment: DSSAT . 140

4.6 Experiment: 6-arms Bernoulli centered Bandit problem . 141

4.7 Experiment: 6-arms Bernoulli close-to-one Bandit problem . 142

4.8 Experiment: 6-arms Bernoulli close-to-zero Bandit problem . 142

4.9 6-arms Beta Bandit problem with centered means . 143

4.10 Experiment: 6-arms Beta centered Bandit problem . 143

4.11 6-arms Beta (close to Dirac) Bandit problem with centered means 144

4.12 Experiment: 6-arms Beta (close to Dirac) centered Bandit problem 144

4.13 Experiment: DSSAT . 145

4.14 Experiment: 6-arms Bernoulli Bandit problem . 145

4.15 Experiment: 6-arms Beta Bandit problem . 146

4.16 Experiment: DSSAT . 147

4.17 Experiment: 6-arm Bernoulli Bandit problem with long horizon 147

4.18 Experiment: 6-arms Beta Bandit problem . 148

4.19 Experiment: DSSAT . 149

4.20 Experiment: 6-arm Beta close-to-zero Bandit problem . 150

5.1 10-arms Bandit problem with groups of similar arms . 155

5.2 Groups of similar arms: the path perspective . 156

5.3 Group viewed as an arm . 159

5.4 Groups of similar arms: computing the lower bound . 167

5.5 Experiment: 3 groups, 3 distributions per class . 176

5.6 Experiment: 7 groups, 8 distributions per class . 176

5.7 Experiment: 4 groups, 10 distributions per class . 177

5.8 Experiment: 7 groups, unbalanced classes . 178

5.9 Experiment on parameter stability: 7 groups, unbalanced classes 179

5.10 Fairness: 4 groups, 10 distributions per class (1/4) . 180

5.11 Fairness: 4 groups, 10 distributions per class (2/4) . 180

5.12 Fairness: 4 groups, 10 distributions per class (3/4) . 180

5.13 Fairness: 4 groups, 10 distributions per class (4/4) . 181

5.14 Fairness: 7 groups, unbalanced classes (1/4) . 182

5.15 Fairness: 7 groups, unbalanced classes (2/4) . 182

5.16 Fairness: 7 groups, unbalanced classes (3/4) . 182

5.17 Fairness: 7 groups, unbalanced classes (4/4) . 182

6.1 Andreï Andreïevitch Markov . 187

7.1 RiverSwim environment . 222

7.2 Experiment: 6-states RiverSwim . 223

7.3 Experiment: 25-states RiverSwim . 223

7.4 Reward-rich environment . 224

7.5 Experiment: reward-rich . 225

7.6 n-rooms environment . 226

7.7 Experiment: 4-rooms . 226

7.8 Experiment: 2-rooms . 227

7.9 Experiment: 8x8 grid-world . 228

7.10 Experiment: 16x16 grid-world . 229

7.11 Nasty environment . 230

7.12 Experiment: Nasty . 230

8.1 Illustration of the importance of episode length . 252

8.2 Illustration of diffusive policy . 253

8.3 RiverSwim environment . 278

8.4 Experiment: RiverSwim . 279

8.5 Nasty environment . 279

8.6 Experiment: Nasty . 280

8.7 n-rooms environment . 280

8.8 Experiment: n-rooms . 281

8.9 Experiment: n-rooms (large horizon) . 281

8.10 Experiment: switching IMED for TS and UCB . 282

List of Algorithms

1 Action Iteration . 33

2 Generic index bandit policy . 66

3 Generic index bandit policy . 67

4 Generic random bandit policy . 68

5 Probability distribution corresponding to a randomized index 69

6 Generic index/random set-based bandit policy . 71

7 KL-UCB index . 76

8 kl-UCB index . 77

9 UCB index . 77

10 MED distribution . 78

11 DMED set . 78

12 IMED index . 78

13 NPTS distribution . 79

14 FIMED . 102

15 FMED . 102

16 AFMED . 105

17 aAFMED . 107

18 OMED . 125

19 Anytime Soft-Bayes . 139

20 IMED-EC algorithm . 171

21 IMED-RL . 209

22 Rarely-switching learner . 244

List of Tables

3.1 Numerical Complexity of some Bandit algorithms . 75

4.1 Numerical Complexity of some Bandit algorithms . 91

4.2 Sampling rates ratios on DSSAT . 93

4.3 Numerical Complexity of some Bandit algorithms . 97

4.4 Numerical Complexity of aAFMED . 106

4.5 Numerical Complexity of FMED and FIMED . 109

4.6 Numerical Complexity of OMED and OIMED . 130

4.7 Experiment: Regret and Runtime on DSSAT . 140

4.8 Experiment: Regret and Runtime on a 6-arms Bernoulli Bandit problem 141

4.9 Experiment: Regret and Runtime on a 6-arms Bernoulli Bandit problem with long horizon . . . 142

4.10 Experiment: 6-arms Beta centered Bandit problem with long horizon 143

4.11 Experiment: Regret and Runtime on a 6-arms Beta Bandit problem with long horizon 144

4.12 Experiment: Regret and Runtime on DSSAT with long horizon 145

4.13 Experiment: 6-arms Bernoulli Bandit problem with long horizon 146

4.14 Experiment: Regret and Runtime on a 6-arms Beta Bandit problem with long horizon 146

4.15 Experiment: Regret and Runtime on DSSAT . 148

4.16 Experiment: Regret and Runtime on a 6-arms close-to-zero Beta Bandit problem 149

7.1 Runtime: 25-states RiverSwim . 224

7.2 Runtime: 8x8 grid-world . 228

The complexity of solving a
problem 1

1.1 Deterministic problems . . 1
1.2 Stochastic problems 6
1.3 Problematic problems . . . 10

When thinking about the process of solving, it is hard not to think about

the complexity of solving. In this thesis, we will be concerned about

solving an optimization problem while being uncertain about the very
problem we want to solve. There will be a set of decisions that are real

random variables. Values taken when sampling a decision is called a

reward, and we want to find the decision of maximal expected rewards.

The set of decisions might be just that, a set, and the problem is said to

be a bandit problem. The set of decisions might have some additional

structure and depending on it, it will be called a structured bandit or a

reinforcement learning problem. We will be solving the optimization

problem sequentially and our main focus will be to measure a notion of

random complexity. While related to, this notion which we will call the

regret of a problem, is not equivalent to the notion of sample complexity.

The reason it is not equivalent, is that our focus is to find a solution to

the problem rather than correctly estimate the function from which the

problem arises. Similarly to the concept of algorithmic complexity, the

notion of regret will be related to some important quantities describing

the problem, e.g. the size of the decision set. When additional structure

is considered on the set of decisions, it is important to have an intuitive

idea of how the complexity should scale with those parameters.

Before delving into the core of this thesis, let’s describe a few simple

problems that are all related to bandit and reinforcement learning. I hope

those problems will help build some intuition and convince the reader of

the scientific interest of the physics-oriented approach. In the last section,

we will briefly talk about modeling sequential decision problems. In

particular, I will mention a sequential problem that is particularly dear

to me, scientific discovery. I hope that the works done during this thesis

will be useful to uncover the veil of the physics of scientific discovery.

1.1 Deterministic problems

The maximum of a set of numbers

Here is the simple problem. You are given a finite set of numbers and your

task is to find the element of maximal value. We will talk about a simple

algorithm to solve the task and consider its complexity. I advocate that

there is more to this statement than one may assume and that clarifying

it may avoid a lot of confusion when studying the more complex bandit

and reinforcement learning problems.

It is implicit that we can interact with elements from the set by looking at

them. That is to say, there exist a set of pointers or labels Land a selector

function 𝑠 from L to the set of values V:

𝑠 : L→ V.

2 1 The complexity of solving a problem

Our task is to find an element, not a value. That is to say, we are looking

for an object belonging to the pointer set, not the value set. Once we

have a correct algorithm that computes the maximal element, we can

forget altogether about the value set. When asked about the maximal

element, we can confidently answer the stored value and this element can

be passed by without reference to its value. This illustrates the difference

between knowing why and knowing what.

It is implicit that computing a pointer or label is easy. That is to say,

the set of labels is either explicitly given to us or implicitly as a simple

constructive rule. It can be integers from 1 to n or the 𝑛𝑡ℎ first successors
of 1. It will not be something like the 𝑛𝑡ℎ first prime numbers after 10

10
10

.

In a nutshell, the complexity of computing a pointer or label is not

considered.

It is implicit that we have only access to a limited number of mathematical

operators to solve the problem. For instance, we do not assume the

existence of a max : (L, 𝑠 , V) → L operator that return the maximal

element. Rather, we have to define a set of elementary operations and

compute the complexity of an algorithm as the number of used operations

to compute a solution. All operations are done sequentially. It is implicit

that we can only point to one element at a time, allocate some memory to

store and access relevant information, and perform pairwise comparison
of values. We interact with the problem by pointing to elements, and we

gain information by comparing elements.

Please remark that in determining the maximal elements, we will only

be concerned about the relative order between values and not about the

value of the difference between values. It is implicit that the elementary

operations do not depend on the difference and therefore, the span of

values, nor the gaps between values should appear in any measure of

complexity of the problem. A measure of the complexity of the problem

should be value-agnostic.

It is implicit that there is no prior information about the values that

is contained within the labels and labelling function. Anticipating on

the next sections, one can see that this will be the case for unstructured

bandit problem but will not necessarily be true for structured bandit and

reinforcement learning problems.

To know the maximal element, all values have to be inspected at least

once. Hence, the number of elementary operations is larger than the size

of the value set, |V|. On the other hand, one can describe a very simple

algorithm matching this complexity lower bound. Initialize a couple

label-value 𝑚 = (★, 𝑠(★)) with some arbitrary chosen element ★ ∈ L.

Iterate through the label set and, using 𝑠, inspect the values. Compare the

value of the currently inspected element 𝑒 with the stored value 𝑠(★) of

𝑚. If the value of the currently inspected element 𝑠(𝑒) is larger than that

of★, then set 𝑚 = (𝑒 , 𝑠(𝑒)). Otherwise, pass and inspect the next element.

Such an algorithm uses a constant number of elementary operations per

element and inspect each element only once. Therefore, the complexity of

the algorithm is proportional to the size and in the context of algorithmic

complexity, we say that it matches the complexity lower bound.

In this sequential procedure, what is the progress per unit of interaction?

Imagine that the value 0 means that we have no information at all on the

1.1 Deterministic problems 3

0

1

step

p
r
o
g

r
e
s
s

crude information

probabilistic information

entropic information

Figure 1.1: Progress functions for the

max-element problem as computed by

the different complexity measures.

Figure 1.2: Claude Elwood Shannon

(1916-2001). American mathematician,

electrical engineer, computer scientist

and cryptographer known as the one

of the father of information theory

problem and that the problem is 0% solved. Progress of 1 means that we

have 100% solved the problem and gathered all the necessary information

in a meaningful way. We represent in Figure 1.1 the three measures of

progress that we present: crude, probabilistic, and entropic.

A crude way to measure progress would be to say that, since nothing

is certain until all values have been inspected, the progress per unit of

interaction is always 0, except for the last inspection where the progress

is 1. Similarly to a phase transition, all of a sudden, the problem is solved.

This approach is interesting because it gives information about the
completeness of the task. It is represented by the crude information curve

in Figure 1.1.

Another way of measuring the progress per unit of interaction would

be to count the remaining number of elements to inspect before the

problem is solved. Normalizing such a quantity, the progress per unit of

interaction would be 1/|V| and the total progress would be the sum of

the progresses per step. One can see that this approach consists in averaging

(or amortizing) the costs of the crude approach by the size of the problem.

This approach is interesting because it gives information about the
remaining number of interactions before the task is over. This point

view is deeply related to a probabilistic
*

viewpoint on the problem. When

running the sequential algorithm, we can consider the probability 𝑝𝑡
that the stored label-value at iteration 𝑡 is the one corresponding to the

maximal element. We have the simple recurrence relation

𝑝𝑡+1 = 𝑝𝑡 + (1 − 𝑝𝑡)
1

|V| − 𝑡

with the boundary conditions 𝑝0 = 0 and 𝑝𝑡 = 1 whenever 𝑡 ≥ |V|.
One could argue that the term (1 − 𝑝𝑡) 1

|V|−𝑡 is a good candidate for the

denomination of information per time step. It indeed has the dimension of a

probability per unit of interaction since it is a probability divided by a number
of iterations to go. Solving this equation, we get that 𝑝𝑡 =

𝑡
|V| and therefore,

(1−𝑝𝑡) 1

|V|−𝑡 =
1

|V| . We therefore retrieve from a probabilistic and physics-

oriented interpretation our aforementioned quantity of progress per step.

It is represented by the probabilistic information curve in Figure 1.1.

Finally, we present one last interesting way of measuring the complex-

ity of this problem, entropy. Entropy can naturally emerge from the

aforementioned probabilistic model. However, let’s first expose how the

entropy term log |L| also stems from a theoretical computer science

viewpoint. When it comes to the description of the algorithm, there is

really one variable that depends on the problem, that is the cardinal |L|
of the label set. The length of a program describing how to solve the

problem is thus a constant plus a variable length depending on |L|. It is

a known fact that whatever the base we choose, the description length of

|L| grows logarithmically with |L|. This approach is interesting because

it gives information about the length of a program (or strategy) that is

necessary to solve the problem. Hence, one could argue that 𝑡 ↦→ log|L| 𝑡

is a good measure of progress and that log|L|
𝑡+1

𝑡 is a relevant measure

of progress per step at step 𝑡. One can see that the level of progress is

step (or time) dependent. The progress function is concave, meaning

that the more advanced the step, the less we gain information and the

*
assuming uniform permutation of the labels

4 1 The complexity of solving a problem

Figure 1.3: Henri-Léon Lebesgue (1875-

1941). French mathematician known for

his theory of integration originally

published in his dissertation Intégrale,
longueur, aire in 1902.

Figure 1.4: Félix Édouard Justin Émile

Borel (1871-1956). French mathematician

known for his founding work in measure
theory and probability.

slower the progress. This is somewhat intuitive that, as the problem

is being solved, the higher the probability that we already found the

maximal element and the less information we gain per step. Because the

information per step is like a derivative, a decreasing information per

step means a concave progress function. It is represented by the entropic
information curve in Figure 1.1. However, we do know that in reality, we

have to check all elements at least once to solve our problem. Apart from

being the log-likelihood ratio log

𝑝𝑡+1

𝑝𝑡
, how does this viewpoint connect

with the previous one?

To make appear the log |L| term, we have to slightly change our com-

puting paradigm ; from an algebra to analysis. During this thesis, we

will encounter a lot of properties that can be understood from either of

the two intertwined viewpoints. The paradigm of interest is the one of

measure theory. In this context, our elementary operations will consist in

applying a well-chosen measure to a measurable set of a 𝜎-field defined

over the label space L. We gain information on the problem by measuring.

A good candidate for the complexity of the problem is the number of
measures before one can solve the problem. We consider the power set

2
L

as our 𝜎-field over the label space, and we show that we can solve the

problem using dichotomy. Using this method, we show that the number

of measures necessary to solve the problem is log |L|. The algorithm

proceeds as follows. We consider the measure 𝔪 : 2
L → {0, 1} that

is such that 𝔪(𝐴) = 1 is the maximal element is in 𝐴 and 𝔪(𝐴) = 0

otherwise. We partition L= L1 ⊔L2 into two disjoint sets of the same

size (plus or minus one element). Using 𝔪, we measure L1 and gain the

knowledge of the subset in which the maximum is lying. Recursively

picking the subset in which the maximal element is, we halve the size of

the subset in which we are looking for the maximal element until both the

considered subset are of size one and perform one ultimate measure. The

number of measures is therefore log |L|. Not so coincidentally, this is also

the entropy of the uniform distribution on a set of size |L|. This is also

equal to − log(1 − 𝑝𝑡) 1

|V|−𝑡 , the log of our previous constant probability

progress per step.

Let’s wrap this introductory example by answering one last question: how

does this measure-related logarithmic complexity relates more deeply to

the previous algebraic-related complexity? To connect the two, we need

to consider the algebraic complexity of performing a measure. From an al-

gorithmic viewpoint, the following reasoning is a bit absurd, but it serves

the purpose of illustrating how algebra and measure works together

when determining the complexity of a problem. To algebraically perform

the measure and determine whether the maximal element is in the first or

second subset of the partition, we compute the maximal element of both

partition, compare them and based on that, we can assign the measure.

Such a procedure can be done recursively. Of course, we should be able

to determine the maximal element just after the first split, but this is a

thought experiment for the sake of connecting different thinking methods.

What is the number of elementary operations? For the first split, we in-

spect |L| elements for the measure; for the second split, we inspect |L|/2
elements; for the third split, we inspect |L|/22

elements. . . The number

of elementary operations |L|
(
1 + 1

2
+ 1

4
+ · · · + 1

2
log |L|

)
is therefore upper

bounded by 2|L| and lower bounded by |L|. When accounting for the

algebraic cost of measuring and using the measure-oriented algorithm,

1.1 Deterministic problems 5

L

L1

L11 L12

L2

L21 L22

split call

split call

base call base call

split call

base call base call

Figure 1.5: Recursive splitting of the label

set L and associated call tree. The order

of the call is assumed to correspond to

a preorder traversal of the splitting tree.

Successive call are stored on a stack as

depicted in Figure 1.6.

base call on L11

split call on L1

split call on L

Figure 1.6: Execution stack after right

before the first base call return. The base

call on L11 will return its value to its

parent split call on L1 which will then

execute a base call on L12.

we retrieve the algebraic complexity of solving the problem.

Of course, one can perform a deeper merging of those two ways of

thinking by considering a recursive algorithm. The base case occurs

when the size is of size one in which case it returns the only element

of the set. Otherwise, the label set is split in two roughly equal subsets

and the algorithm is called recursively on each of the subset until the

base case is reached. When returning from a split, the algorithm return

the maximal element of the two elements returned by the two children

call.

After splitting, instead of directly computing and comparing the maximal

values, we call our procedure on the two constructed subsets and solve

the same problem of computing the maximal value. From the knowledge

of the maximal elements on the two subproblems, we can compute

the solution to our original problem. Thus, the problem of finding the

maximal element of a set have the subproblem substructure and can be

solved using an algorithmic method that is close to, if not only named

differently, dynamic programming.

How does this relate to the works presented in this thesis? However

simple the maximal element problem appears to be, one can see how

instructive it can be. Bandits, that we introduce in the next section, are

connected to this problem. The main feature of bandit is that instead of

dealing with the tuple (L, 𝑠 , V) where V is a set of numbers, we will

now consider the case where V is a functional space. Elements of Vwill

be real random variable satisfying some properties. The maximal element

problem will be equivalent to the best element identification problem.

Interestingly, the introduced stochasticity brings out new questions that

could not be asked in the deterministic setting, e.g. what is the expected

number of time that we sampled the best element
†

after playing for 𝑇

steps. For those reasons, the title of Section 3.1 introduces bandits as a
zeroth order model of decision-making. We will have to determine a relevant

measure of the complexity and craft a relevant measure of progress.

Understanding a broader notion of complexity and building intuition in

simple yet informative examples will hopefully help the more difficult

problems presented in this thesis.

Path of maximal reward

A graph is a pair G = (V, E), where V is a set whose elements are called

vertices, and E is a set of paired vertices, whose elements are called

edges.

† i. e. a random variable with the largest expected value

6 1 The complexity of solving a problem

Figure 1.7: A graph in which edges are

argument of a reward function.
3

1 2

𝑟21

𝑟12

𝑟31

𝑟13 𝑟32

𝑟23

1: You are given a finite set of numbers

and your task is to find the element of

maximal value.

2: More precisely, this is the problem of

best arm identification.

The shortest & longest path problems

In graph theory, the shortest path problem is the problem of finding a

path between two vertices (or nodes) in a graph such that the sum of the

weights of its constituent edges is minimized.

In graph theory and theoretical computer science, the longest path

problem is the problem of finding a simple path of maximum length in

a given graph. A path is called simple if it does not have any repeated

vertices; the length of a path may either be measured by its number of

edges, or (in weighted graphs) by the sum of the weights of its edges. In

contrast to the shortest path problem, which can be solved in polynomial

time in graphs without negative-weight cycles, the longest path problem

is NP-hard and the decision version of the problem, which asks whether a

path exists of at least some given length, is NP-complete. This means that

the decision problem cannot be solved in polynomial time for arbitrary

graphs unless P = NP. Stronger hardness results are also known showing

that it is difficult to approximate. However, it has a linear time solution

for directed acyclic graphs, which has important applications in finding

the critical path in scheduling problems.

1.2 Stochastic problems

The maximum expected value of a set of random variable

Here we add some stochasticity to the simple maximum of a set of numbers
problem. You are given a finite set of real valued random variables and

your task is to find the element of maximal expected value. To the layman

reader, this sentence might seem so close to the previous one
1

presented

in Section 1.1 that once the former problem is solved, the latter should be

close enough to be solved. However, adding stochasticity to the problem

makes it a research problem called Bandit2
. We will surely delve into the

topic latter on but right now, let’s focus on the problem statement and

clarify some technical words as well as implicit assumption.

It is implicit that we can interact with elements from the set by looking

at them. Compared to the previous situation, the interaction is two-fold.

First, there exist a set of pointers or labels L and a selector function 𝑠

from L to the set of random variables B:

𝑠 : L→ B.

1.2 Stochastic problems 7

3: Of course, one can always add some

structure to the problem later on.

In fact, it is easy to prove that only the

largest of samples need to be 2-separated

from all other samples to conclude that

we found a maximal element.

Second, given a selected random variable 𝑠(𝑎) for 𝑎 ∈ L, it is implicit

that we can sample from it. That is to say, we gain information about

elements from the set by selecting them and sampling them. One cannot

access information about a selected random variable such as moments for

example. Therefore, it is implicit that there is no prior information about

the expected values that is contained within the labels and labelling

function
3
. As previously, we can only point to one element at a time,

allocate some memory to store and access relevant information, and

perform pairwise comparison of values. Please refer to Section 1.1 for

other implicit assumptions, particularly about label computation.

It is somewhat implicit that the expected values of the random variables

are all finite. We discuss this assumption in depth in Section 1.3. The

main and most important semantic vagueness appearing in the statement

lies in the definition of the word find. Because of the newly introduced

stochastic nature of the problem, uncertainty about our knowledge of the

expected values hinder our solving process and ability to know for certain
the maximal element. For the problem to be interesting, it should be the

case that some information is learned about elements as we select and

sample random variables. As we gain information, our uncertainty about

the maximal element, should reduce in a measurable way. Thus, a meaning

can be given to the words solving, as a reduction in uncertainty, and to
find, as achieving a low enough uncertainty. To quantify the information

gain, some assumptions on the considered random variables will be

necessary and are still a topic discussed in research papers.

Again, we emphasize that our task is to find an element, not an expected value.
In other words, knowing the maximal element is different from knowing

the maximal expected values. In particular, the uncertainty about which

element is maximal can (and often) decrease far more quickly than the

uncertainty about the expected value of that said maximal element.

While knowledge about the expected values gives information about the

maximal element problem we wish to solve, solving the problem should

not be confused with estimating the problem. We now illustrate this fact

with a simple instance of the problem.

The problem is as follows. We make the assumption that all the random

variables have a support of finite length at most one. We want to solve the

problem of finding the element with maximal expected value. Because

labels do not give any information about the random variables and no

dependencies is assumed between the random variables, we have to start

by selecting and sampling each element once. Imagine that doing so,

we get |L| samples such that for all 𝑎, 𝑏 ∈ Lwith 𝑎 ≠ 𝑏, the respective

samples 𝑥𝑎 and 𝑥𝑏 are separated by more than 2, |𝑥𝑎 − 𝑥𝑏 | ≥ 2. Then, we

can already output a maximal element, ★ ∈ argmax𝑎∈L 𝑥𝑎 , the element

of whose first sample is maximal. The reason is that because the supports

of the random variables are of length at most one, we know from the

distances between samples that, in fact, all the supports are disjoints. This

situation is illustrated in Figure 1.8 where we can visualize why distances

larger than two between samples induce non-overlapping support. In

this case, one can see that despite a large uncertainty about the expected

values of all samples we have complete certainty about a solution to the

problem. For each random variable 𝑠(𝑎), 𝑎 ∈ L, one can only affirm that

its expected value is located in the interval [𝑥𝑎 − 1, 𝑥𝑎 + 1], which we can

agree, is not a lot of information and a lot of uncertainty. Nonetheless, the

8 1 The complexity of solving a problem

Figure 1.8: The first samples induce a

structure of non-overlapping supports

�� ��| �� ��| �� ��|
maximal support

associated to sample 𝑥𝑎

𝑥𝑎 𝑥𝑏

symmetric interval of

length 2 around 𝑥𝑏

𝑥★

///////// \\\\\\\\\ xxxxxxxxx

Knowing the ordering permutation is

indeed too much information, and we

can see why only the 2-sepration of the

largest sample is necessary.

relative order of all expected values is known with certainty thanks to

the 2-separation of all samples. Starting to connect this setting with more

complicated one that are to come, we can say that, for label 𝑎 ∈ L such

that its first sample is such that 𝑥𝑎 + 1 < 𝑥★ − 1, its likelihood of optimality
given information is null.

In this thesis, we will talk about the likelihood of optimality as a mean

to emphasize the difference between estimating the stochastic problem

and solving the stochastic problem.

If we were to describe the progress per unit of interaction, one would get

something very similar to the deterministic case. Of course, even when

supports are separated, the first samples do not need to contain this

information by being 2-separated. It could very well be that the supports

are in fact of lengths much smaller than one (the extreme case being Dirac

distributions) thus making useless the strategy tracking the spread of

samples to eventually separate supports (which would work if supports

are of length exactly one and all strictly separated). It could also be that

the supports are not disjoints as illustrated in Figure 1.9 where the true

supports of three distributions are depicted along with the position of

their true expected values. In this scenario, discriminating between label

★ and label 𝑏 may require advanced techniques presented thereafter. In

Figure 1.9: Overlapping supports

�� ��| �� ��|
�� ��|

support of distribution s(a)

whose mean is 𝑠(𝑎)

𝑠(𝑎) 𝑠(𝑏)

support length is

at most one

𝑠(★)
///////// \\\\\\\\\\\\xxxxxxxxxxxxxxxxxxxxxxxxxx

those cases, sophisticated methods to compute a likelihood of optimality
for each of the elements are required.

Please remark how the complexity of a problem is sometimes dependent

on the gap between the optimal value and other values while it was not

the case in the deterministic setting. That complexity somehow has to

depend on a function of the random variables and their expected values

can be understood as maximally utilizing the hypothesis at hand. In the

deterministic setting, we only used the fact that there exist a total order

on elements in Vand a way to access the comparison operator. As those

are the only properties used to define the problem, any good notion of

complexity cannot make any other assumption and will only depend on

the number of elements and number of comparisons. In this stochastic

setting, the set of possible values is ℝ, endowed with its usual structures,

in particular, its ℝ-vector space structure, its canonical topology, Borel

𝜎-algebra and Lebesgue measure. Altogether, this allows to give a precise

meaning to the concept real random variables and expected values. If we

were to define another criterion of maximality, the problem statement

might look completely different. For instance, we could be looking for

1.2 Stochastic problems 9

Obviously, without structural assump-

tion, C (𝑠,L,B) = C (𝑠′,L′,B) for all

L,L′ and bĳection, 𝑠, 𝑠′. That is, a good

notion of complexity should be indepen-

dent of the label set and map function,

C (𝑠,L,B) = 𝑐 (B).

the random variable of maximal possible value, knowing that all random

variables take their values in a totally ordered set without additional

structure. The fact that ℝ is endowed with its topology and the nature of

the problem posed as a maximum over expected values indicates that the

likelihood of optimality of elements is likely to be computed using analytical

properties of ℝ, in particular continuous functions. This is because the

topology defines a notion of neighborhood which is the set-approach to

define a notion of proximity or vicinity between values. In fact, this goes

one step further with ℝ since its topology can be recovered from its usual

metric. Using all the structural assumptions at hand, it is likely that any

satisfying notion of complexity of a problem will depend analytically on

the random variables, for instance through the distances between the

optimal expected value and other values.

This simple example can also teach something about the notion of com-
plexity to solve a problem. Our intuition is that an interesting generalization

of our previous deterministic complexity should be related to the number
of interaction before solving. The main difficulty is that because of the

stochasticity, there is a priori no unique definition of solved. Rather, there

is a continuum of uncertainty about the solution to the problem, from

fully uncertain to completely solved. Therefore, our future definition

of complexity should be close to the mathematical transcription of the

number of interaction before a level of uncertainty is reached. Then,

the progress per unit of interaction would be related to the decrease in

uncertainty per sample. The precise dimension (or unit) of this progress

will depend on the method used to measure uncertainty and information.

If uncertainty is measured using interval of fixed confidence, then the

speed of progress is measured in length per sample, where the length of

a confidence interval is a function of the number of samples.

Recall that we are studying the problem of finding the element with

maximal expected value in a set of random variables having a support of

finite length at most one. From the previous analysis and our definition

of complexity, some instances of the problem are easy to solve, e.g. when

the supports are 2-separated, while others are hard to solve, e.g. when all

supports are the same and non-degenerate. Thus emerge two notions of

complexity: instance dependent and worst case. The instance dependent
complexity will refer to the complexity of solving the specific instance

at hand. The worst case complexity refers to the maximal instance

complexity that can be measured on a class of problems. For a given

notion of solving, let C (𝑠,L,B) represents the complexity of solving

the specific instance specified by the sets L, B and the map 𝑠 : L→ B.

Let

P𝑘 = {(𝑠,L,B) | |L| = 𝑘,� (𝑐𝑣𝑥 (𝑠𝑢𝑝𝑝(𝑋))) ≤ 1∀𝑋 ∈ B}

denotes the set of all instances with 𝑘 elements, where � (𝑐𝑣𝑥 (𝑠𝑢𝑝𝑝(𝑋)))
is read as the Lebesgue measure of the convex envelope of the support

of the random variable 𝑋. Then a worst case complexity could be

max𝑖∈P𝑘
C (𝑖), the maximal complexity on all instances of a specific

class of problem. For this notion of complexity to be meaningful and

useful, we see that the class of problem should be carefully chosen, not

too small nor too large.

Interestingly, the introduced stochasticity brings out new questions that

10 1 The complexity of solving a problem

could not really be asked in the deterministic setting. Of particular interest

is the number of interaction with each element to get a certain level of

certainty about the solution to a specific instance. For a given level of

certainty, what is the distribution of those number of interactions? For a

given level of certainty, what is the minimal level of interaction? For a

given number of interaction, what is the strategy that interacts with the

maximal element the largest number of time?

Bandits, that we introduce in the next section of this thesis, is a framework

that is used to study those concepts and questions. We foresaw the notion

of sample complexity of elements and how it can be helpful to characterize

the complexity of a problem. In this stochastic setting we intuited that a

good notion of information per unit of interaction should say something

about the level of uncertainty about the solution to the problem at

hand. Anticipating a probability viewpoint on the space of solutions,

the solution distribution should "converge" to that of a Dirac on the true

solution to the problem. A notion of distance to that Dirac could be a

measure of progress and the rate of convergence, as a function of the

number of interactions, could be a measure of progress per interaction.

Those themes will be further developed in this thesis.

1.3 Problematic problems

Finding the right model

Once a (good) theoretical model is defined, it becomes interesting on its

own, questions about the model can be asked, researched, debated and

answered. Often, models are built on other models. Sometimes, models

interact with other models and results about one model can shed light

or ask new question about another one. It can therefore be useful to

take the time to think about the model we study, to ponder over the

relevance of the model, the axioms and assumptions that the model is

based on and the other used models that constrain what can be said
about and on the model. As we saw, an algebraic point of view on the

complexity cannot express the same facts as an information-theory point

of view on the complexity. Therefore, when set on studying a concept or

topic such as decision, finding the right model is an important problem.

Finding the right pieces of mathematics on which we base our model is

equally important. Fortunately, a physics oriented mindset can help to

give intuition about the right tools to choose (or build!).

I would argue that even the most abstract mathematics are models of

things that a human wish to better understand. For instance, one could

wish to understand mathematically the concept of regularity and end up

building a pretty abstract model. What does it mean for something to be

regular? What are the things that can be regular? It is easy to envision

many research directions and models from this simple question. Even

with multiple models of regularity, one could ask how those models are

related to each other and specify what we mean by related. In this thesis,

we are interested in better understanding the concept of decision. A

question one may ask at some point is: should a concept of good decision
be based on some regularities in the available information? Terms that are

1.3 Problematic problems 11

Given a particular field, what kind of

model naturally emerge in your mind? Is

it different from Bandit? From reinforce-

ment learning?

Figure 1.10: John von Neumann (1903-

1957). Hungarian-American mathemati-

cian, physicist, computer scientist, engi-

neer and polymath. Known partly for his

founding work in economics and game
theory.

italic are ought to be mathematically defined at some point if one want

to give an answer to this question.

While mathematics is the preferred methods of this thesis, there are many

fields from which in which the concept of decision is studied. There

fundamental and subtle differences in the definitions of decision in those

field and all them would be a good starting point for a mathematical

formulation. However, an overlap in the models is bound to happen due

the abstraction power of mathematics and the fact that the definitions of

decisions between those fields are all related in some ways. To name a few,

here are some fields from which one can borrow a first intuition about

the concept of decision: neurosciences, history, philosophy, biology, legal

sciences, sport sciences. . . In this thesis, we are interested in modelling a

form of rational decision that is closely related to the concept of decision
that can be found in the field of economy. This can particularly be seen

through the numerical reward assumption that can be closely related to

the notion of utility in economics.

Game theory is one approach to the problem of modeling rational deci-

sions. While game theory can be defined as the study of mathematical

models of strategic interactions among rational agents, I do think that a

similar definition can hold for competitive multi-agents reinforcement

learning. However, game theory differs from Bandits theory and rein-

forcement learning in multiple ways. Reinforcement Learning differs

from game theory because it emphasizes the notions of sequentiality, game
against nature, stochasticity and most of the work of the community is

concerned about the learnability. Also, it is far less focused on economics

and political concepts than game theory. Surely there are bridges, in

particular through the notion of worst-case lower bound that is similar

to a minimax approach to the concept of complexity in the sense that

we are looking for the worst case possible expected utility (reward) of a

strategy among all possible environments.

It is sometimes a problematic problem when multiple discipline tackle

similar questions without speaking the same language, sometimes hin-

dering the amount of interaction between communities having similar

interests. On the other hand, this diversity of models and tools to tackle

the problem (while daunting when we must choose) is beneficial to in-

spire new ideas and foster creativity. In this thesis and other works from

the community, some hypotheses are therefore driven by applications.

Others are driven by the need to handle the mathematical complexity of

the model and our owns ability to derive results. Finding the right model

that allows us say something about the application that we have in mind

while being general enough to be useful as an abstract model but not so

much that it cannot be theoretically handled anymore is a complicated

task.

In this thesis, we want to study the concept of decision and more specifi-

cally, in the concept of sequential decision-making. We are also interested

in studying those decisions that allows us to solve some problems, and

we are interested in understanding a notion of information per unit of
interaction. In this thesis, we will see that Bandits and reinforcement

learning are one way to mathematically tackle such concepts.

12 1 The complexity of solving a problem

4: The timescale of an experiment is

called the time horizon.

0

size of the system

u
n

c
e
r
t
a
i
n

t
y

o
f

t
h

e
m

e
a
s
u

r
e

Figure 1.11: Uncertainty of the measure

as a function of the size of the system

when the measure instrument and the

method of measurement are fixed

5: Thought experiment. Imagine mea-

suring the temperature of water that is

within a glass. Using a physical ther-

mometer would surely modify the tem-

perature of the water and therefore, the

resulting measure does not correspond

to the initial temperature of water. If we

were to use a laser to measure the tem-

perature, this laser would surely heat

the water, at least locally. It would make

the measurement inaccurate too. Further-

more, because the instrument is more local
than the system and that the modification

of the property that we want to mea-

sure is global, can we still talk about the
temperature of the system without wait-

ing for a new equilibrium? However, we

don’t know if the equilibrium is reached

without measuring. The process of mea-

suring the temperature of a glass of water

is inherently inaccurate. . .

Measuring: alter or ignore but remain uncertain

Imagine that you want to know which of three persons is the angriest.

You decide that the person with which you want to interact the most

should be the less angry. In this example, angry is a numerical cost that

you want to minimize across the courses of your interaction. This example

is somewhat similar to that of best arm identification. Can you imagine

asking are you angry? repeatedly to the three persons without changing

their internal sate? Without actually making them angry?

In this section, I would like to preemptively write about one of the less

intellectually satisfying assumption that is make about the systems that

are studied in this thesis, stationary condition. In order to derive non-trivial

notions of learnability, useful lower bounds, and usable concepts, it is

often necessary to make a stationary condition assumption. Because

we are modelling the process of sequentially solving a problem in an

environment, a stationary condition is unlikely to be reasonable in

most cases. Obviously, researcher are well aware of this sometimes

unsatisfactory assumption but still use it because it is also quite hard to

model a relevant process of non-stationary condition. The main question

being, what the non-stationary conditions should look like? The second

one being, how are the learnability results affected by various and

different assumptions? We surely do not want the environment to be

so non-stationary that nothing can be learned from it. In this section,

I would like to discuss one argument in favor of this assumption as

well as an approach to model non-stationary condition that I have not

encountered during my PhD.

Thinking about physical processes, stationary assumption is often a

matter of timescale. For instance, the laws of physics surely can be

learned from experiments and deemed stationary on a timescale starting

way before we started researching them and way after Earth would

disappear. When baking a cake in an oven, the system cake can be

considered roughly stationary for a few seconds. If we were to run

experiments order of magnitudes faster than the second, then it is safe to

assume a stationary assumption. If we want to study a lightning, then

the timescale to consider the system close to stationary is likely to be

the nanosecond since a lightning is made of short strokes of roughly 65

microseconds. Therefore, the stationary assumption made by Bandits

and reinforcement learning is a satisfactory one whenever the timescale

of the experiments
4

is small compared to the time constant of the studied

system.

However, is it enough? To gain information with the system, an interaction

is necessary. Bandits and reinforcement learning model this interaction

through the notion of sampling. When sampling, an agent measures a

numerical signal. This measure can have at least two effects: making

the measure inaccurate and making the system non-stationary. Apart

from imperfection coming from the instrument used to measure and

the potential inherent stochasticity of the system, another reason for the

inaccuracy of the measure is the following. To sample is to measure. To

measure is to interact. To interact is to modify. To modify is to make the

result of a measurement inaccurate. Therefore, measuring is a source

of inaccuracy in the measure.
5

However, there are situations in which

the system can safely be assumed to be stable relative to a measurement

1.3 Problematic problems 13

6: I think that this viewpoint could prove

to be interesting to study a new kind

of partially observable Markov decision

process (PO-MDP).

7: Thought experiment. Imagine a ban-

dit problem in which we wish to choose

between three building architectures

based on the response of the building

to one kind of earthquake of a given

magnitude. You build three small mod-

els and run your favorite bandit algo-

rithm to choose between the three. The

sampling process is to simulate an earth-

quake on the chosen model. If you don’t

wait enough between two samples, then

the previous interaction will affect the

next sample you get through a new sim-

ulated earthquake.

process. That is the case when interaction with the system do not modify

the system because of a difference in scale or, because the system restore

quickly to its previous state (or equilibrium) after the interaction. For the

latter case, this restoration can be envisioned through a mechanism of

dissipation of the energy injected in the system through the measurement.

This amortization can also be interpreted as the fact that the system is

under the influence of other factors that are much larger in influence than

our sampling system. Whatever the interpretation, the time constant of

damping should be order of magnitudes smaller than the time interval

between two samples. For the former case, if we were to measure the

position of a planet, surely the instruments that we positioned and the

photons we captured to perform the measurement would modify the

system. However, this influence is negligible to the point that we can

consider the interaction to not modify the system.

In the aforementioned cases, one can see that the time constant of the

system dissipation effect of the measure should be much smaller than the

time interval between two measures to safely assume the non-stationary

condition. Otherwise, the sampling process can be a source of non-

stationarity. Previously, we saw that the sampling process can be source

of noise and uncertainty in the measure. Now we focus on the fact that the

sampling process can induce a lasting and measurable dynamic. One can

measure with our measurement system the effect of measure. For a Bandit

problem, that would mean that at any given time, the random variables

that we are studying are functions of the number of times those have been

sampled. The rationale is very similar to the previous one. To sample is to

measure. To measure is to interact. To interact is to modify. Therefore, to

sample is to add dynamics to the system. Modelling the sampling process

and incorporating into various results of learnability is an interesting

question for the Bandits and sequential learning community. A natural

question would be: what can be learned about a system from which the

observation operator has such and such properties? Therefore, we see

that interaction through measurement is a source of non-stationarity in

the system that an agent is interacting with.

In a sense, one can give an original interpretation of reinforcement

interpreting the transition matrix as a measuring operator. After measur-

ing the numerical reward associated to an available action, the system,

represented by its state is modified as a consequence of the measure.

This modification will impact the next measures and the modification is

understood through the model of the transition matrix that specify the

effect of a given interaction on the state of the system. This interpretation

is somewhat limited in scope because the transition is rather interpreted

as an effect of playing an action rather than sampling and action. It can

be seen from the fact that the most common starting point to study

reinforcement learning is the Markov control model, that originates from

control theory. Rather, the thing I want to discuss here is that observing
the result of an action is an interaction. Knowing the state of the system is

due to a usually non-modelled interaction with the system.
6

This why I advocate that a good model of non-stationary condition is

one that consider sampling as an operator on the problem. This operator

can be the result of an integration of the effect of sampling on the time

interval between two interaction with the system. It is a useful model if

we consider that the system has a damping mechanism.
7

Differences in

14 1 The complexity of solving a problem

correlation ≠⇒ causation

causation ≠⇒ correlation

For a dynamical system D, and an initial

condition 𝑥, 𝑡 ↦→ D (𝑥, 𝑡) defines the tra-

jectory within the domain of the system.

8: In that case, the dynamical system

does not preserve measure.

systems and operators will lead to different learnability results, hopefully

general enough to be useful. I think that, in the future of reinforcement

learning, exploring the concept of measure could lead to interesting

mathematical results with great applications. On could start by deriving

a no free lunch theorem of measurability.

Causation & correlation

It is widely known that correlation does not guarantee causality. Less

it is that the converse, the existence of causality without correlation, is

possible. Intuitively, the perfect chaotic system, e.g. modelling the perfect

storm, would exhibit such a strange property. This extremely non-linear

model pushes the limit of our definition and intuition of measurability
and learnability.

Figure 1.12: Ueda attractor (phase space)

As an example, imagine a bounded continuous dynamical system D
in [0, 1]2. Denoting 𝑃0 a set of initial condition (time 0), we denote by

𝑃𝑇 = D (𝑃0 , 𝑇) the set of positions at time𝑇 after letting the system evolve

according its dynamic. Calling �2 the Lebesgue measure in ℝ2
, imagine

that the system is such that for all 𝜖 > 0 and all convex set 𝑃0 ∈ [0, 1]2
such that �2(𝑃0) = 𝜖, we have �2 (𝑃𝑇) ≃ 1. That is to say, whatever the

size and location of the starting conditions, the whole space is almost

filled at time 𝑇8
. If we are unable to sample positions before time 𝑇,

then, despite the causality, we cannot measure meaningful correlation

and therefore cannot learn about the system. Usually, this phenomenon

is illustrated by attractors such as the Ueda attractor that is depicted in

Figure 1.12.

Theoretically speaking, we can imagine going as far as envisaging that

the set from which we want to learn are non-measurable. Anticipating on

what follow, suppose that we seek to solve a control problem, i. e. find an

optimal strategy (or control) mapping situation to action given a numeric

notion of optimality. If the set of measurable control is empty, then one

cannot learn an optimal control in the usual sense of learning. Also, if

the conditions to be met in order to achieve a specific outcome define

a non-measurable set, then given the current framework of statistical
learning, it is impossible to learn useful correlation in this system.

The Bandit and reinforcement learning communities often discuss the

various assumptions of the model such as bounded rewards, light tail

distributions, finite state space, ergodic dynamic. . . The reward hypothe-

sis is also a topic of discussion and several papers and research group

are focusing on reward free formulations of the kind of problems that

are addressed in this thesis. However, the measurability and learnability

assumptions are almost always implicit. It is my intuition that the re-

search community would benefit from more projects that study learning
in mathematical universes using different structural assumptions.

NeurIPS 2021

NeurIPS 2023

Summary of contributions 2
Bandits

Bandits with groups of similar arms

In the paper Stochastic bandits with groups of similar arms and pub-

lished at NeurIPS 2021 with Hassan Saber, and Odalric-Ambrym Maillard,

we consider a variant of the stochastic multi-armed bandit problem where

arms are known to be organized into different groups having the same

mean. The groups are unknown but a lower bound 𝑞 on their size is

known. This situation typically appears when each arm can be described

with a list of categorical attributes, and the (unknown) mean reward

function only depends on a subset of them, the others being redundant.

In this case, 𝑞 is linked naturally to the number of attributes considered

redundant, and the number of categories of each attribute. For this

structured problem of practical relevance, we first derive the asymptotic

regret lower bound and corresponding constrained optimization prob-

lem. They reveal the achievable regret can be substantially reduced when

compared to the unstructured setup, possibly by a factor 𝑞. However,

solving exactly the exact constrained optimization problem involves a

combinatorial problem. We introduce a lower-bound inspired strategy

involving a computationally efficient relaxation that is based on a sorting

mechanism. We further prove it achieves a lower bound close to the

optimal one up to a controlled factor, and achieves an asymptotic regret

𝑞 times smaller than the unstructured one. We believe this shows it is a

valuable strategy for the practitioner. Last, we illustrate the performance

of the considered strategy on numerical experiments involving a large

number of arms.

Approximation of the unlikelihood of optimality

In the paper Fast Asymptotically Optimal Algorithms for Non Para-
metric Stochastic Bandits and published at NeurIPS 2023 with Dorian

Baudry, Rémy Degenne and Odalric-Ambrym Maillard, we consider the

problem of regret minimization in non-parametric stochastic bandits.

When the rewards are known to be bounded from above, there exists

asymptotically optimal algorithms, with asymptotic regret depending

on an infimum of Kullback-Leibler divergences (KL). These algorithms

are computationally expensive and require storing all past rewards, thus

simpler but non-optimal algorithms are often used instead. We introduce

several methods to approximate the infimum KL which reduce drastically

the computational and memory costs of existing optimal algorithms,

while keeping their regret guaranties. We apply our findings to design

new variants of the MED and IMED algorithms, and demonstrate their

interest with extensive numerical simulations.

16 2 Summary of contributions

NeurIPS 2022

ACML 2023

Reinforcement Learning

Learning in ergodic Markov decision processes

In the paper IMED-RL: Regret optimal learning of ergodic Markov
decision processes and published at NeurIPS 2022 with Odalric-Ambrym

Maillard, We consider reinforcement learning in a discrete, undiscounted,

infinite-horizon Markov Decision Problem (MDP) under the average

reward criterion, and focus on the minimization of the regret with respect

to an optimal policy, when the learner does not know the rewards nor the

transitions of the MDP. In light of their success at regret minimization in

multi-armed bandits, popular bandit strategies, such as the optimistic

UCB, KL-UCB or the Bayesian Thompson sampling strategy, have been

extended to the MDP setup. Despite some key successes, existing strate-

gies for solving this problem either fail to be provably asymptotically

optimal, or suffer from prohibitive burn-in phase and computational

complexity when implemented in practice. In this work, we shed a novel

light on regret minimization strategies, by extending to reinforcement

learning the computationally appealing Indexed Minimum Empirical

Divergence (IMED) bandit algorithm. Traditional asymptotic problem-

dependent lower bounds on the regret are known under the assumption

that the MDP is ergodic. Under this assumption, we introduce IMED-RL

and prove that its regret upper bound asymptotically matches the regret

lower bound. We discuss both the case when the supports of transitions

are unknown, and the more informative but a priori harder-to-exploit-

optimally case when they are known. Rewards are assumed light-tailed,

semi-bounded from above. Last, we provide numerical illustrations on

classical tabular MDPs, ergodic and communicating only, showing the com-

petitiveness of IMED-RL in finite-time against state-of-the-art algorithms.

IMED-RL also benefits from a light complexity.

Regret in communicating MDPs with known
dynamics

In the paper Logarithmic regret in communicating MDPs: Leveraging
known dynamics with bandits and published at ACML 2023 with Hassan

Saber, Mohammad Sadegh Talebi and Odalric-Ambrym Maillard, we

study regret minimization in an average-reward and communicating

Markov Decision Process (MDP) with known dynamics, but unknown

reward function. Although learning in such MDPs is a priori easier

than in fully unknown ones, they are still largely challenging as they

include as special cases large classes of problems such as combinatorial

semi-bandits. Leveraging the knowledge on transition function in regret

minimization, in a statistically efficient way, appears largely unexplored.

As it is conjectured that achieving exact optimality in generic MDPs is

NP-hard, even with known transitions, we focus on a computationally

efficient relaxation, at the cost of achieving order-optimal logarithmic

regret instead of exact optimality. We contribute to filling this gap by

introducing a novel algorithm based on the popular Indexed Minimum

Empirical Divergence strategy for bandits. A key component of the

17

1: For non-French speakers: Forban is a

French word for pirate which is a sort

of bandit that explores and exploits its
environment! It can be found on github.

proposed algorithm is a carefully designed stopping criterion leverag-

ing the recurrent classes induced by stationary policies. We derive a

non-asymptotic, problem-dependent, and logarithmic regret bound for

this algorithm, which relies on a novel regret decomposition leverag-

ing the structure. We further provide an efficient implementation and

experiments illustrating its promising empirical performance.

Benchmarking Bandit algorithms: Forban

In the literature, almost all algorithmic ideas must be evaluated through

numerical experimentation. Algorithms introduced in this thesis are

no exception and will be benchmarked. For Reinforcement Learning,

we mostly used the average-reward Reinforcement Learning package

that was developed by my advisor, Odalric-Ambrym Maillard. For

experimenting with Bandits, I developed Forban.
1

This library allows

to easily create new Bandit algorithms thanks to a class ‘SequentiAlg’,

instantiate a Bandit problem thanks to the functions imported from

‘forban.bandits’ and then benchmark those algorithms on the Bandit

instance using the ‘Experiment’ class. Each class in Forban has multiple

methods whose syntax are similar to those of the popular Scipy library.

The ‘.fit(horizon)’ method can be used on a ‘SequentiAlg’ instance to run

a single experiment. Using ‘.run(nbr_exp, horizon)’ on an ‘Experiment’

instance allows computing various prescribed statistics about a Bandit

experiment. For instance, mean regret, median regret, quantiles, standard

deviation, and other statistics can be computed automatically thanks

to the ‘Experiment’ class. Such a class can be easily modified to add

statistics that are relevant for the practitioner. At the end of an experiment,

one is often interested in visualizing the results in some form. The

‘.plot()’ precisely do that. It plots the various needed statistics. Having

implemented such a library is light contribution but it was useful for

other members and me. Some of the plotting functions were used in

the RLberry library that is developed by some members of the SCOOL

laboratory. In the page below, we show an example of how ‘Forban’

can be used to implement the IMED-kl strategy, lines 15-30, that we

present in Chapter 4. The shown example consider a simple Bernoulli

Bandit problem with 4 arms, lines 10-11. The usage of ‘.fit()’, line 37, and

‘Experiment’, lines 43-51, is also presented.

https://github.com/fabienpesquerel/forban.git
https://github.com/fabienpesquerel/forban.git
https://github.com/fabienpesquerel/forban.git
https://github.com/rlberry-py/rlberry.git

18 2 Summary of contributions

How to use Forban?

Minimal working example of how to use ‘Forban’ to implement the IMED-kl strategy, and test it on a simple

Bernoulli Bandit problem.

1 import numpy as np

2 from bandits import BernoulliBandit

3 from sequentialg import SequentiAlg

4 from utils import Experiment, klBernoulli

5

6 # Define a Bernoulli bandit problem

7 # All standard deviation are set to one here

8 # See bandits.py for more models

9

10 means = [0.2, 0.5, 0., 0.3]

11 bandit = BernoulliBandit(means)

12

13 # Create the IMED class that inherits from SequentiAlg

14

15 class IMED(SequentiAlg):

16 def __init__(self, bandit,

17 name="IMED",

18 params={’init’: -np.inf, ’kl’:klBernoulli}):

19 SequentiAlg.__init__(self, bandit, name=name, params=params)

20 self.kl = params[’kl’]

21

22 def compute_indices(self):

23 max_mean = np.max(self.means)

24 if self.all_selected:

25 self.indices = self.nbr_pulls*self.kl(self.means, max_mean)

26 + np.log(self.nbr_pulls)

27 else:

28 for arm in np.where(self.nbr_pulls != 0)[0]:

29 self.indices[arm] = self.nbr_pulls[arm]*self.kl(self.means[arm], max_mean)

30 + np.log(self.nbr_pulls[arm])

31

32 # IMED instance

33

34 imed = IMED(bandit)

35

36 # Run it using the fit method...

37

38 horizon = 500

39 imed.fit(horizon)

40

41 # ... or run multiple experiments

42

43 experiment = Experiment([imed], bandit,

44 statistics={’mean’:True, ’std’:True,’quantile’:True, ’pulls’:False},

45 complexity=True)

46 nbr_exp = 200

47 experiment.run(nbr_exp, horizon)

48

49 # and plot the results

50

51 experiment.plot()

Bandit

A set of choices: Bandit 3
3.1 A zeroth order model of

decision-making 21
3.2 Solving the problem 65
3.3 Algorithms in the literature 75
3.4 Summary of contributions 80

3.1 A zeroth order model of decision-making

We model a zeroth order model of sequential decision-making.

Remark. In science, order of approxima-

tion is way to referring to the accuracy

of an approximation. It can be informal,

as it is here, or formal, particularly when

referring to the Taylor expansion of a

function.

This

model is called a Bandit. In our model, an agent, will have to sequentially
make decision. Often, the agent is an algorithm. Mathematically, the

sequential aspect of the decision-making process is modeled by the fact

that the agent must make a decision sequentially at abstract time steps
that belong to an ordered set. In our model, the set that is used to represent

the sequential nature of the model and to index various elements of

interest is arbitrary. Therefore, the ordered set by which we index the

sequence of decision contains no information and a specific time step

element is not an information. While it is natural to model the time and

index elements using the set of natural numbers, ℕ, I think that it may be

harmful since it makes it easier to mix counting with time elapsing. The

former is a measure of information, the latter does not correspond to

anything. This point will be make clearer once we start presenting Bandit

algorithms. Mathematically, making a decision is modeled thanks to a set
whose elements are interpreted as decision or action. The consequence

of making a decision from this set is made known to the agent thanks to

a numerical signal belonging to the set of real numbers, ℝ. Interestingly,

we are interested to model only those situations in which the agent

can observe the consequences of its decisions and only those. A Bandit
problem emerges when the agent has an objective that is a function of the

Bandit model. The agent will have to solve its objective using gathered

information about the model through interaction with it. Of course, its

interaction is modeled through the sequence of decisions and associated

numerical rewards. Therefore, we can see that some additional structure

might be necessary on the decision-making model to model how the

agent measure the consequences of its decision with respect to its
internal objective. In the zeroth order model, the numerical signal
associated to a decision is constant. However, we can add some flavor

to the meaning of the word constant. In the first case that we present, the

numerical signal is indeed represent as a constant function of the decision.

This is the Bandit control model. In the second case, the numerical signal

is a constant random variable from which we sample from. This is the

Bandit learning model, or simply Bandit.

In the Bandit control model, a decision is a pointer to a real number while

in the Bandit learning model, a decision is a pointer to a real random

variable. In the Bandit control model, the consequence of a decision is the

real number pointed by the decision while in the Bandit learning model,

it is a sample from the real random variable pointed by the decision.

Bandit Control Model

In a Bandit model the agent must be able to measure the consequences

of its decision. By measuring, we mean that it must be able to evaluate

22 3 A set of choices: Bandit

The name Bandit comes the fact that

slot machines in casino are also known as

"one-armed bandits".

the consequences of its decision. This motivates the following definition

of a Bandit control model.

Definition 3.1.1 (Bandit Control Model) A Bandit control model is a
couple

(𝐴, �)

consisting of

1. a Borel space 𝐴, called the control or action set i. e. 𝐴 is a couple
(𝐴,A) where A is a 𝜎-algebra on 𝐴;

2. a measurable function � : 𝐴→ ℝ called the reward (or reward per
stage) function.

Depending on the context (optimization

objective), � may instead be called the

one stage cost function and denoted by

the letter 𝑐.

The set ℝ is endowed with its usual 𝜎-algebra, i. e. its
Borel set derived from its standard topology.

As a matter of fact, one could define a Bandit control model as a couple

(𝐴, 𝛽) where 𝛽 : 𝐴 → P(ℝ) is a measurable function the set of real

probability distributions P(ℝ). In the control model, we assume that

𝛽 is known and, furthermore, that the expected value � : 𝑎 ↦→ �(𝑎) =
𝔼𝑋∼𝛽(𝑎)(𝑋) can be computed. The sufficient and necessary information to

define a control model in the following is the access to the function �.

This is why we denote the control model by (𝐴, �) which differentiate it

from the learning model that is later introduced and denoted (𝐴, 𝛽).

While it is not a problem by any mean, it is worth noting that our very

first definition of a reward relies on a usual model of the set of real

numbers. Because of the applications we have in mind, it is not problem,

but one can still keep in mind that other notions of learning could emerge

from other assumptions. The intuition behind this definition stems from

the kind of thing we want to say abut the strategy of an agent. We may

want the strategy of an agent to be random. We may also want the

strategy of an agent to depend on its past actions. Depending on the

objective of the agent, we may therefore need to measure the actions and

its consequences. In other word, we may want to attribute a probability

to a part of the action space and give it later some interpretation. To

measure the results of taken actions, one must be able to push forward
the measure of a strategy in the action space to a measure of the results

of a strategy in the value space. Therefore, it only makes sense to assume

that the reward function is measurable. Given a measure of decisions,

we want to measure consequences; hence the definition.

In a control model, the reward function is assumed to be known to the

learner. The task of an agent will be to compute a strategy that suits

its objective using this knowledge. One reason for this assumption is

that, often, the reward function is a function from a (small) finite set of

action and hence deemed easy to learn since it is just an array. This is the

situation we describe in Section 1.1. Another reason is that the reward

function is deemed to hard or costly to learn and should therefore be

modelled through other means and be given as an input to the agent,

along with its objective. Therefore, the quality of a strategy would be

dependent on both the agent and the quality of the reward model.

In a Bandit model, the agent takes decisions sequentially. It is allowed

to remember past information. In a Bandit control model, the reward

function will be assumed to be known to the agent. Thus, all the informa-

3.1 A zeroth order model of decision-making 23

tion about the past is contained in the sequence of taken actions. This

motivates the following definition of history.

Definition 3.1.2 (Bandit Control History) Given a Bandit control model
(𝐴, �) and its set 𝐴 of feasible controls, for all 𝑡 ∈ ℕ, one can define the set of
admissible histories up to time 𝑡

𝐻0 = ∅
𝐻𝑡 = 𝐴 × 𝐻𝑡−1 = 𝐴 × 𝐴𝑡−1 ∀𝑡 ∈ ℕ∗

An element ℎ𝑡 ∈ 𝐻𝑡 is called an admissible t-history or a t-history and is a
vector of the form

ℎ𝑡 = (𝑎0 , · · · , 𝑎𝑡−1)

with 𝑎𝑘 ∈ 𝐴 for 𝑘 ∈ [0, 𝑡 − 1].

For all 𝑡, the space 𝐻𝑡 is equipped with a canonical 𝜎-field inherited from the
action set (𝐴,A) i. e., 𝐻𝑡 is a measurable space with 𝜎-field A⊗𝑡 .

The definition of history allows modelling past information after a given

number of interaction. I would to like to insist on the fact that, we should

make a difference between the set ℕ of natural numbers that is used to

index the sequence of actions and the set ℕ of natural number when its

is viewed as the domain of a statistics, where statistics is understood as

a function of the history. For instance, 𝑡 ∈ ℕ can represent the number
of interactions with the system up to the 𝑡𝑡ℎ index of the sequence that

is also written 𝑡 ∈ ℕ. However, I will insist that the index should not be

considered as information. Only a function from the history should be

considered as such. For instance, the starting index of the sequence of

decision could be set at 10
8
0 without changing the number of interactions.

For this reason, I think that most of the time, we should not say "at time 𝑡"
but rather say "after 𝑡 interactions". The differences might sound absurd,

but I think that this is a source of confusion and that the former phrasing

does not provide the correct intuition about the process of learning which

can hinder our algorithmic thinking.

In a Bandit model, the agent must take decisions. Therefore, one must

model how an agent take decision. This model is important because

it will specify the strategies that are available to our learner and, in

learning models, what the agent can and cannot learn. Stemming from

our economic understanding of the concept, a decision is a sort of

mapping from situations to actions. In particular, we need to model two

type of questions an agent may have. First, given a situation, what is

the probability of such and such action. In other word, given a situation,

what is a measure of the next action an agent will take. This model the

fact that an agent should take decisions based on situations. Second,

given a decision and a probability measure over situations, what are the

situations that lead to the probability that the given decision is larger

than a threshold. In other word, we want the ability to push forward any

measure on the space of situation to a measure on the space of probability

modeling the decision-making strategy. This motivates the following

definition of control policy, i. e. strategy, that relies on the mathematical

concept of stochastic kernel.

24 3 A set of choices: Bandit

Definition 3.1.3 (Stochastic Kernel) Given two Borel spaces (𝑋,X) and
(𝑌,Y), a stochastic kernel on𝑋 given𝑌 is a functionℙ (·|·) : 𝑋×𝑌 → ℝ

such that

1. ℙ (·|𝑦) is a probability measure on 𝑋 for each fixed 𝑦 ∈ 𝑌;
2. ℙ (𝐵|·) is a measurable function on 𝑌 for each fixed 𝐵 ∈ X.

The set of all stochastic kernels on 𝑋 given 𝑌 is denoted by P(𝑋 |𝑌)

Replacing the space 𝑋 by the set of decisions and the space 𝑌 by the set

of situations, i. e. histories, the notion of stochastic kernel seems to be

the perfect tool to model the way an agent takes decision. Hence, the

following definition of Bandit control policy.

Definition 3.1.4 (Bandit Control Policy) A randomized control policy,
or control policy, is a sequence 𝜋 = (𝜋𝑡)𝑡∈ℕ of stochastic kernels 𝜋𝑡 ∈
P(𝐴|𝐻𝑡) on the control set 𝐴 given histories 𝐻𝑡 .

The set of all policies is denoted by Π.

The word policy is akin to the concept of strategy that we mostly used

until now. We remark that, in this model, a decision is made based only in

the past history and that the index of time is not part of the information.

The Definition 3.1.4 is general, and it is easy to imagine situation in

which strategies are much simpler in the sense that only a part of the

history is used, or the randomness is removed. However, we do need

a general definition because without knowing the specific objective of

an agent, one cannot say anything about the complexity of the needed

strategy. Rather, this very general notion of randomized control policy
is useful because it seems general enough to capture a lot of potential

decision-making models and specific enough that we can start thinking

about precise mathematical statements about it. One can hope that for

some objective, an "optimal" strategy should belong to a much simpler

subclass of the space of control policy. The importance is twofold. First, a

narrower definition of control and stronger assumptions would surely

allow deriving more precise mathematical results and lead to a more in

depth understanding of the model. Second, keeping application in mind, a

smaller search space would surely mean a more efficient search algorithm.

The purpose being to be able to compute a strategy corresponding to an

objective, we somehow need to make sure that our assumptions lead to

the existence of tractable algorithms. Thinking backward, one may be

interested in simpler strategies and wonder about the space of objectives

that allow an "optimal" policy to belong to the restricted set of strategies.

Either ways, a typology of policies is needed.

We distinguish policies by their level of randomness and dependence on

the past. A deterministic control policy is a sequence of kernels that are

similar to deterministic functions of the past, that is to say, mappings

from the space of histories to the space of actions. Since we adopted a

measure theoretic approach, we must use the Dirac distribution in order

to model deterministic choices. While it may seem cumbersome, it is

the way of unifying all types of policies that we present. A randomized
history-agnostic policy is a sequence of kernels that are independent

of history, that is to say, a sequence of probability distribution on the

3.1 A zeroth order model of decision-making 25

action space. A deterministic history-agnostic policy is a sequence of

kernels that are independent of history and Dirac distribution, i. e. akin

to a deterministic sequence of actions. A randomized stationary policy
is a sequence of kernels that are all the same kernel. Like the history-

agnostic policies, there is no dependency on the history, and additionally

there is no dependency on the time set that indexes all sequences. A

deterministic stationary policy is a sequence of kernels that are all the

same Dirac distribution, i. e. akin to a sequence of the same action. A

deterministic stationary policy is, in a sense, the simplest form of policy,

always playing the same action.

Definition 3.1.5 (Typology of Bandit Control Policies) A control policy
𝜋 = (𝜋𝑡)𝑡 ∈ Π is said to be a

1.
Deterministic cases corresponds to ran-

domized special cases in which the distri-

bution of interest is a Dirac distributions.

deterministic control policy if there exists a sequence (𝑓𝑡)𝑡 of mea-
surable functions 𝑓𝑡 : 𝐻𝑡 → 𝐴 such that for all 𝑡 ∈ ℕ,

∀ℎ𝑡 ∈ 𝐻𝑡 ,𝜋𝑡 (·|ℎ𝑡) = 𝛿 𝑓𝑡 (ℎ𝑡) (·)

That is to say, 𝜋𝑡 (·|ℎ𝑡) is a Dirac distribution at 𝑓𝑡 (ℎ𝑡)
Note the inclusion Π𝐷𝐶 ⊆ Π.

. The set of
deterministic control policies is denoted Π𝐷𝐶 .

2. randomized history-agnostic policy if there exists a sequence
(
𝜙𝑡

)
𝑡

of probability distributions 𝜙𝑡 ∈ P(𝐴) such that for all 𝑡 ∈ ℕ,

∀ℎ𝑡 ∈ 𝐻𝑡 ,𝜋𝑡 (·|ℎ𝑡) = 𝜙𝑡 (·)

The set of randomized history-agnostic policies is denoted Π𝑅𝐴
Note the inclusion Π𝑅𝐴 ⊆ Π.

.
3. deterministic history-agnostic policy if there exists a sequence
(𝑎𝑡)𝑡 of actions 𝑎𝑡 ∈ 𝐴 such that for all 𝑡 ∈ ℕ,

∀ℎ𝑡 ∈ 𝐻𝑡 ,𝜋𝑡 (·|ℎ𝑡) = 𝛿𝑎𝑡 (·)

The set of deterministic history-agnostic policies is denoted Π𝐷𝐴
Note the inclusion Π𝐷𝐴 ⊆ Π𝑅𝐴.

.
4. randomized stationary policy if there exists a distribution 𝜙 ∈

P(𝐴) such that for all 𝑡 ∈ ℕ,

∀ℎ𝑡 ∈ 𝐻𝑡 ,𝜋𝑡 (·|ℎ𝑡) = 𝜙 (·)

The set of randomized stationary policies is denoted Π𝑅𝑆
Note the inclusion Π𝑅𝑆 ⊆ Π𝑅𝐴.

.
5. deterministic stationary policy if there exists an action 𝑎 ∈ 𝐴 such

that for all 𝑡 ∈ ℕ,

∀ℎ𝑡 ∈ 𝐻𝑡 ,𝜋𝑡 (·|ℎ𝑡) = 𝛿𝑎 (·)

The set of deterministic stationary policies is denoted Π𝐷𝑆
Note the inclusion Π𝐷𝑆 ⊆ Π𝑅𝑆 .

.

This typology is important because it is easy to understand in the Bandit

model, and it will be used again in the more complicated Markov model

that we present in subsequent sections. Another reason this typology

is important is to understand the concept of lower bound that we will

introduce soon. When a standard objective, called regret, will be defined,

we will be facing the problem of comparing our strategy to other strategies.

In particular, the notion of best strategy depends a priori on the space

in which we are looking for a strategy. Understanding the different

types of policies therefore is essential to understand the definition of the

26 3 A set of choices: Bandit

1: A more general assumption would

be that given an objective, an "optimal"

solution can be found in the closure of

the space on which the problem is de-

fined. Here, this space is simply the ac-

tion space, but it could be some Cartesian

product of multiple action spaces. Hence,

we see that this assumption is a topolog-
ical assumption.

Both the sup and max functions are mea-

surable.

performances metric that are used by the Bandit community.

In a Bandit model, the agent must have an objective which drives its

decision-making process. The objective of the agent must depend on

its only available information. In the case of the Bandit control model,

the information that is known to the agent prior to the beginning of the

interaction is the set of action that is assumed to contain no relevant

information and the reward function. Because of our measure theoretic

approach, it makes sense to assume that the objective will be a "measurable
problem" of the reward function. Most of the practical objectives that we

can think of would need the following finiteness assumption.

Assumption 3.1.1 (Finite Rewards) The Bandit control model (𝐴, �)
satisfies the finite reward assumption if for all actions 𝑎 ∈ 𝐴 we have
−∞ < �(𝑎) < +∞.

This hypothesis is reasonable when interpreting the reward function as

representing some physical measurement or the result of a computation

based on physical phenomenon. It is safe to say that, in nature, there is

nothing that can be measured or computed to be infinite and therefore,

the finite reward Assumption 3.1.1 is a light one.

As it has already be envisioned in Section 1.1, the objective of an agent

on a Bandit model is to find a strategy that maximizes a function of the

sequence of observed rewards. More precisely, we will be interested in

one objective that can be written as a numerical optimization problem
of the reward function. This objective will be called the average reward
criterion. Before asking an agent to compute or find an optimal strategy,

i. e. compute the optimal argument of the objective written as optimization

problem, we ensure that such a strategy will exist in the first place. This

backward thought process explain the following assumption.

Assumption 3.1.2 (Optimal Action Feasibility) The Bandit control model
(𝐴, �) satisfies the optimal action feasibility if it satisfies the finite reward
Assumption 3.1.1 the supremum exists, −∞ < sup𝑎∈𝐴 �(𝑎) < +∞, and it is
feasible, sup𝑎∈𝐴 �(𝑎) = max𝑎∈𝐴 �(𝑎).

The Assumption
1

3.1.2 is necessary to ensure the feasibility of the Bandit

objective. The average reward criterion is the usual objective used in

the Bandit community while it is almost never presented as in the next

Definition 3.1.6. However, the next definition makes the connection with

Reinforcement learning much smoother and connect the criterion that is

used here in Bandit and the similar average reward criterion that is used

in Reinforcement learning. The average reward criterion in Reinforcement

learning can be a source of confusion and the discounted reward criterion

is often preferred. Presenting the usual Bandit objective as the average

reward criterion will hopefully make the Reinforcement learning criterion

easier to understand. Without further ado, we define the cumulated
reward and average reward, concepts on which the average reward
criterion is based.

Definition 3.1.6 (Bandit Cumulated Reward) Let � = (𝐴, �) be a Bandit
control model satisfying the finite reward 3.1.1 and optimal feasibility 3.1.2

3.1 A zeroth order model of decision-making 27

2: Imagine that the agent collect the fol-

lowing sequence of rewards, 1, -1, 1, -1, 1,

-1,. . . Then the average reward is equal to

0 while the other "derivative" criterion is

equal to -1 (because of the lim inf).

Another popular framework that is not

presented in this thesis is called linear
Bandits.

Assumptions, and let 𝜋 ∈ Π be a control policy. The 𝑛-stage cumulated
reward of the policy 𝜋 on the Bandit � is defined as

G� (𝑛;𝜋) = 𝔼𝜋

(
𝑛∑
𝑡=1

� (𝑎𝑡)
)
. (3.1)

The average reward of the policy 𝜋 on the Bandit � is defined as

G� (𝜋) = lim inf

𝑛→∞
G� (𝑛;𝜋)

𝑛
. (3.2)

A few remarks. The 𝑛-stage cumulated reward is always defined thanks

to the finite assumption. It is an expectation over all possible histories

generated by the stochastic process induced by the policy. This expectation

also depends on the bandit problem and the chosen time horizon. Once

the policy and problem are fixed, the 𝑛-stage cumulated reward is a

function of the number of interactions. If we want to define an objective

that is only based on the policy and the problem, then one should find a

way to remove this dependence on the number of interactions. It means

taking a limit of some sort. If it is defined, an interesting quantity would

be the limit of the cumulated reward difference between two successor

stages,

lim inf

𝑛→∞
G� (𝑛 + 1;𝜋) − G� (𝑛;𝜋) = lim inf

𝑛→∞
G� (𝑛 + 1;𝜋) − G� (𝑛;𝜋)

(𝑛 + 1) − 𝑛 .

A good criterion would be to try to maximize this quantity. However, the

Bandit community prefers to use another criterion based on the average
reward that is defined in Equation 3.2 of Definition 3.1.6. While these two

quantities are closely related and quite often equal in cases of interest,

this is not always the case.
2

The latter definition, the average reward, is

a better measure of the (average) reward per unit of interaction. The

lim inf is necessary for mathematical reason because the limit is nor

guaranteed to exist a priori. The choice of infimum rather than supremum

is based on the fact that the objective, that we define now, is to maximize

the average reward.

Definition 3.1.7 (Bandit control objective) Let � = (𝐴, �) be a Bandit
control model satisfying the finite reward 3.1.1 and optimal feasibility 3.1.2
Assumptions. The Bandit control objective is also called

the average reward criterion.

The Bandit control objective is to find a control policy 𝜋★

such that
G�

(
𝜋★) = sup

𝜋∈Π
G� (𝜋) . (3.3)

While the optimal value is unique, there

may be several optimal policies.

The quantity sup𝜋∈Π G� (𝜋) is called the optimal value of the average
reward criterion, and we denote it 𝑔★ and a policy 𝜋★ satisfying Equation 3.3
is called an average reward optimal policy.

In this thesis, we will make another assumption on the type of bandit

problem that we study, that the cardinal of the action set is finite. Of

course, one could also assume other assumption on the reward function,

e.g. it could be a concave function of the action and that the action set

is a closed convex set of ℝ𝑑
. If the action set is finite and no structure

is assumed, then one cannot gain an information about the result of an

action by playing another action. However, we will see in the Bandit

28 3 A set of choices: Bandit

learning setting, that, when playing an action some information is gained

about actions that are not played, even in the completely unstructured

finite Bandit setting.

Assumption 3.1.3 (Finite Bandit) The Bandit control model (𝐴, �) is said
to be finite if 𝐴 is a discrete set whose cardinal is finite, |𝐴| < +∞. The
considered 𝜎-algebra A is the power set 2

𝐴.

Amongst the types of policies presented in the typology 3.1.5, the deter-

ministic stationary class is the smallest one with respect to the inclusion

order. For those policies, the average reward is easy to compute and is

a true limit in the sense that the lim inf is equal to the lim sup in the

Definition of the average reward 6.1.6. In the Bandit setting, for this type

of policy, it is possible to abuse notation and confuse the average reward

of the policy playing a deterministic action constantly and the reward

associated to that action. In this thesis, we try to distinguish between the

two thanks to the following notational convention.

Notation 3.1.1 Let � = (𝐴, �) satisfying the finite reward assumption, then
the average reward of a deterministic stationary policy 𝜋𝑡 = 𝛿𝑎 exists, is equal
to �(𝑎) and is denoted by �𝑎 .

The fact that one can confuse the function computing the average reward

of a deterministic policy with the reward function of the Bandit problem

is the source of a lot of simplification. Formally, a lot of simplification of

the Bandit model stems from the following equation,

𝔼𝜋

(
𝑛∑
𝑡=1

� (𝑎𝑡)
)
= 𝔼𝜋

(
𝑛∑
𝑡=1

�𝑎𝑡

)
.

Conceptually, mixing actions and mixing policies are two different things

but in the Bandit problem, actions and policies are deeply intertwined,

especially at the notation level. However, by keeping this fact in mind, the

transition to the more dynamic and complicated Markov control model

will be smoother.

It is also useful to have a notation for the maximal value of the reward

function associated to a Bandit model.

Notation 3.1.2 Let � = (𝐴, �) satisfying the finite reward and opti-
mal feasibility assumptions. Then, we denote �★ the maximal reward, i. e.,
�★ = max𝑎∈𝐴 �(𝑎).

This notation is useful to state the next Theorem 3.1.1 since it is not hard to

guess what an optimal control policy would be in the case of the Bandit

control model. It is also useful to define the concept of regret which is the

usual way to present the objective criterion of Bandit agents. However,

such an objective only makes sense once the concept of cumulated

reward is correctly defined and there are potentially several valid notions

of (problem dependent) regret. Furthermore, such a notation really is

useful once it is understood that the maximal reward will correspond

to the maximal average reward possible. We are now ready to state

3.1 A zeroth order model of decision-making 29

3: Note that an optimal policy is also

optimal for the 𝛾-discounted criterion

𝔼 (∑𝑛 �(𝑎𝑛)) for all discount factor 𝛾.

Hence, Bandit do indeed enjoy a lot of

nice properties.

the following theorem about the existence of an optimal policy and its

associated average reward.

Theorem 3.1.1 (Existence of an optimal policy) Let � = (𝐴, �) be a
finite Bandit control model satisfying the finite reward and optimal feasibility
assumptions. Then the optimal value satisfies the equation

𝑔★ = max

𝑎∈𝐴
�𝑎 = max

𝑎∈𝐴
� (𝑎) = �★, (3.4)

i. e., max𝑎∈𝐴 � (𝑎) = sup𝜋∈Π G� (𝜋). Thanks to the optimal feasibility as-
sumption, there exists a deterministic stationary policy 𝜋★ that is opti-
mal,

𝜋★ (·|ℎ𝑡) = 𝛿★ (·) , (3.5)

where ★ ∈ argmax𝑎∈𝐴 � (𝑎) is called an optimal action. Note that �★ refers to the optimal value

of the problem while �★ refers to av-

erage reward of an optimal determin-

istic stationary policy with action ★ ∈
argmax𝑎∈𝐴 � (𝑎). Of course, �★ = �★ for

any ★ ∈ argmax𝑎∈𝐴 � (𝑎).

The connoisseur would have surely spotted that the Equation 3.4,

𝑔★ = max

𝑎∈𝐴
� (𝑎) ,

is an instance of the optimal Bellman equation, an equation that we will

discuss in the next sections about Reinforcement learning. On the same

note, the simpler equation

�𝑎 = �(𝑎),

is the Bellman equation associated to a deterministic stationary policy

of action 𝑎. While by definition, optimal policy is an asymptotic notion,

in the case of bandit, an optimal policy is anytime optimal, i. e., 𝜋★
is a

maximizer of the 𝑛-stage cumulated reward for all time horizon 𝑛.
3

The Theorem 3.1.1 proves that, as numerical values, the optimal average

reward and maximal reward are equal. Intuitively, this is not a very

surprising result because there is no influence of the past decision of the

agent on the present decision, i. e., there is no dynamic. However, the

detailed path we took to present all the results set the stage for the more

complicated Reinforcement learning model. It should also be reminded

that while �★
, the maximal reward, has the dimension of a reward, 𝑔★,

the optimal value, has the dimension of a reward per unit of interaction.

The former quantity refers to the reward function while the latter refers

to a value computed from the interaction of a policy with the Bandit

model.

Usually, in the Bandit literature, one is more concerned about minimizing
the regret than maximizing the average reward. While the two objectives

lead to the same set of optimal policies, the cumulated reward objective

is more suited for generalization to Reinforcement learning and does not

bear any ambiguity contrary to the notion of regret. While this notion

will become clearer in the learning section, the regret aims to capture a

cost of making suboptimal decisions. This way of phrasing the notion of

regret emphasize on the individual decisions of the sequence and already

shape a mathematical definition. Another way of phrasing this concept is

that the regret aims to capture the cost of using a suboptimal strategy. In

this sentence, the accent is put on the more macro concept of strategy and

30 3 A set of choices: Bandit

4: While 𝑛𝑔★ = 𝑛�★, I do not think

that the right-hand side of the equation

should be used as such because it does

not convey the right meaning. On the

other hand, 𝑛�★ would be a better choice

as it represents the 𝑛 times the gain of

an optimal deterministic stationary pol-

icy ★.

less on the more micro concept of decision. Formally, one can define an

𝑛-stage control regret in one of the three equivalent following ways.

Definition 3.1.8 (𝑛-stage Control Regret) Let � = (𝐴, �) be a Bandit
control model satisfying the finite reward 3.1.1 and optimal feasibility 3.1.2
Assumptions, and let 𝜋 ∈ Π be a control policy. The 𝑛-stage regret of the
policy 𝜋 on the Bandit � is defined as

R� (𝑛;𝜋) = max

𝑑∈Π

(
𝔼𝑑

(
𝑛∑
𝑡=1

� (𝑎𝑡)
))
− 𝔼𝜋

(
𝑛∑
𝑡=1

� (𝑎𝑡)
)

Finite time macroscopic viewpoint. The

regret is defined at the policy level.

(3.6)

= 𝑛𝑔★ − 𝔼𝜋

(
𝑛∑
𝑡=1

� (𝑎𝑡)
)

Asymptotic macroscopic viewpoint. The

regret is defined at the policy level using

the asymptotic notion of gain, i. e. the

average reward per unit of interaction.

(3.7)

= 𝔼𝜋

(
𝑛∑
𝑡=1

�★ − � (𝑎𝑡)
)

Microscopic viewpoint. The regret is de-

fined at the decision level.

(3.8)

While all the definitions are formally equal expressions, they convey a

different meaning. In more complicated cases, it is possible that those

definitions will not be equal. The Bandit model is convenient because

those quantities are equal, yet we can start to understand the differences

in those definitions within this simple framework. The Equation 3.6

compare the differences between the best possible expected cumulated

reward a policy could have achieved up to the prescribed stage to

the expected cumulated reward of the strategy we consider. A priori,
the best finite time expected cumulated reward does depend on the

prescribed stage. However, it is not the case in the Bandit model. This

possibility makes another definition appealing, the one represented by

Equation 3.7. In this case, we consider the integration of the optimal

average reward per unit of interaction, 𝑔★, over the prescribed horizon,

𝑛, that is 𝑛𝑔★. This asymptotic quantity is based on the best asymptotic

growth rate of reward, computed as 𝑔★. It can be compared to the

finite time quantity represented by the 𝑛-stage cumulated reward of

the considered policy.
4

While interesting and probably easier to handle

mathematically, we can anticipate that some information is lost compared

to the previous definition. Finally, instead of comparing the cumulated

rewards of strategies, one can compare local rewards directly. This

viewpoint, adopted by Equation 3.8, is made possible and easy in the

Bandit model because decision are completely local and �★ = 𝑔★ = �★.

Associated to the concept of gain is the concept of asymptotic regret.

Definition 3.1.9 (Control Regret) Let � = (𝐴, �) be a Bandit control model
satisfying the finite reward 3.1.1 and optimal feasibility 3.1.2 Assumptions,
and let 𝜋 ∈ Π be a control policy. Let R� (𝑛;𝜋) be the 𝑛-stage regret of the
policy 𝜋 on the Bandit � as in Definition 3.1.8. The average regret of the
policy 𝜋 on the Bandit � is defined as

R� (𝜋) = lim sup

𝑛→∞

R� (𝑛;𝜋)
𝑛

. (3.9)

This quantity can be interpreted as the asymptotic cost per unit of

interaction of using a given strategy over an optimal one. While, like

the average reward criterion, the regret of a policy depends on both the

3.1 A zeroth order model of decision-making 31

Bandit setting and the strategy, the optimal value is problem dependent in

the case of the average reward but always zero for the regret formulation

of the objective. This make the following objective for most researcher in

the field.

Definition 3.1.10 (Control Regret objective) Let � = (𝐴, �) be a Bandit
control model satisfying the finite reward 3.1.1 and optimal feasibility 3.1.2
Assumptions. The regret control objective is also called

the average regret criterion.

The regret control objective is to find a control policy 𝜋★

such that
R�

(
𝜋★) = inf

𝜋∈Π
R� (𝜋) . (3.10)

From a policy standpoint, this objective is equivalent to the average

reward criterion and the optimal set of policies is the same.

We now briefly present some of the core ideas that will be used in Bandit

learning in the context of Bandit control. It is interesting to do so because

the Bandit control model can be interpreted as a Bandit learning model

in which all the reward distributions are Dirac. The agent is assumed to

know that all reward distributions are Dirac. Contrary to what we did

until now, we do not assume anymore that the agent has the complete

knowledge of the reward function. Instead, we only assume that the

agent knows the finite set of actions and can evaluate the reward function.

The agent must find a strategy to suffer the minimal amount of regret

possible. Because of its simplicity, we call this the Bandit control solving
problem. One could even argue that solving is the simplest form of
learning.

Bandit Control Solving Problem

This problem is presented extensively in the Section 1.1. The results we

present here illustrate the kind of result that the community is interested

in. This subsection also illustrate the rationale that is used to derive the

result we are interested in.

To say something meaningful, one must confine the class of policy (or

agent) that we want to derive results about. In the finite Bandit control

problem, we are interested in solving the problem. By solving, it is meant

that the agent must, at some point, always decide to select a maximal

action. That is to say, that at some time, the regret per unit of interaction,

�★ − �(𝑎𝑡), of a solving agent is always null and the (asymptotic) regret

is therefore equal to zero. Formally, we define the class of Bandit solving

algorithm.

Definition 3.1.11 (Bandit solving algorithm) An agent is said to be a
solving agent if, whatever the finite Bandit problem, its expected time before
its sequence of decisions is a sequence of optimal decisions is finite. That is to
say, the strategy 𝜋 = (𝜋1 ,𝜋2 , . . . ,𝜋𝑡 , . . .) is such that, there exists a finite
number of interaction 𝑡★𝜋,� < ∞,

𝑡★𝜋,� = 𝔼𝜋,�

(
min

𝑡∈ℕ

{
|𝐻𝑡 | | 𝑠𝑢𝑝𝑝 (𝜋𝑡) ⊆ argmax

𝑎∈𝐴
�

})
.

32 3 A set of choices: Bandit

This definition of a solving algorithm seems to be quite reasonable

in the sense that we are only considering those algorithms that do

indeed solve the problem. On the other hand, it does not seem to be too

restrictive in the sense that we try to not impose unnecessary conditions

or restrictions on the class we consider. Nonetheless, it is necessary to

make a mathematical choice to describe what is meant by solving. The

main restriction comes from the fact that the agent cannot be a specialist
and always decide on the same action without taking into account

the specific Bandit problem at hand. To us, solving implies a form of

convergence of the strategy to an optimal policy. Characterizing what is

meant by the convergence of a strategy, i. e. convergence of a sequence

of kernels, is obviously left to the researcher’s discretion. Studying if

different notions of convergences implies different notions of learning is

an interesting topic of discussion and research. To keep things simple,

we choose to define a solving algorithm using an expected hitting time

criterion, presented in Definition 3.1.11.

Now that we defined the class of learning algorithms, a question emerges.

What is the minimal number of mistakes a solving agent must make in its

history of interaction. To put it differently, what is the minimal amount

of regret it must suffer from its solving phase. The concept of problem
dependent lower bound answer this question. We talk about problem
dependent because the regret lower bound we derive does depend on

the specific Bandit instance. This is to distinguish from worst case lower

bound that characterize the complexity of a class of Bandit problem. We

give an example at the end of this section.

Theorem 3.1.2 (Regret Control Lower Bound) Let � = (𝐴, �) be a finite
Bandit control model satisfying the finite reward and optimal feasibility
assumptions. Let 𝑛 be an integer such that 𝑛 > |𝐴|. The 𝑛-stage regret of any
solving algorithm 𝜋 is lower bounded by

R� (𝑛;𝜋) ≥
∑
𝑎∈A

�★ − � (𝑎) , (3.11)

and the regret of any solving algorithm is lower bounded by zero, i. e.

R (𝜋) ≥ 0. (3.12)

The 𝑛-stage lower bound is easily computed from the fact that all actions

must be selected at least once. Further the lower bound is said to be tight
because there exist an algorithm whose regret upper bound matches

this lower bound. This algorithm is presented in Section 1.1 and formally

written as Algorithm 1 under the name action iteration, a direct reference

to the policy iteration algorithm that we present later on. The 𝑛-stage

regret lower bound is finite and a constant that is independent of the

number 𝑛 ≥ |𝐴| of interaction. Thus, the asymptotic regret is lower

bounded by zero. Crafting an optimal algorithm, i. e. a strategy matching

a lower bound, is often complicated. However, the Bandit control problem

provide a simple case. From the lower bound, we can see that an optimal

algorithm can gain all the necessary information in |𝐴| interactions since

the regret is a constant as soon as 𝑛 is larger than the cardinal of the set

𝐴 of actions. To see an algorithm emerges from the lower bound, we first

remark that each time the agent decide on action, 𝑎, a cost of �★ − �(𝑎) is
paid in the regret. Therefore, we can informally write the 𝑛-stage lower

3.1 A zeroth order model of decision-making 33

bound as

R� (𝑛;𝜋) ≥
∑
𝑎∈A

(
�★ − � (𝑎)

)
𝑇𝑎(𝑛),

where 𝑇(𝑎) represents the expected number of time a "lower bound

performant" strategy would have picked the action 𝑎 after 𝑛 interactions.

In the case of a Bandit control problem, we can see that for all action

𝑎 ∈ 𝐴 and all large enough number of interactions 𝑛 ∈ ℕ, 𝑇𝑎(𝑛) = 1. The

lower bound therefore seems to point to an algorithm that is such that the

expected number of time an action is picked is only one. It is remarkable

that this number is common to all action, therefore independent of the

reward, and is independent of time, meaning that all useful information

can be gathered in a finite number of interaction, here one. This is perfectly

aligned with our knowledge of the Dirac distribution. Once we know

that we deal with a Dirac distribution, everything there is to know can

be learned after one interaction with the distribution, i. e., one sample.

Therefore, the following algorithm.

Algorithm 1: action iteration: optimal bandit control algorithm

Input: A finite Bandit control model (𝐴, �) satisfying the finite

reward and optimal feasibility assumptions;

A stopping horizon 𝑇 ∈ ℕ such that 𝑇 ≥ |𝐴|;

1 Initialize the best current reward to 𝑚 = −∞;

2 Initialize the best current arm pointer ★;

3 Initialize step counter as 𝑡 = 0;

4 forall 𝑎 ∈ 𝐴 do
5 Play action 𝑎 and collect reward �(𝑎);
6 if � (𝑎) > 𝑚 then
7 𝑚 ← � (𝑎);
8 ★← 𝑎;

9 𝑡 ← 𝑡 + 1;

10 while t < T do
11 Play action ★;

12 𝑡 ← 𝑡 + 1;

This algorithm is optimal. The optimal nature of an agent is usually

characterized by a regret upper bound that, in some sense, has to match

the regret lower bound of the problem. Here, the 𝑛-stage lower bound is

a constant function of 𝑛 and therefore, we will deem an algorithm to be

optimal if its 𝑛-stage regret is equal to the regret lower bound. However,

it is often the case that optimality is stated using a regret upper bound

of the considered algorithm. The reason is that the 𝑛-stage regret is a

non-decreasing function of 𝑛, and we decide that an algorithm if the

first order term of the regret lower bound matches the first order term

of a regret upper bound of the considered algorithm. In our case, the

regret lower bound is constant and therefore, an optimal algorithm must

exactly match that constant.

All the regret of the action iteration strategy is incurred between the lines

4-9 of Algorithm 1. Thus, the following regret upper bound result.

34 3 A set of choices: Bandit

Theorem 3.1.3 (Regret Upper Bound of action iteration 1) The 𝑛-stage
regret of the action iteration Algorithm 1 is equal to, and therefore upper
bounded by the right-hand side of the following expression,

R� (𝑛;𝜋)
=

≤
∑
𝑎∈A

�★ − � (𝑎) . (3.13)

Therefore, action iteration is an optimal algorithm.

With this example, we just illustrated that using Dirac in some problems

build a bridge between the computer science approach of the theory of

complexity and the learning approach of the theory of complexity. With

this built bridge, we now advance to the Bandit learning model.

Bandit Learning Model

While instructive, the finite Bandit control problem is a bit too easy to

be really interesting from a research point of view. However, if we were

to add structure to the action set or another type of constraints on the

reward function, the problem may become incredibly harder and more

interesting. This would be one way to proceed, but it is not the way of

this thesis in which we are interested in understanding, first in simple

scenario, what does it mean to sequentially learn and model the process
of solving. Our goal is to clarify the concept of progress and information

per unit of interaction. We saw in Section 1.2 that uncertainty is inherent

to the concept of measure and interaction. Learning and solving are
intertwined in a complex dynamic that is sometimes described as the

exploration-exploitation trade off. In the Bandit learning model, the

problem an agent wish to solve is mostly unknown. Therefore, one must

learn the (parameters of the) problem in order to solve it. Simultaneously,

we want to interact with what is considered to be the solution of the

problem which can be done only if the problem has been solved. A tension

will appear between this necessity of sufficient knowledge and necessity

of solving with good or optimal algorithm solving this tension by being

able to collect the sufficient and necessary amount of information to

sufficiently enough solve the problem.

We follow the same presentation as previously to introduce the Bandit
learning model. The main difference with the Bandit control problem is

that the reward functions are now unknown real random variables from

which one can no longer assume being able to compute the expected

values. One can only gain information about the distributions by sam-

pling the distributions, which model the interaction with the problem.

The difference between control and learning will therefore be more on

the objective and possible performances rather than the definition of

Bandit.

Definition 3.1.12 (Bandit learning model) A Bandit learning model is
a couple

(𝐴, 𝛽)

consisting of

3.1 A zeroth order model of decision-making 35

�(𝑎)

�★

mean reward

arm a

optimal arm

�★ − �(𝑎)

Figure 3.1: Graphical representation of a 4-arms Bandit problem with Gaussian like reward distributions

5: In the Bandit literature, the term arm
is preferred over the term action. This

terminology is linked to the very term

Bandit that, we recall, originates from

the term one-armed bandit, a synonym

of slot machine.

1. a Borel space 𝐴, called the control or action set i. e. 𝐴 is a couple
(𝐴,A) where A is a 𝜎-algebra on 𝐴;

2. a stochastic kernel 𝛽 on (ℝ,B(𝑅)) given (𝐴,A). 𝛽 (·|𝑎) is called
the reward distribution of arm 𝑎.

The reward distribution of an action 𝑎 will be denoted as 𝛽 (𝑎). The measurable
function � : 𝐴→ ℝ that computes the expected value of a reward distribution

�(𝑎) = 𝔼𝑋∼𝛽(𝑎) (𝑋) (3.14)

is called the reward (or reward per stage) function and �(𝑎) is the reward of
action 𝑎.

Notation 3.1.3 (Reward distribution) Given a Bandit tuple (𝐴, 𝛽) as in
Definition 3.1.12, we will denote by F the set that the random variables
(𝛽 (·|𝑎))𝑎∈𝐴 belong to.

We will abuse notation a bit and denote 𝛽(𝑎) the random variable associated
with arm 𝑎.

Sometimes, the distribution or law of 𝛽(𝑎) will be denoted 𝐹𝑎 . Corresponding
empirical quantities will be denoted using a hat, such as �̂�𝑎 .

In the Bandit community, the action set is also called the set of arms and

an action is called an arm.
5

A canonical Bandit control model (𝐴, � (· | 𝛽))
can be derived from a Bandit learning model (𝐴, 𝛽), where the reward

function of the control model is such that � (𝑎 |𝛽) = 𝔼𝑋∼𝛽(𝑎) (𝑋). For each

arm, the reward of the control model is the expected reward of the arm

in the original problem.

In the Bandit learning model, the random variables of interest are assumed

to have a finite expected value. This is the first necessary condition
to define our problem of average reward maximization. Therefore, no

random variable is assumed to have a Cauchy distribution. In a sense, it

is somewhat convenient since we should be mostly interested in those

36 3 A set of choices: Bandit

6: When the word necessary appears in

a mathematical essay, the word sufficient

(statistics) is not too far away.

things that can be learned from statistical methods and with a somehow

reasonable sample complexity. Cauchy distribution and the likes are more

suited to model extreme event that cannot, almost by definition, often

repeat and should therefore fall under the umbrella of other learning

methods.

A learning agent will use prior information about the problem, usually

the class Fof distribution, and will past information, from a sequence of

interactions, to make present decision. This model the sequential aspect

of the decision-making model. The past information that is available to

the agent is the history.

Definition 3.1.13 (History) Given a Bandit learning model (𝐴, 𝛽), for all
𝑡 ∈ ℕ, one can define the set of admissible histories up to the 𝑡th interaction,

𝐻0 = ∅
𝐻𝑡 = 𝐴 ×ℝ × 𝐻𝑡−1 = 𝐴 ×ℝ × 𝐴𝑡−1 ∀𝑡 ∈ ℕ∗

An element ℎ𝑡 ∈ 𝐻𝑡 is called an admissible t-history or a t-history and is a
vector of the form

ℎ𝑡 = (𝑎0 , 𝑥0 , · · · , 𝑎𝑡−1 , 𝑥𝑡−1)

with 𝑎𝑘 ∈ 𝐴 and 𝑥𝑘 ∈ ℝ for 𝑘 ∈ [0, 𝑡 − 1].

The history therefore models the sequence of decision and observation

that are available to the agent. Compared to the full control model,

rewards are part of the history because, compared to the control model

in which the learner has the knowledge of the reward function, the

observed numerical signal potentially contain new information about

the Bandit problem that can be used by the agent. In the Bandit learning

model, while the set F is assumed to be known, precise information

about the expected value of an arm can only be gained through sampling.

In the bridging example between the Bandit control section and this

Bandit learning section, the set Fwas the set of all real valued Dirac

distributions. While Fgives prior information about the arms, it is not

enough to compute the arm with the largest expected value. To do so,

interaction with all the arms is necessary to gather information. Thanks

to the hypothesis on the set F, only the first reward associated to a

given action contains new information about that action. The problem is

therefore solved after interaction with each arm once.

The history grows linearly with the number of interactions. From a

theoretical viewpoint, this will not be an issue nor a matter of particular

importance. From a practical question, it is interesting to start pondering

over whether storing all the history is necessary, and what are the

situations in which its may not be necessary
6
. As already illustrated with

Dirac distribution, it may not be necessary to store all the history. Two

question arise. What are the sets Fthat allows for a lossless compression

of the history? If distributions in Fare parametric and known to possess

a sufficient statistic of low dimension, e.g. exponential family, then it is

certainly possible. The second question is to quantify the loss of progress

per unit samples that we discard. That is to say, if we decide to compress

the history, what are the expected loss of information regarding the

problem we are trying to solve. We will see that some strategies are

suboptimal because of history compression but still manage to have

3.1 A zeroth order model of decision-making 37

Recall that a kernel allows us two impor-

tant things. First to attribute probabilities

over decisions based on past information.

Second, given a present decision, to push

forward a probability over the history to

the space of probability distributions (of

choosing that action).

competitive performances compared to optimal strategies. In this thesis,

we try to address some of those issues in Chapter 4 that is based on the

paper Fast Asymptotically Optimal Algorithms for Non-Parametric Stochastic
Bandits.

Definition 3.1.14 (Bandit Learning Policy) A bandit learning policy, or
randomized bandit learning policy or policy, is a sequence 𝜋 = (𝜋𝑡)𝑡∈ℕ
of stochastic kernels 𝜋𝑡 ∈ P(𝐴|𝐻𝑡) on the control set 𝐴 given histories 𝐻𝑡 .

The set of all policies is denoted by Π.

This definition is exactly the same as Definition 3.1.4 and what makes

those set of policies different is the sequence of histories. The reason for

this similarity is that our definition of a policy as a sequence of kernels

based on past information is general enough to capture the essence of the

concept of past-information based decision-making. The typology of

policies that is made in Definition 3.1.5 is the same for the Bandit learning

model. We again insist that in this model, a decision is made based only

in the past history and that the index of the sequence, also time index, is

not part of the information. In popular algorithms, when the time index

is used, one should read it as the total number of interactions with the

Bandit problem. It is a quantity that can be computed from the history 𝐻.

By the Definition 3.1.13, the total number of interaction is half the length

of the history.

Bandit objectives In a Bandit model, the agent must have an objec-
tive which drives its decision-making process. In the Bandit learning

community, two objectives are popular.

Best arm identification The first, that we do not study in this thesis,

is called the best arm identification problem. As the name suggest, an

agent with such an objective aims to find an optimal arm within the set of

available actions using the gathered information through the course of its

interactions. Of course, some constraints are necessary for the problem

to be well-defined. A first option is to restrict the number of interactions

with the Bandit model. Given this maximal number of interactions, the

agent must then maximize its probability of outputting an optimal arm by

the end of the allowed interaction. Such a probability obviously depends

on assumptions that are made about the probability distributions, F. A

second option is to restrict the uncertainty about the answer of the agent

by the end of the interaction. In this case, the agent is free to interact with

the model for as long as it deems necessary for its perceived uncertainty

about its knowledge of a best arm to go below a threshold prescribed by

the practitioner.

This objective is useful to model situations in which making decisions

that are not optimal, i. e. not associated to a maximal expected reward, is

not seen as harmful during the testing phase. For instance, this can be

the case if the practitioner can access a perfect simulator that model the

reward distributions associated to a set of decisions. There are cases were

sampling from a distribution is possible but knowing the distributions

statistics is impossible or prohibitive, hence the success of Monte Carlo

simulations. In this case, the practitioner may want to find the optimal

38 3 A set of choices: Bandit

7: Here short time is to be compared to

the number of interaction that would

be necessary to achieve a good enough

precision for the practitioner. That is to

say, the number of interactions is short
compared to the sample complexity re-

quired to achieve a level of uncertainty

that would be preferable to the practi-

tioner.

[1]: Dembo et al. (2010), Large Deviations
Techniques and Applications

decision in the simulator before actually implementing it in real life.

The cost of making suboptimal decisions is therefore completely virtual.

When the practitioner must take a decision within a given relatively

short timeframe
7

compared to the number of interactions that would be

necessary to achieve the preferred level of uncertainty, the framework

that constrain the number of interactions is better. In this case, the total

time is equal to the number of interactions multiplied by the time it takes

to sample a reward and process that sample. When the practitioner is

not constrained by the time but rather by its uncertainty level about its

decision, the framework that precisely constrains this is the preferred

methodology.

Regret minimization The second, that we study in this thesis, is called

the cumulated reward maximization or regret minimization problem.

As the name suggest, an agent with such an objective aims to get, through

the course of its interactions, a sequence of rewards that, when added

up, is maximal. As such, the problem is still ill-defined because of the

inherent randomness of the model. What will matter is the expected

cumulated reward of a policy. Certainly, assumptions about the real

random variable, i. e. assumption on F, are necessary. An assumption

about a rate of convergence of the empirical mean to the mean or an

assumption about the dispersion of samples around the true mean will be

necessary to characterize the behavior of an agent. Concentration results

and large deviation theory, as presented in the eponymous Dembo and

Zeitouni’s book [1] provides useful tool to model such situations. At the

heart, the main question an agent ask about an arm is, how typical is the

sequence of random rewards that has been sampled? Thus, the importance

of the Sanov’s Theorem. This objective is useful to model situations in

which one must repeatedly make decision with uncertain outcome while

the expected outcome of the agent’s decision has consequences that

cannot be ignored. In that case, an objective would be to try as hard

as possible to minimize the number of decision that are suboptimal,

where suboptimal means that the expected reward of sampled decision

is less than the maximal possible expected reward in the set of available

decisions.

Depending on the context, working with expected value without con-

straints on the standard deviation, quantiles, or some other measure of

deviation to the expected reward might not be the right model to consider.

In other words, some applications requires a measure of the risk to be

taken into account. However, the fact that risk is not explicitly included

in the performance objective of a strategy allows for some really greedy

strategies to be used. In Section 5 that is devoted to the paper stochastic
bandits with groups of similar arms, we illustrate how the possibility of

using a large risk taking strategy can work to our advantage.

Expected Cumulated Reward The 𝑛-stage cumulated reward measure

the expected performance of an agent on a given Bandit problem after 𝑛

interactions. It is used to define the asymptotic measure of performance,

the expected average reward. The performance of an algorithm will

be measured by comparing its expected cumulated reward to the best

possible cumulated reward achievable by a given class of algorithm. This

comparison is often phrased using the notion of expected regret, which

3.1 A zeroth order model of decision-making 39

8: This proposition states that one can

iterate expectations in the sense that

𝔼 (𝑋) = 𝔼 (𝔼 (𝑋 | 𝑌)) where the expecta-

tions and random variables are assumed

to be correctly defined.

we introduce after defining the cumulated reward. For our problem to

make sense, we will assume from now on that the considered Bandit

learning problem are such that their associated Bandit control problem

satisfies the finite reward 3.1.1 and optimal feasibility 3.1.2 Assumptions,

and that it is finite, i. e. the cardinal of the set of arm is finite.

Definition 3.1.15 (Bandit Expected Cumulated Reward) Let � = (𝐴, 𝛽)
be a Bandit learning model such that its associated control model (𝐴, � (·|𝛽))
satisfies the finite reward 3.1.1 and optimal feasibility 3.1.2 Assumptions, and
let 𝜋 ∈ Π be a learning policy. The 𝑛-stage expected cumulated reward of
the policy 𝜋 on the Bandit � is defined as

G� (𝑛;𝜋) = 𝔼𝜋,�

(
𝑛∑
𝑡=1

𝑥𝑡

)
. (3.15)

The expected average reward of the policy 𝜋 on the Bandit � is defined as

G� (𝜋) = lim inf

𝑛→∞
G� (𝑛;𝜋)

𝑛
. (3.16)

Remark While the 𝑛-stage reward is defined using a sum over the time

index, G� (𝑛;𝜋) = 𝔼𝜋,�
(∑𝑛

𝑡=1
𝑥𝑡

)
, we should really see it as a sum of the

rewards elements 𝐻reward of the history 𝐻 which is a random sequence

depending on the problem � and policy 𝜋,

G� (𝑛;𝜋) = 𝔼𝜋,�

(∑
𝑥∈𝐻

reward

𝑥

)
. (3.17)

The implicit constraint is that the number of interactions is 𝑛, i. e. the size

of the history is 2𝑛.

The 𝑛-stage cumulated reward is always defined thanks to all the

assumptions. It is an expectation over all possible histories generated

by the stochastic process induced by the policy on the Bandit problem.

The expectation depends on the Bandit problem because the sequence

of rewards is generated from samples of the reward distributions. By

conditioning each reward 𝑥𝑡 on 𝑎𝑡 , i. e. on past information that is available

since choosing an action precede the reward sample, and using the law

of total expectation
8
, one can derive that Equation 3.15 can be written in

another form that depends only on the decisions and their associated

expected rewards,

G� (𝑛;𝜋) = 𝔼𝜋,�

(
𝑛∑
𝑡=1

� (𝑎𝑡 |𝛽)
)
, (3.18)

where the expectation is of course still subject to the Bandit problem �
because choices made by the policy depends on the history which itself

depends on the problem �. This equation can be written as a function of

𝐻action, the extracted sequence of action from the history,

G� (𝑛;𝜋) = 𝔼𝜋,�

(∑
𝑎∈𝐻

reward

� (𝑎 |𝛽)
)
. (3.19)

40 3 A set of choices: Bandit

Recall that the name Bandit comes from

a casino term to designate a slot machine.

Therefore, the verb to pull is used by the

Bandit research community to mean to
sample. The verb to play is also used as

a synonym. For instance, one could say

that an agent pulled or played arm 𝑎 ∈ 𝐴
to mean that it sampled the distribution

𝛽(𝑎) associated to the action 𝑎.

Number of samples In our example ending the section devoted to

Bandit control, we foresaw that the number of times an arm has been

selected up to a given stage 𝑛 could prove relevant. In particular, we

envision how useful it could be in the design of lower bound based

algorithms. Therefore, we introduce the following notation.

Notation 3.1.4 (Number of pulls) Given a Bandit problem � = (𝐴, 𝛽) and
a policy 𝜋, the random variable 𝑁𝑎(𝑛) counts the number of time action 𝑎
has been pulled by the policy 𝜋 after 𝑛 interactions,

𝑁𝑎(𝑛) =
𝑛∑
𝑡=1

𝟙 {𝑎𝑡 = 𝑎} . (3.20)

While this random variable depends on � and 𝜋, no ambiguity will occur
from removing the explicit dependency from 𝑁𝑎(𝑛). Denoting it 𝑁�,𝜋,𝑎(𝑛)
would be too cumbersome.

Again, 𝑁𝑎 is a statistic, i. e. measurable function, of the history 𝐻. We

will therefore denote it 𝑁𝑎(𝐻) to emphasize that the main random object

from which information come is the history. The associated overloaded

definition is

𝑁𝑎(𝐻) =
∑

𝑑∈𝐻action

𝟙 {𝑑 = 𝑎} , (3.21)

where 𝐻action is the extracted sequence of action from the history.

Using the law of total expectation to write Equation 3.15 in its most used

and usable form. The idea is that we can regroup actions and count them

together when they are the same. Formally, we derive that

G� (𝑛;𝜋) =
∑
𝑎∈𝐴

�(𝑎)𝔼𝜋,� (𝑁𝑎 (𝑛)) . (3.22)

History dependent form The Definition 3.1.15 makes the cumulated

reward a function of 𝑛, the number of interaction with the Bandit problem.

This is convenient since we will want to study the behavior of this function

G : ℕ→ ℝ. However, I would prefer to define the cumulated reward as

a random variable explicitly function of the history 𝐻,

𝐺(𝐻) =
∑

𝑥∈𝐻
reward

𝑥 ,

and the expected cumulated reward as 𝔼𝐻∼(𝜋,�)(𝐺(𝐻)). In my opinion,

this way of writing thing gives better intuitions and help consider different

research questions compared to the usual time-related notation. The

history related notations help to avoid using the time index 𝑛 where it

is not needed and may help the thought process of solving the Bandit

learning problem.

Average Reward Criterion One can now define the Bandit learning
objective. With this objective in mind, we will define the class of learning
policy, similarly to what we did when defining the class of solving polices

for the Bandit control problem, at the end of the previous section. The

Bandit learning objective on a Bandit model (𝐴, 𝛽) is defined with respect

to the Bandit control model in the sense that the learning objective is

3.1 A zeroth order model of decision-making 41

[2]: Robbins (1952), ‘Some aspects of the

sequential design of experiments’

[3]: Fox et al. (1973), ‘Adaptive Policies

for Markov Renewal Programs’

[4]: Lai et al. (1985), ‘Asymptotically effi-

cient adaptive allocation rules’

to craft a learning policy that "converges" to an optimal control policy

on the associated control problem (𝐴, � (·|𝛽)). Deterministic policies are

included in the set Π of all policies defined in 3.1.14.

Definition 3.1.16 (Bandit learning weak objective) The Bandit learning
weak objective is to find a policy 𝜋★ such that, for all finite Bandit
learning model � = (𝐴, 𝛽) satisfying the finite reward and optimal feasibility
assumptions,

G�
(
𝜋★) = sup

𝜋∈Π
G� (𝜋) . (3.23)

To achieve this objective, the policy 𝜋★ must sequentially extract informa-
tion about the expected reward function through its interactions with the
distributions of the problem.

This criterion 3.1.16 is also called the (weak) average reward criterion,

in particular in the context of Reinforcement Learning. It is interesting

because it only says something about the asymptotic sampling rate

of suboptimal actions. By Definition 3.1.15 of the expected cumulated

reward, the optimality criterion implies that the sampling rate
𝔼𝑁𝑎 (𝑛)
𝑛 of a

suboptimal arm 𝑎 should converge to zero, as the number of interactions

𝑛 grows, for any policy 𝜋★
satisfying the Equation 3.23 of the Bandit

learning criterion 3.1.16, i. e.

𝔼𝜋★,� (𝑁𝑎(𝑛))
𝑛

−→
𝑛→∞

0

for a suboptimal arm 𝑎 ∈ 𝐴. Asymptotically, the learning of a good

enough policy satisfying the Equation 3.23 is not visible in the sense that

suboptimal arm are pulled a sublinear number of the interactions. This

definition weak objective is used to define the set of policies that are said

to be consistent in some early work, see [2–4].

However, this criterion is weak in the sense that it does not discriminate

between good enough policies that are such that 𝑁𝑎(𝑛) ∝
√
𝑛 and

𝑁𝑎(𝑛) = log 𝑛 while the two are order of magnitudes different. Ideally,

one would want the fastest possible convergence, i. e. smallest sampling

rate of suboptimal arm. As we saw in the Dirac example, a sampling

rate of zero is possible because information for solving the problem

is available after a finite number of samples. On the other hand, for

Cauchy distribution, no certain convergence to a good enough policy is

possible because the problem is ill-defined. It is likely that properties

of the distributions Fwill be key to understand the optimal sampling

rate. We prefer to talk about sampling rate because we will mainly be

interested in first order term in a Taylor expansion of 𝔼𝜋,� (𝑁𝑎(𝑛)) that

asymptotically matters.

Uniformly fast converging policy However, to derive more interesting

guarantees and a more interested theory, one must restrict the class

of what we consider to be learning policy. We did a similar thing in

the section devoted to the Bandit control model, where we defined

the solving algorithms to be those algorithms that interact with each

suboptimal arm a finite number of time, see Definition 3.1.11. A policy 𝜋

42 3 A set of choices: Bandit

that is consistent, i. e. satisfy

𝔼𝜋,� (𝑁𝑎(𝑛))
𝑛

−→
𝑛→∞

0 ,

is considered to be weakly learning the Bandit problem, while a uniformly
fast converging learner 𝜋 satisfy the stronger property that

𝔼𝜋,� (𝑁𝑎(𝑛))
𝑛𝛼 −→

𝑛→∞
0

for all 𝛼 > 0. This basically say that a policy is considered learning is its

expected number of suboptimal samples grows at most logarithmically.

This mechanically reduces the set of Bandit problem we can consider to

be learnable. One can even see the two kind of restrictions to be dual. In

one case, one restrict the class of problem we wish to solve, e.g. the class

of Bandit problem with light tail distributions. On this class of problem,

there exists consistent policies with the smallest possible sampling rate

of suboptimal arm, logarithmic. In the other case, one can restrict the

class of algorithm that we consider, e.g. uniformly fast converging. This

restricts the class of problem we may consider since we want those

algorithms to be consistent, i. e. solve the problem asymptotically. Because

of the restriction on their sampling rate of suboptimal arms, algorithms

is the considered class must gather information quickly enough, which

is possible only if the problem allows to do it.

Towards an optimality criterion Given a set Ω of policies, some are

considered to be better than others. Some policies are considered so

much better than they are deemed the epithet optimal. To compare

policies, one must create an order between them. For this purpose,

a function O : Ω → ℝ, or to any ordered set would be sufficient.

Interestingly, to compute a notion of best or optimal policy, we do not

need the codomain to be totally ordered. Instead, we only need O (Ω) to
be partially ordered, have at least one maximal element and such that

all maximal elements are equivalent in some sense. More on that when

writing about policy iteration in Reinforcement Learning. This order is

created by the cumulated reward or regret functions. Since we did not

yet introduce the regret function, we focus on the cumulated reward.

For the order to be useful, it must somehow uniquely determine the

set of optimal policies. In this thesis, we will focus on what is called

problem dependent optimality as opposed to min-max or worst case
optimality. We fix a class � of Bandit problems on which policies in Ω can

be consistent. A worst case study would be interested in characterizing

the maximal gain that is achievable by policy its worst corresponding

Bandit problem, max𝜋∈Ω min�∈� G�(𝑛;𝜋). In the problem dependent

setting, one is more interested in a notion of best achievable gain in a specific
instance � ∈ � for a generic adaptive policy𝜋 ∈ Ω that is not fine-tuned on

� but rather the same for all problem �. Roughly speaking, an algorithm

𝜋 will be better than an algorithm 𝜋′ if its gain on the instance � is larger

than the one of 𝜋′,
G� (𝑛 |𝜋) ≥ G� (𝑛 |𝜋′) .

Ideally, one would𝜋 to satisfy this equation for all number 𝑛 of interaction

and problem � in the considered class �. In general, it is not possible to

find such a policy 𝜋 that maximizes the gain uniformly on � for any fixed

3.1 A zeroth order model of decision-making 43

[5]: Auer et al. (2002), ‘Finite-time analy-

sis of the multiarmed bandit problem’

9: Do we add constraint on the type of

problem we solve or on the practical

algorithms that we consider solvers of

problem.

[6]: Lattimore et al. (2020), Bandit algo-
rithms

𝑛. Rather, one would use an asymptotic notion of optimality, closer to

the original weak criterion which is about asymptotic sampling rate.

Uniformly maximum convergence rate The term fast convergence
referred to the highly sublinear sampling rate of suboptimal arms of

a consistent policy, i. e. a 𝑜(𝑛𝛼) for all 𝛼 > 0. The uniform nature of

uniform fast convergent algorithm resides in the independence to the

specific Bandit problem � in the considered class �, meaning that the fast

convergence, or sublinear sampling rate, must be achieved on all problem

within the class of problems. A policy will be optimal if it is uniformly fast

convergent with maximal convergence rate. Furthermore, this maximal

convergence rate must be achieved uniformly on the class � of problems.

Formally, a policy 𝜋 has a uniformly maximum convergence rate if it is

such that for all policy 𝜋′ in Ω,

lim inf

𝑛→∞
G� (𝑛;𝜋)
G� (𝑛;𝜋′) ≥ 1 ,

for all Bandit problem � ∈ �. The term maximum is formalized by the

greater than one and the convergence rate is conveniently written using

the limit of the ratio of the gain. The term uniform again comes from

the fact that this inequality must be satisfied for all Bandit problem in

the considered set �. Usually, Ω will simply be the set of uniformly fast
convergent policies in the forthcoming theorems. However, in some cases,

it may be a smaller set due to some structural assumption or additional

constraint to our problem. For instance, one may be interested in those

policies that are linear in some parameters, or those policies that do not

store all the history of information but rather compress information with

some loss, but not the point that the policy is no longer uniformly fast

convergent.

Remark Somehow, I always felt that this notion of uniformly fast
convergent policy was a bit overlooked in most Bandit presentations

and lectures. Even in papers, this assumption always seemed to be a bit

ad hoc and with the sole justification of it makes things work. However,

since we do not need this assumption to craft algorithms with uniformly

fast convergent rate, e.g. UCB [5], it somehow justifies the interest the

community to this specific class of algorithm. However, we do originally

need assumption on the class of Bandit problem we consider to make said

algorithm be uniformly fast, e.g. with element of Fbeing sub-Gaussian

of known proxy-variance. Seeing assumptions on Bandit problems and

the class of algorithms that solve them as somehow dual from each

other
9

help to better make sense of this notion. I think that this notion of

uniformly fast convergence put a lot of weight on the practical viewpoint by

specifying what we consider to be practical Bandit learner. Mechanically,

it also restrains the class of problem that we can learn and perhaps,

restrict our thoughts on other interesting learning frameworks where

learning that fast is not possible.

As a final remark, we point that the term uniformly fast convergent
is sometimes called uniformly efficient policy. We also note that the

main reference book used in Bandit [6] uses the term consistent policy,

Definition 16.1 page 207 of the September 2023 version, which is not what

44 3 A set of choices: Bandit

[7]: Burnetas et al. (1996), ‘Optimal adap-

tive policies for sequential allocation

problems’

[8]: Lai et al. (1985), ‘Asymptotically effi-

cient adaptive allocation rules’

[9]: Kaufmann et al. (2012), ‘Thompson

Sampling: An Asymptotically Optimal

Finite-Time Analysis’

[10]: Sutton et al. (2018), Reinforcement
learning: An introduction

was done in original papers, e.g. [7, 8]. The term strongly consistent is

preferred in some work, e.g. [9]. This diversity of terms and absence of

consensus on an expression is, in my eye, an indicator that this classic

hypothesis is not discussed that often in the community.

Bandit learning objective: minimizing the regret Usually, in the Bandit

literature, one is more concerned about minimizing the regret than

maximizing the average reward. While the two objectives lead to the same

set of optimal policies, the cumulated reward objective is more suited for

immediate generalization to Reinforcement learning. Furthermore, the

average reward criterion is somewhat overlooked in the Reinforcement

Learning community where the discounted reward and even finite

horizon settings are favored. However, this criterion is a more direct

generalization of the traditional Bandit learning setting. An in depth

understanding of the connection between the two framework, stemming

from the former really help better grasping more difficult concept from

the latter. For reference, the average reward criterion is presented in

chapter 10 of the reference book [10].

Where gain measure the raw cumulated rewards without any reference to

a standard value, the regret aims to capture a cost of making suboptimal

decisions which necessitate a comparison to a reference that is considered

or known to be optimal. While the comparison is quite unambiguous in

the Bandit learning setting, a bit of definition-based ambiguity can emerge

in the Reinforcement Learning setting. This is due to non-locality issue

that appears due to the added dynamics in the Reinforcement Learning

setting. However, the ambiguity is kind of raised if we understand

the regret as an analytical tool to measure, compute and study the

rate of convergence of a learning strategy on (𝐴, 𝛽) to an optimal
control strategy on (𝐴, � (·|𝛽)). The rate of convergence of a strategy

𝜋 is measured by the rate of convergence of the sequence of average

cumulated reward
G�(𝑛;𝜋)
𝑛 to 𝑔★ = max𝑎 �(𝑎). We are interested in those

strategies that are such that

��� G�(𝑛;𝜋)
𝑛 − 𝑔★

��� converges to zero when the

number of interactions 𝑛 grows and such that the convergence to zero is

as fast as possible. This quantity is called the regret, and it admits several

useful representations each having an interesting interpretation.

Formally, one can define an 𝑛-stage control regret in one of the three

equivalent following ways.

Definition 3.1.17 (𝑛-stage Learning Regret) Let � = (𝐴, 𝛽) be a Bandit
Learning model satisfying the finite reward 3.1.1 and optimal feasibility 3.1.2
Assumptions, and let 𝜋 ∈ Π be a learning policy. Let (𝐴, � (·|𝛽)) = (𝐴, �) be
the associated Bandit control problem and denote by D the set of deterministic

3.1 A zeroth order model of decision-making 45

control policy. The 𝑛-stage regret of the policy 𝜋 on the Bandit � is

R� (𝑛;𝜋) = max

𝑑∈D

(
𝔼𝑑

(
𝑛∑
𝑡=1

� (𝑎𝑡)
))
− 𝔼𝜋,�

(
𝑛∑
𝑡=1

� (𝑎𝑡)
)

Finite time macroscopic viewpoint. The

regret is defined at the policy level.

(3.24)

= 𝑛𝑔★ − 𝔼𝜋,�

(
𝑛∑
𝑡=1

� (𝑎𝑡)
)

Asymptotic macroscopic viewpoint. The

regret is defined at the policy level using

the asymptotic notion of gain, i. e. the

average reward per unit of interaction.

(3.25)

= 𝔼𝜋,�

(
𝑛∑
𝑡=1

�★ − � (𝑎𝑡)
)

Microscopic viewpoint. The regret is de-

fined at the decision level.

(3.26)

The Equation 3.24 and the Equation 3.25 are valid definitions of the

analytical object that is the regret, i. e. by definition these equations mea-

sure the difference of gain to that of the used strategy. In Reinforcement

Learning, where dynamic is added, these two quantity are not equal

which is why we take the time to distinguish between the finite time and

asymptotic viewpoint. When interested in asymptotic convergence rate,

the difference between the two will vanish, and we will find that the

generalization of Equation 3.25 to be more practical, especially as it is

already written in a partially asymptotic fashion. On the other hand, the

Equation 3.26 is a consequence of one of the above two definitions (but it

is easier to start with the second Equation 3.25). Indeed, this equation can

be derived from the fact that all decisions are locals, i. e. the action set and

𝛽 function are independent of the history, and the fact that �★ = 𝑔★ = �★.

This equation allows us to understand the regret at a per-step scale, more

micro, rather than at the original policy scale, more macro. The macro

behavior can be understood as the integration of a lot of suboptimality

micro costs.

Notation 3.1.5 (Suboptimality gap) The quantity �★ − �(𝑎), sometimes
denoted Δ𝑎 without explicit reference to the original bandit problem, is called
the suboptimality gap of arm 𝑎.

Equation 3.26 then explain the regret as an integration of all suboptimality

gaps suffered by the learner along its learning trajectory, i. e. its history.

In the section devoted to the Bandit control model, we explained that

its is convenient that those quantities are equal but that we should not

forget that they convey different meanings and interpretations. We recall

a few key points. The Equation 3.24 compare the differences between the

best possible expected cumulated reward a deterministic control policy

could have achieved up to the prescribed stage to the expected cumulated

reward of the strategy we consider. The reason we consider the set D
of deterministic control policy is that we know from the previous part

that there exist an optimal control policy within that set. A similar fact

will be used when defining the regret in Reinforcement Learning. A
priori, the best finite time expected cumulated reward does depend on

the prescribed stage. However, it is not the case in the Bandit model. This

possibility makes another definition appealing, the one represented by

Equation 3.25. In this case, we consider the integration of the optimal

average reward per unit of interaction, 𝑔★, over the prescribed horizon,

𝑛, that is 𝑛𝑔★. This asymptotic quantity is based on the best asymptotic

growth rate of reward, computed as 𝑔★. It can be compared to the

finite time quantity represented by the 𝑛-stage cumulated reward of the

46 3 A set of choices: Bandit

10: While 𝑛𝑔★ = 𝑛�★, I do not think

that the right-hand side of the equation

should be used as such because it does

not convey the right meaning. On the

other hand, 𝑛�★ would be a better choice

as it represents the 𝑛 times the gain of

an optimal deterministic stationary pol-

icy ★.

[11]: Garivier et al. (2016), ‘On Explore-

Then-Commit strategies’

[10]: Sutton et al. (2018), Reinforcement
learning: An introduction

considered policy.
10

This asymptotic viewpoint lead us to the definition

of asymptotic regret and consistent policy.

Definition 3.1.18 (Learning Regret) Let � = (𝐴, 𝛽) be a Bandit Learning
model satisfying the finite reward 3.1.1 and optimal feasibility 3.1.2 Assump-
tions, and let 𝜋 ∈ Π be a control policy. Let R� (𝑛;𝜋) be the 𝑛-stage regret
of the policy 𝜋 on the Bandit � as in Definition 3.1.17. The average regret of
the policy 𝜋 on the Bandit � is defined as

R� (𝜋) = lim sup

𝑛→∞

R� (𝑛;𝜋)
𝑛

. (3.27)

Consistent policies This concept is useful in the sense because it allows

to define the set of consistent polices, i. e. those policies that converge,

regret-wise, to an optimal control policy. However, in the opinion of

many theoreticians and practitioners alike, it is a weak criterion and

another must be later introduced to define what is deemed to be call and

optimal set of policies.

Definition 3.1.19 (Consistent policy) A policy 𝜋 is consistent on a set � of
Bandit Learning problem if its average regret is equal to zero for all � ∈ �, i. e.

R� (𝜋) = 0 .

This characterizes the desired notion of convergence in the policy space

Note that the convergence, because it is interested in the regret, does not

mean that the policy ends up being stationary or deterministic. One can

only say that the asymptotic support of decision is within the subset of

maximal arms. Interestingly, there are popular strategies that are studied,

such as Explore-Then-Commit (ETC), that are known to be non-consistent

policies, see [11]. In the Reinforcement Learning literature, the 𝜖-greedy

strategy also is non-consistent (in the sense that it does not converge

to an optimal strategy), yet popular, see [10]. One of the main reason is

that asymptotic convergence is little to nothing to the practitioner if one

cannot see in the reasonable experimental time the convergence regime.

Non-consistent strategies with smaller finite time regret are therefore

sometimes deemed better. This is reminiscent of other phenomenon that

sometimes appear in the field of computational statistics, such as MCMC

methods, where prohibitive burn-in phase of optimal algorithm makes

suboptimal algorithm more suitable to practical usages.

Amongst consistent policies, one may be interested in a subset of those

policies. The subset of polices that we are interested in and that will

restrict the set of problem that can be solved is the subset of uniformly

fast convergent polices.

Definition 3.1.20 (Uniformly fast convergent policies) Given a set � of
Bandit problems, a policy 𝜋 is uniformly fast convergent on � if for all Bandit
problem � ∈ �, the regret 𝑛 ↦→ R� (𝑛;𝜋) is negligible compared to 𝑛𝛼 for all
𝛼 > 0, i. e.

∀� ∈ �, R� (𝑛;𝜋) = 𝑜 (𝑛𝛼) .

3.1 A zeroth order model of decision-making 47

11: While I do consider myself a construc-
tivist I do find it more satisfying to have

a constructive proof whenever possible.

This may be why my PhD ended up being

about mathematical algorithm, construc-

tive method by definition.

Again, we insist that the word uniform is attached to the set � and the

word fast to the highly sublinear growth rate of the regret function 𝑜(𝑛𝛼)
for all positive 𝛼.

Amongst the subset of policies of interest, here the subset of uniformly

fast convergent polices, some may converge faster than others on some

problem. Some may converge faster than any other policies on all problem

in the set �. Those policies have the maximal convergence rate and achieve

this maximality criterion uniformly on �.

Definition 3.1.21 (Uniformly maximal convergence rate policies) Given
a set � of Bandit problems, a policy 𝜋★ is said to have uniformly maximal
convergent rate on � if for all Bandit problem � ∈ �, and all uniformly fast
convergent policy 𝜋 the regret 𝑛 ↦→ R� (𝑛;𝜋★) is asymptotically smaller
than the regret 𝑛 ↦→ R� (𝑛;𝜋), i. e.

∀� ∈ �, lim sup

𝑛→∞

R� (𝑛;𝜋★)
R� (𝑛;𝜋) ≤ 1 .

We consider the lim sup of the ratio because the limit may not exist and

the lim sup is more restrictive than a lim inf and better suited to define a

sound notion of optimality. Note how this definition corresponds to the

one we introduce as a lim inf on the gain. It can be read as the fact that

we want to control the worst adherent point of the sequence of regret

ratio.

Existence a policy with uniformly maximal convergence rate While the

non-emptiness of the set of policies with uniform maximal convergence

rate is unknown at this point, one can still define it. The proof of existence

of such a policy with maximal convergence rate is hopefully possible and

even better, it is a constructive proof.11 Upon deriving a lower bound

on the regret characterizing the minimal regret that any uniformly fast

convergent policy must incur, hence also uniformly maximal convergent

rate policies, one would dispose of a practical analytical tool to check if

a policy is within the set of uniformly maximal convergent policies. A

lower bound has the generic form

lim inf

𝑛→∞
R�(𝑛;𝜋)
log(𝑛) ≥ C(�; �) ,

where C(�; �) is a term that depend on the problem � and the class

� that the problem is assumed to belong to. Because it depends on �,

it is problem dependent. It also depends on �, the class of problem �
belong to. By constructing a policy matching this lower bound, i. e. such

that the regret upper bound of such a policy is equal to the computed

lower bound, one would prove that this interesting set of optimal policy

is not empty. The proof of existence of optimal policies is therefore

constructive.

Remark The class � represent prior knowledge that we have on the

problems that a learner may solve and the properties of this class

condition the difficulty of a given problem. With this notion of prior

48 3 A set of choices: Bandit

12: We mention that, as a sum of posi-

tive term, the regret is a non-decreasing

function. This justifies the usage of the

term growth rate.

knowledge, the difficulty comes from the discrimination of specific problem-
dependent information of the Bandit problem � within the class �. In

the following, the problem-dependent information that we want to

discriminate is the index ★ of an optimal arm. If � has few "statistically

easy to discriminate" problems, then the constant will be smaller than if �
has a lot of "statistically hard to discriminate" problems. The comparison

of the regret to a logarithmic term is not too surprising given the fact

that we study uniformly fast converging algorithm which mechanically

enforce a logarithmic (at most) growth rate of the regret function.

It is linked to the problem of the "number of questions to ask in order to

discriminate between distributions", hence linked to the classical theory

of information as in Shannon information theory. Concepts such as

typical sequences or typical set are therefore commonly used in the

Bandit literature even if the community does not use this term. We recall

that a typical set {𝑥𝑖}1≤𝑖≤𝑛 of a random variable 𝑋 is such that

𝑛𝐻 (𝑋) − 𝜖 ≤ − logℙ
(
{𝑥𝑖}1≤𝑖≤𝑛

)
≤ 𝑛𝐻 (𝑋) + 𝜖 ,

where 𝐻(𝑋) is the entropy of random variable 𝑋. In the context of

this thesis, one should think of 𝐻 as the measure of the difficulty to

discriminate 𝑋 from the uniform distribution in the set of random

variable on a finite alphabet. In this thesis, we will be interested in

the event discriminating an optimal arm ★ from all suboptimal ones

𝑎 ∈ 𝐴, {�̂★ > �̂𝑎}. The log probability of this event will be controlled

by 𝑁𝑎I� (𝑎, �★; �), where I� (𝑎, �★) is a measure of the difficulty to

discriminate the arm 𝑎 from an optimal one in the problem � given the

prior knowledge of the class � of distributions. For the knowledgeable

reader, is reminiscent of certain events used in various regret proof of

optimal algorithms. More on that topic later in the manuscript.

Remark Even considering a set of Bandit problems � on which the set of

fast converging policies is not empty, I do think that it is not a priori trivial

that the set of uniformly maximal convergent policies is not empty. If the

set of considered problem � is too large, or has a strange structure (e.g.
some kind of "holes" or several connected components), then I think that

the set of optimal policies in the sense of uniformly maximal convergence

rate may be empty. It may be interesting to identify such sets � and study

the property of (a notion similar to) "maximal elements" in the set of

uniformly fast convergent policies.

Bandit Learning Problem

Given a class � of Bandit problems, theoretician and practitioner in-

terested in solving the Bandit learning problem generally want to at

least craft a uniformly fast convergent algorithm as in Definition 3.1.20.

Ideally, they want to find a uniformly maximal convergent algorithm
as in Definition 3.1.21, i. e. a uniformly fast convergent policy with the

minimal regret growth rate.
12

Sometimes, there are arguments that justify

choosing a uniformly fast over a uniformly maximal policy, e.g. numerical

complexity.

3.1 A zeroth order model of decision-making 49

[6]: Lattimore et al. (2020), Bandit algo-
rithms

Optimal policies In this thesis, we will define a policy to be optimal if

it is uniformly maximal convergent. This is a biased choice that is a bit

different from the definition that is used in the Bandit community, e.g. as

in [6]. Usually, the definition of optimality that is used is what we will

call a criterion or characterization of optimality, which can be deduced

from the following Definition 3.1.22

Definition 3.1.22 (Optimal Bandit policy) Given a set � of Bandit problems,
a policy 𝜋★ is said to be optimal if it is uniformly fast convergent and if it
has a uniformly maximal convergent rate on �.

That is to say, for all Bandit problem � ∈ �, and all uniformly fast convergent
policy 𝜋 the regret 𝑛 ↦→ R� (𝑛;𝜋★) is asymptotically smaller than the regret
𝑛 ↦→ R� (𝑛;𝜋), i. e.

∀� ∈ �, lim sup

𝑛→∞

R� (𝑛;𝜋★)
R� (𝑛;𝜋) ≤ 1 .

Since a policy with uniformly maximal convergence rate is by definition

also uniformly fast, there is a bit of redundancy in the above definition

which hopefully, help to better grasp the properties of what we call an

optimal policy.

Optimality criterion Upon defining a notion of optimal strategy, one

may wonder whether the class of optimal algorithm is non-empty, and

one may wonder how to assess optimality of a given strategy. For the

purpose of assessing the optimality of a Bandit strategy, we will state a

powerful theorem that characterize optimal policies. This characterization

is often used as a definition of optimality.

From Definition 3.1.17, the 𝑛-stage regret is

R� (𝑛;𝜋) = 𝔼𝜋,�

(
𝑛∑
𝑡=1

�★ − � (𝑎𝑡)
)
,

which can be written as a sum over the action space 𝐴 using counting

random variables 𝑁𝑎 and suboptimality gaps Δ𝑎 = �★ − �(𝑎) (implicitly

depending on �★
).

Lemma 3.1.4 (Action decomposition of 𝑛-stage regret) The 𝑛-stage regret
R� (𝑛;𝜋) of a policy 𝜋 on a Bandit problem �, as defined in Definition 3.1.17,
can be decomposed as a sum along the action space 𝐴 of problem � = (𝐴, 𝛽),

R� (𝑛;𝜋) =
∑
𝑎∈𝐴

Δ𝑎𝔼𝜋,� (𝑁𝑎(𝑛)) . (3.28)

From this decomposition 3.28, and the definition of a uniformly fast

convergent policy, one can see that for all suboptimal action 𝑎, i. e. such

that Δ𝑎 > 0,

𝔼𝜋,� (𝑁𝑎(𝑛)) ≤
1

Δ𝑎
R� (𝑛;𝜋) = 𝑜 (𝑛𝛼) (3.29)

for all positive 𝛼. Thus, as a direct consequence of both the regret and fast

convergence definitions, the expected number of pulls of a suboptimal

arm is 𝑜 (𝑛𝛼), i. e. 𝔼𝜋,� (𝑁𝑎(𝑛)) = 𝑜(𝑛𝛼) for all 𝛼 > 0. Together, these

50 3 A set of choices: Bandit

13: I think that it is important to note

that this is more a consequence of the

uniformly fast convergence hypothesis

we make on the space of policies that

we are interested in rather than a con-

sequence of the forthcoming criterion

"teaching us that a reasonable strategy

can expect to pull the suboptimal arms

a logarithmic number of times" as it can

sometimes be read. . .

definitions imply that the number of pulls of suboptimal arms has at

most a logarithmic growth rate.
13

However, the growth rate can be

highly sub-logarithmic, and even equal to zero, as we already saw when

considering Bandit problem with Dirac distributions and more generally,

with disjoints distribution supports.

The action decomposition 3.28 and independence of cross-information

between arms, i. e. the absence of structure in the Bandit problem, suggest

that we may find a criterion that is based on the number of pulls of

suboptimal arms. This criterion will be related to the asymptotic growth

rate of the 𝑛-stage regret since we do not assume anything related to the

finite time performance of the considered algorithms. When designing

optimal algorithms, one would also be concerned about finite time

performances. Sometimes, one can prove interesting finite time upper

bound on the regret of our strategies, and the algorithmic design can be

of great help to better understand the finite time behavior of the studied

algorithm. The optimality criterion will answer the question about the

minimal growth rate of mistakes an efficient learning agent must make

in its history of interaction which is related to the minimal growth rate

of regret it must suffer due to its uncertainty about the problem. The

criterion takes the form of already introduced problem dependent lower
bound.

Regret lower bound: the Bandit learning speed

A regret lower bound has the generic form

lim inf

𝑛→∞
R�(𝑛;𝜋)
log(𝑛) ≥ C(�; �) ,

where C(�; �) is a term that depend on the problem � and the class �
that the problem is assumed to belong to. Because it depends on �, it is

problem dependent. Because it depends on �, it is class dependent. The

studied ratio,
R�(𝑛;𝜋)
log(𝑛) , comparing the regret to a logarithm, comes from

the uniformly fast convergence hypothesis. The direction of the inequality,

lower bounding the regret, comes from the fact that we are interested

in characterizing the uniformly maximal convergent polices, i. e. the

minimal regret growth rate that any policy must suffer from the learning,

i. e. from the uncertainty. We recall that we consider unstructured Bandit

problems and that their associated control model at least satisfy the

finite reward 3.1.1 and optimal feasibility 3.1.2 Assumptions. Because we

assume an absence of structure, a class � of problem can be represented

as a product of set of independent distributions, one set per arm. Given

a set 𝐴 of arm, we will write a class � as � :=
⊗

𝑎∈𝐴 F𝑎 where F𝑎 is the

set of distribution the reward 𝛽(𝑎) can belong to, independently of the

distribution of all other arms. The sets F𝑎 can be the same for all arms,

e.g. the set of (𝑚, 𝑀)-bounded distributions.

The unlikelihood of optimality viewpoint

There are two types of lower bound that are related to the design of two

types of optimal algorithms. Both of the lower bounds and algorithms

can be seen as dual in the sense that constraints and convex function to

3.1 A zeroth order model of decision-making 51

[12]: Honda et al. (2011), ‘An asymptot-

ically optimal policy for finite support

models in the multiarmed bandit prob-

lem’

minimize are exchanged. In a sense, this is an application of the classic

optimality result about the primal and dual problems. However, there

are a lot of technicalities in both the proofs that make the problem of

deriving a lower bound far more than applying the primal-dual method

and make the duality gap vanish.

The unlikelihood of optimality The first lower bound is based on

a quantity that, in this thesis, we call the unlikelihood of optimality.

We give it such a name for two reason. First it is a quantity that will

be encountered time and time again in this manuscript and being able

to name it is useful. Second, we think that this name conveys a useful

meaning of the mathematical quantity and offer an intuition of how it

should mathematically be used based on how it is used when we wish to

explain algorithmic ideas.

Definition 3.1.23 (Unlikelihood of optimality) Let 𝐴 be a finite set of
arms, � =

⊗
𝑎∈𝐴 F𝑎 be a class of Bandit problems and � = (𝐴, 𝛽) ∈ �

be a Bandit problem within that class. We denote EF𝑎 (𝛽(𝑎), �★) and call
unlikelihood of optimality the quantity defined as

EF𝑎

(
𝛽(𝑎), �★) = inf

𝐹

{
𝐾𝐿 (𝛽(𝑎), 𝐹) | 𝐹 ∈ F𝑎 ,𝔼𝑋∼𝐹 (𝑋) > �★

}
, (3.30)

where 𝐾𝐿 denotes the Kullback-Leibler divergence between two distributions.
When the set of constraints is empty, the quantity is defined as +∞.

Figure 3.2: Solomon Kullback (1907-1994)

Figure 3.3: Richard Leibler (1914-2003)

The unlikelihood of optimality is written as a constrained optimization

problem. Sometimes, we will call the unlikelihood of optimality of arm 𝑎,

the exponential rate of discrimination of arm 𝑎 from optimality. Indeed,

the probability of arm 𝑎 to be empirically optimal, ℙ𝛽 (�̂𝑎 > �̂★) i. e. the

probability of arm 𝑎 to be the solution of the Bandit control problem will

be linked and almost proportional to

exp

(
−EF𝑎

(
𝛽(𝑎), �★))𝑁𝑎 (𝑛) .

This remark alone almost describe the MED [12] algorithm that we later

introduce.

We read 𝐾𝐿 (𝛽(𝑎)|𝐹) as, the unlikelihood of believing samples comes from

distribution 𝐹 when the true distribution samples are coming from is

𝛽(𝑎). The unlikelihood of optimality is defined using two constraints that

aims at computing how likely it is that reward distribution of arm 𝑎 may

be seen as optimal. First, the optimization search space is constrained

to those distributions that the model � allows us to consider, i. e. the set

F𝑎 for arm 𝑎. Second, amongst all those possible distributions for arm 𝑎,

we consider only those that would make the arm 𝑎 optimal within the

considered Bandit problem, i. e. whose expected value is larger than the

optimal reward, 𝔼𝑋∼𝐹 (𝑋) > �★
. Intuitively, the larger the unlikelihood

of optimality, the less likely it is that the arm 𝑎 can be confused with an

optimal distribution within � for the problem �. Samples from arm 𝑎

will quickly be discriminated as coming from a distribution that is highly

unlikely to be optimal. On the contrary, the smaller the unlikelihood of

optimality, the KL-closer is the reward distribution of arm 𝑎 to an optimal

distribution. Collections of samples coming from arm 𝑎 have a higher

52 3 A set of choices: Bandit

probability of being confused with a sample collection coming from a

distribution in F𝑎 and that is optimal for the problem � being solved

by an agent. When the set of constraints is empty, the unlikelihood of

optimality is infinite because the reward distribution of arm 𝑎 cannot

be modified into an optimal reward distribution using assumption F𝑎
of class �. Even when we do not mention it, it goes without saying that

optimality or unlikelihood of optimality is not a property of an arm. It

is a property of an arm with respect to the class � of problem and with

respect to the specific problem that is considered. An arm is not the best

per se, it is maximal compared to other arms.

We introduce a useful notation to represent the set of optimal arms in a

Bandit problem.

Notation 3.1.6 (Optimal set of arms) Given a Bandit problem � = (𝐴, 𝛽),
we denote by 𝐴★ (𝛽) or 𝐴★ (�) or simply 𝐴★ when there is no possible
confusion, the set of arm with maximal expected reward, i. e.

𝐴★ (𝛽) = argmax

𝑎∈𝐴
� (𝑎 |𝛽) . (3.31)

Interestingly, this set is equal to the set of arms with a zero valued unlikelihood
of optimality,

𝐴★ (𝛽) =
{
𝑎 ∈ 𝐴 | EF𝑎

(
𝛽(𝑎), �★) = 0

}
. (3.32)

Even more interestingly, one can write this same set as the set of minimizers
of the unlikelihood of optimality,

𝐴★ (𝛽) = argmin

𝑎∈𝐴
EF𝑎

(
𝛽(𝑎), �★) . (3.33)

Equation 3.33 is interesting because it relates the unlikelihood of optimal-

ity to the set of optimal arms, Equation 3.31. Already can we see a form

of interesting duality between these two quantities, maximal expected

reward and minimal unlikelihood of estimation. Intuitively, the function

�→ EF𝑎 (𝛽(𝑎), �) is non-decreasing, making the connection even more

fruitful as we will later see when introducing optimal algorithms.

Regret lower bound: the unlikelihood of optimality viewpoint With

all those intuitions in mind, one can state the first regret lower bound. This

form is handy because of Equation 3.35 that allows to easily individually

separate the sample rate of each arm and to isolate their contribution to

the regret logarithmic growth rate, Equation 3.34.

Theorem 3.1.5 (Regret lower bound: unlikelihood of optimality) Let
𝐴 be a finite set of arms, � =

⊗
𝑎∈𝐴 F𝑎 be a class of Bandit problems and

� = (𝐴, 𝛽) ∈ � be a Bandit problem within that class. Let’s denote by 𝐴log (or
𝐴log(𝛽)when necessary) the set of arm with a finite unlikelihood of optimality,
i. e.

𝐴log =
{
𝑎 ∈ 𝐴 | EF𝑎

(
𝛽(𝑎), �★) < +∞}

\ 𝐴★

where 𝐴log implicitly depend on � and �.

3.1 A zeroth order model of decision-making 53

[13]: Burnetas et al. (1996), ‘Optimal adap-

tive policies for sequential allocation

problems’

[14]: Garivier et al. (2016), ‘Explore first,

exploit next: The true shape of regret in

bandit problems’

Then, for all uniformly fast convergent policy 𝜋, and therefore uniformly
maximal converging rate policy, the growth rate of the regret R� (𝑛;𝜋) is
lower bounded,

lim inf

𝑛→∞
R� (𝑛;𝜋)

log 𝑛
≥

∑
𝑎∈𝐴log

�★ − � (𝑎 |𝛽)
EF𝑎 (𝛽(𝑎), �★) . (3.34)

Furthermore, the growth rate of the expected number of samples of any
suboptimal arm 𝑎 ∈ 𝐴log is lower bounded,

lim inf

𝑛→∞

𝔼𝜋,�𝑁𝑎 (𝑛)
log 𝑛

≥ 1

EF𝑎 (𝛽(𝑎), �★) . (3.35)

For arms 𝑎 ∈ 𝐴 \ (𝐴log ∪ 𝐴★), i. e. suboptimal with an infinite unlikeli-
hood of optimality, the expected number of pulls grows sub-logarithmically,
𝔼𝜋,�𝑁𝑎 (𝑛) = 𝑜 (log 𝑛). Such arms do not contribute to the logarithmic
growth rate of the regret.

Theorem 3.1.5 is very instructive. It can be found in the original work

of [13] and has been rederived using different methods multiple times

in the literature, in an effort to better understand this fundamental

result, e.g. in [14]. Quite intuitively, it maximally uses the uniformly fast
convergence hypothesis in the sense that it compares the regret function

𝑛 ↦→ R� (𝑛;𝜋) to the "smallest" of all function of the form 𝑛𝛼
with positive

𝛼, i. e. the largest of 𝑜(𝑛𝛼) function, the logarithm 𝑛 ↦→ log 𝑛. With

this fast convergence hypothesis alone, and without adding assumption

about the Bandit set �, this theorem allows us to compute the asymptotic

sampling rate, Equation 3.35, only of those arms that are pulled exactly at

a logarithmic rate. Maximally using the available hypothesis, the theorem

cannot inform us about sub-logarithmic convergence rate. However, the

theorem does provide an interesting insight about those arms that could

have sub-logarithmic sampling rate, they are the arms with an infinite

unlikelihood of optimality. A priori, those arms could be discriminated

as suboptimal at a much faster rate than the arms that are not infinitely

unlikely.

The regret lower bound is thus written as a sum over a subset of arms,

𝐴log =
{
𝑎 ∈ 𝐴 | 0 < EF𝑎

(
𝛽(𝑎), �★) < +∞}

\ 𝐴★ ,

made of those arms that not optimal, i. e. arms that do not contribute to

the regret, and those arms that have a finite unlikelihood of optimality,

i. e. those arms that must be sampled at a logarithmic rate according to

Theorem 3.1.5.

The Equation 3.34 is about the logarithmic rate of the regret any uniformly

fast convergent and therefore uniformly maximally convergent policy

must at least suffer from. This regret comes from the uncertainty about

the very problem the agent is solving and arms that must be pulled at a

logarithmic rate are precisely those arms with a finite non-zero unlikeli-

hood of optimality. Interestingly, in the case of unstructured Bandit, one

can isolate the sampling rate of arms in 𝐴log as shown in Equation 3.35.

This equation shows that logarithmic sampling rate of any arm in 𝐴log

is lower bounded by the invert ratio of its unlikelihood of optimality.

The larger the unlikelihood of optimality, the more likely it is that the

arm is confused for an optimal one, the larger its logarithmic sampling

54 3 A set of choices: Bandit

rate. Retrospectively, one can read the Equation 3.34 by separating the

individual regret contribution of each arm in 𝐴log as the ratio of the

suboptimality gap and unlikelihood ratio,

�★ − �(𝑎 |𝛽)
EF𝑎 (𝛽(𝑎), �★) .

Remark: Arms close to be optimal may greatly contribute to the regret
The closer the expected value of a suboptimal arm is to be optimal,

the smaller the suboptimality gap. One may be tempted to say that

its contribution to the regret is small or smaller than those arms with

larger suboptimality gap. However, it may not be the case. Indeed,

usually, the smaller the suboptimality gap, the more likely the arm is

to be confused for an optimal one and the smaller its unlikelihood of

optimality. Therefore, when an arm is "close" to be optimal, its per-sample

contribution to the regret is small because the suboptimality gap is small,

but it often contributes to the regret due its higher sampling rate because

its unlikelihood of optimality is smaller. Therefore, there are cases (and

more often than not) when the contribution to the regret of arms that

are close to be optimal is larger than the contribution of arms that are

highly suboptimal. For instance, considering a Bandit problem with

Gaussian distributions with known identical variance for all arms, the

suboptimality gap of a suboptimal arm 𝑎 is �★ − �(𝑎) and the value of

EF (𝛽(𝑎), �★) is proportional to (�★ − �(𝑎))2. Thus, the contribution of

arm 𝑎 to the logarithmic regret growth rate is proportional to

�★ − �(𝑎)
(�★ − �(𝑎))2

=
1

�★ − �(𝑎) ,

an increasing function of �(𝑎) < �★
.

𝑛-stage lower bounds & leading orders This Theorem 3.1.5 allows us

to write several inequalities using small-𝑜 and Ω notations to express,

perhaps in a more readable way, what can be said about the 𝑛-stage

regret function, and the number of pulls of the different type of arms. We

distinguish three types of arms, optimal ones in 𝐴★
, non-optimal finitely

unlikely arms in 𝐴log, and the remaining arms in 𝐴 \
(
𝐴★ ∪ 𝐴log

)
that

are suboptimal and have an infinite unlikelihood of optimality.

Equation 3.34 can be used to derive that the 𝑛-stage regret is such that

R� (𝑛;𝜋) ≥
∑
𝑎∈𝐴log

�★ − � (𝑎 |𝛽)
EF𝑎 (𝛽(𝑎), �★) log 𝑛 + 𝑜 (log 𝑛) .

This notation also is an asymptotic one but may be easier to read than

the original equation. The expected number of pulls of an arm 𝑎 ∈ 𝐴log

is such that,

𝔼𝜋,�𝑁𝑎 (𝑛) ≥
log 𝑛

EF𝑎 (𝛽(𝑎), �★) + 𝑜(log 𝑛) (3.36)

and the expected number of pulls of an arm 𝑎 ∈ 𝐴 \
(
𝐴log ∪ 𝐴★

)
is lower

bounded by a sub-logarithmic term,

𝔼𝜋,�𝑁𝑎 (𝑛) ≥ 𝑜 (log 𝑛) .

3.1 A zeroth order model of decision-making 55

[12]: Honda et al. (2011), ‘An asymptot-

ically optimal policy for finite support

models in the multiarmed bandit prob-

lem’

[15]: Honda et al. (2010), ‘An Asymp-

totically Optimal Bandit Algorithm for

Bounded Support Models’

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

An optimal algorithm𝜋★
will be such that those inequalities are equalities.

In practice, we will prove an upper bound on the algorithmic regret,

upper bound that should match the right-hand side of those inequalities.

In particular, for unstructured Bandit problem, we will be interested in

proving an upper bound on the individual number of pulls, reversing

inequalities 3.36. Assuming reversing the inequalities, the fact that∑
𝑎∈𝐴 𝑁𝑎 (𝑛) = 𝑛, thus

∑
𝑎∈𝐴 𝔼𝜋,�𝑁𝑎 (𝑛) = 𝑛, implies that a strategy

matching the lower bound will pull optimal arms a linear amount of the

interactions, ∑
𝑎∈𝐴★

𝔼𝜋,�𝑁𝑎 (𝑛) = Ω(𝑛) ,

thus efficiently learning a solving policy.

Usual case in the literature In practice, Theorem 3.1.5 will be used

for unstructured Bandit where all the distribution spaces {F𝑎}𝑎 will

be identical to a space F, i. e. F𝑎 = F for all 𝑎 ∈ 𝐴. Therefore, usually

the space 𝐴log is one of the following two: 𝐴log = 𝐴 \ 𝐴★
, e.g. if F is

the space of Bernoulli distributions with expected values in [0, 1), or

𝐴log = 𝐴 \ 𝐴★ = ∅, e.g. if F is the space of bounded Dirac distributions

in (𝑚, 𝑀). However, if the space F is more complex, then there might

be some cases where 𝐴log is none of the above. For instance, if F is the

space of distributions with all their mass in (0, 0.3) or in (0.6, 1), then if

�★ ∈ (0.6, 1), for any distribution with all its mass in the smaller interval

(0, 0.3), its unlikelihood of optimality is infinite and is not in 𝐴log. This

is because one cannot transform a distribution having all its mass in

an interval into another of disjoint support without paying an infinite

Kullback-Leibler cost. If �★ ∈ (0, 0.3), then this same considered arm

would have a finite unlikelihood of optimality and would belong to 𝐴log.

Therefore, even for unstructured Bandit, there are problems where a

distribution has a finite unlikelihood of optimality and other where it

has an infinite one, for the same class of Bandit problem.

Algorithmic applications Once a lower bound on a Bandit class � has

been computed, the next step usually is to find an algorithm that is optimal

on that class, i. e. an algorithm with uniformly maximal convergent rate,

with said rate computed in the lower bound of Theorem 3.1.5. The lower

bound presented in this theorem, and in particular the lower bound on

the sampling rate of suboptimal arms Equation 3.35 is directly connected

to a class of algorithms that we call MED-like algorithms. The MED

acronym will stand for Minimal Empirical Divergence. In the next section,

we will see how this lower bound can be used to directly derive three

algorithms, MED [12], DMED [15], and IMED [16].

We now present another type of regret lower bound, analytically equal to

one the presented in Theorem 3.1.5 (a comforting fact), that is connected

to another family of algorithm that we call UCB-like algorithms. The

UCB acronym will stand for Upper Confidence Bound. This view point,

we call it the allocation-constrained optimism, and we see it as dual of

the unlikelihood of optimality viewpoint.

56 3 A set of choices: Bandit

The allocation-constrained optimism viewpoint

When are two problems indistinguishable? Are two Bandit problems

𝛽 ∈ � and 𝛽′ ∈ � indistinguishable when 𝐾𝐿 (𝛽(𝑎), 𝛽′(𝑎)) = 0 for all

arms? This is a strong sense of indistinguishability, that we may want to

call equality, because all reward distributions must be the same. Or are

they indistinguishable when 𝐴★ (𝛽) = 𝐴★ (𝛽′)? This second viewpoint

is weaker than the first proposed and relies only on the comparison

of the set of optimal solutions. In the space �, one could say that two

problems 𝛽 ∈ � and 𝛽′ ∈ � are indistinguishable if they have the same set of

optimal arms, i. e. the same set of solutions to the Bandit control problem.

From the solution-viewpoint, two such problems are not fundamentally

different. However, two problems are fundamentally different if they

do not share the same set of solutions and can be distinguished from

there set of solutions. In this pint of view, two problems can only be

distinguished at the level of control policies and not at the level of the

problem. Finding an optimal policy is all we are interested in. As

we stated in the introduction, we are interested in finding solutions to

uncertain problem and a priori not interested in knowing the uncertain

problem. Gaining knowledge about the uncertain problem will be a mean

to achieve the true goal of the Bandit learner, which is playing a solution

of the control problem as often as possible in the long run. By long run,

we mean infinite, hence we are more interested in asymptotic rates rather

than exact number of interactions. It therefore makes sense to build an

object that is more concerned about the set of solutions than the specific

values of the problem. Of course, solutions of the Bandit control problem

still depend on the values of the problem as well as the class � problems

belong to.

However, this second notion of indistinguishability is too weak. From an

available information viewpoint, an optimal policy will play in the set

of optimal actions, observe rewards and can extract information from

this set whereas it cannot remain optimal and extract information from

suboptimal arms. Therefore, a better notion of indistinguishability should

take the possibility of collecting and processing information from the set

of optimal arms 𝐴★ (𝛽) of a Bandit problem 𝛽 ∈ �. Thus, our final notion

of indistinguishability. If two bandit problems 𝛽 and 𝛽′ (with same set of

arms) cannot be distinguished by any optimal policy, then they are said

to be indistinguishable.

Definition 3.1.24 (Instinguishable set) Let � be a set of Bandit problems
and 𝛽 ∈ � be a Bandit problem. We denote S (𝛽; �) the set of Bandit problem
in � that are indistinguishable from Bandit problem 𝛽,

S (𝛽; �) =
{
𝛽′ ∈ � |

𝐴★ (𝛽) = 𝐴★ (𝛽′)
∀𝑎 ∈ 𝐴★ (𝛽) , 𝐾𝐿 (𝛽(𝑎), 𝛽′(𝑎)) = 0

}
. (3.37)

Therefore, two problems are indistinguishable if they share the same set

of optimal arms and distributions of optimal arms are unchanged. This

definition is coherent with both our requirements to compare problem

from an optimal control policy viewpoint and the possibility for such

policies to collect and process information that allows to distinguish

distributional changes of an optimal arm.

3.1 A zeroth order model of decision-making 57

What can optimal policies distinguish? In light of the previous para-

graph, the answer to that question is quite clear. The set of optimal policies

on a Bandit problem 𝛽 ∈ 𝑧𝑒𝑡𝑎 can only distinguish those problems 𝛽′

that are such that there exist an arm 𝑎 ∈ 𝐴★(𝛽) with 𝐾𝐿 (𝛽(𝑎), 𝛽′(𝑎)) > 0

because an optimal control on 𝛽 is only allowed to play those arms that

are in 𝐴★(𝛽). Hence, the set of distinguishable problems P (𝛽) is

P (𝛽) =
{
𝛽′ ∈ � | ∃𝑎 ∈ 𝐴★(𝛽), 𝐾𝐿 (𝛽(𝑎), 𝛽′(𝑎)) > 0

}
.

On the contrary, only allowing ourself to play within the set of optimal

arms in 𝛽, 𝐴★(𝛽), one cannot distinguish from 𝛽 the complement in � of

P (𝛽),

P (𝛽) =
{
𝛽′ ∈ � | ∀𝑎 ∈ 𝐴★(𝛽), 𝐾𝐿 (𝛽(𝑎), 𝛽′(𝑎)) = 0

}
.

Problems that would make a set of policies suboptimal Amongst

those Bandit problem inP (𝛽) that the set𝐴★(𝛽) of optimal control cannot

distinguish from the original problem 𝛽, there are some that would make

all policies in𝐴★(𝛽) suboptimal. Those are the problems that would make

a control suffer linear regret. Those are the problems that a learner cannot

distinguish from playing only actions in its currently computed set of

optimal controls but must discriminate if it does not want to suffer a linear

regret. If the agent cannot distinguish its current problem 𝛽 from another

one 𝛽′where at least one optimal action in 𝛽′ is on the set of optimal arms

for 𝛽, then an algorithm playing in the set 𝐴★(𝛽) on the problem 𝛽′ can

gain enough information to discriminate that existing common optimal

action. On the other hand, if 𝐴★(𝛽) ∩𝐴★(𝛽′) = ∅, then an optimal control

on 𝛽, i. e. a greedy learner, cannot distinguish its problem from the set

of alternative where its optimal set is made of suboptimal controls only.

We call this set the control-indistinguishable optimal alternative and

denote it � (𝛽).

Definition 3.1.25 (control-indistinguishable optimal alternative) Let
� be a set of Bandit problems and 𝛽 ∈ � be a Bandit problem. We denote
� (𝛽) the set of Bandit problem in � that are indistinguishable from Bandit
problem 𝛽 and whose set of optimal control has empty intersection with the
set 𝐴★(𝛽) of optimal arms in the original problem 𝛽,

� (𝛽) =
{
𝛽′ ∈ � |

𝐴★ (𝛽) ∩ 𝐴★ (𝛽′) = ∅,
∀𝑎 ∈ 𝐴★ (𝛽) , 𝐾𝐿 (𝛽(𝑎), 𝛽′(𝑎)) = 0

}
. (3.38)

From a learning perspective, Bandit problems in this set �(𝛽) cannot be

distinguished from 𝛽 by only playing action in 𝐴★(𝛽), i. e. by being greedy

on the computed information, while problems in this set can make the

learner suffer a linear regret. From a learner perspective who is uncertain

about the problem, there is a necessity to gain information on that set of

problems, which means, sampling actions that are optimal for at least

one problem in �(𝛽). The regret lower bound answer the question of the

frequency this necessity to sample arms that are a priori suboptimals.

This necessity to deviate from greedy decision is the cost of uncertainty
and is often worded as the exploitation-exploration trade off.

58 3 A set of choices: Bandit

Cost of discriminating A learner that only greedily exploits its current

knowledge of optimality, there is a probability that a lack of information

about suboptimal arms wrongs it into computing a false set of optimal

arms. Playing arms in 𝐴★(𝛽) can only do that much, that is bringing

information about actions in 𝐴★(𝛽). To gain discriminative power, one

must sample outside this set of optimal controls. One must deviate only

to avoid those arms that could make the learner suffer linear regret. The

question that is answered by the lower bound is, how often should we

sample arms that are suboptimal? From an asymptotic viewpoint, due

to the uniformly fast convergence hypothesis, arms that are in 𝐴★ (𝛽)
are assumed to be perfectly known while the uncertainty is on those

arms that are pulled in 𝑜 (𝑛𝛼) for all 𝛼 > 0. As before, it means that we

should be considering the logarithmic rate of sampling of suboptimal

arms. The discriminative power of a policy 𝜋 such with the allocation

scheme 𝑚𝑎(𝑛) after 𝑛 time steps, i. e. 𝑚𝑎(𝑛) samples were collected from

arm 𝑎, is measured by

𝐾𝐿 (𝑚(𝑛) ⊗ 𝛽, 𝑚(𝑛) ⊗ 𝛽′) =
∑
𝑎∈𝐴

𝑚𝑎(𝑛)𝐾𝐿 (𝛽, 𝛽′) ,

where 𝑚(𝑛) ⊗ 𝛽 is the distribution of sampling arm 𝑎 with normalized

probability𝑚𝑎(𝑛)/𝑛. Since we are only interested in discriminating those

arms that not optimal in 𝛽 because an optimal control policy will not

sample them, we prefer to measure the discriminative power of an

allocation scheme only on those arms that are not in 𝐴★
. Pushing it one

step further, we are better interested in the logarithmic discriminative

rate where we replace 𝑚𝑎(𝑛) by 𝑚𝑎(𝑛)/log 𝑛 and call �𝑎 the superior

limit as 𝑛 tends to infinity. Therefore, it only makes sense to look for

those policies with logarithmic sampling rate of suboptimal policies that

satisfy a discriminating constraint of the form∑
𝑎∈𝐴\𝐴★(𝛽)

�𝑎𝐾𝐿 (𝛽(𝑎), 𝛽′(𝑎)) ≥ 𝛾 . (3.39)

Of course, such a constraint should be satisfied on all the problem

𝛽 ∈ � (𝛽), the control-indistinguishable optimal alternative set. Thus, the

final form of the constraint,

inf

𝛽′∈�(𝛽)

∑
𝑎∈𝐴\𝐴★(𝛽)

�𝑎𝐾𝐿 (𝛽(𝑎), 𝛽′(𝑎)) ≥ 𝛾 . (3.40)

It is interesting to note that when sampling a suboptimal arm 𝑎, we

gain information about many problems in 𝑧𝑒𝑡𝑎(𝛽) because from gaining

information about 𝑎, we gain information about all those problems in

which 𝑎 is optimal. Note that if there is no distribution in F𝑎 making 𝑎

optimal without modifying the set of optimal distribution, then there

is no 𝛽′ ∈ �(𝛽)where 𝑎 is an optimal arm and therefore, its logarithmic

sampling rate �𝑎 surely will be equal to zero in the allocation objective

because such an arm does not have any logarithmic discriminative power

and should be played sub-logarithmically.

Cost of uncertainty To have enough discriminating power, we now un-

derstand that a uniformly fast convergent policy must satisfy logarithmic

3.1 A zeroth order model of decision-making 59

14: For discrete random variables,

𝐾𝐿(𝑝, 𝑞) =
∑
𝑖

𝑝𝑖 log

𝑝𝑖

𝑞𝑖
,

and there is no reference to the specif

value attached to an index 𝑖. Any good

notion of unlikelihood of optimality

must depend on the domain to take the

expected reward and optimal expected

reward �★ into account.

rate allocation constraint of the form,

inf

𝛽′∈�(𝛽)

∑
𝑎∈𝐴\𝐴★(𝛽)

�𝑎𝐾𝐿 (𝛽(𝑎), 𝛽′(𝑎)) ≥ 𝛾 ,

with�𝑎 ≥ 0 since it is an allocation rate and �(𝛽) the control-indistinguishable

optimal alternative set. The logarithmic growth rate of regret due to a

logarithmic allocation rate (�𝑎)𝑎 is∑
𝑎∈𝐴\𝐴★

�𝑎
(
�★ − �(𝑎 |𝛽)

)
.

A lower bound on the regret growth rate therefore is written as the

infimum over all the allocation rates that satisfy the discrimination

constraint,

inf

(�𝑎)𝑎

∑
𝑎∈𝐴\𝐴★

�𝑎
(
�★ − �(𝑎 |𝛽)

)
.

Link with the unlikelihood of optimality Before finally giving the

complete lower bound, we emphasize a link between the allocation

constraint and the unlikelihood of optimality. Because of the unstructured

assumption on the Bandit problem, arms can be "modified" independently

of each other, and we can write the allocation-exploration constraint as

|𝐴 \ 𝐴★| constraints of the form,

inf

𝛽′(𝑎)∈F𝑎 (�★)
�𝑎𝐾𝐿 (𝛽(𝑎), 𝛽′(𝑎)) ≥ 𝛾 ,

where

F𝑎
(
�★) = {

𝐹 ∈ F𝑎 | 𝔼𝑋∼𝐹 (𝑋) > �★
}
.

Therefore, we retrieve the unlikelihood of optimality from this analysis.

Constraints on the unlikelihood of optimality The unlikelihood of

optimality of an arm 𝑎 is defined as the infimum of the Kullback-Leibler

divergence, 𝐹 → 𝐾𝐿 (𝐹𝑎 , 𝐹), where the distribution 𝐹 is constrained to

belong to set, which we denote F𝑎 (�★) or F𝑎 (𝛽), with

F𝑎
(
�★) = {

𝐹 ∈ F𝑎 | 𝔼𝑋∼𝐹 (𝑋) > �★
}
,

where �★ = max𝑎∈𝐴 � (𝑎 |𝛽) is the maximal reward on the Bandit problem

𝛽. For the computation of the unlikelihood of optimality, this set is of

uttermost important because the Kullback-Leibler divergence is quantity

that is only concerned about the distributions of random variables, and

not about specific domain values.
14

The way unlikelihood of optimality

integrates the expected reward is through the constraints, which link

a distribution to an associated random variable. In F𝑎 , distributions are

reward distributions of associated reward random variables. However,

the sets F𝑎 (𝛽) can be of independent interest because together, those sets

allow to construct the set of all Bandit problem with a different set of
solutions.

60 3 A set of choices: Bandit

[17]: Graves et al. (1997), ‘Asymptotically

efficient adaptive choice of control laws

incontrolled markov chains’

Regret lower bound: the allocation-constrained optimality viewpoint

Using all the knowledge from the previous analysis, we are ready to state

the allocation-constrained based lower bound on the regret. The only

unknown that was left and is derived mathematically is the threshold 𝛾.

However, the mentioned link with the unlikelihood of optimality points

out that 𝛾 = 1 is a good candidate. We hope that the previous analysis

helps to read in plain English the following lower bound, which, at first,

appears like an intricate optimization problem.

Theorem 3.1.6 (Regret lower bound: allocation-constrained optimality

viewpoint) Let 𝐴 be a finite set of arms, � =
⊗

𝑎∈𝐴 F𝑎 be a class of Bandit
problems and � = (𝐴, 𝛽) ∈ � be a Bandit problem within that class.

Then, for all uniformly fast convergent policy 𝜋, and therefore uniformly
maximal converging rate policy, the growth rate of the regret R� (𝑛;𝜋) is
lower bounded,

lim inf

𝑛→∞
R� (𝑛;𝜋)

log 𝑛
≥ inf

(�𝑎)𝑎∈𝐴

∑
𝑎∈𝐴

�𝑎
(
�★ − � (𝑎 |𝛽)

)
s. t. �𝑎 ≥ 0 ∀𝑎 ∈ 𝐴 ,

inf

𝛽′∈�(𝛽)

∑
𝑎∈𝐴

�𝑎𝐾𝐿 (𝛽(𝑎), 𝛽′(𝑎)) ≥ 1

, (3.41)

where the set � (𝛽) is defined using 𝐴★ (𝛽) = argmax𝑎∈𝐴 � (𝑎 |𝛽), the set of
maximal arms in a Bandit problem (𝐴, 𝛽), as

� (𝛽) =
{
𝛽′ ∈

⊗
𝑎∈𝐴

F𝑎 |
A★ (𝛽) ∩ A★ (𝛽′) = ∅,
∀𝑎 ∈ A★ (𝛽) , 𝐾𝐿 (𝛽(𝑎), 𝛽′(𝑎)) = 0

}
. (3.42)

� (𝛽) is the set of Bandit problem 𝛽′ ∈ � with different optimal set and such
that the distribution of optimal arm in 𝛽 is unchanged in 𝛽′, i. e. only the
distribution of suboptimal arms is allowed to be changed and at least one must
be transformed into an optimal arm within 𝛽′.

This form is first found in the seminal work of [17]. The analysis preceding

the theorem statement gave a lot of intuitions. Still, one can a posteriori see

that Theorem 3.1.6 is very instructive, and we can make a small analysis

that is similar to the one we did for Theorem 3.1.5. Quite intuitively, it

maximally uses the uniformly fast convergence hypothesis in the sense

that it compares the regret function 𝑛 ↦→ R� (𝑛;𝜋) to the "smallest" of all

function of the form 𝑛𝛼
with positive 𝛼, i. e. the largest of 𝑜(𝑛𝛼) function,

the logarithm 𝑛 ↦→ log 𝑛. With this fast convergence hypothesis alone,

and without adding assumption about the Bandit set �, this theorem

allows us to compute the asymptotic sampling rate, constraints on (�𝑎)𝑎
Equation 3.41, only of those arms that are pulled exactly at a logarithmic

rate. Maximally using the available hypothesis, the theorem cannot

inform us about sub-logarithmic convergence rate. Indeed, those arms

are not in the set �(𝛽) and therefore, their logarithmic sampling rate

saturate the constraint by being equal to zero.

As in Theorem 3.1.5, the regret lower bound is written as a sum over a

3.1 A zeroth order model of decision-making 61

subset of arms,

𝐴log =
{
𝑎 ∈ 𝐴 | 0 < EF𝑎

(
𝛽(𝑎), �★) < +∞}

\ 𝐴★ ,

made of those arms that are not optimal, optimal arms that do not

contribute to the regret, and those arms that have a finite unlikelihood

of optimality, i. e. those arms that must be sampled at a logarithmic rate.

Indeed, under the unstructured assumption, those arms can be made

optimal under the � hypothesis and corresponds to those arms with

non-trivial (equal to zero) logarithmic sampling rate constraint.

While the Theorem 3.1.6 is more general than the Theorem 3.1.5 in the

sense that it can be used as such for structured Bandit problems (with

a general � instead of decomposable � =
⊗

𝑎 F𝑎), it does not make it

immediate to the eye that one can isolate the sampling rate of arms in

𝐴log as shown in Equation 3.35.

The space � (𝛽) can be written as a union of Bandit problems where we

constrain that at least one suboptimal arm is, if possible, made optimal,

� (𝛽) =
⋃

𝑎∉𝐴★(𝛽)

{
𝛽′ ∈

⊗
𝑎′∈𝐴

F𝑎′ | 𝔼𝐹′𝑎 (𝛽
′ (𝑎)) > max

𝑎∈𝐴
� (𝑎 |𝛽)

}
, (3.43)

where some sets might be empty due to the fact that one cannot find in F𝑎
a reward distribution 𝛽′(𝑎) ∼ 𝐹′𝑎 such that arm 𝑎 has an expected reward

larger than �★ = max𝑎∈𝐴 � (𝑎 |𝛽). That is to say, there are some suboptimal

arms that cannot be made optimal without changing the distribution

of optimal arms in the original problem. The suboptimal arms that can

be transformed into optimal ones without changing the distribution

of optimal ones are the arms that are within the 𝐴log set defined in

the unlikelihood of optimality viewpoint. In fact, fully exploiting the

unstructured assumption, one could replace the set � (𝛽) by the set

⋃
𝑎∉𝐴★(𝛽)

{
𝛽′ ∈

⊗
𝑎′∈𝐴

F𝑎′ |
𝐸𝐹′𝑎 (𝛽′ (𝑎)) > �★,

∀𝑎′ ≠ 𝑎, 𝐾𝐿 (𝛽(𝑎′)|𝛽′(𝑎′)) = 0

}
,

which amounts to consider all the arm-constraints independently and

computing the logarithmic sampling rate using the sets F𝑎 (�★).

Usual case in the literature Similarly to Theorem 3.1.5, Theorem 3.1.6

will often be used for unstructured Bandit where all the distribution

spaces {F𝑎}𝑎 will be identical to a space F, i. e. F𝑎 = Ffor all 𝑎 ∈ 𝐴 and

therefore

⊗
𝑎∈𝐴 F𝑎 = F⊗|𝐴| . However, because it does not distinguish

between arms a priori in the set �(𝛽) and constrain all the logarithmic

sampling rates in a single combined inequality, it is more suited to the

analysis of structured Bandits. This constrained optimization formulation

provide an easier to take structural assumption into account in the regret

lower bound.

Algorithmic applications Similarly to what we said after Theorem 3.1.5,

once a lower bound on a Bandit class � has been computed, the next

step usually is to find an algorithm that is optimal on that class, i. e. an

62 3 A set of choices: Bandit

[18]: Lai (1987), ‘Adaptive treatment allo-

cation and the multi-armed bandit prob-

lem’

[19]: Agrawal et al. (1989), ‘Asymp-

totically efficient adaptive allocation

schemes for controlled iid processes: Fi-

nite parameter space’

[20]: Agrawal (1995), ‘Sample mean

based index policies by O (log n) regret

for the multi-armed bandit problem’

[21]: Cappé et al. (2013), ‘Kullback-

Leibler Upper Confidence Bounds for

Optimal Sequential Allocation’

[22]: Cappé et al. (2013), ‘Kullback-

Leibler Upper Confidence Bounds for

Optimal Sequential Allocation.’

[5]: Auer et al. (2002), ‘Finite-time analy-

sis of the multiarmed bandit problem’

[23]: Kaufmann et al. (2012), ‘On

Bayesian Upper Confidence Bounds for

Bandit Problems’

[24]: Thompson (1933), ‘On the likeli-

hood that one unknown probability ex-

ceeds another in view of the evidence of

two samples’

[25]: Thompson (1935), ‘On a criterion

for the rejection of observations and the

distribution of the ratio of deviation to

sample standard deviation’

[26]: Riou et al. (2020), ‘Bandit algo-

rithms based on Thompson sampling

for bounded reward distributions’

algorithm with uniformly maximal convergent rate, with said rate com-

puted in the lower bound of Theorem 3.1.5. The allocation-constrained

optimality lower bound presented in Theorem 3.1.6 is directly connected

to a class of algorithms that we call UCB-like algorithms. The UCB

acronym will stand for Upper Confidence Bound. In the next section,

we will see how this lower bound can be used to directly derive several

algorithms, KL-UCB [18–22] and UCB [5]. We mention that this lower

bound inspired other UCB-like algorithm such as the Bayesian-UCB [23].

We also connect this allocation-constrained optimality to the class of

TS-like algorithms where TS stands for Thompson Sampling [24, 25]. In

particular, it is related to the recent NPTS [26] algorithm.

From a policy and algorithmic viewpoint, the allocation-constrained

Equation 3.41 of Theorem 3.1.6 offers an interesting perspective because

a set of logarithmic rates of allocation on suboptimal arms can readily

be seen as a sampling policy or algorithm. Therefore, the infimum over

the rates (�𝑎)𝑎 , inf(�𝑎)𝑎 in Equation 3.41 gain from being seen as implicitly

an infimum over policies, where �𝑎 (𝜋) is the logarithmic sampling rate

of a policy 𝜋. This indicate that �𝑎 is a good candidate for a logarithmic

sampling rate of a suboptimal arm 𝑎.

Wrap it up: towards optimal algorithms

Dual lower bounds & dual algorithms The two regret lower bounds

presented in this section can be seen as dual and are the roots of two

families of algorithms, MED-like algorithms and UCB-like algorithms.

For MED-like algorithms, inspired by the unlikelihood of optimality lower

bound, algorithms are using an empirical unlikelihood of optimality to

assess the frequency at which suboptimal arms must be sampled. The

more unlikely the optimality, the less the strategy should sample. The

less unlikely the optimality, the more the strategy should sample. In

short, we will sample an arm if its empirical number of samples does

not match with its unlikelihood of optimality. For UCB-like algorithms,

inspired by the allocation-constrained optimality, algorithms are using the

empirical allocation rate to compute a distribution 𝛽′(𝑎) (more precisely,

its expected value �(𝑎 |𝛽′)) in �(𝛽) that satisfy the allocation constraints.

This distribution must satisfy the allocation constraint but, at the same

time, it must respect the information that have been collected on arm 𝑎.

Therefore, one would be looking for an arm in F𝑎(�★) that will saturate

the constraint. Amongst those possible distribution, a group is more

appealing, the group of distributions with the largest possible expected

values. Indeed, those are the distributions, that, while respecting the

allocation constraints, would make the algorithm suffer the largest

possible regret if this expected value were true. This point of view is

sometimes phrased as optimism in face of uncertainty. This wording

is quite understandable, but I do not think that it reflects the policy
viewpoint that seems to be emerging from this lower bound. Rather, I

prefer the term upper confidence bound because it does not carry the

meaning of optimism. There is no optimism from the policy viewpoint,

rather, the policy computes the largest possible regret it could incur from

each of the empirical suboptimal arms and decide to sample the one

from which this likely regret is the largest (if positive). While it is indeed

an optimism of expected reward from an arm distribution viewpoint,

3.1 A zeroth order model of decision-making 63

it is not optimism but rather an upper confidence bound on the largest
likely regret that the policy can suffer based on current information.

The frequency at which an optimal algorithm will sample arms, we

will link it to the quantity we call regret per unit of interaction. The

adaptiveness of the considered policies, i. e. the speed at which it learns,

is asymptotically controlled by a minimal sampling rate given by each of

the two lower bounds. The frequency at which suboptimal actions are

sampled is controlled by the information per unit of interaction. The

logarithmic rate implies that there is a diminishing return on the value

of information, while it is still necessary to sample suboptimal actions.

We recall all those terms here to foster a physical process viewpoint on

the algorithms we are going to present.

Tight lower bound and optimal algorithms

Given a class � of Bandit problems, a regret lower bound informs us of

the minimal logarithmic growth rate that any uniformly fast convergent

policy must suffer from the uncertainty of the problem it is learning to

solve. By inclusion, this inequality applies to the class of policy with a

uniformly maximal convergence rate. Good candidates for uniformly

maximal convergence rate are precisely those policies that may satisfy

the lower bound. More precisely, polices that satisfy the lower bound

uniformly on class � are uniformly fast convergent policies and called

optimal. A lower bound will be said to be tight if there exist a policy

matching its regret logarithmic growth rate. This will be the case for

the problem of bounded Bandits. A Bandit problem (𝐴, 𝛽) is said to

be bounded if for all arm 𝑎 ∈ 𝐴, the support supp (𝛽(𝑎)) of the reward

distribution associated to arm 𝑎 is lower bounded by a known finite

number 𝑚 ∈ ℝ and upper bounded by a known finite number 𝑀 ∈ ℝ,

with the constraint𝑚 < 𝑀. The space � is therefore parameterized by the

two quantities 𝑚 and 𝑀. In this case, optimal and numerically efficient

algorithms are known.

When presenting the two types of generic regret lower bounds we alluded

to how those are linked to two types of algorithmic designs. In the next

sections, we will more deeply explain how the two types of lower bounds

intimately relate to MED-like and UCB-like algorithms. In the previous

section devoted to the Bandit control problem, we presented a simple

Dirac problem showing how one can make use of the regret lower bound

to design an optimal learning policy. The next sections will be devoted

to addressing the more complicated case of the generic lower bound

presented in this section.

Finite time From an asymptotic optimality standpoint, finite time

regret or 𝑛-stage regret does not really matter as long as, in the long run,

the sampling rate corresponds to the optimal ones. However, finite time

performances are quite important for the practitioner. While more difficult

and tricky to tackle than asymptotic properties, finite time behavior of

adaptive sampling strategies is an interesting and important topic for

the theoretician. Because of the theoretical difficulty of deriving fine

finite time results, it is interesting to deeply think about the algorithmic

design, the empirical quantities that the learner can access, and how to

64 3 A set of choices: Bandit

relate them. This is what we do in the next section, before presenting

Bandit algorithms. Another important point is the one of numerical
complexity. Mathematically, there is no notion of elapsed time between

two successive choices made by the algorithm. However, in the tangible

world, the learner may be constrained by how much time or memory

resources it can use to compute the next action it decides to sample.

Wrap it up A Bandit problem (𝐴, 𝛽) is specified by a finite set of

arms 𝐴 and a function 𝛽 that maps an arm 𝑎 ∈ 𝐴 to real-valued random

variable 𝛽(𝑎) of probability distribution 𝐹𝑎 ∈ F𝑎 where F𝑎 is known to the

learner. The random variables 𝛽(𝑎) are called reward distributions and the

expected reward of an arm 𝑎 is denoted �(𝑎 |𝛽) or �(𝑎) and corresponds

to the expected value of the random variable 𝛽(𝑎), �(𝑎) = 𝔼𝐹𝑎 (𝛽(𝑎)). The

interaction of an agent or policy with a Bandit problem proceeds as

follows. At each interaction 𝑡 ∈ 𝑁 , the learner chooses an arm 𝑎𝑡 ∈ 𝐴
based on the past observations and decisions, then receives and observes

a sample 𝑋𝑡 (called the reward), conditionally independent, sampled

from 𝛽(𝑎𝑡). The goal of a learner is to maximize the cumulative reward

received over time, i. e. over the sequence of interactions. The mean of

each arm is unknown, which makes the problem non-trivial, hence the

learner should adjust its sampling strategy based on past information

obtained from drawing different arms in order to maximize the expected

sum of rewards. The maximal expected value of a finite Bandit problem

is denoted by �★
, defined as �★ = max

𝑎∈𝐴
�(𝑎). The performance of the

strategy used by the agent is measured by the regret, that compares the

expected sum of rewards obtained by an oracle that would constantly

pull an optimal arm and the ones obtained by the learner, up to some

time horizon 𝑛, that we assume is unknown to the learner.

3.2 Solving the problem 65

One could replace I by Ĩ = I− rule𝑎I
if the rule used to pick the next action, ar-
grule, is not that of an argmax or argmin.

rule𝑎 is used to compute the value of I
for the chosen arm.

3.2 Solving the problem

A Bandit problem with a well-defined optimization problem and objective

is given to us. The regret lower bound indicates that, within the considered

class of algorithm, it is impossible to beat a certain level of sampling

performance due to the uncertain nature of the very problem we are

solving, the one of interacting with an optimal action. The existence

and construction of such an algorithm therefore remains. Can we find

a finite sequence of rigorous instructions, that can be used to solve a

class of Bandit problems where distributions are specified to belong to a

subset F? What are the specifications for performing calculations and data

processing of the collected information? At any given interaction moment,

the main question the algorithm must answer is the one concerning the

choice of the next action to interact with. To do so, it is allowed to process

past information however we may prescribe it to do, but we insist that

the purpose is to compute the next action. This purpose should not be

confused with intermediate goals such as estimation. . . .

Generic Bandit Algorithms

Similarly to what was done in the section dedicated to the Bandit

control model, in our computation framework, we are bound to perform

comparisons. Therefore, a general bandit algorithm is always based on

the computation of numerical quantities, numbers, one for each arm.

Comparisons are made between those numbers and the next arm to

sample is chosen based on the result of those comparisons. Formally,

those numerical quantities are the results of a finite function I : 𝐴→ ℝ

therefore used to compute the next action to play. While not written for

the moment, the function I depends on F, the history of information

𝐻 and potentially on a random number generator. Usually, an argmax

or argmin of this function is used as the next action to play. That is to

say, the next action 𝑠 to be played is such that 𝑠 ∈ argmax𝑎∈𝐴 I(𝑎) or 𝑠 ∈
argmin𝑎∈𝐴 I(𝑎). This is almost a consequence of the comparison-based

computation framework that we are using. The physical interpretation

of learning will be emphasized through the special attention given to

the intensive and extensive properties. I think that when designing

algorithms, the following question is worth pondering upon: what are

the algorithmic quantities that should scale with the problem?

We formalize three algorithmic designs that are used in the Bandit

literature, the index based in Algorithm 2, the distribution based in

Algorithm 4, and the set based in Algorithm 6. The set based algorithmic

design might also be called round based design. As we will see, set based

design can be built from index based and distribution based design, but

we nonetheless identify this design as a useful category.

Index Based Algorithms

Definition 3.2.1 (Arm Index Function) Let (𝐴, 𝛽) be a Bandit problem
with 𝛽 : 𝐴→ Fa known subset of distributions onℝ. Let𝐻 be an admissible
history on the Bandit problem (𝐴, 𝛽). Then, an index of arm 𝑎 ∈ 𝐴 is a

66 3 A set of choices: Bandit

[6]: Lattimore et al. (2020), Bandit algo-
rithms

[12]: Honda et al. (2011), ‘An asymptot-

ically optimal policy for finite support

models in the multiarmed bandit prob-

lem’

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

[21]: Cappé et al. (2013), ‘Kullback-

Leibler Upper Confidence Bounds for

Optimal Sequential Allocation’

[5]: Auer et al. (2002), ‘Finite-time analy-

sis of the multiarmed bandit problem’

measurable function

IF (·; 𝑎) : 𝐻 ↦→ IF (·; 𝑎) ∈ ℝ .

In practice, an arm index function will be used to compute a notion of

score for an arm 𝑎 given a history 𝐻 and a hypothesis set F. An index
based Bandit policy would then compute the argmin𝑎∈𝐴 IF(𝐻; 𝑎) or

argmax𝑎∈𝐴 IF(𝐻; 𝑎) to select the next arm to sample. Afterward, the

algorithm would update the history, compute the new indices and repeat

this process. We remark that our definition of an index slightly differs

from the conventional one used in the Bandit literature, see [6], in which

an index only depends on the history of samples collected from the

distribution 𝛽(𝑎) associated to arm 𝑎 ∈ 𝐴. What we defined is called a

generalized index, see [12]. However, I would rather advocate that what is

called a generalized index would better be called an index and that what

is called an index would rather be called restricted index. I cannot find a

good reason to exclude information from the history𝐻 when defining the

index object. Sure, if we think about an index as related to the confidence

interval of an arm, then it would only depend on the history associated

to that arm. However, as we already emphasized, estimating the problem

is a different objective than solving the problem. While the solving part

of the design might be in the argmax or argmin, I do think that it is better

if it is present in the index construction. However, we will see that when

considering distributions instead of index, things might be different.

When using an index to compute the next action to sample, one is more

interested in computing a quantity related to the likelihood of optimality

of this action. Rather, we will see that some strategies, that we call

MED-like strategies, e.g. [16], are interested in computing the empirical
unlikelihood of optimality of each arm. Other strategies, e.g. [21] and [5],

are more interested in computing the maximal likely reward of an arm.

In this section, I will also explain how to improve the original KL-UCB

and enhanced KL-UCB+ algorithm by considering the Definition 3.2.1

and by thinking about extensive and intensive quantities. In Algorithm 2,

Algorithm 2: Generic generalized index bandit policy

Input: A bandit tuple (𝐴, 𝛽) as in Definition 3.1.12;

An index function IF as in Definition 3.2.1;

1 Initialize history 𝐻 as 𝐻 = ∅;The history𝐻 is a multiset. The data struc-

ture used to represent 𝐻 numerically is

a dictionary or hash table. 2 for 𝑡 ∈ ℕ do
3 forall 𝑎 ∈ 𝐴 do
4 Compute index 𝐼𝑎 = I (𝐻; 𝑎);
5 Compute 𝑎 ∈ argmax𝑒∈A 𝐼𝑒 ;
6 Sample a reward 𝑟 ∼ 𝛽(𝑎) from reward distribution 𝛽 (𝑎);
7 Update history, 𝐻 ← 𝐻 ∪ {(𝑎, 𝑟)};

we illustrate how a generic index based bandit policy work. While the

index is computed using the whole history 𝐻, the function IF is in fact

more a sequence of function defined on size increasing 𝑡-histories where

𝑡 is the number of interactions. Of course, depending on the specific

index, it is possible to write the index function of a specific algorithm

as depending on the previous index value and the current accessed

information, or depending only on the history of a specific arm. However,

3.2 Solving the problem 67

[24]: Thompson (1933), ‘On the likeli-

hood that one unknown probability ex-

ceeds another in view of the evidence of

two samples’

[27]: Agrawal et al. (2012), ‘Analysis of

Thompson Sampling for the multi-armed

bandit problem’

[28]: Agrawal et al. (2013), ‘Further Opti-

mal Regret Bounds for Thompson Sam-

pling’

[29]: Kaufmann et al. (2012), ‘Thomp-

son sampling: An asymptotically optimal

finite-time analysis’

[30]: Russo et al. (2018), ‘A Tutorial on

Thompson Sampling’

[26]: Riou et al. (2020), ‘Bandit algo-

rithms based on Thompson sampling

for bounded reward distributions’

those are related to practical implementation points that are left for the

discussion about the specific algorithms that we present in this thesis.

In some cases, the index might not be a map to ℝ but to a real valued

distribution.

Definition 3.2.2 (Randomized Arm Index Function) Let (𝐴, 𝛽) be a
Bandit problem with 𝛽 : 𝐴→ Fa known subset of distributions on ℝ. Let
𝐻 be an admissible history on the Bandit problem (𝐴, 𝛽). Then, a random
index of arm 𝑎 ∈ 𝐴 is a measurable function

IF (·; 𝑎) : 𝐻 ↦→ IF (·; 𝑎) ∈P (ℝ) .,

where P(ℝ) is the space of probability distributions on ℝ.

In such a case, a sample is collected from each of the random index

in order to compute the next arm to play. This is illustrated in the

Algorithm 3. Compared to Algorithm 2 the original compute index of

Algorithm 3: Generic generalized random index bandit policy

Input: A bandit tuple (𝐴, 𝛽) as in Definition 3.1.12;

An index function IF as in Definition 3.2.1;

1 Initialize history 𝐻 as 𝐻 = ∅; The history𝐻 is a multiset. The data struc-

ture used to represent 𝐻 numerically is

a dictionary or hash table.2 for 𝑡 ∈ ℕ do
3 forall 𝑎 ∈ 𝐴 do
4 Sample the computed random index 𝐼𝑎 ∼ I (𝐻; 𝑎);
5 Compute 𝑎 ∈ argmax𝑒∈A 𝐼𝑒 ;
6 Sample a reward 𝑟 ∼ 𝛽(𝑎) from reward distribution 𝛽 (𝑎);
7 Update history, 𝐻 ← 𝐻 ∪ {(𝑎, 𝑟)};

line 4 has been replaced by sample the computed random index. Interestingly,

in the seminal work of Thompson [24] that pioneer the research field

on Bandit, such an algorithmic design is present. It is based on the

construction of a posterior distribution I (𝐻; 𝑎) associated to arm 𝑎 that

we can sample from. Samples are then used to create a 𝑡-ranking of the

arms, i. e. a ranking of the arms after the 𝑡th interaction, from which

the maximal element is selected as the next arm to be sampled. This

interesting idea has been developed further in papers from Agrawal et

al. [27, 28], Kaufmann et al. [29]. A survey of such algorithmic design

can be found in [30]. More recently, Riou and colleagues introduced the

NPTS (Non-Parametric Thompson Sampling) algorithm [26] which has

the desirable property of being non-parametric.

Distribution Based Algorithms

A distribution based Bandit policy would compute a probability dis-

tribution IF (𝐻) ∈ P (𝐴) on the set of arm. It is formalized in Defini-

tion 3.2.3.

Definition 3.2.3 (Arm Distribution Function) Let (𝐴, 𝛽) be a Bandit
problem with 𝛽 : 𝐴 → Fa known subset of distributions on ℝ. Let 𝐻 be

68 3 A set of choices: Bandit

15: It can also be connected to a research

field that has regained popularity due to

its connection with the neural networks

literature, generative model.

[12]: Honda et al. (2011), ‘An asymptot-

ically optimal policy for finite support

models in the multiarmed bandit prob-

lem’

an admissible history on the Bandit problem (𝐴, 𝛽). Then, a distribution
function is a measurable function

IF : 𝐻 ↦→ IF (𝐻) ∈P (𝐴) .

In practice, in such a distribution, the mass IF (𝐻) (𝑎)will be the prob-

ability of selecting the arm 𝑎. Likely, it will be related to the probability
of optimality of the arm 𝑎 given a history 𝐻 and a hypothesis set F.

After sampling an arm 𝑎 ∈ 𝐴 according to the law of IF (𝐻) ∈ P (𝐴),
the algorithm samples a reward from the distribution 𝛽(𝑎) and update

the history. This process is then repeated in loop starting at line 2 of

Algorithm 4.

Algorithm 4: Generic generalized random bandit policy

Input: A bandit tuple (𝐴, 𝛽) as in Definition 3.1.12;

An index function IF as in Definition 3.2.1;

1 Initialize history 𝐻 as 𝐻 = ∅;The history𝐻 is a multiset. The data struc-

ture used to represent 𝐻 numerically is

a dictionary or hash table. 2 for 𝑡 ∈ ℕ do
3 Compute distribution IF (𝐻) ∈P (𝐴);
4 Sample 𝑎 ∈ argmax𝑒∈A 𝐼𝑒 ;
5 Sample a reward 𝑟 ∼ 𝛽(𝑎) from reward distribution 𝛽 (𝑎);
6 Update history, 𝐻 ← 𝐻 ∪ {(𝑎, 𝑟)};

In Algorithm 4, we illustrate how a generic distribution based bandit

policy work. It should be noted that while theoretically, it is useful to

distinguish the computation of IF (𝐻) ∈P (𝐴) line 2 from the sampling

𝑎 ∼ IF (𝐻) line 3, it is sometimes not necessary and even detrimental to

do so from a practical standpoint. Again, this is all about the complexity

of what we really aim to do. Simulating or sampling from a probabil-

ity distribution does not have the same complexity as computing the

probability distribution. This simple yet important remark led to the

creation of Markov chain Monte Carlo (MCMC) methods, that are a class

of algorithms for sampling from a probability distribution. This class of

algorithms is still an active research field.
15

Thus, while the distribution

is computed using the whole history 𝐻, the distribution IF is in fact

more a sequence of function defined on size increasing 𝑡-histories where

𝑡 is the number of interactions. Depending on the specific distribution,

it is possible to write the distribution function of a specific algorithm

as depending on the previous distribution and the current accessed

information, or depending only on the history of a specific arm. However,

those are related to practical implementation points that are left for the

discussion about the specific algorithms that we present in this thesis.

This algorithmic design is embodied by the MED algorithm [12]. In the

MED algorithm, unnormalized weights 𝑃(𝐻; 𝑎) are computed and the

arm to be played is sampled from the normalized multinomial distribution

Mult (𝑝(𝐻; 𝑎))𝑎 of parameter (𝑝(𝐻; 𝑎))𝑎 ∈ △|𝐴| the probability simplex of

dimension |𝐴|. The elements of the vectorized parameter are such that

𝑝(𝐻; 𝑎) = 𝑃(𝐻;𝑎)∑
𝑎 𝑃(𝐻;𝑎) . One advantage of such a stochastic design is that it can

be helpful to implicitly add some constraints or stability property to the

sampling method. By implicit, we mean that some interesting properties,

that would be difficult to write in a deterministic form, might be satisfied

on average or with a high enough probability. Such properties are satisfied

3.2 Solving the problem 69

16: More often than not, one should give

a try to the idea of replacing a stochastic

quantify by a Dirac distribution and see

if this trigger some ideas.

implicitly without the need of writing algorithmic rules to ensure the

algorithm will satisfy them. Sometimes, it makes it easier to write ideas

down. Sometimes, one can phrase a good algorithmic idea by replacing

a deterministic statement about Bandit control into an expected statement
about Bandit learning. For instance, in the bandit control problem we

follow the leader while in the bandit learning problem we expect to
follow the leader. Instead of looking for a deterministic rule that would

allow us to get this desired behavior, one can instead think of a distribution

over the space of arm that would, given collected information, behave

this intended way. The idea of a stochastic follow the leader quickly

emerge. While the specific implementation and mathematical way to

do this is not trivial, I do think that a significant part of the thought

process has been done once we settle on this idea of a stochastic follow
the leader. This shows that there is more connection between the index

based approach and the distribution based approach. The link between

the two is the randomized index approach defined in Definition 3.
16

Link with Randomized Arm Index Function As already recalled, sam-

pling from a distribution is a different task than computing it. In the

follow the leader approach, one pick the best computed expected value

argmax𝑎 �𝑎 as the arm to play. This is possible in the Bandit control

problem after observing all arms once due to the perfect knowledge of

the expected returns. Here, we want to sample from a relevant "argmax𝑎

distribution". The MED algorithm is capable of computing such a distri-

bution. Other algorithmic design may not and while computing such a

distribution might be difficult, one can sometimes find ways to sample

from it. Indeed, one can write the Algorithm 3 that consider randomized
arm index functions as an instance of Algorithm 4 that consider an arms
distribution function. The lines 3-5 from randomized index Algorithm 3

can be written as sampling from a distribution in P (𝐴). The probability

mass IDistr.(𝐻; 𝑎) is such that

IDistr.(𝐻; 𝑎) = ℙ

(
I (𝐻; 𝑎) = max

𝑎′∈𝐴
I (𝐻; 𝑎′)

)
where I (𝐻; 𝑎′) are the original |𝐴| random variable that defined the

randomized index (see Definition 3.2.2) in Algorithm 3. While computing

those probability mass given the distributions I (𝐻; ·)might be difficult,

one can see that sampling from such a distribution is much easier. One

only have to sample an index for each arm, which amounts to sampling a

random permutation, and compute the argmax. The Algorithm 5 details

how to sample an arm from the distribution induced by a randomized

index function. Remark that this method can be applied with deterministic

Algorithm 5: Sampling from probability distribution on 𝐴 corre-

sponding to a randomized index

Input: An randomized index function IF as in Definition 3.2.2;

1 for 𝑎 ∈ 𝐴 do
2 Sample the computed random index 𝐼𝑎 ∼ I (𝐻; 𝑎);
3 Compute and return 𝑎 ∈ argmax𝑒∈A 𝐼𝑒 ;

indexes that are considered as Dirac distributions.

70 3 A set of choices: Bandit

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

[12]: Honda et al. (2011), ‘An asymptot-

ically optimal policy for finite support

models in the multiarmed bandit prob-

lem’

17: We will see that it is akin to a Boltz-

mann distribution with the number of

samples similar to the invert of a tempera-

ture and the energy of an action linked to

an information-based distance between

a suboptimal arm and the optimal one.

The optimal arm is grounded, i. e. it is

the arm with minimal level of energy

(which is always defined up to an addi-

tive constant). Raising the temperature

means to remove samples while increas-

ing it means adding samples, and we can

understand intuitively how this should

affect the repartition of particles or samples
in the different energy levels.

[21]: Cappé et al. (2013), ‘Kullback-

Leibler Upper Confidence Bounds for

Optimal Sequential Allocation’

[24]: Thompson (1933), ‘On the likeli-

hood that one unknown probability ex-

ceeds another in view of the evidence of

two samples’

[26]: Riou et al. (2020), ‘Bandit algo-

rithms based on Thompson sampling

for bounded reward distributions’

In the previous section devoted to index based strategies, we mentioned

that some strategies, that we call MED-like strategies, e.g. [16], are

interested in computing the empirical unlikelihood of optimality of

each arm. As the name suggest, this is the case of the MED algorithm

[12] whose probability distribution on the set of arms is based on the

unlikelihood of optimality.
17

We saw that other strategies, such as

KL-UCB [21], are more interested in computing the maximal likely
reward of an arm. The corresponding algorithms in the distribution

based setting are those related to Thompson sampling (TS), see [24].

In TS-like strategies, we sample an expected value for each arm and use

those sampled values to compute the next arm to play by picking an

argmax𝑎 of those values. TS-like strategies are using randomized indexes

but can be seen as distribution based thanks to the procedure explained

in Algorithm 5 which show how to sample an arm from a distribution

based on randomized indexes. When analyzing the algorithm, one can

see that what we are really doing in this case is sampling a random

permutation of the arms but the only interesting quantity for us is

the argmax. The work that is the closer to correspond to the KL-UCB

algorithm in this distribution based one is NPTS, recently introduced by

Riou and colleagues in [26] which has the desirable property of being

non-parametric.

In both the index based and distribution based setting there exists

algorithms derived from the unlikelihood of optimality and maximal
likely reward viewpoints.

Set Based Algorithms

We now discuss a final algorithmic design, set based, that is encountered

in the bandit literature. From an intuition point of view, I do think that

it is one of the harder to feel and, in my opinion, it is an interesting

idea that may have useful additional properties that set this design

apart. In particular, it may be that such a design help with finite time

properties and stabilize the sampling process in the early interactions,

when information is scarce and the problem highly uncertain. The reason

is that a set based Bandit policy sequentially computes sets of arm to be

played. This differs from the previous design where policies compute a

sequence of arm or singleton. Formally, we define an arm set function in

Definition 3.2.4.

Definition 3.2.4 (Arm Set Function) Let (𝐴, 𝛽) be a Bandit problem with
𝛽 : 𝐴→ Fa known subset of distributions on ℝ. Let 𝐻 be an admissible
history on the Bandit problem (𝐴, 𝛽). Then, an arm set function is a
measurable function

IF : 𝐻 ↦→ IF (𝐻) ⊆ 𝐴 .

In Algorithm 6, we illustrate how a generic set based bandit policy work.

Contrary to the index and distribution based algorithms, the index 𝑡 ∈ ℕ
line 2 does not count the total number of interactions with the Bandit

problem. Indeed, within an iteration of the loop line 2, one can sample

several arms and update the history several times. This can be seen from

the loop starting line 4 which iterates through all the arms that belong to

3.2 Solving the problem 71

[15]: Honda et al. (2010), ‘An Asymp-

totically Optimal Bandit Algorithm for

Bounded Support Models’

[31]: Chan (2020), ‘The multi-armed ban-

dit problem: An efficient nonparametric

solution’

18: I hope to present such a modifica-

tion of the IMED algorithm at my oral

presentation.

the set of arms A to be sampled, computed line 3 using the prescribed

arm set function. In the context of set based Bandit policy, the index 𝑡 is

Algorithm 6: Generic generalized set-based bandit policy

Input: A bandit tuple (𝐴, 𝛽) as in Definition 3.1.12;

An arm set function IF as in Definition 3.2.4;

1 Initialize history 𝐻 as 𝐻 = ∅; The history𝐻 is a multiset. The data struc-

ture used to represent 𝐻 numerically is

a dictionary or hash table.2 for 𝑡 ∈ ℕ do
3 Compute the subset A := IF (𝐻) ⊆ 𝐴;

4 forall 𝑎 ∈ Ado
5 Sample a reward 𝑟 ∼ 𝛽(𝑎) from reward distribution 𝛽 (𝑎);
6 Update history, 𝐻 ← 𝐻 ∪ {(𝑎, 𝑟)};

usually referred to as a round. The number of round is therefore smaller,

often strictly, than the number of interactions with the problem, which

can be computed from the history.

Set based Bandit policies uses indexes as in Definition 3.2.1 or dis-

tributions as in Definition 3.2.2 in order to compute the sequence of

sets. For instance, given an index function Iindex

F
, a set could be all

the arms such that their index is above a certain threshold 𝛾(𝐻), i. e.
IF(𝐻) =

{
𝑎 ∈ 𝐴|Iindex

F
(𝐻; 𝑎) ≥ 𝛾(𝐻)

}
. This is for instance what is done

in the DMED [15] algorithm. Duel based algorithm, as in [31] are also

set based. In such a design, a reference arm, called leader, is chosen, and

its index is compared to the indexes of other arms, called challengers.

The duel is won by a challenger if its index is larger than that of the

leader. The computed set is then made of all those arms that won their

duel or the singleton leader arm if no challenger won. The most simple

duel-like structure that one can think of is one induced by an index

policy, Algorithm 2. Instead of computing 𝑎 ∈ argmax𝑎∈𝐴 𝐼𝑎 in line 5 of

this Algorithm 2, one can simply define the set A := IF(𝐻) of line 3

in Algorithm 6 to be equal to that argmax, i. e. IF(𝐻) = argmax𝑎∈𝐴𝐼𝑎 .
In index based strategies, ties are usually broken using the number of

samples of arm, choosing the less sampled arm, and eventually according

to an arbitrary rule, e.g. uniformly at random. Here, the idea would be

to not decide on any tiebreaker but to sample all the arms within the

argmax at the considered round. I am not aware of any algorithm that

exist in the literature implementing this simple modification.
18

In popular set-based algorithms, the computed set will often be the

singleton made of the empirical maximal arm (hopefully) or a singleton

made of a suboptimal arm that would have been chosen by the index or

distribution based policy used to build the set. However, this phenomenon

occurs mostly asymptotically. When the information is scarce and the

number of interactions is still small, the computed set might contain a

large portion of the arms. This design may prevent from being greedy

too early by mitigating the effect of error inducing first samples.

Index to set based: the symmetry viewpoint

Modification of an index based policy Above, we described a strategy

to transform an index based strategy into a set based one. What would

72 3 A set of choices: Bandit

intuitively justify such an approach? Can such an intuition support the

last claim we made about mitigating short horizon regret? I would argue

that, yes we can! The idea is that our algorithmic design should be

invariant to similar conditions. A difference in the number of samples

from two arms should only come from the problem and not from the

algorithm.

Breaking symmetries More precisely, imagine the following scenario.

After computing all indexes, there are two arms 𝑎 and 𝑎′ having the

same index, 𝐼𝑎 = 𝐼𝑎′ , and this value is assumed to be maximal. From an

information viewpoint, what distinguish those two arms? In my opinion,

nothing. However, one could still argue that one of the arms has a smaller

number of associated samples, therefore a less reliable index and that

we should break the tie by sampling it. This is a fair point. However,

there are situations in which both the indexes and number of pulls are

equal. Imagine that this is the case, what do we do? An index based

algorithm would arbitrarily break the ties, usually uniformly at random.

Therefore, on average, two such arms are indiscernible. However, the

index based policy would have to compute which of the two arms to

choose, and the sampling trajectories would then depend on an event that

is independent of the problem. Furthermore, it discriminates between

arm that, according to the used statistics (index and number of samples),

are indiscernible. On average, the symmetries of the problem are observed,

i. e. on average two indistinguishable arms are processed equally by the

algorithm, but on a specific random run, two indistinguishable arms

might not be processed equally by the algorithm and symmetries are not

observed.

Restoring symmetries The transformation procedure of an index based

policy into a set based one that we described allows to observe the

symmetries of observations. Instead of choosing an arm 𝑎 in the argmax𝑎

of indexes, 𝑎 ∈ argmax𝑎 Iindex

F
(𝐻; 𝑎), one can compute the set of arm

A := IF(𝐻) to be sampled at considered round as

IF(𝐻) = argmax

𝑎∈𝐴
Iindex

F
(𝐻; 𝑎) .

As stated, the number of samples may be an interesting quantity to break

ties between arms of equal indexes, and we could therefore consider the

following set construction,

IF(𝐻) = argmin

𝑎∈argmax𝑎∈𝐴 Iindex

F
(𝐻;𝑎)

𝑁𝑎(𝐻) .

In this set based setting, if IF(𝐻) = {𝑎, 𝑎′}, then both the arms are

sampled and any subsequent decisions would be based on the collected

samples and not on the arbitrary choices of an arm at some point.

The symmetry breaks when the problem breaks it, not when the
algorithm breaks it. This restoration of the symmetry may help in the

early stages, when several arms may be in IF. In particular, because it

may slightly increase exploration in the short horizon, it may help reduce

the variance of the regret in larger horizon, when the sets are almost

always singleton.

3.2 Solving the problem 73

[15]: Honda et al. (2010), ‘An Asymp-

totically Optimal Bandit Algorithm for

Bounded Support Models’

19: In this section we present set based

policy as transformation of index based

one, but one could obviously define a

set based policy independently of a refer-

ence to an index one. We do so to better

connect algorithmic design together.

Reducing the regret variance Think about a three arms Bernoulli

Bandit problem with means 0.4, 0.5, 0.6. If all the three arms have

an initial sample equal to zero, which is possible with non-negligible

probability, then an index based policy would pick the next arm randomly.

It may be the arm of mean 0.5, and it may obtain a reward of 1 this time.

This would increase the likelihood of sampling this same arm, which

is suboptimal. There a 2/3 probability that such an event occur if all

initial samples are 0s. Afterward, the index of arm with mean 0.4 and

optimal arm with mean 0.6 are the same. Therefore, an index based

policy would have 1/2 probability of sampling the suboptimal one. If

it gets a 1, then it would again increase the likelihood of sampling one

of the two suboptimal arms. Therefore, one could see that, even if on

average, the algorithm will behave correctly and have a logarithmic

regret, on a specific instance, it may suffer for quite a long time from

initial mistakes and lack of short horizon exploration. The described

problem is solved when considering set based algorithmic design. While

bad event can still occur, its probability is reduced to the minimum as

such an event is now only due to the problem and not due to the random

choices of indistinguishable arms. In the initial state described, a set

based transformation of the same index policy would add all arms to the

set and will only discriminate between them when samples collections

would start to differ. While this may add a bit of exploration in the early

stages, it certainly removes some in later stages. Therefore, I do think

that such an algorithmic design help to reduce the standard deviation of

the regret function, a random variable.

Tu sum it up. In index based strategies, exogenous source of randomness

is used in the form of a way to break ties between indistinguishable

arms. By choosing a set based strategy and deciding not to break the

ties, we remove such an external dependency where external means that

some choices are made based on measures that are independent of the

problem. Therefore, by removing a source of arbitrary or randomness, the

variance of the algorithmic regret mechanically diminish. The external

source of randomness, or arbitrary decision is to distinguish from the

internal source of randomness used by distribution based strategies. In my

opinion, as far as possible, algorithms should be invariant to symmetries
of information by design. This fact may explain why the MED algorithm

seems to empirically have a lower regret variance than its deterministic

counterpart, IMED. Also, This idea might also help understand what

algorithms are worst-case (or min-max) optimal. Indeed, if the algorithm

is not using any source of exogenous randomness/information, then

there is less to exploit by an adversary.

Towards the DMED algorithmic design In the previous paragraphs, we

saw that transforming an index based strategy into a set based one could

be beneficial. However, some strategies such as the DMED [15] algorithm

uses another transformation of an initial index based policy.
19

Given an

index function Iindex

F
, a set is built as the arms having their indexes above

a certain threshold 𝛾(𝐻), i. e. IF(𝐻) =
{
𝑎 ∈ 𝐴|Iindex

F
(𝐻; 𝑎) ≥ 𝛾(𝐻)

}
. This

extends the previous transformation as 𝛾(𝐻) could be chosen as the

maximum of index, 𝛾(𝐻) = max𝑎 Iindex

F
(𝐻; 𝑎) thus making IF(𝐻) equal

to the argmax𝑎 . There are at least two related reasons as to why this

transformation makes sense.

74 3 A set of choices: Bandit

The first is about uncertainty. Given the history and a desired level

of precision 𝛿(𝐻) that depends on the history, one could say that

the size of a confidence interval of precision 𝛿(𝐻) for the value of

max𝑎 Iindex

F
(𝐻; 𝑎) is 𝜖(𝐻). That is to say, with probability more than 𝛿(𝐻),

the true (i. e. expected) value of max𝑎 Iindex

F
(𝐻; 𝑎) is located within an in-

terval of length 2𝜖(𝐻) centered in the empirical value max𝑎 Iindex

F
(𝐻; 𝑎).

In this scenario, does it make sense to discriminate between a maxi-

mal arm in argmax𝑎 Iindex

F
(𝐻; 𝑎) and another arm 𝑎′ that is such that

Iindex

F
(𝐻; 𝑎)−Iindex

F
(𝐻; 𝑎′) < 𝜖(𝐻). If the available information allows us

to discriminate between arms up to 𝜖(𝐻) given the wanted precision 𝛿(𝐻),
then one probably should not discriminate action choices based on index

that are less than 𝜖(𝐻)-separated. In short, we should wonder whether it

makes sense to discriminate between action that not statistically different

and if our algorithm will process them too differently. Asymptotically, this

may not change anything but for short horizon, this may experimentally

boost performances and reduce the regret variance.

The second is about threshold. Instead of comparing indexes to each

others, one may imagine comparing the indexes to a threshold 𝛾(𝐻) that

depends on the history. For instance, if the index of an arm is related to its

likelihood of optimality, then it may make sense to decide to sample an

arm as long as its likelihood of optimality is above a certain threshold. The

threshold, depending on the history, a priori depends on the empirically

optimal arm, but it may not be necessary if the index already take that

information into consideration. In the event there is jump in the optimal

arm belief, i. e. the algorithm computed it was one and regression to

the mean prove the algorithm wrong, then a lot of computed quantity

changes and the problem the algorithm was solving is transformed into

the one corresponding to the newly identified best arm. In that case, it

may make sense to consider a threshold and set based strategy to ensure

a sufficient amount of new exploration given the new conditions. In the

long run, the sets should not be too different from singleton but in short

horizon, this may make a difference.

Why does algorithmic design matter? The reasons we insisted on

those algorithmic design are the following. First, we wanted to introduce

some physical way of thinking that we hope to deliver in this thesis. The

main example of this section is the one of symmetry preserving design.

The second is that finite time theoretical guarantees are hard to get. The

study of the variance of the regret is also a hard problem compared

to the expected value which is the topic of most research paper in the

bandit community. However, we show that some algorithmic design,

such as set based, by removing an exogenous source of randomness

mechanically reduces the variance of the history and therefore regret

distribution. By simply considering the algorithmic design, we could not

conclude about the variance of a specific algorithm but could nonetheless

say something about the variance of a transformed design relative

to an initial algorithmic one. In my opinion, better understanding of

short horizon behavior is important for theoretician and practitioner

alike while difficult to obtain. Algorithmic design may help to better

understand sampling algorithm from both a theoretical and experimental

viewpoints.

3.3 Algorithms in the literature 75

3.3 Algorithms in the literature

In order to minimize the regret, a learner faces the classical exploration/-

exploitation trade-off: it needs to balance exploration, that is gaining

information about the expected values of the arms by sampling them,

and exploitation, that is playing the most promising arm sufficiently often.

This Many algorithms have been proposed to solve the multi-armed

bandits problem (see [32] for a survey). In this section, we present and

review some of the Bandit algorithms that can be found in the Bandit

literature.

Complexity

For each type of algorithm (index, distribution, or set based), we present

how its significant feature is computed. In this thesis, we attach great

importance to the time complexity and, to a lesser degree, space complex-

ity of the crafted algorithms. We summarize in Table 3.1 the complexity

required to compute the index (or distribution for MED and NPTS) of the

Bandit algorithms that are the most mentioned and used in this thesis.

The time complexity is written as a function of the number of collected

samples from a suboptimal arm and the per-interaction cost of solving

can be deduced from it. The space complexity relates to the required

memory needed as a function of the number 𝑛 of collected samples from

a suboptimal arm. To compute those costs, we computed the number

Table 3.1: Time complexity and space complexity needed to compute the index of a suboptimal arm 𝑎 after 𝑛 samples have been collected

from its associated distribution 𝛽(𝑎).

Algorithm Time complexity Space complexity Constant Optimality

KL-UCB [21] O(𝑛 log(𝑛)2) 𝑛 1

EF(𝛽(𝑎),�★) Opt.

kl-UCB [21] O(log(𝑛)) O(1) 1

𝑘𝑙(𝑝(𝑎),𝑝★) Sub-opt.

UCB [5] O(1) O(1) 1

2(�★−�(𝑎))2
Sub-opt.

NPTS [26] O(𝑛) 𝑛 1

EF(𝛽(𝑎),�★) Opt.

MED [33] O(𝑛 log(𝑛)) 𝑛 1

EF(𝛽(𝑎),�★) Opt.

IMED [16] O(𝑛 log(𝑛)) 𝑛 1

EF(𝛽(𝑎),�★) Opt.

of "elementary" O(1) operations computed at each interaction. Amongst

elementary operations, we included sequential updates of means, of

number of pulls. The time complexity takes into account a precision of
1

𝑛

on the computation of the indexes. Indeed, due to limited resources, one

must compute numerical quantities up to a given precision, which we set

at
1

𝑛 . The constant column refers to the asymptotic logarithmic sampling

rate of a suboptimal arm 𝑎 ∈ A in the unstructured Bandit. In the kl-UCB

algorithm, kl refers to the KL-divergence of the Bernoulli distribution.

Unstructured Bandits

The study of the lower bounds had a crucial impact on the development

of provably asymptotically optimal strategies. In the case of unstructured
bandit B = F𝐴

, this includes strategies that are categorized in the

literature as based on Optimism in Face of Uncertainty. As we mentioned

76 3 A set of choices: Bandit

[18]: Lai (1987), ‘Adaptive treatment allo-

cation and the multi-armed bandit prob-

lem’

[34]: Cappé et al. (2013), ‘Kullback–

Leibler upper confidence bounds for op-

timal sequential allocation’

[35]: Maillard (2018), ‘Boundary Cross-

ing Probabilities for General Exponential

Families’

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

in the previous section, this category of algorithms is based on the

allocation-constrained viewpoint, lower bound of Theorem 3.1.6. Instead

of speaking about optimism in face of uncertainty, we prefer to talk, from

the agent viewpoint, of worst case scenario given information and level

of uncertainty. The KL-UCB [18, 34, 35] Algorithm 7 is an asymptotically

optimal algorithm whose design reflects the lower bound.

Algorithm 7: Index of the KL-UCB policy

Input: Arm 𝑎 ∈ Aof a bandit tuple (A, 𝑠 , V);
A family Fof distributions whose V is a subset;

History 𝐻 of a sequential sampling of the bandit tuple;

A confidence function C : 𝐻 → ℝ+;

1 if arm 𝑎 has been sampled then
2 Extract history of samples 𝐻𝑎 of arm 𝑎 from 𝐻;

3 return sup�∈Ξ(F) {EF (𝐻𝑎 , �) ≤ C(𝐻)};Ξ (F) is the set (usually an interval) of

all expected values of real random vari-

ables having a law in the set F. Formally,

Ξ (F) = {𝔼 (𝑋) |𝑋 ∼ F}.
4 else
5 return +∞;

The confidence function that is used depends on the choice of the specific

family F. For distributions with bounded rewards, the original algorithm

has C defined as a function of the total number 𝑡 of interactions, and is

such that C(𝑡) = log 𝑡 + 𝑐 log log 𝑡 with 𝑐 > 2. As we said, the presence

of the total number of interactions since the beginning of interactions,

while not bad per se, is not what we want to call a good algorithmic

design. Rather, one would prefer to use C(𝐻) = max𝑎 𝑁𝑎(𝐻), where

𝑁𝑎(𝐻) is the number of times arm 𝑎 has been sampled in the history 𝐻

of interactions. Indeed, max𝑎 𝑁𝑎(𝐻) represent, in terms of the sample

complexity, the maximal amount of information one could have had

on any given arm, according to the history of samples. From a small

number of samples regime viewpoint, it does not make much sense

to consider 𝑡. Assume the situation where we solve a problem with 10

arms. After sampling all 10 arms exactly once, the constraint log 𝑡 is

equal to log 10. Now assume that instead of 10 arms, we have a 1000

arms bandit problem. After sampling all 1000 arms exactly once, i. e.
gathering the mandatory initial information, the constraint log 𝑡 is equal

to log 1000, three times log 10. However, the number of samples per arm

is the same in the two problems. This is why we argue that the total

number of interaction should not appear in the definitions of indexes

and that we should rather consider quantities computed from the history

𝐻 and number of samples. Of course, from an asymptotic viewpoint,

since max𝑎 𝑁𝑎(𝐻) ≥ 𝑡
|A| , this does not change anything. From a finite

time standpoint, this may change everything. In the KL-UCB algorithm,

one must find the maximal expected regret one can occur from an arm

give the allocation constraints computed from the history 𝐻, a form that

is similar to that in Theorem 3.1.6. The computation of an empirical EF

must be done log𝑁𝑎(𝐻) times for an arm 𝑎 when the desired precision

on the value of the maximal reward is
1

𝑁𝑎 (𝐻) . Since computing the EF

is akin to solving a convex optimization problem as shown in [16], and

has a complexity of O(𝑛 log(𝑛)), the computational cost of KL-UCB can

become quite heavy. In the case of bounded reward, it is possible to

consider kl-UCB, where the parameterization of distributions by the

3.3 Algorithms in the literature 77

[36]: Agrawal et al. (2021), ‘Regret Mini-

mization in Heavy-Tailed Bandits’

[21]: Cappé et al. (2013), ‘Kullback-

Leibler Upper Confidence Bounds for

Optimal Sequential Allocation’

[37]: Burnetas et al. (1996), ‘Optimal adap-

tive policies for sequential allocation

problems’

[12]: Honda et al. (2011), ‘An asymptot-

ically optimal policy for finite support

models in the multiarmed bandit prob-

lem’

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

[33]: Honda et al. (2010), ‘An Asymp-

totically Optimal Bandit Algorithm for

Bounded Support Models.’

expected value makes the computation of index faster, albeit at the cost

of optimality. The computation of the Bernoulli kl is O(1), but must be

Algorithm 8: Index of the kl-UCB policy

Input: Arm 𝑎 ∈ Aof a bandit tuple (A, 𝑠 , V);
A family Fof distributions whose V is a subset;

History 𝐻 of a sequential sampling of the bandit tuple;

A confidence function C : 𝐻 → ℝ+;

1 if arm 𝑎 has been sampled then
2 Extract history of samples 𝐻𝑎 of arm 𝑎 from 𝐻;

3 return sup�∈Ξ(F) {kl (�(𝐻𝑎), �) ≤ C(𝐻)}; Ξ (F) is the set (usually an interval) of

all expected values of real random vari-

ables having a law in the set F. Formally,

Ξ (F) = {𝔼 (𝑋) |𝑋 ∼ F}.
4 else
5 return +∞;

performed O(log 𝑛) times at each time step. Yet, such a cost is reasonable

since the number 𝑛 of number of samples from suboptimal arm should

be logarithmic in the number of interactions. Interestingly, the optimality

of KL-UCB was only proved recently [36], as the seminal work of [21, 37]

only proved it for Multinomial distributions.

Finally, the most celebrated UCB-type of algorithm in the literature is

the eponymous Upper Confidence Bound (UCB) algorithms [5, 38]), for

Algorithm 9: Index of the UCB policy

Input: Arm 𝑎 ∈ Aof a bandit tuple (A, 𝑠 , V);
History 𝐻 of a sequential sampling of the bandit tuple;

A confidence (or bonus) function C : 𝐻 → ℝ+;

1 if arm 𝑎 has been sampled then
2 Extract history of samples 𝐻𝑎 of arm 𝑎 from 𝐻;

3 return �(𝐻𝑎) + C(𝐻); Please recall that � : H→ ℝ is the func-

tion that computes an empirical mean

from a history of samples. We also write

� (𝐻𝑎) = �𝑎 .
4 else
5 return +∞;

which the computation of the KL-UCB index can be expressed in a closed

form solution, using a quadratic (Gaussian) KL, under the 𝜎-subGaussian

hypothesis (a bounded distribution is 𝜎-subGaussian).

Exploiting the unlikelihood of optimality viewpoint of Theorem 3.1.5,

we have the family of MED-like algorithms: MED, DMED and IMED

[12, 16, 33], that are proven asymptotically optimal for various families F

(e.g. bounded support, semi-bounded support with log-Laplace function

defined in a neighborhood of zero), and directly exploit the lower bound of

Theorem 3.34 in their structure. The lower bound state that the sampling

rate
𝑁𝑎 (𝐻)
𝑡 of suboptimal arms should be larger than the normalized

probability exp (−𝑁𝑎(𝐻)EF(𝛽(𝑎), �★)), the probability of action 𝑎 to be

optimal in the problem, given all the current information. Such a point of

view naturally lead to the MED Algorithm 10. Another way of viewing

this lower bound is to say that an algorithm should never sample an

arm less than its unlikelihood of optimality measure. That is to say, one

should always have that exp (−𝑁𝑎(𝐻)EF(𝛽(𝑎), �★)) ≤ 𝛼(𝐻)𝑁𝑎 (𝐻)
𝑡 , where

78 3 A set of choices: Bandit

Algorithm 10: Distribution of the MED policy

Input: Arm 𝑎 ∈ Aof a bandit tuple (A, 𝑠 , V);
A family Fof distributions whose V is a subset;

History 𝐻 of a sequential sampling of the bandit tuple;

1 if arm 𝑎 has been sampled then
2 Compute maximal empirical expected reward, �★(𝐻);
3 Compute number of samples of arm 𝑎, 𝑁𝑎(𝐻);
4 Extract history of samples 𝐻𝑎 of arm 𝑎 from 𝐻;

5 return −𝑁𝑎(𝐻)EF (𝐻𝑎 , �★(𝐻)) − log𝑁𝑎(𝐻);
6 else
7 return +∞;

[39]: Thompson (1933), ‘On the likeli-

hood that one unknown probability ex-

ceeds another in view of the evidence of

two samples’

[40]: Agrawal et al. (2012), ‘Analysis

of Thompson Sampling for the Multi-

armed Bandit Problem’

𝛼(𝐻) = ∑
𝑎 exp (−𝑁𝑎(𝐻)EF(𝛽(𝑎), �★)) is a normalization factor. Taking

the logarithm, this gives two algorithms, DMED and IMED.

DMED 11 is round based and sample at each round all the arms that

violate the constraint that we just expressed.

Algorithm 11: Computed set by the DMED policy

Input: Arm 𝑎 ∈ Aof a bandit tuple (A, 𝑠 , V);
A family Fof distributions whose V is a subset;

History 𝐻 of a sequential sampling of the bandit tuple;

1 Compute number 𝑛 of total interactions from history 𝐻;

2 return {𝑎 ∈ A | 𝑁𝑎(𝐻)EF (𝐻𝑎 , �★(𝐻)) log𝑁𝑎(𝐻) ≥ log𝑇}

IMED 12 is indexed based and sample the arm that is the closest to

violate the constraint or violate the constraint the most. As we can see,

Algorithm 12: Index of the IMED policy

Input: Arm 𝑎 ∈ Aof a bandit tuple (A, 𝑠 , V);
A family Fof distributions whose V is a subset;

History 𝐻 of a sequential sampling of the bandit tuple;

1 if arm 𝑎 has been sampled then
2 Compute maximal empirical expected reward, �★(𝐻);
3 Compute number of samples of arm 𝑎, 𝑁𝑎(𝐻);
4 Extract history of samples 𝐻𝑎 of arm 𝑎 from 𝐻;

5 return −𝑁𝑎(𝐻)EF (𝐻𝑎 , �★(𝐻)) − log𝑁𝑎(𝐻);
6 else
7 return +∞;

both the MED and IMED algorithm do not explicitly refer to the number

of interactions, which in my opinion, explain their superior numerical

performances. Furthermore, the MED-like algorithms only require to

compute the empirical EF, making them faster than KL-UCB. Following

our intuition, while C(𝐻) = log 𝑡 in the original design of DMED, we

think that it should be replaced by C(𝐻) = log max𝑎 𝑁𝑎(𝐻).

Alternative asymptotically optimal strategies include the Thompson

Sampling (TS) [39, 40], which uses a Bayesian posterior distribution given

3.3 Algorithms in the literature 79

[26]: Riou et al. (2020), ‘Bandit algo-

rithms based on Thompson sampling

for bounded reward distributions’

[48]: Lattimore et al. (2017), ‘The End of

Optimism? An Asymptotic Analysis of

Finite-Armed Linear Bandits’

[49]: Magureanu et al. (2014), ‘Lipschitz

Bandits: Regret Lower Bounds and Opti-

mal Algorithms’

[50]: Wang et al. (2020), ‘Towards Practi-

cal Lipschitz Bandits’

[51]: Lu et al. (2019), ‘Optimal Algorithms

for Lipschitz Bandits with Heavy-tailed

Rewards’

[58]: Combes et al. (2017), ‘Minimal explo-

ration in structured stochastic bandits’

a specific prior, whose optimality was shown in [41]. See also [42] for

other randomized algorithms and [31, 43, 44] for recent non-parametric

extensions using re-sampling methods. In a recent paper [26], the NPTS

algorithm was introduced which stands for Non-Parametric Thompson

Sampling.

Algorithm 13: Distribution of the NPTS policy

Input: Arm 𝑎 ∈ Aof a bandit tuple (A, 𝑠 , V);
A family Fof distributions whose V is a subset;

An upper bound 𝑀 on the supports of reward distributions;

History 𝐻 of a sequential sampling of the bandit tuple;

1 if arm 𝑎 has been sampled then
2 Compute number of samples of arm 𝑎, 𝑁𝑎(𝐻);
3 Extract history of samples 𝐻𝑎 of arm 𝑎 from 𝐻;

4 Sample 𝑁𝑎(𝐻) + 1 weights (𝑤𝑖)𝑖 from Dirichlet distribution of

order 𝑁𝑎(𝐻) + 1 and parameters all equals to 1, where

𝑖 ∈ [1, 𝑁𝑎(𝐻)] also index the elements in 𝐻𝑎 ∪ {𝑀};
5 return

∑
𝑖 𝑤𝑖𝑥𝑖 ;

6 else
7 return +∞;

The main cost comes from the sampling of 𝑛 + 1 weights from a Dirichlet

distribution of parameter (1, . . . , 1) (𝑛 ones). This sampling is linear in 𝑛,

since it can be done by sampling 𝑛 + 1 i.i.d. samples 𝑅1 , . . . , 𝑅𝑛+1 from

the exponential distribution E(1), and then defining 𝑤𝑖 =
𝑅𝑖∑𝑛+1

𝑗=1
𝑅 𝑗

for any

𝑖 ∈ [𝑛 + 1]. This justifies the cost in O(𝑛) in the table.

Structured Bandits

In this thesis, we will be interested in a structured Bandit problem,

Chapter 5, and a Reinforcement Learning problem that can be seen as a

highly structured Bandit problem, Chapter 8. By structure, it is meant that

there is an assumption that the expected reward function satisfy some

sort of constraint, restricting the size of the set a given Bandit instance

can belong too, compared to the unstructured case. This usually translate

into a smaller lower bound on the logarithmic growth rate, i. e. there

is information to be exploited that can improve the sample efficiency.

However, deriving lower bound is not a trivial task in general and crafting

algorithms that can exploit the structural knowledge an even harder

task. Yet, several instances of structured bandits received considerable

attention in the last few years. This is the case for instance of linear

bandits, see [43, 45–47] and [48], Lipschitz bandits [49–51], unimodal

bandits [52–54], or combinatorial bandits [55, 56], and more recently

[57]. A generic asymptotically optimal algorithm, called OSSB (Optimal

Structured Stochastic Bandit), has been introduced in the work of [58],

and proven to be asymptotically optimal for all structures satisfying

some weak properties that include all the aforementioned structures.

Although being asymptotically optimal this algorithm often suffers from

a long burn-in phase that may hinder its finite practical performance. It

further comes with high computational price as it requires solving, at

each step, an empirical version of the optimization problem defined by

80 3 A set of choices: Bandit

[57]: Cuvelier et al. (2021), ‘Statistically

Efficient, Polynomial-Time Algorithms

for Combinatorial Semi-Bandits’

[59]: Cuvelier et al. (2021), ‘Asymptoti-

cally optimal strategies for combinatorial

semi-bandits in polynomial time’

NeurIPS 2021

NeurIPS 2023

the lower bound on the logarithmic growth rate of regret. This motivates

the quest for alternative strategies, perhaps less generic but better suited

to a specific structure. Inspired by combinatorial structures for which

computing ℭD(�) is simply not feasible, a relaxation of the generic

constrained optimization problem was recently proposed in [59]. The

authors show that this comes at the price of trading-off regret optimality

for computational efficiency. Indeed, in some structure, combinatorial

properties are at stake and asymptotically optimal algorithms may require

solving combinatorial optimization problems (see [59]) related to the

optimization problem that define the regret lower bound. In order

to exploit the combinatorial structures in a numerically efficient way,

research has been made in how to relax these combinatorial optimization

problems while preserving theoretical properties on the regret of the

relaxed algorithms (see [57, 59]). In Chapter 5 of this thesis, we will work

on such a structured Bandit problem and craft an algorithm that is based

on a relaxation of the associated combinatorial Bandit problem, yet has

a controlled regret. Similarly, in Chapter 8, we deal with a structured

Bandit problem on the combinatorial space of deterministic stationary

policies and derive assumptions and guarantees that are sufficient to

craft an interesting problem and efficient algorithm.

3.4 Summary of contributions

Bandits with groups of similar arms

In the paper Stochastic bandits with groups of similar arms and pub-

lished at NeurIPS 2021 with Hassan Saber, and Odalric-Ambrym Maillard,

we consider a variant of the stochastic multi-armed bandit problem where

arms are known to be organized into different groups having the same

mean. The groups are unknown but a lower bound 𝑞 on their size is

known. This situation typically appears when each arm can be described

with a list of categorical attributes, and the (unknown) mean reward

function only depends on a subset of them, the others being redundant.

In this case, 𝑞 is linked naturally to the number of attributes considered

redundant, and the number of categories of each attribute. For this

structured problem of practical relevance, we first derive the asymptotic

regret lower bound and corresponding constrained optimization prob-

lem. They reveal the achievable regret can be substantially reduced when

compared to the unstructured setup, possibly by a factor 𝑞. However,

solving exactly the exact constrained optimization problem involves a

combinatorial problem. We introduce a lower-bound inspired strategy

involving a computationally efficient relaxation that is based on a sorting

mechanism. We further prove it achieves a lower bound close to the

optimal one up to a controlled factor, and achieves an asymptotic regret

𝑞 times smaller than the unstructured one. We believe this shows it is a

valuable strategy for the practitioner. Last, we illustrate the performance

of the considered strategy on numerical experiments involving a large

number of arms.

3.4 Summary of contributions 81

Approximation of the unlikelihood of optimality

In the paper Fast Asymptotically Optimal Algorithms for Non-Parametric
Stochastic Bandits and published at NeurIPS 2023 with Dorian Baudry,

Rémy Degenne and Odalric-Ambrym Maillard, we consider the problem

of regret minimization in non-parametric stochastic bandits. When the

rewards are known to be bounded from above, there exists asymptotically

optimal algorithms, with asymptotic regret depending on an infimum of

Kullback-Leibler divergences (KL). These algorithms are computation-

ally expensive and require storing all past rewards, thus simpler but

non-optimal algorithms are often used instead. We introduce several

methods to approximate the infimum KL which reduce drastically the

computational and memory costs of existing optimal algorithms, while

keeping their regret guaranties. We apply our findings to design new

variants of the MED and IMED algorithms, and demonstrate their interest

with extensive numerical simulations.

Towards an optimal information
usage 4

4.1 Space, time, & sample
complexities 83

4.2 From intuition to al-
gorithms: Fast MED
algorithms 98

4.3 Online portfolio op-
timization: OMED &
OIMED 117

4.4 Partial proof & open
question 126

4.5 Empirical results 139
4.5.1 Comparison of MED and

IMED versions 144
4.5.2 Stability of OIMED with

respect to the learning
rate 146

4.5.3 IMED with discretized
rewards 148

4.6 Conclusion 150

In practice, the choice of a bandit algorithm may be motivated by its

theoretical guarantees, but also by its computation and memory costs.

This section try to answer what can be said about this topic.

We set the scene. Consider the problem of regret minimization in

non-parametric stochastic bandits. When the rewards are known to

be bounded from above, there exists asymptotically optimal algorithms,

with asymptotic regret depending on an infimum of Kullback-Leibler

divergences. These algorithms are computationally expensive and require

storing all past rewards, thus simpler but non-optimal algorithms are

often used instead. In this section we wonder whether one can efficiently

approximate the infimum KL and reduce the computational and memory

burden of existing algorithms while maintaining this desirable optimality

property, i. e. the optimal regret upper bound.

This part is based on a paper, Fast Asymptotically Optimal Algorithms for
Non-Parametric Stochastic Bandits, that was written in 2023 with Dorian

Baudry, Rémy Degenne, and Odalric-Ambrym Maillard. It should be

mentioned that I had the chance to briefly expose my initial ideas to

Junya Honda when he came to visit the laboratory, and who was kind

enough to listen to me. When I briefed him about my experimental results

and my lack of theoretical ones, he told me that it was likely that my

policy was too greedy and would probably lack theoretical guarantees.

While it might not be true, it helped me reconsider my original idea

and, in the end, led me to talk about this Odalric-Ambrym who kindly

encourages me to start a collaboration with Dorian, and then Rémy. This

whole project could not have been what it is without Rémy’s idea to use

portfolio’s algorithms. I hope that the questions that are raised in this

section concerning portfolio’s algorithm will be researched and answered

by the community as it seems a very important topic to me.

4.1 Space, time, & sample complexities

At the dawn of this project is me pondering over the following fact.

To compute the next action to play using the IMED algorithm, it is

necessary to solve |𝐴| optimization problems using the samples collected

for each arm. As the number of samples for each arm grows, so is the

numerical complexity of picking the next arm to play. Therefore, the more

information, i. e. the more samples, we have, the more we must compute

to pick the next arm. While we know that the strategy will almost surely

always play an action of maximal empirical mean after a large enough

number of interaction, the computational complexity to choose that same

arm again and again is increasing. The complexity increases each time

we pick an empirically suboptimal arm. The same can be said about

the KL-UCB algorithm. On the other hand, a strategy like UCB does

not have this behavior. The computational complexity to pick the next

action to play is a constant function of the number of interaction. At the

84 4 Towards an optimal information usage

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

[33]: Honda et al. (2010), ‘An Asymp-

totically Optimal Bandit Algorithm for

Bounded Support Models.’

[21]: Cappé et al. (2013), ‘Kullback-

Leibler Upper Confidence Bounds for

Optimal Sequential Allocation’

extreme, a strategy like ETC, has a constant complexity until a threshold

of interactions is reached and then has virtually no computational cost,

albeit some memory lookup is always necessary. However, UCB is not an

optimal strategy. ETC even less. Thus, the question, is the computational

cost of known optimal strategy a necessary cost to pay in order to be

optimal? Can we do better? Is it possible to be more sample efficient
in the sense that less computation is done with each sample while
optimally is still guaranteed?

Of course, time complexity, or computational complexity, is not the only

complexity that matters in the design of sequential learning algorithms.

Space complexity also is important. The core question being, how much

should an algorithm memorize from its past interactions? Is it necessary

to store the history of all rewards to remain optimal? Surely this space

complexity question is linked to the concept of sufficient statistics, i. e. how

much can we compress without loss the information that is contained

within a sequence of samples. While it is linked, the two topic are

different because the Bandit objective is not to learn the problem, i. e.
the distributions, it is to solve the problem. Nonetheless, it is true that if

we assume some constraints on the set of considered distributions such

that a sufficient of low dimension statistics exist and is easily updatable

within a scheme akin to a Markov Chain Monte Carlo method, one can

have optimal Bandit algorithm with a small space and time complexity.

We recall that an optimal algorithm

achieves a logarithmic regret with a con-

stant of

∑
𝑎:Δ𝑎>0

�★−�(𝑎)
EF(𝛽(𝑎),�★) .

State of affairs Optimal algorithms are quite costly: IMED/MED [16,

33] and KL-UCB [21] need to compute an empirical infimum, EF, that

takes the form of an optimization problem. This computation needs to

be done at each interaction.

For some parametric families (e.g. Gaussian, Bernoulli), EF has a con-

venient closed-form expression. One can leverage this knowledge to

greatly reduce the time and space complexity required to compute the

sequence of actions. However, for more general non-parametric families

of distributions this may not be the case. In this section we consider the

most famous example of such non-parametric model, where the learner

only knows that the distributions are bounded, i. e. the support of any

distribution is bounded in [𝑚, 𝑀]. All the used algorithm in this section

will use the knowledge of the value of the upper bound 𝑀. However, the

knowledge of the value of the lower bound 𝑚 on the support will not be

used by all algorithms. In this section, the non-parametric family F[𝑚,𝑀]
that the Bandit distribution belongs to is defined as

F[𝑚,𝑀] = {𝐹 ∈ P(ℝ) : supp(𝐹) ⊆ [𝑚, 𝑀] ⊂ ℝ;𝑚 < 𝑀}, (4.1)

and we will denote it simply Fwithout explicit mention to the support.

Usually, the lower bound will be 𝑚 = 0 and the upper bound 𝑀 = 1.

Doing so prove to simplify the notations, especially in the kl-UCB

algorithm because it allows to confuse the (empirical) expected value

with a Bernoulli parameter. On the other hand, it somehow adds a bit

of confusion because one should not use values with KL divergences

that are really about distributions. Instead, we prefer to denote 𝑝 (�), or

𝑝(𝐹) the "Bernoulli projection" of 𝐹 ∈ F, with 𝑝(�) = �−𝑚
𝑀−𝑚 . It should be

noted that all those families are, from a bĳection point of view, all the

4.1 Space, time, & sample complexities 85

[26]: Riou et al. (2020), ‘Bandit algo-

rithms based on Thompson sampling

for bounded reward distributions’

1: Another reason is the (apparent) com-

plexity of implementation of some opti-

mal algorithms compared to suboptimal

one. Another is that numerical optimality

(in some benchmark of interest for the

practitioner) is sometimes different from

theoretical optimality, especially in finite

time.

[5]: Auer et al. (2002), ‘Finite-time analy-

sis of the multiarmed bandit problem’

[21]: Cappé et al. (2013), ‘Kullback-

Leibler Upper Confidence Bounds for

Optimal Sequential Allocation’

[33]: Honda et al. (2010), ‘An Asymp-

totically Optimal Bandit Algorithm for

Bounded Support Models.’

same since one can map F[𝑚,𝑀] to F[𝑚′ ,𝑀′] using a simple full rank linear

transformation.

For this family F, computing the empirical infimum EF costs O(𝑛 log(𝑛))
when 𝑛 sampled have been collected, and when solved with precision

1/𝑛. Among those optimal algorithms, some are better off than others

when it comes to the numerical complexity. The KL-UCB algorithm

suffer a larger complexity than IMED because for one arm, several

EF must be computed at each round. On the other hand, the cost of

computing an index in the NPTS [26] algorithm is a linear function of the

number of samples once the weights used by the algorithm have been

sampled from a Dirichlet distribution. Sampling the weights using an

acceptance-rejection algorithm is also a linear function of the number

of samples. In all cases, the complexity costs, space and time, increase

with the number of interaction. This is one of the reason that cheaper

suboptimal alternatives are often enough considered in place of optimal

algorithms.
1
For instance, UCB [5] requires a memory that is independent

of the number of interaction and a time complexity that is constant per

time step, i. e. independent of the number of interaction. It is however

suboptimal in the sense that it achieves logarithmic regret but with a

multiplicative constant of O

(∑
𝑎:�★−�(𝑎)>0

(�★ − �(𝑎))−1

)
. More generally,

all the algorithms designed for 1/4-sub-gaussian distributions can be used

on Fif the rewards are rescaled in [0, 1]. A finer approximation consists in

using the KL divergence of Bernoulli distributions, denoted kl (lowercase),

that lower bounds EF [21]. We note that some of these approximations

are sensitive to the value (and knowledge) of the lower bound of the

support 𝑚, contrarily to asymptotically optimal algorithms. Recall that

IMED/MED algorithms only assume an upper bound on the support

of the distributions which explains this absence of sensitivity when

assuming a bounded support. It is interesting that optimal algorithm does

not exploit the knowledge of the lower bound when other concentration

assumptions are made or deduced about distributions. We recall that by

analyzing the dual problem EF for upper bounded distributions, Honda

and Takemura [33] obtained that

∀𝐹 ∈ F, � ≤ 𝑀 : EF(𝐹, �) = max

�∈
[
0, 1

𝑀−�

] 𝔼𝑋∼𝐹 [log (1 − � (𝑋 − �))] ,

and we will denote 𝐷 (�;𝑋, �) = 𝔼𝑋∼𝐹 [log (1 − � (𝑋 − �))] for 𝑋 of law

𝐹 ∈ F.

Before presenting the work done in the paper this section is based on, we

briefly introduce the idea on which this project was initially based on.

First idea

The purpose was to find a way to compute the EF that is used in the

IMED algorithm using an iterative scheme, akin to gradient descent.

The benefits would be a constant memory need per arm and a time

complexity that is independent of the number of interaction. Because the

EF is basically, the maximization of a concave function that is written

as an expectation, a MCMC algorithmic scheme seemed like the perfect

mathematical tool. The trick is that the expected value is computed using

86 4 Towards an optimal information usage

2: We borrow this term to physics be-

cause it conveys the intuition of the in-

ner and outer dynamics. In physics, a

quasi-static process is also known as a

quasi-equilibrium process.

a random variable but also depends on another random variable. Those

two random variables might not even be estimated at the same speed.

Specifically, one is interested in maximizing in �, and under some

constraints, the quantity

𝐷 (�;𝑋, �) = 𝔼𝑋 (log (1 − (𝑋 − �) �)) .

We know that � corresponds to an expected value so that we can in fact

write the function to study as

𝐷
(
�;𝑋, 𝑋★) = 𝔼𝑋

(
log

(
1 −

(
𝑋 − 𝔼𝑋★

(
𝑋★)) �)) . (4.2)

In practice, both 𝑋 and 𝑋★
, thus �, will be empirically estimated quanti-

ties, but not with the same precision, i. e. number of samples. 𝑋★
should

correspond to a distribution that has been sampled a linear amount of the

interactions, while 𝑋 might have been sampled as little as a logarithmic

fraction of interactions. At least at a high level, it is safe to assume that

the number of samples associated to 𝑋★
is always larger than the number

of samples associated to 𝑋. If it is not, one could always envision a way

of forcing it, either by sampling the empirical best arm upon detection

that it is not the most sampled, or by considering the concept of leader
arm, the arm that has been sampled the most, instead of empirical best

arm. As a matter of fact, such a remark inspired the final design of the

algorithms of the paper, but more about that later.

The nested expected values formulation of Equation 4.2 emphasizes

the fact that the outer expectation depends on another expectation.

However, the inner expectation should not hinder the quality of the outer

expectation, especially in the asymptotic regime, and even in the finite

time regime if we consider the outer random variable to always have

fewer samples than the inner random variable. This should be the case

by construction rule of the algorithm. However, it is always the case

that, at a lower level, things are not so obvious in the finite time regime.

Nonetheless, knowing that one must maximize the outer expectation

given the inner, this formulation call for a double online optimization
problem formulation. First, the inner expectation is estimated. Second, one

use a sequential Optimality algorithm to solve the outer problem. This

somehow indicates that the outer online scheme should have a larger

time step than the inner. We should probably do so in order to give the

outer product to adapt to fluctuation of the estimated inner expected

value. If the inner value converges faster than the outer expectation,

then the problem is almost like a classic MCMC problem. We later

call this situation a quasi-static optimization problem,
2

that is when the

inner problem is almost constant compared to the outer problem, where

constant is measured with respect to the size of the learning rates.

A double online optimization problem Clarifying our goal, recall

that, at the 𝑡𝑡ℎ interaction, the IMED algorithm computes for each arm

𝑎 ∈ 𝐴,

EF

(
�̂�𝑎(𝑡), �̂★(𝑡)

)
= sup

0≤�≤ 1

1−�̂★(𝑡)

𝔼�̂�𝑎 (𝑡)

(
log

(
1 −

(
�̂�𝑎 − �̂★(𝑡)

)
�
))
,

4.1 Space, time, & sample complexities 87

3: The leader arm has been sampled

more than
𝑛
|𝐴| times after 𝑛𝑡ℎ interac-

tions, i. e. a linear function of the number

of interactions.

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

4: The usual online update of the em-

pirical mean can be seen as a stochastic

gradient descent of the function � ↦→
𝔼𝑋 (𝑋 − �)2, where the used leaning

step should satisfy Robins-Monro condi-

tions.

that is to say,

EF

(
�̂�𝑎(𝑡), �̂�★(𝑡)

)
= sup

0≤�≤ 1

1−𝔼(�̂�★(𝑡))

𝔼�̂�𝑎 (𝑡)

(
log

(
1 −

(
�̂�𝑎 − 𝔼

(
�̂�★(𝑡)

))
�
))
,

where �̂�𝑎 denotes the empirical distribution of arm 𝑎 and �̂�★
is the

empirical distribution of an arm with maximal empirical mean. In the

IMED algorithm, those quantities are computed for all arms at every

interaction. However, once the number of interaction is large, �̂★(𝑡)
should not change much because a best arm should have been sampled a

linear amount of time and its random fluctuation would be controlled

by a concentration hypothesis on the considered set of distributions. As

written above, it would make sense to introduce the concept of leader arm,

the arm that has been sampled the most. On one hand, one can try to

prove that the empirical best arm has been sampled a linear fraction of

the interaction and therefore prove that concentration inequalities can be

applied. On the other hand, one can try to prove that the leader arm
3
, on

which we know that we can apply concentration inequalities, is indeed a

best arm. Similarly to what is done in the paper of Honda and Takemura

[16], we choose �̂★
to be the empirical best mean.

The algorithmic idea is the following. The inner expected value is simply

the empirical expected value of the optimal random variable and, for a

suboptimal arm, does not depend on the value of the outer expected value.

Whenever the empirical best arm is sampled, the empirical best mean will

be updated using a stochastic gradient descent, using the usual learning

rate of
1

𝑛 where 𝑛 is the number of samples.
4

Whenever a suboptimal

arm is sampled, the supremum that we want to compute will be updated

using a stochastic gradient ascent scheme. The sampled gradient will

be using the latest estimate of the maximal empirical mean. Because the

estimated gradient depend on an inner random variable, the empirical

best mean, that is independent of the outer random variable, used for

the stochastic update of the EF, we have to mitigate the fluctuation of the

outer gradient with respect to the noise induced by the inner expected

value. To do so, we choose the learning rate of the outer problem to be

larger than that of the inner problem. Namely, the leaning rate will be

log 𝑛

𝑛 , where 𝑛 is the number of samples. The intuition is that the outer

and inner learning rates should be set so that the dependence of the

outer problem on the fluctuation of the inner problem is almost removed.

That is to say, the inner problem should be quasi-static with respect to

the outer problem. This way, even at a small number of interactions,

when the number of samples are of the same order of magnitude, the

learning rate of the outer scheme is always larger than the learning rate

of the inner scheme (but we should make sure that the empirical best is

the most sampled). In other words, if the magnitude of the gradient is

controlled, the fluctuations of the inner random variable should be small

(first order Taylor approximation) compared to the random fluctuation

induced by the outer random variable and its larger learning rate. In the

long run, this effect would be magnified by the fact that the number of

samples of the inner and outer random variables should be exponentially

different.

The algorithm proceeded as follows. At each interaction 𝑡, an arm

𝑎𝑡 ∈ arg min𝑎 𝐼𝑎(𝑡) is sampled, where 𝐼𝑎 is the IMED-like index of arm

88 4 Towards an optimal information usage

5: I think that its helps to see the invert

learning rate as a form of pseudo-count.

𝑎. Then, statistical quantities of the sampled arm, and only this arm,

are updated using the information extracted from the interaction. If

the sampled arm 𝑎𝑡 is suboptimal, then the number of samples 𝑁𝑎𝑡 ,

the invert learning rate
5 𝛼𝑎𝑡 , the empirical mean �̂𝑎𝑡 , the empirical

optimal parameter of the outer problem �𝑎𝑡 , the empirical unlikelihood

of optimality EF (𝛽(𝑎), �★), 𝐾𝑎𝑡 , and the index 𝐼𝑎𝑡 are updated according

the following rules:

𝑁𝑎𝑡 (𝑡 + 1) = 𝑁𝑎𝑡 (𝑡) + 1 (4.3)

𝛼𝑎𝑡 (𝑡 + 1) = log(2)𝑁𝑎𝑡 (𝑡 + 1)
log(𝑁𝑎𝑡 (𝑡 + 1) + 1) , (4.4)

�̂𝑎𝑡 (𝑡 + 1) = �̂𝑎𝑡 (𝑡) +
1

𝑁𝑎𝑡

(𝑋𝑡 − �̂𝑎𝑡) , (4.5)

�𝑎𝑡 (𝑡 + 1) = �𝑎𝑡 (𝑡) +
1

𝛼𝑎𝑡

�̂★(𝑡) − 𝑋𝑡
1 − (𝑋𝑡 − �̂★(𝑡)) �𝑎𝑡 (𝑡)

, (4.6)

𝐾𝑎𝑡 (𝑡 + 1) = 𝐾𝑎𝑡 (𝑡) +
1

𝛼𝑎𝑡

(
log

(
1 −

(
𝑋𝑡 − �̂★(𝑡)

)
�𝑎𝑡

)
− 𝐾𝑎𝑡 (𝑡)

)
, (4.7)

𝐼𝑎𝑡 (𝑡 + 1) = 𝛼𝑎𝑡𝐾𝑎𝑡 + log (𝑁𝑎𝑡) . (4.8)

For the empirical computation of �, a projection step to ensure the con-

straints 0 ≤ � ≤ 1

1−�★ is necessary. In the future, it could be good idea to

investigate other numerical methods such as the Frank–Wolfe algorithm
which has the advantage of computing a sequence of parameters that

stays in the feasible set by construction.

If the sampled arm 𝑎𝑡 is the empirically optimal one, then, one only

need to update its number of samples, and more importantly, update its

empirical mean using the usual learning rate of
1

𝑁★(𝑡) , i. e. the relevant

quantities are

𝑁𝑎𝑡 (𝑡 + 1) = 𝑁𝑎𝑡 (𝑡) + 1 (4.9)

𝛼𝑎𝑡 (𝑡 + 1) = log(2)𝑁𝑎𝑡 (𝑡 + 1)
log(𝑁𝑎𝑡 (𝑡 + 1) + 1) , (4.10)

�̂𝑎𝑡 (𝑡 + 1) = �̂𝑎𝑡 (𝑡) +
1

𝑁𝑎𝑡

(𝑋𝑡 − �̂𝑎𝑡) , (4.11)

𝐼𝑎𝑡 (𝑡 + 1) = log (𝑁𝑎𝑡) . (4.12)

Interestingly, based on the intuition of the different terms in the IMED

index, I am convinced that different (pseudo)-counts should be used

for the term in front of the EF approximation and within the log. The

count within the log accounts for the true frequency at which the agent

interacted with the arm in the history. The IMED index allows to compare

this true frequency of play with a term akin to a likelihood of optimality,

𝑁𝑎EF

(
�̂�𝑎 , �̂★

)
. Intuitively, the frequency of play

𝑁𝑎 (𝑡)
𝑡 should such that

it is roughly equal to exp

(
−𝑁𝑎EF

(
�̂�𝑎 , �̂★

))
normalized so that all those

exponential terms sum to one across all arms. In the original IMED (and

MED) algorithm, this likelihood of optimality depends on the amount

of interactions. In our case, more uncertainty about the empirical EF is

due to the stochastic gradient scheme. A good proxy for the total number

of interactions is therefore the pseudo-count 𝛼𝑎 . Furthermore, one can

even think about it in terms of homogeneity. The update rule of 𝐾𝑎 , the

4.1 Space, time, & sample complexities 89

empirical EF, makes appear the learning rate
1

𝛼𝑎
, and it is homogenous to a

likelihood per pseudo-interaction. To recover an expression with the good

unit, a likelihood, one should use the pseudo-count as a multiplicative

factor. Because 𝑁𝑎(𝑡) < 𝛼𝑎(𝑡), it means that compared to the original

IMED index with the same approximation of the EF, a suboptimal arm is

considered closer to be under-sampled. The presented scheme therefore

favor a bit more exploration than the original IMED algorithm when

approximations of EFare the same. This is perfectly coherent and aligned

with the additional noise induced by the sequential gradient ascent

scheme.

What can be said about such an algorithm?

Complexities of the first intuition The above algorithm, if proven

correct, solve the problems that were mentioned at the beginning of this

section. The space complexity is reduced to a O(1), i. e. it only needs a

constant memory for each arm and that memory space does not depend

on the number of interactions. The time complexity is reduced to a O(1)
per interaction, i. e. it only needs a constant time per interaction to update

the statistical quantities. Since the gradient of the outer function has been

computed by hand, the updates are really a finite amount of evaluations

of functions. Several experiments were run with this algorithm and its

performances where always good. Its regret was always sublinear and

when plotting it with logarithmic scale, does seem logarithmic in the

number of interactions. Compared to IMED, it was sometimes better

and sometimes a bit worse depending on the setting. The initial slope

always seemed a bit higher which is easily explained by the enforced

slightly over exploration that is induced by the pseudo-count scheme

and potentially, the stochastic noise induced by the scheme. Overall,

the algorithm works well. From a theoretical standpoint, one can hope

that the algorithm is indeed optimal. If we take the pseudo-count in

the frequency of sample that we chose, and assume that 𝐾𝑎 is a good

approximation of EF (𝛽(𝑎), �★), then we have that

𝑁𝑎(𝑡)
𝑡
∝ exp

(
−𝑁𝑎(𝑡)EF (𝛽(𝑎), �★)

log𝑁𝑎(𝑡)

)
, (4.13)

were the right-hand side should be compared to the original IMED

one, exp (−𝑁𝑎(𝑡)EF (𝛽(𝑎), �★)). It is not immediately obvious that this

frequency of play will achieve the right constant that we target for

asymptotic optimality. Looking carefully, we see that the Equation 4.13

means that

𝑁𝑎(𝑡) ≃ exp

(
𝑊−1

(
−

EF (𝛽(𝑎), �★)
log 𝑡

))
,

where𝑊−1 is the real branch of the Lambert𝑊 function with negative

argument. A first order expansion then shows that

𝑁𝑎(𝑡) ≃
log 𝑡

EF (𝛽(𝑎), �★)

which is the target quantity.

Unfortunately, despite a promising first approach and apparently theo-

retically tuned learning rates, when attempting to prove a regret upper

bound in this algorithm, several attempts failed. I would be happy

90 4 Towards an optimal information usage

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

is someone takes the torch of this line of work and manage to prove

theoretical guarantees. During my PhD, I could not.

It is time to try another approach, surely less greedy in the desired

results.

Cost/performance trade-off To start with, we lay down in Table 4.1 the

state of play. We consider optimal and common suboptimal algorithms

(Algorithm column) for the unstructured bandit problem (𝐴, 𝛽). The

general assumptions would be those assumed in the paper [16] of Honda

and Takemura, with upper bounded support of rewards and existence

of the log-Laplace transform in a neighborhood of zero. However, some

suboptimal algorithms need stronger assumptions, in particular, bounded

reward support, i. e. bounded from above but also from below. As stated

above, this is our chosen assumption for this section. For each of the

considered algorithm 𝜋, a regret upper bound can be written as

R(𝐴,𝛽) (𝑇;𝜋) ≤
∑
𝑎∈𝐴

�★−�(𝑎)>0

�★ − �(𝑎)
C(𝐴,𝛽) (𝑎;𝜋)

log𝑇 + o (log𝑇) ,

where C(𝐴,𝛽) (𝑎;𝜋)−1

is interpreted as the necessary logarithmic sample

complexity rate of arm 𝑎 in Bandit (𝐴, 𝛽) to separate it from an optimal

arm when using the policy 𝜋.

Figure 4.1: Pierre-Simon Marquis de

Laplace (1749-1827)

The larger this quantity, the larger the number of pulls of suboptimal

action 𝑎. The smaller, the easier it is for policy 𝜋 to separate this action

from the optimal set and thus, the smaller the number of associated

pulls of suboptimal arm 𝑎. We highlight the fact that the regret upper

bound, but also the regret lower bound, is written as a sum over all

suboptimal actions and that the logarithmic sample rates are independent

of each others because of the unstructured assumption on the Bandit

problem. Therefore, in the following table, we talk about the sample rate

of a suboptimal arm in a given Bandit problem, without mentioning its

absent dependency to other suboptimal arms. The optimal sample rate is

given by the infimum Kullback-Leibler,
1

EF(𝛽(𝑎),�★) . This rate corresponds

to the Constant column in Table 4.1. In the Optimality column, we report

the optimal nature of the algorithm, that can be seen from its suboptimal

sampling rates. All the presented algorithm compute, at each interaction

and for each suboptimal arm, one quantity. All the computed quantities

are then used to compute the next action. The cost of choosing the next

action once the quantities have been computed is O(|𝐴|), e.g. computing

an argmin for IMED, an argmax for NPTS or KL-UCB, and sampling

according a discrete distribution over |𝐴| categories for MED. To compare

algorithm, we thus only report the time complexity of computing the

quantity of interest of a suboptimal arm when the number of sample

associated to that arm is 𝑛, Time complexity column. We also report in

the Space complexity column, the required memory to store the necessary

information of a suboptimal arm after 𝑛 interactions with that arm. Please

note that, in the following Table 4.1, 𝑛 corresponds to the number of

samples of a suboptimal arm of algorithms having a logarithmic regret

upper bound. Thus, as an order of magnitude, one can always think that

𝑛 ∼ log𝑇, where 𝑇 is the total number of interactions.

4.1 Space, time, & sample complexities 91

Table 4.1: Time complexity and space complexity needed to compute the index of a suboptimal arm 𝑎 after 𝑛 samples have been collected

from its associated distribution 𝛽(𝑎).

Algorithm Time complexity Space complexity Constant Optimality

KL-UCB [21] O(𝑛 log(𝑛)2) 𝑛 1

EF(𝛽(𝑎),�★) Opt.

kl-UCB [21] O(log(𝑛)) O(1) 1

𝑘𝑙(𝑝(𝑎),𝑝★) Sub-opt.

UCB [5] O(1) O(1) 1

2(�★−�(𝑎))2
Sub-opt.

NPTS [26] O(𝑛) 𝑛 1

EF(𝛽(𝑎),�★) Opt.

MED [33] O(𝑛 log(𝑛)) 𝑛 1

EF(𝛽(𝑎),�★) Opt.

IMED [16] O(𝑛 log(𝑛)) 𝑛 1

EF(𝛽(𝑎),�★) Opt.

The algorithm kl-UCB need a bounded reward assumption while the UCB

algorithm need a sub-Gaussian reward assumption. The sub-Gaussian

property of a distribution is guaranteed if it is bounded. Optimal algo-

rithms work with the stronger bounded assumption reward but do not

make use of the lower bound on the support of reward. To compare

algorithms, we need to assume the same set of hypothesis on the set of

considered distributions, F. In the following comparison, we assume that

the set Fis the set of bounded distributions, whose support are in [𝑚, 𝑀],
and whose expected value are in [𝑚, 𝑀[, where −∞ < 𝑚 < 𝑀 < ∞. In

the kl-UCB algorithm, the Kullback-Leibler divergence of Bernoulli distri-

bution is used. We recall that 𝑝(𝑎) = �(𝑎)−𝑚
𝑀−𝑚 , the barycenter parameter that

allows to write �(𝑎) as a convex combination, i. e. barycenter, of the two ex-

tremities, �(𝑎) = (1 − 𝑝(𝑎))𝑚 + 𝑝(𝑎)𝑀. Furthermore, 𝑝★ = 𝑚𝑎𝑥𝑎∈𝐴𝑝(𝑎).
Often, rewards are assumed to be bounded in [0, 1], and we have the

numerical identity 𝑝(𝑎) = �(𝑎) and the sampling rate is written using

𝑘𝑙 (�(𝑎), �★)which is equal numerically to 𝑘𝑙 (𝑝(𝑎), 𝑝★). While this is not

wrong, I think that it provides the wrong intuition since the Kullback-

Leibler divergence is only concerned about the distribution and not the

specific support of the distribution. Taking into account the support

into consideration in the computation of the infimum Kullback-Leibler

problem is precisely what makes the quantity EF support dependent. To

avoid confusion and wrong intuition, a value of the support should not

be used as the parameter of a Kullback-Leibler divergence. Writing the

Bernoulli kl like this makes it already obvious that the suboptimal kl-UCB

is in fact part of a family of algorithms where the bounded support is

discretized into 𝜎 ≥ 2 points, two of which are necessarily located on the

boundary of the support. We elaborate on this discretization procedure

later in the section. First we briefly compare the logarithmic sampling

rate of the algorithms in Table 4.1.

For simplicity, we assume that 𝑚 = 0 and 𝑀 = 1. All results hold for the

general range [𝑚, 𝑀] up to a rescaling of the rewards,

𝑝 : [𝑚, 𝑀] −→ [0, 1]

𝑥 ↦−→ 𝑥 − 𝑚
𝑀 − 𝑚

which really can be seen as a way of mapping the support space to the

space of Bernoulli distributions. That is to say, a random variable in

F[𝑚,𝑀] with law 𝐹 and expected value � can be mapped to Bernoulli

distribution of parameter 𝑝 (�). This is just projecting 𝐹 to a binarized

random variable with probability 𝑝(�) associated to 𝑀 and 1 − 𝑝(�)

92 4 Towards an optimal information usage

[21]: Cappé et al. (2013), ‘Kullback-

Leibler Upper Confidence Bounds for

Optimal Sequential Allocation’

[60]: Hoogenboom et al. (2019), ‘The

DSSAT crop modeling ecosystem’

DSSAT: Decision Support System for

Agrotechnology Transfer.

associated to 𝑚. Except if 𝐹 already is in this form, this transformation

induce a loss of information. Anticipating a bit on what follows, one can

already imagine what are the case in which the "loss of information" is

the largest. It is when the original distribution has a density with respect

to the Lebesgue measure and a bell shape-like curve centered at the

middle of the support. The smaller the variance, the closer to a Dirac, the

larger the loss of information. Real random variables whose support is

included in [0, 1] are
1

4
sub-Gaussian, which is the used proxy standard

deviation that is used in the following.

Sub-optimality in Table 4.1 Consider 𝐹 ∈ Fof mean � ∈ [0, 1[, rep-

resenting the distribution and expected value of a suboptimal arm and

�★ ∈ [�, 1[representing the expected value of an optimal arm. In this nor-

malized case, the Bernoulli parameters are equal to the expected values,

𝑝 (�) = � and 𝑝 (�★) = �★
. The following result, known from [21],

EF

(
𝐹, �★) ≥ 𝑘𝑙 (𝑝 (�) , 𝑝 (

�★)) ≥ 2

(
�★ − �(𝑎)

)
2

. (4.14)

This inequality 4.14 prove that the asymptotic performances of algorithms

in Table 4.1 can be compared. The UCB algorithm has the worst sample

rate of suboptimal actions, followed by kl-UCB which itself is worse

than optimal algorithms. In fact, those two inequalities could be the

time to recall what a good logarithmic sample rate CF (𝐹, �★)−1

is. For

a distribution 𝐹 ∈ Fwhose mean � is smaller than �★
, the function

of interest should be such that EF (𝐹, �★) ≥ CF (𝐹, �★) > 0. The first

inequality with EF guarantees that a strategy with the C−1

F
sampling rate

is over-sampling suboptimal arms. It is therefore never greedier than

the greedier a policy can be. On the other hand, its over-exploration

cannot be infinite (inequality with zero) since we would suffer a linear

regret in that case. Another condition is that this quantity should be

equal to zero for an optimal distribution. An easy way to craft a function

like this is to transform the distribution 𝐹 ∈ F into another easier to

handle distribution𝑇(𝐹) ∈ Dand compute the infimum Kullback-Leibler

divergence on the space D which is always smaller than the original

one because of the data processing inequality. When the processing

function 𝑇 is lossy, the lost information makes it harder to distinguish

between distributions and force the user of this information process to

over explore compare to an agent willing to pay the cost of computing

EF rather than ED.

A natural question is to determine the magnitude of the gap in the

inequalities presented in Equation 4.14. First, we illustrate this gap with

an example that consider a problem of crop-management optimization

in agriculture. The SCOOL team, the INRIA team I belonged to, owe

quite a lot of this example to Odalric-Ambrym who made a praiseworthy

effort to push members into using this crop-management problem and

other environment related distributions. In Figure 4.2, we represent

seven distributions of crop yields generated from the DSSAT simulator

[60], corresponding to different crop-management policies. Those seven

distributions constitute what we call the DSSAT problem in this thesis.

The abscissa is indexed by the yield (a reward) of an agro-policy in a

given agricultural environment. A sample of an agro-policy (an arm)

is generated after simulating the yield of such a policy on randomly

generated environmental conditions, e.g. temperature and humidity.

4.1 Space, time, & sample complexities 93

6: multiplicative constant in front of the

log.

The distributions are naturally bounded and non-parametric, due to

the physical constraints of the problem. This plot visually confirms the

0 2000 4000 6000 8000 10000
value

0

1

2

3

4

5

de
ns

it
y

1e 5

Figure 4.2: Distributions of the DSSAT

Bandit problem

multimodality of all distributions and the difficulty to fit this problem

into a parametric framework.

In Table 4.2 we compare the evaluation of EF to 𝑘𝑙 and (� − �★)2 for

each arm, except the optimal one because all those functions evaluate

to zero for the optimal arm. This Table 4.2 empirically confirm the

EF(𝛽(𝑎),�★)
kl(𝑝(�(𝑎)),𝑝(�★)) 4.39 5.22 12.04 10.19 11.73 11.04

EF(𝛽(𝑎),�★)
2(�(𝑎)−�★)2

4.72 5.55 12.73 10.87 12.44 11.63

Table 4.2: List of all ratios for the DSSAT

bandit problem

theoretical importance of using the true EF quantities over their usual

relaxed versions. One can indeed see that the asymptotic over sampling

of suboptimal is significant since suboptimal arms can be sampled as

much as 12 times more than they should due to the loss of information

in using another KL in the infimum problem. The inequalities 4.14 is

verified since all the ratios are larger than one and, column by column,

the lower line (2 (� − �★)2) elements are larger than the upper line (kl).

One can even compute how much larger are the regret upper bound

constant
6

corresponding to 𝑘𝑙 and 2 (� − �★)2. For 𝑘𝑙, the regret constant

is 8.95 times larger than the optimal regret constant. For 2 (� − �★)2, the

regret is 9.48 times larger than the optimal regret constant. We include

this problem in the experimental Section 4.5 to check the practical

consequences of this computed asymptotic property.

We now turn to a more theoretical result proving our aforementioned in-

tuition about the loss of information induced by the Bernoulli-projection,

that a centered bell curve with very small variance, or simply, a Dirac,

is the worst case scenario. The Lemma 4.1.1 demonstrates that the ratio

between EF and 𝑘𝑙 can be arbitrarily large if the distribution 𝐹 ∈ F is

far from being Bernoulli. But first, let’s focus on the inequality relating

the Bernoulli 𝑘𝑙 and quadratic 2 (� − �★)2 expressions of Equation 4.14.

In the following we assume that Δ is small to perform some first-order

approximations. To simplify the small analysis, which only serve the

purpose of building and proving intuition, we consider a distribution

𝐹 ∈ Fof expected value � and a number �★
, akin to a maximal reward,

94 4 Towards an optimal information usage

7: Suffering 10 times the regret we would

if using an optimal strategy may be con-

sidered large, in our opinion.

[26]: Riou et al. (2020), ‘Bandit algo-

rithms based on Thompson sampling

for bounded reward distributions’

[40]: Agrawal et al. (2012), ‘Analysis

of Thompson Sampling for the Multi-

armed Bandit Problem’

such that 𝑝(�) = 𝑝(�★) − Δ with 0 < 𝐷𝑒𝑙𝑡𝑎 << 1 very small. Then,

a first order Taylor expansion shows that 𝑘𝑙 (𝑝(�), 𝑝(�★)) ≈ Δ2

𝑝(�)(1−𝑝(�)) .

Compare to the quadratic 2Δ2
, the 𝑘𝑙 better exploit the bounded domain

knowledge and adapts to the true variance of the Bernoulli distribution,

thus exploiting better the geometry of F(here, the bounded assumption).

The sub-Gaussian approximation (of the Bernoulli 𝑘𝑙) is tight only if 𝑝(�)
is close to 1/2 but not near the boundaries of the support.

We now investigate the gap between EF and kl, and recall that the two

quantities match for Bernoulli distributions.

Lemma 4.1.1 (Comparison between kl and EF) For � ∈ (0, 1) and
𝐹 ∈ F[0,1] of mean � − Δ, the scaling of EF(𝐹,�)

kl(�𝐹 ,�) can be as large as �
Δ

, with
the maximum achieved when 𝐹 is the Dirac distribution with support � − Δ.

Proof. First, the Jensen inequality and the dual representation of EF

provide that

EF(𝐹, �) ≤ log

(
1 + Δ

1 − �

)
= EF(𝛿�−Δ , �) ,

where 𝛿𝑥 is the Dirac distribution whose unitary mass is located at 𝑥.

Dividing both sides by kl(�−Δ, �) and using a first order approximation

of the right-hand side fraction, we get that for small values of Δ,

EF(𝛿�−Δ , �)
kl(� − Δ, �) ≈

(
Δ

1 − �

)
×

(
�(1 − �)

Δ2

)
=

�

Δ
→
Δ→0

+∞ .

We could argue that Dirac (or highly concentrated) distributions may

be unlikely in most applications, however the use-case provided by the

DSSAT distribution (Figure 4.2 and Table 4.2) shows that large ratios
7

EF/kl may already be observed with more natural examples.

Cost/performance trade-off: from Bernoulli to Multinomial We saw

that mapping a distribution in Fto a Bernoulli distribution was way to

reduce the computational cost of choosing an action. Both the time and

space complexity were positively affected by such a mapping. However,

this simplification came at the cost of a loss of information and therefore

a proven suboptimality. Bernoulli distributions are the simplest case of

discretization or multinomialization of distributions in F. I prefer to talk

about multinomialization because this term really shows that we are acting

at the level of the distribution and at the level of the support. We map a

distribution from Fto another distribution within a set D in order to ease

the computation of the infimum Kullback-Leibler divergence problem,

from EF to ED. A multinomialization procedure was described in a

recent work [26] inspired by a binarization procedure described in [40].

We detail this discretization procedure and explore the suboptimality

induced by the processing of the random variables. In particular, we

ponder over the dependency of the suboptimality with respect to the

size of the discretization. Intuitively, if we multinomialize a distribution

4.1 Space, time, & sample complexities 95

[26]: Riou et al. (2020), ‘Bandit algo-

rithms based on Thompson sampling

for bounded reward distributions’

[26]: Riou et al. (2020), ‘Bandit algo-

rithms based on Thompson sampling

for bounded reward distributions’

on 𝑝 ≥ 2 ticks evenly separated in [𝑚𝑛𝑀], then the precision of the

approximation of the EF should be related to
𝑀−𝑚
𝑝−1

. Please note that

𝑝 − 1 is the number of intervals so that
𝑀−𝑚
𝑝−1

is the size of a sub-interval

of the subdivision. Also, please remark that 𝑝 − 1 is the number of

independent parameters, or degree of freedom in the multinomial model.

The algorithm we describe now to multinomialize a distribution in F

involve a transformation of the reward random variable but recall that

we are mostly interested in creating a random variable with an easier

to handle law and that the way the support and values intervene in the

description is more of a convenient way to write the transformation.

The process described in [26] consists in discretizing the rewards: a reward

random variable 𝑋 ∈ F[𝑚,𝑀] is transformed into a multinomial distri-

bution 𝑌 ∈ D= M𝑝

(
{𝑥1 = 𝑚, . . . , 𝑥𝑝 = 𝑀}

)
on some finite subdivision

𝜎 =
{
𝑥1 , . . . , 𝑥𝑝

}
of the original support with 𝑌 satisfying the minimal

constraint that 𝔼 (𝑌 |𝑋, 𝜎) = 𝔼 (𝑋). The subdivision can be arbitrary, as

long as the boundaries 𝑚 and 𝑀 belong to it, but we will more naturally

use the regular subdivision with sub-interval of equal length. The con-

straint is always feasible because the original expected value belong to

the interval, and therefore can be written as a convex combination of the

points of the subdivision. In fact, as it is shown by the Bernoulli case, only

the extremal points are necessary. Hence, with this transformation, the

expectations of the arms are unchanged while the memory to store the

past information is reduced to O(𝑝) per arm and the computation time of

approximation EM𝑝
of the infimum KL EF for discretized distributions

is proportional to 𝑀. The expected value constraint is not enough to

uniquely determine the multinomialization scheme, except when 𝑝 = 2.

Whatever the subdivision of size 𝑝, the multiplicative constant, i. e. the

logarithmic sampling rate, of the log(𝑇) term in the regret upper bound

can be arbitrarily large compared with the optimal one.

We consider an arbitrarily non-degenerate subdivision of size 𝑝 ∈ ℕ with

the constraint 𝑝 ≥ 2, 𝜎 = {𝑥1 = 𝑚, . . . , 𝑥𝑝 = 𝑀}. By non-degenerate, we

mean that𝑚 = 𝑥1 < 𝑥2 < · · · < 𝑥𝑝−1 < 𝑥𝑝 = 𝑀where the inequalities are

strict and boundary conditions satisfied. Let𝑋 ∈ Fbe reward distribution.

The multinomialization process transforming 𝑋 ∈ F into 𝑌 ∈ M𝑝(𝜎)
work by generalizing the Bernoulli process. Each point 𝑥 ∈ [𝑚, 𝑀] is seen

as the (unique) barycenter of its two closest elements in the subdivision.

The weight associated to the element 𝑘 ∈ 𝜎 corresponds to a weight of

the probability density that is transferred from 𝑥 to 𝑘. The way it is done

in the work [26] is slightly different in the sense that the transformation

on the collected reward is not deterministic (assigning a fraction of the

weight to the closest elements of the subdivision) but stochastic. Given

a computed barycenter weight, a Bernoulli distribution is sampled to

determine on which of the two elements we should assign all the weight.

This method computes the same random variable as the deterministic

method when considering the true random variable 𝑋. When samples

are collected sequentially, the equality of the parameters of the two

constructed multinomial distributions are only equal in expectation.

Mathematically, each element of the subdivision 𝑥𝑘 are associated with a

number �̂�𝑘 that count the number of time we observed the reward 𝑥𝑘
after the transformation. Those counts are used to compute the empirical

multinomial model where the probability associated to 𝑥𝑘 is
�̂�𝑘∑
�̂�𝑘

. In

a sense, this is a justification to the stochastic way of doing things

96 4 Towards an optimal information usage

[21]: Cappé et al. (2013), ‘Kullback-

Leibler Upper Confidence Bounds for

Optimal Sequential Allocation’

because this method is akin to say that we only observe the rewards after
transformation and that the observed reward should belong to 𝜎. Upon

observing the real reward and splitting the weights, our algorithm would

have access to information it should not have. Formally, upon receiving a

sample reward 𝑥 such that 𝑥𝑘 < 𝑥 < 𝑥𝑘+1, we compute the barycenter

weight 𝑏 =
𝑥−𝑥𝑘
𝑥𝑘+1
−𝑥𝑘 . Then, we sample 𝑅 = 𝑥𝑘𝟙 {𝑍 = 0} + 𝑥𝑘+1𝟙 {𝑍 = 1}

where 𝑍 ∼ 𝐵𝑒𝑟 (𝑏) and increment the count of sampled 𝑅 ∈ {𝑥𝑘 , 𝑥𝑘+1}
by one. If we 𝑥 ∈ 𝜎 then, this is a special case, and we increment the count

of element 𝑥 by one. If this procedure is used with all rewards collected,

one can use a bandit algorithm calibrated for multinomial distributions

in M𝑝 (𝜎).

The true random variable 𝑌 can be simulated from simulations of 𝑋 as

follows,

1. Sample 𝑥 ∼ 𝑋,

2. If 𝑥 ∈ 𝜎, output 𝑥,

3. Else, compute barycenter parameter 𝑏 = 𝑥−𝑥𝑘
𝑥𝑘+1
−𝑥𝑘 where x satisfies

the two inequalities 𝑥𝑘 < 𝑥 < 𝑥𝑘+1,

4. Then sample 𝑧 ∼ 𝐵𝑒𝑟(𝑏),
5. Output 𝑧𝑥𝑘 + (1 − 𝑧)𝑥𝑘+1.

The expected value constraint is respected 𝔼(𝑌) = 𝔼(𝑋), meaning that

the order of the arms do not change with this discretization. Furthermore,

the transformed bandit problem becomes equivalent to a problem where

the distributions would be (𝑌𝑎)𝑎∈𝐴 where, for each arm 𝑎 ∈ 𝐴, 𝑌𝑎 is the

distribution of the discretized rewards with implicit subdivision 𝜎.

The above analysis shows that we can use an asymptotically optimal

bandit algorithm for Bandit problem with multinomial distributions

family M𝑝(𝜎) on the support 𝜎 on the modified multinomialized Bandit

problem and obtain a logarithmic regret with corresponding multiplica-

tive multinomial constant,

∑
𝑎∈𝐴

�𝑠 𝑡𝑎𝑟>�(𝑎)

�★−�(𝑎)
EM𝑝 (𝜎)(𝑌𝑎 ,�★)

. The constant factor

is optimal despite the transformation if the distributions are already

multinomial distributions with the prescribed subdivision. We remark

that, a priori, a different subdivision could be used for each arm. However,

without additional information prior to starting the interaction, there is

no reason to pick different subdivisions.

We close this section by discussing the performance that can be achieved

with such discretization. Assume that the chosen division 𝜎 is regular and

of size 𝑝, i. e. that the length of a sub-interval is constant, 𝑥𝑘+1−𝑥𝑘 = 𝑀−𝑚
𝑝−1

for all defined indexes. Using the data processing inequality and Lemma

4 of [21] we obtain that

EF

(
𝛽(𝑎), �★) ≥ EM𝑝 (𝜎)

(
𝑌𝑎 , �

★) ≥ EF

(
𝛽(𝑎), �★) − 1

𝑝 − 1

𝑀 − 𝑚
𝑀 − �★

Hence, the multinomial approximation with regular subdivision can be

good for large 𝑝. This makes perfect sense from an approximation theory

point of view since 𝑝 − 1 is the number of free parameters to be fitted. We

remark that this approximation can be especially good but quite as costly

as the original problem if, for a chosen horizon 𝑇, 𝑝 is chosen too close to

log𝑇

EF(min 𝛽(𝑎),�★) , a quantity that is unknown prior to the interaction (and only

known asymptotically in the full experimental setting). However, because

of the logarithmic scaling of the number of samples of suboptimal

4.1 Space, time, & sample complexities 97

[26]: Riou et al. (2020), ‘Bandit algo-

rithms based on Thompson sampling

for bounded reward distributions’

[12]: Honda et al. (2011), ‘An asymptot-

ically optimal policy for finite support

models in the multiarmed bandit prob-

lem’

[33]: Honda et al. (2010), ‘An Asymp-

totically Optimal Bandit Algorithm for

Bounded Support Models.’

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

arms, one can see that, in finite time, such an approximation with a

reasonably large parameter 𝑝 can be quite performant However, from an

asymptotic optimality viewpoint, the story is of course quite different.

If EF(𝐹𝑘 , �★) ≤ 1

𝑀−1
× 𝐵−𝑏

𝐵−�★ (which is possible since 𝑝 is fixed without

knowing the distributions) then the lower bound is vacuous. As a

matter of fact, Lemma 4.1.1 can be extended to any non-degenerate

discretization process. If a small, compared to
𝑀−𝑚
𝑝−1

, suboptimality gap

�★ − �(𝑎) is assumed, one can make the ratio EF(𝛽(𝑎), �★)/EM𝜎
𝑝
(𝑌𝑎 , �★)

arbitrarily large. Therefore, while this approximation technique has some

convenient properties, it is not entirely satisfying. This justifies our quest

for alternatives that would preserve the asymptotic optimality of the

algorithms.

Before moving to the next section, we complete the comparison table with

the results from the above discretization analysis. The used notations

are the same that we used until now, and we attribute this scheme to

the work made in the paper introducing the NPTS algorithm [26]. We

abuse the notation a bit and denote 𝜎 (𝛽(𝑎)) the multinomialization of

𝛽(𝑎) along the subdivision 𝜎. The notation EM𝑝 (𝜎) MED/IMED indicate

the MED/IMED algorithm in which the EF has been replaced by the

EM𝑝 (𝜎) on the transformed distribution. We adopt the same convention

for EM𝑝 (𝜎)-UCB. The term 𝜎-NPTS refers to the NPTS algorithm where

the rewards are being transformed along the subdivision 𝜎.

Table 4.3: Time complexity and space complexity needed to compute the index of a suboptimal arm 𝑎 after 𝑛 samples have been collected

from its associated distribution 𝛽(𝑎). Subdivision 𝜎 is non-degenerate of size 𝑝.

Algorithm Time complexity Space complexity Constant Optimality

KL-UCB [21] O(𝑛 log(𝑛)2) 𝑛 1

EF(𝛽(𝑎),�★) Opt.

kl-UCB [21] O(log(𝑛)2) O(1) 1

𝑘𝑙(𝑝(𝑎),𝑝★) Sub-opt.

EM𝑝 (𝜎)-UCB [26] O(𝑝 log(𝑛)2) O(𝑝) 1

EM𝑝 (𝜎)(𝜎(𝛽(𝑎)),�★)
Sub-opt.

UCB [5] O(1) O(1) 1

2(�★−�(𝑎))2
Sub-opt.

NPTS [26] O(𝑛) 𝑛 1

EF(𝛽(𝑎),�★) Opt.

𝜎-NPTS [26] O(𝑝) O(𝑝) 1

EM𝑝 (𝜎)(𝜎(𝛽(𝑎)),�★)
Sub-opt.

EM𝑝 (𝜎) MED/IMED [26] O(𝑝 log(𝑛)) O(𝑝) 1

EM𝑝 (𝜎)(𝜎(𝛽(𝑎)),�★)
Sub-opt.

MED [12] O(𝑛 log(𝑛)) 𝑛 1

EF(𝛽(𝑎),�★) Opt.

IMED [16] O(𝑛 log(𝑛)) 𝑛 1

EF(𝛽(𝑎),�★) Opt.

Outline and contribution The results presented in previous paragraphs

motivate the search for novel computationally competitive and asymp-

totically optimal non-parametric bandit algorithms. We build on MED

to propose two novel approaches that achieve this goal. By MED, it is

meant the original MED algorithm presented in [12] as well as the DMED

[33] and IMED [16] approaches that are all based on the computation

of the EF. In the work presented in this section we will be interested in

computing numerically competitive approximations of the empirical EF

that is used by the MED algorithms that would not hinder the optimal

nature of the algorithm using this approximation. We first propose FMED

(resp. FIMED) as a fast variant of MED (resp. IMED), that computes the

empirical EF only for the arm that is pulled while a first-order Taylor

expansion is used to compute an approximation of the empirical EF for

98 4 Towards an optimal information usage

the other arms. This simple change translates to a considerable speed-up

of the algorithms, as for large enough horizons the best empirical arm (for

which EF is 0) is pulled most of the time, and preserves the theoretical

guarantees of the two original algorithms. However, FMED and FIMED

still require to store all rewards and to fully compute EF, albeit such a

computation occurs at an exponentially decreasing frequency. Armed

with the willingness to tackle this issue, we study another approach, in

which estimates of EF are computed using an online portfolio selection
algorithm. We highlight a property that would guarantee that such an

algorithm also keeps the guarantees of MED and IMED, while having

much faster computation time and having a competitive space complexity

of O(|𝐴|2), possibly lower.

The base intuition for this section is that, when working with a good

enough approximation, its is highly probable that approximation does
not matter in the asymptotically long term. In other words, when good,

i. e. with some kind of convergence, approximations do not matter in

the long term. In the context of this thesis, this work was motivated by

the quest of finding a good way to maximize the rate of information

acquisition by an optimal algorithm, i. e. reducing the computational

complexity while preserving the amount of information acquired (as

measured by Optimality criterion), effectively increasing the rate of

information acquisition. Hopefully, the reader will find it comforting

that it is not compulsory for an optimal algorithm to suffer an increasing

numerical complexity per time step while the uncertainty about the

solution of the problem is decreasing.

Without further ado, let’s present the algorithms, their theoretical guar-

antees, and numerical performances.

4.2 From intuition to algorithms: Fast MED
algorithms

We introduce, recall and clarify some necessary notation used in the

remainder of this chapter. In the Bandit problem (𝐴, 𝛽), 𝐴 is the set of

arms and 𝛽 :→ Fmaps an arm index 𝑎 ∈ F, the space of real random

variable with bounded support distribution in a prescribed interval. By

a slight abuse of notation, 𝛽(𝑎) sometimes refers to the reward random

variable of arm 𝑎 as well as the law of that random variable. The empirical

distribution of arm 𝑎 after 𝑡 interactions with the Bandit problem will

be denoted 𝐹𝑎(𝑡) ∈ F. The maximal empirical reward computed after 𝑡

interactions with the Bandit problem will be denoted �★(𝑡). The expected

reward of a policy that always play arm 𝑎 is denoted �𝑎 and the empirical

average reward of such a policy is denoted �𝑎(𝑡). Coincidentally, it also

corresponds numerically to the empirical mean of arm 𝑎 �(𝑡; 𝑎)while the

true expected reward of arm 𝑎 is �(𝑎). Therefore, the maximal empirical

reward �★(𝑡) also corresponds to the maximal of average reward a

(stationary) policy can get on the empirical Bandit control problem. In

the following, we propose fast variants of MED and IMED, that avoid

computing EF(𝐹𝑘(𝑡), �★(𝑡)) for each arm and at each interaction.

4.2 From intuition to algorithms: Fast MED algorithms 99

�𝐹 �★
0

�

u
n

l
i
k
e
l
y
h

o
o
d

o
f

o
p

t
i
m

a
l
i
t
y

� ↦→ EF(𝐹, �)
� ↦→ EF(𝐹, �★) + 𝜕EF(𝐹,𝑚)

𝜕𝑚 (�★) (�★ − �)

Figure 4.3: The function EF is continu-

ous, non-decreasing and convex in its

second argument (i. e. with fixed input

distribution). Hence, the graph is above

its tangent at all point. The plot x-axis is

one such that � ≥ �𝐹 because for smaller

value the EF is by definition equal to

zero. The plotted curve corresponds to

a EF of a Bernoulli distribution, but this

shape is generic.

[33]: Honda et al. (2010), ‘An Asymp-

totically Optimal Bandit Algorithm for

Bounded Support Models.’

On-access full update, off-access convex update: FMED &
FIMED

Here is the idea. While an arm 𝑎 ∈ 𝐴 is not sampled, the associated

empirical distribution 𝐹𝑎(𝑡) is constant. This is the case because there

are no structural assumptions so that one cannot transfer information

from one arm to another. Therefore, the function � ↦→ EF (𝐹𝑎(𝑡), �) is

unchanged between two interactions with the arm 𝑎. On the other hand,

the value �★(𝑡) is likely to change between two interactions with arm

𝑎 so that 𝑡 ↦→ EF (𝐹𝑎(𝑡), �★(𝑡)) is not a constant function despite its

first argument being constant. However, under good behavior of the

algorithms, the fluctuations of �★(𝑡) between two interactions with a

suboptimal arm 𝑎 should be small enough. Therefore, the variations of

the unlikelihood function of arm 𝑎, 𝑡 ↦→ 𝑁𝑎(𝑡)EF (𝐹𝑎(𝑡), �★(𝑡)), should be

relatively small and controlled between two interactions with arm 𝑎. The

idea is then to use a first order Taylor expansion of � ↦→ EF (𝐹𝑎(𝑡), �) to
compute a reliable enough approximation of 𝑡 ↦→ 𝑁𝑎(𝑡)EF (𝐹𝑎(𝑡), �★(𝑡))
between two interactions with arm 𝑎. Upon such an interaction, one can

update the empirical distribution, and compute the exact solution to the

empirical EF problem.

The first reason this approximation could be good enough is that the EF

function is a convex function of its second argument.

Lemma 4.2.1 (Properties of EF) Let Fbe the space of bounded distribution
in [𝑚, 𝑀] and 𝐹 a distribution in F. Then, the function

� ↦→ EF (𝐹, �)

is continuous, non-decreasing and convex on the whole domain [𝑚, 𝑀]. It
is also differentiable at all point of the open interval]𝑚, 𝑀[. In other word,
EF is continuous, differentiable, non-decreasing and convex in its second
argument.

This Lemma 4.2.1 illustrated in Figure 4.3 where the EF function cor-

responding to Bernoulli distributions is plotted. It corresponds to the

Theorem 7 of [33]. Thus, by using a first order Taylor expansion, one lower

bound the true unlikelihood and therefore, the computed index prescribe

to oversample arm 𝑎 compared to what the original index would ask

for. The second is that of that the fluctuations of �★(𝑡) around the mean

should be of order
1√
𝑡
. The number of samples of suboptimal arm 𝑎 should

be of order log 𝑡. Therefore, the fluctuations of 𝑡 ↦→ 𝑁𝑎(𝑡)EF (𝐹𝑎(𝑡), �★(𝑡))
should be of order

max

�∈[�★− 1√
𝑡
;�★+ 1√

𝑡
]

����𝜕EF(𝐹, 𝑚)
𝜕𝑚

(�)
���� × log 𝑡
√
𝑡
,

a quantity that can be controlled and converges to zero as the number

of interactions increases. The main difficulty of such an approximation

scheme lies in the control of what happens before converge, i. e. when

fluctuations of �★(𝑡)may be significant, for instance because there is a

switch of empirical best arm. Also, the maximal value of the gradient

might be quite large whenever �★
is close to the upper boundary 𝑀

of allowed expected values. This is illustrated in Figure 4.3 where one

100 4 Towards an optimal information usage

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

[33]: Honda et al. (2010), ‘An Asymp-

totically Optimal Bandit Algorithm for

Bounded Support Models.’

can see the divergence of the derivative of EF with respect to its second

argument as � is approaching the boundary of the allowed expected

values.

Deriving the algorithm Let 𝐹 ∈ Fbe a distribution of bounded support

in [𝑚, 𝑀] and let �, �′ ∈ [𝑚, 𝑀[be two numbers that represent two

expected values. Later on, � would be the maximal empirical reward

at the last exact computation of EF, EF (𝐹, �), while �′ would be the

current value of the maximal empirical reward. From Lemma 4.2.1, EF is

non-decreasing and convex in its second argument, therefore,

EF (𝐹, �′) ≥ EF (𝐹, �) +
𝜕EF

𝜕�
(𝐹, �) (�′ − �) . (4.15)

Assuming that we can access (and store) the partial derivative of EF with

respect to its second argument evaluated in�,
𝜕EF

𝜕� (𝐹, �), then 4.15 is lower

approximation of the EF that is useful when only the second argument

is changing. The closer �′ is from �, the better this approximation.

Fortunately, a result from [16] shows that the partial derivative evaluated

at � is equal to the maximizer argument of the dual function of EF. This

quantity can therefore readily be stored at no additional computational

cost and only constant memory cost. Using those facts, we propose FMED

and FIMED, respectively fast variants of MED and IMED algorithms

in which, for each arm 𝑎 ∈ 𝐴, the quantity EF(𝐹𝑎(𝑡), �★(𝑡)) is exactly

computed right after a new sample from arm 𝑎 has been collected, i. e.
when 𝑎𝑡−1 = 𝑎 and otherwise a Taylor approximation is used. The Taylor

expansion base interaction point is the last time arm 𝑎 was sampled. We

denote by 𝑠𝑎(𝑡),
𝑠𝑎(𝑡) = max {𝑠 ≤ 𝑡 | 𝑎𝑠 = 𝑎} ,

the last time arm 𝑎 was sampled prior to time 𝑡. As already said in

this thesis, this way of phrasing is useful, but one should really think of

storing a pointer to the last index in the history sequence that is associated

with a sample of arm 𝑎. The set of index is ordered, so this operation is

possible the same way it is done using natural numbers. In this spirit,

recall that we read 𝑡 as the total number of interactions. The derivative

𝜕EF

𝜕� (𝐹𝑎(𝑡), �
★(𝑡)) is denoted �𝑎 (𝑡) and is computed as the maximizer of

the dual problem of the empirical EF,

�𝑎(𝑡) = argmax

0≤�≤ 1

𝑀−�★(𝑡)

𝔼𝑋∼𝐹𝑎 (𝑡)
(
log

(
1 −

(
𝑋 − �★(𝑡)

)
�
))
.

Recall that, from [33], the infimum KL divergence EF can be computed

from its dual representation as

EF

(
𝐹𝑎(𝑡), �★(𝑡)

)
= max

0≤�≤ 1

𝑀−�★(𝑡)

𝔼𝑋∼𝐹𝑎 (𝑡)
(
log

(
1 −

(
𝑋 − �★(𝑡)

)
�
))
. (4.16)

The derivative of interest that we should store is �𝑎 (𝑠𝑎(𝑡)), that is to

say, the value of the derivative that has been computed the last time

arm 𝑎 has been sampled. Using all of the above, one can say that the

approximation that is used for the empirical EF of arm 𝑎 at a time 𝑡 that

does not immediately succeed an interaction with arm 𝑎 is the maximum

4.2 From intuition to algorithms: Fast MED algorithms 101

of zero and L𝑎(𝑡), where

L𝑎(𝑡) = EF

(
𝐹𝑎 (𝑡) , �★ (𝑠𝑎(𝑡))

)
+ �𝑎 (𝑠𝑎 (𝑡))

(
�★ (𝑡) − �★ (𝑠𝑎 (𝑡))

)
. (4.17)

This Equation 4.17 is exactly the formalization of the intuition we devel-

oped in the previous paragraph. We denote the complete expression of

the approximation K𝑎(𝑡)with

K𝑎(𝑡) = max {0,L𝑎 (𝑡)} . (4.18)

The reason for this max is that EF is a positive quantity by construction.

Therefore, one can only increase the quality of the approximation by pro-

jecting the approximation into the original set it is within. This constraint

is not required for the algorithm to work as a negative approximation of

the EF means that, "surely", this arm will be pulled and a complete com-

putation of the empirical EF will then occur. Similarly, among all arms

with zero valued approximation of EF, the one with the smallest number

of pulls is sampled, and "surely", it would be the suboptimal arm with

this zero valued approximation. The two situations are algorithmically

somewhat similar but using the max is theoretically more satisfying and

sound.

Algorithms

We present in Algorithm 14 and Algorithm 15 the two fast update

algorithms FIMED and FMED respectively.

Aggregating all of the above, we can express the index that is used by

our two FMED and FIMED algorithms,J𝑎(𝑡) as

J𝑎(𝑡) =

0 if 𝑁𝑎(𝑡) = 0

EF (𝐹𝑎(𝑡), �★(𝑡)) if 𝑎𝑡−1 = 𝑎 (exact computation)

max {0,L𝑎 (𝑡)} otherwise (Taylor expansion)

(4.19)

where the exact computation is practically done, either at a fixed precision

given the knowledge of the time horizon or with increasing precision

proportional to
1

𝑛 where 𝑛 is the number of samples collected from arm

𝑎. However, in the theoretical algorithm and proof of regret, we consider

that those computations can be done exactly. At each interaction 𝑡, both

FMED and FIMED will computeJ𝑎(𝑡) for all arm 𝑎 ∈ 𝐴 and decide on

the next arm to sample based on those information, the unlikelihood of

optimality, and the numbers of samples 𝑁𝑎(𝑡). Please recall thatJ𝑎(𝑡) is a

useful compact notation to writeJ𝑎 (𝐻) =J (𝑎, 𝐻)where𝐻 is the whole

history of all the 𝑡 interactions. In the spirit of this thesis, we write the

algorithm using the history notation and not the "time" notation as we

think that no explicit mention of the "time" or total number of interaction

should appear in the algorithm. However, in the forthcoming analysis

of the regret, we do use the conventional notations that are used by the

bandit community. Still, we hope that the reader will be convinced by

the advantages of using the history notation.

102 4 Towards an optimal information usage

Algorithm 14: FIMED: Fast IMED algorithm

Input: A bandit tuple (A, 𝑠 , V) as in Definition 3.1.12;

1 Initialize history 𝐻 as 𝐻 = ∅;The history 𝐻 is a multiset. Similarly to

𝑚 and �, the data structure used to rep-

resent 𝐻 numerically is a dictionary or

hash table.
2 Initialize 𝑘 : 𝐴→ ℝ that will store the value of the last exact

computation of empirical EF at the last interaction with arm 𝑎;

3 Initialize 𝑚 : 𝐴→ ℝ that will store the value of �★
at the last

interaction with arm 𝑎;

4 Initialize � : 𝐴→ ℝ that will store the value of the derivative of EF

evaluated at �★
at the last interaction with arm 𝑎;

5 for 𝑡 ∈ ℕ do
6 forall 𝑎 ∈ Ado
7 Compute index 𝐽𝑎 = 𝑁𝑎(𝐻)J (𝑎, 𝐻) + log𝑁𝑎(𝐻);
8 Compute 𝑎 ∈ argmax𝑒∈A 𝐼𝑒 ;
9 Sample a reward 𝑟 ∼ 𝛽(𝑎) from distribution 𝛽(𝑎) of arm 𝑎;

10 Update history, 𝐻 ← 𝐻 ∪ {(𝑎, 𝑟)};
11 Update maximal map, 𝑚(𝑎) ← �★(𝐻);
12 Update EF map, 𝑘(𝑎), computed from the exact empirical EF

solution;

13 Update derivative map, �(𝑎), computed from the exact empirical

EF solution;

Using notations of Algorithm 14 the fast update of the EF is written as

J (𝑎, 𝐻) = 𝑘(𝑎) + �(𝑎)
(
�★(𝐻) − 𝑚(𝑎)

)
,

where the fast update is used when an exact computation of the empirical

EF is not done.

Algorithm 15: FMED: Fast MED algorithm

Input: A bandit tuple (A, 𝑠 , V) as in Definition 3.1.12;

1 Initialize history 𝐻 as 𝐻 = ∅;The history 𝐻 is a multiset. Similarly to

𝑚 and �, the data structure used to rep-

resent 𝐻 numerically is a dictionary or

hash table.
2 Initialize 𝑘 : 𝐴→ ℝ that will store the value of the last exact

computation of empirical EF at the last interaction with arm 𝑎;
3 Initialize 𝑚 : 𝐴→ ℝ that will store the value of �★

at the last

interaction with arm 𝑎;
4 Initialize � : 𝐴→ ℝ that will store the value of the derivative of EF

evaluated at �★
at the last interaction with arm 𝑎;

5 for 𝑡 ∈ ℕ do
6 forall 𝑎 ∈ Ado
7 Compute exponential weight 𝑃𝑎 = exp

(
−𝑁𝑎(𝐻)J (𝑎, 𝐻)

)
;

8 Compute multinomial parameters 𝑝𝑎 =
𝑃𝑎∑
𝑎∈𝐴 𝑃𝑎

and vectorized

parameter 𝑝 = (𝑝𝑎)𝑎∈𝐴 ;

9 Sample 𝑎 ∼ 𝑀𝑢𝑙𝑡 (𝑝), a multinomial distribution of parameter 𝑝;

10 Sample a reward 𝑟 ∼ 𝛽(𝑎) from distribution 𝛽(𝑎) of arm 𝑎;
11 Update history, 𝐻 ← 𝐻 ∪ {(𝑎, 𝑟)};
12 Update maximal map, 𝑚(𝑎) ← �★(𝐻);
13 Update EF map, 𝑘(𝑎), computed from the exact empirical EF

solution;

14 Update derivative map, �(𝑎), computed from the exact empirical

EF solution;

4.2 From intuition to algorithms: Fast MED algorithms 103

8: The empirical value of EF of an op-

timal arm is zero by construction and

its derivative also is zero by construc-

tion, see Figure 4.3. "Computing" the EF
of optimal arm is therefore always O(1)
complexity cost.

Despite its simplicity, this method approximating the empirical EF

already permits a huge gain of computation time. Indeed, the exact

computation of empirical EF only happens when a suboptimal arm is

sampled, that is to say O(log𝑇) times.
8

Furthermore, whenever such a

costly operation is performed, the computation is only made for one arm,

the suboptimal one that has been sampled. Of course, this small analysis

is anticipating in the regret upper bound that will confirm the fact that

suboptimal arms are indeed sampled a O(log𝑇) of the total number 𝑇 of

interactions. Comparatively, in the IMED and MED algorithms, |𝐴| − 1

computations of the empirical EF are required at each interaction, each

of which costing O(log𝑇 log log𝑇) time complexity for a precision of

1

log𝑇 on the value of the empirical EF. This numerical precision of the

numerical scheme used to perform the convex optimization problem

is the reason of the log log𝑇 term and is simply read as the log of the

number of samples of the relevant suboptimal arm.

However, these two algorithms still require to keep every sample in

memory because, from time to time, an exact computation of the empirical

EF must be performed. This is rather non-satisfactory and motivates us

to investigate an alternative approach in the next section.

Personal remark

The required memory for FMED/FIMED after 𝑇 interactions is O(𝑇),
essentially because storing the samples of the optimal arm is necessary,

even is those samples are not really used. The only scenario in which

those samples would be used is when the optimal arm changes, a rare

event. Therefore, I think that one could only keep O
(
log(𝑇)2

)
samples of

the optimal arm. The empirical mean of the optimal arm is still computed

using the usual scheme and therefore all the collected samples. The

number of samples used in the FIMED index would also be equal to the

total number of collected samples as long as this arm is optimal. If there

is a switch, i. e. the optimal arm suddenly is no longer the optimal one,

then we use its effective number of samples, the O
(
log(𝑇)2

)
quantity,

in both the FMED and FIMED algorithm. With a number of samples

proportional to log(𝑇)2 instead of log𝑇 (now that it is suboptimal),

this arm, previously optimal, would be considered vastly oversampled

compared to its likelihood of optimality. Preserving log(𝑇)2 samples

compared to log𝑇 seems better to me because, in case of a switch, at

least 𝑇 large enough, log(𝑇)2 ≥ 𝑐 log𝑇, for arbitrary positive constant 𝑐.

Therefore, whatever the newly computed EF of this previously optimal

arm, we are certain, for 𝑇 large enough, that the number of samples is

strictly (and vastly) greater than the amount of samples log𝑇/EF that

would be required by the algorithm. There are therefore no samples to

collect right after the suboptimality is discovered, which would be kind of

absurd. One can even say that there are no samples to collect for roughly

log𝑇 times the number of interactions that already happened. Instead

of log(𝑇)2, I do think that we could use log(𝑇)1+𝜖 for arbitrary positive

𝜖, but it is hard to predict the effect on 𝜖 on finite time performances,

although I think that large 𝜖 for O(|𝐴|) interactions would be good. That

is to say, at the beginning of interactions, we store all the samples because

the probability of switching is non-negligible and, after a while, we use

the rule of storing only log(𝑇)2 samples for the empirical optimal arm.

104 4 Towards an optimal information usage

Therefore, the rule would be to store all the samples for suboptimal arm

and store max

(
log(𝑇)2 , |𝐴|

)
for the optimal one.

It would surely make an analysis more complicated, but I think that

a better rule would be to use the maximum value of (�★(𝑡) − �𝑎(𝑡))−2

,

the invert of suboptimality gap instead of |𝐴|. This would ensure that

the number of samples allows a statistically significant separation of the

maximal expected value and the closest to be optimal other expected

value. Indeed, when the number of samples is 𝑛 the fluctuations are

of order
1√
𝑛

. If we want to avoid switching due to random fluctuations,

i. e. when the optimal mean fluctuates by more than the minimum of

�★(𝑡) − �𝑎(𝑡), denoted Δ, then one should try to guarantee that the

number 𝑛 of samples is such that

1√
𝑛
≤ Δ⇒ 𝑛 ≥ 1

Δ2

.

Because log(𝑇)2 is bound to be larger than Δ−1
anyway, let’s keep the

simple memory constraint of log𝑇2
for the optimal arm. If we were to

modify FIMED and FMED the way we just describe, then the space

complexity would drop from O(𝑇) to a significantly lower O
(
log(𝑇)2

)
.

This would be a huge improvement and, while writing this thesis, I do

not have the time to prove this claim, I do think FIMED and FMED with

this modification can be proved to be optimal. Assuming this is the case,

not only would the amount of information per computation is increasing

compared to IMED and MED, but the required memory to make sure of

the optimality would also be so much lower!

The final algorithm, which we called AFMED (Amnesic Fast MED) is

described Algorithm 16. A similar algorithm, AFIMED (Amnesic Fast

IMED) can similarly be described while paying attention to using the

right amount value of the number of samples in the log.

Interestingly, both FMED and FIMED are optimal algorithms. It shows

that with fewer computations and without stronger assumptions on the

set of distributions F, it is possible to get an optimal algorithm. Thus,

the amount of progress per unit of computation is better in FMED and

FIMED compared to the original MED and IMED algorithms. I would

like to encourage the reader to think about this fact proven by FMED and

FIMED: optimality can be obtained with an amortized cost per iteration of

O(|𝐴|). The rate at which information is processed to compute an optimal

strategy is therefore close to be minimal since this cost still depends on

the total number of arm. In a strategy like Follow The Leader or Explore

Then Commit, the cost per iteration is independent of the number of

arms, except at the unique step in which a leader is computed.

4.2 From intuition to algorithms: Fast MED algorithms 105

Algorithm 16: AFMED: Amnesic Fast MED algorithm

Input: A bandit tuple (A, 𝑠 , V) as in Definition 3.1.12;

1 Initialize history 𝐻 as 𝐻 = ∅; The history 𝐻 is a multiset. Similarly to

𝑚 and �, the data structure used to rep-

resent 𝐻 numerically is a dictionary or

hash table.
2 Initialize 𝑘 : 𝐴→ ℝ that will store the value of the last exact

computation of empirical EF at the last interaction with arm 𝑎;
3 Initialize 𝑚 : 𝐴→ ℝ that will store the value of �★

at the last

interaction with arm 𝑎;
4 Initialize � : 𝐴→ ℝ that will store the value of the derivative of EF

evaluated at �★
at the last interaction with arm 𝑎;

5 for 𝑡 ∈ ℕ do
6 forall 𝑎 ∈ 𝐴 do
7 Compute exponential weight 𝑃𝑎 = exp

(
−𝑁𝑎(𝐻)J (𝑎, 𝐻)

)
;

8 Compute multinomial parameters 𝑝𝑎 =
𝑃𝑎∑
𝑎∈𝐴 𝑃𝑎

and vectorized

parameter 𝑝 = (𝑝𝑎)𝑎∈𝐴 ;

9 Sample 𝑎 ∼ 𝑀𝑢𝑙𝑡 (𝑝), a multinomial distribution of parameter 𝑝;

10 Sample a reward 𝑟 ∼ 𝛽(𝑎) from distribution 𝛽(𝑎) of arm 𝑎;
11 if arm 𝑎 is empirically optimal then
12 if 𝑁𝑎(𝐻) ≤ (log𝑇)2 then
13 Update history, 𝐻 ← 𝐻 ∪ {(𝑎, 𝑟)};

14 else
15 Update history, 𝐻 ← 𝐻 ∪ {(𝑎, 𝑟)};
16 Update maximal map, 𝑚(𝑎) ← �★(𝐻);
17 Update EF map, 𝑘(𝑎), computed from the exact empirical EF

solution;

18 Update derivative map, �(𝑎), computed from the exact empirical

EF solution;

𝑎0

𝑎1

𝑎2

𝑎3

𝑎4

Figure 4.4: Cyclic permutation of a set of

5 actions indexed by ℤ5, {𝑎0 , 𝑎1 , . . . , 𝑎5}.

Personal remark

The idea is that one should not be computing nor comparing indexes

at every interaction, especially knowing that most of the time, the com-

parison will prescribe to follow the leader. Therefore, one could use a

small active action set made of actions for which we compute the index

and pick the next action from that set. The active set will change after

every interaction and the computation of the new active set should not

be costly, i. e. it should be a constant time cost. Let’s denote 𝐴𝑡 the active

set at interaction 𝑡. The empirical optimal action should always belong to

the active set 𝐴𝑡 . Then, it should be that suboptimal actions belong to

the active set with roughly equal probability, every |𝐴| interactions or

so. The main idea is that suboptimal actions should belong to the active

set at a frequency larger than

log𝑇

𝑇 . Here we use a frequency
1

|𝐴| , but we

could probably be even more aggressive and have an active set consisting

of only the empirical best for longer and longer chunk of uninterrupted

follow the leader periods, as long as the frequency of suboptimal arms in

the active set is large enough, say, larger than

log(𝑇)2
𝑇 . If we choose 𝐴𝑡 to

always be of cardinal 2, then it should contain the current optimal action

as well as a suboptimal one. The suboptimal action is chosen using a

deterministic scheme based on a cyclic permutation 𝜎 : 𝐴→ 𝐴 of actions

in the action set, as depicted in Figure 4.4. To be more precise, there

should be one permutation 𝜎𝑎 : 𝐴 \ {𝑎} → 𝐴 \ {𝑎} for each action 𝑎 ∈ 𝐴

106 4 Towards an optimal information usage

9: or only have to sample from a

Bernoulli distribution in the case of

(F)MED.

where the cyclic permutation 𝜎𝑎 is used when action 𝑎 is empirically

optimal. If we denote ★ an empirically optimal arm, and assume that it

does not change, then, using 𝜎★, one can construct a sequence of active

set from which an action is chosen. Starting from 𝑎 ≠ ★, the sequence

then is

{★, 𝑎} → {★, 𝜎(𝑎)} → {★, 𝜎 ◦ 𝜎★(𝑎)} → · · · →
{
★, 𝜎(𝑇)★ (𝑎)

}
where 𝜎(𝑇)★ denotes 𝑇 compositions of 𝜎★.

Using this idea, the amount of computation per interaction is therefore

independent of the number of arm. We compute the index of an arm

only if it in the active set: there is really one index to compute, the

one of the suboptimal arm but the amortized cost is O(1) using the

FMED/FIMED strategy. We have only one comparison to perform
9

instead of |𝐴|. Therefore, using this strategy with FMED/FIMED, the

number of computations per interaction is independent of the number of

arms and, thanks to the competitive amortized cost of FMED/FIMED,

the number of computations per interaction is reduced to O(1), which is

impressive. If were to combine this scheme with the AFMED or AFIMED

algorithms 16, then we would have an algorithm with an optimal number

of computations per time step (nothing can be better than O(1) when

comparing quantities with Onotations) and a highly competitive space

complexity required after 𝑇 interactions of O log(𝑇)2. It should be noted

that checking for the empirically maximal element is not done at a O(|𝐴|)
cost per interaction. Upon sampling the optimal arm, one can just check

if the variation of the empirical expected values fluctuates more than

the current suboptimality gap, which cost O(1) and does not happen

often (exponentially decreasing probability of happening). If such an

unlikely switch occurs, then the new optimal arm is given by the second

one and the new position of the previous optimal arm can be found in

log |𝐴| time if the arms are already sorted. An efficient implementation

could be to use a max-heap data structure. We call asynchronous the

method that we just describe, as all arms are not considered at each

interaction, and we call aAFMED (and aAFIMED) the asynchronous

Amnesic FMED algorithm that merges the two ideas presented. The

pseudocode is presented in Algorithm 17.

In Algorithm 17, indexes are computed line 7 using only the fast update

and the exact computation of the empirical EF is performed line 16

whenever a suboptimal arm is sampled. This way, the amortized cost per

interaction isO(1) and the space complexity grows asO
(
log(𝑇)2

)
. I believe

that such an algorithm can be proven to be optimal with all the tools that

are already available. I hope to be able to do the proof of aAFMED before

the oral defense of this PhD. We summarize in Table 4.4 the complexities

Table 4.4: Amortized time complexity needed to compute the next suboptimal arm 𝑎 of distribution 𝛽(𝑎) to pull and total space

complexity required after 𝑇 interactions.

Algorithm Time complexity Space complexity Constant Optimality

aAFMED O(1) O
(
log(𝑇)2

)
Conjecture

1

EF(𝛽(𝑎),�★) Conjecture Opt.

and conjectured performances of the aAFMED algorithm (and implicitly

the aAFIMED algorithm).

4.2 From intuition to algorithms: Fast MED algorithms 107

Algorithm 17: aAFMED: asynchronous Amnesic Fast MED algorithm

Input: A bandit tuple (A, 𝑠 , V) as in Definition 3.1.12;

1 Initialize history 𝐻 as 𝐻 = ∅; The history 𝐻 is a multiset. Similarly to

𝑚 and �, the data structure used to rep-

resent 𝐻 numerically is a dictionary or

hash table.
2 Initialize 𝑘 : 𝐴→ ℝ that will store the value of the last exact

computation of empirical EF at the last interaction with arm 𝑎;
3 Initialize 𝑚 : 𝐴→ ℝ that will store the value of �★

at the last

interaction with arm 𝑎;
4 Initialize � : 𝐴→ ℝ that will store the value of the derivative of EF

evaluated at �★
at the last interaction with arm 𝑎;

5 for 𝑡 ∈ ℕ do
6 Compute active set 𝐴𝑡 using forall 𝑎 ∈ 𝐴𝑡 do
7 Compute exponential weight 𝑃𝑎 = exp

(
−𝑁𝑎(𝐻)J (𝑎, 𝐻)

)
;

8 Compute multinomial parameters 𝑝𝑎 =
𝑃𝑎∑

𝑎∈𝐴𝑡 𝑃𝑎
and vectorized

parameter 𝑝 = (𝑝𝑎)𝑎∈𝐴 ;

9 Sample 𝑎 ∼ 𝐵𝑒𝑟𝑛 (𝑝), a Bernoulli distribution of parameter 𝑝;

10 Sample a reward 𝑟 ∼ 𝛽(𝑎) from distribution 𝛽(𝑎) of arm 𝑎;
11 if arm 𝑎 is empirically optimal then
12 if 𝑁𝑎(𝐻) ≤ (log𝑇)2 then
13 Update history, 𝐻 ← 𝐻 ∪ {(𝑎, 𝑟)};

14 else
15 Update history, 𝐻 ← 𝐻 ∪ {(𝑎, 𝑟)};
16 Compute exactly the empirical EF using the newly collected

sample;

17 Update maximal map, 𝑚(𝑎) ← �★(𝐻);
18 Update EF map, 𝑘(𝑎), computed from the exact empirical EF

solution;

19 Update derivative map, �(𝑎), computed from the exact empirical

EF solution;

[33]: Honda et al. (2010), ‘An Asymp-

totically Optimal Bandit Algorithm for

Bounded Support Models.’

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

10: By MED-like algorithm, we mean

those algorithms that, just like MED,

are based on the minimization (M) of

an empirical (E) Kullback-Leibler diver-

gence (D).

[26]: Riou et al. (2020), ‘Bandit algo-

rithms based on Thompson sampling

for bounded reward distributions’

Regret

The Algorithms FMED 15 and FIMED 14 have, by construction, rather

similar theoretical guarantees. This situation is similar to what is known

about the MED [33] and IMED [16] algorithms. The proofs techniques

that are used in this section and the following aim to emphasize those

similarities. Compared to the original articles, we think that the proofs

are more general and prioritize general results about common quantities

and phenomenon in the MED-like algorithms
10

than any previous work.

Similarly to what is done in the more recent work of Charles Riou and

Junya Honda [26], we distinguish between two main events respectively

called the pre-convergence and post-convergence terms. Those two

expressions captures the intuition that when the number of interaction is

small, then the information are somehow unreliable and no well-informed

optimal decision can be mad; this is pre-convergence. When the number

of interactions is large enough that some form of knowledge about the

optimal decision is certainly obtained, informed optimal decision can

be made; this the post-convergence. The smallest amount of time the

pre-convergence regime can last in the unstructured Bandit setting is

obviously |𝐴| since all arms have to be sampled at least once by any

agent. Thus, naming and separating terms this way might be key thought

ingredient to better handle finite time analysis of bandit algorithms.

108 4 Towards an optimal information usage

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

In Theorem 4.2.2, we state an upper bound on the regret of the FMED

Algorithm 15 and FIMED Algorithm 14. The stated result is of course

also valid for the original MED and IMED algorithms, which we recall.

The optimality of FMED-like algorithms is a direct consequence of this

theorem.

Theorem 4.2.2 Consider (𝐴, 𝛽) a Bandit problem where the distribution
of 𝛽(𝑎) is 𝐹𝑎 ∈ F, a set of bounded distributions with known boundaries,
𝛽 (𝑎) ∼ 𝐹𝑎 ∈ F for all 𝑎 ∈ 𝐴. We denote �★ = max𝑎∈𝐴 �(𝑎) the maximal
expected reward which, we recall, also is the maximal gain possible of the
corresponding Bandit control problem.

Let 𝑇 ∈ ℕ corresponds to a total number of interactions, or time horizon,
𝑎 ∈ 𝐴 be the index of a suboptimal arm, and 𝜖 > 0 be arbitrary (small) real
number. Then, MED, FMED, IMED, and FMED satisfy the following upper
bound on the expected number of interactions with arm 𝑎,

𝔼 (𝑁𝑎(𝑇)) ≤
log(𝑇)

EF(𝐹𝑎 , �★) − 𝜖
+ 𝑜𝜖(log(𝑇)) , (4.20)

where 𝑜𝜖(log(𝑇)) denotes a term that is asymptotically dominated by log(𝑇)
for any fixed 𝜖, but with a polynomial dependency in 𝜖−1.

Furthermore, all the algorithms are asymptotically optimal.

The main result is that FMED and FIMED both preserve the theoretical

guarantees of their original algorithm. We apply our analysis to MED and

IMED too, in order to exhibit more precisely the new terms induced by the

approximation, and their scaling in O(𝜖−2). Furthermore, we drastically

simplify the analysis of IMED compared to [16], although their result is

more general because the authors consider the family of upper bounded

distributions (no finite lower bound is assumed to be known).

To make the proof easier to follow, we first outline a sketch of proof that

hopefully will highlight the key points of the reasoning.

Proof sketch. The Definition 4.19 of the approximationJ𝑎(𝑡) of the empir-

ical EF (𝐹𝑎(𝑡), �★(𝑡)) and Equation 4.15 can be read as

J𝑎 (𝑡) ≤ EF

(
𝐹𝑎(𝑡), �★(𝑡)

)
for all arm 𝑎 ∈ 𝐴 and index of interaction 𝑡 ∈ ℕ. The unlikelihood

of optimality computed by FMED/FIMED is always smaller than the

empirical unlikelihood computed by the original MED/IMED vanilla

algorithms. This fact makes FMED and FIMED at least as exploratory as

the vanilla algorithms. Their regret is thus smaller in a pre-convergence
regime, defined by the interactions for which the maximal expected value

is 𝜖-underestimated, �★(𝑡) ≤ �★ − 𝜖. More exploration when things are

not well estimated, especially the maximal gain, is better and lead to

smaller regret because the algorithm can benefit a regression to the mean
effect and recover quicker, i. e. with less interaction, from statistical errors.

The main challenge is then to prove that using the approximated di-

vergences, (J𝑎(𝑡))𝑎∈𝐴, do not lead to over-exploration of the suboptimal

arms in a post-convergence regime, in which the maximal expected value

is not 𝜖-underestimated, �★(𝑡) ≥ �★ − 𝜖. The key is to understand that

4.2 From intuition to algorithms: Fast MED algorithms 109

over-exploration of suboptimal arm 𝑎 would have to come from a poor

approximation of EF (𝐹𝑎(𝑡), �★(𝑡)) by J𝑎 (𝑡). Such a scenario happen

when �★ (𝑠𝑎(𝑡)), the value of the best empirical mean the last time (𝑠𝑎(𝑡))
arm 𝑎 has been sampled, is very different from the current value �★(𝑡) of

the empirical best expected value. However, under such a scenario, at the

moment suboptimal arm 𝑎 is sample, the gap between EF (𝐹𝑎(𝑡), �★(𝑡))
andJ𝑎 (𝑡) is nullified, as well as the gap between �★ (𝑠𝑎(𝑡)) and �★(𝑡). Af-

terward, in the post-convergence regime, the fluctuation of �★(𝑡) should

be so small that the approximation errors are close to zeros and induce a

small number of additional suboptimal interaction. This small number is

the reason we get an additional O(𝜖−2) term in the FMED and FIMED

regret bound compared to the regret upper bound of the MED and IMED

algorithms.

While this sketch of proof is mainly focused on the difference with

MED/IMED because we already know the optimality of those algorithms,

we recall that our proof will not assume this knowledge and involve

proof techniques that allows to rederive the optimality of both the

vanilla algorithms while unifying our viewpoint on those MED-like

approaches.

We summarize numerical and theoretical performances of our FMED

and FIMED algorithms in Table 4.5 that will be used to complete the

original table of comparisons 4.1.

Table 4.5: Amortized time complexity needed to compute the next suboptimal arm 𝑎 of distribution 𝛽(𝑎) to pull and total space

complexity required after 𝑇 interactions.

Algorithm Time complexity Space complexity Constant Optimality

FMED (Alg. 15) O(1) O(𝑇) 1

EF(𝛽(𝑎),�★) (Thm. 4.2.2) Opt.

FIMED (Alg. 14) O(1) O(𝑇) 1

EF(𝛽(𝑎),�★) (Thm. 4.2.2) Opt.

110 4 Towards an optimal information usage

Proof of Theorem 4.2.2

Of empirical divergence, information & optimality

In this section, we provide a proof of Theorem 4.2.2 that unify the proof of FMED, FIMED, MED, and

IMED. This proof is important to this thesis because all the four published and presented papers are based

on MED-like strategies. The subtitle of this section, Of empirical divergence, information & optimality,

reflects our viewpoint on the theoretical tools used to derive a proof of MED-like strategies. While attempting

to formalize mathematically what it means to ask questions, to get information, and to sequentially solve, we

almost surely end up working with probability theory and convex optimization. The former is powerful

mathematical way to express randomness and uncertain information about problems. The latter only makes

sense in some spaces, in particular, those space where sentence like "getting closer to a solution" can be

given a mathematical meaning. When a space is endowed with a topology, one can start to talk about the

vicinity of some points. When a space is endowed with a metric, one can start to talk about points that are

close, getting closer or further. In convex optimization, one can conveniently relate local informative values

to desirable global ones and therefore get closer to a given point thanks to local information. Things really get

interesting when mixing the two topics, probability and metric spaces since we can start say things such

as the probability of two points getting closer. MED-type strategies make a great work at relating gathered
information to empirical unlikelihood of optimality by mathematically handling empirical divergence
between estimated distributions and relates this divergence to a probability of optimality.

The tools that are used to prove upper bounds on the logarithmic growth rate of regret on MED-like strategies

are versatile and informative. We introduce them now, prior to proving the Theorem 4.2.2. In the following,

the set of arms is assumed to be of cardinal 𝐾 and arms are indexed by {1, . . . , 𝐾}. We assume that arm 1 is

optimal which can hold true up to a permutation of indexes.

Toolbox for bounded distributions.

In the proofs we use the following results, that come from several works on bounded distributions in bandits

(e.g. [16, 21]).

Lemma 4.2.1 (Useful properties of EF) Let 𝐹 ∈ F be a distribution of mean �𝐹 . We denote by 𝐹𝑛 and �𝑛
respectively the empirical cumulative distribution function (cdf) and empirical mean corresponding to 𝑛 i.i.d.
observations collected from 𝐹. It holds that

1. EF is continuous, non-decreasing and convex in its second argument (Theorem 7 of [33]).
2. There exists constants 𝑐 > 0, 𝛿0 > 0 such that ∀� > �𝐹 , and 𝛿 ∈ (0, 𝛿0] it holds that

ℙ (EF(𝐹𝑛 , �) ≤ EF(𝐹, �) − 𝛿) ≤ 𝑒−𝑛𝑐𝛿2

.

3. For any 𝜖 > 0 and � > �𝑛 + 𝜖, it holds that

EF(𝐹𝑛 , �) − EF(𝐹𝑛 , � − 𝜖) ≥ 𝛿𝜖 B
2𝜖2

(𝐵 − 𝑏)2 .

4. For any 𝑥 > 0, it holds that (Lemma 6 from [21])

ℙ(EF(𝐹𝑛 , �1) > 𝑥) ≤ 𝑒(𝑛 + 2)𝑒−𝑛𝑥 .

5. For any 𝜖 > 0 (Hoeffding’s inequality),

ℙ(�𝑛 ≤ �𝐹 − 𝜖) ≤ 𝑒−2𝑛𝜖2

and ℙ(�𝑛 ≥ �𝐹 + 𝜖) ≤ 𝑒−2𝑛𝜖2

.

4.2 From intuition to algorithms: Fast MED algorithms 111

Proof. Property 3. can be deduced from Lemma 13 of [33]. Using the convexity of EF and Pinsker inequality

we obtain that

EF(𝐹𝑛 , �) − EF(𝐹𝑛 , � − 𝜖) ≥ EF(𝐹𝑛 , �𝑛 + 𝜖) ≥ kl(�𝑛 , �𝑛 + 𝜖) ≥ 2𝜖2 ,

if the range is [0, 1]. The factor
1

(𝐵−𝑏)2 comes from using this result on rescaled distributions for general ranges.

Then, property 2. can be obtained with a straightforward adaptation of the proof of Lemma 6 of [36] (in their

Appendix B.1). Indeed, in this paper the authors consider a non-parametric family of distributions for which

EF can be expressed in a very analogous way to Equation 4.16.

Proof of Theorem 4.2.2

We introduce the notation

𝑠𝑘(𝑡) = inf{𝑠 ≤ 𝑡 : 𝑁𝑘(𝑠) = 𝑁𝑘(𝑡)} ,

which is the time step corresponding to the last pull of arm 𝑘 before time 𝑡, and

𝑘★(𝑡) = argmax

𝑘∈𝐴
�𝑘(𝑡) ,

which is the empirical best arm.

We mention that the regret of all algorithms using the multinomialization trick can be directly deduced from

the proof of the general case. Indeed, as the bandit algorithms only see the discretized reward, its regret

guarantees are the same as those of a problem where the true distributions are (𝐹Mult

1
, . . . , 𝐹Mult

𝐾
). Hence, we

focus in the following on the guarantees of the standard implementation of the algorithms.

Proof. Equation 4.20 can be proved for all the algorithms with the same general proof scheme. Hence, we

propose a proof that tackle them all at once, explicitly mentioning which parts are specific to a given algorithm.

We start by proving a first general upper bound.

Lemma 4.2.2 (Generic regret upper bound) For each suboptimal arm 𝑘 and any 𝜖 > 0, FMED and FIMED both
satisfy

𝔼[𝑁𝑘(𝑇)] ≤ 𝑢𝜖(𝑇) + 𝔼
[
𝑇−1∑
𝑡=𝑢

𝟙(𝐴𝑡+1 = 𝑘, 𝑁𝑘(𝑡) > 𝑢𝜖(𝑇), G𝑘(𝑡),J𝑘(𝑡))
]

︸ ︷︷ ︸
Post-CV

+ 𝔼
[
𝑇−1∑
𝑡=𝑢

𝟙(𝐴𝑡+1 = 𝑘, 𝑁𝑘(𝑡) > 𝑢, �★(𝑡) ≤ �1 − 𝜖0)
]

︸ ︷︷ ︸
Pre-CV

+O𝜖(1) ,

where
𝑢𝜖(𝑇) =

⌈
log(𝑇)

EF(𝐹𝑘 , �1) − 𝜖

⌉
,

and using the notation 𝜖0 =
𝐵−�1

4
𝜖 and 𝜖1 = 𝜖2 = 𝜖

2
we define

J𝑘(𝑡) = {EF(𝐹𝑘(𝑡), �1 − 𝜖0) ≥ EF(𝐹𝑘 , �1) − 𝜖1},

and

112 4 Towards an optimal information usage

▶ For MED and IMED,
G𝑘(𝑡) =

{
�★(𝑡) ≥ �1 − 𝜖0

}
▶ For FMED and FIMED,

G𝑘(𝑡) =

�★(𝑡) ≥ �1 − 𝜖0 ,

�★(𝑠𝑘(𝑡)) ≥ �1 − 𝜖0 ,

�★(𝑡) − �★(𝑠𝑘(𝑡))
𝐵 − �★(𝑠𝑘(𝑡))

≥ −𝜖2

Proof. We upper bound the number of pulls by distinguishing several cases,

𝔼 [𝑁𝑘(𝑇)] ≤ 𝑢𝜖(𝑇) + 𝔼
[
𝑇−1∑
𝑡=1

𝟙(𝐴𝑡+1 = 𝑘, 𝑁𝑘(𝑡) > 𝑢𝜖(𝑇), G(𝑡),J𝑘(𝑡))
]

︸ ︷︷ ︸
Post-CV

+ 𝔼
[
𝑇−1∑
𝑡=1

𝟙(𝐴𝑡+1 = 𝑘, 𝑁𝑘(𝑡) > 𝑢𝜖(𝑇), �★(𝑡) ≤ �1 − 𝜖0)
]

︸ ︷︷ ︸
Pre-CV

+ 𝔼
[
𝑇−1∑
𝑡=1

𝟙(𝐴𝑡+1 = 𝑘, 𝑁𝑘(𝑡) > 𝑢𝜖(𝑇),J𝑘(𝑡))
]

︸ ︷︷ ︸
CV-Emp

+ 𝔼
[
𝑇−1∑
𝑡=1

𝟙

(
𝐴𝑡+1 = 𝑘, �★(𝑡) ≥ �1 − 𝜖0 ,

�★(𝑡) − �★(𝑠𝑘(𝑡))
𝐵 − �★(𝑠𝑘(𝑡))

≤ −𝜖2

)]
︸ ︷︷ ︸

Var-Best (FMED and FIMED only)

+ 𝔼
[
𝑇−1∑
𝑡=1

𝟙
(
𝐴𝑡+1 = 𝑘, �★(𝑡) ≥ �1 − 𝜖0 , �

★(𝑠𝑘(𝑡)) ≤ �1 − 𝜖0

)]
︸ ︷︷ ︸

Transition-Best (FMED and FIMED only)

.

This upper bound already exhibits 𝑢𝜖(𝑇), Post-CV and Pre-CV. It remains to prove that the additional terms

are upper bounded by constants depending on 𝜖. The term CV-Emp is necessary for all algorithms, while the

two last terms are specific to FMED and FIMED. Indeed, they tackle the cases where the suboptimal arm 𝑘 is

pulled due to a value of �★(𝑠𝑘(𝑡)) that deviates from �1 and/or �★(𝑡). We start by upper bounding CV-Emp,

writing

CV-Emp ≤
𝑇−1∑
𝑡=1

𝑇−1∑
𝑛=𝑢𝜖(𝑇)

𝔼
[
𝟙(𝐴𝑡+1 = 𝑘, 𝑁𝑘(𝑡) = 𝑛,J𝑘,𝑛)

]
≤

𝑇−1∑
𝑛=𝑢𝜖(𝑇)

ℙ (EF(𝐹𝑘,𝑛 , �1 − 𝜖0) ≤ EF(𝐹𝑘 , �1) − 𝜖1)

≤
𝑇−1∑

𝑛=𝑢𝜖(𝑇)
ℙ

(
EF(𝐹𝑘,𝑛 , �1) ≤ EF(𝐹𝑘 , �1) +

𝜖0

𝐵 − �1

− 𝜖1

)
,

4.2 From intuition to algorithms: Fast MED algorithms 113

where the last line comes from Lemma 4 of [21]. We choose 𝜖1 = 2
𝜖0

𝐵−�1

, and obtain that CV-Emp= O𝜖0
(1)

thanks to property 2. of Lemma 4.2.1. This concludes the proof of Lemma 4.2.2 regarding MED and IMED.

We now consider the terms specific to FMED and FIMED.

We start with Var-Best, and analyze more precisely the implications of the event

B𝑘(𝑡) =
{
�★(𝑡) ≥ �1 − 𝜖0 ,

�★(𝑡) − �★(𝑠𝑘(𝑡))
𝐵 − �★(𝑠𝑘(𝑡))

≤ −𝜖2

}
.

We first prove that the combination of these two events ensure that �★(𝑠𝑘(𝑡)) > �1 with a proper tuning of 𝜖0

and 𝜖2, since

�★(𝑡) − �★(𝑠𝑘(𝑡))
𝐵 − �★(𝑠𝑘(𝑡))

≤ −𝜖2 ⇒ �★(𝑡) − �★(𝑠𝑘(𝑡)) ≤ −𝜖2(𝐵 − �★(𝑠𝑘(𝑡)))

⇒ �★(𝑠𝑘(𝑡)) ≥
�★(𝑡) + 𝜖2𝐵

1 + 𝜖2

≥ �1 − 𝜖0 + 𝜖2𝐵

1 + 𝜖2

⇒ �★(𝑠𝑘(𝑡)) ≥ �1 +
𝜖2(𝐵 − �1) − 𝜖0

1 + 𝜖2

.

Hence, we choose 𝜖2 = 2
𝜖0

𝐵−�1

to obtain �★(𝑠𝑘(𝑡)) ≥ �1 + 𝜖0

3
, if it holds that 𝜖0 ≤ 𝐵 − �1. Then, we also remark

that this event also implies some variation of the best empirical mean between 𝑠𝑘(𝑡) and 𝑡. Hence, only two

scenarios can make B𝑘(𝑡) hold:

▶ 𝑘★(𝑠𝑘(𝑡)) is pulled between 𝑠𝑘(𝑡) and 𝑡, and �★(𝑠𝑘(𝑡)) ≥ �1 + 𝜖0

3
.

▶ 𝑘★(𝑠𝑘(𝑡)) is not pulled between 𝑠𝑘(𝑡) and 𝑡, 𝑘★(𝑡) = 𝑗 for some 𝑗 ≠ 𝑘★(𝑠𝑘(𝑡)). In that case, 𝑗 has been

pulled between 𝑠𝑘(𝑡) and 𝑡 and it holds that �𝑗(𝑡) = �★(𝑡) ≥ �★(𝑠𝑘(𝑡)) ≥ �1 + 𝜖0

3
.

As each of these scenario can cause at most one pull of arm 𝑘, we can upper bound Var-Best by simply counting

the number of times an arm 𝑗 ∈ [𝐾] is pulled (at time 𝑡) and either �𝑗(𝑡) ≥ �1 + 𝜖0 or �𝑗(𝑡 + 1) ≥ �1 + 𝜖0. We

hence obtain that

Var-Best ≤
𝐾∑
𝑗=1

𝑇−1∑
𝑡=1

𝔼
[
𝟙

(
𝐴𝑡+1 = 𝑗 ,

{
�𝑗(𝑡) ≥ �1 +

𝜖0

3

}
∪

{
�𝑗(𝑡 + 1) ≥ �1 +

𝜖0

3

})]
≤

𝐾∑
𝑗=1

𝑇−1∑
𝑡=1

𝑇−1∑
𝑛=1

𝔼
[
𝟙

(
𝐴𝑡+1 = 𝑗 , 𝑁𝑗(𝑠) = 𝑛,

{
�𝑗 ,𝑛 ≥ �1 +

𝜖0

3

}
∪

{
�𝑗 ,𝑛+1 ≥ �1 +

𝜖0

3

})]
≤ 2

𝐾∑
𝑗=1

+∞∑
𝑛=1

ℙ
(
�𝑗 ,𝑛 ≥ �1 +

𝜖0

3

)
= O𝜖0

(1) .

We can apply the exact same arguments for transition-best, except that this time we deduce that 𝑘★(𝑡)was

pulled between 𝑠𝑘(𝑡) and 𝑡, and that (if 𝑁𝑘★(𝑡) = 𝑛) �𝑗 ,𝑛 ≤ �1 − 𝜖0 and �𝑗 ,𝑛+1 ≥ �1 + 𝜖0. Depending on the

identity of 𝑘★(𝑡) one of these two events has exponentially decreasing probability. Formally, we obtain that

Transition-best ≤
∑
𝑗:�𝑗<�1

+∞∑
𝑛=1

ℙ(�𝑗 ,𝑛 ≥ �1 − 𝜖0) +
∑
𝑗:�𝑗=�1

+∞∑
𝑛=1

ℙ(�𝑗 ,𝑛 ≤ �1 − 𝜖0)

= O𝜖0
(1) .

This concludes the proof of Lemma 4.2.2 by choosing 𝜖0 =
𝐵−�1

4
𝜖.

Building on Lemma 4.2.2, we finish proving Theorem 4.2.2 by upper bounding the post-convergence and

pre-convergence terms for all algorithms.

114 4 Towards an optimal information usage

Upper bounding the post-convergence terms

Under G𝑘(𝑡) and J𝑘(𝑡), it holds thanks to property 1. of Lemma 4.2.1 that EF(𝐹𝑘(𝑡), �★(𝑡)) ≥ EF(𝐹𝑘 , �1) − 𝜖.

Hence, MED satisfies

Post-CV𝑀𝐸𝐷 ≤ 𝔼

[
𝑇−1∑
𝑡=1

𝟙(𝑁𝑘(𝑡) > 𝑢𝜖(𝑇), G𝑘(𝑡),J𝑘(𝑡)) × 𝑝𝑘(𝑡)
]

≤ 𝔼

[
𝑇−1∑
𝑡=1

𝟙(𝑁𝑘(𝑡) > 𝑢𝜖(𝑇), G𝑘(𝑡),J𝑘(𝑡)) exp (−𝑁𝑘(𝑡)K𝑘(𝑡))
]

≤ 𝑇 exp (−𝑢𝜖(𝑇)(EF(𝐹𝑘 , �1) − 𝜖)) ≤ 1 ,

by definition of 𝑢𝜖(𝑇)
⌈

log(𝑇)
EF(𝐹𝑘 ,�1)−𝜖

⌉
. Similarly, the design of G𝑘(𝑡) for FMED also ensure that K𝑘(𝑡) ≥

EF(𝐹𝑘 , �1) − 𝜖 and Post-CV𝐹𝑀𝐸𝐷 ≤ 1 by the same arguments. For IMED, we obtain that

Post-CV𝐼𝑀𝐸𝐷 ≤ 𝔼

[
𝑇−1∑
𝑡=1

𝟙(𝐼𝑘(𝑡) ≤ 𝐼𝑘★(𝑡)(𝑡), 𝑁𝑘(𝑡) > 𝑢𝜖(𝑇), G𝑘(𝑡),J𝑘(𝑡))
]

≤ 𝔼

[
𝑇−1∑
𝑡=1

𝟙(𝑁𝑘(𝑡)K𝑘(𝑡) ≤ log(𝑁𝑘★(𝑡)(𝑡)) < log(𝑇), 𝑁𝑘(𝑡) > 𝑢𝜖(𝑇), G𝑘(𝑡),J𝑘(𝑡))
]

≤ 𝔼

[
𝑇−1∑
𝑡=1

𝟙(𝑢𝜖(𝑇)(EF(𝐹𝑘 , �1) − 𝜖) < log(𝑇))
]
= 0 ,

so arm 𝑘 is never pulled in the post-convergence regime with IMED. Again, these arguments directly translate

to Post-CV𝐹𝐼𝑀𝐸𝐷 .

Upper bounding pre-convergence term

Interestingly, the design of K𝑘(𝑡), satisfying K𝑘(𝑡) ≥ EF(𝐹𝑘(𝑡), �★(𝑡)), makes FMED and FIMED more

exploratory than MED and IMED. Hence, we can unify the proof for the vanilla algorithms and their fast

update in this part.

We start with MED. First, we use that for any sampling probability 𝑝𝑘(𝑡) it holds that

𝑝𝑘(𝑡) ≤
𝑝𝑘(𝑡)
𝑝1(𝑡)

𝑝1(𝑡) ≤
1 − 𝑝1(𝑡)
𝑝1(𝑡)

𝑝1(𝑡) ,

and obtain that

Pre-CV𝑀𝐸𝐷 B 𝔼

[
𝑇−1∑
𝑡=𝑢

𝟙(𝑁𝑘(𝑡) > 𝑢, 𝐴𝑡+1 = 𝑘, �★(𝑡) ≤ �1 − 𝜖0)
]

= 𝔼

[
𝑇−1∑
𝑡=𝑢

𝟙(𝑁𝑘(𝑡) > 𝑢, �★(𝑡) ≤ �1 − 𝜖0)𝑝𝑘(𝑡)
]

≤ 𝔼

[
𝑇−1∑
𝑡=𝑢

𝟙(�1(𝑡) ≤ �1 − 𝜖0)
(

1

𝑝1(𝑡)
− 1

)
𝑝1(𝑡)

]
= 𝔼

[
𝑇−1∑
𝑡=𝑢

𝟙(𝐴𝑡+1 = 1, �1(𝑡) ≤ �1 − 𝜖0)
(

1

𝑝1(𝑡)
− 1

)]
.

4.2 From intuition to algorithms: Fast MED algorithms 115

Let us denote by 𝑝FMED

1
(𝑡) the sampling probability of arm 1 under FMED. We obtain that

𝑝FMED

1
(𝑡) ≥ 1

𝐾
exp (−𝑁1(𝑡)K1(𝑡)) ≥

1

𝐾
exp

(
−𝑁1(𝑡)EF(𝐹1(𝑡), �★(𝑡))

)
B 𝑝𝑀𝐸𝐷

1
(𝑡) ,

where 𝑝𝑀𝐸𝐷
1
(𝑡) is itself a lower bound on the sampling probability of arm 1 under MED (we use this notation

with a slight abuse). If follows that Pre-CV𝐹𝑀𝐸𝐷 admits the same upper bound as Pre-CV𝑀𝐸𝐷 . We first obtain

that

Pre-CV𝑀𝐸𝐷 ≤ 𝐾
𝑇−1∑
𝑛=1

𝔼
[
𝑒𝑛EF(𝐹1,𝑛 ,�1−𝜖0) − 1

]
+ (𝐾 − 1)

𝑇−1∑
𝑛=1

ℙ(�1,𝑛 ≤ �1 − 𝜖0)

≤ 𝐾
𝑇−1∑
𝑛=1

𝔼
[
𝑒𝑛EF(𝐹1,𝑛 ,�1−𝜖0) − 1

]
+ O𝜖0

(1) .

Then using properties 3. and 4. from Lemma 4.2.1 and EF(𝐹1,𝑛 , �1) ≤ K+ B log

(
𝐵−𝑏
𝐵−�1

)
we conclude that

Pre-CV𝑀𝐸𝐷 ≤ 𝐾
𝑇−1∑
𝑛=1

∫ 𝑒𝑛K
+−1

0

ℙ

(
EF(𝐹1,𝑛 , �1) ≥ 𝛿𝜖0

+ log(1 + 𝑥)
𝑛

)
d𝑥

≤ 𝐾
𝑇−1∑
𝑛=1

𝑒(𝑛 + 2)
∫ 𝑒𝑛K

+−1

0

𝑒−𝑛𝛿𝜖0

1 + 𝑥 d𝑥

= 𝐾𝑒 log

(
𝐵 − 𝑏
𝐵 − �1

)
×
𝑇−1∑
𝑛=1

𝑛(𝑛 + 2)𝑒−𝑛𝛿𝜖0

= O𝜖0
(1) ,

with 𝛿𝜖0
=

2𝜖2

0

(𝐵−𝑏)2 . As a consequence, Pre-CV𝐹𝑀𝐸𝐷 = O𝜖0
(1) too. For FIMED the relationship with the

pre-convergence term of IMED is even more straightforward,

Pre-CV𝐹𝐼𝑀𝐸𝐷 ≤ 𝔼

[
𝑇−1∑

𝑡=𝑢𝜖(𝑇)
𝟙(𝑁1(𝑡)K1(𝑡) + log(𝑁1(𝑡)) ≥ log(𝑁𝑘(𝑡)), 𝑁𝑘(𝑡) > 𝑢𝜖(𝑇), �★(𝑡) ≤ �1 − 𝜖0)

]
≤ 𝔼

[
𝑇−1∑

𝑡=𝑢𝜖(𝑇)
𝟙(𝑁1(𝑡)EF(𝐹1(𝑡), �★(𝑡)) + log(𝑁1(𝑡)) ≥ log(𝑁𝑘(𝑡)), 𝑁𝑘(𝑡) > 𝑢𝜖(𝑇), �★(𝑡) ≤ �1 − 𝜖0)

]
= Pre-CV𝐼𝑀𝐸𝐷 = O𝜖0

(1) .

The last statement can be deduced from the regret analysis presented in [16], but we now propose a simpler

proof of independent interest. We use that if 𝐴𝑡+1 = 𝑘, then the index of arm 𝑘 is smaller than the index of

arm 1, and that 𝑁𝑘(𝑡) > 𝑢𝜖(𝑇) to first write that

Pre-CV𝐼𝑀𝐸𝐷 ≤ 𝔼

[
𝑇∑
𝑡=1

𝟙 (𝐴𝑡+1 = 𝑘, 𝑁𝑘(𝑡) ≥ 𝑢𝜖(𝑇), 𝐼1(𝑡) ≥ log(𝑁𝑘(𝑡)))
]

≤ 𝔼

[
𝑇∑

𝑡=𝑢𝜖(𝑇)

𝑇∑
𝑛1=1

𝑇∑
𝑛𝑘=𝑢𝜖(𝑇)

𝟙 (𝐴𝑡+1 = 𝑘, 𝑁𝑘(𝑡) = 𝑛𝑘 , 𝑁1(𝑡) = 𝑛1 , 𝐼1(𝑡) ≥ log(𝑛𝑘))
]

≤ 𝔼

[
𝑇∑

𝑛1=1

𝑇∑
𝑛𝑘=𝑢𝜖(𝑇)

𝟙 (𝑛1EF(𝐹1,𝑛 , �1 − 𝜖0) + log(𝑛1) ≥ log(𝑛𝑘))
]
.

116 4 Towards an optimal information usage

To further upper bound this term, we observe that since EF(𝐹1,𝑛 , �1 − 𝜖0) ≤ log

(
𝐵−𝑏

𝐵−�1+𝜖0

)
B K+𝜖0

, the events

considered above cannot happen if 𝑛1K
+
𝜖0

+ log(𝑛1) ≤ log(𝑢𝜖(𝑇)) ≤ log(𝑛𝑘). Hence, there exists a function

𝑔 : 𝑇 ↦→ ℕ satisfying 𝑔(𝑇) → +∞ (𝑔(𝑇) would be of order log log(𝑇) without the additional log(𝑛1)) such

that

Pre-CV𝐼𝑀𝐸𝐷 ≤ 𝔼

[
𝑇∑

𝑛1=𝑔(𝑇)

𝑇∑
𝑛𝑘=𝑢𝜖(𝑇)

𝟙 (𝑛1EF(𝐹1,𝑛 , �1 − 𝜖0) + log(𝑛1) ≥ log(𝑛𝑘))
]
.

Then, using again properties 3. and 4. of Lemma 4.2.1 we obtain that

Pre-CV𝐼𝑀𝐸𝐷 ≤
𝑇∑

𝑛1=𝑔(𝑢)

𝑇∑
𝑛𝑘=𝑢

𝑒(𝑛1 + 2)𝑒−(𝑛1𝛿𝜖
0
+log(𝑛𝑘)−log(𝑛1))

≤ 𝑒
(

𝑇∑
𝑛1=𝑔(𝑇)

𝑛1(𝑛1 + 2)𝑒−𝑛1𝛿𝜖
0

) (
𝑇∑

𝑛𝑘=𝑢

1

𝑛𝑘

)
≤ 𝑒

(
+∞∑

𝑛1=𝑔(𝑇)
𝑛1(𝑛1 + 2)𝑒−𝑛1𝛿𝜖

0

)
log

(
𝑇

𝑢𝜖(𝑇)

)
= 𝑜𝜖0

(log(𝑇)) ,

where the conclusion comes from the fact that the remaining sum is the remainder of a convergent series, or

in other words Pre-CV𝐼𝑀𝐸𝐷 ≤ 𝑎𝑇 log(𝑇) where 𝑎𝑇 → 0. This is sufficient to conclude the proof, by noting

that a careful tuning of 𝜖0 (for instance as log log(𝑇) allows to obtain that lim sup
𝔼[𝑁𝑘 (𝑇)]

log(𝑇) ≤
1

EF(𝐹𝑘 ,�1) .

4.3 Online portfolio optimization: OMED & OIMED 117

11: 𝑥𝑇 · 𝑦 denotes the scalar product of

vectors 𝑥 and 𝑦 in a real vector space

of finite dimension 𝑑, here ℝ𝑑
. 𝑥𝑇 is the

transpose of vector 𝑥.

4.3 Online portfolio optimization: OMED &
OIMED

The time complexity of FMED and FIMED which is O(𝑇 log𝑇) when

sampling a suboptimal arm and O(1) otherwise is somewhat satisfactory.

The corresponding amortized time complexity per interaction is O(1)
which is optimal. However, the space complexity is still a linear function

O(𝑇) of the number of interactions 𝑇 which is burdensome. In this

section, we aim to alleviate the space complexity and to craft a fully

sequential algorithm with true O(1) time complexity per interaction

for all interactions, not amortized. We build on our intuition of the

MCMC scheme introduced at the beginning of this chapter to create a

fully sequential update rule of the empirical unlikelihood of optimality,

EF (𝐹𝑎(𝑡), �★(𝑡)). Recall that the dual formulation of EF is written as a

concave linearly constrained maximization problem. The insight is that

this dual problem can be reformulated as an online portfolio selection
problem, a class of online convex optimization problems. More precisely,

we express the computation of the dual formulation of EF(𝐹𝑎(𝑡), �★(𝑡))
as a portfolio selection algorithm in dimension 2,

EF(𝐹𝑎(𝑡), �★(𝑡)) = 1

𝑁𝑎(𝑡)
max

�∈△2

𝑁𝑎 (𝑡)∑
𝑛=1

log

(
�𝑇 ·

(
1,
𝑀 − 𝑋𝑎,𝑛
𝑀 − �★(𝑡)

))
,

where
11 △2 is the probability-simplex of dimension 1 (space of Bernoulli

distributions) and (𝑋𝑎,𝑛)1≤𝑛≤𝑁𝑎 (𝑡) the 𝑁𝑎(𝑡) reward samples collected

from arm 𝑎 after 𝑡 interactions with the Bandit problem. This equation

simply is a rewriting of the dual formulation of the dual formulation of

EF. We know connect this equation with a portfolio formulation.

Portfolio formulation

Online portfolio selection is a mathematical framework modeling a

sequential interaction between a learner and an adversary. Prior to the

sequence of 𝑁 interactions, the adversary selects a sequence of vectors

𝑥1 , . . . , 𝑥𝑁 in ℝ𝑑
for 𝑑 ≥ 2 representing the dimension of the problem.

This is equivalent to state that the adversary create a matrix (𝑥𝑖)𝑖∈[𝑁]
where 𝑥𝑖 ∈ ℝ𝑑

for all 1 ≤ 𝑖 ≤ 𝑁 . Anticipating on what follows, one

can think, in our Bandit setting, that an adversary is picking a random

seed of random number generator that generates a sequence of random

variable according to a prescribed law. Given a random number generator,

choosing a seed amounts to choosing a sequence of random numbers. By

the very nature of a perfect random number generator (i. e. with perfect

hashing function), an adversary that can only choose a seed is indeed

choosing the sequence but not controlling it as it is impossible to anticipate

the sequence. If the adversary knows the used random generator, it

cannot reasonably compute the seed to generate the sequence it would

want because of the computational burden it would require (for modern

random number generator). While our viewpoint on the adversary would

be different, the above explanation shows how an adversary can choose

a sequence without really being too adversary as it should be the case

in the Bandit setting. Of course, some research is done on the topic

118 4 Towards an optimal information usage

of adversarial Bandits but the associated community usually is more

concerned about min-max/worst-case type of regret lower bounds.

In our work, the interpretation of 𝑥𝑖 ∈ ℝ𝑑
is that it corresponds to 𝑑

numerical signals coming from 𝑑 experts and that we therefore have to

weight those signals based on some criteria. In other word, we want

to allocate a finite mass of resources to the different signals. This in-

terpretation of sequentially allocating a resource (money) to different

numerical signals (return of some investment strategy) based on some

criteria (risk management, liquidity, politic. . .) explain the original name

of this mathematical framework, online portfolio optimization.

In our Bandit framework, at interaction 𝑛 ∈ ℕ, the learner chooses

�𝑛 ∈ △𝑑 ⊆ ℝ𝑑
(the simplex of dimension 𝑑 − 1) and receives the reward

log(�⊤𝑛 𝑥𝑛). The reward the learner receive is a measure of performance

of the chosen allocation �𝑛 at interaction 𝑛. The optimization criterion,

named regret, of a learner is eventually based on a function of those

per-interaction rewards. The regret of a learner, similarly to the Bandit

regret, measure the discrepancy of the cumulated rewards the learner

and its sequence of allocations (�𝑛)𝑛 with the best possible time-uniform

allocation � of resources. The regret of the learner after 𝑁 iterations is

formally defined as

𝑅𝑁 (𝑥1 , . . . , 𝑥𝑛) = max

�∈△𝑑

𝑁∑
𝑛=1

log(�⊤𝑥𝑛) −
𝑁∑
𝑛=1

log(�⊤𝑛 𝑥𝑛) . (4.21)

The objective of the learner is then to find a sequence of allocations

(�𝑛)𝑛∈ℕ that minimizes its regret 𝑅𝑁 , where �𝑛 depends only on past

information (�1 , 𝑥1 , . . . ,�𝑛−1 , 𝑥𝑛−1).

As already previewed, the dual of the empirical EF problem can be seen

as cumulated rewards and its maximization as a portfolio optimization

problem. Formally, we express, for any arm 𝑎 ∈ 𝐴, the computation of

EF(𝐹𝑎(𝑡), �★(𝑡)) as a portfolio selection algorithm in dimension 2,

𝑁𝑘(𝑡)EF(𝐹𝑘(𝑡), �★(𝑡)) = max

�∈Δ2

𝑁𝑘 (𝑡)∑
𝑛=1

log

(
�⊤𝑥𝑘,𝑛(𝑡)

)
, with

𝑥𝑎,𝑛(𝑡) =
(
1,
𝑀 − 𝑋𝑎,𝑛
𝑀 − �★(𝑡)

)
.

Interestingly, the numerical signals of interest 𝑥𝑎,𝑛 are not constants in

the sense that they depend on �★(𝑡). Rather, those are better seen as real

valued function of �★
,

𝑥𝑎,𝑛 : �★ ↦→
(
1,
𝑀 − 𝑋𝑎,𝑛
𝑀 − �★

)
.

In reality, �★
won’t be fixed but rather a (measurable) function of the

number of interactions 𝑡,

𝑥𝑎,𝑛 : 𝑡 ↦→
(
1,
𝑀 − 𝑋𝑎,𝑛
𝑀 − �★(𝑡)

)
,

which is slightly off the original portfolio framework because of its

time dependency. This dependence in �★(𝑡), that is not revealed before

time 𝑡, of 𝑥𝑎,1(𝑡), . . . , 𝑥𝑎,𝑛(𝑡)makes this first portfolio formulation a bit

4.3 Online portfolio optimization: OMED & OIMED 119

[61]: Tsai et al. (2023), ‘Online Self-

Concordant and Relatively Smooth Min-

imization, With Applications to Online

Portfolio Selection and Learning Quan-

tum States’

[62]: Cover (1991), ‘Universal portfolios’

[63]: Cover et al. (1996), ‘Universal port-

folios with side information’

[64]: Kalai et al. (2002), ‘Efficient algo-

rithms for universal portfolios’

[65]: Orseau et al. (2017), ‘Soft-bayes:

Prod for mixtures of experts with log-

loss’

unpractical. Indeed, we emphasize that the allocation �𝑛 should be based

on past information and thus should not use �★(𝑡).

At the 𝑛-th interaction, we can only use the current best empirical mean,

observable by arm 𝑎, denoted by �★
𝑎,𝑛 for simplicity. A portfolio algorithm

can only try to minimize a past-information based metric,

𝑅𝑁 (𝑥𝑎,1 , . . . , 𝑥𝑎,𝑁) = max

�∈△𝑑

𝑁∑
𝑛=1

log(�⊤𝑥𝑛) −
𝑁∑
𝑛=1

log(�⊤𝑛 𝑥𝑛) with (4.22)

𝑥𝑎,𝑛 =

(
1,
𝑀 − 𝑋𝑎,𝑛
𝑀 − �★

𝑎,𝑛

)
, (4.23)

which we call portfolio regret in the rest of this section. From the

definition of 𝑥𝑎,𝑛 , one can see that this regret metric is suitable to evaluate

the intrinsic performance of a portfolio algorithm in our framework.

A problem emerges from this formulation is that this measure of regret

is now different from our original problem of minimizing the EF, i. e.
maximizing the dual representation. If the present-time dependent

rewards log

(
�𝑇𝑛𝑥𝑎,𝑛(𝑡)

)
are too different from the past-time dependent

rewards log

(
�𝑇𝑛𝑥𝑎,𝑛(𝑡)

)
that we just introduced in Equation 4.23, then

our (already sequential) estimation of EFwill suffer. In other words, since

the portfolio reward depends on �★
, if �★

𝑎,𝑛 diverges too often from �★(𝑡)
our estimation of EF will not be accurate. Hence, we also define the bias
(of an arm 𝑎) of the portfolio selection algorithm, caused by its inability

to foresee �★(𝑡),

𝐵𝑎,𝑁𝑎 (𝑡) = max

�∈△2

𝑁𝑎 (𝑡)∑
𝑛=1

log(�⊤𝑥𝑎,𝑛) −max

�∈Δ2

𝑁𝑎 (𝑡)∑
𝑛=1

log

(
�⊤𝑥𝑎,𝑛(𝑡)

)
. (4.24)

This term can be studied independently of the portfolio regret and only

depends on the variations of the best empirical mean. It is not negligible:

we will have to modify the structure of the MED algorithms and assume

that the best mean is not too close to the upper boundary 𝑀 to control its

magnitude. Now that we set up what we are aiming to do, minimizing

the portfolio regret and controlling the portfolio bias, we ought to take a

look at current literature on portfolio algorithms to see if a method suits

our needs. Thankfully, one can start by looking at [61] which is a recent

(2023) review of portfolio selection algorithms.

Portfolio algorithms Different methods vary based on their computa-

tional complexities and their regret guarantees. Some have regret upper

bounds as low as O(𝑑 log𝑁) but are computationally expensive, like UPS

[62–64]. Our goal is to use portfolio methods to obtain a computationally

efficient EF, hence we cannot use those. However, in our case, the constant

𝑁 will be the number of interaction with a suboptimal arm 𝑎 after 𝑡 inter-

actions with the Bandit problem,𝑁𝑎(𝑇). If our scheme prove to be optimal

or at least allows for a logarithmic number of samples of suboptimal arms,

it means that 𝑁𝑎(𝑇) will be of order log𝑇. Hence, we can afford a looser

regret upper bound since we will use it on supposedly O(log𝑇) samples

from the suboptimal arms. For instance, the Soft-Bayes [65] algorithm,

has a regret of O(
√
𝑑𝑁), which should translate to O(

√
𝑑 log𝑇) in our case.

Furthermore, it has a O(𝑑) computational complexity per round, which

120 4 Towards an optimal information usage

[66]: Zimmert et al. (2022), ‘Pushing the

efficiency-regret Pareto frontier for on-

line learning of portfolios and quantum

states’

[65]: Orseau et al. (2017), ‘Soft-bayes:

Prod for mixtures of experts with log-

loss’

[36]: Agrawal et al. (2021), ‘Regret Mini-

mization in Heavy-Tailed Bandits’

is perfect in our case where 𝑑 = 2. Other algorithms presented in the

aforementioned survey but also in [66] achieve intermediate trade-offs.

Among the computationally cheap algorithms, we chose Soft-Bayes for

its simple implementation and the fact that [65] provide bounds on the

regret valid for an adaptive step-size parameter, which we need since we

don’t know the total number of samples we will see for the arms.

Apart from FMED and FIMED, the main contribution of the paper this

chapter is based on is to introduce the first Bandit algorithm that use a

portfolio allocation algorithm to estimate EF. We call those algorithms

OMED, Online MED, and OIMED, Online IMED. While the link between

EF and portfolio selection was previously used in Lemma E.1 [36], where

the authors use the existence of a portfolio algorithm with logarithmic

regret to obtain a concentration inequality on EF, they only use that

observation to obtain a bound for the analysis, and they do not explore

any algorithmic use of the portfolio formulation.

Algorithm structure of OMED and OIMED The algorithms OMED

and OIMED will use a sequential portfolio selection algorithm to com-

pute a sequence of estimations of the EF. A priori, OMED and OIMED

are therefore a class of algorithms because one can define one such

algorithmic scheme for every suitable portfolio selection algorithm. We

therefore first introduce the OMED and OIMED algorithms for a generic

portfolio algorithm. As discussed above, using an online estimate of

empirical EF makes the MED algorithms highly sensitive to variations of

the best empirical mean. To mitigate this issue, we apply several structural

changes to the algorithms that aim at preventing the portfolio bias to be

large. As seen in Figure 4.3, the function � ↦→ EF(𝐹, �) have a derivative

that diverges at the upper boundary 𝑀 of its domain of definition. An

unbounded derivative is rarely a good sign of stability for sequential

optimization schemes. This is why we will assume the knowledge of an

upper bound �max
on the maximal expected value �★

of our considered

bandit problem with �max < 𝑀, i. e. the known upper bound �max
is

distinct from the support upper bound 𝑀. The gap 𝑀 − �max
allows

to "compactify" the domain of EF and its continuous derivative with

respect to � and therefore have uniform control on the magnitude of

such a derivative. This assumption is not that restrictive but can rather

be seen as the introduction of a hyperparameter 𝛾 > 0. Indeed, one way

to satisfy the required assumption is to consider the set F𝛾 of bounded

distribution with upper bound on the support now equal to 𝑀 + 𝛾. If

we consider the Bandit problem with distribution originally in F, then

�★
is naturally upper bounded strictly by 𝑀 which we take as a �max

since in the larger class F𝛾, it is 𝛾-separated from the boundary. That

is to say, we consider a Bandit algorithm suitable for F𝛾 rather than F.

In the following, we will consider the knowledge of �max < 𝑀, smaller

than the natural upper bound of class F.

Controlling the fluctuations of �★(𝑡) should be of uttermost importance

in order to tell something meaningful about the bias and, therefore,

regret of a portfolio Bandit algorithm. The fluctuation of this quantity

is related to concentration assumptions on the distributions (the class

F) and the number of samples of the empirical best arm. It would be

best if that arm has the largest associated number of samples max𝑎 𝑁𝑎(𝑡).

4.3 Online portfolio optimization: OMED & OIMED 121

12: more precisely, it is bounded by two

linear functions,
𝑡
|𝐴| ≤ max𝑎 𝑁𝑎(𝑡) ≤ 𝑡.

13: Ties are broken in favor of the arm

with best empirical mean, then at ran-

dom if several candidates remain.

[31]: Chan (2020), ‘The multi-armed ban-

dit problem: An efficient nonparametric

solution’

The reason is that, after 𝑡 interactions, the arm that has been sampled the

most has been sampled more than
𝑡
|𝐴| times. It means that this number of

samples is roughly a linear function of the number of interactions
12

and

the uncertainty of the expected value of such an arm can be controlled

thanks to concentration hypothesis. Now, it is possible, especially in the

first time steps, that an empirical best arm does not correspond to a

most sampled arm. In that case, one must close that gap and adopt a

greedy strategy by sampling the empirical best arm until it is the most

sampled or no longer the best arm. For this purpose, we define a leader
as ℓ𝑡 ∈ argmax 𝑁𝑎(𝑡).13

To better control the bias and convergence of 𝑡 ↦→ EF (𝐹, �★(𝑡)), it will be

better if �★(𝑡) in fact corresponds to �★(𝑡), i. e. if the empirical maximal

expected value is always the expected value of an arm ★. Of course, it is

impossible to have this event with probability one. Therefore, we will

rather introduce, for a distribution 𝐹, |𝐴| estimation of the EF, one for

each arm 𝑎 in 𝐴: 𝑡 ↦→ EF (𝐹, �𝑎(𝑡)). Therefore, even if the �★(𝑡) is not

always associated to the same arm, i. e. a jump in the trajectory occurs, then

one can jump from one set of EFestimation to another one, corresponding

to the current empirical maximal arm★(𝑡). While this is the way we dealt

the control of �★
, I do think that there is room for improvement and that

using |𝐴| estimations of the EF might be too much. However, whatever

the method, one still have to find a way to make the learner recover fast

enough from wrong estimation of EF due to using the wrong reward

signal. This is because once we switch from one believed-to-be best arm

to another one, one may observe that the value of �★
will change a lot in

a few iterations (regression to the true mean of the empirical arm) while

the value of the EF is still highly dependent on the history of previous

values of �★
.

The final structural modification that we add to create OMED and OIMED

is to use a duel-based algorithm, a design that is inspired by [31]. Duel-

based algorithms are based on the concept of duelling a leader, that

we already introduce, and the other arms, that are called challengers
in this framework. Challengers compete against the leader in pairwise

comparisons called duels. The specific arm-specific numerical quantities

used for comparison will be defined in a moment, but the reader can

already guess some natural candidates from the original design of MED

and IMED. In a duel based algorithm, an active set of arm to be pulled is

maintained. If this set is not empty, then an arm from this set is sampled

and removed from the set while no duel is done. If the active set is empty,

then duels are performed and the results of the duels are used to add

arms to the active set. This set consists of arms that won their duels. This

design implies that at the end of the round of comparison, all winning

challengers (if any) are pulled. If there are none, the leader is pulled.

Hence, several arms can be pulled per round.

To better control the bias and convergence of 𝑡 ↦→ EF (𝐹, �★(𝑡)), we

replace �★(𝑡) by �ℓ𝑡 (𝑡) for the reference value used by the challengers in

their estimations of infimum KLs, and to implement a different estimate

of unlikelihood of optimality, i. e. EF times the number of samples, 𝐿𝑎,ℓ𝑡 (𝑡)
for each possible pair (𝑎, ℓ𝑡).

122 4 Towards an optimal information usage

Duelling framework We now introduce some notation and terminology

to describe the duel between a challenger 𝑎 and a leader ℓ . We distinguish

between several forms of duels. The simpler one, we call it the greedy
duel. In a greedy duel between a challenger 𝑎 and leader ℓ𝑡 , the winner

is decided based on the maximal value of empirical expected rewards,

i. e. the winner is argmax {𝑎 : �𝑎(𝑡), ℓ𝑡 : �ℓ𝑡 (𝑡)}. In accordance with our

previous intuition and analysis, we use greedy duel when 𝑁ℓ𝑡 (𝑡) is not

large enough compared to 𝑁𝑎(𝑡), implying that the estimation of EF,

based on 𝑥𝑎,𝑛 (�ℓ𝑡 (𝑡)), will be hindered by the estimation of �ℓ𝑡 (𝑡)which is

not considered "static enough" compared to the number 𝑁𝑎(𝑡) of samples

of the "outer" expectation that we are trying to optimize. In other words,

when the leader has not been sampled enough compared to arm 𝑎, then

the noise in the estimation of the portfolio reward function and EF is not

dominated by samples collected from arm 𝑎 and the noise induced by

the wrong estimation of the inner parameter �★ �ℓ𝑡 cannot be considered

negligible or small enough. In such a case, it is better to use a greedy duel

and do not update the estimate of EF associated to the couple (𝑎ℓ𝑡) but

rather wait for the expected value of the challenger to be considered stable

enough compared to the noise induced by the current number of samples

(hence learning rate) of arm 𝑎. Algorithmically and mathematically, we

introduce a binary variable 𝑍𝑎(𝑡), that indicates if the duel played by

arm 𝑎 at interaction 𝑡 was greedy (𝑍𝑎(𝑡) = 0) or not (𝑍𝑎(𝑡) = 1). The

portfolio selection algorithm, like most sequential stochastic optimization

algorithm, will use a learning rate that is not fixed but depends on the

number of samples collected from a given distribution. In our case, we are

minimizing a constrained expected value, EF problem, and the collected

samples are the portfolio rewards. However, there are two reasons we

cannot use the total number 𝑁𝑎(𝑡) of collected samples in our learning

rate scheme. First, for an arm 𝑎, there are |𝐴| parallel estimations of EF,

one for each possible leader. Therefore, there are |𝐴| parallel learning

rate that are based on the number of times arm 𝑎 has been sampled while

the leader was ℓ . We can denote such a quantity by 𝑁𝑎,ℓ (𝑡), with

𝑁𝑎,ℓ (𝑡) =
𝑡−1∑
𝑖=1

𝟙 {𝑎 ∈ A𝑖+1 , ℓ𝑖 = ℓ } ,

and we have the relation 𝑁𝑎(𝑡) =
∑
ℓ∈𝐴 𝑁𝑎,ℓ (𝑡). The second reason is that

𝑁𝑎,ℓ does not even correspond to the total number of updates of the EF

associated to the couple (𝑎, ℓ). As presented, we compute a portfolio

reward and then update our estimate of EF only when the number of

samples of the leader is large enough. Therefore, the number 𝑁𝑎,ℓ (𝑡)
(and a fortiori 𝑁𝑎(𝑡)) of samples collected from arm 𝑎 when challenger

is ℓ does not correspond to the number of updates of the EF associated

to the couple (𝑎, ℓ𝑡). This pseudo-count of samples that corresponds to

the used samples of arm 𝑎 in the update of EF associated to leader ℓ is

denoted 𝑁𝑎,ℓ (𝑡) and is formally equal to

𝑁𝑎,ℓ (𝑡) =
𝑡−1∑
𝑖=1

𝟙 {𝑎 ∈ A𝑖+1 , ℓ𝑖 = ℓ , 𝑍𝑎(𝑠) = 1} .

It is the number of observations of a challenger 𝑎 collected against the
leader ℓ after a non-greedy duel.

Before addressing the definition of a non-greedy duel we formally answer

4.3 Online portfolio optimization: OMED & OIMED 123

the question that we already partly answered: what is the criterion

to decide whether a duel is greedy? Let 𝑓 : ℕ → ℝ+ be a function

that any linear function is asymptotically negligible compared to 𝑓 , i. e.
𝑛 = 𝑜 (𝑓 (𝑛)). A duel between a challenger 𝑎 and a leader ℓ is made

greedy if the precision of the empirical expected value of the leader ℓ𝑡
is too small compared to the pseudo-count of number of times arm 𝑎

has been sampled with corresponding leader. Formally, a duel is greedy

if 𝑁ℓ (𝑡) ≤ 𝑓
(
𝑁𝑎,ℓ

)
(𝑡). Another reason to make a duel greedy, is when

we know for sure that �ℓ is wrongly estimated. This is the case when

�ℓ (𝑡) > �max
. Furthermore, this also corresponds to the region of the

support domain where the gradient that will be used in the portfolio

selection algorithm is considered uncontrolled, i. e. �ℓ is not in the

reference compact. Therefore, a duel also is greedy when �ℓ (𝑡) > �max
.

Finally, one can say that the two conditions for a duel to be greedy are

�ℓ (𝑡) > �max ,

in which case all duels are greedy because the expected value of the

leader is for sure wrongly estimated, and

𝑁ℓ (𝑡) ≤ 𝑓
(
𝑁𝑎,ℓ (𝑡)

)
in which case the leader has not been sampled enough to consider that the

stochastic optimization scheme will be using a correct enough estimation

of the gradient.

When a duel is deemed to be non-greedy, we compare quantities that

originates from the original MED and IMED algorithms. For OIMED,

a non-greedy duel is based on the comparison of IMED indexes of the

leader and challenger. The challenger 𝑎 wins its duel against the leader

ℓ if

𝐿𝑎,ℓ (𝑡) + log(𝑁𝑎,ℓ (𝑡)) ≤ log(𝑁ℓ (𝑡)) , (4.25)

where we recall that 𝐿𝑎,ℓ (𝑡) is the estimated unlikelihood of optimality

𝑁𝑎(𝑡)EF (𝐹𝑎 , �★) (more precisely of 𝑁𝑎,ℓEF (𝐹𝑎 , �ℓ)) of arm 𝑎 computed

by the portfolio selection algorithm. The update rule for 𝐿𝑎,ℓ is described

shortly. For OMED, a non-greedy duel is based on the "comparison"

of samples from Bernoulli distributions, whose parameters are esti-

mations of exp (−𝑁𝑎EF (𝐹𝑎 , �★)). This corresponds to the unormalized

exponential weights that are used when performing the multinomial

sampling in the original MED algorithm. By definition, for the leader arm,

EF (𝐹ℓ , �ℓ) = 0 which is the used value for the leader arm. Therefore, the

leader arm has a Bernoulli parameter of 𝑒0 = 1 and its Bernoulli sample

is necessarily one. The only comparison that is therefore made to decide

whether a challenger wins a duel or not, is if its sample collected from a

Bernoulli of parameter exp (−𝐿𝑎,ℓ (𝑡)) is equal to one. The challenger 𝑎

wins its duel against the leader ℓ if

𝑊𝑎(𝑡) = 1 where 𝑊𝑎(𝑡) ∼ Ber (exp (−𝐿𝑎,ℓ (𝑡))) . (4.26)

Portfolio update of EF The non-greedy duels are based on the esti-

mated unlikelihood of optimality 𝐿𝑎,ℓ that are computed and updated

by the portfolio selection algorithm after each such non-greedy duel.

We emphasize that 𝐿𝑎,ℓ is updated only when the duel was non-greedy

124 4 Towards an optimal information usage

and won by the challenger which is algorithmically and Mathematically

translated by 𝑍𝑎(𝑡) = 1. The update of 𝐿𝑎,ℓ (𝑡) then is based on the current

estimated empirical reward �ℓ (𝑡) of the leader and the 𝑁𝑎(𝑡)𝑡ℎ collected

𝑋𝑎,𝑁𝑎 (𝑡) reward from challenger arm 𝑎. This update scheme that combines

greedy and non-greedy duel to prescribe whether an update of the esti-

mated unlikelihood of optimality shall happen is the main algorithmic

structure that underpins the theoretical and numerical control of the

portfolio bias and Consequently, portfolio and Bandit learner regrets.

This method is independent of the specific choice if portfolio selection

algorithm that used to perform the updates.

We provide in Algorithm 18 an implementation of the OMED algorithm

using a generic portfolio selection algorithm in the update of estimated

value of unlikelihood of optimality (line 27). In the OMED Algorithm 18,

the lines 1-5 corresponds to the initialization of several useful quantities.

It should be noted that, while those quantities are initially defined as

depending on the whole history, e.g. the counting function𝑁𝑎(𝐻) = 𝑁𝑎(𝑡)
or the expected reward �𝑎(𝐻) = �𝑎(𝑡), can be updated sequentially

without using the whole history which is therefore not part of the

initialization of the OMED algorithm. The loop that begins line 8 is a

loop over rounds, not number of interactions. Indeed, several arms can

be sampled per round as it can be seen in the loop starting line 19 that

is on a set Aupdated lines 12 and 17. In the OMED Algorithm 18, the

lines 7-8 corresponds to the computation of the leader for round 𝑡 ∈ ℕ.

The loop staring line 9 contains all the duels. First, line 10-13 are the

greedy duels and then lines 15-18 are the non-greedy duels. For each

type of duels, we update the set Aof arms of winner and the values of

𝑍𝑎 indicating whether the duel was greedy or not. The block starting line

19 check whether one duel was won by a challenger, i. e. if the set A is

empty or not. If this set is empty, then the leader will be the only played

arm at that round. Of course, by definition 𝐿ℓ ,ℓ = 0 for all ℓ ∈ 𝐴 so the

boolean 𝑍ℓ indicating whether one should use the portfolio selection

algorithm is set to 0 line 21. Line 22 starts the loop that iterates over all

the arms that must be sampled at round 𝑡 and are stored in set A. We

sample all those arms and update total counts and expected rewards

lines 23-25. Depending on the nature of the duel of arm 𝑎, checked line

27, we update the pseudo-count line 28, run an update of the portfolio

selection algorithm ALG line 29 and update the unlikelihood of optimality

for the couple (𝑎, ℓ) line 30. The OIMED algorithm is derived from this

one by changing the lines 15-16 corresponding to Equation 4.26 to the

corresponding OIMED duel Equation 4.25. In the following, we focus

on the OMED version rather than the OIMED, but the two are rather

similar.

4.3 Online portfolio optimization: OMED & OIMED 125

Algorithm 18: OMED: Online MED algorithm

Input: A bandit tuple (A, 𝑠 , V) as in Definition 3.1.12;

A suitable portfolio selection algorithm ALG;

1 Initialize for all 𝑎 ∈ 𝐴 and ℓ ∈ 𝐴, initialize 𝑁𝑎 , 𝑁𝑎,ℓ , and 𝑁𝑎,ℓ that

are the counting functions (from non-stored history to ℕ) that we

previously introduced. When the history is empty, all those

quantities are zero.;

2 Initialize for all 𝑎 ∈ 𝐴, �𝑎 the function from history that compute the

empirical expected value of arm 𝑎 with a zero initial value when

history is empty.;

3 Initialize for all 𝑎 ∈ 𝐴 and ℓ ∈ 𝐴, 𝐿𝑎,ℓ = 0 that will store the estimate

of unlikelihood for a challenger-leader couple equal to (𝑎; ℓ).;
4 Initialize the selection parameters �𝑎,ℓ = 1

2
. The selection parameters

are the probability distributions in △2 introduced at the beginning

of this section.;

5 Initialize the active set A= ∅ of arms that will be pulled at round

𝑡 ∈ ℕ. ;

6 for 𝑡 ∈ ℕ (caution: 𝑡 is the number of rounds) do
7 Compute leader candidates L= argmax𝑎∈𝐴 𝑁𝑎(𝑡);
8 Compute leader ℓ ∈ argmax𝑎∈L�𝑎(𝑡), breaking ties uniformly at

random;

9 forall 𝑎 ∈ 𝐴 \ ℓ , compute duels do
10 if 𝑁𝑎,ℓ ≥ 𝑓 (𝑁ℓ) or �ℓ (𝑡) ≥ �max then
11 if �𝑎(𝑡) ≥ �ℓ (𝑡) then
12 Update A← A∪ {𝑎};
13 Set 𝑍𝑎 = 0;

14 else
15 Sample𝑊𝑎 ∼ Bern (exp (−𝐿𝑎,ℓ));
16 if𝑊𝑎 = 1 then
17 Update A← A∪ {𝑎};
18 Set 𝑍𝑎 = 1;

19 if A= ∅, i. e. the leader won all its duels then
20 Update A← A∪ {ℓ };
21 Set 𝑍ℓ = 0;

22 forall 𝑎 ∈ Ado
23 Remove 𝑎 from A, A← A\ {𝑎};
24 Sample reward 𝑟 ∼ 𝛽(𝑎);
25 Update expected reward �𝑎 ;
26 Update total number 𝑁𝑎 of collected samples;

27 if 𝑍𝑎 = 1 then
28 Update pseudo-count 𝑁𝑎,ℓ , incrementing it by one;

29 Update portfolio selection parameter �𝑎,ℓ using ALG. The

algorithm ALG uses 𝑁𝑎,ℓ and
𝑀−𝑟

𝑀−�ℓ (𝑡) ;

30 Update the unlikelihood of optimality 𝐿𝑎,ℓ ,

𝐿𝑎,ℓ ← 𝐿𝑎,ℓ + log

(
1 − �𝑎,ℓ 𝑟−�ℓ (𝑡)

𝑀−�ℓ (𝑡)

)

126 4 Towards an optimal information usage

14: Plural here because both upper and

lower bounds on the portfolio regret are

important.

4.4 Partial proof & open question

Under some additional assumptions, OMED and OIMED have an asymp-

totical optimal regret and its expected number of pulls can be proved to

have a very similar upper bound to that of FMED and FIMED stated in

Theorem 4.2.2.

Theorem 4.4.1 (Regret bound for Online MED algorithms) Consider
(𝐴, 𝛽) a Bandit problem where the distribution of 𝛽(𝑎) is 𝐹𝑎 ∈ F, a set of
bounded distributions with known boundaries, 𝛽 (𝑎) ∼ 𝐹𝑎 ∈ F for all 𝑎 ∈ 𝐴.
We denote �★ = max𝑎∈𝐴 �(𝑎) the maximal expected reward which, we recall,
also is the maximal gain possible of the corresponding Bandit control problem.
Assume the knowledge of a bound �max < 𝑀 such that �★ < �max.

Assume that OMED and OIMED use a portfolio selection algorithm ALG

that satisfies for any challenger 𝑎 and leader ℓ , (𝑎, ℓ) ∈ 𝐴2 and 𝑛 ∈ ℕ the
deterministic guarantee

|𝑅𝑎,ℓ (𝑛)| = 𝑜(𝑛) , (4.27)

that is to say, the absolute value of the portfolio regret is asymptotically
sublinear.

Let 𝑇 ∈ ℕ corresponds to a total number of interactions, or time horizon,
𝑎 ∈ 𝐴 be the index of a suboptimal arm, and 𝜖 > 0 be arbitrary (small) real
number. Then, both OMED and OIMED satisfy the following equation

𝔼 (𝑁𝑎(𝑇)) ≤
log(𝑇)

EF(𝐹𝑎 , �★) − 𝜖
+ 𝑜𝜖(log(𝑇)) , (4.28)

where 𝑜𝜖(log(𝑇)) denotes a term that is asymptotically dominated by log(𝑇)
for any fixed 𝜖, but with a polynomial dependency in 𝜖−1. This second order
term differs for OMED and OIMED.

OMED and OIMED are therefore asymptotically optimal and enjoy the
same theoretical guarantees than the originals MED and IMED.

Owing to the algorithmic structure of OMED and OIMED, the regret

performances of the algorithms mainly depend on the regret bounds
14

of the portfolio regret. Before sketching a proof of Theorem 4.4.1, we

would like to emphasize on what we think is the most important algo-

rithmic structure behind the success of a sequential optimization scheme,

tracking. Tracking allows checking for especially bad events and take

actions whenever those occur. It may not always be necessary to achieve

asymptotic optimality, but it can surely help when interested in minimiz-

ing the second order terms that often depends on how fast an algorithm

can recover from bad events. While the expected time to recover from a

bad events may be finite or sub-logarithmic without tracking, it may be

much smaller with a bit of tracking. Here, we are dealing with a fully

sequential memoryless algorithmic scheme. Tracking bad events to make

sure that we recover fast enough (or do not suffer) from bad events is

probably a necessity.

Remark As of writing those lines, I do not think that the duelling

structure is a necessary feature to stabilize the algorithmic sampling

4.4 Partial proof & open question 127

[31]: Chan (2020), ‘The multi-armed ban-

dit problem: An efficient nonparametric

solution’

scheme, although it does enjoy some nice properties. What I think is the

most important features is this notion of greedy and non-greedy phases.

This amounts to a notion of tracking. The algorithm tracks incoherences

in the expected values �ℓ ≶ �max
because it controls the magnitude of

the gradient that is used in the update rule and the algorithm tracks that

the sampled portfolio reward, 𝑝𝑟 ∼𝑋 log (1 − (𝑋 − �★(𝑡)) �), is indeed

sampled from a distribution that is close enough to the true one. In this

case, close enough means that �★(𝑡) should be overwhelmingly better

estimated than the current empirical mean of portfolio rewards. In this

case, the tracking takes the form of a comparison between the number

of samples of the leader arm and the challenger arm. However, we do

think that one could replace this duelling structure by a structure closer

to the original MED and IMED. In that case, one would track that the

empirical best arm is the most sampled and make sure to sample it until

this condition is reached. This tracking could be used in the original

MCMC-like algorithmic idea presented at the beginning of this chapter.

Proof sketch of Theorem 4.4.1. The general proof scheme is inspired by [31],

that proposed a similar duel-based approach. The first thing to remark

is that, because the greedy/non-greedy duelling structures, not all the

samples from challenger arms will be used to compute update of the

unlikelihood estimation, 𝐿𝑎,ℓ𝑡 (𝑡). Therefore, one should find a way to

prove that the number of greedy duels is not too large so that 𝑁𝑎,ℓ𝑡 (𝑡) ≃
𝑁𝑎,ℓ𝑡 (𝑡) (≃ 𝑁𝑎(𝑡)). This fact also explain why one should not compare

𝐿𝑎,ℓ𝑡 (𝑡) to𝑁𝑎(𝑡)EF (𝐹𝑎(𝑡), �ℓ𝑡 (𝑡)), where 𝐹𝑎(𝑡) is the empirical distribution

of arm 𝑎 using all 𝑁𝑎(𝑡) samples, but rather to 𝑁𝑎,ℓ𝑡 (𝑡)EF (𝐹𝑎,ℓ𝑡 (𝑡), �ℓ𝑡 (𝑡)),
where 𝐹𝑎,ℓ𝑡 (𝑡) is the empirical distribution of the 𝑁𝑎,ℓ𝑡 (𝑡) observations

used to update 𝐿𝑎,ℓ𝑡 (𝑡). The greedy/non-greedy structure is the reason

why one should not use the raw 𝑁𝑎,ℓ𝑡 (𝑡), because all those samples are

not used to perform updates of the unlikelihood estimation. However, as

stated, one should make sure that those are roughly equal in order to

maximize information extracted from suboptimal samples.

The main difficulty consists in controlling the deviation of 𝐿𝑎,ℓ𝑡 (𝑡) from

EF(𝐹𝑎,ℓ𝑡 (𝑡), �ℓ𝑡 (𝑡)). Both over-estimation and under-estimation are bad.

Under-estimation of the unlikelihood of optimality may lead to over-

sampling suboptimal arms and therefore increase the Bandit regret.

Over-estimation of the unlikelihood of optimality may prevent sufficient

exploration of the true best arm when it was initially wrongly confused

for a suboptimal one. The recovery time from this bad event may be too

large, i. e. one may play a suboptimal arm thinking it is optimal for too

long, therefore leading to an increase in the Bandit regret. Of course, we

already know that the unlikelihood of estimation 𝑁𝑎EF defines the right

sampling boundary to achieve optimal exploration-exploitation trade-off,

a fact that is used by MED and IMED. This is why we also try to control

the deviation of 𝐿𝑎,ℓ𝑡 (𝑡) from EF(𝐹𝑎,ℓ𝑡 (𝑡), �ℓ𝑡 (𝑡)).

The proof relies on the following crucial decomposition. For fixed arms

(𝑎, ℓ), a sample size 𝑛 := 𝑁𝑘,ℓ (𝑡), and any threshold �, it holds that

𝑛EF(𝐹𝑎,ℓ ,𝑛 , �) = 𝐿𝑎,ℓ ,𝑛 + 𝑅𝑎,ℓ ,𝑛 + 𝐵𝑎,ℓ ,𝑛(�) , (4.29)

where

▶ 𝑅𝑎,ℓ ,𝑛 is the portfolio regret as in Equation 4.21,

128 4 Towards an optimal information usage

[31]: Chan (2020), ‘The multi-armed ban-

dit problem: An efficient nonparametric

solution’

[12]: Honda et al. (2011), ‘An asymptot-

ically optimal policy for finite support

models in the multiarmed bandit prob-

lem’

[1]: Dembo et al. (2010), Large Deviations
Techniques and Applications

▶ 𝐵𝑎,ℓ ,𝑛(�) is the portfolio bias with respect to a fixed threshold �,

defined in Equation 4.24, and

▶ 𝐿𝑎,ℓ ,𝑛 and 𝐹𝑎,ℓ ,𝑛 are used to denote 𝐿𝑎,ℓ (𝑡) and 𝐹𝑎,ℓ (𝑡) when the

pseudo-count is such that 𝑁𝑎,ℓ (𝑡) = 𝑛.

In the proofs, the portfolio regret is controlled by assumption. The term

𝐿𝑎,ℓ ,𝑛 will control the Bandit regret similarly to the exact unlikelihood of

optimality 𝑁𝑎EF, as in [31] and [12]. Therefore, the main difficulty is the

control of the bias, which requires more careful examination. While the

analysis of the Bandit regret term is not trivial, isolating and analyzing

this portfolio bias term was one of the main theoretical contribution of

the paper. To analyze it, we prove the following result. For 𝑚 ≤ 𝑛, we

denote by 𝑡𝑎,ℓ ,𝑚 the time (i. e., interaction’s index in the history) when the

𝑚𝑡ℎ
update of 𝐿𝑎,ℓ ,𝑛 occurred, i. e. the time when updating the estimate

𝐿𝑎,ℓ from 𝐿𝑎,ℓ ,𝑚−1 to 𝐿𝑎,ℓ ,𝑚 .

Lemma 4.4.2 (Deviations of 𝐵𝑘,ℓ ,𝑛(�)) Let � ∈ (0, 1), and set

𝐶𝑎,ℓ ,𝑚 =
𝑀 − �ℓ (𝑡𝑎,ℓ ,𝑚)

𝑀 − � .

It holds that

𝐵𝑎,ℓ ,𝑛(�) ≥
𝑛∑

𝑚=1

log (𝐶𝑎,ℓ ,𝑚)𝟙(� ≤ �ℓ (𝑡𝑎,ℓ ,𝑚)) (4.30)

𝐵𝑎,ℓ ,𝑛(�) ≤
𝑛∑

𝑚=1

log (𝐶𝑎,ℓ ,𝑚)𝟙(� ≥ �ℓ (𝑡𝑎,ℓ ,𝑚)) (4.31)

The two inequations will always be used for a value of � that is in-

between the second and largest expected reward, � ∈
(
max𝑎:�𝑎<�★ , �

★
)
.

It immediately implies that the two inequations will always be used

for �ℓ (𝑡𝑎,ℓ ,𝑚) < �max
due to one of the tracking condition which ensure

that the denominator of 𝐶𝑎,ℓ ,𝑚 , 𝑀 − �, is always larger than the gap

𝛾 = 𝑀 − �max
.

Hence, the upper bound defined by Equation 4.31 is expected to be sub-

linear, and even finite, when the leader is an optimal arm, ℓ = ★, because

of the indicator which contains an event of the form {� < �★, � ≤ �★(𝑡)}.
Concentration à la Sanov (as in the book [1]) will take care of this term. The

lower bound defined by Equation 4.30 is expected to be sublinear when

the leader is not optimal ℓ ≠ ★. Again, this is thanks to the indicator func-

tion that contains an event of the form

{
� > max𝑎:�𝑎<�★ , ℓ ≠ ★, � < �ℓ (𝑡)

}
and Concentration à la Sanov will take care of this term.

The rate of convergence of the indicators is important. The proof presented

in this chapter work if 𝑛 = 𝑜(𝑁ℓ (𝑡𝑎,ℓ ,𝑛)), which justifies the greedy duels.

Indeed, we need 𝑒 𝑎𝑛ℙ(𝐵𝑎,ℓ ,𝑛 < −𝑛𝑥) to be small enough (for some

𝑎, 𝑥 > 0 and large 𝑛), which allows us to obtain that 𝑒 𝑎𝑛− 𝑓 (𝑛)𝑦𝑥 → 0 (for

some 𝑦𝑥 depending on 𝑥) and 𝑓 the function used to assess part of the

greediness of a duel condition.

Proof. We prove Lemma 4.4.2 that is important for the forthcoming

proof of regret upper bound of OMED. We introduce some notation for

4.4 Partial proof & open question 129

15: I hope to test this idea before the oral

of this thesis.

convenience. First, we denote 𝑋𝑘,ℓ ,𝑖 by 𝑋𝑖 and �★(𝑡𝑘,ℓ ,𝑖) by �★(𝑖). Then,

we define 𝑌𝑖 =
𝑋𝑖−�★(𝑖)
𝐵−�★(𝑖) , 𝑍𝑖 =

𝑋𝑖−�
𝐵−� , and � = argmax

�∈[0,1]

∑𝑛
𝑖=1

log(1 − �𝑍𝑖).

We use two elementary analysis properties. First,
1−�𝑍𝑖
1−�𝑌𝑖 is positive and

non-decreasing if 𝑌𝑖 ≥ 𝑍𝑖 . Then, 𝑌𝑖 ≥ 𝑍𝑖 only if �★(𝑖) ≤ �. Otherwise,

log(1 − �𝑍𝑖) − log(1 − �𝑌𝑖) ≤ 0. Hence, it holds that

𝐵𝑘,ℓ ,𝑛(�) B
𝑛∑
𝑖=1

(log(1 − �𝑍𝑖) − log(1 − �𝑌𝑖)) =
𝑛∑
𝑖=1

log

(
1 − �𝑍𝑖
1 − �𝑌𝑖

)
≤

𝑛∑
𝑖=1

log

(
1 − 𝑍𝑖
1 − 𝑌𝑖

)
𝟙(� ≥ �★(𝑖)) .

We then plug the expression of 𝑌𝑖 and 𝑍𝑖 in this bound, obtaining that

𝐵𝑘,ℓ ,𝑛(�) ≤
𝑛∑
𝑖=1

log

©«
𝐵−𝑋𝑖
𝐵−�
𝐵−𝑋𝑖
𝐵−�★(𝑖)

ª®¬𝟙(� ≥ �★(𝑖))

=

𝑛∑
𝑖=1

log

(
𝐵 − �★(𝑖)
𝐵 − �

)
𝟙(� ≥ �★(𝑖)) ,

which gives the result. Applying the exact same steps provides the other

direction,

−𝐵𝑘,ℓ ,𝑛 ≤
𝑛∑
𝑖=1

log

(
𝐵 − �

𝐵 − �★(𝑖)

)
𝟙(�★(𝑖) ≥ �) .

Remark: While this was the line of the paper at the time of writing, after

thinking a bit more about this, I will again insist that the most important

feature for the algorithm stability is, in my current opinion, the tracking

and not the duels. To not update the unlikelihood estimation when the

number of samples of the optimal arm is not large enough is the most

important feature. When this event occurs, using modified indexes (such

as the empirical expected values) indeed is a good idea to make sure that

the most sampled arm corresponds to the empirical maximal arm.
15

The modifications introduced in OMED and OIMED guarantee a small

absolute bias with large probability. This is a good thing if we refer

to the intuition that about the portfolio bias that was developed until

now, see paragraph 4.24. It is natural to ask whether such structural

modifications introduced in OMED and OIMED were necessary. While

one could not formally prove it, our experiments suggest that the regret

of OIMED/OMED may be linear without them.

Before performing numerical experiments or presenting the full proof

of Theorem 4.4.1, one must decide upon the specific portfolio algorithm,

denoted ALG in Algorithm 18, that we want to use. As stated in the

introduction part of this chapter, there are several candidates for the

implementation of OIMED/IMED.

130 4 Towards an optimal information usage

[67]: Gofer et al. (2016), ‘Lower bounds

on individual sequence regret’

[68]: Guzmán et al. (2021), ‘Best-case

lower bounds in online learning’

Assumption on the portfolio regret Ideally, the chosen portfolio algo-

rithm should satisfy all the necessary assumptions. Unfortunately, while

upper bounds on the portfolio regrets are often studied in the portfolio

optimization community, lower bounds (different from the by definition
zero) are not an active research subject and the literature on regret lower
bounds is scarce. Hopefully, this thesis and corresponding paper will

foster research of lower bound due to this connection with the Bandit

community.

In [67], the authors characterize algorithms with non-negative regret, but

for linear losses. The paper [68] showed that the regret of FTRL algorithms

is bounded as O(
√
𝑁) both from above and below, in a setting that

encompasses portfolio selection. Unfortunately, FTRL is computationally

inefficient, which makes it unsuitable for our application targeting the

best numerical complexity. We used Soft-Bayes for its simplicity and

computational efficiency, but it might not have the desired lower bound.

Our problem posed by this Bandit theoretical setting seems to be among

the first where a large negative regret is detrimental, and obtaining a

portfolio algorithm with both small computational complexity and a

regret lower bound is an open question. On the other hand, it may be

that this lower bound requirement could be relaxed in the analysis, and

that for example a high-probability lower bound could be enough. Our

experimental study supports the hypothesis that using Soft-Bayes in

OIMED gives good regret bounds for the bandit problem.

Numerical complexity We summarize numerical and theoretical per-

formances of our OMED and OIMED algorithms in Table 4.6 that will

be used to complete the original table of comparisons 4.1. This is a

Table 4.6: Time complexity needed to compute the next suboptimal arm 𝑎 of distribution 𝛽(𝑎) to pull and total space complexity per arm

required after 𝑇 interactions.

Algorithm Time complexity Space complexity Constant Optimality

OMED

(Alg. 18, Eq. 4.26)

O(1) O(|𝐴|) 1

EF(𝛽(𝑎),�★) (Thm. 4.4.1) Opt.

OIMED

(Alg. 18, Eq. 4.25)

O(1) O(|𝐴|) 1

EF(𝛽(𝑎),�★) (Thm. 4.4.1) Opt.

huge numerical improvement compared to the original MED and IMED

algorithms. The time complexity indeed is reduced to O(1) per arm and

interaction to update the index or unlikelihood of estimation. The space

complexity is independent of the number of interactions and is reduced

to a O(|𝐴|) per arm since for all challenger/arm 𝑎, one must store |𝐴|
pseudo-counts and estimation of unlikelihood of optimality, one per

potential leader/arm. The total space complexity is therefore O
(
|𝐴|2

)
,

which again, is independent of the number of interactions.

4.4 Partial proof & open question 131

Proof of Theorem 4.4.1: regret analysis of OMED and OIMED

Proof. As for the proof of Theorem 4.2.2 we start by proving a first regret upper bound that holds for both

algorithms, OMED and OIMED.

Lemma 4.4.1 (Generic upper bound) For any suboptimal arm 𝑘, for any 𝜖 > 0 it holds that

𝔼[𝑁𝑘(𝑡)] ≤𝑢𝜖(𝑇) + 𝔼
[
𝑇∑
𝑡=1

𝟙(𝑘 ∈ A𝑡+1 , ℓ𝑡 = 1, 𝑁𝑘,1(𝑡) > 𝑢𝜖(𝑇), 𝑍𝑘(𝑡) = 1, G𝑘(𝑡))
]

︸ ︷︷ ︸
Post-CV

+ 4 log(4)𝔼
[
𝑇∑
𝑡=1

𝟙(1 ∉ A𝑡+1 , ℓ𝑡 ≠ 1, 𝑍1(𝑡) = 1)
]

︸ ︷︷ ︸
Pre-CV

+O𝜖(1) ,

where 𝑢𝜖(𝑇) = log(𝑇)
EF(𝐹𝑛 ,�1)−𝜖 , and G𝑘(𝑡) =

{
𝐿𝑘,1(𝑡) ≥ 𝑁𝑘,1(𝑡)(EF(𝐹𝑘 , �1) − 𝜖)

}
.

Before proving this result, let us detail some intuitions. First, we remark that the two expectations need to be

second order terms to make the algorithms asymptotically optimal. The first expectation corresponds to pulls

of arm 𝑘 in a post-convergence regime, where arm 1 is the leader and the empirical distribution of arm 𝑘 is close

to 𝐹𝑘 . On the contrary, the second term is the expected number of duels lost by arm 1 as a challenger, against

a suboptimal leader. For this reason, we name these two terms respectively Post-CV and Pre-CV (where CV

abbreviates convergence). Note that Lemma 4.4.1 actually holds for any bandit algorithms that would use the

same duel-based structure, independently of what they do during the non-greedy duels.

Proof. We start the proof by introducing some notation. Due to the specific structure of the duel-based

algorithm we define for a challenger/leader pair (𝑘, ℓ) a pseudo-count 𝑁𝑘,ℓ (𝑡) and a corresponding empirical

cdf 𝐹𝑘,ℓ (𝑡): they are computed by considering only the observations of arm 𝑘 that have been collected when
arm 𝑘 was pulled after a non-greedy duel (𝑍𝑘(𝑡) = 1) performed against the leader ℓ𝑡 = ℓ . Hence, 𝑁𝑘,ℓ (𝑡) ≤ 𝑁𝑘(𝑡).
In several parts of the proof we also use constants 𝑥𝑘 ∈ (�𝑘 , �1), that we arbitrarily set to

�𝑘+�1

2
. Finally, we

introduce two ways to denote the rewards: we continue to call 𝑋𝑘,𝑛 the 𝑛-th reward received by arm 𝑘, but

we also introduce the notation 𝑋𝑘,ℓ ,𝑛 for the 𝑛-th reward received by arm 𝑘 after a non-greedy duel against

the leader ℓ .

We start the analysis by considering the case when the best arm is the leader, and the alternative. For each

suboptimal arm 𝑘, it holds that

𝔼[𝑁𝑘(𝑇)] = 1 + 𝔼
[
𝑇−1∑
𝑡=1

𝟙(𝑘 ∈ A𝑡+1 , ℓ𝑡 = 1)
]

︸ ︷︷ ︸
𝐴1

+𝔼
[
𝑇−1∑
𝑡=1

𝟙(𝑘 ∈ A𝑡+1 , ℓ𝑡 ≠ 1

]
︸ ︷︷ ︸

𝐴2

We then consider the favorable case where arm 1 the leader, splitting the cases according to the value of 𝑍𝑘(𝑡).

𝐴1 ≤ 𝔼

[
𝑇−1∑
𝑡=1

𝟙(𝑘 ∈ A𝑡+1 , ℓ𝑡 = 1, �1(𝑡) ≤ �𝑘(𝑡))
]

︸ ︷︷ ︸
𝐵1 (greedy duels)

+𝔼
[
𝑇−1∑
𝑡=1

𝟙(𝑘 ∈ A𝑡+1 , ℓ𝑡 = 1, 𝑍𝑘(𝑡) = 1)
]

︸ ︷︷ ︸
𝐵2 (non-greedy duels)

.

132 4 Towards an optimal information usage

We now upper bound 𝐵1 using that if ℓ𝑡 = 1 then 𝑁1(𝑡) ≥ 𝑡/𝐾, and that if �𝑘(𝑡) ≥ �1(𝑡) then either �𝑘(𝑡) ≥ 𝑥𝑘
or �1(𝑡) ≤ 𝑥𝑘 . By starting 𝑁𝑘(𝑡) at 1 we cover all possible scenarios for 𝑍𝑘(𝑡) = 0 (including �ℓ𝑡 (𝑡) ≥ �max).

We then obtain

𝐵1 ≤ 𝔼

[
𝑇−1∑
𝑡=1

𝟙(ℓ𝑡 = 1, �1(𝑡) ≤ 𝑥𝑘)
]
+ 𝔼

[
𝑇−1∑
𝑡=1

𝟙(𝑘 ∈ A𝑡+1 , �𝑘(𝑡) ≥ 𝑥𝑘)
]

≤
+∞∑
𝑡=1

+∞∑
𝑛=𝑡/𝐾

ℙ(�1,𝑛 ≤ 𝑥𝑘) +
+∞∑
𝑛=1

ℙ(�𝑘,𝑛 ≥ 𝑥𝑘) = O(1) .

We then consider 𝐵2. We use that for any 𝑛,

{𝑘 ∈ A𝑡+1 , 𝑍𝑘(𝑡) = 1, 𝑁𝑘,1(𝑡) = 𝑛} = {𝑁𝑘,1(𝑡 + 1) = 𝑁𝑘,1(𝑡) + 1, 𝑁𝑘,1(𝑡) = 𝑛} ,

and can happen only once. For any 𝑢𝜖(𝑇) ∈ ℕ, we hence obtain that

𝐵2 ≤ 𝑢𝜖(𝑇) +
𝑇−1∑
𝑡=1

𝔼
[
𝟙(𝑁𝑘,1(𝑡 + 1) = 𝑁𝑘,1(𝑡) + 1, 𝑁𝑘,1(𝑡) > 𝑢𝜖(𝑇))

]
.

We then upper bound 𝐵2 by considering separately cases when G𝑘(𝑡) holds or not,

𝐵2 ≤ 𝑢 + 𝔼
[
𝑇∑
𝑡=1

𝟙(𝑁𝑘,1(𝑡 + 1) = 𝑁𝑘,1(𝑡) + 1, 𝑁𝑘,1(𝑡) > 𝑢, G𝑘(𝑡))
]

︸ ︷︷ ︸
Post-CV

+ 𝔼
[
𝑇∑
𝑡=1

𝟙(𝑁𝑘,1(𝑡 + 1) = 𝑁𝑘,1(𝑡) + 1, 𝑁𝑘,1(𝑡) > 𝑢, Ḡ𝑘(𝑡))
]

︸ ︷︷ ︸
𝐵′

2

.

We remark the first term is exactly the post-convergence term that we introduced in the lemma. Hence, we

leave this expression as it is for this first result. We then consider 𝐵′
2
. We use Equation (4.29), for any 𝜖0 > 0 it

holds that

𝐿
𝑘,1,𝑁𝑘,1(𝑡) = 𝑁𝑘,1(𝑡)EF(𝐹𝑘(𝑡), �1 − 𝜖0) + 𝑅𝑘,1,𝑁𝑘,1(𝑡) + 𝐵𝑘,1,𝑁𝑘,1(𝑡)(�1 − 𝜖0).

Hence, we obtain that

Ḡ𝑘(𝑡) ⊂
{

max

{
𝐵
𝑘,1,𝑁𝑘,1(𝑡)(�1 − 𝜖0)

𝑁𝑘,1(𝑡)
,
𝑅
𝑘,1,𝑁𝑘,1(𝑡)

𝑁𝑘,1(𝑡)
, EF(𝐹𝑘 , �1) − EF(𝐹𝑘(𝑡), �1 − 𝜖0)

}
≥ 𝜖

3

}
.

Note that we could have stated different thresholds for each term, but we choose 𝜖/3 in each case for simplicity.

We use the first side of our assumption on the regret of the portfolio algorithm: if 𝑅𝑛 = 𝑜(𝑛), then there exists

𝑛0 ∈ ℕ large enough such that for 𝑛 ≥ 𝑛𝜖, 𝑅𝑛 ≤ 𝑛𝜖
3

. Hence, by defining 𝑢𝜖(𝑇) ≥ 𝑛𝜖 we ensure that Ḡ𝑘(𝑡) is
not due to a large portfolio regret.

We now consider the term involving EF(𝐹𝑘(𝑡), �1 − 𝜖0), which is analogous to the CV-Emp term of the proof

of Theorem 4.2.2. We hence directly write that

4.4 Partial proof & open question 133

𝔼

[
𝑇∑
𝑡=1

𝟙
(
𝑁𝑘,1(𝑡 + 1) = 𝑁𝑘,1(𝑡) + 1, 𝑁𝑘,1(𝑡) > 𝑢𝜖(𝑇), EF(𝐹𝑘(𝑡), �1 − 𝜖0) ≤ EF(𝐹𝑘 , �1) −

𝜖
3

)]
≤

+∞∑
𝑛=𝑢𝜖(𝑇)

ℙ

(
EF(𝐹𝑘,𝑛 , �1) ≤ EF(𝐹𝑘 , �1) +

𝜖0

𝐵 − �1

− 𝜖
3

)
= O𝜖(1) ,

by choosing 𝜖0 = (𝐵 − �1) 𝜖
6
. Finally, we use that 𝐵

𝑘,1,𝑁𝑘,1(𝑡)(�1 − 𝜖0) ≥ 𝑁𝑘,1(𝑡)𝜖/3 is possible only if at least

one empirical mean computed with a “reasonable” sample size deviates. More precisely,

𝐵
𝑘,1,𝑁𝑘,1(𝑡)(�1 − 𝜖0) ≥ 𝑁𝑘,1(𝑡)

𝜖
3

⇒ ∃𝑛 ≥ 𝑁𝑘,1(𝑡)
𝜖
3

: �1(𝑡𝑘,1,𝑛) ≤ �1 − 𝜖0

⇒ ∃𝑛 ≥ 𝑓
(
𝑁𝑘,1(𝑡)

𝜖
3

)
: �1,𝑛 ≤ �1 − 𝜖0 ,

where we used that, thanks to our algorithm, at any time 𝑠 for which the estimate 𝐿𝑘,1(𝑡)was incremented

𝑁1(𝑠) ≥ 𝑓 (𝑁𝑘,1(𝑠))was satisfied (check to decide that the duel is non-greedy). Interestingly, we now get an

event that only depends on 𝑁𝑘,1(𝑡). Using Lemma 4.4.2 we finally get that

𝔼

[
𝑇∑
𝑡=1

𝟙
(
𝑁𝑘,1(𝑡 + 1) = 𝑁𝑘,1(𝑡) + 1, 𝑁𝑘,1(𝑡) > 𝑢𝜖(𝑇), 𝐵𝑘,1,𝑁𝑘,1(𝑡)(�1 − 𝜖0) ≥ 𝑁𝑘,1(𝑡)

𝜖
3

)]
≤
+∞∑

𝑡=𝑢𝜖(𝑇)
ℙ

(
𝑁𝑘,1(𝑡 + 1) = 𝑁𝑘,1(𝑡) + 1, 𝑁𝑘,1(𝑡) ≥ 𝑢𝜖(𝑇), ∃𝑠 ≥ 𝑓

(
𝑁𝑘,1(𝑡)

𝜖
3

)
: �1,𝑠 ≤ �1 − 𝜖0

)
≤

+∞∑
𝑛=𝑢𝜖(𝑇)

ℙ
(
∃𝑠 ≥ 𝑓

(
𝑛
𝜖
3

)
: �1,𝑠 ≤ �1 − 𝜖0

)
≤

+∞∑
𝑛=𝑢𝜖(𝑇)

+∞∑
𝑠= 𝑓 (𝑛 𝜖

3
)
ℙ (�1,𝑠 ≤ �1 − 𝜖0) = O𝜖(1) ,

thanks to Hoeffding’s inequality. This last step allows to conclude that 𝐵′
2
= O𝜖(1), using that 𝑓 (𝑠) ≥ 𝑠 for any

𝑠 ∈ ℕ.

Remark 4.4.1 We can see that at this step𝑁1(𝑠) ≥ 𝑁𝑘(𝑠)was sufficient, the enforcement of𝑁1(𝑠) ≥ 𝑓 (𝑁𝑘(𝑠))
is necessary only in the “pre-convergence” analysis.

Upper bounding 𝐴2, ℓ𝑡 ≠ 1

For this part of the proof, we mainly use techniques from [31, 69]. In particular, we use that if the current

leader is a suboptimal arm then either 1 has already been leader and has lost leadership or 1 has never been

leader. Formally, we define the event

D𝑡 =

{
∃𝑟 ∈

[
𝑡

4

, 𝑡

]
: ℓ𝑟 = 1

}
.

Then, we first upper bound the term

𝐶1 B
𝑇−1∑
𝑡=1

𝔼 [𝟙 (𝑘 ∈ A𝑡+1 , ℓ𝑡 ≠ 1, D𝑡)] .

134 4 Towards an optimal information usage

We use that if D𝑡 holds and ℓ𝑡 ≠ 1 then arm 1 was the leader at some point between 𝑡/4 and 𝑡 and lost its

leadership. Furthermore, a change of leadership from 1 to 𝑗 at time 𝑠 can only happen if (1) arm 𝑗 has been

pulled at the previous round, (2) the two arms now satisfy 𝑁1(𝑠) = 𝑁𝑗(𝑠) = 𝑛 for some 𝑛 ≥ 𝑠/𝐾 ≥ 𝑡/(4𝐾),
and (3) �1,𝑛 ≤ �𝑗 ,𝑛 . Thanks to these properties, we obtain with some union bounds that

𝐶1 ≤
𝐾∑
𝑗=2

𝑇−1∑
𝑡=1

𝑡∑
𝑠=⌈𝑡/4⌉

𝑡∑
𝑛=⌈𝑠/𝐾⌉

𝔼
[
𝟙

(
𝑗 ∈ A𝑠 , 𝑁1(𝑠) = 𝑁𝑗(𝑠) = 𝑛, �𝑗 ,𝑛 ≥ �1,𝑛

)]
≤

𝐾∑
𝑗=2

𝑇−1∑
𝑡=1

𝑡∑
𝑛=⌈𝑡/𝐾⌉

𝔼

[
𝟙

(
�𝑗 ,𝑛 ≥ �1,𝑛

) 𝑡∑
𝑠=⌈𝑡/4⌉

𝟙(𝑗 ∈ A𝑠 , 𝑁𝑗(𝑠) = 𝑛)
]

≤
𝐾∑
𝑗=2

𝑇−1∑
𝑡=1

𝑡∑
𝑛=⌈𝑡/𝐾⌉

ℙ
(
�𝑗 ,𝑛 ≥ �1,𝑛

)
=

𝐾∑
𝑗=2

𝑇−1∑
𝑡=1

𝑡∑
𝑛=⌈𝑡/𝐾⌉

(ℙ
(
�𝑗 ,𝑛 ≥ 𝑥 𝑗

)
+ ℙ

(
�1,𝑛 ≤ 𝑥 𝑗

)
) = O(1) .

We now upper bound the term

𝐶2 B
𝑇−1∑
𝑡=1

𝔼
[
𝟙

(
𝑘 ∈ A𝑡+1 , ℓ𝑡 ≠ 1, D̄𝑡

)]
.

Following [31], we use that if arm 1 has never been leader between 𝑡/4 and 𝑡, then it has necessarily lost at

least 𝑡/4 duels in that time interval. Using Markov inequality, we hence obtain that

𝐶2 ≤
𝑇−1∑
𝑡=1

ℙ

(
𝟙

(
𝑡∑

𝑠=𝑡/4
𝟙(1 ∉ A𝑠+1 , ℓ𝑠 ≠ 1) ≥ 𝑡

4

))
≤

𝑇−1∑
𝑡=1

4

𝑡

𝑡∑
𝑠=𝑡/4

𝔼 [𝟙(1 ∉ A𝑠+1 , ℓ𝑠 ≠ 1)]

≤
𝑇−1∑
𝑠=1

(
𝑇−1∑
𝑡=1

4

𝑡
𝟙(𝑡 ∈ [𝑠, 4𝑠])

)
𝔼 [𝟙(1 ∉ A𝑠+1 , ℓ𝑠 ≠ 1)]

≤ 4 log(4)
𝑇−1∑
𝑡=1

𝔼 [𝟙(1 ∉ A𝑡+1 , ℓ𝑡 ≠ 1)] .

Thank to these simple tricks, we are back to upper bounding the total number of duels lost by arm 1 while not

being the leader at the cost of a multiplicative constant, which is close to the remaining term in our statement.

The last step of this first generic analysis consists in upper bounding the regret caused by 𝑍1(𝑡) = 0 by a

constant. We denote by 𝑓 −1
the function satisfying 𝑓 −1(𝑓 (𝑠)) = 𝑠 for any 𝑠 ∈ ℕ. We use that the greedy duel

4.4 Partial proof & open question 135

is caused by either �ℓ𝑡 (𝑡) ≥ �max or 𝑁1,ℓ𝑡 (𝑡) ≥ 𝑓 −1(𝑡/𝐾),

𝐷1 B
𝑇−1∑
𝑡=1

𝔼 [𝟙 (1 ∉ A𝑡+1 , ℓ𝑡 ≠ 1, 𝑍1(𝑡) = 0)]

≤
𝑇−1∑
𝑡=1

𝔼
[
𝟙

(
∪𝐾𝑗=2

{
�1(𝑡) ≤ 𝑥 𝑗 ∪ �𝑗(𝑡) ≥ 𝑥 𝑗 , 𝑁1, 𝑗(𝑡) ≥ 𝑓 −1(𝑡/𝐾), 𝑁𝑗(𝑡) ≥ 𝑡/𝐾

})]
+
𝑇−1∑
𝑡=1

𝔼
[
𝟙

(
∪𝐾𝑗=2

{
�𝑗(𝑡) ≥ �max

}
, ℓ𝑡 = 𝑗

)]
≤
𝑇−1∑
𝑡=1

𝔼
[
𝟙(�1(𝑡) ≤ 𝑥 𝑗 , 𝑁1(𝑡) ≥ 𝑓 −1(𝑡/𝐾))

]
+ 2

𝐾∑
𝑗=2

𝔼
[
𝟙(�𝑗(𝑡) ≥ 𝑥 𝑗 , 𝑁𝑗(𝑡) ≥ 𝑡/𝐾)

]
≤
𝑇−1∑
𝑡=1

𝑡∑
𝑛= 𝑓 −1(𝑡/𝐾)

ℙ(�1,𝑛 ≤ 𝑥 𝑗) + 2

𝐾∑
𝑗=2

𝑇−1∑
𝑡=1

𝑡∑
𝑛 𝑗=𝑡/𝐾

ℙ(�𝑗 ,𝑛 ≥ 𝑥 𝑗) = O(1) ,

where we grouped upper bounded the terms corresponding to �𝑗(𝑡) ≥ �max by the terms corresponding to

�𝑗(𝑡) ≥ 𝑥 𝑗 for simplicity. Finally, the remaining term of our upper bound is exactly

Pre-CV B 4 log(4)
𝑇−1∑
𝑡=1

𝔼 [𝟙 (1 ∉ A𝑡+1 , ℓ𝑡 ≠ 1, 𝑍1(𝑡) = 1)] ,

as stated in the Lemma 4.4.1. This concludes the proof of the lemma,

𝔼[𝑁𝑘(𝑇)] ≤ 𝑢𝜖(𝑇) + Post-CV + Pre-CV + O𝜖(1) .

We now prove the following lemma, that concludes the proof of Theorem 4.4.1.

Lemma 4.4.2 OMED and OIMED both satisfy

Post-CV = O𝜖(1) and Pre-CV = O(1) .

Proof. We need to upper bound four terms. We start with the upper bounds of the two post-convergence

terms, that are straightforward thanks to the tuning of 𝑢𝜖(𝑇) and the definition of G𝑘(𝑡).

Upper bounding Post-CV

We start with OMED,

Post-CVOMED = 𝔼

[
𝑇∑
𝑡=1

𝟙(𝑘 ∈ A𝑡+1 , ℓ𝑡 = 1, 𝑁𝑘,1(𝑡) > 𝑢𝜖(𝑇), 𝑍𝑘(𝑡) = 1, G𝑘(𝑡))
]

≤
[
𝑇∑
𝑡=1

𝑒−𝑁𝑘,1(𝑡)(EF(𝐹𝑘 ,�1)−𝜖)𝟙(𝑁𝑘,1(𝑡) > 𝑢𝜖(𝑇), 𝑍𝑘(𝑡) = 1, G𝑘(𝑡))
]

≤ 𝑇𝑒−𝑢𝜖(𝑇)(EF(𝐹𝑘 ,�1)−𝜖)

≤ 1 ,

136 4 Towards an optimal information usage

thanks to the definition of 𝑢𝜖(𝑇). For OIMED, we obtain

Post-CVOIMED ≤ 𝔼

[
𝑇∑
𝑡=1

𝟙(𝑘 ∈ A𝑡+1 , ℓ𝑡 = 1, 𝑁𝑘,1(𝑡) > 𝑢𝜖(𝑇), 𝑍𝑘(𝑡) = 1, G𝑘(𝑡))
]

≤
[
𝑇∑
𝑡=1

𝟙(𝑁𝑘,1(𝑡)(EF(𝐹𝑘 , �1) − 𝜖) < log(𝑇), 𝑁𝑘,1(𝑡) > 𝑢𝜖(𝑇))
]

= 0 ,

again thanks to the definition of 𝑢𝜖(𝑇).

Upper bounding Pre-CV, OMED

We recall that

Pre-CVOMED B
𝑇−1∑
𝑡=1

𝔼
[
𝟙

(
1 ∉ A𝑡+1 , ℓ𝑡 ≠ 1, 𝑁1,ℓ𝑡 (𝑡) ≤ 𝑓 −1(𝑁𝑗(𝑡))

)]
.

We use the notation 𝑝1(𝑡) = 𝑝
1, 𝑗 ,𝑁1,ℓ𝑡

(𝑡), and 𝑝1, 𝑗 ,𝑛 = 𝑒−𝐿1, 𝑗 ,𝑛
. Then, with the same arguments as for the previous

regret analysis of MED and FMED we obtain that

Pre-CVOMED =

𝑇−1∑
𝑡=1

𝔼
[
𝟙

(
ℓ𝑡 ≠ 1, 𝑁1,ℓ𝑡 (𝑡) ≤ 𝑓 −1(𝑁𝑗(𝑡))

)
(1 − 𝑝1(𝑡))

]
=

𝑇−1∑
𝑡=1

𝔼

[
𝟙

(
1 ∈ A𝑡+1 , ℓ𝑡 ≠ 1, 𝑁1,ℓ𝑡 (𝑡) ≤ 𝑓 −1(𝑁𝑗(𝑡))

)
1 − 𝑝1(𝑡)
𝑝1(𝑡)

]
≤

𝐾∑
𝑗=2

𝑇∑
𝑛=1

𝔼

[
1

𝑝1, 𝑗 ,𝑛
− 1

]
B

𝐾∑
𝑗=2

𝑇∑
𝑛=1

𝔼
[
𝑒𝐿1, 𝑗 ,𝑛 − 1

]
.

Now, thanks to Equation (4.29) we can relate 𝐿1, 𝑗 ,𝑛 to EF(𝐹𝑛 , 𝑥) for any 𝑥 ∈ ℝ. We again choose 𝑥 𝑗 for

convenience, and obtain that

Pre-CVOMED ≤
𝐾∑
𝑗=2

𝑇∑
𝑛=1

𝔼
[
𝑒(𝑛EF(𝐹1, 𝑗 ,𝑛 ,𝑥 𝑗)−𝑅1, 𝑗 ,𝑛−𝐵1, 𝑗 ,𝑛 (𝑥 𝑗))+ − 1

]
.

To relate to the proof for MED we need the portfolio regret and bias to be small enough. We use the second

side of our assumption on the regret, which is that −𝑅1, 𝑗 ,𝑛 = 𝑜(𝑛) for any 𝑗 , 𝑛. Hence, for 𝑛 large enough it

holds for instance that −𝑅1, 𝑗 ,𝑛 ≤
𝛿 𝑗
3
𝑛, with

𝛿 𝑗 = inf

𝐹∈F
EF(𝐹, �1) − EF(𝐹, 𝑥 𝑗) > 0 ,

where 𝛿 𝑗 > 0 is ensured by property 3. of Lemma 4.2.1. For the bias, we first obtain with Lemma 4.4.2 that

−𝐵1, 𝑗 ,𝑛(𝑥 𝑗) ≤
𝑛∑
𝑖=1

𝟙(�𝑗(𝑡1, 𝑗 ,𝑛) ≥ 𝑥 𝑗) .

4.4 Partial proof & open question 137

We then define a “good event” under which the bias is controlled,

B𝑗 ,𝑛 =

{
𝑛∑
𝑖=1

𝟙(�𝑗(𝑡1, 𝑗 ,𝑛) ≥ 𝑥 𝑗) ≤ 𝑛
𝛿 𝑗
3

}
.

We then use a similar proof as for the post-convergence term. We first consider

𝑃1 B
𝐾∑
𝑗=2

𝑇∑
𝑛=1

𝔼
[(
𝑒𝐿1, 𝑗 ,𝑛 − 1

)
𝟙(B𝑗 ,𝑛)

]
=

𝐾∑
𝑗=2

𝑇∑
𝑛=1

𝔼

[
𝑒𝑛EF(𝐹1, 𝑗 ,𝑛 ,𝑥 𝑗)+𝑛

2𝛿 𝑗
3 − 1

]
.

Using properties 3. and 4. of Lemma 4.2.1, we obtain that

𝑃1 ≤
𝐾∑
𝑗=2

𝑇∑
𝑛=1

∫ 𝑒
𝑛K+

𝑗
+

2𝛿 𝑗
3 −1

0

ℙ

(
EF(𝐹1, 𝑗 ,𝑛 , 𝑥 𝑗) >

𝛿 𝑗
3

+ 1

𝑛
log(1 + 𝑥)

)
d𝑥

≤
𝐾∑
𝑗=2

𝑇∑
𝑛=1

𝑒𝑛(𝑛 + 1)
(
K+𝑗 +

2𝛿 𝑗
3

)
𝑒−𝑛

𝛿 𝑗
3

= O(1) ,

with K+
𝑗
= log

(
𝐵−𝑏
𝐵−𝑥 𝑗

)
. We then tackle the case where B𝑗 ,𝑛 does not hold, which is possible only if �𝑗 ,𝑠 ≥ 𝑥 𝑗

for some 𝑠 ≥ (𝑛𝛿 𝑗)2. Furthermore, we also use the trivial bound −𝐵1, 𝑗 ,𝑛(𝑥 𝑗) ≤ 𝑛 thanks to Lemma 4.4.2. We

then obtain

𝑃2 B
𝐾∑
𝑗=2

𝑇∑
𝑛=1

𝔼
[(
𝑒(𝑛EF(𝐹1, 𝑗 ,𝑛 ,𝑥 𝑗)−𝑅1, 𝑗 ,𝑛−𝐵1, 𝑗 ,𝑛 (𝑥 𝑗))+ − 1

)
𝟙(B̄𝑗 ,𝑛)

]
≤

𝐾∑
𝑗=2

𝑇∑
𝑛=1

𝔼
[(
𝑒𝑛EF(𝐹1, 𝑗 ,𝑛 ,𝑥 𝑗)+𝑛(1+𝛿 𝑗) − 1

)
𝟙(∃𝑠 ≥ 𝑓 (𝑛𝛿 𝑗) : �𝑗 ,𝑠 ≥ 𝑥 𝑗)

]
≤

𝐾∑
𝑗=2

𝑇∑
𝑛=1

𝔼

[(
𝑒𝑛EF(𝐹1, 𝑗 ,𝑛 ,𝑥 𝑗)+𝑛(1+𝛿 𝑗) − 1

) 𝑒− 𝑓 (𝑛𝛿 𝑗)𝐼1(𝑥 𝑗)
1 − 𝑒−𝐼1(𝑥 𝑗)

]
,

We can conclude at this step using that 𝑒𝑛(1+𝛿 𝑗)− 𝑓 (𝑛𝛿 𝑗)𝐼1(𝑥 𝑗) → 0, as we ensured that 𝑛 = 𝑜(𝑓 (𝑛)), so it simply

holds that

𝑃1 = O(1) ⇒ 𝑃2 = O(1) .

138 4 Towards an optimal information usage

Upper bounding Pre-CV, OIMED

We again consider the two cases, depending on if B(𝑡) holds or not. When this is true, we can use a similar

proof to the one of IMED that we previously presented,

𝑄1 B
𝐾∑
𝑗=2

𝑇−1∑
𝑡=1

𝔼

[
𝟙

(
𝑁1, 𝑗(𝑡)EF(𝐹1, 𝑗 ,𝑛 , 𝑥 𝑗) + log(𝑁1, 𝑗(𝑡)) ≥ log(𝑁𝑗(𝑡)) − 𝑁1, 𝑗(𝑡)

2𝛿 𝑗
3

, 𝑁𝑗(𝑡) ≥ 𝑡/𝐾
)]

≤
𝐾∑
𝑗=2

𝑇−1∑
𝑡=1

𝑇−1∑
𝑛=log(𝑡/𝐾)/K+

ℙ

(
𝑛EF(𝐹1, 𝑗 ,𝑛 , 𝑥 𝑗) ≥ log(𝑡/𝐾) − 𝑛

2𝛿 𝑗
3

− log(𝑛)
)

≤
𝐾∑
𝑗=2

𝑇−1∑
𝑡=1

𝑇−1∑
𝑛=log(𝑡/𝐾)/K+

𝐾𝑒𝑛(𝑛 + 2)
𝑡

𝑒−𝑛
𝛿 𝑗
3

≤ 𝐾2𝑒
𝑇−1∑
𝑡=1

𝑇−1∑
𝑛=log(𝑡/𝐾)/K+

𝑛(𝑛 + 2)
𝑡

𝑒−𝑛
𝛿 𝑗
3 ,

where we again used properties 3. and 4. of Lemma 4.2.1 to upper bound the probability. The convergence

of this term is ensured by the fact that the sum on 𝑛 starts at

log(𝑡/𝐾)
K+ . To formally prove this we can for

instance use that there exists a constant 𝐶 𝑗 (that typically scales in O(𝛿−2

𝑗
) up to logarithm terms) such that

∀𝑛 ∈ ℕ, 𝑛(𝑛 + 2) ≤ 𝐶 𝑗𝑒𝑛
𝛿 𝑗
6 for any 𝑛 ∈ ℕ, so

𝑄1 ≤ 𝐶 𝑗𝐾2

𝑇−1∑
𝑡=1

𝑇−1∑
𝑛=log(𝑡/𝐾)/K+

𝑒−𝑛
𝛿 𝑗
6

𝑡

≤ 𝐶 𝑗𝐾2+
𝛿 𝑗

3K+
1

1 − 𝑒−
𝛿 𝑗
6

𝑇−1∑
𝑡=1

1

𝑡1+
𝛿 𝑗

6K+

= O(1) .

We then consider B̄(𝑡), under which the bias can be up to 𝑁1, 𝑗(𝑡). In that case, we use the same proof

techniques as for OMED, with

𝑄2 B
𝐾∑
𝑗=2

𝑇−1∑
𝑡=1

𝔼
[
𝟙(𝑁1, 𝑗(𝑡)EF(𝐹1, 𝑗 ,𝑛 , 𝑥 𝑗) ≥ log(𝑁𝑗(𝑇)) − 𝑁1, 𝑗(𝑡)(1 + 𝛿 𝑗), 𝑁𝑗(𝑡) ≥ 𝑡/𝐾, B̄(𝑡))

]
≤

𝐾∑
𝑗=2

𝑇−1∑
𝑡=1

𝑇−1∑
𝑛=log(𝑡/𝐾)/K+

𝐾

𝑡
𝑒−𝑛𝛿 𝑗 × 𝑒

𝑛

(
1+

𝛿 𝑗
3

)
−(𝑛𝛿 𝑗)2𝐼1(𝑥 𝑗)

1 − 𝑒−𝐼1(𝑥 𝑗)
.

We then use that the right-hand term converges to 0, so 𝑄1 = O(1) ⇒ 𝑄2 = O(1).

Remark 4.4.2 The enforcement of a sufficient sample size for the leader is justified by the analysis of the

pre-convergence term. In this regime a linear bias may cost up to 𝑒𝑛 for each sample size 𝑛. Hence, a

concentration of the mean with a rate 𝑒−𝑐𝑛 is not sufficient, especially if 𝑐 is small (which happens if the

gaps are small). Furthermore, this kind of rate cannot be avoided without actively controlling the sample

size of the leader at each update.

This concludes the proof of Theorem 4.4.1.

4.5 Empirical results 139

[65]: Orseau et al. (2017), ‘Soft-bayes:

Prod for mixtures of experts with log-

loss’

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

[21]: Cappé et al. (2013), ‘Kullback-

Leibler Upper Confidence Bounds for

Optimal Sequential Allocation’

[26]: Riou et al. (2020), ‘Bandit algo-

rithms based on Thompson sampling

for bounded reward distributions’

[5]: Auer et al. (2002), ‘Finite-time analy-

sis of the multiarmed bandit problem’

Prior to benchmarking the introduced algorithms, and check if OMED

and OIMED deliver the promises of the premises, one must briefly

describe the Soft-Bayes portfolio algorithm that we use.

Soft-Bayes

The Soft-Bayes algorithm is proposed in [65]. We recall that the EF

estimation is a portfolio optimization problem of dimension 2. At each

step 𝑛, the portfolio algorithm decides an allocation (1−�𝑛 ,�𝑛) between

two assets, that provide a payoff (1, 𝑌𝑛). We use in this section 𝑌𝑛 to

denote for simplification

𝐵−𝑋𝑘,ℓ ,𝑛
𝐵−�★(𝑡𝑘,ℓ ,𝑛) , that is used in our implementation

of the estimate 𝐿𝑘,ℓ ,𝑛 for the challenger/leader pair (𝑘, ℓ).

For the anytime version of the algorithm, a sequence of learning rates

(�𝑛)𝑛∈ℕ is provided as an input of the algorithm. We then define the

update rule of the anytime Soft-Bayes in Algorithm 19 below.

Algorithm 19: Anytime Soft-Bayes algorithm

Input: Parameter �𝑛 , sequence of learning rates (�𝑛)𝑛∈ℕ , initial

parameter �1 = 1/2;

1 return �𝑛+1 = �𝑛 ×
(
1 − �𝑛 + �𝑛 𝑌𝑛

1−�𝑛 (1−𝑌𝑛)

)
+

(
1 − �𝑛+1

�𝑛

)
�1;

In the paper [65], it is proved that defining the learning rate as�𝑛 =

√
log(2)

4𝑛

ensures an upper bound on the portfolio regret

R𝑁 = 4

√
log(2)𝑁 + (1 + log(2)) log(𝑁 + 1) + log(2) .

However, the authors do not provide a lower bound on the regret.

4.5 Empirical results

Benchmarks We numerically assess the regret and run time of the

two novel approaches presented in this paper, FMED/FIMED and

OMED/OIMED. We benchmark our approaches with the known asymp-

totically optimal algorithms: IMED [16], KL-UCB [21] and NPTS [26]; and

the computationally more efficient but suboptimal UCB [5], kl-UCB [21]

and IMED-kl (that denotes the binarized version of IMED). Recall that

pseudo-code of those algorithms can be found in Chapter 3 of this thesis.

We showcase our main findings by presenting a selection of experiments.

In each experimental setting, we plot the average run time and regret

of each algorithm, along with their quantiles 10%-90%. The run times

are dependent of the Python implementation of our algorithms, and are

thus only indicative.

DSSAT experiments We first consider the crop-management opti-

mization DSSAT problem that was presented in Figure 4.2 and the

unlikelihood of optimality ratio presented in Table 4.2 were a practical

justification of the work presented in this chapter. Table 4.2 illustrates

the theoretical advantage of asymptotically optimal algorithms. Recall

140 4 Towards an optimal information usage

that in this problem, a learner needs to select a planting date for maize

grains among seven possible options. Numerically, for each distribution,

the rewards are drawn uniformly at random among 10
4

points sampled

from the DSSAT simulator, in order to emulate the distributions at a

reduced cost. We plot the regret curves and average run time of tested

algorithms, Figure 4.5 as well as Table 4.7 that compiles the average regret

and average run time on the DSSAT experiment at the horizon 10 000.

Results displayed in Figure 4.5, show that on this problem optimal

algorithms also achieve better empirical performance. IMED, NPTS and

KL-UCB perform similarly, while IMED-kl and UCB achieve significantly

larger regret. Furthermore, FIMED is 10 times faster than IMED for

𝑇 = 10
4

(and as fast as kl-UCB), with almost no difference in terms of

regret. As expected, OIMED is as fast as UCB and IMED-kl. It achieves

better regret than those algorithms, but its performance is deteriorated

compare to IMED. This can be seen as the cost of the ability to forget

past observations. This experiment illustrates the respective benefits

of our two novel approaches: FIMED is the fastest algorithm among

those with the smallest regret, while OIMED has the smallest regret

among the fastest algorithm. Reading this table, it is clear that FIMED

improves the run time of IMED without compromising the regret and

that OIMED improves the run time even further, close to the one of UCB,

but at the cost of loosing a bit in the regret term. However, of the fastest

methods (those in O(1) run time), OIMED clearly has the smallest regret.

If the practitioner is willing to pay a bit more time complexity and space

complexity, then FIMED seems to be the best algorithmic method.

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

R
eg

re
t

UCB
NPTS
IMED
IMED-kl
OIMED
FIMED
kl-UCB
KL-UCB

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 4.5: Average regret (left) and run time (right) of the algorithms on the DSSAT bandit problem

Table 4.7: Average regret and run time at horizon 10 000 on DSSAT

Algorithm UCB NPTS IMED IMED-kl OIMED FIMED kl-UCB KL-UCB

Regret 252 49 41 148 100 40 74 60

Run time (sec.) 0.38 14 61 0.51 0.47 6 6.8 226

One can also see in Table 4.7 that the empirical unlikelihood of Table 4.2

really translates into differences of performances of the corresponding

algorithms. The ordering of algorithmic methods, symbolically

Δ2 < 𝑘𝑙 < EF,

is the same theoretically, predicted by the ratio Table 4.2, and by the

experimental regret shown in Table 4.7.

4.5 Empirical results 141

Bernoulli Bandits In this second experimental setting, we consider

a Bernoulli bandit with several means close to 0.5. In this setting, all

optimal algorithms match their implementation with the Bernoulli kl-

divergence, i. e. IMED-kl ∼ IMED and KL-UCB ∼ kl-UCB. Intuitively,

sequences of 0 and 1 with high variance may lead to the most potentially

confusing inputs for portfolio algorithms, so our objective is to check

the performance of OIMED in that case. In this setting, the variance of

samples is close to maximal and initial mistakes are frequents in the

sense that based on the first samples, it is easy to mistake a suboptimal

arm for an optimal arm. Strategies that are too greedy too early or cannot

correct their indexes fast enough surely would be penalized by a large

regret. To check the numerical soundness of OIMED, we therefore run

an experiment on such a setting.

Our results, summarized in Figure 4.6, are promising: the average regret

of OIMED is on par with other algorithms, while it still is among the

fastest. We remark that its 90% quantile is larger than the others, but still

exhibits a logarithmic shape. In that experiment only UCB is suboptimal,

and performs much worse than the other algorithms. Analysis of Figure

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

300

350

R
eg

re
t

UCB
NPTS
IMED
OIMED
FIMED
KL-UCB

0 2000 4000 6000 8000 10000
Number of samples

0

5

10

15

20

25

30

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 4.6: Average regret (left) and run time (right) of the algorithms on a 6-arms Bernoulli bandit problem with means

{0.3, 0.4, 0.45, 0.5, 0.52, 0.55}.

4.6 shows that, except for UCB, regret performances are similar among

tested algorithms and the analysis of run times lead to the same conclusion

as the analysis of the DSSAT experiment (Figure 4.5).

We first looked at a Bernoulli bandit problem where all the means are

close to 0.5, Figure 4.6, identified as a difficult problem because the

variance of the distributions in maximized among those supported in

[0, 1]. We explore two more Bernoulli bandit problems, one where the

means are located close to 1 (Figure 4.7, Table 4.8) and another hereafter

where means are located close to 0 (Figure 4.8, Table 4.9).

Table 4.8: Average regret and run time at horizon 10 000 on on a 6-arms Bernoulli bandit problem with means {0.4, 0.6, 0.7, 0.85, 0.9, 0.95}

Algorithm UCB NPTS IMED/IMED-KL OIMED FIMED kl-UCB/KL-UCB

Regret 289 33 30 43 30 95

Run time (sec.) 0.51 15 0.74 0.67 4.2 7

We recall that for Bernoulli bandit, IMED and IMED-kl are the same

algorithms (we assume that IMED is implemented as IMED-kl while

only 0s and 1s are observed). For FIMED we could have done the same

142 4 Towards an optimal information usage

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

300

R
eg

re
t

UCB
NPTS
IMED
OIMED
FIMED
KL-UCB

0 2000 4000 6000 8000 10000
Number of samples

0

2

4

6

8

10

12

14

16

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 4.7: Average regret (left) and run time (right) of the algorithms on a 6-arms Bernoulli bandit problem with means

{0.4, 0.6, 0.7, 0.85, 0.9, 0.95}.

thing to improve its run time without changing its regret in order to

emphasize that FIMED is always faster (or as fast as) kl-UCB, even when

using the Bernoulli kl. While the regret and time values change from one

experiment to another, the conclusions that can be drawn from them do

not, especially when considering the confidence intervals represented by

the 10%-90% quantiles. Experimentally, OIMED (or OMED, see Section

4.5.1) should be the preferred O(1)method and FIMED (or FMED, see

Section 4.5.1) should be preferred if we really target an empirically optimal

regret without compromising too much on the running time.

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

300

350

R
eg

re
t

UCB
NPTS
IMED
OIMED
FIMED
KL-UCB

0 2000 4000 6000 8000 10000
Number of samples

0

2

4

6

8

10

12

14

16

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 4.8: Average regret (left) and run time (right) of the algorithms on a 6-arms Bernoulli bandit problem with means

{0.05, 0.1, 0.15, 0.2, 0.22, 0.25}

Table 4.9: Average regret and run time at horizon 10 000 on a 6-arms Bernoulli bandit problem with means {0.05, 0.1, 0.15, 0.2, 0.22, 0.25}

Algorithm UCB NPTS IMED/IMED-KL OIMED FIMED kl-UCB/KL-UCB

Regret 328 87 82 116 81 98

Run time (sec.) 0.51 15.4 0.75 0.69 5.6 5.9

Beta bandits Beta distribution of a given mean can have different shapes.

In particular, a Beta distribution can be close to a Bernoulli distribution

(shape parameter close to zero) with most of the density located around

0 and 1, close to a Dirac distribution (shape parameter significantly larger

than one) with most of the density located around the mean, and close

to a truncated Gaussian distribution (shape parameter larger than one)

with the characteristic bell shape distribution around the mean.

4.5 Empirical results 143

In the previous experimental setting, we studied a Bernoulli bandit

problem where all the means are close to 0.5 (Figure 4.6). Here, using the

same set of means, {0.3, 0.4, 0.45, 0.5, 0.52, 0.55}, we run two experiments,

one on Beta distributions with an intermediate shape parameter of 5

(Figure 4.9) and another where Beta distributions have a large shape

parameter of 50 (Figure 4.11), hence with highly piked distributions. We

do so to illustrate the effect of changing the shape of distributions without

changing the set of means.

0.0 0.2 0.4 0.6 0.8 1.0
value

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

de
ns

it
y

Figure 4.9: Beta bandit distributions with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and shape parameter of 5

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

300

350

R
eg

re
t

UCB
NPTS
IMED
IMED-kl
OIMED
FIMED
kl-UCB
KL-UCB

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

300

350

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 4.10: Average regret (left) and run time (right) of the algorithms on a 6-arms Beta bandit problem with means

{0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and shape parameter of 5

Table 4.10: Average regret and run time at horizon 10 000 on a 6-arms Beta bandit problem with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55}
and shape parameter of 5

Algorithm UCB NPTS IMED IMED-KL OIMED FIMED kl-UCB KL-UCB

Regret 322 35 29 103 63 30 100 49

Run time (sec.) 1.2 14.5 53.5 1.5 1.4 5.2 7.7 284

Comparing the regret curves of Figure 4.6, Figure 4.10, and Figure 4.12, it

is clear that the Bernoulli distributions does induce the larger variance on

the regret curves as we identified while the Beta distributions with the

largest shape parameter (more concentrated around their means) induce

the smallest variance on the regret curve. This, once again, confirms

our theoretical findings. While the order of regret curves is globally

preserved, one can see on Figure 4.6 that, except for UCB, the Bernoulli

experiment makes all curves to be very similar, which is normal since,

144 4 Towards an optimal information usage

except for UCB, all algorithms are roughly solving the same problem (all

sample are 0s and 1s). When dealing with Beta distributions, IMED is

different from IMED-kl and KL-UCB is different from kl-UCB. Those

0.0 0.2 0.4 0.6 0.8 1.0
value

0

1

2

3

4

5

6

de
ns

it
y

Figure 4.11: Beta bandit distributions with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and shape parameter of 50

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

300

R
eg

re
t

UCB
NPTS
IMED
IMED-kl
OIMED
FIMED
kl-UCB
KL-UCB

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

300

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 4.12: Average regret (left) and run time (right) of the algorithms on a 6-arms Beta bandit problem with means

{0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and shape parameter of 50

Table 4.11: Average regret and run time at horizon 10 000 on on a 6-arms Beta bandit problem with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55}
and shape parameter of 50

Algorithm UCB NPTS IMED IMED-KL OIMED FIMED kl-UCB KL-UCB

Regret 323 20 15.9 103.9 55.8 15.8 95 19.2

Run time (sec.) 1.2 14.4 70.8 1.5 1.4 5 7.8 303

experiments confirm our numerical findings that OIMED (or OMED, see

Section 4.5.1) should be the preferred method with O(1) computation

time, and FIMED (or FMED, see Section 4.5.1), should be preferred if we

really target an empirically optimal regret without compromising too

much on the running time.

4.5.1 Comparison of MED and IMED versions

In this paper, we derived algorithmic and theoretical results for modifi-

cation of both IMED and MED algorithms. In this section, we compare

4.5 Empirical results 145

IMED, its modifications FIMED and OIMED, MED, and its modifica-

tions FMED and OMED. The comparison is made on three experimental

setting, the DSSAT bandit problem, centered means Bernoulli bandit

problem, as well as the Beta bandit problem with an intermediate shape

parameter of 5 and centered means equal to the Bernoulli setting. We

show that FMED and OMED exhibit the same characteristics as FIMED

and OIMED, as expected. In Figure 4.13 and Table 4.12, we observe that

0 2000 4000 6000 8000 10000
Number of samples

0

20

40

60

80

100

120

R
eg

re
t

IMED
FIMED
OIMED
MED
FMED
OMED

0 2000 4000 6000 8000 10000
Number of samples

0

10

20

30

40

50

60

70

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 4.13: Average regret (left) and run time (right) of the algorithms on DSSAT

Table 4.12: Average regret and run time at horizon 10 000 of the algorithms on DSSAT

Algorithm IMED FIMED OIMED MED FMED OMED

Regret 41.7 40.4 100.5 55.1 55.6 87

Run time (sec.) 60.8 5.9 0.5 60.8 6.6 0.6

IMED slightly overperforms MED. Consequently, FIMED also slightly

overperforms FMED for the regret metric. Regarding the running time,

the MED versions of algorithms are a bit slower than the IMED versions

due to the numerical complexity of sampling, larger than that of com-

puting the argmin of IMED indexes. Interestingly, OMED overperforms

OIMED in terms of average regret performance. As we can see in Figure

4.14 and Table 4.13 presenting the results of the Bernoulli experiment,

this is not a general rule.

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

R
eg

re
t

IMED
FIMED
OIMED
MED
FMED
OMED

0 2000 4000 6000 8000 10000
Number of samples

0

10

20

30

40

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 4.14: Average regret (left) and run time (right) of the algorithms on a 6-arms Bernoulli bandit problem with means

{0.3, 0.4, 0.45, 0.5, 0.52, 0.55}

The experiment on Beta distribution, Figure 4.15 and Table 4.14, confirms

that the regret loss incurred by the transition from MED to OMED is

smaller than the one of transitioning from IMED to OIMED. It may be

because the sampling strategy of MED is better to handle the statistical

146 4 Towards an optimal information usage

Table 4.13: Average regret and run time at horizon 10 000 of the algorithms on a 6-arms Bernoulli bandit problem with means

{0.3, 0.4, 0.45, 0.5, 0.52, 0.55}

Algorithm IMED FIMED OIMED MED FMED OMED

Regret 105.8 106.6 123.3 141.5 145.2 140.1

Run time (sec.) 39 6 0.7 39.3 6.8 0.8

0 2000 4000 6000 8000 10000
Number of samples

0

20

40

60

80

R
eg

re
t

IMED
FIMED
OIMED
MED
FMED
OMED

0 2000 4000 6000 8000 10000
Number of samples

0

10

20

30

40

50

60

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 4.15: Average regret (left) and run time (right) of the algorithms on a 6-arms Beta bandit problem with means

{0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and shape parameter of 5

Table 4.14: Average regret and run time at horizon 10 000 of the algorithms on a 6-arms Beta bandit problem with means

{0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and shape parameter of 5

Algorithm IMED FIMED OIMED MED FMED OMED

Regret 30 29.7 63.7 40 41.4 64.7

Run time (sec.) 53 5.2 1.4 54 5.4 1.6

[65]: Orseau et al. (2017), ‘Soft-bayes:

Prod for mixtures of experts with log-

loss’

approximation of portfolio algorithms suggesting that the sampling

strategy in MED may be a key to better handle statistical approximation

induced by portfolio algorithms. A better understanding the theoretical

differences between MED and IMED will surely help to understand this

behavior and help craft better fully online O(1) time and space complexity

in the future.

4.5.2 Stability of OIMED with respect to the learning rate

The portfolio algorithm, Soft Bayes, behind OIMED and OMED depends

on a hyperparameter, �, the learning rate. A learning rate scheme is

prescribed in Theorem 3 of [65] with

�(𝑛) =
√

log(2)
4𝑛

where 𝑛 is the number of collected samples. In section, we test the

numerical stability of our OIMED algorithm with respect to the learning

rate. To do so, we will replace this original � by

�𝑟(𝑛) =
√
𝑟 log(2)

4𝑛

4.5 Empirical results 147

where 𝑟will range from 0.01 to 100. We illustrate the stability of OIMED on

three bandit settings: the DSSAT bandit problem, the centered Bernoulli

problem and a Beta bandit problem where all the means are centered

around 0.5 and the same as in the Bernoulli bandit.

On Figure 4.16, the average regret ranges from 103.5 for the smallest

values of the parameter 𝑟 to 88.5 for the largest value of 𝑟 with an

intermediate regret of 99.5 for our original value 𝑟 = 1. On this same plot,

it is interesting to see that despite the large range of tested parameter

size, the quantile tubes remain of roughly the same size with no evident

bad behavior. While the effect of changing 𝑟 may seem important, in

the range of tested parameter, the effect of changing 𝑟 would not have

affected the ranking of algorithms in the original experiment, Figure

4.5. This experiment shows the stability of OIMED with respect to the

learning rate, in the sense that a multiplicative constant does not seem to

be able to dramatically deteriorate its performance.

0 2000 4000 6000 8000 10000
Number of samples

0

20

40

60

80

100

120

140

R
eg

re
t

OIMED
r = 0.01
r = 0.05
r = 0.1
r = 0.5
r = 1
r = 5
r = 10
r = 50
r = 100

Figure 4.16: Average regret of the algorithms on DSSAT

Those findings are confirmed on a second experiment performed on a

Bernoulli bandit problem with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55}. The

regret changes from 107 to 124 when varying the parameter 𝑟 from 0.01

to 100, and, while the upper quantile is larger for small value of 𝑟, we still

observe a logarithmic curve which confirms the stability of OIMED.

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

250

R
eg

re
t

OIMED
r = 0.01
r = 0.05
r = 0.1
r = 0.5
r = 1
r = 5
r = 10
r = 50
r = 100

Figure 4.17: Average regret at horizon 10 000 of the algorithms on a 6-arms Bernoulli bandit problem with means

{0.3, 0.4, 0.45, 0.5, 0.52, 0.55}

148 4 Towards an optimal information usage

Finally, we check the effect of the learning rate on two Beta bandit prob-

lems where means are {0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and one problem

has Beta distributions with shape parameter 5 and the other with shape

parameter 50.

0 2000 4000 6000 8000 10000
Number of samples

0

20

40

60

80

R
eg

re
t

OIMED
r = 0.01
r = 0.05
r = 0.1
r = 0.5
r = 1
r = 5
r = 10
r = 50
r = 100

0 2000 4000 6000 8000 10000
Number of samples

0

10

20

30

40

50

60

R
eg

re
t

OIMED
r = 0.01
r = 0.05
r = 0.1
r = 0.5
r = 1
r = 5
r = 10
r = 50
r = 100

Figure 4.18: Average regret of the algorithms on two 6-arms Beta bandit problems with means {0.3, 0.4, 0.45, 0.5, 0.52, 0.55} and shape

parameter of 5 (left) and 50 (right)

When the variance of the distributions is smaller (large shape parameter),

we can see that regret curves are better separated and the bonus of

choosing a larger learning rate parameter 𝑟 is amplified. When the

variance is larger (small shape parameter), regret curves are closer

to each other and more within each others quantile tubes. This last

experiment confirms all our previous findings about the numerical

stability of OIMED.

4.5.3 IMED with discretized rewards

In the introduction of this chapter, we introduced a known trick to reduce

the time and memory complexities of MED/IMED. It consists in using

algorithms designed for multinomial rewards, by using a discretization

procedure on the collected rewards. We furthermore proved its inevitable

suboptimality for some problems. We end this experimental section

by experimenting with multinomial IMED, comparing the empirical

performance and computation time of several instances using different

subdivisions. In each case, we fix a number of ticks 𝑝, and use the

regular subdivision

{
0, 1

𝑝−1
, . . . ,

𝑝−2

𝑝−1
, 1

}
({0, 1} if 𝑝 = 2). Our objective is

to identify the number of ticks needed to get a regret close to IMED, and

the evolution of the computation time with the number of ticks. We first

run an experiment on the DSSAT bandit problem, and then on a Beta

bandit problem where means are close to zero.

Table 4.15: Average regret and run time at horizon 10 000 of the algorithms on DSSAT

Alg. (ticks) IMED (2) IMED (3) IMED (5) IMED (7) IMED (10) IMED (20) IMED

Regret 151.5 75.7 50.9 45.2 44.1 40.25 40.25

Run time 32.8 33.1 36.8 39.4 42.2 44.8 61.1

Unsurprisingly, the more ticks, the finer the subdivision, the better

(smaller) the regret and the larger the running time, with IMED and

IMED-kl providing the range for both metrics. For this problem, 𝑝 = 20

4.5 Empirical results 149

0 2000 4000 6000 8000 10000
Number of samples

0

50

100

150

200

R
eg

re
t

Mult. IMED - 2 ticks
Mult. IMED - 3 ticks
Mult. IMED - 5 ticks
Mult. IMED - 7 ticks
Mult. IMED - 10 ticks
Mult. IMED - 20 ticks
IMED

0 2000 4000 6000 8000 10000
Number of samples

0

10

20

30

40

50

60

70

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 4.19: Average regret (left) and run time (right) of the algorithms on DSSAT

(intervals of length≈ 0.05 between each tick) seems to be enough to make

the algorithm using discretized rewards almost match the true IMED in

terms of regret, while being 25% faster. Recall that FIMED is 10 times

faster than IMED, and these experiments suggest that combining FIMED

with discretization may further decrease the computation time.

We remark that the evolution of the time complexity per time step is

not linear in the number of ticks. This is (likely) because it is actually

dependent of the effective number of ticks used in memory, i. e. those that

contain at least 1 samples. Getting at least 1 sample for each tick/arm, if

possible, takes some time, that depends on the shape of the distributions

on the [0, 1] support. If the considered distribution has zero mass on a

sub-interval (𝑖 , 𝑖 + 2) of the subdivision, then the tick 𝑖 + 1 cannot have

any associated sample. The running time is dependent on the model

complexity (number of ticks a priori) and the problem modelled (number

of ticks with positive projected mass a posteriori). On a recreational

mathematics note, the effective number of ticks used in memory is

connected to the coupon collector’s problem. Therefore, on average,

one cannot hope to observe the linear behavior of the complexity as a

function of the number of ticks if the number of collected samples for each

suboptimal arm is 𝑝 log 𝑝 for each tested size 𝑝. Because suboptimal arms

𝑎 are sampled 𝑐𝑎 log𝑇, it means that one should select a horizon satisfying

the equation

∑
𝑎≠★ 𝑐𝑎 log𝑇 = 𝑐 log𝑇 ≃ |𝐴|𝑝 log 𝑝, i. e.𝑇 = exp(|𝐴|𝑐 𝑝 log 𝑝)

which is an exponential function of the subdivision size 𝑝 for distributions

dominating the Lebesgue measure. For 𝑝 = 20 and
|𝐴|
𝑐 = 1, this means a

horizon of 10
26

.

We run a final experiments on a Beta bandit problem that confirms

our findings. IMED and IMED-kl again provide the range for both

computation time and regret, and for this problem 𝑝 = 20 is also the

value from which IMED and discretized IMED start to match in terms of

regret, while the latter is approximately 20% faster.

Table 4.16: Average regret and run time at horizon 10 000 of the algorithms on a 6-arms Beta bandit problem with means

{0.05, 0.1, 0.15, 0.2, 0.22, 0.25} and shape parameter of 5

Alg. (ticks) IMED (2) IMED (3) IMED (5) IMED (7) IMED (10) IMED (20) IMED

Regret 81.8 43.8 32.9 30.8 29.6 29.2 29.2

Run time 31.3 41.5 45.5 46.4 49.2 51.2 62.5

150 4 Towards an optimal information usage

0 2000 4000 6000 8000 10000
Number of samples

0

20

40

60

80

100

120

R
eg

re
t

Mult. IMED - 2 ticks
Mult. IMED - 3 ticks
Mult. IMED - 5 ticks
Mult. IMED - 7 ticks
Mult. IMED - 10 ticks
Mult. IMED - 20 ticks
IMED

0 2000 4000 6000 8000 10000
Number of samples

0

10

20

30

40

50

60

70

R
un

 ti
m

e
(s

ec
on

ds
)

Figure 4.20: Average regret (left) and run time (right) of the algorithms on a 6-arms Beta bandit problem with means

{0.05, 0.1, 0.15, 0.2, 0.22, 0.25} and shape parameter of 5

4.6 Conclusion

In this chapter, we introduced methods to compute efficiently approx-

imations of EF and demonstrated their use in algorithms for regret

minimization in stochastic bandits. The FMED and FIMED variants have

the same asymptotic optimality properties as the base MED algorithms,

but have a much reduced computational complexity. OMED and OIMED

push the computational gains further and are also memory efficient.

They can also be asymptotically optimal, under the hypothesis that

the portfolio algorithm they use satisfies a deterministic regret lower

bound.

While our experiments show the good practical performance of OIMED

and OMED with the Soft-Bayes portfolio algorithm, this question is

however still open: can we have a portfolio algorithm which is com-

putationally efficient, does not store all past gains in memory and has

sublinear regret upper and lower bounds?

Finally, our work towards enabling the use of EF in a computationally

efficient way has potential applications beyond regret minimization in

stochastic bandits. First, similar quantities are used in the IMED-RL

algorithms that we present in Chapter 7. Second, other bandit tasks

like best arm identification also have complexities that depend on a EF

quantity, and could benefit from faster variants of the algorithms that

need to compute it.

[70]: Pesquerel et al. (2021), ‘Stochastic

bandits with groups of similar arms’

Groups of similar arms 5
5.1 Structured Bandit 152
5.2 Group of similar arms . . 154
5.3 Knowledge of the groups 158
5.4 Regret lower bound . . . 164
5.5 IMED-EC 170
5.6 Regret of IMED-EC 173
5.7 Experiments 175
5.8 Fairness 179
5.9 Conclusion 183

When a structure is assumed on the set of considered Bandit problem �,

information about an arm 𝑎′ can be gained from playing another arm 𝑎.

Structure induces a notion of problem-related dependency between the

arms even if the reward random variables are still assumed independents,

from a measure theoretical viewpoint. When solving the regret minimiza-

tion problem in structured Bandit, the structure can a priori be leveraged

to increase the problem-related information contained in a sample and

therefore reduce the necessary exploration, hence logarithmic regret rate,

compared to the unstructured Bandit setting. It is interesting to ask how

the rate of information acquisition, or more precisely, the asymptotic

logarithmic rate of progress per unit of interaction is improved compare

to a situation in which structural information is not used.

In this chapter, based on the paper Stochastic bandits with groups of
similar arms published at NeurIPS 2021 with Hassan Saber and Odalric-

Ambrym Maillard, we study regret minimization in a structured Bandit

setting, see [70]. We illustrate how structural information can help reduce

the regret compared to the unstructured setting, how solving should

not be confused with estimating, and how the expected reward criterion

allows for especially greedy strategies.

This light shed on the greediness of an optimal strategy beg the question

of fairness within the class of optimal actions. While in its purest form,

fairness is not a constraint of the Bandit formulation, one can envision

scenario where Bandit is used to model situations in which fairness

amongst the group of optimal arms is important while preserving opti-

mality also is. For instance, preserving optimality might be important at

the macro-scale, that may represent society, while fairness is important at

the micro-scale of optimal arms, that may represent persons or industries

amongst which a policymaker must choose from.

Information about the problem & information about a solution

When a learner interact with a Bandit problem, its aim is to minimize

its cumulated regret over the long run or, similarly, to maximize its

cumulated reward. It does so by sampling as often as possible an action

with maximal expected reward. The main problem the learner faces is

that it does not know, prior to the interaction, the reward distributions

of the arms it can interact with. However, it does assume that the

distributions belong to known family. Such prior assumption on the family

of distribution help to understand and control how much information

is gained about the expected value of an arm when a sample from

that arm is drawn. We say that the learner adaptively solve the Bandit

control problem as it try to maximize its number of interaction with a

solution of the control problem. Solving an unknown problem should
not be confused with estimating the unknown problem. While gaining

information about the unknown Bandit problem is a way to adaptively

solve it, it is not the only or smallest-regret way. Rather than gaining

152 5 Groups of similar arms

information about the problem, a learner should aim to gain information
about a solution to the problem. It is obvious when we remark that the

best strategy to gain information about the problem is to play uniformly

on the set of arms, which is obviously not an optimal Bandit strategy in

the general case.

Remark on optimal information gain The uniform sampling strategy

is optimal to gain information about the problem is optimal when all the

arms are from the same family of distribution. Otherwise, the uniform

strategy may not be optimal from an information gain point of view. For

instance, in the extreme case of a two arms Bandit problem where one of

the arm is assumed to be Dirac distribution and the other a (0, 1)-bounded

distribution, then it is absurd to sample the Dirac distribution more than

once. Rather, one should the optimal allocation scheme will sample the

Dirac arm once and allocate all the samples to the other arm (from an

information gain viewpoint).

Exploiting & Estimating a structure

In this chapter, we use a structured Bandit problem to illustrate a similar

fact. One can exploit a structure without actively estimating it. At first,

this may not be obvious. One could think that estimating the structure,

in a way similar to how we estimate the reward distributions, may be a

desirable thing to do in order to exploit it a and suffer a smaller regret.

However, we show in this chapter that this need to be the case.

5.1 Structured Bandit

General case

Compared to an unstructured Bandit problem (𝐴, 𝛽)where all distribu-

tions 𝛽(𝑎) belong to a set F𝑎 independently of the distribution of other

arms, adding a structure to the set � that Bandit problems belong to will

only reduce the achievable optimal logarithmic regret rate because the

set � is strictly included in

⊗
𝑎 F𝑎 , � ⊊

⊗
𝑎 F𝑎 , which reduces the size

�(𝛽) of problems in the control-indistinguishable optimal alternative
set that is defined in Definition 3.1.25. This can be seen from the general

allocation-constrained optimality viewpoint on the lower bound. We

restate Theorem 3.1.6 in its general form. The smaller the set of constraints,

the more we gain information about an arm while playing another, the

more 𝐾𝐿 (𝛽(𝑎), 𝛽′(𝑎)) are strictly positive in the allocation constraints and

the smaller the logarithmic sampling rates of optimal arm can be, see

Equation 5.1.

Theorem 5.1.1 (Regret lower bound: allocation-constrained optimality

viewpoint) Let 𝐴 be a finite set of arms, � =
⊗

𝑎∈𝐴 F𝑎 be a class of Bandit
problems and � = (𝐴, 𝛽) ∈ � be a Bandit problem within that class.

Then, for all uniformly fast convergent policy 𝜋, and therefore uniformly
maximal converging rate policy, the growth rate of the regret R� (𝑛;𝜋) is

5.1 Structured Bandit 153

[53]: Combes et al. (2014), ‘Unimodal Ban-

dits: Regret Lower Bounds and Optimal

Algorithms’

[71]: Yu et al. (2011), ‘Unimodal Bandits.’

[72]: Saber et al. (2021), ‘Indexed Min-

imum Empirical Divergence for Uni-

modal Bandits’

lower bounded,

lim inf

𝑛→∞
R� (𝑛;𝜋)

log 𝑛
≥ inf

(�𝑎)𝑎∈𝐴

∑
𝑎∈𝐴

�𝑎
(
�★ − � (𝑎 |𝛽)

)
s. t. �𝑎 ≥ 0 ∀𝑎 ∈ 𝐴 ,

inf

𝛽′∈�(𝛽)

∑
𝑎∈𝐴

�𝑎𝐾𝐿 (𝛽(𝑎), 𝛽′(𝑎)) ≥ 1

, (5.1)

where the set � (𝛽) is defined using 𝐴★ (𝛽) = argmax𝑎∈𝐴 � (𝑎 |𝛽), the set of
maximal arms in a Bandit problem (𝐴, 𝛽), as

� (𝛽) =
{
𝛽′ ∈ 𝛽′ ∈ � |

A★ (𝛽) ∩ A★ (𝛽′) = ∅,
∀𝑎 ∈ A★ (𝛽) , 𝐾𝐿 (𝛽(𝑎), 𝛽′(𝑎)) = 0

}
. (5.2)

� (𝛽) is the set of Bandit problem 𝛽′ ∈ � with different optimal set and such
that the distribution of optimal arm in 𝛽 is unchanged in 𝛽′, i. e. only the
distribution of suboptimal arms is allowed to be changed and at least one must
be transformed into an optimal arm within 𝛽′.

The art of deriving a practical and useful lower bound when interested in

crafting a related algorithm lies in rewriting the set � (𝛽) in a way that is

formally handy to deal with. Sometimes, one can greatly reduce the "size"

of �(𝛽) by extracting a subset of �(𝛽) such that the actual constraints only

depend on this subset. This is what we did in the unstructured case to

extract the per-arm logarithmic rate of sampling, remarking that one can

consider Bandit problems where arms are made optimal one at a time.

In structured Bandit, one cannot, in general, make arms optimal one at a

time without moving other arms (in the 𝐾𝐿 sense). Therefore, finding a

good subset of �(𝛽) that can be formally handled is usually not an easy

task. However, there are some cases, where intuition can help.

Unimodal Bandit

This is for instance the case of unimodal Bandit, see [53, 71, 72]. In

unimodal Bandit, the set of arms 𝐴 is assumed to be ordered, i. e. 𝐴 is

isomorphic to ({1, 2, . . . , |𝐴|} , ≥) endowed with its comparison structure

≥. Then for all unimodal Bandit problem 𝛽, the expected reward function

� (·|𝛽) : 𝑎 ∈ 𝐴 ↦→ � (𝑎 |𝛽) is assumed to be a concave function. To exploit

the structure, one can simply remark that (discrete) derivative is a local
property. If we were to find the best arm in this setting, one could use

dichotomy which requires three measures of �, the left side, the right side

and the middle point of the dichotomy. This is certainly an interesting

method that won’t generalize well to other graph-like structures. Instead

of exploiting this local property of derivative, one could also, from a more

real analysis viewpoint, consider a set of three adjacent arms, compute

the local derivative, and perform a gradient ascent until the optimal

arm is reached. To exploit the structure of the unimodal Bandit, we can

certainly perform what would look like a stochastic gradient ascent. At

each time step, one only need to consider the set of arms that are adjacent

to the current optimal arms and, from there play an unstructured Bandit

algorithm. If the best empirical arm’s index shift to the right or left,

then this shift the set of local arms that we consider. Implicitly, we are

performing a Bandit-stochastic gradient ascent. In the end, the regret

154 5 Groups of similar arms

[73]: Pesquerel et al. (2022), ‘IMED-

RL: Regret optimal learning of ergodic

Markov decision processes’

[70]: Pesquerel et al. (2021), ‘Stochastic

bandits with groups of similar arms’

bound only depends on the arms that are adjacent to the optimal arms.

Furthermore, One would have very little knowledge about the arms that

are not in this local neighborhood around the best arm. Indeed, an agent

would never need to sample them since, by the unimodal assumption,

those arms have smaller expected reward that the (at most) two arms

that are directly to the left and right from the optimal one. This idea

of performing a Bandit-stochastic gradient ascent along the edges of a

partially ordered graph is key to the IMED-RL [73] algorithm that we

present in Chapter 7. Using this idea of local discrete gradient allows

to reduce the complexity of making a choice from the cardinal of all

possible actions to the cardinal of the local subset of actions required to

compute all components of the "gradient".

5.2 Group of similar arms

We now focus on the presentation of the work done in the paper Stochastic
bandits with groups of similar arms [70]. In a nutshell, we consider Bandits

with groups of similar arms, i. e. groups of arms with the same expected
reward. We prove a lower bound on the regret that involves a combina-
torial optimization problem. We craft an efficient algorithm, IMED-EC,

that uses a relaxation of the combinatorial optimization problem. We

prove that the algorithmic logarithmic regret rate and regret lower bound

do not differ by a factor larger than 2. We run experiments to prove the

numerical efficiency of IMED-EC.

A group-like structure

Motivated by various practical reasons, one may want to restrict to

a subset B ⊂ ⊗
𝑎∈𝐴 F𝑎 of allowed bandit configurations instead of

the full set FA
. In this chapter, we assume that the reward function,

� : 𝑎 ∈ A→ �𝑎 , satisfies a cluster-like structural property which we call

the q-equivalence property.

Definition 5.2.1 (q-equivalence property) A Bandit � is said to satisfy
the q-equivalence property if for every arm 𝑎 ∈ A, there are at least 𝑞−1

distinct arms having the same expected value:

∀𝑎 ∈ A, |{𝑎′ ∈ A|�𝑎′ = �𝑎}| ≥ 𝑞.

This property is illustrated in Figure 5.1, depicting a problem that can

be described as a Bandit with the 3-equivalence property but also the

2-equivalence property and even the 1-equivalence property. The 1-

equivalence property corresponds to the unstructured Bandit case in

which, who knows, there may or may not have non-trivial group of

similar arms. From this example, we note that if a Bandit satisfies the

q-equivalence properties, then it satisfies the k-equivalence properties for

all 𝑘 ≤ 𝑞. If we only assume that groups of similar arms may exist, then

Bandit problems with trivial groups of size one belong to the set �(𝛽)
which will not be different from the unstructured one. One must assume

to know a non-trivial lower bound on the size of the groups to effectively

change the set of constraints in the lower bound and thus change the

5.2 Group of similar arms 155

lower bound. Only then it is possible to exploit the information of the

existence of groups.

�𝑐

�★

group of 3 similar arms

group of 4 similar arms

Figure 5.1: Graphical illustration of a 10-arms Bandit problem with groups of similar arms

Assuming the set of arms Aand base distributions (F𝑎)𝑎 are known to

the learner, we denote by B𝑞 the set of bandit configurations having

the q-equivalence property, without explicit reference to the sets F𝑎 .

Note that the sets F𝑎 should be such that there exists at least one Bandit

problem in

⊗
𝑎 F𝑎 with the q-equivalence property. This is not the case

if, for instance, all the reward distributions all have mutually disjoints

supports. We also denote by B𝑞(�) the set of all expected values in B𝑞 .

Formally, B𝑞(�) is the image of B𝑞 under the �mapping. When two arms

in a Bandit � share the same expected value, we will say that those two

arms are equivalent and belong to the same equivalence class.

Definition 5.2.2 (Arm equivalence and equivalence class) Given a
bandit configuration �, two arms 𝑎, 𝑎′ ∈ 𝐴 are said to be equivalent if their
associated distributions have the same expected values:

𝑎 ∼ 𝑎′⇔ �𝑎 = �𝑎′ .

An equivalence class 𝑐 in � is a maximal subset of arms in 𝐴 having the
same mean, i.e., for all arms 𝑎, 𝑎′ in 𝑐, �𝑎 = �𝑎′ and for all arm 𝑎 ∈ 𝑐 and
𝑎′ ∈ 𝐴 \ 𝑐, �𝑎 ≠ �𝑎′ .

While the equivalence class may have different cardinality and do not refer

to an equivalence relation, this naming convention relate to the origin of

the project were the equivalence of actions originated from symmetries

in the system. If we imagine the task of exploring the universe in the

quest of finding information about some physical phenomenon, e.g. life,

then under the assumption that the laws of the universe are invariant by

translation and rotation the universe roughly is an isotropic environment.

If the available actions are the direction in which looking or launching a

spatial probe, then from probabilistic standpoint of finding information

about the phenomenon we study, there is an invariance by rotation in the

direction of the probing. When groups are created from invariance by

symmetries, the computed groups of arms really are equivalent classes

under an equivalence relation. Hence, our naming convention. Hopefully,

there are other practical reasons to consider groups of similar arms that

do not stem from symmetries.

156 5 Groups of similar arms

Grouping actions

Redundant descriptors

This structure typically appears in practical situations when each arm

can be described with a list of categorical attributes, and the (unknown)

mean reward function only depends on a subset of them, the others

being redundant. In this case, 𝑞 is naturally linked to the number of

attributes considered redundant (or useless descriptors), and the number

of categories of each attribute. Formally, on good "basis of descriptors"

(i. e. it is an orthogonal-like description), an arm 𝑎 could be described

using the following representation,

𝑎 =
©« 𝑑𝑎

1
, · · · , 𝑑𝑎

𝑘︸ ︷︷ ︸
Useful descriptors

, 𝑑𝑎
𝑘+1
, · · · , 𝑑𝑎𝑛︸ ︷︷ ︸

Redundant descriptors

ª®®®¬ ,

and the set of arms could be described as the product

𝑘∏
𝑙=1

𝐷𝑙︸︷︷︸
Useful descriptors

×
𝑛∏

𝑙=𝑘+1

𝐷𝑙︸ ︷︷ ︸
Redundant descriptors

,

where 𝐷𝑙 is the number of categories for attribute 𝑙. Thus, in this good

"basis of descriptors", 𝑞 =
∏𝑛

𝑙=𝑘+1
|𝐷𝑙 |, product of the cardinal redundant

descriptors’ sets.

The learner may know that there exists such a structure while not knowing

a closed form formula mapping the list of categorical attributes to the

significant subset. In this case, 𝑞 might be a lower bound on the sizes of

the class since the set of redundant descriptors might not be the largest

possible one or because the number of redundant attributes depends

on the number of relevant attributes. In all cases, the smallest possible

number of redundant attributes can be naturally linked to 𝑞.

Paths

reward 0
group of 320 similar arms/paths

reward 1
group of 160 similar arms/paths

starting line

ending line
0 0 0 1 0 1

Figure 5.2: Groups of similar arms: the path perspective

5.2 Group of similar arms 157

[58]: Combes et al. (2017), ‘Minimal explo-

ration in structured stochastic bandits’

There is another example where groups of similar arms appear naturally,

depicted in Figure 5.2. We consider a grid-like environment, as depicted

in the figure, and identify an upward path with an arm. By upward path,

we mean a path going from the bottom line to the upper line, consisting

of pieces of segments aligned with the grid. Staring from a vertex of

the bottom line, a path can only go up, left or right, must respect the

boundary conditions and cannot use an edge that was already used.

There are no loop nor possibility to have a piece of the path going in

the up-to-bottom direction. To each vertex of the upper line, a reward

distribution is associated and in Figure 5.2 we show the expected reward

of an instance of such a problem. This problem can be viewed as a

Bandit problem in which each path corresponds to an arm, and a sample

collected from an arm/path is a sample from the reached upper vertex.

On can see that groups of similar arms appear naturally since only

the end point matters and not the specific path. If we consider the full

description of a path in terms of a finite sequence of elements in the

set {up, left, right} (such a sequence must be a valid path), then one

can clearly see that 𝛽 : 𝑎 → 𝛽(𝑎) is not at all an injection (it may not be

the case in an unstructured Bandit, but the difference here is that we

know from the structure of the problem that it is not the case). Therefore,

there is redundant information in the full description of a path and only

the number of lefts and number of rights matter to describe the reward

distribution associated to a path. This problem is linked to the previous

redundant descriptors problem. If an agent, prior to the interaction know

that there is such a structure but cannot compute in advance the set of

similar arms, then it can still exploit the knowledge of a lower bound 𝑞

on the number of similar paths thanks to the work we present in this

chapter.

How to exploit this structure?

Goal For the set of structured Bandit B𝑞 having the 𝑞-equivalence

property, we show in Theorem 5.4.1, that the logarithmic growth rate of

regret is lower bounded by a term ℭB𝑞 (�) which unfortunately makes

appear in general a combinatorial optimization problem, due to the

constraint set B𝑞(𝛽) for 𝛽 ∈ B𝑞 . It means that computing an optimal

allocation scheme a priori involves solving a combinatorial optimization

problem. Thus, resorting to OSSB [58] or any strategy targeting exact

asymptotic optimality is daunting task for the practitioner because of the

numerical complexity of combinatorial problems. Our goal is to provide

a computationally efficient strategy adapted to the structure B𝑞 , that is

able to reach optimality up to controlled error term.

How to? In Section 5.3, we first consider without technical details the

problem of structured Bandits with group of similar arms and assume

the knowledge of the groups. Despite what it may look at a first glance,

this simple problem will teach us what can probably be targeted by

an algorithm without the knowledge of the groups as well as other

intuitions. Then, we will move on to the problem of groups of similar

arms where the groups are unknown but a lower bound on their sizes

is known. In section 5.4, we derive a lower bound on the regret for the

158 5 Groups of similar arms

[74]: Honda et al. (2015), ‘Non-

Asymptotic Analysis of a New Bandit

Algorithm for Semi-Bounded Rewards’

structured set of bandit configurations B𝑞 . This bound makes appear

two components, one that we call non-combinatorial as optimizing it

can be done efficiently, and a second one that we term combinatorial
as it involves solving a combinatorial problem. Interestingly, using in

Lemma 5.4.2 and Theorem 5.6.1 it can be shown that the contribution of

the combinatorial part of the lower bound can be controlled. Owing to

this key insight, we introduce in section 5.5, IMED-EC, an adaptation of

the IMED strategy from [74] to the structured set B𝑞 and inspired by the

non-combinatorial part of the lower bound we derive. Thus, in Section 5.6,

we prove that IMED-EC achieves a controlled asymptotic regret that

matches the non-combinatorial part of the lower bound and is at most

(less than) a factor of 2 times the optimal regret bound. Furthermore,

IMED-EC enjoys a small numerical complexity that is comparable to that

of IMED in the unstructured setting. At each time step, the complexity of

computing the next arm to be pulled by IMED-EC is no more than the

one of sorting a list of |𝐴| elements once the IMED indexes of all arms

have been computed, which is only log |𝐴| times larger than looking for

the minimal IMED index. Last, we illustrate the benefit of the IMED-EC

over its unstructured version in section 5.7, where it shows a substantial

improvement. Our experiments also highlights the robustness of the

algorithm to a misspecified parameter 𝑞, which is a desirable feature for

the practitioner.

5.3 Knowledge of the groups

Assuming the knowledge of the classes would probably be a too strong of

an assumption to considered useful for the practitioner. Yet, this problem

has some non-triviality that may be overlooked if we are not careful

enough about our assumption. In particular, one should be aware of our

assumption on the set of distributions F𝑎 , whether those are equal within

a group or not, because it can change a lot of things. We denote C the

set of all groups and Δ𝑐 = �★ − �(𝑎) the suboptimality gap associated

with group 𝑐 and defined using an arm 𝑎 ∈ 𝑐, chosen arbitrarily since all

arms in the group 𝑐 share the same expected value by definition.

In a group, all distributions are from the same family

Assume that within a group 𝑐 ∈ C all the families F𝑎 are the same set

F𝑐 . The sets F𝑐 could be different. Usually, that would be the set of [0, 1]-
bounded distributions. Within a group, a priori nothing distinguish an

arm from another prior to the interaction, but this could not be true after

the beginning of the interaction if, within a group, reward distributions

are not independent and identically distributed (i.i.d.).

In a group, all distributions are i.i.d.

Furthermore, let’s make the even stronger assumption that, within a

group, all the arms are i.i.d. If we were to know the groups, then we

could identify a group of arms as one arm of a modified bandit problem

and use an unstructured bandit algorithm on this new Bandit problem.

5.3 Knowledge of the groups 159

This new Bandit problem would be built by choosing a representative

arm within each group, effectively creating a new Bandit problem where

there are as many arms as there were groups in the original Bandit

problem. This procedure is depicted in Figure 5.3 where the 10-arms

Bandit problem of Figure 5.1 (left) is transformed into a 3-arms Bandit

problem (right).

�𝑐

�★

Without the knowledge of the groups With the knowledge of the groups
(a group is considered as an arm)

Figure 5.3: Identification of a group of arms with an arm in a transformed Bandit problem thanks to the knowledge of the groups

In this case, we have that EF𝑐 (𝐹𝑎 , �★) = EF𝑐 (𝐹𝑎′ , �★) for all arms 𝑎, 𝑎′ in

a group 𝑐 of equivalent arms. For each group 𝑐 ∈ C, one can denote 𝐹𝑐
a representative distribution corresponding to that group. In the new

Bandit problem the logarithmic growth rate of regret is∑
𝑐∈C

Δ𝑐

EF𝑐 (𝐹𝑐 , �★) ,

while it was∑
𝑎∈A

�★ − �(𝑎)
EF𝑎 (𝐹𝑎 , �★) =

∑
𝑐∈C

∑
𝑎∈𝑐

Δ𝑐

EF𝑐 (𝐹𝑐 , �★) =
∑
𝑐∈C
|𝑐 | Δ𝑐

EF𝑐 (𝐹𝑐 , �★) ,

in the original unstructured Bandit that does not assume the knowledge

of the groups. From two equations above, we can see that the regret in

the modified problem is such that the contribution of each group 𝑐 has

been divided by |𝑐 |. The regret is therefore at least divided by min𝑐∈C |𝑐 |.
If we further add the knowledge that all groups are of size at leas 𝑞, i. e.
min𝑐∈C |𝑐 | ≥ 𝑞, then one can state that the regret has been divided by at
least q.

In a group, distributions are not assumed having the same law

We remove the assumption that, within a group, all the arms are identi-

cally distributed while they are still independent. Within a group, the

arms are no more indistinguishable and there is a break in the "symme-

try" of the arms within a group. Compared to the previous situation,

arms index can no longer be considered permutation invariant within a

group.

160 5 Groups of similar arms

1: I stumbled upon the harmonic mean

more times than what can be ignored

during this PhD thesis. I think that it

would be interesting to investigate this

way of averaging things when it comes

to adaptive learning and its potential

applications.

To restore some symmetry, instead of choosing a representative arm in

a deterministic fashion, we sample a representative arm from a group

𝑐 ∈ Cuniformly at random. Thus, with the knowledge of the groups, we

can identify a group of arms as one arm of a modified bandit problem

and use an unstructured bandit algorithm on this new Bandit problem.

This is very similar to what was done above except that we specify that

the new Bandit problem is built by sampling a representative arm within

each group, effectively creating a new Bandit problem where there are as

many arms as there were groups in the original Bandit problem. Such a

procedure is similarly depicted in Figure 5.3 where the 10-arms Bandit

problem of Figure 5.1 (left) is transformed into a 3-arms Bandit problem

(right).

In the unstructured Bandit problem the logarithmic growth rate of regret

is still ∑
𝑐∈C

∑
𝑎∈𝑐

Δ𝑐

EF𝑐 (𝐹𝑎 , �★) =
∑
𝑐∈C
|𝑐 |

(
1

|𝑐 |
∑
𝑎∈𝑐

Δ𝑐

EF𝑐 (𝐹𝑎 , �★)

)
,

while the expected logarithmic growth rate of regret, that depends on

the choice of the representative arms chosen uniformly at random with

probability
1

|𝑐 | , is ∑
𝑐∈C

1

|𝑐 |
∑
𝑎∈𝑐

Δ𝑐

EF𝑐 (𝐹𝑎 , �★) .

The main distinction with the previous case is that instead of considering

𝐹𝑐 ∈ F𝑐 the common law of the class 𝑐 ∈ C, we must consider each

𝐹𝑎 ∈ F𝑐 of arms 𝑎 ∈ 𝑐. From two equations above, we can see that the

regret in the modified problem is such that the contribution of each

group 𝑐 has been divided by |𝑐 |. The regret is therefore, on average, at

least divided by min𝑐∈C |𝑐 |. If we further add the knowledge that all

groups are of size at leas 𝑞, i. e. min𝑐∈C |𝑐 | ≥ 𝑞, then one can state that

the regret has been divided by at least q.

However, one can doubt that it is the best we can do. There are experiments

where the arm 𝑎 ∈ 𝑐 that is drawn corresponds to min𝑎∈𝑐 EF𝑐 (𝐹𝑎 , �★)
with minimal unlikelihood of optimality (i. e. large regret contribution),

while in other experiments, the arm 𝑎 ∈ 𝑐 that is drawn corresponds to

max𝑎∈𝑐 EF𝑐 (𝐹𝑎 , �★)with maximal unlikelihood of optimality (i. e. small

regret contribution). All other situations are equally likely due to the

uniform sampling of a representative arm within a class 𝑐, and the unlike-

lihood of optimality is averaged out, in the sense of the harmonic mean.
1

The best one could therefore hope to achieve in terms of logarithmic

growth rate of regret is∑
𝑐∈C

Δ𝑐

max𝑎∈𝑐 EF𝑐 (𝐹𝑎 , �★) .

Since one cannot choose such representatives at the beginning of the

interaction without prior information, it means that we should be able

to sample an argmax𝑎∈𝑐 EF𝑐 (𝐹𝑎 , �★) representative of class 𝑐 most of

the time we sample within that class. Therefore, we cannot choose a

representative at the beginning of the interaction but adaptively find

the best representative within each class without oversampling each

class, that is with a logarithmic sampling rate smaller than the harmonic-

averaged one of our previous scheme.

5.3 Knowledge of the groups 161

It is possible (and I would say likely), that getting or trying to exploit this

information about the maximal EF𝑐 is too costly in terms of the sampling

power required and that trying to do so while sampling within the class 𝑐

at a logarithmic rate
1

max𝑎∈𝑐 EF𝑐 (𝐹𝑎 ,�★)
is impossible. I would be happy to

investigate this problem further.

In a group, all distributions are not necessarily from the
same family

We remove the assumption that all the families F𝑎 of arms 𝑎 ∈ 𝑐, where

𝑐 ∈ C is a group of equivalent arms, are all equal to the same set F𝑐 . A
priori, those sets could all be different, which further break the symmetry

between the arms of a group. However, this situation is not that different

from the previous one, were distributions of groups were independent, a
priori different and from the same set F𝑐 . Indeed, one can still use the

knowledge of the groups to sample a representative arms for each group,

uniformly at random, and use those to build a new Bandit problem

following the lines of what was described previously.

In the unstructured Bandit problem the logarithmic growth rate of regret

is now ∑
𝑐∈C

∑
𝑎∈𝑐

Δ𝑐

EF𝑎 (𝐹𝑎 , �★) =
∑
𝑐∈C
|𝑐 |

(
1

|𝑐 |
∑
𝑎∈𝑐

Δ𝑐

EF𝑎 (𝐹𝑎 , �★)

)
,

which differs from the previous case by the fact that one must use EF𝑎

instead of the EF𝑐 that was generic to a class.

On the other hand, the expected logarithmic growth rate of regret of the

group-created Bandit, that depends on the choice of the representative

arms chosen uniformly at random with probability
1

|𝑐 | , is∑
𝑐∈C

1

|𝑐 |
∑
𝑎∈𝑐

Δ𝑐

EF𝑎 (𝐹𝑎 , �★) .

The main distinction with the previous case is that instead of considering

𝐹𝑎 ∈ F𝑐 the common class F𝑐 , we must consider each F𝑎 and modified

optimization problems EF𝑎 . For a specific draw of representative arms,

we denote them (𝑎𝑐)𝑐∈C, the regret is∑
𝑐∈C

Δ𝑐

EF𝑎𝑐 (𝐹𝑎𝑐 , �★) .

Those regrets are, as previously, averaged out due to the sampling

scheme.

As in the two other presented cases, we can see that the regret in the

modified problem is such that the contribution of each group 𝑐 has been

divided by |𝑐 |. The regret is therefore, on average, at least divided by

min𝑐∈C |𝑐 |. If we further add the knowledge that all groups are of size

at leas 𝑞, i. e. min𝑐∈C |𝑐 | ≥ 𝑞, then one can state that the regret has been
divided by at least q.

For similar reason than the previous case, one can wonder whether

this is the best one can do. Perhaps, a clever design would allow taking

162 5 Groups of similar arms

advantage of the knowledge of the classes in a clever way (combining

the samples of several arms, projecting empirical distributions �̂�𝑎 to

distributions in F𝑎′ where 𝑎 ∼ 𝑎′, using other mixing strategies, etc.).

In this paper, we show that, with only the knowledge of a lower bound
𝑞 on the size of the classes, but without the knowledge of the classes,
one can also devise a strategy dividing the regret by a factor 𝑞 compared
to solving the same Bandit in an unstructured setting.

Fairness

What is fairness in our setting?

In the above exposition of the problem of structured Bandits with groups

of similar arms where the groups are known, there is a property that

may be desired for the practitioner that is not satisfied by the proposed

method, that is to sample a representative element within each group.

This property is sometimes called fairness but suffer the problem of

having multiple related definitions depending on the considered work

in the literature.

In this chapter, and related to the problem of exploiting the structure of

groups of similar arms, we can say that fairness would be achieved if all

the arms from the optimal class are sampled asymptotically linearly with

respect to the number of interactions. This is already quite a weak notion

of fairness since we don’t say that, for instance, the ratio of samples
𝑁𝑎 (𝑡)
𝑁𝑎′ (𝑡)

of two arms from the optimal group must be bounded. This stronger

notion of fairness probably is possible with the knowledge of the class.

Why would such a notion be useful and called fairness? If we imagine

that the agent is a policymaker that must sequentially choose between

companies, people, or services to solve some problems and that there is

a natural notion of known group, then from the policy make point view,

regret minimization is important but from the "arms" point of view, the

situation is unfair if only one optimal "arm" is always picked and the

other optimal "arms" are never.

Fairness with known groups

The strategy of sampling a representative arm and playing a modified

Bandit problem where only one arm per group is considered lead to

the largest unfairness possible. One optimal arm is sampled a linear

amount of time while the other optimal arms are sampled zero times,

which worse than any increasing, even sub-logarithmic, function of the

number of interactions. When the groups are known, one can easily

think of the following scheme to enforce fairness in the group of optimal

arms. We consider as previously the group-constructed Bandit problem

made from picking one representative arm per group of similar actions.

When the optimal (representative) arm is supposed to be played in this

new Bandit setting, we sample all |𝑐 | arms that are in the same class

as the empirical optimal representative arms that we are supposed to

sample in the modified Bandit problem. Only the collected sample from

the representative arm is used to update its empirical distribution of

probability since a priori, the arms from the group do not have the same

5.3 Knowledge of the groups 163

[70]: Pesquerel et al. (2021), ‘Stochastic

bandits with groups of similar arms’

distribution. Of course, under additional assumptions, such as the i.i.d.

hypothesis, one can mix the samples. For all empirical suboptimal arms,

we do as previously since doing otherwise would only add (with high

probability that empirical arm is the optimal arm) to the regret. With

this method, fairness in the optimal group is ensured while we do not

compromise on the reduced logarithmic growth rate. In fact, one can even

imagine proving that the number of samples of arms within the optimal

group differ at most by a logarithmic function of the interaction. Non-

representative optimal arms would be sampled each time the optimal

representative is sampled except when the representative arm is not

empirically optimal. Such a situation cannot happen for a large number

of interactions by design. In this setting, the representative arm would

always be the most sampled arm of its group.

Fairness without the knowledge of the groups

In this chapter, we do not assume the knowledge of the class but only

the weaker assumption of a lower bound on the number 𝑞 of elements

per group. A weaker notion of fairness than that of sampling all arms in

the optimal group linearly would therefore be that at least 𝑞 arms of the

optimal groups are sampled linearly. We did not originally consider or

study this or another fairness constraint but now think that this would

make for a nice addendum to the original work. However, the fairness

constraint is a priori far more difficult to handle than the one where

groups are known. Furthermore, while one can enforce fairness without

compromising on the logarithm growth rate of regret when the classes

are known, it is not obvious that the regret guarantees of our proposed

IMED-EC algorithm will be preserved when trying to enforce, even weak,

fairness in the group of similar optimal arms. In the final section of

this chapter, we first present the unfairness of IMED-EC, a result that

was already presented in the Appendix D of our paper [70], and then

try to modify the original design of our IMED-EC algorithm to enforce

fairness.

Bandits with the 𝑞-equivalence property

We hereafter consider the learner only knows a lower bound

𝑞 ≥ min

𝑐∈C
|𝑐 |

on the number of elements per group of similar arms. Still, we would

like to exploit the prior knowledge of this structure in a way that would

allow us to reduce the logarithmic growth rate of regret, hopefully by

a factor 𝑞 as it is possible with the knowledge of the groups. First, we

derive a lower bound on the logarithmic growth rate of regret that is

then used to devise a sampling strategy which is tested and compared to

other strategies. Afterward, we investigate numerically the fairness of

our strategy.

164 5 Groups of similar arms

5.4 Regret lower bound

In this section, we derive a lower bound on the number of pulls of

suboptimal arms that involves a combinatorial optimization problem. The

proof of Theorem 5.4.1 is based on the set of control-indistinguishable
optimal alternative of a Bandit problem 𝛽 ∈ B𝑞 , that we denote B𝑞 (𝛽),
and that we introduced in Definition 3.1.25.

Confusing instances

We recall the intuition that from a learning perspective, Bandit problems

in this set B𝑞(𝛽) cannot be distinguished from 𝛽 by only playing action in

𝐴★(𝛽), i. e. by being greedy on the computed information, while problems

in this set can make the learner suffer a linear regret. This set appears

in the constraint of the optimization problem involved to compute the

instance-dependent regret lower bound of a problem 𝛽 belonging to the

class of Bandit problems B𝑞 , where this set is the prior information we

have on the problem we aim to solve. For this reason, we call elements of

this set, i. e. Bandit problems in B𝑞 , confusing instances of problem 𝛽 in

class B𝑞 . Confusing instances allow to assess the intrinsic difficulty of a

bandit problem and allow computing lower bounds on the number of

times suboptimal arms are pulled, even if implicitly. The lower bound

informs us on the minimal amount of exploration one needs to do to

solve a bandit problem. More formally, a confusing instance �′ associated

to a suboptimal arm 𝑎 for a bandit problem � is a bandit instance with the

same set of arms as the original one, but in which �𝑎 has been changed

to �′𝑎 > �★
. We refer to Definition 3.1.25 and Theorem 3.1.6 for a more

detailed exposition of the different ideas and intuitions. In this chapter,

we focus on the intuitions of this set when the prior knowledge about

the Bandit problems is the set of Bandits satisfying the 𝑞-equivalence

property.

A good sampling strategy, i. e. one that does not sample suboptimal

arms too much in the sense that it is uniformly fast convergent as in

Definition 3.1.20, should behave very differently on the original problem

and on a confusing instance 𝛽′ ∈ B𝑞(𝛽). The difference should be even

greater for an optimal policy, i. e. a policy with uniformly maximal

convergence rate as in Definition 3.1.21. Studying this difference of

sampling behaviors, we can compute the minimal amount of exploration

performed by an optimal strategy on arm 𝑎 in the original problem �, at

least implicitly (without an immediate closed form formula). Doing so

for all suboptimal arms allows to bound the logarithmic sampling rate of

suboptimal arms and therefore to characterize the intrinsic complexity

of a bandit instance �.

In this structured setting, a Bandit in B𝑞 has to respect the structure to

be called a confusing instance. In our case, it means that a confusing

instance cannot have a class with less than 𝑞 arms. We will therefore

consider confusing instances associated to classes rather than individual

arms. We formally introduce the set of confusing instances in this specific

setting with notation that are adapted to the exposition of this problem.

Those notations are adapted from the one already introduced, e.g. in

Definition 3.1.25.

5.4 Regret lower bound 165

Definition 5.4.1 (Confusing instance) Given a Bandit configuration
� = (𝛽, 𝐴) ∈ B𝑞 , a real number � and a subset 𝑐𝑞 ⊆ 𝐴 of 𝑞 equivalent arms
in �, we denote by B𝑞

(
�, 𝑐𝑞 ,�

)
the set of all bandit configurations having

the same set of arms as � and such that for all �′ ∈ B𝑞

(
�, 𝑐𝑞 ,�

)
, �′ ∈ B𝑞

and for every arm 𝑎 in 𝑐𝑞 , �′𝑎 ≥ �,

B𝑞

(
�, 𝑐𝑞 ,�

)
=

{
�′ = (𝛽′, 𝐴) ∈ B𝑞 | ∀𝑎 ∈ 𝑐𝑞 , �′(𝑎) ≥ �

}
,

where �′(·) = � (·|𝛽′).

When � > �★, and 𝑐𝑞 is a subset of a suboptimal class, a bandit configuration
in B𝑞

(
�, 𝑐𝑞 ,�

)
is called a confusing instance of �.

We will use the notation B𝑞

(
�, 𝑐𝑞 ,�

)
to specify the set of expected rewards,

{� (𝑎 |𝛽′)}𝑎∈𝐴 of bandit configurations in B𝑞

(
� = (𝛽, 𝐴) , 𝑐𝑞 ,�

)
.

Using this fine-tuned Definition 5.4.1 of confusing instance, we derive

the asymptotic logarithmic growth rate of regret for the class B𝑞 . As in

Theorem 3.1.6 that showcase the general lower bound from the optimal

constrained allocation viewpoint, we will need to use the unlikelihood

of optimality, see Definition 3.1.23, to derive a proper formula. Such a

quantity requires assuming the knowledge of set of distributions F𝑎 for

each arm. Of course, such sets should allow both the existence of the

structure and the existence of uniformly fast convergent strategies for our

usual tools to apply. In this chapter, we assume that all the sets F𝑎 are the

same set F. We make the standard assumption that the set Fis the set of

Bounded distributions in [0, 1]with expected values all strictly smaller

than the upper bound of the support, here one. This assumption is the

same we made in the previous Chapter 4 and is a standard assumption

in the Bandit community. Since our IMED-EC algorithm is based on the

IMED algorithm, one could also assume that Fis the set of semi-bounded

distributions with support in] −∞, 𝑀] and expected values in] −∞, 𝑀[
with existence of the moment generating function in a neighborhood of

zero.

Upon deriving a lower bound for the class B𝑞 of Bandit problems with

𝑞-equivalence property, we need to use a quantity that we denote WF

and call the unlikelihood of grouping. The quantity is coined this

way directly in reference to the unlikelihood of optimality that we

introduced in Definition 3.1.23. The unlikelihood of grouping will relate

to how unlikely it is for an arm to be confused, from a discriminating-

sampling rate viewpoint, with a distribution targeting an exact value of

expected reward.

Definition 5.4.2 (Unlikelihood of grouping) Let 𝛽(𝑎) ∈ Fcorresponds to
a reward distribution of an arm 𝑎 in a Bandit problem. We denote WF (𝛽(𝑎),�)
and call unlikelihood of grouping the quantity defined as

WF(�,�) = inf

𝐹∈F
{KL(�, 𝐹) | E𝐺(𝑋)=�} , (5.3)

where 𝐾𝐿 denotes the Kullback-Leibler divergence between two distributions.
When the set of constraints is empty, the quantity is defined as +∞.

The quantity WF which is very similar to EF in its definition except that

166 5 Groups of similar arms

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

the greater than is replaced by an equality in the constraint. The reason for

this quantity in the forthcoming lower bound is that we need to consider

"moving" groups of similar arms "together" to create confusing instances.

If we want to create a confusing instance where suboptimal arm 𝑎 is now

optimal with expected reward � such that � ≥ �★
(we use the EF), then

we need to make at least 𝑞 − 1 other suboptimal arms optimal with the

same expected reward � which is now an equality constraint in order

to create a group (we use the WF). Therefore, WF will help relates to

the unlikelihood of optimality of arm given the grouping constraint that

is imposed by the 𝑞-equivalence property of the Bandit problem we

consider.

Regret lower bound

Theorem 5.4.1 (Asymptotic lower bound) Let 𝑞 ∈ ℕ∗ be a positive integer
and � ∈ B𝑞 be a bandit configuration having the q-equivalence property.
Let 𝑐 ⊂ A be a suboptimal equivalence class in �. Then, on the class of
uniformly fast converging learner, we have the following lower bound relating
logarithmic sampling rate of suboptimal arms in a class 𝑐,

lim inf

𝑇→∞

1

log𝑇
min

𝑐𝑞⊆𝑐

©«
∑
𝑎∈𝑐𝑞

𝔼�(𝑁𝑎(𝑇)) EF

(
�𝑎 , �

★) +
inf

�′∈B𝑞(�,𝑐𝑞 ,�★)
∑

𝑎∉𝑐𝑞∪𝐴★

𝔼�(𝑁𝑎(𝑇)) WF(�𝑎 , �′𝑎)

ª®®®¬ ≥ 1 ,

(5.4)

where 𝑐𝑞 is any subset of 𝑐 having 𝑞 distinct arms within it.

This lower bound is based on the set of constraints B𝑞(𝛽) that can be built

from a Bandit problem 𝛽 ∈ B𝑞 . This lower bound relates the number

of pulls of arms of suboptimal arms in a group 𝑐 in the following way.

The first term

∑
𝑎∈𝑐𝑞

𝔼�(𝑁𝑎(𝑇)) EF (�𝑎 , �★) consider a subgroup 𝑐𝑞 ⊆ 𝑐 of 𝑞

arms in the group 𝑐 and, using the unlikelihood of optimality, "move them
all" to an optimal position. This is possible thanks to the continuity of

the EF under the assumption that F is the set of bounded distribution

(and common to all arms) and the fact that the infimum constrained KL

is in fact a minimum attained in �★
as proved in the paper of J. Honda

and A. Takemura [16]. It means that all the terms EF (�𝑎 , �★) correspond

to unlikelihood of optimality of "moving" arms to an equivalent group.

The second term inf

�′∈B𝑞(�,𝑐𝑞 ,�★)
∑

𝑎∉𝑐𝑞∪𝐴★
𝔼�(𝑁𝑎(𝑇)) WF(�𝑎 , �′𝑎) deal with the

remainder of the arms that are in 𝑐 but not in 𝑐𝑞 . This set of remainders,

𝑐 \ 𝑐𝑞 could be made of less than 𝑞 arms and thus makes the newly

constructed Bandit problem violate the 𝑞-equivalence property structural

constraint. The lower bound tells us that those arms must be moved

(exactly) to other existing groups in the created Bandit problem, i. e. in the

set B𝑞

(
�, 𝑐𝑞 , �★

)
. Those can be moved together, completely dispatched

or anything in-between.

Sketch of proof

In this chapter, we only provide sketch of the proofs because those rely on

standard mathematical tools and most of the novelty is in the algorithmic

5.4 Regret lower bound 167

[70]: Pesquerel et al. (2021), ‘Stochastic

bandits with groups of similar arms’

[17]: Graves et al. (1997), ‘Asymptotically

efficient adaptive choice of control laws

incontrolled markov chains’

[14]: Garivier et al. (2016), ‘Explore first,

exploit next: The true shape of regret in

bandit problems’

exploitation of the structure. The proofs techniques that we use and can

be found in the paper [70] this chapter is based on can be found seminal

work of [17] which present the constrained-allocation lower bound and

the more recent proof techniques of Garivier et al. [14] which is probably

closer in spirit to this manuscript as it has a strong focus on tools from

information theory such as the data processing inequality. Therefore, we

only present sketch of proofs which we think is enough to get all the good

intuitions. In this manuscript, we favored the exposition of the proofs

in the previous section dealing with the FMED and OMED algorithms

since those were based on non-standard tools for the Bandit community,

in particular the usage of portfolio algorithms.

Sketch of proof Following the intuition that was given about the set

of confusing instances, those are used in the proof of Theorem 5.4.1. We

use Figure 5.4 to illustrate the construction of a confusing instance and

the different situations that may appear. In Figure 5.4, the arrow

(associated to EF) means that we want to shift distributions from

a class 𝑐 in order to make them optimal and the arrow (associated

to WF) means that we have to move distributions in order to satisfy the

q-equivalence property. In this figure, we assume that the known lower

bound 𝑞 on the number of element per group is equal to 3, i. e. we consider

B3. The combinatorial nature of the lower bound will come from the

�𝑎

�★

(1) (2) (3) (4)

Figure 5.4: Illustration of the computation of a confusing instance depending on the situation. In this illustration, we assume that the

known lower bound 𝑞 on the number of element per group is equal to 3, i. e. we consider B3.(|𝑐 |
𝑞

)
ways of grouping elements from a class 𝑐 to be moved together. We

consider confusing instances in which 𝑞 arms from a suboptimal class 𝑐

are moved above the optimal one (w.r.t. the mean). If there are 𝑞 arms in

the class, then there are no remaining arms to move. From left to right,

this is the first situation (1) depicted in Figure 5.4. If the number of arms

in class 𝑐 is greater than 𝑞, then several situations can occur. If there are

more than 2𝑞 arms in 𝑐, then moving 𝑞 arms creates a remainder of size

larger than 𝑞 meaning that the crafted confusing instance respects the

equivalence structure. This is the situation depicted in (4) of Figure 5.4.

However, if there are between 𝑞 + 1 and 2𝑞 − 1 arms, then the remainder

is of size larger than 1 but strictly smaller than 𝑞, as in situation (2) and (3)

of Figure 5.4. The confusing instance built from only moving arms in 𝑐𝑞
does not respect the equivalence structure, and we have to deal with the

arms in the remainder (the infimum of Equation 5.4). One can either move

a remainder arm in 𝑐 to another existing group as in (2) of Figure 5.4 or

168 5 Groups of similar arms

one can complete the remainder by moving an arm from another class

(but not the optimal one because of the zero-KL constraint on 𝐴★(𝛽) in
the definition of B𝑞(𝛽)) to the group 𝑐, as in (3) of Figure 5.4. There are

|𝑐 | choose 𝑞 possible choices to move 𝑞 arms from class 𝑐 (the minimum
of Equation 5.4) and all in all, the lower bound involves a combinatorial

optimization problem.

While this lower bound involves a combinatorial optimization term,

one can distinguish between two regimes depending on the size of the

suboptimal class. This different regimes even show in the sketch of proof

we just did. One regime will correspond to cases (1) and (4), the non-
combinatorial regime, and one regime will correspond to cases (2) and (3),

the combinatorial regime.

Non-combinatorial regime

For a suboptimal class 𝑐, if |𝑐 | = 𝑞 or |𝑐 | ≥ 2𝑞, then the lower bound

reduces to

lim inf

𝑇→∞

min

𝑐𝑞⊆𝑐
∑
𝑎∈𝑐𝑞

𝔼� (𝑁𝑎(𝑇)) EF (�𝑎 , �★)

log𝑇
≥ 1,

because the remainder is of size larger than 𝑞 and the infimum from

Theorem 5.4.1 disappears. Indeed, the infimum is always 0 as this quantity

can be obtained by choosing�′𝑎 = �𝑎 for all 𝑎 ∈ 𝑐\𝑐𝑞 . When 𝑐\𝑐𝑞 is empty,

this corresponds to (1) of Figure 5.4 and if |𝑐 | ≥ 2𝑞, this corresponds

to case (4) of Figure 5.4. In full generality the min𝑐𝑞⊂𝑐 that is on all

𝑞-partitions of 𝑐 involves a combinatorial optimization problem. When

𝑐𝑞 = 𝑐 because the class 𝑐 has exactly 𝑞 elements, then the problem is

trivial since there is only one possibility. When |𝑐 | ≥ 2𝑞, then the lower

bound amount to computing the minimum possible value of a sum of

𝑞 elements chosen from a list of |𝑐 |. This is no longer a combinatorial

problem. The minimum over all 𝑞-partitions of 𝑐 is the sum of the 𝑞

smallest elements of {𝔼� (𝑁𝑎(𝑇)) EF (�𝑎 , �★)}𝑎∈𝑐 . The search amongst all

the 𝑞-partitions of 𝑐 amounts to researching the 𝑞 smallest elements

which is not more complex than sorting a list of |𝑐 | elements. While the

complexity of sorting a list of |𝑐 | elements is |𝑐 | log |𝑐 |, finding all the 𝑞

smallest element can be done with a min-heap at |𝑐 | log 𝑞 cost. More on

that later when we present the IMED-EC algorithm. Hence, the problem

is no more a combinatorial optimization one, and we call this case the

non-combinatorial regime.

In the non-combinatorial regime the regret lower bound is modified as

follows.

Lemma 5.4.2 (Non-combinatorial regime lower bound) Let � ∈ B𝑞 be a
bandit configuration having the q-equivalence property. Let 𝑐 be a suboptimal
class in the non-combinatorial regime, then,

lim inf

𝑇→∞

∑
𝑎∈𝑐

𝔼� (𝑁𝑎(𝑇))

log𝑇
≥ |𝑐 |

𝑞

1

EF (�𝑎 ,�)
. (5.5)

5.4 Regret lower bound 169

While we do not have information about individual number of times an

arm in a class has been sampled, Lemma 5.4.2 roughly tells us than on

average, the lower bound on the minimal amount of exploration of an

arm in a suboptimal class has been divided by 𝑞.

Lemma 5.4.3 If all suboptimal classes are in the non-combinatorial regime,
the regret may be asymptotically lower bounded by

lim inf

𝑇→∞

R (�, 𝑇)
log𝑇

≥ 1

𝑞

∑
𝑎∈𝐴\𝐴★

�★ − �𝑎
EF (�𝑎 ,�)

. (5.6)

Lemma 5.4.3 informs us that in the non-combinatorial regime, the classical

lower bound on the regret has been divided by 𝑞.

Combinatorial regime

For a suboptimal class 𝑐 to be in the combinatorial regime, we need

𝑞 < |𝑐 | < 2𝑞, since the remainder is such that 0 < |𝑐 \ 𝑐𝑞 | < 𝑞 and the

infimum in Theorem 5.4.1 is not 0. In that case, the lower bound (5.4)

involves a combinatorial optimization problem. Two difficulties arise

from the term

inf

�′∈B𝑞(�,𝑐𝑞 ,�)
∑

𝑎∉𝑐𝑞∪𝐴★

𝔼� (𝑁𝑎(𝑇)) WF (�𝑎 , �′𝑎) .

First, while we could have thought that summing on the remainder 𝑐∖ 𝑐𝑞
would be enough, the summand has to be on 𝑎 ∉ 𝑐𝑞 ∪ 𝐴★

as a whole.

Indeed, the residual 𝑐 ∖ 𝑐𝑞 may be of size 𝑞 − 1 meaning that it might cost

less (in information terms, as measured by the KL) to move an arm from

another class to the residual in order to complete it rather than moving

all the remainder. This situation is depicted in (3) of Figure 5.4. Second,

while we could have thought that moving elements from one class of �
to another might be enough, the infimum has to be taken on B𝑞

(
�, 𝑐𝑞 ,�

)
.

Indeed, the residual 𝑐 ∖ 𝑐𝑞 may be of size 𝑞 − 1 and the nearest class might

be of size exactly 𝑞. In this case, it may cost less to move all the 2𝑞 − 1

distributions in between the two classes and create a new one rather than

merging one of the two with the other.

Lemma 5.4.4 Let � ∈ B𝑞 be a bandit configuration having the q-equivalence
property and 𝑐 be a suboptimal class in the combinatorial regime, then

lim inf

𝑇→∞

∑
𝑎∈𝑐

𝔼� (𝑁𝑎(𝑇))

log𝑇
≥ 1

𝑞

|𝑐 | EF (�𝑎 , �★) + |𝑐 |−𝑞|𝑐 | min

�∈�
WF (�𝑎 , �)

, (5.7)

lim inf

𝑇→∞

∑
𝑎∈𝑐

𝔼� (𝑁𝑎(𝑇))

log𝑇
≥ 1

2𝑞

∑
𝑎∈𝑐

1

EF (�𝑎 , �★) . (5.8)

Those equations can be compared to the Equation 5.5 from the non-

combinatorial regime. We emphasize the fact that the lower bounds given

by Equations 5.7 and 5.8 are not the largest possible lower bound and

hence do not provide as much information about the algorithmically

achievable regret as the largest one given by Equation 5.4. However,

170 5 Groups of similar arms

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

together with a regret upper bound on the algorithm IMED-EC, those

quantities will help us control the asymptotic discrepancy between

IMED-EC’s regret and the asymptotic lower bound given by Theorem

5.4.1.

5.5 IMED-EC

IMED-EC: IMED for Bandits with equivalence class

As the name suggest, the algorithm we introduce, IMED-EC, is built on

the IMED algorithm introduced by J. Honda and A. Takemura in [16],

an algorithm that the reader should be familiar with at this point of the

manuscript. We recall that this algorithm was introduced in Section 3.3

and was used to craft FIMED Algorithm 14 and OIMED Algorithm 18

that we introduced in the previous Chapter 4. The work that is done

in Chapter 4 can therefore be connected with the work presented in

this chapter. This is why we preferred and in-depth presentation of the

ideas and proofs techniques of Chapter 4, because we think that those

ideas could have consequences on a lot of other works, such as the one

presented in this chapter but also in the next two chapters, as well as

basically all the algorithms relying on an efficient computation of the

unlikelihood of optimality EF.

Description

At each interaction 𝑡, for each arm 𝑎 ∈ 𝐴, one can compute its IMED

index as

𝐼𝑎(𝑡) = 𝑁𝑎(𝑡)EF

(
�̂𝑎(𝑡), �̂★(𝑡)

)
+ log𝑁𝑎(𝑡),

where we recall that �̂★(𝑡) = max𝑎∈𝐴 �̂𝑎(𝑡) and for each arm 𝑎 ∈ 𝐴, �̂𝑎(𝑡)
is the empirical mean of arm 𝑎 computed with samples from this arm

collected up to time 𝑡,

�̂𝑎(𝑡) =
1

𝑁𝑎(𝑡)
𝑡∑
𝑠=1

𝑋𝑠𝟙 {𝑎𝑠 = 𝑎} ,

where 𝑋𝑠 is the sample collected by the algorithm at the 𝑠𝑡ℎ interactions.

As previously, we denote by A★(𝑡) = arg max𝑎∈A {�̂𝑎(𝑡)} the set of

empirical optimal arms at interaction 𝑡. We will denote by 𝐴𝑞(𝑡) the

set of arms having the 𝑞 smallest IMED indexes. Ties are broken using

the number of samples and privileging arms that have been sampled

the least and if ties still occurs after that step, they are further broken

uniformly at random. Ties are broken until the set 𝐴𝑞(𝑡) is exactly of size

𝑞 The IMED-EC Algorithm 20 will consider and compute at each time 𝑡

the two following quantities:

𝐼★(𝑡) = min

𝑎∈A★(𝑡)
𝐼𝑎(𝑡) = min

𝑎∈A★(𝑡)
log𝑁𝑎(𝑡),

𝐼(𝑡) = min

A′⊂A
|A′ |=𝑞

∑
𝑎′∈A′

𝐼𝑎′(𝑡) =
∑

𝑎′∈A𝑞 (𝑡)
𝐼𝑎(𝑡).

5.5 IMED-EC 171

The first quantity 𝐼★(𝑡) is related to the optimal arms. The second quantity,

𝐼(𝑡), is related to the collective unlikelihood of optimality of the group of

smallest IMED indexes. While the smallest index may be small enough

that it would be sampled by the unstructured IMED, collectively, the

𝑞 arms that are the less unlikely to be optimal are more unlikely to be

optimal.

The quantity 𝐼(𝑡) can be computed efficiently by summing the 𝑞 smallest

elements of the list of IMED indexes. Finding the 𝑞 smallest elements

can be done by sorting the list of |𝐴| indexes which cost 𝑂 (|𝐴| log |𝐴|).
However, this is not the fastest we can do. Instead, one can build a heap

as the IMED indexes are computed, costing 𝑂(|𝐴|), and extract the 𝑞

smallest from the heap, which cost 𝑂(|𝐴| log 𝑞). This new cost is linear

in |𝐴|, and will make IMED-EC almost as fast as the original IMED

algorithm. In big 𝑂 notation, there will be a factor of log 𝑞 because of the

computation of 𝐼(𝑡).

Algorithm

Having introduced all the necessary quantities, one can present the

IMED-EC Algorithm 20.

Algorithm 20: IMED-EC algorithm

Input: A bandit tuple (A, 𝑠 , V) as in Definition 3.1.12;

The IMED index function I : (𝑎, 𝐻) → (𝑎, 𝐻)
1 Initialize history 𝐻 as 𝐻 = ∅;
2 for 𝑡 ∈ ℕ do
3 forall 𝑎 ∈ 𝐴 do
4 Compute index 𝐼𝑎 = I (𝑎, 𝐻);
5 Compute 𝐼★(𝑡) = min

𝑎∈A★(𝑡)
log𝑁𝑎(𝑡);

6 Compute 𝐼(𝑡) = ∑
𝑎′∈A𝑞 (𝑡)

𝐼𝑎(𝑡);

7 if 𝐼★(𝑡) ≤ 𝐼(𝑡) then
8 Compute 𝑎 ∈ argmin

𝑎∈A★(𝑡)
𝑁𝑎(𝑡);

9 else
10 Compute 𝑎 ∈ argmin

𝑎∈𝐴
𝐼𝑎(𝑡)

11 Sample a reward 𝑟 ∼ 𝛽(𝑎) ;
12 Update history, 𝐻 ← 𝐻 ∪ {(𝑎, 𝑟)};

Based on the comparison, line 7, of 𝐼★(𝑡) and 𝐼(𝑡), computed lines 5 and 6,

it is decided to sample an empirically optimal arm, line 8, or not, line 10.

When a suboptimal arm is sampled because 𝐼(𝑡) < 𝐼★(𝑡), the one that is

sampled is the one with minimal IMED index, i. e. the one the original

unstructured IMED algorithm would have sampled. While probably

obvious, it should be noted that 𝐼(𝑡) is always greater than the minimal

IMED index, in fact at least 𝑞 times larger, which means that IMED-

EC always perform less exploration than the original IMED algorithm.

Interestingly, when 𝑞 = 1, the IMED-EC algorithm coincide exactly with

the IMED algorithm, which is a nice property since in the case 𝑞 = 1,

the problem is unstructured and an optimal Bandit algorithm is IMED.

172 5 Groups of similar arms

IMED-EC can there be seen as a class of algorithm (𝐼𝑀𝐸𝐷 − 𝐸𝐶(𝑞))𝑞∈ℕ
(with 𝑞 ≤ |𝐴|) from which IMED is the element corresponding to index

𝑞 = 1.

While the original problem involves combinatorial quantities, those are

not involved in the IMED-EC algorithm. From a time complexity view-

point, this makes this algorithm on par with other popular algorithms

such as UCB, KL-UCB, and IMED algorithm. On the contrary, the general

structure algorithm OSSB involves solving a combinatorial optimization

problem at each time step, which makes it numerically inefficient. We

are not aware of any general relaxation method for this algorithm that

we could compare IMED-EC with.

Intuition

It should be noted that the original idea of the index 𝐼(𝑡) emerged from

the non-combinatorial reduction that we discussed above. While it does

not correspond to the terms appearing in the equations from the analysis,

its form is highly reminiscent of these equations.

We recall that the IMED algorithm can be understood as an algorithm

that computes an index for each arm 𝑎 such that the index is com-

parison (a difference) between the posterior log-probability of optimality
𝑁𝑎(𝑡)EF (�̂𝑎(𝑡), �̂★(𝑡)) and the log-frequency logℕ (up to additional con-

stant log 𝑡 common to all arms) at which the arm has been empirically

sampled. When the IMED index is too small, it means that an arm has

been sampled less than its empirical log-probability of optimality (or

unlikelihood of optimality), i. e. ℕ
𝑡 <

exp(−𝑁𝑎 (𝑡)EF(�̂𝑎 (𝑡),�̂★(𝑡)))
𝑍(𝑡) where 𝑍(𝑡)

is the normalization constant.

In our setting, there is at least 𝑞 elements in each group. It therefore

makes sense to test for the optimality of a group rather single elements.

Since all arms are independent, it makes sense to sum the log-probability
of optimality or empirical unlikelihood of optimality on all the q-partitions

of the set of arms. Since we have the intuition that this first part is the

logarithm of a product of probability, we may compare it to the product

of the empirical sample frequencies (and thus sum of the log-frequencies).

Therefore, we get that important quantities are the sum of IMED indexes

for each 𝑞 partition of the arms, seen as a comparison between the

optimality of this group of 𝑞 elements and the associated frequency of

play of that group. The minimal IMED index is the one whose frequency

of play is the lowest compared to its unlikelihood of optimality, similarly

for the sum of IMED indexes.

Other algorithmic ideas, the speed at which we learn

At the beginning of this project, a lot of methods were first tested, some

with numerical success but without theoretical guarantees. All of those

ideas were based on the idea of aggregating similar arms. This meant

finding ways to cluster arms and aggregate information from them since

those arms were supposed to share the same expected reward. The form

of the algorithm I investigated the most was that of a UCB algorithm

and used the idea of Z-tests to aggregate arms. By aggregating samples,

5.6 Regret of IMED-EC 173

[70]: Pesquerel et al. (2021), ‘Stochastic

bandits with groups of similar arms’

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

[70]: Pesquerel et al. (2021), ‘Stochastic

bandits with groups of similar arms’

the hope was to benefit from a better estimation of the mean and the

number of associated samples was replaced by a larger pseudo-number

of samples computed from the aggregation of other arms.

Another natural idea was to use a 𝑞-nearest neighbor instead of Z-tests

and aggregate samples of the 𝑞 arms that are the closest in terms of

expected values. One could obviously weight the samples using a kernel

to attribute more weight to the closest neighbors and less to the farthest.

The pseudo-number of samples would then be the weighted sum of the

number of samples of the aggregated arms.

The main problem with these aggregation methods is that the gain of

information we hope for thanks to the aggregation is nullified by the

risk of performing a wrong aggregation, especially when the number

of samples of suboptimal are supposed to be logarithmic at most. To

estimate the groups correctly enough in order to exploit that information

as if we had the knowledge of the groups, we may need (I couldn’t

prove otherwise) a number of samples that is linear in the number of

interactions. If this number of samples is not linear, then it seems like we

cannot exploit the computed groups because of the too large probability

of aggregating arms that are not similar.

The solution we found was to understand that estimating the problem
is different from solving the problem. As IMED-EC proves in the next

sections, concerned about its regret and numerical efficiency, having

knowledge of the groups is not necessary to exploit the structure. In

fact, IMED-EC exploit the other fact that in our setting, we are interested

in expected regret and that there is no additional notion of risk. Since

all the arms are replicated (from an expected reward point of view) at

least 𝑞 times, then why not being 𝑞 times more greedy in its selection.

Coincidentally, by being 𝑞 times more greedy, we will see that IMED-EC

tends to sample only one arm from the optimal class and ignore others, a

way of doing thing that is reminiscent of the approach we took in the

introduction of this chapter with the random selection of one arm per

group when we assumed the knowledge of the groups.

5.6 Regret of IMED-EC

In this section, we state the upper bound on the logarithmic growth rate

of IMED-EC whose prove is given in the paper this chapter is based on,

[70]. The proof of Theorem 5.6.1 is based on the proof of IMED [16] and

is given the companion paper [70] of this chapter. The regret bound is

derived from a logarithmic growth rate of sample of suboptimal arms.

Confirming our intuition from the introduction of this chapter, we derive

that the expected number of pulls of a suboptimal arm is a fraction 𝑞 of

what it would be in the unstructured setting thus making the regret 𝑞

times smaller than what it could be in the unstructured setting. This is

on par with what we would have with the knowledge of the groups and

replacing all the cardinals of groups |𝑐 | by their lower bound 𝑞, as we

already mentioned in Section 5.3.

Theorem 5.6.1 (Upper bound on the number of pulls) Under the IMED-

174 5 Groups of similar arms

EC algorithms, the number of pulls of a suboptimal arm 𝑎 is upper bounded
by:

𝔼� (𝑁𝑎(𝑇)) ≤
log𝑇

𝑞EF (�𝑎 , �★) (1 + 𝛼(𝜖)) + 𝑓 (𝜖), (5.9)

where 0 < 𝜖 < 1

3
min𝑎∈𝐴\𝐴★ (�★ − �𝑎), 𝑓 is function that depends on

concentration properties on F, and 𝛼 tends to 0 as 𝜖 tends to 0.

From Theorem 5.6.1, we deduce that the asymptotic logarithmic sampling

rate of a suboptimal arm 𝑎 is such that

lim inf

𝑡→+∞
𝔼� (𝑁𝑎(𝑇))

log𝑇
≤ 1

𝑞EF (�𝑎 , �★) , (5.10)

and the asymptotic logarithmic growth rate of regret of IMED-EC on a

problem � = (𝛽, 𝐴) is such that,

lim inf

𝑇→∞

R� (𝑇; IMED-EC)
log𝑇

≤ 1

𝑞

∑
𝑎∉𝐴★

�★ − �(𝑎)
EF (𝛽(𝑎), �★) ,

exactly what could have been wanted and intuited from Section 5.3. On

expectation, suboptimal arms are therefore sampled 𝑞 times less than

in the unstructured setting. In Section 5.3, where groups were known,

a suboptimal arm was sampled on average |𝑐 | times less than in the

unstructured setting, where 𝑐 is the class the considered suboptimal arm

belongs to. Given that only knowledge we have on 𝑐 is that its cardinal |𝑐 |
is lower bounded by 𝑞, |𝑐 | ≥ 𝑞, one can say that IMED-EC do a good job

at exploiting the structure. Indeed, if replace |𝑐 | by 𝑞 in the sentence with
knowledge of the groups suboptimal arms are sampled on average |𝑐 | times less
than in the unstructured setting, we get the one that is written for IMED-EC.

Contrary to an algorithm with the knowledge of the groups, IMED-EC

achieve this theoretical performance by being 𝑞 times more greedy than

the original IMED algorithm, and sampling suboptimal arms 𝑞 times

less often on average.

Upper and lower bound comparison

This upper bound shows that in particular, the number of pulls of

a suboptimal class,

∑
𝑎∈𝑐 𝔼� (𝑁𝑎(𝑇)) is asymptotically no more than

|𝑐 |
𝑞EF(�𝑎 ,�★) log𝑇, thus matching the lower bound in the non-combinatorial
regime. When class 𝑐 is in the combinatorial regime, along with Equation

5.8, this sampling upper bound shows that

|𝑐 |
𝑞EF (�𝑎 , �★) ≥ lim inf

𝑇→∞

∑
𝑎∈𝑐

𝔼� (𝑁𝑎(𝑇))
log𝑇

≥ 1

2

· |𝑐 |
𝑞EF (�𝑎 , �★) ,

proving that the regret of the proposed IMED-EC does not differ from

the optimal lower bound by a factor more than 2. This is a striking

result. Equation 5.8 can be used to have an even more precise control

on the discrepancy to the optimal regret bound, as it shows the factor

2 can be actually replaced with 1 + |𝑐 |−𝑞𝑞
min�∈� WF(�𝑎 ,�)

EF(�𝑎 ,�★) . Since the factor

|𝑐 |−𝑞
𝑞

min�∈� WF(�𝑎 ,�)
EF(�𝑎 ,�★) is strictly between 0 and 1 in the combinatorial regime

that we are studying, the discrepancy between the lower bound and the

regret of IMED-EC indeed is always bounded by 2. On the other hand,

5.7 Experiments 175

this refined error measurement is problem dependent while the factor

of 2 is universal.

We now move on to the experimental section to test whether IMED-EC

is numerically efficient. Given the efficiency of the IMED algorithm it is

based on, one can certainly hope so.

5.7 Experiments

In this section, we support the theoretical analysis by conducting three

sets of experiments. The Python code used to perform those experiments

is available on github. We support our empirical evidences using plots

of cumulative regrets. In this section, all the experiments are conducted

using truncated Gaussian distributions with supports in [0, 1] and means

strictly upper bounded by 1. Along with the mean regret, we plot the

quantiles 0.1 and 0.9, as well as the tube that this two curves form, and

median regret curve (quantile 0.5) to give an idea of the spread the

regret curves. The number of experiments and horizon depend on the

considered problem as well as the number of tested algorithms.

We distinguish several relevant cases to assess the performances of IMED-

EC. First we consider the case where the classes are balanced, i. e. of the

same cardinality, and give IMED-EC the exact value of this cardinal, i. e.
perfect knowledge for IMED-EC. Then, still considering balanced groups,

we give IMED-EC a strict lower bound on the cardinal of the classes. This

lead us to the experiment that test, in the balanced setting, the influence

of parameter 𝑞 on the regret. We run such an experiment where 𝑞 varies

from one to the value of the cardinal of the classes. Afterward, we run

a similar set of experiments with unbalanced groups of arms. In this

scenario, a tight bound can no longer be tight for all the groups at the

same time, it will be tight for the smallest of the groups.

Balanced classes

Knowledge of a tight 𝑞

In this set of experiments, see Figure 5.5, we focus on the bandit con-

figurations in which all equivalence classes have the same cardinality

and assume that IMED-EC is given the number of elements per class

as its parameter 𝑞. This setting is interesting for two reasons. First, one

can compute the theoretical lower bound without solving a combinato-

rial optimization problem. Second, the theoretical analysis shows that

IMED-EC is asymptotically optimal in this case. This setting will thus

allow us to numerically grasp what happens in the most structured case

of our structured setting. We compare IMED-EC to unspecialized bandit

algorithm, UCB, IMED and KL-UCB. To make the comparison fairer we

also compare IMED-EC to OSSB, an algorithm specialized in structured

bandit. Since OSSB has to solve a combinatorial optimization problem

at each time step, we cannot carry experiments on large sets of arms

while comparing IMED-EC to it. In the Figure 5.5, we plot the result

of an experiment run a Bandit problem with 9 arms, distributed in 3

groups of 3 arms. The groups expected values are 0.3, 0.5, and 0.9. In this

https://github.com/fabienpesquerel/stochastic-bandits-with-groups-of-similar-arms-neurips-2021

176 5 Groups of similar arms

Figure 5.5: 3 classes, 3 distributions per class - set of means = {0.3, 0.5, 0.9}

particular setting, we see that while OSSB and IMED-EC are provably

asymptotically optimal, IMED-EC numerically performs better in finite

time horizon. We recall that it is furthermore numerically more efficient

since it does not involve any combinatorial optimization. Unsurprisingly,

IMED-EC also outperforms unspecialized algorithm.

Knowledge of a strict lower bound 𝑞

In the experiment plotted Figure 5.6, the parameter 𝑞 that IMED-EC

is given, it is 2, is now a strict lower bound on the size of the classes,

which is 8, while the classes are still balanced. We compare IMED-EC to

unspecialized bandit algorithm, IMED and KL-UCB. We drop OSSB from

our test bed due to the computational burden of solving a combinatorial

optimization problem at each time step. In the Figure 5.6, we plot the

Figure 5.6: 7 classes, 8 distributions per class - set of means = {0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9}

result of an experiment run a Bandit problem with 7 groups of 8 arms.

The groups expected values are 0.1, 0.3, 0.4, 0.5, 0.6, 0.75, and 0.9. We can

5.7 Experiments 177

see that the finite time cumulative regret of IMED-EC indeed is much

smaller than the regret of the unspecialized algorithms.

Influence of the parameter q

Here we show the numerical robustness of IMED-EC with respect to

the lower bound parameter 𝑞 on the number of elements per classes.

On the same bandit problem made of 4 classes and 10 arms per group,

we compare different instances of IMED-EC where different values of

𝑞 are used. In the legend, opt. stands for optimal and corresponds to

the largest valid lower bound on the number of elements per class, i. e.
the minimal number of elements in a class, which is 4 in this case. The

expected values of the groups are 0.1, 0.3, 0.6, and 0.9. While 𝑞 increases

Figure 5.7: 4 classes, 10 distributions per class - set of means = {0.1, 0.3, 0.6, 0.9}

up to the minimum cardinality of a class, we see on Figure 5.7 that

the performances of IMED-EC increases, which is expected. It is rather

remarkable that once we go beyond that theoretical threshold of 4, the

performances of IMED-EC do not seem to deteriorate. Therefore, we see

that IMED-EC is robust to misspecification of parameter 𝑞 in the setting

of balanced classes of arms. In the context of unbalanced classes, we will

see that IMED-EC is still robust to misspecification of 𝑞 but that it is

possible to find instances in which the quantile 0.9 is of linear shape.

Unbalanced classes

Comparison with IMED and KL-UCB

In this experiment, see Figure 5.8, we focus on the bandit configurations

in which equivalence classes have different cardinals and assume that

IMED-EC is given a strict lower bound as its parameter 𝑞. In the next

experiment Figure 5.9, we study the influence of 𝑞 on the performances

of IMED-EC on the same problem and therefore consider the case where

a tight lower bound is given to IMED-EC. We consider a bandit problem

with 7 classes and an uneven number of distributions per class. The

smallest class has 4 elements and the largest 23. In the experiment

178 5 Groups of similar arms

plotted Figure 5.6, the parameter 𝑞 that IMED-EC is given, it is 2, a strict

lower bound on the size of the classes, and indicate the set of expected

rewards in the legend. We compare IMED-EC to unspecialized bandit

algorithm, IMED and KL-UCB. In the Figure 5.8, we plot the results of

Figure 5.8: 7 classes, unbalanced - set of means = {0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9}

the experiment, and it can be seen that finite time cumulative regret of

IMED-EC indeed is much smaller than the regret of the unspecialized

algorithms. The control on the quantile tube and median also show that

IMED-EC is a good algorithm that enjoy some of the original properties

of IMED. Furthermore, on this experiment and all the other, the median

regret is very close if not equal to the expected regret, which is also a

nice experimental property.

Influence of the parameter q

Here we show the numerical robustness of IMED-EC with respect to the

lower bound parameter 𝑞 on the number of elements per classes. The

experiment Figure 5.9 is performed on a bandit problem with 7 classes

and an uneven number of distributions per class. The smallest class has

4 elements and the largest 23. While 𝑞 increases up to the minimum

cardinality of a class, we see that the performances of IMED-EC increases.

It is rather remarkable that once we go beyond that theoretical threshold,

the expected and median performances of IMED-EC do not deteriorate.

We even found it difficult to find settings to deteriorate them at all. While

the expected regret does not seem to deteriorate, we sometimes see that

the tails of the regret widen as it can be seen on the plot Figure 5.9 for

𝑞 = 7 and 𝑞 = 20 since the 0.9 quantile curves are so large for those values

of 𝑞. We attribute part of this robustness to the fact that the relaxation

induced in IMED-EC makes the algorithm over explore compared to what

the true lower bound suggests. Increasing 𝑞 reduces the exploration and

therefore may improve the performances of the algorithm. However, this

robustness is observed even in the case where the classes are balanced.

This interpretation thus does not explain everything about the numerical

robustness of IMED-EC. There is also the possibility that we could not

find the right setting and right horizon to make the algorithm fail. All in

all, those experiment confirms the efficiency of IMED-EC.

5.8 Fairness 179

Figure 5.9: 7 classes, unbalanced - set of means = {0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9}

5.8 Fairness

In this section, we numerically explore the fairness of the IMED-EC

algorithm. By studying fairness, we mean to compare the discrepancy in

the number of pulls within a class. In particular, we are interested in the

behavior of the different sampling strategies within the optimal class. We

compare the fairness of IMED-EC to the one of KL-UCB and IMED. In the

considered Bandit settings, for each algorithm, we report for each class

the histogram accounting for the number of times distributions within

each class has been pulled. Specifically, at the end of an episode, we sort

arms within each class by the number of times they have been sampled.

This gives an ordered statistic of the number of pulls of each arm within

a class. In the fairness experiment, we are interested in the empirical

histograms of the ordered statistics of number of samples within each

group. The histograms are therefore built using those sorted number of

pulls. Error bars corresponds to the standard deviations and have been

clipped to not go below the 𝑥-axis.

Balanced problem

On a bandit problem whose number of classes is 4 with expected rewards

0.1, 0.3, 0.6, and 0.9 and 10 distributions per group. The chosen horizon is

2000, and we run 1000 independent experiments. IMED-EC is assumed to

be given the tight bound 𝑞 = 10. When running other experiments where

IMED-EC was not given a tight bound, we did not find any significant

differences in the histogram. The main difference was in the size of

the standard deviation in the second-best class where it was higher for

lower 𝑞, indicating a slight higher level of exploration. We consider the

histogram in order, from the most suboptimal class to the optimal one.

In the legend of the figures, the considered class is represented by a bold

font.

For the most suboptimal class, Figure 5.10, not much can be said since

the number of pulls is very small. Still, one can see that the progression

of the order statistics for KL-UCB and IMED is somewhat linear while it

180 5 Groups of similar arms

Figure 5.10: 4 classes, 10 distributions per class - set of means = {0.1, 0.3, 0.6, 0.9} - class of mean 0.1

seems more exponential for IMED-EC. (Note that we use these terms here

informally.)

Figure 5.11: 4 classes, 10 distributions per class - set of means = {0.1, 0.3, 0.6, 0.9} - class of mean 0.3

The same linear versus exponential apparent behavior can be seen on

Figure 5.11.

Figure 5.12: 4 classes, 10 distributions per class - set of means = {0.1, 0.3, 0.6, 0.9} - class of mean 0.6

On Figure 5.12, one can clearly a difference in the behavior of KL-UCB

and IMED, that have small error bars, and IMED-EC that have a large

error bar for the most pulled arm within the least suboptimal class. We

can clearly see how risky it might be to reduce the exploration from this

error bar. However, this risk is compensated by the fact that there is at

least 𝑞 similar distributions. This can be read from the fact that the sum of

all the number of pulls within this class for KL-UCB and IMED is above

5.8 Fairness 181

200 which is roughly the maximal number of pulls of IMED-EC within

this class computed using the upper bounds (given by the maximal value

of the standard deviation).

Figure 5.13: 4 classes, 10 distributions per class - set of means = {0.1, 0.3, 0.6, 0.9} - class of mean 0.9

Finally, Figure 5.13 enables to compare the behaviors of the algorithms

within the optimal class. It seems clear that, at least numerically, IMED-

EC is not a fair algorithm in finite time. IMED-EC does not equally

distribute the pulls between arms from the same class and seems to

leverage the lower bound on the number of elements per class to play

a more risky strategy, and benefits from it, from an expected regret

viewpoint. Again, we observe the linear versus exponential progression

in the order statistics of the number of pulls. In this regard, KL-UCB and

IMED seems fairer algorithm within the optimal class.

Unbalanced problem

In this final experiment, we consider a bandit problem whose number

of classes is 7 with means 0.1,0.3,0.4,0.5,0.6,0.75, and0.9 and an uneven

number distributions within each class. The chosen horizon is 2000, and

we run 1000 independent experiments. We assume that IMED-EC does

not have a tight lower bound on the number of elements per class, and

we use 3 as the lower bound parameter of IMED-EC. For four classes,

including the optimal one, we report the histograms of the corresponding

ordered statistics. As above, error bars corresponds to the standard

deviations and have been clipped to not go below the 𝑥-axis.

The comments that can be made about those plots are similar to the one

that were already made. We included them to show that the behavior

of IMED-EC (and also the behavior of IMED and KL-UCB) is consistent

across multiple settings. In particular, the algorithm IMED-EC exhibits

the same aforementioned behavior for the least suboptimal class, as it

can be seen by comparing Figure 5.16 to the corresponding Figure 5.12.

In a nutshell, IMED-EC is not a fair algorithm while it seems that, at least

for the optimal group, IMED and KL-UCB seem to exhibit linear-shaped

ordered statistics. On the other hand, IMED-EC is indeed 𝑞 times more

greedy which benefit the agent from an expected regret viewpoint but

contribute to the absence of fairness within the optimal class.

182 5 Groups of similar arms

Figure 5.14: 7 classes - unbalanced - set of means = {0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9} - mean 0.3

Figure 5.15: 7 classes - unbalanced - set of means = {0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9} - mean 0.5

Figure 5.16: 7 classes - unbalanced - set of means = {0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9} - mean 0.75

Figure 5.17: 7 classes - unbalanced - set of means = {0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9} - mean 0.9

5.9 Conclusion 183

5.9 Conclusion

In this chapter, we introduced IMED-EC, a numerically efficient algorithm

to solve a structured bandit problem for which we derived a lower

bound involving a combinatorial optimization problem. While not being

asymptotically optimal, the asymptotic regret of IMED-EC is always

smaller than the unstructured one and that we can control the discrepancy

with respect to the structured regret lower bound by a factor of at most 2.

It is possible for IMED-EC to benefit from the EF approximation scheme

introduced in the previous chapter 4 and in the future, it may be possible

to use an approach à la IMED-EC to tackle Reinforcement Learning

problem in which symmetries in the action space emerge from physical

constraint thus creating equivalence classes of actions or policies. This

would complete the introductory example that we gave where paths in

a grid could be seen as actions in a structured Bandit with groups of

similar arms.

Reinforcement Learning

A group of choices: reinforcement
learning 6

6.1 A first order model of
decision-making 187

6.2 Planning 194
6.3 Reinforcement Learning . 196
6.4 Summary of contributions 199

6.1 A first order model of decision-making

After introducing the Bandit model in the previous chapter, we more

briefly present the second sequential learning model that we studied in

this thesis. Most of the built intuitions in the previous chapter can be

applied to understand this more complex setting. Compared to the Bandit

learning problem, Reinforcement Learning is a less mature research field.

For instance, there are no instance dependent regret lower bound in the

general case and little is known about how to efficiently navigate the

problem, where navigation is a problem that is specific to Reinforcement

Learning and was not present in the Bandit learning problem.

We model a first order model of sequential decision-making.

Remark. In science, order of approxima-

tion is way to referring to the accuracy

of an approximation. It can be informal,

as it is here, or formal, particularly when

referring to the Taylor expansion of a

function.

This

model is called a Markov Decision Process. In this model, as in the

previous, an agent, will have to sequentially make decisions. Often,

the agent is an algorithm. Mathematically, the sequential aspect of the

decision-making process is modeled by the fact that the agent must make

a decision sequentially at abstract time steps that belong to an ordered
set. Mathematically, making a decision is modeled thanks to a set whose

elements are interpreted as decisions or actions. The consequence of

making a decision from a set is made known to the agent thanks to a

numerical signal belonging to the set of real numbers, ℝ. The main

difference with the previous Bandit case is that the set of decision the

agent can choose from is dependent on another set, the state space. Upon

making a decision in a given state, the agent is transported in another

state according to a transition probability that depends on the current

state and chosen action in that state. We are interested to model only

those situations in which the agent can observe the consequences of its

decisions and only those. A Markov decision problem emerges when

the agent has an objective that is a function of the Bandit model. The

agent will have to solve its objective using gathered information about the

model through interaction with it. Of course, its interaction is modeled

through the sequence of decisions and associated numerical rewards.

Therefore, we can see that some additional structure might be necessary

on the decision-making model to model how the agent measure the
consequences of its decision with respect to its internal objective.

Figure 6.1: Andreï Andreïevitch Markov

(1856-1922)

We first present the Markov control model and then explain the average-

reward Reinforcement Learning (RL) model. The presentation hereafter

is much shorted than the previous one for two reasons. First, a lot of

the intuitions about pointers, information, decision, etc. apply to this

framework. They were specifically introduced to build intuition in the

previous easier setting. The second is that the theory of RL is far less

understood than the Bandit theory. For instance, there is no known generic

lower bound for the regret minimization problem in Reinforcement

Learning, and therefore even less "optimal" algorithm. One of the main

contribution of the thesis was to develop an Algorithm 21, IMED-RL,

that tackle the problem of average-reward Reinforcement Learning in a

188 6 A group of choices: reinforcement learning

setting called ergodic, one of the few RL setting for which a lower bound

is known.

Markov Control Model

In this thesis, we study Reinforcement Learning with an unknown finite

Markov Decision Problem (MDP) under the average-reward criterion in

which a learning algorithm interacts sequentially with the dynamical

system, without any reset, in a single and infinite sequence of observations,

actions, and rewards while trying to maximize its total accumulated

rewards over time. Prior to defining the learning problem, we present

the Markov control problem.

In a Markov decision model the agent must be able to measure the

consequences of its decision. By measuring, we mean that it must be able

to evaluate the consequences of its decision. This motivates the following

definition of a Markov control model.

Definition 6.1.1 (Markov Control Model) A Markov Decision Process
(MDP) M is a five tuple

(S, 𝐴, {𝐴(𝑥)|𝑥 ∈ S} , p, r)

consisting of

1. a Borel spaceS, called the state space and whose elements are referred
to as states. We denote X the 𝜎 algebra on S;

2. a Borel space 𝐴, called the control or action set i. e. 𝐴 is a couple
(𝐴,A) where A is a 𝜎 algebra on 𝐴;

3. a family {𝐴(𝑥)|𝑥 ∈ S} of non-empty measurable subsets 𝐴(𝑥) of 𝐴
i. e. 𝐴(𝑥) ∈ A∀𝑥 ∈ S. 𝐴(𝑥) denotes the set of feasible controls or
actions when the system is in state 𝑥 ∈ S. Furthermore, the set

XM = {(𝑥, 𝑎)|𝑥 ∈ S, 𝑎 ∈ 𝐴(𝑥)}

of feasible state-action pairs is a measurable subset of S×𝐴. S×𝐴
is endowed with the 𝜎 algebra Ggenerated by X and A, 𝜎 (X×A);

4. a stochastic kernel 𝑃 on Sgiven XM called the transition law;
5. a measurable function r : XM → P(ℝ) called the reward per stage

(or one stage reward) distribution;

Furthermore, we denote m : XM → ℝ the measurable function called the
reward per stage (or one stage reward) function that corresponds to the
expected reward, m(𝑠, 𝑎) = 𝔼𝑅∼r(𝑠,𝑎)(𝑅).

When the transition kernel and reward distribution known, the problem

of finding a policy that maximizes its expected cumulated reward is

called a control model. By known reward distribution, it is meant that As

for the Bandit setting, one can replace the reward function m by reward

distributions r : XM → P(ℝ) from which we assume that the reward

function m is computable. If m can only be computed from sampling

the system, i. e. interaction with it, then we are in a learning setting, even

when the transition kernel is known, as in Chapter 8.

6.1 A first order model of decision-making 189

The noun Markov comes from the assumption of the transition kernel.

The transition kernel is such that the distribution over the state space

only depend on the current considered state and chosen action, not on

the history of visited state-action pairs. This dependency to only the

immediate past is a feature of the model. Of course, an agent is not

necessarily Markovian in the sense that its decisions can depend on

more than the immediate past. In a Markov decision model, the agent

takes decisions sequentially, it is allowed to remember past information.

Similarly to Bandit, we introduce a notion of history of information.

Definition 6.1.2 (Markov Control History) Given a Markov control model
(S, 𝐴, {𝐴(𝑥)|𝑥 ∈ S} , p,m) and its set XM of feasible controls, for all 𝑡 ∈ ℕ,
one can define the set of admissible histories up to time 𝑡

𝐻0 = S

𝐻𝑡 = X𝑡
M × S= XM × 𝐻𝑡−1 ∀𝑡 ∈ ℕ∗

An element ℎ𝑡 ∈ 𝐻𝑡 is called an admissible t-history or a t-history and is a
vector of the form

ℎ𝑡 = (𝑥0 , 𝑎0 , · · · , 𝑥𝑡−1 , 𝑎𝑡−1 , 𝑥𝑡)

with (𝑥𝑘 , 𝑎𝑘) ∈ XM for 𝑘 ∈ [0, 𝑡 − 1] and 𝑥𝑡 ∈ S.

For all 𝑡, the space 𝐻𝑡 is equipped with a canonical 𝜎-field inherited from the
set of feasible state-action pairs i. e., 𝐻𝑡 is a measurable space with 𝜎-field of
X⊗𝑡M .

The decision-making process of an agent is modelled thanks to the

notion of control policy. A control policy can be deterministic, stochastic,

history-agnostic or not.

Definition 6.1.3 (Control Policy) A randomized control policy, or
policy, is a sequence 𝜋 = (𝜋𝑡)𝑡∈ℕ of stochastic kernels 𝜋𝑡 ∈ P(𝐴|𝐻𝑡) on
the control set 𝐴 given 𝐻𝑡 satisfying the constraint

𝜋𝑡 (𝐴 (𝑥𝑡) |ℎ𝑡) = 1 ∀ℎ𝑡 ∈ 𝐻𝑡 , 𝑡 ∈ ℕ

The set of all policies is denoted by Π.

As previously, it is important to assume that it is possible for an agent to

make decision in the first place.

Assumption 6.1.1 We will assume that XM contains the graph of a measur-
able function from S to 𝐴 i. e. there is a measurable function 𝑑 : S→ 𝐴 such
that for all 𝑥 ∈ S, 𝑑(𝑥) ∈ 𝐴(𝑥).

Definition 6.1.4 (Admissible control) We denote by Φ the set of all
stochastic kernels 𝜙 ∈ P(𝐴|S) such that 𝜙 (𝐴(𝑥)|𝑥) = 1. We denote by Δ

the set of all measurable functions 𝑑 : S→ 𝐴 satisfying that 𝑑(𝑥) ∈ 𝐴(𝑥)
for all 𝑥 ∈ S.

One may identify a function 𝑑 ∈ Δ as a stochastic kernel 𝜙 𝑓 ∈ Φ for

190 6 A group of choices: reinforcement learning

which 𝜙(·|𝑥) = 𝛿 𝑓 (𝑥) (·) is the Dirac measure at 𝑓 (𝑥) for all 𝑥 ∈ S i. e.

∀𝑥 ∈ S, ∀𝐶 ∈ A, 𝜙 𝑓 (𝐶 |𝑥) = 1𝐶 { 𝑓 (𝑥)} = 1 { 𝑓 (𝑥) ∈ 𝐶}

where 1𝐶 is the indicator function of the set 𝐶.

Policies can be categorized according to the same typology we described

at length in Definition 3.1.5.

Definition 6.1.5 A policy 𝜋 = (𝜋𝑡)𝑡 ∈ Π is said to be a

▶ randomized Markov policy if there exists a sequence
(
𝜙𝑡

)
𝑡

of stochastic
kernels 𝜙𝑡 ∈ Φ such that

∀ℎ𝑡 ∈ 𝐻𝑡 , 𝑡 ∈ ℕ, 𝜋𝑡 (·|ℎ𝑡) = 𝜙𝑡 (·|𝑥𝑡)

▶ randomized (Markov) stationary policy if there exists a stochastic kernel
𝜙 ∈ Φ such that

∀ℎ𝑡 ∈ 𝐻𝑡 , 𝑡 ∈ ℕ, 𝜋𝑡 (·|ℎ𝑡) = 𝜙 (·|𝑥𝑡)

The set of all randomized Markov policies is denoted Π𝑅𝑀 . The set of all
randomized stationary policies is denoted Π𝑅𝑆. By definition of stationarity,
a randomized stationary policy necessary is Markov. Indeed, if all 𝜙𝑡 are
the same kernel 𝜙 then they all must be kernel on 𝐴 given a common space
𝐻. The largest common subspace to all histories is 𝐻0 = S. Note that
Π𝑅𝑆 ⊆ Π𝑅𝑀 ⊆ Π.

▶ deterministic (or pure) policy if there exists a sequence (𝑔𝑡)𝑡 of mea-
surable functions 𝑔𝑡 : 𝐻𝑡 → 𝐴 such that for all ℎ𝑡 ∈ 𝐻𝑡 and 𝑡 ∈ ℕ,
𝑔𝑡 (ℎ𝑡) ∈ 𝐴 (𝑥𝑡) and 𝜋𝑡 (·|ℎ𝑡) is a Dirac concentrated at 𝑔𝑡 (ℎ𝑡) i. e.

∀𝐶 ∈ A, 𝜋𝑡 (𝐶 |ℎ𝑡) = 1𝐶 (𝑔𝑡 (ℎ𝑡))

▶ deterministic Markov policy if there is a sequence (𝑓𝑡)𝑡 of functions
𝑓𝑡 ∈ 𝔽 such that 𝜋𝑡 (·|ℎ𝑡) is concentrated at 𝑓𝑡(𝑥𝑡) ∈ 𝐴(𝑥𝑡) for all
ℎ𝑡 ∈ 𝐻𝑡 and 𝑡 ∈ ℕ.

▶ deterministic (Markov) stationary policy if there is a function 𝑓 ∈ 𝔽
such that 𝜋𝑡 (·|ℎ𝑡) is concentrated at 𝑓 (𝑥𝑡) ∈ 𝐴(𝑥𝑡) for all ℎ𝑡 ∈ 𝐻𝑡

and 𝑡 ∈ ℕ.

The set of all deterministic policies is denoted Π𝐷 . The set of all deterministic
Markov policies is denoted Π𝐷𝑀 . The set of all deterministic stationary
policies is denoted Π𝐷𝑆. Note that Π𝐷𝑆 ⊆ Π𝐷𝑀 ⊆ Π𝐷 ⊆ Π.

We also have that Π𝐷𝑆 ⊆ Π𝑅𝑆 . Thus, Π𝐷𝑆 is contained is all the aforemen-

tioned set of policies. To ensure that those are non-empty, it suffices to

assume that Π𝐷𝑆 is non-empty which the same as our main assumption,

that is to say, assuming that there exist a measurable function 𝑓 : S→ 𝐴

such that 𝑓 (𝑥) ∈ 𝐴(𝑥) for all 𝑥 ∈ S.

Assumption 6.1.2 (Finite Rewards) The Markov control model (𝐴,m)
satisfies the finite reward assumption if for all actions (𝑥, 𝑎) ∈ XM we have
−∞ < m(𝑥, 𝑎) < +∞.

On an MDP M, each stationary deterministic policy 𝜋 : S→ A𝑠 defines

6.1 A first order model of decision-making 191

a Markov reward process, i. e. a Markov chain on Swith kernel

p𝜋 : 𝑠 ∈S ↦→ p (·|𝑠,𝜋(𝑠))∈P(S) ,

together with rewards

r𝜋 : 𝑠 ∈ S ↦→ r (𝑠,𝜋(𝑠))∈P(ℝ) ,

and associated mean rewards

m𝜋 : 𝑠 ∈ S ↦→ m (𝑠,𝜋(𝑠))∈ℝ .

The 𝑡-steps transition kernel of policy 𝜋 on M is denoted p𝑡𝜋. We denote

p𝜋= lim

𝑇→∞

1

𝑇

𝑇∑
𝑡=1

p𝑡−1

𝜋 : S→ P(S)

the Cesàro-average of p𝜋. This Cesàro-average of the transition kernel of

the Markov M𝜋 allows us to correctly define quantity related to average

behavior because it erases periodic features. As such, it is a quantity that

is more related to asymptotic properties of a policy rather than finite

time, but so is the concept of average reward.

A learning agent is executing a sequence of policies 𝜋𝑡 ∈Π(M), 𝑡 ≥ 1,

where 𝜋𝑡 depends on past information ℎ𝑡 = (𝑠𝑡′ , 𝑎𝑡′ , 𝑟𝑡′)𝑡′<𝑡 . With a slight

abuse of notation, a sequence of identical decision rules, 𝜋𝑡 = 𝜋 for all 𝑡,

is also denoted 𝜋.

Definition 6.1.6 (Cumulated Reward) Let

M = (S, 𝐴, {𝐴(𝑥)|𝑥 ∈ S} , p,m)

be a Markov control model satisfying the finite reward 6.1.2 and optimal
feasibility 6.1.1 Assumptions, and let 𝜋 ∈ Π be a control policy. The 𝑛-stage
cumulated reward of the policy 𝜋 on the MDP M starting at state 𝑠 is
defined as

𝑉𝑠 (𝑛;𝜋,M) = 𝔼𝑠,M,𝜋

(
𝑛∑
𝑡=1

m (𝑠𝑡 , 𝑎𝑡)
)
. (6.1)

The average reward of the policy 𝜋 on the Markov control model M is
defined as

g𝜋 (𝑠,M) = lim inf

𝑛→∞
𝑉𝑠 (𝑛;𝜋,M)

𝑛
. (6.2)

As we can see, this definition is very similar to the one of Bandit and the

average-reward setting is the direct generalization of the average-reward

Bandit criterion. One of the most important theorem of Markov control

theory states that, there exists an optimal policy that is deterministic

and stationary. The average reward of an optimal policy is maximal and

independent of the initial state 𝑠 as long as the MDP is communicat-

ing.

Definition 6.1.7 (Communicating MDP) The MDP M is communicating,
if

∀𝑠, 𝑠′, ∃𝜋, ∃𝑡 ∈ ℕ : p𝑡𝜋(𝑠′ |𝑠) > 0 .

192 6 A group of choices: reinforcement learning

[75]: Puterman (1994), Markov Decision
Processes — Discrete Stochastic Dynamic
Programming
[76]: Hernández-Lerma et al. (1996),

Discrete-Time Markov Control Processes

In a communicating MDP, any two states can be joined with positive

probability in finite time. This definition differ from the notion of ergodic

MDP by the quantifier ∃ in front of the policy, which is replaced by a ∀ in

the definition of ergodic MDP. We write the definition here to emphasize

the difference between the two notions.

Definition 6.1.8 (Ergodic MDP) The MDP M is ergodic, if

∀𝑠, 𝑠′,∀𝜋, ∃𝑡 ∈ ℕ : p𝑡𝜋(𝑠′ |𝑠) > 0 .

In an ergodic MDP, whatever the played policy, all states are connected in

finite time with positive probability. In an ergodic MDP, all policies share

the same set of recurrent states, which is equal to the whole state space.

This is an important property that can be exploited to learn without caring

too much about dynamic exploration as will be seen in Chapter 7.

A proof of the existence of an optimal deterministic stationary policy can

be found in [75] for the finite state and action space case, while another

proof, more general, can be found in [76].

Theorem 6.1.1 (Optimal Deterministic Stationary policy) Let M be a
Markov control model with finite state space and finite action space, i. e. XM is
finite, then there exists an optimal policy that is deterministic and stationary.

The existence of such a policy allows to define a learning criterion,

measuring the speed at which an agent that do not know the reward

distributions r, or the transition kernel p, or even both, can converge to a

such a policy. Note that there exists other framework than the average

reward criterion such as the discounted or finite horizon settings. These

two settings are presented in the reference books [75, 76], but we do not

consider them in this thesis.

We note that the average-reward can be expressed after rewriting the

cumulative reward (value). After 𝑇 interactions, starting from an initial

state 𝑠1 of policy 𝜋 = (𝜋𝑡)𝑡 is formally given by, the cumulative reward is

formally given by

𝑉𝑠1(M,𝜋, 𝑇) = 𝔼𝜋,M,𝑠1

[
𝑇∑
𝑡=1

𝑟𝑡

]
= 𝔼𝜋,M,𝑠1

[
𝑇∑
𝑡=1

m(𝑠𝑡 , 𝑎𝑡)
]

=

𝑇∑
𝑡=1

(𝑡−1∏
𝑡′=1

p𝜋𝑡′
m𝜋𝑡′

)
(𝑠1) .

For 𝜋 ∈ Π(M), the average-reward
1

𝑇𝑉𝑠1(M,𝜋, 𝑇) tends to

(
p𝜋m

)
(𝑠1) as

𝑇 → ∞. The gain of policy 𝜋 ∈ Π(M), when starting from state 𝑠1 can

therefore be written as

g𝜋(𝑠1) = (p𝜋m)(𝑠1) .

Another way of writing the gain is in terms of state-action pair, which can

6.1 A first order model of decision-making 193

be useful. Starting from state-action pair 𝑐1 = (𝑠1 , 𝑎1), it can be written

g𝑐1 ,𝜋
B (p𝜋m)(𝑐1) =

∑
𝑐∈C

p𝜋(𝑐1 , 𝑐) ·m(𝑐),

where p𝜋(𝑐1 , 𝑐) is the visit probability mass the pair 𝑐 ∈ Cunder policy

𝜋 started in pair 𝑐1 ∈ C, and where m(𝑐) is the average reward of the

pair 𝑐. That is to say, the gain can be written as an average of rewards that

depends on the stationary distribution of an agent following policy 𝜋.

The optimal gain, staring from 𝑠1 is defined as g★(𝑠1) = max𝜋∈Π(M) g𝜋(𝑠1).
The set of policies achieving maximal gain on M starting from state 𝑠 is

defined as

O𝑠(M) = {𝜋 ∈ Π : g𝜋(𝑠) = g★(𝑠)} .

Similarly, one can define state-action pair related notions of optimal sets.

Given a finite set of stationary policies Π, we denote g★𝑐 = max

𝜋∈Π
g𝑐,𝜋 the

optimal gain starting from 𝑐, and Π★
𝑐 = {𝜋 ∈ Π : g𝑐,𝜋 = g★𝑐 } the set of

policies achieving the optimal gain. Those definitions are mostly here

for theoretical and notational purpose since, under the communicating

hypothesis, Π★
𝑐 is independent of 𝑐.

We recall that the optimal gain and therefore, set of optimal policies are

independent of 𝑠 in a communicating, and a fortiori ergodic, MDP. There

are several notions of regret, and we will use the following.

Definition 6.1.9 (Regret) The regret at time𝑇 of a learning policy𝜋 = (𝜋𝑡)𝑡
starting at state 𝑠 on an MDP M is defined with respect to any 𝜋★ ∈ O𝑠 (M),
as

R𝜋,𝑠
(
M, 𝑇;𝜋★) = 𝑉𝑠(M,𝜋★, 𝑇) −𝑉𝑠(M,𝜋, 𝑇) . (6.3)

This corresponds to a finite macroscopic viewpoint on the regret where

the regret is defined at the policy level. Formally, one could have defined

another notion of 𝑇-stage regret R𝜋,𝑠 (M, 𝑇) as

R𝜋,𝑠 (M, 𝑇) = 𝑇g★(𝑠) −𝑉𝑠(M,𝜋, 𝑇)

which correspond to an asymptotic macroscopic viewpoint. The regret is

defined at the policy level using the asymptotic notion of gain, i. e. the

average reward per unit of interaction.

Similarly to what we did for Bandit, one can define the set of what is

considered "good" learner. To do so, we need to consider an assumption

on the reward distribution. This assumption is formalized by saying that

the learner will now, prior to interaction, that the MDP belong to set

�. This set of learner, we call it the set of Uniformly fast convergent
policies.

Definition 6.1.10 (Uniformly fast convergent policies) Given a set � of
MDPs, a policy 𝜋 is uniformly fast convergent on � if for all MDP M ∈ �,
the regret 𝑇 ↦→ R𝜋,𝑠 (M, 𝑇) is negligible compared to 𝑇𝛼 for all state 𝑠 and
𝛼 > 0, i. e.

∀M ∈ �, R𝜋,𝑠 (M, 𝑇) = 𝑜 (𝑇𝛼) .

The word uniform is attached to the set � and the word fast to the highly

sublinear growth rate of the regret function 𝑜(𝑇𝛼) for all positive 𝛼.

194 6 A group of choices: reinforcement learning

Among the subset of policies of interest, here the subset of uniformly

fast convergent polices, some may converge faster than others on some

problems. Some may converge faster than any other policies on all

problem in the set �. Those policies have the maximal convergence rate

and achieve this maximality criterion uniformly on �.

Definition 6.1.11 (Uniformly maximal convergence rate policies) Given
a set � of MDPs, a policy 𝜋★ is said to have uniformly maximal convergent
rate on � if for all MDPs M ∈ �, and all uniformly fast convergent policy
𝜋 the regret 𝑇 ↦→ R𝜋★,𝑠 (M, 𝑇) is asymptotically smaller than the regret
𝑇 ↦→ R𝜋,𝑠 (M, 𝑇), i. e.

∀� ∈ �, lim sup

𝑛→∞

R𝜋★,𝑠 (M, 𝑇)
R𝜋,𝑠 (M, 𝑇) ≤ 1 .

We consider the lim sup of the ratio because the limit may not exist and

the lim sup is more restrictive than a lim inf and better suited to define a

sound notion of optimality. Note how this definition corresponds to the

one we introduce as a lim inf on the gain. It can be read as the fact that

we want to control the worst adherent point of the sequence of regret

ratio. After defining such a learning class and optimality criterion, we

are already more in the realm of research than that of knowledge. Little

is known about the existence of uniformly fast convergent policies in

general communicating MDPs. In this thesis, we investigate the restricted

case of ergodic MDPs, for which a regret lower bound is known. Prior to

presenting this lower bound and reviewing the relevant literature, we

briefly present the intuition behind policy iteration, that we use in both

Chapter 7 and Chapter 8.

6.2 Planning

In a Markov Decision Process, the space of policies is highly structured.

Indeed, the average reward criterion (or discounted one for any discount

factor) induces a partial ordering of the policies on the MDP. Furthermore,

this partial ordering has the property that there exists a greatest elements

called optimal control policies. This is a much nicer property than simple

existence of maximal elements since those cannot be compared with

all elements of the partially ordered set while it is the case for greatest

elements. The existence of a greatest element means that, for all policy 𝜋0,

there exist a path (𝜋0 ,𝜋1 , . . . ,𝜋𝑛) in the policy space, made of policies

of increasing order, i. e. 𝜋𝑘+1 ≥𝑀𝐷𝑃 𝜋𝑘 , where all the inequalities can be

chosen to be strict and 𝜋𝑛 can be made equal to a greatest element, i. e. an

optimal control policy. Owing to the fact that, given a policy 𝜋, one can

compute a neighborhood of policies V𝑀𝐷𝑃 (𝜋) in which one is guaranteed

to find a strictly larger policy (except if 𝜋 is a greatest element), then

starting from one policy on the MDP, one can theoretically performer a

gradient ascent. If the set V𝑀𝐷𝑃 (𝜋) is small enough, then a gradient ascent-
like algorithm could be tractable. While one could always pick V𝑀𝐷𝑃 (𝜋)
to be the space of all deterministic stationary policy and converge in one

step, this would make any gradient ascent-like algorithm useless. There

is therefore a trade-off between the cardinal of V𝑀𝐷𝑃(𝜋)we consider at

6.2 Planning 195

[77]: Hollanders et al. (2012), ‘The com-

plexity of Policy Iteration is exponen-

tial for discounted Markov Decision Pro-

cesses’

each time step and the number of steps until convergence to a greatest

element, i. e. an optimal control policy.

Action iteration

In Chapter 3, we described a very simple Algorithm 1 that we called

action-iteration. This algorithm simply iterates through the actions of a

Bandit control problem, keeping tab of the best action encountered so

far. We highlighted that an assumption for the algorithm to converge is

the optimal feasibility. For the algorithm to compute an optimal action,

it must be able to select such an action. A direct naive generalization of

that algorithm to the case of MDP control would be to iterate through

the whole set of policies, iteratively computing the gains and keeping

tab of the best policy and gain encountered so far. While trivial, this

algorithm would be a valid description of a policy iteration algorithm.

However, it would, in some sense not be very efficient. It should be noted

that what is usually called policy iteration is guaranteed to converge to

an optimal policy, but there is no guarantee on the number of iterations

until convergence is reached. A priori, the number of iterations could be

exponential in the number of states, see [77]. Empirically, the problems

studied by the practitioners and the RL community in general seem

to be far more structured than the cases constructed to make policy

iteration run for such a large number of iterations. The existence of

such MDPs that make the worst case complexity horrendous should not

prevent practitioner and theoretician alike to create and study algorithms

that works well on the average MDP, i. e. with empirically polynomial

complexity in the number of sates.

Policy Iteration

A major result from the control theory of MDPs is the policy improvement
theorem and its associated gradient ascent-like algorithm, the policy
iteration algorithm. Indeed, for the average reward criterion, the partial

ordering ≤𝑀𝐷𝑃 is defined using the reward and bias function, and partial

order ≽ℝ𝑆 on ℝ𝑆
, where 𝑆 is the cardinal of the sate space. Under the

discounted reward criterion, the partial ordering is defined using the

reward and value functions, and partial order ≽ℝ𝑆 on ℝ𝑆
. The policy

improvement theorem state that for all suboptimal control policy 𝜋, one

can search for a strict improvement of that policy in a neighborhood

V𝑀𝐷𝑃(𝜋) of 𝑆 × 𝐴 policies, a number that is far smaller than the size of

policy space, 𝐴𝑆 . This neighborhood consists in all the policies that are a

modification of 𝜋 in one state,

V𝑀𝐷𝑃(𝜋) = {𝜋′ ∈ Π𝐷𝑆(M) | ∃!𝑠 ∈ S,𝜋′(𝑠) ≠ 𝜋(𝑠)}

where Π𝐷𝑆(M) is the set of deterministic stationary policies on M and S

its state space. From the point of view of this thesis, it means that there is
enough information in this set, to iteratively compute an optimal control

policy. A natural question is therefore to ask whether this set can be

exploited in the Reinforcement Learning setting, where the dynamics

and rewards are unknown. Is it possible, using this set and partially

ordered structure of the policies to craft a stochastic gradient ascent-like

196 6 A group of choices: reinforcement learning

algorithm? In the Markov control model, the answer is positive. It is

interesting to first remark that the set V𝑀𝐷𝑃(𝜋) can be expressed in terms

of XM, which emphasizes the locality of the changes on the considered

policy. The policy iteration algorithm relies on the computation of a

function called the bias function (known as the value function in the

discounted reward setting) which is a function b𝜋 : S→ ℝ, that can be

seen as a vector in ℝ|S| . The partial order on the space of policies, ≤𝑀𝐷𝑃 ,

that we mentioned above is defined using the canonical one ≽ on ℝ|S|

and bias function. In Reinforcement Learning, we will be interested in

finding an optimal learning policy, i. e. one that converges to an optimal

control policy. The convergence will be characterized thanks to the notion

of regret, similarly to what we presented in the Bandit chapter.

6.3 Reinforcement Learning

Which policy should be played to gain enough information and not

suffer too much regret? In the Chapter 7, we explore a setting, ergodic

MDPs, such that this set is "accessible enough" for the learner to perform

an optimal stochastic gradient ascent on the policy space. We will see

that thanks to the ergodic property, whatever the policy played, all

states in which a policy improvement is possible are regularly accessed

automatically thanks to the hypothesis. This allows to perform a stochastic

gradient ascent in the policy space using this very small subset of policies

defined by local changes. In the Chapter 8, we explore another setting

when a learner cannot a priori access some part of the state space by

playing any policy and must actively explore some region to check for

possible policy improvement in unvisited states.

Average-reward reinforcement learning

To summarize the last section in one paragraph, we consider a finite MDP

M = (S,A, p, r)where S is the finite set of states, A= (A𝑠)𝑠∈S specifies

the set of actions available in each state, and we introduce the set of pairs

XM = {(𝑠, 𝑎) : 𝑠 ∈ S, 𝑎 ∈ A𝑠} for convenience. Further, p : XM → P(S)
is the transition distribution function and r : XM → P(ℝ) the reward

distribution function, with corresponding mean reward function denoted

by m : XM → ℝ. An agent interacts with the MDP at discrete time steps

𝑡 ∈ ℕ∗ and yields a random sequence (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡)𝑡 of states, actions, and

rewards in the following way. At each time step 𝑡, the agent observes

the current state 𝑠𝑡 and decides the action 𝑎𝑡 to take based on 𝑠𝑡 and

possibly past information, i. e. previous elements of the sequence. After

playing 𝑎𝑡 , it observes a reward 𝑟𝑡 ∼ r (𝑠𝑡 , 𝑎𝑡), the current state of the

MDP changes to 𝑠𝑡+1 ∼ p (·|𝑠𝑡 , 𝑎𝑡) and the agent proceeds sequentially.

In the average-reward setting, one is interested in maximizing the limit,

1

𝑇

∑𝑇
𝑡=1

𝑟𝑡 , when 𝑇 → ∞, providing it exists. This setting is a popular

framework for studying sequential decision-making problems; it can

be traced back to seminal papers such as those of [17] and [78] This

theoretical framework allows to study the exploration-exploitation trade-off

that arises from the sequential optimization problem a learner is trying

to solve while being uncertain about the very problem it is optimizing.

6.3 Reinforcement Learning 197

[17]: Graves et al. (1997), ‘Asymptotically

efficient adaptive choice of control laws

incontrolled markov chains’

[79]: Burnetas et al. (1997), ‘Optimal adap-

tive policies for Markov decision pro-

cesses’

[80]: Jaksch et al. (2010), ‘Near-optimal

regret bounds for reinforcement learn-

ing’

[81]: Filippi et al. (2010), ‘Optimism in

Reinforcement Learning and Kullback-

Leibler Divergence’

[82]: Talebi et al. (2018), ‘Variance-Aware

Regret Bounds for Undiscounted Rein-

forcement Learning in MDPs’

[83]: Fruit et al. (2018), ‘Near Opti-

mal Exploration-Exploitation in Non-

Communicating Markov Decision Pro-

cesses’

[84]: Zhang et al. (2019), ‘Regret mini-

mization for reinforcement learning by

evaluating the optimal bias function’

[85]: Wei et al. (2020), ‘Model-free rein-

forcement learning in infinite-horizon

average-reward Markov decision pro-

cesses’

[86]: Bourel et al. (2020), ‘Tightening ex-

ploration in upper confidence reinforce-

ment learning’

[87]: Gopalan et al. (2015), ‘Thompson

sampling for learning parameterized

markov decision processes’

[88]: Ortner (2009), ‘Online Regret

Bounds for Markov Decision Processes

with Deterministic Transitions’

[89]: Tranos et al. (2021), ‘Regret analysis

in deterministic reinforcement learning’

[90]: Osband et al. (2013), ‘(More)

efficient reinforcement learning via

posterior sampling’

[91]: Azar et al. (2017), ‘Minimax regret

bounds for reinforcement learning’

[92]: Simchowitz et al. (2019), ‘Non-

asymptotic gap-dependent regret

bounds for tabular mdps’

Literature review

Early papers like [17, 79] mostly presented regret bounds for ergodic

MDPs and with an asymptotic flavor. In Chapter 7 of this manuscript,

inspired by the work of [79], we will craft a new algorithm, IMED-RL,

that is asymptotically optimal in ergodic MDP but do enjoy a finite

time regret bound whose first order term matches the asymptotic lower

bound on logarithmic growth rate of regret. Because there is no current

instance dependent lower bound on the logarithmic growth rate of

regret for the general case of communicating MDP, most recent work

focused on worst case regret bounds. The modern works presented in

the non-exhaustive list of papers [80–86], reported non-asymptotic regret

guarantees for the bigger class of communicating MDPs. The majority of

recent literature on learning in MDPs, following [80], report worst-case

regret bounds growing as O(
√
𝑇) after 𝑇 steps. We note that this is also

matching the worst-case regret bounds that exist in the Bandit literature.

In contrast, comparatively there exists little work that present logarithmic

and instance-dependent regret bounds for average-reward MDPs. The

most notable exceptions include [80], which reports a logarithmic regret

bound for UCRL2 (albeit with a large mixing-time related additive

term), and more recent paper by [87], which only consider ergodic

MDPs. In order to better understand the problem of MDPs that are

communicating only, some papers such as [88, 89] derived logarithmic

regret bounds derived for the simpler setting of MDPs with deterministic

transitions. In Chapter 8, we also derive a lower bound for a simpler case

of communicating MDPs with known transition kernel. We also derive

an algorithm, IMED-KD, for which a logarithmic regret upper bound

can be proved.

Some papers consider regret minimization in MDPs in the episodic
setting, with a fixed and known horizon; e.g. [90–92], where the latter

work presents a problem-dependent, logarithmic regret bound. However,

the proof machinery used in episodic RL often fails to work in average-

reward RL due to relying on the fixed episode length and resetting of the

state.

RL algorithms

Had the MDP only one state, it would be a bandit problem. Lower

bound on the bandit regret and algorithms matching this lower bound,

sometimes up to a constant factor, are well studied in the bandit literature.

Therefore, bandit sampling strategies with known theoretical guarantees

have inspired RL algorithms, even in the absence of lower bound for the

RL setting. The KL-UCB algorithm [7], has inspired the strategy of the

seminal paper of [78], as well the more recent KL-UCRL strategy [82,

93]. Inspired by the UCB algorithm [94, 95], a number of strategies

implementing the optimism principle have emerged such as UCRL [96],

UCRL2 [97] and UCRL3 [86] (and beyond, [91, 98] for the related episodic

setup). The strategy PSRL [90] is inspired by Thompson sampling [99].

Among the modern RL algorithmic literature, [81] introduce KL-UCRL,

which is a variant of UCRL that uses the KL divergence to define

confidence bounds. Similarly to UCRL2, KL-UCRL achieves a regret of

Õ(𝐷𝑆
√
𝐴𝑇) in communicating MDPs. Interestingly, a more refined regret

198 6 A group of choices: reinforcement learning

[100]: Bartlett et al. (2009), ‘REGAL: a reg-

ularization based algorithm for reinforce-

ment learning in weakly communicating

MDPs’

[101]: Fruit et al. (2018), ‘Efficient

Bias-Span-Constrained Exploration-

Exploitation in Reinforcement Learning’

[102]: Qian et al. (2019), ‘Exploration

bonus for regret minimization in discrete

and continuous average reward MDPs’

[24]: Thompson (1933), ‘On the likeli-

hood that one unknown probability ex-

ceeds another in view of the evidence of

two samples’

[103]: Agrawal et al. (2017), ‘Optimistic

posterior sampling for reinforcement

learning: worst-case regret bounds’

[104]: Agrawal et al. (2017), ‘Posterior

sampling for reinforcement learning:

worst-case regret bounds’

bound for KL-UCRL in ergodic MDPs is presented in [82]. [100] present

REGAL and report a Õ(𝐷′𝑆
√
𝐴𝑇) regret with high probability in the

larger class of weakly communicating MDPs, provided that the learner

knows an upper bound 𝐷′ on the span of the optimal bias function of

the true MDP. [101] present SCAL, which similarly to REGAL works in

weakly communicating MDPs, but admits an efficient implementation.

A similar algorithm called SCAL
+

is presented in [102]. Both SCAL and

SCAL
+

admit a regret bound scaling as Õ

(
𝐷

√∑
𝑠,𝑎 𝐾𝑠,𝑎𝑇

)
. In a recent

work, [84] present EBF achieving a regret of Õ
(√
𝐻𝑆𝐴𝑇

)
assuming that

the learner knows an upper bound 𝐻 on the span of the optimal bias

function of the true MDP. We remark that the universal constants of

the leading term here are fairly large. However, EBF does not admit a

computationally efficient implementation. Another related line of works

considers posterior sampling methods such as [90] inspired by Thompson

sampling [24]. For average-reward RL, existing works on these methods

report Bayesian regret bounds, except [103], whose corrected regret

bound, reported in [104], scales as 𝑂(𝐷𝑆
√
𝐴𝑇 log

3(𝑇)) and is valid for

𝑇 ≥ 𝑆4𝐴3
.

6.4 Summary of contributions 199

NeurIPS 2022

ACML 2023

6.4 Summary of contributions

Learning in ergodic Markov decision processes

In the paper IMED-RL: Regret optimal learning of ergodic Markov
decision processes and published at NeurIPS 2022 with Odalric-Ambrym

Maillard, We consider reinforcement learning in a discrete, undiscounted,

infinite-horizon Markov Decision Problem (MDP) under the average

reward criterion, and focus on the minimization of the regret with respect

to an optimal policy, when the learner does not know the rewards nor the

transitions of the MDP. In light of their success at regret minimization in

multi-armed bandits, popular bandit strategies, such as the optimistic

UCB, KL-UCB or the Bayesian Thompson sampling strategy, have been

extended to the MDP setup. Despite some key successes, existing strate-

gies for solving this problem either fail to be provably asymptotically

optimal, or suffer from prohibitive burn-in phase and computational

complexity when implemented in practice. In this work, we shed a novel

light on regret minimization strategies, by extending to reinforcement

learning the computationally appealing Indexed Minimum Empirical

Divergence (IMED) bandit algorithm. Traditional asymptotic problem-

dependent lower bounds on the regret are known under the assumption

that the MDP is ergodic. Under this assumption, we introduce IMED-RL

and prove that its regret upper bound asymptotically matches the regret

lower bound. We discuss both the case when the supports of transitions

are unknown, and the more informative but a priori harder-to-exploit-

optimally case when they are known. Rewards are assumed light-tailed,

semi-bounded from above. Last, we provide numerical illustrations on

classical tabular MDPs, ergodic and communicating only, showing the com-

petitiveness of IMED-RL in finite-time against state-of-the-art algorithms.

IMED-RL also benefits from a light complexity.

Regret in communicating MDPs with known dynamics

In the paper Logarithmic regret in communicating MDPs: Leveraging
known dynamics with bandits and published at ACML 2023 with Hassan

Saber, Mohammad Sadegh Talebi and Odalric-Ambrym Maillard, we

study regret minimization in an average-reward and communicating

Markov Decision Process (MDP) with known dynamics, but unknown

reward function. Although learning in such MDPs is a priori easier

than in fully unknown ones, they are still largely challenging as they

include as special cases large classes of problems such as combinatorial

semi-bandits. Leveraging the knowledge on transition function in regret

minimization, in a statistically efficient way, appears largely unexplored.

As it is conjectured that achieving exact optimality in generic MDPs is

NP-hard, even with known transitions, we focus on a computationally

efficient relaxation, at the cost of achieving order-optimal logarithmic

regret instead of exact optimality. We contribute to filling this gap by

introducing a novel algorithm based on the popular Indexed Minimum

Empirical Divergence strategy for bandits. A key component of the

proposed algorithm is a carefully designed stopping criterion leverag-

ing the recurrent classes induced by stationary policies. We derive a

non-asymptotic, problem-dependent, and logarithmic regret bound for

200 6 A group of choices: reinforcement learning

this algorithm, which relies on a novel regret decomposition leverag-

ing the structure. We further provide an efficient implementation and

experiments illustrating its promising empirical performance.

1: A policy 𝜋 : S→ P(A𝑠) is 𝜖-soft if

𝜋(𝑎 |𝑠) ≥ 𝜖/|A𝑠 | for all 𝑠 and 𝑎.

2: The skeleton in [78] is sometimes

empty at some states, when 𝑡 is too small,

this causes the strategy to work well only

after 𝑡 is large enough to ensure that the

skeleton contains at least one action in

each state.

[105]: Burnetas et al. (1997), ‘Optimal

adaptive policies for Markov decision

processes’

IMED RL 7
7.1 Regret lower bound . . . 203
7.2 From Bandit to Reinforce-

ment Learning 206
7.3 The IMED-RL Algorithm 206
7.4 Regret of IMED-RL 210
7.5 Skeleton and finite time

performances 215
7.6 Computing the IMED-RL

index 217
7.7 Numerical experiments . 220

In this chapter, based on the paper IMED-RL: Regret optimal learning
of ergodic Markov decision processes published at NeurIPS 2022 with

Odalric-Ambrym Maillard, we study regret minimization of the average-

reward criterion in an ergodic MDP with unknown dynamics and reward

functions.

In the considered setting, the learning agent interacts with the MDP

without any reset. The minimal assumption would be to allow the

agent to come back with positive probability from any initial mistake

in finite time, so that the agent is not stuck in a suboptimal area of

the system. This is assuming that the MDP is communicating, that is

∀𝑠, 𝑠′, ∃𝜋, 𝑡 ∈ ℕ : p𝑡𝜋(𝑠′ |𝑠) > 0. However, in the literature, lower bounds

on the regret are stated for MDPs satisfying a stronger assumption,

ergodicity. Since one is interested in crafting an algorithm matching a

lower bound, we consider this stronger assumption.

Assumption 7.0.1 (Ergodic MDP) The MDP M is ergodic, that is
∀𝑠, 𝑠′,∀𝜋, ∃𝑡 ∈ 𝑁𝑎 (𝑇) : p𝑡𝜋(𝑠′ |𝑠) > 0.

Intuitively, this means that for all policies and all couples of states,

there exists a finite trajectory of positive probability between the states.

Interestingly, the ergodic property can be assumed on the MDP or on

the set of policies in which we seek an optimal one. For instance, in

any communicating MDP all 𝜖-soft policies
1

are ergodic; more in the

Experiment section 7.7.

We build on the IMED strategy ([74]), a bandit algorithm that benefits

from practical and optimal guarantees but has never been used by the

RL community. We fill this gap by proposing the IMED-RL algorithm

which we prove to be asymptotically optimal for the average-reward

criterion. We revisit the notion of skeleton (Equation 7.10) introduced in

the seminal work of [78], with a subtle but key modification that prevents

a prohibitive burn-in phase, see hereafter for a detailed explanation.

Further, this novel notion of skeleton enables IMED-RL to remove any

tracking or hyperparameter and mimic a stochastic-policy-iteration-like
algorithm.

2
Further, this skeleton scales naturally with the studied MDP

as it does not explicitly refer to absolute quantities such as the time. We

prove that our proposed IMED-RL is asymptotically optimal and show

its numerical competitivity.

We would like to note that the original definition of ergodic MDP is that

of a MDP that is both recurrent and aperiodic while our definition is of

ergodicity corresponds to the recurrent condition only. The reason we

define ergodicity this way is that this definition is somehow common

in some modern work about average-reward reinforcement learning

while the original one is still more prevalent in the theoretical oriented

work. Because we wanted our original paper to also reach the application

minded community, we decided to define ergodicity as in our IMED-

RL paper. We could also have followed the step of [105] and use the,

202 7 IMED RL

perhaps more appropriate, term of irreducible. Indeed, the condition we

essentially want is that for all policy, the associated Markov chain does

not contain any proper closed subset other than the state space. The

periodic condition can essentially be dealt with by using Cesàro average

of transition kernel’s powers instead of simple transition kernel’s powers.

In this manuscript, in order to keep the terminological coherence with

the paper this chapter is based upon and use the term ergodic MDP as

defined in Assumption 7.0.1. For future work, I think that I will try to

be more mindful and less prone to follow community trend, thus using

irreducible where it is meant and using ergodic with its original definition.

For the sake of completeness, we state that an MDP M is ergodic if

∃𝑡 ∈ ℕ∀𝑠, 𝑠′,∀𝜋, : p𝑡𝜋(𝑠′ |𝑠) > 0 (please note the ∃ and ∀ quantifier

inversion compared to the previous definition).

Ergodic assumption

While many recent works focused on worst-case regret bounds only (e.g.

[106–108] and citations therein), studying problem-dependent optimal

regret bounds has been somewhat overlooked. Being more general is

always more appealing but the restriction from communicating MDPs

to ergodic MDPs allows us to target exact asymptotic optimality ; not

just bound, not just worst-case bound. Ergodic MDPs is the only case in

which explicit problem-dependent lower bounds are known and hence

can be directly used to build a strategy. Indeed, the main challenge

towards problem-dependent optimality is that existing lower bounds for

exploration problems in MDPs are usually written in terms of non-convex

optimization problems. This implicit form makes it hard to understand the

actual complexity of the setting and, thus, to design optimal algorithms.

Existing proof strategies for state-of-the-art algorithms (UCRL, PSRL, etc.)
ensure a regret for communicating MDPs but fail to provide optimality

guarantees even in the ergodic case. We believe that deriving a sharp

result in the ergodic case might prove to be insightful to pave the way

towards the communicating case. From a theoretical standpoint, related to

UCRL type strategy, modern analysis of KL-UCRL by [82] also makes the

ergodic assumption. This hypothesis has also been used in the theoretical

work of [109] and the work of [110] that concerns structured MDPs. Related

to this assumption are works that are interested in identification and

sample complexity. [111] introduced a primal-dual method to compute

an 𝜖-optimal policy and bound the number of sample transitions to

reach this goal. [112] relaxed the ergodic hypothesis by using a mixing

hypothesis that implies the uniqueness of recurrent class for each policy.

In this setting, the authors also derive a bound on the number of samples

to compute an 𝜖-optimal policy.

In this chapter, one is interested in developing a sampling strategy that is

optimal amongst strategies that aim at maximizing the average-reward,

i. e. balancing exploration and exploitation in an optimal way. To assert

optimality, we state a regret lower bound with the purpose of defining a

theoretically sound notion of optimality that is problem-dependent. While

regret defines the discrepancy to optimality of a learning strategy, a

problem-dependent regret lower bound will formally assess the minimal

regret that any uniformly fast learning algorithm must incur on a given

MDP problem by computing a minimal rate of exploration. Because

7.1 Regret lower bound 203

[73]: Pesquerel et al. (2022), ‘IMED-

RL: Regret optimal learning of ergodic

Markov decision processes’

this minimal rate of exploration depends on the problem, it is said to

be problem-dependent, as opposed to worst case regret study that can

exist in the MDP literature (e.g. [97]). Regret lower bounds currently

exist in the literature when the MDP M is assumed to be ergodic. Hence,

we hereafter make this assumption, in order to be able to compare the

regret of our algorithm to an optimal bound. Similarly, to ensure fast

enough convergence of the empirical estimate of the reward to the true

mean, an assumption controlling the rate of convergence to the mean is

necessary.

Assumption 7.0.2 (Light-tail rewards) For all 𝑥 ∈ XM, the moment
generating function of the reward exists in a neighborhood of 0: ∃�𝑥 >
0,∀� ∈ ℝ such that |�| < �𝑥 ,𝔼𝑅∼r(𝑥)[exp(�𝑅)] < ∞.

Building on IMED, we make an additional assumption on the reward that

is less restrictive than the common bounded reward hypothesis made in

the RL community.

Assumption 7.0.3 (Semi-bounded rewards) For all 𝑥 ∈ XM, the support
of the reward distribution 𝑟(𝑥) is bounded from above by a known constant.
There exists a known quantity 𝑚max(𝑥) ∈ ℝ such that for all 𝑥 ∈ X, the
support Supp(r(𝑥)) of the reward distribution is semi-bounded from above,
Supp(r(𝑥)) ⊂] −∞, 𝑚𝑚𝑎𝑥(𝑥)], and its mean satisfies m(𝑥) < 𝑚max(𝑥).

Of course, one can also assume that the reward distributions have

bounded support.

The rest of this chapter is organized as follows. We introduced the

known lower bound for ergodic MDPs, a lower bound on the logarithmic

regret growth rate of regret that is highly reminiscent of the one that

exist in the Bandit literature. Afterward, we introduce the algorithm

IMED-RL, IMED for Reinforcement Learning, that we presented in the

paper [73], and state its regret upper bound. We end this chapter by a

series of numerical experiments showcasing the impressive performances

of IMED-RL. Furthermore, we test IMED-RL in non-ergodic environment

and find out that this algorithm is still competitive. While we cannot be

sure because there are no known lower bound in the communicating

case, see Chapter 8, we may suppose that there is room for improving

and slightly modify the IMED-RL algorithm so that it benefits theoretical

guarantees in the communication-only setting. In the future, it would be

a good research project to mix the ideas presented in this chapter and the

ones presented in the next Chapter 8 based on a very recently written

paper. Hopefully, this manuscript will help connect the dots.

7.1 Regret lower bound

In this section, we recall the regret lower bound for ergodic MDPs and

provide a few insights about it.

Characterizing optimal policies Relying on classical results that can be

found in the books of [75] and [76], we give a useful characterization of

204 7 IMED RL

optimal policies that is used to derive a lower bound under the ergodic

assumption. Under the ergodic Assumption 7.0.1 of MDP M, for all policy

𝜋 ∈ Π(M), the gain is independent of the initial state, i. e. g𝜋(𝑠) = g𝜋(𝑠′)
for all states 𝑠 and 𝑠′, and we denote it g𝜋. Similarly, the set of optimal

policies O(M) is state-independent since O𝑠(M) = O𝑠′(M). Any policy 𝜋
satisfy the following fixed point property

(Poisson equation) g𝜋 + b𝜋(𝑠) = m𝜋(𝑠) + (p𝜋b𝜋)(𝑠) , (7.1)

where b𝜋 : S→ ℝ is called the bias function and is defined up to an

additive constant. For aperiodic MDP, it can be expressed as b𝜋(𝑠) =(∞∑
𝑡=1

(p𝑡−1

𝜋 − p𝜋)m𝜋

)
(𝑠). For irreducible only MDP, a similar formula can

be used with Cesàro averages. However, to algorithmically compute a

bias, we rely in practice on the value iteration algorithm or, sometimes,

on linear programming. We highlight that bias plays a role similar to

the value function in the discounted reward setting in which the gain is

always zero and Equation 7.1 reduces to the Bellman equation, giving a

direction in which extend our results to this other RL setting.

Interestingly, for any communicating and a fortiori ergodic MDP, the

span 𝕊(b𝜋) = max

𝑠∈S
b𝜋(𝑠) −min

𝑠∈S
b𝜋(𝑠) of the bias function of any policy is

bounded, which allows to decompose the regret in the useful following

way.

Lemma 7.1.1 (Regret decomposition) Under the ergodic assumption 7.0.1,
for all optimal policy ★ ∈ O(M), the regret of any policy 𝜋 = (𝜋𝑡)𝑡 can be
decomposed as

R𝜋,𝑠1 (M, 𝑇;★) =
∑
𝑥∈XM

𝔼𝜋,𝑠1 [𝑁𝑥(𝑇)]Δ𝑥 (M)+
([

𝑇∏
𝑡=1

p𝜋𝑡
− p𝑡★

]
𝑏★

)
(𝑠1)︸ ︷︷ ︸

≤𝕊(b★)

,

(7.2)

where 𝑁𝑠,𝑎(𝑇) =
∑𝑇
𝑡=1

𝟙 {𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} counts the number of time the
state-action pair (𝑠, 𝑎) has been sampled and Δ𝑠,𝑎 (M) is the suboptimality
gap of the state-action pair (𝑠, 𝑎) in M,

Δ𝑠,𝑎 (M) = m (𝑠, 𝑎) + p𝑎b★(𝑠) −m★(𝑠) − p★b★(𝑠)
= m (𝑠, 𝑎) + p𝑎b★(𝑠) − g★ − b★(𝑠)

(7.3)

with p𝑎 = p(·|𝑠, 𝑎) by a slight abuse of notation. Action 𝑎 ∈ A𝑠 is optimal if
and only if Δ𝑠,𝑎 (M) = 0, otherwise, it is said suboptimal.

This result can be found in [75].

Under the ergodic Assumption 7.0.1 of MDP M, all optimal policies

satisfy a Poisson equation while some are also being characterized by the

optimal Poisson equation (see [76]), used to compute the optimal gain

and a bias function associated to an optimal policy,

gM + bM(𝑠) = max

𝑎∈A𝑠

{
m(𝑠, 𝑎) +

∑
𝑠′∈S

p(𝑠′ |𝑠, 𝑎)bM(𝑠′)
}
. (7.4)

7.1 Regret lower bound 205

Lower bound To assess the minimal sampling complexity of a subopti-

mal state action pair, one must compute how far a suboptimal state-action

pair is from being optimal from an information point-of-view. A sub-

optimal state-action pair (𝑠, 𝑎) ∈ XM is said to be critical if it can be

made optimal by changing reward r(𝑠, 𝑎) and transition p (·|𝑠, 𝑎)while

respecting the assumptions on the rewards and transitions. Formally, let

𝜙M : P(ℝ × S) → ℝ,

𝜙M (� ⊗ 𝑞) = 𝔼𝑅∼�[𝑅] + 𝑞bM
(7.5)

denotes the potential function of � ⊗ 𝑞 in M, where � ⊗ 𝑞 is a notation

highlighting the reward � and transition 𝑞 marginal distributions of

the reward-transition distribution. A pair (𝑠, 𝑎) ∈ XM is critical if it is

suboptimal and there exists � ∈ F𝑠,𝑎 and 𝑞 ∈ P(S) such that

𝜙M (� ⊗ 𝑞) > 𝛾𝑠(M) where 𝛾𝑠(M)
𝑑𝑒 𝑓
= gM + bM(𝑠). (7.6)

Note that 𝛾𝑠(M) = max

𝑎∈A𝑠
𝜙M(r(𝑠, 𝑎) ⊗ p(𝑠, 𝑎)) by the optimal Poisson

Equation 7.4.

Definition 7.1.1 (Sub-optimality cost) The suboptimality cost of a
suboptimal state-action pair (𝑠, 𝑎) ∈ XM is defined as

E𝑠,𝑎
F
(M)

𝑑𝑒 𝑓
= E𝑠,𝑎

F
(M, 𝛾𝑠(M))

where

E
𝑠,𝑎
F
(M, 𝛾) = inf

�∈F𝑠,𝑎
𝑞∈P(S)

{
KL (r(𝑠, 𝑎) ⊗ p(·|𝑠, 𝑎), � ⊗ 𝑞) : 𝜙M (� ⊗ 𝑞) > 𝛾

}
,

(7.7)

and KL denotes the Kullback-Leibler divergence between distributions.

A lower bound on the regret may now be stated for a certain class of

learner, the set of uniformly consistent learning algorithm, Interestingly,

it will be those policies 𝜋 = (𝜋𝑡)𝑡 such that 𝔼𝜋,M (𝑁𝑠,𝑎(𝑇)) = 𝑜 (𝑇𝛼) for

all suboptimal state-action pair (𝑠, 𝑎) and 0 < 𝛼 < 1 (see [19]).

Theorem 7.1.2 (Regret lower bound [78]) Let M = (S,A, p, r) be an
MDP satisfying Assumptions 7.0.2, 7.0.1, 7.0.3. For all uniformly consistent
learning algorithm 𝜋,

lim inf

𝑇→∞

𝔼𝜋,M [𝑁𝑠,𝑎(𝑇)]
log𝑇

≥ 1

E𝑠,𝑎
F
(M)

(7.8)

with the convention that 1/∞ = 0. The regret lower bound is

lim inf

𝑇→∞

R𝜋 (M, 𝑇)
log𝑇

≥
∑

(𝑠,𝑎)∈C(M)

Δ𝑠,𝑎 (M)
E𝑠,𝑎
F
(M)

(7.9)

where C (M) =
{
(𝑠, 𝑎) : 0 < E𝑠,𝑎

F
(M) < ∞

}
is called the set of critical state-

action pairs. Those are the state-action pairs (𝑠, 𝑎) that could be confused for
an optimal one if we were to change their associated rewards and transitions
distributions at the displacement cost of E𝑠,𝑎

F
(M).

206 7 IMED RL

We note how the ergodic hypothesis allows to isolate the logarithmic

sampling rate of each suboptimal state-action pairs. Given the fact that,

under an ergodic policy, all states will be visited a linear amount of time

with high probability, it really hints us into using a Bandit strategy at

each state of the MDP.

7.2 From Bandit to Reinforcement Learning

In this section, we show how Reinforcement Learning with ergodic MDPs

can be understood from a Bandit perspective and how it can serve as a

bridge between Bandits and the general RL setting with communicating

only MDPs. We then loop back to Bandit by explaining at a high level,

how Bandit algorithms can be used in the studied setting.

7.3 The IMED-RL Algorithm

In this section, we introduce the IMED-RL algorithm, whose regret

matches this fundamental lower bound and extends the IMED strategy

from [74] to ergodic MDPs. We talk about extending IMED and not

using IMED because when the considered MDP has only one state, thus

ergodic and akin to a Bandit problem, IMED-RL reduces to the IMED

algorithm. This is the second time in this manuscript that we safeguard

our idea by checking that in absence of structure, we retrieve a known

optimal solution, the first time being in Chapter 5 where we studied

Bandit with groups of similar arms. In future work, it would be nice to

extend IMED-RL to the case of communicating only MDPs. This way, we

would have a continuum of IMED-related algorithms, starting from the

optimal IMED algorithm for Bandit, then with the optimal IMED-RL for

ergodic MDPs, and continuing with the yet to be discovered algorithm

for communicating only MDPs. We could then easily enough transfer the

work we did in Chapter 4, where we studied approximation of the EF, to

those MDP settings. Similarly, one could possibly adapt the IMED-EC

algorithm from Chapter 5 to the case of ergodic MDPs with groups of

similar state-action pairs by transforming the IMED-RL algorithm.

In light of their success at regret minimization in multi-armed bandits,

popular bandit strategies, such as the optimistic UCB, KL-UCB or the

Bayesian Thompson sampling strategy, have been extended to the MDP

setup. Despite some key successes, existing strategies for solving this

problem either fail to be provably asymptotically optimal, or suffer from

prohibitive burn-in phase and computational complexity when imple-

mented in practice. IMED-RL shed a novel light on regret minimization

strategies.

IMED-RL index

Empirical MDP

IMED-RL is a model-based algorithm that keeps empirical estimates of

the transitions p and rewards r as opposed to model-free algorithm such

7.3 The IMED-RL Algorithm 207

as Q-learning. We denote by r̂𝑡(𝑠, 𝑎) = r̂(𝑠, 𝑎;𝑁𝑠,𝑎(𝑡)) and p̂𝑡(𝑠, 𝑎) =
p̂(𝑠, 𝑎;𝑁𝑠,𝑎(𝑡)) the empirical reward distributions and transition vectors

after 𝑡 interactions, i. e. using 𝑁𝑠,𝑎(𝑡) samples from the distribution r(𝑠, 𝑎).
Initially, p̂(𝑠, 𝑎; 0) is the uniform probability over the state space and

p̂(𝑠, 𝑎; 𝑘) = (1 − 1/𝑘)p̂(𝑠, 𝑎; 𝑘 − 1) + (1/𝑘)s𝑘 , where s𝑘 is a vector of zeros

except for a one at index 𝑠𝑘 , the 𝑘th
samples drawn from p(·|𝑠, 𝑎). This

defines at each time step 𝑡 an empirical MDP M̂𝑡 =
(
S,A, p̂𝑡 , r̂𝑡

)
.

Skeleton

On this empirical MDP, for each state, some actions have been sampled

more than others and their empirical quantities are therefore better

estimated. We call skeleton at time 𝑡 the subset of state-action pairs that

can be considered sampled enough at time 𝑡. It is defined by restricting

A𝑠 to A𝑠(𝑡) for all state 𝑠 ∈ S, with

A𝑠(𝑡) =
{
𝑎 ∈ A𝑠 : 𝑁𝑠,𝑎(𝑡) ≥ log

2

(
max

𝑎′∈A𝑠
𝑁𝑠𝑎′(𝑡)

)}
. (7.10)

Since 𝑥 > log
2 𝑥, A𝑠(𝑡) ≠ ∅, hence A(𝑡) = (A𝑠(𝑡))𝑠 contains at least one

deterministic policy.

We note that the MDP M(A(𝑡)) 𝑑𝑒 𝑓= (S,A(𝑡), p, r) defined by restricting

the set of actions to A(𝑡) ⊆ A is an ergodic MDP. The restricted empirical

MDP M̂𝑡(A(𝑡))
𝑑𝑒 𝑓
= (S,A(𝑡), p̂𝑡 , r̂𝑡) also is ergodic thanks to the ergodic

initialization of the estimate p̂. This skeleton is carefully crafted to satisfy

property allowing the IMED-RL algorithm to make the most of available

information, i. e. to maximize its progress per unit of interaction. After

introducing the IMED-RL index and IMED-RL algorithm, so that the

reader has a complete view of IMED-RL, we come back to this very

important piece of the IMED-RL scheme.

IMED-RL index

Inspired by IMED and the logarithmic growth rate of state-action pairs

sample for ergodic MDPs, we define the IMED-RL index.

Definition 7.3.1 (IMED-RL index) For all state-action pairs (𝑠, 𝑎) ∈ XM,

let us define K𝑠,𝑎(𝑡)
𝑑𝑒 𝑓
= E

𝑠,𝑎
F

(
M̂𝑡(A(𝑡)), �̂�𝑠(𝑡)

)
with empirical threshold

�̂�𝑠(𝑡)
𝑑𝑒 𝑓
= max

𝑎∈A𝑠
𝜙M̂𝑡 (A(𝑡)) (r̂(𝑠, 𝑎) ⊗ p̂(𝑠, 𝑎)) Then, the IMED-RL index of

(𝑠, 𝑎) at time 𝑡, H𝑠,𝑎(𝑡), is defined as

H𝑠,𝑎(𝑡) = 𝑁𝑠,𝑎(𝑡)K𝑠,𝑎(𝑡) + log𝑁𝑠,𝑎(𝑡) . (7.11)

Note that �̂�𝑠(𝑡) ≠ 𝛾𝑠(M̂𝑡(A(𝑡))) as the maximum is taken over all 𝑎 ∈
A𝑠 and not just 𝑎 ∈ A𝑠(𝑡). Similarly to the IMED index we already

discussed at length in the previous chapters, the IMED-RL index relates

the unlikelihood of optimality of a state action pair to its sample frequency.

The main difference with IMED is that the quantity E
𝑠,𝑎
F

(
M̂𝑡(A(𝑡)), �̂�𝑠(𝑡)

)
cannot exactly be described as an unlikelihood of optimality. Rather, it

208 7 IMED RL

is better described as an unlikelihood of policy-improvement. On an

MDP M, we consider a subset A(𝑡) of action and restricted MDP M(A(𝑡))
(at least one action per state). On this restricted MDP, we compute an

optimal policy. Then, E
𝑠,𝑎
F
(M(A(𝑡)), 𝛾𝑠(M)) is exactly the unlikelihood

of policy-improvement of state-action pair (𝑠, 𝑎) for the best policy in the

restricted MDP when considering all available actions in the unrestricted

MDP. With all those intuitions we should partially insist again on, the

IMED-RL algorithm comes quite naturally.

Remark 7.3.1 (Known support of transitions) Were the support of

transition known, the infimum in suboptimality cost E𝑠,𝑎
F

defined by

Equation 7.7 would be redefined as one over the set

{𝑞 ∈P(S) : Supp(𝑞) = Supp (p (·|𝑠, 𝑎))} ,

modifying both the lower bound and IMED-RL index.

IMED-RL algorithm

The IMED-RL algorithm consists in playing at each interaction 𝑡, an action

𝑎𝑡 of minimal IMED-RL index at the current state 𝑠𝑡 . The intuition behind

the IMED-RL index is similar to the one of the IMED index for bandits

and stems from an information theoretic point-of-view of the lower

bound. It uses the intuition we built about the notion of unlikelihood

of optimality and relates it to the different terms present in the lower

bound of the logarithmic growth rate of the regret. More specifically, the

form of the lower bound decompose as a sum on some state-action pairs

that is reminiscent of the Bandit lower bound. The main challenge of

RL compared to Bandit is that one must find a way to quickly converge

to the right problem, that is to say, one must find a way top converge

to the sub-MDP M(𝜋★) so that the considered unlikelihood of policy

improvement IMED-RL consider correspond to the unlikelihood of policy

improvement that appear in the lower bound.

The intuition is mathematically that at a given time 𝑡, the frequency
of play 𝑁𝑠,𝑎 (𝑡)

𝑁𝑠 (𝑡) of action 𝑎 ∈ A𝑠 in state 𝑠 ∈ S, should be larger than or

equal to its posterior probability of being a policy-improving action in

that state, for the considered empirically optimal policy in the correctly-

enough-estimated restricted MDP, M (A(𝑡)) defined thanks to the skele-

ton, exp (−𝑁𝑠,𝑎(𝑡)K𝑠,𝑎 (𝑡)), that is to say
𝑁𝑠,𝑎 (𝑡)
𝑁𝑠 (𝑡) ≥ exp (−𝑁𝑠,𝑎(𝑡)K𝑠,𝑎 (𝑡)).

Taking the logarithm and rearranging the terms, this condition rewrites

H𝑠,𝑎(𝑡) ≥ log𝑁𝑠(𝑡) at each time step 𝑡. The action that is the closest to

violate this condition or that violates this condition the most is the one

of minimal IMED-RL index, arg min𝑎 H𝑠,𝑎(𝑡), the one IMED-RL decides

to play.

Thanks to the ergodic assumption, all states will be such that 𝑁𝑠(𝑡) ∝ 𝑡
with high probability. Thus, if a policy improving action exist, thanks to

the optimality of IMED, it should not take too long before that action is

sampled a lot, that is to say, a number of time that is linear with respect to

the number of new visits since the restricted MDP changed. Other actions

will be sampled a logarithmic number of the new visit but could still have

a number of samples that is much larger than log 𝑡 due to the existence of

7.3 The IMED-RL Algorithm 209

previous restricted problems, prior to the one the agent is solving, where

those actions might have been policy-improving. What can be stated for

sure is that if an action that was not in the super-logarithmic regime,

𝑁𝑠,𝑎(𝑡) ⪅ log𝑁𝑠(𝑡), suddenly makes it to this super-logarithmic regime,

𝑁𝑠,𝑎(𝑡) ≥ (log𝑁𝑠(𝑡))1+𝜖 , for 𝜖 > 0 arbitrarily small, then it means that in

the current restricted MDP, it is likely to be a policy-improving action.

Such an action switch from a logarithmic or sub-logarithmic sampling

regime to a super-logarithmic one are those actions that, in the current

problem defined by the current skeleton are likely to be policy-improving

thanks to the optimality of IMED. Therefore, as soon as those actions are

detected as entering the super-logarithmic sampling regime, they should

be added to the skeleton in order to create a new problem from which

one can make a new policy improvement step, if possible.

Algorithm 21: IMED-RL

Input: A Markov Decision Process M = (S,A, 𝕣 , p) ;
IMED-RL index H𝑠,𝑎 : 𝐻 → ℝ;

Observe initial state 𝑠0;

Initialize history 𝐻 as 𝐻 = {𝑠0};

1 for 𝑡 ∈ ℕ+ do
2 forall 𝑎 ∈ A𝑠𝑡 do
3 Compute index 𝐼𝑎 = H𝑠,𝑎 (𝐻);
4 Compute 𝑎𝑡 ∈ argmin𝑒∈A𝑠𝑡

𝐼𝑒 ;

5 Receive a sampled state-reward 𝑠𝑡 , 𝑟𝑡 ∼ p ⊗ r(𝑠𝑡 , 𝑎𝑡) ;
6 Update history, 𝐻 ← 𝐻 ∪ {(𝑎𝑡 , 𝑠𝑡 , 𝑟𝑡)};

Control In control theory, we assume that both the expected rewards

and transitions probabilities of an MDP M are known. Policy iteration (see

[75], [113]) is an algorithm that computes a sequence (𝜋𝑛)𝑛 of deterministic

policies that are increasingly strictly better until an optimal policy is

reached. In the average-reward setting and under the ergodic assumption,

a policy𝜋 is strictly better than another policy𝜋′ if 𝑔𝜋 (M) > 𝑔𝜋′ (M). The

policy iteration algorithm computes the sequence of policies recursively

in the following way. Initially, an arbitrary deterministic policy 𝜋0 is

chosen. At step 𝑛+1 ∈ ℕ∗, it computes m𝜋𝑛 and b𝜋𝑛 then swipes through

the states 𝑠 ∈ S in an arbitrary order until it reaches one state 𝑠 such that

there exists 𝑎 ∈ A(𝑠) with m(𝑠, 𝑎) + p(·|𝑠, 𝑎)b𝜋𝑛 > m𝜋𝑛 (𝑠) + p𝜋(𝑠)b𝜋𝑛 .

If such an 𝑠 does not exist, then it returns 𝜋𝑛 as an optimal policy.

Otherwise, 𝜋𝑛+1 is defined as 𝜋𝑛+1(𝑠′) = 𝜋𝑛 (𝑠′) for all 𝑠 ≠ 𝑠′ and

𝜋𝑛+1(𝑠) ∈ arg max {m(𝑠, 𝑎) + p(·|𝑠, 𝑎)b𝜋𝑛 }. Such a step is called a policy

improvement step. Policy iteration is guaranteed to finish in a finite

number as the cardinal of Π(M) is finite. At each step 𝑛 ∈ ℕ∗, 𝜙M(𝜋𝑛) is a

local function that takes into account the whole dynamic of the MDP and

allows computing, via an argmax, an optimal choice of improvement (or

optimal action) based on local information; 𝜙M(𝜋𝑛)(r(𝑠, 𝑎) ⊗ p(·|𝑠, 𝑎)) =
m(𝑠, 𝑎) + p(𝑠, 𝑎)b𝜋𝑛 . IMED-RL uses 𝜙M̂(A(𝑡)) and improves the skeleton

similarly to policy iteration as it can be seen in the analysis 7.4.

Bandit control A degenerate case of MDP would be one where there is

only one state 𝑠 with 𝜙M(𝜙) (r(𝑠, 𝑎)) = m(𝑠, 𝑎) by choosing the bias func-

210 7 IMED RL

[73]: Pesquerel et al. (2022), ‘IMED-

RL: Regret optimal learning of ergodic

Markov decision processes’

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

[78]: Burnetas et al. (1997), ‘Optimal adap-

tive policies for Markov decision pro-

cesses’

tion to be zero
*
. Playing optimally consists in playing an action with the

largest expected reward at each time step 𝑡, 𝑎𝑡 ∈ arg max𝑎∈A𝑠 m(𝑠, 𝑎).

Bandit Learning occurs when rewards are unknown; this is the bandit

problem. In that case, a lower bound on the regret similar to 7.1.2 exists.

Under some assumptions on the reward distributions, optimal algorithms

whose regret upper bounds asymptotically match the lower bound can

be derived. IMED [74], KL-UCB [34, 114] are two such examples that

use indexes, i. e. computes a number 𝐼𝑠,𝑎(𝑡) at each time step and play

𝑎𝑡 ∈ arg min 𝐼𝑠,𝑎(𝑡). Such indexes are crafted to correctly handle the

exploration-exploitation trade-off.

RL in Ergodic MDPs The delayed rewards caused by the dynamic of

the system is the main source of difficulty arising from having more than

one state. IMED-RL combines control and bandit theory in the following

way. At each time step 𝑡, a restricted MDP M̂𝑡(A(𝑡)) is built from the

empirical one M̂𝑡 . If the condition to belong to the skeleton is selective

enough, then the potentials on the restricted empirical MDP M̂𝑡(A(𝑡))
may become close to those of the restricted true MDP M(A(𝑡)), that is

∥𝜙M̂𝑡 (A(𝑡))−𝜙M(A(𝑡))∥∞ is small. We want to make policy improvements by

finding, at each state 𝑠 an action 𝑎′ ∈ arg max 𝜙M(A(𝑡))(r(𝑠, 𝑎) ⊗ p(·|𝑠, 𝑎)),
play it enough that it belongs to the skeleton which will modify 𝜙 and

repeat until 𝜙M(A(𝑡)) = 𝜙M. Using 𝜙, the global dynamic is reduced to

a local function so that at each state, the agent is presented a bandit

problem. This bandit problem is well estimated if ∥𝜙M̂𝑡 (A(𝑡)) −𝜙M(A(𝑡))∥∞
is small. As opposed to the control setting, the learning agent cannot

choose the state in which to make the policy improvement step, and it

may be possible that no policy improvement step is possible at state 𝑠𝑡 .

However, thanks to the ergodic assumption 7.0.1 the agent is guaranteed

to visit such a state in finite time, if it exists. There is a trade-off between

the adaptivity of the skeleton, i. e. how quickly one can add an improving

action to define a new 𝜙, and concentration of statistical quantities

defined on the restricted MDP.

7.4 Regret of IMED-RL

In this section we state the main theoretical result of this chapter, which

consists in the IMED-RL regret upper bound. We then sketch a few key

ingredients of the proof. We refer to the paper [73] this chapter is based

on for a full proof of regret of IMED-RL. In this manuscript, we prefer to

focus on the proof of the next Chapter 8 that deal with communicating

MDP since those proofs introduce new concepts, ideas, and technique

that could later on be used to tackle the more challenging problem of

communicating MDPs, the full RL setting. The proof of IMED-RL, while

long, combines the proofs techniques presented in [16] and [78].

Theorem 7.4.1 (Regret upper bound) Let M = (S,A, p, r) be an MDP

*
recall that the bias function is defined up to an additive constant

7.4 Regret of IMED-RL 211

[78]: Burnetas et al. (1997), ‘Optimal adap-

tive policies for Markov decision pro-

cesses’

[97]: Jaksch et al. (2010), ‘Near-optimal

Regret Bounds for Reinforcement Learn-

ing’

satisfying assumptions 7.0.2, 7.0.1, 7.0.3. Let

0 < 𝜖 ≤ 1

3

min

𝜋∈Π(M)
min

(𝑠,𝑎)∈XM
{|Δ𝑠,𝑎 (M(𝜋)) | : |Δ𝑠,𝑎 (M(𝜋)) | > 0} .

The regret of IMED-RL is upper bounded,

R𝐼𝑀𝐸𝐷−𝑅𝐿 (M, 𝑇) ≤
(∑
(𝑠,𝑎)∈C(M)

Δ𝑠,𝑎 (M)
E𝑠,𝑎
F
(M) − 𝜖Γ𝑠 (M)

)
log𝑇 + 𝑂(1),

(7.12)

where Γ𝑠 (M) is constant that depends on the MDP M and state 𝑠.

From this Theorem 7.4.1, one can immediately deduce the optimality of

IMED-RL, stated in the following Theorem 7.4.2.

Theorem 7.4.2 (Asymptotic Optimality) IMED-RL is asymptotically
optimal, that is,

lim

𝑇→+∞

R𝐼𝑀𝐸𝐷−𝑅𝐿 (M, 𝑇)
log𝑇

≤
∑

(𝑠,𝑎)∈C(M)

Δ𝑠,𝑎 (M)
E𝑠,𝑎
F
(M)

. (7.13)

This Theorem 7.4.2 proves the optimality of IMED-RL since the upper

bound on the logarithmic growth rate of regret matches the lower bound

of Theorem 7.1.2. In other words, Theorems 7.4.1 and 7.4.2 prove that

IMED-RL is achieving an optimal exploitation-exploration trade off in

ergodic MDPs. Such a bound was asymptotically matched by the algo-

rithm proposed by [78] which suffer the previously mentioned practical

problem. On the other hand, the current state-of-the-art algorithms

UCRL3 and PSRL, while having some theoretical guarantees, have not

been proved to match the regret lower bound. The theoretical guarantees

of IMED-RL are problem-dependent rather than worst-case. Comparing

to the log𝑇 bound derived for UCRL in Theorem 4 of [97], less known

than the

√
𝑇 bound, shows the benefit of our analysis for each instance, as

we improve the constant factors in the leading terms: their dependency

is 34𝐷2𝑆2𝐴/Δ, where Δ is a suboptimality gap and 𝐷 the diameter of

the MDP. On the practical side, Q-learning is often used without much

theoretical guarantee because of its usually strong practical performances.

It should be noted that Q-learning and other "practical" algorithms are

often used in combination of a simple exploration scheme called 𝜖-greedy.

While the ergodic hypothesis can be criticized for its moderate scope

of application, similar critics can be made to the 𝜖-greedy exploration

scheme. Indeed, the space of all policies that are 𝜖-greedy can also be

seen as a modification on the considered MDP that makes it ergodic.

Communicating MDPs and 𝜖-soft policies

The ergodic assumption can be limiting in practice, since most common

MDPs are not ergodic but only communicating. Interestingly, in a com-

municating MDP, every stochastic policy 𝜋 : 𝑠 ∈ S ↦→ 𝜋(·|𝑠) ∈ P(A𝑠),
with full-support (that is Supp (𝜋 (·|𝑠)) = A𝑠 for each 𝑠 ∈ S) is ergodic.

In particular, the uniform policy is ergodic. Also, 𝜖-soft policies, that

satisfy 𝜋 (𝑎 |𝑠) ≥ 𝜖 for all 𝑠, 𝑎, are ergodic. When restricting to the class

of 𝜖-soft policies in a communicating MDPs, it seems that modifying

212 7 IMED RL

[73]: Pesquerel et al. (2022), ‘IMED-

RL: Regret optimal learning of ergodic

Markov decision processes’

IMED-RL to be also 𝜖-soft should lead to a strategy competitive with an

optimal 𝜖-soft policy. For 𝜖 < 1/|A𝑠 |, the modification is to sample the

chosen action with probability 1 − (|A𝑠 | − 1)𝜖 and any other action with

probability 𝜖. Now, a precise analysis of this modification is postponed

to further work, and going beyond this case to handle the full-blown

communicating assumption seem to require other ideas, especially since

the lower bound for non-ergodic MDPs is expected to be much different

from that of ergodic MDPs.

Therefore, while the ergodic assumption is not fully satisfying, the

practitioner should not completely reject this working hypothesis. In

the experiments, we will compare IMED-RL to those three algorithms,

UCRL3, PSRL, and Q-learning. We will see that, even in communicating

only MDPs, IMED-RL is very competitive.

Sketch of proof

Though a full proof is given in paper [73], we sketch here the main

proof ideas that follow directly from the intuitions behind the IMED-RL

conception. There are two main components in the design of IMED-RL.

The first is the skeleton, which is used to define the policy from which

IMED-RL should aim to improve. The second is the Bandit algorithm that

is used to decide, at each time step, based on the current sub-problem

defined by the skeleton, which action to sample. Interestingly, we can

already see that, while IMED was used for that part, there should not be

anything too specific about the IMED Bandit algorithm. Indeed, we think

that a proof of a similar algorithm can be obtained using for instance

UCB or NPTS (and appropriate corresponding assumption on the reward

distributions).

The regret is decomposed into two terms, the bandit term when the local

bandit problems defined by 𝜙M̂𝑡 (A(𝑡)) is well estimated, and the skeleton
improvement term that controls the probability that the local bandit

problem is not well estimated. The main Theorem 7.4.1 follows from the

following proposition. Recall from Lemma 7.1.1 that for all state-action

pair 𝑥 ∈ XM, 𝑁𝑥(𝑇) =
∑𝑇
𝑡=1

𝟙 {(𝑠𝑡 , 𝑎𝑡) = 𝑥} counts the number of time

the state-action pair 𝑥 has been sampled.

Proposition 7.4.3 For all state-action pair 𝑥 ∈ XM, for all 𝜖 > 0,

𝑁𝑥(𝑡) ≤ 𝐵𝑥(𝑇) + 𝑆(𝑇), (7.14)

where we introduced the bandit term, 𝐵𝑥(𝑇),

𝐵𝑥(𝑇) =
𝑇∑
𝑡=1

𝟙

𝑥𝑡 = 𝑥,

O

(
M̂𝑡 (A(𝑡))

)
⊆ O(M) ,

∥bM̂𝑡 (A(𝑡)) − bM∥∞ ≤ 𝜖

 , (7.15)

7.4 Regret of IMED-RL 213

and the skeleton improvement term, 𝑆(𝑇),

𝑆(𝑇) =
𝑇∑
𝑡=1

𝟙

O

(
M̂𝑡 (A(𝑡))

)
⊆ O(M) ,

∥bM̂𝑡 (A(𝑡)) − bM∥∞ ≤ 𝜖

. (7.16)

Furthermore, 𝔼 (𝑆(𝑇)) = 𝑂(1), 𝔼 (𝐵𝑥(𝑇)) = 𝑂(1) for a non-critical state-
action pair, while for a critical state-action pair 𝑥,

𝔼 (𝐵𝑥(𝑇)) ≤
Δ𝑥 (M)

E𝑥
F
(M) − 𝜖Γ𝑠 (M)

log𝑇 + 𝑂(1) .

Using the ergodic hypothesis

Central to the proof is the ergodic hypothesis. Thanks to this hypothesis,

one can state that, whatever the strategy, there exists a constant �M > 0

such that for all � < �M, the probability of the event

{∃𝑠 ∈ S, 𝑁𝑠(𝑡) < �𝑡} (7.17)

decreases exponentially fast to zero, i. e.

ℙ (∃𝑠 ∈ S, 𝑁𝑠(𝑡) < �𝑡) ≤ exp (−𝜏(�,M)𝑡)

where 𝜏 depends on the chosen � and transition kernel, i. e. the MDP

M. At its core, this proposition state that in an ergodic MDP, one can

consider that all states are visited a linear amount of the interactions.

Of course, this linearity depends on the specific MDP and what we

can call its mixing properties. Therefore, in the proof, one can consider

that for all state, 𝑁𝑠(𝑡) is lower bounded by a linear function, 𝑡 ↦→ �𝑡.

Similarly, max𝑎 𝑁𝑠,𝑎(𝑡) ≥ 𝑁𝑠 (𝑡)
|A𝑠 | can be considered lower bounded by

a linear function, 𝑡 ↦→ �
𝐴 𝑡. This property endure two things. First, it

ensures that each state-bandit problems, were the agent must pick the

best policy improving action, are accessible enough to the learner since

the number of visits for each problem can be considered linear. Second,

it ensures that the skeleton is made of state-action pairs that can be

considered to have been visited a super-logarithmic number of the

interactions, that is log
2 𝑡. Indeed, the skeleton is, at each state 𝑠, made of

actions that are visited more than log
2

max𝑎 𝑁𝑠,𝑎(𝑡), a quantity that can

be considered with very high probability has larger than log
2 𝑓 𝑟𝑎𝑐�𝐴𝑡.

Because of the concentration properties of the rewards (semi-bounded

with moment generating function) and the transitions (multinomial

distributions on the finite state space) estimates, that have exponential

convergence of quantities of interests, it can be said that on the empirical

MDP M̂(A(𝑡)) that is made of state-action pairs in the skeleton, gain and

bias are well estimated and also enjoy concentration properties. Thanks

to the concentration hypothesis, as long as the number of samples is

super-logarithmic, i. e. larger than log
1+𝜖(𝑡), we are able to control the

concentration of the gain and bias.

214 7 IMED RL

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

The bandit term

The bandit term Equation 7.15 counts the number of times the critical state-

action pair 𝑥 ∈ XM is sampled, 𝑥𝑡 = 𝑥, when the sub-MDP extracted from

the skeleton A(𝑡) contains an optimal policy, O

(
M̂𝑡 (A(𝑡))

)
⊆ O(M), and

the bias of that optimal policy is well estimated, ∥bM̂𝑡 (A(𝑡)) − bM∥∞ ≤ 𝜖.

In the proof, 𝜖 is chosen small enough to discriminate all policies on

M, i. e. adding or subtracting 𝜖 to potential functions cannot exchange

values of the biases. In the situation that O

(
M̂𝑡 (A(𝑡))

)
⊆ O(M) and

∥bM̂𝑡 (A(𝑡)) − bM∥∞ ≤ 𝜖, IMED-RL is mostly solving 𝑆 Bandit problems,

one at each of the 𝑆 states, and the Bandit term 𝐵𝑠,𝑎 is focused on counting

what locally happen at state 𝑠. In that state, because IMED-RL is using

the optimal IMED strategy on a Bandit problem that corresponds to the

exact problem up to a variation of 𝜖, the number of pulls of action 𝑎 in

state 𝑠 is guaranteed to be a logarithmic number of time the agent visit

state 𝑠. The number of time the agent visit state 𝑠 is a linear function of

the number of interaction thanks to the ergodic hypothesis. Hence, the

control of this term mostly relies on the proof of IMED [16].

The skeleton improvement term

The skeleton improvement term Equation 7.16 is defined using the

complementary of an event considering that, the optimal bias function

on the skeleton is well estimated, ∥bM̂𝑡 (A(𝑡)) − bM∥∞ ≤ 𝜖, and an optimal

policy is included in the skeleton, O

(
M̂𝑡 (A(𝑡))

)
⊆ O(M). We use the

decomposition

𝐴 ∩ 𝐵 =
(
�̄� ∩ 𝐵

)
∪ �̄�

with 𝐴 = O

(
M̂𝑡 (A(𝑡))

)
⊆ O(M) and 𝐵 = ∥bM̂𝑡 (A(𝑡)) − bM∥∞ ≤ 𝜖.

Control of �̄� The probability that the optimal bias on the sub-MDP

M(A(𝑡)) is not well estimated, ∥bM̂𝑡 (A(𝑡)) − bM∥∞ > 𝜖 is controlled by the

fact that for all state-action pair (𝑠, 𝑎) ∈ A(𝑡), the number of associated

sample is super-logarithmic in the number of visits in state 𝑠 by definition

of the skeleton,𝑁𝑠,𝑎(𝑡) ≥ log
2(𝑚𝑎𝑥𝑎′𝑁𝑠,𝑎′(𝑡)). Since𝑚𝑎𝑥𝑎′𝑁𝑠,𝑎′(𝑡) ≥ 𝑁𝑠 (𝑡)

|A𝑠 |
and using the ergodic property as mentioned previously, one can control

the event �̄� by an exponentially decreasing in 𝑡 probability. We can now

consider the control of �̄� ∩ 𝐵.

Control of �̄�∩𝐵 Under the event 𝐵, the MDP restricted on the skeleton

is well estimated and thanks to the properties of IMED, it should not

take that long to add a policy improving action to the skeleton. Under 𝐵,

this new skeleton will also be well estimated, and we therefore should

not wait too long for another policy improving action to be added to

the skeleton. Such a process repeat until, eventually, �̄� cannot be true

anymore. The longer the time 𝑡 since the beginning of interaction, the less

likely �̄� holds true. Indeed, using the ergodic property, the entry barrier

for a state-action pair to belong to the skeleton is that it is sampled a super-

logarithmic number of time, 𝑁𝑠,𝑎(𝑡) ≥ log
2 𝑡. When the optimal bias on

7.5 Skeleton and finite time performances 215

the skeleton is well estimated, i. e. 𝐵 holds, then the IMED strategy (or

any other good Bandit strategy), will start to sample a policy improving

action in a state where it is possible (such a state exist because �̄� holds

true) a linear number of time of the new visits. This is because IMED is an

optimal Bandit algorithm that sample optimal actions at a linear sampling

rate. Because of the ergodic assumption, the number of visit in each state

is linear and therefore the number of samples of such an action quickly

become larger than log
2 𝑡. If the last policy improving action occurred at

𝑡0 and the policy improving action was never sampled, then one must

wait and additional time 𝛿 that is roughly such that log
2(𝑡0 + 𝛿) < 𝛿,

i. e. 𝛿 > log
2 𝑡0 since 𝛿 is positive. Thanks to the property of IMED,

the added action to the skeleton is indeed a policy improving action

with high probability. Since there is a finite number of deterministic

stationary policies |Π|, one can divide the interval [0, 𝑡] into several

phases. One first phase of length log
2 𝑡 ensure that 𝐵 holds with high

probability, the bias is well estimated. We set 𝑡0 = log
2 𝑡. Then we build

a sequence of |Π| intervals [𝑡𝑘−1 , 𝑡𝑘] of length roughly equal to log
2 𝑡,

𝑡𝑘 = log
2 𝑡 + 𝑘 log

2 𝑡. After each sub-interval, there is a high probability

that a policy improvement occurred because a policy improving action

surely would have been sampled at a linear rate, i. e. at a much faster rate

than log
2 𝑡. Then, after |Π|+1 sub-intervals of length log

2 𝑡, there is a high

probability that �̄� does not hold and the remaining time 𝑡−(|Π|+1) log
2 𝑡

of the interval is spent under the event 𝐴 ∩ 𝐵. This remaining time is

linear. The entry barrier to the skeleton cannot be smaller than log 𝑡 since

it is the rate at which an optimal algorithm such as IMED will sample

suboptimal actions. To identify that an action is a statistically significant

candidate for improving the skeleton/policy, it should be at least in a

super-logarithmic regime, log
1+𝜖 𝑡, in which only optimal actions can be,

under large probability. Together, those arguments help to upper bound

𝔼 (𝑆(𝑇)) by a convergent series.

7.5 Skeleton and finite time performances

Our notion of skeleton is built on the work of [78]. We improve on their

original notion of skeleton by correcting some troubles happening in the

small number of samples regime. In particular, this forces the authors

to introduce some forcing mechanism. We discuss in this section the

issues of the original definition and improvement induced by ours. One
key point of our definition is that the skeleton is defined using only
empirical quantities, the number of samples, and does not depend on
some arbitrary reference, such as the absolute time.

We discuss the subtle but key modification that we made to the notion

of skeleton introduced in the seminal paper of [78] and defined, for each

state 𝑠 and time 𝑡, by,

A𝐵𝐾
𝑠 (𝑡) =

{
𝑎 ∈ A𝑠 : 𝑁𝑠,𝑎(𝑡) ≥ log

2 (𝑁𝑠(𝑡))
}
. (7.18)

In contrast, the skeleton used in IMED-RL is defined replacing the sum

𝑁𝑠(𝑡) =
∑
𝑎′∈A𝑠 𝑁𝑠𝑎′(𝑡)with a maximum as follows

A𝑠(𝑡) =
{
𝑎 ∈ A𝑠 : 𝑁𝑠,𝑎(𝑡) ≥ log

2

max

𝑎′∈A𝑠
(𝑁𝑠𝑎′(𝑡))

}
.

216 7 IMED RL

Correctness

The restricted MDP defined by IMED-RL, MA(𝑡), is well-defined in the

sense that, at each time, at least one action is available in each state,

i. e. for all 𝑡, for all 𝑠, A𝑠(𝑡) ≠ ∅. On the other hand, especially at the

beginning, A𝐵𝐾
𝑠 (𝑡) could very well be empty. Indeed, in all state 𝑠 ∈ S,

whenever there is an action 𝑎 ∈ A𝑠 with zero samples, such an action will

be sampled by the algorithm (ours and that of [79]). Suppose that there

are 4 actions in a state 𝑠. After the first 3 visits in 𝑠, whatever the current

time 𝑡, 𝑁𝑠(𝑡) = 3, 𝑁𝑠,𝑎(𝑡) ≤ 1; it is 0 for the only unsampled action and

1 for the three others. Because log
2

3 ≃ 1.2 > 1, the skeleton at state 𝑠

is hence empty and therefore, no action belong to the skeleton, as per

the definition of [79]. This situation does not happen when using our

definition of skeleton used by IMED-RL, since 𝑥 ≥ ln
2(𝑥) for all 𝑥 ≥ 0.5

and at least one action must be sampled (𝑁𝑠,𝑎(𝑡) ≥ 1). In this case, the

behavior of the algorithm presented in the paper of [78] is undefined

as it is not specified how to compute the bias and gain on the lacking

restricted MDP. Now, in and MDP with a larger number of actions, say

100, the same argument shows that between the 3
𝑟𝑑

and 100
𝑡ℎ

visit of

state 𝑠, the skeleton at 𝑠 is empty and the behavior undefined. This means

that if there are only 20 states in the MDP, the behavior of the algorithm

is undefined for at least about |S| × (𝐴 − log
2(𝐴)) ≃ 2000 steps (and

possibly much more, since one would need all states to be visited about

𝐴 − log
2(𝐴) time, and it is unlikely that all states are visited equally

often).

Incoherence

The skeleton as defined in (7.18) is "incoherent" in the sense that actions

may be removed from it for no "justified" reason. In the worst case, all

actions may be removed in one step. Assume a state 𝑠 with 2 actions,

one having been sampled 3 times and the other 2 times, i. e. 𝑁𝑠(𝑡) = 5.

Because 2 < log
2

5 ≃ 2.6 < 3, one action belongs to the skeleton and the

other does not. Assume that the action that have been sampled 2 times is

now sampled at time 𝑘 > 𝑡. Then both actions have been sampled 3 times,

𝑁𝑠(𝑘) = 6 and the skeleton at 𝑠 is now empty since log
2

6 ≃ 3.2 > 3.

While this kind of behavior disappear for large number of samples, it is

not desirable in finite time and introduces incoherence that makes the

algorithm undefined and the learning less efficient if we were to resolve

undefined behavior by random choices.

Forced exploration

Because of their definition of skeleton, forced exploration is necessary in

the analysis of [78] meaning that their algorithm is not purely based on a

computed index. While forced exploration and tracking is not inherently

an unwanted feature, we think that it should be avoided when possible,

hence leaning towards our IMED-RL skeleton.

7.6 Computing the IMED-RL index 217

[16]: Honda et al. (2015), ‘Non-asymptotic

analysis of a new bandit algorithm for

semi-bounded rewards.’

[115]: Borwein et al. (1991), ‘Duality rela-

tionships for entropy-like minimization

problem’

3: We mention that it was also previ-

ously studied by the same authors for

discrete distributions in [15] then for

bounded distribution in [12] before being

extended to the semi-bounded setting

in [16].

Measuring accuracy

The skeleton is used to build a restricted MDP on which the gain and bias

can be controlled. This control is due to the fact that, on the skeleton, state-

action pairs have been sampled enough. In each state, we are interested

in actions with a large enough number of pulls amongst all available

actions. The most sampled action in each state should therefore obviously

belong to the skeleton. Furthermore, it seems natural that the skeleton at

a state does not change if the maximal precision in that state, given by

the action that has been sampled the most in that state, does not change.

This is mainly the rationale behind our subtle but key modification of

the notion of skeleton. When the number of actions in a state is 𝑛 and all

actions have been sampled once, the number of visits in that state is 𝑛.

However, the precision threshold used to build the skeleton of actions

that are considered sampled enough should not be 𝑛 since all actions

have been sampled only once. The threshold should be related to the

maximal possible "sampling precision" in the state, in this case 1. To put

it more in a physics sentence, the perceived precision should not scale

directly with the number of actions but with the number of samples

per state-action pairs. However, the number of visit in a state is a linear

function of the number of actions and therefore an extensive quantity. If

we "merge" two identically sampled MDP by fusing states but adding

actions, the original skeleton of [79] changes while ours does not. Our

skeleton therefore rely more on an intensive property. This is very similar

to the remark we made about KL-UCB that should not be using log 𝑡 in

its design but rather log max𝑁𝑎(𝑡).

All of these explains why our algorithm display good numerical perfor-

mances where finite time regret is important, as shown in Section 7.7

7.6 Computing the IMED-RL index

Prior to presenting the experimental benchmark, we recall that the

IMED index is computable, which we know from the paper [16], and

we intensively studied in the Chapter 4 devoted to a numerically sound

approximation of the IMED index. In this section, we also present other

aspects related to the computation of IMED-RL indexes.

Computing the IMED-RL indexes is not that different from computing

the IMED indexes, but it requires some extra steps. At each interaction,

we run the value iteration algorithm on M̂𝑡(A(𝑡)) to compute the optimal

bias and the associated potential function 𝜙M̂𝑡 (A(𝑡)). This task is standard.

Once done, one must compute the value of the optimization problem

K𝑠,𝑎 (𝑡)which belongs to the category of convex optimization problem

with linear constraint. Such problems have been studied under the name

of partially-finite convex optimization, e.g. in [115]. It is possible to compute

K𝑠,𝑎 (𝑡) by considering the Legendre-Fenchel dual and one does not need

to compute the optimal distribution to know the value of the optimization

problem. This analytic form, we recall here, was studied in Chapter 4

and introduced by J. Honda and A. Takemura in [16].
3

218 7 IMED RL

Proposition 7.6.1 (Index computation) For (𝑠, 𝑎) ∈ XM, we denote

𝑀 = 𝑚𝑚𝑎𝑥(𝑠, 𝑎) +max

𝑠′∈S
bM(𝑠)

the upper bound on the support of potential of state-action pair (𝑠, 𝑎) and
denote 𝛾 a generic threshold larger than the potential of state-action pair
(𝑠, 𝑎),

𝛾 > 𝜙M(r(𝑠, 𝑎) ⊗ p(·|𝑠, 𝑎)).

When 𝛾 > 𝑀, then the unlikelihood of optimality is infinite When 𝛾 is
smaller than 𝑀, then the IMED-RL index can be computed using the fact
that E𝑠,𝑎

F
(M, 𝛾), in its dual form, is the solution to a convex optimization

problem,

E𝑠,𝑎
F
(M, 𝛾) = max

0≤𝑥≤ 1

𝑀−𝛾

𝔼𝑅,𝑆∼r(𝑠,𝑎)⊗p(·|𝑠,𝑎)
[
log

(
1 −

(
𝑅 + bM(𝑆) − 𝛾

)
𝑥
)]

If 𝛾 ≤ 𝜙M(r(𝑠, 𝑎) ⊗ p(·|𝑠, 𝑎)), then the unlikelihood of optimality is by
definition equal to zero, E𝑠,𝑎

F
(M, 𝛾) = 0.

Computational complexity

In terms of state space size 𝑆 and action space size 𝐴, the complexity of

IMED-RL at each time step scales as 𝑂(𝑆2𝐴), the complexity of value

iteration. Indeed, at each time step, IMED-RL runs value iteration using

actions available in the skeleton, then computes the indexes of the

available actions at the current state, and finally pick an argmin. The

complexity of value iteration is 𝑂(𝑆2𝐴), the complexity of computing

the 𝐴 necessary indexes is 𝑂(𝐴 × 𝑆 log 𝑆), and the complexity of picking

an argmin amongst those 𝐴 indexes is 𝑂(𝐴). Therefore, the per-time-step

complexity of IMED-RL scales as𝑂(𝑆2𝐴). However, this scaling is mainly

an upper-bound as value iteration is run with actions that are within the

skeleton. By the theoretical design of the skeleton, we experimentally

observe that, after some time, the skeleton contains one action per state

(the optimal one). It means that, at some point, the computation of value

iteration is reduced to the complexity of policy evaluation, 𝑂(𝑆𝐴). At

this point, the expected rewards and transitions of the state-action pairs

that are in the skeleton does not fluctuate much between two samples.

If the skeleton does not change, and fluctuations of skeleton-related

distributions are small, the computed optimal bias, i. e. a result of policy

evaluation, should not fluctuate a lot. Therefore, by initializing value

iteration with the previously computed bias, one could hope for quick

convergence. However, this behavior would only be observed in the

"final" regime. Prior to that, it is possible that the skeleton has multiple

actions per state within it. On the other hand, when the skeleton does not

change and the fluctuations are controlled, one can think that most of

the relevant quantities would not change by significant margin, at least

from a numerical standpoint. This give the idea of lazy updates, and idea

that we may combine with FIMED, presented in Chapter 4. Instead of

performing a "quick" update, why cannot we not update at all? Another

reason that motivates this notion of lazy update is the comparison of

the IMED-RL running time with other algorithms. While IMED-RL is

optimal in terms of progress per unit of interaction, it would be great if it

7.6 Computing the IMED-RL index 219

4: Formally, it could look like

inf

cost

sup

progress

Problem𝑡 (𝑋𝑡+1) ,

where the cost is related to a model of

computation, progress is measured in

terms of a regret rate or rate at which we

interact with a solution of the problem.

were close to optimal per unit of computation. This quest of optimally

extracting information from samples at the minimal computational cost
4

is similar to one we started in Chapter 4 where we search for an efficient

online computation of the EF.

It should be noted that the above complexity analysis is based on the

usual value iteration algorithm where a fixed precision 𝜖 is used as a

threshold to stop the computation and that this precision parameter 𝜖 is

hidden in the Onotation. If we were to exactly compute the bias function,

then we would need to perform a 𝑆×𝑆-matrix inversion that would make

the complexity per time step scale with 𝑆3
. However, this matrix inversion

also depends on a precision parameter 𝜖′ so that it could be argued that

we are simply being numerically more efficient by directly handling the

precision parameter 𝜖 = 𝜖(𝜖′) in a numerically more efficient procedure.

In the usual value iteration algorithm, the approximation of the matrix

inversion is computed thanks to a convergent series, i. e., the matrix

(𝐼 − 𝑃)−1

is approximated by

∑𝑛
𝑘=0

𝑃𝑘 , where the number 𝑛 is related to

the desired precision 𝜖.

Lazy updates

Numerically, IMED-RL benefits from this fast computation and the fact

that it employs a Value Iteration in lieu of an Extended Value Iteration for

instance used in UCRL3. On the other hand, IMED-RL a priori updates

its policy at each time step, unlike UCRL3 that proceeds into episodes.

On our numerical experiments, the overall running time of IMED-RL is

only about 5 times that of UCRL3, despite updating its policy at each

time step. Still, for the tested horizon, it is one average 5 times slower.

This foster the search for numerical optimization of the algorithm. As

we just mentioned, it may be possible to further reduce the numerical

complexity of IMED-RL by performing lazy computation of the indexes

after some time. Indeed, by design, with high probability, the potential

function 𝜙M̂(A(𝑡)) is not destined to change nor to be much different from

the true 𝜙M once an optimal policy belongs to A(𝑡). As the number of

samples increase, the magnitude of the updates decreases and 𝜙M̂(A(𝑡))
roughly remains the same, thus allowing the practitioner to perform value

iteration every once in a while, when at least one estimate shifted by more

than a fraction of the minimal suboptimality gap for instance. Of course

this modification requires to update the regret analysis accordingly.

In this final regime, even more if using lazy updates, the complexity is

likely to be controlled by the computation of the 𝐴 indexes, for a total

complexity of 𝑂(𝑆𝐴). However, this complexity only tells half of the

story since it does present the dependency in the number of collected

rewards which can be at most 𝑁𝑠,𝑎(𝑡) for a state action pair (𝑠, 𝑎). Since

𝑁𝑠,𝑎(𝑡) would be of order log 𝑡, then the complexity of computing all

the 𝐴 indexes starts to be controlled by log 𝑡 when log 𝑡 >> 𝑆 and is

𝑂(𝐴 × log 𝑡 log log 𝑡) ≃ ∑
𝑎∈A(𝑠) 𝑂(log𝑁𝑠,𝑎(𝑡) log𝑁𝑠,𝑎(𝑡)).

Link with FIMED Algorithm 14

This where the work presented in Chapter 4 can be useful. Instead of

computing all the indexes at each iteration, one could use one of the

220 7 IMED RL

5: Hopefully, some experiments will be

run for the oral presentation.

[105]: Burnetas et al. (1997), ‘Optimal

adaptive policies for Markov decision

processes’

approximation schemes, in particular FIMED 14 which reduces the time

complexity of computing an index to𝑂(1) per arm and therefore to𝑂(𝐴)
for all actions in the current state. We mentioned FIMED because it is one

of the algorithm for which a proof of optimal regret was provided and that

is likely to be transferred to the IMED-RL index. One downside of FIMED

compared to OIMED is that its space complexity is still that of storing all

the samples. However, from a time complexity standpoint, if we could

add to the design of IMED-RL the lazy updates scheme and the FIMED

schemes, then one could hope for a numerically highly competitive

algorithm. Only adding the design of FIMED to create FIMED-RL could

be a sufficient transformation to reduce by a non-negligible factor the

time complexity of IMED-RL. Indeed, when profiling the code, we found

that the computation of indexes was, at some point the bottleneck of the

computational graph.
5

Bandit index

In the IMED-RL algorithm, we used the IMED Bandit algorithm to select,

at each time step, the next action to sample. However, it can be seen from

the original design that there is a priori nothing to specific about IMED

in the general structure of IMED-RL. In the IMED-RL Algorithm 21, one

could a priori replace IMED line 3 by another Bandit algorithm, such as

KL-UCB, UCB, or NPTS. However, doing so would require rederiving

a proof of regret upper bound for the specific algorithm used since

the proof of IMED-RL uses a decomposition of events that are adapted

to the structure of IMED. Using a decomposition that is adapted to

KL-UCB, e.g. à la A. N. Burnetas and N. Katehakis [105], could probably

be enough to adapt the proof of IMED-RL to a proof of a KL-UCB-RL.

Under a bounded reward assumption, one can also probably derive a

proof of regret for UCB and TS-like algorithms. We experimented with

those algorithms, in particular MED, to see if there were instances of

communicating MDPs where IMED-RL failed but MED-RL succeed in

order to find ideas for finding an algorithm with provable guarantees

on communicating only MDPs. Due to the randomness of MED, we

thought that it would be possible that MED-RL is better than IMED-RL

on some communicating MDPs. However, we could not find such an

instance and IMED-RL is on par with MED-RL. We also tested a version

where IMED was replaced with UCB, which experimentally does have a

logarithmic regret curve but with larger empirical regret than IMED-RL.

For the practitioner to whom the speed at which indexes are computed,

i. e. the speed at which decision are taken, it may be interesting to use

the fastest Bandit algorithm that it can access (such as UCB, as shown

in Chapter 4) even at the cost of a larger regret. In this chapter, we are

interested in showcasing an algorithm that target asymptotic optimality

while having impressive numerical performances. Therefore, we proceed

with IMED-RL.

7.7 Numerical experiments

In this section, we discuss numerical aspects of IMED-RL. We run

experiments that can be replicated using the source code hosted on github.

https://github.com/fabienpesquerel/IMED-RL

7.7 Numerical experiments 221

6: uniformly on the tested environments

[86]: Bourel et al. (2020), ‘Tightening ex-

ploration in upper confidence reinforce-

ment learning’

[90]: Osband et al. (2013), ‘(More) effi-

cient reinforcement learning via poste-

rior sampling’

We consider several RL environments, having different properties making

them easier or harder for some of the tested algorithms. This variety of

considered environments foster a fairer comparison between algorithms

and avoid the risk of crafting specialized algorithms (that may have

general guarantees but perform numerically better on some type of

environment). We will see that IMED-RL seems uniformly
6

good, not to

say uniformly better.

Benchmark

In different environments, we illustrate the performance of IMED-RL

against the strategies UCRL3 [86], PSRL [90] and Q-learning (run with

discount 𝛾 = 0.99 and optimistic initialization). From an implementation

point of view, most of the complexity of IMED-RL is in the analysis

rather than in the algorithm. Compared to PSRL and UCRL3, IMED-RL

does not take a confidence parameter nor any hyperparameter. Also,

IMED-RL uses value iteration as a routine, which is simpler (and faster as

we already discussed) than the extended value iteration used in UCRL3.

Q-learning technically takes an exploration parameter (𝜖-greedy explo-

ration) or exploration scheme (𝜖𝑡-greedy exploration) when exploration is

slowly decreased with time. We report average algorithmic regret curves

computed from 256 independent experiments along with quantiles 0.1

and 0.9. The considered horizon depends on the environment as some

are "easier" than others in the time required to see regret curves exhibit

their logarithmic behaviors. For all experiments, we used environments

with maximal expected reward 0.99 and bound 𝑚𝑚𝑎𝑥 = 1 was used as

an upper bound on the class Fof considered reward distribution.

Theoretically, IMED-RL guarantees are only valid for ergodic MDPs. In

this section we depart a bit from that hypothesis and also assess the

performances of IMED-RL on communicating only MDPs. This also

makes sense since we are comparing to, for instance UCRL3, algorithms

that are not specifically developed for ergodic MDPs. Therefore, it could

have been argued that, as an algorithm specialized for this setting, IMED-

RL had an unfair numerical advantage against the other benchmarked

algorithms. When testing on environment that are communicating only,

we also test the same environment but with modified transitions so that

its is transformed into an ergodic MDP. We recall that, any finite commu-

nicating MDP can be turned into an ergodic one, since on such MDPs,

any stochastic policy 𝜋 : S→ P(A𝑠) with full support Supp (𝜋(𝑠)) = A𝑠
is ergodic. Hence, by mixing its transition p with that obtained from

playing a uniform policy, formally

p𝜖(·|𝑠, 𝑎) = (1 − 𝜖)p(·|𝑠, 𝑎) + 𝜖
∑
𝑎′∈A𝑠

p(·|𝑠, 𝑎′)/|A𝑠 | ,

for an arbitrarily small 𝜖 > 0 one obtain an ergodic MDP. In the experi-

ments, we consider an ergodic version of the 𝑛-state river-swim, 2-rooms

and 4-rooms environment with 𝜖 = 10
−3

, and classical communicating

versions (𝜖 = 0). It is interesting to see that those environments are

ergodic for all values of 𝜖 > 0 and communicating only at 𝜖 = 0. This

discontinuity in 𝜖 = 0 is interesting for two reasons. First, as we decrease 𝜖
and even make it equal to 𝑧𝑒𝑟𝑜, we do not observe that the experimental

regret of IMED-RL (and other algorithms) change. This suggest that

222 7 IMED RL

second order term that depends on 𝜖 in the regret bound may be more

controlled than thought. The second is linked to the fact that any deter-

ministic policy mixed with a policy that assign positive probability to all

actions is ergodic in the sense that its recurrent class is the whole state

space. Thus, by using a stochastic version of IMED-RL such as MED-RL,

one could have a sequence of ergodic policies, with a priori decreasing

ergodicity since we will have convergence to an optimal deterministic

stationary policy. It could be that if the rate at which ergodicity is reduced,

one could have regret guarantees in the communicating only case. For

instance, one could try to have a logarithmic rate of ergodicity that is

reduced as a function of the suboptimality-information gap between

the optimal policy and all other policies with distinct recurrent sets, i. e.
policies that are such that one cannot gather all information about by

only playing the optimal policy. This is why we tested MED-RL against

IMED-RL in communicating MDPs and search for an instance that would

make IMED-RL failed and MED-RL succeed.

RiverSwim

The RiverSwim environment (Figure 7.1), is an environment that is difficult

to navigate and require the agent to "figure out" a difficultly attainable

large reward is located at one end of the chain-like environment while

a small but easy obtainable reward is located at the other end. In each

𝑠𝐿𝑠𝐿−1

0.6
(𝑟 = 0.999)0.6

0.35

1

0.35

0.05

1

0.4

𝑠1

0.4

0.6

0.05

1

0.6

1

(𝑟 = 0.05)

𝑠2

0.35

0.05

1

𝑠3

0.6

0.35

0.05

1

Figure 7.1: The 𝑛-states RiverSwim MDP

of the 𝑛 states, there are two actions RIGHT and LEFT. In Figure 8.3, the

LEFT action is represented with a dashed line and the RIGHT with plain

line. Rewards are located at the extremities of the MDP, with a small

reward in left initial state 𝑠1 and large reward in the rightmost state 𝑠𝑛 .

Starting from state 𝑠1, this setting has proven to be a challenging one

because of the large amount of non-rewarding exploration necessary to

find the optimal policy. We consider the 6-state and 25-state instances,

which allows us to compare how algorithms behave depending on the

amount of necessary exploration.

6-states RiverSwim

As illustrated by Figure 7.2, the performances of IMED-RL are particularly

good and the regret of IMED-RL is below the regrets of all its competitors,

even when the MDP is communicating only. This numerical performance

grounds numerically the previous theoretical analysis. In this setting,

all the tested algorithms seems to have a good enough behavior but the

7.7 Numerical experiments 223

Figure 7.2: Regret on 6-states RiverSwim, communicating only (left) and ergodic version (right)

regret performance of IMED-RL stands out. Interestingly, some algorithm

such as PSRL have a regret performance that does not scale well with the

number of considered states in a RiverSwim environment.

25-states RiverSwim

To study the effect of the number of states on the shape of regret functions,

we consider another RiverSwim experiment, this time with 25 states.

RiverSwim environments are sometimes considered hard instances for

strategies such as PSRL, as the reward signal is sparse. We observe in

Figure 7.3 that PSRL indeed struggles in such an environment while

it succeeded when the number of states was smaller. The three other

strategies work well, with some statistically clear advantage for IMED-

RL on the long run, as it can be seen from separations of the quantile

tubes. For the sake of completeness, we present the average runtime for

0.0 0.2 0.4 0.6 0.8 1.0
Time steps ×104

0

2

4

6

8

Re
gr

et
 T

g*
-s

um
_t

 r_
t

×103 RiverSwim-S25-v0
IMED-RL
PSRL
UCRL3
Q-learning

0.0 0.2 0.4 0.6 0.8 1.0
Time steps ×104

0

2

4

6

8

Re
gr

et
 T

g*
-s

um
_t

 r_
t

×103 ErgodicRiverSwim-S25-v0
IMED-RL
PSRL
UCRL3
Q-learning

Figure 7.3: Regret on 25-states RiverSwim, communicating only (left) and ergodic version (right)

completing a trajectory of the tested algorithms on both ergodic and

non-ergodic 25-states RiverSwim. Apart from Q-learning which is the

fastest by a large margin, all algorithms seem to benefit a numerical boost

from the ergodicity of the environment. This is perfectly coherent with

the fact that Q-learning is a model-free algorithm whose per-time-step

224 7 IMED RL

Table 7.1: Average runtime (expressed

in seconds) to complete one episode on

25-states RiverSwim

IMED-RL PSRL UCRL3 Q-learning

non-ergodic 5.56 0.15 0.42 0.02

ergodic 1.45 0.04 0.23 0.02

running time does not depend on the evaluation of a function depending

on the model of the transition kernel. On the other hand, IMED-RL, PSRL,

and UCRL3 are all model-based and benefit from a computational boost

in the ergodic case. This is coherent with the fact that, in the ergodic

version of a communicating MDP, the added 𝜖-transition reduced the

mixing time and increased convergence rate of power laws used, for

instance, by value iteration. That is not to say that those algorithms will,

in general, run faster on ergodic MDPs, it is the fact that, when modifying

an MDP with the "ergodicitization" process described above, we reduce

mixing times and increase convergence rate of statistical quantities that

depends on mixing properties of the MDP.

Reward-rich environment

In contrast with the previous experiment, where reward were spare and

PSRL at disadvantage, we present an experiment where rewards are

frequent and relatively high compared to the upper bound on the support

of rewards, which is considered to be one. Apart from PSRL, it is also

interesting to test the behavior of the algorithm in a type of environments

where the reward signal is not sparse and there is not "structure" in the

transition, such as the chain-like structure in RiverSwim. In the following

Figure 7.4: Reward-rich environment where transitions and rewards were generated at random (rewards are printed)

7.7 Numerical experiments 225

experiment, we consider a reward-rich environment, where about 80%

of state-action pairs generate a reward of at least 0.4 (and the maximal

reward is 0.99). Such environments are known to favor the PSRL strategy

as well as optimistically initialized strategies, that benefit from a reduced

burn-in phase thanks to their prior.

In Figure 7.5, we plot both the regret curves of the non-ergodic Reward-

rich environment, left, and the regret curves of corresponding to the

ergodic version of the same environment. We observe that IMED-RL

2000 4000 6000 8000 10000
Time steps

100

101

102

103

Re
gr

et
 T

g*
-s

um
_t

 r_
t

RandomMDP-S10_A4_s10-v0
IMED-RL
PSRL
UCRL3
Q-learning

2000 4000 6000 8000 10000
Time steps

100

101

102

Re
gr

et
 T

g*
-s

um
_t

 r_
t

ErgodicRandomMDP-S10_A4_s10-v0
IMED-RL
PSRL
UCRL3
Q-learning

Figure 7.5: Average regret and quantiles (0.1 and 0.9) curves of algorithms (in log-scale) in a reward-rich environment (10 states, 4 actions)

where 80% of state-action pairs give reward of at least 0.4. Right: regret in the ergodic version of the MDP.

outperforms the UCRL3 strategy, but is indeed beaten by PSRL (while

PSRL had poor regret in reward-scarce environments, see Figure 7.3

and next experiments), as well as the Q-learning algorithm initialized

with 𝛾 = 0.99 and initial value 1/(1 − 𝛾) in each state. When the MDP is

modified to have minimal transition p(𝑠′ |𝑠, 𝑎) ≥ 0.01 for each 𝑠, 𝑎, 𝑠′, the

performance of IMED-RL improves and becomes more stable (as well as

that of other strategies), as seen in the right part Figure 7.5. By stability,

we mean that its 0.9 quantile is much closer to its expected regret. This

confirms that IMED-RL indeed exploit the ergodicity of its environment,

at least at the level of "error recovering", when the regret is initially high,

possibly because of bad first samples inducing the algorithm in errors.

The time it takes IMED-RL to recover from such initial bad samples is

likely to be what explain the shape of the 0.9 quantile curve in the left

plot of Figure 7.5.

n-rooms

We now consider two grid-like environments, 4-rooms and 2-rooms (Fig-

ure 7.6), with sparse rewards. Such grid-like environments are classically

used in RL to assess numerical performances, in particular in more numer-

ically inclined papers, particularly deep RL which is the big absent topic

of this PhD despite its very active research community. Both 𝑛-rooms

environments are sparse reward with close-to-deterministic transitions.

4-rooms is a grid-like environment with 20 states and 2-rooms is an

environment with 55 states. For both those grid-like environments there

are 4 cardinal actions where transitions are close to deterministic with a

226 7 IMED RL

0 1 2 3 4 5 6

0

1

2

3

4

5

6

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

Figure 7.6: The 4-rooms (left) and 2-rooms (right) MDPs

0.9 chance of going in the intended direction and the remaining 0.1 prob-

ability mass equally dispatched between the three adjacent remaining

cardinal states. Sometimes, we say that such a grid-like environment is

slippery, and it is furthermore ergodic. A reward of 0.99 is located in

the goal state (highlighted in yellow), while it is zero elsewhere. After

reaching the goal, the agent is positioned again in the initial red-state. One

can see that these environments contains some bottleneck states, which

can sometimes make those considered as hard instances. In particular the

2-rooms environment where it is harder to cross between the two rooms

by playing randomly. The agent shall actively try and "understand" the

benefit of crossing the bottleneck state and not getting stuck in the first

room. Of course, the fact that the environment are

4-rooms environment

As illustrated by Figure 7.7, the performances of IMED-RL are particularly

good, in this environment. Indeed, its regret curve is significantly below

Figure 7.7: Regret curves on the 4-rooms

environment

7.7 Numerical experiments 227

the ones of other algorithms. In this setting, for the tested horizon, only

for PSRL could we see the curve bent into its logarithmic shape. Despite

the scarcity of reward, PSRL is successful in this environment thanks to its

optimistic initialization and the quasi-deterministic nature of transition

that guarantee the algorithm to experiment a path to the unique reward

of the environment with a large enough probability. However, because

of its optimistic initialization, it may take some time for PSRL to actually

converge on the optimal policy which is related to the shortest path

from the resetting state to the reward state. If PSRL computes that some

rewards may be present along other path, its average reward is reduced

because it actually gets the reward at a slower frequency than it could.

Once it discriminates this path from the others, its regret curve bend. For

other algorithms, one cannot even state that something was learnt from

the displayed regret growth rate.

2-rooms environment

The 2-rooms environment we consider now is actually a larger state-

action space than the four-room MDP considered previously. Note that

since the considered grid-worlds are slippery (frozen-lake style, with 0.1

probability of visiting executing nearby actions), this also means that

from the bottleneck state, it is actually possible to enter the bottom room

not only with action down, but also left and right. Hence, this MDP

does not contain an as hard as it could be bottleneck state-action pair.

In such environments, although not being "very" ergodic, we expect the

IMED-RL strategy to work reasonably well, which is confirmed by the

experiment in Figure 7.8. This time, and for all reasonable tested horizon,

0.0 0.2 0.4 0.6 0.8 1.0
Time steps ×104

0

1

2

3

4

Re
gr

et
 T

g*
-s

um
_t

 r_
t

×102 Gridworld-2-room-v0
IMED-RL
PSRL
UCRL3
Q-learning

Figure 7.8: Regret curves on the 2-rooms

environment

only for IMED-RL can we see the regret curve bend into a logarithmic

shape.

These two 𝑛-rooms experiments are a clue that the IMED-RL strategy

may still be reasonable, although not necessarily optimal in some com-

municating MDPs. Furthermore, the effectiveness of IMED-RL displayed

228 7 IMED RL

in the experiment presented until now is a proof of concept that its

algorithmic design, in particular the skeleton design, guarantee strong

finite time performances. We argue that this really is due to the fact that

nowhere in the code of IMED-RL can be found an explicit mention of

the time spent since the beginning of the experiments. Only number of

samples are used to perform comparison of "precision" and the number

of samples are used in a way that measured precision by IMED-RL does

not depend on the number of actions. That is to say, if two actions in

one state have the same number of samples, the measured precision is

"independent" on the number of actions that the agent can play in that

state. Precision is more like an intensive property of the system rather

than an extensive property.

Random grid-worlds

In this part, we provide complementary experiments in Figure 7.9 and

Figure 7.10 with randomly generated grid-worlds with a unique goal state

represented in white. Black squares represent walls in the environment

and red squares represent state in which the agent can be in. Whenever,

the learner reach the goal state (white), it is transported in another state

(red), at random. The actions are similar to the one presented in the

previous part about the two n-rooms environment. The main difference

is that the environments have the topology of a torus since states at a

border are connected (if not a wall) to the state in regard of the opposite

border.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps ×104

0.0

0.2

0.4

0.6

0.8

1.0

Re
gr

et
 T

g*
-s

um
_t

 r_
t

×103 RandomGridworld-8x8_s1-v0
IMED-RL
PSRL
UCRL3
Q-learning

Figure 7.9: Average regret and quantiles (0.1 and 0.9) curves of algorithms (right) in a randomly generated grid-world (8x8 grid, 4

actions) with reward 0.99 in white state (right).

Once again, we can observe the striking performance of IMED-RL against

the state-of-the-art UCRL3 or related PSRL and Q-learning strategies.

Note that these other strategies eventually learn as well, but for larger

time horizon (too large to be tested with 256 independent runs). We

present in Table 7.2 the average runtime for completing a trajectory of

the tested algorithms on such a grid-world environment.

Table 7.2: Average runtime (second) on

8 × 8 grid-world
IMED-RL PSRL UCRL3 Q-learning

1.82 0.75 6.36 0.03

7.7 Numerical experiments 229

We can see that, compared to RiverSwim, the time performances of

IMED-RL and UCRL3 are exchanged. Generally, our experiments tends

to show that the performances of IMED-RL are quite good on grid-worlds,

both from a regret minimization viewpoint and a numerical complexity

viewpoint.

In Figure 7.10, we did not report UCRL3 and PSRL as their computation

time were prohibitive compare to IMED-RL and Q-learning in this setup.

The problem being larger and more complex, IMED-RL learn at a slower

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time steps ×104

0

1

2

3

4

5

6

7

8

R
eg

re
t T

g*
-s

um
_t

 r_
t

×102 RandomGridworld-16x16-s7-v0
IMED-RL
Q-learning

Figure 7.10: Average regret and quantiles (0.1 and 0.9) curves of algorithms (right) in a randomly generated grid-world (16x16 grid, 4

actions) with reward 0.99 in white state (right).

rate than of the other grid but still manage to display a logarithmic shape

of regret which is impressive when compared to other algorithms in the

previous smaller environment.

We end this experimental section by presenting an experiment that we

set up originally in order to (try to) make IMED-RL fail. This is what we

call, the Nasty environment.

Nasty environment

In order to better understand the limitation of the IMED-RL algorithm,

we tried (but did not succeed) to craft an environment that would make

the IMED-RL algorithm fail. The analysis reveals that we should consider

a non-ergodic MDP for this purpose. Importantly, the index for pair

(𝑠, 𝑎) is based on building a modified MDP with unmodified reward and

transitions for pairs different from (𝑠, 𝑎), which is a feature coming from

the ergodic property. However, in a non-ergodic MDP, an optimal policy

and a policy playing 𝑎 in state 𝑠 may have different recurrent classes, say

class ★ and ★𝑎 . It is not difficult to show that, when all paths from a state

in★ to a state in★𝑎 must contain (𝑠, 𝑎), i. e. (𝑠, 𝑎) is a bottleneck pair, then

changing the MDP only in pair (𝑠, 𝑎) to build a "confusing instance" isn’t

sound anymore, hence the construction of the IMED-RL index is a priori
no longer justified in such cases. Inspired from this intuition, we build in

Figure 7.11 a specific nasty MDP with such a bottleneck state-action pair,

separating two cycles with close value. We remark that in this structure,

two promising cycles at two ends of a chain with smaller rewards in

between, may induce an "oscillation" of a learning agent between the two

230 7 IMED RL

0.99

0.01

0.990.01

(𝑟 = 0.99)

(𝑟 = 0.99)

(𝑟 = 0.99)

𝑠0𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

(𝑟 = 0.94)

(𝑟 = 0.94)

(𝑟 = 0.94)
0.5

0.5
0.5

0.5

Figure 7.11: The Nasty MDP

cycles, paying the cost of the travel along the chain each time it "decides"

to change cycle.

We observe that the quantile tube of IMED-RL is larger than before

and indeed indicates more struggles but not enough that the IMED-RL

fails the task. Still, we remark a small advantage of PSRL over IMED-

RL in this environment. Note that the environment is reward rich with

rewards close to 1, which also favors PSRL and Q-learning with optimistic

initialization. This confirms the empirical result found in the non-ergodic

Figure 7.12: Average regret and quantiles (0.1 and 0.9) curves of algorithms (right) in a nasty environment with two cycles separated by a

bottleneck action.

Reward-rich environment Figure 7.5, where a similar analysis of the 0.9

quantile indicated a "lack of stability" from IMED-RL compared to the

ergodic version of the environment. It is pleasing to see that its numerical

guarantees seems to go beyond the ergodic assumption with particularly

good performances in grid-world.

Conclusion In this chapter, we introduced IMED-RL, a numerically

efficient algorithm to solve the average-reward criterion problem under

the ergodic assumption for which we derive an upper bound on the regret

matching the known regret lower bound. Further, it has surprisingly

good numerical performances in communicating only MDPs. The overall

good performances of IMED-RL, even in this Nasty environment crafted

to make it fail is promising for the future, where we will be researching

7.7 Numerical experiments 231

to adapt this algorithm to communicating only MDPs. Both the problem-

dependent and worst-case regret bounds are interesting in this regard.

We start such a quest with the IMED-KD algorithm that is introduced

in the next Chapter 8, slowly but surely paving the way for an adapting

IMED-RL to communicating only MDPs. Another direction we intend to

explore is the adaptation of IMED-RL main ideas to function approximation
frameworks, such as neural networks and kernel methods.

Exploiting dynamics knowledge
with IMED-KD 8

8.1 Known dynamics model 235
8.2 Problem formulation . . 238
8.3 Rarely-switching Algo-

rithms 243
8.4 Regret decomposition for

rarely-switching learners 247
8.5 Expected finite time

average reward and gain 250
8.6 Cover times and episode

lengths 252
8.7 The IMED-KD strategy 256
8.8 IMED-KD: Regret upper

bound 259
8.9 IMED-KD: Finite Time

Analysis 261
8.9.1 Notations 262
8.9.2 Algorithm-based empiri-

cal bounds 262
8.9.3 Non-reliable current best

stationary policy 264
8.9.4 Reliable current gains

and current best station-
ary policy 265

8.9.5 Upper bounds on the
numbers of pulls of
suboptimal policies . . 267

8.10 Concentration inequali-
ties 270

8.11 Bounded subsets
of times (Proof of
Lemma 8.9.5) 272

8.12 Choice of policies 276
8.13 Numerical experiments 278
8.14 Conclusion 283

In this chapter, based on the paper Logarithmic regret in communicating
MDPs: Leveraging known dynamics with bandits published at ACML

2023 with Hassan Saber, Sadegh Talebi and Odalric-Ambrym Maillard,

we study regret minimization in an average-reward and communicating

MDP with known dynamics, but unknown reward function.

Although learning in such MDPs is a priori easier than in fully unknown

ones, they are still largely challenging as they include as special cases

large classes of problems such as combinatorial semi-bandits. Leverag-

ing the knowledge on transition function in regret minimization, in a

statistically efficient way, appears largely unexplored. As it is conjectured

that achieving exact optimality in generic MDPs is NP-hard, even with

known transitions, we focus on a computationally efficient relaxation, at

the cost of achieving order-optimal logarithmic regret instead of exact

optimality. This NP-hardness may be linked to the longest (simple) path

problem in graphs, which is known to be NP-hard. Indeed, if we need

the agent to travel from one place of the MDP to another maximizing its

reward on the path, then one need to solve a problem akin to the longest

path. The problem of efficient exploration in MDP, even with known

dynamic is thus a non-trivial problem. This is why we target a regret that

scales with the logarithm of the number of interactions but do not target

the optimal logarithmic growth rate of the regret.

The main contribution of the paper this part is based on is the introduction

of a novel strategy based on the IMED strategy for bandits that the

reader should be familiar with at this point of the manuscript. A key

component of the novel algorithm includes a carefully designed stopping

criterion leveraging the recurrent classes induced by stationary policies.

To this purpose, we introduce a class of strategies called rarely-switching
algorithms. The idea is that an agent should not leave the set of states

that are recurrent under an optimal policy but sometimes need to depart

from it to explore the states (and actions) that are not visited by the

empirical best policies. Note that this was not needed under the ergodic

hypothesis since all states are recurrent under all policies. To ensure

a logarithmic regret, the agent should rarely switch between recurrent

classes, i. e. policies, and explore as fast as possible. Studying this problem

from a theoretical and experimental standpoint is the work done in this

chapter.

We derive a non-asymptotic, problem-dependent logarithmic regret

bound for this strategy, which relies on a novel regret decomposition

leveraging the structure. More specifically, we leverage the known dy-

namics with bandits, seeing the space of policies on an MDP as a highly

structured set of arms. Quite obviously, playing a policy during a certain

amount of time give information about all policies sharing at least one

recurrent state-action pair with this policy. We show that exploiting this

structure is possible in an efficient enough way that the agent suffer a

logarithmic regret. Furthermore, we provide an efficient implementation

and experiments illustrating its promising empirical performance.

234 8 Exploiting dynamics knowledge with IMED-KD

Table of Notation

We list here, a few notations that are used a lot in this chapter for the

reader to report if needed.

M average-reward Markov Decision Process

C set of state-action pairs

p transition distribution function on C

r reward distribution function on C

m mean reward function on C

Π finite set of stationary policies

𝑇 horizon time

A algorithm following a policy sequence (𝜋𝑡)1≤𝑡≤𝑇 ⊂ Π

𝑉M(A, 𝑇) cumulative reward of an algorithm A
p𝜋 transition probability on C2

of the Markov chain induced by station-

ary policy 𝜋 acting on M
p𝜋 Cesàro-average of p𝜋

g𝑐,𝜋 gain of stationary policy 𝜋 starting from state-action pair 𝑐

g★𝑐 maximal gain of stationary policies starting from state-action pair 𝑐

g★ maximal gain of stationary policies

Π★
𝑐 set of stationary policies achieving maximal gain g★𝑐 when starting

from state-action pair 𝑐

Π★
set of stationary policies achieving maximal gain g★

𝜋★
stationary policy achieving maximal gain g★

RM(A, 𝑇) expected regret with respect to playing a gain-maximal sta-

tionary policy (up to time 𝑇)

C+𝜋 set of recurrent state-action pairs (with finite return times) under

stationary policy 𝜋
X𝜋 set of disjoint recurrent cycles under stationary policy 𝜋
𝝉𝜋(𝑐, 𝑐′) expected hitting time of state-action pair 𝑐′ when starting from

state-action pair 𝑐 and following stationary policy 𝜋

8.1 Known dynamics model 235

[73]: Pesquerel et al. (2022), ‘IMED-

RL: Regret optimal learning of ergodic

Markov decision processes’

[79]: Burnetas et al. (1997), ‘Optimal adap-

tive policies for Markov decision pro-

cesses’

[80]: Jaksch et al. (2010), ‘Near-optimal

regret bounds for reinforcement learn-

ing’

[81]: Filippi et al. (2010), ‘Optimism in

Reinforcement Learning and Kullback-

Leibler Divergence’

From ergodic to communicating MDPs

In the previous section, we assumed that the Markov Decision Processes

were ergodic, meaning that all policies share the same set of recurrent

states, and that we can easily gain information about a policy while playing

any other policy. This is no longer the case under the communicating
only hypothesis where it is only assumed that for all couple of states,

there exists a policy that connect the two in the desired direction with

positive probability.

Under the ergodic assumption, all the policies are connected in the sense

that playing policy 𝜋, one can test an action 𝑎 ≠ 𝜋(𝑠) in state 𝑠′ almost

whenever we want. If this action is the one played by policy 𝜋′, then it

means that we can gain information about the policy 𝜋′ in that state,

almost whenever we want. By whenever we want, it is meant that the

state 𝑠 is visited by policy 𝜋 with positive probability due to the ergodic

assumption and, therefore, the expected time before reaching this state

by playing policy 𝜋 is finite. Even better, the mixing in an ergodic Markov

chain obey a power law. Therefore, if 𝜋 is the empirical optimal policy,

one can test any suboptimal policy in a state of interest at no travel cost

since one can just play the optimal policy until the state if interest is

reached, play the action of the suboptimal policy and resume playing the

optimal policy. This is the method that was used in by the IMED-RL [73]

algorithm.

Under the communicating only assumption, one must actively switch

policies if we need to gather information on a specific part of the state

space that is not in the recurrent space of the empirically optimal policy.

Indeed, one can no longer rely on the ergodic assumption to wait a finite

time and land on the desired state on which we wish to try a given action.

This induces a non-trivial cost of travel outside the space of recurrent

states of the optimal policy. On the other hand, the space of policies is

heavily structured and one can still learn a lot from one policy while

playing another policy. This suggests that efficient exploration outside

the state support of the optimal policy can be performed efficiently and

at a controlled cost, perhaps using an as uniform as possible exploration

policy. Exploring these questions is the topic of this chapter.

8.1 Known dynamics model

Known dynamics: common in practice, uncommon in the
literature

A standard assumption in most settings in RL is that the environment’s

dynamics is unknown, while the reward function may be known. This

assumption is justified since state dynamics are not controlled by the

agent, but is also in line with the argument that the difficulty of RL

mainly stems from the unknown dynamics rather than unknown rewards.

Consequently, the vast majority of existing regret minimizing algorithms

in MDPs have some key ingredient, in design or analysis, to tackle

unknown transition probabilities. In model-based algorithms (e.g., [79–

81]), this is featured in the form of confidence sets around the empirical

236 8 Exploiting dynamics knowledge with IMED-KD

1: The diameter𝐷 of an MDP is the max-

imal expected time it takes to reach any

state from any other state, and hence

a good quantity to upper bound infor-

mation gain as it gives a notion of the

maximal expected time to reach a state

from which we need to gain information

from any other state the agent is currently

at.

transition distributions. In contrast, in some applications of RL, the agent

has some prior knowledge on the transition function while most of the

uncertainty is about the reward function. For instance, the agent may

know the associated support of transitions, some transition probabilities,

or the entire transition function up to some small deviation error. This

could arise when the agent has access to an accurate estimate of the

transition function that could be collected when performing another task

on the same MDP (but with a different reward function). Access to an

accurate estimate of the dynamics could also happen when the agent

performs a task on an MDP, which differs from a previous task in the

rewards only.

Recommender system In the context of personalized recommendation,

where the rewards are given by a user based on internal evaluation of the

recommendations, and the task (hence transitions) is fixed across users,

it is natural to assume that based on previous interactions, the transitions

of the system are perfectly known, but the rewards associated to the

current user are unknown. Note that although rewards are provided by

a user, this does not mean they are known, as evaluation at a point in

time can be subjective and noisy.

Physical exploration Another scenario could arise in learning tasks

where the dynamics are governed by some physical phenomena, which

are perfectly known to the agent. This is the case for a significant portion

of potential RL application. In the famous example of a garbage collector

robot, transitions are in fact perfectly known but the reward of whether

a bin is empty or full is unknown. The same applies to the robot that

would explore Mars autonomously in order to look for life and resources.

The dynamic of robotic movements, the local gravity, type of friction of

the tires with the ground, etc. All of this is known or subject to little

uncertainty. The uncertainty is in the reward of going some place or

another, of drilling here or further away, etc. This motivates the framework

of known dynamics.

In such scenarios, the following question arises naturally: What is the
most statistically efficient way to perform exploration when the dynam-
ics are known?

Leveraging known dynamic with off-the-shelf algorithms

While any form of prior knowledge on the transition function do not

appear directly advantageous to model-free algorithms, which is in line

with their design principle, model-based algorithms can benefit directly

from it. In particular, when the dynamics are perfectly known, most

off-the-shelf algorithms can leverage this knowledge by simply removing

the relevant confidence sets, which would lead to improved exploration,

and hence, smaller regret bounds. For example, it is straightforward to

show that UCRL2 [80], when equipped with the knowledge on dynamics,

attains a regret bound of O(
√
(𝑆𝐴 + 𝐷)𝑇 log(𝑇))with high probability, in

any communicating MDP with 𝑆 states, 𝐴 actions per state, and diameter

𝐷.
1

In contrast, in the absence of prior knowledge, UCRL2 achieves a

regret of O(𝐷𝑆
√
𝐴𝑇 log(𝑇)).

8.1 Known dynamics model 237

[74]: Honda et al. (2015), ‘Non-

Asymptotic Analysis of a New Bandit

Algorithm for Semi-Bounded Rewards’

[73]: Pesquerel et al. (2022), ‘IMED-

RL: Regret optimal learning of ergodic

Markov decision processes’

Despite such straightforward modifications of model-based algorithms,

it still remains open as to what the best way is to incorporate such prior

knowledge into algorithm design in a non-trivial manner, and whether it

could lead to instance-dependent (and logarithmic) regret bounds. To

our best knowledge, existing literature on learning in MDPs, albeit rich,

fails to provide algorithmic ideas to leverage such prior knowledge in

a statistically efficient way, and the potential gains thereof in terms of

regret or sample complexity remain largely unexplored. No pun intended,

learning in MDPs with known dynamics remains largely unexplored
in the literature.

Where does this work fit?

We focus on regret minimization in communicating MDPs with known

dynamics but unknown reward functions, and introduce a class of

strategies called rarely-switching algorithms, which provide a principled

way to leverage the connectivity structure in the MDP through viewing

the problem as a Bandit problem thanks to the prior knowledge on

the dynamics. In this point of view, the arms are the policies and their

expected reward are heavily related. Some policies are closer to others

from an information gain point-of-view, which can be formalized in a

manner that remains to be unveiled. The novel design of these introduced

strategies considers recurrent classes induced by stationary policies

as well as a carefully designed stopping criterion based on the said

classes.

For these strategies, we present a generic regret bound, which relies on a

novel regret decomposition by leveraging the structure, which could be

of independent interest for learning and exploring in MDPs in general.

Then, we instantiate a specific rarely-switching algorithm called IMED-

KD, which uses the IMED strategy, a Bandit strategy [74] that we already

encountered in this manuscript. IMED offers an interesting alternative to

UCB-like strategies such as UCB or KL-UCB, and Bayesian strategies such

as Thompson sampling. One of the main advantage of IMED compared

to KL-UCB, both of them being proved optimal, is that for reward

distributions belonging to exponential families of dimension one, the

computation of the IMED index does not require solving an optimization

problem unlike KL-UCB, nor sampling from Bayesian posterior, which

makes it computationally appealing to the practitioner. However, we will

experiment with these other possible choices in the experimental section

while we do not investigate them theoretically. A key departure from

existing IMED-style algorithms for MDPs, e.g. IMED-RL [73] that we

presented in the previous chapter is to exploit the intrinsic structure of

the MDP via use of a rarely-switching algorithm skeleton. In doing so,

IMED-KD relies on novel algorithmic ideas that consider recurrent
classes induced by stationary policies as well as a carefully designed
stopping criterion based on the said classes.

Under some standard assumption on the reward function and MDP regu-

larity, as well as a mild assumption on the hitting times (Assumption 8.6.1),

we derive a non-asymptotic, problem-dependent, and logarithmic regret

bound for IMED-KD, whose proof relies on the generic properties of

rarely-switching strategies as well as proof machinery of IMED-style

index but in the case of MDPs. Those proof techniques are interesting

238 8 Exploiting dynamics knowledge with IMED-KD

[116]: Chen et al. (2013), ‘Combinatorial

multi-armed bandit: General framework

and applications’

[117]: Combes et al. (2015), ‘Combinato-

rial bandits revisited’

[58]: Combes et al. (2017), ‘Minimal explo-

ration in structured stochastic bandits’

[118]: Saber et al. (2020), ‘Optimal Strate-

gies for Graph-Structured Bandits’

in themselves and therefore included in this manuscript. We think that

better understanding, from a statistical standpoint, the theoretical mech-

anisms that allows to gather information from one policy from another

is key to advancing the field of Reinforcement Learning. Per unit of
interaction, we learn about a lot of policies and their connections.
Investigating ways to quantify this assertion is a rich topic that we think,

deserve attention.

We further provide an efficient implementation and experiments illus-

trating its promising empirical performance. The source code is available

on github, with the source code of all the papers presented in this

manuscript.

To the best of our knowledge, IMED-KD is the first algorithm designed
to leverage the structure in MDPs with known dynamics.

Related work While we presented in Chapter 6 how the work presented

in this chapter fit in the existing RL literature, it is worth remarking that an

MDP with known transitions, but unknown rewards may be viewed as a

Bandit instance with highly structured actions, one action corresponding

to a policy, in a way which is reminiscent of combinatorial Bandits [116, 117].

Despite such resemblance, the problem is more challenging as the agent

is traversing an MDP without a resetting device. As a result, algorithmic

ideas for combinatorial Bandits or those with generic structure [58, 118]

do not directly carry over to MDPs with known dynamics. Furthermore,

we highlight the fact that a priori, the expected reward of a policy in a

communicating MDP is not immediately well-defined if we think about

it as a real value. Indeed, it is a function of the state from which we start

playing the policy since a policy can very well have several recurrent

classes. The average reward is well-defined as a function g𝜋 : 𝑆→ ℝ. The

best average reward of a policy 𝜋 is then the maximum of this average

reward function. It is the best one can achieve playing policy 𝜋 if we were

to be transported in one of its most advantageous states, argmax g𝜋. This

state dependency and the inability of the learner to reset in an original

state, as it is the case in combinatorial Bandit where the system can be

thought to be brought back to its original position after each interaction,

is the source of highly non-trivial technical difficulty.

8.2 Problem formulation

MDP under the average reward criterion

We formally introduce the problem and use this introduction to recall

some of the notations.

We consider a Markov Decision Process M = (S,A, p, r), where S is

the set of states, and A= (A𝑠)𝑠∈S, where A𝑠 specifies the set of actions

available in 𝑠 ∈ S. For convenience, we introduce the set of pairs C =

{(𝑠, 𝑎) : 𝑠 ∈ S, 𝑎 ∈ A𝑠}. Further, p : C→ P(S) denotes the transition

distribution function, and r : C→ P(ℝ) the reward distribution function.

We denote the corresponding mean reward function by m : C→ ℝ.

Under the average reward criterion, an agent is interested in maximizing

its cumulated rewards.

https://github.com/fabienpesquerel/Logarithmic-regret-in-communicating-MDPs-Leveraging-known-dynamics-with-bandits.git

8.2 Problem formulation 239

Policies Each stationary policy 𝜋 : S→ P(A) acting on the MDP M
induces a Markov chain M𝜋 on C, with corresponding transition proba-

bility p𝜋 : C→ P(C), defined by p𝜋(𝑠, 𝑎)(𝑠′, 𝑎′) = p(𝑠′ |𝑠, 𝑎)𝜋(𝑎′ |𝑠′). We

denote p𝜋 : C→ P(C) the Cesàro-average of p𝜋; formally,

p𝜋 = lim

𝑇→∞

1

𝑇

𝑇∑
𝑡=1

p𝑡−1

𝜋 .

This Cesàro-average of the transition kernel of the Markov M𝜋 allows

us to correctly define quantity related to average behavior because it

erases periodic features. As such, it is a quantity that is more related to

asymptotic properties of a policy rather than finite time, but so is the

concept of average reward. Naturally, the gain of policy 𝜋, when starting

from state-action pair 𝑐1 = (𝑠1 , 𝑎1), defined by

g𝑐1 ,𝜋
B (p𝜋m)(𝑐1) =

∑
𝑐∈C

p𝜋(𝑐1 , 𝑐) ·m(𝑐),

where p𝜋(𝑐1 , 𝑐) is the visit probability mass the pair 𝑐 ∈ Cunder policy

𝜋 started in pair 𝑐1 ∈ C, and where m(𝑐) is the average reward of the

pair 𝑐. Given a finite set of stationary policies Π, we denote g★𝑐 = max

𝜋∈Π
g𝑐,𝜋

the optimal gain starting from 𝑐, and Π★
𝑐 = {𝜋 ∈ Π : g𝑐,𝜋 = g★𝑐 } the set

of policies achieving the optimal gain.

The online learning problem with known dynamic The framework

of learning with known dynamics is very similar to the usual RL setting.

More than the control setting. To clarify the problem and model, we

quickly sum up the key points of this online learning problem. The

learner interacts with MDP M for 𝑇 time steps, starting in an initial

state-action pair (𝑠1 , 𝑎1) ∈ C. At each interaction, 𝑡 ∈ ℕ, the learner is

in state 𝑠𝑡 ∈S and chooses an action 𝑎𝑡 ∈A𝑠𝑡 according to a stationary

policy 𝜋𝑡 ∈Π, that is 𝑎𝑡 ∼ 𝜋𝑡(𝑠𝑡). Indeed, in our framework, a learner

will be seen as playing a succession of policies, for an a priori random

number of time, before switching. It is then possible that 𝜋𝑡 = 𝜋𝑡+1

for several interactions. We assume that the learner does not know the

reward distribution function r, but knows the transition distribution

function p, and can compute p𝜋 for each 𝜋 ∈ Π. While a theoretical

sound assumption given the known dynamics hypothesis, it is not a

matter to be considered lightly when it comes to numerical complexity

given the size of the policy space. Fortunately, the structure of the policy

space allows navigating from one policy to another at a lighter cost than

what can be thought in the first place.

The learner chooses to follow the stationary policy 𝜋𝑡 based on its

observations so far. After an interaction, it receives a reward 𝑟𝑡 ∈ [0, 1],
where 𝑟𝑡 ∼ r(𝑠𝑡 , 𝑎𝑡) and a next state 𝑠𝑡+1 ∈S is sampled from the known

transition distribution, i. e. 𝑠𝑡+1 ∼ p(·|𝑠𝑡 , 𝑎𝑡). The sequence of chosen

policies is denoted by (𝜋𝑡)𝑡≥1, and simply by (𝜋)when for all time step

𝑡 ≥1, 𝜋𝑡 =𝜋. We denote by 𝑐𝑡 = (𝑠𝑡 , 𝑎𝑡) the state-action pair at time step 𝑡.

This notation (𝜋𝑡)𝑡 is preferable to the one directly involving the sequence

of state-action pairs because, as we said, we will take a Bandit approach

on the problem. By directly using a notation that refers to a policy, we will

be able to study event of the form min𝑗>𝑡 {𝜋𝑘 ≠ 𝜋 | 𝜋𝑡 = 𝜋} that controls

when the agent switch from one policy to another.

240 8 Exploiting dynamics knowledge with IMED-KD

The learner’s performance is measured through the notion of (expected)

regret. Let 𝑉M(A, 𝑇) denote the cumulative reward of an algorithm A
following a policy sequence (𝜋𝑡)𝑡≤𝑇 up to time 𝑇:

𝑉M(A, 𝑇) = 𝔼(𝜋𝑡)

[
𝑇∑
𝑡=1

𝑟𝑡

]
,

where the expectation is implicitly over the MDP M, i. e. takes into account

both the transition kernel and reward distributions. When 𝜋𝑡 = 𝜋 for

all time step 𝑡 ≥ 1, it is simply denoted 𝑉M((𝜋), 𝑇). We recall that the

(expected) regret with respect to playing a gain-optimal policy 𝜋★
, up to

time 𝑇, is defined as:

RM(A, 𝑇) = 𝑉M((𝜋★), 𝑇) −𝑉M(A, 𝑇). (8.1)

Remark on the regret and pseudo-regret While we take the point of

view of Bandit on the policy space, we are still studying a Reinforcement

Learning problem. Therefore, the notion of dynamics, impact the different

notions of regret that can be of interest. As we saw in Chapter 6 and

fortunately, these notions are asymptotically equivalent in the following

sense. For each given 𝑇, the quantity 𝑉★
M(𝑇)= max

𝜋∈Π
𝑉M((𝜋), 𝑇) and set

argmax

𝜋∈Π
𝑉M((𝜋), 𝑇) differ a priori from the cumulative reward of gain-

optimal policies (𝑉M((𝜋★), 𝑇))𝜋★∈Π★ and set Π★
, respectively. However,

lim

𝑇→∞
𝑉★

M(𝑇)/𝑇= lim

𝑇→∞
𝑉M((𝜋★), 𝑇)/𝑇=g★ ,

for all gain-optimal stationary policy 𝜋★ ∈Π★
. That is, the asymptotic

maximal average reward coincides both with the asymptotic average

reward of gain-optimal policies and the optimal gain. Since the set

of considered stationary policies Π is bounded, this further implies

that Π★
𝑇
⊆ Π★

when horizon 𝑇 is large enough, which also implies

𝑉★
M(𝑇)−𝑉M((𝜋★), 𝑇)𝑇→∞= 𝑂(1).

Unveiling the graph-like structure between policies

On an MDP M, each stationary policy 𝜋 ∈ Π, induces a Markov chain

M𝜋 with transition kernel p𝜋. Those transition kernels p𝜋 can efficiently

be grouped together by comparing their set of recurrent states and

state-action pairs. The cardinality of the intersection between two sets of

state-action pairs stemming from two different policies will be a good

way to measure how much information can be gained on a policy from

another policy.

Cycles

Definition 8.2.1 The set of (positive) recurrent state-action pairs, i. e. pairs
with finite return times under policy 𝜋 is denoted C+𝜋 without explicit
reference to the MDP M and defined as

C+𝜋 = {𝑐 ∈ C : p𝜋(𝑐)(𝑐) > 0} . (8.2)

8.2 Problem formulation 241

The notion of recurrence allows to define an equivalence relation, denoted

∼𝜋, on C+𝜋 . The relation ∼𝜋 such that

𝑐 ∼𝜋 𝑐′⇔p𝜋(𝑐)(𝑐′)·p𝜋(𝑐′)(𝑐)>0 .

Denoting [𝑐]𝜋 the class of 𝑐 ∈ C+𝜋 for relation ∼𝜋, the state-action pairs

can be clustered using the quotient by the equivalence relation.

Definition 8.2.2 (Cycles) The asymptotic cycles under policy 𝜋 are denoted
X𝜋 without explicit reference to the MDP M and defined as

X𝜋 = C+𝜋/∼𝜋=
{
[𝑐]𝜋 : 𝑐 ∈ C+𝜋

}
. (8.3)

Distinct elements of X𝜋 correspond to disjoint cycles. A policy 𝜋 with

|X𝜋 | = 1 is called a unichain policy. In a unichain policy, a state is either

recurrent in class X𝜋 or transient, i. e. it is visited a finite number of

time and its asymptotic probability of visit is equal to zero. Interestingly,

multichains policies can be decomposed into |X𝜋 | unichain policies, a

fact that we use in our algorithm.

Remark 8.2.1 A remarkable property is that for a unichain policy 𝜋
and recurrent 𝑐′ ∈ C+𝜋 , p𝜋(𝑐)(𝑐′) is independent on the starting pair

𝑐 and equals 1/𝝉𝜋(𝑐′, 𝑐′), where 𝝉𝜋(𝑐′, 𝑐′) is the expected hitting time

of 𝑐′ when starting from 𝑐′ and following policy 𝜋; see [75] [75]: Puterman (1994), Markov Decision
Processes — Discrete Stochastic Dynamic
Programming

. As a

consequence, g𝑐,𝜋 also does not depend on 𝑐.

We consider the two following assumptions. The first is about the

MDP regularity and the second is bout the reward distribution func-

tion.

Assumption 8.2.1 (MDP) M is communicating, that is, ∀𝑐, 𝑐′, ∃𝜋, 𝑡 ∈ℕ :

p𝑡𝜋(𝑐)(𝑐′)> 0. Also, Π is proper, that is, the Cesàro-average p𝜋 of p𝜋 exists
for each 𝜋 ∈ Π. There is a unique gain-optimal policy 𝜋★ ∈ ⋂

𝑐∈C
Π★
𝑐 that is

unichain (i. e., it has a unique asymptotic cycle).

While the unicity of the gain-optimal policy can probably be removed in

the future, it prevents our algorithm (and others since it is a standard

assumption) from oscillating between an optimal policy and another,

possibly at the cost of non-zero traveling cost between two disjoint recur-

rent set of states. While not presented in this manuscript, I developed

an algorithmic method based on a potential function to avoid switching

too frequently between two gain-optimal policies with disjoint recurrent

sets of states. Mixing gain-optimal policies in an ergodic MDP or com-

municating policies where all gain-optimal policies share the same set of

recurrent states does not pose any problem. The unichain assumption is

more of a convenient than necessary one since, as already said, one can

always decompose a multichain policy into several unichain policy and

ignore the original one after that.

Assumption 8.2.2 (Reward function) For each 𝑐 ∈ C, the reward distri-
bution r(𝑐) is supported on [0, 1] (in particular, it is 1/2-sub-Gaussian), with
bounded mean m(𝑐) ∈ [0, 1).

242 8 Exploiting dynamics knowledge with IMED-KD

[73]: Pesquerel et al. (2022), ‘IMED-

RL: Regret optimal learning of ergodic

Markov decision processes’

[75]: Puterman (1994), Markov Decision
Processes — Discrete Stochastic Dynamic
Programming

In particular, under Assumption 8.2.2, ∀𝑐 ∈ C,𝜋 ∈ Π, the gain is

bounded: g𝑐,𝜋 ∈ [0, 1). This assumption on reward is quite standard and

allows using convenient concentration properties. Furthermore, it is not

very restrictive from a practical standpoint.

Partial ordering on the graph-like structure of policies

Policy Iteration & Stochastic Gradient Ascent The idea that we want to

use, while Bandit oriented in the end, is similar to the one we introduced

when presenting the IMED-RL [73] algorithm. If all the expected values of

the policies were independent, then, one would be considering a problem

similar to the usual unstructured Bandit problem. Fortunately, expected

rewards of policies are dependent and one can learn about a policy 𝜋′

from a policy 𝜋 that is close enough. In the ergodic case, close enough

was all the policy 𝜋 that were a modification of 𝜋′ in only one state.

This was because all the recurrent states of 𝜋′ were reachable from such

policies (and vice-versa) while being minimally modified. An interesting

property was that, in this close neighborhood, there were a policy 𝜋 with

strictly larger gain than policy 𝜋′ if the policy 𝜋′ is not gain-optimal. This

allowed us to perform a sort of stochastic gradient ascent on the graph

of policies where two policies were connected if there were a one-state

modification from each other. The complexity of computing indexes or

quantities for each of the |Π| policies was reduced to that of computing

at most 𝑆 × 𝐴 indexes to know in which "direction" to move in order

to make a policy improvement, but stochastically. In this work, we seek

to exploit similar properties. To this purpose, we introduced the notion

of policy-improving neighborhood that is inspired by the mentioned

property which is also true for unichain MDPs, MDPs in which all

policies are unichains.

Local monotony In unichain MDPs, there always exists a modification

of a suboptimal policy in a single state having (strictly) larger gain [75].

We generalize this useful monotony property to larger neighborhoods as

follows:

Assumption 8.2.3 (Policy-improving neighborhood) ∀𝑐 ∈ C,𝜋∉Π★
𝑐 ,

∃𝜋′∈Π, h(𝜋,𝜋′)≤ 𝑘, such that g𝑐,𝜋′ > g𝑐,𝜋, where h denotes the Hamming
distance2

2: The Hamming distance is the number

of states in which one must modify a

policy to transform it into another.

between two policies.

Here, 𝑘 is a given constant. Note that as 𝑘 increases from 1 to 𝑆, As-

sumption 8.2.3 interpolates between (at least) all unichain MDPs, when

𝑘 = 1, and all discrete MDPs, when 𝑘 = 𝑆. For an MDP M, we denote

by V𝜋 = {𝜋′ ∈ Π : h(𝜋,𝜋′) ≤ 𝑘} the neighborhood of policy 𝜋 ∈ Π at

radius 𝑘 in Hamming distance h.

Remark 8.2.2 In a communicating MDP, for Π consisting of all sta-

tionary policies, the set of optimal policies does not depend on the

starting pair and is simply denoted Π★
. Moreover, an optimal policy

is also (more precisely, can be made) unichain in this case. Note also

that the gain of a unichain policy 𝜋 does not depend on the starting

state-action pair, and is simply denoted g𝜋 (and g★ for an optimal

8.3 Rarely-switching Algorithms 243

policy); hence, we denote Π★
𝑐 =Π★

and g★𝑐 =g★ for all 𝑐. Note, however,

that for suboptimal policies 𝜋∈Π that are not unichain, g𝑐,𝜋 may still

depend on the initial state-action 𝑐 ∈ C.

8.3 Rarely-switching Algorithms

We choose to restrict the learner to follow a rarely-switching strategy, which

forces the learner to keep playing the same policy until some criterion

is met. The aim is to ensure a long enough visit in suboptimal state-

subspaces of the MDP before returning to the optimal state-subspace of

states that are recurrent under an optimal policy and avoid switching

too much, not between policies, but between disjoint recurrent sets,

making the agent pay the cost of travel. One cannot be sure to reset

immediately within the recurrent set of the optimal policy after starting

to play a suboptimal policy for exploration purposes, as it is the case

under the ergodic assumption. This is why we consider learners that are

rarely-switching as detailed in the following paragraph.

Rarely-switching learners

Interactions with the MDP are organized into episodes, numbered 𝑘 ∈
{1, 2, . . . }, where the episode 𝑘 starts at random times (indicating a

policy switch) 𝜏𝑘−1 + 1 and ends at random time 𝜏𝑘 (with 𝜏0 = 0). The

sum of the length of all the episodes until time 𝑇 is equal to 𝑇. We denote

Tthe sequence of switching times, i. e. the time index that end an episode

and precede the beginning of a new one, T = (𝜏𝑘)𝑘∈ℕ . The end of an

episode is controlled by a measurable random variable that we call Event.

Event is a generic function of the current policy 𝜋 and the history ℎ𝜏+1:𝑡

of all observations and decisions made from the beginning of the episode

until the current time. Because it depends on the sequence of histories,

it is more precisely described as a sequence of measurable functions,

one for each size of the history. Since it informs the agent whether it

should switch policy, the Event function is only a function from the past

available information (and defined accordingly on the filtration generated

by the interaction process). Therefore, for 𝜏∈T, the learner starts at time

step 𝜏+1 a new episode (to which we refer as “episode 𝜏”) after pulling

state-action pair 𝑐𝜏+1 = (𝑠𝜏+1 , 𝑎𝜏+1) and follows same policy 𝜋 = 𝜋𝜏+1

until the event Event is triggered, after what the episode ends.

This simple procedure can be made into an Algorithm 22, of rather

general form, that can then be used with different building blocks. For

instance, the Event function and the procedure that is used line 13 to

compute a new policy is purposefully left undefined for the moment.

Rather, we prefer to ask and answer under what conditions of its building

blocks, this type of algorithm satisfy desirable properties.

244 8 Exploiting dynamics knowledge with IMED-KD

Algorithm 22: Rarely-switching learner

Input: p, (p𝜋)𝜋∈Π, 𝑠1 ∈ Sand Event function;

1 Select a starting stationary policy 𝜋;

2 Set 𝜋1 ← 𝜋;

3 Start a new episode 𝜏← 0, 𝜋← 𝜋1;

4 Pull action 𝑎1 ∼ 𝜋(𝑠1);
5

6 for 𝑡 ∈ ℕ do
7 Receive reward 𝑟𝑡 ;

8 update history ℎ𝑡 ← (𝑠𝑡 ,𝜋, 𝑎𝑡 , 𝑟𝑡);
9 if not Event(𝜋, ℎ𝜏+1:𝑡) then

10 Keep the same policy 𝜋𝜏+1 ← 𝜋;

11 else
12 Start a new episode 𝜏← 𝑡;

13 Compute a new policy 𝜋;

14 update 𝜋𝜏+1 ← 𝜋;

15 Pull action 𝑎𝑡+1 ∼ 𝜋(𝑠𝑡+1);

Gathering information

Intuitively, Event function should be based on whether enough infor-

mation was gathered using policy 𝜋 before switching to another one,

possibly departing from the state-subspace the agent currently is in. Re-

mark that we use information gather using policy 𝜋 and not information
gathered on policy 𝜋. While the two can sometimes be similar, they are

two different assertions. In particular the first phrasing explicitly refers

to the fact that, while playing a policy 𝜋, not only do the agent gather

information about that policy but also about other policies. Sometimes,

one can more efficiently gather information about a policy 𝜋′ by playing

a policy 𝜋. This is the case if the agent want to sample a state-action pair

that is recurrent under policy 𝜋′ but with a small probability of visit. If

we want to sample this state-action pair but fear the cost to pay due to

the likely suboptimality of 𝜋′, then one can play the policy 𝜋 that visit

the state action pair the fastest starting from the state the agent currently

is in. Therefore, we see that the problem of gathering information about

a policy is a different problem than the one from sampling that policy, a
priori. Anticipating a bit, one can remark that state that visited by a policy

with very small probability 𝜖 contributes to at most 𝜖 of the average

reward of that policy and likely to be non-informative regarding the gain

or optimality of that policy.

Since information is sampling and the Event function will be based on

whether enough information has been collected in an episode, one should

introduce some counting random variables, that we will later aggregate

to form a suitable Event function.

Counters For a rarely-switching learner, let

𝑁 ini

𝑐,𝜋(0 :𝑇)=
∑

𝜏∈T∩[𝑇]
𝟙 {𝜋𝜏+1=𝜋, 𝑐𝜏+1= 𝑐}

8.3 Rarely-switching Algorithms 245

denote, at the 𝑇 interaction, the number of times an episode started in

pair 𝑐 and followed policy 𝜋. This quantity should not be confused with

the possibly much larger number of visits

𝑁𝑐,𝜋(𝑇) =
∑

𝑡∈[𝑇] 𝟙 {𝜋𝑡 = 𝜋, 𝑐𝑡 = 𝑐}

of pair 𝑐 by policy 𝜋 until time 𝑇. In view of the introduction of Event, it

is also convenient to introduce

𝑁𝑐(ℎ) =
∑

(𝑠,𝜋,𝑎,𝑟)∈ℎ
𝟙 {(𝑠, 𝑎) = 𝑐}

that counts the number of visits of pair 𝑐 on the history ℎ.

Regret decomposition of rarely-switching learners

Owing to the fact the criterion used to stop an episode is independent on

the rewards accumulated during the episode, and using properties of

the expectation, we can show the following decomposition Lemma 8.3.1,

somewhat reminiscent of bandit analyses. We agree that this indepen-

dence is probably a source of improvement since it would be a priori
natural to take that information into account when deciding to switch

from one policy to another. Rather, we consider the past information

that is related to the number of visits and uses the counters introduced

above.

The decomposition is made using the average length of an episode

and expected average reward gathered by a policy 𝜋 given an initial

state-action pair and number of interactions. Quite naturally, if we play

policy 𝜋 for a number of interactions ℓ starting from state-action pair

𝑐, the expected gain from that episode will relate the aforementioned

quantities.

Lemma 8.3.1 (Cumulative reward and regret decomposition) The cu-
mulative reward of a rarely-switching algorithm A until any last step 𝜏𝑘 of
an episode 𝑘, 𝑇 = 𝜏𝑘 , satisfies

𝑉M(A, 𝑇) =
∑
𝑐∈C

∑
𝜋∈Π

𝔼(𝜋𝑡)
[
𝑁 ini
𝑐,𝜋(0 :𝑇)

]
· 𝔼[ℓ𝑐,𝜋] · 𝐺𝑐,𝜋 ,

where
ℓ𝑐,𝜋=min{𝑡>0 :Event(𝜋, ℎ𝜏+1:𝑡), 𝑐 ∈ ℎ𝜏+1}

denotes the (random) length of the episode, and where

𝐺𝑐,𝜋=𝔼(𝜋𝑡)
[

1

ℓ𝑐,𝜋

ℓ𝑐,𝜋∑
𝑡=1

𝑟𝑡

���(𝑠1 , 𝑎1)= 𝑐
]

denotes the expected average reward of an episode starting in pair 𝑐 and
following policy 𝜋.

When Event further ensures an episode running policy 𝜋 always stops in a

246 8 Exploiting dynamics knowledge with IMED-KD

same reference pair 𝑐𝜋 ∈ C, then writing 𝐺★ = 𝐺𝑐𝜋★ ,𝜋★ , it holds

RM(A, 𝑇)=
∑
𝑐∈C
𝜋≠𝜋★

𝔼(𝜋𝑡)
[
𝑁 ini
𝑐,𝜋(0 :𝑇)

]
·𝔼[ℓ𝑐,𝜋]·

(
𝐺★−𝐺𝑐,𝜋

)
+
∑
𝑐≠𝑐𝜋★

𝔼(𝜋𝑡)
[
𝑁 ini
𝑐,𝜋★(1 :𝑇)

]
·𝔼[ℓ𝑐,𝜋★]·

(
𝐺★−𝐺𝑐,𝜋★

)
. (8.4)

Note that 𝑁 ini

𝑐,𝜋★(1 :𝑇) excludes the first episode. Furthermore, we stress

that 𝐺★
is defined using the stopping time induced by 𝜋★

, and 𝐺𝑐,𝜋 by

the one induced by 𝜋.

The proof of Lemma 8.3.1 is provided in the next Section 8.4.

Sketch of proof

To give some intuition, Lemma 8.3.1 decomposes the cumulative reward

of a learner according to each configuration when the current policy being

played is 𝜋 and the initial pair in this episode is 𝑐. Thus, it makes appear

the number of times such a configuration happens, 𝔼(𝜋𝑡)
[
𝑁 ini

𝑐,𝜋(0 :𝑇)
]
, as

well as the reward accumulated in that episode. A similar decomposition

can be written for the optimal policy, and using a reference state ensures

that it is 𝑅M(𝜋★, 𝑇) ≃ 𝑇𝐺★
, up to the contribution of the first episode in

which the episode may not start from 𝑐𝜋★ . Combining the two cumulative

reward decompositions yields the convenient form in Equation 8.4.

Further, the product form term 𝔼[ℓ𝑐,𝜋] · 𝐺𝑐,𝜋 reveals that Lemma 8.3.1

offers a decoupling between the expected number 𝔼[ℓ𝑐,𝜋] of steps of an

episode starting in 𝑐 with policy 𝜋, and its averaged reward 𝐺𝑐,𝜋 received

during that episode. It is worth mentioning that the decoupling between

the gain and the length of an episode holds by virtue of the Markov

property and since we consider a decomposition in expectation.

Remark 8.3.1 (Simplifications) Note that 𝔼(𝜋𝑡)
[
𝑁 ini

𝑐,𝜋(0 :𝑇)
]
= 0 for

policies 𝜋 not explored by the rarely-switching algorithm. Typically, a

learning algorithm will progressively focus on a few policies, and hence,

the sum over all stationary policies 𝜋 should effectively involve much

fewer terms than 𝐴𝑆 (i. e., the number of all stationary deterministic

policies). Interestingly, in the case of bandits, there is a unique state,

and hence, Equation 8.4 simplifies to the classical regret decomposition,

in which case the second term in the decomposition disappears∑
𝑐≠𝑐𝜋★

𝔼(𝜋𝑡)
[
𝑁 ini

𝑐,𝜋★(1 :𝑇)
]
· 𝔼[ℓ𝑐,𝜋★] ·

(
𝐺★−𝐺𝑐,𝜋★

)
= 0 . (8.5)

8.4 Regret decomposition for rarely-switching learners 247

8.4 Regret decomposition for rarely-switching learners

As already said in the introduction, we include all the proof of the paper this chapter is based on because

we think that studying how the space of policies is connected from an information gain and Reinforcement

Learning standpoint will be key to tackle the problem of logarithmic regret in the full RL setting.

Regret decomposition for generic events

The proof of Lemma 8.3.1 is split into two parts. The first is concerned with the general decomposition and

the second with the specific case where a reference stopping state-action pair is used for each policy.

Proof. Lemma 8.3.1

Part 1 Let us consider the (random) sequence increasing of episodes (𝜏𝑖)𝑖=0...|T| ⊂T. Then the duration of

episode 𝜏𝑖 ∈T is 𝜏𝑖+1−𝜏𝑖 . We then define respectively the total duration and the average gain of policy 𝜋∈Π
started in state-action pair 𝑐 ∈ Cas

𝐿𝑐,𝜋(𝑇) =
∑

𝑖:𝜏𝑖+1∈[𝑇]
𝟙 {𝑐𝜏𝑖+1 = 𝑐,𝜋𝜏𝑖+1 = 𝜋} (𝜏𝑖+1 − 𝜏𝑖) , (8.6)

and

�̂�𝑐,𝜋(𝑇) =
1

𝐿𝑐,𝜋(𝑇)
∑

𝑖:𝜏𝑖+1∈[𝑇]
𝟙 {𝑐𝜏𝑖+1 = 𝑐,𝜋𝜏𝑖+1 = 𝜋}

𝜏𝑖+1∑
𝑡=𝜏𝑖+1

𝑟𝑡 ,

Then, the cumulative reward rewrites,

𝔼(𝜋𝑡)

[
𝑇∑
𝑡=1

𝑟𝑡

]
=

∑
𝑐∈C

∑
𝜋∈Π

𝔼(𝜋𝑡)
[
𝐿𝑐,𝜋(𝑇) · �̂�𝑐,𝜋(𝑇)

]
.

The Markov property implies 𝔼(𝜋𝑡)
[
�̂�𝑐,𝜋(𝑇)

���(𝑐𝜏), (𝜋𝜏), (𝜏𝑖)
]
=𝐺𝑐,𝜋, and from previous equality we have

𝔼(𝜋𝑡)

[
𝑇∑
𝑡=1

𝑟𝑡

]
=

∑
𝑐∈C

∑
𝜋∈Π

𝔼(𝜋𝑡)
[
𝐿𝑐,𝜋(𝑇) 𝔼(𝜋𝑡)

[
�̂�𝑐,𝜋(𝑇)

���(𝑐𝜏), (𝜋𝜏), (𝜏𝑖)
]]

=
∑
𝑐∈C

∑
𝜋∈Π

𝔼(𝜋𝑡)[𝐿𝑐,𝜋(𝑇)]𝐺𝑐,𝜋 . (8.7)

Similarly, the Markov property implies 𝔼(𝜋𝑡)
[
𝜏𝑖+1 − 𝜏𝑖

���(𝑐𝜏), (𝜋𝜏)
]
=ℓ𝑐𝜏𝑖+1 ,𝜋𝜏𝑖+1

. This implies for all 𝑐 ∈ C and

for all 𝜋∈Π,

𝔼(𝜋𝑡)[𝐿𝑐,𝜋(𝑇)] = 𝔼(𝜋𝑡)
[
𝔼(𝜋𝑡)

[
𝐿𝑐,𝜋(𝑇)

���(𝑐𝜏), (𝜋𝜏)
]]

= 𝔼(𝜋𝑡)

[∑
𝑖≥0

𝟙 {𝑐𝜏𝑖+1 = 𝑐,𝜋𝜏𝑖+1 = 𝜋} ℓ𝑐,𝜋

]
= 𝔼(𝜋𝑡)

[∑
𝑖≥0

𝟙 {𝑐𝜏𝑖+1 = 𝑐,𝜋𝜏𝑖+1 = 𝜋}
]
ℓ𝑐,𝜋

= 𝔼(𝜋𝑡)
[
𝑁 ini

𝑐,𝜋(0 :𝑇)
]
ℓ𝑐,𝜋 , (8.8)

where we recall that 𝑁 ini

𝑐,𝜋(0 :𝑇) is the (random) number of episodes with starting state-action pair 𝑐 and

followed stationary policy 𝜋.

We conclude the proof of the cumulative reward decomposition by combining Equations (8.7) and (8.8).

248 8 Exploiting dynamics knowledge with IMED-KD

Part 2 We now turn to the decomposition of the regret. To this end, we apply the same decomposition to

an optimal policy 𝜋★
. Then since the event Event stops in the same reference state 𝑐𝜋 for a policy 𝜋 by

assumption, then except possibly for the first episode, all next episodes under 𝜋★
start in the same reference

state. This enables us to use the following Markov regeneration property from Lemma 8.5.1. Hence, we obtain

that

𝔼(𝜋★)

[
𝑇∑
𝑡=1

𝑟𝑡

]
= 𝔼(𝜋★)[𝟙

{
𝑐1 ≠ 𝑐★

}
ℓ𝑐1 ,𝜋★ · 𝐺𝑐1 ,𝜋★] + 𝔼(𝜋★)

[
𝑁 ini

𝑐★,𝜋★(1 :𝑇)
]
· 𝔼[ℓ𝑐★,𝜋★] · 𝐺★ , (8.9)

𝑇 = 𝔼(𝜋★)[𝟙
{
𝑐1 ≠ 𝑐★

}
ℓ𝑐1 ,𝜋★] + 𝔼(𝜋★)

[
𝑁 ini

𝑐★,𝜋★(1 :𝑇)
]
· 𝔼[ℓ𝑐★,𝜋★] , (8.10)

where 𝐺★=𝐺𝑐★,𝜋★ and 𝑐1 is generated from 𝜋★
. In particular, both Equations (8.9) and (8.10) imply

𝔼(𝜋★)

[
𝑇∑
𝑡=1

𝑟𝑡

]
= 𝔼(𝜋★)[𝟙

{
𝑐1 ≠ 𝑐★

}
ℓ𝑐1 ,𝜋★ ·

(
𝐺𝑐1 ,𝜋★ − 𝐺★)]+ 𝑇 𝐺★ . (8.11)

Note that, taking limits as 𝑇 →∞, we recover that indeed 𝐺★ = g★.

Thus, from the cumulative reward decomposition and previous Equation (8.11), and using that, on the other

hand 𝑇 =
∑
𝑐∈C
𝜋∈Π

𝔼(𝜋𝑡)
[
𝑁 ini

𝑐,𝜋(0 :𝑇)
]
· 𝔼[ℓ𝑐,𝜋], we obtain

RM(A, 𝑇)=𝔼(𝜋★)[𝟙
{
𝑐1 ≠ 𝑐★

}
ℓ𝑐1 ,𝜋★ ·

(
𝐺𝑐1 ,𝜋★−𝐺★)] +∑

𝑐∈C
𝜋∈Π

𝔼(𝜋𝑡)
[
𝑁 ini

𝑐,𝜋(0 :𝑇)
]
· 𝔼[ℓ𝑐,𝜋] ·

(
𝐺★−𝐺𝑐,𝜋

)
. (8.12)

At this point, focusing on the second term, we remark that∑
𝑐∈C
𝜋∈Π

𝔼(𝜋𝑡)
[
𝑁 ini

𝑐,𝜋(0 :𝑇)
]
· 𝔼[ℓ𝑐,𝜋] ·

(
𝐺★−𝐺𝑐,𝜋

)
=

∑
𝑐∈C
𝜋≠𝜋★

𝔼(𝜋𝑡)
[
𝑁 ini

𝑐,𝜋(0 :𝑇)
]
· 𝔼[ℓ𝑐,𝜋] ·

(
𝐺★−𝐺𝑐,𝜋

)
+

∑
𝑐≠𝑐★

𝔼(𝜋𝑡)
[
𝑁 ini

𝑐,𝜋★(0 :𝑇)
]
· 𝔼[ℓ𝑐,𝜋★] ·

(
𝐺★−𝐺𝑐,𝜋★

)
, (8.13)

from which we deduce that

RM(A, 𝑇) =
∑
𝑐∈C
𝜋≠𝜋★

𝔼(𝜋𝑡)
[
𝑁 ini

𝑐,𝜋(0 :𝑇)
]
· 𝔼[ℓ𝑐,𝜋] ·

(
𝐺★−𝐺𝑐,𝜋

)
+𝔼(𝜋★)[𝟙

{
𝑐1 ≠ 𝑐★

}
ℓ𝑐1 ,𝜋★ ·

(
𝐺𝑐1 ,𝜋★−𝐺★)] +∑

𝑐≠𝑐★
𝔼(𝜋𝑡)

[
𝑁 ini

𝑐,𝜋★(0 :𝑇)
]
· 𝔼[ℓ𝑐,𝜋★] ·

(
𝐺★−𝐺𝑐,𝜋★

)
.

To better control the last term we first isolate the first episode from the next ones. Indeed, the first episode

may be a bit special, compared to next episodes, as we do not necessary start from a reference state for the

current policy. Using the definition of 𝑁 ini

𝑐,𝜋★(0 :𝑇), we isolate the first episode and write

𝑁 ini

𝑐,𝜋★(0 :𝑇) = 𝟙
{
𝜋1 = 𝜋★, 𝑐1 = 𝑐

}
+

∑
𝜏∈T∩[𝑇],𝜏>0

𝟙
{
𝜋𝜏+1 = 𝜋★, 𝑐𝜏+1 = 𝑐

}
= 𝟙

{
𝜋1 = 𝜋★, 𝑐1 = 𝑐

}
+ 𝑁 ini

𝑐,𝜋★(1 :𝑇) .

8.4 Regret decomposition for rarely-switching learners 249

This leads to a first interesting reduction. Indeed, we then realize that

RM(A, 𝑇) =
∑
𝑐∈C
𝜋≠𝜋★

𝔼(𝜋𝑡)
[
𝑁 ini

𝑐,𝜋(0 :𝑇)
]
· 𝔼[ℓ𝑐,𝜋] ·

(
𝐺★−𝐺𝑐,𝜋

)
+𝔼(𝜋★)[𝟙

{
𝑐1 ≠ 𝑐★

}
ℓ𝑐1 ,𝜋★ ·

(
𝐺𝑐1 ,𝜋★−𝐺★)]

+
∑
𝑐≠𝑐★

𝔼(𝜋𝑡)
[
𝟙
{
𝜋1 = 𝜋★, 𝑐1 = 𝑐

}]
· 𝔼[ℓ𝑐,𝜋★] ·

(
𝐺★−𝐺𝑐,𝜋★

)
+

∑
𝑐≠𝑐★

𝔼(𝜋𝑡)
[
𝑁 ini

𝑐,𝜋★(1 :𝑇)
]
· 𝔼[ℓ𝑐,𝜋★] ·

(
𝐺★−𝐺𝑐,𝜋★

)
,

in which the second and third term telescope, owing to the fact that since 𝑐1 is fully determined under 𝜋★
,

then∑
𝑐≠𝑐★

𝔼(𝜋𝑡)
[
𝟙
{
𝜋1 = 𝜋★, 𝑐1 = 𝑐

}]
· 𝔼[ℓ𝑐,𝜋★] ·

(
𝐺★−𝐺𝑐,𝜋★

)
= 𝔼(𝜋𝑡)

[
𝟙
{
𝜋1 = 𝜋★, 𝑐1 ≠ 𝑐★

}
· ℓ𝑐1 ,𝜋★ ·

(
𝐺★−𝐺𝑐1 ,𝜋★

)]
.

Hence, we obtain

RM(A, 𝑇) =
∑
𝑐∈C
𝜋≠𝜋★

𝔼(𝜋𝑡)
[
𝑁 ini

𝑐,𝜋(0 :𝑇)
]
· 𝔼[ℓ𝑐,𝜋] ·

(
𝐺★−𝐺𝑐,𝜋

)
+

∑
𝑐≠𝑐★

𝔼(𝜋𝑡)
[
𝑁 ini

𝑐,𝜋★(1 :𝑇)
]
· 𝔼[ℓ𝑐,𝜋★] ·

(
𝐺★−𝐺𝑐,𝜋★

)
, (8.14)

thus completing the proof.

250 8 Exploiting dynamics knowledge with IMED-KD

8.5 Expected finite time average reward and gain

Gain and regeneration property

Gain One may wonder about the link between 𝐺𝑐,𝜋 and the gain g𝑐,𝜋.

Indeed, 𝐺𝑐,𝜋 can be seen as a proxy for the gain g𝑐,𝜋 of the policy, since

g𝑐,𝜋 = lim

𝑇→∞
𝔼(𝜋𝑡)

[
1

𝑇

𝑇∑
𝑡=1

𝑟𝑡

���𝑐1 = 𝑐,𝜋1 = 𝜋
]
,

that is, as ℓ𝑐,𝜋 →∞ then𝐺𝑐,𝜋 indeed approaches g𝑐,𝜋. This interpretation

is however valid only when ℓ𝑐,𝜋 is sufficiently large. Luckily, thanks to the

regenerating properties of the chain, if we start and stop an episode in

the same recurrent pair 𝑐𝜋, hence “completing a loop”, then the average of

the rewards received during that episode must, in expectation, equal that

of infinitely many such loops. More formally, we define the regeneration
property.

Lemma 8.5.1 (Regeneration property) For any unichain policy 𝜋, any
recurrent reference pair 𝑐𝜋 ∈ C+𝜋 , and any function Event ensuring that an
episode always stops in 𝑐𝜋 when we play 𝜋, then 𝐺𝑐𝜋 ,𝜋 = g𝑐𝜋 ,𝜋, that is the
expected averaged reward received during an episode starting and ending at
pair 𝑐𝜋 is equal to the gain of the policy.

Proof. Lemma 8.5.1 We denote by (𝜋, 𝑐𝜋) the constant policy (𝜋) started

at reference pair 𝑐𝜋. (𝜋, 𝑐𝜋) can be seen as a rarely-switching policy such

that 𝜋𝜏+1 = 𝜋 at each new episode 𝜏. Since the episode starts and stops

in 𝑐𝜋, its length is a multiple of the recurrent time of 𝑐𝜋 when playing 𝜋.

Note that the multiple can be larger than 1 has we may require visiting

𝑐𝜋 several times during an episode. Also, by definition of reference pair

𝑐𝜋, for all pair 𝑐 ≠ 𝑐𝜋, 𝐿𝑐,𝜋(𝑇) = 0 and 𝐿𝑐𝜋 ,𝜋(𝑇) = 𝑇 (see Equation (8.6)).

Hence, from Equation (8.7) we have

𝔼(𝜋,𝑐𝜋)

[
𝑇∑
𝑡=1

𝑟𝑡

]
= 𝑇 · 𝐺𝑐𝜋 ,𝜋 .

This implies in particular

g𝑐𝜋 ,𝜋 B lim

𝑇→∞
𝔼(𝜋)

[
1

𝑇

𝑇∑
𝑡=1

𝑟𝑡

���� 𝑐1 = 𝑐𝜋

]
= lim

𝑇→∞

1

𝑇
𝔼(𝜋,𝑐𝜋)

[
𝑇∑
𝑡=1

𝑟𝑡

]
= 𝐺𝑐𝜋 ,𝜋 .

This motivates us to introduce for each 𝜋 a reference pair

𝑐𝜋 ∈ argmax

𝑐∈C
p𝜋(𝑐)(𝑐)

which belongs to C+𝜋 by construction, and define Event(𝜋, ℎ𝜏+1,𝑡) to

ensure that (𝑠𝑡 , 𝑎𝑡) = 𝑐𝜋.

8.5 Expected finite time average reward and gain 251

Indeed, this choice of 𝑐𝜋 also minimizes 𝝉𝜋(𝑐, 𝑐) over 𝑐, hence tends to

reduce the expected episode length 𝔼[ℓ𝑐𝜋 ,𝜋]. This construction of events

further yields the following useful control on the regret

Proposition 8.5.2 (Rarely-switching learners with reference pair) Under
Assumption 8.2.1, if the rarely-switching learner A specifies for each 𝜋 to
stop the episode starting with 𝜋 in the same reference pair 𝑐𝜋 ∈ C+𝜋 , then the
following bound holds almost surely:∑

𝑐≠𝑐𝜋★

𝑁 ini
𝑐,𝜋★(1 :𝑇) ≤

∑
𝑐∈C

∑
𝜋≠𝜋★

𝑁 ini
𝑐,𝜋(0 :𝑇) . (8.15)

Moreover, the cumulative regret RM(A, 𝑇) of any such rarely-switching
algorithm A with respect to the unique optimal policy 𝜋★, up to the end 𝑇 of
any episode, is upper-bounded by

𝔼(𝜋𝑡)

∑
𝑐∈C
𝜋≠𝜋★

𝑁 ini
𝑐,𝜋(0 :𝑇)

 ·
(

max

(𝑐,𝜋)≠(𝑐𝜋★ ,𝜋★)
𝔼[ℓ𝑐,𝜋](𝐺★−𝐺𝑐,𝜋) + B★

)
, (8.16)

where B★ := max

𝑐≠𝑐𝜋★
𝔼(𝜋𝑡)[ℓ𝑐,𝜋★](𝐺★−𝐺𝑐,𝜋★) is a problem-dependent quantity.

Remark 8.5.1 It holds B★ ≤ max

(𝑐,𝜋)≠(𝑐𝜋★ ,𝜋★)
𝔼[ℓ𝑐,𝜋](𝐺★−𝐺𝑐,𝜋). Further,

B★=0 for bandits.

Proof. of Proposition 8.5.2 We prove an upper bound on the regret by

making appear the gaps 𝐺𝑐★,𝜋★−𝐺𝑐,𝜋, for 𝑐 ∈ C, 𝜋∈Π, using Lemma 8.3.1.

We recall that 𝑐★ is the unique state-action pair of reference of the unique

optimal stationary strategy 𝜋★
(Assumption 8.2.1).

The key property we use is that when the episode always stops in the

same reference pair for a given policy, since𝜋★
is unichain, then except for

the first episode, an episode under 𝜋★
that does not start in state-action

pair of reference 𝑐★ implies that the stationary policy from the previous

episode differs from 𝜋★
. This shows that∑

𝑐≠𝑐𝜋★

𝑁 ini

𝑐,𝜋★(1 :𝑇) ≤
∑
𝑐∈C

∑
𝜋′≠𝜋★

𝑁 ini

𝑐,𝜋′(0 :𝑇) . (8.17)

Introducing ℓ = max

(𝑐,𝜋)≠(𝑐★,𝜋★)
𝔼[ℓ𝑐,𝜋] and Δ = max

(𝑐,𝜋)≠(𝑐★,𝜋★)
𝐺★−𝐺𝑐,𝜋. By

combining Equation (8.4) and previous Equation (8.17), we prove the

upper bound on the regret

RM(A, 𝑇) ≤ 𝔼(𝜋𝑡)

[∑
𝑐∈C
𝜋≠𝜋★

𝑁 ini

𝑐,𝜋(0 :𝑇)
]

×
(

max

(𝑐,𝜋)≠(𝑐𝜋★ ,𝜋★)
𝔼[ℓ𝑐,𝜋](𝐺★−𝐺𝑐,𝜋) + max

𝑐≠𝑐𝜋★
𝔼[ℓ𝑐,𝜋★](𝐺★−𝐺𝑐,𝜋★)

)
.

252 8 Exploiting dynamics knowledge with IMED-KD

Estimation and covering time

Before we specify the algorithm, let us remind that since the transitions

are known, only the mean rewards need to be estimated.

Since g𝑐,𝜋 =
∑

𝑐′∈C+𝜋
p𝜋(𝑐)(𝑐′)m(𝑐′), where m is unknown, it is natural to

collect observations of pairs 𝑐′ ∈ C+𝜋 to estimate the corresponding m(𝑐′),
and hence the gain g𝜋. A natural way to ensure the estimation error

reduces in each episode is to stop an episode when all pairs in C+𝜋 have

been visited at least once: Formally, min

𝑐′∈C+𝜋
𝑁𝑐′(ℎ𝜏+1,𝑡) > 0, that is after

covering the set C+𝜋 . In order to control the resulting episode length,

unfortunately, there is in general no simple control of the cover time by a

policy 𝜋 of its recurrent pairs. The policy could be diffusive or lazy (see

next Section 8.6), yielding an arbitrarily large cover time. Formally, given

𝐶 ⊂ C and 𝑐 ∈ C, we denote by 𝜋𝐻𝑐 (𝐶) a policy that minimizes over

policies𝜋 the expected time 𝝉𝐻𝑐,𝜋(𝐶) to reach any element of𝐶 starting from

𝑐 and following 𝜋. Similarly, we let 𝜋𝑐(𝐶) denote a policy minimizing

over 𝜋 the expected time 𝝉𝑐,𝜋(𝐶) to cover all elements of 𝐶 starting from 𝑐

and following 𝜋. Recall that the diameter of a finite MDP M is defined

as 𝐷M=max𝑠≠𝑠′ min𝜋 𝔼[𝑇𝜋(𝑠, 𝑠′)], where 𝑇𝜋(𝑠, 𝑠′) denotes the number

of steps it takes to reach 𝑠′ starting from 𝑠 and following policy 𝜋 [80].

Letting 𝐷M denote the diameter of M, it holds: min

𝜋
𝝉𝐻𝑐,𝜋(𝐶) ≤ 𝐷M and

𝝉𝑐,𝜋(𝐶) ≤ |𝐶 |𝐷M for all 𝑐, 𝐶. In contrast, 𝝉𝑐,𝜋(C+𝜋) could be arbitrarily
large, even for a gain-optimal policy 𝜋.

8.6 Cover times and episode lengths

In this section, we provide a few illustrative examples that highlight

the challenges of having a long enough episode on the one hand, while

ensuring the cover time of recurrent pairs is controlled.

Deterministic MDP and policy

𝑠0 𝑠1

𝑠2𝑠3

𝑠4 𝑠5 𝑠6

𝑠9

𝑠7

𝑠8

0.1

0.8

0.5

𝑠12 𝑠11 𝑠10

Figure 8.1: A deterministic MDP with two actions (solid/dashed line) per state, deterministic transitions, and sparse rewards.

Long enough episode To give intuition about what it means to have

a sufficiently large episode length, consider the example of Figure 8.1

depicting an MDP (here deterministic for illustration purpose) with two

actions (solid/dashed transitions). In this case, starting from state 𝑠0

following solid actions yields a cycle of length 4 and dashed actions a

cycle of length 13. An episode smaller than the length of the cycle will not

8.6 Cover times and episode lengths 253

result in a good approximation of g𝑐,𝜋. On the other hand, the average

gain is equal to the expected average reward on the cycle starting and

ending in 𝑠0 (due to the Markov property hence the regenerative property

at state 𝑠0). So, a good estimation of it can be obtained by completing

exactly at least one full cycle and using the corresponding average reward

to update the estimate.

Stochastic system and deterministic policy

Covering time of diffusive policies While in deterministic systems,

the covering time of C+𝜋 by policy 𝜋 would be of order the cardinal of C+𝜋 ,

there is some difficulty when considering a stochastic system: Indeed,

take the case of a diffusion process as illustrated in Figure 8.2. In this

case, starting from 𝑠0 with a policy 𝜋 always playing up, C+𝜋 contains all

pairs (𝑠, up) with 𝑠 ∈ S. However, reaching the states 𝑠𝑘 or 𝑠−𝑘 takes time

exponential in their distance 𝑘 to 𝑠0, which is undesirable. At the same

time, the contribution of these states to the gain is much smaller than

that of 𝑠0 as their return frequency is also much smaller than that of 𝑠0.

𝑠0
𝑠−3 𝑠−2 𝑠−1 𝑠1 𝑠2 𝑠3

.

Figure 8.2: Diffusion process: Action up (solid line) has high probability 1 − 2𝜖 to self-loop (thick arrow), and 𝜖 probability (thin arrows)

to go left or right, causing an arbitrary large covering time.

Covering time of lazy chains Now, let us consider the case of an MDP

M and a deterministic policy 𝜋 that induces the following chain for some

small 𝜖 > 0:

p𝜋(𝑠′ |𝑠) =
{

1 − 𝜖 if 𝑠′ = 𝑠
𝜖
𝑆−1

else

.

Note that such situation can happen for an optimal, or near-optimal

policy, that cycles on (a subset of) states in a lazy way. In such a chain,

all states 𝑠 are recurrent and asymptotically visited at same frequency,

yielding p𝜋((𝑠,𝜋(𝑠))) = 1

𝑆 . Hence, |C+𝑐,𝜋(�)| = 𝑆 for � ∈ [0, 1/𝑆). On the

other hand, we observe that it takes about 1/𝜖 steps to move from one

state to another one, due to high probability of self-loop 1− 𝜖 that makes

the chain lazy. Further, it is easily shown that the expected time to cover

the set, starting from any 𝑠 is 𝑂(𝑆 ln(𝑆)/𝜖). Hence, for each recurrent

𝑐′, 𝝉𝑐′ ,𝜋(C+𝑐,𝜋(�)) = 𝑂(𝑆 ln(𝑆)/𝜖), which can be made arbitrarily large

independently on the values of p𝜋. This shows that there is in general no

direct control of the covering time of a set as a function of the asymptotic

visiting probabilities.

Frequently recurrent pairs

Frequently recurrent pairs and restricted gain This motivates us to

discard states with too small return frequency. Because the expected rewards

are bounded, a small return frequency also mean a small contribution to

the reward, hence motivating us further to discard those states if they

hinder the learning of the agent without adding statistical significance to

254 8 Exploiting dynamics knowledge with IMED-KD

the estimation of quantities of interest. To formalize this, we introduce a

notion of gain, which we call �-restricted gain, defined using a parameter

� ∈ ℝ+. Formally, for a constant � ∈ ℝ+, define the set of frequently
recurrent pairs of a stationary policy 𝜋:

C+𝑐,𝜋(�) := {𝑐′ ∈ C : p𝜋(𝑐)(𝑐′) > �} , (8.18)

which leads to defining the corresponding �-restricted gain function:

g𝑐,𝜋(�) :=
∑

𝑐′∈C+𝑐,𝜋(�)
p𝜋(𝑐)(𝑐′) ·m(𝑐′)/

∑
𝑐′∈C+𝑐,𝜋(�)

p𝜋(𝑐)(𝑐′) . (8.19)

We further naturally introduce

g★𝑐 (�)=max

𝜋∈Π
g𝑐,𝜋(�)

and

Π★
𝑐 (�)=argmax

𝜋∈Π
g𝑐,𝜋(�) .

Note that for � = 0, we recover the usual definitions, for instance,

g𝑐,𝜋(0) = g𝑐,𝜋. More generally, we have the following lemma.

Lemma 8.6.1 (Restricted-gain approximation)

∀𝜋, 𝑐, �, g𝑐,𝜋 − g𝑐,𝜋(�) ≤ �mmax |C+𝑐,𝜋 \ C+𝑐,𝜋(�)| , (8.20)

where mmax = max

𝑐∈C
m(𝑐) is the maximal state-action pair mean.

Proof. Lemma 8.6.1 Indeed, it holds that

g𝑐,𝜋 − g𝑐,𝜋(�) =
∑

𝑐′∉C+𝑐,𝜋(�)
p𝜋(𝑐, 𝑐′)︸ ︷︷ ︸
≤�

·m(𝑐′)︸︷︷︸
≤mmax

−
∑

𝑐′∈C+𝑐,𝜋(�)
p𝜋(𝑐, 𝑐′) ·m(𝑐′)

∑
𝑐′∉C+𝑐,𝜋(�) p𝜋(𝑐, 𝑐′)∑
𝑐′∈C+𝑐,𝜋(�) p𝜋(𝑐, 𝑐′)︸ ︷︷ ︸

≥0

.

In particular for a given 𝜖, choosing � ≤ 𝜖
mmax |C+𝑐,𝜋\C+𝑐,𝜋(�)|

, for instance

� = 𝜖/(mmax𝑆), ensures that the gain is still well-approximated by the

restricted gain up to the desired precision 𝜖. Hence, we can restrict to

cover 𝐶 = C+𝑐,𝜋(�) instead of C+𝑐,𝜋 and define Event(𝜋, ℎ𝜏+1,𝑡) accordingly.

Unfortunately, 𝝉𝑐,𝜋(C+𝜋 (�)) can still be arbitrary in general, hence we

introduce

Definition 8.6.1 (Lazyness) A chain induced by 𝜋 is (𝐵, �)-lazy if
max

𝑐′∈C+𝑐,𝜋(�)
𝝉𝑐′ ,𝜋(C+𝑐,𝜋(�))>𝐵.

To control the length of the episodes, we make the no-laziness Assump-

tion 8.6.1 on the studied MDPs. The laziness constant 𝐵 may be unknown

8.6 Cover times and episode lengths 255

to the agent, or computed offline thanks to the known dynamics of

the MDP.

Assumption 8.6.1 (No-laziness) M has no (𝐵, �)-lazy chain, where � ∈
[0, 1] is given.

Covering time, information gain, structure of policy space

Structure of policies We conclude this section by showing that choos-

ing this specific form of event further enables to revisit the decomposi-

tion of regret to better exploit structure of the policies. Indeed, while

𝔼(𝜋𝑡)
[
𝑁 ini

𝑐,𝜋(0 :𝑇)
]
= 0 for policies 𝜋 not explored by a rarely-switching

learner, there is more: policies are structured, in the sense that visiting

one state-action pair (𝑠, 𝑎) is not only informative about the actual policy

𝜋 playing 𝑎 in state 𝑠, but all such ones as well. Using Proposition 8.5.2

and the form of stopping event introduced in Lemma 8.7.1, we derive the

following result, showing, remarkably, that the sum over all policies can

be removed in favor of a maximum.

Theorem 8.6.2 (Rarely-switching learners exploiting recurrence struc-

ture) Let A be a rarely-switching algorithm using stopping event

Event(𝜋, ℎ𝜏+1,𝑡) = {min

𝑐′∈𝐶
𝑁𝑐′(ℎ𝜏+1,𝑡) > 0 and (𝑠𝑡 , 𝑎𝑡) = 𝑐𝜋}

where 𝐶 = C+𝑐,𝜋(�) is parameterized by �.

Then, ∑
𝑐∈C
𝜋≠𝜋★

𝑁 ini
𝑐,𝜋(0 :𝑇) ≤ |C|max

𝑐∈C
𝜋≠𝜋★

N�
𝑐,𝜋(𝑇) , (8.21)

where we introduced N�
𝑐,𝜋(𝑡) = min

𝑐′∈C+𝑐,𝜋(�)
𝑁𝑐′(ℎ1:𝑡).

In particular, using Remark 8.5.1,

RM(A, 𝑇)

𝔼(𝜋𝑡)

max

𝑐∈C
𝜋≠𝜋★

N�
𝑐,𝜋(𝑇)

≤ |C|

(
max

(𝑐,𝜋)≠(𝑐𝜋★ ,𝜋★)
𝔼[ℓ𝑐,𝜋]︸ ︷︷ ︸

=:L

(𝐺★−𝐺𝑐,𝜋)︸ ︷︷ ︸
∈[−1,1]

+B★

)

≤ 2|C|L
(8.22)

Proof. Theorem 8.6.2 In order to prove the upper bound on the regret

we prove an upper on the total number of episodes under a suboptimal

stationary strategy, that is

∑
𝑐∈C, 𝜋≠𝜋★

𝔼(𝜋𝑡)
[
𝑁 ini

𝑐,𝜋(0 :𝑇)
]
.

Let us consider the number of pulls

N�
𝑐,𝜋(𝑡) = min

𝑐′∈C+𝑐,𝜋(�)
𝑁𝑐′(ℎ1:𝑡)

associated with stationary policy 𝜋∈Π started in state-action pair 𝑐 ∈ C.

256 8 Exploiting dynamics knowledge with IMED-KD

[74]: Honda et al. (2015), ‘Non-

Asymptotic Analysis of a New Bandit

Algorithm for Semi-Bounded Rewards’

When considering rarely-switching algorithms, due to the definition

stopping event, all state-action pairs 𝑐′ ∈ C+𝑐,𝜋(�) are visited at each

episode started in state-action pair 𝑐 under policy 𝜋. This implies

∀𝑐′ ∈ C,
∑
𝑐∈C
𝜋≠𝜋★

𝟙
{
𝑐′∈ C+𝑐,𝜋(�)

}
𝑁 ini

𝑐,𝜋(0 :𝑇) ≤ 𝑁𝑐′(ℎ1:𝑇) . (8.23)

By considering the definition of the associated numbers of pulls and

introducing the argmin set C+𝑐,𝜋(�, 𝑇) = argmin

𝑐′∈C+𝑐,𝜋(�)
𝑁𝑐′(ℎ1:𝑇) ⊂ C+𝑐,𝜋(�) in

previous Equation (8.23), it holds ∀𝑐′∈ C,∑
𝑐∈C,𝜋≠𝜋★

𝟙
{
𝑐′∈ C+𝑐,𝜋(�, 𝑇)

}
𝑁 ini

𝑐,𝜋(0 :𝑇) ≤
∑
𝑐∈C
𝜋≠𝜋★

𝟙
{
𝑐′∈ C+𝑐,𝜋(�)

}
𝑁 ini

𝑐,𝜋(0 :𝑇)

≤ 𝑁𝑐′(ℎ1:𝑇)
,

(8.24)

where N�
𝑐,𝜋(𝑇) = 𝑁𝑐′(ℎ1:𝑇) by construction when 𝑐′ ∈ C+𝑐,𝜋(�, 𝑇). This

implies ∀𝑐′ ∈ C,∑
𝑐∈C, 𝜋≠𝜋★

𝟙
{
𝑐′ ∈ C+𝑐,𝜋(�, 𝑇)

}
𝑁 ini

𝑐,𝜋(0 :𝑇) ≤ max

𝑐∈C
𝜋≠𝜋★

N�
𝑐,𝜋(𝑇) . (8.25)

Then, summing over 𝑐′ ∈ C, and using that |C+𝑐,𝜋(�, 𝑇)| ≥ 1, it comes

∑
𝑐∈C, 𝜋≠𝜋★

𝑁 ini

𝑐,𝜋(0 :𝑇) =
∑
𝑐′∈C

∑
𝑐∈C
𝜋≠𝜋★

𝟙
{
𝑐′ ∈ C+𝑐,𝜋(�, 𝑇)

}
|C+𝑐,𝜋(�, 𝑇)|

𝑁 ini

𝑐,𝜋(0 :𝑇)

≤ |C|max

𝑐∈C
𝜋≠𝜋★

N�
𝑐,𝜋(𝑇)

. (8.26)

8.7 The IMED-KD strategy

In the previous section, we discuss in detail the Event function, how to

efficiently and meaningfully control the length of an episode and how its

is related to the regret of a rarely-switching learner. Exploiting all the

assumptions about the MDP, we showed the interesting and important

Proposition 8.5.2 and Theorem 8.6.2 that controls the regret upper bound

of a rarely-switching algorithm exploiting the notion of reference pairs

as well as the structures between the recurrent sets.

Intuition about IMED-KD

In this section, we present IMED-KD (Indexed Minimum Empirical

Divergence for MDPs with Known Dynamics), which is a rarely-switching

algorithm that uses an IMED-type index together with the knowledge

of p to attain a logarithmic regret in communicating MDPs. The IMED

strategy [74] has been proven asymptotically optimal in stochastic Bandits

and is computationally appealing when compared with the optimistic

8.7 The IMED-KD strategy 257

[103]: Agrawal et al. (2017), ‘Optimistic

posterior sampling for reinforcement

learning: worst-case regret bounds’

KL-UCB or the Bayesian Thompson sampling strategy that require, at

each step, solving an optimization problem or sampling from a posterior,

respectively. Although posterior sampling can be made efficient for some

parametric distributions, e.g. Gaussian, current extensions of TS to MDPs

require introducing a forced optimism mechanism [103], which makes it

less appealing both from theory and computational perspectives.

At a high level, the algorithm computes at the beginning of each episode 𝜏
an empirical best candidate policy �̂�★

𝜏 , as well as a best informative policy

�̂�𝐼𝜏. The algorithm considers the stopping event targeting 𝐶 = C+𝑐,𝜋(�)
and final pair 𝑐0 = 𝑐𝜋 for the policy 𝜋 = �̂�𝐼𝜏. It runs the episode using

𝜋𝐻𝑐𝜏 (𝐶) until hitting 𝐶, followed by policy 𝜋 (so if 𝑐𝜏 ∈ 𝐶, this reduces to

running 𝜋). We now detail the computation of �̂�★
𝜏 , �̂�

𝐼
𝜏 and 𝜋𝐻𝑐 .

IMED-KD algorithm

Empirical best policy

�̂�★
𝜏 is computed by applying a value (or policy) iteration procedure (VI)

to the MDP M̂𝜏 = (S,A, p, r̂𝜏) where for each 𝑐 ∈ C, we introduce

r̂𝜏(𝑐) = N(m̂𝜏(𝑐), 𝜎2) with m̂𝜏(𝑐) = 1

𝑁𝑐 (ℎ𝜏)
∑𝜏
𝑡′=1

𝑟𝑡′𝟙𝑐𝑡′ = 𝑐 being the

classical empirical estimate of the mean m(𝑐) computed on observations

received until time 𝜏.

Informative policy

To compute �̂�𝐼𝜏, we first form ĝ★𝑐,𝜏(�) = ĝ𝑐,�̂�★
𝜏 ,𝜏
(�), where for each policy

𝜋, we introduced its �-restricted gain estimate defined by

ĝ𝑐,𝜋,𝜏(�) =
∑
𝑐′∈C+𝑐,𝜋(�) p𝜋(𝑐)(𝑐′)m̂𝜏(𝑐′)∑

𝑐′∈C+𝑐,𝜋(�) p𝜋(𝑐)(𝑐′)
.

We further introduce for each policy the notation N𝜋(𝜏) = N�
𝑐𝜏 ,𝜋(𝜏) and

the IMED-type index, inspired from [74] for Bandits,

𝐼𝜏(𝜋) = N𝜋(𝜏)d
(
ĝ𝑐𝜏 ,𝜋,𝜏(�) | ĝ

★
𝑐𝜏 ,𝜏
(�)

)
+ log(N𝜋(𝜏)),

where d(𝑥 | 𝑦) = (𝑥−𝑦)
2

2𝜎2
= 2(𝑥 − 𝑦)2 denotes the Kullback-Leibler diver-

gence between Gaussian distributions with respective means 𝑥 and 𝑦,

and identical standard deviation 𝜎 = 1/2. This is justified since under

Assumption 8.2.2, all gains fall in [0, 1] hence can be considered 1/2-sub-

Gaussians. Finally, we let �̂�𝐼𝜏 (also written �̃�𝜏+1) be a policy minimizing

𝐼𝜏 over a subset of policies Π𝜏 ⊂ Π containing �̂�★
𝜏 . Following Assump-

tion 8.2.3, we introduce V̂𝜋★
𝜏
(𝑘) = {𝜋 : h(�̂�★

𝜏 ,𝜋) ≤ 𝑘}, and define Π𝜏 such

that V̂𝜋★
𝜏
⊂ Π𝜏. We discuss choices of Π𝜏 in Section 8.12.

Exploratory policy

To compute the fast hitting policy �̂�𝐻𝜏 = 𝜋𝐻𝑐 (𝐶) that tries to reach

𝐶 = C+
𝑐𝜏 ,�̂�𝐼𝜏
(�) as fast as possible starting from 𝑐 = 𝑐𝜏 we introduce a

258 8 Exploiting dynamics knowledge with IMED-KD

specific MDP M𝐻
𝜏 = (S,A, p, r𝐻𝜏)with modified reward function

r𝐻𝜏 (𝑐) =
{

1 if 𝑐 ∈ 𝐶
0 else

.

We compute an optimal policy for this MDP, under the average reward

criterion, using value iteration. This policy is used to reach the class 𝐶

and ensures the hitting time is always finite.

Strategy Finally, we define IMED-KD to be the rarely-switching algo-

rithm with update rule (line 11 of Algorithm 22) given by choosing at

each new episode 𝜏∈T the policy

𝜋𝜏+1 = 𝜋𝐻𝑐𝜏 (C
+
𝑐𝜏 ,�̂�𝐼𝜏
(�)) followed by �̂�𝐼𝜏 ,

with stopping event

Event(𝜋𝜏+1 , ℎ𝜏+1,𝑡) = { min

𝑐′∈C+
𝑐𝜏 ,�̂�𝐼𝜏
(�)
𝑁𝑐′(ℎ𝜏+1,𝑡) > 0 and (𝑠𝑡 , 𝑎𝑡) = 𝑐�̂�𝐼𝜏 } .

We provide the following control on the length of episodes run with IMED-

KD, whose proof is given in after providing and proving Lemma 8.7.2 that

is concerned about controlling the episode length for any rarely-switching

algorithm using a specific stopping event.

Lemma 8.7.1 (Bound on episode lengths) Assuming M has diameter 𝐷M
and no (𝐵, �)-lazy chain, the expected length of an episode of IMED-KD
started at 𝜏 satisfies

𝔼[ℓ𝑐,𝜋 |ℎ1:𝜏 , 𝑐𝜏 = 𝑐] ≤ 𝐷M + 2𝐵. (8.27)

In general, without further assumption on the structure of the MDP or

laziness of its chains, we can prove the following.

Lemma 8.7.2 (Episode length) Assume that for some subset 𝐶 ⊂ C

and target 𝑐0 ∈ 𝐶, the stopping event is of the form Event(𝜋, ℎ𝜏+1,𝑡) =
{min

𝑐′∈𝐶
𝑁𝑐′(ℎ𝜏+1,𝑡) > 0 and (𝑠𝑡 , 𝑎𝑡) = 𝑐0}. Then, the following holds

ℓ𝑐,𝜋(�)≤

𝝉𝜋(𝑐, 𝑐0) if 𝐶 = ∅∑
𝑐′∈𝐶

𝝉𝜋(𝑐, 𝑐′) + 𝟙 {𝑐′ ≠ 𝑐0} 𝝉𝜋(𝑐′, 𝑐0) else. (8.28)

where 𝝉𝜋(𝑐, 𝑐′) denotes the expected first (random) passage time from state-
action pair 𝑐 ∈ C to state-action pair 𝑐′ ∈ C in the Markov Process 𝑀𝜋 =

(C, 𝑃𝜋).

Proof. Lemma 8.7.2 Let us consider 𝜏𝜋(𝑐, 𝑐′) the first (random) passage

time from state-action pair 𝑐 ∈ C to state-action pair 𝑐′∈ C in the Markov

process 𝑀𝜋 = (C, 𝑃𝜋), whose expectation is 𝝉𝜋(𝑐, 𝑐′). For a set 𝐶 ⊂ C,

the first (random) cover time of 𝐶, denoted by 𝜏𝜋(𝑐, 𝐶), corresponds

to the first time when all elements of 𝐶 have been visited at least once.

Ordering the elements of 𝐶 from the (random) first element 𝑐(1) visited in

8.8 IMED-KD: Regret upper bound 259

𝐶 to the (random) last one 𝑐(|𝐶 |), we have 𝜏𝜋(𝑐, 𝑐(1)) < · · · < 𝜏𝜋(𝑐, 𝑐(|𝐶 |)),
where 𝜏𝜋(𝑐, 𝐶) coincides with 𝜏𝜋(𝑐, 𝑐(|𝐶 |)), that is we have 𝜏𝜋(𝑐, 𝐶) =
max

𝑐′∈𝐶
𝜏𝜋(𝑐, 𝑐′). Note that this quantity is very different from and should

not be confused with max

𝑐′∈C
𝝉𝜋(𝑐, 𝑐′), which can be much smaller than the

expected covering time 𝔼[𝜏𝜋(𝑐, 𝐶)]. Now, considering the set 𝐶 to be

non-empty, we thus introduce the (random) state-action pair

𝑐�,𝜋 = argmax

𝑐′∈𝐶
𝜏𝜋(𝑐, 𝑐′)

such that for all state-action pair 𝑐′ ∈ 𝐶, 𝜏𝜋(𝑐, 𝑐′) ≤ 𝜏𝜋
(
𝑐, 𝑐�,𝜋

)
. By

construction of the stopping event Event, if 𝑐�,𝜋 = 𝑐0 then the episode

stops immediately, otherwise one has to wait to reach 𝑐0 from 𝑐�,𝜋, that

is 𝜏𝜋(𝑐�,𝜋 , 𝑐0)many steps. Hence, under any rarely-switching algorithm

using such event, the expected duration of an episode started in state-

action pair 𝑐 under the policy 𝜋 is given by the following expression

ℓ𝑐,𝜋(�) = 𝔼(𝜋)
[
𝜏𝜋

(
𝑐, 𝑐�,𝜋

)
+ 𝟙

{
𝑐�,𝜋 ≠ 𝑐0

}
𝜏𝜋

(
𝑐�,𝜋 , 𝑐0

)]
≤ 𝔼(𝜋)

[
max

𝑐′∈𝐶
𝜏𝜋(𝑐, 𝑐′) + 𝟙 {𝑐′ ≠ 𝑐0} 𝜏𝜋(𝑐′, 𝑐0)

]
Upper-bounding the maximum over 𝑐′ by a sum over the possible 𝑐′, and

using that 𝔼(𝜋)[𝜏𝜋(𝑐, 𝑐′)] = 𝝉𝜋(𝑐, 𝑐′) this implies

ℓ𝑐,𝜋(�) ≤
∑
𝑐′∈𝐶

(
𝝉𝜋(𝑐, 𝑐′) + 𝟙 {𝑐′ ≠ 𝑐0} 𝝉𝜋(𝑐′, 𝑐0)

)
. (8.29)

Now, if the set 𝐶 is empty then the episode stops when 𝑐0 is reached, that

is ℓ𝑐,𝜋(�) ≤ 𝔼(𝜋)[𝜏𝜋(𝑐, 𝑐0)] = 𝝉𝜋(𝑐, 𝑐0).

Now, we provide the control of the length of episodes for IMED-KD,

under the assumption that there are no (𝐵, �) lazy chains.

Proof. Lemma 8.7.1 IMED-KD runs a policy that first reaches C+
𝑐,�̂�𝐼𝜏

as fast

as possible, but then simply run the policy �̂�𝐼𝜏. Hence, it takes at most

𝐷M expected steps to reach C+
𝑐,�̂�𝐼𝜏

but then 𝐵 many steps to cover the set

C+
𝑐,�̂�𝐼𝜏

under Assumption 8.6.1, and at most 𝐵 more steps to reach the

reference pair 𝑐�̂�𝐼𝜏 . This proves that

𝔼(𝜋𝑡)[ℓ𝑐,𝜋 |ℎ1:𝜏 , 𝑐𝜏 = 𝑐] ≤ 𝐷M + 2𝐵 .

8.8 IMED-KD: Regret upper bound

In this section, we provide performance bounds of the IMED-KD strategy.

We first provide the following non-asymptotic control on the number

of visits of suboptimal policies. Bounding this quantity is similar to

bounding the number of time suboptimal arms have been sampled in a

highly structured Bandit problem. In structured Bandits, it is sometimes

easier to bound the number of times a group of arms has been sampled

260 8 Exploiting dynamics knowledge with IMED-KD

[70]: Pesquerel et al. (2021), ‘Stochastic

bandits with groups of similar arms’

rather than bounding the number of times an individual suboptimal arm

has been sampled due to the structure that create a non-trivial dependency

between the number of samples. This is what was done in Chapter 5

concerned about Bandits with groups of similar arms [70]. Another

common proof technique in structured Bandits is to bound directly the

regret without first bounding the number of pulls of suboptimal arms.

However, such an approach is usually more difficult and less tractable.

Theorem 8.8.1 (Performance bound of IMED-KD) For an MDP M with
diameter 𝐷M and satisfying Assumptions 8.2.1 (communicating with unique
unichain optimal policy),8.2.2 (bounded rewards),8.2.3 (a policy improvement
is possible in a 𝑘-neighborhood),8.6.1 (no lazy policies), the IMED-KD strategy
ensures, provided that

� <
𝜖M(0)

2mmax𝑆

where
𝜖M(�) = min

𝑐∈C
𝜋∉Π★

{
max

𝜋′∈V𝜋
g𝑐,𝜋′(�) − g𝑐,𝜋(�)

}
,

the following bound on the number of pulls of suboptimal policies,

𝔼(𝜋𝑡)

max

𝑐∈C
𝜋≠𝜋★

N�
𝑐,𝜋(𝑇)

 ≤ max

𝑐∈C
𝜋≠𝜋★

(1 + 𝛼M(𝜖)) log(𝑇)
d
(
g𝑐,𝜋(�)

��g★𝑐 (�)) + 𝐾𝑇(𝜖, �)(𝐷M + 2𝐵) ,

for all accuracy 0 < 𝜖 <
𝜖M(�)

2

, where lim

𝜖→0

𝛼M(𝜖) = 0 and

𝐾𝑇(𝜖, �) ≤
5 |C| 𝑒2𝜖2

2𝜖2

+ |C|
(
1 + 𝑐−1

𝜖M(�) + 2𝐶𝜖M(�)

√
log(𝑐𝜖M(�)𝑇)

)
,

where 𝐶𝜖 and 𝑐𝜖 are constants that are independent of M and 𝑇.

This bound can be combined with the regret decomposition described

Equation 8.22 and the fact that 𝐺𝑐,𝜋 ≤ 1 from the bounded reward

assumption to obtain an upper bound on the regret RM(IMED-KD, 𝑇)
of IMED-KD.

Theorem 8.8.2 (Regret upper bound of IMED-KD) For an MDP M with
diameter 𝐷M and satisfying Assumptions 8.2.1 (communicating with unique
unichain optimal policy),8.2.2 (bounded rewards),8.2.3 (a policy improvement
is possible in a 𝑘-neighborhood),8.6.1 (no lazy policies), given the result of
Theorem 8.8.1, the regret of the IMED-KD strategy,

RM(IMED-KD, 𝑇)

is upper bounded bymax

𝑐∈C
𝜋≠𝜋★

(1 + 𝛼M(𝜖)) log(𝑇)
d
(
g𝑐,𝜋(�)

��g★𝑐 (�)) + 𝐾𝑇(𝜖, �)(𝐷M + 2𝐵)
 · 2(𝐷M + 2𝐵) |C| .

(8.30)

The regret bound in Equation 8.30 of Theorem 8.8.2 grows logarithmically

with 𝑇, where the leading constant is determined by a notion of gap

8.9 IMED-KD: Finite Time Analysis 261

[80]: Jaksch et al. (2010), ‘Near-optimal

regret bounds for reinforcement learn-

ing’

with respect to �-restricted gains. In this respect, the bound bears some

similarity with logarithmic regret bounds for Bandits, which is consistent

with the design principle behind the rarely switching algorithms which

viewed the MDP as a multi-policy Bandit. In contrast, the bound in

Equation 8.30 is inversely proportional to the square of the gap terms,

which stems from the technical difficulties arising in the regret analysis in

the average-reward setting. We note that [80] report a logarithmic regret

bound for UCRL2 that depends on a similar notion of gap term. However,

their bound involves an additive term, which depends on mixing time

quantities and has an implicit dependence on log(𝑇), and hence it could

grow very large. In empirical evaluation of UCRL2, it is often witnessed

that the logarithmic regime in the regret actually kicks in after very

long burn-in phase. While Equation 8.30 offers a bound with an optimal

dependence on 𝑇, it is not clear whether the gap in terms of policy

gains, appearing in both Equation 8.30 and [80], is the best one could get.

Indeed, let us recall that regret lower bounds for average-reward MDPs,

beyond the ergodic class, are open and deriving them even for the case

of known dynamics is a very interesting, yet challenging, topic of future

research.

Adaptive laziness parameter

Given the constraint on the parameter � of Theorem 8.8.1, that is

� <
𝜖M(0)

2mmax𝑆

where

𝜖M(�) = min

𝑐∈C
𝜋∉Π★

{
max

𝜋′∈V𝜋
g𝑐,𝜋′(�) − g𝑐,𝜋(�)

}
,

a natural question is how to ensure � is small enough since 𝜖M(0) is a

priori unknown. One possible way to accommodate this is to consider

near-optimality instead, with given precision �̃�, and simply choose

� = �̃�/2𝑆. In practice, we may choose � adaptively (i. e., � = �𝑡); we

discuss in the experimental Section 8.13 some simple adaptive choices of

�, and demonstrate that they lead to promising empirical performance,

though not directly covered by Theorem 8.8.1.

We now move on to the proof of the regret upper bound of the rarely-

switching IMED-KD strategy.

8.9 IMED-KD: Finite Time Analysis

Outline of the proof

At a high level, the key interesting step of the proof is to realize that

the considered algorithm implies empirical lower and empirical upper

bounds on the numbers of pulls (see Lemma 8.9.1, Lemma 8.9.2). Then,

based on concentration lemmas (see Section 8.10), the algorithm-based

empirical lower bounds ensure the reliability of the estimators of interest

(Lemma 8.9.4). Interestingly, this makes use of arguments based on recent

concentration of measure that enable to control the concentration without

262 8 Exploiting dynamics knowledge with IMED-KD

[34]: Cappé et al. (2013), ‘Kullback–

Leibler upper confidence bounds for op-

timal sequential allocation’

adding some log log bonus (such a bonus was required for example in the

initial analysis of the KL-UCB strategy from [34]). Then, combining the

reliability of these estimators with the obtained algorithm-base empirical

upper bounds, we obtain upper bounds on the average numbers of pulls

(Theorem 8.8.1). Interestingly, most of the proof is agnostic to the length

of an episode (that is handled separately). We only use the property that

the algorithm guarantees in each episode an increase by at least one of

the number of pulls of each �-recurrent pair.

8.9.1 Notations

We recall that for an MDP M, we denote by V𝜋 = {𝜋′ ∈ Π : h(𝜋,𝜋′) ≤ 𝑘}
the neighborhood of policy 𝜋 ∈ Π at radius 𝑘 in Hamming distance h.

For constant � ≥ 0, we let

𝜖M(�) = min

𝑐∈C
𝜋∉Π★

{
max

𝜋′∈V𝜋
g𝑐,𝜋′(�) − g𝑐,𝜋(�)

}
. (8.31)

According to policy-improvement property 8.2.3, 𝜖M(0) > 0. Then, from

Lemma 8.6.1, provided that � < 𝜖M(0)/(2mmax𝑆), then we also have

𝜖M(�) > 0. Furthermore, the following inequality holds

𝜖M(�) ≤ min

𝑐∈C
𝜋∉Π★

{
g𝑐,𝜋★(�) − g𝑐,𝜋(�)

}
.

Note that this value of � also ensures that

Π★ B argmax

𝜋∈Π
max

𝑐∈C
g𝑐,𝜋 = argmax

𝜋∈Π
max

𝑐∈C
g𝑐,𝜋(�) .

Indeed, 𝜖M(0) ≤ min

𝑐∈C
𝜋∉Π★

{
max

𝜋′∈Π
g𝑐,𝜋′ − g𝑐,𝜋

}
, which ensures�-reduction does

not modify the best policy.

Then, there exists a function 𝛼M(·) with lim

𝜖→0

𝛼M(𝜖) = 0 such that for

all 0 ≤ 𝜖 < 𝜖M(�)/2, for all state-action pair 𝑐 ∈ C, for all suboptimal

stationary policy 𝜋∉Π★
,

d
(
g𝑐,𝜋(�)+𝜖 | g★𝑐 (�)−𝜖

)
≤(1+𝛼M(𝜖))−1 d

(
g𝑐,𝜋(�) | g★𝑐 (�)

)
. (8.32)

8.9.2 Algorithm-based empirical bounds

The IMED-KD algorithm implies inequalities between the indexes that

can be rewritten as inequalities on the numbers of pulls. While lower

bounds involving log(𝑡) (or log(𝜏)) may be expected in view of the

asymptotic regret bounds, we show lower bounds on the numbers of

pulls involving instead log

(
N�
𝑐𝜏+1 ,�̃�𝜏+1

(𝜏)
)

the logarithm of the number

of pulls of the current index policy. We also provide upper bounds on

N�
𝑐𝜏+1 ,�̃�𝜏+1

(𝜏) involving log(𝜏). We believe that establishing these empirical

lower and upper bounds is a key element of our proof technique, that

is of independent interest and is the motivation for including it in the

manuscript.

8.9 IMED-KD: Finite Time Analysis 263

In the sequel, for notational convenience and avoid cluttering the no-

tations. We denote 𝑁𝜋(𝜏) in lieu of N�
𝑐𝜏+1 ,𝜋(𝜏). We further write �̂�𝜋(𝜏)

for ĝ𝑐𝜏+1 ,𝜋,𝜏
(�) and �̂�★(𝜏) for ĝ★𝑐𝜏+1 ,𝜏

(�). Last, we denote by T the set of

starting times, that is the set of time steps that start a new episode.

Remark 8.9.1 According to IMED-KD algorithm, �̂�★
𝜏 ∈ V̂𝜋★

𝜏
⊂ Π𝜏.

Lemma 8.9.1 (Empirical lower bounds) Under IMED-KD, for all starting
time 𝜏∈T, for all stationary policy 𝜋∈Π𝜏,

log(𝑁�̃�𝜏+1
(𝜏)) ≤ 𝑁𝜋(𝜏) d

(
�̂�𝜋(𝜏) | �̂�★(𝜏)

)
+ log(𝑁𝜋(𝜏)) , (8.33)

and for the empirical best policy �̂�★
𝜏 ,

𝑁�̃�𝜏+1
(𝜏) ≤ 𝑁�̂�★

𝜏
(𝜏) . (8.34)

Proof. For all stationary policy 𝜋∈Π, we have

𝐼𝜋(𝜏)=𝑁𝜋(𝜏)d
(
�̂�𝜋(𝜏) | �̂�★(𝜏)

)
+log(𝑁𝜋(𝜏))

by definition. Hence, by non-negativity of the first term, it comes

log(𝑁𝜋(𝜏)) ≤ 𝐼𝜋(𝜏) .

This implies, since the policy �̃�𝜏+1 with minimum index is chosen,

log(𝑁�̃�𝜏+1
(𝜏))≤ 𝐼�̃�𝜏+1

(𝜏)=min

𝜋∈Π
𝐼𝜋(𝜏)≤ 𝐼�̂�★

𝜏
(𝜏)= log

(
𝑁�̂�★

𝜏
(𝜏)

)
.

Composing by exp(·) on both side concludes the proof.

Lemma 8.9.2 (Empirical upper bounds) Under IMED-KD, for all starting
time 𝜏∈T, for all stationary policy 𝜋∈Π𝜏,

𝑁�̃�𝜏+1
(𝜏) d

(
�̂��̃�𝜏+1
(𝜏) | �̂�★(𝜏)

)
≤ log(𝜏) . (8.35)

Proof. By construction, since policy �̃�𝜏+1 has minimum index, we have

𝐼�̃�𝜏+1
(𝜏) ≤ 𝐼�̂�★

𝑡
(𝜏) .

To conclude, it remains to note that on one hand,

𝑁�̃�𝜏+1
(𝜏)d

(
�̂��̃�𝜏+1
(𝜏) | �̂�★(𝜏)

)
≤ 𝐼�̃�𝜏+1

(𝜏) ,

and on the other hand,

𝐼�̂�★
𝜏
(𝜏) = log(𝑁�̂�★

𝜏
(𝜏)) ≤ log(𝜏) .

264 8 Exploiting dynamics knowledge with IMED-KD

8.9.3 Non-reliable current best stationary policy

For accuracy 𝜖 > 0 and stationary policy 𝜋 ∈ Π and state-action pair

𝑐 ∈ C, let M★
𝑐,𝜋(𝜖) be the set of starting times 𝜏∈Tsuch that 𝑐𝜏+1= 𝑐 and

�̃�𝜏+1=𝜋 and where some of the current best stationary policy �̂�★
𝜏 has not

too optimistic gain and does not belong to Π★
,

M★
𝑐,𝜋(𝜖)

𝑑𝑒 𝑓
=

𝜏∈T :

(1) 𝑐𝜏+1 = 𝑐

(2) �̃�𝜏+1 = 𝜋

(3) �̂��̂�★
𝜏
(𝜏) < g𝑐,�̂�★

𝜏
(�) + 𝜖

(4) �̂�★
𝜏 ∉ Π★

. (8.36)

For all couple of stationary policies (𝜋,𝜋′)∈Π2
, initial state-action pair

𝑐 ∈ C and for all accuracy 𝜖 > 0, let us further introduce K−𝑐,𝜋,𝜋′(𝜖) as

the set of starting times where couple of stationary policy (𝜋,𝜋′) shows

𝜖-KL-log deviation, that is

K−𝑐,𝜋,𝜋′(𝜖)
𝑑𝑒 𝑓
=

𝑡 ∈T :

(1) 𝑐𝜏+1 = 𝑐

(2) �̃�𝜏+1 = 𝜋′

(3) �̂�𝜋(𝜏) ≤ g𝑐,𝜋(�) − 𝜖

(4) log(𝑁𝜋′(𝜏)) ≤
𝑁𝜋(𝜏) d

(
�̂�𝜋(𝜏) | g𝑐,𝜋(�)−𝜖

)
+ log(𝑁𝜋(𝜏))

. (8.37)

The two sets are related thanks to the following result.

Lemma 8.9.3 (Relation between subsets of times) Under the IMED-KD
learning strategy, for all accuracy 0<𝜖< 𝜖M(�)/2, for all stationary policy
𝜋∈Π and starting state-action pair 𝑐 ∈ C,

M★
𝑐,𝜋(𝜖) ⊂

⋂
𝜋+∈V★

K−𝑐,𝜋+ ,𝜋(𝜖M(�)/2) , (8.38)

where we introduced the set V★ =
⋃

�̂�★∉Π★
argmax

𝜋′∈ V̂𝜋★
g𝑐,𝜋′(�).

Proof. Let us consider 𝜏∈M★
𝑐,𝜋(𝜖). Since �̂�★

𝜏 ∉Π
★

is not a best stationary

policy, then according to policy-improvement Assumption 8.2.3 and for

a value of � ensuring that 𝜖M(�) > 0, for any 𝜋+ ∈ argmax

𝜋′∈ V̂𝜋★𝜏

g𝑐𝜏+1 ,𝜋′(�) we

have

g𝑐𝜏+1 ,𝜋+(�) > g𝑐𝜏+1 ,�̂�★
𝜏
(�) . (8.39)

Then, since �̂�★
𝜏 ∈argmax

𝜋∈Π
�̂�(𝜏) and V̂𝜋★

𝜏
⊂ Π𝜏 ⊂ Π, we have on the other

hand

�̂��̂�★
𝜏
(𝜏) = �̂�★(𝜏) ≥ �̂�𝜋+(𝜏) , (8.40)

where 𝜋+ ∈ argmax

𝜋′∈ V̂𝜋★𝜏

g𝑐𝜏+1 ,𝜋′(�) ⊂ V̂𝜋★
𝜏
⊂ Π according to IMED-KD

algorithm. Since 𝜏∈M★
𝑐,𝜋(𝜖), we have by construction

g𝑐𝜏+1 ,�̂�★
𝜏
(�) + 𝜖 ≥ �̂��̂�★

𝜏
(𝜏) . (8.41)

8.9 IMED-KD: Finite Time Analysis 265

By combining Equations (8.40) and (8.41), it comes

g𝑐𝜏+1 ,�̂�★
𝜏
(�) + 𝜖 ≥ �̂�★(𝜏) ≥ �̂�𝜋+(𝜏) . (8.42)

Since 𝜖M(�)≤g𝑐𝜏+1 ,𝜋+(�)−g𝑐𝜏+1 ,�̂�★
𝜏
(�), Equation (8.39) implies

g𝑐𝜏+1 ,𝜋+(�) > g𝑐𝜏+1 ,�̂�★
𝜏
(�) + 𝜖M(�) .

Then, since 𝜖 ≤ 𝜖M(�)/2, previous Equation (8.42) implies

g𝑐𝜏+1 ,𝜋+(�) − 𝜖M(�)/2 > g𝑐𝜏+1 ,𝜋+(�) + 𝜖≥ �̂�★(𝜏) ≥ �̂�𝜋+(𝜏) . (8.43)

At this point, since 𝜋+ ∈ V̂𝜋★
𝜏
⊂ Π𝜏, empirical lower bounds (8.33) imply

log(𝑁�̃�𝜏+1
(𝜏)) ≤ 𝑁𝜋+(𝜏) d

(
�̂�𝜋+(𝜏) | �̂�★(𝜏)

)
+ log(𝑁𝜋+(𝜏)) . (8.44)

The classical monotonic properties of d(· | ·) and Equation (8.43) imply{
�̂�𝜋+(𝜏) ≤ �̂�★(𝜏) < g𝑐𝜏+1 ,𝜋+(�)−𝜖M(�)/2

d(�̂�𝜋+(𝜏) | �̂�★(𝜏)) ≤ d
(
�̂�𝜋+(𝜏) | g𝑐𝜏+1 ,𝜋+(�)−𝜖M(�)/2

)
.

(8.45)

Combining Equations (8.43) and (8.45), we finally get
�̂�𝜋+(𝜏) < g𝑐𝜏+1 ,𝜋+(�)−𝜖M(�)/2

log(𝑁�̃�𝜏+1
(𝑡)) ≤ 𝑁𝜋+(𝜏) d

(
�̂�𝜋+(𝜏) | g𝑐𝜏+1 ,𝜋+(�)−𝜖M(�)/2

)
+ log(𝑁𝜋+(𝜏)) ,

(8.46)

which means 𝜏∈K−
𝑐,𝜋+ ,�̃�𝜏+1

(𝜖M(�)/2), hence concluding the proof.

8.9.4 Reliable current gains and current best stationary
policy

In this subsection, we characterize subsets of starting times where both

the gain of current played stationary policy and the optimal gain are

well-estimated.

Let us consider for an accuracy 0<𝜖< 𝜖M, a stationary policy 𝜋∈Π and

a starting state-action pair 𝑐 ∈ C that is suboptimal, the following set of

starting times

U𝑐,𝜋(𝜖) =

𝜏∈T :

(1) 𝑐𝜏+1 = 𝑐

(2) �̃�𝜏+1 = 𝜋∉Π★

(3) (3𝑎) or (3𝑏) or (3𝑐) or (3𝑑)where

(3𝑎) �̂�𝜋(𝜏) ≥ g𝑐,𝜋(�) + 𝜖
(3𝑏) �̂��̂�★

𝜏
(𝜏) ≥ g𝑐,�̂�★

𝜏
(�) + 𝜖 and 𝑁𝜋(𝜏) ≤ 𝑁�̂�★

𝜏
(𝜏)

(3𝑐) �̂��̂�★
𝜏
(𝜏) ≤ g𝑐,�̂�★

𝜏
(�) − 𝜖 and 𝑁𝜋(𝜏) ≤ 𝑁�̂�★

𝜏
(𝜏)

(3𝑑) �̂��̂�★
𝜏
(𝜏) < g𝑐,�̂�★

𝜏
(�) + 𝜖 and �̂�★

𝜏 ∉ Π★

,

where we recall that whenever �̃�𝜏+1 = 𝜋, then 𝑁�̃�𝜏+1
(𝜏) ≤ 𝑁�̂�★

𝜏
(𝜏), by

(8.34). By construction of this set we have the following result.

266 8 Exploiting dynamics knowledge with IMED-KD

Lemma 8.9.4 (Reliable current means) Under the IMED-KD strategy, for
all accuracy 0 < 𝜖 < 𝜖M(�)/2, for all stationary policy 𝜋 ∈Π and starting
state-action pair 𝑐 ∈ C, for all starting time 𝜏∉ U𝑐,𝜋(𝜖) such that 𝑐𝜏+1 = 𝑐

and �̃�𝜏+1=𝜋∉Π★,
�̂�★
𝜏 ∈ Π★

𝑐𝜏+1

�̂�★(𝜏) ≥ g★𝑐𝜏+1

(�) − 𝜖

�̂�𝜋(𝜏) ≤ g𝑐𝜏+1 ,𝜋
(�) + 𝜖 .

Proof. For 0< 𝜖< 𝜖M(�)/2, for stationary policy 𝜋∈Π, let us consider a

starting time 𝜏∉ U𝑐,𝜋(𝜖), such that �̃�𝜏+1=𝜋∉Π★
.

Since �̃�𝜏+1 =𝜋∉Π★
and 𝜏∉ U𝑐𝜏+1 ,�̃�𝜏+1

(𝜖) then �̂��̃�𝜏+1
(𝜏) < g𝑐𝜏+1 ,�̃�𝜏+1

(�)+𝜖,

which rewrites �̂�𝜋(𝜏) < g𝑐𝜏+1 ,𝜋
(�)+𝜖 (since �̃�𝜏+1=𝜋).

Likewise, since �̃�𝜏+1=𝜋∉Π★
𝑐𝜏+1

and 𝜏∉ U𝑐𝜏+1 ,�̃�𝜏+1
(𝜖), and𝑁𝜋(𝜏) ≤ 𝑁�̂�★

𝜏
(𝜏)

then

�̂�★(𝜏) = �̂��̂�★
𝜏
(𝜏) > g𝑐𝜏+1 ,�̂�★

𝜏
(�) − 𝜖 . (8.47)

Likewise, we must have

�̂�★(𝜏) = �̂��̂�★
𝜏
(𝜏) < g𝑐𝜏+1 ,�̂�★

𝜏
(�) + 𝜖 . (8.48)

Since �̃�𝜏+1=𝜋∉Π★
and 𝜏∉ U𝑐𝜏+1 ,�̃�𝜏+1

(𝜖), then this must in turn imply

�̂�★
𝜏 ∈ Π★ . (8.49)

By combining this with Equations (8.47) and (8.48), we get

�̂�★(𝜏) > g★𝑐𝜏+1

(�) − 𝜖 . (8.50)

Size of the set U𝑐,𝜋(𝜖) We now want to control the expected size of

the set U𝑐,𝜋(𝜖). To this end, we first note that, Lemma 8.9.3 enables to

replace the equality in the definition of U𝑐,𝜋(𝜖) with an inclusion and

(3d) with

∀𝜋+ ∈ V★, �̂�𝜋+(𝜏) ≤ g𝑐,𝜋+(�)− �̃� (8.51)

log(𝑁𝜋(𝜏)) ≤ 𝑁𝜋+(𝜏) d
(
�̂�𝜋+(𝜏) | g𝑐,𝜋+(�)− �̃�

)
+log(𝑁𝜋+(𝜏))

where �̃� = 𝜖M(�)/2 ≥ 𝜖. Further, we realize that we can decompose the

set as follows

U𝑐,𝜋(𝜖) ⊂ E𝑐,𝜋(𝜖) ∪ E𝑐,𝜋(𝜖) ∪K𝑐,𝜋(�̃�) ,

where we introduced the following convenient events

E𝑐,𝜋(𝜖) = {𝜏 : (1), (2), �̂�𝜋(𝜏) ≥ g𝑐,𝜋(�) + 𝜖}
E𝑐,𝜋(𝜖) = {𝜏 : (1), (2), ∃𝜋′ : | �̂�𝜋′(𝜏) − g𝑐,𝜋′(�)| ≥ 𝜖 and 𝑁𝜋(𝜏) ≤ 𝑁𝜋′(𝜏)}
K𝑐,𝜋(�̃�) = {𝜏 : (1), (2), (8.51)}

8.9 IMED-KD: Finite Time Analysis 267

Interestingly, we note that if 𝜏 ∈ K𝑐,𝜋(�̃�) \ E𝑐,𝜋(𝜖) and since �̃� ≥ 𝜖 then

for each 𝜋+ ∈ V★
, on top of (8.51) we must also have 𝑁𝜋(𝜏) > 𝑁𝜋′(𝜏),

which motivates to introduce

K𝑐,𝜋(�̃�) = {𝜏 : (1), (2), (8.51) and ∀𝜋+ ∈ V★, 𝑁𝜋(𝜏) > 𝑁𝜋+(𝜏)} .

Using this decomposition, we get the following control

max

𝑐∈C
𝜋∈Π
|U𝑐,𝜋(𝜖)| ≤ max

𝑐∈C
𝜋∈Π
|E𝑐,𝜋(𝜖)| +max

𝑐∈C
𝜋∈Π

���E𝑐,𝜋(𝜖)��� +max

𝑐∈C
𝜋∈Π

���K𝑐,𝜋(�̃�)
��� . (8.52)

We can now resort to concentration arguments in order to control the

size of these sets under rarely-switching algorithms, which yields the

following upper bounds. We defer the proof to the next Section 8.11,

which is instructive yet hefty, and continue with the proof of the regret

bound.

Lemma 8.9.5 (Bounded subsets of times) Under all rarely-switching
algorithm, for all accuracy 𝜖>0, for all stationary policy 𝜋∈Π and starting
state-action pair 𝑐 ∈ C,

𝔼(𝜋𝑡)

[
max

𝑐∈C
𝜋∈Π
|E𝑐,𝜋(𝜖)|

]
, 𝔼(𝜋𝑡)

[
max

𝑐∈C
𝜋∈Π

���E𝑐,𝜋(𝜖)���] ≤ 2 |C| 𝑏𝜖 ,

𝔼(𝜋𝑡)

[
max

𝑐∈C
𝜋∈Π

���K𝑐,𝜋(𝜖)
���] ≤ |C| (𝑏𝜖 + 1 + 𝑐−1

𝜖 + 2𝐶𝜖

√
log(𝑐𝜖𝑇)

)
,

where 𝑏𝜖 = 2𝜎2𝑒𝜖
2/2𝜎2/𝜖2 with 𝜎2 = 1/4, considering concentration for

𝜎-sub-Gaussian distributions, and 𝑐𝜖 , 𝐶𝜖 >0 are the constants involved in
the concentration Theorem 8.10.2.

In particular, using this lemma, it holds

𝔼(𝜋𝑡)

[
max

𝑐∈C
𝜋∈Π
|U𝑐,𝜋(𝜖)|

]
≤ 5 |C| 𝑏𝜖 + |C|

(
𝑐−1

𝜖 + 2𝐶𝜖

√
log(𝑐𝜖𝑇)

)
. (8.53)

8.9.5 Upper bounds on the numbers of pulls of
suboptimal policies

In this subsection, we now combine the different results of the previous

subsections to prove Theorem 8.8.1 that upper bound the number of pulls

of suboptimal policies. Combining this result with an upper bound on

the length of an episode, controlled thanks to the no-laziness assumption,

we will be able to finish the proof.

Proof. of Theorem 8.8.1 For all accuracy 0<𝜖< 𝜖M(�)/2, for all stationary

policy 𝜋∈Π, for all starting time 𝜏∉ U𝑐,𝜋(𝜖) such that �̃�𝜏+1=𝜋∉Π★
, we

derive the following steps. From empirical upper bounds (8.35), we have

𝑁𝜋(𝜏) d
(
�̂�𝜋(𝜏) | �̂�★(𝜏)

)
≤ log(𝜏) . (8.54)

268 8 Exploiting dynamics knowledge with IMED-KD

From Lemma 8.9.4, we have

�̂�𝜋(𝜏) ≤ g𝑐𝜏+1 ,𝜋
(�) + 𝜖 < g★𝑐𝜏+1

(�) − 𝜖 ≤ �̂�★(𝜏)

From classical monotonic properties of KL(·|·) and Equation (8.32), we

have

d
(
�̂�𝜋(𝜏) | �̂�★(𝜏)

)
≥ KL

(
g𝑐𝜏+1 ,𝜋

(�) + 𝜖
���g★𝑐𝜏+1

(�) − 𝜖
)

≥ (1 + 𝛼M(𝜖))−1

KL

(
g𝑐𝜏+1

(�)
���g★𝑐𝜏+1

(�)
)

In view of Equation (8.54), and recalling that 𝑁𝜋(𝜏) = N�
𝑐𝜏+1 ,𝜋(𝜏), this

implies ∀𝜏 ∉ U𝑐,𝜋(𝜖) such that �̃�𝜏+1 = 𝜋 ∉ Π★
,

N�
𝑐𝜏+1 ,𝜋(𝜏) ≤

(1 + 𝛼M(𝜖)) log(𝜏)
KL

(
g𝑐𝜏+1 ,𝜋

(�)
��g★𝑐𝜏+1

(�)
) . (8.55)

For state-action pair 𝑐 ∈ Cand for stationary policy 𝜋∉Π★
, we denote by

𝜏𝑐,𝜋 = max {𝜏∈T : 𝑐𝜏+1 = 𝑐, �̃�𝜏+1 = 𝜋 and 𝜏 ∉ U𝑐,𝜋(𝜖)} (8.56)

the last starting time that does not belong to U𝑐,𝜋(𝜖) such that we play

stationary policy 𝜋.

Now, using Equation (8.56) and that by definition, when 𝜏 ∈ U𝑐,𝜋(𝜖), it

must be that 𝑐𝜏+1 = 𝑐, �̃�𝜏+1 = 𝜋, we obtain

N�
𝑐,𝜋(𝑇) = min

𝑐′
𝑁𝑐′(ℎ1:𝑇)

= min

𝑐′

∑
𝑘∈ℕ

𝜏𝑘+1∑
𝑡=𝜏𝑘+1

𝟙 {𝑐𝑡 = 𝑐′}

= min

𝑐′

∑
𝑘∈ℕ

𝟙

𝜏+1 = 𝑐,

�̃�𝜏+1 = 𝜋,
𝜏𝑘 ∉ U𝑐,𝜋(𝜖)

𝜏𝑘+1∑

𝑡=𝜏𝑘+1

𝟙 {𝑐𝑡 = 𝑐′}

+
∑
𝑘∈ℕ

𝟙

𝜏+1 ≠ 𝑐 or

�̃�𝜏+1 ≠ 𝜋 or

𝜏𝑘 ∈ U𝑐,𝜋(𝜖)

𝜏𝑘+1∑

𝑡=𝜏𝑘+1

𝟙 {𝑐𝑡 = 𝑐′}

≤ min

𝑐′
𝑁𝑐′(ℎ1:𝜏𝑐,𝜋) +

∑
𝑘∈ℕ

𝟙 {𝜏𝑘 ∈ U𝑐,𝜋(𝜖)}
𝜏𝑘+1∑

𝑡=𝜏𝑘+1

𝟙 {𝑐𝑡 = 𝑐′}

≤ min

𝑐′
𝑁𝑐′(ℎ1:𝜏𝑐,𝜋) +

∑
𝑘∈ℕ

𝟙 {𝜏𝑘 ∈ U𝑐,𝜋(𝜖)} (𝜏𝑘+1 − 𝜏𝑘)

L
= N�

𝑐,𝜋(𝜏𝑐,𝜋) +
∑
𝑘∈ℕ

𝟙 {𝜏𝑘 ∈ U𝑐,𝜋(𝜖)} ℓ𝑐,𝜋

where the last equality holds in law, using that 𝜏𝑘+1 − 𝜏𝑘 is equal in law

to ℓ𝑐,𝜋.

Now, from Lemma 8.7.1, we can control the expected value of ℓ𝑐,𝜋
conditionally on the past history before each episode, by the deterministic

quantity

𝔼(𝜋𝑡)[ℓ𝑐,𝜋 |ℎ1:𝜏 , 𝑐𝜏] ≤ L
𝑑𝑒 𝑓
= max{(|C| + 2)𝐷M , 𝐷M + 2𝐵} .

Since the law of the stopping time ℓ𝑐,𝜋 is independent on other variables

8.9 IMED-KD: Finite Time Analysis 269

before the start of an episode, we deduce that

𝔼(𝜋𝑡)

[∑
𝑘∈ℕ

𝟙 {𝜏𝑘 ∈ U𝑐,𝜋(𝜖)} ℓ𝑐,𝜋
]

= 𝔼(𝜋𝑡)

[∑
𝑘∈ℕ

𝟙 {𝜏𝑘 ∈ U𝑐,𝜋(𝜖)}𝔼(𝜋𝑡)[ℓ𝑐,𝜋 |ℎ1:𝜏𝑘 𝑐𝜏𝑘 = 𝑐]
]

≤ 𝔼(𝜋𝑡)

[∑
𝑘∈ℕ

𝟙 {𝜏𝑘 ∈ U𝑐,𝜋(𝜖)}
]
L .

Further, remarking that

∑
𝑘∈ℕ 𝟙 {𝜏𝑘 ∈ U𝑐,𝜋(𝜖)} = |U𝑐,𝜋(𝜖)|, we deduce

that

𝔼(𝜋𝑡)[max

𝑐∈C
𝜋≠𝜋★

N�
𝑐,𝜋(𝑇)] ≤ 𝔼(𝜋𝑡)[max

𝑐∈C
𝜋≠𝜋★

N�
𝑐,𝜋(𝜏𝑐,𝜋)] + 𝔼(𝜋𝑡)[max

𝑐∈C
𝜋≠𝜋★

]|U𝑐,𝜋(𝜖)|]L .

Combined with the inequality Equation (8.55), and using where that

𝜏𝑐,𝜋 ≤ 𝑇, we obtain

𝔼(𝜋𝑡)[max

𝑐∈C
𝜋≠𝜋★

N�
𝑐,𝜋(𝑇)] ≤ 𝔼(𝜋𝑡)[max

𝑐∈C
𝜋≠𝜋★

(1 + 𝛼M(𝜖)) log(𝜏𝑐,𝜋)
KL

(
g𝑐,𝜋(�)

��g★𝑐 (�))]
+𝔼(𝜋𝑡)[max

𝑐∈C
𝜋≠𝜋★

|U𝑐,𝜋(𝜖)|]L

≤ max

𝑐∈C
𝜋≠𝜋★

(1 + 𝛼M(𝜖)) log(𝑇)
KL

(
g𝑐,𝜋(�)

��g★𝑐 (�))
+𝔼(𝜋𝑡)[max

𝑐∈C
𝜋≠𝜋★

|U𝑐,𝜋(𝜖)|]L .

We conclude the proof using Equation (8.53) to control

𝔼(𝜋𝑡)[max

𝑐∈C
𝜋≠𝜋★

|U𝑐,𝜋(𝜖)|] .

It remains to address the proof of Lemma 8.9.5, that controls the cardinal

of some undesirable sets of episodes. Controlling this number given the

fact that we can, independently of the played policy, control the length

of an episode, was enough to conclude on the regret. The proof will split

into two parts. Before deriving the proof, we introduce some technical

results that are used in the forthcoming analysis.

270 8 Exploiting dynamics knowledge with IMED-KD

8.10 Concentration inequalities

In this section, we state two concentration results used in the proof. First, a classical maximal inequality for

sub-Gaussian distributions. Then, a boundary crossing probability result suitable to the analysis of an IMED

strategy, adapted here to sub-Gaussian distributions.

Lemma 8.10.1 (Maximal concentration inequality) Under assumption 8.2.2, for any (𝑠, 𝑎)∈ C, for 𝑥<m𝑠,𝑎 ,and
integer 𝑛≥0, we have

ℙ
©«

⋃
𝑡≥1

𝑁𝑠,𝑎 (𝑡)≥𝑛

�̂�𝑠,𝑎(𝑡) < 𝑥
ª®®¬ ≤ exp(−𝑛 d(𝑥 | m𝑠,𝑎)) .

Proof. Indeed, by a Chernoff method, introducing some � > 0, and 𝜙(�) = 𝜎2�2/2 where 𝜎 = 1/2, we get,

provided that �𝜖 ≥ 𝜙(�),

ℙ(∃𝑡 , 𝑁𝑠,𝑎(𝑡) ≥ 𝑛, �̂�𝑠,𝑎(𝑡) −m(𝑠, 𝑎) > 𝜖)

= ℙ

(
∃𝑡 , 𝑁𝑠,𝑎(𝑡) ≥ 𝑛, exp(�

𝑁∑
𝑗=1

𝑍 𝑗) > exp(�𝑁𝑠,𝑎(𝑡)𝜖)
)

≤ ℙ

(
∃𝑁 ≥ 𝑛, exp(�

𝑁∑
𝑗=1

𝑍 𝑗 − 𝑁𝜙(�)) > exp(𝑁(�𝜖 − 𝜙(�))
)

≤ ℙ

(
∃𝑁 ≥ 𝑛, exp(�

𝑁∑
𝑗=1

𝑍 𝑗 − 𝑁𝜙(�)) > exp(𝑛(�𝜖 − 𝜙(�))
)

= 𝔼(𝜋𝑡)

[
max

𝑁≥𝑛
exp(�

𝑁∑
𝑗=1

𝑍 𝑗 − 𝑁𝜙(�))
]

exp

(
−𝑛(�𝜖 − 𝜙(�)

)
,

where𝑁 denotes a random stopping time and𝑊𝑛 = exp(�∑𝑛
𝑗=1
𝑍 𝑗−𝑛𝜙(�)) is a non-negative supermartingale

bounded by 1. By Doob’s maximal inequality the expectation term is thus upper bounded by 1. Optimizing

over �, we get

ℙ(∃𝑡 , 𝑁𝑠,𝑎(𝑡) ≥ 𝑛, �̂�𝑠,𝑎(𝑡) > m𝑠,𝑎 + 𝜖) ≤ exp(−𝑛𝜖2/(2𝜎2))
= exp (−𝑛d(m𝑠,𝑎 + 𝜖 |m𝑠,𝑎)) .

For reward distributions belonging to generic exponential family, concentration result is obtained in [35,

Corollary 2]. Specializing this to Gaussian distributions with variance 1/2, the Kullback-Leibler between

two distributions reduces to d. When assuming regular canonical one-dimensional exponential reward

distributions r(·), we can define the reward distributions as a function their means and abusively write

r(·) = (r𝑐) = (r(m𝑐)). Using this, we obtain more precisely

Theorem 8.10.2 (Boundary crossing probabilities) For all couple (𝑠, 𝑎)∈ C, for all 𝜖>0, for all 𝑛≥1, we have
for one-dimensional exponential distributions

ℙ

©«
⋃
𝑡≥1

�̂�𝑠,𝑎 (𝑡)<m𝑠,𝑎−𝜖
1≤𝑁𝑠,𝑎 (𝑡)≤𝑛

𝑁𝑠,𝑎(𝑡)KL(r(�̂�𝑠,𝑎(𝑡)), r(m𝑠,𝑎))≥ log(𝑛/𝑁𝑠,𝑎(𝑡))
ª®®®®®¬
≤ 𝐶𝜖

𝑛
√

log(𝑐𝜖𝑛)
,

8.10 Concentration inequalities 271

whereKL(r(�̂�𝑠,𝑎(𝑡)), r(m𝑠,𝑎)) = d(�̂�𝑠,𝑎(𝑡) | m𝑠,𝑎−𝜖)when assuming Gaussian distributions with standard deviation
𝜎 = 1/2, and where 𝑐𝜖 , 𝐶𝜖 >0 are explained in [35, Corollary 2].

It is then not difficult, scrutinizing the proof, to show that the same bound still holds now for sub-Gaussian

distributions. Importantly, in this case d is no longer the natural metric, but by Pinsker inequality, d always

controls it, although now in a possibly loose way. More precisely, in the case of Gaussian reward distributions,

we have KL(r𝑐 , r′𝑐) = (𝑚′𝑐 − 𝑚𝑐)2 /2𝜎2 = d(𝑚𝑐 | 𝑚′𝑐) while for the case of reward distributions with support in

[0, 1] that we consider (that are 𝜎 = 1/2 sub-Gaussian), by Pinsker’s inequality combined with properties of

total variation norm, it holds KL(r𝑐 , r′𝑐) ≥ ∥r𝑐 − r′𝑐 ∥2𝑇𝑉/2 ≥ 2(𝑚′𝑐 − 𝑚𝑐)2 = d(𝑚𝑐 | 𝑚′𝑐). That is, concentration

provides a high probability upper bound only on d(𝑚𝑐 | 𝑚′𝑐) but (of course) not on the more demanding

KL(r𝑐 , r′𝑐).

Discussion. The previous restriction is not problematic, as in the analysis, we use the concentration tools of

Lemma 8.10.1 and Theorem 8.10.2 after we deduce from inequalities involving the gains inequalities involving

the state-action means. This is what is done especially in Section 8.11 and Equation (8.67) by considering this

straightforward lemma.

Lemma 8.10.3 (Mean to Gain) For a finite set C, consider aggregates 𝑔 =
∑
𝑐∈C 𝑝𝑐 · 𝑚𝑐 and 𝑔′ =

∑
𝑐∈C 𝑝𝑐 · 𝑚′𝑐 ,

where ∀𝑐 ∈ C, 𝑚𝑐 , 𝑚
′
𝑐 ∈ ℝ, 𝑝𝑐 ∈ [0, 1] with

∑
𝑐∈C 𝑝𝑐 = 1. Let 𝑐 ∈ argmax𝑐∈C(𝑚′𝑐 − 𝑚𝑐) such that gap 𝑚′

𝑐
− 𝑚𝑐

is maximal. Then, for a given accuracy � > 0, 𝑔′ − 𝑔 ≥ � implies:

(𝑖) 𝑚′
𝑐
− 𝑚𝑐 ≥ 𝑔′ − 𝑔 ≥ 𝜖, (𝑖𝑖)

(
𝑚′
𝑐
− 𝑚𝑐

)
2/𝜎2 ≥

(
𝑔′ − 𝑔

)
2/𝜎2 , ∀𝜎 > 0.

Reminding that d(𝑥 | 𝑦) = (𝑥−𝑦)
2

2𝜎2
= 2(𝑥 − 𝑦)2, then equation (𝑖𝑖) above rewrites d

(
𝑚𝑐 | 𝑚′𝑐

)
≥ d(𝑔 | 𝑔′) as

desired for Equation (8.67) to hold. Hence, we only need a high-probability control on d
(
𝑚𝑐 | 𝑚′𝑐

)
to conclude

and not on KL(r𝑐 , r′𝑐). Now, one may prefer to use a more refined bound. In order to use a more refined

(pseudo-)metric d′ such as involving d′ = KL instead of KL, one would need reversed inequalities of the

form KL(𝑔′, 𝑔) = (𝑔′ − 𝑔)2 /2𝜎2 ≥ �𝑔,𝑔′d′(𝑔, 𝑔′) for some �𝑔,𝑔′ ≤ 1. Whenever these are available (such as

in one-dimensional exponential families), one would derive from (ii) d
(
𝑚′
𝑐
| 𝑚𝑐

)
≥ d(𝑔′ | 𝑔) the bound

d
(
𝑚′
𝑐
| 𝑚𝑐

)
≥ �𝑔,𝑔′d′(𝑔, 𝑔′). This in turn makes appear factors of the form 1/�𝑔,𝑔′ in the regret bounds, unless

we slightly reshape the IMED-type indexes to handle such factors.

Furthermore, we note it is possible to resort to another variant of Pinsker’s inequality specific to regular

canonical one-dimensional exponential distributions, in lieu of the one applied to distributions with bounded

support. Such distributions include Gaussian with known variance, Bernoulli or Poisson distributions as

special cases, see e.g. [34] for further examples, as well as the proof of the following result.

Lemma 8.10.4 (A variant of Pinsker’s inequality) When assuming regular canonical one-dimensional exponential
reward distributions r(·), for 𝑚<𝑚′, it holds that

KL(r(𝑚), r(𝑚′)) ≥ (𝑚
′ − 𝑚)2
2𝜎2

,

where 𝜎2=max

{
𝕍
𝑋∼r(𝑚′′)(𝑋) : 𝑚′′∈[𝑚 , 𝑚′]

}
.

We refer to Lemma 3 in Appendix A.2.A from [34] for more insights. Thus, using this result we can

assume regular canonical one-dimensional exponential reward distributions and ensure the same theoretical

guarantees by replacing 𝜎2 = 1/4 with max

𝑚∈[𝑚− ,𝑚+]
𝕍
𝑋∼r(𝑚)(𝑋) in metric d(· | ·), where 𝑚− and 𝑚+ are such that

m ⊂ [𝑚− , 𝑚+]. This enables to replace the assumption 8.2.2 assuming bounded support with the following

Assumption 8.10.1.

272 8 Exploiting dynamics knowledge with IMED-KD

Assumption 8.10.1 (An alternative to Assumption 8.2.2) We assume regular canonical one-dimensional
exponential family reward distributions r(·) with bounded mean m(·) ∈ [0, 1).

8.11 Bounded subsets of times (Proof of Lemma 8.9.5)

We regroup in this section, for completeness, the proofs of the remaining lemmas used in the analysis of

IMED-KD in Section 8.9.

Part 1

Proof. Lemma 8.9.5 We detail the proof to bound 𝔼(𝜋𝑡)
[���E𝑐,𝜋(𝜖)���] . The control of 𝔼(𝜋𝑡)[|E𝑐,𝜋(𝜖)|] is similar.

We first write���E𝑐,𝜋′(𝜖)��� = ∑
𝜏∈T

𝟙
{
𝑐𝜏+1 = 𝑐, �̃�𝜏+1 = 𝜋′, ∃𝜋 : 𝑁𝜋′(𝜏) ≤ 𝑁𝜋(𝜏), |g𝑐,𝜋(�) − �̂�𝜋(𝜏)| ≥ 𝜖

}
. (8.57)

Considering the stopped stopping times 𝜏𝑛= inf {𝜏∈T: 𝑐𝜏+1= 𝑐, �̃�𝜏+1=𝜋′ and 𝑁𝜋′(𝜏)≥𝑛} for 𝑛≥0, we will

rewrite the sum of indicators and use Lemma 8.10.1. We note that the set

{𝜏∈T: 𝑐𝜏+1= 𝑐, �̃�𝜏+1=𝜋′ and 𝑛≤𝑁𝜋′(𝜏)<𝑛 + 1}

is either empty or equal to {𝜏𝑛}. This is true for all rarely-switching algorithm (Algorithm 22), by construction

of the stopping event that ensures 𝑁𝜋′(𝜏) increases by one in the corresponding episode.���E𝑐,𝜋′(𝜖)��� ≤ 𝑇−1∑
𝑛=0

∑
𝜏∈T

𝟙 {𝑐𝜏+1 = 𝑐, �̃�𝜏+1 = 𝜋′, 𝑛 ≤ 𝑁𝜋′(𝜏) < 𝑛 + 1} (8.58)

×𝟙
{
∃𝜋 : 𝑛 ≤ 𝑁𝜋(𝜏), |g𝑐,𝜋(�) − �̂�𝜋(𝜏)| ≥ 𝜖

}
≤

𝑇−1∑
𝑛=0

∑
𝜏∈T

𝟙 {𝜏 = 𝜏𝑛 , 𝑐𝜏+1 = 𝑐, �̃�𝜏+1 = 𝜋′, 𝑛 ≤ 𝑁𝜋′(𝜏) < 𝑛 + 1} (8.59)

×𝟙
{
∃𝜋 : 𝑛 ≤ 𝑁𝜋(𝜏𝑛), |g𝑐,𝜋(�) − �̂�𝜋(𝜏𝑛)| ≥ 𝜖

}
≤

𝑇−1∑
𝑛=0

𝟙
{
∃𝜋 : 𝑛 ≤ 𝑁𝜋(𝜏𝑛), |g𝑐,𝜋(�) − �̂�𝜋(𝜏𝑛)| ≥ 𝜖

}
,

where in the last line we use that 𝑁𝜋′(𝜏) does increase by one in episode 𝜏. At this point, we make use of the

fact that g𝑐,𝜋(�) =
∑

𝑐′∈C+𝑐,𝜋(�)
p̃𝜋(𝑐)(𝑐′)m𝑐′ and

�̂�𝜋(𝜏) =
∑

𝑐′∈C+𝑐,𝜋(�)
p̃𝜋(𝑐)(𝑐′)�̂�𝑐′(𝜏)

with

p̃𝜋(𝑐)(𝑐′) =
p𝜋(𝑐)(𝑐′)∑

𝑐′∈C+𝑐,𝜋(�)
p𝜋(𝑐)(𝑐′)

so that

g𝑐,𝜋(�) − �̂�𝜋(𝜏) =
∑

𝑐′∈C+𝑐,𝜋(�)
p̃𝜋(𝑐)(𝑐′)

(
m𝑐′ − �̂�𝑐′(𝜏)

)
.

8.11 Bounded subsets of times (Proof of Lemma 8.9.5) 273

In particular, |g𝑐,𝜋(�) − �̂�𝜋(𝜏)| ≥ 𝜖 implies that ∃𝑐′ ∈ C+𝑐,𝜋(�), |m𝑐′ − �̂�𝑐′(𝜏)| ≥ 𝜖, otherwise one would have

|g𝑐,𝜋(�) − �̂�𝜋(𝜏)| <
(∑
𝑐′∈C+𝑐,𝜋(�)

p̃𝜋(𝑐)(𝑐′)
)
𝜖 = 𝜖. Hence, this shows that

���E𝑐,𝜋′(𝜖)��� ≤ 𝑇−1∑
𝑛=0

𝟙
{
∃𝜋, 𝑐′ ∈ C+𝑐,𝜋(�), 𝑛 ≤ 𝑁𝑐′(𝜏𝑛), |m𝑐′ − �̂�𝑐′(𝜏𝑛)| ≥ 𝜖

}
≤

𝑇−1∑
𝑛=0

𝟙

{
∃𝑐′ ∈

⋃
𝜋

C+𝑐,𝜋(�), 𝑛 ≤ 𝑁𝑐′(𝜏𝑛), |m𝑐′ − �̂�𝑐′(𝜏𝑛)| ≥ 𝜖

}
.

≤
𝑇−1∑
𝑛=0

𝟙 {∃𝑐′ ∈ C, 𝑛 ≤ 𝑁𝑐′(𝜏𝑛), |m𝑐′ − �̂�𝑐′(𝜏𝑛)| ≥ 𝜖} .

The last inequality implies

max

𝑐∈C
𝜋′∈Π

���E𝑐,𝜋′(𝜖)��� ≤∑
𝑐∈C

𝑇−1∑
𝑛=0

𝟙 {𝑛 ≤ 𝑁𝑐(𝜏𝑛), |m𝑐 − �̂�𝑐(𝜏𝑛)| ≥ 𝜖} . (8.60)

Taking the expectation of Equation (8.60), it comes

𝔼(𝜋𝑡)

[
max

𝑐∈C
𝜋′∈Π

���E𝑐,𝜋′(𝜖)���] ≤ ∑
(𝑠,𝑎)∈C

∑
𝑛≥0

ℙ
©«

⋃
𝑡≥1

𝑁𝑠,𝑎 (𝑡)≥𝑛

|�̂�𝑠,𝑎(𝑡) −m𝑠,𝑎 | ≥ 𝜖
ª®®¬ . (8.61)

From Lemma 8.10.1, previous Equation (8.61) implies

𝔼(𝜋𝑡)

[
max

𝑐∈C
𝜋′∈Π

���E𝑐,𝜋′(𝜖)���] ≤∑
𝑐∈C

∑
𝑛≥0

2 exp(−𝑛 d(m𝑐−𝜖 | m𝑐)) . (8.62)

From Pinsker’s inequality, previous Equation (8.62) implies

𝔼(𝜋𝑡)

[
max

𝑐∈C
𝜋′∈Π

���E𝑐,𝜋′(𝜖)���] ≤∑
𝑐∈C

∑
𝑛≥0

2 exp

(
−𝑛𝜖2/2𝜎2

)
=

2 |C|
1 − 𝑒−𝜖2/2𝜎2

, (8.63)

where 𝜎2 = 1/4, assuming 1/2-sub-Gaussian reward distributions. Finally, we note that

1

1 − 𝑒−𝜖2/2𝜎2

=
𝑒𝜖

2/2𝜎2

𝑒𝜖
2/2𝜎2 − 1

≤ 2𝜎2𝑒𝜖
2/2𝜎2

𝜖2

= 𝑏𝜖 .

Part 2

Proof. of Lemma 8.9.5

We now prove the upper bound on 𝔼(𝜋𝑡)

[
max

𝑐∈C
𝜋∈Π

���K𝑐,𝜋(𝜖)
���] . By definition of the set, we have

���K𝑐,𝜋′(𝜖)
��� =

∑
𝜏∈T

𝟙
{
𝑐𝜏+1= 𝑐, �̃�𝜏+1=𝜋′, ∀𝜋+∈V★, 0<𝑁𝜋+(𝜏)<𝑁𝜋′(𝜏)

}
×𝟙

{
�̂�𝜋+(𝜏)≤g𝑐,𝜋+(�)−𝜖

}
×𝟙

{
log (𝑁𝜋′(𝜏)) ≤ 𝑁𝜋+(𝜏)KL(�̂�𝜋+(𝜏)|g𝑐,𝜋+(�)− 𝜖) + log (𝑁𝜋+(𝜏))

}
. (8.64)

274 8 Exploiting dynamics knowledge with IMED-KD

Considering again the stopped stopping times 𝜏𝑛 = inf {𝜏∈T: 𝑐𝜏+1= 𝑐, �̃�𝜏+1=𝜋′ and 𝑁𝜋′(𝜏)≥𝑛} for 𝑛 ≥ 0,

we will rewrite the previous sum and use boundary crossing probabilities for one-dimensional exponential

family distributions. We recall that the set

{𝜏∈T: 𝑐𝜏+1= 𝑐, �̃�𝜏+1=𝜋′ and 𝑛≤𝑁𝜋′(𝜏)<𝑛 + 1}

is either empty or equal to {𝜏𝑛}.���K𝑐,𝜋′(𝜖)
���

≤
∑
𝜏∈T

𝟙
{
𝑐𝜏+1 = 𝑐, �̃�𝜏+1 = 𝜋′, ∀𝜋∈V★, 0 < 𝑁𝜋(𝜏) < 𝑁𝜋′(𝜏), �̂�𝜋(𝜏) ≤ g𝑐,𝜋(�) − 𝜖

}
×𝟙

{
log (𝑁𝜋′(𝜏)) ≤ 𝑁𝜋(𝜏)KL(�̂�𝜋(𝜏)|g𝑐,𝜋(�) − 𝜖) + log (𝑁𝜋(𝜏))

}
≤

𝑇−1∑
𝑛=0

∑
𝜏∈T

𝟙 {𝑐𝜏+1 = 𝑐, 𝜏 = 𝜏𝑛 , �̃�𝜏+1 = 𝜋′, 𝑛 ≤ 𝑁𝜋′(𝜏) < 𝑛 + 1} (8.65)

×𝟙
{
∀𝜋∈V★, 0 < 𝑁𝜋(𝜏), �̂�𝜋(𝜏) ≤ g𝑐,𝜋(�) − 𝜖

}
×𝟙

{
∀𝜋∈V★, log(𝑛) ≤ 𝑁𝜋(𝜏)KL(�̂�𝜋(𝜏)|g𝑐,𝜋(�) − 𝜖) + log (𝑁𝜋(𝜏))

}
≤

𝑇−1∑
𝑛=0

𝟙
{
∀𝜋∈V★, 0 < 𝑁𝜋(𝜏𝑛), �̂�𝜋(𝜏𝑛) ≤ g𝑐,𝜋(�) − 𝜖

}
×𝟙

{
∀𝜋∈V★, log(𝑛) ≤ 𝑁𝜋(𝜏𝑛)KL(�̂�𝜋(𝜏𝑛)|g𝑐,𝜋(�) − 𝜖) + log (𝑁𝜋(𝜏𝑛))

}
(8.66)

Let us consider for stationary policy 𝜋∈Π and starting time 𝜏∈T,

𝑐𝜋𝜏 ∈ argmin

𝑐′∈C+𝑐,𝜋(�)
�̂�𝑐′(𝜏) −m𝑐′ .

Then, the following inequality and implication holds (see Lemma 8.10.3):

�̂�𝑐𝜋𝜏 (𝜏)−m𝑐𝜋𝜏 ≤ �̂�𝜋(𝜏)−g𝑐,𝜋(�) =
∑

𝑐′∈C+𝑐,𝜋(�)
p̃𝜋(𝑐)(𝑐′)(�̂�𝑐′(𝜏)−m𝑐′) .

(
�̂�𝜋(𝜏)≤g𝑐,𝜋(�) − 𝜖

)
⇒

(
�̂�𝑐𝜋𝜏 (𝜏)≤m𝑐𝜋𝜏 − 𝜖 and KL(�̂�𝜋(𝜏)|g𝑐,𝜋(�) − 𝜖)≤KL(�̂�𝑐𝜋𝜏 (𝜏)|m𝑐𝜋𝜏 − 𝜖)

)
(8.67)

Note also that since 𝑐𝜋𝜏 ∈ C+𝑐,𝜋(�) and by construction 𝑁𝜋(𝜏) = min𝑐′∈C+𝑐,𝜋(�) 𝑁𝑐′(𝜏), then 𝑁𝜋(𝜏𝑛) > 0 implies

𝑁𝑐𝜋𝜏𝑛
(𝜏𝑛) > 0. In particular, Equation (8.65) and previous Equation (8.67) imply���K𝑐,𝜋′(𝜖)

��� ≤ min

𝜋∈V★

𝑇−1∑
𝑛=0

𝟙
{
0 < 𝑁𝑐𝜋𝜏𝑛

(𝜏𝑛), �̂�𝑐𝜋𝜏𝑛
(𝜏𝑛) ≤ m𝑐𝜋𝜏𝑛

− 𝜖
}

×𝟙
{
log(𝑛) ≤ 𝑁𝑐𝜋𝜏𝑛

(𝜏𝑛)KL(�̂�𝑐𝜋𝜏𝑛
(𝜏𝑛)|m𝑐𝜋𝜏𝑛

− 𝜖) + log

(
𝑁𝑐𝜋𝜏𝑛
(𝜏𝑛)

)}
≤ min

𝜋∈V★

∑
𝑐′∈C+𝑐𝜏+1

,𝜋(�)

𝑇−1∑
𝑛=0

𝟙 {0 < 𝑁𝑐′(𝜏𝑛), �̂�𝑐′(𝜏𝑛) ≤ m𝑐′ − 𝜖}

×𝟙 {log(𝑛) ≤ 𝑁𝑐′(𝜏𝑛)KL(�̂�𝑐′(𝜏𝑛)|m𝑐′ − 𝜖) + log (𝑁𝑐′(𝜏𝑛))} .

This last inequality implies

max

𝑐∈C
𝜋′∈Π

���K𝑐,𝜋′(𝜖)
��� ≤ ∑

𝑐∈C

𝑇−1∑
𝑛=0

𝟙 {1 ≤ 𝑁𝑐(𝜏𝑛), �̂�𝑐(𝜏𝑛) ≤ m𝑐 − 𝜖}

×𝟙 {log(𝑛) ≤ 𝑁𝑐(𝜏𝑛)KL(�̂�𝑐(𝜏𝑛)|m𝑐 − 𝜖) + log (𝑁𝑐(𝜏𝑛))} (8.68)

8.11 Bounded subsets of times (Proof of Lemma 8.9.5) 275

Taking the expectation of Equation (8.68), it comes

𝔼(𝜋𝑡)

[
max

𝑐∈C
𝜋′∈Π

���K𝑐,𝜋′(𝜖)
���] ≤

∑
𝑐∈C

𝑇−1∑
𝑛=0

ℙ
©«

⋃
𝑡≥1

𝑁𝑐 (𝑡)≥𝑛

�̂�𝑐(𝑡) < m𝑐 − 𝜖
ª®®¬

+
∑
𝑐∈C

𝑇−1∑
𝑛=2

ℙ

©«
⋃
𝑡≥1

�̂�𝑐 (𝑡)<m𝑐−𝜖
1≤𝑁𝑐 (𝑡)≤𝑛

𝑁𝑐(𝑡)d(�̂�𝑐(𝑡) | m𝑐−𝜖)≥ log(𝑛/𝑁𝑐(𝑡))
ª®®®®®¬
.

From Lemma 8.10.1 and Theorem 8.10.2, previous Equation (8.69) implies

𝔼(𝜋𝑡)

[
max

𝑐∈C
𝜋′∈Π

���K𝑐,𝜋′(𝜖)
���] ≤ |C| (2𝜎2𝑒𝜖

2/2𝜎2

𝜖2

+ 1 + 𝑐−1

𝜖 + 2𝐶𝜖

√
log(𝑐𝜖𝑇)

)
. (8.69)

Indeed, we have

𝑇−1∑
𝑛=2

𝐶𝜖

𝑛
√

log(𝑐𝜖𝑛)
≤ 1 + 𝑐−1

𝜖 + 𝐶𝜖

𝑇−1∑
𝑛≥1+𝑐−1

𝜖

𝑐𝜖

𝑐𝜖𝑛
√

log(𝑐𝜖𝑛)

≤ 1 + 𝑐−1

𝜖 + 𝐶𝜖

∫ 𝑇

𝑐−1

𝜖

𝑐𝜖 𝑑𝑥

𝑐𝜖𝑥
√

log(𝑐𝜖𝑥)
= 1 + 𝑐−1

𝜖 + 2𝐶𝜖

√
log(𝑐𝜖𝑇) .

276 8 Exploiting dynamics knowledge with IMED-KD

[75]: Puterman (1994), Markov Decision
Processes — Discrete Stochastic Dynamic
Programming

8.12 Choice of policies

In this section, we discuss the construction of the set Π𝜏. Hereafter, we

consider that a set of policies to be small if its size does not exceed 10
6
,

somewhat arbitrarily, motivated by numerical applications.

Small set of policies

First, there are cases in which Π is small. This situation may typically

happen in real-world applications when a learner must choose between

a limited set of policies prescribed by experts. A typical example is that

of agriculture in which policies are intervention plans carefully built

by agronomists, with a few parameters, despite considering a complex

system.

Small set of optimal policies

Then, even when Π is large, there are cases when Π★
is known to

belong to a small set of policies. For instance in [75][Theorem 8.11.3],

the author detail the case of an inventory problem when an optimal

policy can be searched in a restricted set of

(𝐴+𝑆−1

𝑆

)
many non-decreasing

policies instead of all possible 𝐴𝑆 ones. For an MDP with 𝑆 = 150 states

and 𝐴 = 4 actions, there are over 10
90

deterministic policies but only

585276 ≃ 10
6

non-decreasing policies. Likewise, in goal-state MDPs, one

can restrict to policies aiming at reaching (and staying) in a single state

as fast as possible (they can be computed knowing the transitions of the

MDP), yielding only 𝑆 many policies to consider.

Considering a small enough set of policies

Finally, generic structural properties of the MDP can be used, such as

restricting to stationary and unichain policies since an optimal policy

satisfies both conditions. Also, when the MDP is known to be unichain,

it then satisfies Assumption 8.2.3 with 𝑘 = 1, which suggests to simply

choose Π𝜏 = V̂𝜋★
𝜏
(1). More generally, one can set Π𝜏 = V̂𝜋★

𝜏
(𝑘) provided

that |V𝜋(𝑘)| =
(𝑘
𝑆

)
𝐴𝑘 is small. When 𝑘 is unknown, one may choose

Π𝜏 = V̂𝜋★
𝜏
(𝑘) ∪ Γ where 𝑘 satisfies

(𝑘
𝑆

)
𝐴𝑘 ≤ 10

6
and Γ is a small set of

policies uniformly randomly chosen in Π \ V̂𝜋★
𝜏
(𝑘). This indeed ensures

that Π𝜏 contains an improving policy over �̂�★
𝜏 with positive probability,

which may be interesting for the practitioner. Because the set of all

deterministic stationary is finite, albeit large, the expected time to wait

before it belongs to the set of selected policies is therefore finite and

controlled. Furthermore, while this set is large, we mention that it is not

numerically costly to sample a polcy from that large set since it only

consists in sampling 𝑆 actions from the 𝑆 sets A𝑠 of cardinal at most 𝐴.

8.12 Choice of policies 277

[119]: Grassmann et al. (1985), ‘Regenera-

tive Analysis and Steady State Distribu-

tions for Markov Chains’

Computing the set of neighborhood policies

We now explain how we compute Π𝜏(1) which is the 1-neighborhood

of the empirical optimal policy augmented by some randomly chosen

policies. Computing the indexes of policies in Π𝜏(1) is more complicated

than it seems because some polcies might be multichain, i. e. have multiple

recurrent classes. In those cases, neither the gain nor the index is uniquely

defined, and we must decompose the policy on all its recurrent classes in

order to compute one gain and one index per class.

The k-neighborhood of a policy can be computed recursively from the

1-neighborhood. To compute the one neighborhood, we iterate through

all states and actions to create 𝑆 × (𝐴 − 1) new policies. Let’s denote

by 𝜋𝑠𝑎 the policy that corresponds to the modification of �̂�★ where

action 𝑎 (different from �̂�★(𝑠)) is chosen in state 𝑠. We compute the

associated Markov chain thanks to our knowledge of transitions. If the

policy is unichain, i. e. the associated Markov chain has only one recurrent

class, then we compute the gain (unique) of the policy and add it to the

1-neighborhood pool.

If the policy is multichain, i. e. the associated Markov chain has 𝑝 > 1

recurrent classes, then there are up to 𝑝 gains associated to this policy,

one for each recurrent class. In this case, we compute all the recurrent

classes, all the associated gains (and effective number of pulls) and we

register 𝑝 different policies in Π𝜏(1), one for each recurrent classes. This

way, we will compute 𝑝 different indexes for the policy 𝜋𝑠𝑎 , associated

to each possible gain. In a sense, we derive from a multichain policy 𝑝

unichain policies.

To find the different stationary distributions, we use the GTH-algorithm

(Grassmann, Taksar and Heyman algorithm), [119]. The set of neighbor-

hood policies is re-computed only when the empirical policy changes,

but we still randomly sample distributions to add to the set Π𝜏 as de-

scribed in the main part of the paper. Also, if a randomly selected policy

is multichain, we apply the same decomposition procedure that we

described.

Now that we specified the Event function to use, how to compute the

set of considered policies in the Algorithm 22 and the Bandit algorithm

that we consider to specify how to choose the next policy to play at the

end of an episode, i. e. IMED, we are ready to run experiments that will

assess the soundness of our algorithmic design and theoretical analysis

of IMED-KD.

278 8 Exploiting dynamics knowledge with IMED-KD

3: Source code is available on github

8.13 Numerical experiments

In the final section of this chapter, we discuss the practical implementation

of the IMED-KD algorithm, and present some numerical experiments
3
.

We consider several environments that we already encountered in the pre-

vious Chapter 7, Riverswim, Nasty, and two gridworld-like environments,

2-rooms and 4-rooms.

Comparing IMED-KD with other RL algorithms

In those environments, we illustrate the performance of IMED-KD against

the strategies UCRL3 [86], PSRL [90] and Q-learning (run with discount

𝛾 = 0.99 and optimistic initialization). PSRL and UCRL3 use a confidence

parameter to control the quality of the MDP approximation, which is set to

0.05 in the experiments. The � parameter of IMED-KD plays a similar role,

and we therefore use � = 0.05/|S| to ensure a fair comparison. IMED-KD

uses value iteration as a routine, which is faster than the extended value

iteration used in UCRL3. Q-learning takes an exploration parameter, 𝜖,

or exploration scheme when 𝜖 is slowly decreased with time. We report

average algorithmic regret curves computed from 2048 independent

experiments along with quantiles 0.1 and 0.9. The considered horizon

depends on the environment as some are "easier" than others in the time

required to see regret curves exhibit their logarithmic behaviors.

Riverswim

First, RiverSwim (Figure 8.3), which is difficult to navigate and require

the agent to "figure out" a difficultly attainable large reward is located at

one end of the chain-like environment while a small but easy obtainable

reward is located at the other end. In each of the 𝑛 states, there are two

𝑠𝐿𝑠𝐿−1

0.6
(𝑟 = 0.999)0.6

0.35

1

0.35

0.05

1

0.4

𝑠1

0.4

0.6

0.05

1

0.6

1

(𝑟 = 0.05)

𝑠2

0.35

0.05

1

𝑠3

0.6

0.35

0.05

1

Figure 8.3: The 𝑛-states RiverSwim MDP

actions RIGHT and LEFT. In Figure 8.3, the LEFT action is represented

with a dashed line and the RIGHT with plain line. Rewards are located

at the extremities of the MDP, with a small reward in left initial state

𝑠1 and large reward in the rightmost state 𝑠𝑛 . Starting from state 𝑠1,

this setting has proven to be a challenging one because of the large

amount of non-rewarding exploration necessary to find the optimal

policy. We consider the 6-state and 25-state instances, which allows us to

compare how algorithms behave depending on the amount of necessary

exploration.

https://github.com/fabienpesquerel/Logarithmic-regret-in-communicating-MDPs-Leveraging-known-dynamics-with-bandits.git

8.13 Numerical experiments 279

0 1 2 3 4 5
Time steps ×103

0.0

0.5

1.0

1.5

2.0

2.5

Re
gr

et
 T

g*
-s

um
_t

 r_
t

×102 ErgodicRiverSwim-S6-v0
IMED-KD
UCRL3-KD
PSRL-KD
Q-learning

0 1 2 3 4 5
Time steps ×103

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
gr

et
 T

g*
-s

um
_t

 r_
t

×103 ErgodicRiverSwim-S25-v0
IMED-KD
UCRL3-KD
PSRL-KD
Q-learning

Figure 8.4: Regret on RiverSwim with 6 states (left) and 25 states (right)

Results Plots of expected regret are depicted in Figure 8.4. Q-learning is

struggling despite its optimistic initialization, while IMED-KD is on par

with PSRL on both experiments. The regret of UCRL3 scales differently

with the number 𝑛 of states than the one of IMED-KD and PSRL, although

it remains controlled.

Nasty

Then we consider the nasty (Figure 8.5), where two high reward cycles

are separated by a bottleneck action. The difficulty here is that agent

must not switch too often between the cycles to avoid incurring the large

cost induced by the traversal of the bottleneck. More precisely, in this

0.99

0.01

0.990.01

(𝑟 = 0.99)

(𝑟 = 0.99)

(𝑟 = 0.99)

𝑠0𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

(𝑟 = 0.94)

(𝑟 = 0.94)

(𝑟 = 0.94)
0.5

0.5
0.5

0.5

Figure 8.5: The Nasty MDP

setting, there are two promising cycles separated by a small chain of

one bottleneck state with no associated reward, which may induce an

“oscillation" of a learning agent between the two cycles, paying the cost

of the travel along the chain each time it changes cycle (policy).

Results Plots of expected regret are depicted in Figure 8.6. IMED-KD

and PSRL are highly competitive and perform similarly with a slight

advantage of IMED-KD while UCRL3 is not doing so well, worse than

Q-learning, which itself suffers a large and linear-shaped regret.

280 8 Exploiting dynamics knowledge with IMED-KD

0 1 2 3 4 5 6 7
Time steps ×103

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
gr

et
 T

g*
-s

um
_t

 r_
t

×102 Nasty-v0
IMED-KD
UCRL3-KD
PSRL-KD
Q-learning

Figure 8.6: Regret curves on the Nasty environment

𝑛-Rooms

Finally, we consider two grid-like environments, 4-rooms and 2-rooms (Fig-

ure 8.7). Both are sparse reward environments with close-to-deterministic

transitions.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

Figure 8.7: The 4-rooms (left) and 2-rooms (right) MDPs

4-rooms is a grid-like environment with 20 states and 2-rooms is an

environment with 55 states. For both those grid-like environments there

are 4 cardinal actions where transitions are close to deterministic with a

8.13 Numerical experiments 281

0.8 chance of going in the intended direction. A reward of 0.99 is located

in the goal state (highlighted in yellow), while it is zero elsewhere. After

reaching the goal, the agent is positioned again in the initial red-state.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps ×104

0

1

2

3

4

5

6

Re
gr

et
 T

g*
-s

um
_t

 r_
t

×102 Gridworld-4-room-v0
IMED-KD
UCRL3-KD
PSRL-KD
Q-learning

0.0 0.2 0.4 0.6 0.8 1.0
Time steps ×104

0

1

2

3

4

Re
gr

et
 T

g*
-s

um
_t

 r_
t

×102 Gridworld-2-room-v0
IMED-KD
UCRL3-KD
PSRL-KD
Q-learning

Figure 8.8: Regret on 4-rooms (left) and 2-rooms (right)

Results As shown in the left part of Figure 8.8 reporting the results on

the 4-rooms environment, IMED-KD outperforms the others by a large

margin. Even for horizons as large as 10
5
, we cannot observe a bend in

the Q-learning regret curve while it occurs around time step 6 × 10
4

for

UCRL3. We show this in Figure 8.9 depicting the result of an experiment

ran on 4-rooms with large horizon of 100 000, but only 1024 runs. The

regret curve IMED-KD is then almost blend with the x-axis, but we can

see the UCRL3 is indeed learning as its regret curve start to bend around

time step 60 000.

0.0 0.2 0.4 0.6 0.8 1.0
Time steps ×105

0

1

2

3

4

5

Re
gr

et
 T

g*
-s

um
_t

 r_
t

×103 Gridworld-4-room-v0
IMED-KD
UCRL3-KD
PSRL-KD
Q-learning

Figure 8.9: Regret curves in the 4-rooms

environment with horizon of 100 000

In the right part of Figure 8.8 which report the result on the 2-rooms

environment, it can be observed that IMED-KD is again, and by far,

the best of tested algorithm in this environment. Even PSRL which was

somewhat competitive in 4-rooms suffers a large linear regret for a very

long time. In fact, we cannot find a reasonable horizon such that regret

curves start bending. Those two results emphasize the effectiveness of

IMED-KD in grid-like environment.

282 8 Exploiting dynamics knowledge with IMED-KD

Benefit of the rarely-switching Algorithm

In this last series of experiments, we illustrate the potential benefit of

Algorithm 22 itself, by experimentally comparing Algorithm 22 instanti-

ated on others Bandits strategies. Indeed, we have combined in IMED-KD

Algorithm 22 with the IMED approach, but one could in principle con-

sider a UCB or TS approach as well. The IMED algorithm is used in line

13 of the Algorithm 22 where, IMED indexes are computed for each of

the policies in the considered policy space and the IMED selection rule

is applied to compute the policy to play for the next episode.

While we do not extend the theoretical analysis to other Bandit algo-

rithms, we provide in this section, numerical experiments illustrating the

performance of the rarely-switching version of TS and UCB, respectively.

For these experiments, we assume Gaussian-like reward distributions.

Because the reward are bounded in [0, 1], we can assume that the variance

is upper bounded by
1

2
. More precisely, TS-RS (Thompson Sampling

with Rarely Switching) consists in using the following TS selection

rule in line 13 of Algorithm 22. For all policy 𝑎, we sample a reward

𝑥𝑎(𝑡) from posterior distribution N(�̂𝑎(𝑡), 1

2

√
𝑁𝑎 (𝑡)
) and select the pol-

icy with the largest sample, 𝜋𝑡+1 ∈ argmax 𝑥𝑎(𝑡). While UCB-RS (UCB

with Rarely Switching) consists in using the following UCB selection

rule in line 11 of Algorithm 22. For all policy 𝑎, we compute a reward

upper bound 𝑢𝑎(𝑡) from UCB index for
1

2
sub-Gaussian distributions,

𝑢𝑎(𝑡) = �̂𝑎(𝑡)+
√

log 𝑡

2𝑁𝑎 (𝑡) and select the policy with the largest upper bound,

𝜋𝑡+1 ∈ argmax 𝑢𝑎(𝑡).

Figure 8.10: Testing and comparing Algorithm 22 with TS and UCB as based bandit strategy

We compare those strategies in the 6-states RiverSwim environment

Figure 8.10 (right) where it can be seen that Algorithm 22 can indeed be

used, at least experimentally, with other bandit sampling strategies with

good empirical performances. Still, we observe that our original design

suffer the smallest regret. We also compare the designs on the Nasty

environment Figure 8.10 (left) where it can be seen that IMED-KD still is

better that the other algorithms, albeit by a margin so small that its can

be considered equivalent ot other designs in this experimental setting.

Whatever the experiments, Algorithm 22 seems like a good enough

design to be used with other bandit strategies and our preferred and

studied strategy IMED-KD, seems to be empirically the best.

8.14 Conclusion 283

8.14 Conclusion

Before wrapping up this chapter, we mention the next step that could be

taken to enhance the reach of the work presented. This step would be to

remove the no-laziness assumption by making � adaptive.

Adaptive �

When the gap between the gain of an optimal policy and the second-

largest gain achievable on an MDP, it could be that the chosen value of �
impair our IMED-KD from distinguishing between the two and maybe

even worse, reverse the order of the best two gains. Mathematically, it

could be that the ordering of the policies according to 𝑔𝜋 is different

from the one computed from the modified gains 𝑔
�
𝜋 where only state-

action pairs that are visited with a frequency larger than � are taken into

account in the computation of the modified gain. Because reward are

bounded, the error is controlled by � and therefore the order of policies

with different gains is preserved if � is smaller than half of the smallest

difference between gains.

Therefore, we know that if � is small enough, one can preserve the

ordering of policies, thus making IMED-KD safe. Since we don’t know

the gap in advance, no fixed value of � will do in every environment. One

promising solution seems to make � a decreasing function of the time 𝑇,

where �(𝑇) tends to 0 as 𝑇 tends to infinity. This way, we should be sure

that, after a horizon 𝑇0, �(𝑇0) is small enough to preserve the ordering of

gains. We provide below a sketch of proof.

Regret under adaptive parameter: Sketch of proof

Note that provided that � < 𝜖M(0)
2mmax𝑆

, then if some 𝜋′ ∈ V𝜋 satisfies,

g𝑐,𝜋′(�) > g𝑐,𝜋(�), then it also satisfies g𝑐,𝜋′ > g𝑐,𝜋, hand thus a policy

improvement can be obtained correctly in a neighborhood of any policy.

Unfortunately, since 𝜖M(0) is unknown, this motivates to consider a �𝑡
decreasing with 𝑡 and to introduce𝑇0 = min{𝑡 : �𝑡 <

𝜖M(0)
2mmax𝑆

}. For �𝑡 → 0,

𝑇0 < ∞ and for all 𝑇 ≥ 𝑇0 then the regret for subsequent time steps

is controlled by RM(A, 𝑇 − 𝑇0), hence RM(A, 𝑇) ≤ 𝑇0 + RM(A, 𝑇 − 𝑇0).
Upper-bounding 𝐾(𝜖, �) by 𝐾(𝜖, 0) and replacing d

(
g𝑐,𝜋(�)

��g★𝑐 (�)) by

its worst approximation d
(
g𝑐,𝜋(�𝑇0

)
��g★𝑐 (�𝑇0

)
)
, we can hence obtain the

following upper bound on the regret RM(A, 𝑇),

𝑇0 +

max

𝑐∈C
𝜋≠𝜋★

(1 + 𝛼M(𝜖)) log(𝑇 − 𝑇0)
d
(
g𝑐,𝜋(�𝑇0

)
��g★𝑐 (�𝑇0

)
)

+𝐾𝑇(𝜖, 0)(𝐷M + 2𝐵)

 (𝐷M + 2𝐵) |C| ,

under the only assumption that �𝑡 decreases towards 0 with 𝑡.

To wrap up

In this chapter, we studied regret minimization in communicating MDPs

with known dynamics but unknown reward functions, and introduced a

284 8 Exploiting dynamics knowledge with IMED-KD

class of rarely-switching algorithms, whose design allows for leveraging

the connectivity structure induced by the (known) transition function via

considering the recurrent classes of the stationary policies. We presented

IMED-KD, a rarely-switching algorithm that relies on an IMED-style

index function. It admits an efficient implementation and significantly

outperforms existing algorithms empirically. Under mild assumptions, we

derived a finite-time, problem-dependent, and logarithmic regret bound

for IMED-KD. Regret lower bounds for this setting (and communicating

MDPs in general) are open, to our best knowledge, and deriving them is an

interesting, yet challenging, direction for future work. Other interesting

future directions include deriving adaptive rules to tune the parameter

� (used to control the gains) and to relax the laziness assumption,

even though some restrictive assumption seems required to ensure

computational efficiency.

Conclusion

A meaningful research path 9
9.1 Information per unit of

computation 287
9.2 Structure of policy space 288

In this thesis, we modelled and studied two related problems of sequential

decision-making. The first one is Bandit. We introduced in Chapter 3,

where we gave a lot of intuition about the notion of progress per unit of

interaction. In particular, we insisted on the class of learner algorithms,

that are those algorithms with uniformly fast convergent rate. After

introducing some optimal algorithms, we questioned in Chapter 4 the

speed at which information can be processed by an optimal learning

algorithm. We framed this question as one of numerical complexity

and studied how the per-interaction time and space complexities can be

reduced. This search led us to discover FMED and OMED that greatly

improve the processing speed. In Chapter 5, we focused on how to

exploit structural information about a Bandit problem. We showed that,

in some setting, it is possible to exploit the knowledge of a structure

without necessarily estimate the structure. The second setting extends the

Bandit learning problem. We introduced in Chapter 6 the average-reward

Reinforcement-Learning problem. We explained how a lower bound

on the logarithmic growth rate of regret is unknown in general and

known for the particular case of ergodic MDP. For MDPs satisfying the

ergodic assumption, we presented in Chapter 7 the IMED-RL algorithm

that we proved to be optimal. Furthermore, the careful algorithmic

design of IMED-RL allowed it to be highly performant and suffer a very

small finite time empirical regret on all tested environments, even some

communicating only. In Chapter 8, we tried to depart from this restrictive

ergodic hypothesis. We studied a problem that is a priori simpler of

solving the average-reward learning problem in an MDP where the

transitions are known and reward distributions unknown. The fact that

the learner must actively seek information in parts of the state space

that it is not guaranteed to visit by assumption make the problem highly

non-trivial, even when the transition probabilities are known. As often,

one we try to answer a question, many more await around the corner.

9.1 Information per unit of computation

In the Chapter 4 devoted to making the most out of every sample from a

computational complexity viewpoint, we mentioned a possible improve-

ment of the work this chapter is based on, the aAFMED Algorithm 17. In

the short term, it should be possible to investigate, first empirically, next

theoretically such an online method to compute indexes of an optimal

Bandit algorithm. One could also add the FIMED 14 algorithmic method

to our presented IMED-RL 21 and IMED-KD 22 algorithms which would

improve the numerical complexity of these two algorithms. In particular

IMED-RL, which is optimal in the ergodic setting would greatly benefit

from such an improvement as it can be slower than other algorithms in

some environment, as shown in our experiments.

In a longer time horizon, one could really think of investigating the

notion of numerical complexity of optimal algorithms. For instance, is

288 9 A meaningful research path

1: given that the longest simple path

problem is NP-hard, it is not impossi-

ble that it is the case.

it possible to give a lower bound on the per-time-step time complexity

of a uniformly fast learning algorithm? Does this bound changes if we

consider the class of optimal algorithms? Similarly, we may investigate

the space complexity. How much information is it necessary to store to

guarantee the existence of a uniformly fast convergent algorithm? Of an

optimal algorithm? We could first try to investigate those questions in

the Bandit setting then try to expand the findings and intuitions to the

more general Reinforcement Learning setting.

In a much longer horizon, it would be interesting to investigate other

learning settings and expand the previous work to understand better the

notion of information per unit of interaction that we crafted in this thesis.

For instance, consider the following problem. An agent is performing a,

possibly random, walk on a bounded smooth manifold. After 𝑡 time steps,

how much did we learn about the manifold? Did we learn about local

curvature? Did we learn about genus? Did we learn about 𝛽-skeleton? In

short, what is the maximal rate of topological-information acquisition? It

seems like most of the tools are ready to be used to start investigating

these kinds of questions. From a sequential decision-making viewpoint,

one could even hope to build a physicist assistant. Given some question

that we have about nature, one could answer what is the most likely next

experiment to make in order to maximize our information acquisition

about the world. With such purposes in mind, first studying the numeri-

cal complexity guarantee of sequential decision-making algorithms is

necessary. Furthermore, this would require developing mathematical

tools suited to the study of finite time guarantees.

9.2 Structure of policy space

In an MDP, the space of policy is highly structured. It means that,

by playing a policy, we can learn information about other policies. In

Chapter 7, we studied quite the extreme case of ergodic MDPs where

all policies share the same set of recurrent states. Basically, the need

for active exploration is reduced to zero. In Chapter 8, we made a first

step towards the exploitation of the structure in communicating only

MDPs.

Yet a lot of work remains to be done to fully understand the structure of

the policy space in MDPs and the speed at which the average-reward

learning problem can be solved. In the future, investigating a lower bound

for communicating only MDPs should really help the community to

better understand the structure of the policy space and the cost of active

exploration. While it is difficult to say how long such an investigation

would last, it surely is worth the research. Once a lower bound is known,

it would be much easier to craft meaningful algorithms. In the case where

such a lower bound involve a combinatorial optimization problem or a NP-

hard problem
1
, the need for efficient relaxations and estimations would

surely foster research. Following the intuition presented in Chapter 6,

in the space of policy, a future research question could therefore be

to understand the minimal subset of policies one need to consider

performing a stochastic gradient ascent leading to an optimal policy.

9.2 Structure of policy space 289

2: The argmax of the Q-function changes

in one state

Linked with the previous topic is the question of the space complexity of

optimal algorithms. IMED-RL is model based, meaning that it stores an

estimation of the model. Could it be that, using methods à la OMED, one

could craft an optimal algorithm in the ergodic setting that is model-free?

Given the importance of the skeleton and potential function (also known

as Q-function in the discounted reward setting), I doubt that we could

make the space complexity much less that 𝑆 × 𝐴 while it is 𝑆 × 𝐴 × 𝑆 in

a model based method. The main problem that I see with model free

methods is that, when the skeleton changes, i. e. when the empirical

optimal policy changes
2
, there is no way to propagate quickly this change

to the other state-action pairs values since we don’t have the knowledge

of the transitions. However, after this change, all the values are wrong

estimations. At the very least, a change in the empirical optimal policy

should induce a reset of all the learning rates to ensure fast convergence to

the new values. If it is impossible to find a model free optimal algorithm,

it would be interesting to know if one can find one that has logarithmic

regret. What is the best learning rate of the class of model free algorithms?

Such questions could be interesting to tackle in future researches.

Bibliography

[1] Amir Dembo and Ofer Zeitouni. Large Deviations Techniques and Applications. Vol. 95. 2010 (cited on

pages 38, 128).

[2] Herbert Robbins. ‘Some aspects of the sequential design of experiments’. In: Bulletin of the American
Mathematical Society 58.5 (1952), pp. 527–535 (cited on page 41).

[3] Bennett L. Fox and John E. Rolph. ‘Adaptive Policies for Markov Renewal Programs’. In: The Annals of
Statistics 1.2 (1973), pp. 334–341. doi: 10.1214/aos/1176342370 (cited on page 41).

[4] Tze Leung Lai and Herbert Robbins. ‘Asymptotically efficient adaptive allocation rules’. In: Advances
in applied mathematics 6.1 (1985), pp. 4–22 (cited on page 41).

[5] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. ‘Finite-time analysis of the multiarmed bandit

problem’. In: Machine learning 47.2 (2002), pp. 235–256 (cited on pages 43, 62, 66, 75, 77, 85, 91, 97, 139).

[6] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020 (cited on

pages 43, 49, 66).

[7] A.N. Burnetas and M.N. Katehakis. ‘Optimal adaptive policies for sequential allocation problems’. In:

Advances in Applied Mathematics 17(2) (1996), pp. 122–142 (cited on pages 44, 197).

[8] Tze Leung Lai and Herbert Robbins. ‘Asymptotically efficient adaptive allocation rules’. In: Advances
in applied mathematics 6.1 (1985), pp. 4–22 (cited on page 44).

[9] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. ‘Thompson Sampling: An Asymptotically

Optimal Finite-Time Analysis’. In: Algorithmic Learning Theory - 23rd International Conference, ALT 2012.

2012 (cited on page 44).

[10] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018 (cited on pages 44,

46).

[11] Aurelien Garivier, Tor Lattimore, and Emilie Kaufmann. ‘On Explore-Then-Commit strategies’. In:

Advances in Neural Information Processing Systems. Ed. by D. Lee et al. Vol. 29. Curran Associates, Inc.,

2016 (cited on page 46).

[12] Junya Honda and Akimichi Takemura. ‘An asymptotically optimal policy for finite support models in

the multiarmed bandit problem’. In: Mach. Learn. (2011) (cited on pages 51, 55, 66, 68, 70, 77, 97, 128,

217).

[13] Apostolos N Burnetas and Michael N Katehakis. ‘Optimal adaptive policies for sequential allocation

problems’. In: Advances in Applied Mathematics 17.2 (1996), pp. 122–142 (cited on page 53).

[14] Aurélien Garivier, Pierre Ménard, and Gilles Stoltz. ‘Explore first, exploit next: The true shape of

regret in bandit problems’. In: arXiv preprint arXiv:1602.07182 (2016) (cited on pages 53, 167).

[15] Junya Honda and Akimichi Takemura. ‘An Asymptotically Optimal Bandit Algorithm for Bounded

Support Models’. In: Proceedings of the 23rd annual Conference On Learning Theory. Ed. by Adam Tauman

Kalai and Mehryar Mohri. Omnipress, 2010, pp. 67–79 (cited on pages 55, 71, 73, 217).

[16] Junya Honda and Akimichi Takemura. ‘Non-asymptotic analysis of a new bandit algorithm for

semi-bounded rewards.’ In: J. Mach. Learn. Res. 16 (2015), pp. 3721–3756 (cited on pages 55, 66, 70,

75–77, 84, 87, 90, 91, 97, 100, 107, 108, 110, 115, 139, 166, 170, 173, 210, 214, 217).

[17] Todd L Graves and Tze Leung Lai. ‘Asymptotically efficient adaptive choice of control laws incontrolled

markov chains’. In: SIAM journal on control and optimization 35.3 (1997), pp. 715–743 (cited on pages 60,

167, 196, 197).

[18] Tze Leung Lai. ‘Adaptive treatment allocation and the multi-armed bandit problem’. In: The Annals of
Statistics (1987), pp. 1091–1114 (cited on pages 62, 76).

https://doi.org/10.1214/aos/1176342370

[19] Rajeev Agrawal, Demosthenis Teneketzis, and Venkatachalam Anantharam. ‘Asymptotically efficient

adaptive allocation schemes for controlled iid processes: Finite parameter space’. In: IEEE Transactions
on Automatic Control 34.3 (1989) (cited on pages 62, 205).

[20] Rajeev Agrawal. ‘Sample mean based index policies by O (log n) regret for the multi-armed bandit

problem’. In: Advances in Applied Probability 27.04 (1995), pp. 1054–1078 (cited on page 62).

[21] Olivier Cappé et al. ‘Kullback-Leibler Upper Confidence Bounds for Optimal Sequential Allocation’.

In: Annals of Statistics 41.3 (2013), pp. 1516–1541 (cited on pages 62, 66, 70, 75, 77, 84, 85, 91, 92, 96, 97,

110, 113, 139).

[22] O. Cappé et al. ‘Kullback-Leibler Upper Confidence Bounds for Optimal Sequential Allocation.’ In:

The Annals of Statistics (2013) (cited on page 62).

[23] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. ‘On Bayesian Upper Confidence Bounds

for Bandit Problems’. In: Proceedings of the Fifteenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2012, La Palma, Canary Islands, Spain, April 21-23, 2012. Ed. by Neil D. Lawrence

and Mark A. Girolami. Vol. 22. JMLR Proceedings. JMLR.org, 2012, pp. 592–600 (cited on page 62).

[24] William R Thompson. ‘On the likelihood that one unknown probability exceeds another in view of

the evidence of two samples’. In: Biometrika 25.3/4 (1933), pp. 285–294 (cited on pages 62, 67, 70, 198).

[25] William R Thompson. ‘On a criterion for the rejection of observations and the distribution of the

ratio of deviation to sample standard deviation’. In: The Annals of Mathematical Statistics 6.4 (1935),

pp. 214–219 (cited on page 62).

[26] Charles Riou and Junya Honda. ‘Bandit algorithms based on Thompson sampling for bounded reward

distributions’. In: Algorithmic Learning Theory. PMLR. 2020, pp. 777–826 (cited on pages 62, 67, 70, 75,

79, 85, 91, 94, 95, 97, 107, 139).

[27] S. Agrawal and N. Goyal. ‘Analysis of Thompson Sampling for the multi-armed bandit problem’. In:

Annual Conference on Learning Theory (COLT). 2012, pp. 39–1 (cited on page 67).

[28] S. Agrawal and N. Goyal. ‘Further Optimal Regret Bounds for Thompson Sampling’. In: Proceedings of
the 16th Conference on Artificial Intelligence and Statistics. 2013 (cited on page 67).

[29] E. Kaufmann, N. Korda, and R. Munos. ‘Thompson sampling: An asymptotically optimal finite-time

analysis’. In: International Conference on Algorithmic Learning Theory (ALT). 2012, pp. 199–213 (cited on

page 67).

[30] Daniel Russo et al. ‘A Tutorial on Thompson Sampling’. In: Foundations and Trends in Machine Learning
11 (2018), pp. 1–96 (cited on page 67).

[31] Hock Peng Chan. ‘The multi-armed bandit problem: An efficient nonparametric solution’. In: The
Annals of Statistics 48.1 (2020), pp. 346–373 (cited on pages 71, 79, 121, 127, 128, 133, 134).

[32] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020 (cited on

page 75).

[33] Junya Honda and Akimichi Takemura. ‘An Asymptotically Optimal Bandit Algorithm for Bounded

Support Models.’ In: COLT. 2010, pp. 67–79 (cited on pages 75, 77, 84, 85, 91, 97, 99, 100, 107, 110, 111).

[34] Olivier Cappé et al. ‘Kullback–Leibler upper confidence bounds for optimal sequential allocation’. In:

Annals of Statistics 41.3 (2013), pp. 1516–1541 (cited on pages 76, 210, 262, 271).

[35] O-A Maillard. ‘Boundary Crossing Probabilities for General Exponential Families’. In: Mathematical
Methods of Statistics 27.1 (2018), pp. 1–31 (cited on pages 76, 270, 271).

[36] Shubhada Agrawal, Sandeep Juneja, and Wouter M. Koolen. ‘Regret Minimization in Heavy-Tailed

Bandits’. In: Conference on Learning Theory, COLT 2021, 15-19 August 2021, Boulder, Colorado, USA. 2021

(cited on pages 77, 111, 120).

[37] Apostolos N Burnetas and Michael N Katehakis. ‘Optimal adaptive policies for sequential allocation

problems’. In: Advances in Applied Mathematics 17.2 (1996), pp. 122–142 (cited on page 77).

[38] Rajeev Agrawal. ‘Sample mean based index policies with O (log n) regret for the multi-armed bandit

problem’. In: Advances in Applied Probability (1995), pp. 1054–1078 (cited on page 77).

[39] William R Thompson. ‘On the likelihood that one unknown probability exceeds another in view of

the evidence of two samples’. In: Biometrika 25.3/4 (1933), pp. 285–294 (cited on page 78).

[40] Shipra Agrawal and Navin Goyal. ‘Analysis of Thompson Sampling for the Multi-armed Bandit

Problem’. In: Proceedings of the 25th Annual Conference on Learning Theory. 2012 (cited on pages 78, 94).

[41] N. Korda, E. Kaufmann, and R. Munos. ‘Thompson Sampling for one-dimensional Exponential family

bandits’. In: Advances in Neural Information Processing Systems. 2013 (cited on page 79).

[42] Branislav Kveton et al. ‘Garbage in, reward out: Bootstrapping exploration in multi-armed bandits’.

In: International Conference on Machine Learning. PMLR. 2019, pp. 3601–3610 (cited on page 79).

[43] Branislav Kveton et al. ‘Randomized Exploration in Generalized Linear Bandits’. In: Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics. Ed. by Silvia Chiappa and

Roberto Calandra. Vol. 108. Proceedings of Machine Learning Research. PMLR, 2020, pp. 2066–2076

(cited on page 79).

[44] Dorian Baudry, Emilie Kaufmann, and Odalric-Ambrym Maillard. ‘Sub-sampling for Efficient Non-

Parametric Bandit Exploration’. In: Advances in Neural Information Processing Systems. 2020 (cited on

page 79).

[45] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. ‘Improved algorithms for linear stochastic

bandits’. In: Advances in Neural Information Processing Systems. 2011, pp. 2312–2320 (cited on page 79).

[46] Niranjan Srinivas et al. ‘Gaussian process optimization in the bandit setting: no regret and experimental

design’. In: Proceedings of the 27th International Conference on International Conference on Machine Learning.

Omnipress. 2010, pp. 1015–1022 (cited on page 79).

[47] Audrey Durand, Odalric-Ambrym Maillard, and Joelle Pineau. ‘Streaming kernel regression with

provably adaptive mean, variance, and regularization’. In: arXiv preprint arXiv:1708.00768 (2017) (cited

on page 79).

[48] Tor Lattimore and Csaba Szepesvari. ‘The End of Optimism? An Asymptotic Analysis of Finite-Armed

Linear Bandits’. In: Artificial Intelligence and Statistics. 2017, pp. 728–737 (cited on page 79).

[49] Stefan Magureanu, Richard Combes, and Alexandre Proutiere. ‘Lipschitz Bandits: Regret Lower

Bounds and Optimal Algorithms’. In: Machine Learning 35 (2014), pp. 1–25 (cited on page 79).

[50] Tianyu Wang et al. ‘Towards Practical Lipschitz Bandits’. In: Proceedings of the 2020 ACM-IMS on
Foundations of Data Science Conference (2020). doi: 10.1145/3412815.3416885 (cited on page 79).

[51] Shiyin Lu et al. ‘Optimal Algorithms for Lipschitz Bandits with Heavy-tailed Rewards’. In: Proceedings
of the 36th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan

Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR, 2019, pp. 4154–4163 (cited

on page 79).

[52] Jia Yuan Yu and Shie Mannor. ‘Unimodal Bandits’. In: ICML. 2011 (cited on page 79).

[53] Richard Combes and Alexandre Proutiere. ‘Unimodal Bandits: Regret Lower Bounds and Optimal

Algorithms’. In: International Conference on Machine Learning. 2014 (cited on pages 79, 153).

[54] Hassan Saber, Pierre Ménard, and Odalric-Ambrym Maillard. ‘Forced-exploration free Strategies for

Unimodal Bandits’. In: arXiv preprint arXiv:2006.16569 (2020) (cited on page 79).

[55] Branislav Kveton et al. ‘Cascading bandits: Learning to rank in the cascade model’. In: International
Conference on Machine Learning. PMLR. 2015, pp. 767–776 (cited on page 79).

[56] Stefan Magureanu. ‘Efficient Online Learning under Bandit Feedback’. PhD thesis. KTH Royal Institute

of Technology, 2018 (cited on page 79).

[57] Thibaut Cuvelier, Richard Combes, and Eric Gourdin. ‘Statistically Efficient, Polynomial-Time Algo-

rithms for Combinatorial Semi-Bandits’. In: Proceedings of the ACM on Measurement and Analysis of
Computing Systems 5.1 (2021), pp. 1–31 (cited on pages 79, 80).

[58] Richard Combes, Stefan Magureanu, and Alexandre Proutiere. ‘Minimal exploration in structured

stochastic bandits’. In: Advances in Neural Information Processing Systems. 2017, pp. 1763–1771 (cited on

pages 79, 157, 238).

https://doi.org/10.1145/3412815.3416885

[59] Thibaut Cuvelier, Richard Combes, and Eric Gourdin. ‘Asymptotically optimal strategies for combi-

natorial semi-bandits in polynomial time’. In: Algorithmic Learning Theory. PMLR. 2021, pp. 505–528

(cited on page 80).

[60] G Hoogenboom et al. ‘The DSSAT crop modeling ecosystem’. In: Advances in crop modelling for a
sustainable agriculture (2019), pp. 173–216 (cited on page 92).

[61] Chung-En Tsai, Hao-Chung Cheng, and Yen-Huan Li. ‘Online Self-Concordant and Relatively Smooth

Minimization, With Applications to Online Portfolio Selection and Learning Quantum States’. In:

International Conference on Algorithmic Learning Theory. PMLR. 2023, pp. 1481–1483 (cited on page 119).

[62] Thomas M Cover. ‘Universal portfolios’. In: Mathematical finance 1.1 (1991), pp. 1–29 (cited on page 119).

[63] Thomas M Cover and Erik Ordentlich. ‘Universal portfolios with side information’. In: IEEE Transactions
on Information Theory 42.2 (1996), pp. 348–363 (cited on page 119).

[64] Adam Tauman Kalai and Santosh Vempala. ‘Efficient algorithms for universal portfolios’. In: Journal of
Machine Learning Research (2002), pp. 423–440 (cited on page 119).

[65] Laurent Orseau, Tor Lattimore, and Shane Legg. ‘Soft-bayes: Prod for mixtures of experts with log-loss’.

In: International Conference on Algorithmic Learning Theory. PMLR. 2017, pp. 372–399 (cited on pages 119,

120, 139, 146).

[66] Julian Zimmert, Naman Agarwal, and Satyen Kale. ‘Pushing the efficiency-regret Pareto frontier for

online learning of portfolios and quantum states’. In: Conference on Learning Theory. PMLR. 2022,

pp. 182–226 (cited on page 120).

[67] Eyal Gofer and Yishay Mansour. ‘Lower bounds on individual sequence regret’. In: Machine Learning
103 (2016), pp. 1–26 (cited on page 130).

[68] Cristóbal Guzmán, Nishant Mehta, and Ali Mortazavi. ‘Best-case lower bounds in online learning’. In:

Advances in Neural Information Processing Systems 34 (2021), pp. 21923–21934 (cited on page 130).

[69] Dorian Baudry, Patrick Saux, and Odalric-Ambrym Maillard. ‘From Optimality to Robustness:

Adaptive Re-Sampling Strategies in Stochastic Bandits’. In: Advances in Neural Information Processing
Systems. 2021 (cited on page 133).

[70] Fabien Pesquerel, Hassan Saber, and Odalric-Ambrym Maillard. ‘Stochastic bandits with groups of

similar arms’. In: Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. 2021 (cited on pages 151,

154, 163, 167, 173, 260).

[71] Jia Yuan Yu and Shie Mannor. ‘Unimodal Bandits.’ In: ICML. Citeseer. 2011, pp. 41–48 (cited on

page 153).

[72] Hassan Saber, Pierre Ménard, and Odalric-Ambrym Maillard. ‘Indexed Minimum Empirical Diver-

gence for Unimodal Bandits’. In: Advances in Neural Information Processing Systems 34 (2021) (cited on

page 153).

[73] Fabien Pesquerel and Odalric-Ambrym Maillard. ‘IMED-RL: Regret optimal learning of ergodic

Markov decision processes’. In: NeurIPS 2022-Thirty-sixth Conference on Neural Information Processing
Systems. 2022 (cited on pages 154, 203, 210, 212, 235, 237, 242).

[74] Junya Honda and Akimichi Takemura. ‘Non-Asymptotic Analysis of a New Bandit Algorithm for

Semi-Bounded Rewards’. In: Machine Learning 16 (2015), pp. 3721–3756 (cited on pages 158, 201, 206,

210, 237, 256, 257).

[75] Martin L. Puterman. Markov Decision Processes — Discrete Stochastic Dynamic Programming. New York,

NY: John Wiley & Sons, Inc., 1994 (cited on pages 192, 203, 204, 209, 241, 242, 276).

[76] Onésimo Hernández-Lerma and Jean-Bernard Lasserre. Discrete-Time Markov Control Processes. Springer

New York, 1996 (cited on pages 192, 203, 204).

[77] Romain Hollanders, Jean-Charles Delvenne, and Raphaël M. Jungers. ‘The complexity of Policy

Iteration is exponential for discounted Markov Decision Processes’. In: 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC). 2012, pp. 5997–6002. doi: 10.1109/CDC.2012.6426485 (cited on

page 195).

https://doi.org/10.1109/CDC.2012.6426485

[78] A.N. Burnetas and M.N. Katehakis. ‘Optimal adaptive policies for Markov decision processes’. In:

Mathematics of Operations Research (1997), pp. 222–255 (cited on pages 196, 197, 201, 205, 210, 211, 215,

216).

[79] Apostolos N. Burnetas and Michael N. Katehakis. ‘Optimal adaptive policies for Markov decision

processes’. In: Mathematics of Operations Research 22.1 (1997), pp. 222–255 (cited on pages 197, 216, 217,

235).

[80] Thomas Jaksch, Ronald Ortner, and Peter Auer. ‘Near-optimal regret bounds for reinforcement

learning’. In: Journal of Machine Learning Research 11.Apr (2010), pp. 1563–1600 (cited on pages 197, 235,

236, 252, 261).

[81] S. Filippi, O. Cappé, and A. Garivier. ‘Optimism in Reinforcement Learning and Kullback-Leibler

Divergence’. In: Allerton. 2010 (cited on pages 197, 235).

[82] Mohammad Sadegh Talebi and Odalric-Ambrym Maillard. ‘Variance-Aware Regret Bounds for

Undiscounted Reinforcement Learning in MDPs’. In: Algorithmic Learning Theory. 2018, pp. 770–805

(cited on pages 197, 198, 202).

[83] Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. ‘Near Optimal Exploration-Exploitation in

Non-Communicating Markov Decision Processes’. In: arXiv preprint arXiv:1807.02373 (2018) (cited on

page 197).

[84] Z. Zhang and X. Ji. ‘Regret minimization for reinforcement learning by evaluating the optimal bias

function’. In: NeurIPS. 2019 (cited on pages 197, 198).

[85] C.-Y. Wei et al. ‘Model-free reinforcement learning in infinite-horizon average-reward Markov decision

processes’. In: ICML. 2020 (cited on page 197).

[86] Hippolyte Bourel, Odalric Maillard, and Mohammad Sadegh Talebi. ‘Tightening exploration in upper

confidence reinforcement learning’. In: International Conference on Machine Learning. PMLR. 2020,

pp. 1056–1066 (cited on pages 197, 221, 278).

[87] Aditya Gopalan and Shie Mannor. ‘Thompson sampling for learning parameterized markov decision

processes’. In: Conference on Learning Theory. PMLR. 2015, pp. 861–898 (cited on page 197).

[88] Ronald Ortner. ‘Online Regret Bounds for Markov Decision Processes with Deterministic Transitions’.

In: Proceedings of the 20th international conference on Algorithmic Learning Theory. Ed. by Ricard Gavaldà

et al. Vol. 5809. ALT ’09, Lecture Notes in Computer Science. Porto, Portugal: Springer, 2009, pp. 123–

137 (cited on page 197).

[89] D. Tranos and A. Proutiere. ‘Regret analysis in deterministic reinforcement learning’. In: IEEE CDC.

2021, pp. 2246–2251 (cited on page 197).

[90] Ian Osband, Daniel Russo, and Benjamin Van Roy. ‘(More) efficient reinforcement learning via

posterior sampling’. In: Advances in Neural Information Processing Systems 26 (2013) (cited on pages 197,

198, 221, 278).

[91] M. Azar, I. Osband, and R. Munos. ‘Minimax regret bounds for reinforcement learning’. In: ICML.

2017, pp. 263–272 (cited on page 197).

[92] Max Simchowitz and Kevin G Jamieson. ‘Non-asymptotic gap-dependent regret bounds for tabular

mdps’. In: Advances in Neural Information Processing Systems 32 (2019) (cited on page 197).

[93] S. Filippi, O. Cappé, and A. Garivier. ‘Optimism in reinforcement learning and Kullback-Leibler

divergence’. In: Proceedings of the 48th Annual Allerton Conference on Communication, Control, and
Computing. Monticello, US, 2010 (cited on page 197).

[94] R. Agrawal. ‘Sample mean based index policies with O(log n) regret for the multi-armed bandit

problem’. In: Advances in Applied Probability 27.4 (1995), pp. 1054–1078 (cited on page 197).

[95] P. Auer, N. Cesa-Bianchi, and P. Fischer. ‘Finite-time analysis of the multiarmed bandit problem’. In:

Machine Learning 47.2-3 (2002), pp. 235–256 (cited on page 197).

[96] Peter Auer and Ronald Ortner. ‘Logarithmic online regret bounds for undiscounted reinforcement

learning’. In: Proceedings of the 20th conference on advances in Neural Information Processing Systems. Ed. by

Bernhard Schölkopf, John C. Platt, and Thomas Hoffman. NIPS ’06. Vancouver, British Columbia,

Canada: MIT Press, 2006, pp. 49–56 (cited on page 197).

[97] Thomas Jaksch, Ronald Ortner, and Peter Auer. ‘Near-optimal Regret Bounds for Reinforcement

Learning’. In: Journal of Machine Learning Research 99 (2010), pp. 1563–1600 (cited on pages 197, 203,

211).

[98] Christoph Dann, Tor Lattimore, and Emma Brunskill. ‘Unifying PAC and regret: Uniform PAC bounds

for episodic reinforcement learning’. In: Advances in Neural Information Processing Systems 30 (2017)

(cited on page 197).

[99] W. R. Thompson. ‘On the likelihood that one unknown probability exceeds another in view of the

evidence of two samples’. In: Biometrika 25.3/4 (1933), pp. 285–294 (cited on page 197).

[100] Peter L. Bartlett and Ambuj Tewari. ‘REGAL: a regularization based algorithm for reinforcement

learning in weakly communicating MDPs’. In: Proceedings of the 25th conference on Uncertainty in
Artificial Intelligence. UAI ’09. Montreal, Quebec, Canada: AUAI Press, 2009, pp. 35–42 (cited on

page 198).

[101] Ronan Fruit et al. ‘Efficient Bias-Span-Constrained Exploration-Exploitation in Reinforcement Learn-

ing’. In: International Conference on Machine Learning. 2018 (cited on page 198).

[102] J. Qian et al. ‘Exploration bonus for regret minimization in discrete and continuous average reward

MDPs’. In: NeurIPS. 2019 (cited on page 198).

[103] Shipra Agrawal and Randy Jia. ‘Optimistic posterior sampling for reinforcement learning: worst-case

regret bounds’. In: Advances in Neural Information Processing Systems 30 (2017) (cited on pages 198, 257).

[104] Shipra Agrawal and Randy Jia. ‘Posterior sampling for reinforcement learning: worst-case regret

bounds’. In: arXiv preprint arXiv:1705.07041 (2017) (cited on page 198).

[105] Apostolos N. Burnetas and Michaël N. Katehakis. ‘Optimal adaptive policies for Markov decision

processes’. In: Mathematics of Operations Research 22 (1 1997), pp. 222–255 (cited on pages 201, 220).

[106] Omar Darwiche Domingues et al. ‘Episodic Reinforcement Learning in Finite MDPs: Minimax Lower

Bounds Revisited’. In: Proceedings of the 32nd International Conference on Algorithmic Learning Theory.

Ed. by Vitaly Feldman, Katrina Ligett, and Sivan Sabato. Vol. 132. Proceedings of Machine Learning

Research. PMLR, 2021, pp. 578–598 (cited on page 202).

[107] Andrea Zanette and Emma Brunskill. ‘Tighter Problem-Dependent Regret Bounds in Reinforcement

Learning without Domain Knowledge using Value Function Bounds’. In: Proceedings of the 36th
International Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov.

Vol. 97. Proceedings of Machine Learning Research. PMLR, 2019, pp. 7304–7312 (cited on page 202).

[108] Chi Jin et al. ‘Is Q-Learning Provably Efficient?’ In: Advances in Neural Information Processing Systems.
Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018 (cited on page 202).

[109] Ambuj Tewari and Peter L. Bartlett. ‘Optimistic linear programming gives logarithmic regret for

irreducible MDPs’. In: Proceedings of the 21st conference on advances in Neural Information Processing
Systems. Ed. by John C. Platt et al. NIPS ’07. Vancouver, British Columbia, Canada: MIT Press, 2007

(cited on page 202).

[110] Jungseul Ok, Alexandre Proutiere, and Damianos Tranos. ‘Exploration in Structured Reinforcement

Learning’. In: Advances in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran

Associates, Inc., 2018 (cited on page 202).

[111] Mengdi Wang. ‘Primal-Dual 𝜋 Learning: Sample Complexity and Sublinear Run Time for Ergodic

Markov Decision Problems’. In: ArXiv abs/1710.06100 (2017) (cited on page 202).

[112] Yujia Jin and Aaron Sidford. ‘Efficiently Solving MDPs with Stochastic Mirror Descent’. In: Proceedings
of the 37th International Conference on Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119.

Proceedings of Machine Learning Research. PMLR, 2020, pp. 4890–4900 (cited on page 202).

[113] Dimitri P. Bertsekas and Steven E. Shreve. Stochastic Optimal Control (The Discrete Time Case). Academic

Press, New York, 1978 (cited on page 209).

[114] O-A. Maillard, R. Munos, and G. Stoltz. ‘A finite-time analysis of multi-armed bandits problems

with Kullback-Leibler divergences’. In: Proceedings of the 23rd Annual Conference on Learning Theory.

Budapest, Hungary, 2011 (cited on page 210).

[115] J.M. Borwein and A.S. Lewis. ‘Duality relationships for entropy-like minimization problem’. In: SIAM
Journal on Computation and Optimization 29(2) (1991), pp. 325–338 (cited on page 217).

[116] W. Chen, Y. Wang, and Y. Yuan. ‘Combinatorial multi-armed bandit: General framework and

applications’. In: ICML. 2013, pp. 151–159 (cited on page 238).

[117] R. Combes et al. ‘Combinatorial bandits revisited’. In: NIPS. 2015 (cited on page 238).

[118] Hassan Saber, Pierre Ménard, and Odalric-Ambrym Maillard. ‘Optimal Strategies for Graph-Structured

Bandits’. In: arXiv preprint arXiv:2007.03224 (2020) (cited on page 238).

[119] Winfried K. Grassmann, Michael I. Taksar, and Daniel P. Heyman. ‘Regenerative Analysis and Steady

State Distributions for Markov Chains’. In: Oper. Res. 33 (1985), pp. 1107–1116 (cited on page 277).

