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Abstract
Cancer development is characterized by complex processes that occur in different

stages, involving tissue changes at various scales. In a clinical context, cancer characteri-
zation aims to identify the hallmark features of cancer to establish the patient’s diagnosis.
The initial diagnosis is typically made following a biopsy and histological examinations,
which are inherently invasive and resource-intensive. Thus, a minimally invasive tool able
to quickly extract diagnostic information could address these limitations.

As a starting point toward this solution, quantitative ultrasound techniques and light
backscattering techniques were combined. These techniques aim to extract quantitative
estimates that reflect the tissue’s underlying microstructure. Associating these methods
could probe the cancer-related changes previously mentioned with a certain complemen-
tarity. Indeed, ultrasound and light waves can experience scattering when they encounter
variations of acoustic impedance and refractive index respectively. Additionally, medical
ultrasound wavelengths are substantially higher than optical visible wavelengths. There-
fore, ultrasound and light waves may interact with different cellular components of various
sizes, leading to more comprehensive tissue assessment.

Firstly, our bimodal approach was validated on three tissue-mimicking phantoms com-
posed of different microparticle sizes. Combining Backscattering Coefficient (BSC) para-
metrization and light Enhanced Backscattering Spectroscopy (EBS) allowed to differen-
tiate each phantom following a qualitative approach. Each technique showed a different
sensitivity regarding the scatterer sizes.

Secondly, an ex vivo study on animal models was conducted. In addition to BSC
parametrization and EBS, ultrasound Envelope Statistics (ES) and Light Scattering Spec-
troscopy (LSS) were combined to characterize two sarcoma subtypes: chondrosarcoma
and osteosarcoma. Histological analyses were conducted to serve as references. Three
ultrasound parameters and the EBS parameter showed significant differences between
chondrosarcomas and osteosarcomas at the 5% level. BSC parametrization identified the
mean size of chondrosarcoma cells and nuclei with relative errors of about 22% and 9%
respectively. LSS correctly estimated the nucleus and the cell size distributions for chon-
drosarcomas and osteosarcomas (R2 = 0.80 and R2 = 0.73 respectively).

Thirdly, we investigated the extent to which our bimodal approach could serve as a
solution to monitor the tumor response over time when chemotherapeutic treatments are
administered. To do so, we applied the four techniques mentioned above to the same
sarcoma subtypes over weeks, injecting a chemotherapeutic drug twice a week into certain
rodents and saline solutions to others. Relative tumor volumes, taken as measurements
of reference, revealed that all tumors were likely to be non-responders. Several scattering
parameters appeared sensitive to the effects of injections of treatment during the first days
of treatment. Convergences were then observed between treated and control tumors after
the final treatment. Consequently, scattering parameters may have reflected the mecha-
nism of chemotherapy resistance.

Fourthly, the structural effects of ultrasound scattering that can be found in biological
tissues were investigated in a phantom study. To do so, a novel experimental approach
was introduced. The phantom was composed of magnetic particles that had their spatial
organization modified by a surrounding magnetic field. The physical meanings of the ul-
trasound parameters and their concordance were observed in three distinct experiments.

The results reported in this thesis showed that the association of ultrasound and light
scattering is valuable for cancer characterization. Promising results could be obtained in
future studies.



Résumé
Le développement du cancer se caractérise par des processus complexes se déroulant à

différents stades et impliquant des modifications tissulaires à plusieurs échelles. Dans un
contexte clinique, la caractérisation du cancer vise à identifier les traits caractéristiques du
cancer afin d’établir le diagnostic du patient. Le diagnostic initial est généralement établi
à la suite d’une biopsie et d’examens histologiques, qui sont invasifs par nature et né-
cessitent des ressources importantes. Un outil relativement peu invasif capable d’extraire
rapidement des informations diagnostiques pourrait remédier à ces limitations.

Comme point de départ de cette solution, des techniques quantitatives d’échographie
ultrasonores et des techniques de spectrales de rétrodiffusion de la lumière ont été com-
binées. Ces méthodes visent à extraire des paramètres quantitatifs qui reflètent la mi-
crostructure sous-jacente du tissu sondé. L’association de ces méthodes pourrait permet-
tre de sonder les changements liés au cancer mentionnés précédemment avec une certaine
complémentarité. En effet, les ondes ultrasonores et optiques pourraient interagir avec dif-
férents composants cellulaires, ce qui permettrait une évaluation plus complète des tissus.

Premièrement, notre approche bimodale a été validée sur trois fantômes composés de
microparticules de différentes tailles. La combinaison de la paramétrisation du coefficient
de rétrodiffusion (BSC) et de la spectroscopie de rétrodiffusion augmentée par la lumière
(EBS) a permis de différencier chaque fantôme en suivant une approche qualitative.

Deuxièmement, une étude ex vivo sur des modèles animaux a été réalisée. En plus
de la paramétrisation du BSC et de EBS, les statistiques d’enveloppe ultrasonore (ES) et
la spectroscopie de lumière diffusée (LSS) ont été combinées pour caractériser deux sous-
types de sarcomes : le chondrosarcome et l’ostéosarcome. Des analyses histologiques ont
été réalisées pour servir de référence. La paramétrisation du BSC a permis d’identifier la
taille moyenne des cellules et des noyaux des chondrosarcomes avec des erreurs relatives
d’environ 22% et 9% respectivement. LSS a correctement estimé les distributions de taille
des noyaux et des cellules pour les chondrosarcomes et les ostéosarcomes (R2 = 0,80 et
R2 = 0,73 respectively).

Troisièmement, nous avons étudié les performances de notre approche bimodale pour
évaluer la réponse d’une tumeur au fil du temps lorsque des traitements chimiothérapeu-
tiques sont administrés. Pour ce faire, nous avons appliqué les quatre techniques mention-
nées ci-dessus aux mêmes sous-types de sarcomes pendant plusieurs semaines, en injectant
un médicament chimiothérapeutique deux fois par semaine à certains rongeurs et de la
solution saline à d’autres. Les volumes tumoraux relatifs, considérés comme références,
ont révélé que toutes les tumeurs étaient susceptibles d’être non répondeuses. Plusieurs
paramètres ultrasonores et optiques sont apparus sensibles aux effets des injections de
traitement pendant les premiers jours de traitement. Des convergences ont ensuite été
observées entre les tumeurs traitées et témoins après le traitement final. Par conséquent,
certains paramètres de diffusion pourraient avoir reflété le mécanisme de résistance à la
chimiothérapie.

Quatrièmement, les effets structurels sur la diffusion ultrasonore que l’on peut trouver
dans les tissus biologiques ont été étudiés dans le cadre d’une analyse sur fantôme. Pour
ce faire, une nouvelle approche expérimentale a été introduite. Le fantôme était com-
posé de particules magnétiques dont l’organisation spatiale était modifiée par un champ
magnétique environnant. Les significations physiques des paramètres ultrasonores et leur
concordance ont été constatées dans trois expériences distinctes.

Les résultats rapportés dans cette thèse ont montré que l’association de techniques
ultrasonores et optique est pertinente pour la caractérisation du cancer.





Contents

Fundings v

Abstract x

Résumé xi

Table of contents xvi

List of abbreviations xvii

1 Introduction 1

2 Context 5
2.1 Clinical context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Cancerous physiological changes . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Cancer characterization in clinical settings . . . . . . . . . . . . . . . 7

2.2 Quantitative ultrasound techniques . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Backscatter coefficient parametrization . . . . . . . . . . . . . . . . . 11
2.2.2 Envelope statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Successful applications . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Light scattering for tissue diagnosis . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Pioneer studies in Light Scattering Spectroscopy (LSS) . . . . . . . 25
2.3.2 Toward real-time LSS diagnosis . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Low Enhanced Backscattering Spectroscopy (LEBS) . . . . . . . . . 29
2.3.4 Enhanced Backscattering Spectroscopy (EBS) . . . . . . . . . . . . . 32

3 Quantitative ultrasound: theories and methods 35
3.1 Ultrasound basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Wave and tissue interactions . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.3 Principle of ultrasound imaging . . . . . . . . . . . . . . . . . . . . . 37
3.1.4 Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.5 Transducer properties . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.6 Ultrasound speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.7 Born approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Backscatter coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Discrete model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Theoretical scattering models . . . . . . . . . . . . . . . . . . . . . . 43
3.2.4 Backscatter coefficient estimation . . . . . . . . . . . . . . . . . . . . 46

xiii



3.2.5 Backscatter coefficient parametrization . . . . . . . . . . . . . . . . . 52
3.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Envelope Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Statistical distributions . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.3 Envelope parameter estimation . . . . . . . . . . . . . . . . . . . . . 55
3.3.4 Envelope parameter correction . . . . . . . . . . . . . . . . . . . . . 56

4 Light Backscattering Spectroscopy: theories and methods 57
4.1 Optics basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 Born approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.3 Phase functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.4 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Enhanced Backscattering Spectroscopy . . . . . . . . . . . . . . . . . . . . . 62
4.2.1 EBS peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.2 EBS peak and reflectance profile p . . . . . . . . . . . . . . . . . . . 64
4.2.3 Reflectance profile estimation . . . . . . . . . . . . . . . . . . . . . . 66
4.2.4 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Light Scattering Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.1 Experimental estimation of the single scattered component . . . . . 71
4.3.2 Single scattered light: theoretical expression . . . . . . . . . . . . . . 74
4.3.3 Extraction of the scatterer size distribution . . . . . . . . . . . . . . 75

5 Validation on tissue-mimicking phantoms 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Tissue-mimicking phantoms . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.2 Backscatter coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.3 Enhanced Backscattering Spectroscopy . . . . . . . . . . . . . . . . . 84

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.1 Backscatter coefficient estimations . . . . . . . . . . . . . . . . . . . 86
5.3.2 EBS measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Characterization of sarcoma subtypes: an ex vivo study on animal mod-
els 93
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2.1 Animal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.2 Quantitative ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.3 Light Enhanced Backscattering Spectroscopy . . . . . . . . . . . . . 100
6.2.4 Light Scattering Spectroscopy . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.1 Animal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.2 Tumor characterization . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.3 Scatterer size distribution . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



6.4.1 Tumor discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4.2 Size estimations of cellular structures . . . . . . . . . . . . . . . . . 114
6.4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.5.1 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Therapy monitoring: a longitudinal study 119
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.1 Animal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2.2 Implementation of QUS techniques . . . . . . . . . . . . . . . . . . . 124
7.2.3 Optical experimental setup . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3.1 Chondrosarcoma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.3.2 Osteosarcoma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.4.1 Physical interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.4.2 Optical measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.4.4 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8 Structural effects on ultrasound scattering: a phantom investigation 151
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.2.1 Superparamagnetic beads . . . . . . . . . . . . . . . . . . . . . . . . 153
8.2.2 General method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.2.3 Horizontal time experiment . . . . . . . . . . . . . . . . . . . . . . . 156
8.2.4 Horizontal steady-state experiment . . . . . . . . . . . . . . . . . . . 156
8.2.5 Vertical steady-state experiment . . . . . . . . . . . . . . . . . . . . 157
8.2.6 Physical interpretations and predictions of QUS parameters . . . . . 158

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.3.1 Horizontal time experiment . . . . . . . . . . . . . . . . . . . . . . . 160
8.3.2 Horizontal steady-state experiment . . . . . . . . . . . . . . . . . . . 163
8.3.3 Vertical steady-state experiment . . . . . . . . . . . . . . . . . . . . 164

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.4.1 Actual beads dynamics and QUS parameter variations . . . . . . . . 166
8.4.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9 Conclusions 175
9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177



Appendix 181

A Structure factor 181
A.1 Monodiperse scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.2 Poydisperse scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

B Résumé en français 183
B.1 Introduction et contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
B.2 Ultrasons quantitatifs: méthodes . . . . . . . . . . . . . . . . . . . . . . . . 185
B.3 Spectroscopie optique de rétrodiffusion: méthodes . . . . . . . . . . . . . . 186
B.4 Etude sur fantôme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
B.5 Caractérisation de sous-types de sarcomes : une étude ex vivo sur des mod-

èles animaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
B.6 Suivi de thérapie : une étude longitudinale . . . . . . . . . . . . . . . . . . . 189
B.7 Effets structurels sur la diffusion des ultrasons : une étude sur fantôme . . . 190
B.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Bibliography 218



List of abbreviations

BCS Breast-conserving surgery

BSC Backscatter coefficient

B-mode Brightness mode

CBS Coherent backscattering spectroscopy

CCD Charge-coupled device

CE Coded excitation

CMUT Capacitive micromachined ultrasonic transducers

C-CLASS Coherent confocal light absorption and scattering spectroscopy

CT Computed Tomography

DOP Degree of polarization

EAC Effective acoustic concentration

EBS Enhanced backscattering spectroscopy

ES Envelope statistics

ESD Effective scatterer diameter

FFSM Fluid-filled sphere model

FM Faran model

FNCLCC Fédération nationale des centres de lutte contre le cancer

FWHM Full width half maximum

H and E Hematoxylin and Eosin

HGD High grade dysplasia

HK Homodyned-K

LGD Low grade dysplasia

LEBS Low enhanced backscattering spectroscopy

LF Lizzi-Feleppa

xvii



LSS Light scattering spectroscopy

MC Monte Carlo

MRI Magnetic Resonance Imaging

NDB Non-dysplastic biopsy

NoTTT No treatment

PDF Probability density function

PI Polydisperse I

PII Polydisperse II

PTTT Post treatment

QUS Quantitative ultrasound

REC Resolution enhancement compression

RF Radiofrequency

RMSE Root mean squared error

ROI Region of interest

RTV Relative tumor volume

SGM Spherical Gaussian model

SNR Signal-to-noise ratio

ROC Receiver operating characteristic

SFM Structure factor model

a/LSS Angularly resolved light scattering spectroscopy

Ch Chondrosarcoma

Os Osteosarcoma



Chapter 1

Introduction

The development of cancer manifests as a multifaceted phenomenon occurring across
different stages and affecting the tissues at diverse spatial and temporal scales [1]. At an
early stage, cancer-induced morphological alterations, known as dysplasia, can occur at
the cellular and nuclear scales. As cancer progresses, the malignant tissues can exhibit
highly atypical cells in shape and size, often following an abnormal spatial organization.
At a later stage, cell death, or necrosis, can be observed. In the case where chemother-
apy is chosen as a treatment option, necrosis can be induced by the drug exposure. The
chemotherapeutic drugs penetrate the malignant cells and aim to inhibit cancer progres-
sion [2]. However, tumors may not respond positively and can develop chemotherapy
resistance during the course of treatment. All these mechanisms of malignancy can result
from a complex interplay of genetic and molecular changes.

In clinical settings, cancer characterization aims to identify the hallmark features of
cancer previously mentioned to establish the patient’s diagnosis. The initial diagnosis is
made after histological examinations. At this stage, the cancer characterization involves
the process of determining the cancer type and its key features, such as the grade. The
grade reflects the tumor aggressiveness and is assigned based on various criteria, including
the cell and the nucleus morphologies [3]. The cancer diagnosis is of crucial importance
for the patient outcome as the medical board decides the treatment options accordingly.
Cancer characterization may take place at other phases using conventional imaging modal-
ities, spanning from cancer screening to the ongoing monitoring of therapy effectiveness.
For these two specific applications, early detection of cancer and prompt identification of
ineffective drugs are of great importance respectively, as time also plays a critical role in
the patient outcome.
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Conventional ultrasound imaging primarily provides anatomical information through
gray-scale images, termed as B-mode images. However, the diagnosis based on B-mode
images may be subject to inter-observer and intra-observer variabilities [4]. To enhance
the reproducibility of diagnosis, the use of quantitative estimates appears as a relevant
solution. Quantitative ultrasound (QUS) techniques aim to provide quantitative measure-
ments that can be used for diagnostic purposes. Indeed, valuable information regarding
the microstructures of the underlying tissue can be obtained by analyzing the spectral
content analysis and the statistics of the envelope of the radiofrequency (RF) signals used
to generate ultrasound scans. These two approaches are referred to as the Backscatter-
ing Coefficient (BSC) parametrization and Envelope Statistics (ES). Interestingly, BSC
parametrization and ES can be conducted on the same RF signals and provide different
ultrasound scattering parameters that reflect the tissue microstructures. Indeed, ultra-
sound waves are scattered if they experience variations of impedance contrast. Thus, cells
or nuclei may be considered as ultrasound scatterers surrounded by extracellular matrix
and cytoplasm respectively at sufficiently high frequencies [5]. The scatterer diameter can
be estimated by conducting BSC parametrization on a tissue sample for instance. All
the changes induced by the development of cancer mentioned in the first paragraph may
impact ultrasound scattering parameters.

Interestingly, light waves can also be scattered if they encounter variations of refrac-
tive index. Similarly, the spectral analysis of the backscattered light waves can lead to
scattering parameters that carry information about the tissue microstructure. Enhanced
Backscattering Spectroscopy (EBS) and Light Scattering Spectroscopy (LSS) are two light-
based techniques that can be performed using a similar experimental setup to characterize
biological tissues through quantitative estimates [6, 7]. Notably, LSS can also involve the
estimation of the scatterer diameter [8]. Recent papers reported successful applications
for cancer characterizations [9, 10].

Visible light wavelengths are about one hundred times smaller than the ultrasound
wavelengths used for medical imaging. Therefore, one can expect that the scattering
process would arise from different cellular structures of varying sizes given the distinct
wavelength ranges when light and ultrasound are combined. Consequently, analyzing ul-
trasound and optical scattered waves may provide complementary information regarding
the tissue microstructure. This association may potentially lead to a more comprehensive
tissue assessment. The research works presented in this thesis focus on a bimodal approach
that was motivated by this hypothesis.

Combining ultrasound and light through BSC parametrization, ES, EBS and LSS offers
multiple advantages. Indeed, the resulting association can remain:

• Minimally-invasive, as no tissue excision is required.

• Non-ionising, as visible light can be used.

• Point-of-care, as all the necessary materials can be integrated on a trolley.
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• Relatively low-cost, in comparison to some conventional imaging tools such as Mag-
netic Resonance Imaging (MRI) or Computed Tomography (CT) scanners (approx-
imately less than 60k$).

• Real-time, as the methods employed here are compatible with intra-operative appli-
cations.

Given that the inner mechanisms of our methods probe microstructural alterations that
are characteristics of cancerous tissues, our bimodal approach could potentially be applied
to all types of cancers.

The association of these quantitative ultrasound and light backscattering techniques is
motivated by all the rationales aforementioned. This thesis aims to investigate the use of
a bimodal approach for cancer characterization.

It is important to note that our objective is not to outperform or substitute the estab-
lished gold standard methods in clinical procedures. Instead, our intention is to develop
the premises of a tool that could support clinician decision-making by providing comple-
mentary information alongside conventional methods. More importantly, a bimodal tool
that combines all the qualities mentioned above has also the potential to bring diagnostic
information in clinical cases where no tool is currently employed routinely (e.g. therapy
monitoring for certain cancer types).

The thesis is organized as follows: Chapter 2 describes the clinical context. The back-
ground in ultrasound and optical scattering for tissue characterization is then reviewed
through successful applications. In Chapter 3, the ultrasound theoretical framework is de-
tailed along with the method to conduct BSC parametrization and to estimate Envelope
parameters. In Chapter 4, the methods for Enhanced Backscattering Spectroscopy and
Light Scattering Spectroscopy are explained after describing the insight of optical scat-
tering. Chapter 5 entails the validation of our bimodal approach using tissue-mimicking
phantoms. The subsequent two chapters present the application of our method on biolog-
ical samples. In Chapter 6, we use animal models to characterize two distinct histological
subtypes of bone tumors ex vivo. In Chapter 7, a longitudinal study is performed on the
same tumor models, aiming to demonstrate the potential sensitivity of our method for
therapy monitoring. Chapter 8 introduces a novel phantom method for studying ultra-
sound scattering in structured media. Finally, chapter 9 gives the perspectives and the
conclusions.
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Chapter 2

Context

This chapter aims to expose the clinical context that motivates the research work.
Then, the QUS techniques for tissue characterization are reviewed through their successful
implementations. Last, two light backscattering spectroscopy methods are also presented
through their successful applications for tissue diagnostics.

2.1 Clinical context

This thesis aims to validate the association of quantitative ultrasound and light backscat-
tering spectroscopy methods for characterizing cancerous tissues. The working principle of
both techniques is the same: analyzing the backscattered waves that have interacted with
the cellular components of the probed tissue. Before delving into the potential clinical
applications of such a minimally invasive tool, insights into malignancy mechanisms at the
cellular scale are described.

2.1.1 Cancerous physiological changes

Carcinogenesis refers to the process by which normal cells transform into cancer cells.
It involves a series of changes at multiple scales that result in the uncontrolled growth and
proliferation of cells that can aggregate into a macroscale tumor. Before leading to the
development of a primary tumor, the cancerous cells undergo distinct states.

Early changes

Two subcategories refer to pre-cancerous conditions:
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Histological normal tissue Field carcinogenesis is the earliest stage of cancer pro-
gression and can lead to a "fertile" environment [10]. The latter results from multiple
ultrastructural (i.e. smaller than the optical diffraction limit) tissue alterations, such
as chromatin condensation in the nuclei or collagen fibers cross-link in the extracellular
matrix. A number of stochastic genetic mutations then lead to cells with an abnormal
histological appearance.

Histological abnormal tissue Dysplasia typically occurs in precancerous tissues. Dys-
plastic sites exhibit tissue alterations at the nuclear and cellular scales. Indeed, these
regions manifest enlarged nuclei and present a disordered spatial arrangement of cells
characterized by diverse morphologies (Figure 2.1). Dysplasia can commonly occur in the
superficial epithelial tissues (i.e. lining of organs) of the respiratory tract, the gastroin-
testinal tract or skin. More than 85% of all cancers originate in epithelial tissues [11].

Figure 2.1: Scheme representing an illustrative example of dysplasia. Reproduced from
mypathologyreport.ca [12]

Cancerous tumors

The cells exhibiting dysplasia may lead to the formation of a compact tumor, referred
to as a primary tumor. These cells can exhibit various characteristics that contrast with
healthy cells, often being classified as undifferentiated (as shown in Figure 2.2), unlike the
differentiated normal cells. Cancerous tumors may also contain highly abnormal-looking
cancer cells, referred to as anaplastic cells, which exhibit atypical shapes and sizes. Ad-
ditionally, a high density of mitotic figures is commonly observed in cancerous tissues.
Mitotic figures are cellular structures visible during cell divisions. Besides, cellularity, or
cell density, may be abnormal and can reflect cell proliferation or a specific histological
subtype (i.e. tumor type). Necrosis can also be observed in compact tumors. Necrosis
refers to the process of cell death caused by external factors, unlike apoptosis, which is a
programmed cell death. For example, exposure of the tumor to chemotherapeutic drugs
can lead to necrosis, resulting in the rupture of the cellular membrane and the release of
cellular debris. As cancer progresses, cancerous cells from the primary tumors may then
migrate to form metastases in other regions of the human body.

In summary, the development of malignancy is characterized by complex mechanisms
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Figure 2.2: (a) Schemes of healthy cells. (b) Schemes of cancerous cells with their charac-
teristic features. Adapted from mypathologyreport.ca [13]

that occur in different stages, involving tissue changes at various scales. In a clinical
context, cancer characterization aims to identify these hallmark features to establish the
patient’s diagnosis. Interestingly, the ultrasound and the light waves that have traveled
into the probed tissue may carry complementary information about the underlying mi-
crostructure that could reflect these cancer-related changes.

2.1.2 Cancer characterization in clinical settings

This subsection exposes the potential clinical applications of our bimodal method that
combines QUS and light scattering techniques. For each application, the theoretical feasi-
bility of the use of a such bimodal tool is briefly shown by citing past related studies. To
understand these potential clinical applications, brief practical characteristics of this tool
are described. Broader descriptions will be detailed in Chapter 3 and 4. In this section,
each medical application is then introduced following a typical chronology of the cancer
care workflow.

Our bimodal approach

This thesis project aims to develop the premises of a tool that could provide a near-real-
time tumor characterization from quantitative measurements without conducting biopsies.
The corresponding estimates reflect the tissue microstructure and may carry relevant di-
agnosis information. What "characterization" refers to is detailed below for each potential
clinical application.

Quantitative ultrasound and light backscattering spectroscopy techniques can be non-
ionizing and point-of-care. To avoid acoustic impedance mismatches, gentle probe/tissue
contact would be necessary. As order-of-magnitudes, the depth selectivity of our technique
would reach hundreds of microns in optics and a few centimeters in ultrasound. These
considerations can be further discussed depending on the frequency used. The probed tis-
sue surface would be about 2 mm2 in optics. Varying lateral field-of-view can be obtained
in QUS imaging depending on the transducer used.
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CHAPTER 2. CONTEXT

Ultrasound and optical techniques are compatible with endoscopic applications for
minimally-invasive procedures [14, 15]. Additionally, endoscopic scanning systems were
reported [9,16] and could therefore be designed in the case of spatially extended samples.

Cancer screening

A medical consensus exists about the fact that early cancer detection improves the
patient outcome [7, 17]. Cancer screening appears as one of the first practical solutions
for this purpose. This procedure entails a first analysis that can be applied to a large-
scale population. Thus, the associated tool needs to be low-cost, fast and causes minimal
discomfort to patients. Mutyal et al. [18] reported an optical endoscopic probe to detect
early colon carcinogenesis, that is not visible during routine endoscopy. Their application
is introduced as an affordable pre-screen test for a large population that is part of a two-
step approach for risk stratification. The patients with positive results would then need
to undergo a conventional cancer screening test.

Similarly, the bimodal solution that we aim to develop in this thesis could meet the
requirements needed for cancer screening/pre-screening in the case of shallow tissue alter-
ations. Indeed, early cancerous conditions such as dysplasia may alter the quantitative
scattering parameters in comparison to healthy tissues. Larger cells or nuclei may impact
the estimated effective scatterer size for instance. Thus, relevant scattering parameters
could be compared to threshold reference values validated after clinical trials to classify
the probed tissue as healthy or suspicious.

Initial cancer diagnostics

The initial cancer diagnostics is of crucial importance for the patient’s prognosis since it
will guide the clinicians toward the right treatment options. Following a positive screening
test or suspicious symptoms, a biopsy can be indicated.

Biopsy The biopsy entails in extracting a sample of tissue from the patient. Biopsies are
typically performed by radiologists. The sampled tissue then undergoes histo-pathological
analyses conducted by an anatomopathologist, who establishes the patient diagnosis. How-
ever, the biopsy is inherently invasive. More importantly, the sampled sections may not
include the most aggressive cancerous regions due to tumor heterogeneities [19]. Thus, the
sampling bias could lead to inaccurate diagnostics.

The number of biopsies needs to be minimized for their resource-intensive nature, their
impact on patient’s anxiety and also because of the risk of dissemination. Indeed, when
a clinician extracts the sampled tissue from the patient, cancerous cells may migrate and
spread to other tissues in the vicinity of the tumor. If dissemination is suspected, surgery
can then be indicated to remove the tissues that have been in contact with the biopsied
sample.
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To address these drawbacks, numerous studies investigated non-invasive optical biopsy
techniques to target tissue alterations in various tissue types [14,20]. As an example, Qiu
et al. [9] reported an optical endoscopic fiber probe able to scan the esophagus to detect
dysplastic sites. Similarly to the screening application mentioned above, they aimed to
reveal tissue alterations that are invisible to routine endoscopy, namely dysplasia. Their
objective was also to reduce the number of invalid biopsies and sampling errors. Likewise,
an endoscopic version of the bimodal tool that we aim to develop may guide the biopsy
toward the most suspicious regions in a minimally invasive fashion. This could potentially
reduce the number of biopsies required and therefore mitigate all the drawbacks of the
tissue excision that were mentioned. Similarly to cancer screening, the biopsy guidance
could be based on a simple classification procedure of the scattering parameters, involving
a reference threshold for a specific scattering parameter.

Quantitative pathology Histo-cytopathology serves as a gold standard for diagnosing
cancers. The histological classification of a biopsied sample relies on cellular morphological
measurements and is traditionally determined by microscopic examination. The analyses
conducted by anatomopathologists are subject to inter-observer and intra-observer vari-
abilities [3, 7]. Two quantities can be affected: the cancer grade and the histological
subtype.

The cancer grade describes only the intrinsic quality of the primary tumour [1]. It
reflects the cancer aggressiveness behavior of a malignant tissue based on histological fea-
tures. The degree of cellular differentiation is described through a number that typically
varies between I (similar to normal tissue) and IV (anaplastic). One could note that mul-
tiple grading systems exist. They aim to describe accurately the patient prognosis for
specific tumor types. Therefore, the histological subtype also needs to be determined and
is associated with the grade. Some features are common to most of the grading systems,
namely the nuclear-cytoplasmic ratio (nucleus to cell volume ratio), the cell density, the
hyperchromasia (nuclear staining), the concentration of mitoses, and the percentage of
necrosis area. For example, in the FNCLCC (Fédération Nationale des Centres de Lutte
Contre le Cancer) grading system, which is the most used grading system for soft tissue
sarcomas [1], the grade depends on the percentage of necrosis following a semi-quantitative
criteria (score 1 if < 50 % of tumor necrosis, score 2 is ≥ 50% and 0 if no necrosis).

Interestingly, the cellular characteristics mentioned above could probably be estimated
using the bimodal approach developed in this thesis. Firstly, the nucleus and the cell
sizes could be measured independently to compute the corresponding ratio using LSS and
QUS techniques respectively. Secondly, the volume fraction is a common parameter in
ultrasound theoretical scattering models and could therefore be experimentally estimated
to reflect the cell density. Finally, multiple QUS applications reported high sensitivity to
cell death [4], making the detection of necrosis possible through quantitative estimates.
All these arguments will be supported by successful applications described in the following
sections.
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It is noteworthy that our objective is not to outperform histo-cytopathology. At best,
our bimodal tool could come as an additional device for the anatomopathologist to esti-
mate/validate the cancer grade. This application remains a long-term objective. How-
ever, it is important to point out the numerous parameters of interest observed in histo-
cytopathology that could be estimated using quantitative ultrasound and light scattering
techniques.

Therapy monitoring

Based on cancer diagnostics, clinicians indicate the most adapted cancer treatments
such as chemotherapy, radiation therapy, immunotherapy, hormone therapy or surgery for
instance. The tumor progression can be inhibited if the patient positively responds to the
chosen treatment. However, tumors can also develop resistance mechanisms that make a
treatment ineffective.

For example, chemotherapeutic solutions can be selected in the case of bone sarcomas.
In this case, to our knowledge, there is no established standard procedure for evaluating
tumor response between the initial drug treatment and the follow-up surgery, typically
occurring 8 weeks after. As a result, clinicians are unable to adjust treatment strategies
for non-responsive tumors during this interval. Responsive or resistant tumor cells may ex-
hibit different characteristic mechanisms at the molecular and cellular scales. Thus, ultra-
sound and optical scattering parameters may reflect the corresponding changes. Multiple
quantitative ultrasound studies reported successful therapy monitoring applications [4].
Similarly, our bimodal technique could be applied by comparing estimated scattering pa-
rameters to reference thresholds to classify tumors as responders or not. Its penetration
depth may limit the measurements to shallow tumors. This clinical application is investi-
gated in Chapter 7.

These considerations focused on bone sarcomas. However, we can reasonably infer that
similar challenges might arise in other types of therapy directed at different tumor types.
Thus, our bimodal tool has the potential to bring diagnostic information in clinical cases
where no tool is currently employed routinely.

Intra-operative resection margin assessment

Resection surgery involves the removal of a tumor and a margin of surrounding healthy
tissue. The latter is known as the resection margin. If cancer cells are found in the resec-
tion margins (i.e. positive margins), more tissues need to be removed from the patient to
prevent a cancer recurrence.

In the case of breast cancer, the percentage of patients who need to undergo a second
surgery after a breast-conserving surgery (BCS) is estimated between 15% and 35% [21].
Leiloglou et al. [22] reported the use of an optical fluorescence imaging device to assist
the surgeon in BCS to reduce the risk of incomplete surgical resection. Dutour et al. [23]
conducted a similar approach for bone sarcomas.
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Likewise, our bimodal technique would guide the surgeons toward suspicious regions
non-invasively, following a semi-quantitative analysis of estimated scattering parameters.
Interestingly, the depth selectivity of our methods is not limiting in this open-surgery ap-
plication.

In summary, cancer characterization is a key component of numerous standard med-
ical procedures. Thus, detecting cancer-related changes at the cellular scale with all the
qualities mentioned in the paragraph 2.1.2 (minimally-invasive, non-ionizing and so forth)
is relevant for multiple medical applications. The following explains why quantitative ul-
trasound and light scattering techniques can be used for this purpose. Indeed, most of
the potential clinical applications mentioned above are based on successful applications of
quantitative ultrasound and light backscattering spectroscopy techniques. The next two
sections describe them successively.

2.2 Quantitative ultrasound techniques

Quantitative ultrasound techniques encompass a broad range of methods that in-
volve the estimation of tissue properties [24], including Backscatter Coefficient (BSC)
parametrization and Envelope Statistics (ES). BSC parametrization and ES can be per-
formed using conventional ultrasound imaging systems, increasing the likelihood of their
clinical acceptance. Additionally, BSC parametrization and ES are compatible with in
vivo applications and they can be performed using the same backscattered RF signals
to extract complementary scatterer properties. This section aims to trace the historical
development of these two quantitative ultrasound (QUS) techniques by highlighting their
key breakthroughs for cancer applications. The BSC analysis was of prime interest for
this thesis project and was the first technique implemented in this project. Thus, deeper
insights about this method will be given.

2.2.1 Backscatter coefficient parametrization

The BSC quantifies the tissue’s ability to backscatter the acoustic energy as a function
of the frequency. The BSC reflects the underlying tissue microstructure and can be seen
as the spectral signature of the probed sample. In tissue characterization applications, the
primary challenge lies in accurately estimating the BSC (c.f. section 3.2.4). The follow-
ing step is the BSC parametrization, which eventually extracts the scattering parameters
through inversion procedures. To achieve this, theoretical analytical scattering models are
fitted to the measured BSCs. Multiple analytical models were developed and improved.
The performances of different models for tissue characterization are described below. More
specifically, their capacity to determine the size of cellular components through the esti-
mated scatterer size is emphasized.
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The Lizzi-Feleppa parameters

A first approach involves modeling the BSC as a linear function [25]. This simple pro-
cedure leads to three ultrasound parameters known as the Lizzi-Feleppa (LF) coefficients:
the LF intercept, the LF midband value and the LF slope. A typical implementation of
the linear model can be found in Mamou et al. [26], who reported significant statistical
differences in the intercept and the slope values between normal and metastatic resected
lymph nodes (Figure 2.3, b).

Figure 2.3: Scatter plots of estimates by model. One dot corresponds to a resected lymph
node. (a) Intercept and slope (straight-line model). (b) Effective scatterer size and acoustic
concentration (Gaussian form factor). Reproduced from Mamou et al. [26]

The physical interpretation of these parameters was investigated multiple times. First,
the LF intercept and midband were reported as indicators of the backscattering intensity,
and the LF slope was associated with the scatterer’s size [27]. More recently, Muleki-Seya
et al. [28] studied the theoretical relations between the LF and other QUS-derived pa-
rameters in diluted media (i.e. relatively few scatterers per unit volume). The analytical
analyses were then compared to BSC measurements on ex vivo mouse livers. The expected
correlation between the LF slope and the Effective Scatterer Diameter (ESD) was vali-
dated experimentally. Similarly, the LF midband was correlated to the Effective Acoustic
Concentration (EAC). LF midband and EAC were reported as the best biomarkers for
liver fat percentage estimation in this study. The ESD and the EAC are defined below.

The Spherical Gaussian model

The ESD and EAC parametrize the Spherical Gaussian model and invite us to intro-
duce a heavily used BSC theoretical model developed by Lizzi et al. [25]. The Spherical
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Gaussian Model (SGM) considers continuous impedance fluctuations in the media [29].
ESD and EAC can be used in the same fashion as the LF parameters for tumor classifi-
cation [26] (Figure 2.3, a). The EAC (expressed in dB.mm−3) reflects the product of the
scatterer concentration with the square of the impedance mismatch with the surrounding
medium. Its physical interpretation is more limited than the ESD (expressed in µm) that
can be related to scattering structures. Thus, multiple studies investigated the identifica-
tion of the main scattering structures through the ESD [24]. Insana et al. [30] reported
the scattering of glomeruli (≈ 200 µm) and the efferent arterioles (≈ 50 µm) in the low (1
- 5 MHz) and the high (5 - 15 MHz) frequency range respectively in in vitro dog kidney
parenchyma. In this study, the product of the wavenumber k with the scatterer radius
a was approximately unity (ka ≈ 1). A few years after, Oelze et al. [31] identified the
glandular acini (100 µm) as the main scattering structures in fibroadenoma (ka ≈ 0.5) and
the cell nuclei in mammary carcinoma (ka ≈ 1) in a in vivo rodent study. Conventional
B-mode images can map the ESD values through a color overlay that encodes the average
scatterer diameter for each ROI (Figure 2.4). The carcinomas were found to have a more
uniform scatterer size than the fibroadenoma. One should note that despite the over-

Figure 2.4: QUS images of mouse carcinomas (top panel) achieved at 20 MHz and rat
fibroadenomas (middle panel, 8.5 MHz) using the mean ESD. The color bar shows the
relation between the color encoding and the ESD. Reproduced from Oelze et al. [31]

simplified geometries implied in this model, the SGM remains widely utilized, probably
due to its ease of computation [4]. Indeed, recent investigations have reported successful
implementations of the SGM, even when compared to more recent and sophisticated mod-
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els [29].
The physical meaning behind the SGM parameters comes at the expense of multiple ap-
proximations such as Born, far-field, incident plane wave and isotropic medium with ran-
domly and independently distributed scatterers [29] (see Chapter 3). Although these
assumptions may appear restrictive, these hypotheses are commonly applied in BSC
parametrization and ES. All the models that will be introduced below rely on these ap-
proximations as well.

The Fluid-Filled Sphere model

In parallel, successful applications of another model were reported to describe the scat-
tering from biological structures. One of the first appearances of the analytical expression
of the Fluid-filled sphere model (FFSM) was given by Bracewell et al. [32]. It models the
scattering from a fluid sphere in a homogeneous medium under the same hypotheses as
mentioned above. The FFSM is also parametrized by the scatterer radius and the acoustic
concentration in the monodisperse case. Muleki-Seya et al. [5] reported an estimation of
the nuclei size with relative errors less than 7% in canine livers through the FFSM. In this
case, the measured BSC was modeled as the incoherent contribution of individual scatter-
ers. This implies the measured BSC to be linearly proportional to the scatterer density.
However, the use of the FFSM appeared unsuccessful in concentrated media. Oelze et
al. [33] illustrated this point using a hypercellular model of mammary cancer (carcinoma
4T): the FFSM extracted a nucleus size equal to 47 µm while the expected cell size was 13
µm. This overestimation suggested that the ultrasound backscattering signals from dense
media such as tumors might not be modeled by incoherent spectra only [34].

The Concentric Fluid Sphere model

In the early 2010s, McNew et al. [35] derived the analytic expression that describes
scattering from two concentric fluid spheres randomly spatially distributed. They approx-
imated the cell geometry with one inner sphere and one outer sphere that represent the
nucleus and its cell respectively. The concentric model is parametrized by nine coefficients:
the radius of each sphere, the mass density, the sound speed of each sphere with the sur-
rounding medium and the scatterer number density. One year later, Teisseire et al. [36]
obtained decent approximations of both the nucleus and the cell radius using this model
on Chinese hamster ovary (CHO) cell pellet biophantoms with volume fractions up to 3%.
They used two mono-element transducers with center frequencies at 40 MHz and 80 MHz
to estimate the BSC across the 25 - 100 MHz frequency range. The concentric model led
to nuclear radii between 0 and 6 µm (histology 2 - 4.6 µm) and cell radii between 6 and 7
µm (histology 5.7 - 8.3 µm). A follow-up study from the same group investigated the per-
formances of the concentric model using dense CHO cell pellet biophantoms with volume
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fractions up to 63% [37]. Figure 2.5 summarizes the results of their inversion procedures
and shows the extracted values for the six independent parameters.

Figure 2.5: Estimated parameters extracted by the concentric sphere model. (a) Estimated
versus reference nuclear and cell radii. (b) Estimated acoustic properties of the nucleus
and cytoplasm. Reproduced from Han et al. [37]

The impedances are computed as the product between densities and sound speeds.
The nucleus and the cell radii are compared to histological analyses. The low cell concen-
trations yielded correct nucleus and cell sizes while it turned out to be more difficult for
concentrated biophantoms (Figure 2.5, a). The critical threshold suggested in this paper
is between 10% and 30%. Coherent scattering is cited as one of the most likely reasons
to explain this breakdown of the concentric model. Indeed, the assumption of random
cell positions becomes less valid as cells get closer to each other. Moreover, the authors
reported discrepancies between acoustic impedances in their previous study. Indeed, the
extracted acoustic impedance of the nucleus for the lower concentrations ranges between
1.9 and 2.6 MRayl in this study versus ≈ 1.6 MRayl in Teisseire et al. [36]. Among other
reasons, they argue that the concentric model might be less sensitive to sound speed and
density than to cell and nucleus sizes, making this tool potentially unsuited for determining
these coefficients. In summary, the concentric model is a nine-parameter BSC model that
leverages the a priori known geometry of a cell and its nuclei. It appears more relevant in
determining the nucleus and cell size at low concentrations.

The Structure Factor models

The previous models do not cover the case of dense media. Indeed, it can be assumed
that the scatterer position correlation increases with their concentration [38]. When the
scatterers are not randomly spatially distributed, structural effects affect the ultrasound
backscattering and the BSC is no longer the incoherent sum of the contributions of each
scatterers. To take this concentration and coherence effects into account, the incoherent
BSC signal can be modulated by a structure factor. In quantitative ultrasound, the use of
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Table 2.1: Estimated parameters given by the FFSM, PM, and SFM in the polydisperse
case. The actual mean nucleus and cell radii were found to be equal to 4.18 ± 0.43 and
6.34 ± 0.94 µm, respectively for the K562 cells. The actual radii of nuclear and CHO cells
are 3.32 ± 0.63 and 6.71 ± 0.86µm, respectively. Reproduced from Franceschini et al. [40]

a structure factor was initially investigated for blood characterization. Indeed, the degree
of red blood cell aggregation can indicate inflammatory or abnormal circulatory condi-
tions [4]. While extensive literature can be found on this topic [4,24,34], our focus will be
on the applications of the structure factor in dense solid media, excluding cell suspensions.
Franceschini et al. [39] reported the first use of a Structure Factor Model (SFM) to ex-
tract the scatterer concentration in concentrated tissue-mimicking phantoms composed of
monodisperse microspheres. Firstly, the SFM outperformed other incoherent models such
as the SGM to describe the BSC magnitudes at concentrations spanning from 1% to 25%.
Secondly, the SFM led to the best estimations (relative errors less than 38%) of volume
fractions at actual concentrations ranging from 10% to 25%. However, this satisfying re-
sult was obtained through the combination of another quantitative parameter, highlighting
the limitations of the SFM to differentiate between low and high concentration cases when
used independently. A follow-up study from the same group investigated the SFM’s capa-
bility to describe the BSCs from concentrated cell pellet biophantoms [40]. In this study,
they accounted for the cell size polydispersity in all models. Once again they reported
the superiority of the SFM over the FFSM and the Particle Model (PM) in fitting the
measured BSC and extracting both the scatterer size and the relative impedance contrast.
Table 2.1 shows that SFM minimized the normalized error between the measured and the
fitted BSCs for each case. This study also showed that the cells can be identified as isolated
scatterers while numerous studies reported the cell nuclei as main scattering structures [34].

Two years later, Franceschini et al. [41] conducted a similar study and compared the
performances of FFSM, SGM with SFM on cell pellet biophantoms composed of human
leukemia K562 cells. They designed biophantoms with multiple cell volume fractions. They
reported the superiority of the SFM in terms of quality of data fitting and agreement with
the true values for both sparse and concentrated phantoms (from 0.006 to 0.30).
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The same year, Muleki-Seya et al. reported one of the first applications of structure
factor models on excised tumors. QUS estimates extracted from the 12 - 40 MHz frequency
range from the SGM, FFSM and the SFM in the monodisperse case [5]. In canine livers, the
scatterer radius extracted from the three models showed good agreement with the nucleus
sizes estimated by histological analyses (relative errors less than 7%). The authors argue
that the liver could be modeled as a sparse medium to explain the successful applications
of incoherent BSC models. Thus, nuclei may be the predominant scatterers in this case.
Muleki-Seya et al. also carried out the same protocol over homogeneous xenograft mouse
tumors that contain HT29 cells. The scatterer radius estimated with the SFM matches
the histological results with relative errors of less than 15%. Conversely, the SGM and the
FFSM led to inconsistent estimates. The authors suggest that densely packed HT29 cells
may be the main scatterers in this case.

More recently, Franceschini et al. applied QUS techniques to characterize ex vivo rabbit
liver fibrosis [29]. Higher ESD values were reported in fibrotic livers when compared to
healthy livers for the two working frequency ranges (10 - 20 MHz and 10 - 40 MHz). They
also observed that EAC decreased with increasing fibrosis grade. Interestingly, the SGM
outperformed the SFM model for the specific task of grading. Indeed, even sophisticated
scattering models such as the polydisperse structure factor model did not describe the
measured BSCs.
One should note that the SFM was employed as a generic term to refer to BSC theoretical
models that are modulated by structure factors. Indeed, Francheschini et al. used the
Faran model (suited for elastic scatterers) in the phantom study [39] while the FFSM was
used in the cell pellet study [40]. Similarly, the SFM analytical expression can be derived
in the size monodisperse or polydisperse case [41].

Size polydispersity and structure factors

One year later, Han et al. [38] investigated the effect of size polydispersity over the
structure factor. They applied an ingenious technique to isolate the experimental structure
factors from BSC measurements. To do so, they designed one concentrated cell pellet
biophantom and its sparse equivalent, composed of the same cells. The structural effects
caused by the spatial arrangement of the scatterers were extracted by computing the
quotient of the BSC of the first phantom with its corresponding incoherent BSC measured
on the sparse phantom. Figure 2.6 (a) shows the experimental setup used in this study.
A single-element transducer insonified the cell pellet biophantoms over the 11 - 105 MHz
frequency range. They fitted their structure factor measurements with new analytical
models, namely the polydisperse I (PI) and the polydisperse II (PII) models. In the PI
model, the scatterers are assumed to be polydisperse in size but monodisperse in scattering
amplitudes while they are both polydisperse in the PII model. Polydisperse I describes an
unrealistic model but is considered as a valuable approximation for ease of computation.
Using the polydisperse models, Han et al. extracted the scatterer mean radius and the
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Figure 2.6: (a) Diagram of the experimental setup for BSC measurements. (b) Comparison
between the estimated effective scatterer radius using SGM, the FFSM and the estimated
mean cell radius from two polydisperse structure functions models PI and PII. Light
Microscope measures give reference cell sizes. Reproduced from Han et al. [38]

Schulz width factor (somewhat the sharpness of the size distribution). They use the volume
fraction as a priori known parameter to facilitate the inversion procedures. The estimated
scatterer radius from the SGM and the FFSM are shown in Figure 2.6 (b). One should keep
in mind that PI and PII estimates were extracted on experimental structure factors while
the other radii came from conventional BSC measurements. The two polydisperse models
led to more accurate inversions compared to the BSC models. The authors emphasized that
the BSC-related coefficients may potentially reflect the size of the cell nuclei. Conversely,
the estimated scatterer size can be related to cells with less doubts because PI and PII
take into account the spatial position scatterers, which are affected by cells and not the
nuclei [38].

This elegant way of measuring the structure factor with two biophantoms of different
concentrations was useful for studying the effect of polydispersity. However, the protocol
in this paper cannot be conducted in clinical applications. Nonetheless, Han et al. [38]
provided a structure factor expression to model the ultrasound backscattering of polydis-
perse scatterers in concentrated media. The latter can be combined with the Fluid-Filled
sphere form factor to fully model the BSC in dense polydisperse media. In this case, the
BSC becomes a function of the following parameters of interest: the scatterer mean radius,
the Schulz width factor, the volume fraction and the impedance contrast.

2.2.2 Envelope statistics

While the BSC parametrization extracts spectral-based parameters, Envelope Statis-
tics (ES) entails in estimating the shape and attributes of the envelope of the ultrasound
backscattering signals, leading to additional scattering parameters. To do so, the Probabil-
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ity Density Function (PDF) of the measured envelope can be fitted to known distributions
such as Nakagami distributions.

Physical interpretations of envelope parameters

The physical interpretation of the envelope parameters is not as straightforward as the
BSC-related parameters mentioned above. In a simulation study, Saha and Kolios [42]
suggested that the shape of an envelope histogram depends on the spatial organization of
scatterers and the bandwidth of the ultrasound pulse. Indeed, they observed that construc-
tive or destructive interferences resulting from the periodicity in the scatterer arrangements
may impact the ultrasound backscattering echoes. Multiple envelope models were exten-
sively studied to describe the backscattering echo in ultrasound imaging [4]: the Rayleigh
distribution, the Rician distribution, the K-distributions to name just a few. However, the
physical meaning of the associated envelope parameters could be limited in some cases,
such as the vanishing of the incoherent signal [43]. Conversely, the Homodyned-K (HK)
distribution is parametrized by coefficients that hold their physical meaning in various
configurations, making the interpretation of its estimates more reliable. The Nakagami
distribution is another model that can be seen as an approximation of the Homodyned-K
distribution [24]. These two distributions are the most commonly used models for ultra-
sound signal envelopes [44]. In the Nakagami distribution, the scaling factor Ωnak and the
Nakagami parameter αnak represent the mean backscattered intensity and a measurement
of the number of scatterers per resolution cell (i.e. the smallest resolvable volume by the
probe) respectively [44]. The HK distribution can also lead to estimates of the scatterer
concentration through the parameters µhk and can additionally provide measurements of
the coherent-to-diffuse signal ratio khk [45]. The latter can describe the degree of scatterer
spatial arrangements within a Region-of-Interest (ROI). The HK µhk parameter success-
fully characterizes sparse media (typically less than 10 scatterers per unit volume) [44].
However, its physical interpretation can be discussed at higher volume fractions. Cristea
et al. [44] reported a simulation and a phantom study to investigate the extent to which
the parameters αnak and µhk could reflect the number of scatterers per resolution cell.
They observed that µhk is more sensitive to the volume fraction and saturates less quickly
than αnak when the number of scatterers per resolution cell is increasing. Thus, the HK
parameter µhk may outperform its Nakagami equivalent in concentrated media.

Illustrative application

Recently, Zhou et al. [46] investigated the sensitivity of the envelope parameters µhk

and αnak to the severity of hepatic steatosis. Using a linear array with a center frequency
equal to 7 MHz, they estimated these QUS estimates over 66 steatotic rat livers. B-mode
images were color-encoded to create parametric images for each grade (Figure 2.7, a and
b). Both the HK and the Nakagami parameters increase with the severity and showed
correlations with the steatosis grade (R2 = 0.68 and 0.76 respectively, Figure 2.7, c and d).
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In summary, Envelope Statistics provide quantitative parameters that can successfully
characterize tissue microstructure. Envelope parameters can be extracted from the same
ROI as other BSC-related estimates but are sensitive to different features such as the
scatterer spatial organization. In the next section, we will see that QUS studies that
combine all the previous parameters can lead to enhanced tissue assessments

Figure 2.7: (a)–(b) The µhk and αnak parametric images at different stages of hepatic
steatosis: normal, mild, moderate, severe. (c)–(d) Box plots of the µhk and αnak parame-
ters, respectively. Adapted from Zhou et al. [46]

2.2.3 Successful applications

Cancer characterization

One of the first QUS applications for cancer characterization was reported in the
80s. Feleppa et al. [47] observed the increase in the scatterer size in cancerous tumors
and used the ESD as a biomarker of malignancy. One year later, the EAC was used to
discriminate ambiguous cases of cancerous conditions [27]. In a multiparametric study,
Oelze et al. [48] combined BSC-related and envelope-related parameters to classify three
kinds of rodent models of mammary cancers using a singe-element transducer with a center
frequency of 20 MHz. Figure 2.8 shows that the ESD, the scatterer clustering parameter µ
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and the coherent-to-diffuse signal ratio khk they measured allowed them to identify three
non-overlapping clusters in each tissue type, making these QUS parameters promising
biomarkers for breast cancer characterization.

Figure 2.8: Feature analysis plot of the ESD versus µhk versus khk parameter. Reproduced
from Oelze et al. [48]

A similar study conducted by the same group for thyroid cancer characterization was
reported [49]. Measurements were performed on mice excised thyroids using a mono-
element transducer with a center frequency of 40 MHz. Once again, the combinations of
the QUS parameters ESD, EAC and µhk allowed them to observe statistical differences
between two thyroid cancer types and healthy thyroids in the 25 - 45 MHz frequency range.
However, the coherent-to-diffuse signal ratio khk did not appear as a relevant biomarker
in this study. Additionally, although some correlations were observed, the estimated ESD
does not correspond directly to the expected sizes of cellular structures.

Mamou et al. conducted multiple studies about lymph node characterization for the
detection of micrometastases. Indeed, the cancer staging directly reflects the cancer spread
and is of critical importance for proper diagnosis. Firstly, 46 excised lymph nodes from
colorectal cancer patients were 3D-scanned using a mono-element transducer with a cen-
ter frequency of 25.6-MHz [26]. Histological analyses were conducted for reference. The
ESD, EAC, the LF slope and intercept were estimated on the measured BSCs. Fully
metastatic nodes were perfectly discriminated based on the ESD and the LF slope (Fig-
ure 2.3). Metastatic nodes led to an average ESD significantly higher (p <0.05) than
the normal lymph nodes. Once again, an increase in the scatterer size due to cancerous
conditions was reported. One year later, measurements over 112 lymph nodes were con-
ducted using the same experimental protocol. Envelope parameters were also estimated.
Multiple combinations of the four QUS parameters were tested to classify them. The best
one appeared to be the combination of ESD with the coherent-to-diffuse signal ratio khk.
The latter brought an area under the ROC curve of 0.996 with specificity and sensitivity

Cyril Malinet 21



CHAPTER 2. CONTEXT

of 95%, thus showing the power of QUS multi-parametric studies for detecting malignant
lymph nodes. These promising results led to the development of a graphical user interface,
called Lymph Explorer [50], to guide pathologists towards suspicious regions. This study
also reported excellent classification over 250 excised lymph nodes. Similarly, the same
QUS estimates were combined to estimate the degree of malignancy. The areas under the
ROC curves exceeded 0.95 for gastrointestinal nodes and 0.85 for nodes of breast cancer
patients. An example of Lymph Explorer screenshot shows the cancer probabilities (Figure
2.9) computed from QUS estimates and a microphotograph of the histological slice of the
corresponding lymph node.
Lymph Explorer showed an example of how QUS techniques could be routinely used in clin-
ics for ex vivo applications. However, the previous results rely on high frequency analyses,
which may impact the acceptance in clinical settings. Recently, Hoerig et al. addressed
this issue and reported the first in vivo classification of metastatic lymph nodes at clinical
frequencies [51]. The same QUS estimates were extracted after ultrasound measurements
from 19 patients using a 10-MHz linear probe and were used to train Machine Learning
classifiers. ESD and EAC were reported as the most effective biomarkers to detect malig-
nant lymph nodes (area under the ROC curve 0.94)

These lymph node studies can be considered as illustrative examples of the perfor-
mances of QUS techniques for cancer characterization. Interestingly, the classification
results reported in these studies rely on the combinations of a few QUS estimates. Fur-
thermore, it could be noted that most of the parameters are extracted from models with
simple analytical expressions, thereby limiting the computational time for inversion proce-
dures. Hence, it is important to keep in mind that the the high classification performances
reported in these studies rely on overall low computational complexities.

Therapy monitoring

The non-invasive nature of BSC parametrization techniques makes them suitable for
therapy monitoring applications [24]. Indeed, QUS estimates can be mapped over con-
ventional B-mode images to assess the tumor responsiveness, and thus, help clinicians in
their decisions related to treatments at the early stage of a therapy. The first experimental
QUS applications for longitudinal studies were reported in the early 2000s [52,53]. Kolios
et al. [53] estimated the Lizzi Feleppa parameters and the ESDs from BSCs measured on
cell pellets exposed to chemotherapeutics from 22 - 47 MHz to monitor apoptosis. They
reported an increase in the LF slope and the LF midband value with time after drug ex-
posure, while the ESD was decreasing. A few years later, Banihashemi et al. [54] reported
the first in vivo application of QUS to detect apoptosis in melanoma tumors undergoing
photodynamic therapy. They observed a strong correlation over time between variations
in the LF slope with changes in the cell nucleus size measured by histological analyses.
More recently, Sannachi et al. [55] conducted a clinical study that aimed at predicting the

22 Cyril Malinet



2.2. QUANTITATIVE ULTRASOUND TECHNIQUES

Figure 2.9: Illustrative Lymph Explorer screen capture providing visual representations of
cancer probabilities. These results were derived from a lymph node affected by colorectal
cancer, demonstrating partial metastasis. Within the three QUS images, areas marked in
red signify cancer probabilities exceeding 75%, while those in green represent probabilities
under 25%, and those in orange depict probabilities falling between 25% and 75%. In the
histology image, the green outline demarcates the metastatic region. Reproduced from
Mamou et al. [50]

early response of 30 breast cancer patients to chemotherapy. To do so, they estimated the
ESD and EAC on BSCs measurements performed with a clinical imaging system operating
from 4.5 to 9 MHz. QUS estimates were reported at different weeks after the beginning of
chemotherapy and just before surgery. Significant variations in the EAC values were ob-
served in patients responding to therapy, contrasting with non-responding patients (Figure
2.10, a). Significant variations were only observed at week 8 for ESD values (Figure 2.10,
b).

Thus, QUS estimates can probe cellular death mechanisms non-invasively, making QUS
techniques powerful for treatment monitoring applications

In recent years, there has been a growing interest in the applications of machine learn-
ing techniques in multi-parametric QUS studies, including lymph node classification [51],
prostate cancer imaging [56] or fatty liver diagnosis [56]. Taleghamar et al. [57] reported the
use of an unsupervised learning method to predict breast cancer response to chemotherapy
prior to the start of treatment using the ESD, EAC, LF midband value and LF intercept,
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Figure 2.10: EAC (a) and ESD (b) parameters measured in treatment responders and
non-responders over during the course of the treatment. Error bars represent the mean
± one standard error.** (p < 0.005) and * (p < 0.05) represent the significant difference
between responders and non-responders based on ANOVA test. R: Responder; NR: Non-
Responder; Pre-Tx: Pretreatment; Pre-Op: Preoperation. Reproduced from Sannachi et
al. [55]

extending the previous study mentioned above [55]. They observed that the biomarkers
derived from the entire tumor core may predict the treatment response of patients with
an accuracy of 74.5% with an area under the ROC curve of 0.79. For comparison, con-
ventional clinical features led to an accuracy of 69.1% and an area under the ROC curve
of 0.6. One year later, Taleghamar et al. [58] improved the performances using a deep
learning technique for the same application, using the same four QUS estimates. They
obtained a response prediction with an accuracy of 88% and an area under the ROC curve
of 0.86.

In summary, we described theoretical BSC scattering models of various complexity
that successfully characterized different tissue types. Remarkable agreements were also
reported between the ESDs and the actual size of cellular components, showing that a
physical interpretation can be attributed to this parameter. Therefore, the increase in the
cell and the nucleus sizes associated with dysplasia may be detected using this parameter.

The volume fraction of BSC models, the Nakagami parameter αnak and the scatterer
clustering parameter µhk can carry interesting physical meanings since they can reflect
the scatterer density. It is noteworthy that cancerous tissue can be characterized by an
abnormal cell density and could potentially be detected using these parameters.

The BSC structure factor and the coherent-to-diffuse signal ratio khk are sensitive to
the scatterer spatial organization. Notably, a chaotic cell organization can be characteris-
tic of undifferentiated tissues and that could be therefore detected using these parameters.

Additionally, other BSC and envelope parameters may act as robust biomarkers of
malignancy. Thus, the BSC parametrization and ES appear as relevant techniques for
cancer characterization. Their implementations are described in the next chapter.
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2.3 Light scattering for tissue diagnosis

This section aims to provide an overview of the light scattering methods for cancer
diagnosis. A vast literature exists on this topic. Thus, the following part will focus on
the in vivo studies or the applications that have the potential of being employed in living
tissues, excluding microscopy applications. After introducing the key principles of different
optical methods, the different implementations of light backscattering spectroscopy will
be analyzed chronologically.

2.3.1 Pioneer studies in Light Scattering Spectroscopy (LSS)

The identification of the main scattering structures in biological samples represents a
fundamental issue in biophotonics. In the 90s, mitochondria were reported as predominant
scatterers in the liver [59] and in fibroblasts [60]. Other papers studied the extent to
which cell nuclei could be identified as scatterers [61,62]. However, none of these methods
provided size measurements of the probed organelles [63]. Moreover, they could not be
applied in living tissues. The first studies about the size estimations of organelles and the
refractive index measurements were reported in the late 90s [64,65].

Perelman et al. [64] described an elegant way to estimate the nuclear size distribution
from unpolarized reflectance measurements using the Fourier transform. In this study,
an optical probe composed of one excitation fiber and six collection fibers detected the
tissue backscattered light in the visible range (Figure 2.11). The probe tip sampled tissue
over a circular spot of approximately 1 mm2 in area. The single scattered component of

Figure 2.11: Schematic diagram of the LSS system used by Perelman et al. [64] and Wallace
et al. [66]. This instrument allowed endoscopic applications.

light was extracted after model-based diffusive background removal. Thus, assumptions
about the hemoglobin absorption and the scattering properties from the underlying tissues
were needed. The periodicity of the resulting spectra presented fine oscillations that were
then related to nucleus diameters under the Van de Hulst approximation [64]. Using Mie
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Theory, the nuclear size distributions of normal and cancerous colon cells were successfully
extracted at the expense of assumptions about the nucleus-to-cytoplasm relative refractive
index and the cytoplasm refractive index values. This approach is termed as Fourier
transform-based analysis

Another analytical procedure referred to as Mie Theory-based analysis can also lead to
the nuclear size distribution. Backman et al. [65] estimated the nuclear size distribution of
intestinal malignant and normal cells using a bench-top instrument with bulk optics and
a spectrometer in situ. Healthy cells present uniform and circular shapes while cancerous
cells are enlarged and show more variations in size (Figure 2.12, a). In this study, a
polarized discrimination technique was used to isolate the single scattered component of
the probed tissue. The predictions of Mie Theory were then fitted to the experimental data,
resulting in the estimations of three parameters: the mean scatterer radius, the standard
deviation in size (assuming a Gaussian distribution) and the relative refractive index.
The size-related parameters were extracted with an accuracy of about 0.1 µm (Figure
2.12, b). One thousand to ten thousand cells were approximately probed in a single LSS
measurement [65]. Contrary to the previous study, the background removal technique used
here does not rely on assumptions about the probed tissue, making this approach theory-
independent and applicable to different kinds of tissues. However, the successful inversion
procedures achieved in this study came at the expense of the assumed Gaussian size
distribution of the nuclei while the Fourier transform-based analysis does not require such
approximation. A few years later, Backman et al. [67] introduced LSS imaging, which adds

Figure 2.12: (a) Microphotographs of normal intestinal epithelial cells (top) and intestinal
malignant cell line T84 (bottom). Scaling bars: 20 µm. (b) Nucleus size distributions
for T84 intestinal malignant cells and normal intestinal cells. In each case, the solid line
represents the distribution extracted from the light scattering technique and the dashed
line is the reference distribution measured using light microscopy. Adapted from Backman
et al. [65]

26 Cyril Malinet



2.3. LIGHT SCATTERING FOR TISSUE DIAGNOSIS

spatial dimensions to the LSS spectrum by replacing the spectrograph with a CCD camera.
In this study, the LSS image of a cell monolayer showed morphometric measurements
of the nuclear size with excellent agreement when compared to the corresponding light
microscope measurement over a field of view of 125x275 µm. This study also introduced
the scattering angle-sensitive LSS (a/LSS), which can be considered as a precursor to Low
Enhanced Backscattering Spectroscopy (LEBS) discussed in detail in subsection 2.3.3.
The purpose of a/LSS was to measure subcellular structures at submicron scales. Wallace
et al. [66] reported one of the first clinical applications of LSS for in vivo detection of
dysplasia associated with Barrett’s esophagus. In this study, the authors collected and
analyzed 76 reflectance spectra from 13 patients with suspected adenocarcinoma, following
a methodology similar to that employed by Perelman et al. [64]. The endoscope was
brought into contact with the patient’s esophageal mucosas. They built a diagnostic
algorithm that classified samples into 4 histologic categories: nondysplastic Barrett’s,
indefinite for dysplasia, low-grade dysplasia (LGD) and high-grade dysplasia (HGD). They
obtained a 90% sensitivity and 90% specificity for detecting LGD and HGD. These pioneer
studies showed that LSS has the potential to detect cancerous epithelial cells at an early
stage without tissue resection, thus making the technique minimally invasive.

2.3.2 Toward real-time LSS diagnosis

The next challenge was to make the LSS in vivo size measurements real-time for intra-
operative applications using a resource-efficient instrument. Qiu et al. [9] developed an
endoscopic scanning LSS instrument that was able to diagnose the precancerous dysplasia
of the esophageal mucosas in near real-time (Figure 2.13, a). This study aimed to provide
biopsy guidance to address the low probability of detection of Barrett’s esophagus using
standard methods. Previous LSS instruments were able to probe a small part of tissue
(1 mm2). Here, the system was able to collect a significant amount of data for a 2-cm
segment of Barrett’s esophagus in less than one minute [9] (Figure 2.13, b). They used the
polarization subtraction technique mentioned in section 2.3.1 to extract the single scattered
component of light, thus probing the superficial epithelial layer. The resulting differential
polarization signals were then analyzed using an approach somewhat similar to the Mie
Theory-based analysis. Qiu et al. [9] followed the analytical procedure described by Fang
et al. [68]. This method, initially developed to estimate the sizes of submicron organelles,
was used here to measure the nuclear changes induced by dysplasia. The Mie LSS spectra
were precomputed for a wide range of scatterer radii by setting the relative refractive
index nucleus/cytoplasm to a fixed assumed value. An inversion procedure was then
applied to extract the scatterer size distribution from the experimental LSS spectra using
a non-negativity constraint (i.e. no Gaussian distribution assumed contrary to Backman
et al. [65]). To further reduce the computational time, a diagnostic parameter was used to
discriminate normal and dysplastic sites. This diagnostic parameter is simply the squared
difference between the spectra of the probed sites with the mean of all measured spectra.
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Figure 2.13: (a) Endoscopic scanning LSS instrument developed by Qiu et al. [9]. The
photograph on the left shows the point-of-care system on a cart with its scanning probe
inserted into a commercialized endoscope. The schematic on the right shows the exploded
view of the probe tip with the polarizer and the analyzer combined in a single optical
component. (b) Clinical procedure. The LSS instrument performs fast rotational and
longitudinal scans of the suspected Barrett’s esophagus area. Figures reproduced from
Qiu et al. [9]

This approach is based on the fact that the spectra of normal sites are dominant. Thus,
the diagnostic parameter takes low values when a healthy area is probed. Conversely,
the larger dysplastic nuclei strongly affect the LSS spectrum of cancerous regions, thus
increasing the diagnostic parameters values. Hence, threshold values can be set to quantify
the degree of malignancy of Barret’s esophagus segment. The diagnostic parameters are
mapped along the azimuthal angle and the distance from the front teeth in the upper jaw
in Figure 2.14 (a). Examples of estimated nucleus size distributions and light microscope
measurements are shown in 2.14 (c) and (d). An excellent agreement is found between
histological reference measurements and LSS estimations. The diagnostic algorithm built
in this study diagnosed correctly 55 out of 57 patients, making this tool relevant for biopsy
guidance. More recently, Pleskow et al. [69] reported an in vivo detection of bile duct pre-
cancer with an endoscopic LSS instrument similar to the one used by Wallace et al. [66]
(Figure 2.11). In this study, they combined diffuse reflectance microscopy and LSS with
a diagnostic parameter. Malignant transformations was detected with 97% accuracy over
29 patients.

One should note that LSS applications can also be found in confocal microscopy [70,71].
The first study reported the use of an incoherent light source to detect the sizes of two
different organelle types in aqueous solutions, following a post-processing procedure close
to the one described by Fang et al. [68]. A few years later, Qiu et al. [72] demonstrated
the superiority of coherent confocal light absorption and scattering spectroscopic (termed
as C-CLASS) over its incoherent version. The C-CLASS technique recently led them to
characterize microstructures beyond the diffraction limit [73]. They additionally evaluated
the sensitivity of the C-CLASS technique to the degrees of aggressiveness exhibited by two

28 Cyril Malinet



2.3. LIGHT SCATTERING FOR TISSUE DIAGNOSIS

distinct cancer cell types. This evaluation aimed to identify the different cancer grades in
excised tumors without the need for labeling agents.

Figure 2.14: (a) Nucleus size distributions for one dysplastic and one non-dysplastic site
in Barrett’s esophagus. (a) The map highlights regions with potential dysplasia in red
and pink based on nuclear size distributions extracted from backscattering spectra at
individual spatial locations. Diagnostic parameter values below 0.05 are represented in
dark green, 0.05–0.10 in light green, 0.10–0.15 in pink, and values above 0.15 in red.
Two biopsy sites, histologically diagnosed as non-dysplastic biopsy (NDB) and high-grade
dysplasia (HGD), are indicated by green and red circles, respectively. (b) Histology images
corresponding to the marked biopsy locations are displayed, with NDB on the left and
HGD on the right (scale bar: 100 µm). Comparison of nucleus size distributions obtained
from light microscopy measurements (circles) of biopsies presented in panel (b) and those
reconstructed from in vivo LSS data (solid lines) collected at the same NDB (c) and HGD
(d) locations. Figures reproduced from Qiu et al. [9]

2.3.3 Low Enhanced Backscattering Spectroscopy (LEBS)

Coherent Backscattering Spectroscopy (CBS) is a non-invasive optical technique used
to probe the scattering properties of various materials. Several CBS applications were
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reported in the 80s [74], including material sciences [75] for instance. Nevertheless, the in-
vestigation of the coherent backscattering phenomenon in biological applications has been
limited, primarily due to the technical challenges associated with its observation. Indeed,
the CBS peak can be extremely narrow in biological tissue, reaching as low as 0.001°.
Moreover, the presence of speckles can mask the signal, making CBS measurement even
more challenging. However, after extensive studies of the LSS incoherent spectrum, the
early 2000s witnessed the emergence of a new optical method that takes benefits from
the light spatial coherence for tissue characterization. Kim et al. [74, 76] reported one of
the first modified versions of CBS applied for biological tissues, termed Low Enhanced
Backscattering Spectroscopy (LEBS). LEBS involves the analysis of both the spectrum
and the angle of the coherent intensity peak that occurs in the backscattering direction.
This peak results from the constructive interferences between pairs of multiple scattered
photons that propagate along a scattering light path and its time-reversed path, thus ac-
cumulating an equal phase. The attributes of the coherent peak can be related to the
scattering properties of the sample such as its mean free path or its anisotropy coefficient.
In their studies, Kim et al. investigated the capability of LEBS to detect early cancerous
alterations in the superficial tissue layer, such as the colon epithelia. These investigations
build upon previous research on LSS in the search for a minimally invasive tool able to
detect precancerous conditions. Using an experimental setup similar to the LSS benchtop
instrument used by Backman et al. [67], Kim et al. [74,76] broaden the CBS peak using a
low-spatial-coherent light source and remove the speckle using a broadband illumination
combined with a low-temporal-coherence detection. They reported significant changes in
the LEBS spectral slopes in rat colonic tissues 2, 4 and 6 weeks after the initiation of colon
carcinogenesis compared to control rat [76] as shown in Figure 2.15 (b). These variations
reflect the proliferation of epithelial cells in the lower compartment of crypts in the colon
mucosa (Figure 2.15, a). Then, they underscored the depth selectivity of LEBS by probing
the cells from the upper compartment which undergo apoptosis. Different variations in
the spectral slope were then observed (Figure 2.15, c). The finesse of depth selectivity
achieved by LEBS was emphasized in comparison to the limited depth selectivity observed
in previous LSS studies, which were unable to differentiate between epithelial and stromal
layers effectively. A few years later, several applications reported the use of fiber optic
LEBS instruments [77, 78], turning the LEBS technique into a point-of-care tool. These
studies concluded that LEBS is sensitive to sub-cellular structures, making this technique
suitable for early cancer detection [18]. LEBS was initially presented as a tool capable of
providing new biomarkers that could precede the expression of conventional histological
biomarkers in the early detection of cancer. However, no existing model provided a com-
prehensive understanding of the underlying tissue microstructure in relation to the LEBS
signatures at that time [76,79].

A couple of years later, Turzhitsky et al. reported the use of Monte Carlo algorithms
to relate LEBS signatures with the scatterer phase functions (i.e. the probability of scat-
tering at a given angle) [6]. The Monte Carlo (MC) method provides a solution to the
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Figure 2.15: (a) Crypt of a colonic mucosa. The depth of a colonic crypt is about 70
µm. LEBS spectral slopes per week after the initiation of colon carcinogenesis in the
lower compartment (70 µm deep, b) and the upper compartment (40 µm deep, c). Figures
adapted from Kim et al. [76]

radiative transfer equation by taking into account the statistical nature of light propaga-
tion. MC simulations are often used as a gold standard to validate light transport models.
The simulated LEBS were validated with the experimental measurements performed on
aqueous solutions of suspended microspheres using the Mie phase function. They demon-
strated the remarkable sensitivity of the Fourier transform of the two-dimensional (2D)
LEBS signal, called the radial point spread function, to changes in the phase function.
They illustrated the potential of LEBS to detect precancerous tissues by identifying al-
terations at small length scales in the radial point spread functions between normal and
precancerous rat epithelial tissues. One year after, Turzhitsky et al. [80] reported a simi-
lar work using a phase function based on the Whittle–Matérn refractive index correlation
function. Indeed, the Mie theory can be helpful to describe the scattering properties from
suspended microparticles [81] but tissue complexities can make its application difficult for
biological samples. As opposed to discrete spherical scatterers in a surrounding medium,
another approach models tissues as continuous random media. Thus, the refractive in-
dex is no longer discontinuous and follows fluctuations that can be statistically described.
Under this assumption, a versatile model that is based on the Whittle–Matérn function
to describe the refractive index excess autocorrelation function can be used. Thus, MC
simulations enabled a better understanding of the LEBS signature with the sample optical
properties, answering the questions raised in the first LEBS studies. However, one should
note that Turzhitsky et al. [80] did not take into account polarization effects in this study
despite the fact that light polarization properties alter the spatial reflectance profile [10].
Thus, a polarized Monte Carlo algorithm would allow a comprehensive understanding of
the dependencies between the peak shape and the tissue structural composition.

Radosevich et al. [82] reported a post-processing technique that allows to reconstruct
the shape of a wide range of experimentally measured LEBS peaks from the experimental
measurement of one LEBS peak taken with a certain value of the light source spatial co-
herence length. The LEBS reconstruction could only be carried out for spatial coherence
length shorter than the experimentally measured one. In other words, the depth selec-
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tivity of LEBS can be adjusted during post-processing, provided that the desired depth
does not exceed the maximum depth achievable by the unique LEBS measurement. Con-
sequently, the higher the light source spatial coherence is, the more tissue information
can be reconstructed from a single measurement. Enhanced Backscattering Spectroscopy
(EBS, another terminology for Coherent Backscattering Spectroscopy) that uses a highly
coherent light source (such as broadband lasers) is advantageous in terms of data quan-
tity compared to LEBS. Indeed EBS should be preferred wherever possible. However, the
use of the LEBS is more advantageous for practical instrumentation reasons [83]. For in-
stance, EBS requires expensive materials such as broadband lasers and extremely sensitive
cameras. This could impact its acceptance in clinical settings. Furthermore, stationary
samples generate speckles that could mask the coherent peak when illuminated with a
highly coherent source. Samples are usually rotated to average away this noisy component
but this can be technically impossible for certain clinical applications. Conversely, LEBS
can get rid of the speckle even for stationary samples.

2.3.4 Enhanced Backscattering Spectroscopy (EBS)

The early 2010s marked the renaissance of EBS (formerly CBS) for tissue character-
ization. Radosevich et al. [83] explored the effects of polarization on the EBS signals
using an aqueous suspension of latex microspheres and underscored the sensitivity of the
EBS peak to the shape of the scattering phase function. The performances obtained by
Turzhitsky et al. [6] with LEBS were reproduced with EBS [10,83]. An open-source polar-
ized Monte Carlo algorithm was released by Radosevich et al. [84]. This program enables
computation of the EBS signals in media that can be modeled using the Whittle-Matérn
formalism or Mie Theory. This work provided a powerful tool to investigate the depen-
dencies between the shape of the coherent peak and the underlying tissue microstructure.
The computational times were optimized using a semi-analytical approach and multiple
parallel computing nodes. This program paved the way to fitting procedures.

Radosevich et al. [10] used this tool and reported successful applications of EBS to
detect pre-invasive cells in colorectal and pancreatic cancers, thus expanding the previous
LEBS studies on these tissues. Radosevich et al. identified significant differences at
small length scales in the reflectance profiles between precancerous and normal pancreatic
cancers (Figure 2.16, a and b), reflecting different tissue structural compositions in the
superficial layer. The normalized intensity evaluated at the optimal exit radius exhibited
significant statistical differences (Figure 2.16, c).

For colorectal cancer, the collected biopsies were classified into four categories by a
pathologist (diminutive adenomas (DA), healthy control with no adenomatous adenomas
(A) and advanced adenomas (AA)). The optical properties were extracted after EBS mea-
surement and fitting procedures using the polarized MC algorithm [83]. Figure 2.17 (a), (b)
and (c) shows the transport mean free path, the anisotropy coefficient and the ultrastruc-
tural parameters that determine the shape of the Whittle-Matérn functions respectively.

32 Cyril Malinet



2.3. LIGHT SCATTERING FOR TISSUE DIAGNOSIS

Figure 2.16: Pancreatic cancer (PC) field carcinogenesis alterations measured in the shape
of reflectance profiles P from biopsies. (a) Comparison between reflectance profiles P for
PC and control (C). The shaded region indicates the values of exit radius rs for which
the curves are significantly different. (b) Difference of reflectance profiles PC - C. The
dotted circle indicates the optimal exit radius value for which the statistical differences
are the most pronounced. (c) Normalized intensity of reflectance profiles at the optimal
exit radius value for PC and control groups. Figures adapted from Radosevich et al. [10]

Figure 2.17: Optical properties of rectal biopsies in a colorectal study. (a) Transport
mean free paths with its mean standard error. (b) Anisotropy g coefficient at 700 nm. (c)
Shape parameter D of the Whittle-Matérn model. 43 controls (C), 6 diminutive adenomas
(DA), 25 adenomas (A), 19 advanced adenomas (AA) were used. Figures adapted from
Radosevich et al. [10]

Radosevich et al. [85] provided a Matlab routine to perform inversion procedures from
experimental reflectance profiles to extract the Whittle-Matérn or the Mie parameters
with microvascular properties. Look-up tables built using the polarized MC algorithms
allowed the fitting of experimental reflectance profiles with nearly analytical speed and
accuracy. This procedure was illustrated with ex-vivo rat tissue samples and allowed
a thorough tissue characterization through the estimations of the three Whittle-Matérn
parameters and three absorption-related parameters. Given that the Whittle-Matérn co-
efficients parametrize the refractive index excess autocorrelation function, random repre-
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sentations of the medium refractive index can be deduced from their computation. The
corresponding representations of the spatial distribution of the excess of refractive index
for three tissue types are given in Figure 2.18. Details about the generation of such rep-
resentations are given in the section 4.2.4. More recently, Pinkert et al. [86] designed a

Figure 2.18: (a) Extracted refractive index autocorrelation functions Bn for liver, stomach,
and heart tissues. The thickness of each curve corresponds to the standard error. The
corresponding random media representations of (b) liver, (c) stomach, and (d) heart. The
color map represents the excess refractive index value. Reproduced from Radosevich et
al. [85]

multiscale imaging platform with sensitivity ranging from the cellular to the macro scale.
They combined ultrasound imaging, Second Harmonic Generation Microscopy, Multipho-
ton Microscopy, Optical Coherence Tomography, and Enhanced Backscattering on a rabbit
eye. They reported the first multimodal application that included EBS. They also imple-
mented EBS into a microscopic application to allow direct comparison with the optical
imaging modalities. EBS brought valuable information that relate to the scattering tissue
properties that completed the anatomical information brought by the other imaging tech-
niques.

In summary, LSS appears as a relevant tool to estimate the nucleus size distribu-
tions that may be impacted by dysplasia. The backscattered spectra need to be spectrally
resolved to apply this technique.

EBS appears as another robust option to characterize cancerous tissues. It requires
angularly resolved spectra, and can also be achieved at multiple wavelengths. EBS showed
an interesting sensitivity at small length scales and probed fine tissue alterations. Inter-
estingly, the Whittle-Matérn model does not need any assumption regarding the scatterer
geometry and can result in a representation of the excess of refractive indices, that may
carry interesting physical interpretations.

Thus, LSS and EBS appear as relevant techniques for cancer characterization. They
may bring complementary diagnostic information with quantitative ultrasound techniques.
Their implementations are described in the Chapter 4.
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Chapter 3

Quantitative ultrasound: theories and
methods

This chapter aims to describe the theoretical background of two quantitative ultrasound
(QUS) techniques used in this thesis: the BSC parametrization and Envelope Statistics
(ES). These two techniques can provide a variety of quantitative estimates that reflect the
underlying tissue microstructure from the same ultrasound acquisition. Therefore, it is
interesting to combine them for cancer characterization. Numerous theoretical backscat-
tering models were reported in the literature for each technique [4, 24]. Thus, the theo-
retical framework presented in this thesis is restricted to the analytical expressions and
hypotheses used in the following chapters. Firstly, all the physical quantities required for
QUS analyses are introduced. Secondly, the scattering theoretical models are presented,
followed by the detailed workflow that leads to BSC estimations and the associated QUS
estimates. Thirdly, the ES theoretical framework is described. The estimation of envelope
parameters is then presented. In this thesis, the BSC analysis was of prime interest for our
application and was the first technique implemented in this project. Thus, deeper insights
about this method will be given.

3.1 Ultrasound basics

Before introducing the BSC and the envelope parameters, some essential ultrasound
principles and concepts are presented in this section. Ultrasound imaging is based on the
propagation of acoustic waves in tissues. They experience several mechanisms that are
explained below.
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3.1.1 Wave and tissue interactions

Ultrasound is a disturbance of a pressure field. In most of medical imaging applications,
the acoustic wave in tissues is a longitudinal wave that propagates linearly at the sound
speed c, after being emitted by a transducer. The sound speed is commonly assumed to
be constant in homogeneous tissues (typically c = 1540 m/s). Its wavelength λ is linked
to the excitation frequency of the transducer f through the sound speed such as c = λf .

Specular reflection occurs when the ultrasound wave meets an object of a characteristic
size larger than the wavelength (Figure 3.1, a). This object can be modeled by a spatial
variation in the acoustic impedance Z, defined under certain conditions as the product of
the local density ρ by the sound speed c such as Z = ρc. In practice, specular reflection
occurs when ultrasound waves propagate through muscle/fat or muscle/bone interfaces for
instance. Part of the ultrasound wave returns to the ultrasound probe in case of normal
incidence and is referred to as echoes. If the object is smaller than the incident wavelength

Figure 3.1: (a) Specular scattering occurs when the structure is much larger than the ul-
trasound wavelength. The ultrasound wave can be reflected or transmitted at the interface
between the two media. (b) Diffuse scattering occurs when the structure is much smaller
than the ultrasound wavelength. Adapted from Mercado et al. [87]

(e.g. cellular structures at clinical frequencies), the ultrasound wave is scattered in all
directions (diffuse scattering, Figure 3.1, b). The signal that is scattered at 180° with re-
spect to the propagation direction of the incident wave is detected by the ultrasound probe
and is referred to as the diffuse backscattered echoes. The strength of this backscattered
echo is proportional to the impedance contrast γz defined as γz = Z−Z0

Z0
, with Z being the

scatterer acoustic impedance and Z0 the acoustic impedance of the surrounding medium.
The diffuse backscattering is the phenomenon of interest when estimating the BSC and
the envelope parameters in biological tissues.
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3.1.2 Attenuation

As mentioned above, ultrasound waves undergo scattering in biological tissues. They
also experience absorption due to viscous and thermal losses. Indeed, as the ultrasound
waves propagate through the tissue, microscopic deformations leading to local frictions
and energy dissipations occur. Both scattering and absorption lead to a reduction in wave
intensity. Tissue attenuation refers to these two mechanisms and affects the backscattered
signal of interest. When estimating QUS estimates, the effect of attenuation needs to
be mitigated. The attenuation α(f) in tissue can be modeled as a function of the fre-
quency such that α(f) = α0fm, α0 being the tissue attenuation coefficient, expressed in
dB/(mm.MHzm) and m, the attenuation exponent which usually varies from 1 to 2 [88].
Thus, at a given depth, higher frequency waves undergo more attenuation than low fre-
quency waves. In other words, low frequency waves have deeper penetration depth in
comparison to high frequency waves. In biological tissues, m is generally assumed to be
unity [89]. The attenuation is then a linear function of the frequency. To give some order
of magnitudes, the attenuation at 1 MHz is typically 0.16 dB/mm in muscles, 0.02 dB/mm
in blood, 0.8 dB/mm in skull bone and 0.002 dB/mm in water [88].

3.1.3 Principle of ultrasound imaging

Now that the key mechanisms of wave and tissue interactions were introduced, the
principle of ultrasound imaging can be presented. Image generation is part of the workflow
when estimating the QUS parameters of a biological sample.

After the pulse emission, the time of return of the ultrasound wave to the transducer
allows for object localization. Indeed the transducer-object distance d can be estimated
using the back-and-forth traveling time ∆t as follows: d = c∆t

2 . This property is the
key principle for ultrasound image generation. Amplitude Mode (A-mode) refers to the
measurement of the amplitude of the backscattered signal envelope. A-mode was the first
implementation of medical ultrasound historically and can be achieved using a single-
element transducer. To obtain a two-dimensional (2D) signal (i.e. an image), the mono-
element transducer can be moved to scan the region of interest. Alternatively, arrays of
elements can acquire the backscattered signals simultaneously. In the second case, the
radiofrequency signals generated by each element need to be beamformed to generate an
interpretable image [90]. Anatomical information about the probed tissue then appears by
turning the detected amplitude of the beamformed signals into gray levels. This process
leads to the conventional Brightness mode (B-mode) images.

3.1.4 Diffraction

To understand the estimation of the QUS parameters detailed below, the diffraction
effect needs to be introduced. It also impacts the process of image generation from the
backscattered ultrasound signals.
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The ultrasound wave is emitted by a piezo-electric transducer that has an extended
spatial dimension. Thus, it can be considered that each point on the aperture generates
a spherical wave (Huygens Principle). The pressure field near the transducer is affected
by constructive and destructive interferences because of the coherence of these ultrasound
waves. This area is known as the Fresnel zone and presents numerous fluctuations, which
makes this zone difficult to use for imaging (Figure 3.2).

Figure 3.2: Example of the pressure field intensity from a circular ultrasound transducer
(diameter 10 mm, center frequency 4 MHz). Adapted from Jain et al. [91]

The far-field presents a relatively more uniform pressure field and is referred to as the
Fraunhofer zone. In this area, the beam spread can be quantified through the divergence
angle. The beam divergence results from the transducer dimension and its shape (circu-
lar, rectangular). All these phenomena are termed as diffraction effects. The diffraction
pattern can be expressed by analytical expressions in the Fresnel and in the Fraunhofer
zone. However, these equations are difficult to calculate and come at the expense of
approximations such as on-axis configuration.

3.1.5 Transducer properties

Now that we have discussed the principles of ultrasound imaging, we can now proceed
to introduce the fundamental concept of resolution. This notion is useful in imaging and
is also part of the physical interpretation of QUS parameters.

In most imaging medical applications, ultrasound transducers emit short pulses with
a broad frequency content. The center frequency of the transducer is one of its main
properties and it can be defined using the zero-crossing of the pulse (i.e. points at which
the ultrasound signal crosses zero-amplitude level). The pulse length affects the axial
resolution Rax (i.e. the capability of the transducer to separate two scatterers along
the propagation direction of incident waves). For a single-element circular transducer,
Rax = c

2B with B being the bandwidth defined as the frequency range at -6 dB. The
lateral resolution Rlat (i.e. same as the axial resolution but in the orthogonal direction)
is defined as the product of the wavelength and the F-number F such as Rlat = λF =
λ

df

A , were df represents the focal distance and A the aperture of the transducer. The
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axial and the lateral resolutions can be combined to define the resolution cell, which
represents the smallest volume resolvable by the probe. Although this might be true
for circular single transducers with fixed geometries, these formulas no longer hold for
arrays. First, one should note that focused or steered wavefronts can be generated with
arrays using the time delay between the elements. The resolution cell then depends on the
probe characteristics (elements width, distance between elements, center frequency) but
also on acquisition parameters such as the pulse sequence. Additionally, post-processing
procedures required for proper ultrasound image generation such as beamforming and
compounding can further affect the resolution cell. Thus, quantifying the volume of the
resolution cell is not straightforward. In practice, software simulations (e.g. SIMUS [92],
CREANUIS [93]) or standardized phantoms can lead to estimations of the resolution cell
in the chosen experimental configuration.

3.1.6 Ultrasound speckle

In a typical medical ultrasound image, specular echoes and diffuse scattering can be
observed through different textures. The second mechanism is of prime interest in QUS
analysis. In this subsection, we present how this phenomenon manifests in ultrasound
images and introduce the different types of scattering.

Speckle refers to the granular patterns visible in ultrasound images. It results from
interferences of ultrasound waves that are backscattered by scatterers within a resolution
cell in the diffuse regime. In some medical imaging applications, ultrasound speckle is
considered as a noisy component that can mask underlying structures of interest (Figure
3.3). Thus, speckle removal techniques were extensively studied to enhance ultrasound
images [94]. However, speckle patterns are indicators of tissue properties. Speckle anal-

Figure 3.3: (Top) A typical clinical ultrasound image corrupted with speckles. (Bottom)
The despeckled and speckle noise layers were recovered by a low-rank non-local filtering
method. Reproduced from Zhu et al. [95]
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ysis can be conducted by analyzing the spectral content of the ultrasound signals or by
estimating the statistical attributes of the signal envelope. In the first case, we refer to
BSC-related techniques and to ES in the second. These two techniques aim to estimate
quantitative parameters that reflect the underlying microstructures. Thus, speckle analy-
sis can provide valuable information for tissue diagnostics.

One may choose the adapted ultrasound frequency range to induce scattering from the
object of interest. The different scattering regimes are summed up in Figure 3.4. Geometric
scattering refers to the specular reflection mentioned above. For a given ultrasound wave-
length, Mie scattering is a diffuse scattering regime that occurs when the object of interest
has a characteristic size between λ/10 and λ. In this scattering regime, the backscattering
cross-section exhibits important variations when the incident frequency is varying. These
fluctuations are characteristics of the particle geometries. When the object is smaller than
λ/10, Rayleigh scattering occurs. In this regime, the backscattering cross section presents
a characteristic decay in 1/λ4 and no longer depends on the shape of the particle. The
scattering regime is commonly given by the product of the wavenumber associated with the
center frequency with the scatterer radius ka. For instance, the Mie regime corresponds
to ka ∼ 1, the Rayleigh scattering to ka ≪ 1 and the geometrical scattering to ka ≫ 1) .
Thus, to observe characteristic oscillations from small structures, the frequency needs to
be sufficiently high to hold the Mie scattering region by maintaining ka ∼ 1. In practice,
one should note that the scattering regimes can overlap because of the broad frequency
content of the ultrasound incident pulse. Consequently, the experimental identification of
the scattering regime is not a straightforward task but orders of magnitude should be kept
in mind.

Figure 3.4: The scattering regimes for a given wavelength and particle size. Adapted from
Zhao et al. [96]
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3.1.7 Born approximation

As mentioned above, diffuse scattering occurs when an ultrasound wave travels through
a medium that contains small scatterers. When the relative impedance contrast is low
(typically γz < 0.15), the incident ultrasound waves undergo minor changes in amplitude
and phase as they interact with the scatterers. The scattered field is then negligible in
comparison to the incident ultrasound field. This configuration is known as weak scatter-
ing and refers to the Born approximation. The Born approximation is commonly used in
ultrasound medical applications and serves as a basis in numerous imaging applications.
Indeed, the main consequence of this approximation is that multiple scattering becomes
negligible. Thus, the detected backscattered ultrasound waves are single-scattered and
bear information about the microstructure they interacted with. Thus, a unique sound
speed can be defined to characterize the propagation of the ultrasound waves and the time
of flight directly dictates the position of the scatterers. This hypothesis is also of prime
importance for quantitative ultrasound studies. Indeed, the estimates extracted from the
ultrasound signals can be associated with the tissue underlying microstructure at the pre-
cise location of the Region of Interest. Conversely, the single scatterer signatures would
be lost in multiple scattering.

As an example, the relative impedance contrast between plasma and red blood cells
is about 13% [97], making blood a suitable medium for the Born approximation. No con-
sensus values are known for impedance contrasts of cells and nuclei, as they may vary
depending on the tissue type. However, the Born approximation is implicit in most quan-
titative ultrasound studies that aim to characterize tissues. This approximation will be
adopted in the framework of our study.

Interestingly, tissue characterization can still be conducted independently of the hy-
pothesis of weak scattering. Indeed, Muller et al. [98] leveraged multiple scattering in lungs
and successfully characterized pulmonary fibrosis and edema in vivo in rodents. Indeed,
the Born approximation no longer holds in this highly diffusive medium due to the high
impedance contrast of the alveoli filled with air.

One could note that alternative solutions exist to the simple Born approximation.
For instance, Huang et al. [99] reported a modified version of the "doubly distorted Born
approximation". They obtained improved scattering results for both weak and strong
scattering inclusions.

3.2 Backscatter coefficient

3.2.1 Definition

The Backscatter Coefficient (BSC) describes the sample’s ability to backscatter the
acoustic energy as a function of the frequency, independently of the tissue attenuation
or the instrumentation effects [100]. The BSC is defined as the scattered intensity in
the backward direction per unit solid angle per unit volume normalized by the incident
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intensity (mm−1.sr−1) [24]. In the far field, it is defined as [4] :

BSC(k) = R2

V

Isc

Iinc
(3.1)

where V is the scattering volume of interest, R the distance between the observation point
and the scattering volume, Isc the scattered field, and Iinc the incident ultrasound field.
Analytical expressions describe the BSC in different configurations. Once estimated, the
experimental BSC can be fitted to the adapted theoretical model to lead to quantita-
tive estimates through inversion procedures. This procedure is referred to as the BSC
parametrization.

3.2.2 Discrete model

In this paragraph, a brief analytical framework is presented to understand the BSC
estimation techniques explained in the next paragraphs. The stochastic nature of the BSC
is demonstrated using a simple discrete model [24]. In the configuration where an ultra-
sound transducer insonifies a medium composed of discrete and sub-resolvable scatterers
under the Born approximation, let o(t) be the collected signal over time t such as:

o(t) = p(t) ∗ a(t) ∗ s′(t) (3.2)

where p is the transducer response and accounts for the diffraction in the beam pattern,
the transmitted pulse, and transducer filtering. The sample attenuation is represented by
a(t). The function s′(t) is the scattering function of interest that characterizes the probed
tissue. Given that N scatterers are randomly located, the scattered signals received by
the probe are delayed by different times ti, i ∈ [|1, N |] because of different times of flights
such as:

o(t) = p(t) ∗ a(t) ∗
N∑

i=1
s′

i(t − ti) (3.3)

The Fourier transform of the previous equation leads to:

O(f) = P (f)A(f)
N∑

i=1
S′

i(f)e2πjfti (3.4)

With f being the frequency. In the case of identical scatterers with a characteristic scat-
tering function S′(f) :

O(f) = P (f)A(f)S′(f)
N∑

i=1
e2πjfti (3.5)

The power spectrum is then obtained by taking the magnitude squared of O(f):

|O(f)|2 = |P (f)A(f) S′(f)|2
∣∣∣∣∣

N∑
i=1

e−2πjfti

∣∣∣∣∣
2

(3.6)
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or

|O(f)|2 = |P (f)A(f)S′(f)|2
(

N∑
i=1

e−2πjfti

)(
N∑

i=1
e2πjfti

)
(3.7)

which gives,

|O(f)|2 = |P (f)A(f)S′(f)|2
[
N + 2

N∑
i>m=1

cos(2πf(ti − tm))
]

(3.8)

The first term in the bracket accounts for the incoherent scattering. Incoherent scattering
is then only the product of the characteristic squared magnitude of the scattering function
|S′(f)|2 with the number of probed scatterers N . The second term in the bracket represents
the coherent scattering. It depends on the scattering function but also on the scatterer’s
spatial positions through the different time delays. We will refer to Equation 3.8 to explain
the BSC estimation technique.

One should note that each physical quantity employed here can be equivalently written
as a function of the wavenumber k, such as k = 2πf/c , where c is the medium sound
speed

3.2.3 Theoretical scattering models

Incoherent BSC

Equation 3.1 gives a theoretical definition of the BSC that is not used for the experi-
mental BSC parametrization. In this subsection, we introduce the equations used in this
procedure.

In biological media with a sparse distribution of identical scatterers randomly and
independently located, the incoherent theoretical BSC can be expressed as the product
of the BSC in the Rayleigh limit and a backscatter form factor FF (detailed below) as
follows:

BSCin,mono(k) = nσb(k) = n
k4Vs(a)2γ2

z

4π2 FF (k, a) (3.9)

with n being the number of scatterers per unit volume, k the wavenumber, σb(k) the
differential backscattering cross section defined as σb(k) = πa2|S′(k)|2 for a sphere of
radius a and Vs(a) the scatterer volume. In the case of polydisperse size distribution,
an integral sums incoherently the contribution of each scatterer and weights it with a
probability density function D:

BSCin,poly(k) = n

∫ ∞

0

k4Vs(x)2γ2
z

4π2 FF (k, x)D(x)dx (3.10)

where x represents the varying sphere radius.
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The Faran model Faran et al. [101] provided the exact analytical solution for the
acoustic scattering of a plane wave by an isotropic solid sphere in a fluid surrounding
medium. The expression of the resulting scattered pressure field in the backscattering
direction can be multiplied by the scatterer number density to obtain the incoherent BSC
from identical solid spheres [39]:

BSCF aran(k) = nσb,F aran(k, a) (3.11)

The analytical computation of σb,F aran(k, a) is not straightforward and can be found here
[101]. The solution provided by Faran et al. relies on spherical Bessel functions of the
first and second kind and takes into account shear waves and compressional waves in the
solid scatterers. The authors argue that the acoustic waves that penetrate the scatterer
can impact the scattered field and should therefore be considered.

Form Factors When considering a diluted scattering medium, the form factor FF de-
scribes the frequency dependence of the BSC in terms of size, shape and acoustic properties
of the scatterers. In the incoherent case, the form factor FF represents the scatterer sig-
natures in the measured BSC. The scatterer radii can be estimated by fitting the observed
BSC and are of prime interest for tissue characterization. The analytical expressions of
the form factors are obtained by assuming the spherical geometry of the scatterers and
their random spatial distribution, modeled through their acoustic impedance. The three-
dimensional (3D) spatial autocorrelation function then leads closed form solution [102].
Depending on the physical modelling of the scatterers, different form factors are adapted.
Here, we will focus on the most common form factors and the ones that are used in this
project. The following form factors are introduced in the configuration of a relatively low
scatterer concentration (i.e. typically volume fraction ϕ < 0.03) that are independently
and randomly distributed.

The Gaussian form factor Using the Gaussian form factor, the medium is modeled
through a continuous spatial impedance function. The spherical scatterers are represented
by Gaussian decays of acoustic impedance. These assumptions lead to the following form
factor [102]:

FFSG(k, x) = e−0.827k2x2 (3.12)

The fluid-filled sphere form factor This form factor models the scattering from
a fluid-filled sphere in a homogeneous media and is commonly used to describe the cell
scattering in biological samples [41]:

FFF S(k, x) =
[ 3
2kx

j1(2kx)
]2

(3.13)

where j1 is the spherical Bessel function of the first kind of order 1. In the case of
monodisperse scatterers, the BSC is expressed as a function of the following parameters
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of interest: the volume fraction ϕ = nVs, the scatterer radius a (x = a in this case) and
γz. Hereafter, the Fluid-Filled Sphere model (FFSM) will refer to the following analytical
expression:

BSCF F SM (k) = 3ϕak2γ2
z

4π
j2

1(2ka) (3.14)

Coherence effects

The previous BSC expressions do not cover the case of dense media. Indeed, it can
be assumed that the scatterer position correlation increases with their concentration [38].
When the scatterers are not randomly spatially distributed, structural effects affect the
ultrasound backscattering and the BSC is no longer the incoherent sum of the contributions
of each scatterer. To take this concentration effect into account, the incoherent signal
BSCin can be modulated by a structure factor S:

BSC(k) = BSCin(k)S(k) (3.15)

The incoherent BSCin can be replaced by any above expression. The analytical expression
of S(k) depends on the scatterer polydispersity in size. Therefore, two cases can be
distinguished:

Monodispersity in the scatterer size In the case of non-overlapping identical scat-
terers, the scattering function S′(k) can be factorized (Equation 3.5), and the structure
function can be written:

S(k⃗) = 1
N

(
N∑

i=1
e−2jk⃗·r⃗i

)(
N∑

i=1
e2jk⃗·r⃗i

)
(3.16)

where r⃗i is the position vector of the ith scatterer. Its equivalent scalar frequency form
appeared in Equation 3.7. The structure factor S denotes the effect of scatterer positions
on the ultrasound scattering. When the scatterer’s positions are not known (i.e. most of
the tissue characterization application), a stochastic alternative can estimate the structure
factor S [38, 39]:

S(K⃗) = 1 + n

∫
(g(r⃗) − 1)e−jK⃗·r⃗dr⃗ (3.17)

where g(r⃗) is the pair correlation function and K⃗ is the scattering vector. The pair
correlation function g represents the probability of finding two scatterers separated by the
distance r⃗. In the case of hard spheres that are randomly distributed, the pair correlation
function can be expressed analytically following the equations given in Appendix A.1.
Equation 3.17 can be seen as the 3D Fourier transform of the total correlation function
h(r⃗) = g(r⃗) − 1.

Polydispersity in the scatterer size The analytical expression of S(k) for polydis-
perse scatterers (Polydisperse II model) can be found in Han et al. [38]. In the Polydisperse
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II model, the scatterer size distribution is assumed to follow a Γ-distribution:

Dz(x) = 1
z!

(
z + 1

a

)z+1
xze−(z+1) x

a (3.18)

where Dz is the probability density function, a the mean scatterer radius, and z the Schulz
width factor (the higher z is, the narrower the distribution). Han et al. [38] provided an
expression to model the ultrasound backscattering of hard randomly distributed polydis-
perse scatterers in concentrated media based on a Fluid-Filled sphere form factor. Under
these assumptions, the BSC is a function of the following parameters of interest: the scat-
terer mean radius a, the Schulz width factor z, the volume fraction ϕ and the relative
impedance contrast γz. Hereafter, the PII model will refer to this BSC model:

BSCP II(k) = BSCF F SM (k)SP II(k) (3.19)

In this model, the scattering amplitude S′
i(k) is based on the fluid-filled sphere form factor.

The full expression of the structure factor SP II(k) can be found in Han et al. [38]. Some
details about its computation are given in Appendix A.2.

The models described in this section will be used in the following chapters. The
estimation of the BSC is described in the next section.

3.2.4 Backscatter coefficient estimation

The BSC reflects the underlying tissue microstructure independently of the attenuation
and the instrument effects. Multiple sources of noise may affect the BSC measurements
and make the experimental estimation of the BSC an arduous task. The complete workflow
is described here, starting to the pulse sequence chosen for the acquisition of RF data to
the estimation of QUS parameters. This subsection encompasses all the physical concepts
introduced in the previous part of the fundamentals of ultrasound.

Pulse sequence

The different types of pulse sequences used to insonify the medium were studied to
produce spectral-based QUS estimates. Focused waves are typically used in most QUS
studies. However, more sophisticated options are also possible. Kanzler et al. [103] studied
the benefits of coded excitations (CE) to improve the estimation bias of scatterer sizes in
tissue-mimicking phantoms. They used a linear frequency-modulated chirp and a Wiener
filter for pulse compression instead of conventional pulses. The penetration depth for a
given accuracy in the scatterer radius estimate was increased up to 50%. A follow-up
study reported excellent performances of the resolution enhancement compression (REC)
technique in reducing the estimating bias of scatterer sizes. REC is a CE and a pulse com-
pression technique that improves the -6 dB bandwidth of the ultrasound transducer [104].
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A 71% reduction in the standard deviation of the average scatterer diameters was reported
in tissue-mimicking phantoms compared to conventional excitation schemes.
Although these studies reported the potential superiority of CE over conventional pulse
sequences using specific experimental setups, a limited number of studies have extended
this research for QUS applications.

In ultrasound imaging, the 2010s saw the emergence of Ultrafast Imaging which com-
monly uses plane waves at multiple angles to insonify the media [105]. Each excitation
angle generates RF data that are beamformed before being coherently compounded with
other RF data acquired at other excitation angles. This technique leads to increased
frame rates with limited loss in SNR compared to conventional focused imaging. This
breakthrough impacted multiple ultrasound applications such as Doppler imaging (blood
motion detection) or Shear wave Elastography (tissue motion detection). A few years after
its introduction, the advantages of Ultrafast Imaging for QUS applications were reported
by Salles et al. [106]. The authors estimated two BSC-related parameters (the BSC mid-
band fit and intercept, detailed below in the subsection 3.2.5) using compound plane wave
beamforming and conventional focused beamforming. They reported bias in the QUS pa-
rameters less than 2 dB for a given field of view, thus validating plane wave imaging for
spectral-based analysis. One year later Garcia-Duitama et al. [100] extended this research
to isotropic and anisotropic media (variations of QUS estimates depending on the angle
of the incident excitation) and compared UI with conventional beamforming techniques.
They estimated the effective scatterer sizes of tissue-mimicking phantoms and flowing
porcine blood using UI. In the isotropic phantoms, errors were less than 0.26 ± 0.2 dB
and 2.2 ± 0.8 for the blood experiment, which is known as an anisotropic medium. They
concluded that Ultrafast Imaging can be used for BSC parametrization and anisotropy
characterization.

Definition of a region of interest

Once, the RF data are acquired, the corresponding B-mode image can be used for
segmentation. Indeed, the first task is to localize the areas of interest for tissue charac-
terization. In a typical ex vivo QUS experiment such as the lymph node characterization
conducted by Mamou et al. [26], the samples are immersed in a Phosphate-buffered saline
(PBS) solution before being imaged. Mamou et al. reported the use of a semi-automatic
segmentation algorithm to classify image regions as, PBS, fat or tissue of interest. The
classification was based on the a priori known relative echogenicity of the three tissue
types and used conventional image processing algorithms such as the Deriche filter. Al-
though segmentation algorithms may improve the reproducibility of QUS analyses, manual
segmentation seems to be conducted in most of the QUS studies, probably due to the rel-
atively small datasets involved.

Once the areas of tissue of interest are determined in the B-mode images, the operator
needs to define the Region-of-Interests (ROIs) where the BSC and the envelope amplitude
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distribution will be computed to extract the corresponding QUS estimates. For 2D appli-
cations, the RF signals are time-gated in the depth direction and a certain number of RF
lines are selected in the lateral direction for each ROI (Figure 3.5). In both directions,
the sampling frequency and the transducer element pitch (or scanning step) impact the
number of data points in the ROI for a given ROI length.

Figure 3.5: Diagram showing the time-gated RF lines contained within one ROI (data
Block) Reproduced from Mamou et al. [24]

The Fourier transform is then applied to the time-domain signals. A mathematical
window such as a Hann function can be applied to mitigate the effects of fast Fourier
transform algorithms that are inherent to discrete numerical signals. Lizzi et al. [107] dis-
cussed the role of the windowing function in the estimations of the BSC-related parameters.

The power spectra are then computed by taking the squared magnitude of the frequency-
domain signals. The power spectra of a ROI are then averaged to obtain a unique BSC
per ROI. This BSC can then be parametrized. At the end of this processing, parametric
images can show QUS estimates by color-encoding the B-mode images with overlays. The
ROIs can be seen as "QUS pixels". Although the choice of the ROI size is often presented
as arbitrary in QUS studies (typically a square of dimension 10-15λ [5,41,108]), its dimen-
sions actually reflect a more subtle compromise:

The ROI needs to be as short as the a priori characteristic length scale of the tissue
homogeneity for accurate QUS parameter estimations. Indeed, tissue homogeneity is im-
plicitly assumed within one ROI since only one QUS estimate is extracted from a ROI.
For instance, estimating the effective scatterer diameter would be of limited interest in a
tissue region that exhibits a broad range of scattering structure sizes. Thus, the operator
needs to mitigate the effects of potential tissue heterogeneities within the ROI over the
backscattering signals by choosing it as small as possible.

However, the stochastic nature of the BSC signal limits the minimum ROI sizes. Equa-
tion 3.8 shows the stochastic nature of the backscattered signals. Indeed, since the exact
positions of the scatterers (i.e. the time delays) cannot be known deterministically in
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sparse media, the time difference that appears in the cosine can be modeled as a random
variable that follows a uniform law. Interestingly, the expected value of the sum of cosines
is zero, meaning that the coherent effect of random scatterer positions, considered as noise
in a first time, can be mitigated by averaging a sufficient number of BSC estimates. This
interesting property justifies why the squared magnitude value of the frequency signals
(i.e. power spectra) are taken to estimate scatterer parameters, and not just the Fourier
transform of the time domain signals. What "sufficient" is has been studied by Oelze et
al. [109]. Simulations and phantom measurements showed that the best trade-off between
a small ROI size and the accuracy and precision of scatterer property estimates occurred at
4 to 5 beamwidths laterally and 15 to 20 spatial pulse lengths axially. Although this study
gives interesting orders of magnitudes, it is not straightforward to implement its conclu-
sions in other experimental configurations, such as plane wave imaging. In this case, the
beamwidth is not defined. Consequently, it is advisable to adjust the recommended ROI
dimensions based on the lateral resolution, which is the closest comparable parameter.

The electrical noise that affects the BSC presents also a stochastic nature. To further
reduce this and the coherent noise, the number of QUS estimates (i.e. number of ROIs)
can be increased for a given B-mode image by choosing overlapping ROIs. The overlapping
is typically about 50% in QUS studies. As a result, multiple QUS estimates correspond
to one pixel in the B-mode image. Averaging the estimates for each pixel can then lead
to smooth QUS parametric images with an apparent enhanced QUS estimate resolution.
However, the QUS estimates are no longer independent since the same portion of the RF
data served multiple times in the spectral analyses. The previous points are discussed in
the case of sparse media with scatterers randomly distributed. However, one should note
that when the scatterer positions are correlated, averaging the power spectrum estimates
is not sufficient to mitigate the coherent signal. A structure factor should then be taken
into account in the BSC parametrization.

Additionally, the ROI dimension should be large enough in the time axis (in terms of
number of points) to produce a robust estimation of the Fourier transform. This constraint
is purely a mathematical requirement due to the discrete Fourier transform.

Attenuation and sound speed estimation

The tissue attenuation affects the measured power spectra that lead to the BSC. To
correct this unwanted effect, multiple attenuation estimation techniques were reported [24].
Our focus will be on the substitution technique [110]. It entails the determination of
the characteristic attenuation coefficients α0 and m using a planar reflector. The power
spectrum is acquired without (P1) and with (P2) the sample on the reflector (Figure 3.6).

This leads to:
P1(f) = ρ1P0e−2αP BS(f)L (3.20)

P2(f) = ρ2τ1τ2P0e−2[αs(f)d−αP BS(f)(L−d)] (3.21)
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Figure 3.6: Attenuation substitution technique. The RF echo acquired from an acoustic
reflector is referred to as the reference signal P1. P2 represents the reflection with the
sample. d denotes the sample thickness. Reproduced from Rohrbach et al. [111]

where P0 is the component of the power spectrum that accounts for the instrumentation
effects,ρ1 is the reflection coefficient at the PBS/reflector interface, ρ2 is the reflection
coefficient at the sample/reflector interface, L is the distance between the transducer and
the reflector, d the sample thickness, αP BS(f) the PBS attenuation, αs(f) the sample
attenuation, τ1 and τ2 are the transmission coefficients from PBS to the sample and from
the sample to PBS respectively. Assuming that ρ1 ≈ ρ2, the ratio is then:

P1(f)
P2(f) = 1

τ1τ2
e−2d[αP BS(f)−αs(f)] (3.22)

The sample spectral attenuation can then be expressed as follows:

αs(f) = αP BS + 1
2d

ln

[
τ1τ2

P1(f)
P2(f)

]
(3.23)

The coefficients τ1 and τ2 are assumed to be unity as an approximation. The PBS
attenuation is considered to be identical to water attenuation, where known values are
reported in the literature. The sample thickness d can be estimated based on the B-mode
image using the water sound speed. The sample attenuation αs can then be computed.
Once estimated, the sample attenuation can be modeled as a linear function of frequency
assuming that m equals unity or to a power function. This fitting procedure finally leads
to α0 and m.

Interestingly, the sample sound speed cs can also be estimated using the substitution
technique using P1 and P2 [111]:

cs =
( 1

cP BS
− φ

4πfmaxd

)−1
(3.24)
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where cP BS is the sound speed in PBS, fmax is the maximum working frequency and φ is
the unwrapped phase of the ratio P2(f)/P1(f)

This technique presents some inherent drawbacks. First, it estimates a global attenua-
tion coefficient or sound speed and assumes homogeneity within the probed sample. This
hypothesis can be discussed in certain tissue types. Moreover, the transducer has to be
fixed between the reference and the phantom measurements. Slight displacements may
corrupt the measurements, especially when working at high frequencies. Additionally, this
technique is only suitable for ex vivo procedures.

BSC computation

The raw power spectra collected by an ultrasound transducer do not directly reflect the
tissue BSC. Indeed, two experiment-dependent spectral quantities affect this signal. The
instrumentation effect that accounts for the transmitted pulse, the transducer filtering,
and the beam diffraction affect the backscattered signals. The tissue attenuation also
impacts the backscattered waves. Thus, different methods were developed to isolate the
sample scattering contribution from the instrument effects and the depth of Region of
Interest (ROI):

Planar reference method This method is adapted for mono-element transducers [100,
112]. Although they are less expensive, their fixed geometry needs them to be optimally
chosen depending on the specific application (e.g. F-number). Moreover, spatially ex-
tended samples need moving transducers to be scanned. This increases the acquisition
time to generate an image. One advantage of this technique is that no beamforming pro-
cedures are needed to create an interpretable image. The power spectrum of a planar
reflector is acquired as shown in Figure 3.6 and serves as a reference. The ratio of the
sample power spectrum with the reference one is then corrected for the diffraction beam
pattern. Attenuation correction needs to be performed independently.

Reference phantom method This method is adapted for arrays with any geometries
[113]. The power spectra of a reference phantom Pref (f) with known scatterer size and
acoustic properties are acquired exactly with the same acquisition parameters as the ones
used for the sample measurements (e.g. voltage, insonification angle, pulse sequence). The
sample BSCs is then estimated as:

BSCs(f) = Ps(f)e−4z[αref (f)−αs(f)]
Pref (f) BSCth,ref (3.25)

where Ps(f) and Pref (f) are the sample and the reference power spectra respectively,
BSCth,ref the expected theoretical BSC of the reference phantom, αs(f) and αref (f) the
attenuation of the sample and the reference phantom respectively and z the ROI depth.
The previous expression relies on the expression of each power spectrum as the product of
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the instrument effects P (f) with the attenuation effects A(f) and the scattering function
of interest such as:

Ps(f) = |P (f)As(f)|2BSCs(f); (3.26)

and
Pref (f) = |P (f)Aref (f)|2BSCref (f) (3.27)

The effect of the diffraction beam pattern is then canceled out in Equation 3.25. The
exponential term corrects for both the attenuation in the sample and in the phantom. In
practice, the reference phantom can be composed of glass beads or polyamide microspheres
in a setting agent such as agar gel at a very low concentration (volume fraction less than
1%). In this case, the theoretical BSCth,ref of the reference phantom can be computed
using the Faran model.

3.2.5 Backscatter coefficient parametrization

Once the BSC is properly estimated, quantitative estimates can be extracted using
fitting procedures

Lizzi-Feleppa approach

A first approach involves fitting the BSC expressed in dB as a linear function. This
simple procedure leads to ultrasound parameters known as the Lizzi-Feleppa coefficients
the intercept I (dB), the slope S (dB/MHz) and the midband value M (dB):

10log10(BSCs) → YLF (f) = S × f + I ; M = YLF (fmid) (3.28)

where YLF (f) is the resulting linear fit and fmid the middle frequency. Only two out of
the three Lizzi-Feleppa parameters are independent. In practice, the relative values of
these parameters can be used to discriminate one tissue type from others. Indeed, their
absolute values convey limited physical meanings. However, the Born approximation is
not required to compute them.

Inversion using theoretical scattering models

The theoretical scattering models introduced in the subsection 3.2.3 can be fitted to
the experimental BSC to extract more sophisticated parameters at the expense of multiple
approximations such as Born, far-field, incident plane wave and isotropic medium. The
output coefficients of the inversion procedure then correspond to the parameters that
minimize the cost function C, defined as the Root Mean Square Error (RMSE) between
the measured and the expected BSC:

C(X⃗) =

√√√√√ 1
Nf

Nf∑
i=1

[BSCs(fi) − BSCth(fi, X⃗)]2 (3.29)
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where Nf is the number of discrete frequencies fi and X⃗ has as many components as scat-
tering parameters in the chosen theoretical BSC model. For instance, when working with
the Gaussian or the Fluid-Shpere Form factors in the monodisperse case, the inversion
procedure leads to two independent parameters X⃗ = (a, n∗

z) where a is the scatterer ra-
dius and n∗

z is the acoustic concentration defined as n∗
z = nγ2

z . The structure factor models
bring one supplementary inversion coefficient and lead to three independent parameters:
X⃗ = (a, ϕ, γz). The polydisperse models add one extra parameter that describe the width
of the scatterer size distribution (e.g. the Schulz width factor z of the Polydisperse II
model).

One can note that multiple cost functions can be implemented [34] to give more or less
weight to the differences observed in the high frequencies. In QUS studies, these inversion
problems are often solved using the Nelder-Mead simplex algorithm implemented in Mat-
lab through the routine function fminsearch. The Interior Point algorithm can also be
used through the fmincon Matlab function. For instance, Muleki-Seya et al. [5] reported
slightly higher values for the scatterer radii and the volume fractions using fminsearch
than the ones brought by fmincon. Notable differences were observed between the two
algorithms in the relative impedance contrast values. To my knowledge, there is currently
no consensus on the choice of optimization algorithm in QUS applications. However, some
works investigated these issues. Oelze et al. [114,115] reported optimized inversion proce-
dures to extract the effective scatterer diameters and the effective acoustic concentrations.
Similarly, Lavarello et al. [116] studied the effect of three algorithms to estimate the effec-
tive scatterer sizes in polydisperse media.

The previous points underline the fact that the convergence of optimization algorithms
must be taken with caution. Indeed, inversion procedures can lead to local minima of the
cost function, that should not be confused with the desired global minimum to estimate
accurate QUS parameters.

3.2.6 Discussion

Although the estimation of BSCs and the associated spectral QUS parameters result
from numerous processing steps (ROI grid, power spectrum computation, reference phan-
tom method, etc.), an interlaboratory study [117] showed that BSC parametrization can be
instrument and operator-independent. To further mitigate the potential discrepancies in
the QUS analyses, recent studies reported model-free and reference-free approaches [118].
In situ calibration using biocompatible titanium beads placed in the tissue of interest was
also investigated by Nguyen et al. [119]. This technique was introduced as an alternative
to the gold standard reference phantom method to estimate the BSCs.
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3.3 Envelope Statistics

While the BSC parametrization extracts spectral-based parameters, Envelope Statis-
tics (ES) entails in estimating the attributes of the envelope statistical distribution of
the backscattered signals. This procedure leads to additional scattering parameters that
can characterize the underlying tissue microstructure. The Probability Density Func-
tion (PDF) of the measured envelope can be fitted to statistical distributions such as the
Gamma, the Rayleigh, or the Rice distributions to cite just a few. More than 10 statisti-
cal distributions are reported in the literature. However, some statistical distributions are
approximations of others, making them not all independent. In this thesis, we will focus
on the two most common envelope distributions found in QUS studies: the Nakagami and
the Homodyned-K distributions. Brief insights into their theoretical framework are given
in this section.

3.3.1 Theory

Mathematically, the ultrasound envelope e(t) of a signal RF (t) is defined as the mag-
nitude of the corresponding analytic signal such as:

e(t) =
√

RF (t)2 + H(RF (t))2 (3.30)

where H(t) represent the Hilbert transform. The extraction of QUS parameters based
on ES relies on the Born approximation as well. Thus, the discrete model introduced in
subsection 3.2.2 can be adopted as well to describe the stochastic nature of the ultrasound
envelope. Given that the backscattered signal is the result of individual contributions from
all scatterers [120], it can be modeled as a random walk due to the random phase and
amplitude variations resulting from the random positions of the different scatterers [44].

3.3.2 Statistical distributions

The Nakagami distribution

The Nakagami distribution can be used to extract the scaling factor Ωnak and the
Nakagami parameter αnak. The scaling factor Ωnak is equivalent to the mean backscattered
intensity [44] and αnak can be used to quantify the effective number of scatterers per
resolution cell [44, 45]. If A is a random variable that follows a Nakagami distribution,
then:

Dnak(A) = 2ααnak
nak

Γ(αnak)Ωαnak
nak

A2αnak−1e−αnakA2/Ωnak (3.31)

where Γ is the Euler gamma function. The parameters Ωnak and αnak can also be written
as:

Ωnak = E[A2] (3.32)

αnak = E2[A2]
V ar[A2] (3.33)
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where E and V ar represent the expected value and the variance respectively.

The Homodyned-K distribution

The expression of the Homodyned-K (HK) distribution is [45]:

Dhk(A) = A

∫ ∞

0
xJ0(shkx)J0(Ax)(1 + x2σ2

hk

2µhk
)−µhkdx (3.34)

where J0 is the 0th-order Bessel function of the first kind, s2
hk the coherent signal energy,

σ2
hk the diffuse signal energy and µhk is somewhat the analogous to the Nakagami parame-

ter αnak. Indeed, the effective number of scatterers per resolution cell can also be reflected
through the parameter µhk [44]. The ratio khk = shk/σhk, termed as the coherent-to-
diffuse signal ratio, can describe the degree of structure in the scatterer spatial position in
the considered ROI.

The physical interpretation of the Nakagami and the HK parameters can be found in
subsection 2.2.2.

3.3.3 Envelope parameter estimation

Envelope parameters are often combined with spectral-based parameters to fully ex-
ploit the backscattering signal from an area of interest in the tissues. Thus, the amplti-
tude histogram of the non-saturated envelope signals within an ROI is computed following
Equation 3.30. This procedure leads to the estimated probability density function.

The scaling parameters Ωnak and αnak from the Nakagami distribution were obtained
using a maximum-likelihood estimator with the built-in Matlab function fitdist.

Figure 3.7: Example of an estimated PDF from a single ROI, its Homodyned-K fit (R2 =
0.99) and its Nakagami fit (R2 = 0.96). Reproduced from Malinet et al. [121]
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Because no closed-form expression exists for Dhk, the estimation of the HK parameters
is not straightforward. Different methods were reported in the literature for this specific
task (e.g. using the first three even moments or moments of small orders [45]). In 2013,
Destrempes et al. [122] introduced the XU estimator which extracts HK parameters based
on the mean intensity and two log-moments. This technique is now widely accepted for
its efficiency. Thus, the XU estimator was used in this thesis. Illustrative examples of fits
with the Nakagami and the HK distributions are given in Figure 3.7.

3.3.4 Envelope parameter correction

The envelope parameters can be affected by the diffraction of the pressure field and
the tissue attenuation, similarly to the spectral parameters previously described. The
estimates Ωnak, αnak and µhk can be corrected post-processing for these undesired effects
as suggested in Mamou et al. [45] (Eq. 9 and 10 in this article). The known geometry of
the ultrasound transducer was used to assume the volume variations of the resolution cell
across the field-of-view. The estimates αnak and µhk that measure indirectly the scatterer
density were then scaled by multiplicative factors to account for the expected changes in
the resolution cell. Another factor based on the sample attenuation coefficients and the
ROI depth was applied to each estimate of Ωnak. These corrections allow the comparisons
between the envelope parameters from ROI located at different positions within the field-
of-view.

To our knowledge, relatively few studies reported the use of correction methods for the
envelope parameters. A correction technique is suggested in section 6.2.2 and is applied
in the chapters 6 and 7.
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Chapter 4

Light Backscattering Spectroscopy:
theories and methods

In this chapter, we present the two light backscattering techniques used in this thesis.
After introducing some key optical quantities, the analytical formalism and the method
of Enhanced Backscattering Spectroscopy (EBS) are exposed, followed by the theory and
the method of Light Scattering Spectroscopy (LSS).

4.1 Optics basics

Despite their electromagnetic nature, numerous analogies can be made between light
waves and mechanical ultrasound waves.

4.1.1 Propagation

Light propagates at the speed c with a wavelength λ in a homogeneous medium of
refractive index n such as c = λν = c0/n where ν is the optical frequency and c0 the light
speed in vacuum. In the visible range, the wavelengths range from 400 nm to 700 nm, and
are substantially smaller than the ultrasound wavelengths found in clinical settings (e.g.
λus = 100 µm at 15 MHz). Similarly to ultrasound, the concept of spatial and temporal
coherence can be applied in optics. Therefore, light waves can experience interferences
and form speckles as well. However, light presents an additional characteristic compared
to ultrasound waves, namely its polarization. Polarization plays an important role in the
description of light-matter interactions. Its analysis can even lead to biomedical applica-
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tions for tissue diagnostics (c.f. Polarimetry [123]). The polarization refers to the spatial
direction of the oscillation plane of the transverse fields that constitute light. In the case of
linearly polarized light, the electric field is confined to a plane along the direction of light
propagation. Unpolarized light refers to light waves in which the electric field oscillates in
all possible directions perpendicular to the direction of propagation.

Similarly to ultrasound, specular reflection occurs when light interacts with an object
in the geometric regime. Interestingly, the scattering regimes and their transitions are
the same as the ones reported in ultrasound in subsection 3.1.6. Light waves experience
scattering if they encounter variations of the refractive index in the medium, which is
somewhat the equivalent of the acoustic impedance in optics.

4.1.2 Born approximation

The Born approximation is common in light scattering applications for tissue diagnos-
tics, as it is in quantitative ultrasound studies. Its formulation is similar for ultrasound
and light waves (c.f. subsection 3.1.7) and also results in the single scattering approxi-
mation [124]. However, a nuance can be added in EBS applications. Indeed, the Born
approximation is not incompatible with a large volume of scatterers in which several scat-
tering events can be subsequent [125]. The key is to be able to define a characteristic
volume that represents the statistics of a single scattering event. If this requirement is
met, the light transport in tissues can be accurately described numerically with Monte
Carlo simulations. In continuous random media, the applicability of the Born approxima-
tion can be checked using analytical criteria based on refractive index-related parameters,
as introduced in the next subsection. Interestingly, Radosevich et al. [85] simplified these
previous points by arguing that the Born approximation is valid in all biological tissues
where a scattering mean free path l′s can be defined. This coefficient is analytically defined
below (subsection 4.1.4). Thus, all the tissues commonly studied in biomedical optics may
meet this criteria.

4.1.3 Phase functions

The phase functions describe the probability of scattering at a given angle θ for a single
scattering event. It is defined as the normalized differential scattering cross section (sr−1).
Interestingly, the shape of the phase function can be related to the scatterer geometries
or to tissue optical properties through analytical models. Thus, the phase function can be
seen as the scatterer signature. For instance, the scattered spectrum from a single sphere
in the Mie regime exhibits oscillations that directly reflect its radius. The estimation of
the phase function parameters is a common objective in LSS for tissue characterization,
as tissue optical properties can directly be derived from them. In this thesis, our focus
will be on Mie Theory and the Whittle-Matérn model.
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Mie theory

In purely scattering media, Mie Theory provides an exact analytical solution for the
scattering of a plane wave by a discrete sphere of refractive index ns surrounded by a
medium of refractive index nenv. Interestingly, it can also provide a first-order description
in the case of non-spherical scatterers [68]. The Mie phase function is parametrized by
the scattering angle θ, the relative refractive index nre = ns/nenv and the size parameter
x defined as:

x = 2πnenva

λ
(4.1)

where a is the scatterer radius. The Mie phase function pMie(θ, nre, x) does not have
a closed form. Open-access algorithms such as the one provided by the Python module
miepython [126] are optimized and widely accepted in the optical community to compute
Mie spectra.

Whittle-Matérn model

As opposed to heterogeneous media composed of discrete spherical scatterers, biologi-
cal samples can be considered as continuous random media to encompass their complexity.
Indeed, cells and nuclei can exhibit a variety of shapes, and their sizes can range from a
few microns to tens of microns. One scale below, organelles such as lysosomes, ribosomes
or mitochondria are made of different molecular materials and their size spans from 0.2
nm to 30 nm. Other extracellular components such as collagen and elastin fibers also con-
tribute to the tissue complexity through their different size [10]. In other words, the wide
variety of cellular objects can lead to model the tissue as a continuous spatial function of
the refractive index. An analogy can be made with the Gaussian model mentioned in the
paragraph 3.2.3. Contrary to other discrete BSC models, this form factor also considers
the tissue as a continuous function of acoustic impedance. One notable difference here
is that tissue is optically modeled as random media following a statistical distribution
approach, without assuming the spherical geometries of its scatterers.

Refractive autocorrelation function Light scattering results from relative variations
in the refractive index. In the configuration of continuous media, it no longer depends
on the unique relative refractive index nre introduced in the discrete model but it can be
described through the excess refractive index auto-correlation function Bn defined as:

Bn(rd) =
∫

n∆(r)n∆(r − rd)dr (4.2)

where rd represents the differential separation between two points, n∆(r) the excess re-
fractive index defined as n∆(r) = n(r)/n0 − 1 with n(r) being the fluctuating refractive
index and n0 the mean refractive index.
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The scalar notation of rd results from the approximation of statistically isotropic me-
dia, which is adopted hereafter.

Whittle-Matérn function A versatile model that is based on the three-parameter
Whittle–Matérn function can describe the continuous function Bn [125]:

Bn(rd) = An

( rd

Ln

)(D−3)/2
K D−3

2

( rd

Ln

)
(4.3)

where An is the fluctuation strength, Ln the characteristic length of heterogeneity of re-
fractive index (i.e. Bn decays exponentially for rd > Ln), Kν the ν-order modified Bessel
function of the second kind and D the shape parameter which determines the shape of
the distribution. For instance, when D tends to infinity, the autocorrelation function Bn

approaches a Gaussian shape. The function Bn approaches a power law when D < 3, an
exponential function when D = 4, the Henyey-Greenstein phase function when D = 3 and
a Gaussian function when D tends to ∞. The parameter D makes the Whittle-Matérn
model versatile since it can cover different refractive index autocorrelation functions that
are likely to be encountered in biological tissues [10]. When D < 3, the medium can be
regarded as a mass fractal, and in this context, the parameter D can be considered as the
mass fractal dimension [125].

Normalization The parameter An has a limited physical interpretation and acts as
a normalization factor in the expression of Bn. In this review of the Whittle-Matérn
functions, Rogers et al. [125] exposed the different normalization options possible, along
with their respective advantages and disadvantages. In this thesis, the normalization at
a minimum length scale will be adopted. It entails: Bn(rmin) = σ2

n where rmin is the
minimum length scale in the tissue and σ2

n is the refractive index variance. Therefore, we
obtain [125]:

An = σ2
n

(rmin

Ln

)(3−D)/2 1
K (D−3)

2
( rmin

Ln
) (4.4)

The advantage of this choice is that An is switched to σ2
n which carries more physical

meaning. Therefore, the extraction of σ2
n is more relevant than An for tissue characteriza-

tion. However, it introduces an additional parameter rmin that needs to be set a priori.
The coefficient rmin represents the smallest elementary particles found in the biological
tissues for which the definition of a refractive index still holds. In this thesis, rmin will be
set to 2 nm as suggested in Radosevich et al. [85]. This value corresponds approximately
to the typical size of DNA chains or macromolecules found in biological tissues such as
lipids. For the sake of simplicity, An will be kept in the following equations.
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Refractive index parameters and phase function Two more steps are required to
express the scattering phase function using the Whittle-Matérn model.

First, the Wiener-Khinchin theorem is applied to link the power spectral density Ψn

to Bn through the 3D Fourier transform [125]:

Ψn(k⃗s) = 1
(2π)3

∫∫∫
Bn(r⃗d)e−ik⃗s.r⃗ddr⃗d (4.5)

With k⃗s is the scattering vector defined as ks = 2kn0sin(θ/2) where k is the wavenumber
and θ the polar angle of the scattering vector ks. We can obtain [85]:

Ψn(ks) =
AnL3

nΓ
(

D
2

)
π3/22(5−D)/2(1 + k2

sL2
n)D/2 (4.6)

where Γ represents the mathematical Gamma function defined as Γ(x) =
∫∞

0 tx−1e−tdt

for ℜ(x) > 0. The Born approximation is valid in continuous random media as long
as σ2

n(kLn)2 ≪ 1 according to finite-difference time-domain analysis [85]. Applying the
Born approximation in the case of incident linear polarized plane waves, the unnormalized
differential scattering cross section is [127]:

σW M (θ, ϕ) = 2π(kn0)4[1 − sin2(θ)cos2(ϕ)]Ψn(ks) (4.7)

where ϕ is the azimuthal angle such as ϕ = 0 in the direction of the linear polarization
vector. The phase function pW M (θ, ϕ, σ2

n, Ln, D) can be obtained by normalizing σW M

such as the integral over all solid angles is equal to 1.

4.1.4 Optical properties

Photons undergo different mechanisms when traveling in the tissues. They are de-
scribed by different coefficients referred to as the tissue optical properties introduced be-
low.

Scattering in biological media can be described by the light scattering coefficient µs

(cm−1). The scattering coefficient µs can be computed from the differential cross-section
per unit volume σ(θ, ϕ) associated with Mie theory or the Whittle-Matérn model as defined
above:

µs =
∫ 2π

ϕ=0

∫ π

θ=0
σ(θ, ϕ) sinθ dθdϕ (4.8)

For instance, a photon that traveled a distance z in the tissue such as zµs = 1 will undergo
one scattering event on average [68].

The anisotropy coefficient g describes the amount of light scattered into the forward di-
rection after a single scattering event. Analytically, g is the average cosine of the deflection
angle θ:

g =
∫ 2π

ϕ=0
∫ π

θ=0 σ(θ, ϕ) cosθsinθ dθdϕ∫ 2π
ϕ=0

∫ π
θ=0 σ(θ, ϕ)sinθ dθdϕ

(4.9)
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The coefficient µs and g define the reduced scattering coefficients µ′
s(λ) such as:

µ′
s(λ) = µs(1 − g) (4.10)

The length l′s = 1/µ′
s represents the characteristic distance of travel for a photon to lose

memory of its incident direction. This quantity is referred as the transport mean free path
and typically varies from 300 to 2000 µm in biological tissues [74].

As the light wave propagates, energy is transferred to the tissue due to interactions
with its molecules, such as hemoglobin or melanin. This phenomenon is referred to as
absorption and is described by the absorption coefficient µa(λ) (cm−1). This coefficient
quantifies the exponential decay in intensity experienced by the light wave which propa-
gates in the medium of interest through the Beer-Lambert law. In this thesis, absorption
is not the mechanism of interest.

4.2 Enhanced Backscattering Spectroscopy

In this section, we present the theoretical framework of Enhanced Backscattering Spec-
troscopy (EBS). EBS entails extracting the sample reflectance profile p. Firstly, we intro-
duce the EBS peak and its link with the tissue reflectance profile p. Then, we describe the
method used for the experimental estimation of p, followed by its modeling using Monte
Carlo simulations.

4.2.1 EBS peak

The EBS peak is a 2D angular intensity peak in the backscattering direction. Exper-
imentally, a CCD camera can detect this angular intensity distribution. An example of
an EBS peak is given in Figure 4.3. Figure 4.1 (a) shows an explanatory scheme of the

Figure 4.1: EBS phenomenon. (a) The time-reversed path-pairs photons exit the tissue
with the same backscattering angle θb. (b) Equivalent of a Young’s slits experience (using
anim.institutoptique.fr, Xavier Delen, IOGS).
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coherent phenomenon that gives rise to this peak. The sample is illuminated by plane
waves. Let us introduce photon 1 which is multiply-scattered and exits the tissue with
a backscattering angle θb. The reciprocity theorem guarantees the existence of a second
photon traveling in the opposite direction following the exact same path [127]. The pho-
ton 2 finally exits the tissue with the same backscattering angle. As a result, the travel
within the tissue does not increase the optical phase shift between the two photons. The
two photons then pass through a Fourier lens which allows them to interfere onto a CCD
camera (not depicted). The total phase shift ∆φ between the two photons can be written
as:

∆φ = ∆φout + ∆φin = ∆φout (4.11)

where ∆φout denotes the phase shift due to travels outside the tissue, and ∆φin the phase
shift inside the tissue that equals 0. In the reasonable configuration where the exit radius
rs is negligible in front of source-tissue distance, the phase shift between the two photons
can then be expressed as [74]:

∆φ = (k⃗in + k⃗out) · r⃗s (4.12)

Given that constructive interferences occur for ∆φ ≈ 0, two rationales can justify the
angular intensity distribution observed in EBS:

First, for a given exit radius r⃗s, backscattered rays with direction close to the exact
backscattering direction (defined as 0°) are associated with (k⃗in + k⃗out) ≈ 0⃗. Thus, small
backscattering directions contribute to constructive interferences. Similarly, the photons
backscattered in other directions with relatively high values of θb will not contribute to
the coherent phenomenon. This point justifies the fast intensity decay exhibited by the
EBS peak when the backscattering angle is increasing.

Secondly, the weak exit radius values also contribute to the EBS peak. Interestingly,
the exit radius rs can be seen as an indicator of the photons’ travel distance in the tissue.
Thus, the tissues that exhibit long transport mean free paths l′s are associated with long
exit radii. If rs is mostly held to relatively small values, high values of backscattering
angles θb would still maintain ∆φ ≈ 0. As a result, low diffusive media show a broader
EBS peak compared to highly diffusive media. Indeed, when using a coherent source, the
full width at half maximum (FWHM) of the EBS peak is inversely proportional to the
mean free path l′s in the tissue [74].

An analogy with the Young’s slits experience can be made (Figure 4.1, b) [82]. By
thinking the exit points of the two rays as a double slit illuminated by a collimated beam,
the EBS pattern is similar to the diffraction pattern observed on a screen in the far field
in the Young’s slit experience. In this case, the observed fluctuations in intensities can
be described as being the Fourier transform of the two separated delta functions. The
intensity angular distribution then appears as a cosine function. In a first scalar approxi-
mation, the EBS peak can be seen as the summed interference patterns of all time-reversed
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path-pair photons. Summing all the cosine patterns in all directions results in a single halo
in the center, corresponding to the EBS peak. The latter corresponds to the 2D Fourier
transform of the reflectance profile in a tissue illuminated by an infinitely narrow pencil
beam [124].

4.2.2 EBS peak and reflectance profile p

The intensity of multiply scattered photons exiting the tissue with a differential position
(xs, ys) is denoted as Ims, where xs and ys are the differential Cartesian coordinates. Single
scattered photons Iss(xs, ys) cannot generate a time-reversed path and therefore do not
contribute to the EBS peak. The EBS peak can be normalized by the incoherent baseline
intensity which reflects all orders of scattering, such as [127]:

IEBS(θx, θy) =
∫∫+∞

−∞ Ims(xs, ys)e−ik[xssin(θx))+yssin(θy)]dxsdys∫∫+∞
−∞ [Ims(xs, ys) + Iss(xs, ys)]dxsdys

(4.13)

where θx and θy are the backscattering angles in the two Cartesian directions. Under the
approximation of a semi-infinite medium irradiated by light plane waves, peff (xs, ys) and
the EBS peak are simply linked by the Fourier transform [81]:

IEBS(θx, θy) = FT{peff (xs, ys)} (4.14)

The effective reflectance profile peff (xs, ys) represents the modulation of the tissue re-
flectance profile of interest p(xs, ys) by other functions, such as [85]:

peff (xs, ys) = p(xs, ys) · pc(xs, ys) · s(xs, ys) · c(xs, ys) · mtf(xs, ys) (4.15)

where FT denotes the 2D Fourier transform, pc the phase correlation function, s a mod-
ulation due to finite illumination spot size, c the spatial coherence function and mtf the
imaging system’s modulation transfer function. These functions are described below.

Sample reflectance profile

The sample reflectance profile is the quantity of interest in EBS. In practice, p(xs, ys)
can be radially averaged to mitigate experimental noise, such as:

p(rs) =
∫ 2π

0
p(xs = rscosϕ, ys = rssinϕ)dϕ (4.16)

where rs and ϕ represent the polar coordinates corresponding to the differential positions
xs and ys. The tissue reflectance profile p(rs) can be seen as an optical tissue signature
and is also known as the radial point spread function. Indeed, p(rs) is extremely sensitive
to the phase function in the subdiffusion regime (r < l′s, l′s being the transport mean free
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path) [81,85]. This can be explained by the fact that the photons that correspond to this
regime have undergone few scattering events.

Phase correlation function pc

The phase correlation function pc represents the ability of forward and reversed photons
to interfere. This function takes into account the vector wave nature of light, which
is required to accurately describe the experimental EBS peak [81]. The coefficient can
reflect the partial interference between rays when orthogonal polarization channels are
used. However, in this thesis, EBS will be performed in the co-polarized channel (xx),
where time-reversed path-pair photons can fully interfere [127]. Thus, this coefficient will
be kept to unity hereafter.

Spatial coherence function c

The spatial coherence length of the source Ln is reflected through the function c. The
length Lc is a measure of the maximum distance between two coherent wavefronts and
gives the maximum size allowed for interference to occur.

Using a partial spatial coherence source, the reflectance profile is modulated by the
function c which can be seen as a spatial filter. This configuration corresponds to an
EBS-derived technique, known as Low Enhanced Backscattering Spectroscopy (LEBS). In
LEBS, the inequality Lc < l′s is verified. In other words, the majority of path-pair photons
have therefore traveled a distance l′s greater than the coherence length. One photon of a
given pair from this majority is then no longer able to interfere with the second photon:
the photon pair is said to be incoherent. Long paths are thus rejected by the low coherence
of the source. Assuming that longer paths reflect travel with deeper distances in the tissue,
depth selectivity can be achieved by tuning the value of Lc.

In EBS, the coherence length of the source Lc is large in front of the transport mean
free path of photons in the tissue Lc ≫ l′s. Thus, photons from the same pair are coherent.
As a result, any pair of photons traveling in opposite directions in the tissue can form
constructive interference. The function c is then taken to unity.

Finite illumination beam size s

In this thesis, the sample is illuminated by a laser beam, which therefore presents
a finite spot diameter. Time-reversed path pair photons can only originate from rays
that remain within the illumination spot. Thus, rays that exit outside this area do not
contribute to the EBS peak. The experimental measurement of the reflectance profile
then needs to be corrected for these rays, considered as losses. Let A(x, y) be the top-hat
function that describes the spatial intensity distribution of the illumination spot. Since
the EBS signal depends on the relative distance of exits of rays rs as opposed to the
absolute position within the illumination spot, the function s(xs, ys) can be computed as
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the autocorrelation function of A(x, y) such as:

s(xs, ys) =
∫∫∞

−∞ A(x, y)A(xs − x, ys − y)dxdy∫∫∞
−∞ A(x, y)dxdy

= ACF [A(x, y)] (4.17)

where ACF denotes the autocorrelation function.

4.2.3 Reflectance profile estimation

In this subsection, we present a typical EBS instrument and the associated data pro-
cessing procedure to estimate the tissue reflectance profiles.

EBS instrumentation

The measurement of EBS peak can be conducted using different setups, including fiber
optics-based instruments [78,128]. In this thesis, we used a benchtop configuration [127], as
shown in Figure 4.2. A general description is given below. Additional details will be given
for each implementation in the following chapters. A collimated beam from a broadband
laser source irradiates the sample with plane waves. Then, an iris diaphragm shapes the
beam into a circular spot. The polarizer forces the incident illumination into a vertical
linear polarization. The analyzer is parallel to the polarizer to select the co-polarized
channel. The hyperspectral camera then detects the angular intensity distribution thanks
to the Fourier lens. The maximum backscattering angle and the angular resolution of the
EBS measurement depend on the focal length of the Fourier lens, the pixel size and the
sensor dimension.

Figure 4.2: Example of EBS instrument. P: polarizer, Ir: iris diaphragm, M: mirror, B:
50:50 non-polarizing beamsplitter, A: analyzer, L: Fourier lens

Each optical component of the benchtop experimental setup needs to be aligned with
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the laser source such as the exact backscattering direction corresponds to the center pixel
of the camera.

Data collection

In this paragraph, we present the experimental protocol to measure the EBS peak, as
outlined by Radosevich et al. [127].

• Firstly, the product of the imaging system’s modulation transfer function mtf and
the finite illumination beam size function s can be estimated simultaneously by plac-
ing a mirror at the sample position. The mirror is slightly moved and tilted until
the reflection on the diaphragm matches the iris. Thus, the reflected beam passes
back through the iris diaphragm in the reverse direction [129]. In this configuration,
the position of laser spot confirms the position of the exact backscattering direction
in the detected image. The exposition time is set such that the maximum intensity
in the image reaches 80% of the saturation level for all measurements. Optical neu-
tral densities (typically OD5) are placed before the polarizer to attenuate the laser
power. The co-polarized channel is selected by orientating the axis of polarizer and
the analyzer parallel. We refer to this acquisition as the mirror measurement mir.

• Secondly, the white standard acquisition is performed and is denoted as ws. To do so,
the polarizers and the neutral densities are removed. A reflectance white standard is
placed at the sample position, allowing to measure the total unpolarized incoherent
intensity. The white standard is rotated to eliminate speckle noise using a motorized
platform (150°/sec). An example of white standard measurement is given in Figure
4.3.

Figure 4.3: Example of white standard measurement wsn in the co-polarized channel
acquired at 700 nm.
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• Thirdly, the background acquisition is conducted and is denoted as bg. To do so, the
polarizers are replaced as initially. Then, a mirror is placed at the sample position
and deviates the incident laser beam toward a beam dump.

• Finally, the sample acquisition is performed and is denoted as sample. To do so, the
sample is gently rotated to eliminate speckle noise (80°/s). As a result, the tissue
structural anisotropy is averaged away and is therefore not considered in this ap-
plication. The sample can be submerged in an aqueous solution of glycerol with a
refractive index close to the assumed tissue refractive index (typically n = 1.38) to
assume refractive index matching.

These steps are repeated for each working wavelength if the EBS peak can be spectrally
resolved (i.e. if a hyperspectral camera is used or if a monochrome camera is used with a
filter wheel).

Data processing

In this paragraph, the post-processing steps to extract the reflectance profile from the
EBS measurements are described, as outlined by Radosevich et al. [127]. These steps are
conducted for all the spectral images if the EBS peak is spectrally resolved.

• Firstly, all the measurements are scaled by their exposition time. Background sub-
traction is then conducted pixel-wise using bg for the measurements mir, ws and
sample. The normalized background-subtracted estimates mirn, wsn and samplen

are then obtained.

• Secondly, the total unpolarized incoherent intensity is then estimated by integrating
the signal of wsn in the periphery of the EBS peak. This estimate is performed in
a ring as far away as possible from the center (typically a ring spanning from 1° to
1.1°) to minimize the coherent signal. This procedure results in a scalar value for
each wavelength. The known reflectivity of the white standard can be taken into
account to mitigate its effect. The resulting spectrum is then used to correct each
spectral sample image samplen for the spectral heterogeneities of the source. One
could note that this spectrum also corresponds to the denominator in Equation 4.13.
The resulting sample images can be denoted sample′

n.

• Thirdly, the incoherent baseline is removed. The incoherent signal in the sample
image is considered as an artifact in EBS [80]. To mitigate its effect, the incoherent
baseline can be estimated from a plane fit using sample′

n from an annular ring in the
periphery of the EBS peak. Then, the incoherent baseline modeled as a plane inten-
sity distribution is subtracted from sample′

n. The corrected sample image samplec

is then obtained.
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• Fourthly, the 2D inverse Fourier transform of the corrected sample image samplec

is taken. This procedure results in the 2D effective reflectance profile of the sample
peff (xs, ys). The same procedure can be conducted using the normalized mirror
measurement mirn to obtain the 2D product mtf(xs, ys) · s(xs, ys).

• Finally, the effective reflectance profile of the sample can be estimated by radial
averaging (Equation 4.16) to obtain peff (rs). The same procedure can be applied to
obtain the 1D product mtf(rs) · s(rs).
The construction of the 1D vector rs is detailed hereafter. The exit radius resolution
δr can then be expressed as [124]:

δr(λ) = λ

Nδθ
(4.18)

where N represents the number of pixels in the direction x or y and δθ the experi-
mental angular resolution of the camera.

Based on Equation 4.18, the maximum "frequency" authorized by the Nyquist sampling
criterion can be expressed as [81]:

rs,max = λmin

2δθ
(4.19)

To ensure compliance with this criterion, the diaphragm diameter of the iris needs to be
set to the rs,max value prior to acquisitions.

4.2.4 Monte Carlo simulations

Forward analysis

Now that we know that the EBS peak reflects the reflectance profile, its modeling is
of prime interest for tissue characterization. A forward approach constitutes a first ex-
ample of application. For instance, let us consider that the assumed optical properties
for a tissue of interest can be associated to a theoretical reflectance profile. After being
experimentally measured, the EBS peak can lead to the estimated reflectance profile that
can be then compared with the expected one. This forward approach could validate the a
priori known optical properties (Figure 4.4).

Up to this point, we have successfully established the connection between scatterer
properties and their respective phase functions, as well as the relationship between the ob-
servable Enhanced Backscattering (EBS) peak and the reflectance profile. This subsection
exposes the link between the scatterer phase function and the resulting reflectance profile.

Authors reported analytical expression that can provide a partial description of the
EBS peak (e.g. under a scalar [130] or double-scattering approximation [131]) based
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Figure 4.4: EBS workflow for forward studies. Adapted from User Manual, Andrew Ra-
dosevich [129]

on the tissue optical properties. Despite their computationally intensive nature, Monte
Carlo (MC) simulations represent accurate methods to model light transport in biological
tissues. Indeed, in the biomedical optics community, MC simulations are known as the
gold standard to describe light transport in the tissues and are used as a reference to
validate light transport models [132].

The main inputs in the MC simulations are the scattering phase function, the tissue
geometry and the number of incident photons. If the two first inputs are accurate and the
number of photons is sufficient to mitigate numerical noise (typically 1 × 107 photons),
MC simulations provide an exact solution to the radiative transfer equation [80].

MC methods refer to stochastic approaches where an important amount of photon
trajectories is computed in the tissue. Conceptually, every iteration can be thought of as
the simultaneous launch of multiple photons in the sample of interest. Each photon packet
then follows a random walk and is subject to partial absorption and/or scattering at each
step. Between scattering events, the step sizes ds follow a probability distribution defined
the Beer-Lambert law such as [84]:

P (ds) = (µa + µs)e−(µa+µs)ds (4.20)

Similarly, for each scattering event, the deflecting angle is computed based on the prob-
ability distribution dictated by the phase functions. The photon’s travel stops when the
photon packet is fully absorbed or when it exits the tissues.

Radosevich et al. [84] provided an open-source MC algorithm that takes into account
the vector nature of light and can then fully model the coherence phenomenon observed in
EBS. To take into account, the interference between the time-reversed photon path-pairs,
the program tracks the progression of the electric field using the Jones N-matrix formal-
ism. In this algorithm, the user can choose between the Mie and the Whittle-Matérn
phase functions. The tissue reflectance profile in the co-polarized channel is given as an
algorithm output using a semi-analytical approach. This algorithm models the sample
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with a single slab geometry and assumes refractive index matching at both boundaries. In
practice, the sample can be placed in a refractive index-matching liquid to approximate
this configuration.

Inverse analysis and refractive index representation

Inverse approaches can also be conducted using the estimated reflectance profiles to
characterize the tissue of interest. Radosevich et al. [85] provided a Matlab routine able
to perform inversion procedures from experimental reflectance profiles to extract refrac-
tive index-related properties from the Whittle-Matérn parameters Ln, σn and D. The
computational inversion time is reduced thanks to a look-up table approach. Indeed, the
reflectance profiles from multiple Monte Carlo simulations were pre-computed using the
open software previously mentioned [84] for values of Whittle-Matérn parameters that are
likely to be encountered in biological tissues. These reflectance profiles were then stored
in look-up tables in a resource-efficient way to allow fast comparisons with experimental
measurements.

The Whittle-Matérn parameters can be used to generate a spatial representation of the
variations of refractive index. To do so, pure randomness can be convolved with the excess
refractive index auto-correlation function Bn (Equation 4.3). This calculation is done in
the Fourier domain. First, the power spectral density Ψn (i.e. Fourier transform of Bn)
is computed (Equation 4.6). Second, an image of a Gaussian white noise of variance 1,
denoted as GW , is calculated. The spatial representation of the excesses of the refractive
index can then be obtained by taking the 2D inverse Fourier transform of the product
GW · Ψn.

4.3 Light Scattering Spectroscopy

Light Scattering Spectroscopy (LSS) aims to analyze the elastically single scattered
photons to extract diagnostic information about the underlying tissue microstructure. In
this paragraph, the scatterer size distribution is estimated using Mie theory by analyzing
the incoherent component. Unlike EBS, which relies on both spatial and spectral reso-
lutions for each measurement, the LSS method presented here only requires spectrally-
resolved measurements. Interestingly, these measurements can be conducted using the
same EBS instrument introduced in subsection 4.2.3. Furthermore, one can note that the
similar nature of the analyzed signal and the extracted parameters makes LSS the optical
equivalent of the ultrasound BSC parametrization technique in the incoherent case.

4.3.1 Experimental estimation of the single scattered component

The Born approximation is not required for the LSS method implemented in this
thesis. Here, the contribution of multiply-scattered photons is mitigated using a diffuse
background removal technique to isolate the single scattering component. Indeed, as light
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propagates, photons interact with the tissue’s microstructures and carry information about
the scatterers. However, the scatterer properties cannot be directly extracted from the
detected backscattered light in LSS. Two populations of photons can be distinguished:
multiply-scattered photons which travel deeper distances on average and single-scattered
photons, mostly emanating from shallow tissue layers [65]. Multiple scattering randomizes
the scatterer information while single scattered photons are directly described by phase
functions, which in turn reflect the scatterer properties.

To isolate the single scattering component, the polarization state of the detected
backscattered light is leveraged. The polarization-gating technique is based on the key
property that single scattering preserves the incident polarization at a relatively small
backscattering angle in comparison to multiple scattering. Qiu et al. [9] reported the use
of an endoscopic scanning fiber optic probe to perform LSS using the polarization-gating
technique. This application will be used as an illustrative example (Figure 4.5). The
incident white light passes through a linear polarizer before illuminating the sample. The
backscattered intensities are then measured in the co-polarized channel (same polarizer)
and in the cross-polarized channel using another linear polarizer orthogonally oriented.

In a scalar approximation, we define the backscattered intensities as I∥(λ) for the
co-polarized channel and I⊥(λ) for the cross-polarized channel. Each intensity can be
decomposed into two components:

I∥(λ) = Is
∥(λ) + Id

∥ (λ) (4.21)

I⊥(λ) = Is
⊥(λ) + Id

⊥(λ) (4.22)

where the superscript s denotes the backscattered intensities associated with the shallow
layer (i.e. single scattering) and the superscript d the deep tissue layers (i.e. multiple
scattering). By subtracting the parallel and perpendicular signals, we obtain:

I∥(λ) − I⊥(λ) = Is
∥(λ) + Id

∥ (λ) − Is
⊥(λ) − Id

⊥(λ) (4.23)

Since the incident polarization is lost in multiple scattering, we can assume Id
∥ (λ) ≈ Id

⊥(λ),
we therefore obtain:

I∥(λ) − I⊥(λ) = Is
∥(λ) − Is

⊥(λ) (4.24)

Since single scattering in shallow layers preserve the incident polarization, we have
Is

∥(λ) ≫ Is
⊥(λ). The previous expression can further simplifies to:

∆I(λ) = I∥(λ) − I⊥(λ) = Is
∥(λ) (4.25)

where ∆I(λ) referred to the differential polarization signal. Hence, subtracting parallel
and perpendicular signals cancels the multiple scattering contributions and isolates the
scattering signal from superficial layers.

Experimentally, the polarization channel can be selected by setting the orientation
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Figure 4.5: Implementation example of the polarization-gating technique using a polarized
scanning fiber optic probe. Qiu et al. [9] developed this tool to detect pre-cancerous
conditions in the esophagus. 1: Incident white light emitted by the delivery fiber. 2:
Co-polarized detection by one collection fiber (not depicted in the diagram). 3: Cross-
polarized detection by another collection fiber. 4: Depolarization in the deep tissue layers.
5: Epithelial tissue (i.e. shallow tissue layer of interest). 6: Linear polarizer in the
perpendicular direction. 7: Linear polarizer in the parallel direction. 8: Parabolic mirror.
Adapted from Qiu et al. [9]

of the analyzer. For each polarization channel, the raw co-polarized and cross-polarized
intensities are background-subtracted and normalized using a white standard reference
before leading to ∆I(λ):

I∥(λ) =
Ir

∥(λ) − Ibg
∥

I0
∥ (λ)

; I⊥(λ) = Ir
⊥(λ) − Ibg

⊥
I0

⊥(λ)
(4.26)

The superscript r denotes raw measurements, bg represents background measurements,
and 0 corresponds to the white standard reference spectrum that corrects for the source
heterogeneities.

One could note that model-based approaches [64,65] and spatial-gating techniques [9]
could alternatively serve as diffuse background removal procedures.
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4.3.2 Single scattered light: theoretical expression

In this subsection, the theoretical expression of the differential polarization signal
∆Ith(λ) is given following the equations described in Backman et al. [63]. This expression
will then be used in the inversion procedures described in the next section.

Let us consider a spherical particle illuminated by a light plane wave E⃗i(r⃗) = E⃗0ej(k⃗ir⃗−wt)

where E0 is the wave amplitude, k⃗i the wavevector, r⃗ the position vector relatively to the
center of the particle, ω the frequency and t the time.

The scattered wave E⃗s propagates along the direction of the scattering vector k⃗s(θ, ϕ),
where θ and ϕ denote the polar angles in the spherical coordinate system. Let us set the
corresponding coordinate system such that z⃗ ∥ k⃗i and such that x⃗ ∥ E⃗0. The scattered
field is a spherical wave that has a component parallel and a component orthogonal to
the scattering plane (Es1 and Es2 respectively). They can be expressed from the corre-
sponding components of the incident wave Ei1 and Ei2. Given the radial symmetry of the
scatterer geometry, we can write:Es2

Es1

 = ej(k⃗r⃗−wt)

jkr

S2(θ) 0

0 S1(θ)

Ei2

Ei1

 (4.27)

where S1(θ) and S2(θ) represent the scattering amplitudes and depend on the polar
angle θ only. The scattering amplitudes do not have a closed form [133]. In this thesis,
the module miepython [126] was used to compute them. The selection of the polarization
channel mathematically corresponds to projections onto the x⃗ and the y⃗ axes. We therefore
obtain the two components Es,x and Es,y such as:Es,x

Es,y

 = E0ej(k⃗r⃗−wt)

jkr

cos(θ)cos(ϕ) −sin(ϕ)

cos(θ)sin(ϕ) cos(ϕ)

S2(θ) 0

0 S1(θ)

cos(ϕ)

sin(ϕ)

 (4.28)

Es,x

Es,y

 = E0ej(k⃗r⃗−wt)

jkr

 S2(θ)cos(θ)cos(φ)2 − S1(θ)sin2(ϕ)

S2(θ)cos(θ)cos(ϕ)sin(ϕ) + S1(θ)cos(ϕ)sin(ϕ)

 (4.29)

The corresponding intensities are computed by taking the square absolute value of the
electric fields, such as:

I∥(λ) − I⊥(λ) = |Es,x|2 − |Es,y|2 (4.30)

By substituting the equation 4.29 into the equation 4.30, we have:

I∥(λ) − I⊥(λ) = I0
k2r2

(
|S2(θ)|2cos2(θ)cos2(ϕ)[cos2(ϕ) − sin2(ϕ)]

+ |S1|2sin2(ϕ)[sin2(ϕ) − cos2(ϕ)] − 4ℜ(S1(θ)S2(θ))cos(θ)cos2(ϕ)sin2(ϕ)
)

(4.31)

with I0 = |E0|2 and ℜ the real part. Given that the incident light is collimated,
the collected light ∆Ith(λ) is obtained by integrating the previous difference over the
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backscattering angles θ1 to θ2 and over the azimuthal angle. We therefore obtain:

∆Ith(λ) = 2π

∫ θ2

θ1

∫ 2π

0

(
I∥(λ) − I⊥(λ)

)
sin(θ)dθdϕ (4.32)

∆Ith(λ) = 2πI0
k2r2

[ ∫ θ2

θ1

[
|S2(θ)|2cos2(θ)sin(θ)

( ∫ 2π

0
cos4(ϕ)dϕ−

∫ 2π

0
cos2(ϕ)sin2(ϕ)dϕ

)]
dθ

+
∫ θ2

θ1
|S1(θ)|2sin(θ)

[ ∫ 2π

0
sin4(ϕ)dϕ −

∫ 2π

0
cos2(ϕ)sin2(ϕ)dϕ

]
dθ

− 4
∫ θ2

θ1

(
ℜ(S1(θ)S2(θ))cos(θ)sin(θ)

∫ 2π

0
cos2(ϕ)sin2(ϕ)dϕ

)
dθ

]
(4.33)

which can be written as:

∆Ith(λ) = 2πI0
k2r2

[ ∫ θ2

θ1
|S2(θ)|2cos2(θ)sin(θ)

(3π

4 − π

4
)
dθ

+
∫ θ2

θ1
|S1(θ)|2sin(θ)

(3π

4 − π

4
)
dθ

− 4
∫ θ2

θ1
ℜ(S1(θ)S2(θ))cos(θ)sin(θ)π

4 dθ

]
(4.34)

∆Ith(λ) = π2I0
k2r2

∫ θ2

θ1

[
S2(θ)2cos(θ)2 + |S1(θ)|2 − 2ℜ(S1(θ)S2(θ))cos(θ)

]
sin(θ)dθ (4.35)

Finally, we obtain:

∆Ith(λ) = π2I0
k2r2

∫ θ2

θ1
|S2(θ)cos(θ) − S1(θ)|2sin(θ)dθ (4.36)

The scattering amplitudes S1 and S2 depend not only on the backscattering angles but also
on the scatterer radius r and the refractive indices nre and nenv since they are computed
using Mie theory. Therefore, the theoretical differential polarization signal
∆Ith(λ, r, θ1, θ2, nre, nenv) can be computed for different scatterer sizes and wavelengths
by setting fixed values for the remaining parameters.

4.3.3 Extraction of the scatterer size distribution

Analysis of single scattered component

Once the single scattered spectrum has been estimated experimentally, its analysis can
lead to scatterer properties. Indeed, the scatterer size distribution F can be estimated
from the sample differential polarization signals ∆I(λ). In this subsection, the analytical
treatment required to extract F is described.
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LSS models the detected spectrum as the incoherent sum of the contributions of each
scatterer [9].

∆I(λ) =
∫ rmax

rmin

∆Ith(λ, r)F (r) dr + CR

λ4 + ϵ(λ) (4.37)

where λ is the wavelength, θ is the backscattering angle, nre the relative refractive index
between the scatterer and the surrounding medium nenv, ∆Ith(λ, r) the LSS spectrum of
a single scatterer of radius r, rmin the radius threshold below which Rayleigh scattering
is considered as dominant (typically 100 nm), CR an unknown constant proportional to
the number of Rayleigh scatterers, rmax the maximum scatterer radius, F (r) the scatterer
size distribution and ϵ(λ) the experimental noise.

Fang et al. [68] describes the analytic procedure to extract F . To mitigate the effect of
Rayleigh scattering, equation 4.37 is multiplied by λ4 prior to differentiation with respect
to λ such as:

∆I(λ)λ4 =
∫ rmax

rmin

∆Ith(λ, r)F (r)λ4 dr + CR + ϵ(λ)λ4 (4.38)

∂[∆I(λ)λ4]
∂λ

=
∫ rmax

rmin

∂[∆Ith(λ, r)λ4]
∂λ

F (r)dr + ∂[ϵ(λ)λ4]
∂λ

(4.39)

By introducing Ŝ(λ) = ∂[∆I(λ)λ4]
∂λ , Î(λ) = ∂[∆Ith(λ,r)λ4]

∂λ , Ê(λ) = ∂[ϵ(λ)λ4]
∂λ and by discretizing

the scatterer radius such as F̂ (r) = F (r)dr, we obtain:

Ŝ(λ) =
rmax∑
rmin

Î(λ, r)F̂ (r) + Ê(λ) (4.40)

The previous equation can be formulated in the matrix format:

Ŝ = Î · F̂ + Ê (4.41)

Inverse problem

The spectrum Ŝ is measured experimentally. Its dimension depends on the number of
wavelengths p at which the experimental spectrum ∆I(λ) is measured. The size distribu-
tion of interest F has a dimension q that depends on rmin, rmax and the scatterer radius
resolution δr. These coefficients need to be set a priori and their value depends on the
application. The intensity matrix Î of dimension p × q can be pre-computed using Mie
theory with the Python module miepython, following the equation 4.36. To do so, the
relative refractive index nre can be set to a fixed value. To target the nuclei/cytoplasm
refractive index variation, nre = 1.06 can be chosen for instance [65, 68]. Similarly, the
surrounding medium refractive index was assumed to be 1.38 [85]. The backscattering
angles θ1 and θ2 are fixed values that depend on the optical components chosen in the
experimental setups (e.g. camera spatial resolution). The instrumentation used for LSS
is detailed in the following chapters.

The size distribution F can be estimated by minimizing the following sum of squared
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differences over the wavelengths:

F (r) = arg min
F

(∑
λ

√
(Ŝ − Î · F̂ )2

)
(4.42)

To solve this equation, assumptions about the scatterer size distribution can be made.
For instance, a Gaussian distribution would involve the determination of the mean scatterer
size a and its standard deviation σ such as F (a, σ) [65]. However, to take into account
the variety of sizes of potential scatterers in biological tissues, a non-negativity constraint
can be applied such as F (r) > 0 [68]. Then, the size distribution F can be estimated
through an optimization problem because of the experimental noise Ê. Equation (4.42)
can be solved using a linear least squares algorithm [8]. One can note that the dimension
q set by the operator conditions the problem: the problem is overdetermined if p > q or
underdetermined if p < q.

Discussion

Interestingly, the solving method mentioned above allows near real-time inversions of F

since the intensity matrix Î is pre-computed. Thus, this implementation of LSS is adapted
for clinical applications. However, the short computation time observed here comes at the
expense of a priori assumptions about experimental coefficients such as nre. Fang et al. [68]
argue that the relative refractive index weakly affects the shape of the measured spectra
compared to the scatterer radius. Variations in the magnitude of the LSS spectra are
reported when the parameter nre varies. Thus, the approximation in the relative refractive
index should not prevent the accurate estimation of the scatterer radii. The authors
add that LSS can measure the refractive indices given that independent measurements of
particle sizes and concentrations are available. Similarly, the experimental choice of the
backscattering coefficient θ is of minor importance to extract the scatterer radius [68].

One could note that the LSS method introduced here involves the measurement of the
incoherent spectrum associated with single scattered photons. This method is adapted
for endoscopic polarized scanning spectroscopy [9]. In parallel, Qiu et al. [134] reported
another LSS application termed confocal light absorption and scattering spectroscopic
(CLASS) microscopy. In this case, the scatterer size distribution can be extracted from
the incoherent (I-CLASS) or coherent signal (C-CLASS). Another analytical model is
required to model the coherent signal. In this specific application, the C-CLASS technique
outperformed the (I-CLASS) method in terms of SNR and particle sizing accuracy. Thus,
follow-up studies using LSS for microscopy reported the use of C-CLASS technique [135,
136].
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Chapter 5

Validation on tissue-mimicking phantoms

In the first chapter, successful applications of QUS and light backscattering techniques
were described. These two modalities have the potential to address specific clinical needs
related to cancer characterization and were, therefore, selected to provide complementary
diagnostic information. Their methods were presented in the two previous chapters.

The study reported in this chapter aims to validate our bimodal approach using tissue-
mimicking phantoms. To do so, three phantoms composed of different microparticles were
characterized using Backscatter coefficient (BSC) estimations and Enhanced Backscatter-
ing Spectroscopy (EBS). This study represents an initial proof of concept for our innovative
methodology.
The results presented in this chapter were published in a proceeding paper and were also
orally presented at two international conferences and one national conference:

• Malinet, C., Montcel, B., Liebgott, H., Muleki-Seya, P., "Combined ultrasound and
light backscattering spectroscopy for cancer characterization: a proof of concept."
(proceeding), 2022 IEEE International Ultrasonics Symposium (IUS), Venice, Italy.
[137]

• Artimino 2022 - Medical Ultrasound Technology, Boulder, Colorado, United States
of America

• "Caractérisation du Cancer par Associations de Techniques Acoustiques et Optiques
de Rétrodiffusion". Avril 2022, 16ème Congrès Français d’Acoustique, CFA2022,
Marseille, France. [138]

We acknowledge A. Radosevich (Backman Biophotonics Laboratory, Northwestern
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University, Illinois, United States of America) for publicly sharing the Matlab programs
that were adapted for processing the EBS data in this study and in the following chap-
ters [139].

5.1 Introduction

Cancerous cells can undergo dysplasia, during which tumor-type characteristic mor-
phological alterations can be observed at both cellular and nuclear scales. More precisely,
the nuclear-cytoplasmic ratio, denoting the proportion of nucleus size relative to cell size,
may be notably affected. Typically, this quotient increases as the nuclei enlarge relatively
to the cell. The nuclear-cytoplasmic ratio is a metric that can be used in cancerous grading
systems [140,141].

Combining an ultrasound method and an optical technique to estimate different cellular
structure sizes appears as a potential non-invasive alternative to histological examinations.
Given the magnitudes of the wavelengths in each modality, a certain complementarity in
the sensitivity regarding the scatterer size can be expected. The BSC parametrization
and EBS were chosen to provide a first experimental proof-of-concept in this chapter. As
reported in section 2.2, numerous studies successfully extracted the sizes of cellular struc-
tures by parametrizing the BSC. On the other hand, EBS provides a measurement of the
effective spatial reflectance profile. Previous papers have shown the extreme sensitivity
of the reflectance profiles to the scattering phase function in the subdiffusion regime (i.e.
lengthscales smaller than the transport mean free path) [85] (c.f. section 2.3.3). Under
specific conditions, the scattering phase function can reflect the scatterer diameter. Hence,
the sizes of cellular structures could be estimated in biological tissues based on their re-
flectance profile.

As a long-term objective, the local estimations of the nucleus sizes and cell sizes using
BSC parametrization and EBS could successfully reflect the actual nuclear-cytoplasmic ra-
tio of interest. However, in the framework of this thesis, this chapter aims firstly to provide
a preliminary validation of the bimodal method on tissue-mimicking phantoms. The com-
plementarity of the BSC parametrization and EBS are experimentally investigated. More
specifically, the sensitivity regarding the scatterer size is studied for each technique using
three phantoms with different microparticle sizes. To do so, contrasts between phantoms
as well as agreements between experimental data and theoretical models are analyzed.

First, phantoms with consistent optical and acoustic properties are designed. Then,
measured BSCs and reflectance profiles are compared to their expected theoretical models,
following a forward approach. Last, the performances of each technique are discussed.
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5.2 Methods

In this section, the design of the tissue-mimicking phantom characteristics is detailed,
followed by a description of the BSC estimation method and the implementation of EBS.

5.2.1 Tissue-mimicking phantoms

The three tissue-mimicking phantoms were designed with chosen components and con-
centrations to obtain the most realistic ultrasound and optical scattering properties. Or-
gasol powders (Arkema, France) appear as a good candidate to meet the specifications
that are detailed below:

The first challenge was to find particles with sizes similar to the nucleus and cell sizes
that can be encountered in tissue. Orgasol powders are available in 10 µm (ref. 2002
EXD), 20 µm (ref. 2002 D) and 60 µm diameter (ref. 2002 ES6). To cite a few illustrative
examples, the 10 µm particles present a diameter similar to the diameter of fibroblast
nuclei, while the 20 µm and 60 µm particles are akin in size to glandular epithelial and
osteoclast cells respectively. The powders consisted of transparent polyamide particles of
spheroidal shape (Figure 5.1).

Figure 5.1: Illustrative example of microphotograph of Orgasol particles (2002 ES5) and
schemes of phantom composition. The 10, 20 and 60 µm Orgasol powders used in this
study present similar aspects to those observed in the microphotograph. The schemes are
not drawn to scale. The microphotograph is reproduced from www.azelis.com [142]

The particles must also exhibit the capacity to scatter both optical and ultrasound
waves, in a manner analogous to cellular structures. Orgasol particles exhibit a refractive
index of norg = 1.52 at 589 nm and a density of 1.03 g/cm3 (supplier data). Taking the
sound speed at 2300 m/s, Orgasol particles exhibit an acoustic impedance Zorg = 2.4
MRayl. The particles were suspended in a mix of water and glycerol to obtain more
realistic scattering properties. Two to three droplets of surfactant were added (Syperonic,
Sigma). Glycerol has the double effect of reducing the relative refractive index nre and
the impedance contrast γz between the scatterers and the surrounding medium. The
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mass fraction of glycerol was set to 42% to approximate a surrounding media refractive
index of nenv = 1.38 at 410 nm. [143]. Under the approximation that the refractive index
dispersion is negligible, the relative refractive index nre was then equal to nre = 1.10 and
is therefore similar to the cell nuclei relative to cytoplasm relative refractive index (nre

= 1.03 - 1.1 [65, 144]). Assuming that the sound speed in the mixture linearly increases
with the glycerol concentration up to the sound speed reported in pure glycerol, the sound
speed was taken to 1660 m/s. The density of the mixture (relative to water density)
was calculated by weighting the densities of water and glycerol with the mass fractions of
each component and is estimated equal to 1.06. The acoustic impedance of the mixture
was then estimated at 1.8 MRayl, leading to a relative impedance contrast of γz = 0.33.
The relative impedance contrast in biological tissues can vary greatly depending on the
specific tissues. However, the estimated value of γz is not in contradiction with the order of
magnitudes of relative impedance contrast in tissues reported in previous studies [5, 145].
Thus, the Born approximation was applied in this study.

The volume fractions of each phantom were chosen to obtain optical reduced scattering
coefficients that are consistent with those encountered in human tissues (µ′

s = 7−15 cm−1

at 700 nm [146]) except for the 60 µm phantom, as explained below. The µ′
s coefficients

were computed with a forward model based on the Mie Theory [147]. The values for each
phantom were provided in Table 5.1. The 60 µm phantom exhibits a low reduced scattering
coefficient to allow a low volume fraction. Indeed, this particle size requires a high volume
fraction (ϕ = 0.40) to reach the lowest realistic µ′

s values. Thus, this trade-off was made
to mitigate the strong acoustic attenuation of a highly concentrated phantom composed
of 60 µm beads. In this phantom study, optical absorption was assumed negligible.

Each suspension filled a square box of dimension 7 x 7 x 4 cm3. The smallest dimension
of the phantom box was higher than the light scattering mean free paths l′s (60l′s for the
10 µm phantom, 32l′s for the 20 µm phantom and 4l′s for the 60 µm phantom), thus allowing
us to consider each phantom as a semi-infinite media.

In summary, three tissue-mimicking phantoms with consistent optical and acoustic
scattering properties were designed. Hereafter, they will be referred to by the size of their
constituent particles (e.g. 10 µm phantom). The BSCs and the reflectance profiles were
then estimated on each phantom. The polyamide microsphere sound speed was taken at
2300m/s, the density at 1.03 and the Poisson’s ratio at 0.43

Microspheres were suspended in water because of the practical difficulty of designing
homogeneous phantoms at high concentrations (ϕ > 10%)

5.2.2 Backscatter coefficient

Acquisition parameters and data processing

Firstly, the ultrasound attenuations were experimentally estimated following the stan-
dard substitution method [110], detailed in the subsection 3.2.4. Secondly, BSC estima-
tions were conducted. Each phantom was insonified with 13 tilted plane waves (between
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Phantom Volume fraction ϕ
Attenuation α0
(dB/mm/MHz)

Reduced scattering
coefficient µ′

s (cm−1)
Orgasol 10 µm 0.08 0.08 15
Orgasol 20 µm 0.11 0.14 8
Orgasol 60 µm 0.06 0.20 1

Table 5.1: Tissue mimicking phantom characteristics. The volume fractions ϕ were set, and
the reduced scattering coefficients µ′

s were subsequently determined through calculation.
The acoustic attenuations were experimentally estimated following standard substitution
methods [110]. The measurement of the acoustic attenuation of the 60 µm phantom is
inconclusive and is therefore empirically determined.

−3° and +3°) using a linear probe centered at 15 MHz with a bandwidth extending from
8 to 22 MHz. (CMUT L228, ultrasound scanner Verasonics). As depicted in Figure 6.2, a
magnet gently stired the phantoms to ensure their homogeneities during the acquisition.
Two hundred fifty-six RF lines were acquired for each phantom. Corresponding B-mode
images were then generated using a conventional Delay and Sum algorithm. Two rows of
eleven Regions of Interest (ROI) that are 26λ long in the propagation direction and 22λ

long in the lateral direction were delimited. The ROIs were located at a depth of 1 mm
and 3.2 mm for the first and the second row respectively. This ROI size allowed to capture
a sufficient number of uncorrelated RF lines for robust power spectrum estimations. The
BSC for each ROI was estimated using the reference phantom method [113] that was de-
tailed in subsection 3.2.4. The reference phantom had the same chemical composition as
the others except that it has 5 µm Orgasol particles (ref. 2001 UD) with a volume fraction
equal to 0.05. The Poisson coefficient was also taken equal to 0.43. Then, the 22 BSC
estimations were averaged for each phantom to obtain the plotted curves in section 5.3.

Figure 5.2: Experimental setup; P: polarizer, Ap: Aperture, M: mirror, B: beamsplitter,
A: analyzer, L: Fourier lens, Ab: absorbing material.
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Theoretical scattering models

Backscattering from randomly distributed solid spheres in a surrounding fluid medium
can be modelled with the Faran Model (FM) under the Born approximation [39], as de-
tailed by Equation 3.11 in Chapter 3. However, a frequency-dependent structure factor S

should also be taken into account when considering a concentrated medium. For this case,
Franceschini et al. [39] introduced the monodisperse Structure Factor Model (SFM):

BSCSF M (k, a) = nσb,F aran(k, a)S(k, a) (5.1)

where n being the number of scatterers per unit volume and σb,F aran(k) the differential
backscattering cross-section of the Faran model. The computation of S is detailed in
Equation A.1 in Chapter 3. Here, the 10 µm and the 20 µm BSC measurements were
compared with the SFM. However, the SFM showed irrealistic resonance peaks when
plotted for the 60 µm phantom. The comparison was thereby made with a polydisperse
Faran Model for this phantom. In this case, the BSC can be expressed as:

BSCF aran,poly(k, a) = n

∫ ∞

0
σb,F aran(k, x)D(x)dx (5.2)

where D is the probability density function of the scatterer radii denoted x. In this study,
D was chosen to follow a Gaussian law of mean value 60 µm and a standard deviation of
3 µm to reproduce the particle size distribution specified by the supplier.

5.2.3 Enhanced Backscattering Spectroscopy

EBS measures the effective reflectance profile peff (r), r being the exit radius of the
backscattered photons. The EBS general method was detailed in section 4.2 in Chapter
4. This subsection provides the experimental implementation of EBS in this study.

Benchtop setup

Figure 6.2 illustrates the experimental setup used for EBS (blue components). A broad-
band laser source (WhiteLase micro Compact Supercontinuum, Fianium) illuminated the
stirred phantom with plane waves. The aperture shaped the beam into a circular spot of
1.6 mm diameter in order to respect the Nyquist criterion. Indeed, according to Equation
4.18, the maximum beam radius is 1.7 mm. It is noteworthy that EBS entails in extracting
the average scattering parameters from the illuminated region, somewhat making this area
the optical equivalent of the concept ROI used in Quantitative Ultrasound. The polarizer
then forced the incident illumination into a vertical linear polarization. The mirror aimed
to minimize the overall bulk of the system. The beamsplitter has a 50 : 50 ratio and ex-
hibits a limited impact on the light polarization. The analyzer was parallel to the polarizer
to select the co-polarized backscattered light. The Fourier lens (focal distance of 25 mm)
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focused the light onto the camera (HERA, Nireos) which acquired images at 702 nm. All
the optical components are suitable for visible applications. The camera pixels are squares
of dimension 5.3 µm. This configuration allowed an angular resolution of 0.01 °. Images
were averaged five times to further reduce the speckles.

Implementation

EBS data processing is described in section 4.2.3. Its implementation is described here.
The total unpolarized incoherent intensity was estimated on a white standard (SRT-99-
050, Labsphere). by integrating the EBS image in a ring spanning from 0.90° to 0.96°, as
noise was predominant above 1°. For each normalized sample image, a plane was then fit-
ted to the intensity in the same ring and was substracted to the normalized sample image
to remove the incoherent baseline. The resulting image is what is referred to as an EBS
image in this study. The two-dimensional (2D) inverse Fourier transform was then taken
before computing the radial average of the effective reflectance profile. A mirror mea-
surement was achieved in the same conditions and led to an estimation of the functions
that modulate the sample reflectance profile, namely the system mtf and the s function,
related to the finite illumination beam size (c.f. subsection 4.2.2).

Simulations and theoretical data

Radosevich et al. [84] provides an open-source program to model the light backscat-
tering in biological media through a Monte Carlo approach that takes into account the
vectorial nature of light, as it was detailed in the subsection 4.2.4. The experimental ef-
fective reflectance profiles were compared to MC simulations. Each MC simulation was
performed with one billion incident photons that were linearly polarized. The Mie scatter-
ing phase function was used along with the known properties of the phantoms mentioned.
The simulation outputs led to the theoretical sample reflectance profile. This quantity
was then modulated by the estimated mtf and s functions to obtain the expected effec-
tive reflectance profile. Indeed, the use of a laser and the co-polarized channel enabled
us to consider the phase correlation function pc and the spatial coherence function c ≈ 1
(Equation 4.15). Thus, the products of the simulated reflectance profile with mtf and
s could then be compared directly with the experimental measurements of the effective
reflectance profiles. One could note that the refractive index matching was assumed at
the phantom surface in this tool.
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5.3 Results

In the ultrasound and optical following experiments, the agreement between the mea-
surement with the theoretical expected models is calculated using the coefficient of deter-
mination R2. This metric will be used to assess the performances of each technique and
is computed as follows:

R2 =

[∑N
i=1(xi − x̄)(yi − ȳ)

]2
∑N

i=1(xi − x̄)2∑N
i=1(yi − ȳ)2 (5.3)

where N is the number of data points. The variables xi and yi denote the experimental and
the expected theoretical data respectively. The variables x̄ and ȳ represent their average
values.

5.3.1 Backscatter coefficient estimations

Phantom ultrasound attenuation coefficients are given in Table 5.1. The phantom at-
tenuations follow a linear trend. The attenuation is then expressed as: α(f) = α0f , where
f is the frequency and α0 the attenuation coefficient. The coefficient α0 of the 20 µm
phantom exhibits a greater magnitude in comparison to the 10 µm phantom. The 60 µm
phantom demonstrates even more pronounced attenuation effects. As a result, applying a
substitution method is challenging and the estimation of its attenuation remains inconclu-
sive due to the limited Signal-to-Noise ratio (SNR) of the reflector signal in the presence
of the phantom. Consequently, the attenuation coefficient α0 of the 60 µm phantom is es-
timated empirically. Its value is taken higher than the attenuation of the 20 µm phantom.

The B-mode images of each phantom with the positions of the ROIs are shown
in Figure 5.3. The ROIs encompass uncorrelated speckle patterns. The intensity of the
backscattered signals decreases as the particle diameter increases. The greater attenuation
of the 60 µm phantom can be visualized on the B-mode image through the presence of
darker regions at a deeper location.

Figure 5.4 gives the measured and the expected BSC versus the frequency for the
10 and the 20 µm phantoms. The SFM for the 10 µm phantom follows the trend of
the corresponding BSC in the whole frequency range. The SFM for the 20 µm phantom
shows discrepancies with the BSC of the 20 µm phantom up to 20 MHz and then predicts
correctly the increase in the BSC. The root mean square error between the estimated
and the expected BSCs of the 10 and the 20 µm phantoms are 3.9×10−5mm−1.sr−1 and
1.5×10−4mm−1.sr−1 respectively.

The coefficients of determination between the estimated BSC and the expected theo-
retical model are higher for the 10 and the 20 µm phantoms (R2 = 0.93 and R2 = 0.84
respectively) when compared to the one observed for the 60 µm phantom (R2 = 0.51,
Figure 5.5). The root mean square error between the estimated and the expected BSCs of
the 60 µm phantom is 5.0×10−3mm−1.sr−1. The polydisperse Faran model for the 60 µm
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Figure 5.3: B-mode images of the 10 µm phantom (a), the 20 µm phantom (b) and the
60 µm phantom (c). The ROIs are depicted as red rectangles. The gray levels denote the
intensity in dB.

phantom matches with the corresponding BSC up to 14 MHz. Above this frequency,
discrepancies can be observed.

5.3.2 EBS measurements

The EBS peaks are shown in Figure 5.6. The coherent signal that represents the
sample’s signature lies in the center, corresponding to the exact backscattering direction.
The intensity exhibits a fast decay as the backscattering angle increases for each phantom.
The 60 µm phantom exhibits the sharpest and greatest peak (FWHM = 0.12°), followed
by the 10 µm phantom (FWHM = 0.20°) and the 20 µm phantom (FWHM = 0.22°).

Theoretically, the reflectance profile computation is valid for low and high exit radii.
In practice, the noise makes these r values unreliable [6]. Consequently, the lower limit
of the exit radius was set to 60 µm. Similarly, the exit radius upper limit was taken at
1000 µm due to the decaying SNR in the region following this value. Experimental effective

Cyril Malinet 87



CHAPTER 5. VALIDATION ON TISSUE-MIMICKING PHANTOMS

Figure 5.4: Backscatter coefficient measurements with Structure Factor Models (SFM) for
the 10 µm and the 20 µm phantoms

Figure 5.5: Backscatter coefficient measurement with the Faran Model (FM) for the 60 µm
phantom

reflectance profiles peff (r) and scaled simulated effective reflectance profiles are shown in
Figure 5.7.

EBS analysis can be performed by comparing the relative shapes of the experimental
and the simulated reflectance profiles [85]. This approach makes the measurements less
sensitive to the temporal intensity fluctuations of the light source. Hence, the R2 appears
as a relevant metric since it compares the correlations between two vectors without be-
ing affected by the absolute values or the scaling factors. The agreements between the
measured peff (r) and MC simulations for the 10, 20 and 60 µm phantoms are R2 = 0.95,
R2 = 0.93 and R2 = 0.97 respectively.
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Figure 5.6: EBS images of the 10 µm phantom (a), the 20 µm phantom (b) and the 60 µm
phantom (c). The colormap denotes the intensity in an arbitrary unit.

Figure 5.7: Effective reflectance profile measurements at 702 nm (co-polarized channel)
and results from Monte Carlo simulations (MC). In each case, MC data have been scaled
at r = 123 µm to obtain a match with experiment

5.4 Discussion

In this study, the combination of the BSC parametrization and EBS aims to charac-
terize three tissue-mimicking phantoms through their scatterer size. This work serves as
a preliminary validation of the experimental protocols carried out for the BSC estima-
tion and EBS. After measuring the BSC and the reflectance profiles on each phantom,
forward analyses were conducted by comparing BSC and EBS measurements with their
corresponding theoretical scattering models.

The attenuation coefficients α0 of the 10 and the 20 µm phantom are similar to the ones
found in biological samples (about 0.12 dB/mm/MHz [148]). Given their characteristics
summarized in Table 5.1, these two samples successfully reproduced the ultrasound and
optical scattering properties of biological tissues.

The SFM successfully modeled the 10 and the 20 µm BSCs (Figure 5.4). A good over-

Cyril Malinet 89



CHAPTER 5. VALIDATION ON TISSUE-MIMICKING PHANTOMS

all agreement was also found between the estimated and the expected reflectance profiles
(Figure 5.7) for these two phantoms. However, the simulated 10 µm and 20 µm reflectance
profiles exhibit the same trend and are highly correlated (R2 = 0.99). In the framework of
an inversion study where the scatterer radius would be extracted using a fitting algorithm,
it is reasonable to think that the accurate inversion of these reflectance profiles would be
challenging due to their high degree of resemblance. Interestingly, the contrast between
the BSCs of the 10 and the 20 µm phantoms allowed their clear distinction in the high-
frequency area. Consequently, their successful inversion could be more likely, therefore
potentially leading to an accurate estimation of the scatterer radius.

The Monte Carlo simulation provided the best predictions for the variations in the
reflectance profile of the 60 µm phantom (R2 = 0.97). Remarkably, it shows a lower corre-
lation when compared to the simulated reflectance profiles of the 10 or the 20 µm phantom
(R2 = 0.95 in both cases). Thus, its successful inversion could potentially be more likely
since the 60 µm phantom exhibits a more singular reflectance profile in comparison to the
others. Similarly, this could lead to a proper estimation of the scatterer radius.

The BSC of the 60 µm phantom poorly matches with the theoretical scattering model
(Figure 5.5). However, this BSC should be considered with caution, especially in the high
frequency region. Indeed, the attenuation coefficients α0 of the three phantoms were esti-
mated in the same conditions. However, the implementation of the substitution method
in this study did not allow the estimation of α0 for the 60 µm phantom, due to its strong
acoustic attenuation. To address this issue, this coefficient α0 was empirically set. Conse-
quently, the correction of the sample attenuation assuming a linear model may be limited
for the 60 µm phantom. Interestingly, the low performance of the ultrasound approach
reported in this study for the 60 µm phantom could be valued to discuss the comple-
mentarity with EBS. Indeed, as mentioned above, Mie theory successfully describes the
reflectance profile of the 60 µm phantom. As a result, EBS could be a more practical
solution to characterize media that present a high acoustic attenuation.

In summary, the ultrasound approach could successfully differentiate the 10 and the
20 µm phantom thanks to the notable contrast in their successfully modeled BSC. Although
EBS predicts the variations of the reflectance profiles of these phantoms, their signatures
could be too close for a proper estimation of these scatterer radii. However, conducting an
inversion study on the reflectance profile of the 60 µm phantom could lead to an accurate
characterization, where the application of the BSC method failed because of the strong
acoustic attenuation. Thus, the three tissue-mimicking phantoms could be characterized
by combining the ultrasound approach and the optical method. This observation suggests
that these two modalities should have complementary sensitivities regarding the scatterer
size.

The main purpose of this study was to validate the experimental protocols for estimat-
ing BSCs and reflectance profiles. The control over the acoustic and the optical properties
of the suspensions conducted us to use tissue-mimicking phantoms. Thus, theoretical
models suited for suspensions of solid spheres have been used (i.e. Faran model and Mie

90 Cyril Malinet



5.4. DISCUSSION

theory). For further studies involving biological samples, other models adapted for soft
tissues will be used such as the Fluid Sphere model for the BSC parametrization [5] or the
Whittle Matérn model for EBS [85]).

5.4.1 Limitations

The observations from section 5.3 should be discussed with the following points:
One can notice that the 20 µm BSC does not follow the shape of the expected BSC

in the low frequencies. This can be explained by the particle-size distribution of the
microspheres used in the phantoms. Indeed, resonance peaks and fine variations in the
BSC occur for perfectly monodisperse scatterers. However, they are difficult to obtain
experimentally due to the size polydispersity of the scatterers. To verify this hypothesis,
granulometric studies with a particle size analyzer (Partica LA-960, Horiba) were con-
ducted. The latter revealed that the 20 µm microsphere powder has a variation coefficient
(std/mean) estimated up to 22% (supplier: up to 10%). The use of a polydisperse model
could then result in a better match with the experimental data at the expense of a higher
computational complexity.

Given the simulated values of µ′
s given in Table 5.1, the reflectance profile of the 20 µm

phantom was expected to be broader than the 10 µm phantom (i.e. sharper EBS peak).
However, the 10 µm phantom exhibited a broader reflectance profile. The actual size
polydispersity mentioned above may have also contributed to discrepancies between the
simulated and the actual optical properties.

The magnetic stirrer creates a circular flow and can induce shear in the suspension.
This can create an anisotropic microstructure that could affect the ultrasonic backscatter-
ing of the phantom. Indeed, Lombard et al. [149] showed that the structure factor differs
for an isotropic microstructure or a shear-induced anisotropic microstructure. However,
the SFM used in the present paper only models the isotropic case, which could be obtained
by mixing the suspensions in an irregular fashion. Thus, further phantom studies should
prefer random agitations when dealing with suspensions to avoid structural effects.

Finally, one should note that the results of this study are specific to the three phan-
toms and to the working frequency range used (8-22 MHz ultrasonic excitation and EBS
spectral image acquired at 702 nm). Indeed, this study must be considered as a proof of
concept which validates the experimental protocols and the potential complementarity be-
tween an ultrasound and a light-based technique. For instance, experiments with a larger
ultrasound frequency range and other optical wavelengths should reveal more information
about the probed sample. Likewise, the use of tissue-mimicking phantoms composed of
other scatterer sizes (e.g. 15 µm, 30 µm and 40 µm) would have allowed a more thorough
assessment of the sensitivity of each technique.
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5.5 Conclusion

To conclude, EBS and the BSC parametrization offered a solution to model and to
discriminate three different tissue-mimicking phantoms when combined. These encourag-
ing results led us to carry out an experiment on rodent excised tumors from two tumor
models. Complementarities in the two techniques are expected to characterize each cancer
subtype. Histological analyses will be used as ground truth.
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Chapter 6

Characterization of sarcoma subtypes: an
ex vivo study on animal models

In the previous chapter, our experimental setups for EBS and BSC parametrization
were validated on three tissue-mimicking phantoms which consisted of suspended micropar-
ticles of different sizes. Complementarities in terms of sensitivity to the scatterer sizes were
observed. These interesting results led us to carry out an ex vivo animal study to further
investigate the performances of a bimodal approach. In this chapter, quantitative ultra-
sound and light backscattering spectroscopy techniques were combined to characterize two
different bone tumor types from animal models at the cellular and nuclear scales.

The findings presented in this chapter were disseminated through a peer-reviewed jour-
nal article and were also shared at three international conferences:

• Malinet, C., Montcel, B., Dutour, A., Fajnorova, I., Liebgott, H., Muleki-Seya, P.,
"Cancer characterization using light backscattering spectroscopy and quantitative
ultrasound: an ex vivo study on sarcoma subtypes." Scientific Report 13, 16650
(2023), DOI: 10.1038/s41598-023-43322-4 [150].

• Best student poster award, ECBO 2023, Münich. "Toward cancer characterization
using light backscattering spectroscopy and quantitative ultrasound". Conference
SPIE 12629, Paper 12629-28.
This poster was also presented by H. Liebgott at IUS 2023, Montreal.

• Oral presentation and proceeding paper at Photonics West 2023 [121], San Francisco,
"Toward cancer characterization using light backscattering spectroscopy and quanti-
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tative ultrasound", Proceeding SPIE 12379, Photons Plus Ultrasound: Imaging and
Sensing.

We acknowledge J. Mamou and C. Hoerig (Department of Radiology of Weill Cornell
Medicine, NYC, New York, United States of America) for providing the envelope statistic
algorithms in this study and the following chapters.

6.1 Introduction

In clinical settings, the process of cancer characterization involves the determination of
the tumor histological subtype and the cancer grade [1]. Determining these characteristics
plays a crucial role in establishing the patient’s diagnosis. This histological classification
relies on cellular morphological measurements and is traditionally determined through his-
tological analyses. Although histo-cytopathology serves as a gold standard for diagnosing
cancers, this technique requires a biopsy and is therefore inherently invasive and resource-
intensive. Additionally, it is subject to inter-observer and intra-observer variabilities [3].
For instance, the sampled sections may not include the most aggressive cancerous regions
due to tumor heterogeneities. Thus, the sampling bias could lead to inaccurate diagnostics
that ultimately worsen the patient’s prognosis. Consequently, guiding the biopsy toward
the most suspicious regions using a non-invasive quantitative tool would be of great benefit
and could subsequently improve patient outcomes.

As a starting point toward this objective, the two optical and two ultrasound quantita-
tive techniques introduced in the first three chapters of this thesis have been combined on
a benchtop to lead to a thorough tissue assessment. Indeed, the BSC parametrization and
ES can extract different tissue scattering properties from the same acquisition. Likewise,
EBS and LSS can be performed using a similar experimental setup to characterize biologi-
cal tissues. By combining light and ultrasound, one can expect that the scattering process
would arise from cellular structures of varying sizes given the distinct wavelength ranges
associated with each modality. Thus, this bimodal technique should have the potential to
bring complementary information about the microstructures in the probed tissue.

As detailed in the section 2.2, successful applications of BSC parametrization and ES
provided cancer type classification [4] and cancerous lymph node characterization [26, 45]
for example. BSC inversions can also identify nuclear structures as scatterers in biological
media [5]. Similarly, the cell size distribution can also be extracted in dense media [38].

In biomedical optics, numerous studies have investigated the ability of EBS to detect
ultrastructural alterations in the field carcinogenesis [6, 81] as described in the section
2.3. Radosevich et al. [10] successfully discriminated colorectal and pancreatic cancer field
carcinogenesis from healthy tissues using EBS. Likewise, Backman et al. [65] successfully
extracted the nucleus size distribution from malignant and normal intestinal cells in situ
using Light Scattering Spectroscopy (LSS), as described in the section 2.3. More recently,
Qiu et al. [9] used this method to show that the nuclear size distributions can be accurately
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estimated in a dysplastic and in a non-dysplastic site in a Barrett’s esophagus.
In this study, BSC parametrization, ES, LSS and EBS were used to characterize two

bone cancer histological types: chondrosarcoma and osteosarcoma established in rodents.
The rat chondrosarcoma model reproduces the histological and aggressivity characteristics
of grade II human chondrosarcoma. Chondrosarcoma, prevails as the primary bone sar-
coma in adulthood, with an annual diagnosis rate of approximately 2 cases per one million
people. Chondrosarcoma can appear as lobules of cells within a cartilage-like matrix [2].
On the other hand, the murine osteosarcoma models used (K7M2 and MOS-J) are rep-
resentative of conventional metastatic osteosarcoma. Osteosarcoma is the most prevalent
type of primary bone tumor, with an estimated incidence of approximately 2 to 3 new cases
per one million individuals each year, predominantly affecting adolescents. Osteosarcoma
is characterized by the production of an immature bone matrix and is hypercellular [2].

The use of chondrosarcoma and osteosarcoma tumors is motivated by their different
microstructures. Characterizing these tumors appears as a way to validate our bimodal
method with the aim of establishing a proof-of-concept. Given that the inner mechanisms
of our methods probe the tissue microstructure, our approach could potentially be applied
to other types of tumors and to healthy tissues.

Optical and ultrasound measurements were carried out on the day of sacrifices. Quan-
titative parameters were then estimated and compared between different tumor types.
Simultaneously, histological analyses were conducted for all tumors. Morphometric mea-
surements of cellular structures, derived from these examinations, were then compared to
evaluate the performances of the BSC parametrization and LSS in estimating scatterer
parameters related to cells or nuclei.

6.2 Materials and methods

6.2.1 Animal models

Tumor growth and surgical procedures

The experiment was approved by the ethical committee CECCAP (Comité d’éthique en
expérimentation animale de la Région Rhône-Alpes, registration number C2EA15, Lyon,
France) and by the the ethical committee ACCESS (Comité d’éthique en expérimen-
tation animale commun Centre Léon Bérard - Centre de Recherche en cancérologie de
Lyon, CE010, MESR number: #35086). All methods were conducted in agreement with
the established guidelines and with the European and French regulations. For all surgi-
cal procedures, pre-analgesia was induced by a subcutaneous injection of buprenorphine
(0.05mg/kg) (ECUPHAR, Belgique). All tumor implantations were performed on anes-
thetized animals (isoflurane/oxygen, 2.5%/1.5%, v/v) (Minerve, Esternay, France). Five
chondrosarcomas tumors, hereafter referred to as Ch1 to Ch5, were grafted on 25-d-old
Sprague–Dawley rats. Tumor fragments (10 mm3) were transplanted on the right posterior
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tibia of the rats after periostal abrasion [151]. The osteosarcoma models were established
by injection of 1×106 MOS-J (Os1 and Os2) or K7M2 (Os3 and Os4) suspended cells [152].
Tumor progression was monitored twice a week by palpation and caliper measurements
until it reached a 500 - 600 mm3 volume for all tumors. The animals were then euthanized
by CO2 inhalation and the tumors were removed for optical and ultrasound imaging, which
were performed the same day.

Histological examination

Then, the tumors were embedded in formalin-fixed paraffin-embedded blocks before
undergoing histological analyses. Tumor slices were H&E and Ki67 stained through an
automated procedure and scanned to obtain microphotographs. The histological parame-
ters were analyzed using Qupath (software version 0.3.2) to estimate the size distributions
of osteosarcoma cells and all nuclei. Osteosarcoma microstructures were measured using
H&E images, while chondrosarcoma nucleus sizes were evaluated using Ki67 images. Fol-
lowing segmentation with the automatic detection tool, the radii of cells and nuclei were
extracted by assuming the circularity of the detected objects. For chondrosarcoma cells, a
Matlab program (software version R2020b) was employed to detect cells within bounding
boxes on H&E microphotographs The sizes of the bounding boxes were halved to obtain a
characteristic size, considered as the radius. The cell size distribution for each animal was
then fitted to a Γ-distribution to extract the mean radius a and the Schulz width factor
z. As an approximation, the volume fractions of both the cell and nucleus were assumed
equal to the surface fractions [153]. The surface fraction represents the ratio of the mean
intercepted areas of the object of interest to the total surface area analyzed. An average
volume fraction was considered for each tumor type. Only Ch3 and Ch4 contributed to
the estimated cell volume fraction for chondrosarcomas, as the cell detection procedure
yielded poor results for other animals.

6.2.2 Quantitative ultrasound

Theoretical scattering models

The Lizzi-Feleppa parameters were extracted from each estimated BSC (c.f. subsection
3.2.5). The corresponding linear parameters were then used to discriminate the different
tumor types. To obtain ultrasound parameters that can be compared with histological
analysis, more sophisticated BSC theoretical models were used. The Fluid-Filled Sphere
model (FFSM, Equation 3.14) was applied to extract the effective scatterer radius a. To
take into account potential structural effects in the probed tumors, we also used the Poly-
disperse II model introduced in Han et al. [38] (Equation 3.19). Han et al. provided an
expression to model the ultrasound backscattering of polydisperse scatterers in concen-
trated media based on a Fluid-Filled sphere form factor. The use of this model allowed
the estimation of the scatterer mean radius a and corresponding Schulz width factor z
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(i.e. distribution sharpness). Hereafter, the PII model will refer to this BSC model.
Envelope parameters were also estimated. The Probability Density Function (PDF)

of the measured ultrasound envelope was fitted with a Nakagami distribution model to
extract the scaling factor Ωnak and the Nakagami parameter αnak. The scaling factor Ωnak

is equal to the mean backscattered intensity [44] and αnak can be used to quantify the
effective number of scatterers per resolution cell [45].

Implementation of QUS techniques

Each sample was insonified with focused waves using two linear probes (MS250S,
LZ400, Vevo LAZR scanner, Fujifilm VisualSonics) centered at 21 MHz and 30 MHz,
allowing tissue characterizations over the 13 - 24 MHz and 18 - 38 MHz frequency ranges
respectively. The use of a high-frequency probe makes the successful characterization of
small objects (i.e. nuclei) more likely since the Mie scattering region is targeted (ka ∼ 1).
A 3D scan was performed and consisted of 10 B-mode images spaced out 0.2 mm away
from each other with three focal lengths of 6, 8 and 10 mm for osteosarcomas and 10, 12
and 14 mm for chondrosarcomas. Each scan was composed of 1536 RF lines and imaged
the tumor over 15 mm in the lateral direction. Regions of Interest (ROI) were 15λ long
in both directions and were located at a relatively shallow depth (1 - 1.5 mm). Our refer-
ence phantom was composed of polyamide particles of diameter 5 µm (Orgasol 2001 UD,
Arkema) at the relative mass concentration of 0.25% in a gel that contains agarose (2%,
Sigma) and water. The number of independent ROIs used or averaged for each technique
is shown in Table 6.1. The sample attenuation was estimated using a standard substi-
tution method [110]. The BSC for each ROI was estimated using the reference phantom
method [113]. Then, the BSC estimations from each frame were averaged for the MS250S
probe and the LZ400 probe. A b-spline fit was then performed to merge the BSC estima-
tions from the two probes to perform BSC inversions over the whole frequency range, as
done in Han et al. [38].

Inversions

When applying a linear model to the measured BSCs, linear fits were filtered out based
on their resulting Pearson correlation coefficient using a threshold value R2

min = 0.60.
The fits that did not meet this specification were considered as not representative of the
experimental data. This procedure removes less than 5% of the collected data.

The BSC inversion procedure was performed using the Matlab function fminsearchbnd
by minimizing the squared error between the experimental data and the expected model
with the following constraints: (a, z) ∈ [0.1 µm , 100 µm]× [1, 120] for the PII model. The
scatterer radius a was also constrained in this range for the inversions using the FFSM.
For each inversion, multiple seed values for the parameters of interest were tested. The
volume fraction ϕ was either set to the nucleus or the cell volume fractions, using the
estimates obtained through histological analyses.
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The scaling parameters Ωnak from the Nakagami distribution were obtained using a
maximum-likelihood estimator. In this study, envelope parameters have been extracted
from the RF data acquired in the 18 MHz - 38 MHz range.

Envelope correction

In this study, the envelope estimates were corrected for the attenuation and the diffrac-
tion effects (c.f. section 3.3.4). The correction allows the comparisons between envelope
parameters from ROI located at different positions. To do so, we introduce two corrective
factors that were applied to the Nakagami envelope parameters. These factors were in-
spired by the κ factor and the χ factor (Equation (8) and (9) respectively in [45]) suggested
by Mamou et al. [45].

Nakagami parameter αnak As detailed in the subsection 2.2.2, the Nakagami param-
eter αnak can represent the number of scatterers per resolution cell to a certain extent.
However, the volume of the resolution cell varies across the field of view due to the atten-
uation and the diffraction effects [45]. Thus, to compare αnak coefficients from ROIs with
different locations across the field of view, these estimates can be corrected for the volume
spatial variations of the resolution cell. To do so, we can estimate a corrective factor κ for
the estimates of αnak in each ROI:

κ = {Σmin such as ACF [eref (x, z)] > 60%}
{ΣROI such as ACF [eROI,ref (x, z)] > 60%}

(6.1)

where ΣROI is the surface in mm2 for which the 2D normalized autocorrelation function
(ACF) of the reference envelope signal eROI,ref (x, z) for a given ROI is greater than 60%.
The surface Σmin represents the same quantity but is a constant value that represents the
smallest ΣROI across the field of view and serves as a normalization factor. It is noteworthy
that all surfaces Σ are estimated according to the position of the ROI in the tumor image
using the corresponding RF data in the reference phantom. Consequently, the sample RF
data are not necessary to compute κROI .

The rationale behind this corrective factor is that the surface ΣROI is considered in-
versely proportional to the volume of the resolution cell for a given ROI [154]. In this
study, Σmin was estimated at 0.055 mm2 and corresponds approximately to a ROI located
at the shallowest focal distance. As a result, κ takes smaller values for ROIs that are away
from the focal points and indicate larger resolution cells. Conversely, κ takes higher values
for ROIs that are close to the focal points and indicate smaller resolution cells.

An example of evolution of κ over the imaging depth is shown in Figure 6.1 (a). In this
figure, a grid of rectangular non-overlapping ROIs was set across the whole field of view
of the scans of the reference phantom. The κ factor was then estimated for each ROI and
its mean value was calculated along the Z-axis. The positions of the three focal lengths
are shown with vertical dashed lines, along with the position of the deepest ROI used in
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this study. The local maxima of κ around 7, 9 and 11 mm corresponds approximately to
the positions of the three focals with a constant horizontal shift of 1 mm. This horizontal
shift may indicate the actual positions of the focals and could therefore slightly differ from
their positions set on the ultrasound scanner, as shown by the dashed lines. Consequently,
the coefficient κ could capture the inverse variations of the resolution cell, allowing for
potential compensation by multiplication with the corresponding estimate αnak.

Figure 6.1: (a) Illustrative example of the variations in the corrective factor κ as a function
of the imaging depth. (b) Illustrative example of the variations in the corrective factor χ
for the scaling parameter Ωnak as a function of the imaging depth.

Scaling parameter Ωnak The scaling parameter Ωnak is sensitive to the attenuation
and the diffraction effects as well. Hence, it is important to adjust the estimates Ωnak

in order to preserve the fundamental physical interpretation, namely the tissue’s mean
backscattered intensity, regardless of the acquisition parameters.

For each ROI segmented in the B-mode image of the tumor, we first compute the
corresponding power spectra of in reference phantom at its specific location as follows:

Sref
ROI(f) = 1

N

N∑
i=1

∣∣∣FT [RFref (t)]
∣∣∣2 (6.2)
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where N is the number of RF segments RFref (t) within the ROI in the reference phantom
and FT denotes the Fourier transform. We then calculate a virtual spectrum SΩ

ROI(f) for
each ROI location as follows:

SΩ
ROI(f) = Sref

ROI(f)
BSCtheo(f)e4zROI(αref (f)+αs(f)) (6.3)

where αref is the acoustic attenuation of the reference phantom, αs is the acoustic atten-
uation of the sample, zROI the depth of the center of the ROI and BSCtheo is the known
theoretical BSC of the reference phantom. The factor e4zROI(αref (f)+αs(f)) compensates
for both the phantom and the sample attenuation. According to Equation 3.8 of the dis-
crete models detailed in chapter 3, the power spectra SΩ

ROI(f) reflects the pressure field
resulting from the diffraction pattern of the single-element transducer that is corrected for
the sample attenuation.

A corrective factor χ for the scaling parameter Ωnak can then be estimated by evaluat-
ing SΩ

ROI(f) for f = fc, with fc being the center frequency of the ultrasound probe LZ400
(fc = 30MHz):

χ = SΩ
ROI(fc) (6.4)

An example of the variations of the coefficient χ over the imaging depth is given in Figure
6.1 (b). In this example, the coefficient χ was computed following the same procedure as
described for the κ coefficient. The corrective factor χ increases exponentially with the
depth and can therefore be used to correct the effects of attenuation and diffraction over
the estimates Ωnak through a simple multiplication.

6.2.3 Light Enhanced Backscattering Spectroscopy

Acquisition

Figure 6.2 illustrates the experimental setup used for EBS and LSS. The components
used in the previous chapters were used in this study. Differences in the implementation
are described in this paragraph. The incident beam was shaped into a circular spot with
a diameter of 1.8 mm using an iris diaphragm, ensuring compliance with the Nyquist
sampling criterion. The tissue sample was immersed in an aqueous solution of glycerol
(mixture of 33% glycerol to 67% deionized water by volume), which has a refractive index
similar to that of the assumed tissue refractive index (n = 1.38) [85]. To minimize the
presence of speckle noise, a motor was used to rotate the sample gently. The analyzer was
parallel to the polarizer to select the co-polarized channel. A Fourier lens (aspherized,
achromatic, focal length = 50 mm) focused the light onto a CCD camera. The camera
(Thorlabs 340M, not depicted in the diagram) detected the backscattered light filtered at
a wavelength of 700 nm (filter FWHM of 10 nm). The camera pixels have dimensions of
7.4 × 7.4 µm. This configuration allowed an angular resolution of 8 × 10−3 °.
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Figure 6.2: Experimental setup used for EBS and LSS; P: polarizer, Ir: iris diaphragm, M:
mirror, B: beamsplitter cube, A: analyzer, L: Fourier lens, Ab: absorbing material. The
detection block was substituted by a filter wheel and a monochrome camera for EBS. The
Fourier lens is integrated in the hyperspectral camera.

Data processing

The outlines of the data processing steps described in the section 4.2.3 were followed.
The implementation for this study is similar to the one reported in the previous chapter.
Differences are described here. The total unpolarized incoherent intensity was estimated
by integrating the intensity in a ring spanning from 0.9° to 1° away from the center. The
sample incoherent baseline was estimated in the same ring and fitted to a plane. Then, the
plane was subtracted from the sample image. To mitigate the effect of unwanted systematic
reflections in a half plane, the sample images were mirrored with respect to the horizontal
axis that passes through the intensity peak. The rotational averages of the Hann-windowed
2D Fourier transform images led to the effective reflectance profiles. Mirror measurements
allowed the extraction of the sample reflectance profile p(r) by estimating the 1D product
of s(r) × mtf(r) after calculating the radial average of the effective reflectance profile
peff (r). The exit radii were restricted to the range where the reflectance profiles were
above the noise level (i.e. p(rs) values for rs close to the iris diameter [124]). Tumor size
allowed us to perform five EBS measurements corresponding to different positions for the
chondrosarcoma tumors and one EBS measurement for the osteosarcomas (Table 6.1).

6.2.4 Light Scattering Spectroscopy

Acquisition

The experimental protocol to measure the LSS spectrum ∆I(λ) was detailed in the
subsection 4.3.1. In brief, ∆I(λ) is obtained by subtracting the co-polarized signal (A and
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P ||, Figure 6.2 ) with the cross-polarized signal (A and P ⊥) after background subtraction
and white standard normalization [11]. Experimentally, ∆I(λ) was measured over the
range 550-700 nm with 32 spectral points using a hyperspectral camera (HERA VIS-NIR,
Nireos). However, the relevant information in the LSS spectra is contained within the low
frequencies [68]. We confirmed this observation by injecting the size distributions extracted
from the histological analyses into the forward LSS model. Similarly to what was done by
Fang et al. [68], 16 points were kept to resolve the differential polarization signals across
the 550-700 nm range. The resulting spectral resolution was 9.3 nm (Fang et al. [68] used
8.9 nm). Multiple acquisitions were realized to measure the LSS spectra from different
positions for each tumor (Table 6.1). During the acquisitions, the samples were submerged
in an index-matching solution with the same refractive index as the surrounding medium
of the sample.

Data processing

The analytical procedure to extract the scatterer size distribution was detailed in the
subsection 4.3.3.

To minimize the coherent signal in each spectral image, the angular intensity was in-
tegrated within a ring spanning from 1.0° to 1.5° for each wavelength. This part of the
image corresponds to what EBS considers as the incoherent baseline.

Light undergoes depolarization as it is subject to multiple scattering events [11]. To
mitigate the effect of multiple scattering, a criterion based on the mean degree of polariza-
tion DOP (DOP = (|I∥ − I⊥|/|I∥ + I⊥|) is applied. In our configuration (linearly polarized
incident light), the DOP values equal zero when the detected light is completely depolar-
ized and equal one when it maintains the initial polarization state. As an approximation,
we use the DOP value as an indicator of multiple scattering. We consider that the LSS
model in this study is not suited to experimental spectra where multiple scattered light
predominates. Consequently, LSS spectra with a mean DOP above 0.35 across the visible
range are selected. This threshold lead us to take into account 11 out of 14 measured
spectra for chondrosarcomas and 3 out of 7 spectra for osteosarcomas (MOS-J type only).
We argue that the tumor heterogeneities may be responsible for the varying DOP values
within samples of the same type.

The relative refractive index nre was set to 1.06 to target the nuclei/cytoplasm refrac-
tive index variation mismatch [65]. The surrounding medium refractive index was assumed
to be 1.38.

Equation 4.42 was solved using a linear least squares algorithm with a non-negativity
constraint applied to F . The minimum radius for the size estimation rmin was set to 100
nm. While rationales can be found in the literature to justify the rmin value and the
number of points to reconstruct F , the choices of rmax values appear to be predominantly
empirical. Yet, this parameter has an important physical meaning since it corresponds
to the largest scatterer contribution "allowed" in the differential polarization spectrum.
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Method Independent Measurements Mean per animal Mean per tumor group
BSC estimations*, Fig. 6.5 ✓
Linear model* (18 - 38 MHz), Fig. 6.6 (a) ✓
ES*, (18 - 38 MHz), Fig. 6.6 (b) ✓
EBS†, Fig. 6.7 (a) 5 per Ch., 1 per Os.
EBS residuals†, Fig. 6.7 (b) Ch : 5 ; Os(K7M2) : 2 ; Os(MOS-J) : 2
PII* (13 - 24 MHz), Fig. 6.10 ✓
FFSM* (24 - 38 MHz), Fig. 6.11 Ch : 274 ; Os(K7M2) : 50 ; Os(MOS-J) : 106
PII* (13 - 38 MHz), Fig. 6.12 ✓(Os. only)
LSS†, Fig. 6.13 and 6.14 Ch : 11 ; Os(MOS-J) : 3

Table 6.1: Degree of averaging and number of underlying independent measurements per
technique. Independent measurement refers to ROI for ultrasound techniques* and sample
position for optical techniques†. Checkmarks refer to the following number of ROIs: 36
(Ch1), 75 (Ch2), 88 (Ch3), 51 (Ch4), 24 (Ch5), 23 (Os1), 27 (Os2), 61 (Os3), 45 (Os4).

Hence, multiple matrices Ĩ(λ, r, nre) with different maximum radii rmax were computed.
The different rmax values were limited to around 17 µm to include the chondrosarcoma
cells and to ensure a sufficiently fine radius resolution capable of distinguishing the size
distribution of osteosarcoma nuclei from that of chondrosarcoma (about one micron).

This study focused on a single rmax values because the estimation of the size dis-
tribution F is extracted from the precomputed LSS spectrum matrix Ĩ(λ, r, nre). The
implementation of this look-up table approach results in computational times of only a
few seconds, thus enabling real-time inversions. Hence, a unique and common Ĩ matrix
was used to characterize the two tumor types.

Optimized histograms

LSS has been initially developed to probe the nucleus size distribution. However, we
make the hypothesis that cells could be involved in the scattering process, particularly in
media with abundant extracellular matrix. Indeed, Mie Theory describes the interaction
of light of discrete spherical scatterers in a homogeneous surrounding medium. Therefore,
cells could be considered as scatterers within the extracellular matrix, analogous to how
nuclei scatter the electromagnetic incident plane wave within the cytoplasm. Therefore,
we took the LSS analysis one step further using the estimated size distributions. To ac-
count for both the nucleus and the cell scattering, linear combinations of the nucleus and
the cell histological histograms were computed for different nucleus weight values wnuc,
defined such as wnuc = 1 − wcell. The optimized nucleus weight was then extracted by
minimizing the root mean squared error (RMSE) between the estimated LSS solution F

and the newly computed histogram for each tumor type. This procedure led us to the as-
sumption that the relative refractive index between the nuclei and the cytoplasm is equal
to the one between cells and the extracellular matrix.
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6.3 Results

6.3.1 Animal models

Histological analyses are conducted to serve as references. Morphometric measure-
ments of cellular structures are carried out using the histological slices of tumors to com-
pare the performances of each technique. Chondrosarcoma is characterized by low cell
density within an abundant extracellular matrix. One can clearly distinguish extracellular
membrane, cell cytoplasm and cell nuclei (Figure 6.3, a). Both osteosarcoma models ex-
hibit high cellular density and a minimal extracellular matrix. Osteosarcoma cells exhibit
a different morphology in comparison to chondrosarcoma cells. They are smaller in size
and have large nuclei (Figure 6.3, b and c). Hence, histological staining reveals specific
morphological features in each bone sarcoma model.

The cell and nucleus size distributions are also estimated using the microphotographs

Figure 6.3: Representative histological stainings of chondrosarcoma and osteosarcoma.
(a) Chondrosarcoma. HPS staining enables to distinguish cell nuclei, membranes and
abundant extracellular matrix. (b) and (c) Osteosarcomas (K7M2 and MOS-J model
respectively). HPS staining shows smaller cells with large nuclei in comparison to chon-
drosarcoma. Osteosarcomas exhibit a higher cellular density. The absence of extracellular
matrix is also observed.

of histological slices. Chondrosarcoma cells exhibit radii with a mean value and a stan-
dard deviation of 9.5 ± 2.6 µm, while K7M2 osteosarcoma cells have radii of 4.7 ± 0.9
µm and MOS-J osteosarcoma 4.8 ± 1.0 µm. Osteosarcoma cells are about twice as small
as chondrosarcoma cells. The size distributions of osteosarcoma cells appear more uni-
form compared to chondrosarcomas. Chondrosarcoma nuclei exhibit radii with a mean
value and a standard deviation of 4.2 ± 0.5 µm, while K7M2 osteosarcoma nuclei have
radii of 2.4 ± 0.6 µm and MOS-J osteosarcomas 2.7 ± 0.7 µm. Osteosarcoma nuclei ap-
pear approximatively twice as small as chondrosarcoma nuclei. The size distributions of
chondrosarcoma nuclei are sharper compared to osteosarcomas. Similar cell sizes can be
observed between K7M2 and MOS-J osteosarcomas. However, these two osteosarcoma
types exhibit slight variations in the nucleus radii.
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The cell volume fraction is estimated at ϕCh,cell = 0.23 and ϕOs,cell = 0.88 for the chon-
drosarcoma and two osteosarcoma types respectively. Osteosarcoma is a hypercellular
histological subtype that contains almost no extracellular matrix. The nucleus volume
fraction is estimated at ϕCh,nuc = 0.03 for the chondrosarcoma and ϕOs,nuc = 0.25 for the
osteosarcomas.

6.3.2 Tumor characterization

Quantitative ultrasound

Examples of B-mode images are given in Figure 6.4.

Figure 6.4: Example of B-mode images using the LZ400 probe. (a) Osteosarcoma. (b)
Chondrosarcoma. The gray levels indicate the scale in dB. In each case, the tumors are
immersed in a PBS solution.

Mean BSCs per animal using the low (13-24 MHz) and the high-frequency probes
(restricted to 24-38 MHz) are presented in Figure 6.5 (a). The corresponding b-spline fits
in the whole frequency range are shown in Figure 6.5 (b). The BSCs exhibit differences
between the tumor types and similar trends among tumors of the same nature. The two
different osteosarcoma cell lines (MOS-J and K7M2) lead to highly contrasted BSCs.

The differences within the BSCs per ROI are translated into the Lizzi-Feleppa param-
eters in the scatter plots shown in Figure 6.6 (a). A Wilcoxon rank sum test conducted at
a significance level of 5% reveals statistically significant differences in the intercept values
between chondrosarcomas and osteosarcomas. However, there is no evidence indicating
significant differences in the slope values between the two tumor types (t-test p-value =
0.73). The ES parameters are shown in Figure 6.6 (b). The scaling parameters Ωnak and
the Nakagami parameters αnak underwent compression using a base-10 logarithm due to
their extensive value range. The observed αnak values indicate Nakagami-gamma distri-
bution (α < 0.5) [4]. Wilcoxon rank sum tests report statistically significant differences
in the compressed αnak and Ωnak coefficients at the 5% significance level between chon-
drosarcomas and osteosarcomas.

The same observations can be made for K7M2 and MOS-J osteosarcomas. Student’s
t-tests reveal significant differences between the two osteosarcoma types for the intercept
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Figure 6.5: (a): Mean estimated BSC with the MS-250S probe (left of the black dotted
line) and the LZ-400 probe (right of the black dotted line) per animal. (b): corresponding
BSC b-spline fits. ’Ch’ stands for chondrosarcomas and ’Os’ for osteosarcomas.

Figure 6.6: Scatter plots by model. Each point represents an independent region of interest
(ROI). (a) Intercept versus slope (BSC linear model over the 18-38 MHz frequency range).
(b) Nakagami envelope model estimated over the 18-38 MHz frequency range. Up and
down arrows represent osteosarcomas from MOS-J and K7M2 cell lines respectively.
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values and the Nakagami parameters but not for the slope. The compressed Ωnak coef-
ficients also show significant differences in this case. In summary, the three ultrasound
parameters (the intercept, αnak and Ωnak) can discriminate the chondrosarcomas from the
osteosarcomas, and the K7M2 from the MOS-J osteosarcomas. The linear slope appears
irrelevant for tumor classification in this study.

Light Enhanced Backscattering Spectroscopy

Figure 6.7: (a) Mean reflectance profiles per animal in the co-polarized channel at 700
nm. Statistical significances between chondrosarcomas and osteosarcomas signals were
observed using a two-tailed student’s t-test at the 5% level in the whole exit radius range.
The location with the most significant changes occurred at rs,opt = 55 µm with a p-value
reaching 3×10−6. No significant statistical differences were found at the 5% level between
MOS-J and K7M2 osteosarcomas. (b): Absolute difference of mean reflectance profiles
per group. The green dotted circle indicates the rs,opt of the difference curve.

The reflectance profiles measured in the co-polarized channel at 700 nm are plotted in
Figure 6.7 (a). The five chondrosarcoma reflectance profiles exhibit fast decay and can be
clearly identified from the osteosarcomas. This is highlighted by the differences between
the mean reflectance profiles of each group, which increases for small exit radius values
(Figure 6.7, b). Statistical significances for each exit radius value were observed using a
two-tailed student’s t-test at the 5% level. The location with the most significant changes
between chondrosarcomas and osteosarcomas occurred at rs,opt = 55 µm with a p-value
reaching 3 × 10−6. The K7M2 osteosarcomas (Os1 and Os2) signals exhibit a faster decay
compared to the MOS-J osteosarcomas (Os3 and Os4). Similarly, differences in mean
reflectance profiles between the two types of osteosarcoma increase at small length scales
(Figure 6.7, b) but no significant statistical differences were found at the 5% level.
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6.3.3 Scatterer size distribution

Ultrasound BSC parametrization

The BSC fits using the PII model in the low-frequency range (MS250S only) are shown
in Figure 6.8 (a). The fitting procedure was performed using the average BSCs per an-
imal (R2 > 0.99). The volume fractions were set to the cell volume fraction based on
histological estimations. Illustrative examples of 2D cost functions (base-10 logarithm of
Equation 3.29) are shown in Figure 6.9 for a chondrosarcoma and an osteosarcoma. The
corresponding inversion results are shown in Figure 6.10.

Figure 6.8: BSC fits. The estimated BSCs are shown with solid lines and the correspond-
ing fits are shown with dashed lines of the same color. (a) Inversion results using the
Polydisperse II model per animal in the frequency range 13 - 24 MHz (probe MS250S).
The cell volume fraction is supposed to be known a priori and is set to ϕCh,cell = 0.28
for chondrosarcomas and ϕOs,cell = 0.88 for osteosarcomas after histological analyses. (b)
Inversion results using the Fluid-filled sphere model per group in the frequency range 24
- 38 MHz (LZ400 probe). The nucleus volume fraction is supposed to be known a priori
and is set to ϕCh,nuc = 0.03 for chondrosarcomas and ϕOs,nuc = 0.25 for osteosarcomas
after histological analyses.

The estimated chondrosarcoma mean scatterer sizes correspond with the mean cell
sizes extracted from the histological analyses with a mean relative error of 22% (Figure
6.10, a). However, these similarities are not observed for osteosarcomas: the PII model
identifies larger scatterers for each tumor (mean relative error > 100%). The Schulz width
factors z were extracted with relative errors about 3% for Ch1 and Ch2 and superior to
100% for Ch3 (Figure 6.10, b). The estimated Schulz width factor for other chondrosar-
comas reached the upper bound of the inversion constraints. The distribution sharpness
is systematically underestimated for the osteosarcomas. The relative acoustic impedance
contrasts γz obtained after inversions are 0.02, 0.01, 0.02, 0.03, 0.03 for Ch1, Ch2, Ch3, Ch4
and Ch5 respectively. Similarly, for the osteosarcomas, the relative acoustic impedance
contrasts γz are 0.02, 0.03, 0.06 and 0.05 for Os1, Os2, Os3 and Os4 respectively. The same
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Figure 6.9: Inversion cost functions for the two tumor types. (a) Illustrative example of a
2D cost function (base-10 logarithm of the mean square error) of a chondrosarcoma (Ch1)
in the frequency range 13 - 24 MHz. (b) Illustrative example of a 2D cost function (base-10
logarithm of the mean square error) of an osteosarcoma (Os1) in the frequency range 13
- 24 MHz. To plot the cost functions as a function of the mean scatterer radius a and the
Schulz width factor z, the relative impedance contrast was set to 0.02. The latter value
corresponds to the relative impedance contrasts that was obtained for these two animals
after inversions. The detected minima are spotted with white crosses on each graph.

inversions were conducted by setting the volume fraction to the nuclei volume fractions to
validate the results. A minimum mean relative error of 65% was found for all estimates.

The BSC fits using the Fluid-filled sphere model (FFSM) in the high-frequency range
(LZ400 only) are shown in Figure 6.8 (b). The fitting procedure was performed using the
average BSCs per animal (R2 > 0.97). In this case, the volume fractions were set to the
nucleus volume fraction after histology analyses (ϕCh,nuc = 0.03 and ϕOs,nuc = 0.25). The
corresponding inversion results are shown in Figure 6.11. The relative acoustic impedance
contrasts γz obtained after inversions are 0.12, 0.03 and 0.01 for the chondrosarcomas, the
K7M2 and the MOS-J osteosarcomas respectively. The chondrosarcoma scatterer radii
estimated by the FFSM correspond to the mean nucleus size extracted in histology with
a relative error equal to 9%. The osteosarcomas scattering structures identified by the
BSC theoretical model are larger than the histological measurements (relative errors >
33%). The PII model estimated the nucleus radius with relative errors equal to 70%, 15%
and 49% for the chondrosarcomas, the K7M2 and the MOS-J osteosarcomas respectively.
All the estimations of the Schulz width factor reached the lower bound of the inversion
constraint using the PII model. Therefore, we did not further consider these inversion
results.

The BSC inversions with the PII model using the BSC b-spline fits (Figure 6.5, b) for
the osteosarcomas are shown in Figure 6.12 (R2 > 0.97). Here, the volume fraction was
set to the cell volume fraction (ϕOs,cell = 0.88). No clear correspondences were observed
between the BSC-based parameters and the cell sizes using the whole frequency range
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Figure 6.10: Inversion results using the Polydisperse II model per animal. The cell volume
fraction is supposed to be known a priori and is set to ϕCh,cell = 0.28 for chondrosarcomas
and ϕOs,cell = 0.88 for osteosarcomas after histological analyses. (a) Mean scatterer radius.
(b) Schulz width factor. The estimated Schulz width factor for Ch3 and Ch4 reached the
upper bound of the inversion constraints.

Figure 6.11: Inversion results using the Fluid-filled sphere model (FFSM) per group in the
24-38MHz bandwidth. The nucleus volume fraction is supposed to be known a priori and
is set to ϕCh,nuc = 0.03 for chondrosarcomas and ϕOs,nuc = 0.25 for osteosarcomas. The
solid bars show the mean nucleus radii estimated by histological analyses.
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Figure 6.12: Inversion results using the Polydisperse II model for the osteosarcomas using
the BSC b-spline fits (13 - 38 MHz bandwidth). The cell volume fraction is supposed
to be known a priori and is set to ϕOs,cell = 0.88 for osteosarcomas. (a) Mean scatterer
radius. (b) Schulz width factor. The estimated Schulz width factor for Os2 reached the
lower bound of the inversion constraint.

(relative errors superior to 50%, Figure 6.12, a). The Schulz width factors z were poorly
extracted (relative errors superior to 50%, Figure 6.12, b). Indeed, the distribution sharp-
ness is underestimated by the PII model. The estimated z coefficient for Os2 reached the
lower bound of the inversion constraint. The same inversions were conducted by setting
the volume fraction to the nuclei volume fractions to validate the results. The osteosar-
coma nuclei were estimated with a relative error of 18%. However, all the estimations of
the Schulz width factor reached the lower bound of the inversion constraint. Therefore,
we did not further consider these results.

Light Scattering Spectroscopy

Figure 6.13 (a) shows the mean differential polarization signals for each tumor type.
The measured LSS spectra exhibit significant differences between the two tumor types.
The corresponding estimated size distributions F are shown in Figure 6.13 (b) and (c) for
rmax = 16.75 µm. The integral of each distribution is normalized (i.e. cells and nuclei
from histological examinations independently analyzed). The shapes of the nucleus size
distributions are accurately replicated by LSS. The cell size distributions also appear in
the LSS estimations, particularly for the chondrosarcomas.

We hypothesize that cells could be involved in the light scattering process depending
on the volume density of the extracellular matrix. In the following procedure, we simply
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Figure 6.13: (a) Mean differential polarization signals ± standard error for the two tumor
types. (b) and (c) Estimated scatterer size distribution for the osteosarcoma and the
chondrosarcoma respectively. The nuclear and cellular size distribution estimated from
histological analyses are normalized.

Figure 6.14: (a) Osteosarcoma estimated solution and its optimized linear combination
of nucleus and cell size distribution. The nucleus scattering identified in the estimated
solution accounts for 69%. (b) Chondrosarcoma estimated solution and its optimized
linear combination of nucleus and cell size distribution. The cell scattering identified in
the estimated solution accounts for 52%.
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assume that cells and nuclei represent two independent populations of potential scatterers
with linearly additive contributions. To test this hypothesis, linear combinations of the
nucleus and cell histograms obtained from the histological analyses were computed using
different nucleus weights wnuc and cell weights wcell. These values were defined such that
wnuc = 1 − wcell, thus merging the estimated nucleus and cell sizes such as the integral
over the scatterer radius equals unity. The optimized nucleus weight was considered as
the value that leads to the best fit between the estimated LSS solution F and the newly
merged histogram. In other words, this procedure redistributes the probabilities obtained
with histological analyses to quantify the contribution of nucleus and cell scattering in
the LSS solution F . Figure 6.14 (a) and (b) shows the obtained optimized histograms
for each tumor type. The histogram optimization procedure resulted in an estimated
nucleus weight of 69% for osteosarcomas and 52% for chondrosarcomas. The coefficient of
determination between the estimated size distribution FLSS and the optimized histograms
R2

Ch(FLSS , Fopt,histo) equals 0.80 for chondrosarcomas and R2
Os(FLSS , Fopt,histo) equals 0.73

for osteosarcomas.

6.4 Discussion

In this study, BSC parametrization, ES, and EBS were performed to discriminate chon-
drosarcoma and osteosarcoma based on quantitative estimates. Then, BSC parametriza-
tion using other models and LSS were conducted to estimate the scatterer size distribution.
Results were compared with histological analyses to study the agreement with cell and nu-
cleus size distributions.

6.4.1 Tumor discrimination

Significant differences were observed between chondrosarcomas and osteosarcomas in
the Nakagami parameters αnak, the scaling parameter Ωnak, the BSC linear intercept and
the light reflectance profile intensity. These results align with the distinct microarchi-
tectures observed in each histological subtype since these scattering parameters reflect
the underlying tissue microstructure. Surprisingly, the same three ultrasound parameters
show significant variations within the two osteosarcoma cell lines (K7M2 versus MOS-J
cell lines). This result was not expected since these cell lines lead to the same tumor
model. Indeed, the visual aspects of the histological slices in the microphotographs are
not sufficient to identify the specific cell line that induced the osteosarcoma. Moreover,
the K7M2 and the MOS-J osteosarcomas exhibit similar volume fractions and mean cell
sizes. The observed contrasts between their BSCs could be explained by the differences
in their Schulz width factors z. Indeed, in this frequency range, the PII model associates
a low BSC amplitude to high z values. We can observe that this parameter is higher
for the K7M2 (z ≈ 26 − 28) compared to the MOS-J (z ≈ 18 − 21). Interestingly, the
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estimated BSCs support this hypothesis. Alternatively, the observed contrasts between
their BSCs could also probably be explained by differences in their relative impedance
contrasts γz, although it is difficult to check this assertion experimentally. This result
illustrates the high sensitivity of the BSC parametrization technique to probe fine tissue
properties. Likewise, the reflectance profiles showed variations at small exit radii between
the osteosarcomas types. However, the limited number of EBS measurements does not
provide sufficient evidence to draw conclusions regarding the statistical significance of the
observed difference. However, the striking contrasts in EBS signals between chondrosar-
comas and osteosarcomas accurately reflect the pronounced differences in their respective
microarchitectures. These results are in line with the EBS’s philosophy. EBS is applied in
biological tissues to probe submicron microarchitectures by analyzing the reflectance pro-
files at small length scales relative to the light transport mean free path [10]. Indeed, EBS
is used to detect early cancerous cells located in the epithelial layers that are invisible to
histological biomarkers. In this study, the extreme sensitivity of this tool is reported with
the highly contrasted EBS signals between two completely distinct microarchitectures, as
well as the finer differences observed at small length scales for microarchitectures that
share a similar histological appearance (K7M2 and MOS-J osteosarcomas).

6.4.2 Size estimations of cellular structures

Chondrosarcoma

BSC inversions were conducted to investigate the extent to which cellular structures
could be regarded as ultrasound scatterers in chondrosarcomas. The PII model (Figure
6.10, a) successfully identified the mean chondrosarcoma cell size and two Schulz width
factors out of five estimated the sharpness of the cell size distribution in the low-frequency
range. However, poor correspondences between the Schulz parameters and the histologi-
cal analyses were observed in other cases, leading to mainly unstable estimations of this
parameter. These observations are in line with the ones reported by Han et al. [38]. In-
deed, they observed higher relative errors for the estimations of the Schulz width factor z

compared to the mean scatterer radius using the PII model in cell pellet biophantoms. To
study the sensitivity of the PII model to the scatterer radius and the Schulz width factor,
we conducted simulations (Figure 6.15). We illustrate the sensitivity of the PII model by
observing the BSCs for varying input parameters around the reference values estimated
for Ch1 (10% variations). Simulations reveal that the BSC shape is more sensitive re-
garding the mean radius (a) than the Schulz parameter z (b) in the PII model. Thus,
the estimation of z is more subject to experimental noise, thereby increasing the difficulty
of its accurate determination. The mean nucleus radii of the chondrosarcomas were cor-
rectly estimated by the FFSM model in the high-frequency range at the expense of the
averaging process of all the independent BSC estimations. Conversely, a limited number
of independent LSS measurements were sufficient to accurately extract the nucleus size
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Figure 6.15: Sensitivity of the Polydisperse II model in the 14 - 24 MHz frequency range.
(a) BSCs with a 10% variation around the scatterer radius estimated in Ch1. (b) BSCs
with a 10% variation around the Schulz width factor estimated in Ch1. In each case,
the volume fraction was set to 0.23. The relative impedance contrast was set as the one
estimated for Ch1 (γz = 0.02)

distribution. However, the LSS estimation of the cell size distribution was less precise but
allowed to quantify the contribution of cell scattering in the observed spectrum. Indeed,
approximately half of the chondrosarcoma LSS spectrum can be attributed to cell optical
scattering, while the remaining half corresponds to nucleus scattering. These results are
coherent with the histological analyses and the simple microarchitecture observed in this
tumor type. Indeed, chondrosarcoma tumors are characterized by a low cell density. More-
over, chondrosarcoma cells and nuclei exhibit limited size overlapping, thereby facilitating
the clear identification of each structure. Thus, we make the hypothesis that the cells
could be considered as discrete optical scatterers surrounded by the abundant extracellu-
lar matrix, similar to how nuclei are usually modeled as isolated scatterers surrounded by
cytoplasm.

Osteosarcoma

The same protocol was carried out for the osteosarcomas. The BSC parametrization
systematically overestimated the osteosarcoma cell radius. To explain this result, our first
hypothesis was that the center frequency may not be sufficiently high to induce scattering
from the osteosarcoma cells, which are smaller than the chondrosarcoma cells. This led
us to carry out another inversion procedure using the b-spline BSCs (Figure 6.12, b) by
setting the volume fraction to the cell volume fraction estimated after histology analyses.
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The PII model also did not identify the cells as scatterers. Besides, the BSC parametriza-
tion successfully identified the chondrosarcoma nuclei, which are approximately as small
as the osteosarcoma cells. Thus the insonification frequency was not believed to be too low
for osteosarcoma cells. These observations brought us to formulate a second hypothesis
which is that the scattering from osteosarcoma cells may not be predominant. The LSS
size distribution estimation led us to the same observation and attributed less than 30%
to optical cell scattering in the measured spectra. We suggest that these results arise from
the hypercellular nature of osteosarcoma tumors. Indeed, this tumor type contains almost
no extracellular matrix (Figure 6.3, b) and presents contiguous cells. Thus, competing
ultrasound and optical scattering from other structures may potentially mask the scatter-
ing signals from cells. Moreover, the significant size overlap among osteosarcoma cells and
nuclei further complicates their discrimination, presenting an additional challenge. One
should note that the effects of a high concentration of scatterer per unit volume are taken
into account in the ultrasound scattering model PII. Thereby, structural effects are also
not sufficient to explain the failure of BSC parametrization in estimating the osteosarcoma
cell sizes. LSS and BSC inversions were performed to study the degree to which nuclei
could be considered as scatterers in the osteosarcomas. LSS successfully extracted the nu-
cleus size distribution and outperformed the FFSM inversion results, which overestimated
the nucleus size. This may be explained by the fact that the ultrasound frequency was
not high enough for the incident wave to interact with the osteosarcoma nuclei. Indeed,
the histological analyses show that they are smaller than the chondrosarcoma nuclei. As
a result, the products of wavenumber by scatterer radius are equal to kaOs = 0.39 and
kaCh = 0.65 at 38 MHz.

Cell mitochondria can also scatter light [155]. However, Ghosh et al. [156] measured
mitochondria sizes in sarcoma cells and reported a longest dimension of 161 nm. Given
the 700 nm excitation, the ka product can be estimated at ka = 0.7 at maximum, indicat-
ing scattering at the frontier between the Mie and the Rayleigh scattering regions. The
Mie scattering of large mitochondria could appear in the estimated scatterer size distribu-
tion (minimum radius of 100 nm) while smaller mitochondria are considered as Rayleigh
scatterers and therefore have their influence mitigated through post-processing treatment.
Consequently, the scattering of mitochondria is not expected to interfere with the nucleus
scattering of interest due to their size smaller in comparison.

In summary, the BSC parametrization and EBS appear as relevant tools for discrim-
inating tumor types. Moreover, these techniques detected signal contrasts even among
samples that present similar cellular morphologies. Thus, they might provide biomarkers
that are invisible to conventional H&E histological markers. To estimate the microstruc-
ture sizes, the BSC parametrization was complementary to LSS for the study of chon-
drosarcomas. The first technique was more accurate in the estimation of the mean cell
sizes while the second method led to a more efficient extraction of the nucleus size distri-
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bution. We argue that these results arise from the correspondences between the simple
microarchitectural structures of the chondrosarcoma and the basic geometries assumed in
the scattering models. Conversely, identifying the cell size in highly cellular media such
as osteosarcoma tumors appears more challenging due to their geometrical cell contiguity
and the competing scattering from other microstructures. However, in both cases, LSS
can provide valuable insights into the cell size distributions and can quantify the scattering
contributions of each object.

6.4.3 Limitations

Potential limitations associated with the present study can be discussed. LSS correctly
estimated the nucleus size distribution for both tumor types using a certain value of the
maximum scatterer radius allowed in the inversion procedure. The numerical stability of
the previous solution was investigated by varying the maximum scatterer radius values.
The osteosarcoma solutions appeared relatively more robust than the chondrosarcoma so-
lutions. Indeed, any rmax values taken within the interval [16.50 µm , 17 µm] lead to
satisfying and reproducible estimations of the osteosarcoma nucleus size distribution. The
observed amplitude of this interval is ten times smaller for the chondrosarcoma. To un-
derstand the observed instability of the chondrosarcoma solution, the LSS spectra shape
could be analyzed (Figure 6.13, a). The osteosarcoma spectra appear smoother than the
chondrosarcoma spectra, which show a brutal variation around 570 nm. To mitigate the in-
fluence of Rayleigh scattering, the LSS spectra are multiplied by λ4 prior to differentiation
with respect to λ. Consequently, the experimental noise in the LSS spectra gets strongly
amplified in the signal processing required to estimate the scatterer size distribution. This
could explain the poor stability observed for the chondrosarcoma inversions. In brief, the
LSS analytical procedure initially described by Fang et al. [68] appears useful to mitigate
Rayleigh scattering and to justify the rmin value. However, it also introduces a significant
increase in experimental noise, particularly at high wavelengths. The precise estimation of
the nuclear size distribution using LSS is challenging, and we argue that this tool should
be more robust for classification applications. Indeed, the measured LSS spectra exhibit
significant variations (Figure 6.13, a). This observation aligns with findings from the latest
studies. Recent papers investigated the use of a diagnostic parameter based on the differ-
ences between LSS spectra from normal and dysplastic sites [9,69] to detect precancerous
lesions. This simple approach led them to outperform the specificity and the sensitivity
of recently commercialized optical tools. The inversions of the BSCs led to a good
estimation of the cell size diameter for the chondrosarcoma (product ka ≈ 1.0 at 24 MHz)
using the PII model in the low-frequency range. On the other hand, the scatterer radius
estimated by the FFSM model in the 24-38 MHz frequency range does reflect the mean
nucleus size of the chondrosarcoma (ka ≈ 0.65 at 38 MHz). This observation suggests that
the identified scattering structures depend on the incident frequency. However, because
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the ka product is lower than unity when estimating the nucleus size, one could discuss
this result of the inversion in the high-frequency range.

6.5 Conclusions

6.5.1 Perspectives

The points discussed above brought us directions for future investigations. The con-
tribution of optical scattering by cells and nuclei brought by LSS covers a great potential
that deserves further consideration. As observed in this study, the cell scattering per-
centage may reflect the volume fraction of the extracellular matrix within the tumor.
Consequently, LSS and the histogram optimization procedure could have the capacity to
estimate the cell density if the cell and the nuclei size distributions are known a priori
or if a model is applied to describe them. Considering that cellularity is of prime in-
terest to pathologists, this additional capability enhances the value of LSS in diagnostic
applications. Moreover, an estimation of the cell volume fraction by LSS would be of great
benefit in BSC fitting procedures. Indeed, ultrasound scattering models are parameterized
by multiple independent coefficients that can include the volume fractions. In the fitting
procedures conducted here, the volume fractions were set to a fixed value considered to
be known a priori. Using one LSS output as an input for the BSC parametrization could
avoid this hypothesis. Hence, this optical method can be beneficial for the spectral-based
ultrasound technique, additionally to providing complementary information. This makes
our approach a promising bimodal application for tumor characterization.

In this study, the excised tumors that were used exhibited a whitish color. Blood resid-
uals were assumed minimal with a limited impact on the optical absorption, which was
therefore neglected. For in vivo studies, this assumption may hold to a certain extent for
the chondrosarcoma that is poorly vascularized compared to the osteosarcoma. However,
blood absorption should be taken into account for in vivo spectral analyses that involve
osteosarcoma.

6.5.2 Conclusion

In conclusion, the two quantitative ultrasound and the two optical techniques brought
complementary parameters that reflect the underlying tissue microstructure for different
tumor types. The estimated morphological parameters were found to be sensitive to
the cellular and nuclear scales. These promising findings led us to conduct an ex vivo
animal longitudinal study to assess the sensitivity of this bimodal technique for treatment
monitoring applications.
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Chapter 7

Therapy monitoring: a longitudinal study

The successful tumor characterization of sarcoma subtypes presented in the previous
chapter motivated us to conduct a follow-up experiment. The study reported in this
chapter aims to assess the capability of our bimodal technique to monitor the tumor
response to an anti-cancer drug treatment. For this purpose, ex vivo experiments were
carried out. These experiments are part of an OncoStarter project from the Cancéropôle
Lyon Auvergne Rhône Alpes. Aurélie Dutour and Iveta Fajnorova (Centre Léon Bérard -
CRCL) provided the biological materials. Celia Mansilla (graduate student) contributed
to the ultrasound experiment.

7.1 Introduction

In the cancer patient care workflow, the selection of treatment options takes place
after the diagnosis is made. An interdisciplinary team of medical professionals discusses
the best therapeutic choices based on the grade, the stage and the histological subtype
of the diagnosed tumor. Chemotherapy is one option that can be combined with other
treatments. It involves drug treatment administered in cycles, carefully planned over a
specific duration. The number of cycles depends on several factors such as the histological
subtype. The drug can be administered to the patient before surgery (neoadjuvant).The
tumor reaction to the anticancer agent is the mechanism of interest in this study.

At the cellular scale, increases in tumor cell death at the early stage of treatment and
inhibition of proliferation can reflect positive tumor responses [157]. At the macroscale,
this phenomenon can manifest as a shrinkage in the tumor size [158]. Common methods for
monitoring tumor response include Magnetic Resonance Imaging, Computed Tomography,

119



CHAPTER 7. THERAPY MONITORING: A LONGITUDINAL STUDY

Positron Emission Tomography or ultrasound imaging. The tumor response is typically
determined after estimating the tumor size from the medical images using the Response
Evaluation Criteria in Solid Tumors (RECIST) method [158]. However, the tumor size
may be a limited metric to detect the tumor regression as the changes in the tumor size
indicating its positive responsiveness may occur 6 to 8 weeks after the first drug admin-
istration [24, 159]. Additionally, the agreement between the histological examination and
the tumor shrinkage observed in some conventional imaging modalities can be less than
50% [160].

In the cases bone sarcomas, when neoadjuvant chemotherapy is chosen, the treatment
plan can typically be established over 8 weeks between the first chemotherapy session
and the surgery. During this time, the tumor response is not routinely assessed. The
potential cancer regression is only observed at the time of surgery on the resected tu-
mors and the associated histological examination. The lack of tumor response can be a
challenging situation for both the patient and the clinicians. In this case, the treatment
plan can be reviewed and can result in extra weeks of drug administration which are not
without side effects. As time is a crucial parameter in cancer patient care, choosing the
best chemotherapeutic drug as early as possible is of prime importance for the patient’s
outcome. Consequently, a patient may benefit from the early detection of non-responsive
treatment as it can guide the healthcare team toward other treatment options that are
potentially more effective.

As a potential solution to provide early detection of non-responsive tumors, we applied
our bimodal method to osteosarcoma and chondrosarcoma tumor models over weeks, in-
jecting a chemotherapeutic drug into certain rodents and saline solutions into others (con-
trol). The amount of injected drug was calibrated to mimic the most realistic tumor
responses observed in humans. These tumors can either be responsive or non-responsive.
This study aims to assess the capability of ultrasound or optical scatterer parameters
to reflect the tumor reactions. As mentioned in subsection 2.2.3, numerous successful
studies reported changes in the BSC-related Lizzi Feleppa parameters, in the effective
scatter diameter or the acoustic concentration in chemotherapy-response monitoring ap-
plications [161]. To my knowledge, no previous study reported the application of EBS
or LSS for therapy monitoring. However, these tools show great potential since in vivo
applications successfully probed fine tissue properties [7, 85].

To observe potential correlations between the ultrasound and the optical measurements
with the tumor response, reference values are needed. Firstly, the tumor volume growth is
used as a reference indicator. In the case of animal models, treated tumors are expected to
exhibit limited growth if they are responsive in comparison to control tumors. The reduc-
tion of the tumor size is not expected (i.e. tumors are not expected to become smaller).
Secondly, the previous chapters showed that the size of nuclei and cells may impact the
scattering parameters. To interpret potential differences in the estimated ultrasound and
optical parameters as changes in the size of cells or nuclei, histological analyses were also
conducted, similarly to the previous chapter.
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In clinical settings, high frequency QUS techniques could provide a non-invasive solu-
tion for treatment monitoring applications as long as the tumor is located at a shallow
depth. One could note that the presence of hard tissues between the lesion and the probe
may prevent QUS analyses. The application of EBS and LSS appears more limiting to
probe the tumor response if the lesion is not on the surface. Indeed, these modalities
exhibit a relatively restricted depth selectivity in comparison to the ultrasound measure-
ments. Alternatively, EBS and LSS could serve to assess the response of excised tumors
to newly tested administered drugs. This assessment could hold significant promise, par-
ticularly in the context of clinical trials preceding the approval of a novel therapeutic
treatment within the medical research domain.

In this study, a total of 22 osteosarcoma and 24 chondrosarcoma tumor models were
examined. For each tumor type, the cohort was divided into two groups: a control group
and a treated group that received one to two injections of doxorubicin per week. Doxoru-
bicin is a chemotherapeutic drug that can be prescribed for patients with bone sarcomas.
Four sessions of ultrasound and optical measurements were conducted for the chondrosar-
comas. For the osteosarcomas, four sessions of ultrasound measurements and two sessions
of optical measurements were carried out. These sessions were spaced several days apart
to observe tumor responses over a period of 16 to 18 days. Rodents from both the control
and treated groups were sacrificed for each day of measurement, enabling a direct com-
parison. A day of measurement involves BSC and ES ultrasound acquisitions followed by
LSS and EBS measurements prior to tumor fixation. All these procedures were completed
on the same day. Subsequently, histological examinations were conducted on the samples
to serve as a reference.

BSC spectral parameters and envelope parameters were extracted from the experimen-
tal ultrasound data. The collected optical data led to the estimation of the LSS spectra
and the reflectance profiles. Scattering parameters from treated and control rodents were
compared in each session to observe potential differences resulting from the treatment.

7.2 Methods

In this section, we describe the animal models used in this study. The implementation
of the quantitative ultrasound techniques is then detailed. Similarly, the implementation
of LSS and EBS are successively described.

7.2.1 Animal models

Surgical procedures

The description made in the previous chapter (c.f. section 6.2.1) remains valid in this
study. Thus, only differences are mentioned in this paragraph. Twenty-four chondrosar-
comas tumors, hereafter referred to as Ch, were grafted on 25-day-old Sprague–Dawley
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rats. The osteosarcoma models, hereafter referred to as Os, were established by injection
of 1 × 106 K7M2 suspended cells [152] in the tibia of twenty-two BALB/cByJ mice. Upon
establishment of palpable tumors, (i.e. 10 days for chondrosarcomas and 9 days for os-
teosarcomas after tumor implantation, animals were randomly divided into two groups:
NaCl, control (100 µL, n = 12 Ch and n = 11 Os); doxorubicin, treated (1mg/kg, n = 12
Ch and 0.75 mg/kg, n = 11 Os). Rats and mice were treated over a period of 3 weeks
or till tumors reached 2500 mm3 or 600 mm3, respectively. Tumor growth was monitored
by regular visual inspection and tumor dimensions were measured with a caliper twice a
week to estimate their volume. Animals were euthanized progressively every week and the
tumors were removed for ultrasound and optical imaging.

Intraperitoneal injections of chemotherapeutic drug were administered at Day 0, Day

Figure 7.1: Timeline of the therapy monitoring experiment. The ultrasound probe and the
laser sign show when ultrasound and optical measurements were performed respectively.
LSS was only conducted for the chondrosarcoma in PTTT 2, 4 and 5.

3, Day 7, Day 10 and Day 14 for the chondrosarcomas. The ultrasound and the optical
measurements were conducted at Day 0, Day 7, Day 14 and Day 16. For the sake of sim-
plicity, the time points will be denoted based on the number of treatments received: No
treatment (No TTT), Post-treatment 2 (PTTT 2), PTTT 4 and PTTT 5. For osteosar-
comas, the drug were administered at Day 0, Day 4, Day 7, Day 12 and Day 14. The
ultrasound and the optical measurements were conducted at Day 0, Day 6, Day 13 and
Day 18. Osteosarcoma control tumors probed on Day 13 were excised on Day 11 because
they reached a critical volume. Consequently, animals had to be sacrificed to comply with
ethical guidelines. These tumors were immersed in PBS and stored in a refrigerator until
Day 13. Similarly, the time points will be referred to as No TTT, PTTT 2, PTTT 4 and
PTTT 5. The timeline of experiments is summarized in the diagram given in Figure 7.1.
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Histological examination

After the measurements, the samples were immersed in paraformaldehyde for 24 hours
for tumor fixation. Then, the tumors were embedded in paraffin blocks before undergo-
ing histological analyses. The paraffin blocks were sliced to obtain 5 µm thick sections.
The tumor sections were H&E stained through an automated procedure and scanned to
obtain microphotographs. The histological parameters were analyzed using Qupath (soft-
ware version 0.3.2) to automatically estimate the size distributions of osteosarcoma cells
and nuclei. Due to the difficulties encountered in segmenting chondrosarcoma cells with
H&E staining using QuPath, the cells and the nuclei of chondrosarcoma were manually
segmented. Thus, the number of detected nuclei/cells is much higher using the automatic
detection (min 2900 detections/tumor) compared to the manual segmentation (min 100
detections/tumors). In both cases, cell segmentation was performed in areas corresponding
to the ROIs (i.e. maximum depth = 1 mm). The radii of cells and nuclei were extracted
by assuming the circularity of the detected objects. Similarly to the previous chapter, the
volume fraction was taken equal to the surface fraction of the cells or the nuclei as an
approximation [153].

All the ultrasound and optical measurements had to be conducted within one single
day to limit the physiological variations of the tumor cells. Consequently, optical mea-
surements were performed on 4 tumors only (two controls and two treated) each day due
to logistical reasons.

Relative Tumor Volume (RTV)

Relative Tumor Volume (RTV) is a common metric used in cancer research that can
be used to monitor the tumor size over time in response to a chemotherapeutic drug. In
this study, the RTV is used to estimate whether a tumor is responsive or not and serves
as a reference. The volume of the tumors V are estimated under the approximation of the
cylinder volume formula based on the caliper measurements such as:

V = longest diameter × π
(shortest diameter

2
)2

(7.1)

Then, the RTV is calculated as the ratio of the tumor volume at a specific time point Vi

during the study and the initial tumor volume V0:

RTV = Vi

V0
(7.2)

Low RTV values may reflect the positive response of a treated tumor, while high RTV
values may indicate non-responsive or control tumors.
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7.2.2 Implementation of QUS techniques

Acquisitions

The tumors were insonified with focused waves using a circular single-element trans-
ducer (RMV 704 probe, Vevo 770 ultrasound scanner) centered at 40 MHz, allowing tissue
characterizations over the 25-55 MHz frequency range. The transducer has a fixed focal
distance of 6 mm. A 3D scan was performed and consisted in 10 to 12 B-mode images
spaced out 1 mm away from each other. Each scan was composed of 464 RF lines and
imaged the tumor over 14.5 mm in the lateral direction thanks to the sweeping movement
of the transducer. The tumor was placed onto an absorbing material immersed in a PBS
solution for estimating the QUS parameters and onto a reflector for attenuation estimation
(Figure 7.2). In the first case, the PBS/tumor interface was placed just above the focal
distance. Regions of Interest (ROI) were 15λ long in both directions and were located at
a relatively shallow depth (about 1 mm).

Figure 7.2: Picture of the ultrasound setup used in the therapy monitoring experiment.
1: Motorized platform, 2: RMV704 probe, 3: tumor immersed in PBS, 4: Absorbing
material, 5: acoustic reflector, 6: lifting platform.

Similarly to the previous study, the ROIs were chosen with no overlap after manual

124 Cyril Malinet



7.2. METHODS

segmentation on the B-mode image of each tumor. Although QUS parameters from non-
overlapping ROIs might be more subject to noise as opposed to overlapped ROIs, we opted
for this configuration to obtain independent QUS estimates. The attenuation coefficients
were estimated following standard substitution methods [110] for each tumor. The BSC for
each ROI was estimated using the reference phantom method [113]. Our reference phan-
tom was composed of polyamide particles of diameter 5 µm (Orgasol 2001 UD, Arkema)
at the relative mass concentration of 0.25% in a gel that contains agarose (2%, Sigma) and
water. The BSC of the reference phantom was computed using the Faran theory.

Data management

A signal-to-noise ratio (SNR) criterion is applied to filter out ROI with noisy power
spectra due to the important amount of data. To do so, we apply a procedure inspired
by the SNR criterion suggested by Mamou et al. [26]. For each ROI segmented in the
B-mode image of the tumor, we first compute the corresponding power spectra of the
reference phantom at its specific location as follows:

Sref
ROI(f) = 1

N

N∑
i=1

∣∣∣FT [RFref (t)]
∣∣∣2 (7.3)

where N is the number of RF segments RFref (t) within the ROI in the reference phantom
and FT denotes the Fourier transform. Then, we calculated a virtual spectrum Sv

ROI(f)
that reflects the acoustic intensity at the ROI location as follows:

Sv
ROI(f) = Sref

ROI(f)
BSCtheo(f)e4zROI(αref (f)−αs(f)) (7.4)

where αref is the acoustic attenuation of the reference phantom, αs is the acoustic atten-
uation of the sample, zROI the depth of the center of the ROI and BSCtheo is the known
theoretical BSC of the reference phantom. The factor e4zROI(αref (f)−αs(f)) compensates for
the phantom attenuation and "adds" the attenuation that would be obtained in the sample
at this specific location. According to Equation 3.8 of the discrete models detailed in chap-
ter 3, the power spectra Sv

ROI(f) reflects the pressure field resulting from the diffraction
pattern of the single-element transducer with the sample attenuation. This quantity was
then used to estimate whether a given ROI located in the sample image has a location
in the field of view that received "sufficient" acoustic energy relative to the maximum de-
tected power. This estimation was done through the computation of the band ∆FROI for
each ROI in the sample image as follows:

∆FROI(f) =

f such that 10log

(
Sv

ROI(f)
maxf,x,z

[
Sv(f)

]) > −12dB

 (7.5)
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where maxf,x,z

[
Sv(f)

]
represents the highest detected amplitude in the virtual power

spectra Sv(f) within all the ROIs located across the whole field of view and the whole
frequency range. It is noteworthy that each power spectrum Sv

ROI(f) was estimated fol-
lowing the position of the ROI in the tumor image using the corresponding RF data in the
reference phantom. Consequently, the RF data of the tumors are not required to apply
this criterion.

The bandwidth δFROI of each ROI was then computed as:

δFROI = max{∆FROI(f)} − min{∆FROI(f)} (7.6)

The ROI was kept if δFROI is greater than 10 MHz and lower than 30 MHz. The ROIs
that did not meet this specification are considered as abnormally short or long and are
therefore omitted. The bandwidth of each power spectrum could have been truncated to
the frequency values that respected the above criteria, as was done in Mamou et al. [26].
However, to allow direct comparison of the BSCs across the -6 dB bandwidth of the
transducer, the power spectra were analyzed in the 25 - 55 MHz frequency range.

This criterion appears useful to select the ROIs that were located in the vicinity of the
fixed focal distance of the transducer. The criterion kept most of the ROIs located at the
surface of the tumors and rejected the ones that were away from the focal distance. One
could note that the factor BSCtheo(f) in Equation 7.4 is canceled out when the criterion is
applied (Equation 7.5) and therefore does not contribute to the ROI selection. This factor
was simply kept for attributing a physical meaning to Sv

ROI(f). An average of 240 ROIs
and 140 ROIs per tumor met the criterion for the chondrosarcoma and the osteosarcoma
respectively.

QUS estimates

A linear model was fitted to the estimated BSC (Lizzi Feleppa approach) to estimate
the linear midband fit and the linear slope for all the ROIs that were selected by the SNR
criterion. For a given ROI, these spectral parameters were estimated as well as envelope
parameters. Envelope parameters from the Nakagami distribution were extracted from the
RF data contained in the ROI of the tumors. The correction for the attenuation and the
diffraction effects was achieved following the same procedures as in the previous chapter
(subsection 6.2.2). The Nakagami parameters αnak were multiplied by the autocorrelation-
based corrective factor κ (Equation 6.1) and the scaling parameter Ωnak was multiplied
by the χ factor (Equation 6.4).

The comparative analysis was conducted for every session (i.e. each day of measure-
ment) to shed the light upon the potential effects of the chemotherapeutic drug over the
course of the study.
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7.2.3 Optical experimental setup

In this study, the experimental protocol described in the previous chapter for EBS
and LSS was repeated with some improvements. All the modifications are detailed in this
subsection.

In the study reported in the previous chapter, the camera was changed to switch from
LSS to EBS: a hyperspectral camera (HERA) was used in the first case and a monochrome
camera (Thorlabs 340M) was used for EBS that was performed at 700 nm only. Switching
the camera implied tedious alignments. The white standard, mirror and background mea-
surements had to be repeated for each new configuration. These steps consumed valuable
time during the days of measurements, as both ultrasound and optical measurements had
to be conducted within a single day.

To limit these time-consuming procedures, we modified the previous experimental setup
by designing two independent channels for EBS and LSS. The newly designed benchtop
setup is described in Figure 7.3 and a picture is shown in Figure 7.4 (a).

Figure 7.3: Scheme of the optical setup used in the therapy monitoring experiment. P:
polarizer, Ir: Iris, M: mirror, D: diffuser used for LSS only, B: beamsplitter plate. A beam
dump traps the useless reflected beam on the first interface (not depicted), RI: refractive
index matching liquid, A: Analyzer, FM: flip mirror used for LSS only, FW: filter wheel,
L1: Fourier lens, L2: focusing lens, FO: fiber optics. The rotating motor was used in EBS
only to average the speckle away.

In this setup, switching from EBS to LSS only required adding a diffuser before the
beamsplitter B and adding the flip mirror FM after the analyzer A. The modifications are
detailed below for each experiment.
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Figure 7.4: (a) Picture of the optical setup used in the therapy monitoring experiment.
1: Broadband laser source, 2: Mirror (M), 3: Rotating platform over which the sample is
placed for measurement (80°/sec, EBS only), 4: filter wheel (FW), 5: CCD camera. The
spectrometer used in LSS is not visible. (b) Picture of a chondrosarcoma tumor immersed
in the refractive index matching liguid (n = 1.38) in the black receptacle that is used for
EBS and LSS measurements

Enhanced Backscattering spectroscopy

EBS was performed with a hyperspectral camera in Chapter 5 and with a monochrome
camera in Chapter 6 at 702 nm and 700 nm respectively. The configuration with a
monochrome camera presented several advantages over the hyperspectral camera which
has an integrated Fourier lens. First, choosing a monochrome camera and its Fourier lens
allowed us to control the characteristics of the latter. Indeed, it is noteworthy that the
focal length of the Fourier lens dictates the angular resolution of the EBS image for a given
camera. Similarly to the EBS experiment carried out in the previous chapter, we opted
for an aspherized achromatic lens with a focal distance of 50 mm (Edmund Optics, ref
#49-665). As a result, an angular resolution of 8 × 10−3 ° is obtained (against 1.0 × 10−2°
in Chapter 5).

A filter wheel that contains narrow band-pass filters (FWHM 10 nm) was inserted
before the CCD camera to spectrally resolve the EBS peak. The EBS measurements
were performed at twelve visible wavelengths ranging from 550 nm to 700 nm. For each
chondrosarcoma, 12 reflectance profiles corresponding to each working wavelength were
acquired. For the osteosarcoma, logistical issues conducted us to perform EBS at 700 nm
over 3 to 4 positions for the first two sessions (Day 0 and Day 6). Similarly to the previous
experiment, the sample was immersed in the refractive index matching liquid (Figure 7.4,
b).

The beamsplitter cube was changed to a beamsplitter plate to eliminate the unwanted
reflections that were reported in the previous study. The iris diameter was set to 1.8 mm
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to respect the Nyquist criteria. The angle above which noise is predominant is taken at
1.2°. The estimation of the incoherent baseline was done in a ring that spans from 1.0° to
1.1°.

One reflectance profile of animals from each tumor group was used to extract the
Whittle-Matérn parameters to demonstrate the capability of EBS to probe tissue proper-
ties at small length scales. The optical properties of the corresponding tumors were then
calculated, as described in section 4.1.4.

Light Scattering Spectroscopy

While EBS aims to analyze a coherent phenomenon, LSS was initially introduced as
the study of the incoherent single-scattered light [68]. In the previous study, the incoher-
ent backscattered light was considered as the signal on the periphery of the EBS peak.
However, the LSS signal is no longer angularly resolved in the present setup, making it
not possible to separate the incoherent backscattered light as was previously achieved.
Consequently, we decided to minimize the spatial coherence of the light source as much
as possible. To do so, we placed a diffuser before the beamsplitter plate. The diffuser was
chosen with a fine grit (1500) to obtain a small diffusion pattern. This component was
positioned perpendicular to the incident beam when LSS was performed. The backscat-
tered light is then focused (f’ = 25 mm) into a fiber optics (NA = 0.22) connected to a
spectrometer (USB 2000, Ocean Optics). The LSS spectra were then computed as was
done previously, by orientating the analyzer A parallel or perpendicular to the axis of the
polarizer P. The LSS spectra were acquired over three to six different positions for each
tumor. White standard measurements were repeated for each session day (SG3051, Sphere
Optics).

7.3 Results

In all the boxplots shown in this chapter, the box displays the median as its central
mark, while its lower and upper boundaries represent the 25th and 75th percentiles, de-
noted q1 and q3 respectively. The whiskers extend to the most extreme non-outlier data
points. Data points are considered as outliers if they fall outside the range [q1 − 3/2(q3 −
q1), q3 + 3/2(q3 − q1)]. Outliers are individually depicted using ’+’ symbols. Each box
exhibits notches on its center. In a boxplot, when the notches of two boxes do not over-
lap, it can be concluded that the true medians differ with 95% confidence. The number
of treatments received is indicated in the title of each boxplot. The labels of the X-axis
give the identification number of each tumor and allow the comparison between the ultra-
sound and the optical measurements. The red boxes correspond to control tumors (i.e.
no treatement) and the green boxes to treated tumors.
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7.3.1 Chondrosarcoma

Histological analysis

As in the previous chapter, histological analyses are conducted to serve as references.
The cell size distributions are shown in Figure 7.5 for each day of measurement. The orange
dots indicate the volume fraction of each tumor. The corresponding value can be read on
the right Y-axis. Only the chondrosarcoma tumors that underwent ultrasound and optical
experiments are shown. Limited changes in the cell size distributions can be observed
over the days of measurements for the treated and the control tumors. Additionally, no
significant difference appears between the medians of the treated and the control tumors,
as the notches of their boxes are overlapping (5% level). The volume fractions of the
treated tumors appear similar to the control tumors, except for the treated tumors in
PTTT 5, which exhibit higher values compared to the control tumors.

The same observations can be made for the nucleus size distributions (Figure 7.6):
the nucleus sizes exhibit limited changes over the days and the treated tumors cannot be
discriminated from the control tumors based on the nucleus radius. The nucleus volume
fractions are similar, apart in PTTT 5, where the treated tumors exhibit higher values
compared to the control tumors.

Figure 7.5: Chondrosarcoma: cell size distribution. (a) No treatment (No TTT), (b) Post-
treatment 2 (PTTT 2), (c) PTTT 4, (d) PTTT 5. Control tumors and treated tumors are
represented in red and green respectively. Orange dots show the volume fraction (right
Y-axis).
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Figure 7.6: Chondrosarcoma: nucleus size distribution. (a) No treatment (No TTT),
(b) Post-treatment 2 (PTTT 2), (c) PTTT 4, (d) PTTT 5. Control tumors and treated
tumors are represented in red and green respectively. Orange dots show the volume fraction
(right Y-axis). Only the tumors of chondrosarcoma that underwent ultrasound and optical
measurements are shown.

Ultrasound BSC

The mean BSCs of each chondrosarcoma are shown in Figure 7.7. The RTV of the
tumor is given in parenthesis in the legend. The BSCs of control tumors in No TTT are
higher than the ones observed for the other days. The BSCs of treated tumors are lower
than the control tumors for PTTT 2 and PTTT 4. The BSCs of control and treated tu-
mors are in close proximity in PTTT 5. To conduct a more in-depth analysis of the BSC
shapes for each day of measurement, the midband fit values and the slope of the BSC are
considered.

Figure 7.8 shows the midband values and the RTV per day of measurement. Before
analyzing the midband values, let us focus on the RTV. The RTV is shown with a blue dot
for each tumor and its value can be read on the right Y-axis. RTV values are normalized
with the volume of first day of measurement (No TTT). Therefore, the RTV values equal
1 for this day.

In PTTT 2, the RTV of the treated tumors are higher than the control tumors in aver-
age. In PTTT 4, two treated tumors exhibit important RTV (Ch18 and Ch3). In PTTT
5, the RTV of treated tumors are higher than the ones observed for the control tumors,
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Figure 7.7: Chondrosarcoma: mean BSC per tumor. (a) No treatment (No TTT), (b)
Post-treatment 2 (PTTT 2), (c) PTTT 4, (d) PTTT 5. Control tumors and treated
tumors are represented in red and green respectively.

except for Ch8. In all day of measurements, an important disparity can be observed within
the RTV of tumors that belong to the same group (i.e. control or treated). The only RTV
of treated tumor that is below the smallest RTV of the corresponding control tumors is
Ch5 in PTTT 4.

The midband values for each tumor exhibit limited changes over the days, typically
ranging between -5 and 5 dB (Figure 7.8). The higher values can be observed in the tumors
with No TTT. The coefficient of determination R2 between the medians of the midband
values and the RTV values of the treated tumors over these three days of measurement
(12 data points) equals R2 = 0.20.

In PTTT 2, 4 and 5, no threshold on the midband value can discriminate all the treated
tumors from the control tumors. After checking the data normality, non-parametric tests
are conducted to shed the light on potential statistical differences between the midband
values from control and treated tumors. A Wilcoxon rank sum test conducted at a signifi-
cance level of 5% reveals statistically significant differences in the midband values between
control and treated tumors in PTTT 2 and PTTT 4.

The BSC slopes for each tumor are shown in Figure 7.9. The slopes estimated for
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Figure 7.8: Chondrosarcomas: BSC midband fit values per day of measurement. (a) No
TTT, (b) PTTT 2, (c) PTTT 4, (d) PTTT 5. Control tumors and treated tumors are
represented in red and green respectively. The boxes show the distribution of data points
for each tumor. The blue dot indicates the corresponding RTV and its value can be read
on the right Y-axis.

No TTT are similar to ones observed for the other day of measurements. Similarly to
what was observed for the midband, the slopes of both treated and control tumors exhibit
similar distributions over the days. In PTTT 4, the treated tumor Ch18 exhibits a higher
slope and a high RTV in comparison to other treated tumors. However, the treated tumor
Ch3 shows a similar RTV but with a slope that is close to other treated tumors. In
PTTT 5, the slope of the treated tumor Ch24 is the highest and corresponds with the
greatest RTV of treated tumors. The coefficient of determination R2 between the slope
of the treated tumors and the RTV equals R2 = 0.32 (12 data points). For each day of
measurement, no unique slope value can allow to discriminate all the treated tumors from
the control tumors. Significant statistical differences in the slopes are identified at the 5%
level between the control and the treated tumors in PTTT 2.

Ultrasound envelope statistics

The distribution of the Nakagami parameters αnak per tumor are shown in Figure
7.10. The values of αnak of tumor with No TTT are lower compared to the ones reported
for other days of measurements. Apart from this, limited changes in the distributions of
the αnak estimates can be observed over the days for each tumor group. In PTTT 4, the
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Figure 7.9: Chondrosarcomas: BSC slope per day of measurement. (a) No TTT, (b)
PTTT 2, (c) PTTT 4, (d) PTTT 5. Control tumors and treated tumors are represented
in red and green respectively. The boxes show the distribution of data points for each
tumor. The blue dot indicates the corresponding RTV and its value can be read on the
right Y-axis.

treated tumor Ch16 exhibits the lowest αnak value. However, its RTV is similar to the
other treated tumor. The coefficient of determination between the αnak values and the
RTV of the treated tumors equals R2 = 0.13. No obvious difference in the αnak values
can be observed between the control and treated tumors for each day of measurement.
Significant statistical differences in the Nakagami parameters αnak are identified at the
5% level between the control and the treated tumors in PTTT 5.

The scaling parameter Ωnak are shown in Figure 7.11. The control tumors with No
TTT exhibit similar Ωnak values as the other control tumors. A greater disparity in the
median values can be observed for the treated tumors in comparison to the control tumors.
The coefficient of determination between the Ωnak values and the RTV of the treated tu-
mors equals R2 = 0.11. Similarly to what was observed for αnak, no threshold based on the
Ωnak values can discriminate all the treated tumors from the control tumors for each day
of measurement. Significant statistical differences in the scaling parameter Ωnak are iden-
tified at the 5% level between the control and the treated tumors in PTTT 4 and PTTT 5.
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Figure 7.10: Chondrosarcomas: Nakagami parameter αnak. (a) No TTT, (b) PTTT 2, (c)
PTTT 4, (d) PTTT 5. Control and treated tumors are in red and green respectively

Figure 7.11: Chondrosarcomas: scaling parameter Ωnak. (a) No TTT, (b) PTTT 2, (c)
PTTT 4, (d) PTTT 5. Control and treated tumors are in red and green respectively.

Cyril Malinet 135



CHAPTER 7. THERAPY MONITORING: A LONGITUDINAL STUDY

Light EBS

Representative examples of reflectance profiles estimated at twelve different visible
wavelengths from each tumor group are shown in Figure 7.12. The reflectance profiles of
one control tumor is shown with colors spanning from yellow to red (550 to 700 nm) per
day. The reflectance profiles of one treated tumor are also shown with colors spanning
from blue to green (550 to 700 nm) per day. The reflectance profiles of tumors with No
TTT exhibit the sharpest EBS peak in comparison to other days of measurements. The
difference in the reflectance profiles of control and treated tumors of PTTT 2 and PTTT 5
are limited compared to PTTT 4. Indeed, the treated tumors in PTTT 4 show reflectance
profiles with a faster decay and can therefore be discriminated from the control tumors.

Figure 7.12: Chondrosarcoma: Illustrative examples of effective reflectance profiles in the
visible range in the co-polarized channel. Only two tumors of each group per day for
clarity. (a) No TTT (Ch20), (b) PTTT 2: control Ch15 (RTV = 94) versus treated Ch21
(RTV = 5). (c) PTTT 4: control Ch7 (RTV = 19 ) versus treated Ch3 (RTV = 221).
PTTT 5: control Ch8 (RTV = 217) versus treated Ch16 (RTV = 31). The legend given
in (d) applies to all graphs.

For the sake of clarity, the reflectance profiles of only one tumor of each group were
shown per day of measurements. It is noteworthy that the reflectance profiles can be
integrated over the exit radius r to obtain the integrated effective reflectance profile Ieff

for each wavelength. The quantity Ieff can then be plotted as a function of the wavelength
(Figure 7.13). The tumors with No TTT exhibit irregular EBS spectra, making their
analysis challenging. The EBS spectra of the treated tumors in PTTT 4 show similar
trends and are lower than the control tumors. The treated tumors exhibit similar shapes
despite the important difference in their RTV (13 vs 221 for Ch5 and Ch3 respectively).
The integrated reflectance profiles in PTTT 2 and PTTT 5 show similar shapes (i.e.
decreasing with wavelength) but the discrimination of the treated tumors from the control
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Figure 7.13: Chondrosarcoma: Integrated effective reflectance profiles per day of mea-
surement. (a) No TTT, (b) PTTT 2, (c) PTTT 4, (d) PTTT 5. Control tumors and
treated tumors are represented in red and green respectively. Optical measurements were
conducted on four tumors in PTTT2, 4 and 5.

tumors based on these spectra is not straightforward.
The effective reflectance profiles at 700 nm of a control (Ch8, RTV = 217) and a treated

tumor (Ch3, RTV = 221) are fitted using the Whittle-Matérn model. As a result, the three
coefficients that parametrize the refractive index correlation function Bn are extracted.
The characteristic length of heterogeneity of refractive index Ln is found equal to Ln =
0.6 µm and Ln = 1.4 µm for the control and the treated chondrosarcoma respectively.
The refractive index variance equal σ2

n = 3.4 × 10−4 and σ2
n = 5.4 × 10−4 for the control

and the treated chondrosarcoma respectively. The shape parameter D equals D = 2.5 and
D = 2.1 for the control and the treated chondrosarcoma respectively.

All these parameters can serve as inputs to generate representations of the variations
of the refractive index. Examples of the spatial mappings of the refractive index excesses
are shown in Figure 7.14 for these two tumors.

The analysis of the Whittle-Matérn parameters is brought one step further. The
refractive index-related parameters are then used to compute the optical properties of
the tumors. The reduced scattering coefficient µ′

s = 11.0 cm−1 and µ′
s = 5.8 cm−1 for

the control and the treated chondrosarcoma respectively. The anisotropy coefficient is
estimated at g = 0.83 and g = 0.81 for the control and the treated chondrosarcoma
respectively.

Light scattering Spectroscopy

The mean LSS spectra for PTTT 2, 4 and 5 are shown in Figure 7.15. LSS measure-
ments were achieved using the tumors with No TTT following a different implementation
compared to other days (no diffuser) and are therefore not directly comparable. Thus, the
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Figure 7.14: Chondrosarcoma: Examples of representation of the spatial variation of the
refractive index. The gray levels represent the excess relative refractive index. (a) Control
tumor (Ch8, RTV = 217), Ln = 0.6 µm, σ2

n = 3.4 × 10−4, D = 2.5, µ′
s = 11.0 cm−1,

g = 0.83. The fitting quality is estimated by the coefficient of determination R2 = 0.78
and the noise variance σ2

noise = 4.5 × 10−14 µm−2 . (b) Treated tumor (Ch3, RTV =
221). Ln = 1.4, σ2

n = 3.4 × 10−4, D = 2.1, µ′
s = 5.8 cm−1, g = 0.81. The fitting

quality is estimated by the coefficient of determination R2 = 0.98 and the noise variance
σ2

noise = 1.0 × 10−14 µm−2

Figure 7.15: Chondrosarcoma: Light Scattering Spectra. (a) PTTT 2, (b) PTTT 4, (c)
PTTT 5. Control tumors and treated tumors are represented in red and green respectively.
The RTV values are given in parenthesis.

corresponding data are not shown for clarity. The control tumors in PTTT 2 and PTTT
4 exhibit limited variations compared treated tumors. In PTTT 2, LSS spectra of treated
tumors are lower than control tumors. Then, they are higher in PTTT 4. Treated tumors
can therefore can be distinguished from the control tumors in PTTT 2 and PTTT 4. In
PTTT 5, the LSS spectrum of the treated tumor Ch24 exhibits close proximity with the
control tumor Ch12. The two other tumors show a different contrast. After describing
the relative magnitudes of LSS spectra, their relative shapes can be analyzed. In PTTT
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2, treated tumors show a slight increase at high wavelengths while control tumors exhibit
the opposite trend. In PTTT 4 and PTTT 5, the LSS spectra show similar shapes.

As the number of tumors per day is relatively low, statistical analyses and correlation
between the RTV and the LSS spectra present a limited interest and were not conducted
consequently.

7.3.2 Osteosarcoma

In this subsection, the results for osteosarcomas are described following the same order.

Histological analysis

The cell size distributions are shown in Figure 7.16 for each day of measurement. The
orange dots indicate the volume fraction of each tumor. The corresponding value can
be read on the right Y-axis. Similarly to chondrosarcomas, limited changes in the cell
size distributions can be observed over the days of measurements for the treated and the
control osteosarcomas.

Figure 7.16: Osteosarcoma: cell size distribution. (a) No TTT, (b) PTTT 2, (c) PTTT
4, (d) PTTT 5. Control tumors and treated tumors are in red and green respectively.
Orange dots show the volume fraction (right Y-axis).

Additionally, the control and the treated tumors exhibit similar nucleus sizes. The
volume fractions of the treated tumors appear similar to the control tumors.

The same observations can be made for the nucleus size distributions (Figure 7.17):
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Figure 7.17: Osteosarcoma: nucleus size distribution. (a) No TTT, (b) PTTT 2, (c) PTTT
4, (d) PTTT 5. Control tumors and treated tumors are in red and green respectively.
Orange dots show the volume fraction (right Y-axis).

the nucleus sizes exhibit limited changes over the days and the treated tumors cannot be
discriminated from the control tumors based on the nucleus radius. The nucleus volume
fractions are similar, apart in PTTT 2, where the treated tumor Ch3 exhibits a higher
value compared to other tumors.

Ultrasound BSC

The mean BSCs of each osteosarcoma are shown in Figure 7.18. The RTV are given in
parenthesis in the legend. The BSCs of control tumors with No TTT are higher in average
than the ones observed for the other days. The BSCs of treated tumors are lower than the
control tumors for PTTT 2 and PTTT 4 in average. This difference is more important in
PTTT 4. The contrasts in the BSCs between the control and the treated tumors is less
pronounced in PTTT 5. The analysis of the BSC trends for each day of measurement can
be made more easily using the midband value and the slope (Figure 7.19 and 7.20 ):

Before analyzing the midband values for the osteosarcomas, let us focus on the RTV
shown in Figure 7.19. The RTV values of the treated tumors are higher in average com-
pared to the control tumors in PTTT 2 but they remain within the same order of mag-
nitudes. The mean RTV of the treated tumors (7.2) is approximately equal to the mean
RTV of control tumors (7.1). However, a greater disparity of RTV can be observed in
PTTT 4 within the tumors of the same group. In PTTT 4, only one treated tumor (Os25)
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Figure 7.18: Osteosarcoma: mean BSC per tumor per day of measurements. (a) No TTT,
(b) PTTT 2, (c) PTTT 4, (d) PTTT 5. Control tumors and treated tumors are represented
in red and green respectively.

presents a RTV greater than the RTV of the control tumor (Ch55).
In PTTT 4, the midband values of treated tumors are lower than the control tumors.

The lowest notch of the control tumor (Os53) does not overlap with the highest notch
of the treated tumors (Os24). As a result, it can be concluded that their true medians
do differ at the 5% level. Consequently, the treated tumors can be discriminated from
the control tumors based on their midband values. The treated tumors exhibit midband
medians in the range 0 - 5 dB over the last three days of measurement while the midband
values of control tumors show a greater disparity, specifically in PTTT 2.

The coefficient of determination R2 between the medians of the midband values and
the RTV values of the treated tumors over the last three days of measurements (11 data
points) equals R2 = 0.04. A Wilcoxon rank sum test conducted at a significance level of
5% reveals statistically significant differences in the midband values between control and
treated tumors in PTTT 2, PTTT 4 and PTTT 5.

The BSC slopes for each osteosarcoma are shown in Figure 7.20. The slopes estimated
with No TTT are similar to the ones observed for the control tumors in the the other
day of measurements. Similar distributions are reported for the control tumors over the
days. The same observation can be made for the treated tumors in PTTT 4 and PTTT
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Figure 7.19: Osteosarcoma: BSC midband values. (a) No TTT, (b) PTTT 2, (c) PTTT
4, (d) PTTT 5. Control and treated tumors are in red and green respectively.

Figure 7.20: Osteosarcoma: BSC slope. (a) No TTT, (b) PTTT 2, (c) PTTT 4, (d) PTTT
5. Control and treated tumors are in red and green respectively.
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5. A greater disparity appears within the treated tumors in PTTT 2. The coefficient of
determination R2 between the slope of the treated tumors and the corresponding RTV
equals R2 = 0.08 (11 data points). For each day of measurement. No threshold can
be set to discriminate all treated tumors from the control tumor. Significant statistical
differences in the slope are identified at the 5% level between the control and the treated
tumors in PTTT 4.

Ultrasound envelope statistics

The distribution of the Nakagami parameters αnak per osteosarcoma are shown in
Figure 7.21. The values of αnak of tumors with No TTT are similar compared to the control
tumors in other days of measurements. Overall, limited changes in the distributions of
the αnak estimates can be observed over the days for each tumor group. The coefficient of
determination R2 between the αnak values and the RTV of the treated tumors is less than
0.01. No threshold can discriminate the control tumors from the treated tumors for each
day of measurement. Significant statistical differences in the Nakagami parameters αnak

are identified at the 5% level between the control and the treated tumors in PTTT 4.

Figure 7.21: Osteosarcoma: Nakagami parameters αnak. (a) No TTT, (b) PTTT 2, (c)
PTTT 4, (d) PTTT 5. Control and treated tumors are in red and green respectively.

The scaling parameter Ωnak are shown in Figure 7.22. The control tumors with No
TTT exhibit similar Ωnak values as the other control tumors. The coefficient of deter-
mination between the Ωnak values and the RTV of the treated tumors equals R2 = 0.11.
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Figure 7.22: Osteosarcoma: Scaling parameters Ωnak. (a) No TTT, (b) PTTT 2, (c)
PTTT 4, (d) PTTT 5. Control and treated tumors are in red and green respectively.

Similarly to what was observed for αnak, no threshold based on the Ωnak values can dis-
criminate all the treated tumors from the control tumors for each day of measurement.
Significant statistical differences in the scaling parameter Ωnak are identified at the 5%
level between the control and the treated tumors in PTTT2, PTTT 4 and PTTT 5.

Light EBS

Reflectance profiles at 700 nm are shown in Figure 7.23. The reflectance profiles of
control tumors with No TTT exhibit similar shapes. The same observation can be made in
PTTT 2. The treated tumor Os54 is represented by a lower reflectance profile compared
to the treated tumor Os21. These two tumors present similar RTV. The effective
reflectance profiles at 700 nm of a control (Os42, RTV = 2) and a treated tumor (Os54,
RTV = 3) are fitted using the Whittle-Matérn model. As a result, the three coefficients that
parametrize the refractive index correlation function Bn are extracted. The characteristic
length of heterogeneity of refractive index Ln is found equal to Ln = 1.2 µm and Ln =
1.4 µm for the control and the treated osteosarcoma respectively. The refractive index
variance equals σ2

n = 2.6 × 10−4 and σ2
n = 6.5 × 10−4 for the control and the treated

osteosarcoma respectively. The shape parameter D equals D = 2.2 and D = 2.1 for the
control and the treated osteosarcoma respectively.

Similar to what was done for the chondrosarcomas, examples of the spatial mappings
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Figure 7.23: Osteosarcoma: Reflectance profiles at 700 nm in the co-polarized channel.
(a) No TTT, (b) PTTT 2. The RTV are given in parenthesis in the legend.

Figure 7.24: Osteosarcoma: Examples of representation of the spatial variation of the
refractive index. The gray levels represent the excess relative refractive index. (a) Control
tumor (Os42, RTV = 2), Ln = 1.2 µm, σ2

n = 2.6×10−4, D = 2.2, µ′
s = 4.0 cm−1, g = 0.83.

The fitting quality is estimated by the coefficient of determination R2 = 0.97 and the noise
variance σ2

noise = 1.4 × 10−13 µm−2 . (b) Treated tumor (Os54, RTV = 3). Ln = 1.4,
σ2

n = 6.5×10−4, D = 2.1, µ′
s = 6.1 cm−1, g = 0.80. The fitting quality is estimated by the

coefficient of determination R2 = 0.99 and the noise variance σ2
noise = 9.1 × 10−14 µm−2

of the refractive index excesses are shown in Figure 7.24 for these two tumors.
The refractive index-related parameters are then used to compute the optical properties
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of the tumors. The reduced scattering coefficient µ′
s = 4.0 cm−1 and µ′

s = 6.1 cm−1 for the
control and the treated osteosarcoma respectively. The anisotropy coefficient is estimated
at g = 0.83 and g = 0.80 for the control and the treated osteosarcoma respectively.

7.4 Discussion

In this study, BSC-related parameters, envelope parameters, EBS-related parameters
and LSS spectra were measured on two types of bone tumor models. For each tumor
subtype, ultrasound and optical measurements were conducted over four days of measure-
ments on two populations: control animals with PBS injections and rodents that have
received a chemotherapeutic drug. Only control tumors were probed the first day (No
TTT). The treated animals had received 2 injections of anti-cancer treatment on the first
day of measurement (PTTT 2), 4 injections on the second day (PTTT 4) and 5 injec-
tions on the last day (PTTT 5). This study aims to investigate the potential correlation
between QUS or optical parameters with the tumor response to the administered drug.
The RTV of each tumor was estimated as an indicator of the tumor response. Small RTV
values may reflect a positive tumor response. Histological analyses were also conducted
to measure potential changes in the cell and the nucleus sizes of the tumors during the
treatment period.

The slope, the midband, the Nakagami parameter αnak and the scaling parameters
Ωnak showed poor correlations with the RTV of the treated chondrosarcomas and osteosar-
comas (R2< 0.33). Interestingly, multiple significant statistical differences were observed
when comparing the estimates from independent ROIs of the control and the treated tu-
mors. Indeed, for the chondrosarcomas, the slope and the midband values reflected notable
disparities in PTTT2. In PTTT 4, the midband values and the scaling parameters Ωnak

indicated substantial differences. The same observation was found with the Nakagami
parameter αnak and the scaling parameters Ωnak in PTTT 5. For the osteosarcomas, the
midband values and the scaling parameters Ωnak reported significant discrepancies between
the control and the treated tumors in PTTT 2, 4 and 5. Additionally, the slopes and the
Nakagami parameters αnak reflected significant differences in PTTT 4. Consequently, the
QUS estimates are sensitive to the effects of injections of chemotherapeutic drug but do
not reflect the RTV.

In order to draw conclusions regarding the efficiency of QUS estimates in this ther-
apy monitoring application, one can legitimately question the appropriate criterion for
defining positive responders. Indeed, notable disparities in the RTV were observed within
the control tumors of the chondrosarcomas and the osteosarcomas. Therefore, defining a
threshold based on the RTV over which tumors would be considered as non-responders
is not straightforward. Surprisingly, an important number of treated tumors exhibited
greater RTV compared to the control tumors (e.g. chondrosarcomas in PTTT 2 or os-
teosarcomas in PTTT 4). Strictly speaking, only the treated chondrosarcoma Ch5 (RTV
= 13) exhibits a lower RTV than the smallest RTV reported for a control tumor on this day
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(Ch7, RTV = 19). Therefore, it could be hypothesized that most of the chondrosarcomas
and osteosarcomas tumors used in this study were non-responsive to the chemotherapeutic
drug.

The chondrosarcomas are known for their chemoresistance [162,163]. This phenomenon
can manifest over time as the ability of the tumor cells to adapt to and to survive to exter-
nal factors, such as treatments. A hypothesis is that the different ultrasound and optical
parameters observed could be related to this mechanism. First, figure 7.7 showed that the
mean BSC of treated tumors tends to be lower than the control tumors in PTTT 2 and
PTTT 4. In PTTT 5, 16 days after the first injection, this contrast is less pronounced.
This phenomenon of convergence in PTTT 5 can also be observed in the reflectance pro-
files. In PTTT 4, the integrated reflectance profiles of treated tumors are lower than the
control tumors (Figure 7.13). No clear distinction between them can be observed in PTTT
5. The LSS spectra (Figure 7.15) also showed discrepancies between these two populations
in PTTT 2 and PTTT 4. One treated and one control tumor led to similar magnitudes
of LSS spectra in PTTT 5. Additionally, similar shapes of LSS spectra were observed in
PTTT 5. Thus, the disappearance of differences in PTTT 5 may reflect the adaptations
of the treated tumors to the administered treatment, making them similar to the control
tumors.

Osteosarcomas may also develop chemoresistance over time [164, 165]. Remarkably,
similar observations regarding the evolution of contrasts over days between control and
treated osteosarcomas can be made. Indeed, the differences between these two populations
can be observed in their mean BSCs per tumor (Figure 7.18) in PTTT2. This contrast
is even more pronounced in PTTT 4, and also manifests through clear separations in the
midband values (Figure 7.19) and the scaling parameters Ωnak (Figure 7.22). In PTTT
5, none of these ultrasound parameters allow direct discrimination of the treated tumors
from the control osteosarcomas. Once again, the cellular and molecular mechanisms of
chemoresistance may be reflected through a convergence of the scattering parameters over
time.

In summary, the RTV of the treated chondrosarcomas and the osteosarcomas show
that approximately all tumors could be considered as non-responders. Several scattering
parameters appeared sensitive to the effects of injections of treatment during the first days
of treatment. Convergences were then observed between treated and control tumors after
the final treatment. Consequently, scattering parameters may have reflected the mecha-
nism of chemotherapy resistance. To confirm this hypothesis, RNA sequencing is currently
conducted on the tumor genetic materials. This procedure will quantify the expression
of chemoresistance genes within each tumor. No conclusion can be made regarding the
efficiency of our bimodal approach to detect non-responsive tumors.
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7.4.1 Physical interpretation

A physical interpretation of the ultrasound and optical parameters can be made thanks
to the histological analyses. The cell and the nucleus size distributions and the volume
fractions exhibit limited changes over the days. Additionally, the visual aspects of the
histological slices do not show specific evolution in the spatial arrangement of cells either.
Thus, it can be assumed that the scatterer size and organization may exhibit limited
changes. Consequently, the notable differences between the treated and the control tumors
could originate from the variations in the relative impedance contrasts γz in ultrasound.
The difference in the scattering amplitude between the treated and the control tumors is
consistent with the variations reported in the scaling parameter Ωnak, which represents the
mean backscattered intensity, specifically for the osteosarcomas. In optics, variations in
the refractive indices may contribute to the changes observed in the magnitude of the LSS
spectra as well as in the reflectance profiles between treated and control tumors. Examples
of spatial mappings of the excesses refractive index are given for control and treated
tumors (Figure 7.14 and 7.24) under the approximation of random media. To confirm this
hypothesis concerning the scattering amplitude in ultrasound and in optics, additional
histological analyses are in progress with collagen markers to study the extracellular matrix
composition of control and treated tumors.

The similarities between the shape of the LSS spectra of treated tumors with control
tumors obtained for PTTT 4 and 5 are consistent with the histological analyses. Indeed,
LSS aims to extract the scatterer diameters based on the "slow" oscillations of the LSS
spectra (c.f. section 6.2.4). Since no difference in the cell and the nucleus size was reported
for the chondrosarcomas over the days, it is coherent to observe limited contrasts in the
corresponding LSS spectra. However, the LSS spectra of the treated tumors in PTTT
2 do differ from the control tumors. The inversion procedure described in the preceding
chapter has the potential to translate this distinction into variations in the scatterer size
distribution. Since the histological analyses did not reveal significant differences in the cell
and nucleus size distributions between the tumors, we did not investigate the inversions
of LSS spectra as a priority.

Necrotic areas were observed in the center (i.e. several millimeters deep) of some
tumors on histological slices. Cell death can affect the scattering parameters and its
effects could have been used to interpret the observed differences between the estimates.
However, given that both the ultrasound and the optical techniques probed the shallow
surface of the tumor, we can reasonably assume that necrosis had a minimal impact.

7.4.2 Optical measurements

The EBS and the LSS measurements were conducted on a limited number of tumors,
making the correlation of the resulting optical parameters with the RTV challenging to
establish in the case of chondrosarcomas (Figure 7.13 and 7.23). Indeed, the inversions of
the reflectance profile using the Whittle-Matérn model were conducted on the measured
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reflectance profile at 700 nm on one control and one treated tumor for each subtype. This
procedure resulted in the extraction of the refractive-index related parameters (Ln, σ2

n and
D). These results should be considered as illustrative examples of the extreme sensitivity
of EBS to estimate the tissue properties at small length scales. The inversions of other
reflectance profiles mostly led to poor fitting qualities and/or irrelevant optical proper-
ties that differed by several orders of magnitude from those typically found in biological
tissues [146]. The optimization parameters of the inversion algorithm (e.g. seed values,
cost functions and termination tolerances) may impact the inversion results. Their effects
deserve further investigation.

7.4.3 Limitations

In this study, the use of the RTV as a reference to decide whether a tumor is responsive
or not is questionable for chondrosarcoma. Indeed, the evolution of the tumor size may not
reflect the positive response of chondrosarcomas to chemotherapeutic drugs. This sarcoma
subtype is characterized by the production of a cartilage matrix that remains after cell
death. Thus, a tumor may exhibit an increasing cell death, which is a good prognostic
at the early stage of chemotherapy, and limited changes in its size. As a result, the RTV
can remain relatively high despite a positive response from the tumor. To address this
problem, other response indicators could be observed. Indeed, future studies could also
analyze the expression of chemoresistance genes in the tumors to serve as references. Other
perspectives are suggested in the following paragraph.

The osteosarcoma Os55 is the only control tumor in PTTT 5. Other control animals
did not survive as long as Os55. Therefore, the statistical tests of QUS parameters between
the treated tumors and this only tumor should be considered with caution.

7.4.4 Perspectives

Future studies could be conducted in vivo to study the prediction of treatment out-
come. In this case, ultrasound could be performed day after day to investigate the potential
correlation between scattering parameters and the responsive tumors. Optical measure-
ments could also be achieved for other types of tumors that may be located at a shallow
depth using fiber optics [9, 78].

To optimize the probability of analyzing non-responders along with positive responders,
a similar longitudinal study could be performed with a third group composed of animals
that received higher doses of cancer treatment. Thus, a control tumor group, a treated
tumor group with a low dose and another one with an important dose of chemotherapeutic
drug could be analyzed for each day of measurement. A low dose of anti-cancer is likely
to lead to non-responders while the higher doses should lead to more responsive tumors.
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7.4.5 Conclusion

To conclude, no correlation was observed between the ultrasound and the optical scat-
tering parameters with the RTV. However, all tumors in this study are likely to be non-
responsive given their observed RTV. The BSC-related parameters, envelope parameters,
EBS-related parameters and LSS spectra were sensitive to the injections of treatment.
More importantly, they could have reflected the process of tumor adaptation over time.
Additional analyses are in progress to confirm this hypothesis.

In this study, combining ultrasound and light provided different sources of contrast at
different days of measurements (e.g. EBS and LSS spectra in PTTT 4 separated treated
chondrosarcomas from the control tumors contrary to the corresponding QUS estimates).
Thus, our bimodal approach represents a promising direction for pursuing this research, as
multiplying the quantitative estimates may reflect more accurately the plurality of complex
cellular mechanisms.
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Chapter 8

Structural effects on ultrasound scattering:
a phantom investigation

The study reported in this chapter aims to investigate the structural effects of ul-
trasound scattering. The physical interpretations of QUS parameters mentioned in the
previous chapters were investigated and unified in the framework of a novel phantom ap-
proach.

As a visiting Ph.D. student, I had the privilege to conduct ultrasound experiments
under the guidance of Jonathan Mamou, Ph.D., at the Department of Radiology, Weill
Cornell Medicine, located in New York City. This collaborative research work spanned
three months during the summer of 2022.

Unlike my previous contributions, this chapter focuses on ultrasound scattering and
does not encompass contributions related to optics. This decision stems from logistical
constraints, such as the fact that the optical bench-top experimental setup developed in
Lyon was bulky and could not be relocated.

8.1 Introduction

Quantitative ultrasound studies aim to characterize tissues to extract diagnostic infor-
mation. Indeed, the estimated QUS parameters reflect the scatterer properties. Interest-
ingly, certain QUS parameters can be doted of a physical meaning, such as the effective
scatterer radius, under specific conditions (e.g. sparse media in the Spherical Gaussian
model [26]). Given that the scattering structures are identified, the QUS parameters can
give insight into the tissue underlying microstructure and may reveal specific pathology.

151



CHAPTER 8. STRUCTURAL EFFECTS ON ULTRASOUND SCATTERING: A PHANTOM
INVESTIGATION

The scatterer concentration is of prime importance in the correct modeling of the
backscattering signals. For instance, applying incoherent BSC models in dense media can
lead to a misleading physical interpretation of the corresponding QUS parameters. Indeed
when the scatterers are not randomly spatially distributed, structural effects affect the ul-
trasound backscattering. In structured media, both the spectral content and the envelope
of the backscattered signals are impacted. The BSC is no longer the incoherent sum of the
contributions of each scatterer and a structure factor should be taken into account. As
a result, BSC-related parameters exhibit changes. Similarly, the envelope parameters are
affected by the coherent signals that rise from any periodic spacing among the scatterers
(i.e. structure) [42].

Most of the BSC theoretical models and envelope distributions were initially introduced
to describe the scattering of media with randomly distributed scatterers. However, cells
or nuclei in biological tissues can be associated with moderate to high volume fractions
(typically more than 0.05). It can be assumed that the scatterer position correlation in-
creases with their concentration [38]. Hence, to successfully characterize biological samples
through QUS parameters, it is important to study to what extent their physical interpreta-
tion can hold, as the degree of structure can be important. The present work investigates
the meaning of multiple QUS parameters using a tissue-mimicking phantom composed of
particles that can exhibit different levels of spatial organization.

Saha et al. [42] studied the effects of different scatterer spatial organizations on the
BSC and the ES. They simulated four different media, composed of identical scatterers
with a decreasing spatial organization that spans from a perfect lattice structure to a
random distribution. They introduced a theoretical model to simulate the BSC and the
signal envelope. They restricted the study of the signal envelope to the Rayleigh and the
Nakagami distributions. They concluded that the scatterer spatial organization affects the
BSC linear slope, the integrated BSC and the envelope parameters. However, they did
not investigate the extent to which the physical meaning of the parameters could justify
the observed variations. Additionally, this study was restricted to simulations and did not
include an experimental phantom validation.

Han et al. [38] carried out a cell pellet phantom study in which they isolated the spec-
tral structural effects using dense phantoms and sparse phantoms containing the same
cell lines. After estimating the incoherent BSCs and the total BSCs on each sample,
they extracted the structure factors for each cell line by computing their ratio. The es-
timated structure factors were successfully described by their theoretical models. This
study reported an experimental demonstration of the spectral effects of the scatterer spa-
tial correlation in dense media. One could note that the structural effects resulted from
the high concentrations.

In the present study, a novel experimental method to control the spatial organization
of magnetic particles using a magnetic field is introduced. The variations in the BSC linear
slope and intercept (Lizzi-Feleppa parameters) were investigated as the degree structure
was increasing. Similarly, we analyzed the evolutions of Nakagami and Homodyned-K
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envelope parameters, as they can carry a physical interpretation. The physical meanings
of the QUS parameters and their concordance were investigated. To do so, QUS param-
eters were estimated as the magnetic field intensity was varied over time, strength and
directions in three distinct experiments.

8.2 Method

8.2.1 Superparamagnetic beads

In this study, a phantom composed of superparamagnetic beads was used. The mi-
crospheres are highly monodisperse (coefficient of variation 1.1%) with a diameter of 10
µm (Sigma-Aldrich, ref. 49664) and are suspended in water with a volume fraction equal
to 0.028. The particles consist of a polystyrene polymer matrix in which nanometric iron
oxide particles are homogeneously incorporated (> 20%), which gives them magnetic prop-
erties. The beads were assumed to be weak acoustic scatterers such as multiple scattering
is negligible.

Expected bead dynamics

The magnetic beads show no specific interaction when no surrounding magnetic field
is applied. However, when the beads are placed in a magnetic field B⃗, they behave like
magnetic dipoles and exhibit a magnetic moment M⃗ . This phenomenon is known as
paramagnetism. The magnetic dipoles are then subject to a magnetic force F⃗ that can be
expressed as:

F⃗ =
−−→
grad(M⃗.B⃗) (8.1)

where
−−→
grad represents the gradient operator. As a result, the magnetic force F⃗ tends to

align the magnetic dipoles along magnetic field lines of B⃗. A secondary induced magnetic
field is then exhibited by every bead, as depicted in Figure 8.1. Consequently, the beads
act as secondary magnets and could therefore be modeled as individual pairs of north and
south poles. Because the north and south poles of two different beads are attracted, the
beads form chains along the surrounding magnetic field lines.

The chains exhibit equidistant spacing in the direction perpendicular to the surround-
ing magnetic field B⃗ due to their repelling line fields. This distance is characteristic of the
magnetic repulsion.

The hysteresis is the delayed response of ferromagnetic materials to changing magnetic
fields. The superparamagnetic beads exhibit a limited magnetic hysteresis in comparison
to paramagnetic beads. Thus, the superparamagnetic beads can find their initial magneti-
zation state more quickly after a first aimantation compared to paramagnetic beads, which
can exhibit a longer "memory". Consequently, superparamagnetic beads were chosen in
order to enhance the reproducibility of the experiments over time.
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Figure 8.1: Magnetic field lines from a single magnetic bead. Blackness indicates lower
intensities. N and S stand for the north and the south poles respectively. Adapted from
Wittbracht et al. [166].

In summary, the beads behave like normal plastic beads when no surrounding field is
applied. When a homogeneous stationary surrounding magnetic field B⃗ is present, the su-
perparamagnetic beads are expected to arrange themselves into parallel stationary chains
along the orientation of the magnetic field as depicted in Figure 8.2 (a, b). The distance of
the chains in the normal direction of the magnetic field reflects a characteristic repulsive
distance.

Figure 8.2: Bead alignment in the presence of a homogeneous stationary magnetic field.
(a) Horizontal configuration used in the horizontal time and the horizontal steady-state
experiment. (b) Vertical configuration used in the vertical steady time experiment. For
each configuration, the ultrasound transducer and its agar-gel block were depicted (not on
scale) to clarify the directions.
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Light microscopy measurements

Light microscopy measurements were achieved to verify the theoretical bead dynamics
mentioned in the previous paragraph. To do so, droplets of the phantom solution were
put on glass slides. Firstly, the bead dynamic was observed over time under a microscope
when the magnetic field intensity instantaneously increases from 0 mT to 4 mT. To create
a homogeneous horizontal stationary magnetic field, two neodymium block magnets (N52)
of dimension 40 x 40 x 20 mm were manually quickly placed across the glass slide at t = 3
s, where t represents the time. The distance between the two permanent magnets was 19.6
cm and was set such that the magnetic field intensity at the droplet location equals 4 mT.
The spacing between the magnets was measured with a caliper. The intensity was checked
with a teslameter (Naroote). A CCD camera captured the bead dynamics over 9 seconds.
Secondly, the CCD camera captured snapshots of droplets of the phantom solution at t = 9
s under a magnetic field intensity of 19 mT by reducing the magnet spacing to 15.7 cm.

8.2.2 General method

This paragraph describes the common components of the setups and the general
method that were used in the three experiments.

A circular mono-element transducer (PI-50-T2, Panametrics) with a focal distance of
19 mm and an aperture of 6.3 mm scanned the phantom solution with a motorized plat-
form. Its bandwidth spans from 11 MHz to 41 MHz with a center frequency of 26 MHz.
The transducer was excited by a Panametrics 5900 pulser/receiver unit (Olympus NDT,
Waltham, MA, USA) used with an energy setting of 32 µJ. The wave propagation direc-
tion was set to the vertical of the laboratory (i.e. Z-axis). All the following orientations
mentioned in this chapter are defined relative to this reference direction. According to the
formulas given in subsection 3.1.5 in Chapter II, the axial resolution Rax and the lateral
resolution Rlat were estimated to Rax = 26 µm and Rlat = 173 µm.

To mitigate the effect of the phantom attenuation prior to the focal point of the trans-
ducer, a low-attenuating block of agar gel was placed between the transducer and the
phantom solution. The agar-gel block was mostly composed of water and had an agar
concentration of 0.7%. The dimension of this block was chosen to position the focal point
of the transducer immediately following the interface between the agar and phantom so-
lution.

The BSC was estimated using the reference phantom method [113] with a reference
phantom composed of glass beads with a 4.5 µm diameter suspended in a gel that acous-
tically behaves like water. The volume fraction was equal to 0.011 and the density of the
glass bead was taken equal to 2.5. The Poisson coefficient was set to 0.2 and the glass
bead sound speed to 5640 m/s. The Faran model [101] is chosen to compute the theo-
retical reference BSC. The magnetic solution attenuation was estimated using a standard
substitution method [110] in each configuration to take into account potential anisotropic
effects.
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In this study the probability density function of each ROI was fitted to Nakagami and
Homodyned-K distributions. The scaling parameters Ωnak and the Nakagami parameter
αnak were obtained using a maximum-likelihood estimator. The scatterer clustering pa-
rameter µhk and the ratio of the coherent to the diffuse signal khk from the Homodyned-K
distribution were obtained using the XU estimator [122]. The physical interpretation of
each parameter is detailed in the subsection 8.2.6.

8.2.3 Horizontal time experiment

The first experiment investigates the QUS parameter variations when the chains of
beads are horizontal (i.e. normal to the ultrasound propagation direction, Figure 8.2,
a). This experiment is referred to as the horizontal time experiment and is described in
Figure 8.3. The phantom solution was gently manually stirred prior to data acquisition.
In the first three seconds, the magnetic beads were randomly located, as no surrounding
magnetic field was applied. To create a homogeneous horizontal stationary magnetic field,
the two permanent magnets were placed across the phantom solution at t = 3 s, similarly
to what is done in the time light microscopy experiment. The distance between the two
permanent magnets was set such that the magnetic field intensity at the phantom location
was equal to 4 mT.

In this experiment, the single-element transducer scanned the same phantom position
along the direction of the magnetic field, therefore generating a 2D scan every second.
QUS parameters were then extracted for each 2D scan from a ROI with dimensions equal
to 15.6λ and 116λ in the axial and the lateral direction respectively. The width of the ROI
was taken as large as the lateral displacement of the transducer to increase the robustness
of the corresponding estimates, given that the sample was a phantom that could exhibit
limited heterogeneities. The horizontal time experiment was repeated six times (i.e. 6
independent data points for each second). Between the experiments, the phantom was
stirred in the absence of a surrounding magnetic field to redistribute the beads in their
initial random spatial distribution. The last measurements occurred 6 seconds after the
magnets were placed.

8.2.4 Horizontal steady-state experiment

The second experiment also investigates the QUS parameter variations when the chains
of beads are horizontal (Figure 8.2). This experiment is referred to as the horizontal steady-
state experiment and necessitates the same experimental setup as in the horizontal time
experience (Figure 8.3, a). The magnets were placed across the phantom and the 1D
scan along the Y-axis occurs 6 seconds after the placement of the magnets. Six magnetic
field intensities were obtained by varying the spacing between the two magnets. QUS
parameters were then extracted for each scan from a ROI with dimensions equal to 15.6λ

and 196λ in the axial and the lateral direction respectively. This experiment was repeated
10 times (i.e. 10 independent data points per intensity). Similarly, the phantom solution
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Figure 8.3: Horizontal configuration. (a) Picture of the experimental setup. (b) Ex-
planatory scheme. N and S stand for the north and the south poles respectively. This
configuration was used in the horizontal time and the horizontal steady-state experiment.

was stirred between the different acquisitions.

8.2.5 Vertical steady-state experiment

Coil

The third experiment studies the QUS parameter variations when the chains are verti-
cal (Figure 8.2, b). This experiment is referred to as the vertical steady-state experiment
and is described in Figure 8.4. The phantom solution was placed in a coil that generated
a homogeneous stationary vertical magnetic field when it carried a continuous current I.
The coil was specifically designed for this experiment and had 55 spires. The coil’s length
is 13 cm and its inner diameter is 4 cm. The coil was put in series with a 24 V power supply
and an adjustable resistance that can reach a few ohms (down to 0.1 Ohm). The resistor
used is suitable for high-power applications (up to 300 W). As the resistance decreases,
both the current and magnetic field intensity increase. A 1D scan along the Y-axis was
acquired 6 seconds after the power supply was turned on. Four different magnetic field
intensities were obtained by varying the current intensity I from 7.2 A to 34.6 A. This
experiment was repeated 3 times (i.e. 3 independent 1D scans per intensity). Similarly,
the phantom solution was stirred between the acquisitions.

To obtain more estimates than the number of scans, QUS parameters were then ex-
tracted from ROIs that were 15.6λ long in the axial direction and 17λ long in the lateral
direction with an overlapping equal to 50%. As a result, 39 data points were obtained
for each magnetic field intensity for each parameter. The choice of working with smaller
ROIs in the lateral direction results from the lower number of 2D scans obtained for this
experiment.
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Figure 8.4: Vertical configuration. (a) Picture of the experimental setup. The power
supply (1) is in series with the coil (2) and the adjustable resistor (3). A voltmeter (4) in
parallel to the resistor measures the intensity I that flows through the coil. A thermometer
checks the temperature to avoid overheating. The phantom solution (6) is placed inside
the coil when the transducer (7) performs a 1D scan. (b) Explanatory scheme of the coil.
N and S stand for the north and the south poles respectively. This configuration was used
in the vertical steady-state experiment.

.

8.2.6 Physical interpretations and predictions of QUS parameters

Based on the physical meaning of QUS parameters reported in the literature, prelim-
inary predictions regarding their responses to an increasing magnetic field can be formu-
lated, assuming that the beads follow the theoretical dynamics mentioned in the previous
subsection. The physical interpretation of each QUS parameter is revisited below in the
framework of this study. Predictions of their variations within an increasing magnetic field
intensity are also given.

The coherent-to-diffuse signal ratio

The khk coefficient reflects the structure in the probed media. This can be seen as the
degree of the scatterer’s spatial arrangement. Considering the transition of beads from
a random distribution to a highly organized pattern, it is reasonable to anticipate that
the coherent-to-diffuse signal ratio khk will exhibit an increase with rising magnetic field
intensity.
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The Nakagami parameter and the scatterer clustering parameters

The envelope-related coefficients αnak and µhk can reflect the number of scatterers
per resolution cell (i.e. the scatterer density) to a certain extent. In a simulation and a
phantom study, Cristea et al. [44] reported a monotonic increase of αnak and µhk as the
number of scatterers per resolution cell increases up to 40 at 22 MHz. These estimates and
the scatterer density were no longer correlated beyond this limit. Simulations revealed that
the scatterer clustering parameters µhk were more sensitive than the Nakagami parameter
αnak to the scatterer number density after it reaches 10 scatterers per resolution cell.
Given the bead concentration and the volume of the resolution cell reported in this study,
the number of scatterers per resolution cell was estimated to equal 32 at 26 MHz. Hence,
the estimations of αnak and µhk are expected to correlate with the density of scatterers,
with µhk exhibiting a higher sensitivity.

The slope

The slopes of the BSCs are not expected to vary with the magnetic field. Firstly, the
coherent backscattering signals may not affect this parameter. Indeed, the sharp periodic
peaks in the structure factor could decrease the goodness of the linear fit but they should
have a limited impact on the general trend of the BSCs, making their slope potentially
unaffected. Secondly, the shape of the incoherent BSC may also be constant under a vary-
ing magnetic field. Indeed, the slope can be correlated to the effective scatterer diameter
(ESD) to a certain extent [28]. Given that the maximum frequency of the transducer is
sufficiently high (ka = 0.84 at 40 MHz), the ESD could potentially represent the bead
diameter which remains unchanged as the magnetic field intensity increases, making the
slope unaffected as well.

The intercept and the scaling parameter

The intercept and the scaling parameter Ωnak, which represents the mean backscat-
tered intensity [167], could also reflect the incoherent BSC signals. Indeed, the coherent
signal may not notably impact the overall BSC trend nor the envelope amplitude through
constructive and destructive interferences. The incoherent BSCs linearly increase with the
scatterer density. However, predicting the evolution of the scatterer density in the hori-
zontal and the vertical configuration is not straightforward. Assuming that the resolution
cell continues to populate or depopulate as the chains form, a monotonic trend in the
intercept and Ωnak could only be expected as the magnetic field intensity increases.
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8.3 Results

The results of each experiment are described in this section. First, light microscopy
measurements are described. Second the variations of QUS parameters versus time are
presented. Then, the effect of the magnetic field intensity is analyzed in the configurations
of a horizontal and a vertical magnetic field.

Light microscopy measurements

Four successive microphotographs are shown at different times in Figure 8.5: with no
magnetic field (a), one second after the placement of the magnets (b), two seconds after
(c), and 6 seconds after (d). The magnetic field intensity equals 4 mT for these images. At
t = 2 s, the suspended beads are motionless and behave like normal microspheres without
specific interaction. One second after the placement of the magnets, the chain formation
can be observed along the direction of the magnetic field. A repulsive distance of about
two times the bead diameter can be observed along the X-axis. The beads move until
t = 5 s. At this time, longer and more distant chains appear in comparison to what can
be observed at t = 4 s. The beads have reached their final positions or exhibit limited
displacements after t = 5 s.

The microphotograph of magnetic beads at t = 9 s under a 19 mT magnetic field
(Figure 8.5, e) reveals the existence of chains that are longer along the Y-axis and more
distant along the X-axis in comparison to the chains observed in (d) for 4 mT at the same
time.

8.3.1 Horizontal time experiment

Spectral analysis

Similar to the previous chapter, in all the boxplots, the box displays the median as its
central mark, while its lower and upper boundaries represent the 25th and 75th percentiles,
denoted q1 and q3 respectively. The continuous line connects the medians. The whiskers
extend to the most extreme non-outlier data points. Data points are considered as outliers
if they fall outside the range [q1 − 3/2(q3 − q1), q3 + 3/2(q3 − q1)]. Outliers are individually
depicted using circular symbols.

Two Lizzi-Feleppa (LF) parameters were computed from each BSC estimation: the
slope and the intercept (Figure 8.6 (a) and (b) respectively). The magnets are placed
around the phantom solution at the time t = 3 s such as the magnetic field intensity
equals 4 mT. The slope slightly increases when the magnets are placed. A quick decay
is then observed at t = 5 s before stabilizing around relatively low slope values. The
intercept shows a continuous increase from t = 3 s to t = 6 s and then reaches a plateau.
The goodness of fit R2 is shown in Figure 8.6 (c). The same fitting quality is reported for
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Figure 8.5: Microphotographs of superparamagnetic beads captured with no magnetic
field (a), one second after the placement of the magnets (b), 2 seconds after (c) and 6
seconds after (d). The magnetic field intensity equals 4 mT. Images (a),(b), (c) and (d)
were acquired successively. Image (e) represents the magnetic beads 6 seconds after the
placement of the magnets with a magnetic field intensity equal to 19 mT.

each time (approximately R2
LF = 0.95).
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Figure 8.6: Horizontal time experiment results. The first row shows the Lizzi-Feleppa
parameters versus time, the second row shows the Nakagami parameters and the third
row the Homodyned-K parameters. No magnetic fields were present between t = 0 and
t = 2 s. Bold time values indicate times where the magnetic field equals 4 mT. (a) BSC
slope (b) BSC intercept. (c) Goodness of the BSC linear fit. (d) Nakagami parameters
αnak. (e) Scaling factors Ωnak. (f) The goodness of fit R2

nak for Nakagami distributions.
(g) Scatterer clustering parameter µhk. (h) Coherent to diffuse signal ratio khk. (i) The
goodness of fit R2

hk for Homodyned-K distributions. The coefficients αnak, Ωnak and µhk

underwent compression using a base-10 logarithm due to their extensive value range.

Envelope analysis

The envelope parameters are shown in the last two rows of Figure 8.6. The second row
shows the Nakagami parameters and the third row displays the Homodyned-K parameters.
The scaling parameters Ωnak, the Nakagami parameters αnak and the scatterer clustering
parameter µnak underwent compression using a base-10 logarithm due to their extensive
value range. The Nakagami parameters αnak show a quick relative increase when the
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magnets are placed around the phantom solution (Figure 8.6, d). The coefficient αnak

immediately decreases at t = 5 s and stabilizes afterward. The scaling parameter Ωnak

exhibits an increase when the magnets are placed (Figure 8.6, e) before reaching a plateau
at t = 5 s.

Figure 8.6 (g) shows the variation of the scatterer clustering parameter µhk. The
estimations for the first three seconds show the presence of data points that have reached
the upper bound of the inversion constraint (µhk = 80). The boxes at other times show
extensive ranges of values, making their analysis also limited.

The coherent-to-diffuse signal-to-noise ratio khk increases when the magnets are placed
around the phantom (Figure 8.6, h), followed by a fast decay at t = 5 s. The coefficients
khk then stabilize until t = 8 s.

The goodness of fits of the Nakagami and the Homodyned-K distributions show similar
trends (Figure 8.6, f, i). The R2 coefficients without the magnetic fields (i.e. the first
three seconds) exhibit lower values and a broader range in comparison to the other fits.
Specifically, the very first measurements at t = 0 s led to the poorest quality of fits.

8.3.2 Horizontal steady-state experiment

Spectral analysis

Similarly to the previous experience, the slope and the intercept were extracted fol-
lowing the Lizzi-Feleppa approach on each BSC estimation (Figure 8.7 (a) and (b) respec-
tively). The slope decreases until 15 mT and exhibits a plateau after. The intercept shows
a continuous increase up to 15 mT and also presents a plateau after. The goodness of
fit R2 is shown in Figure 8.7 (c). The same fitting quality is reported for each intensity
(approximately R2

LF = 0.94).

Envelope analysis

The envelope parameters are shown in Figure 8.7. The Nakagami parameter αnak

decreases as ∥B⃗∥ increases (Figure 8.7, d). The scaling parameter Ωnak exhibits an increase
for the first four magnetic field intensities (Figure 8.6, e). The coefficient Ωnak reaches a
plateau at 15 mT.

Figure 8.7 (g) shows the variation of the scatterer clustering parameter µhk. The
estimations for the first three magnetic field intensities show the presence of data points
that have reached the upper bound of the inversion constraint. A decrease is observed
from after ∥B⃗∥ = 8 mT.

The coherent-to-diffuse signal-to-noise ratio khk slightly decreases up to 11 mT and
exhibits a fast decay at 15 mT (Figure 8.7, h ). The coefficient khk reaches near-zero
values and stabilizes afterward.

The goodness of fits of the Nakagami and the Homodyned-K distributions show similar
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Figure 8.7: Horizontal steady-state experiment results. The first row shows the Lizzi-
Feleppa parameters versus magnetic field intensity, the second row shows the Nakagami
parameters and the third row the Homodyned-K parameters. (a) BSC slope (b) BSC
intercept. (c) Goodness of the BSC linear fit. (d) Nakagami parameters αnak. (e) Scaling
factors Ωnak. (f) The goodness of fit R2

nak for Nakagami distributions. (g) Scatterer
clustering parameter µhk. (h) Coherent to diffuse signal ratio khk. (i) The goodness of
fit R2

hk for Homodyned-K distributions. The coefficients αnak, Ωnak and µhk underwent
compression using a base-10 logarithm due to their extensive value range.

trends (Figure 8.7, f, i): the R2 coefficients are about R2 = 0.98.

8.3.3 Vertical steady-state experiment

Spectral analysis

The slope and the intercept were extracted following the same procedure as in the
previous experiences (Figure 8.8 (a) and (b) respectively). The slope increases with the
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magnetic field intensity except for ∥B⃗∥ = 8 mT, where a drop can be observed. The
intercept decreases except for ∥B⃗∥ = 8 mT. The goodness of fit R2 is shown in Figure 8.8
(c). The R2

LF coefficients for ∥B⃗∥ = 8 mT exhibit lower values in comparison to the other
fits (about R2

LF = 0.86 versus R2
LF = 0.92).

Figure 8.8: Vertical steady-state experiment results. The first row shows the Lizzi-Feleppa
parameters versus magnetic field intensity, the second row shows the Nakagami parameters
and the third row the Homodyned-K parameters. (a) BSC slope (b) BSC intercept. (c)
Goodness of the BSC linear fit. (d) Nakagami parameters αnak. (e) Scaling factors Ωnak.
(f) The goodness of fit R2

nak for Nakagami distributions. (g) Scatterer clustering parameter
µhk. (h) Coherent to diffuse signal ratio khk. (i) The goodness of fit R2

hk for Homodyned-K
distributions. The coefficients αnak, Ωnak and µhk underwent compression using a base-10
logarithm due to their extensive value range.
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Envelope analysis

The envelope parameters are shown in Figure 8.8. The Nakagami parameter αnak

tends to decrease with the vertical magnetic field intensity (Figure 8.8, d). The scaling
parameter Ωnak exhibits a decrease as ∥B⃗∥ increases except for = 8 mT (Figure 8.8, e).

Figure 8.8 (g) shows the variation of the scatterer clustering parameter µhk. The
estimations with no magnetic field show the presence of data points that have reached the
upper bound of the inversion constraint. The same trends as described for the Nakagami
parameter αnak can be observed. However, the relative variations between estimates are
greater in this case. The coherent-to-diffuse ratio khk shows a broad range of values for
each magnitude of the vector field ∥B⃗∥ (Figure 8.8, g). As a result, no clear trend can be
identified.

The goodness of fits of the Nakagami and the Homodyned-K distributions show similar
trends (Figure 8.8, f, i) and approximately equal R2 = 0.99.

8.4 Discussion

This study aims to investigate and combine the physical interpretations of QUS param-
eters experimentally by introducing a new phantom method. This approach takes benefits
from the spatial arrangement of superparamagnetic beads when a surrounding magnetic
field is applied to isolate the effects of the coherent scattering signals.

To do so, BSC-related and envelope parameters were estimated in a phantom solu-
tion composed of superparamagnetic beads in different magnetic field configurations. The
magnetic field intensity was varied over time, strength and orientation in three distinct
experiments.

Firstly, in the horizontal time experiment, the magnetic field was horizontal (Y-axis)
and induced by the placement of two solid magnets across the phantom solution. The
beads were instantaneously exposed to a 4 mT magnetic field. The orientation of the
chains was normal to the ultrasound wave propagation (Z-axis). Secondly, the horizontal
steady-state experiment also studied the QUS parameter variations in a horizontal mag-
netic field. This experiment probed the steady state of the horizontally aligned beads for
different magnetic field intensities. Thirdly, in the vertical steady-state experiment, the
phantom was placed in a vertical coil that generated a magnetic field. The magnetic field
was parallel to the ultrasound wave propagation. This experiment probed the steady state
of the vertically aligned beads for different magnetic field intensities.

8.4.1 Actual beads dynamics and QUS parameter variations

The observed bead dynamics and the QUS estimate variations are related to previous
predictions (subsection 8.2.6). The actual bead dynamics and the physical meaning of
each parameter are discussed in the light of the three experiments.

166 Cyril Malinet



8.4. DISCUSSION

Bead dynamics

The microphotographs captured at different times revealed the existence of a 2-second
transitional regime when the beads are instantaneously exposed to a magnetic field. In
this first regime, the beads are moving and organizing themselves into chains. Then, the
establishment of a steady state was observed, characterized by nearly immobile beads.
In this permanent state, the spatial pattern drawn by the beads does not correspond to
the ideal long equidistant chains that were initially expected since discontinuous chains of
variable length appear.

The coherent-to-diffuse ratio

The coherent-to-diffuse ratio khk shows an increase during the transitional regime in
the horizontal time experiment (Figure 8.6, h), probably reflecting the increasing degree of
structure inside the phantom solution. In the scalar approximation where the scattering
is restricted to the Z-axis, the coherent signal could emanate from the periodicity of the
spatial positions of the short chains, resulting from a regular repulsive distance. Inter-
estingly, this hypothesis is supported by the microphotograph at t = 4 s (Figure 8.5, b)
where repulsive distances about two times the bead diameter can be observed. As the
beads transition into the steady state, a decrease in the coherent-to-diffuse ratio khk was
reported. To explain this phenomenon, a hypothesis is formulated below, in the light of
the horizontal steady-state experiment.

In the horizontal steady state experiment, the coherent-to-diffuse ratio khk exhibit a
slight decrease as the magnetic field increases and show a striking drop to near-zero values
after 15 mT (Figure 8.7, h). This could be explained by the chain depopulation for a given
resolution cell. Indeed, in a 2D approximation, the resolution cells is a rectangle that is
about 26 µm along the Z axis, and 173 µm along the lateral direction. In the experiment
of the QUS estimates varying over time and horizontal magnetic intensity, the chains are
horizontal. Thus, a given resolution cell could encompass a single chain at maximum if
the repulsive distance is greater than 26 µm (Figure 8.9, a). Interestingly, the steady-state
microphotograph at 19 mT (Figure 8.5, e) supports this hypothesis by showing repulsive
distances higher than 26 µm. As a result, in a scalar approximation where the scatter-
ing is strictly limited to occur along the Z axis, the large scatterers exhibit the same
spatial positions along the Z axis and are therefore unable to generate interferences be-
cause of periodic spacings in this direction. In brief, only incoherent backscattering signals
could emanate from an isolated horizontal chain in this configuration. Consequently, the
coherent-to-diffuse ratio khk could exhibit an important decrease as the repulsive distances
exceed the height of the resolution cell.

This hypothesis could also be applied to explain the steady-state decrease in khk men-
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Figure 8.9: 2D geometrical considerations. (a) Horizontal configurations. As the repulsive
distances exceed the height of the resolution cell, the resolution cell may encompass one
chain at maximum. (b) Vertical configuration. As the distance between the chains exceeds
a critical repulsive distance (173/5 = 34.6 µm), the number of beads per resolution at
maximum could not be greater than the one in the horizontal configuration. In both
schemes, the scaling is maintained.

tioned in the first paragraph, in the time experience. Interestingly, the repulsive distances
increase as a function of the time for a given magnetic field intensity, as revealed by the
microphotographs at t = 4 s and t = 9 s (Figure 8.5, b and d). As the chains depopulate
the resolution cell, incoherent scattering could become predominant, thus justifying the
time variations of khk.

In the vertical steady-state experiment, a broad range of khk values was observed for
each magnitude of the vector field ∥B⃗∥ (Figure 8.8, h). This variability in data distribution
complicates the analysis of its evolution. However, no increase can be observed as it was
predicted. This result could show that the scalar approximation in which the scattering is
restricted to the Z-axis may be limited in this vertical configuration. Indeed, a coherent
signal emanating from the periodic spacing (i.e. one bead diameter) of the microspheres
along the Z-axis was expected. Incoherent competing scattering signals originating from
other directions may attenuate this coherent component, therefore preventing a frank in-
crease in the coherent-to-diffuse signal ratio khk.

In summary, in the horizontal configurations, the effects of regular repulsive distances
could be reported in the transitional regime only. The steady states potentially showed that
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the resolution cells tend to encompass individual chains, making the incoherent scattering
predominant in this regime. Under these hypotheses that are supported by micropho-
tographs, the coherent-to-diffuse signal ratio accurately reflected the spatial organization
of the scatterers.

The Nakagami and the scatterer clustering parameters

In the horizontal time experiment, the Nakagami parameter αnak exhibits an increase
during the transitional regime (Figure 8.6 ,d), probably indicating an increasing number
of scatterers per resolution cell and the early chain formations. However, the Nakagami
parameter αnak subsequently decreases and reaches a level lower than that observed at the
beginning, suggesting a lower number of scatterers per the resolution cell. To justify this
observation, we can hypothesize that the contiguous microspheres act as larger scatterers
in the steady state. In other words, the scattering of beads from the same chain could be
modeled by chains of grouped beads. As a result, the effective scatterer number density
would decrease while the actual bead number density would remain mostly unchanged.
This hypothesis could justify the observed decrease in the Nakagami parameter αnak. If
the previous assertion is true, this phenomenon is also expected to manifest as changes in
the effective scatterer diameters (ESD). Interestingly, this hypothesis is supported by the
observed slope variations, which can be correlated to the ESD. Indeed, the slope showed
an important decrease as the beads transitioned into their steady state (Figure 8.6, a),
probably indicating a notable change in the ESD values.

In the horizontal steady-state experiment, the Nakagami parameter αnak decreases
(Figure 8.7, d) with an increasing magnetic field. Similarly, the scatterer clustering pa-
rameter µhk variations follow the same trend for the three strongest magnetic intensities
(Figure 8.7, g). Interestingly, this could be explained following the same hypothesis men-
tioned above: the effective scatterers are larger but fewer for a given resolution cell. Indeed,
the microphotographs at ∥B⃗∥ = 4 mT and ∥B⃗∥ = 19 mT (Figure 8.5, d, e) show that
longer chains appear when ∥B⃗∥ increases. As a result, the short chains that potentially
represent the smallest ESD may become less numerous, therefore increasing the ESD val-
ues. Similarly to what was observed before, the decrease in the slopes reported in the
horizontal steady-state experiments may also support this assumption.

In the vertical steady state experiment, the Nakagami parameter αnak and the scat-
terer clustering parameter µhk decrease (Figure 8.8, d, g) with an increasing magnetic
field. However, the slope increases as the magnetic field increases, therefore exhibiting
an opposite trend to the ones previously observed. Since we assumed that the previous
decreases in slope values reflected an increase in the ESD values, the slight increase re-
ported here cannot support the same conclusion regarding the ESD values. Thus, the
hypothesis of larger but fewer scatterers per resolution cell cannot be made here. Alter-
natively, this phenomenon could be explained by the scatterer (i.e. bead) depopulation
within a given resolution cell due to the repulsive distances between the chains. In this
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experiment, a given resolution cell "sees" fragments (i.e. 3 magnetic beads at maximum)
of parallel vertical chains, as opposed to the horizontal configurations, where a resolution
cell can encompass longer horizontal chains (17 magnetic beads at maximum). Figure 8.9
(b) illustrates these geometrical considerations in a 2D approximation. Given that 3 beads
per chain are included in the resolution cell, the number of beads per resolution cell at
maximum cannot be greater than the one in the horizontal configuration if the distance
between the chains exceeds the critical repulsive distance of 173/5 = 34.6 µm. Indeed,
3 × 5 = 15 beads at maximum would be encompassed in a 2D resolution cell in the ver-
tical configuration for this specific repulsive distance. The number of beads at maximum
then decreases as the repulsive distance increases. Interestingly, the microphotograph of
magnetic beads at t = 9 s under 4 mT magnetic field intensity (Figure 8.5, d) reveals
the presence of repulsive distances higher than 30 µm. The repulsive distances are likely
to increase as the magnetic field intensity increases given the higher spacings observed in
the microphotograph at 19 mT (Figure 8.5, e). Thus, the critical repulsive distance may
be exceeded as ∥B⃗∥ exceeds 4 mT. In brief, in this vertical configuration, the scatterer
depopulation due the the bead alignment may be more pronounced as the magnetic field
increases above a certain threshold, in comparison to the horizontal configurations.

In summary, the beads aligned within one horizontal chain could act as larger but less
numerous scatterers in comparison to individual beads randomly located. In the verti-
cal configuration, the beads could depopulate a given resolution cell by forming distant
vertical chains. Under these hypotheses supported by microphotographs and geometri-
cal considerations, the estimated Nakagami parameters αnak and the scatterer clustering
parameters µhk effectively described the scatterer number density.

The intercept and the scaling parameters

In the horizontal time experiment, the observed increases in the intercepts and the
scaling parameters Ωnak (Figure 8.6, b, e) could potentially reflect an increase in the inco-
herent BSC since the coherent signals vanish in the steady state. The incoherent BSC is
defined as the product of the scatterer number density with the differential backscattering
cross-section σb. To explain the increase in the incoherent BSC, the increasing scatterer
density due to contiguous beads could have been a plausible hypothesis. However, the
variations in the Nakagami and the clustering parameters mentioned previously showed
the opposite phenomenon. Alternatively, the increase in the incoherent BSC could be
explained by the increase in the effective differential backscattering cross-section σb. In-
deed, when the beads are aligned, the effective scatterers are likely to exhibit a strong
geometrical anisotropy. Specifically, in this horizontal configuration, the effective scatter-
ing cross-sections could reflect the numerous contiguous beads from the same chain. Thus,
we hypothesize that the effects of the increasing differential backscattering cross-section
are predominant and overcompensate for the scatterer depopulation for a given resolution
cell.
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In the horizontal steady-state experiment, the intercept and the scaling parameter
Ωnak increase as the magnetic field intensity increases (Figure 8.7, b, e). Similarly, this
phenomenon could reflect an increase in the incoherent BSC since the coherent signals
vanish in the steady state. As detailed in the previous paragraph, the effective differen-
tial backscattering cross-section may be higher when the beads are horizontally aligned in
comparison to when the beads are randomly located.

Interestingly, the Ωnak and the intercept continuously increased as the magnetic field
intensity increased. However, horizontal chains were already observed in the steady state
for a low magnetic field intensity (Figure 8.5, d). Thus, the previous hypothesis may be in-
sufficient to justify this observation. An additional mechanism could justify the continuous
increase in the incoherent BSC when the beads are already aligned horizontally. To under-
stand this phenomenon, we can hypothesize that the magnetic cohesion among the beads
from the same chain could also contribute to the increases in the differential backscattering
cross-section. In other words, the magnetic forces that maintain the scatterer’s position
in the steady state may increase the backscattering signal when the scatterer faces a dis-
turbance (i.e. an incident wave). We hypothesize that this effect could manifest as an
increase in the relative impedance contrast γz.

One should note that the increase in the effective scattering cross section due to the
horizontal geometrical alignment and the increase in the effective relative impedance con-
trast could be concomitant. Similarly, we infer that the resulting increase in the incoherent
BSC overcompensates for the scatterer depopulation in this experiment.

In the vertical steady-state experiment, the scaling parameter Ωnak decreases as the
magnetic field increases (Figure 8.8, e). The intercept denoted a decrease between extreme
magnetic field intensity values (Figure 8.8, b). The hypothesis formulated above to justify
the variations of the Nakagami parameters in the vertical configuration could be applied
here. In this case, the intercept and Ωnak would then reflect the decrease in the incoherent
BSC and more specifically the scatterer depopulation within a given resolution cell. The
increase in the effective relative impedance contrast due to the magnetic cohesion of the
beads within one chain may also be present. However, this mechanism could manifest mi-
nor effects in comparison. Indeed, both the Nakagami parameters αnak and the scatterer
clustering parameter µkh exhibit a stronger decay at 11 mT in the vertical steady-state
experiment in comparison to one observed in the horizontal steady-state experiment. This
observation may suggest a more pronounced scatterer depopulation.

In summary, in the horizontal configuration, the intercept and the scaling parameters
could reflect the variations in the incoherent BSC and more specifically the increase in the
effective differential backscattering cross-section. The horizontal time experiment showed
that the geometrical horizontal alignment of the beads may contribute to this effect while
the horizontal steady-state experiment potentially revealed the existence of a magnetic
cohesion that could impact the effective relative impedance contrast. The vertical steady-
state experiment may have shown a stronger scatterer depopulation when the beads are
aligned vertically in comparison to horizontal chains.
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8.4.2 Limitations

This study presents some limitations that are discussed below:
Firstly, the microphotographs depicted the two-dimensional dynamics of the beads,

as they were in motion within a droplet of solution applied to a microscope slide. As a
result, the 3D bead dynamics may not have been fully captured. As an approximation,
the microphotographs served as references to assume the scatterer’s behavior in 3D. Thus,
the QUS estimates may have reflected mechanisms that were not observed under the mi-
croscope and that could have been omitted as a result.

Secondly, the scattering was reduced to occur along the vertical axis as part of a
scalar approximation in some of the physical interpretations suggested. This assump-
tion may have oversimplified the vectorial nature of scattering, specifically in the vertical
steady-state experiment where the expected coherent signal was not observed. A vectorial
simulation tool could be developed to overcome these limitations.

Thirdly, the fast mechanical displacement of the mono-element transducer may have
impacted the bead spatial organization and could have affected the bead scattering as a
result. The beads exhibited a slow uniform vertical movement that resembles sedimen-
tation (typically after 10 s) because the magnetic fields were not perfectly homogeneous.
Therefore, the scanning speed was set to an in-between to allow gentle displacement that
mitigates the effect of magnetic field heterogeneities. The use of a multi-element probe
may overcome these limitations.

Fourthly, the strict applicability of the Born approximation for the superparamagnetic
beads could be further investigated. For instance, the impact of potential multiple scatter-
ing effects could be assessed by repeating the estimation of QUS parameters within ROIs
of increasing sizes in both axial and lateral directions. This procedure would be equivalent
to varying the duration of the time gating window. If multiple scattering can be safely dis-
regarded, the QUS estimates should exhibit minimal fluctuations. Conversely, significant
variations in the QUS estimates could suggest addressing the effects of multiple scatter-
ing. However, this solution is not straightforward to implement due to the concomitant
impact of acoustic attenuation over the QUS estimates. To mitigate the potential effects
of multiple scattering, one approach could be to increase the mass density and the sound
speed of the surrounding medium, effectively reducing the relative impedance contrast. In
practice, this could be achieved by adding glycerol to the aqueous solution containing the
beads. However, one could note that this may impact the dynamics of the beads due to
changes in viscosity.

8.5 Conclusions

8.5.1 Conclusion

In conclusion, the Nakagami parameter and the coherent-to-diffuse signal ratio showed
variations in agreement with the theoretical predictions in the transitional regime, there-
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fore confirming their physical interpretation reported in the literature. The steady state of
the magnetic beads revealed actual spatial patterns that differed from what was initially
expected. However, hypotheses supported by reference microphotographs were formulated
to describe the variations of each quantitative estimate according to their physical inter-
pretation in the distinct configurations. One could note that the different hypotheses are
concordant. Consequently, we successfully combined the physical interpretations of multi-
ple envelope and spectral parameters by analyzing a magnetic media over time, magnetic
field strength and structural orientation. The meaning of each QUS parameter was vali-
dated in the framework of this study.

8.5.2 Perspectives

Geometrical considerations involving the beads and the resolution cell also supported
our understanding of the observed changes in some QUS parameters. These considerations
could be confirmed by changing the transducer geometry or the center frequency to modify
the geometry of the resolution cell.

To our knowledge, no quantitative ultrasound study has previously leveraged the prop-
erties of superparamagnetic beads to analyze the ultrasound coherent scattering. We be-
lieve that this work paves the way toward a novel type of phantom study. This approach
could be of prime interest to validate theoretical scattering models in structured media.
Additionally, it is noteworthy that the magnetic components are inexpensive and widely
available (e.g. magnets or coil), therefore making our setup easily reproducible.

This study was limited to a uniform magnetic field. However, one could note that
numerous magnetic field patterns could be achieved using different magnet configurations
(c.f. Halbach arrays). As a result, a great variety of scatterer spatial organization could
be obtained, therefore showing that any specific type of structure could be studied. Thus,
this approach could be adapted to different applications.
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Chapter 9

Conclusions

9.1 Conclusion

This thesis aimed to investigate a bimodal approach for cancer characterization. To
illustrate the complementarities between ultrasound and optical techniques, we selected
four promising methods associated with recent successful applications for characterizing
cancerous tissues. To our knowledge, combining these techniques on the same sample had
not been investigated before.

First, BSC parametrization and EBS were combined to characterize three tissue-
mimicking phantoms, that were designed to obtain realistic ultrasound and optical scatter-
ing properties. This study served as a preliminary validation of the experimental protocol
carried out for each method. Our bimodal approach was then applied with ES and LSS
to two bone tumor types from animal models. The ultrasound and the optical signatures
of each tumor subtype revealed significant differences, allowing their discrimination. The
cell and the nucleus size distributions were successfully estimated for the two types of sar-
comas. A follow-up study was conducted to assess the sensitivity of our bimodal approach
in identifying non-responsive bone tumors during chemotherapy treatment. Certain scat-
tering parameters appeared sensitive to the effects of drug injections. The time evolution
of scattering parameters may have reflected the mechanisms of chemotherapy resistance.
Finally, a new type of phantom study was introduced for analyzing the structural effects
on ultrasound scattering. QUS parameters were estimated on superparamagnetic beads
suspended in water by varying the magnetic field intensity over time and magnitude. This
study aimed to unify the physical interpretation of ultrasound scattering parameters.

Our bimodal approach has proved its worth in:
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• Applications with relative considerations. In Chapter 6, the chondrosarcoma and os-
teosarcoma tumors exhibited significant differences in their reflectance profiles and
in their QUS parameters. These results were in line with the frank differences in the
microarchitecture revealed by the histological slices. Interestingly, pronounced con-
trasts were also found within the two types of osteosarcoma cell lines that were used,
despite their similar microstructures observed in the histological slices. In Chapter
7, multiple significant differences were identified in the QUS parameters between
control and treated tumors at different times during the course of the chemotherapy
treatment. Notable contrasts at other times were observed in the EBS and the LSS
spectra for the chondrosarcomas. In this study, histological analyses did not reveal
microarchitectural differences between the control and the treated tumors.
Consequently, our bimodal method identified differences in the ultrasound and op-
tical signatures in two distinct populations of samples. These results were based
on quantitative estimates which do not carry a straightforward physical meaning.
Thus, the absolute value of the scattering parameters was not of prime interest. Our
bimodal approach has also the power to shed the light on differences between tissue
samples where conventional histological examinations do not reveal specific contrast.

• Applications where absolute values matter. In Chapter 5, the tissue-mimicking phan-
toms were composed of microspheres of different sizes. This forward study showed
good agreement with the expected theoretical scattering models and experimental
data. EBS performed well for one phantom while BSC parametrization led to a
better discrimination for the other two phantoms. This result paved the way for
the size estimation of cellular components using biological samples through inver-
sion procedures. In Chapter 6, the cell size and the nucleus size of chondrosarcomas
were successfully estimated by the BSC theoretical models. The nucleus sizes of
chondrosarcomas and osteosarcomas were successfully extracted using LSS, there-
fore validating and completing the size characterization provided by the ultrasound
approach. The cell size distribution estimated by LSS allowed to quantify the part
of cell and nucleus scattering. Interestingly, these estimations reflected the portion
of the extracellular matrix in the two tumor types.

All the results reported in this thesis illustrate experimentally the complementarity of
ultrasound and light scattering. Combining these modalities provided diverse sources of
contrast along with physically meaningful estimates, leading to a comprehensive assess-
ment of tissue microstructure. Therefore, we can conclude that the association of QUS and
light backscattering techniques is valuable for cancer characterization. Promising results
could be obtained in future studies.

176 Cyril Malinet



9.2. PERSPECTIVES

9.2 Perspectives

Before reaching the clinics, the benchtop setup designed in this study would need to
be integrated into a portable device, combining an ultrasound transducer and fiber optics.
The probes used for photo-acoustic applications can typically integrate those two com-
ponents and may present an interesting starting solution to which collection fibers and
polarizers could be added for light detection. Similarly, an integrated system compatible
with commercialized endoscopes would allow a broad range of applications, as what was
designed by Qiu et al. [9] for conducting LSS in the esophagus. One could note that a
benchtop version of the setup may still serve as a medical research tool, therefore allowing
ex vivo studies, as discussed in the conclusion of Chapter 7.

Once a portable tool is developed, one of the most "immediate" clinical applications
for our bimodal approach could be intra-operative margin assessment. In this context, the
primary goal is the discrimination between healthy and cancerous tissues. Clinical trials
can help validate appropriate thresholds, enabling the classification of samples based on
estimated values of specific scattering parameters. Applications where relative consider-
ations between two populations of samples need to be made are more likely to succeed
compared to the ones where the absolute values of the estimates need to be accurate. This
is primarily because assigning a meaningful physical interpretation to scattering parame-
ters is a complex task that demands dedicated research efforts for each specific application.

Additionally, some general guidelines concerning the theoretical scattering models may
be discussed.

The quantitative ultrasound community would greatly benefit from an open-source
platform for sharing programs optimized for estimating spectral and envelope parameters.
Providing these codes, along with guidelines for designing a reference phantom, is likely
to foster enhanced uniformity and wider adoption.

Additionally, the use of ultrasound scattering models in structured media such as tu-
mors should be pushed forward. Indeed, relatively few papers reported the use of the
Polydisperse II structure factor [38] with a fluid-filled form factor. Yet, this model ap-
pears as one of the most realistic scattering models in ultrasound since it takes into account
the scatterer size polydispersity that can be found in dense media such as tumors.

In biomedical optics, the Whittle-Matérn family of autocorrelation functions appears
as a versatile model that may cover a great variety of biological tissues. A. Radosevich
provided the Matlab programs to perform inversion procedures with the Whittle-Matérn
model with nearly analytical speed [85, 139]. However, relatively few papers reported the
use of this model for tissue diagnosis. Yet, this model can lead to a valuable representation
of the probed sample through the spatial variations of its refractive index. This represen-
tation carries an interesting physical meaning that may open multiple interpretations at
the biological level. Thus, this approach also deserves further investigation.

The quantitative ultrasound and the optical communities that study scattering for
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tissue diagnosis are distinct and tend to evolve independently. However, the numerous
analogies between light and ultrasound scattering should feed mutual interests. An exam-
ple is suggested below:

The Spherical Gaussian model in ultrasound considers continuous variations of the rel-
ative impedance contrast that follow a Gaussian decay where the spheres are located. To
our knowledge, other models also imply a spherical geometry but with discrete scatterers
that are represented by a discontinuous variation of acoustic impedance from the surround-
ing medium. Given the true complexity of biological tissues and the diversity of cellular
components, modeling the samples as continuous random media appears legitimate, at
high ultrasound frequencies at least. By analogy with the Whittle-Matérn model in op-
tics, one could imagine that the BSC fitting procedure with a similar model could result
in three acoustic impedance-related parameters: a characteristic length of heterogeneity
Ln, a variance σ2

n and a shape parameter D. In this case, no assumption regarding the
scatterer geometry would need to be made. By employing a bimodal approach, as outlined
in this thesis, the random representation of the variations of the acoustic impedance could
be obtained and compared to the stochastic representation of refractive index variations.
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Appendix A

Structure factor

This appendix gives additional details related to the analytical computation of the
structure factors used in the framework of BSC parametrization (c.f. section 3.2.3).

A.1 Monodiperse scatterers

In the case of hard monodisperse scatterers that are randomly distributed, the total
correlation function h(r⃗) = g(r⃗) − 1 can be computed using the equations formed by the
Ornstein-Zernike integral equation and the Percus-Yevick approximation [38, 39]. The
structure factor can then be expressed as:

S(k) = 1
1 − nC(k) (A.1)

where C(k) is the Fourier transform of the direct correlation function and can be written
as:

C(k) = −32πa3
∫ 1

0
s2 sin(4kau)

4kau
(α + βu + γu3)du (A.2)

where a is the scatterer radius, ϕ the volume faction and with

α = (1 + 2ϕ)2

(1 − ϕ)4 , β = −6ϕ(1 + ϕ/2)2

(1 − ϕ)4 , γ = ϕ(1 + 2ϕ)2

2(1 − ϕ)4 (A.3)

where u is the mathematical variable of integration.

A.2 Poydisperse scatterers

In the Polydisperse II model [38], the scatterers are polydisperse in both size and
scattering amplitude. Given that the scatterers are hard and randomly distributed, the
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corresponding structure factor can then be written:

SP II(k) = 1 +
∫∞

0
∫∞

0 S′
i(k)S′

m(k)Him(k)Dz(xi)Dz(xm)dxidxm∫∞
0 S′

m(k)Dz(xm)dxm
(A.4)

where Him(k) is a partial structure function given by Blum and Stell [168], Dz is the
probability density function of the Γ-distribution, S′

i(k) is the scattering amplitude based
on the fluid-filled sphere form factor. The full expression of SP II(k) is given in Appendix
B in Han et al. [38], who took the model from Griffith et al. [169].
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Résumé en français

B.1 Introduction et contexte

Le développement du cancer se décline en différents stades et affecte les tissus à di-
verses échelles spatiales et temporelles. À un stade précoce, des altérations morphologiques
induites, connues sous le nom de dysplasie, peuvent se produire à l’échelle cellulaire et nu-
cléaire. Au fur et à mesure que le cancer progresse, les tissus malins peuvent présenter
des cellules atypiques pouvant présenter une organisation spatiale anormale. À un stade
ultérieur, la nécrose, ou mort cellulaire, peut être observée. Ce phénomène se manifeste par
la rupture de la membrane cellulaire et la libération de débris cellulaires. Dans le cas où la
chimiothérapie est choisie comme traitement, la nécrose peut être induite par l’exposition
à l’agent anti-cancer. En effet, les médicaments chimiothérapeutiques ont pour objectif
d’inhiber la progression du cancer. Cependant, les tumeurs peuvent ne pas répondre pos-
itivement à la chimiothérapie et peuvent ainsi développer des formes de résistances. Tous
ces mécanismes liés au cancer sont sources de changements de la microstructure tissulaire,
pouvant résulter de processus complexes aux échelles génétiques et moléculaires.

En milieu clinique, la caractérisation du cancer vise à identifier les traits caractéris-
tiques du cancer mentionnés précédemment afin d’établir le diagnostic du patient. Le
diagnostic initial est établi après des examens histologiques. À ce stade, la caractérisation
du cancer implique la détermination du type de cancer et de ses principales caractéris-
tiques, telles que le grade. Le grade reflète l’agressivité de la tumeur primaire et est
attribué sur la base de différents critères, incluant la morphologie des cellules et de leur
noyau. La justesse du diagnostic est d’une importance cruciale pour l’avenir du patient.
En effet, les options de traitement sont choisies en conséquence par un panel de cliniciens.
La caractérisation du cancer peut se faire à d’autres stades en utilisant des modalités
d’imagerie conventionnelles, allant du dépistage du cancer à la surveillance continue de
l’efficacité de la thérapie. Pour ces deux applications spécifiques, la détection précoce du
cancer et la détection rapide de l’inefficacité d’un traitement sont respectivement d’une
grande importance. En effet, le temps joue un rôle essentiel dans le pronostique du patient.
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L’imagerie ultrasonore conventionnelle fournit principalement des informations ana-
tomiques par le biais d’images en niveaux de gris, appelées images B-mode. Cependant, le
diagnostic appuyé sur les images B-mode peut être sujet à des variations inter-observateurs
et intra-observateurs. Pour améliorer la reproductibilité du diagnostic, l’utilisation d’esti-
mations quantitatives est une solution pertinente. Les techniques d’échographie ultra-
sonore quantitative (QUS) visent à fournir des estimations quantifiées pouvant être util-
isées à des fins de diagnostic. En effet, des informations pertinentes concernant les mi-
crostructures du tissu sous-jacent peuvent être obtenues en analysant le contenu spectral
et les statistiques de l’enveloppe des signaux de radiofréquence (RF) utilisés pour générer
des échographies. Ces deux approches sont appelées paramétrisation du coefficient de
rétrodiffusion (BSC) et statistiques de l’enveloppe (ES). Il est intéressant de noter que
la paramétrisation du BSC et ES peuvent être effectuées sur les mêmes signaux RF. Ils
peuvent fournir différents paramètres de diffusion des ultrasons reflétant la microstructure
des tissus. En effet, les ondes ultrasonores sont diffusées si elles subissent des variations
de contraste d’impédance. Par exemple, les cellules ou les noyaux peuvent être considérés
comme des diffuseurs d’ultrasons entourés respectivement de matrice extracellulaire et de
cytoplasme. Le diamètre du diffuseur peut être estimé en effectuant une paramétrisation
du BSC sur un échantillon de tissu par exemple. Tous les changements induits par le
développement du cancer mentionnés dans le premier paragraphe peuvent avoir un impact
sur les paramètres de diffusion des ultrasons.

Il est intéressant de noter que les ondes lumineuses peuvent également être diffusées si
elles rencontrent des variations de l’indice de réfraction. De même, l’analyse spectrale de
la lumière rétrodiffusée peut conduire à des paramètres de diffusion qui contiennent des
informations sur la microstructure du tissu. La spectroscopie de rétrodiffusion augmentée
(EBS) et la spectroscopie de diffusion de la lumière (LSS) sont deux techniques optiques
qui peuvent être réalisées à l’aide d’un dispositif expérimental similaire afin de caractériser
les tissus biologiques par des estimations quantitatives. Il est intéressant de noter que LSS
peut également impliquer l’estimation du diamètre du diffuseur. Des articles récents ont
fait état d’applications réussies pour la caractérisation du cancer. Les longueurs d’onde
de la lumière visible sont environ cent fois plus petites que les longueurs d’onde des ultra-
sons utilisés pour l’imagerie médicale. Par conséquent, le processus de diffusion pourrait
provenir de différentes structures cellulaires de tailles variables, étant donné les différents
ordres de grandeur associés à chaque modalité. Ainsi, l’analyse des ondes ultrasonores et
optiques rétrodiffusées peut fournir des informations complémentaires sur la microstruc-
ture des tissus. Cette association peut potentiellement conduire à une évaluation plus
approfondie des tissus. Les travaux de recherche présentés dans cette thèse se concentrent
sur une approche bimodale motivée par cette hypothèse.

La combinaison des ultrasons et de la lumière à travers la paramétrisation du BSC,
ES, EBS et LSS offre de multiples avantages. En effet, l’association résultante peut rester:
relativement peu invasive (comparé à la biopsie), non-ionisante (lumière visible), point-
of-care (les composants nécessaires peuvent être intégrés dans un chariot), relativement
peu coûteux (par rapport à certains outils d’imagerie conventionnels tels que l’imagerie
par résonance magnétique ou la tomodensitométrie), temps réel (compatibles avec les
applications intra-opératoires)

Étant donné que les mécanismes internes de nos méthodes sondent les altérations mi-
crostructurelles qui sont des caractéristiques des tissus cancéreux, notre approche bimodale
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pourrait potentiellement être appliquée à d’autres types de cancers.
L’association de techniques ultrasonores quantitatives et de rétrodiffusion de la lumière
est motivée par toutes les raisons mentionnées ci-dessus. Cette thèse vise à investiguer
une approche bimodale pour la caractérisation du cancer.

Il est important de noter que notre objectif n’est pas de surpasser ou de remplacer
les méthodes de référence établies dans les procédures cliniques. Notre intention est de
développer les prémisses d’un outil qui pourrait aider le clinicien à la prise de décisions
en fournissant des informations complémentaires aux méthodes conventionnelles. Un outil
bimodal qui combine toutes les qualités mentionnées ci-dessus a également le potentiel
d’apporter des informations diagnostiques dans des applications médicales où aucun outil
n’est actuellement utilisé de manière routinière (e.g. dans certains cas de suivi de la
thérapie).

B.2 Ultrasons quantitatifs: méthodes

Le BSC quantifie la capacité du tissu à rétrodiffuser l’énergie acoustique en fonction de
la fréquence de l’onde incidente d’excitation. Le BSC reflète la microstructure sous-jacente
du tissu et peut être considéré comme la signature acoustique de l’échantillon sondé. Dans
les applications de caractérisation des tissus, le principal défi consiste à estimer avec pré-
cision la BSC. L’étape suivante est sa paramétrisation et permet d’extraire les paramètres
de diffusion par des procédures d’inversion. Pour ce faire, des modèles analytiques sont
appliqués aux BSC mesurées. Plusieurs modèles théoriques ont été développés pour mod-
éliser la diffusion des ultrasons dans les tissus biologiques.

Le modèle Gaussien et le modèle de sphères fluides sont paramétrés par le diamètre
effectif du diffuseur (ESD). De nombreux articles ont rapporté des correspondances en-
tre ESD et taille de composants cellulaires suite à application de ces modèles adaptés
aux milieux dilués. Dans les milieux comportant une concentration élevée de diffuseurs,
les modèles à facteur de structure ont permis de meilleurs résultats dans l’estimation
des tailles de cellules. D’autres paramètres ultrasonores comportant des interprétations
physiques peuvent être estimés suite à la paramétrisation du BSC. La fraction volumique
des diffuseurs et le contraste d’impédance acoustiques en sont des exemples.

Alors que la paramétrisation du BSC extrait des paramètres basés sur le contenu spec-
tral des signaux radiofréquences, ES implique l’estimation des attributs de la distribution
statistique d’enveloppe de ces signaux. Cette procédure permet d’obtenir des paramètres
de diffusion supplémentaires qui caractérise également la microstructure du tissu sous-
jacent. La fonction de densité de probabilité de l’enveloppe mesurée peut être modélisée
par des distributions statistiques connues. Dans cette thèse, nous nous concentrerons sur
les deux distributions d’enveloppe les plus courantes dans les études QUS : les distributions
de Nakagami et de Homodyned-K.

La distribution de Nakagami peut être utilisée pour extraire le facteur d’échelle Ωnak

et le paramètre de Nakagami αnak. Le facteur d’échelle Ωnak est équivalent à l’intensité
rétrodiffusée moyenne et αnak peut être utilisé pour quantifier le nombre effectif de dif-
fuseurs par cellule de résolution. La distribution Homodyned-K peut être utilisée pour
extraire µhk, qui est en quelque sorte l’analogue du paramètre de Nakagami αnak. En ef-
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fet, le nombre effectif de diffuseurs par cellule de résolution peut également être reflété par
le paramètre µhk. Cette distribution peut aussi extraire le ratio signal cohérent / signal in-
cohérent khk, qui peut décrire le degré de structure de la position spatiale du diffuseur dans
la zone d’intérêt considérée. Des articles récents ont rapportés l’utilité de ces paramètres
d’enveloppe pour caractériser des tissus cancéreux. Dans cette thèse, nous nous proposons
donc d’associer la paramétrisation du BSC et ES pour sonder la microstructure tissulaire
grâce aux ultrasons.

B.3 Spectroscopie optique de rétrodiffusion: méthodes
La spectroscopie de rétrodiffusion augmentée (EBS) consiste à extraire le profil de

réflectance de l’échantillon. Cette quantité est également connue sous le nom de fonc-
tion d’étalement radial (PSF). Ce profil de réflectance peut être considéré comme une
signature optique du tissu. En effet, ce dernier est extrêmement sensible à la fonction de
phase de diffusion. La fonction de phase est paramétrée par des coefficients reflétant les
propriétés optiques des tissus. Plusieurs modèles peuvent être choisis pour décrire cette
fonction. La fonction de phase de Mie décrit la diffusion d’une sphère par une onde plane
et est notamment caractérisée par le rayon de la sphère. Egalement, la fonction de phase
de Whittle Matérn est paramétrée par des coefficients liés aux fluctuations continues de
l’indice de réfraction. Une fois le profil de réflectance mesuré, les paramètres de la fonc-
tion de phase choisie peuvent être extrait grâce à des procédures d’inversions. En effet, le
profil de réflectance théorique peut être obtenu par des simulations de Monte Carlo pour
différentes fonctions de phase.

La spectroscopie de diffusion de la lumière (LSS) est une autre technique qui vise à
analyser les photons ayant subi un seul évènement de diffusion de manière élastique afin
d’extraire des informations sur la microstructure du tissu sous-jacent. La distribution de
la taille des diffuseurs peut être estimée à l’aide de la théorie de Mie en analysant la lu-
mière rétrodiffusée. Cette analyse repose sur une techniques d’isolement de la composante
d’intérêt exploitant la polarisation. Contrairement à l’EBS, qui repose sur des mesures
angulairement et spectralement résolues, la méthode LSS ne nécessite que des mesures
spectralement résolues. Il est intéressant de noter que ces mesures peuvent être effectuées
à l’aide d’un instrument similaire à celui nécessaire pour EBS. Egalement, la nature sim-
ilaire du signal analysé et des paramètres extraits fait de LSS l’équivalent optique de la
technique de paramétrisation ultrasonore BSC dans le cas incohérent.

Des articles récents ont rapportés les performances de EBS et LSS pour caractériser
des tissus cancéreux. Dans cette thèse, nous nous proposons donc d’associer ces techniques
pour sonder la microstructure tissulaire grâce à la lumière visible. Elles seront combinées
aux deux autres techniques ultrasonores mentionnées plus haut avec l’objectif d’obtenir
des paramètres complémentaires.

B.4 Etude sur fantôme
Ce chapitre constitue une validation préliminaire de notre méthode bimodale sur des

fantômes imitant les tissus. La complémentarité de la paramétrisation du BSC et de EBS
est y étudiée expérimentalement. La sensibilité des paramètres de diffusion à la taille du
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diffuseur est étudiée pour chaque technique en utilisant trois fantômes avec différentes
tailles de microparticules: 10 µm, 20 µm et 60 µm.

Dans un premier temps, les trois fantômes sont conçus avec des composants et des
concentrations choisis pour obtenir les propriétés de diffusion ultrasonore et optique les
plus réalistes.

Un modèle à facteur de structure (SFM) est utilisé pour cette étude. Le SFM a mod-
élisé avec succès les BSC des fantômes 10 et 20 µm. Un bon accord global a également été
observé entre les profils de réflectance estimés et attendus pour ces deux fantômes. Cepen-
dant, les profils de réflectance simulés des fantômes 10 µm et 20 µm présentent la même
tendance et sont fortement corrélés (R2 = 0,99). Dans le cadre d’une étude d’inversion où
le rayon du diffuseur serait extrait à l’aide d’un algorithme d’inversion, il est raisonnable
de penser que l’inversion précise de ces profils de réflectance serait difficile en raison de
leur haut degré de ressemblance. Il est intéressant de noter que le contraste entre les BSC
des fantômes de 10 et 20 µm a permis une distinction nette dans les hautes fréquences.
Par conséquent, le succès de leur inversion pourrait être plus probable. Cela conduirait à
une estimation précise du rayon du diffuseur.

La simulation de Monte Carlo a fourni les meilleures prédictions des variations du pro-
fil de réflectance du fantôme de 60 µm (R2 = 0, 97). Son profil de réflectance a présenté
une corrélation plus faible avec les autres profils de réflectance simulés (R2 = 0,95 dans
les deux cas). Par conséquent, le succès de son inversion pourrait être potentiellement
plus probable puisque le fantôme de 60 µm présente un profil de réflectance singulier. De
même, cela pourrait conduire à une estimation correcte du rayon du diffuseur.

La BSC du fantôme de 60 µm a montré une correspondance faible avec le modèle de dif-
fusion théorique. Cependant, cette estimation du BSC doit être considérée avec prudence,
en particulier dans la région des hautes fréquences. En effet, les coefficients d’atténuation
α0 des trois fantômes ont été estimés dans les mêmes conditions. Cependant, la mise
en œuvre de la méthode de substitution dans cette étude n’a pas permis d’estimer α0
pour le fantôme de 60 µm, en raison de sa forte atténuation acoustique. Ce coefficient
α0 a été fixé empiriquement pour pallier ce problème. Par conséquent, la correction de
l’atténuation peut être limitée pour le fantôme de 60 µm. Il est intéressant de noter que la
faible performance de l’approche ultrasonore rapportée dans cette étude pour le fantôme
de 60 µm pourrait être considérée pour discuter de la complémentarité avec EBS. En effet,
comme mentionné ci-dessus, la théorie de Mie a décrit avec succès le profil de réflectance
du fantôme de 60 µm. Par conséquent, EBS pourrait être une solution plus efficace pour
caractériser les milieux qui présentent une forte atténuation acoustique.

En conclusion, la combinaison de la paramétrisation du BSC et de EBS a permis de
caractériser chaque fantôme avec succès. Ce résultat intéressant a motivé une étude ex
vivo sur des échantillons biologiques.
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B.5 Caractérisation de sous-types de sarcomes : une étude
ex vivo sur des modèles animaux

Une étude ex vivo sur des modèles animaux a été réalisée après l’étude sur fantôme.
En plus de la paramétrisation du BSC et de EBS, ES et LSS ont été combinées pour car-
actériser deux sous-types de sarcomes : le chondrosarcome et l’ostéosarcome. Deux types
de lignée cellulaire ont été utilisées pour générer les ostéosarcomes : MOS-J et K7M2. Des
analyses histologiques ont été réalisées pour servir de référence.

L’utilisation de tumeurs de chondrosarcome et d’ostéosarcome est motivée par leurs
microstructures différentes. La caractérisation de ces tumeurs apparaît comme un moyen
de valider notre méthode bimodale dans le but d’établir une preuve de concept sur un type
de tumeur particulier. Etant donné que les mécanismes internes de nos méthodes sondent
la microstructure des tissus, notre approche pourrait potentiellement être appliquée à
d’autres types de tumeurs ainsi qu’à des tissus sains.

Les mesures optiques et ultrasonores ont été réalisées le jour des sacrifices. Les para-
mètres quantitatifs ont ensuite été estimés et comparés entre les différents types de tumeurs.
Des analyses histologiques ont été réalisées pour chaque tumeurs. Des mesures mor-
phométriques des structures cellulaires, dérivées de ces examens, ont ensuite été comparées
pour évaluer les performances de la paramétrisation du BSC et de LSS dans l’estimation
des tailles de cellules ou de noyaux.

Trois paramètres ultrasonores et les profils de réflectance ont montré des différences
significatives entre les chondrosarcomes et les ostéosarcomes avec un intervalle de confi-
ance de 95%. De même, des variations des mêmes biomarqueurs ont été rapportées pour
les deux types d’ostéosarcome (MOS-J et K7M2), malgré leur morphologie cellulaire simi-
laire observée. Ces observations montrent la sensibilité de nos techniques à des propriétés
tissulaires invisibles au marquage conventionnel H&E. La paramétrisation du BSC a per-
mis d’identifier la taille moyenne des cellules et des noyaux des chondrosarcomes avec des
erreurs relatives d’environ 22% et 9% respectivement. LSS a correctement estimé les distri-
butions de taille des noyaux et des cellules pour les chondrosarcomes et les ostéosarcomes
(R2 = 0,80 et R2 = 0,73 respectivement).

La paramétrisation du BSC et EBS sont apparus comme des outils pertinents pour
discriminer les types de tumeurs. En outre, ces techniques ont permis de détecter des con-
trastes de signaux même parmi des échantillons présentant des morphologies cellulaires
similaires. Pour estimer la taille des microstructures, la paramétrisation du BSC fut com-
plémentaire de LSS pour l’étude des chondrosarcomes. La première technique s’est avérée
plus précise dans l’estimation de la taille moyenne des cellules, tandis que la seconde méth-
ode a permis une extraction plus efficace de la distribution de la taille des noyaux. Il est
possible que ces résultats découlent de la correspondance entre les structures microarchi-
tecturales simples du chondrosarcome et les géométries simples supposées dans les modèles
de diffusion ultrasonore ou la théorie de Mie (i.e. sphères contenus dans un milieu envi-
ronnant). À l’inverse, l’identification de la taille des cellules dans des milieux hautement
cellulaires tels que les tumeurs d’ostéosarcome pourraient être plus difficile en raison de la
contiguïté géométrique des cellules et de la diffusion concurrente d’autres microstructures.

En conclusion, les deux techniques quantitatives ultrasonores et les deux techniques
optiques ont apporté des paramètres complémentaires qui reflètent la microstructure tis-
sulaire sous-jacente pour différents types de tumeurs. Les paramètres morphologiques
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estimés se sont révélés sensibles aux échelles cellulaire et nucléaire. Ces résultats promet-
teurs nous ont amèné à mener une étude longitudinale animale ex vivo afin d’évaluer la
sensibilité de cette technique bimodale pour des applications de suivi de traitement.

B.6 Suivi de thérapie : une étude longitudinale

Dans ce chapitre, nous avons étudié les performances de notre approche bimodale
pour évaluer la réponse d’une tumeur au fil du temps lorsque des traitements chimio-
thérapeutiques sont administrés. Pour ce faire, nous avons appliqué les quatre techniques
mentionnées ci-dessus aux mêmes sous-types de sarcomes pendant plusieurs semaines, en
injectant un médicament chimiothérapeutique deux fois par semaine à certains rongeurs et
une la solution saline à d’autres (animaux témoins). Les volumes tumoraux relatifs (RTV)
ont été estimés au fil des semaines et ont été considérés comme indicateurs de références
de réponse au traitement. Les RTV ont révélé que toutes les tumeurs étaient susceptibles
d’être non répondeuses.

Des corrélations faibles ont été observée entre les paramètres de diffusion ultrasonore
et optique et la RTV. Plusieurs paramètres ultrasonores et optiques sont apparus sen-
sibles aux effets des injections de traitement pendant les premiers jours de traitement.
Des convergences ont ensuite été observées entre les tumeurs traitées et témoins après le
traitement final. Par conséquent, ces paramètres de diffusion pourraient avoir reflété le
mécanisme de résistance à la chimiothérapie.

Dans cette étude, la combinaison des ultrasons et de la lumière a aussi permis d’obtenir
différentes sources de contraste à différents jours de mesure. Par exemple, pour le chon-
drosarcome, les spectres EBS et LSS (après 4 traitements) ont permis de séparer les
tumeurs traitées des tumeurs de contrôle, contrairement aux estimations ultrasonores
correspondantes. La multiplication des estimations quantitatives pourrait refléter plus
précisément la pluralité des mécanismes cellulaires intervenant dans le développement du
cancer ainsi que la réaction aux agents anti-cancer. En somme, notre approche bimodale
représente une solution intéressante pour la poursuite de cette recherche.

De futures études pourraient être menées in vivo pour étudier la prédiction des ré-
sultats du traitement. Dans ce cas, les mesures d’ultrasons quantitatifs pourraient être
réalisées jour après jour pour étudier les corrélations potentielles entre les paramètres de
diffusion et les RTV faibles des tumeurs répondeuses. Des mesures optiques pourraient
également être réalisées pour d’autres types de tumeurs qui peuvent être situées à une
faible profondeur en utilisant une fibre optique.

Pour optimiser la probabilité d’analyser les tumeurs non-répondeuses en même temps
que les répondeuses, une étude longitudinale similaire pourrait être réalisée avec un troisième
groupe composé d’animaux ayant reçu des doses plus élevées de traitement anticancéreux.
Ainsi, des tumeurs témoins, des tumeurs traitées avec une faible dose et d’autres avec
une dose importante de traitement chimiothérapeutique pourraient être analysées pour
chaque jour de mesure. En effet, une faible dose de traitement anti-cancer est susceptible
de conduire à des tumeurs non-répondeuses alors que les doses plus élevées ont plus de
chance de conduire à des tumeurs répondeuses.
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B.7 Effets structurels sur la diffusion des ultrasons : une
étude sur fantôme

Ce chapitre introduit une nouvelle méthode d’étude des paramètres QUS sur fantôme.
De plus, la concordance des interprétations physiques de multiples paramètres QUS est
étudiée.

Les cellules des tissus biologiques peuvent être associés à des fractions volumiques
modérées ou élevées (généralement supérieures à 0,05). Or, la concentration des diffuseurs
dans un milieu donné est un paramètre essentiel pour modéliser correctement la diffusion
des ondes ultrasonores. En effet, on peut raisonnablement supposer que la corrélation de
la position des diffuseurs augmente avec leur concentration. Lorsque les diffuseurs ne sont
pas répartis de manière aléatoire dans l’espace, des effets structurels affectent la rétrodiffu-
sion des ultrasons. Dans les milieux structurés ou concentrés, le BSC n’est plus la somme
incohérente des contributions de chaque diffuseur. Le BSC total comporte alors une com-
posante cohérente. De même, l’enveloppe des signaux RF est affectée par l’espacement
périodique entre les diffuseurs.

Dans ce chapitre, ces effets structurels sur la diffusion ultrasonore ont été étudiés dans
le cadre d’une analyse sur fantôme. Pour ce faire, une nouvelle approche expérimen-
tale a été introduite. Le fantôme utilisé ici est composé de particules magnétiques dont
l’organisation spatiale a été modifiée par un champ magnétique environnant. Les signifi-
cations physiques des paramètres ultrasonores et leur concordance ont été constatées dans
trois expériences distinctes.

Ls billes se comportent comme des billes de polystyrène normales lorsqu’aucun champ
magnétique environnant n’est appliqué. En présence d’un champ homogène et station-
naire, les billes superparamagnétiques sont censées se disposer en chaînes immobiles et
parallèles selon l’orientation du champ magnétique. La distance entre les chaînes dans la
direction normale du champ magnétique doit reflèter une distance répulsive caractéristique.

Les paramètres liés au BSC et à l’enveloppe ont été estimés dans cette solution dans
différentes configurations de champ magnétique. L’intensité du champ magnétique a été
modifiée en fonction du temps, de son amplitude et de l’orientation spatiale dans trois
expériences distinctes.

Tout d’abord, dans l’expérience temporelle horizontale, dénommée expérience 1, le
champ magnétique est horizontal (axe Y) et est induit par le placement de deux aimants
solides de part et d’autre de la solution fantôme. Les billes ont été instantanément ex-
posées à un champ magnétique de 4 mT. L’orientation des chaînes est normale à la prop-
agation des ondes ultrasonores (axe Z). Deuxièmement, l’expérience en régime permanent
horizontal, dénommée expérience 2, étudie aussi les variations des paramètres QUS dans
un champ magnétique horizontal. Cependant, cette expérience permet de sonder l’état
d’équilibre des billes alignées horizontalement pour différentes intensités de champ magné-
tique. Troisièmement, dans l’expérience verticale en régime permanent, dénommée expéri-
ence 3, le fantôme est placé dans une bobine verticale qui génére un champ magnétique.
Le champ magnétique est parallèle à la propagation de l’onde ultrasonore. Cette expéri-
ence a permis de sonder l’état d’équilibre des billes alignées verticalement pour différentes
intensités de champ magnétique.
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Lorsque la solution est soumise à un champ magnétique instantanée, les billes mag-
nétiques montrent un régime transitoire de l’ordre de 2s dans lequel elles commencent à
s’organiser. Passé ce délai, les billes forment des chaînes quasiment immobiles présentant
des discontinuités. Plus le champ est intense, plus les chaînes sont longues et les distances
de répulsion entre les chaînes tendent à augmenter également.

Le ratio du signal cohérent et diffus khk reflète la présence d’un régime transitoire, il
augmente lorsque les billes commencent à s’organiser puis diminue en régime permanent
car la cellule de résolution du transducteur ne pourrait contenir qu’une seule chaîne (i.e.
un diffuseur effectif). Cette hypothèse est cohérente avec des considérations géométriques.
Dans l’expérience 3, son évolution n’est pas concluante.

Le paramètre de Nakagami αnak et le paramètre d’aggrégation des diffuseurs µhk suiv-
ent les mêmes évolutions. Dans les expériences 1 et 2, ces paramètres augmentent pendant
le régime transitoire puis diminuent pendant le régime permanent. L’augmentation tempo-
raire traduirait le début d’organisation des billes. La diminution pourrait s’expliquer par
une dépopulation des diffuseurs. En chaînes, les billes pourrait former des diffuseurs effec-
tifs "plus larges" mais moins nombreux. Cette hypothèse est supportée par la diminution
de la pente du BSC linéaire, qui peut indiquer une augmentation du diamètre effectif des
diffuseurs. Dans l’expérience 3, αnak et µhk diminue avec la pente du BSC linéaire. Dans
ce cas, il pourrait s’agir d’une dépopulation des diffuseurs. Cette hypothèse est cohérente
avec des considérations géométriques.

L’ordonnée à l’origine du BSC linéaire et le facteur d’échelle Ωnak suivent les mêmes
évolutions. Ces coefficients augmentent avec le champ magnétique dans les expériences 2 et
3. Or d’après les variations de khk, le signal incohérent prédomine dans ces configurations.
La densité du nombre de diffuseurs n diminue d’après les variations de αnak. Ainsi, la sur-
face efficace de rétrodiffusion différentiel σb pourrait augmenter et compenser la diminution
de n. Cela peut s’expliquer par une augmentation du contraste relatif d’impédance acous-
tique γz ou par des considérations géométriques. Dans l’expérience 3, l’ordonnée à l’origine
du BSC linéaire et Ωnak diminue, traduisant potentiellement la dépopulation de diffuseurs
plus prononcée dans la configuration verticale. La chute plus importante observée pour
αnak et µhk par rapport aux configurations horizontales soutient cette hypothèse.

Des hypothèses étayées par des microphotographies de référence ont été formulées pour
décrire les variations de chaque estimation quantitative conformément à leur interprétation
physique dans les différentes configurations. On peut noter que les différentes hypothèses
sont concordantes. Par conséquent, les interprétations physiques de multiples paramètres
d’enveloppe et spectraux ont été combinés avec succès en analysant un fantôme magnétique
en fonction du temps, de l’intensité du champ magnétique et de l’orientation structurelle.
La signification de chaque paramètre ultrasonore a été validée dans le cadre de cette étude.

B.8 Conclusion

Les résultats présentés dans cette thèse illustrent expérimentalement la complémentar-
ité des paramètres de diffusion ultrasonores et optiques. La combinaison de ces modalités
a fourni diverses sources de contraste entre les populations d’échantillons sondés. Des
estimations représentant la taille de certains composants cellulaires ont également été
obtenues, conduisant à une évaluation approfondie de la microstructure des tissus. Nous
pouvons donc conclure que l’association des techniques ultrasonores quantitatives et de
rétrodiffusion de la lumière est pertinente pour la caractérisation du cancer. Des résultats
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prometteurs pourraient être obtenus dans de futures études.
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and results from Monte Carlo simulations (MC). In each case, MC data
have been scaled at r = 123 µm to obtain a match with experiment . . . . . 89
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function of the imaging depth. (b) Illustrative example of the variations in
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6.3 Representative histological stainings of chondrosarcoma and osteosarcoma.
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Chondrosarcoma. The gray levels indicate the scale in dB. In each case, the
tumors are immersed in a PBS solution. . . . . . . . . . . . . . . . . . . . 105
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8.1 Magnetic field lines from a single magnetic bead. Blackness indicates lower
intensities. N and S stand for the north and the south poles respectively.
Adapted from Wittbracht et al. [166]. . . . . . . . . . . . . . . . . . . . . . 154

8.2 Bead alignment in the presence of a homogeneous stationary magnetic field.
(a) Horizontal configuration used in the horizontal time and the horizontal
steady-state experiment. (b) Vertical configuration used in the vertical
steady time experiment. For each configuration, the ultrasound transducer
and its agar-gel block were depicted (not on scale) to clarify the directions. 154

8.3 Horizontal configuration. (a) Picture of the experimental setup. (b) Ex-
planatory scheme. N and S stand for the north and the south poles respec-
tively. This configuration was used in the horizontal time and the horizontal
steady-state experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.4 Vertical configuration. (a) Picture of the experimental setup. The power
supply (1) is in series with the coil (2) and the adjustable resistor (3). A
voltmeter (4) in parallel to the resistor measures the intensity I that flows
through the coil. A thermometer checks the temperature to avoid overheat-
ing. The phantom solution (6) is placed inside the coil when the transducer
(7) performs a 1D scan. (b) Explanatory scheme of the coil. N and S stand
for the north and the south poles respectively. This configuration was used
in the vertical steady-state experiment. . . . . . . . . . . . . . . . . . . . . . 158

8.5 Microphotographs of superparamagnetic beads captured with no magnetic
field (a), one second after the placement of the magnets (b), 2 seconds after
(c) and 6 seconds after (d). The magnetic field intensity equals 4 mT.
Images (a),(b), (c) and (d) were acquired successively. Image (e) represents
the magnetic beads 6 seconds after the placement of the magnets with a
magnetic field intensity equal to 19 mT. . . . . . . . . . . . . . . . . . . . . 161

200 Cyril Malinet



LIST OF FIGURES

8.6 Horizontal time experiment results. The first row shows the Lizzi-Feleppa
parameters versus time, the second row shows the Nakagami parameters
and the third row the Homodyned-K parameters. No magnetic fields were
present between t = 0 and t = 2 s. Bold time values indicate times where the
magnetic field equals 4 mT. (a) BSC slope (b) BSC intercept. (c) Goodness
of the BSC linear fit. (d) Nakagami parameters αnak. (e) Scaling factors
Ωnak. (f) The goodness of fit R2

nak for Nakagami distributions. (g) Scatterer
clustering parameter µhk. (h) Coherent to diffuse signal ratio khk. (i) The
goodness of fit R2

hk for Homodyned-K distributions. The coefficients αnak,
Ωnak and µhk underwent compression using a base-10 logarithm due to their
extensive value range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.7 Horizontal steady-state experiment results. The first row shows the Lizzi-
Feleppa parameters versus magnetic field intensity, the second row shows
the Nakagami parameters and the third row the Homodyned-K parameters.
(a) BSC slope (b) BSC intercept. (c) Goodness of the BSC linear fit. (d)
Nakagami parameters αnak. (e) Scaling factors Ωnak. (f) The goodness
of fit R2

nak for Nakagami distributions. (g) Scatterer clustering parameter
µhk. (h) Coherent to diffuse signal ratio khk. (i) The goodness of fit R2

hk for
Homodyned-K distributions. The coefficients αnak, Ωnak and µhk underwent
compression using a base-10 logarithm due to their extensive value range. . 164

8.8 Vertical steady-state experiment results. The first row shows the Lizzi-
Feleppa parameters versus magnetic field intensity, the second row shows
the Nakagami parameters and the third row the Homodyned-K parameters.
(a) BSC slope (b) BSC intercept. (c) Goodness of the BSC linear fit. (d)
Nakagami parameters αnak. (e) Scaling factors Ωnak. (f) The goodness
of fit R2

nak for Nakagami distributions. (g) Scatterer clustering parameter
µhk. (h) Coherent to diffuse signal ratio khk. (i) The goodness of fit R2

hk for
Homodyned-K distributions. The coefficients αnak, Ωnak and µhk underwent
compression using a base-10 logarithm due to their extensive value range. . 165

8.9 2D geometrical considerations. (a) Horizontal configurations. As the re-
pulsive distances exceed the height of the resolution cell, the resolution cell
may encompass one chain at maximum. (b) Vertical configuration. As the
distance between the chains exceeds a critical repulsive distance (173/5 =
34.6 µm), the number of beads per resolution at maximum could not be
greater than the one in the horizontal configuration. In both schemes, the
scaling is maintained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
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2.1 Estimated parameters given by the FFSM, PM, and SFM in the polydis-
perse case. The actual mean nucleus and cell radii were found to be equal
to 4.18 ± 0.43 and 6.34 ± 0.94 µm, respectively for the K562 cells. The
actual radii of nuclear and CHO cells are 3.32 ± 0.63 and 6.71 ± 0.86µm,
respectively. Reproduced from Franceschini et al. [40] . . . . . . . . . . . . 16

5.1 Tissue mimicking phantom characteristics. The volume fractions ϕ were set,
and the reduced scattering coefficients µ′

s were subsequently determined
through calculation. The acoustic attenuations were experimentally esti-
mated following standard substitution methods [110]. The measurement
of the acoustic attenuation of the 60 µm phantom is inconclusive and is
therefore empirically determined. . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 Degree of averaging and number of underlying independent measurements
per technique. Independent measurement refers to ROI for ultrasound tech-
niques* and sample position for optical techniques†. Checkmarks refer to
the following number of ROIs: 36 (Ch1), 75 (Ch2), 88 (Ch3), 51 (Ch4), 24
(Ch5), 23 (Os1), 27 (Os2), 61 (Os3), 45 (Os4). . . . . . . . . . . . . . . . . 103
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