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Titre : Factorisation des opérateurs différentiels linéaires 
en caractéristique positive 

Résumé : L’étude des opérateurs différentiels linéaires est une partie importante 

de l’étude algébrique des équations différentielles. Les anneaux d’opérateurs 
différentiels linéaires partagent de nombreuses propriétés avec les anneaux de 
polynômes, mais le caractère non commutatif de la multiplication rend la conception 
d’algorithmes de factorisation plus compliquée. L’objet de cette thèse est le 
développement d’un algorithme calculant un facteur droit irréductible d’un opérateur 
différentiel linéaire donné dont les coefficients sont des éléments d’un corps de 
fonctions algébriques de caractéristique p. La situation diffère grandement du 
problème analogue en caractéristique 0 car les corps de fonctions algébriques de 
caractéristique positive sont de dimension finie sur leur corps des constantes. De 
ceci découle une structure additionnelle d’algèbre d’Azumaya qui fournit des outils 
supplémentaires pour attaquer le problème de la factorisation.

Une première étape est le calcul de la p-courbure, un invariant classique de première
importance des opérateurs différentiels en caractéristique p. Le premier résultat 
significatif de cette thèse est un algorithme calculant, pour un opérateur différentiel L 
en caractéristique 0 et un entier N  N donnés, tous les polynômes caractéristiques ∈

des p-courbures des réductions de L modulo p, pour tous les nombres premiers p  ⩽

N .

La deuxième partie de la thèse est consacrée à la factorisation en elle-même. Nous 
utilisons la structure d’algèbre d’Azumaya pour montrer que la recherche de facteurs 
irréductibles à droite revient à la résolution de l’équation de p-Riccati

f^{ (p−1) }+ f^p = a^p

dans K[a], où a est une certaine fonction algébrique sur K. Cette observation nous 
permet de développer deux algorithmes importants. Le premier est une application 
du principe global-local conduisant à un test d’irréductibilité de complexité 
polynomiale pour les opérateurs différentiels. Le second est un algorithme de 
résolution de l’équation de p-Riccati utilisant plusieurs outils de la géométrie 
algébriques pour les courbes, dont les espaces de Riemann-Roch et les groupes de 
Picard. Nous effectuons une analyse de complexité approfondie de cet algorithme et 
montrons que l’équation de p-Riccati admet toujours une solution dont la taille est 
comparable à celle du paramètre a. Cet algorithme rend en particulier possible la 
factorisation des opérateurs centraux (un cas qui a souvent été laissée de côté par le
passé) et diminue la taille des facteurs droits irréductibles d’opérateurs différentiels 
linéaires d’un facteur p en comparaison des travaux précédents. On en déduit 
finalement un algorithme de factorisation complet pour les opérateurs différentiels 
linéaires de caractéristique positive.

Mots clés : Opérateurs différentiels, Algèbre d’Azymaya, Courbes algébriques,

Calcul formel, Caractéristique p





Title :Factorisation of linear differential operators in 
positive characteristic

Abstract : The study of linear differential operators is an important part of the 

algebraic study of differential equations. Rings of linear differential operators share 
many properties with rings of polynomials, but the noncommutative aspect of the 
multiplication makes the design of factorisation algorithms harder. This thesis 
focuses mainly on developing an algorithm computing an irreducible right factor of a 
given linear differential operator with coefficients in an algebraic function field of 
positive characteristic p. The situation differs greatly from the same problem in 
characteristic 0 because algebraic function fields of characteristic p are finite 
dimensional over their field of constants. This simple fact provides the ring of 
differential operators in characteristic p with an additional structure of Azumaya 
algebra, which gives additional tools to attack our problem. A first step in this 
direction is the computation of the p-curvature, a classical invariant of primary 
importance attached to differential operations in characteristic p. The first important 
result of this thesis is an algorithm computing, for a given operator L in characteristic 
0 and an integer N , all the characteristic polynomials of the p-curvatures of its 
reduction modulo p, for all primes p  N. The second part of the thesis is dedicated to⩽

the factorisation itself. We use the Azumaya algebra structure to show that finding 
irreducible right irreducible factors reduces to solving the p-Riccati equationc
f^{ (p−1) }+ f^p = a^p
in K[a], where a is a suitable algebraic function over K. This observation leads to two 
important algorithms. The first one is an application of the global-local principle which
eventually provides a polynomial time irreducibility test for differential operators. The 
second one is an actual resolution algorithm for the p-Riccati equation that uses tools
of algebraic geometry for curves such as Riemann-Roch spaces and Picard group. 
We perform a complexity analysis of this algorithm, and show that the p-Riccati 
equation always admits a solution whose size is comparable to that of the parameter 
a. As a byproduct, this algorithm makes the factorisation of central operators possible
(a situation which was often left aside) and lower the size of right factors of general 
operators by a factor p compared to previous works. We finally deduce a full 
factorisation algorithm for differential operators of positive characteristic.

Keywords : Differential operators, Azumaya algebras, Symbolic computation, 

Algebraic curves, Positive characteristic
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Résumé étendu de la thèse

Les équations différentielles sont depuis longtemps un objet d’étude privilégié des mathémati-
ciens puisqu’elles apparaissent dans de nombreux domaines des sciences physiques, en particulier
dans le cas où la variable est réelle ou complexe. L’étude de ces équations peut prendre dif-
férentes formes et mobilise une grande variété d’outils différents. Il existe également un pendant
plus algébrique de l’étude des équations différentielles, qui peut inclure une plus grande variété
d’objets, dont des anneaux p-adiques ou de caractéristique positive. Dans cette autre configura-
tion, une dérivation u 7→ u′ sur un anneau A est définie comme un morphisme additif vérifiant
la règle de Leibniz : pour tout u, v ∈ A,

(uv)′ = u′v + uv′.

Un anneau commutatif muni d’une dérivation est appelé un anneau différentiel.
Dans ce cadre, il est possible de considérer des équations différentielles p-adiques ou en car-

actéristique positive, lesquelles ont trouvé de nombreuses applications, par exemple au comptage
des points [Lau04], au calcul d’isogénies [LV16, Eid21] ou, de manière plus générale, à l’étude
de la cohomologie des variétés arithmétiques.

Une sous-classe d’équations différentielles intéressantes sont les équations homogènes linéaires,
de la forme

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0

où n ∈ N∗ et les ai sont des fonctions de la variable x, tandis que y(i) désigne la i-ème dérivée de
la fonction y. Dans le contexte algébrique que nous mentionnions plus tôt, ces équations peuvent
elles-mêmes être représentées par les éléments d’un certain anneau, quoique non commutatif,
appelé anneau d’opérateurs différentiels. Nous définissons un opérateur différentiel comme étant
une combinaison linéaire formelle

an∂
n + an−1∂

n−1 + · · ·+ a1∂ + a0

où les ai sont des éléments d’un anneau différentiel A. Si an 6= 0, on dit que cet opérateur est
d’ordre n. La multiplication dans ces anneaux vérifie la règle de commutation suivante, déduite
de la règle de Leibniz :

∂u = u∂ + u′

pour tout u ∈ A. Par la suite on notera A〈∂〉 l’anneau des opérateurs différentiels linéaires à
coefficients dans A.

Comme les opérateurs différentiels peuvent être multipliés entre eux, une question naturelle
est celle de la factorisation : étant donné un opérateur différentiel L, est-on capable de l’écrire
comme produit de deux opérateurs plus petits? Cette question n’est pas intéressante simplement

11



12 Résumé étendu de la thèse

pour notre curiosité, mais également car elle est très liée aux solutions de l’équation L(y) = 0.
En effet, si R est un facteur à droite de L, alors l’espace des solutions de R(y) = 0 est un
sous-espace vectoriel de l’espace des solutions de L(y) = 0.
Cette question a déjà suscité la curiosité d’un certain nombre de mathématiciens qui se sont plus
souvent intéressé au cas des opérateurs à coefficients dans Q(x) ou C(x) pour lesquels plusieurs
algorithmes ont été proposés [Gri90, Van97, vdH07a, CGM22].

Dans ce manuscrit, nous noterons K un corps de fonctions algébriques de caractéristique
positive p, c’est-à-dire une extension séparable du corps des fonctions rationnelles Fp(x). Nous
noterons également ∂ la dérivation d

dx sur K. Le but de cette thèse est d’étudier la factorisation
des opérateurs différentiels linéaires dans K〈∂〉 et de présenter un algorithme complet de factori-
sation. Bien que les deux problèmes soient similaires, les outils utilisés en caractéristique positive
et en caractéristique nulle diffèrent grandement. L’origine en est la différence de « taille » du
corps des constantes dans les deux situations. En effet, les seules fonctions de dérivée nulle sur
C(x) sont les fonctions constantes, identifiables à C sur lequel le corps C(x) est transcendant.
En revanche, dans K, toutes les puissances p-ièmes ont une dérivée nulle. Il s’ensuit que K est
de dimension finie p sur son corps des constantes, noté ici C.

Cette différence fondamentale a de nombreuses conséquences sur la structure de l’anneau
des opérateurs différentiels en caractéristique p ; de manière générale, on démontre que c’est
une algèbre libre de dimension finie sur son centre. Ainsi, la résolution rationnelle des équa-
tions différentielles se ramène simplement à la résolution d’un système linéaire de taille p × p
et les solutions rationnelles peuvent être de « taille » arbitrairement grande. Ces deux faits
ont des conséquences importantes pour la factorisation des opérateurs différentiels linéaires en
caractéristique p.

Le premier chapitre de cette thèse est dédié à l’étude d’un invariant classique de première
importance des opérateurs différentiels linéaires en caractéristique positive : la p-courbure. Cette
application linéaire associée à chaque opérateur différentiel possède de nombreuses propriétés
très importantes. Parmi elles, Cartier a démontré que la dimension du noyau de la p-courbure
de L était la même que la dimension de l’espace des solutions polynomiales (resp. rationnelles,
resp. algébriques) sur le corps des constantes. La p-courbure est par ailleurs intimement liée
à la conjecture de Grothendieck-Katz qui stipule qu’un opérateur différentiel en caractéristique
nulle possède une base de solutions algébriques si, et seulement si, presque toutes ses réductions
modulo p ont une base de solutions rationnelles.

La p-courbure joue également un rôle très important dans la factorisation des opérateurs
différentiels en caractéristique p ; en témoignent les travaux de van der Put [vdP95, vdP96,
vdP97] et de Cluzeau sur le sujet [Clu03]. Cela est dû au lien entre p-courbure et opérateurs
centraux. En effet, on peut démontrer que le centre de K〈∂〉 est C[∂p]. En outre, tout opérateur
L ∈ K〈∂〉 admet des multiples centraux non triviaux. Puisque le centre de K〈∂〉 n’est rien
d’autre qu’un anneaux de polynômes (bivariés), des algorithmes de factorisation performants
existent dans ce contexte [BLS+04, Lec06, Lec10, Wei15]. Deux questions se posent alors :

• Comment calculer un multiple central de L ?

• Peut-on utiliser les factorisations polynomiales des multiples centraux de L pour en déduire
des informations sur L ?

Dans la suite de ce manuscrit, nous noterons DL le K〈∂〉-module à gauche K〈∂〉/K〈∂〉L. La
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p-courbure de L, que nous noterons désormais ψLp , est définie comme l’application K-linéaire

ψLp : DL → DL
M 7→ ∂pM

.

Il est possible de montrer qu’il existe une certaine K-base de DL dans laquelle la matrice de ψLp
est à coefficients constants (c’est-à-dire dans C). Il suit que ses invariants de Frobenius, et en
particulier son polynôme minimal et son polynôme caractéristique, sont à coefficients constants.
Il est alors relativement aisé de démontrer que tout multiple central de L est un multiple du
polynôme minimal de ψLp appliqué à ∂p, ce qui répond à notre première question. En lien avec la
seconde question, nous démontrerons dans le chapitre 2 le résultat suivant, qui est un raffinement
d’un résultat déjà connu sur les décompositions isotypiques. La notation gcrd désigne le plus
grand diviseur commun à droite d’une famille d’opérateurs.

Théorème. — Soit L ∈ A〈∂〉. Supposons que χ(ψLp ) = N1 · · ·Nn, où les Ni sont des polynômes
irréductibles sur C, pas nécessairement deux à deux distincts. Alors il existe une factorisation
L = L1 · · ·Lm vérifiant :

i) Pour tout i ∈ J1;mK il existe j ∈ J1;nK tel que Li soit un diviseur de Nj(∂p).

ii) Lm = gcrd(L,Nn(∂p)).

Un théorème similaire dans le cadre des polynômes tordus sur les corps finis a été publié par
Caruso et Le Borgne dans [CLB17]. Il est à noter que les facteurs de cette première décomposition
ne sont pas irréductibles en général. Ce théorème nous permettra dans le chapitre suivant,
consacré pleinement à la factorisation, de nous limiter au cas où L est un diviseur d’un certain
N(∂p) pour N un polynôme irréductible sur C.

Le chapitre 2 se poursuit avec la description d’un algorithme efficace de calcul de p-courbures.
Plus précisément, l’algorithme présenté calcule, pour un opérateur L en caractéristique 0 et un
entier N donnés, tous les polynômes caractéristiques des p-courbures des réductions modulo p
de L, pour tout nombre premier p ⩽ N . Cet algorithme repose sur une combinaison d’idées
publiées dans [BCS14] et [Har14] : nous commençons par ramener le calcul du polynôme car-
actéristique de la p-courbure à celui d’une factorielle de matrices, sur laquelle on peut alors
appliquer des méthodes de calcul de type « pas de bébé / pas de géant ». Plus précisément,
nous nous servons des propriétés d’algèbre d’Azumaya de l’anneau des opérateurs différentiels
et des polynômes tordus. L’idée principale est d’expliciter une correspondance entre les deux
anneaux de polynômes de Ore et de montrer la compatibilité de cette correspondance avec le
calcul du polynôme caractéristique des p-courbures. C’est au moment de démontrer cette com-
patibilité que la structure susmentionnée intervient. Grâce à cela, nous ramenons le calcul à
celui d’une factorielle d’une matrice de la forme

B(θ)B(θ + 1) · · ·B(θ + p− 1) mod p, θd

pour tout p et un certain d. Nous réutilisons alors les idées de [Har14] qui résout un problème
similaire. Nous obtenons ainsi le résultat suivant.

Théorème. — Soit A un anneau de caractéristique 0, L ∈ A[x]〈∂〉 et N ∈ N. Il existe un
algorithme calculant les polynômes caractéristiques des p-courbures de L mod p pour tout nombre
premier p ⩽ N en un nombre d’opérations arithmétiques dans A linéaire en N et polynomial en
l’ordre et le degré des coefficients de L.
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Le chapitre 3 est consacré à la factorisation des opérateurs différentiels en tant que telle.
Nous avons montré précédemment que nous pouvions nous restreindre à la factorisation d’un
opérateur L ∈ K〈∂〉 divisant un opérateur de la forme N(∂p) où N ∈ C[Y ] est irréductible. Il
est important d’observer qu’un tel opérateur n’est pas nécessairement irréductible. Par exemple
pour tout nombre premier p, ∂2 divise ∂p (c’est-à-dire le cas où N = Y ) mais n’est jamais
irréductible.

Les diviseurs de L sont très étroitement liés à la structure du module quotient DL. En effet,
on peut démontrer qu’il existe une bijection entre les diviseurs à droite de L et les sous-modules
de DL. Or il se trouve maintenant que N(∂p) étant central, le quotient DN(∂p) a une structure
d’anneau et que DL a une structure de DN(∂p)-module à gauche. Or puisque N est irréductible
et que K〈∂〉 a une structure d’algèbre d’Azumaya, il suit que DN(∂p) est une algèbre simple
centrale de dimension p2 sur son centre C[∂p]/N(∂p). En vertu du théorème d’Artin-Wedderburn
ainsi que d’une analyse dimensionnelle, il suit que DN(∂p) est soit une algèbre à division, soit
isomorphe à Mp(CN ) avec CN = C[Y ]/N(Y ). Dans le premier cas, l’on constate que N(∂p) est
nécessairement irréductible ; ainsi L = N(∂p) l’est également.

Intéressons-nous donc au second cas. Notons dès à présent yN l’image de Y dans CN et
KN = K[yN ]. DL peut donc être vu comme un Mp(CN )-module à gauche. Le théorème de
Morita ([AF92, Corollary 22.6]) nous permet de ramener notre problème à de l’algèbre linéaire
sur CN , à condition de savoir trouver un facteur irréductible de N(∂p). Pour ce faire, nous nous
ramenons au cas où N est de degré 1 par l’isomorphisme de CN -algèbres suivant :

ϕN : DN(∂p) 7→ KN 〈∂〉/(∂p−yN )

Q 7→ Q mod ∂p − yN

Cet isomorphisme nous permet de déduire des facteurs irréductibles de N(∂p) de ceux de ∂p−yN .
On démontre que ces derniers sont de la forme ∂ − f où f ∈ KN vérifie l’équation

f (p−1) + fp = yN

que nous appelons équation de p-Riccati relative à N . La résolution de cette équation est
fondamentale à l’écriture d’un algorithme complet de factorisation. L’existence ou non de solu-
tions à cette équation est équivalente à l’irréductibilité de N(∂p). Soient L,R ∈ K〈∂〉 tels que
LR = N(∂p).

Définition. — Pour tout g ∈ KN , on pose

Lg := lclm(gcrd(N(∂p), ϕ−1
N (∂ − g)), R) ·R−1

où la notation lclm désigne le plus petit multiple commun à gauche d’une famille d’opérateurs.

Théorème. — Soit SN ⊂ KN l’ensemble des solutions de l’équation de p-Riccati relative à N
appartenant à KN .

1. Si L = N(∂p) alors g 7→ Lg est une bijection de SN dans l’ensemble des diviseurs irré-
ductibles de N(∂p).

2. En général, tous les diviseurs à droite irréductibles de L sont de la forme Lg avec g ∈ SN .

3. Pour tout g ∈ SN , il existe {i1, ..., ik} ⊂ J0; p− 1K avec k = ord(L)
deg(N) tels que

L = lclm
(
L
g+ i1

x

,L
g+ i2

x

, . . . ,L
g+ ik

x

)
.
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Nous consacrons une grande partie de la suite du chapitre 3 à la résolution de l’équation de
p-Riccati. Nous commençons par un bref écart par la résolution d’équations de p-Riccati pour
les séries de Laurent. Grâce à un algorithme de type itération de Newton nous démontrons le
résultat suivant.

Théorème. — Il existe η1, η2 ∈ Z ne dépendant que de g et a ∈ Fq((t)) tels que l’équation(
g

d
dt

)p−1
(f) + fp = ap

admette une solution dans Fq((t)) si et seulement si il existe (fη1 , fη1+1, . . . , fη2) ∈ Fη2−η1+1
q tel

que f :=
∑η2
k=η1

fkt
k vérifie

(
g

d
dt

)p−1
(f) + fp = ap +O(tp(η2+1)).

Nous utilisons ensuite ce résultat pour mettre au point un test d’irréductibilité de N(∂p).
Cet algorithme utilise le principe local-global qui indique qu’une algèbre simple centrale sur
un corps de fonctions ne peut-être déployée qu’à condition que ses complétions en toutes les
places du corps de fonctions le soient. Les complétions de KN étant toutes des corps de séries
de Laurent, cela nous amène à vérifier l’existence de solutions à des équations de p-Riccati du
type précédent. On montre que l’existence de ces solutions est immédiate pour presque toutes
les places de KN sauf un nombre fini d’entre elles pour lesquelles on peut appliquer le théorème
précédent. Ceci nous conduit au résultat suivant.

Théorème. — Soit N ∈ C[Y ] un polynôme irréductible et N∗ ∈ K[Y ] tel que Np
∗ (Y ) = N(Y p).

Il existe un algorithme terminant en temps polynomial en la taille de N∗, prenant N∗ en entrée
et testant si N(∂p) est irréductible.

Enfin, à l’aide de ce test d’irréductibilité et d’outils de la géométrie algébrique sur les courbes
(espaces de Riemann-Roch et groupe de classe de diviseur), nous pouvons résoudre l’équation
de p-Riccati sur KN . Notre résultat final est le suivant :

Théorème. — Soit N ∈ C[Y ] un polynôme irréductible et N∗ ∈ K[Y ] tel que Np
∗ (Y ) = N(Y p).

• Il existe une solution à l’équation de p-Riccati relative à N de taille polynomiale en la taille
de N∗ et un algorithme prenant N∗ en entrée et retournant une telle solution en temps
linéaire en p et polynomial en la taille de N∗.

• N(∂p) a des facteurs irréductibles de taille polynomiale en la taille de N∗. Il existe un
algorithme prenant N∗ en entrée et retournant un tel facteur en temps linéaire en p et
polynomial en la taille de N∗.

Soit L ∈ K〈∂〉 un opérateur différentiel linéaire d’ordre r.

• L a des facteurs irréductibles de taille linéaire en p et polynomiale en r et en la taille des
coefficients de L. Il existe un algorithme prenant L en entrée et retournant un tel facteur
en temps linéaire en p2 et polynomial en r et en la taille des coefficients de L.
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Chapter 1

Introduction

Differential equations have been an object of study for mathematicians for a long time as they
naturally appear in several domains of physical science, especially in the case where x is a
real or complex variable. The study of those equations can take many different forms and
mobilise a variety of different tools, among which the numerical approximation of solutions or
the qualitative analysis of the (solutions of) autonomous equations.
However, there also exists a more algebraic side to the study of differential equations which
encompasses more general functions, among which we find functions of a p-adic variable or
functions defined in positive characteristic. In this new setting a derivation u 7→ u′ over a ring
A is defined as an additive map verifying the Leibniz rule: for any u, v ∈ A,

(uv)′ = u′v + uv′.

Any commutative ring A provided with a derivation is called a differential ring.
This setting allows for considering differential equations on a wider variety of objects, includ-

ing p-adic differential equations as already mentioned. The latter find numerous applications,
e.g. to count points on elliptic curves [Lau04], to compute isogenies [LV16, Eid21] and, more
generally, to study (the cohomology of) many algebraic varieties.

An interesting subclass of differential equations are homogeneous linear differential equations
of the form

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0

where n ∈ N∗ and the ai are (known) functions of a variable x while y(i) denotes the i-th
derivative of the function y of x. In the aforementioned algebraic setting, those equations can
themselves be represented as elements of a ring, albeit a noncommutative one, of differential
operators. We define a linear differential operator as a formal linear combination

an∂
n + an−1∂

n−1 + · · ·+ a1∂ + a0

where the ai are elements of a differential field A. If an 6= 0, we will say that this operator has
order n. The multiplication of these operators is governed by the following commutation rule,
stemming from the Leibniz rule:

∂u = u∂ + u′

for u ∈ A. We denote by A〈∂〉 the ring of linear differential operators with coefficients in A.
If linear differential operators can be multiplied, a natural question that arises is that of factori-
sation: given a linear differential operator L, can one find operators whose product is L? This
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question is also quite closely related to that of solving differential equations: given a differential
equation L(y) = 0 where L is a linear differential operator, then if R is a right factor of L, the
vector space of solutions of R(y) = 0 is a subspace of the space of solutions of L(y) = 0.

The question of the factorisation of differential operators has already been studied in the
past by several mathematicians. For the specific case of operators with coefficients in Q(x) or
C(x), several algorithms have been proposed, among which one can cite the work of D. Yu Grig-
oriev [Gri90], or that of Mark van Hoeij [Van97]. More recently, Frédéric Chyzak, Alexandre
Goyer and Marc Mezzarobba have published an improved factorisation algorithm in the case
of Fuchsian operators (operators whose solutions only have regular singularities) with a finite
number of factorisations [CGM22]; this approach combines van Hoeij’s local-to-global method
with symbolic-numeric techniques suggested by Joris van der Hoeven [vdH07a, vdH07b]. Those
algorithms usually rely on tools such as the monodromy group which do not have an obvious
analogue in positive characteristic.
Interestingly, operators with a finite number of factorisations are also a case where factorisation
is significantly easier in positive characteristic, although the tools used in both cases are radi-
cally different.

Throughout this manuscript, we denote by K an algebraic function field of characteristic p,
that is to say, a separable field extension of the rational function field Fp(x). The goal of this
thesis is to study the factorisation for differential operators in K〈∂〉, with coefficients in algebraic
functions fields of positive characteristic, and to present a full factorisation algorithm. While the
two problems are similar, the tools used in positive characteristic and characteristic 0 greatly
differ. The main difference between differential algebra in characteristic 0 and characteristic p
is the “size” of the ring of constants. Indeed, in the differential ring C(x) equipped with its
usual derivation d

dx , the only elements with zero derivative are elements of C, over which C(x)
is transcendental. However over K, every p-th power has a zero derivative, given that

(fp)′ = pf ′fp−1 = 0.

It follows that the field of constants is large; for example, if K = Fp(x), it is Fp(xp), over which
K has finite dimension p. In full generality, we denote by C the field of constants of K; its
elements are the p-th powers of elements of K and, once again, [K : C] = p.
This difference has major implications. One of them is that any linear differential operator with
coefficients in Fp(x) has central multiples which is never the case in characteristic zero. Another
one is that, while the rational solutions of a linear differential equation in characteristic zero have
always bounded degree, differential operators over Fp(x) have rational solutions of arbitrarily
high degree as soon as they have rational solutions. Both of those facts have implications on
the factorisation of linear differential operators.

An important part of this thesis will focus not only on the way to factor differential operators,
but also on the cost of doing it. We of course want to be able to do it in the most efficient way
possible, but we will take special interest in trying to estimate the size of the coefficients of the
factors found.
Indeed, although it is not a focus of our work, a natural question about factorisation in positive
characteristic is whether or not it can be applied to factorisation in characteristic zero. In the
differential case, there are two main obstacles to a positive answer to this question. The first is
the non-uniqueness of factorisations, even up to permutations. The second issue concerns the
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size of the factors. It is actually directly related to the previous one because an infinite number
of factorisations readily implies that we can find factors whose coefficients are arbitrarily big.
In the perspective of finding modular algorithms to factor differential operators in characteristic
zero, whether it is possible or not to find factors whose coefficients have degrees independent on
the characteristic remains an open question. That is why we will pay special attention to point
out where this dependence on p arises.

It should be mentioned finally that by “full factorisation algorithm”, we do not mean an algo-
rithm which will completely factorise a linear differential operator (although such an algorithm
can easily be deduced from our work), but an algorithm which will return a right irreducible
factor of any input linear differential operator, no matter its form.

Complexity basics We use the soft-O notation Õ which indicates that polylogarithmic factors
are not displayed. More precisely, if λ, µ : N → R+ are increasing functions, saying that
λ(n) = Õ(µ(n)) means that there exists an integer k ∈ N such that λ(n) = O(µ(n) logk(µ(n))).
We will also locally use the notation Oε. With the same notations, saying that λ(n) = Oε(µ(n))
means that for any ε > 0, λn = O(µ(n)1+ε).

We denote by 2 ⩽ ω ⩽ 3 a feasible exponent for matrix multiplication, that is, by definition,
a real number for which we are given an algorithm that computes the product of two m-by-m
matrices over a ring R for a cost of O(mω) operations in R. From [AVW21], we know that we
can take ω < 2.3728596. We shall also need estimates on the cost of computing characteristic
polynomials. Let denote Ω ∈ R∗

+ such that the computation of the characteristic polynomial of a
square matrix of size m with coefficients in a ring R can be done in Õ(mΩ) arithmetic operations
in R. From [KV05, Section 6], we know that it is theoretically possible to take Ω ' 2.697263.
Finally, we assume that any two polynomials of degree d over a ring R (resp. integers of bit size
n) can be multiplied in Õ(d) operations in R (resp. Õ(n) bit operations); FFT-like algorithms
allow for these complexities [CK91, HvdH21].

1.1 State of the art

Several mathematicians have already studied the problem of factorisation of differential opera-
tors. Below, we give an overview of the most significant work that has already been accomplished
in that regard, focusing mostly on the case of positive characteristics.

The first significant work in this direction is due to Marius van der Put in an article from
1995 [vdP95] in which he established a classification of differential modules in positive character-
istic. This is directly related to the problem of factorisation since the structure of the differential
module K〈∂〉/K〈∂〉L reflects the factorisation properties of L. In particular, right divisors of L are
in one-to-one correspondence with differential submodules of K〈∂〉/K〈∂〉L. In his article, van der
Put makes use of two specific properties of differential operators in characteristic p. The first
one is that the ring of differential operators K〈∂〉 is a finite dimensional free algebra over its
centre. A consequence of this is that any linear differential operator (resp. finite dimensional
differential module) has a non zero central multiple (resp. central element of the annihilator).
This first property allows to decompose differential modules as direct sums of submodules ac-
cording to the factorisation of a central element of their annihilator. The next important tool
is the Azumaya structure of the ring K〈∂〉. Indeed, it can be shown, and we will do it later,
that for any maximal ideal m of the centre Z of K〈∂〉, the quotient ring K〈∂〉 ⊗Z Z/m is a
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central simple algebra, meaning it is isomorphic to a matrix algebra over a division algebra
(Artin-Wedderburn theorem [GS06, Thm. 2.1.3]). Combining this result with Morita’s theorem
(which establishes a categorical equivalence between vector spaces and modules over matrix
rings [AF92, Corollary 22.6]), van der Put deduces an equivalence of categories between iso-
typical differential modules (that are, finite dimensional differential modules whose annihilator
contains a central element with only one irreducible component) and vector spaces provided
with a nilpotent endomorphism.

After these results, van der Put further investigated the question of factorisation and pub-
lished in 1996 [vdP96] in which he explored the possibility of using his classification and
Grothendieck-Katz conjecture [Kat82] in the perspective of factoring differential operators with
coefficients in Q(x) using modular methods. Using factorisations in positive characteristic to
recover factorisations of operators in characteristic zero is a natural idea as the same principle
is used in many factorisation algorithms for polynomials (see for example [van02]). Unfortu-
nately, in the case of differential operators the non-commutativity of the multiplication is the
origin of a number of issues, the first one being that factorisations of a differential operator are
generally not unique (even up to permutation) and actually not even finite in many cases; this
makes recombination algorithms much harder to handle. In addition, lifting algorithms from
factorisations modulo p to factorisations modulo p2 (and higher powers of p) do not yet exist
up to our knowledge.The final straw making general modular factorisations methods harder to
design at the moment concerns the size of the factors. Indeed, if an operator L ∈ Q(x)〈∂〉 had
a nontrivial factorisation, it would generate nontrivial factorisations of L mod p for all but a
finite number of p. In particular, one would expect the size of the factors to be independent
of p. Unfortunately there are at the moment no known bounds on the size of the factors of
an operator in Fp(x)〈∂〉 which do not depend at least linearly on p. Nonetheless, van der Put
presents in [vdP96] his ideas to recover factors of order 1 of an operator in Q(x)〈∂〉 using modular
methods.

Van der Put continued to work on that subject, as he wrote in 1997 a manuscript pursuing
the goal of developing modular methods to factor differential operators with coefficients in
Q(x)〈∂〉 [vdP97]. In this article, van der Put describes a nearly complete algorithm to factor
differential operators in positive characteristic, reusing the ideas he introduced two years before.
The p-curvature, which was anecdotally referenced beforehand is now an explicit component
of the algorithm and is used to efficiently compute a nice central multiple of the operator
he wishes to factor and then compute an isotypical decomposition of it. To further continue
the factorisation of the isotypical components, a dichotomy is made according to the form of
the minimal polynomial of their p-curvature. The case where this minimal polynomial is an
irreducible polynomial reduces to the case where it is simply T − ap after a suitable scalar
extension. It then further reduces to the case a = 0, provided that one is able to solve the
following equation, which we shall call the p-Riccati equation in this thesis:

f (p−1) + fp = ap. (1.1)

Here, the unknown is f and being able to solve this equation in finite separable extensions
of Fp(x) (of which a is a primitive element) is vital for factorisation. This is actually not the
first time this equation appeared in van der Put’s work as it was already an important part of
a discussion on the existence of skew field extension of dimension p2 in [vdP95, section 1.5] and
also showed up in [vdP96].
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Before moving to the resolution of the p-Riccati equation, we mention that in his manuscript,
van der Put also tackles the case where the minimal polynomial of the p-curvature has multiple
roots, but while this case is important for lclm (least common left multiple) decompositions of
operators, it can easily be avoided in the case of classical factorisation.
In his manuscript, van der Put presents an algorithmic way to solve the p-Riccati equation over
Fp(x). In general, he also shows that solutions can be found directly after a gcrd (greatest
common right divisor) computation, with one notable exception: the case of central operators.
However, in van der Put’s perspective of designing modular algorithms for factorisation, the
latter case is of little interest; indeed when considering an operator L ∈ Q(x)〈∂〉 there are only
a finite number of primes p (if any) such that L mod p is central and those can be ignored.
Another issue, however, was that the size of the solution to the p-Riccati equation obtained by
this method grows linearly with respect to p. Despite including methods to reduce the size of
the factors obtained, van der Put stated in his manuscript that a precise complexity analysis and
precise size bounds were seemingly impossible to obtain. The manuscript ultimately remained
unpublished, though I was lucky enough to obtain a copy of it.

Since then, other mathematicians have been interested in the problem of factorisation of
differential operators in positive characteristic, among which is Thomas Cluzeau. In a paper
from 2003 [Clu03], he presented an algorithm inspired from van der Put’s work, intended to
factor differential systems. Factorisation in the context of differential systems can mean one of
two things. Consider a system of the form Y ′ = AY with A ∈ Mn(Fq(x)). The basis change
formula is given by A 7→ G−1AG+G−1G′ where G ∈ GLn(Fq(x)) is the matrix of the new basis
and G′ is the matrix obtained from G by differentiating each entry.
Factoring a differential system can mean finding a basis of Fq(x)n such that the resulting system
would be a diagonal block matrix. Such a decomposition is the analogue of lclm decompositions
for differential operators. A second option, which corresponds to the classical factorisation of
differential operators, is to find a basis where the system would be written as a triangular block
matrix. The approach followed by Cluzeau is to diagonally reduce the system as much as pos-
sible (until each block is indecomposable), and then to triangularly reduce as much as possible
the resulting blocks. The analogue decomposition for differential operators would be to write an
operator as an lclm of indecomposable right factors and, in a second time, to write those factors
as classical product of irreducible operators.
In order to achieve this goal, Cluzeau begins, as van der Put did, by computing an isotypical
decomposition of his system by using the p-curvature. This step done, he attempts, if necessary,
to complete the diagonalisation by repeating the same process (the one used with the p-curvature
to compute the isotypical decomposition) with a random element of the eigenring of the sys-
tem. The eigenring of the system can be seen as the ring of endomorphism of the system and
exists for all differential systems, not just those of characteristic p. A most remarkable element
however of the eigenring in positive characteristic is precisely the p-curvature. Cluzeau’s idea
is thus to apply to other randomly chosen elements of the eigenring the same algorithm as for
the p-curvature and hopes that it yields a better decomposition. While this idea works well
to compute lclm decompositions of operators with coefficients in C(x), later experiences have
shown that it may not be as efficient in positive characteristic. This is probably due to the
difference in nature of the constant fields in both cases. Indeed it can be shown that elements
of the eigenring have a characteristic polynomial with constant coefficients. In characteristic
zero, this means coefficients in C over which any polynomial is split, whereas in characteristic
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p, the constant field of Fp(x) is Fp(xp) which does not share this property (in fact a random
polynomial over Fp(xp) is most usually irreducible). Thus the probability that Cluzeau’s idea
works in practice is unfortunately too low for a realistic use.
However, it appears that Cluzeau was aware of this issue as in the same paper he proposed two
ways of finishing the diagonalisation, should his method come to fail. The first one consists
in falling back to van der Put’s approach and solve the p-Riccati equation which, while more
computationally expensive, will return the desired result provided that the system is of the right
size (which corresponds to differential operators with no central divisor). His second proposal
is similar to another work on factorisation published the same year by Mark Giesbrecht and
Yang Zhang [GZ03] on the factorisation of Ore polynomials (of which differential operators are
a specific case) over Fq(t), which we are going to discuss briefly now.
In [GZ03], the authors establish a direct connection between nontrivial factors of an Ore polyno-
mial and nontrivial zero divisors in its eigenring. Giesbrecht and Zhang then use an algorithm to
find nontrivial zero divisors in an algebra. It was shown later by José Gómez-Torrecillas, Fran-
cisco Javier Lobillo and Gabriel Navarro in an article from 2015 [GTLN15, GTLN19] that this
algorithm could not be used in full generality. For example it does not work if the eigenring is
a simple Artinian algebra which is the case when factoring central operators. The issue appears
more generally when looking at the lclm of similar Ore polynomials (meaning that their quo-
tient modules are isomorphic). In the specific case of differential operators, van der Put’s way
of solving the p-Riccati equation solves most of those cases, except the case of central operators
which stayed unsolved to this day.

As a conclusion, we have partial significant results towards the factorisation of differential
operators in positive characteristic but, in all cases, it appears that the case of central operators
in not fully covered. One important goal of the present thesis is to fill this gap and provide
a close study of factorisation of central operators, together with efficient algorithms and tight
bounds on the size of the factors.

1.2 Chapter 2: Around the p-curvature and its computation

As we have seen previously, the p-curvature of a linear differential operator (or more generally
of a differential module) is a vital tool in the algebraic study of linear differential equations in
positive characteristic. Among the various properties of this linear map, Cartier proved that if
L is a linear differential operator over Fp(x), the dimension of the kernel of the p-curvature of L
agrees with the dimension of the space of rational (resp. algebraic) solutions of L over the field
of constants.

Remark. — It should be noted that unlike in characteristic 0, the field of constants of Fp(x)
is strictly smaller than the field of constant of its separable closure. This is why the dimension
over Fp(xp) of the space of rational solutions of an operator L ∈ Fp(x)〈∂〉 can be the same as
the dimension of the space of its algebraic solutions, even though not all algebraic solutions are
rational.

The p-curvature is also tightly linked to the Grothendieck-Katz conjecture which states that
a differential operator L with coefficients in Q(x) has a basis of algebraic solutions if and only if
its reductions modulo p have a basis rational solutions for all primes p, except a finite number of
them. From what precedes, it follows that checking whether the reduction modulo p of L has a
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basis of rational solutions is equivalent to checking whether the p-curvature of L vanishes or not.
The p-curvature is also related to the arithmetic properties of D-finite functions in characteristic
0, as it was shown ([CC85], [And89, Chap.VI]) that the minimal-order vanishing operators of
G-functions are globally nilpotent (meaning that the p-curvatures of their reduction modulo p
are all nilpotent).

As already underlined earlier, the p-curvature also plays a very important role in the question
of factorisation. Being a little more precise, we first notice that the centre of K〈∂〉 is exactly
C[∂p], which is an ordinary polynomial ring over an algebraic function field. An important ingre-
dient in all aforementioned algorithms is to reduce the factorisation in K〈∂〉 to the factorisation
in C[∂p], which has been intensively studied for a long time. For making this strategy work, one
needs to address the following two questions:

• How does one compute a central multiple of L?

• How does one use this central multiple to factor L?

Throughout this manuscript, if L is a linear differential operator inA〈∂〉, whereA is a differential
field of positive characteristic, we will denote by DL the left quotient module A〈∂〉/A〈∂〉L. For
L ∈ K〈∂〉, the p-curvature of L, denoted in what follows by ψLp , is defined as the K-linear map:

ψLp : DL → DL
M 7→ ∂pM

.

We denote by χ(ψLp ) (resp. by χmin(L)) the characteristic polynomial (resp. the minimal
polynomial) of the p-curvature of L. It can be shown that there exists a K-basis of DL in
which the matrix of ψLp has constant coefficients. In particular, its minimal and characteristic
polynomial have coefficients in C, as well as all its Frobenius invariants. Then, central multiple
of L are all multiples of χmin(L)(∂p). In particular, the latter is the central multiple of L of
minimal order. This answers the first question.

Regarding the second question, we get the following theorem which extends van der Put and
Cluzeau’s approaches discussed earlier [vdP95, vdP97, Clu03].

Theorem 1.2.1 (see Theorem 2.2.11). — Let L ∈ A〈∂〉 and suppose that χ(ψLp ) = N1 · · ·Nn

with the Ni being irreducible polynomials in C[Y ], not necessarily pairwise distinct. Then there
exists a factorisation L = L1 · · ·Lm with:

i) for any i ∈ J1;mK there exists j ∈ J1;nK such that Li is a divisor of Nj(∂p).

ii) Lm = gcrd(L,Nn(∂p)).

A similar result in the context of Ore polynomials over finite fields was published by Caruso
and Le Borgne in [CLB17]. The factors of the decomposition are still not irreducible in general;
however, it is the best factorisation one can deduce from the factorisation of χ(ψLp ) or χmin(L),
or more generally of a central multiple of L.

We begin Chapter 2 by establishing some basic properties of linear differential operators.
For a general commutative ring A provided with a endomorphism θ : A→ A and a θ-derivation
∂ : A → A, we spend some time to give a complete proof of the existence and uniqueness of
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the Ore polynomial ring A[X, θ, ∂], defined as the ring of polynomials in the variable X with
coefficients in A with multiplication given by the rule

X · a = θ(a)X + ∂(a)

for any a ∈ A. Rings of linear differential operators can be seen as a special case of Ore
polynomial rings when θ = IdA. Although a complete and rigorous construction of the ring
A[X, θ, ∂] can be found in [BE23, §1.4, Proposition 7], we take the time to reestablish it. We
then recall the basic properties of linear differential operators, among which the existence of an
Euclidean division, of greatest common right divisor (which we will denote by gcrd) or of least
common left multiple (which we will denote by lclm). We then move to the core of Chapter 2
which consists of two parts. Firstly, we relate the p-curvature to factorisation, by proving
Theorem 1.2.1 already mentioned above. Secondly, we present an algorithm computing, for a
given linear differential operator L with coefficients in a polynomial ring of characteristic zero
A[x] and an integer N , all the characteristic polynomials of the p-curvatures of the reductions
modulo p of L, for all primes p smaller than N , in a number of operations in A quasilinear in
N .

Theorem 1.2.2. — Let A be a ring of characteristic 0, L ∈ A[x]〈∂〉 and N ∈ N. There exists
an algorithm computing the characteristic polynomials of the p-curvatures of L mod p for all
primes p ⩽ N in a number of operations in A polynomial in the order of L and the degrees of
its coefficients, and quasilinear in N .

This theorem is a generalisation of [Pag21, Theorem 3.13] which was set in the case where
A = Z. Since A is a ring of characteristic 0, operations in A can be of an arbitrarily high cost
in bit operations, since the bit size of the objects cannot be bounded. When A = Z, we have
the following more precise statement.

Theorem 1.2.3. — Let L ∈ Z[x]〈∂〉 and N ∈ N. There exists an algorithm computing the
characteristic polynomials of the p-curvatures of L mod p for all primes p ⩽ N in a number of
bit operations polynomial in the order of L and the degrees of its coefficients, and quasilinear in
N .

We now briefly sketch the main ideas behind the previous result. Suppose that L is a monic
operator with coefficients in Ap(x) where Ap is an integral domain of characteristic p. One of
the first algorithms to compute the p-curvature is due to Katz (and is sometimes referred to as
Katz’s algorithm [vdPS03, p. 324]). Let M be the companion matrix of L and r be the order of
L. We define the recursive sequence of matrices (Mi)i∈N by

M1 = M and Mi+1 = M ′
i +M ·Mi.

One shows that the matrix of ψLp in the basis (1, ∂, . . . , ∂r−1) is given by Mp. This result is a
consequence of the Leibniz rule. An easy complexity analysis shows that Mi has coefficients of
degree O(i). Using this recursive sequence to compute the p-curvature of L thus has a cost of
O(p2) operations in Ap. However, since the characteristic polynomial of the p-curvature of L has
coefficients in Ap(xp), it can be represented by O(1) elements in Ap. While quasi-optimal (with
respect to p) algorithms to compute the p-curvature exists [BCS15], the best known algorithm
to compute its characteristic polynomial finishes in Õ(√p) operations in Ap [BCS14]. Whether
or not the exponent 1/2 is optimal is still an open question.



1.3. Chapter 3: Factorisation and p-Riccati equation 25

The algorithm we design is a combination of the ideas from [BCS14] and those from [Har14]
for factorial computations. The fundamental theoretical input relies on an isomorphism between
two rings of Ore polynomials: the rings of linear differential operators Ap[x] 〈∂〉, on the one
hand, and the ring Ap[θ][Φ, θ 7→ θ + 1, 0] of skew polynomials in Φ, on the other hand. This
isomorphism is obtained by associating the variable θ to the Euler operator x∂ and ∂ to Φ.
Both Ore polynomial rings share similar properties: they are free algebras of dimension p2 over
their respective centres and, after localising with respect to ∂ and Φ respectively, both have a
structure of Azumaya algebra.

Azumaya algebras are a generalisation of finite dimensional central simple algebras to the
case where the centre is not a field. One way to think about them is to say that Azumaya algebras
are locally isomorphic to central simple algebras for the Zariski topology. One important fact
here is that Azumaya algebras are equipped with a reduced norm map, with is multiplicative
and takes values in the centre. Following [BCS14], but giving alternative proofs, we relate it to
the characteristic polynomials of the p-curvatures. This allows us to bring back the computation
of the characteristic polynomial of the p-curvatures to that of a matrix factorial

B(θ)B(θ + 1) · · ·B(θ + p− 1)

where B is a square matrix with coefficients in A[θ], easily deduced from L. After establishing
the compatibility of this transformation with reductions modulo p, it only remains to efficiently
compute

B(θ)B(θ + 1) · · ·B(θ + p− 1) mod p

for all primes p ⩽ N . Here we reuse the ideas of [Har14] in which the author presents an
algorithm to compute similar matrix factorials.

1.3 Chapter 3: Factorisation and p-Riccati equation

Let L ∈ K〈∂〉. Thanks to Theorem 1.2.1, the problem of factoring L reduces to the case where
L is a divisor of some N(∂p) where N ∈ C[Y ] is an irreducible polynomial. Such operators are
not necessarily irreducible. For example, L = ∂2 is a divisor of ∂p (N = Y ) for all prime p and
yet is never irreducible.
As mentioned before, right factors of L are closely related to the structure of the quotient DL, as
there is a bijection between the monic right factors of L and submodules of DL. Besides, since
L is supposed to be a divisor of N(∂p), the space DL has a structure of DN(∂p)-module (DN(∂p)
is indeed a ring since N(∂p) is a central element). Since N is an irreducible polynomial over C,
it follows from the Azumaya algebra structure of K〈∂〉 that DN(∂p) is a central simple algebra
of dimension p2 over its centre. The Artin-Wedderburn theorem, along with some elementary
dimension analysis, then implies that DN(∂p) must either be isomorphic to a matrix algebra over
its centre, which is C[∂p]/N(∂p), or be a division algebra itself. In the latter case, DN(∂p) has
no nontrivial zero divisor, meaning that N(∂p) has no nontrivial divisor in K〈∂〉. In such a
situation, L is irreducible.

We now discuss the first case where DN(∂p) is isomorphic to a matrix algebra. Let CN denote
the field extension C[Y ]/N(Y ) and and yN be the image of Y in CN . We also write KN = K[yN ].
Morita’s theorem ([AF92, Corollary 22.6]) is an equivalence of categories which relates modules
over matrix algebras (over a field) to vector spaces over the underlying field. We deduce from
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this that the only irreducible factors of N(∂p) are those whose order is exactly the degree of N .
Even better, this frame of mind allows us to think of irreducible divisors of L as hyperplanes of
some vector space and finding them reduces to an exercise of affine geometry. As DL can also be
seen as a submodule of DN(∂p) we deduce moreover that irreducible factors of L can be recovered
from irreducible factors of N(∂p) by means of lclm computations which are the translation in
terms of operators of computing intersections with hyperplanes of DN(∂p).

Unfortunately, Morita’s theorem does not provide an efficiently computable equivalence. It
should also be noted that it is not even easy to determine whether or not DN(∂p) is a division
algebra. To tackle these issues, we first reduce the problem to the case where N is of degree 1.
For this, we shall show that the map

ϕN : DN(∂p) 7→ KN 〈∂〉/(∂p−yN )

Q 7→ Q mod ∂p − yN

is an isomorphism of CN -algebras. This isomorphism allows us to deduce irreducible factors
of N(∂p) from irreducible factors of ∂p − yN . The latter are operators of the form ∂ − f with
f ∈ KN verifying

f (p−1) + fp = yN .

We call this equation the p-Riccati equation relative to N and denote by SN the set of solutions
of this equation in KN . From what precedes we can see that DN(∂p) is a division algebra, i.e.
that N(∂p) is irreducible, if and only if SN = ∅. The first important result of Chapter 3 allows
to deduce an irreducible divisor of L from any element of SN . Let L and R in K〈∂〉 be two
operators such that LR = N(∂p).

Definition 1.3.1. — For any g ∈ KN we set

Lg := lclm(gcrd(N(∂p), ϕ−1
N (∂ − g)), R) ·R−1.

Theorem 1.3.2. — 1. If L = N(∂p) then g 7→ Lg is a bijection between SN and the set of
monic irreducible right divisors of N(∂p).

2. In general, all monic irreducible right divisors of L are of the form Lg with g ∈ SN .

3. For all g ∈ SN , there exists {i1, ..., ik} ⊂ J0; p− 1K with k = ord(L)
deg(N) such that

L = lclm
(
L
g+ i1

x

,L
g+ i2

x

, . . . ,L
g+ ik

x

)
.

Before this thesis, the only available algorithm to solve the p-Riccati equation was given
in [vdPS03, §13.2.1]; it is due to van der Put and Singer and works when KN is a rational
function field Fq(x). In the general case, van der Put used a method that allowed him to recover
a solution to the p-Riccati equation from the gcrd of a non trivial factor and ∂p−yN . However, as
already mentioned earlier, this method cannot be used to factorise central operators of which no
nontrivial divisor is already known. Furthermore using this method generally yields a solution
whose size is linear in p, which we would like to avoid.

A consequent part of Chapter 3 is dedicated to the resolution of the p-Riccati equation over
algebraic function fields. We begin this study by a detour in the world of Laurent series where
we consider more generally equations of the type(

g
d
dt

)p−1
(f) + fp = ap
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which appears as a slight generalisation of p-Riccati equations. Here g and a are known functions
in Fq((t)), with g verifying some additional conditions. Using a Newton-type algorithm, we are
able to show the following result.

Theorem 1.3.3. — There exist η1, η2 ∈ Z depending uniquely on g and a such that the equation(
g

d
dt

)p−1
(f) + fp = ap

has a solution in Fq((t)) if and only if there exists (fη1 , fη1+1, . . . , fη2) ∈ Fη2−η1+1
q such that

f :=
∑η2
k=η1

fkt
k verifies

(
g

d
dt

)p−1
(f) + fp = ap +O(tp(η2+1)).

After evaluating carefully the complexity of our Newton iteration algorithm, we use the
previous theorem to design a polynomial time irreducibility test for N(∂p). In order to explain
this, we first need to introduce some notation. If K (resp. KN ) is an algebraic function field, we
will denote by PK (resp. PKN

) the set of places of K. We will often denote places of K by P,
while νP will denote the associated valuation and tP a prime element of P. Over an algebraic
function field, there is a local-global principle which states that a central simple algebra over
KN splits if and only if its completion in P splits for every P ∈ PKN

. Since completions of
algebraic function fields in their places are all Laurent series rings, this implies that N(∂p) is
reducible if and only if all of the p-Riccati equations(

t′P
d

dtP

)p−1

(f) + fp = yN

have a solution, where t′P is the derivative of tP as an element of KN . Whether or not this
equation has a solution can be checked by Theorem 1.3.3. Furthermore, we show that outside
the poles of yN and x, we always have η1 > η2 so that the condition of Theorem 1.3.3 is empty.
Hence, only a finite number of places have to be checked, which can be easily achieved. This
eventually leads to the following result.

Theorem 1.3.4. — Let N ∈ C[Y ] be an irreducible polynomial and N∗ ∈ K[Y ] such that
Np

∗ (Y ) = N(Y p). There exists a polynomial time algorithm taking N∗ as its input and deter-
mining whether or not N(∂p) is irreducible.

We then tackle the question of solving the p-Riccati equation over algebraic function fields.
The main idea is basically the same as the rational resolution of Singer and van der Put
in [vdPS03, §13.2.1]; it consists in finding a priori bounds on the denominator of one par-
ticular solution. They allow them to then deduce a bound on the degree of the numerator and
to conclude using linear algebra, the p-Riccati equation being linear of Fp.

Nevertheless, in the general case, new difficulties occur. The first one is that, contrarily to
the case of Fq(x), it is not true in general that the p-Riccati equation admits a solution whose
poles are contained within the poles of yN . In order to get around this issue, we use tools from
algebraic geometry on curves: Riemann-Roch spaces and divisor class group (or Picard group)
of a curve and Jacobians. We begin our work by showing that although a random solution of the
p-Riccati equation may have more poles than yN , these “additional poles” can have large order.
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We then show that it is possible to remove poles one by one by replacing a solution f ∈ SN
with f − g′

g for a suitable function g. However, this process has some limitation because the
substitution f → f − g′

g may introduce new poles. Indeed, over a general function field, it is
not possible to have a sharp control on all the zeroes and poles of a function. The object that
measures this failure is called the divisor class group of KN ; it will be denoted by Cl(KN ) in
what follows. Studying this object, we are able to construct a divisor A such that SN is either
empty or contains an element of the Riemann-Roch space associated to A. More precisely, if

• (g) denotes the principal divisor associated to a function g,

• D− denotes the negative part of a divisor D,

• L(D) denotes the Riemann-Roch space associated to a divisor D, and

• Diff(KN ) denotes the different of KN over K (viewed as a divisor on KN ),

we shall prove the following theorem.

Theorem 1.3.5. — We consider the finite commutative group Gp
N = Cl(KN )/pCl(KN ). Let

(D1, . . . , Dn) ∈ Div(KN )n be a lifting of a generating family of Gp
N viewed as a Fp-vector space.

Let S =
⋃n
i=1 SuppDN and set

A := max

∑
P∈S

P + Diff(KN )− 2(x)−,
(yN )−
p

 .
If SN is not empty then it contains an element of L(A).

We then use this theorem and the irreducibility test designed earlier (see Theorem 1.3.4) to
compute a solution to the p-Riccati equation. Unfolding all the theoretical constructions, we
finally end up with a complete factorisation algorithm, whose complexity is summarised in the
following theorem.

Theorem 1.3.6. — Let N ∈ C[Y ] be an irreducible polynomial and N∗ ∈ K[Y ] such that
Np

∗ (Y ) = N(Y p).

• There exists a solution to the p-Riccati equation relative to N of size polynomial in the
size of N∗ and an algorithm taking N∗ in input and outputting this solution in time linear
in p and polynomial in the size of N∗.

• N(∂p) has irreducible factors of size polynomial in the size of N∗. There exists an algorithm
taking N∗ in input and outputting such a factor in time linear in p and polynomial in the
size of N∗.

Let L ∈ K〈∂〉 be a differential operator of order r.

• L has irreducible factors of size linear in p and polynomial in r and the size of the
coefficients of L. There exists an algorithm taking L in input and outputting such a factor
in time linear in p2 and polynomial in r and the size of the coefficients of L.



Chapter 2

Around the p-curvature and its
computation

The goal of this chapter is to establish the importance of the p-curvature for differential operators
of characteristic p. The applications we will mention concern the factorisation as a main part,
but also the conjecture of Grothendieck-Katz. This conjecture motivates the ability to compute
for a given operator in characteristic 0 the p-curvatures, or information on it, of its reductions
modulo p.
In the first sections of this chapter we establish the basic properties of differential operators
and of the p-curvature in positive characteristic. In particular we will show how the ring of
differential operators in positive characteristic is an Azumaya algebra, which is a generalisation
of central simple algebras to rings whose central elements do not constitute a field, and that the
p-curvature is closely related to this structure. We also take time to establish the properties of
the p-curvature which make it such a powerful tool in the setting of this thesis on the factorisation
of differential operators. Finally, in the latter sections of this chapter we present an algorithm
to compute, given a linear differential operator L in characteristic 0 and an integer N , all of the
characteristic polynomials of its p-curvatures for all (save for a finite number depending solely
on L and not on N) primes p ⩽ N . We discuss its complexity, implementations and timings.

2.1 Preliminaries

In this section we will lay down the basic properties of differential operators, of characteristic p
and otherwise, from their very definition to the more specific aspects of central operators which
will prompt the existence of the p-curvature.

2.1.1 Ore polynomial rings

To begin this document we first need to introduce the object of our study: the ring of differential
operators. Differential operators are actually part of a larger class of noncommutative polyno-
mials called Ore polynomials. Since it will be useful to us later, in particular in section 2.3,
we take some time to introduce these “polynomials” and their basic properties in all of their
generality. The first object we need to introduce are θ-derivations.

29
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Definition 2.1.1. — Let A be a commutative ring and θ : A→ A be an endomorphism of A.
A map ∂ : A → A is called a θ- derivation of A if and only if it is additive and for any a and
b ∈ A,

∂(ab) = θ(a)∂(b) + ∂(a)b.

Remark 2.1.2. — Note that in the case where θ = IdA, this rule is the usual Leibniz rule.
This specific case is the setting when studying differential operators. In this case we will speak
simply of derivation.

Example 2.1.3. — i) The usual derivation d
dx defines a derivation on A(x), where A is a

field.

ii) If θ 6= IdA, let a ∈ A be such that θ(a) 6= a. For any f ∈ A there exists a unique
θ-derivation such that ∂f (a) = f . Furthermore, for any g ∈ A,

∂f (g) = f
θ(g)− g
θ(a)− a

.

In particular, the A-module of θ-derivations of A is equal to A(θ − IdA)

Proof. i) This is a well known fact.

ii) We suppose that a derivation ∂f exists. Then for any g ∈ A we have

∂f (ag) = θ(a)∂f (g) + g∂f (a)
= θ(a)∂f (g) + gf.

But also

∂f (ag) = θ(g)∂f (a) + a∂f (g)
= θ(g)f + a∂f (g).

It follows that
∂f (g)(θ(a)− a) = f(θ(g)− g)

and finally
∂f (g) = f

θ(g)− g
θ(a)− a

.

It now suffices to show that ∂f thus defined is indeed a θ-derivation. Let g1, g2 ∈ A.

∂f (g1g2) = f

θ(a)− a
(θ(g1g2)− g1g2)

= f

θ(a)− a
(θ(g1)θ(g2)− θ(g1)g2 + θ(g1)g2 − g1g2)

= f

θ(a)− a
(θ(g1)(θ(g2)− g2) + (θ(g1)− g1)g2)

= θ(g1)f θ(g2)− g2
θ(a)− a

+ g2f
θ(g1)− g1
θ(a)− a

= θ(g1)∂f (g2) + g2∂f (g1).
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Let now A be fixed, as well as an endomorphism θ of A and a θ-derivation ∂. We want to
provide A[X] with a ring structure compatible with its left-A-module structure verifying for any
a ∈ A,

X · a = θ(a)X + ∂(a).

This peculiar commutation rule is motivated by the wish to make this ring structure act upon
A with the left multiplication by X being the θ-derivation ∂. For all a ∈ A and all b ∈ A we
must then have

(Xb) · a = X · (ba)
= ∂(ab)
= θ(a)∂(b) + b∂(a)
= (θ(a)X + ∂(a)) · b

from which the commutation rule is deduced.

Remark 2.1.4. — If ∂ = 0 then instead of the multiplication by X being the map ∂, we want
it to be the morphism θ. One can check that the commutation rule deduced then is the same.

We now show that this commutation rules uniquely defines a ring structure on A[X], al-
though a proof can be found in [BE23, §1.4 Proposition 7]. While it could be argued that the
uniqueness of such a structure is obvious, part of its existence are highly nontrivial, such as the
associativity of the multiplication law. One may be tempted to pass this ring structure as a
representation of the subalgebra generated by ∂ of the ring of additive endomorphism of A, but
this representation does not take into account the possible polynomials relations verified by ∂.

For example, over Fp[x], the derivation d
dx verifies

(
d

dx

)p
= 0 and yet we do not want Xp to

be equal to 0.

Most of the time, texts about Ore polynomials are satisfied with just showing that for any
a and b ∈ A,

(X · a) · b = X · (ab)

and
X · (a+ b) = X · a+X · b.

As a matter of fact, it can be shown that given such a commutation rule on X and elements
of A, the above verifications are all that is needed to define a unique ring structure on A[X]
verifying this commutation rule but it requires a bit of work.

Definition 2.1.5. — Let f : A[X]→ A[X] be a map. We say that f is a commutation rule on
A[X] if and only if:

i) f is additive.

ii) f(1) = X.

iii) For all P ∈ A[X] and all i ∈ N
f(PXi) = f(P )Xi.
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Remark 2.1.6. — The commutation rule f represents the left multiplication of elements of
A[X] by X. Its structure is made so that if f : A → A[X] is an additive map mapping 1
to X, then there exists a unique commutation rule f̃ on A[X] extending f . Indeed if such a
commutation rule existed then for all P =

∑n
k=0 akX

k we would have

f̃(P ) = f̃

(
n∑
k=0

akX
k

)

=
n∑
k=0

f̃(akXk)

=
n∑
k=0

f̃(ak)Xk

=
n∑
k=0

f(ak)Xk

It is easy to check that f̃ thus defined is a commutation rule.

Definition 2.1.7. — Let f be a commutation rule on A[X]. If for all a, b ∈ A,

f(a)(f)(b) = f(ab) (2.1)

then we say that f is an associative commutation rule on A[X].

Remark 2.1.8. — We recall that for all a ∈ A, f(a) is a polynomial with coefficient in A.
It can thus be applied to f and yields f(a)(f) an additive endomorphism of A[X]. Finally
this endomorphism can be applied to any element b ∈ A which is the meaning of f(a)(f)(b).
Since f is supposed to represent the left multiplication by X, the condition f(a)(f)(b) = f(ab)
corresponds to verifying that

(X · a) · b = X · (ab).

Theorem 2.1.9. — Let f be an associative commutation rule on A[X]. There exists a unique
composition law · on A[X] verifying:

∀a ∈ A, X · a = f(a)
∀(i, j) ∈ N2, Xi ·Xj = Xi+j

and providing A[X] with a ring structure compatible with its structure of A-module. We will
denote this ring structure by A[X; f ].

Proof. Let · be such a composition law. Let P =
∑n
k=0 akX

k. By induction on n we show that
for any P and Q ∈ A[X] we must have

P ·Q = P (f)(Q).

This is obviously true for n = 0. Then suppose this property shown for some n ∈ N and let
P ∈ A of degree n+ 1. Then we can write P = P1 ·X + a for some P1 ∈ A[X] of degree at most
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n and some a ∈ A. Then for any Q =
∑m
i=0 biX

i we must have

P ·Q = (P1 ·X + a) ·Q
= (P1 ·X) ·Q+ a ·Q
= P1 · (X ·Q) + a ·Q
= P1 · f(Q) + aQ by additivity of ·
= P1(f) ◦ f(Q) + aQ by recurrence hypothesis
= (P1 ·X)(f)(Q) + aQ since for all i ∈ N, Xi ·X = Xi+1

= P (f)(Q) since · must be compatible with
the A-module structure of A[X]

It remains to be seen that the composition defined by P ·Q = P (f)(Q) provides A[X] with
a ring structure, that is to say that it is distributive on the addition and associative.

The fact that this composition law is distributive is easy to see. By definition, f is additive.
Thus for all P ∈ A, P (f) is also additive. It follows that · is distributive on the right. Since for
all P1, P2 ∈ A[X] we have P1(f) + P2(f) = (P1 + P2)(f) it follows that · is also distributive on
the left.

Let us now show that · is associative. We begin by showing by induction on i that for any
i ∈ N, any a ∈ A and any R ∈ A[X],

(X · aXi) ·R = X · (aXi ·R).

If i = 0 then for R = bXj with b ∈ A and j ∈ N we have

(X · a) · bXj = f(a) · bXj

= f(a)(f)(b)Xj

= f(ab)Xj

= X · (abXj)
= X · (a · bXj)

Since · is distributive on the right, it follows that for any R ∈ A[X] and any a ∈ A

(X · a) ·R = X · (aR).

Suppose that we have shown for some i ⩾ 0 that (X · aXi) · R = X · (aXi · R) for any a ∈ A

and any R ∈ A[X]. Let j ∈ N and b ∈ A. Then

X · (aXi+1 · bXj) = X · (af i+1(bXj)) by definition of ·
= X · (af i(f(bXj))
= X · (aXi · (f(bXj))
= (X · aXi) · f(bXj) by induction hypothesis
= (f(a) ◦ f i)(f(bXj))) by definition of ·
= (f(a) ◦ f i+1)(bXj)
= (X · aXi+1) · bXj
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Now using the distributivity of · we show that for any R ∈ A[X], (X ·aXi+1) ·R = X ·(aXi+1 ·R)
and the recurrence is established.

Again by using the distributivity of · we show that for any Q and R ∈ A[X], (X ·Q) · R =
X · (Q · R). By recurrence on the degree of Q we also show that for any R ∈ A[X] and any
a ∈ A,

a(Q ·R) = (aQ) ·R.

We write Q = Q1 ·X + b and get

(aQ) ·R = (aQ1 ·X + ab) ·R
= (aQ1) · (X ·R) + abR

= a(Q1 · (X ·R)) + a(bR) by recurrence
= a(Q1 · (X ·R) + bR)
= a(Q ·R) by definition.

Let now P = P1 ·X + a ∈ A. Then

(P ·Q) ·R = (P1 · (X ·Q) + aQ) ·R
= (P1 · (X ·Q)) ·R+ (aQ) ·R
= P1 · ((X ·Q) ·R) + a(Q ·R) by recurrence on the degree of P
= P1 · (X · (Q ·R)) + a(Q ·R)
= P · (Q ·R) by definition.

Thus we have proven that · does indeed define a ring structure A[X; f ].

With this proven, the usual proof of the good definition of Ore polynomials can be written.

Corollary 2.1.10. — Let A be a ring, θ be an endomorphism of A and ∂ be a θ-derivation
on A. Then there is a unique ring structure on A[X], denoted by A[X; θ; ∂], compatible with its
A-module structure and such that

∀a ∈ A, X · a = θ(a)X + ∂(a)
∀(i, j) ∈ N2, Xi ·Xj = Xi+j .

Remark 2.1.11. — Since A[X; θ; ∂] acts upon A, with X · a = ∂(a) for all a ∈ A, we will often
refer to elements of A[X; θ; ∂] as operators.

Proof of Corollary 2.1.10. This is just Theorem 2.1.9 applied with f : a 7→ θ(a)X + ∂(a). Since
θ and ∂ are both additive, so is f . Furthermore, f(1) = θ(1)X + ∂(1) = X + ∂(1). But ∂(1) is
necessarily equal to 0. Indeed

∂(1) = ∂(1 · 1)
= θ(1)∂(1) + ∂(1)
= 2∂(1)
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thus ∂(1) = 0 and f(1) = X. Following remark 2.1.6 we see that f defines a unique commutation
rule and we only have to check that for any a, b ∈ A f(a)(f)(b) = f(ab) which follows from the
following computation:

f(a)(f)(b) = θ(a)f(b) + ∂(a)b
= θ(a)(θ(b)X + ∂(b)) + ∂(a)b
= θ(ab)X + θ(a)∂(b) + ∂(a)b
= θ(ab)X + ∂(ab)
= f(ab).

Though Theorem 2.1.9 is more general that just the framework of Ore polynomials, it is
actually unclear whether or not other associative commutation rules exist or are interesting.

The ring A[X; θ; ∂] is equipped with a notion of degree similar to that of polynomials. To
avoid confusion, since A will often be a ring of polynomials or rational functions later on, we
call it the order of an operator.

Definition 2.1.12. — Let P =
∑n
k=0 akX

K ∈ A[X; θ; ∂]. We call the order of P , which we
denote by ord(P ), the highest integer k for which ak 6= 0. If P = 0 then by convention we say
that ord(P ) = −∞.

We will see that the order of operators provides A[X; θ; ∂] with similar properties to the de-
gree for polynomial rings. For now we tackle an important aspect of Ore polynomials concerning
their morphism:

Theorem 2.1.13. — We suppose given an associative commutation rule f on A[X].

Let B be a ring and ϕ : A→ B a ring homomorphism. We still denote by ϕ the unique ring
homomorphism from A[X] to B[X] extending ϕ and mapping X to X.

Let ξ ∈ B be such that for all a ∈ A

ξϕ(a) = ϕ(f(a))(ξ)

Then there exists a unique ring homomorphism ϕ̃ : A[X, f ] → B extending ϕ : A → B and
mapping X to ξ.

Furthermore, for any ring homomorphism ϕ̃ : A[X, f ] → B extending ϕ, ϕ̃(X) is of this
form.

Proof. We begin by the second statement. Let ϕ̃ : A[X, f ] → B be a ring homomorphism
extending ϕ. Then for any a ∈ A,

ϕ̃(X)ϕ(a) = ϕ̃(Xa) = ϕ̃(f(a)).

Let f(a) =
∑n
k=0 akX

k. Then

ϕ̃(f(a)) =
n∑
k=0

ϕ̃(akXk) =
n∑
k=0

ϕ(ak)ϕ̃(X)k = ϕ(f(a))(ϕ̃(X))
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which is precisely the desired property.

Now suppose ξ fixed. Let P = P1X + a ∈ A[X, f ]. If such a ϕ̃ exists then it must verify

ϕ̃(P ) = ϕ̃(P1)ϕ̃(X) + ϕ̃(a)
= ϕ̃(P1)ξ + ϕ(a)

By induction on the order of P we see that this uniquely defines ϕ̃. Furthermore we see that we
have ϕ̃(P ) = ϕ(P )(ξ). This yields for any a ∈ A:

ϕ̃(Xa) = ϕ̃(f(a)) = ϕ(f(a))(ξ).

But also
ϕ̃(X)ϕ̃(a) = ξϕ(a) = ϕ(f(a))(ξ).

Thus
ϕ̃(Xa) = ϕ̃(X)ϕ̃(a).

Let us show that ϕ̃ defined this way is indeed a ring homomorphism. Let P = P1X + a and
Q = Q1X + b. Then

ϕ̃(P +Q) = ϕ̃((P1 +Q1)X + (a+ b))
= ϕ̃(P1 +Q1)ξ + ϕ(a) + ϕ(b)
= ϕ̃(P1)ξ + ϕ̃(Q1)ξ + ϕ(a) + ϕ(b) by induction on the order of P +Q

= ϕ̃(P ) + ϕ̃(Q)

For any a ∈ A and any Q ∈ A[X, f ] we have

ϕ̃(aQ) = ϕ(aQ)(ξ)
= ϕ(a)ϕ(Q)(ξ)
= ϕ̃(a)ϕ̃(Q)

Suppose that we have shown that for any P ∈ A[X, f ] of degree less than some k ⩾ 0 and any
Q ∈ A[X, f ], ϕ̃(PQ) = ϕ̃(P )ϕ̃(Q). Let P = P1X + a of degree k + 1, b ∈ A and j ∈ N.

ϕ̃(PbXj) = ϕ̃(P1XbX
j + abXj)

= ϕ̃(P1f(b)Xj) + ϕ̃(abXj)
= ϕ̃(P1)ϕ̃(f(b)Xj) + ϕ̃(a)ϕ̃(bXj) by induction hypothesis
= ϕ̃(P1)ϕ̃(f(b))ξj + ϕ̃(a)ϕ̃(bXj)
= ϕ̃(P1)ϕ̃(Xb)ξj + ϕ̃(a)ϕ̃(bXj)
= ϕ̃(P1)ϕ̃(X)ϕ̃(b)ξj + ϕ̃(a)ϕ̃(bXj)
= ϕ̃(P1X)ϕ̃(bXj) + ϕ̃(a)ϕ̃(bXj) by induction hypothesis
= ϕ̃(P )ϕ̃(bXj)

By additivity of ϕ̃, we show that for any Q ∈ A[X, f ]

ϕ̃(PQ) = ϕ̃(P )ϕ̃(Q)

and the induction is established.

Thus ϕ̃ is indeed a ring homomorphism
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Corollary 2.1.14. — Let θ be an endomorphism of A and ∂ be a θ-derivation of A. Let
ϕ : A→ B be a ring homomorphism. For any ξ ∈ B verifying for all a ∈ A

ξϕ(a) = ϕ(θ(a))ξ + ϕ(∂(a))

there exists a unique ring homomorphism ϕ̃ : A[X; θ; ∂]→ B extending ϕ and sending X to ξ.

Furthermore, for any ring homomorphism ϕ̃ : A[X; θ; ∂]→ B extending ϕ, ϕ̃(X) is such an
element ξ.

Proof. This is just the previous theorem applied with c : a 7→ θ(a)X + ∂(a).

An important corollary of this theorem concerns the A[X; θ; ∂]-modules. We consider θ and
∂ fixed.

Definition 2.1.15. — Let M be an A-module. An additive map c : M → M is called a
(θ, ∂)-connexion if and only if for all a ∈ A and all m ∈M ,

c(am) = θ(a)c(m) + ∂(a)m.

Example 2.1.16. — Let n ∈ N∗. For any M ∈Mn(A),

∂M : An → An

m 7→ ∂(m)−Mθ(m)

defines a (θ, ∂)-connexion on A (∂(m) and θ(m) denotes the application of those maps to m

coordinates-wise).

When θ = IdA, the connexion ∂M corresponds to the linear differential system

Y ′ = MY.

Solving this linear differential system is the same as finding a basis of An of horizontal vectors
for ∂M , that is to say a basis (e1, · · · , en) such that

∂M (ei) = 0

for all i ∈ J1;nK. It must be noted that such a basis does not always exist in An.

Corollary 2.1.17. — Let M be an A-module. For every (θ, ∂)-connexion c on M , there is a
unique structure of left A[X; θ; ∂]-module such that for every m ∈M ,

X ·m = c(m).

Furthermore, if M is a left A[X; θ; ∂]-module then m 7→ X ·m is a connexion on M .

Proof. Let M be a left A[X; θ; ∂]-module. Then for any a ∈ A and any m ∈M

X · (am) = (Xa) ·m = (θ(a)X) ·m+ ∂(a) ·m = θ(a)(X ·m) + ∂(a)m.

Conversely let M be a A-module and c : M →M a (θ, ∂)-connexion.
A structure of A[X; θ; ∂]-module is the same as a A-algebra homomorphism ϕ : A[X; θ; ∂] →
EndA(M). From corollary 2.1.14 we know that there is a unique such morphism ϕ such that
ϕ(X) = c.
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As previously mentioned, the ring of Ore polynomials over A shares many properties with
the ring of polynomials over A despite being noncommutative. The first is the notion of order of
an element which we already introduced. It is analogous to the notion of degree for polynomials
and has similar properties as illustrated by the following proposition.

Proposition 2.1.18. — For all P,Q ∈ A[X; θ; ∂]:

i) ord(PQ) ⩽ ord(P ) + ord(Q). This is an equality when A is an integral domain and θ is
injective.

ii) ord(P +Q) ⩽ max(ord(P ), ord(Q)) with it being an equality if ord(P ) 6= ord(Q).

Proof. The proof of the second point is exactly the same as in the polynomial case since it is
only a statement about the A-module structure of A[X; θ; ∂] which is the same as that of A[X].

To prove the first point we can proceed by recurrence on ord(P ). Suppose that ord(P ) = n.
Then we can write P = fnX

n + P ′ with ord(P ′) ⩽ n− 1. We find

PQ = fnX
nQ+ P ′Q.

By recurrence, ord(P ′Q) ⩽ ord(Q) + n− 1.
Furthermore

fnX
nQ = fnX

n−1(XQ).

It is easy to see that if Q =
∑m
i=0 qiX

i then

XQ =
m∑
i=0

θ(qi)Xi+1 +
m∑
i=0

∂(qi)Xi

is of order smaller than ord(Q) + 1, with it being an equality if θ is injective. Thus, applying
our recurrence hypothesis, we find that ord(fnXnQ) ⩽ n− 1 + 1 + ord(Q) = ord(Q) + n with it
being an equality if A is an integral domain and θ is injective.
Applying (ii) yields the result.

Corollary 2.1.19. — If A is an integral domain and θ is injective then A[X; θ; ∂] has no
nontrivial zero divisors.

Proof. Suppose that A is an integral domain and θ is injective. If P,Q 6= 0 then ord(P ), ord(Q) ⩾
0. Thus ord(P,Q) = ord(P ) + ord(Q) ⩾ 0 and PQ 6= 0.

Just as the degree for the polynomials, the order provides the ring of differential operators
with an Euclidean division and grants it similar properties.

Proposition 2.1.20. — Let L1 and L2 be two operators ∈ A[X; θ; ∂]. We suppose that L2 has
an invertible leading coefficient. Then there exists a unique pair Qr, Rr ∈ A[X; θ; ∂] such that
ord(Rr) < ord(L2) and

L1 = QrL2 +Rr.

Furthermore, if θ is an automorphism then there exists a unique pair Ql, Rl ∈ A[X; θ; ∂] such
that ord(Rl) < ord(L2) and

L1 = L2Ql +Rl.
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Proof. We proceed by recurrence on ord(L1). If ord(L1) < ord(L2) then (Qr, Rr) = (Ql, Rl) =
(0, L1) fits.

Now suppose that L1 = fnX
n+L′

1 with fn 6= 0 and ord(L′
1) < ord(L1) and set m := ord(L2)

and u the leading coefficient of L2. If u is invertible then so is θn−m(u). Then fn

θn−m(u)X
n−mL2

is of order n and has leading coefficient fn. It follows that

L1 −
fn

θn−m(u)
Xn−mL2

is of order strictly smaller than n. We conclude by induction.

Now if θ is an automorphism then L2·θ−m
(
fn

u

)
Xn−m is of order n and has leading coefficients

fn. Thus
L1 − L2 · θ−m

(
fn
u

)
Xn−m

is of order strictly smaller than n and we can again conclude by recurrence.

For uniqueness, suppose that we have L1 = Qr,1L2 + Rr,1 = Qr,2L2 + Rr,2. Then (Qr,1 −
Qr,2)L2 = Rr,2 − Rr,1. Since L2 has an invertible leading coefficient, if Qr,1 − Qr,2 6= 0 then
ord(Qr,1 −Qr,2)L2) ⩾ ord(L2). Since ord(Rr,2 − Rr,1) < ord(L2) we must have Qr,1 −Qr,2 = 0
and Rr,2 −Rr,1 = 0.

The proof is the same mutatis mutandis for Ql and Rl.

Corollary 2.1.21. — If A is a field then all left ideals of A[X; θ; ∂] are generated by a unique
element. If θ is an automorphism then so are its right ideals.

Proof. Since A is a field, every non zero element is invertible hence, according to proposi-
tion 2.1.20, we have a right Euclidean division. The proof is then perfectly analogous to the case
of Euclidean rings. In the case where θ is an automorphism then according to proposition 2.1.20
we have a left Euclidean division and the proof is again analogous to the case of Euclidean rings.

Thus, under the hypothesis that A is a field, we see that apart from not being commutative,
the ring of differential operators has all the characteristic of a principal ideal domain (and even
of an Euclidean domain). Follows from this a notion of greatest common right/left divisor and
of least common left/right multiple, defined, as in the commutative case, as a generator of the
sum and intersection of the ideals respectively. Moreover, those two operations can be computed
with a noncommutative variant of Euclidean algorithm. This way of computing gcd and lcm is
actually not the most efficient for differential operators, however it is enough for now to know
that these two (in fact four) operations are computable. One may check [Gri90] and [BCSL12]
for more advanced algorithms for gcrd and lclm respectively.

Definition 2.1.22. — We assume that A is a field. Let P,Q ∈ A[X; θ; ∂]. There exists
D ∈ A[X; θ; ∂] such that A[X; θ; ∂]P + A[X; θ; ∂]Q = A[X; θ; ∂]D. We call D the greatest right
commom divisor of P and Q, which we denote gcrd(P,Q).
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Similarly we define the least common left multiple of P and Q, which we denote by lclm(P,Q)
as an element M ∈ A[X; θ; ∂] such that A[X; θ; ∂]P ∩ A[X; θ; ∂]Q = A[X; θ; ∂]M .

Remark 2.1.23. — From those definitions we can see that the gcrd and lclm of two operators
are only defined up to a multiplicative element of A×. In practice we will consider that gcrd
and lclm are always monic.

Remark 2.1.24. — When θ is an automorphism, gcld and lcrm are similarly defined by
considering instead right ideals.

Finally, we can talk about irreducible operators. An operator is said irreducible if it is not
invertible and cannot be written as a product of two non invertible operators. When A is a field,
an operator is irreducible if and only if it cannot be written as a product of two operators of
strictly smaller order and an immediate induction yields the following result:

Proposition 2.1.25. — If A is a field, any L ∈ A[X; θ; ∂] can be written as a product
L :=

∏n
i=1 Pi where each Pi is irreducible and n ∈ N.

As previously mentioned, unlike the polynomial case, factorisations of Ore polynomials are
usually not unique, even up to permutations. For example, in F2(x)[X, IdF2(x),

d
dx ],

X2 =
(
X + f ′

f

)2

for all f ∈ F2(x). The goal of this thesis is to present an algorithm able to find one of such
factorisations, or at the very least a nontrivial right divisor when it exists, for a given linear
differential operator. Linear differential operators are a specific subclass of Ore polynomials
which we will introduce in a moment, and consist of the case where θ is the identity morphism.
This will be developed in the following chapters of this thesis.

Although the following considerations are not necessary to the computation of the p-curvature
developed in this chapter, they are the main guideline of our later work on factorisation. Fur-
thermore, they are important for some applications of the p-curvature that we will expose in the
next section.

From now on, until otherwise specified, we suppose that A is a field.

Notation 2.1.26. For the rest of this document we denote by DL the left A[X; θ; ∂]-module
A[X;θ;∂]/A[X;θ;∂]L and for any L′ ∈ A[X; θ; ∂], we denote by DLL′ the left submodule of DL
generated by the image of L′.

Proposition 2.1.27. — Let L ∈ A[X; θ; ∂]. The application which maps a right divisor L1
of L to DLL1 = A[X;θ;∂]L1/A[X;θ;∂]L is a bijection between the set of right divisor of L (up to a
multiplicative element in A×) and the set of sub-A[X; θ; ∂]-modules of DL.
Furthermore, this bijection is decreasing for the orders given by inclusion and right divisibility.

Proof. To show that it is indeed a bijection we define the reciprocal application. Let M be a sub-
A[X; θ; ∂]-module of DL. Then we can consider the canonical projection πM : A[X; θ; ∂] ↠ DL/M,
which is a morphism of left-A[X; θ; ∂]-modules. It follows that I = ker(πM ) is a left ideal of
A[X; θ; ∂] containing L. Thus there exists LM ∈ A[X; θ; ∂] such that I = A[X; θ; ∂]LM and since
L ∈ I, LM is a right divisor of L. Since M is the image of ker(πM ) by the canonical projection
of A[X; θ; ∂] onto DL, it follows that M = DLLM .
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In our later work on factorisation, we will try to exhibit nontrivial submodules of DL to use
this proposition and find a factorisation of a given operator L.

This bijection also has consequences on the form of the quotient modules of DL which will
be of use later on.

Corollary 2.1.28. — Let L ∈ A[X; θ; ∂]. All quotient A[X; θ; ∂]-modules of DL are isomorphic
to a DL′ for some right divisor L′ of L.

A consequence is the translation of classical operations on the submodules, such as the sum
or the intersection, in terms of their generator.

Lemma 2.1.29. — Let L ∈ A[X; θ; ∂] and L1, L2 be right divisors of L.

i) DLL1 +DLL2 = DLgcrd(L1, L2).

ii) DLL1 ∩ DLL2 = DLlclm(L1, L2).

Proof. From proposition 2.1.27, we know that L′ 7→ DLL′ is a decreasing bijection between right
divisors of L and submodules of DL. Thus it must map the greatest common right divisor of L1
and L2 to the smallest submodule of DL containing both DLL1 and DLL2.
Similarly, it must map the least common left multiple of L1 and L2 to the largest submodule
included both in DLL1 and DLL2.

Remark 2.1.30. — (i) actually still holds even if L1 and L2 are not right divisors of L. This
is because

(A[X; θ; ∂]L1 + A[X; θ; ∂]L) + (A[X; θ; ∂]L2 + A[X; θ; ∂]L)
= (A[X; θ; ∂]L1 + A[X; θ; ∂]L2) + A[X; θ; ∂]L.

The same is not true about (ii) because the intersection is not distributive over the sum.

Those relations will be used mainly in the next chapters to construct new submodules from
previously known ones.

The following corollary won’t be of much use for the computation of the p-curvature or the
factorisation in itself, but is a translation in the language of gcrd and lclm of what it means for
a differential module to be a direct sum and is useful for lclm decompositions.

Corollary 2.1.31. — Let L ∈ A[X; θ; ∂] and L1 and L2 be two right divisors of L. The two
following propositions are equivalent:

i) DL = DLL1 ⊕DLL2.

ii) lclm(L1, L2) = L and gcrd(L1, L2) = 1.

In this case
DL → DL1 ⊕DL2

M 7→ (M mod L1) + (M mod L2)

is an isomorphism.
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Proof. The equivalence is obvious from Lemma 2.1.29. We suppose that (ii) is true. Then saying
that L1 and L2 are both right divisors of some M is equivalent to saying that lclm(L1, L2) = L

is a right divisor of M . Thus the morphism is injective. Since L1 and L2 are (right) coprime,
there exists Q1 and Q2 such that Q1L1 +Q2L2 = 1. Thus for any R1, R2 ∈ A[X; θ; ∂],

R2Q1L1 +R1Q2L2 ≡ R2 mod L2

≡ R1 mod L1

It follows that the morphism is surjective and thus is an isomorphism.

Finally we end this general discussion on Ore polynomials on an interesting relation between
gcrd and lclm, analog to the commutative case.

Lemma 2.1.32. — Let L1, L2 ∈ A[X; θ; ∂]. There is an exact sequence

0→ Dlclm(L1,L2) → DL1 ⊕DL2 → Dgcrd(L1,L2) → 0.

In particular ord(lclm(L1, L2)) + ord(gcrd(L1, L2)) = ord(L1) + ord(L2).

Proof. We define ϕ : Dlclm(L1,L2) → DL1 ⊕DL2 as the sum of the canonical projections and

ψ : DL1 ⊕DL2 → Dgcrd(L1,L2)
(P1, P2) 7→ P1 − P2

.

Let P ∈ ker(ϕ). Then P is both a multiple of L1 and a multiple of L2 so it is a multiple of
lclm(L1, L2) so ϕ is injective. The restriction of ψ to DL1 ⊕ {0} is the canonical projection. In
particular, ψ is surjective.
We have Im (ϕ) ⊂ ker(ψ). Let P1, P2 ∈ ker(ψ). Then there exists Q ∈ A[X; θ; ∂] such that
P1 = P2 + Qgcrd(L1, L2). By definition, we know that there exists U, V ∈ A[X; θ; ∂] such that
UL1 + V L2 = gcrd(L1, L2). We deduce that P1 − QUL1 = P2 + QV L2. Let P be a lift of
P1 −QUL1. Then (P1, P2) = ϕ(P ) ∈ Im (ϕ).

Thus we do have an exact sequence. It follows that

ord(lclm(L1, L2)) + ord(gcrd(L1, L2)) = dimA(Dlclm(L1,L2)) + dimA(Dgcrd(L1,L2))
= dimA(DL1 ⊕DL2)
= dimA(DL1) + dimA(DL2)
= ord(L1) + ord(L2).

2.1.2 The differential case

We end there this general overview of the properties of Ore polynomials to focus on the subject
of this study which are differential operators which we now define.

Definition 2.1.33. — We say that a couple (A, ∂) defines a differential ring if and only if A
is a ring and ∂ is a derivation on A. The subring C = {a ∈ A|∂(a) = 0} is called the ring of
constant of (A, ∂) (or A if the derivation is implied).
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Let (A, ∂) be a commutative differential ring. The relevant case for this chapter is A of the
form A[x] for some commutative ring A, provided with the derivation d

dx . In the next chapter
A will be the field of rational functions over the finite field of cardinality p, Fp(x), or K, a
separable extension of it.

Definition 2.1.34. — The algebra of linear differential operators over A, A〈∂〉 is the set of
polynomials in the variable ∂, isomorphic to A[X, IdA, ∂] by mapping ∂ to X.

For any f ∈ A, the multiplication follows the following commutation rule:

∂f = f∂ + ∂(f).

Remark 2.1.35. — Here ∂ designates both a derivation map and a formal operator which is
an abuse of notation. In hopes of making it less confusing, from now on we will denote

f ′ = ∂(f)

and
f (k) = ∂k(f)

for any f ∈ A unless otherwise specified.

Definition 2.1.36. — Let M be a A-module. We say that M is a differential module (over
(A, ∂) if it is not implied) if M is equipped with a (IdA, ∂)-connexion. According to Corol-
lary 2.1.17, this is equivalent to saying that M is a left A〈∂〉-module.

Differential operators can be considered in a wide variety but in the context of this thesis
we will almost always suppose that A is a ring of prime positive characteristic p. The main
difference between the case of characteristic zero and the positive characteristic is the size of the
subring of constants of A. Whereas it is generally of infinite codimension in A, in characteristic
p this codimension is finite and equal to p in all of our practical cases.

For the rest of this section we make the following assumptions:

Hypothesis 2.1.37. — A is a differential ring of characteristic p. Let C be the ring of constant
of A. We suppose that:

1. C is an integral domain.

2. A is a free algebra of dimension p over C.

3. There exists x ∈ A such that ∂(x) ∈ C\{0}.

Example 2.1.38. — Let K be a separable extension of Fp(x) and C := {fp|f ∈ K} provided
with the usual derivation d

dx .

• [K : C] = p.

• C is the constant field of K.

• K = C[x].
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Proof. We first suppose that K is a finite separable extension of Fp(x). Let f be primitive
element of K and Pf be its minimal polynomial. Then fp is a primitive element of C as an
extension of Fp(xp) (since K ' C). Thus

[K : Fp(xp)] = [K : C][C : Fp(xp)] = [K : Fp(x)][Fp(x) : Fp(xp)].

Since K ' C we have [C : Fp(xp)] = [K : Fp(x)]. Thus [K : C] = [Fp(xp) : Fp(x)] = p.
Let C ′ be the constant field of K. We obviously have C ⊂ C ′ ⊂ K and since d

dx is not trivial on
K, we have C = C ′. Furthermore since K is separable over Fp(x), C is separable over Fp(xp),
thus it does not contain x. Thus we have C ⊊ C[x] ⊂ K.

Example 2.1.38 is the canonical setting of the study of differential operators in prime char-
acteristic p and is the natural setting of our work on factorisation. It allows to study differential
equations with regular coefficients over algebraic curves over Fp. Algebraic functions fields can
be seen as the field of regular functions over some algebraic curve.

The fact that algebraic function fields such as in example 2.1.38 verify Hypothesis 2.1.37
is very useful for finding solutions in K to differential equations with coefficients in K, which
reduces to solving a finite dimensional linear system over C. Unfortunately, this method yields
solutions of bit size linear in p.
Another useful example is the following:

Example 2.1.39. — Let A be an integral domain of characteristic p. A[x] (resp. A(x)) provided
with the d

dx derivation are rings verifying Hypothesis 2.1.37 and its ring of constant is A[xp]
(resp. A(xp)).

When A verifies Hypothesis 2.1.37 the derivation is p-nilpotent as illustrated here:

Proposition 2.1.40. — For any f ∈ A, f (p) = 0. It follows that ∂pf = f∂p.

Proof. We consider the algebra C−1A := A⊗C Frac(C). Since A is a free C-algebra of dimension
p, C−1A is a free Frac(C) algebra of dimension p. We have an injection A ↪→ AC and there is a
unique derivation on AC which coincide with the derivation on A. Thus we can suppose that C
is a field.

Since we can suppose that C is a field, by replacing x by x
∂(x) we can also suppose that

∂(x) = 1. In particular x /∈ C. From Leibniz rule we get

∂(xi) = ixi−1

for i ∈ N. Thus C[x] is of dimension p over C and A = C[x]. For all i ∈ J0; p − 1K, ∂p(xi) = 0
thus for all f ∈ A, f (p) = 0.

For all f ∈ A,

∂pf =
p∑

k=0

(
p

k

)
f (p−k)∂k

= f∂p + f (p)

= f∂p.
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Remark 2.1.41. — The hypothesis that ∂p(A) = 0 is actually the good setting for our work
and is equivalent to (3) in Hypothesis 2.1.37 if the other two conditions are verified.

A direct consequence of this is that A〈∂〉 is a finite dimensional algebra over its centre. This
simple fact is what sets the theory of linear differential equations in characteristic p apart from
its analog in characteristic zero.

Corollary 2.1.42. — C[∂p] is the centre of A〈∂〉.

To prove this result we need the following lemma:

Lemma 2.1.43. — Let A be a differential ring of characteristic p verifying Hypothesis 2.1.37
and let C be its ring of constants. Let x ∈ A be such that ∂(x) ∈ C\{0}. Then the family
(1, x, . . . , xp−1) is linearly independent over C.
In particular if C is a field, then it is a basis of A.

Proof. Since A is of dimension p over C, the family (1, x, . . . , xp) is linearly dependent over C.
Thus there exists Px =

∑k
i=0 λiY

i ∈ C[Y ]\{0} with k ⩽ p such that Px(x) = 0. We can assume
that k is taken minimal. Furthermore we have

∂(Px(x)) = 0

= c

( d
dY

Px

)
(x).

Since c 6= 0, by minimality of k we must have d
dY Px = 0. But since Px 6= 0 this means that

k = p. This means that the family (1, x, . . . , xp−1) is linearly independent over C.

Proof of Corollary 2.1.42. There is a natural injection A〈∂〉 → C−1A〈∂〉. Furthermore if L ∈
C−1A〈∂〉 there exists c ∈ C such that cL ∈ A〈∂〉. It follows that if S is an operator in the centre
of A〈∂〉 then S also commutes with all the operators of C−1A〈∂〉. Thus

Z(C−1A〈∂〉) ∩ A〈∂〉 ⊂ Z(A〈∂〉) ⊂ Z(C−1A〈∂〉) ∩ A〈∂〉

and finally
Z(A〈∂〉) = Z(C−1A〈∂〉) ∩ A〈∂〉.

We deduce that we can suppose that C is a field.

It is obvious that C[∂p] is included in the centre of A〈∂〉, since all its elements commutes
with both elements of A and ∂. Let L be a central element of A〈∂〉 and write

L =
p−1∑
i=0

p−1∑
j=0

li,jx
i∂j

with li,j ∈ C[∂p] (any L ∈ A〈∂〉 can be written as such since according to Lemma 2.1.43,
(1, x, . . . , xp−1) is a C-basis of A).
L commutes with x and ∂. It follows that

xL− Lx =
p−1∑
i=0

p−1∑
j=1

jli,jx
i∂j−1 = 0.
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It follows that if j 6= 0, li,j = 0 and L ∈ A[∂p].
Furthermore we also have

∂L− L∂ =
p−1∑
i=1

ili,0x
i−1 = 0

Thus li,0 = 0 for all i ⩾ 1. We conclude that L ∈ C[∂p].

2.1.3 Azumaya algebra and reduced norm

Corollary 2.1.42 is also the first requirement to show that the rings of differential operators that
we will study have an Azumaya algebra structure. This structure, which is a generalisation of
central simple algebras will be fundamental for the factorisation, and will also play an important
part in the later computation of the p-curvature. Additionally, it was used before by van der Put
to classify differential modules in positive characteristic [vdP95]. From now on, we suppose that
in addition of verifying Hypothesis 2.1.37, A contains an element whose derivative is invertible
in C.

Definition 2.1.44. — Let Z be a commutative ring and R be a central Z-algebra. We say
that R is an Azumaya algebra if and only if for any prime ideal p of Z, R ⊗Z Frac(Z/p) is a
central simple Frac(Z/p)-algebra.

Theorem 2.1.45. — Let A be a differential ring of characteristic p verifying Hypothesis 2.1.37.
In addition, we suppose that A contains an element x such that ∂(x) ∈ C×. A〈∂〉 is an Azumaya
C[∂p]-algebra in the sense of Definition 2.1.44.

Proof. We have a natural morphism C → Frac (C[∂p]/p). Let a be its kernel. Then a is a prime
ideal of C and we have a natural morphism

Frac(C/a)[∂p]→ Frac (C[∂p]/p) .

Let p′ be its kernel. Again, p′ is a prime ideal, and since Frac(C/a)[∂p] is a prime ideal domain,
it is either {0} or a maximal ideal. In the former case we set B = C/a(∂p) and in the latter
B = Frac(C/a)[∂p]/p′. We deduce a natural injection

ι : B → Frac (C[∂p]/p) .

By construction the following diagram commutes:

B

C[∂p]

Frac (C[∂p]/p)

ι

It follows that we have a morphism
ζ : C[∂p]/p→ B
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and that ι ◦ ζ is the natural injection of C[∂p]/p in its fraction field. Thus we get the following
commutative diagram:

B

Frac (C[∂p]/p) Frac (C[∂p]/p)

ιζ

Id

It follows that ι is both injective and surjective and is an isomorphism. It follows that

A〈∂〉 ⊗C[∂p] Frac (C[∂p]/p) ' A〈∂〉 ⊗C[∂p] B

' A⊗C Frac(C/a)〈∂〉 ⊗Frac(C/a)[∂p] B

Let’s show that A ⊗C Frac(C/a) is a differential ring verifying Hypothesis 2.1.37. Since we
supposed that ∂(x) ∈ C×, in particular ∂(x) /∈ a. It follows that A⊗C Frac(C/a) verifies (3) in Hy-
pothesis 2.1.37. In a similar manner to the proof of Lemma 2.1.43, we show that (1, x, . . . , xp−1)
is a Frac(C/a)-basis of A ⊗C Frac(C/a). We show that the ring of constants of A ⊗C Frac(C/a) is
reduced to Frac(C/a). Let f ∈ A ⊗C Frac(C/a). exists c ∈ C\a and Pf ∈ Frac(C/a)[Y ] such that
cf = Pf (x). Then f is a constant if and only if ∂(Pf (x)) ∈ a. But ∂(Pf (x)) = ∂(x) dPf

dY (x) so it
belongs in a if and only if Pf is of the form ax + b with a ∈ a and b ∈ C. But in that case we
have f = b

c so f ∈ Frac(C/a). It follows that A⊗C Frac(C/a) verifies Hypothesis 2.1.37.

Thus by replacing C by Frac(C/a) we can suppose that C is a field. We still must show that
Then p is either equal to zero or of the form C[∂p]N(∂p) where N is an irreducible polynomial

over C. We denote
Dp := A〈∂〉 ⊗C[∂p] C[∂p]/p

in the latter case and
Dp := A〈∂〉 ⊗C[∂p] C(∂p)

in the former. Let π : A〈∂〉 → Dp denote the canonical projection.
Any L ∈ A〈∂〉 can be uniquely written

L =
p−1∑
i=0

p−1∑
j=0

li,jx
i∂j

with li,j ∈ C[∂p]. We denote deg(L) = max{i ∈ J0; p− 1K|∃j ∈ J0; p− 1K, li,j 6= 0}.

Let I be a two-sided ideal of Dp. Then Ĩ := π−1(I) is a two-sided ideal of A〈∂〉.
Let’s assume that I is not reduced to 0. Thus neither is Ĩ. We consider L a nonzero ele-

ment of Ĩ such that the order of L is minimal. In addition, we suppose that deg(L) is minimal
among the elements of Ĩ of the same order. Then since Ĩ is two-sided, xL − Lx ∈ Ĩ. But
ord(xL − Lx) < ord(L). Thus xL − Lx = 0. In addition ∂L − L∂ has at most the same order
as L. Furthermore since deg(∂L − L∂) < deg(L), ∂L − L∂ = 0. Thus L is central and is of
the form P (∂p) with P ∈ C[Y ]. Furthermore, since C is a field, L has an invertible leading
coefficient. By Euclidean division, we deduce that L is a generator of Ĩ. If p = C[∂p]N(∂p),
since N is irreducible, P is either equal to 0 or invertible modulo N . If p = {0} then P is also
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either equal to 0 or invertible in C(∂p). Since we supposed that Ĩ is not reduced to 0, we are in
the later case and I = Dp.

To show that Dp is central, let us suppose that L ∈ Dp is central. First we suppose that p

is of the form C[∂p]N(∂p). Then a lift of L, say L, is of order strictly less than that of N(∂p).
But then xL− Lx and ∂L− L∂ are multiples of N(∂p) of order strictly less than N(∂p). Thus
∂L− L∂ = xL− Lx = 0 and L is central and L ∈ C[∂p]/p.

If now p is reduced to zero then there exists P (∂p) ∈ C[∂p] such that L := P (∂p)L ∈
Z(A〈∂〉) = C[∂p]. Thus L ∈ C(∂p).

All that is left is to prove that Dp is of dimension p2 but this is obvious since A〈∂〉 is a free
algebra of dimension p2 over C[∂p].

The notion of Azumaya algebra is thus a generalisation of the notion of central simple algebra.
Hence, the properties of those central simple algebras are very important to our study. It is a
well-known fact that a k-central simple algebra R, where k is a field, is isomorphic to a matrix
algebra Mn(K) after a scalar extension K/k. K is what is called a splitting field of R. The
determinant map of Mn(K) restricts well on R in the sense that det(A) ⊂ k and furthermore
the restriction of the determinant map to R does not depend on the choice of the splitting field
K. All those properties make this restriction of the determinant map very interesting to study.

Definition 2.1.46. — Let k be a field and R be a central simple k-algebra. The restriction of
the determinant map to R is called the reduced norm of R. We denote this map NrdR : R→ k.

While this is the canonical definition of the reduced norm, we can define it in another way
under some conditions on the central simple algebra R.

Definition 2.1.47. — Let C be a commutative ring and R be a finite dimensional free C-
algebra. For any r ∈ R we denote by NR/C(r) the determinant of the C-linear map

mr : R → R

a 7→ ar
.

Theorem 2.1.48. — Let k be a field, R be a central simple k-algebra of dimension n2 and
C ⊂ R a subalgebra such that R is a free C-module of dimension n. We suppose that for a
separable closure k̃ of k, C ⊗k k̃ is generated by a unique element as a k̃-algebra. Then for any
r ∈ R,

NrdR(r) = NR/C(r)

Proof. See [Car18, Proposition 3.3.9]

This allows us to define a reduced norm on Azumaya algebras under some more restrictive
hypothesis, which will be verified in our practical cases.

Hypothesis 2.1.49. — Let Z be a commutative ring and R an Azumaya algebra over Z. We
suppose that R contains a free commutative subalgebra C such that the following hypothesis
are verified:
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i) Z has no nontrivial nilpotent elements.

ii) There exists n ∈ N such that C is a free Z-algebra and admits a basis (1, c1, · · · , cn−1).

iii) R is a free C-module of dimension n.

iv) For any prime ideal p of Z, C ⊗Z Frac(Z/p) verifies the hypothesis of theorem 2.1.48 with
respect to R⊗Z Frac(Z/p).

Proposition 2.1.50. — Let A be a differential ring of characteristic p verifying the hypothesis
of Theorem 2.1.45. A〈∂〉 verifies the conditions of Hypothesis 2.1.49

Proof. We already know that the center of A〈∂〉 is C[∂p]. Since C is an integral domain by
hypothesis, so is C[∂p]. In particular it has no nontrivial nilpotent elements.

We consider the subalgebra A[∂p]. Since we know that A is a free C-algebra of dimension p,
A[∂p] is a free C[∂p]-algebra of dimension p. A A[∂p]-basis of A〈∂〉 is given by (1, ∂, . . . , ∂p−1).

Let p be a prime ideal of C[∂p]. Like we did in the proof of Theorem 2.1.45, we can assume
that C is a field, in which case A is generated by x as a C-algebra. Thus A[∂p] is also generated
by x as a C[∂p]-algebra.

We now define the reduced norm of Azumaya algebras.

Definition 2.1.51. — Let R be an Azumaya algebra verifying Hypothesis 2.1.49. Then we
define the reduced norm over R as

NrdR(r) = NR/C(r)

for all r ∈ R.

The reduced norm of Azumaya algebras is not a construction limited to rings verifying the
restrictive conditions of Hypothesis 2.1.49. One way to define Azumaya algebras is to say that
they are algebras locally isomorphic to matrix algebras for the étale topology and the reduced
norm is locally defined as the determinant.
For the sake of simplicity, we stick to algebras verifying the conditions of Hypothesis 2.1.49
which will be verified in all our examples.

Proposition 2.1.52. — Let R be an Azumaya algebra over some commutative ring Z verifying
Hypothesis 2.1.49. Then NrdR does not depend on the choice of the subalgebra C and NrdR(R) ⊂
Z.

Proof. Let (1, c1, . . . , cn−1) be a Z basis of C. Then the images of (1, c1, . . . , cn−1) (let denote
them (1, c1,p, . . . , cn−1,p)) also constitute a Frac (Z/p)-basis of C ⊗Z Frac(Z/p) for all ideal prime
p of Z. Let r ∈ R. We know that NR/C(r) ∈ C so there exists λ0, . . . , λn−1 ∈ Z such that
NR/C(r) = λ0 +λ1c1 + · · ·+λn−1cn−1. Let p be a prime ideal of Z and πp : Z ↠ Z/p denote the
canonical projection. Then according to Theorem 2.1.48, we have

NR/C(r) mod p = πp(λ0) +
n−1∑
i=1

πp(λi)ci,p = NrdR⊗Z Frac(Z/p)(r mod p) ∈ Frac (Z/p) .
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It follows that for all prime ideal p of Z, λi ∈ p for i ⩾ 1. Thus the λi are nilpotent and so are
equal to 0 for i ⩾ 1.
Now if C and C ′ are two subalgebra of R verifying Hypothesis 2.1.49 then again by using
Theorem 2.1.48 we see that for all prime ideal p of Z, NR/C = NR/C′ mod p. Since R has no
nontrivial nilpotent element this means that NR/C = NR/C′ .

Remark 2.1.53. — If Z is an integral domain then (ii) in Hypothesis 2.1.49 not necessary
since in this case NA/C = NrdR⊗Z Frac(Z)|R.

Lemma 2.1.54. — Let R be a Azumaya algebra over Z verifying Hypothesis 2.1.49 of dimension
n2. Then:

• For any a ∈ Z, NrdR(a) = an.

• For all r, q ∈ R,NrdR(rq) = NrdR(r)NrdR(q).

Proof. • For any subalgebra C verifying the conditions of Hypothesis 2.1.49, the matrix of
the multiplication by a is the scalar matrix whose diagonal elements are a.

• This is an immediate consequence of the multiplicative properties of the determinant.

The reduced norm of an Azumaya algebra verifying Hypothesis 2.1.49 has many more prop-
erties which are true in general. For example, it can be shown that for any r ∈ R, NrdR(r) is a
multiple of r. One way to show this is to introduce the adjoint of r, which is locally defined as
the adjoint matrix of r, which verifies x · adj(x) = Nrd(r).
We choose not to take this path in this document and will only show those results for some
specific Azumaya algebras (A〈∂〉 and A(θ)〈Φ±1〉, see section 2.3).

2.2 Central elements and p-curvature.

Now that all the most essential elements of the theory of differential equations, both in positive
characteristic and otherwise, have been set we can talk about the p-curvature and its various
applications, in particular to the factorisation of differential operators.

In this section we suppose that A is a field of characteristic p verifying Hypothesis 2.1.37.
As a consequence, C, its ring of constant, is also a field.
As we have seen, the ring of differential operators being a finite dimensional free algebra over
its centre in characteristic p is what sets it apart from the case of characteristic 0. One of the
consequences of this fact is that any nonzero differential operator is a divisor of some central
operator. Since C[∂p] is isomorphic to a ring of classic polynomials, classical factorisation al-
gorithms can be applied to it. One can wonder whether polynomial factorisations of a central
element can be used to factor divisors of this central element. In [vdP95], van der Put used this
idea to produce a classification of differential modules in positive characteristic and later, in an
unpublished manuscript [vdP97], used his previous work to design an (incomplete) algorithm
for factorisation. In both his works, an important step is to reduce the problem to the case of
“isotypical” operators, that is to say operators which are divisor of a central elements with only
one irreducible component (when viewed as a polynomial). We begin by showing how that is



2.2. Central elements and p-curvature. 51

done.

Let L ∈ A〈∂〉 be a linear differential operator. Then one can consider DL := A〈∂〉/A〈∂〉L. DL
is in particular a A-vector space of dimension ord(L), and a C-vector space of finite dimension
p · ord(L). Thus the morphism of C[∂p]-module

C[∂p] → DL
N 7→ N mod L

has a nontrivial kernel of the form χmin(L)(∂p)C[∂p], with χmin(L) ∈ C[Y ]. This proves the
aforementioned result:

Lemma 2.2.1. — For any L ∈ A〈∂〉, there exists N ∈ C[Y ] such that L is a divisor of N(∂p).
We denote by χmin(L) such a monic N of smallest degree.

Remark 2.2.2. — L is both a right and left divisor of N(∂p). Indeed we have shown that there
exists R ∈ A〈∂〉 such that

RL = N(∂p)

But then we have

N(∂p)L = RL2

= LN(∂p) since N(∂p) is central
= LRL

Thus we find that (RL− LR)L = 0 and since A〈∂〉 has no nontrivial zero divisor, LR = RL =
N(∂p) so L is also a left divisor.

It is easy to see that χmin(L) is actually the minimal polynomial of the multiplication by ∂p
on DL, seen as a C-linear map:

ψLp : DL −→ DL
L′ mod L 7→ ∂p · L′ mod L

. (2.2)

Indeed if N(∂p) is a multiple of L then for any L′ ∈ DL, N(ψLp )(L′) = L′ ·N(∂p) ≡ 0 mod L.
Thus χmin(L) is a multiple of the minimal polynomial of ψLp . Conversely, if P is such that
P (ψLp ) = 0 then P (∂p) mod L = P (ψLp )(1) ≡ 0 mod L. Thus the minimal polynomial of ψLp is
a multiple of χmin(L).

ψLp is actually a A〈∂〉-endomorphism, in particular it is a A-linear map. One might then
be inclined to take a look at its minimal polynomial over A. The following result states that it
actually makes no difference.

Lemma 2.2.3. — Let M be a finite dimensional differential A-module and ϕ be a differential
endomorphism of M . There exists a suitable differential field extension ξ of A and a ξ-basis B
of M ⊗A ξ such that MatB(ϕ⊗A Idξ) has constant coefficients.

Proof. Let ξ be a differential extension of A such that M ⊗A ξ admits a basis (e1, . . . , en)
of vectors such that ∂ · ei = 0 for all i. The existence of such a differential extension is a
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consequence of Picard-Vessiot theory in positive characteristic which was developed by Okugawa
in 1962 [Oku62, Proposition 5.2]. Write

ϕ(ei) =
n∑
j=1

λi,jej .

Then
∂.ϕ(ei) =

n∑
j=1

∂(λi,j)ej + λi,j∂ · ej =
n∑
j=1

∂(λi,j)ej .

But also
∂ · ϕ(ei) = ϕ(∂ · ei) = ϕ(0) = 0.

Thus ϕ⊗A Idξ has constant coefficients in the basis (e1, . . . , en).

It follows that any A〈∂〉-endomorphism of a finite dimensional differential module has a
minimal polynomial, a characteristic polynomial and Frobenius invariants with coefficients in C
which proves the following result:

Corollary 2.2.4. — Let M be a finite dimensional differential A-module and ϕ be a differential
endomorphism of M . Then there exists a basis of M in which the matrix of ϕ has constant
coefficient.

In particular ψLp , when viewed has a A-endomorphism, is equivalent to a matrix with coef-
ficients in C, and its minimal polynomial over C is equal to its minimal polynomial over A. In
particular

deg(χmin(L)) ⩽ ord(L).

ψLp thus plays a very important role in our and in van der Put’s work (as well as Cluzeau’s)
and in general in the theory of linear differential equations in characteristic p.

Definition 2.2.5. — Let L ∈ A〈∂〉. The endomorphism ψLp defined in (2.2) is called the
p-curvature of L.

Amongst its various interesting properties, Cartier showed that L has a basis of solutions in
A if and only if its p-curvature is zero [vdPS03, Lemma 13.2]. Furthermore, if B is a differential
field extension ofA verifying Hypothesis 2.1.37 then the p-curvature of L over B is just ψLp ⊗AIdB.
This implies that the following propositions are equivalent:

i) L has a basis of solutions in A.

ii) L has a basis of solutions in a separable closure of A.

iii) L has a basis of solutions in any differential field extension of A verifying Hypothesis 2.1.37.

iv) ψLp = 0.

Remark 2.2.6. — Note that “a basis of solutions” is always meant as a basis of solutions over
the field of constants which varies with the base field.
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The p-curvature is thus an important tool to detect the algebraic character of the solutions of a
differential operators and enables us to solve this question way easier than in characteristic 0. A
most important conjecture in the algebraic theory of differential equations is the Grothendieck-
Katz conjecture [Kat82] which states that the solutions of an operator L in Q(z)〈∂〉 are algebraic
if and only if L mod p has an algebraic basis of solutions for almost all primes p (meaning all
but a finite number).
Another example of the interest of the p-curvature, even for operators of characteristic 0 comes
from André-Chudnovsky-Katz theorem which states that vanishing operators L of minimal order
in Q(z)〈∂〉 for functions of a certain type (G-functions) are globally nilpotent [And89], which
is to say that ψL mod p

p is nilpotent for almost all primes p. Moreover, it is well known that
the nilpotent character of an endomorphism can be determined solely from its characteristic
polynomial.

In his work on factorisation, van der Put focuses on the minimal polynomial of the p-curvature
of L. While the reason for this are understandable, in our work we will be more interested in
its characteristic polynomial which, while it doesn’t verify the minimality condition, has very
interesting properties, among which multiplicativity. It is also tightly connected to the reduced
norm of A〈∂〉 induced by its Azumaya algebra structure (see Theorem 2.3.26), structure used
by van der Put for his classification of differential modules [vdP95].

Definition 2.2.7. — Let L ∈ A〈∂〉. The characteristic polynomial of its p-curvature, seen as
a A-linear map, is denoted by χ(ψLp )

Proposition 2.2.8. — The following facts are true:

i) Let L ∈ A〈∂〉. L is a left and right divisor of χ(ψLp )(∂p) and deg(χ(ψLp )) = ord(L).

ii) The map L 7→ χ(ψLp ) is multiplicative.

iii) If L ∈ A〈∂〉 is irreducible then χ(ψLp ) is a power of an irreducible polynomial.

iv) If L is central then χ(ψLp )(∂p) = Lp.

Proof. [BCS14, section 3.1] (i) is a direct consequence of the above discussion. Indeed the
minimal polynomial of the p-curvature of L is equal to χmin(L). Since χ(ψLp )(∂p) is central
every right divisor is also a left divisor.
Let L = L1L2. Then we have a map

ϕ : DL1 → DL
L′ mod L1 7→ L′L2 mod L

and
0→ DL1

ϕ−→ DL
π−→ DL2 → 0

is an exact sequence. Then the multiplication by ∂p induces an endomorphism of this exact
sequence. This means that in a good A-basis of DL the matrix of ψLp is(

ψL1
p ∗
0 ψL2

p

)
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and so χ(ψLp ) = χ(ψL1
p )χ(ψL2

p ) which proves (ii). Let now suppose that L is irreducible and
assume that χ(ψLp ) has two distinct irreducible divisor N1 and N2. Then L is coprime with
N1(∂p) or N2(∂p). Assume that L is coprime with N1(∂p). This means that the multiplication
by N1(∂p) defines an invertible endomorphism of DL. But this is in direct contradiction with
N1 being an irreducible factor of the characteristic polynomial of ψLp so (iii) holds.
To prove (iv), suppose that L = N(∂p) with N ∈ C[Y ] then χmin(L) = N . Since the character-
istic polynomial of the p-curvature is a multiplicative map, it is enough to prove it when N is
irreducible. In this case, it follows that χ(ψLp ) is a power of N with

deg(χ(ψLp )) = ord(L) = p deg(N).

We get χ(ψLp ) = Np and χ(ψLp )(∂p) = Lp.

Theorem 2.2.9. — Let L ∈ A〈∂〉. Write χ(ψLp ) = Nν1
1 · · ·Nνn

n where the Ni are pairwise
distinct irreducible polynomials in C[Y ]. Then there exists a factorisation L = L1 · · ·Ln with:

i) χ(ψLi
p ) = Nνi

i for all i ∈ J1;nK.
ii) Ln = gcrd(L,Nνn

n (∂p)).

Proof. As per the kernel decomposition lemma we find that

DL =
n⊕
i=1

kerNνi
i (ψLp ).

We proceed by induction on n. First notice that χ(ψL
p| kerNνn

n (ψL
p )) = Nνn

n . Furthermore, since
kerNνn

n (ψLn ) is isomorphic to a quotient module of DL, it is of the form DLn with Ln being a right
divisor of L, and χ(ψLn

p ) = Nνn
n . It follows that Ln is a common right divisor of L and Nνn

n (∂p),
so it divides gcrd(L,Nνn

n (∂p)). We can write gcrd(L,Nνn
n (∂p)) = L′

nLn and L = ML′
nLn. Then

if L′
n was not of order 0 then Nνn+1

n would divide χ(ψLp ) which is not true. We can thus suppose
L′
n = 1 and Ln = gcrd(L,Nνn

n (∂p)).
Thus we have L = MLn with χ(ψMp ) = Nν1

1 · · ·N
νn−1
n−1 and we conclude by induction.

Remark 2.2.10. — One can see that this first factorisation comes from the decomposition
of DL as a direct sum of submodules. This induces another type of factorisation as the least
common left multiple of fully coprime operators (see Definition 3.5.3) as follow

L = lclmn
i=1(gcrd(L,Nνi

i (∂p)))

This first factorisation comes from a decomposition of DL as a direct sum of submodules. Its
factors are not irreducible in general, and it is not possible to obtain a more refined decomposition
of this sort solely from a factorisation of χ(ψLp ) or χmin(L). In his works on the classification
of differential modules [vdP95] and factorisation [vdP97], van der Put works directly on this
reduction, as does Cluzeau in [Clu03] for the analog decomposition on differential systems. Our
concern being, for now, to find a simple factorisation of linear differential operators, we allow
ourselves a small refinement of this first factorisation which in general does not correspond to a
decomposition of DL as a direct sum of submodules:

Theorem 2.2.11. — Let L ∈ A〈∂〉 and suppose that χ(ψLp ) = N1 · · ·Nn with the Ni being irre-
ducible polynomials in C[Y ], not necessarily pairwise distinct. Then there exists a factorisation
L = L1 · · ·Lm with:
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i) for any i ∈ J1;mK there exists j ∈ J1;nK such that Li is a divisor of Nj(∂p).

ii) Lm = gcrd(L,Nn(∂p)).

Proof. We actually show a more general result, replacing χ(ψLp ) with any vanishing polynomial
of ψLp over C. In practice we will only apply it to χ(ψLp ) in our algorithm.
Let N = N1 · · ·Nn ∈ C[Y ] be such that N(∂p) is a multiple of L. Set Lm = gcrd(L,Nn(∂p)) and
L = L′

mLm. Let us show that N ′ = N1 · · ·Nn−1 is a vanishing polynomial of ψL
′
m

p .
We have the exact sequence

0→ DL′
m
→ DL → DLm → 0.

In particular DL′
m
' DLLm. Furthermore DLLm = Im (Nn(ψLp )) which comes from the Bezout

relation. It follows that

N ′(ψLp )(DL′
m

) = N ′(ψLp )(DLLm)
= N ′(ψLp )(Nn(ψLp )(DL))
= N(ψLp )(DL)
= 0

We conclude by recurrence on n.

The factors of this second decomposition are still not irreducible in general but the problem
of factorisation is now reduced to the case of a divisor L of some N(∂p) with N being an irre-
ducible polynomial over C. In the next chapter 3 we will use the already established structure
of Azumaya algebra (theorem 2.1.45) of A〈∂〉 to study the structure of DL (as was done by van
der Put in [vdP95]).

We have seen that the p-curvature and in particular its characteristic polynomial are very
important tools for the study of differential operators, in characteristic p for example in the
perspective of factorisation, but also in characteristic zero as illustrated by the conjecture of
Grothendieck-Katz or the theorem of Chudnovsky-Chudnovsky. While fast algorithms to com-
pute the characteristic polynomial of the p-curvature of a given operator of characteristic p exist,
among which Bostan, Caruso and Schost’s algorithm [BCS14], another interesting algorithmic
question is the way of computing the characteristic polynomials of the p-curvatures of a given
operator L in characteristic 0 for a large amount of primes p.
In the following sections we present an algorithm tackling this question.

2.3 p-curvatures and reduced norm

In this section we lay down some theory around the characteristic polynomial of the p-curvature
which we will use to build an algorithm computing the characteristic polynomials of the p-
curvatures of the reductions modulo p of a given differential operator in characteristic 0, for all
primes p less than a given integer N , in quasilinear time with regard to N .

The most commonly known algorithm to compute the p-curvature of a differential module
is due to Katz (and is often referred to as Katz algorithm [vdPS03, p. 324]) and rely on the
following result:



56 Chapter 2. Around the p-curvature and its computation

Lemma 2.3.1. — Suppose that A is a differential field of characteristic p verifying Hypothe-
sis 2.1.37. Let L ∈ A〈∂〉 of order r and M be the companion matrix of L. We set M1 = M

and
Mi+1 = M ′

i +M ·Mi

Then the matrix of the p-curvature in the A-basis B = (1, ∂, · · · , ∂r−1) of DL is given by Mp.

Proof. Let B = (e0, . . . , er−1) be the canonical basis of DL, such that ei is the image in DL of
∂i. We claim that Mi · ej is the image of ∂i+j mod L written in the basis B. This is obvious
for i = 1. If now Y is an element of DL represented by the vector Ỹ in the basis B, then ∂ ·Y is
represented by the vector Ỹ ′ +MỸ as per the Leibniz rule. Note that Ỹ ′ denote the derivative
of Ỹ coefficient-wise. Thus if Mi · ej is the image of ∂i+j mod L in the basis B, then the image
of ∂(i+1)+j mod L in the basis B is given by

(Miej)′ +M ·Mi · ej = (M ′
iej +M ·Mi) · ej

= Mi+1 · ej

It follows that Mp is the matrix whose columns are precisely the image of ∂p+j mod L written
in B, for j ∈ J0; r − 1K which is by definition the matrix of the p-curvature of L in B.

Example 2.3.2. — Let L = (x + 1)2∂3 − x∂ + x3 ∈ F3(x)〈∂〉. Then the matrix of ψLp in the
canonical basis of DL is given by

Mp =


2x3

x2+2x+1
2x3

x3+1
2x4

x4+x3+x+1
x

x2+2x+1
2x4+2x3+2x+1

x3+1
x4+x3+x2+2x+2
x4+x3+x+1

0 x
x2+2x+1

2x4+2x3+x+2
x3+1

 .
We find

χ(ψLp ) = Y 3 + 2
x3 + 1

Y + x6 + 2x3

x3 + 1
.

From here, one can just compute the characteristic polynomial of Mp if that is what one
is interested in. Katz algorithm teaches us some things on the size of the p-curvature of an
operator. Indeed if L is a differential operator in A(x)〈∂〉 of size O(1), one can easily check that
the entries of Mi are rational functions over A of degree O(i). It follows that the matrix of the
p-curvature in the canonical basis of DL is of size O(p).

Remark 2.3.3. — The meaning of “size” can be a bit unclear. Here we mean by it the number
of elements of A necessary to represent the object considered. Furthermore here the notations
O(1) and O(p) hide the dependence in secondary parameters, such as the order of the operator
L or the degree of its coefficients.

As previously said, it follows that Katz algorithm computes the p-curvature, and subse-
quently its characteristic polynomial, in O(p2) operations in A. However we know from Corol-
lary 2.2.4 that χ(ψLp ) has coefficients in A[xp] and so can be represented by O(1) elements in A.
The best known algorithm to compute its characteristic polynomial finishes in Õ(√p) operations
in A [BCS14]. Whether or not the 1/2-exponent is optimal is still an open question. Regarding
the goal of this chapter, one can see that the simple iteration of this last algorithm would yield
the desired result in Õ(N3/2) operations in A.
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Our algorithm is a combination of the ideas from [BCS14] and those from [Har14] for factorial
computations. In order to use this algorithm we need to introduce a new ring of operator.
From now on we assume that A is of the form A[x] or A(x) with A an integral domain as in
Example 2.1.39

Definition 2.3.4. — We define the ring of skew polynomials A(θ)〈Φ〉 (resp. A[θ]〈Φ〉) as the
set of Ore polynomials A(θ)[Φ, θ 7→ θ + 1, 0] (resp. A[θ][Φ, θ 7→ θ + 1, 0]).
The multiplication verifies the following commutation rule:

Φθ = (θ + 1)Φ.

These rings share a number of similar properties with A〈∂〉. Besides the properties common
to all rings of Ore polynomials, the ring of skew polynomials is also a finite dimensional algebra
over its centre of dimension p2 as we now show:

Lemma 2.3.5. — The centre of A(θ)〈Φ〉 (resp. A[θ]〈Φ〉) is A(θp − θ)[Φp] (resp. A[θp − θ][Φp])

Proof. Let L =
∑n
k=0 fk(θ)ΦK be a central element of A(θ)〈Φ〉. Then Lθ − θL = 0. But

Lθ − θL =
n∑
k=0

fk(θ)(Φkθ − θΦk)

=
n∑
k=0

(θ + k − θ)fk(θ)Φk

=
n∑
k=0

kfk(θ)Φk

We deduce that fk(θ) 6= 0 is and only if p|k.
Furthermore since L is central we have LΦ− ΦL = 0. But

LΦ− ΦL =
n∑
k=0

(fk(θ)− fk(θ + 1))Φk+1

It follows that for all k, fk(θ) = fk(θ + 1). Let A(θ)Φ be the subfield of A(θ) invariant under
the morphism θ 7→ θ + 1. We see that A(θp − θ) ⊂ A(θ)Φ. But since [A(θ) : A(θp − θ)] = p and
A(θ)Φ 6= A(θ) it follows that A(θp − θ) = A(θ)Φ.
Thus L ∈ A(θp − θ)[Φp]. If furthermore L ∈ A[θ]〈Φ〉 then L ∈ A(θp − θ)[Φp] ∩ A[θ]〈Φ〉 =
A[θp − θ][Φp].
Furthermore we see that any element of A(θp − θ)[Φp] is central.
Finally a basis of the ring of skew polynomials over its centre is given by (θiΦj)i,j∈J0;p−1K.

While an analog of Theorem 2.1.45 is not true on the ring of skew polynomials as is, we only
need to introduce an inverse to Φ for it to work.

Example 2.3.6. — {
∑p−1
k=1 fkΦk|fk ∈ A(θ)} is a nontrivial two-sided ideal of A(θ)〈Φ〉/Φp. This is

a counterexample of why A(θ)〈Φ〉 is not an Azumaya algebra in the sense of Definition 2.1.44.

Definition 2.3.7. — We denote by A(θ)〈Φ±1〉 := A(θ)〈Φ〉 ⊗A(θp−θ)[Φp] A(θp − θ)[Φ±p]
(resp. A[θ]〈Φ±1〉 := A[θ]〈Φ〉 ⊗A[θp−θ][Φp] A[θp − θ][Φ±p]).
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Remark 2.3.8. — We will then use the notation Φ−k for Φpk′−k · Φ−pk′ where k′ is such that
pk′ ⩾ k. This notation is justified as Φ−k is the inverse of Φk.

Theorem 2.3.9. — A(θ)〈Φ±1〉 (resp. A[θ]〈Φ±1〉) is an Azumaya algebra over A(θp − θ)[Φ±p]
(resp. A[θp − θ][Φ±p]) in the sense of Definition 2.1.44.

Proof. As in the proof of Theorem 2.1.45 we show that we can suppose that we are working on
A(θ)〈Φ±1〉. We denote

Dp := A(θ)〈Φ±1〉 ⊗A(θp−θ)[Φ±p] Frac(A(θp−θ)[Φ±p]/p).

Let π : A(θ)〈Φ〉 → Dp be the natural morphism.

Let I be a two-sided ideal of Dp and Ĩ = π−1(I). Ĩ is a two-sided ideal of A(θ)〈Φ〉 not
containing Φp. Let L be a generator of Ĩ and set L =

∑n
k=0 fk(θ)Φk with fn(θ) 6= 0. With no

loss of generality, we can suppose that fn = 1.
Since Ĩ is two sided ideal of A(θ)〈Φ〉, Lθ− θL ∈ Ĩ. In particular L is a right divisor of Lθ− θL.
But

Lθ − θL =
n∑
k=0

kfk(θ)Φk.

Thus ord(Lθ − θL) ⩽ ord(L). It follows that we have Lθ − θL = nL. But then we must have
nfk(θ) = kfk(θ) which is to say that (n− k)fk(θ) = 0 for all k. Thus we either have fk(θ) = 0
or p|n − k. It follows that L is of the form ∑n′

k=0 fpk+λ(θ)Φpk+λ for some λ and k′. But then
λ must be equal to 0 since Φ is invertible in Dp, otherwise L′ =

∑n′
k=0 fpk(θ)Φpk would be an

element of Ĩ of lesser order than L.
But since Φpkθ = θΦpk for all k ∈ Z, Lθ − θL = 0.

Furthermore we have ΦL− LΦ ∈ Ĩ. But

ΦL− LΦ =
n∑
k=0

(f(θ + 1)− f(θ))Φk+1.

Again, since Φ is invertible in Dp, L′ =
∑n
k=0(fk(θ + 1)− fk(θ))Φk ∈ Ĩ. Since we assumed that

fn(θ) = 1, it follows that ord(L′) ⩽ n− 1. Thus L′ = 0 = ΦL− LΦ.
This means that L is in the centre of A(θ)〈∂〉. But then, p is either equal to zero, in which case
L is either equal to zero or is invertible in A(θp− θ)(Φp), or is of the form A(θp− θ)[Φ±p]N(Φp)
where N is an irreducible polynomial over A(θp − θ). Then L is again either invertible modulo
N(Φp) or is equal to 0 mod N(Φp). Thus I is either equal to 0 or to Dp.

We now show that Dp is central. The case when p = 0 is the same as the differential case.
Suppose that p is of the form N(Φp) with N an irreducible polynomial over A(θp− θ) of degree
n and let L be an element of its centre. Let L =

∑pn−1
k=0 lk(θ)Φk be a lift of L in A(θ)〈∂〉 of order

strictly less than pn. Then Lθ − θL is a multiple of N(Φp). But since it is of order strictly less
than pn, it must be equal to 0. Thus L ∈ A(θ)[Φp].
Furthermore (ΦL− LΦ) · Φ−1 = 0 mod N(Φp). But a lift of (ΦL− LΦ) · Φ−1 is given by

pn−1∑
k=0

(lk(θ + 1)− lk(θ))Φk
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of order strictly less than pn. It follows that
pn−1∑
k=0

(lk(θ + 1)− lk(θ))Φk = 0

and thus ΦL− LΦ =
(∑pn−1

k=0 (lk(θ + 1)− lk(θ))Φk
)

Φ = 0.
Thus L is a central element of A(θ)〈Φ〉 and L ∈ A(θp−θ)[∂±p]/p.

Finally we can define the p-curvature of a skew polynomial in A(θ)〈Φ〉 in a perfectly analogous
way to what we did for differential operators:

Definition 2.3.10. — Let L ∈ A(θ)〈Φ〉. We define the p-curvature of L as the A(θ)-
endomorphism:

ΛLp : A(θ)〈Φ〉/A(θ)〈Φ〉L → A(θ)〈Φ〉/A(θ)〈Φ〉L

Q mod L 7→ ΦpQ mod L
.

Like for differential operators, we can draw a simple algorithm to compute this p-curvature.

Lemma 2.3.11. — Let L ∈ A(θ)〈Φ〉 be a skew polynomial and let B(θ) be its companion matrix.
Then the matrix of the p-curvature of L in the canonical basis of A(θ)〈Φ〉/A(θ)〈Φ〉L is given by

Bp = B(θ)B(θ + 1) · · ·B(θ + p− 1).

Proof. Let Bi = B(θ)B(θ + 1) · · ·B(θ + i − 1). Let ej =t (0 · · · 0, 1, 0 · · · 0) be the vector rep-
resenting Φj mod L (for j < ord(L)) in the canonical basis of A(θ)〈Φ〉/A(θ)〈Φ〉L. For the sake of
simplicity we identify elements of A(θ)〈Φ〉/A(θ)〈Φ〉L to their representation in the canonical basis.
As for differential operators we claim that Φj+i mod L = Biej . This is easy to see for i = 1.
Now for any f(θ) ∈ A(θ),

Φf(θ)Φj mod L = f(θ + 1)Φi+1 mod L = f(θ + 1)B(θ)ej .

It follows that for any Y (θ) ∈ A(θ)〈Φ〉/A(θ)〈Φ〉L,

ΦY (θ) mod L = B(θ)Y (θ + 1).

Finally we get that

Φi+j = ΦΦi−1+j

= Φ · (B(θ)B(θ + 1) · · ·B(θ + i− 2)ej)
= B(θ) · (B(θ + 1)B(θ + 2) · · ·B(θ + i− 1)ej)

Unlike the differential case, this formula directly provides a quasi-optimal (with regard to p)
algorithm to compute ΛLp . Indeed a simple divide and conquer algorithm allows us to compute
products of n matrices in Mn(A(θ)) in Õ(n) operations in A (considering each matrix to be of
size O(1)). Furthermore, if one is only interested in computing ΛLp modulo some power of θ,
baby-steps giant-steps methods can compute matrix factorials of size n (ΛLp is a matrix factorial
of length p) in Õ(

√
n) operations in A. This principle is what is used in [BCS14] to compute

the characteristic polynomial of the p-curvature of differential operators in Fpn(x)〈∂〉 in Õ(√p)
binary operations.
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Notation 2.3.12. Let L ∈ A(θ)〈Φ〉 be a skew polynomial. We denote by χ(ΛLp ) the character-
istic polynomial of its p-curvature ΛLp .

The characteristic polynomial of ΛLp has analogous properties to that of the p-curvature of
differential operators:

Proposition 2.3.13. — The following facts are true:

i) Let L ∈ A(θ)〈Φ〉. L is a left and right divisor of χ(ΛLp )(Φp) and deg(χ(ψLp )) = ord(L).

ii) The map L 7→ χ(ΛLp ) is multiplicative.

iii) If L ∈ A(θ)〈Φ〉 is irreducible then χ(ΛLp ) is a power of an irreducible polynomial.

iv) If L is central then χ(ΛLp )(Φp) = Lp.

Proof. The proof is the same as in the differential case (cf Proposition 2.2.8).

Finally, in an analogous way to the case of differential operators we can show that χ(ΛLp ) is
invariant under the action of Φ.

Lemma 2.3.14. — Let L ∈ A(θ)〈Φ〉. χ(ΛLp ) the characteristic polynomial of the p-curvature of
L has its coefficients in A(θp − θ).

Proof. We begin by showing that χ(ΛΦi

p )(X) = Xi. Indeed ΛΦ
p = 0 so χ(ΛΦ

p )(X) = X. Thus by
multiplicativity χ(ΛΦi

p )(X) = Xi.
Since M 7→ χ(ΛMp ) is a multiplicative map we can suppose that L is not a multiple of Φ. Thus
B(θ) the companion matrix of L is invertible since its characteristic polynomial has no root in
0, which means that B(θ) has a nonzero determinant. Let Bp(θ) = B(θ) . . . B(θ+ p− 1) be the
matrix of ΛLp . Then

Bp(θ + 1) = B(θ)−1Bp(θ)B(θ).

Thus Bp(θ + 1) and Bp(θ) are equivalent matrices. It follows that χ(ΛLp )(θ + 1) = χ(ΛLp )(θ).
Since the coefficients of χ(ΛLp ) are invariant under θ 7→ θ + 1, it follows that those coefficients
are in A(θp − θ).

Remark 2.3.15. — We can actually show that ΛLp is equivalent to a matrix with coefficients
in A(θp − θ) but we will not need it for this work.

The reason we are so interested in this new ring of operators is the existence of the so-called
Euler’s operators θ = x∂. This operator verifies a familiar commutation rules with ∂:

∂(x∂) = x∂2 + ∂

= (x∂ + 1)∂
= (θ + 1)∂

The idea of our algorithm is thus the following: by mapping x∂ to θ and ∂ to Φ we create
a correspondence between differential operators and skew polynomials. The goal is thus to
reduce the computation of the characteristic polynomials of the former to that of the latter. Of
course, it is not clear for now that knowing the characteristic polynomial of the p-curvature of
a skew polynomial would allow us to compute that of the corresponding differential polynomial.
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Furthermore, not all differential operators can be converted into skew polynomials. For example
x cannot be mapped to a skew polynomial in A(θ)〈Φ〉. To solve this issue we need to introduce
an inverse to ∂.
We recall that by hypothesis, A is either equal to A(x) or to A[x] where A is an integral domain.

Definition 2.3.16. — We denote by A〈∂±1〉 the ring

A〈∂〉 ⊗C[∂p] C[∂±p]

where C[∂±p] is the localisation of C[∂p] in ∂p.

All powers of ∂ are invertible in A〈∂±1〉 since ∂ · ∂p−1

∂p = 1.

Notation 2.3.17. We denote by ∂−k the inverse of ∂k in A〈∂±1〉 for all k.

Lemma 2.3.18. — Let R be a ring and Z be its centre. Let C ⊂ Z be a multiplicative subset of
Z and B be another ring. If γ : R → B is a morphism which maps C to invertible elements of
B then there exists a unique morphism γ̃ making the following diagram commute:

R B

R⊗Z C−1Z

γ

γ̃

Proof. By the universal property of C−1Z there exists a unique morphism γ1 : C−1Z → B which
extend γ|Z . Then there exists a unique morphism R ⊗Z C−1Z → B which maps pure tensor
b⊗ z to γ(b)γ1(z).

Remark 2.3.19. — The previous statement is a special case of localisation for noncommutative
rings, when inverting central elements. If R is a (not necessarily commutative) ring and S ⊂ R
is a multiplicative subset of R, we say that a morphism ι : R→ R′ is a localisation of R over S
if and only if ι(S) ⊂ (R′)× and if any morphism γ : R→ B which maps S to invertible elements
uniquely factorises in the following way:

R B

R′

γ

ι
γ̃ .

Localisations of noncommutative rings always exist. They have however, no simple descrip-
tion in general like in the commutative case.

We say that ι : R→ R′ is a right ring of fractions of R over S if

• ι(S) ⊂ R′−1.

• Every element of R′ can be written as ι(r)ι(s)−1 for some r ∈ R and some s ∈ S.

• ker ι = {r ∈ R|∃s ∈ S, rs = 0}.
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Such a right ring of fractions does not always exists. However if it does then we can see that for
any s ∈ S and any r ∈ R there must exists r′ ∈ R and s′ ∈ S such that

ι(s)−1ι(r) = ι(r′)ι(s′)−1

which means that
ι(sr′ − rs′) = 0.

In virtue of the third condition we see that this means that there exists s′′ ∈ S such that
rs′s′′ = sr′s′′. This means that

rS ∩ sR 6= ∅.

This condition on S is the condition said of right permutability. We say also that S is a right
Ore set of R.

We also see that if a ring of right fractions over S exists then if for a ∈ R there exists s′ ∈ S
such that s′a = 0 then ι(s′)ι(a) = 0 so ι(a) = 0 since ι(s′) is invertible. It follows that there
exists s ∈ S such that as = 0. This conditions is said of right reversibility.

It is shown in [Lam99, Section 10A] that if S is both right permutable and right reversible
then a right ring of fractions of R over S exists. It then is a localisation of R over S and S is
then called a right denominator set.

Corollary 2.3.20. — The following morphism is an isomorphism.

γp : A[x]〈∂±1〉 ↔ A[θ]〈Φ±1〉 : γ−1
p

x 7→ θΦ−1

x∂ ←[ θ

∂ ↔ Φ

Proof. We know from the discussion that precedes that x 7→ θΦ−1 and ∂ 7→ Φ uniquely define
a morphism from A[x]〈∂〉 to A[θ]〈Φ±1〉 for which the image of ∂p is invertible. Thus it uniquely
defines a morphism γp : A[x]〈∂±1〉 → A[θ]〈Φ±1〉. Similarly γ−1

p is also well defined and we see
now that γp ◦ γ−1

p is the only endomorphism of A[θ]〈Φ±1〉 that maps θ and Φ to themselves
respectively which is the identity. Conversely, γ−1

p ◦ γp is the only morphism mapping x and ∂

to themselves respectively, the identity, so γp and γ−1
p are indeed inverse of one another.

Example 2.3.21. —

γ3((x+ 1)2∂3 − x∂ + x3) = Φ3 + 2θΦ2 + (θ2 − θ)Φ + θ + (θ3 + 2θ)Φ−3.

Remark 2.3.22. — It is important to note that the above isomorphism only works over
polynomial ring and cannot be extended to A(x)〈∂±1〉 and A(θ)〈Φ±1〉. An easy way to see
this is that if such an extension existed then γp((x + 1)∂) would be invertible in A(θ)〈Φ±1〉.
However γp((x+ 1)∂) = θ + Φ which is not an invertible element. Indeed if it were there would
be P ∈ A(θ)〈Φ〉 and i ∈ N such that

(θ + Φ)P = Φi.
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But then χ(Λθ+Φ
p )(Φp) would be invertible too since

χ(Λθ+Φ
p )(Φp)χ(ΛPp )(Φp) = χ(Λ(θ+Φ)P

p )(Φp) = χ(ΛΦi

p )(Φp) = Φpi.

But χ(Λθ+Φ
p )(Φp) = Φp+θp−θ which is not invertible in A(θp−θ)[∂±p] (which is commutative)

since it is not a multiple of Φp.

The goal now is to prove that in a certain sense

γp(χ(ψLp )) = χ(Λγp(L)
p ) (2.3)

and to use it to compute the characteristic polynomial of the p-curvature of differential opera-
tors. Of course this formula does not make sense as χ(ψLp ) is not even an element of A[x]〈∂±p〉.
Nonetheless this is the general idea of what we are going to do now.

In order to prove the aforementioned result we will make use of our rings of operators’
structure of Azumaya algebras and of their reduced norm.

Lemma 2.3.23. — A(θ)〈Φ±1〉 (resp. A[θ]〈Φ±1〉) is a A(θp − θ)[Φ±p] (resp. A[θp − θ][Φ±p])
Azumaya algebra verifying Hypothesis 2.1.49.

Proof. Since A(θ) is a field we know that A(θ)〈Φ〉 is a domain so it is also the case of A(θ)〈Φ±1〉.
In particular its centre has no nontrivial nilpotent element.

We can consider the subalgebra C = A(θp − θ)〈Φ±1〉 (resp. C = A[θp − θ]〈Φ±1〉) generated
by Φ.
Since A(θp− θ)〈Φ〉 (resp. A[θp− θ]〈Φ〉) is a free algebra of dimension p over A(θp− θ)[Φp] (resp.
A[θp − θ][Φp]) and (1,Φ, . . . ,Φp−1) is a basis of it, this is also the case of A(θp − θ)〈Φ〉 (resp.
A[θp − θ]〈Φ〉).
A C-basis of A(θ)〈Φ〉 (resp. A[θ]〈Φ〉) is given by (1, θ, . . . , θp−1). Finally, C is generated by the
element Φ so it verifies condition (iv) of Hypothesis 2.1.49.

Lemma 2.3.24. — Let L ∈ A(x)〈∂〉 (resp. P ∈ A(θ)〈Φ〉). Then ord(NrdA(x)〈∂〉(L)) = p·ord(L).
(resp. ord(NrdA(θ)〈Φ±1〉(P )) = p · ord(P ).)

Proof. We only do the proof in the case of differential operators. Mutatis mutandis, the proof
is the same in the case of skew polynomials.

It is easy to see that if L is of degree d, then the matrix ML of the right multiplication by
L has coefficients in A(xp)〈∂〉 of order at most d. Then since ML is a square matrix of size p, it
follows that

ord(NrdA(x)〈∂〉(L)) ⩽ pd.

Now we know that L is a divisor of χ(ψLp )(∂p) and that χ(ψLp )(∂p) ∈ A(xp)[∂p].
Thus there exists R ∈ A(x)〈∂〉 such that RL = χ(ψLp )(∂p). Since ord(χ(ψLp )(∂p)) = p ·ord(L)

it follows that R is of order (p− 1)ord(L).
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Furthermore

NrdA(x)〈∂〉(χ(ψLp )(∂p)) = χ(ψLp )p(∂p)
= NrdA(x)〈∂〉(R)NrdA(x)〈∂〉(L)

and so

p2ord(L) = ord(NrdA(x)〈∂〉(R)) + ord(NrdA(x)〈∂〉(L))
⩾ p(p− 1)ord(L) + p · ord(L)
= p2ord(L)

We can have an equality only if ord(NrdA(x)〈∂〉(L)) = p · ord(L).

The final property we need is the following:

Proposition 2.3.25. — • Let L ∈ A(x)〈∂〉 (resp. L ∈ A(θ)〈Φ〉). If L is monic then so is
NrdA(x)〈∂〉(L) (resp. NrdA(θ)〈Φ±1〉(L)).

• If l ∈ A(x) (resp. l ∈ A(θ)) then NrdA(x)〈∂〉(l) = lp (resp. NrdA(θ)〈Φ±1〉(l) =
∏p−1
a=0 l(θ+a)).

Proof. • If L ∈ A(x)〈∂〉 is monic of order d then the only coefficients of order d of the matrix
ML of the right multiplication by L in the A(xp)〈∂〉 basis (1, x, · · · , xp−1) of A(x)〈∂〉 are
on the diagonal and are all monic. Thus the leading coefficient of NrdA(x)〈∂〉 comes from
the product of the diagonal elements which is also monic.

InA(θ)〈∂〉 the proof is the same but we take instead the basis (1, θ, θ(θ+1), . . . ,
∏p−2
a=0(θ+a))

of A(θ)〈Φ〉 over A(θp − θ)〈Φ〉.

• Let l ∈ A(x). If l ∈ A(xp), then the result in already known. If this is not the case,
then (1, l, l2, · · · , lp−1) is a A(xp)〈∂〉-basis of A(x)〈∂〉. In this basis the matrix of the right
multiplication by l is just 

lp

1
. . .

1


which yields the result.

For l ∈ A(θ), if l ∈ A(θp − θ), the result is already know since l(θ + a) = l for any
a ∈ Z. If this is not the case, then we consider the A(θ)〈Φ±p〉-basis (1, l(θ)Φ, l(θ)l(θ +
1)Φ2, . . . ,

∏p−2
a=0 l(θ + a)Φp−1) of A(θ)〈Φ±1〉. In this basis the matrix of the multiplication

by lΦ is 
∏p−1
a=0 l(θ + a)Φp

1
. . .

1

 .
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Thus NrdA(θ)〈Φ±1〉(lΦ) =
∏p−1
i=0 l(θ + a)Φp. But by considering the subalgebra A(θ)[Φ±p]

and the basis (1,Φ, . . . ,Φp−1) we see that NrdA(θ)〈Φ±1〉(Φ) = Φp and we deduce the result
by multiplicativity.

We can now show the most important result of this section:

Theorem 2.3.26. — • For any L ∈ A(x)〈∂〉 of leading coefficient l,

NrdA(x)〈∂〉(L) = lpχ(ψLp )(∂p).

• For any L ∈ A(θ)〈Φ〉 of leading coefficient l,

NrdA(θ)〈Φ±1〉(L) =
p−1∏
a=0

l(θ + a)χ(ΛLp )(Φp).

Proof. Since both the reduced norm and the characteristic polynomial of the p-curvature are
multiplicative maps, we can suppose that L is irreducible. Furthermore from proposition 2.3.25
we see that we can assume that L is monic. Then we know (Proposition 2.2.8 (iii) and Propo-
sition 2.3.13 (iii)) that there exists N ∈ A(xp)[Y ] irreducible and monic, and n ∈ N such that
χ(ψLp )(∂p) = Nn(∂p) (resp. χ(ΛLp )(Φp) = Nn(Φp)). But then

NrdA(x)〈∂〉(χ(ψLp )(∂p)) = Npn(∂p)

(resp. NrdA(θ)〈Φ±1〉(χ(ΛLp )(Φp)) = Npn(Φp)).

But since L divides the characteristic polynomial of its p-curvature applied to ∂p (resp. Φp)
and is monic it follows that NrdA(x)〈∂〉(L) (resp. NrdA(θ)〈Φ±1〉(L)) is a power of N(∂p). By
equality of the orders, we conclude that

NrdA(x)〈∂〉(L) = χ(ψLp )(∂p)

(resp. NrdA(θ)〈Φ±1〉(L) = χ(ΛLp )(Φp)).

Corollary 2.3.27. — For any L ∈ A(x)〈∂±1〉 (resp. L ∈ A(q)〈Φ±1〉) of leading coefficient l,
we denote Ξx,∂ : L 7→ lpχ(ψLp )(∂p) (resp. Ξθ,Φ(L) 7→

∏p−1
a=0 l(θ + a)χ(ΛLp )(Φp)).

• Ξx,∂(A[x]〈∂±1〉) ⊂ A[xp][∂±p].

• Ξθ,Φ(A[θ]〈Φ±1〉) ⊂ A[θp − θ][Φ±p].

• Ξθ,Φ ◦ γp = γp ◦Ξx,∂, where we recall that γp : A[x]〈∂±1〉 ∼−→ A[θ]〈Φ±1〉 is the isomorphism
defined in Corollary 2.3.20.

Proof. • We know Ξx,∂ agrees with NrdA[x]〈∂〉 on A[x]〈∂〉. Furthermore, since both maps are
multiplicative and Ξx,∂(∂) = NrdA[x]〈∂〉(∂) = ∂p, Ξx,∂ is equal to NrdA[x]〈∂±1〉 on A[x]〈∂±1〉
which yields the result.

• We know Ξθ,Φ agrees with NrdA[θ]〈Φ〉 on A[θ]〈Φ〉. Furthermore, since both maps are mul-
tiplicative and Ξθ,Φ(Φ) = NrdA[θ]〈Φ〉(Φ) = Φp, Ξθ,Φ is equal to NrdA[θ]〈Φ±1〉 on A[θ]〈Φ±1〉
which yields the result.
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• This is due to Ξθ,Φ being equal to NrdA[θ]〈Φ±1〉.

• We denote Zx := A[xp][∂±p] and Zθ := A[θp− θ][Φ±p]. Let p be a prime ideal of Zx. Since
γp is an isomorphism it maps prime ideals of the centre to prime ideals of the centre. Thus
we have an isomorphism

ϕp : A[x]〈∂±1〉 ⊗Zx Frac(Zx/p)→ A[θ]〈Φ±1〉 ⊗Zθ
Frac(Zθ/γp(p)).

Since both sides are simple central algebras, up to scalar extensions K and K ′ of Frac(Zx/p)
and Frac(Zθ/γp(p)) respectively (such that γp extends to an automorphism γp : K → K ′),
we have an isomorphism γp : Mp(K) ∼−→ Mp(K ′). Let detK (resp. detK′) denote the
determinant map over Mp(K) (resp. Mp(K ′)).
We want to show that

γ−1
p ◦ detK′ ◦ γp = detK .

Since γ−1
p in this equation is only applied to elements in K ′ we can see it as the extension

of the scalar morphism
ι : K ′ → K

s 7→ γ−1
p (s)

.

As a ring isomorphism from K ′ to K, ι can be extended into a ring isomorphism ι :
Mp(K ′)→Mp(K) which commutes with the determinant maps. Thus we have

γ−1
p ◦ detK′ ◦ γp = ι ◦ detK′ ◦ γp = detK ◦ ι ◦ γp.

But then ι◦γp is an automorphism of Mp(K). Since all ring automorphism of matrix rings
are interior, we have

detK ◦ (ι ◦ γp) = detK

which is the desired result.

Then we deduce that for any L ∈ A[x]〈∂±1〉 and any prime ideal p of Zθ

Ξθ,Φ(γp(L)) ≡ γp(Ξx,∂(L)) mod p.

Since Zθ has no nontrivial nilpotent element we deduce the result.

Example 2.3.28. — Let L = (x+ 1)2∂3 − x∂ + x3 ∈ F3(x)〈∂〉. Then

Ξx,∂(L) = (x3 + 1)∂9 + 2∂3 + x6 + 2x3

and
Ξθ,Φ(γp(L)) = Φ9 + (θ3 − θ)Φ6 + 2Φ3 + 2(θ3 − θ)Φ−3 + (θ3 − θ)2Φ−6.

Thus we have both rewritten equation 2.3 in a way that make sense and shown that it is
correct. In the following section we are going to see how to apply corollary 2.3.27 to the efficient
computation of the characteristic polynomials of the p-curvature, by taking inspiration from a
factorial computation method published in [Har14]. Before that we state a small result which
will be useful later.
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Corollary 2.3.29. — We have

γ−1
p (θp − θ) = xp∂p.

Proof. It is easy to see that xp∂p = Ξx,∂(x∂). Thus

γp(xp∂p) = γp(Ξx,∂(x∂))
= Ξθ,Φ(γp(x∂))
= Ξθ,Φ(θ)
= θp − θ.

2.4 Computing characteristic polynomials of p-curvatures

In this section we consider A an integral domain of characteristic 0. We present our algorithm
to compute the characteristic polynomials of the p-curvatures of a given differential operators
L with coefficient in A[x], for all primes p smaller than a given N ∈ N. We make the additional
assumption that for any prime number p ∈ Z, Ap = A/pA is an integral domain.

Example 2.4.1. — We can take A = Z or A = Z[X1, . . . , Xn]. We can also think of A as the
ring of integers of a number field. However in this case we need to exclude the primes p which
are not irreducible in A.
It may be possible possible to extend this setting to prime p for which the leading coefficient of
L is not a divisor of 0 in Ap.

We will evaluate the complexity of our algorithm in terms of the number of operations in A.
For the sake of simplicity, we will count operations in A mod n as O(1) operations in A (this
includes computing the image of an element of A modulo n).

Remark 2.4.2. — Since A is a ring in characteristic 0, measuring the complexity of the
algorithm in terms of operations in A does not account well for the actual bit size of objects
in A which cannot be bounded by a constant since A is infinite. Thus we will also give more
precise statements on the complexity of our algorithm in terms of bit operations when A = Z.

Although the p-curvature is defined for operators of A(x)〈∂〉, we can define the p-curvature
of an element of A[x]〈∂〉, since the canonical morphism A→ Ap induces a ring homomorphism

A[x]〈∂〉 → Ap[x]〈∂〉.

Similarly to the case of characteristic p we introduce the ring of skew polynomials A[θ]〈Φ〉,
defined as the Ore polynomials ring A[θ][Φ, θ 7→ θ + 1, 0]. Our goal is to introduce an isomor-
phism similar to γp between A[x]〈∂±1〉 and A[θ]〈∂±1〉. Of course, one must first check that those
two rings are well defined since we can’t just invert ∂p as we did in characteristic 0.

We define A[x]〈∂±1〉 (resp. A[θ]〈Φ±1〉) as the right ring of fractions of A[x]〈∂〉 (resp. A[θ]〈Φ〉)
with respect to {∂n|n ∈ N} (resp. {Φn|n ∈ N}) as mentioned in Remark 2.3.19.
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Proposition 2.4.3. — The rings A[x]〈∂±1〉 and A[θ]〈Φ±1〉 are well defined and we have an
isomorphism:

γ0 : A[x]〈∂±1〉 ∼−→ A[θ]〈Φ±1〉
x 7→ θΦ−1

∂ 7→ Φ
.

Proof. We need to check that the multiplicative subset S = {Φn|n ∈ N} is a right denominator
set of the ring A[θ]〈Φ〉 (see Remark 2.3.19). Since this ring has no nontrivial zero divisor, we
only have to check that S is right permutable, that is to say that

∀g ∈ A[θ]〈Φ〉,∀n ∈ N,∃g1 ∈ A[θ]〈Φ〉, ∃m ∈ N, gΦm = Φng1.

This is the case since for all n ∈ N and all g ∈ A[θ], Φng(θ − n) = gΦn and the fact that
A[θ]〈Φ±1〉 is well defined follows by additivity.

We now show that S = {∂n|n ∈ N} is a right denominator set of A[x]〈∂〉. Let f ∈ A[x] and
suppose that f (m) = 0. Then

f∂m+1 = ∂
m−1∑
k=0

(−1)kf (k)∂m−k.

Let now L =
∑r
i=0 fi∂

i and let’s take m ∈ N such that for all i, f (m)
i = 0. Then

L∂m+1 =
r∑
i=0

fi∂
i+1+m

=
r∑
i=0

fi∂
m+1∂i

=
r∑
i=0

∂

(
m−1∑
k=0

(−1)kf (k)
i ∂m−k+i

)

= ∂
r∑
i=0

m−1∑
k=0

(−1)kf (k)
i ∂m−k+i

This shows that LS ∩ ∂A[x]〈∂〉 6= ∅. Let i ∈ N∗. We now want to show that

LS ∩ ∂iA[x]〈∂〉 6= ∅.

By induction on i we prove the following result: If L ∈ A[x]〈∂〉 is such that all its coefficients
have m-th derivative equal to 0 then there exists Li ∈ A[x]〈∂〉 such that

L∂m+i = ∂iLi.

We know the result to be true for i = 1. Suppose it proven for some i ∈ N∗. By absurdity,
suppose that there existed L ∈ A[x]〈∂〉 whose coefficients all have zero m-th derivatives but such
that for no Li+1 ∈ A[x]〈∂〉 will we have f∂m+i+1 = ∂i+1fi+1.

Let us consider the minimal integer m such that such a L exists. m > 0 since 0 commutes
with ∂. By induction there exists Li ∈ A[x]〈∂〉 such that

L∂m+i = ∂iLi
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But then we have

∂L∂m+i = L∂m+i+1 + L′∂m+i

= ∂i+1Li

where L′ is the operator whose coefficients are the derivatives of those of L. But then all the
coefficients of L′ have a zero m − 1-th derivative. Since m was taken minimal, there exists
Gi+1 ∈ A[x]〈∂〉 such that L′∂m+i = L′∂m−1+i+1 = ∂i+1Gi+1 and so

∂m+i+1f = ∂i+1(Li −Gi+1).

This is absurd since we supposed that this could not happen and the induction is established.

Thus for all i ∈ N, LS ∩ ∂A[x]〈∂i〉 6= ∅ and S is a right denominator set which shows that
A[x]〈∂±1〉 is well defined.

We show that γ0 is an isomorphism the same way we did for γp (cf. Corollary 2.3.20).

Denoting by πp : A→ Ap the canonical reduction modulo p, we can easily see that πp ◦ γ0 =
γp ◦πp (where we extend naturally πp to suitable rings of operators). This enables us, for a given
operator in A[x]〈∂〉, to compute the characteristic polynomials of its p-curvatures, by computing
the isomorphism γ0 before the reduction modulo p. We will now see how to use this fact.

We now give an outline of our algorithm.
Input: Lx ∈ A[x]〈∂〉, N ∈ N
Output: A list of the characteristic polynomials of the p-curvatures of Lx, for all primes
p with p < N except a finite number not depending on N .

1. Set lx the leading coefficient of Lx.

2. Compute Lθ := ϕ0(Lx) ∈ A[θ]〈∂±1〉.

3. Set lθ the leading coefficient of Lθ.

4. Compute Plθ , the list of all primes p < N which do not divide lθ.

5. Construct B(θ) the companion matrix of l−1
θ · Lθ.

6. Compute
(∏p−1

i=0 lθ(θ + i)
)

mod p for all p ∈ Plθ .

7. Compute B(θ) · · ·B(θ + p− 1) mod p for all p ∈ Plθ .

8. Deduce all the Ξθ,Φ,p(Lθ), for p ∈ Plθ .

9. Deduce all χ(Ap(Lx)) = l−px ϕ−1
p (Ξθ,Φ,p(Lθ)), for p ∈ Plθ .

Remark 2.4.4. — We only do the computation for the primes which do not divide the leading
coefficient of Lθ because for the other ones, the companion matrix of its reduction modulo p is
not the reduction modulo p of its companion matrix.
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Lemma 2.4.5. — Let Lθ ∈ Ap[θ]〈Φ〉 be a skew polynomial with coefficients of degree at most
d ∈ N. Then Ξθ,∂(Lθ) has coefficients of degree at most dp.

Proof. Let C = Ap[θ][Φ±p]. C is a subalgebra of Ap[θ]〈Φ±1〉 verifying Hypothesis 2.1.49. We
consider the C-basis (1,Φ, . . . ,Φp−1) of A[θ]〈Φ±1〉. It is easy to see that the matrix of the
right multiplication by L has coefficients of degree at most d in θ. Then its determinant has
coefficients of degree at most dp in θ.

From Lemma 2.4.5, we deduce that at the end of step (8) we have a list of (lists of) polyno-
mials of degree linear in p, which means that the bit size of the output of this step is quadratic
in N . This seems to remove all hope of ending up with a quasi-linear algorithm. Fortunately
those polynomials lie in Ap[θp− θ] (see corollary 2.3.27). Thus each of them can be represented
by O(d) elements of Ap. We explain how in Section 2.4.1.

Remark 2.4.6. — The same problem is also present at the end of step (9), but is easy to solve
as we only need to determine the coefficients of xi when i is a multiple of p. Thus we in fact
compute polynomials Pp ∈ Ap[x, Y ] such that Pp(xp, Y ) = χ(Ap(L)) for all p < N .

2.4.1 Reverse isomorphism, computation modulo θd+1

We know from Corollary 2.3.27 that for Lθ ∈ Ap[θ]〈∂〉, the operator Ξθ,∂(Lθ) has coefficients in
Ap[θp − θ].

Lemma 2.4.7. — Let Q ∈ Ap[θp − θ] be a polynomial of degree d in θp − θ with d < p. Write:

Q =
d∑
i=0

qi(θp − θ)i and Q =
dp∑
i=0

q′
iθ
i.

For all i ⩽ d, we have qi = (−1)iq′
i.

Proof. This comes from the fact that (−1)iθi is the only monomial of degree less than p in
(θp − θ)i.

When p is strictly greater than d, it follows that we only need to compute the Ξθ,∂,p modulo
θd+1 where d is the highest degree of the coefficients of the operator (in both variables x or θ),
as one can see in Algorithm 1. We deduce the following lemma:

Lemma 2.4.8. — If Qθ ∈ Ap[θp − θ][Y ] is of degree m in Y and dp in θ with d < p, then
Algorithm 1 computes Qx ∈ Ap[x, Y ] such that Qx(xp, ∂p) = γ−1

p (Qθ(Φp)) in O(dm) operations
in A.
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Input: Qθ ∈ Ap[θp − θ][Y ], of degree m in Y and degree at most dp in θ, known modulo
θd+1.
Output: Qx ∈ Ap[x, Y ] such that Qx(xp, ∂p) = γ−1

p (Qθ(Φp)).

1. Qx ← 0.

2. For all i ⩽ m:

(a) Let Qθ,i be the coefficient of Φi of Qθ and write Qθ,i =
∑d
j=0 qi,jθ

j +O(θd+1).
(b) Qx ← Qx +

∑d
j=0(−1)jqi,jxjY i+j .

3. Return: Qx.

Algorithm 1: reverse_iso

Proof. LetQθ =
∑r
i=1

(∑d
j=1 qi,jθ

j +O(θd+1)
)

Φi ∈ Ap[θp−θ][Y ]. Then according to Lemma 2.4.7,

Qθ(Φp) =
r∑
i=0

 d∑
j=1

(−1)jqi,j(θp − θ)i
Φpi

and

γ−1
p (Qθ(Φp)) =

r∑
i=0

 d∑
j=0

(−1)iqi,j(γ−1
p (θp − θ))j

 ∂pi
=

r∑
i=0

 d∑
j=0

(−1)iqi,jxpj∂p(i+j)

 using Lemma 2.3.29

Thus by setting Qx =
∑r
i=0

∑d
j=0(−1)jqi,jxjY i+j we have indeed

Qx(xp, ∂p) = γ−1
p (Qθ(Φp)).

Remark 2.4.9. — In fact we can still compute γ−1
p if p ⩽ d while only knowing the operator

modulo θd+1 but this is more tedious since there is no nice formula. In that case, with notation
as in Lemma 2.4.7, we have q′

i =
∑bi/(p−1)c
k=0 (−1)i−kp

(i−k(p−1)
k

)
qi−k(p−1).

This relation is easily invertible since it is given by a triangular matrix with no zero on the
diagonal.

2.4.2 Shift before the computation

From the results of the previous subsection, we know that we only need to determine Ξθ,∂ mod-
ulo a small power of θ. Unfortunately, the companion matrix of an operator in Ap[θ]〈∂〉, even
if the operator has polynomial coefficients, usually has its coefficient in Ap(θ). In [BCS14], the
authors solve this issue by injecting Ap(θ) in Ap((θ)) and computing modulo a slightly higher
power of θ. In order to minimise the degree of the polynomials used in the computation, we
take a different approach based on shifting the origin.
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Let a ∈ Ap. We denote by τa : Ap[x] → Ap[x] the shift automorphism Q 7→ Q(x + a).
This automorphism extends into automorphisms of Ap[x]〈∂〉 and Ap[x, Y ] by its application
coefficient-wise.
In the case of the former ring, this is due to the fact that for any f ∈ Ap[x], τa(f)′ = τa(f ′).

Proposition 2.4.10. — Let a ∈ Ap. For any L ∈ Ap[x]〈∂〉,

τa(χ(ψLp )) = χ(ψτa(L)
p )

Proof. Let ML be the companion matrix of L and Mτa(L) be the companion matrix of τa(L). Let
(ML,n)n∈N (resp. (Mτa(L),n)) be the recursive sequence of matrices defined by ML,0 = Id (resp.
Mτa(L),0 = Id) and ML,n+1 = M ′

L,n+ML ·ML,n (resp. Mτa(L),n+1 = M ′
τa(L),n+Mτa(L) ·Mτa(L),n.)

Since τa(L) has the same order as L, τa(ML) = Mτa(L). Since τa commutes with the deriva-
tion we get that

τa(ML,2) = τa(M ′
L +M2

L) = M ′
τa(L) +M2

τa(L) = Mτa(L),2.

We can extend this relation recursively to all n ∈ N. According to Lemma 2.3.1, the matrix of
the p-curvature of L (resp. τa(L)) is given by ML,p (resp. Mτa(L),p) Since τa is an endomorphism
we find

τa(χ(ψLp )) = τa(χ(ML,p)) = χ(τa(ML,p)) = χ(Mτa(L),p) = χ(ψτa(L)
p ).

From Proposition 2.4.10, we deduce that we can shift an operator before computing the
characteristic polynomials of its p-curvatures, and do the opposite translation on those to get
the desired result. It is especially useful because of the following lemma.

Lemma 2.4.11. — Let Lx ∈ A[x]〈∂〉 be an operator and denote by lx ∈ A[x] its leading
coefficient. If lx(0) 6= 0 then γ0(Lx) has lx(0) ∈ A as its leading coefficient.

Proof. A straightforward computation shows that γ0(xi∂j) = pi(θ)Φj−i with pi(θ) being a poly-
nomial only dependent on i (and not on j). Thus the leading coefficient of γ0(Lx) can only come
from the constant coefficient of lx if this one is not 0.

In our setting, the fact that γ0(Lx) has a constant leading coefficient means that its com-
panion matrix has its coefficients in Frac(A)[θ], implying that we can do all the computations
modulo θd+1. Lemma 2.4.11 shows that we can shift our starting operator by a ∈ A where a
is not a root of its leading coefficient to place ourselves in that setting. Doing this shift can be
seen as placing the origin in an ordinary point a ∈ A of the differential equation defined by Lx.

Since translating back all the characteristic polynomials (the Pp in fact, see Remark 2.4.6)
at the end of the computation is basically the same as translating a list of O(Nr) univariate
polynomials of degree d, it can be done in Õ(Ndr) operations in A (for example with binary
splitting), with r being the order of Lx and d the maximum degree of its coefficients.

2.4.3 Computing a matrix factorial modulo p for a large amount of primes p

Let M(θ) ∈ Mr(A[θ]) be a square matrix of size r with coefficients of degree less than d. In
this subsection we review the algorithm of [CGH14, Har14] applied to the computation of the
following matrix factorial:

M(θ) ·M(θ + 1) · · ·M(θ + p− 1) mod (p, θd+1)
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for all primes p < N .

Since the method of [CGH14] computes products of p−1 entries modulo some power of p, we
will compute M(θ + 1) · · ·M(θ + p− 1) mod (p, θd) for all p, and then left-multiply by M(θ).

Let η := dlog2(N)e. For all i and j with 0 ⩽ i ⩽ η and 0 ⩽ j < 2i, we denote

Ui,j :=
{
k ∈ N

∣∣∣∣ jN2i < k ⩽ (j + 1)N
2i
}
.

It follows from the definition that for all 0 ⩽ i < η and all 0 ⩽ j < 2i,

Ui,j = Ui+1,2j ∪ Ui+1,2j+1.

Furthermore, for i = η, the Ui,j are either empty or a singleton.

From this, we introduce Ti,j :=
∏
k∈Ui,j

M(θ + k) mod θd, with the product being made
by sorting elements of Ui,j in ascending order, and Si,j :=

∏
p∈Ui,j

p prime
p. From now on, we con-

sider that the Ti,j are elements of Mm(A[θ]/θd+1). From the properties of Ui,j , we deduce that
Ti,j = Ti+1,2jTi+1,2j+1 and Si,j = Si+1,2jSi+1,2j+1.

These relations allow us to fill binary trees containing the Ti,j and Si,j as their nodes from
the bottom. Furthermore, filling those trees is nothing more than computing a factorial by
binary splitting, and keeping the intermediate steps in memory.

To see how to apply this to our problem we suppose that p ∈ Uη,j for a certain j. A direct
computation gives:

M(θ + 1) ·M(θ + 2) · · ·M(θ + p− 1) mod (p, θd+1)
= Tη,0Tη,1 · · ·Tη,j−1 mod Sη,j .

This motivates the following definition: for all i, j with 0 ⩽ i ⩽ η and 0 ⩽ j < 2i, we set
Wi,j :=

∏j−1
k=0 Ti,k mod Si,j . The following lemma is easily checked.

Lemma 2.4.12. — For all i and j such that the following quantities are well defined, Wi+1,2j =
Wi,j mod Si+1,2j and Wi+1,2j+1 = Wi,jTi+1,2j mod Si+1,2j+1.

Thus we can compute the Wη,j by filling a binary tree from the top starting from W0,0 =
1. This proves the correctness of Algorithm 2, while its complexity is addressed in the next
proposition.
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Input: M(θ) ∈Mr(A[θ]) with coefficients of degree less than d, P a list of primes
smaller than N .
Output: A list containing M(θ)M(θ + 1) · · ·M(θ + p− 1) mod (p, θd) for all p in P.

1. η ← dlog2(N)e.

2. Fill Tη,_ and Sη,_.

3. Compute the binary trees T and S.

4. W0,0 ← 1.

5. For i going from 0 to η − 1:

(a) For j going from 0 to 2i − 1:
i. Wi+1,2j ←Wi,j mod Si+1,2j .
ii. Wi+1,2j+1 ←Wi,jTi+1,2j mod Si+1,2j+1.

6. Construct ∏ the list of Wη,j where Sη,j ∈ P.

7. Do the left multiplication by M(θ) on the elements of ∏.

8. Return: ∏.

Algorithm 2: matrix_factorial

Proposition 2.4.13. — This algorithm has a cost of Õ
(
rωdN

)
operations in A.

Proof. The computation of the binary tree S is less costly than that of T , so we do not consider
it. Let us evaluate the complexity of the computation of T , which we denote C1(N). Since T is
filled by binary splitting we have

C1(N) = rωd+ 2C1(dN/2e).

It follows that T can be computed in Õ(rωdN) operations in A.
The cost of computing W is the same as that of reducing Ti,j mod Si,j+1 whenever both

quantities are well defined, and then of computing recursively the Wi,j . The first step can be
done in Õ(Nr2d) operations in A, while the second requires Õ(rωdN) operations in A.

Remark 2.4.14. — This step is where counting the cost of the algorithm in operations in A

can be a bit misleading. Indeed, since A is a ring of characteristic 0, in particular, it contains Z.
Thus operations in A do not have a constant cost in bit operations. This cost is especially not
constant when computing a factorial where the size of integers essentially doubles on each level
of the trees T and S. In [Pag21], we showed an analog result when A = Z which we reproduce
below.

If A = B[t] is a ring of polynomials however then we expect this algorithm to finish in
Õ(rωd1d2N

2) operations in B (where the coefficients of M(θ) are of bidegree maximal d1, d2),
since each matrix factorial would have coefficients in B[t] of degree Õ(d1N).
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We give an analog of the result in the case A = Z:

Proposition 2.4.15. — For A = Z, Algorithm 2 has a cost of

Õ
(
rωdN(n+ d log(N) + log(r))

)
bit operations, where n is the maximum bit size of the integers in the matrix M(θ).

Proof. The computation of the binary tree S is less costly than that of T , so we do not consider
it. Let us evaluate the complexity of the computation of T . We need to know the bit size of the
integers at each level of T . We use the following lemma.

Lemma 2.4.16. — For any a ⩽ N , all the integers appearing in M(θ+ a) have bit size at most
n+ d(1 + log2(N)).

Proof. Let Q ∈ Z[θ] of degree less than d appearing in M(θ). Then we can write

Q(θ + a) =
d−1∑
j=0

d−1∑
i=j

(
i

j

)
qia

i−j

 θj
where the qi are the coefficients of Q. Moreover, we know that all the qi are at most 2n. Thus
the coefficients of Q(θ + a) are less than 2nNd−1∑d−1

i=j
(i
j

)
⩽ 2n+dNd.

We now resume the proof of Proposition 2.4.13. If ∆1 and ∆2 are matrices in Mm (Z[θ]/θd)
with integers of bit size at most n1, then ∆1∆2 has integers of bit size at most 2n1 + log2(dm).
It follows that the integers in the matrices Ai,j are of bit size at most:

2η−i(n+ d(1 + log2(N))) + (2η−i − 1) log2(dm)
= O(2η−i(n+ d log2(N) + log2(m))).

The computation of T is reduced to the computation of its two sub-trees, followed by a
multiplication of two square matrices of size m with polynomial coefficients of degree d and
integers of bit size O(2η−1(n+ d log2(N) + log2(m))). Since the bit size of the integers is halved
at each level, we finally find, using that 2η ⩽ 2N , that the computation of T can be done in
Õ(mωdN(n+ d log2(N) + log2(m)) bit operations.

The cost of computing W is the same as that of reducing Ti,j mod Si,j+1 whenever both
quantities are well defined, and then of computing recursively the Wi,j using only integers smaller
than Si,j . The first step can be done in Õ(Nm2d(n+d)) bit operations, while the second requires
Õ(mωdN) bit operations.

2.4.4 Final algorithm

The most important pieces of our main algorithm are now in place, we are almost ready to
write down its final version. Before doing this, we analyze the cost of converting an operator in
A[x]〈∂〉 to its counterpart in A[θ]〈Φ±1〉.

Proposition 2.4.17 (Section 4.1 [BCS14]). — For any operator L ∈ A[x]〈∂〉, of order r with
coefficients of degree at most d, the computation of γ0(L), can be done in Õ(d(r+d)) operations
in A.
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Note that for an operator L ∈ A[x]〈∂〉 of order r with coefficients of degree at most d, γ0(L)
has nonzero coefficients for powers of ∂ varying from −d to r, making the square matrices used
in Algorithm 3 of size at most r + d.

Before presenting the final algorithm in Algorithm 3, we give the analog result for the case
A = Z.

Proposition 2.4.18 (Proposition 3.12 [Pag21]). — For any operator L ∈ Z[x]〈∂〉, of order m
with coefficients of degree at most d, with integer coefficients of bit size at most n, the computation
of γ0(L), can be done in Õ(d(m+ d)(n+ d)) bit operations.
Furthermore the resulting operator in the variable θ has its integer coefficients of bit size O(n+
d log2(d)).

Proof. From [BCS14, Section 4.1] we get that this computation over a ring R can be done in
Õ((m + d)d) algebraic operations in R. Following their algorithm, we can show that, when
R = Z, intermediate computations do not produce integers larger than those of the final result.
Moreover, if

γ0

( ∑
0⩽i⩽d
0⩽j⩽m

li,jx
i∂j
)

=
∑

0⩽i⩽d
−d⩽j⩽m

l′i,jθ
i∂j

the estimation |li,j | ⩽ 2n implies |l′i,j | ⩽ 2n+d+1dd. Putting all together, we get the announced
result.

Theorem 2.4.19. — For any operator L ∈ A[x]〈∂〉, Algorithm 3 computes a list of polynomials
Pp ∈ Q[x, Y ] for all primes p < N except a finite number not depending on N , such that
Pp(xp, Y ) = χ(ψLp ) in

Õ
(
Nd((r + d)ω + (r + d)Ω1)

)
operations in A, where r is the order of the operator, d is the maximum degree of its coefficients.

If A = Z and in addition n is the maximal bit size of the integers appearing in L then
Algorithm 3 has a cost of

Õ
(
Nd((n+ d)(r + d)ω + (r + d)Ω1)

)
bit operations.

Proof. This is easily seen by summing the cost of each step of Algorithm 3.

Remark 2.4.20. — Again, counting the complexity of algorithm 3 in operations in A can be
misleading, for the same reasons as in remark 2.4.14.
When A = B[t] is a polynomial ring we expect algorithm 3 to cost Õ(N2d1d2(r+d2)ω+(r+d2)Ω1)
operations in B, where L has coefficients of bidegree d1, d2.

As we have seen, Algorithm 3 does not compute the characteristic polynomial of the p-
curvature for every p < N , as we have to remove all primes dividing lx(0), where lx is the
leading coefficient of the operator (provided of course that lx(0) 6= 0). Primes less than the
maximum degree of the coefficients of the operator are also not included; however, it is possible
to remedy these with minor tweaks using Remark 2.4.9.
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Input: Lx ∈ A[x]〈∂〉 of order r, with coefficients of degree at most d, N ∈ N.
If A = Z: Suppose that the integers in Lx are of maximal bit size n.

Output: A list of polynomials Pp ∈ Ap[x, Y ] such that Pp(xp, Y ) = χ(ψLx
p ) for all primes

p < N , except a finite number not depending on N .

1. lx ← the leading coefficient of Lx.

2. a← 0.

3. If lx(0) = 0 do:

(a) Shift Lx by b with b ∈ Z not a root of lx.
(b) a← b.

Cost: Õ(rd) operations in A.
Cost when A = Z: Õ(rd(n+ d)) bit operations.

4. Compute Lθ∂−k := γ0(Lx) with x_d_to_theta_d from [BCS14, Section 4].
Cost: Õ((r + d)d) operations in A.
Cost when A = Z: Õ((r + d)(n+ d)d) bit operations.

5. d← the maximum degree of the coefficients of Lθ.

6. lθ ← the leading coefficient of Lθ.
It has been made to belong in A.

7. Construct M(θ) = lθ ·B(θ) where B(θ) is the companion matrix of Lθ.

8. Compute the list P of all primes p that do not divide lθ with d+ 1 ⩽ p < N .
Cost: Õ(N) bit operations (see [CGH14, Proposition 2.1]).

9. Compute the list L of M(θ) · · ·M(θ + p− 1) mod (θd+1, p) for all p in P using
matrix_factorial.
Cost: Õ((r + d)ωdN) operations in A.
Cost when A = Z: Õ((r + d)ω(n+ d)dN) bit operations.

From this point, all computations are done in some Ap. Thus for A = Z the cost in bit
operations is the cost in operations in A times log(N).

10. Divide all elements of L by lpθ .
Cost: Õ(N(r + d)2d) operations in A.

11. Compute the list C of the characteristic polynomials of elements of L.
Cost: Õ(N(r + d)Ω1d) operations in A.

12. Multiply the elements of C by lpθ .
Cost: Õ(N(r + d)d) operations in A.

13. Compute the image by γ−1
p of elements of C using reverse_iso.

Cost: Õ(Nd(r + d)) bit operations.

14. Divide the polynomials obtained by lx and Y −k.
Cost: Õ(Nrd) bit operations.

15. If a 6= 0, shift the polynomials obtained by −a.
Cost: Õ(Nrd) bit operations.

Algorithm 3: charpoly_p_curv
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Proposition 2.4.21. — It is possible to compute all characteristic polynomials of the p-
curvatures of an operator L ∈ A[x]〈∂〉 of order m and maximum degree of the coefficients d, for
all primes p less than N , in an asymptotically quasilinear in N number of operations in A.

Proof. The computation for primes dividing lx(0) (with lx being the leading coefficient of L)
can be done using the main algorithm from [BCS14]. All other primes can be addressed using
our new Algorithm 3.
As primes which cannot be computed using our algorithm only depend on the operator itself,
the result immediately follows.

2.5 Implementation and timings

We have implemented Algorithm 3 in the Computer Algebra software SageMath and tested it
for A = Z. The source code can be downloaded from the following URL:
https://github.com/raphitek/p_curvatures. In this section we present the result of our
tests on the ring of integers.

As mentioned earlier, the computation of the characteristic polynomial of a matrix of size m
with coefficients in a ring can be performed in theory using Õ(mΩ1) ring operations, with Ω1 '
2.697263, see [KV05]. However, we did not implement the algorithm from [KV05], and instead
used an algorithm computing a Hessenberg form of the matrix in O(m3) operations [CRV17].
Indeed, the latter algorithm is easier to implement and the computation of the characteristic
polynomials is usually not the bottleneck and does not hinder the quasi-linear nature of our
algorithm. Furthermore, experiments, as well as Theorem 2.4.19, showed that most of the
running time is spent on the computation of trees T and W when the order of the operator is
of the same magnitude as the degrees of its coefficients. We expect this trend to improve when
the ratio of these two factors grows in favor of the order of the operator, but all experiments
conducted so far showed that the computation of the characteristic polynomials is never the
bottleneck by a wide margin. It is still more than six times faster on an operator of order 50
with coefficients of degree 2, for N = 100.

Remark 2.5.1. — In our experiments we do not consider cases where the degree d of the
coefficients is higher than the order m of the operator because the complexity in d is worse than
in m. As in [BBvdH12, Section IV], the general case reduces to this one using the transforma-
tion x 7→ −∂, ∂ 7→ x which exchanges the roles of ∂ and x.

2.5.1 Timings on random operators

Quasilinear as expected. Figure 2.1 shows computation timings of our implementation for
operators in Z[x]〈∂〉 of varying sizes on SageMath version 9.3.rc4 on an Intel(R) Core(TM) i3-
40050 machine at 1.7Ghz, running ArchLinux. As expected, it does appear that our algorithm
finishes in quasi-linear time in N . We can also see a floor phenomenon, with computation time
varying very little between two powers of 2, and then doubling. This is an expected effect of
the use of the complete binary tree structure in our algorithm. This effect however seems less
visible, even if it is still perceptible, as the operator size increases. This is probably due to the
fact that for operators of small sizes, the cost of manipulating empty nodes is non-negligible.

https://github.com/raphitek/p_curvatures
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Figure 2.1: Computation time for random operators of varying orders and degrees

Comparison with the previous algorithm. We have compared the timings between our
algorithm and the iteration of that of [BCS14] for an operator of order 3 and degree 2. Results
are displayed on Figure 2.2 and show that the work presented in this paper is indeed a concrete
progress for the considered task, compared to previous state of the art: experiments have shown
that our algorithm was already more than twice as fast (on the same machine) than the algo-
rithm of [BCS14] 1 for N ∼ 104. Figure 2.3 shows the ratio of computation times for operators
of varying sizes. Results tend to indicate that the good performances of our algorithm com-
pared to the iteration of [BCS14] appear earlier when the order of the operator grows. Further
experiments should be conducted to determine the influence of the degree of the coefficients.

2.5.2 Execution on special operators

Our algorithm was also tested on various “special” operators. One example is an operator proven
in [BK10] to annihilate the generating function G(t; 1, 0) of Gessel walks in the quarter plane
ending on the horizontal axis. The result of this test indicates that this operator has a nilpotent
p-curvature for all primes p < 200. This was of course expected since the generating function of
Gessel walks is algebraic [BK10], hence the p-curvatures of its minimal-order differential operator
are all zero. A similar test was performed on an operator proved in [BKV21] to annihilate the
generating function of Kreweras walks with interacting boundaries, which is not algebraic. Once
again, the result of this test indicates that this operator has a nilpotent p-curvature for all primes

1The implementation of the algorithm from [BCS14] used can be found at
https://github.com/raphitek/p_curvatures/blob/main/p_curvature_single.sage

https://github.com/raphitek/p_curvatures/blob/main/p_curvature_single.sage


80 Chapter 2. Around the p-curvature and its computation

Figure 2.2: Comparison between iteration of [BCS14]’s algorithm and our algorithmtimes for
operators of order 3 and degree 2
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Figure 2.3: Ratio of computation times for operators of varying sizes

p < 2002. Further testing was conducted on all the 76 operators for (specializations of) the D-
finite generating functions for lattice walks classified in [BCvH+17] with p < 200, with yet again
similar results3. All those results were already predicted by Chudnovsky’s theorem and make
us quite confident in the accuracy of our implementation.

2The program running the above mentioned tests can be found at
https://github.com/raphitek/p_curvatures/blob/main/test_p_curvature.sage

3The precise list of operators we considered can be found at https://specfun.inria.fr/chyzak/ssw/ct-P.mpl
and the testing file can be found at https://github.com/raphitek/p_curvatures/blob/main/ct-P.sage

https://github.com/raphitek/p_curvatures/blob/main/test_p_curvature.sage
https://specfun.inria.fr/chyzak/ssw/ct-P.mpl
https://github.com/raphitek/p_curvatures/blob/main/ct-P.sage
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Chapter 3

Factorisation and p-Riccati equation

From this point forward, we restrict our study to when A is a finite separable extension K

of the field of rational functions Fp(x) and the derivation ∂ is d
dx . It was already established

in Example 2.1.38 that such a field K verifies Hypothesis 2.1.37. We reuse the notations of
Example 2.1.38. In particular, we will denote by C the field of constant of K.
In the previous chapter, we showed (Theorem 2.2.11) that by using the characteristic polynomial
of the p-curvature of an operator L ∈ K〈∂〉, we could reduce the problem of finding a factorisation
of L to the case when χmin(L) is an irreducible polynomial N over C. The goal of this chapter
is to develop factorisation method for such operators which may or may not be irreducible.
To that end we are going to make great use of the central simple algebra structure of DN(∂p)
(see Notation 2.1.26). Indeed, C[∂p]N(∂p) is a maximal ideal of C[∂p]. In particular C[∂p]/N(∂p)

is a field and it is easy to show that DN(∂p) ' K〈∂〉 ⊗C[∂p] C[∂p]/N(∂p). It was established in
Theorem 2.1.45 that K〈∂〉 ⊗C[∂p] C[∂p]/N(∂p) is a central simple C[∂p]/N(∂p)-algebra. In the first
section of this chapter we explain how the central simple algebra structure of DN(∂p) strongly
determines the structure of L’s factorisation. We then explain how finding such factorisations
is equivalent to solving a particular equation in a separable finite extension of K. We will call
the particular equation the p-Riccati equation and the following sections will be dedicated to its
effective resolution which will finally allow us to design a complete factorisation algorithm.

3.1 Central simple algebra structure and Morita’s equivalence

Notation 3.1.1. We recall that K is a finite separable field extension of Fp(x) equipped with
the derivation d

dx . Its field of constants is denoted C := {fp|f ∈ K}. We recall that according
to Example 2.1.38, K verifies Hypothesis 2.1.37.
Let N ∈ C[Y ] be an irreducible polynomial. We denote by CN := C[Y ]/N(Y ) the extension of C
generated by a root of N .
We recall that DN(∂p) denotes the quotient K〈∂〉/N(∂p). Since N(∂p) is central in K〈∂〉 this is a
ring.
Throughout this section, unless otherwise specified, L ∈ K〈∂〉 will always denote a divisor of
N(∂p).

Lemma 3.1.2. — We have an isomorphism

DN(∂p) ' K〈∂〉 ⊗C[∂p] C[∂p]/N(∂p).

83
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It follows that DN(∂p) is a central simple CN -algebra of dimension p2.

Proof. There are canonical morphisms K〈∂〉 → DN(∂p) and C[∂p]/N(∂p) → DN(∂p) which gener-
ates a natural morphism of CN -algebras K〈∂〉 ⊗C[∂p] C[∂p]/N(∂p) → DN(∂p). Furthermore, since
K〈∂〉 is a free C[∂p] algebra of dimension p2, K〈∂〉 ⊗C[∂p] C[∂p]/N(∂p) is a free C[∂p]/N(∂p)-algebra
of dimension p2 of which a basis is given by (xi∂j ⊗ 1)(i,j)∈J0;p−1K2 . We check that the image
of this basis in DN(∂p), (xi∂j)(i,j)∈J0;p−1K2 is free. Since it is also a C[∂p] generating family of
DN(∂p) we do have an isomorphism.

The fact that DN(∂p) is a central simple CN -algebra of dimension p2 is a direct consequence
of Theorem 2.1.45 (when identifying CN with C[∂p]/N(∂p) through Y 7→ ∂p).

If L is a divisor of N(∂p), then DL has a structure of DN(∂p)-module which explains the
interest in studying the structure of DN(∂p). We will in fact later reduce the factorisation of L
entirely to that of N(∂p).

We recall the Artin-Wedderburn theorem [AF92, Thm. 2.1.3] about the structure of finite
dimensional central simple algebras:

Theorem 3.1.3 (Artin-Wedderburn). — Let k be a field and A be a central simple k-algebra.
Then there exists a central k-division algebra D and n ∈ N∗ such that A 'Mn(D).

With the notations of the previous theorem we then find dimkA = n2 dimkD. Since DN(∂p)
is of dimension p2 over CN we deduce the following statement about its structure:

Corollary 3.1.4. — DN(∂p) is either a division algebra, or isomorphic to Mp(CN ).

In [vdP95] this result is the origin of a discussion about division algebras of dimension p2 over
CN . For our work, it will be enough to be able to determine whether DN(∂p) is a division algebra
or not. Of course this is easy to tell if L 6= N(∂p). Indeed, in this case L is a nontrivial zero
divisor in DN(∂p). This means that DN(∂p) cannot be a division algebra and is thus isomorphic
to Mp(CN ).

Remark 3.1.5. — If N is not separable over C then DN(∂p) is isomorphic to a matrix ring.
Indeed, in this case there exists P ∈ K[Y ] such that N(Y ) = P p(Y ). Thus N(∂p) = (P (∂p))p

since K[∂p] is commutative, and DN(∂p) has non trivial zero divisors.

Conversely, when DN(∂p) is a division algebra then N(∂p) cannot have any nontrivial divisor.
Thus we would have L = N(∂p) and the factorisation would be done, provided that we are able
to prove that DN(∂p) is a division algebra. However, all previous works on factorisation left this
problem unsolved in the case where no nontrivial divisor of N(∂p) is known. In section 3.3.3, we
will present a polynomial time algorithm testing the irreducibility of N(∂p) (and thus whether
DN(∂p) is a division algebra or not). For now, we focus on the case where DN(∂p) ' Mp(CN ).
Then DL is a Mp(CN )-module. Morita’s theorem [AF92, Corollary 22.6], which we recall below,
states that DL corresponds uniquely to a finite dimensional CN -vector space.

Theorem 3.1.6 (Morita’s equivalence). — Let R be a ring (not necessarily commutative).
There exists a functor
MorN : ModlR → ModlMn(R) which realises a categorical equivalence between the left-R-modules
and the left-Mn(R)-modules. Furthermore:
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1. If R is a finite dimensional k-algebra with k a field, then for all finitely generated left-R-
module M ,

dimk(MorN (M)) = n dimk(M).

2. If R is a field then two finite dimensional (over R) left-Mn(R)-modules are isomorphic if
and only if their dimensions over R are equal.

Proof. See appendix A.

This result yields a some significant corollaries.

Corollary 3.1.7. — Let L ∈ K〈∂〉 be a divisor of some N(∂p) where N ∈ C[Y ] is an
irreducible polynomial. This is equivalent to saying that χmin(L) = N(∂p). Then

i) DL is a direct sum of simple differential modules.

If we suppose in addition that DN(∂p) 'Mp(CN ) then:

ii) ord(L) is a multiple of deg(N). More precisely ord(L) = deg(N) · dimCN
MorN (DL).

iii) L is irreducible if and only if ord(L) = deg(N).

Proof. We denote Mor−1
N the quasi-inverse functor of the functor MorN defined in Theo-

rem 3.1.6. We begin by proving that if DN(∂p) ' Mp(CN ) then a finite dimensional (over
CN ) DN(∂p)-module M is simple if and only Mor−1

N (M) is a CN -line. Indeed, if Mor−1
N (M) is

a CN -line, then from Theorem 3.1.6 (2), we know that dimCN
(M) = p. But we also know that

if M ′ ⊂M is a submodule of M then dimCN
(M ′) ⩽ dimCN

M . But from Theorem 3.1.6 (2) we
know that dimCN

(M ′) is a multiple of p so we either have M ′ = {0} or M ′ = M .
Conversely, if Mor−1

N (M) is not a CN -line then Mor−1
N (M) (which is a CN -vector space) can

be written as a direct sum of two nontrivial subspaces. Since direct sums are a categorical
construct, M can also be written as a direct sum of two nontrivial differential modules. In
particular it has nontrivial submodules and is not simple.

i) If DN(∂p) is a division algebra then L = N(∂p) and DL is already irreducible. Suppose
now that DN(∂p) ' Mp(CN ). Then Mor−1

N (DL) is a finite dimensional CN -vector space.
Thus it is a finite direct sum of CN -lines. Moreover CN -lines correspond to irreducible
DN(∂p)-modules and since direct sums are a categorical construction, DL is isomorphic to
a direct sum of irreducible modules.

ii) We recall that a left Euclidean division exists over K〈∂〉, thus for any L ∈ K〈∂〉 a K-basis
of the quotient module DL is (1, ∂, . . . , ∂r−1) where r is the order of L. It follows that we
have:

ord(L) = dimK DL

= 1
p

dimC DL

= [CN : C]
p

dimCN
DL

= deg(N)
p

· pdimCN
MorN (DL)

= deg(N) · dimCN
MorN (DL)
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iii) L is irreducible if and only if DL is an irreducible differential DN(∂p)-module. This
is equivalent to MorN (DL) being an irreducible CN vector space that is to say that
dimCN

MorN (DL) = 1. Doing the computation of the previous point again this yields

ord(L) = deg(N).

Remark 3.1.8. — i) means that L can be written as the least common left multiple of irre-
ducible operators which is a particular case of van der Put’s classification of differential modules.
This fact was used by Giesbrecht and Zhang in [GZ03, Theorem 3.6] to link nontrivial zero di-
visors of the ring of endomorphism of DL to nontrivial divisors of L.

A few interesting results can be deduced from this, although they won’t have much use for
the factorisation in itself. The first is a refinement of 2.2.8(iii).

Proposition 3.1.9. — Let L ∈ K〈∂〉\C[∂p]. L is irreducible if and only if χ(ψLp ) is irreducible
in C[Y ].

Proof. We write N := χ(ψLp ). Suppose that N is irreducible over C. Then L|N(∂p) and since
deg(N) = ord(L), L is irreducible (see Corollary 3.1.7 (iii)).
If now we know that L is irreducible then we know from Proposition 2.2.8(iii) that there existN ∈
C[Y ] irreducible and ν ∈ N such that χ(ψLp ) = Nν . Since L is irreducible, L = gcrd(L,N(∂p)),
thus L|N(∂p). Since L is not central, L 6= N(∂p) thus DN(∂p) is isomorphic to Mp(CN ) and
ord(L) = deg(N) since L is irreducible. Moreover, since ord(L) = deg(χ(ψLp )) it follows that
ν = 1. Thus χ(ψLp ) is irreducible over C.

The second is the foretold criterium on the finiteness of factorisations of a given L ∈ K〈∂〉.

Theorem 3.1.10. — Let L ∈ K〈∂〉. If ψLp (defined in (2.2)) is cyclic then L has a finite
number of factorisations. If K is a separably closed field then it is a equivalence.

Proof. Let χmin(L) = Nν1
1 · · ·Nνn

n with the Ni being pairwise distinct irreducible polynomials
over C. Let L1 be an irreducible right divisor of L. Then χmin(L1) is irreducible (otherwise
the gcrd of L1 and an irreducible component of χmin(L1) applied to ∂p would be a nontrivial
factor of L1) and divides χmin(L). Thus there exists j ∈ J1;nK such that L1 is a right divisor of
gcrd(L,Nj(∂p)).
We can deduce that L has a finite number of irreducible right divisors if and only if for all j ∈J1;nK, gcrd(L,Nj(∂p)) has a finite number of right divisors. Suppose that DNj(∂p) is isomorphic
to Mp(CNj ). Then irreducible divisors of gcrd(L,Nj(∂p)) are in bijection with vectorial lines in
MorNj (Dgcrd(L,Nj(∂p))) which are finite in number if and only if gcrd(L,Nj(∂p)) is irreducible
which, according to Corollary 3.1.7, is to say that

ord(gcrd(L,Nj(∂p))) = deg(Nj).

Let us suppose that ψLp is cyclic. We claim that for any pair L′, R ∈ K〈∂〉 such that L′R = L,
ψL

′
p and ψRp are also cyclic. Indeed we have χmin(L)|χmin(L′)χmin(R). Thus

deg(χmin(L)) ⩽ deg(χmin(L′)) + deg(χmin(R)) ⩽ deg(χ(ψL′
p ) + deg(χ(ψRp )) = deg(χ(ψLp )).



3.1. Central simple algebra structure and Morita’s equivalence 87

If ψLp is cyclic then all the previous inequalities become equalities. In particular we find
χmin(R) = χ(ψRp )) and χmin(L′) = χ(ψL′

p ) which shows that ψRp and ψL
′

p are indeed cyclic.
In particular for R := gcrd(L,Nj(∂p) we have

χmin(R) = χ(ψRp ).

But since χmin(R) = Nj and deg(χ(ψRp )) = ord(R) we have ord(R) = deg(Nj) and R =
gcrd(L,Nj(∂p)) is irreducible.

Thus we have shown that if ψLp is cyclic then L has a finite number of irreducible right divisor
and any divisor L′ of L also has a cyclic p-curvature, thus by recurrence, L has a finite number
of factorisation.

We suppose now that K is separably closed and that L has a finite number of factorisations.
In particular we have

ord(gcrd(L,Nj(∂p)) = deg(Nj)

for all j ∈ J1;nK. Since all central simple CNj -algebras split over a separable extension of CNj ,
all DNj(∂p) are isomorphic to a matrix ring. Indeed since K is separably closed, so is C. Either
CNj is inseparable over C which means that DNj is split, or C = CNj and DNj(∂p) is split because
there are no nontrivial separable extension of C.

We consider Ln = gcrd(L,Nνn
n (∂p)) and set Ln,k = gcrd(Ln, Nk

n(∂p)). Thus Ln,νn = Ln and
DLLn,k = Im (Nk

n(ψLp )). Finally DLn,k
' ker(Nk

n(ψLp )). It follows that

ord(Ln) = dimK DLn

=
νn∑
k=1

dimK

(
ker(Nk

n(ψL
p ))/ker(Nk−1

n (ψL
p ))
)

But dimK

(
ker(Nk

n(ψL
p ))/ker(Nk−1

n (ψL
p ))
)

= ord(Ln,k) − ord(Ln,k−1). By their definition, Ln,k and
Ln,k−1 differ by a factor which is a divisor of Nn(∂p) so we have ord(Ln,k) − ord(Ln,k−1) ⩾
deg(Nn). But we also know that dimK

(
ker(Nk

n(ψL
p ))/ker(Nk−1

n (ψL
p ))
)
⩽ dimK ker(Nn(ψLp )) = ord(Ln,1).

It follows that ord(Ln) = νn deg(Nn) if and only if ord(gcrd(L,Nn(∂p))) = deg(Nn).
Since the valuation of χ(ψLp ) in Nn is also the valuation of χ(ψLn

p ) in Nn and since deg(χ(ψLn
p )) =

ord(Ln), it follows that ord(gcrd(L,Nn(∂p))) = deg(Nn) if and only if χmin(L) and χ(ψLp ) have
the same valuation in Nn. Since the proof is symmetric for the other factors we find that L has
a finite number of irreducible right divisors if and only if χmin(L) = χ(ψLp ) that is to say that
ψLp is cyclic.

Finally one last important irreducibility criterion is the following:

Lemma 3.1.11. — Let N be an irreducible polynomial in C[Y ] such that DN(∂p) is isomorphic
to Mp(CN ). Then L ∈ K〈∂〉 is an irreducible divisor of N(∂p) if and only if χ(ψLp ) = N .

Proof. Let L ∈ K〈∂〉. If χ(ψLp ) = N then χ(ψLp ) is irreducible. Since ord(L) = deg(N) <
ord(N(∂p)), L 6= N(∂p) and in particular L /∈ C[∂p] so L is also irreducible (Proposition 3.1.9).
If now L is an irreducible divisor of N(∂p) then we know that ord(L) = deg(N) (Corollary 3.1.7).
Since N is irreducible we have χmin(L) = N and N |χ(ψLp ). But since deg(χ(ψLp )) = ord(L) =
deg(N) it follows that χ(ψLp ) = N .
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We now present a way to reduce the factorisation of L to the factorisation of N(∂p). We
have seen that DL is equivalent to a CN -vector space through Morita’s equivalence. We intro-
duce a notion of hyperplane of DL mimicking the usual notion of hyperplane through Morita’s
equivalence.

Definition-Proposition 3.1.12. — Let M be a finite dimensional differential K-module. A
hyperplane of M is a maximal proper submodule of M .

i) Suppose M = DL. Let L′ be a right divisor of L. The submodule DLL′ is a hyperplane of
DL if and only if L′ is irreducible.

ii) Suppose that M is a DN(∂p)-module. A submodule M ′ ⊂ M is a hyperplane of M if and
only if MorN (M ′) is a hyperplane of MorN (M).

Proof. i) DLL′ is a hyperplane if and only if D′
L ' DL/DLL

′ is a simple differential K-module
which is to say that L′ has no nontrivial right divisor. Thus L′ is irreducible.

ii) The submodule M ′ ⊂ M is a maximal proper submodule of M if and only if MorN (M ′)
is a maximal proper subspace of MorN (M).

Hyperplanes are convenient objects to consider since the intersection of a subspace with a
hyperplane is usually a hyperplane itself. This is very useful since DL can be seen as a submodule
of DN(∂p). Indeed let R ∈ K〈∂〉 such that LR = N(∂p). Then

ιL : DL → DN(∂p)R

M mod L 7→ MR mod N(∂p)

is an isomorphism. A consequence is that irreducible factors of L can be “easily” recovered from
the knowledge of irreducible factors of N(∂p).

Theorem 3.1.13. — Let L ∈ K〈∂〉 be a divisor of N(∂p) and R ∈ K〈∂〉 be such that LR =
N(∂p). Let (Hi)i∈J1;pK be a family of irreducible divisors of N(∂p) such that N(∂p) = lclmp

i=1Hi.
Then there exists I ⊂ J1; pK of cardinality ord(L)

deg(N) such that:

i) for all i ∈ I, Li := lclm(R,Hi) ·R−1 is an irreducible right divisor of L.

ii) L = lclmi∈ILi.

Remark 3.1.14. — The expression lclm(R,Hi) ·R−1 is valid as it can be seen as a division in
the right ring of fractions of K〈∂〉 which can be seen as K〈∂〉 ⊗C[∂p] C(∂p).
In practice however, algorithms computing lclm(R,Hi) compute a cofactor Q ∈ K〈∂〉 such that
QR = lclm(R,Hi). It follows that Q = lclm(R,Hi) · R−1 and that its computation does not
require any additional operation.

Proof of Theorem 3.1.13. We know that DL is embedded in DN(∂p) as DN(∂p)R.
Since lclmp

i=1(Hi) = N(∂p), we know that

p⋂
i=1
DN(∂p)Hi = {0}.
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Since the Hi are irreducible, DN(∂p)Hi is a hyperplane of DN(∂p). For any i ∈ J1; pK such that
DN(∂p)Hi does not contain DN(∂p)R, the module DN(∂p)Hi ∩ DN(∂p)R = DN(∂p)lclm(Hi, R) is
an hyperplane of DN(∂p)R. Furthermore such Hi necessarily exist, since the intersection of the
DN(∂p)Hi is reduced to 0.
According to Corollary 3.1.7 (ii), the CN vector space V := MorN (DL) is of dimension n =
ord(L)
deg(N) . From any family of hyperplanes of V of intersection reduced to zero we can extract a
family of n hyperplanes whose intersection is reduced to zero.
Thus from the family (DN(∂p)lclm(Hi, R))i∈J1;pK, one can extract a family I of n hyperplanes of
intersection reduced to zero.

Now we notice that DN(∂p)lclm(Hi, R) = ιL(DLlclm(Hi, R) ·R−1). It follows that:

i) For i in I, DLlclm(Hi, R) ·R−1 is a hyperplane of DL. Since lclm(Hi, R) is both a multiple
of R and a divisor of N(∂p), we have lclm(Hi, R) = L′R and N(∂p) = L′′L′R. Besides
N(∂p) = LR so L′′L′ = L and L′ is a divisor of L. Thus lclm(Hi, R) ·R−1 is an irreducible
divisor of L.

ii) We know that ⋂i∈I DLlclm(Hi, R) ·R−1 = {0} which is precisely to say that

L = lclmi∈I lclm(Hi, R) ·R−1.

The question of finding such a family of irreducible operators will be discussed in the next
section. Before we first mention the case where N is not separable over C.

Factorisation when N is not separable

Proposition 3.1.15. — If N is not separable over C then DN(∂p) is isomorphic to Mp(CN ).

Proof. If N is not separable over C, then we can write N =
∑n
i=1 ciY

pi. Since C = {fp|f ∈ K},
there exists ai ∈ K such that api = ci. We write Q =

∑n
i=1 aiY

i. Then N = Qp and N(∂p) =
(Q(∂p))p. Since N(∂p) is reducible in K〈∂〉, DN(∂p) is isomorphic to Mp(CN ).

This means that unlike the general case, determining whether or not N(∂p) is irreducible is
very easy in the inseparable case. The proof even shows that finding an irreducible divisor of
N(∂p) is much easier in this case.

Lemma 3.1.16. — If N is not separable over C then there exists Q ∈ K[Y ] such that N = Qp.
Then Q(∂p) is an irreducible divisor of N(∂p).

Proof. The existence of Q in shown in the proof of Proposition 3.1.15. Then we see that
ord(Q(∂p)) = pdeg(Q) = deg(N). We deduce that Q(∂p) is irreducible.

If L is a divisor of N(∂p) we could still try to compute a family Hi as in Theorem 3.1.13 by
“twisting” the irreducible divisor Q(∂p) of Lemma 3.1.16. This means taking random operators
Hi ∈ K〈∂〉 coprime with N(∂p) and computing gcrd(Q(∂p)Hi, N(∂p)). Doing this p times yields
a good family of irreducible operators with good probability. A deterministic way of computing
an irreducible divisor of L is given by the following theorem.
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Theorem 3.1.17. — Let LR = N(∂p).
If N is not separable and Q ∈ K[Y ] is such that Qp = N then there exists i ∈ J1; p − 1K such
that

lclm(R,Qi(∂p)) ·R−1

is an irreducible right factor of L.

Proof. We know that the right multiplication by R embeds DL in DN(∂p) as DN(∂p)R which
corresponds to a subspace V of CpN by Morita equivalence. Similarly (DN(∂p)Q

i(∂p))i∈J1;pK
corresponds to a family (Ui)i∈J0;pK of subspaces of CpN such that Ui ⊊ Ui−1 for all i ∈ J1; pK and
U0 = CpN and Up = {0}. Thus there exists i ∈ J1 : pK such that V ∩ Ui is an hyperplane of V .
This means that DN(∂p)R∩DN(∂p)Q

i(∂p) = DN(∂p)lclm(R,Qi(∂p)) is an hyperplane of DN(∂p)R.
We deduce that DLlclm(Qi(∂p), R) ·R−1 is an hyperplane of DL. Thus lclm(Qi(∂p), R) ·R−1 is
an irreducible divisor of L.

3.2 The p-Riccati equation

In this section we discuss ways of finding irreducible right factors of L for different values of the
minimal polynomial of its p-curvature. We begin by the most specific case and progress towards
the most general.

3.2.1 When χmin(L)(Y ) = Y

We suppose that χmin(L)(Y ) = Y , which is to say that ψLp = 0 or, equivalently, that L is a
divisor of ∂p. According to [vdPS03, Lemma 13.2] this means that L has a basis of solutions in
K. In this case, irreducible divisors of L can be deduced from those solutions as we show in the
following lemma.

Lemma 3.2.1. — Let L ∈ K〈∂〉 be such that χmin(L)(Y ) = Y and f ∈ K× such that L(f) = 0.
Then ∂ − f ′

f is an irreducible right factor of L. Furthermore, all of the monic irreducible right
factors of L are of this form.

Proof. It is easy to see that (∂ − f ′

f )(f) = 0. Let Q ∈ K〈∂〉 and a ∈ K be such that L =
Q(∂ − f ′

f ) + a. Then

L(f) = 0

= Q

(
∂ − f ′

f

)
(f) + af

= af

It follows that a = 0 and ∂ − f ′

f is a right factor of L. Since it is of order 1 it is irreducible.

If now N1 is an irreducible right factor of L then in particular N1 is an irreducible divisor of
∂p. Since ∂p is obviously not irreducible, we must have ord(N1) = 1. Since ψN1

p = 0, N1 has a
solution, say f , in K. We can suppose that the leading coefficient of N1 is 1. Then we can set
N1 = ∂ − g and N1(f) = f ′ − gf = 0.
Thus g = f ′

f . Finally if f is a solution of N1 then it is also a solution of L since N1 is a right
factor of L.
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One way of factoring L is thus to compute a solution of L. When K = Fp(x) this can be
done by solving a p × p linear system over C = Fp(xp). From the dimension of this system it
follows that the solutions found are usually of size at least linear in p. Another way is to use
Theorem 3.1.13. Let R ∈ K〈∂〉 be such that LR = ∂p.

Theorem 3.2.2. — Let (fi)i∈J1;pK be a C-basis of K. Then there exists I ⊂ J1; pK of cardinality
ord(L) such that:

i) for all i ∈ I, Li := lclm(R, ∂ − f ′
i
fi

) ·R−1 is an irreducible right divisor of L.

ii) L = lclmi∈ILi.

Proof. It is enough to show that ∂p = lclmp
i=1

(
∂ − f ′

i
fi

)
according to Theorem 3.1.13. But since

∂− f ′
i
fi

is a factor of ∂p for all i, lclmp
i=1

(
∂ − f ′

i
fi

)
is a divisor of ∂p. Furthermore lclmp

i=1

(
∂ − f ′

i
fi

)
has p-linearly independent solutions so it is at least of order p. Thus lclmp

i=1

(
∂ − f ′

i
fi

)
= ∂p.

A C-basis of K is always given by the family (xi)i∈J0;p−1K, from which we deduce the following
corollary:

Corollary 3.2.3. — There exists a family I ⊂ J0; p− 1K of cardinal ord(L) such that

i) for all i ∈ I, Li := lclm(R, ∂ − i
x) ·R−1 is an irreducible right divisor of L.

ii) L = lclmi∈ILi.

3.2.2 When χmin(L)(Y ) = Y − a with a ∈ C

We now suppose that there exists a ∈ C such that χmin(L)(Y ) = Y −a. Let L∗ be an irreducible
factor of L. Then L∗ is in particular an irreducible factor of ∂p − a. If D∂p−a is isomorphic
to a matrix algebra then it follows that L∗ is an operator of order 1 verifying χ(ψL∗

p ) = Y − a
(Corollary 3.1.11). Furthermore, up to a multiplicative constant, we can suppose that L∗ is
monic and of the form N1 = ∂ − b with b ∈ K.

Lemma 3.2.4 (Lemma 1.3.2(1) [vdP95]). — Let K be any differential field of positive charac-
teristic p verifying Hypothesis 2.1.37. Then for any b ∈ K,

χ(ψ∂−b
p ) = Y − b(p−1) − bp.

Proof. We give an alternative proof of this result. It is enough to show that ψ∂−b
p = b(p−1) + bp.

We consider the application
τ : K → C

b 7→ ψ∂−b
p

.

The first step is to show that τ is additive. Let b1 and b2 ∈ K.
Then D∂−b1 ⊗K D∂−b2 is provided with the connexion

∂̃(a1 ⊗ a2) = ∂ · a1 ⊗ a2 + a1 ⊗ ∂ · a2.

Furthermore, D∂−b1⊗K D∂−b2 is a K-vector space of dimension one generated by e = 1⊗1. But
then

∂̃(e) = b1 ⊗ 1 + 1⊗ b2 = (b1 + b2)e.
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Thus, as a differential module D∂−b1 ⊗K D∂−b2 is isomorphic to D∂−b1−b2 . Furthermore by
recurrence we see that for any a1, a2 ∈ K,

∂̃k(a1 ⊗ a2) =
k∑
i=0

(
k

i

)
∂i · a1 ⊗ ∂k−i · a2.

Thus by definition
∂̃p(a1 ⊗ a2) = ψ∂−b1

p (a1)⊗ a2 + a1 ⊗ ψ∂−b2(a2).

Finally we see that

∂̃p(e) = τ(b1 + b2)e = ψ∂−b1
p e+ ψ∂−b2

p e = (τ(b1) + τ(b2))e.

Thus τ is additive.

We now show that for all b ∈ K, ∂p − τ(b) = (∂ − b)p. We consider the map

µb : K〈∂〉 → K〈∂〉
∂ 7→ ∂ + b

.

It is an automorphism of K〈∂〉 mapping ∂ − b to ∂. Since µb is an automorphism, it maps
central elements to central elements and preserve divisibility. Furthermore, from its definition
it preserves the order and leading coefficients. It follows that µb(χ(ψ∂−b

p )(∂p)) = µb(∂p − τ(b))
is a monic central multiple of µb(∂ − b) = ∂ or order p. Thus µb(∂p − τ(b)) = ∂p. Finally we
find that

∂p − τ(b) = µ−b(∂p) = (µ−b(∂))p = (∂ − b)p.

Since τ is additive, it is enough to show the result for b = cxi for i ∈ J0; p − 1K and c ∈ C.
Since (∂ − cxi)p is central we find that

(∂ − cxi)p = ∂p −
p∑
j=1

pi,j(x)cj ,

where the pi,j are polynomials depending solely on i and j. This can be shown by recurrence as
the constant coefficient of (∂ − cxi)k is also the value of (∂ − cxi)k applied to 1.
But since τ is additive, we must have

p∑
j=1

pi,j(x)(c+ c′)j =
p∑
j=1

pi,j(x)(cj + c′j)

which is to say that
p−1∑
j=2

pi,j(x)(c+ c′)j −
p−1∑
j=2

pi,j(x)(cj + c′j) = 0.

for all c, c′ ∈ C. It follows that the polynomial

p−1∑
j=2

pi,j(x)Y j −

p−1∑
j=2

pi,j(x)

Y
is of degree smaller than p−1 and any k ∈ Fp is a root of it. Thus it must be the zero polynomial
and except for j = 1 and j = p, all the pi,j = 0.
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The only monomial in (∂ − cxi)p providing cp as a factor is (cxi)p. Thus pi,p(x) = xpi.

The products playing a role in pi,1(x)c are the terms of the form ∂lcxi∂p−1−l since the other
terms would make higher powers of c appear. Furthermore, if l 6= p − 1 then any monomial
coming from ∂lcxi∂p−1−l is a multiple of ∂ so it does not appear in τ(cxi).
If follows that pi,1(x)c is the constant coefficient of ∂p−1cxi which is equal to c

(
xi
)(p−1). We

finally have τ(cxi) = c(xi)(p−1) + cpxip which concludes the proof.

An immediate corollary is that

Corollary 3.2.5. — Let a ∈ C be such that D∂p−a is isomorphic to a matrix algebra. Then N1
is a monic irreducible divisor of ∂p− a if and only if there exists b ∈ K such that b(p−1) + bp = a

and N1 = ∂ − b.

We call the equation
b(p−1) + bp = a (3.1)

of unknown variable b the p-Riccati equation.

Corollary 3.2.6. — Let a ∈ C. D∂p−a is isomorphic to Mp(C) if and only if (3.1) has a
solution in K.

Proof. If D∂p−a is isomorphic to Mp(C) then ∂p − a has irreducible monic divisors of order 1 of
the form ∂−b. According to Corollary 3.2.5, b is a solution of (3.1). Conversely, if b is a solution
of (3.1) then χ(ψ∂−b

p )(∂p) = ∂p − a and ∂ − b is a nontrivial divisor of ∂p − a. Thus D∂p−a is
isomorphic to Mp(C).

Methods to solve the p-Riccati equation will be developed in the next section. However
finding a solution to (3.1) is a way to find an irreducible divisor of ∂p − a but is not enough to
factorise a divisor L of ∂p − a.

Lemma 3.2.7. — Let b ∈ C be a solution of (3.1). We define the map

µb : K〈∂〉 → K〈∂〉
∂ 7→ ∂ + b

If L ∈ K〈∂〉 is such that χmin(L)(Y ) = Y − a then χmin(µb(L))(Y ) = Y .

Proof. µb defines an automorphism of K〈∂〉 which preserves divisibility. Thus µb(L) is a divisor
of µb(χmin(L)(∂p)) = µb(∂p − a) = µb(∂ − b)p = ∂p. Thus χmin(µb(L))(Y ) = Y .

Thus we can apply the techniques of Section 3.2.1 to µb(L). This yields the three following
corollaries:

Corollary 3.2.8. — Let b ∈ K be a solution of (3.1) and f ∈ K verifying µb(L)(f) = 0.
Then ∂ − b+ f ′

f is an irreducible divisor of L.

Proof. Since χmin(µb(L))(Y ) = Y we know from lemma 3.2.1 that ∂ − f ′

f is an irreducible
right divisor of µb(L). Since µ−b is an automorphism it preserves divisibility relations. Thus
µ−b(∂ − f ′

f ) = ∂ − b− f ′

f is an irreducible right divisor of µ−b(µb(L)) = L.
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Let R be such that LR = ∂p − a.

Corollary 3.2.9. — Let b ∈ K be a solution of (3.1) and (fi)i∈J1;pK be a C-basis of K. Then
there exists I ⊂ J1; pK of cardinality ord(L) such that:

i) for all i ∈ I, Li := lclm(R, ∂ − b− f ′
i
fi

) ·R−1 is an irreducible right divisor of L.

ii) L = lclmi∈ILi.

Proof. Since χmin(µb(L))(Y ) = Y , Theorem 3.2.2 states that there exists I ⊂ J1; pK of cardinality
ord(µb(L)) = ord(L) such that:

i) for all i ∈ I, L′
i := lclm(µb(R), ∂ − f ′

i
fi

) · µb(R)−1 is an irreducible right divisor of µb(L).

ii) µb(L) = lclmi∈IL
′
i.

Since µ−b is an automorphism of K〈∂〉 it preserves divisibility relations. Furthermore, it maps
left ideals to left ideals so it must commutes with lclms. It follows that

i) for all i ∈ I, Li := µ−b(lclm(µb(R), ∂ − f ′
i
fi

) · µb(R)−1) = lclm(R, ∂ − b − f ′
i
fi

) · R−1 is an
irreducible right divisor of µ−b(µb(L)) = L.

ii) µ−b(µb(L)) = L = lclmi∈IL
′
i.

Finally, using the fact that (xi)i∈J0;p−1K is always a C-basis of K we get

Corollary 3.2.10. — Let b ∈ K be a solution of (3.1). There exists I ⊂ J1; pK of cardinality
ord(L) such that:

i) for all i ∈ I, Li := lclm(R, ∂ − b− i
x) ·R−1 is an irreducible right divisor of L.

ii) L = lclmi∈ILi.

3.2.3 General case

In this section we consider the case where χmin(L) is a separable irreducible polynomial N ∈
C[Y ]. The method to solve the general case where χmin(L) is any irreducible polynomial in C[Y ]
of degree greater than 2 is to bring ourselves back to the case χmin(L) of degree 1 at the price
of a scalar extension. This of course implies that we are able to solve the p-Riccati equation in
all generality which will be the focus of section 3.4.

Notation 3.2.11. Recall that CN = C[Y ]/N(Y ) and that K is a separable extension of Fp(x).
We set KN = K · CN and we denote by yN the image of Y in CN .

Before going further we need to collect somme lemmas about KN .

Lemma 3.2.12. — Let Q ∈ K[Y ] such that Qp(Y ) = N(Y p) and yQ a root of Q in an algebraic
closure of K.

i) Q is irreducible and separable.
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ii) CN = {fp|f ∈ K[yQ]}.

iii) K[yQ] ' CN [x]. In particular [K[yQ] : CN ] = p.

iv) KN ' K[yQ].

Proof. i) The map ι1 : f 7→ fp is an isomorphism between K[Y ] and C[Y p] and ι2 : Y 7→ Y p

is an isomorphism between C[Y ] and C[Y p]. Since ι−1
2 ◦ ι1(Q) = N , Q is irreducible. Q is

separable since ι−1
2 ◦ ι1 commutes with d

dY .

ii) Since ypQ is a root of N and C ⊂ {fp|f ∈ K[yQ]}, CN ⊂ {fp|f ∈ K[yQ]}. Furthermore we
have

[K[yQ] : C] = [K[yQ] : K][K : C] = deg(Q) · p = deg(N) · p
= [K[yQ] : CN ][CN : C] = [K[yQ] : CN ] · deg(N)

It follows that [K[yQ] : CN ] = p. Since we know that K[yQ] is separable over K, it is
separable over Fp(x). From Proposition 2.1.38, we know that [K[yQ] : K[yQ]p] = p. Thus
CN = {fp|f ∈ K[yQ]}.

iii) This is just Proposition 2.1.38.

iv) We have CN ⊊ KN ⊂ K[yQ]. Since [K[yQ] : CN ] = p, this can only mean that KN =
K[yQ].

With Lemma 3.2.12 in mind we can construct the aforementioned scalar extension the fol-
lowing way:

Proposition 3.2.13. — The injection K ↪→ KN induces an injection K〈∂〉 ↪→ KN 〈∂〉. Its
composite with the canonical projection KN 〈∂〉↠ KN 〈∂〉/(∂p−yN ) factors as follows.

K〈∂〉 KN 〈∂〉

DN(∂p) KN 〈∂〉/(∂p−yN )
ϕN

where ϕN is an isomorphism of CN -algebra.

Proof. The fact that ϕN is well defined is obvious since by definition of yN , Y − yN divides N
in CN [Y ]. We deduce that ϕN is a morphism of CN -algebra from the fact that the following
diagram commutes

CN

C[∂p]/N(∂p) CN [∂p]/(∂p−yN )

DN(∂p) KN 〈∂〉/(∂p−yN )

∼ ∼

ϕN

Let us now show that ϕN is an isomorphism. We first show that ϕN is injective.
Let L ∈ ker(K〈∂〉 → KN 〈∂〉/(∂p−yN )). We can write L =

∑
0⩽i,j⩽p−1 li,j(∂p)xi∂j with the li,j ∈
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C[Y ]. From lemma 3.2.12 (iii) we deduce that the family (xi∂j)0⩽i,j⩽p−1 is a CN -basis of
KN 〈∂〉/∂p−yN . This means that for all i, j ∈ J0; p− 1K, Y − yN divides li,j .
Thus yN is a root of all li,j . But since the li,j all have coefficients in C and N is the minimal
polynomial of yN over C, it follows that N divides all li,j .
Thus the ideal generated by N(∂p) is precisely the kernel of the considered map. It follows that
ϕN is injective. Since

dimCN
(DN(∂p)) = p2

and
dimCN

(KN 〈∂〉/(∂p−yN )) = p[KN : CN ] = p2

we deduce that ϕN is also surjective by dimensional analysis.

Remark 3.2.14. — KN 〈∂〉 is well defined precisely because N is separable over C, which makes
KN separable as well and allows the derivation d

dx to be well defined over KN .
However, we can notice that in the separable case we have KN ' C[T ]/T p−xp ⊗C CN . This
expression is still well defined even when N is not separable and is also equipped with a natural
derivation d

dT ⊗ 0.

For the rest of this thesis we will continue to denote the isomorphism of Proposition 3.2.13
by ϕN . DN(∂p) is isomorphic to Mp(CN ) if and only if this is also the case of KN 〈∂〉/(∂p−yN ).
In particular the theory developed for DN(∂p) in the previous section can be applied here as well.

The two following lemmas on how ϕN affects submodules of DN(∂p) will allow to transfer
factorisations of ∂p − yN to factorisations of N(∂p) and vice-versa.

Lemma 3.2.15. — We suppose that DN(∂p) is isomorphic to Mp(CN ). The morphisms ϕN and
ϕ−1
N :

• map hyperplanes to hyperplanes,

• map families of hyperplanes whose intersection is reduced to zero to families of hyperplanes
whose intersection is reduced to zero.

Proof. Since ϕN is an isomorphism (thus surjective), the image of a left ideal of DN(∂p) is a left
ideal of KN 〈∂〉/(∂p−yN ). Furthermore since ϕN is an isomorphism, if Hi is a maximal proper ideal
then so is ϕN (Hi). Since for any two subsets I, J ⊂ DN(∂p), ϕN (I ∩ J) = ϕN (I)∩ϕN (J) we get
the result.

Lemma 3.2.16. — For all L′ divisor of N(∂p) in K〈∂〉 and all L′′ divisor of ∂p− yN in KN 〈∂〉
the following holds true:

• ϕN (DN(∂p) · L′) = KN 〈∂〉/(∂p−yN ) · gcrd(ϕN (L′), ∂p − yN )

• ϕ−1
N (KN 〈∂〉/(∂p−yN ) · L′′) = DN(∂p) · gcrd(ϕ−1

N (L′′), N(∂p)).

Proof. Since L′ is a generator of the left ideal DN(∂p) ·L′ of DN(∂p), ϕN (L′) is a generator of the
left ideal ϕN (DN(∂p) · L′) of KN 〈∂〉/(∂p−yN ).
Thus

ϕN (DN(∂p) · L′) =
(
KN 〈∂〉ϕN (L′)+KN 〈∂〉(∂p−yN )

)
/(∂p−yN )

= KN 〈∂〉·gcrd(ϕN (L′),∂p−yN )/(∂p−yN ).
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Mutatis mutandis, the proof for the second point is the same.

From those two lemmas we see that the problem of factoring N(∂p) in K〈∂〉 is equivalent
to the problem of factoring ∂p − yN in KN 〈∂〉. We can then apply the results of the previous
section. In particular, Corollary 3.2.5 states that the monic irreducible divisors of ∂p − yN are
all the operators of the form ∂ − b with

b(p−1) + bp = yN

Definition 3.2.17. — The equation

b(p−1) + bp = yN (3.2)

of unknown variable b is called the p-Riccati equation relative to N . We denote by SN the set
of its solutions in KN

Lemma 3.2.18. — DN(∂p) is isomorphic to Mp(CN ) if and only if SN is not empty.

Proof. This is just Corollary 3.2.6 applied to Kn〈∂〉/∂p−yN . The result is immediately deduced
from it since DN(∂p) ' KN 〈∂〉/∂p−yN .

When SN is not empty the whole set is easily deduced from one solution of (3.2) as shown
in the following lemma:

Lemma 3.2.19. — Let b be a solution of (3.2) in KN . Then

SN =
{
b+ f ′

f
|f ∈ KN

}
.

Proof. Let b∗ ∈ SN . Then (b − b∗)(p−1) + (b − b∗)p = yN − yN = 0. It follows that χmin(∂ −
b + b∗)(Y ) = Y . From lemma 3.2.1 it follows that b − b∗ is of the form f ′

f . Conversely, for all
f ∈ KN , γb(∂ − b− f ′

f ) = ∂ − f ′

f is a divisor of ∂p so γ−b(γb(∂ − b− f ′

f )) = ∂ − b− f ′

f is a divisor
of γ−b(∂p) = ∂p − yN . Thus b+ f ′

f ∈ SN .

Let us now suppose that an element of SN is known and see how this translates to a factori-
sation of L, a divisor of N(∂p).

Theorem 3.2.20. — Let b ∈ SN and (fi)i∈J1;pK be a CN -basis of KN .
Then for all i ∈ J1; pK, gcrd

(
N(∂p), ϕ−1

N

(
∂ − g − f ′

i
fi

))
is an irreducible divisor of N(∂p) and

N(∂p) = lclmp
i=1 gcrd

(
N(∂p), ϕ−1

N

(
∂ − b− f ′

i

fi

))
.

Proof. We know by applying Corollary 3.2.9 to ∂p − yN that ∂p − yN = lclmp
i=1

(
∂ − b− f ′

i
fi

)
.

From what precedes we deduce that
(
∂ − g − f ′

i
fi

)
i∈J1;pK generates a family of hyperplanes of

KN 〈∂〉/(∂p−yN ) whose intersection is reduced to zero. Thus according to Lemma 3.2.15, ϕ−1
N maps

it to a family of hyperplanes of DN whose intersection is reduced to zero. Using Lemma 3.2.16
it follows that Hi := gcrd(N(∂p), ϕ−1

N (∂ − b − f ′
i
fi

)) is an irreducible divisor of N(∂p) and⋂p
i=1DN(∂p)Hi = {0}. Thus N(∂p) = lclmp

i=1Hi.
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In particular, using the fact that (xi)i∈J0;p−1K is always a CN basis of KN :

Corollary 3.2.21. — Let b ∈ SN . For all i ∈ J0; p − 1K, Hi := gcrd(N(∂p), ϕ−1
N (∂ − b) − i

x)
is an irreducible divisor of N(∂p) and

N(∂p) = lclmp−1
i=0Hi.

Let L ∈ K〈∂〉 be a monic divisor of N(∂p) and R ∈ K〈∂〉 such that LR = N(∂p). In
particular R is monic. For any g ∈ KN we set

Lg := lclm(gcrd(N(∂p), ϕ−1
N (∂ − g)), R) ·R−1.

The following Theorem is an analog of Corollary 3.2.9 in the general case.

Theorem 3.2.22. — 1. If L = N(∂p) and SN 6= ∅ then g 7→ Lg is a bijection between SN
and the set of monic irreducible right divisors of N(∂p).

2. If SN 6= ∅, in general, all monic irreducible right divisors of L are of the form Lg with
g ∈ SN .

3. For all g ∈ SN , there exists {i1, ..., ik} ⊂ J0; p− 1K with k = ord(L)
deg(N) such that

L = lclmk
j=1

(
L
g+ i1

x

,L
g+ i2

x

, · · · ,L
g+ ik

x

)
.

Proof. 1. In this case, R = 1 and Lg = gcrd(N(∂p), ϕ−1
N (∂ − g)) for all g ∈ KN . We know

from Proposition 2.1.27 and Proposition 3.1.12 that there is a bijection between the set
of monic irreducible divisors of N(∂p) and hyperplanes of DN(∂p). Similarly, there is a
bijection between hyperplanes of KN 〈∂〉/(∂p−yN ) and monic irreducible divisors of ∂p − yN
in KN 〈∂〉. We know that the map g 7→ ∂ − g is a bijection from SN to the set of monic
irreducible divisors of ∂p − yN . Since we know that ϕ−1

N induces a bijection between the
hyperplanes of DN(∂p) and the hyperplanes of KN 〈∂〉/(∂p−yN ) (see Proposition 3.2.15) given
by the formulas of Proposition 3.2.16, we finally deduce that g 7→ Lg is a bijection between
SN and the set of monic irreducible divisor of N(∂p).

2. If L = 1, L has no irreducible divisors. Suppose that L 6= 1, and thus that DN(∂p) ·R 6= {0}.
Let L∗ be a monic irreducible right divisor of L. We know that DL is embedded in DN(∂p)
as DN(∂p) ·R and thus DL · L∗ is embedded in DN(∂p) as DN(∂p) · L∗R. Let H be a monic
irreducible divisor of N(∂p) such that DN(∂p) ·H contains DN(∂p) ·L∗R but not DN(∂p) ·R.
Then

DN(∂p) · L∗R ⊂ DN(∂p) ·H ∩ DN(∂p) ·R = DN(∂p) · lclm(H,R).

But since L∗ is an irreducible right divisor of L, DN(∂p) ·L∗R is an hyperplane of DN(∂p) ·R,
as is DN(∂p) · lclm(H,R), since DN(∂p) ·H does not contain DN(∂p) ·R.
Thus DN(∂p) · L∗R = DN(∂p) · lclm(H,R). Since both L∗R and lclm(H,R) are monic
divisors of N(∂p), we deduce that L∗R = lclm(H,R) and L∗ = lclm(H,R) ·R−1.
Since H is an irreducible divisor of N(∂p), according to the previous point it is of the form
gcrd(N(∂p), ϕ−1

N (∂ − g)) for some g ∈ SN , and we get L∗ = Lg.
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3. Let g ∈ SN . According to Proposition 2.1.38, the family (xi)i∈J0;p−1K is a CN basis of KN .
Thus it follows from Theorem 3.2.20 that

N(∂p) = lclmp−1
i=0 gcrd

(
N(∂p), ϕ−1

N

(
∂ − g − i

x

))
where each factor is an irreducible divisor of N(∂p). The result follows from Theo-
rem 3.1.13.

The “only” question that remains to be answered is how to solve the p-Riccati equation in
all generality. In [vdP97], M. van der Put presents a way to find an element of SN when a
nontrivial divisor L of N(∂p) is known.

Lemma 3.2.23 (M. van der Put). — Suppose that L is a nontrivial divisor of N(∂p) and set
LN := gcrd(∂p − yN , ϕN (L)).
If LN = ∂m + am−1∂

m−1 + · · ·+ a1∂ + a0, then −am−1
m ∈ SN .

Proof. By Proposition 3.2.16, LN is a nontrivial divisor of ∂p−yN . Thus there exists (f1, . . . , fm) ∈
SmN such that

LN = (∂ − f1) · · · (∂ − fm).

It follows that am−1 = −(f1 + · · · + fm). Thus −am−1
m is the barycentre of the fi. Since SN is

an Fp-affine space (Corollary 3.2.19), the result follows.

One issue of this method is that even when the nontrivial divisor L is of “small” size,
gcrd(L, ∂p − yN ) usually has coefficients of size linear in p. Thus the solution of p-Riccati
obtained this way has size linear in p. Furthermore the question of how to solve the p-Riccati
equation when we do not know a nontrivial divisor of N(∂p) remains open.

3.3 p-Riccati equation for Laurent series

In the previous section we have seen that factoring a differential operator of the form N(∂p),
with N an irreducible polynomial over C, is equivalent the solving the p-Riccati equation

f (p−1) + fp = yN

over KN . The relation between the p-Riccati equation and factorisation is not limited to al-
gebraic function fields but appears more generally for any differential field verifying Hypothe-
sis 2.1.37. This section is dedicated to the study of one of those cases, specifically Fq((t)) where q
is a power of p. We begin by presenting a criteria for determining whether the p-Riccati equation
has a solution over Fq((t)). Then we write explicit algorithms, to test this criteria and compute
a solution of the p-Riccati equation in Fq((t)) at arbitrary precision. Finally we use those results
to design an irreducibility test for differential operators of the form N(∂p) ∈ C[∂p]. Unlike the
algorithm to exhibit irreducible factors of such operators presented in the next sections, this
irreducibility test runs in polynomial time in log(p). In particular, it runs in polynomials time
in the size of its entry.
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3.3.1 Resolution over Fq((t))

We recall that Fq((t)) is provided with a valuation ν : f 7→ max{k ∈ Z|f = O(tk)} verifying the
following properties

• ν(f1f2) = ν(f1) + ν(f2) for anyf1, f2 ∈ Fq((t)).

• ν(f) =∞⇔ f = 0.

• ν(f1 + f2) ⩾ min(ν(f1), ν(f2)) with it being an equality if ν(f1) 6= ν(f2).

We want to solve the equation

∂p−1(f) + fp = ap

of unknown variable f with a ∈ Fq((t)), where ∂ is a nonzero derivation on Fq((t)) verifying
∂p = 0.

Example 3.3.1. — Let q be a power of some prime number p ∈ N∗. Then for any i ∈ N, the
derivation ∂i = ti d

dt over Fq((t)) verifies ∂pi = 0 if and only if i 6≡ 1 mod p.

Proof. ∂pi = 0 if and only if ∂pi (t) = 0. Let us write ∂ji (t) = λi,jt
αi,j . Then we find that

∂j+1
i (t) = αi,jλi,jt

αi,j+(i−1) which proves by induction that such λi,j and αi,j always exists
and that λi,j+1 = λi,jαi,j and αi,j+1 = αi,j + (i − 1), with λi,0 = αi,0 = 1. It follows that
αi,j = 1 + j(i− 1). Then ∂pi = 0 if and only if λi,p = 0. But λi,p = 0 if and only if there exists
j ∈ J1; p − 1K such that αi,j ≡ 0 mod p which is to say that j(i − 1) ≡ −1 mod p. Such a j
exists if and only if i− 1 6≡ 0 mod p.

Lemma 3.3.2. — The set of derivations over Fq((t)) is Fq((t)) d
dt .

In particular if ∂ is a derivation over Fq((t)) then there exists g ∈ Fq((t)) such that ∂ = g d
dt .

Proof. It is easy to see that each element of Fq((t)) d
dt is a derivation. Conversely let ∂ is a

derivation over Fq((t)) and set g = ∂(t). For any h ∈ Fq((t)) we know that ∂(hp) = 0 which
means that ∂(Fq((tp))) = {0}. Let f ∈ Fq((t)). There exists (f0, . . . , fp−1) ∈ Fq((tp))p such that

f =
p−1∑
k=0

fkt
k.

But then

∂(f) =
p−1∑
k=0

fk∂(tk) =
p−1∑
k=0

kfk∂(t)tk−1 = g
p−1∑
k=0

kfkt
k−1 = g

d
dt
f.

Notation 3.3.3. Let ∂ be a derivation over Fq((t)) and g ∈ Fq((t)) such that ∂ = g d
dt . We set

e(∂) := 1− ν(g)

It is easy to see that (Fq((t)), ∂) verifies Hypothesis 2.1.37. A consequence, true in general
but particularly helpful here, is the following:

Lemma 3.3.4. — Let ∂ be a nonzero derivation over Fq((t)) such that ∂p = 0. Then

ker(∂) = Im (∂p−1).
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Proof. The inclusion Im (∂p−1) ⊂ ker(∂) is obvious.
We know that (Fq((t)), ∂) verifies Hypothesis 2.1.37. Let C = ker(∂) = Fq((tp)). We know that
[Fq((t)) : C] = p. But furthermore

p = dimC Fq((t))
= dimC ker(∂p)

=
p∑

k=1
dimC ker(∂k)/ker(∂k−1)

Since dimC ker(∂k)/ker ∂k−1 ⩽ dimC ker(∂) = 1 we can only have the equality if for any k ∈J1; pK, ker(∂k−1) is an hyperplane of ker(∂k). Thus dimC ker(∂k) = k and dimC Im (∂k) =
p− dimC ker(∂k) = p− k.
Thus dimC Im (∂p−1) = 1 = dimC ker(∂).

Corollary 3.3.5. — Let ∂ be a nonzero derivation over Fq((t)) such that ∂p = 0. Then:

i) For any f ∈ Im (∂) there exists F ∈ Fq((t)) such that ∂(F ) = f , p does not divide ν(F )
and ν(F ) = ν(f) + e(∂).

ii) The characteristic p does not divide e(∂).

Proof. i) Since f ∈ Im (∂) there exists F ∗ =
∑∞
n=ν(F ∗) Fnt

n, with F ∗
ν(F ∗) 6= 0 such that

∂(F ∗) = f . But then
f = g

∑
n=ν(F )

nFnt
n−1

We consider F = F ∗ −
∑
n∈Z Fpnt

pn. We have ∂(F ) = ∂(F ∗) = f . Moreover by construc-
tion, p does not divide ν(F ). By definition of e(∂), ν(f) = ν(F )− e(∂).

ii) Let f ∈ ker(∂) = Fq((tp)). From Lemma 3.3.4 we know that f ∈ Im (∂p−1) ⊂ Im (∂).
In particular there exists F ∈ Fq((t)) such that ∂(F ) = f , p does not divide ν(F ) and
ν(F ) = ν(f) + e(∂). In particular, ν(F ) ≡ e(∂) mod p. Since p does not divide ν(F ), it
does not divide e(∂) either.

We know that ∂ is of the form g d
dt ∈ Fq((t)) d

dt . We suppose that g 6= 0.

Proposition 3.3.6. — Let n ⩾ −e(∂) and f0 ∈ Fq((t)) be such that

∂p−1(f0) + fp0 = ap +O(tpn).

There exists an element I(f0) ∈ (∂p−1)−1(ap−∂p−1(f0)−fp0 ) verifying ν(I(f0)) ⩾ pn+(p−1)e(∂).
We set f1 := f0 + I(f0). Then

f1 = f0 +O(tpn+(p−1)e(∂))
ν(∂p−1(f1) + fp1 − a

p) ⩾ p(pn+ (p− 1)e(∂)).

Proof. We have ∂(ap − ∂p−1(f0) − fp0 ) = 0 so according to Lemma 3.3.4, there exists I(f0) ∈
Fq((t)) such that ∂p−1(I(f0)) = ap − ∂p−1(f0)− fp0 . By applying Corollary 3.3.5 (i) recursively
we show that we can suppose that ν(I(f0)) ⩾ pn + (p − 1)e(∂). Thus f1 = f0 + I(f0) =
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f0 +O(tpn+(p−1)e(∂)).

Then

∂p−1(f1) + fp1 = fp0 + ∂p−1(f0) + ∂p−1(I(f0)) + I(f0)p

= fp0 + ∂p−1(f0) + ap − ∂p−1(f0)− fp0 + I(f0)p

= ap + I(f0)p.

Thus
∂p−1(f1) + fp1 = ap +O(tp(pn+(p−1)e(∂))).

Criteria over power series

For now we suppose that g ∈ Fq[[t]]\{0}; we want to solve in Fq[[t]] the equation

∂p−1(f) + fp = ap

with a ∈ Fq[[t]].

Corollary 3.3.7. — The equation

∂p−1(b) + bp = ap

over Fq[[t]] has a solution in Fq[[t]] if and only if there exists n > −e(∂) and f ∈ Fq[[t]] such
that

∂p−1(f) + fp = ap +O(tpn).

In this case there exists a solution f∗ ∈ Fq[[t]] equal to f at precision n:

f∗ − f = O(tn).

Proof. If the equation has a solution f then in particular for n = 1− e(∂) we have

∂p−1(f) + fp = ap +O(tpn).

Conversely if we have f ∈ Fq[[t]] such that

∂p−1(f) + fp = ap +O(tpn).

with n > −e(∂) then according to Proposition 3.3.6 we can recursively construct a sequence
(fk)k∈N ∈ Fq[[t]]N and a sequence (lk)k∈N of integers such that

f0 = f

l0 = n

fk+1 = fk +O(tlk)
lk+1 ⩾ p(plk + (p− 1)e(∂))

∂p−1(fk) + fpk = ap +O(tplk)

Furthermore, since n > −e(∂), pn + (p − 1)e(∂) > n and we can recursively show that the
sequence (lk) is increasing.
Thus the sequence (fk)k∈N converges to b ∈ Fq((t)) verifying

∂p−1(b) + bp = ap.
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Corollary 3.3.7 provides a criteria determining whether a p-Riccati equation has a solution
over Fq[[t]]. We now show that testing this criteria is just a matter of solving a Fp-linear system
of (1− e(∂)) equations over (1− e(∂)) variables.

Lemma 3.3.8. — Let ∂ be a nonzero derivation over Fq((t)) such that ∂p = 0 and let g = ∂(t).
Then for any f ∈ Fq((t)),

∂p−1(f) = dp−1

dtp−1 (gp−1f).

Proof. We consider two rings of differential operators Fq((t))〈∂1〉 := Fq((t))[∂1, Id, ∂] and Fq((t))〈∂2〉 :=
Fq((t))[∂2, Id, d

dt ]. We know that ι : ∂1 7→ g∂2 realises an isomorphism between Fq((t))〈∂1〉 and
Fq((t))〈∂2〉 of reverse morphism ∂2 7→ 1

g∂1.

We want to show that
ι(∂p−1

1 ) = (g∂2)p−1 = ∂p−1
2 gp−1.

We know that the leading coefficient of (g∂2)p−1 is gp−1. Furthermore we know that ∂p = 0
which is to say that ∂p1 is central in Fq((t))〈∂1〉. So ι(∂p1) = g∂2(g∂2)p−1 is also central. In
particular, since (g∂2)p is a multiple of ∂2 and therefore has a zero constant coefficient, it follows
that g∂2(g∂2)p−1, and therefore ∂2(g∂2)p−1, are multiples of ∂p2 . Since ∂2(g∂2)p−1 is of order p
and of leading coefficient gp−1 we have ∂2(g∂2)p−1 = gp−1∂p2 = ∂p2g

p−1. But since Fq((t))〈∂〉 is
integral this means that (g∂2)p−1 = ∂p−1

2 gp−1.

For any f1, f2 ∈ Fq[[t]], all k ∈ N and all i ∈ J0; p− 1K, if f1 = f2 +O(tkp) then

di

dti
f1 = di

dti
f2 +O(tkp).

It follows that if g := ∂(t) and a are formal power series in Fq[[t]] then the equation

∂p−1(f) + fp = ap

can be reduced modulo tkp for all k ∈ N and yields a Fp-linear system of logp(q)kp equations
in logp(q)kp variables. However, since for any f ∈ Fq((t)), ∂p−1(f) ∈ ker(∂) = Fq((tp)) we see
that the equations obtained by looking at the coefficients of tpl+i for l ∈ N and i ∈ J1; p− 1K is
always the trivial equation 0 = 0.

Thus
∂p−1(f) + fp = ap +O(tkp)

is really only a Fp-linear system of logp(q)k equations in logp(q)kp variables. The following
theorem is a refinement of Corollary 3.3.7 which incorporates this idea.

Theorem 3.3.9. — Let ∂ be a nonzero derivation over Fq[[t]] such that ∂p = 0 and a ∈ Fq[[t]].
The equation

∂p−1(b) + bp = ap

has a solution in Fq[[t]] if and only if there exists (f0, . . . , f−e(∂)) ∈ F1−e(∂)
q such that f :=∑−e(∂)

k=0 fkt
k verifies

∂p−1(f) + fp = ap +O(tp(1−e(∂))).
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In this case the (1− e(∂))-tuples verifying this condition are exactly tuples of the (1− e(∂))
first coefficients of a solution of

∂p−1(b) + bp = ap

Proof. If such (f0, . . . , f−e(∂)) exists then by Corollary 3.3.7 we know that a solution f∗ of

∂p−1(b) + bp = ap

such that f∗ =
∑−e(∂)
k=0 fkt

k +O(t1−e(∂)) exists in Fq[[t]]. Reciprocally let f verify

∂p−1(f) + fp = ap.

We know that ∂ is of the form g d
dt . In particular, f verifies

fp + dp−1

dtp−1 (gp−1f) = ap +O(tp(1−e(∂))).

We write f :=
∑∞
n=0 fnt

n, gp−1 :=
∑∞
n=0 gnt

n and a :=
∑∞
n=0 ant

n.

fp + dp−1

dtp−1 (gp−1f) =
∞∑
n=0

fpn − pn+p−1∑
k=0

gkfpn+p−1−k

 tpn
=

∞∑
n=0

apnt
pn

In particular, for any n ∈ N,

fpn −
pn+p−1∑
k=0

gkfpn+p−1−k = apn.

But we know that ν(gp−1) = (p− 1)(1− e(∂)) so for all j < (p− 1)(1− e(∂)), gj = 0. Thus
we have

fpn −
pn+p−1∑

k=(p−1)(1−e(∂))
gkfpn+p−1−k = apn.

If we suppose n ⩽ −e(∂) then k ⩾ (p− 1)(1− e(∂)) implies that pn+ p− 1− k ⩽ −e(∂).

This means that only the coefficients fi for i ⩽ −e(∂) appear in the equation

∂p−1(f) + fp ≡ ap mod (tp(1−e(∂))).

In particular if we set f∗ =
∑−e(∂)
k=0 fkt

k then

∂p−1(f∗) + fp∗ = ap +O(tp(1−e(∂))).

Once the 1 − e(∂) first coefficients of a solution (if it exists) are determined, then Proposi-
tion 3.3.6 provides an efficient algorithmic way to compute a solution at arbitrary precision.
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Criteria over Fq((t))

We now no longer require that g or a are formal power series and suppose that they are general
Laurent series in Fq((t)) instead.

Lemma 3.3.10. — If f ∈ Fq((t)) verifies

∂p−1(f) + fp = ap

then
ν(f) ⩾ min(−e(∂), ν(a)).

Furthermore there exists f∗ ∈ Fq((t)) verifying the same equation and

ν(f∗) ⩾ min(1− e(∂), ν(a)).

Proof. Let g ∈ Fq((t)) be such that ∂ = g d
dt . Then for any h :=

∑∞
n=ν(h) hnt

n ∈ Fq((t)),

∂(h) = g
∞∑

n=ν(h)
nhnt

n−1.

In particular ν(∂(h)) ⩾ ν(h) − 1 + ν(g) = ν(h) − e(∂). Furthermore, this is an equality if and
only if p does not divide ν(h).

It follows that ν(∂p−1(f)) ⩾ ν(f)− (p− 1)e(∂). Besides,

ν(ap) = pν(a) = ν(∂p−1(f) + fp) ⩾ min(ν(∂p−1(f), pν(f))

with the last inequality being an equality if ν(∂p−1(f)) 6= pν(f). In particular if ν(f) < −e(∂)
then

pν(f) < ν(f)− (p− 1)e(∂) ⩽ ν(∂p−1(f))

and we obtain ν(f) = ν(a). It follows that

ν(f) ⩾ min(−e(∂), ν(a)).

Let us now suppose that ν(a) > −e(∂) and that ν(f) = −e(∂). Let gν(g) be the coefficient
of tν(g) in g and f−e(∂) be the coefficient of t−e(∂) in f . Those are the first nonzero coefficients
of f and g respectively. According to Corollary 3.3.5 (ii) we know that p does not divide e(∂).
For any h ∈ Fq((t)) we know that if p does not divide ν(h) then ν(∂(h)) = ν(h) − e(∂). Thus
ν(∂p−1(f)) = ν(f)− (p− 1)e(∂) = −pe(∂) and its first non zero coefficient is −gp−1

ν(g)f−e(∂) while
ν(fp) = −pe(∂) and its first nonzero coefficient is fp−e(∂). Since ν(∂p−1(f)+fp) = ν(ap) > −pe(∂)
it follows that

fp−e(∂) − g
p−1
ν(g)f−e(∂) = 0

which is to say that
f−e(∂)
gν(g)

∈ F×
p .

Thus
f∗ = f −

f−e(∂)
gν(g)

g

t
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verifies ν(f∗) ⩾ 1− e(∂). We claim that it also verifies

∂p−1(f∗) + fp∗ = ap.

This is because
∂p−1

(
g

t

)
+
(
g

t

)p
= 0.

Indeed according to Lemma 3.3.4 we have

∂p−1
(
g

t

)
= dp−1

dtp−1

(
gp

t

)
= gp

dp−1

dtp−1

(1
t

)
= (−1)p−1(p− 1)!gp

tp
= −

(
g

t

)p
.

With this in mind we can prove the main theorem of this subsection. This theorem is an
analog of Theorem 3.3.9 for Laurent series.

Theorem 3.3.11. — Let ∂ be a nonzero derivation over Fq((t)) such that ∂p = 0 and a ∈ Fq((t)).
Set η := min(1− e(∂), ν(a)). The equation

∂p−1(b) + bp = ap

has a solution in Fq((t)) if and only if there exists (fη, fη+1, . . . , f−e(∂)) ∈ F1−(η+e(∂))
q such that

f :=
∑−e(∂)
k=η fkt

k verifies
∂p−1(f) + fp = ap +O(tp(1−e(∂))).

Proof. Let k ∈ Z be such that −pk ⩽ η.

Let us suppose that there exists (fη, . . . , f−e(∂)) such that f :=
∑−e(∂)
k=η fkt

k verifies

∂p−1(f) + fp = ap +O(tp(1−e(∂))).

Then

tkp
2(∂p−1(f) + fp) = (tkp∂)p−1(tkpf) + (tkpf)p

= tkp
2
ap +O(tp(1−e(∂)+pk))

= (tkpa)p +O(tp(1−e(∂)+pk))

Thus tkpf is a solution of

(tkp∂)p−1(b) + bp = (tkpa)p +O(tp(1−e(∂)+pk)).

Since e(tpk∂) = e(∂) − pk, ν(tpk∂(t)) = pk + 1 − e(∂) ⩾ 0 and ν(tpka) = pk + ν(a) ⩾ 0,
Corollary 3.3.7 then guarantees the existence of f∗ ∈ Fq[[t]] verifying

(tkp∂)p−1(f∗) + fp∗ = (tkpa)p.

Then t−pkf∗ is a solution of the equation

∂p−1(b) + bp = ap

of unknown variable b.
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Conversely, if f ∈ Fq((t)) verifies ∂p−1(f) + fp = ap then there exists f∗ ∈ Fq((t)) another
solution such that ν(f∗) ⩾ η. tpkf∗ is then a solution of the equation (tkp∂)p−1(b) + bp = (tkpa)p

of unknown variable b. Let f̃ :=
∑pk−e(∂)
k=0 f∗,kt

k such that tpkf∗ = f̃ + O(tpk+1−e(∂)). Since
e(∂)− pk = e(tpk∂), according to Theorem 3.3.9,

(tkp∂)p−1(f̃) + f̃p = (tkpa)p +O(tp(pk+1−e(∂)))

and thus
∂p−1(t−pkf̃) + (t−pkf̃)p = ap +O(tp(1−e(∂))).

Since f̃ = tpkf∗ + O(tpk+1−e(∂)), t−pkf̃ =
∑−e(∂)
i=−pk f∗,pk+it

i = f∗ + O(t1−e(∂)). In particular, for
i < η, f∗,pk+i = 0. Thus t−pkf̃ =

∑−e(∂)
i=η f∗,pk+it

i which concludes the proof.

Corollary 3.3.12. — Let ∂ be a nonzero derivation of Fq((t)) such that ∂p = 0 and a ∈ Fq((t)).
If ν(a) > −e(∂) then

∂p−1(b) + bp = ap

has a solution in Fq((t)).

Proof. If ν(a) > −e(∂) then ap = O(t1−e(∂)). It follows that ∂p−1(0) + 0p = ap + O(tp(1−e(∂)))
and according to the previous theorem,

∂p−1(b) + bp = ap

has a solution in Fq((t)).

Those results will actually enable us to build an algorithm for an efficient deterministic
irreducibility test on differential operators in section 3.3.3.

3.3.2 Computing a solution to p-Riccati in Fq((t))

Let q be a power of some prime number p. We present algorithms resulting from the work of
Section 3.3.1 to solve equations of the form(

g
d
dt

)p−1
(b) + bp = ap (3.3)

over Fq((t)) at arbitrary precision, where g, a are elements of Fq((t)) such that
(
g d

dt

)p
= 0. As

in section 3.3.1 we denote by ν the unique valuation on Fq((t)).

We recall from Theorem 3.3.11 that (3.3) has a solution in Fq((t)) if and only if there exists
(fν(a), fν(a)+1, . . . , fν(g)−1) ∈ Fν(g)−ν(a)

q such that f :=
∑ν(g)−1
k=ν(a) fkt

k verifies

(
g

d
dt

)p−1
(f) + fp = ap +O(tpν(g)).

We call such a (ν(g)−ν(a))-tuple of elements (fν(a), . . . , fν(g)−1) a seed of the p-Riccati equation
relative to g and a. The first question we need to tackle is how to compute a seed of the p-Riccati
equation.
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Definition 3.3.13. — Let h ∈ Fq((t)). We say that h is known at relative precision n ∈ N if
and only if we know (h0, . . . , hn−1) ∈ Fnq such that

h =
n−1∑
k=0

hkt
k+ν(g) +O(tn+ν(g)).

We say that (h0, . . . , hn−1) is the approximation of h at relative precision n.

Remark 3.3.14. — A seed of the p-Riccati equation relative to g and a is the approximation
at relative precision ν(g)− ν(a) of a solution.

We recall from Lemma 3.3.8 that for any f ∈ Fq((t)).(
g

d
dt

)p−1
(f) = dp−1

dtp−1 (gp−1f).

We suppose that (3.3) has a solution in Fq((t)) and that ν(a) < ν(g). Let (fν(a), . . . , fν(g)−1) be
a seed of the p-Riccati equation relative to g and a. We know that

(
g

d
dt

)p−1
 ν(g)∑
k=ν(a)

fkt
k

+
ν(g)∑

k=ν(a)
fpk t

pk = ap +O(tpν(g)).

As in the proof of Theorem 3.3.11 we show that for any n ∈ N:

(
tpng

d
dt

)p−1
 ν(g)∑
k=ν(a)

fkt
k+pn

+
ν(g)∑

k=ν(a)
fpk t

p(k+pn) = ap +O(tp(ν(g)+pn)).

which is to say that (fν(a), . . . , fν(g)−1) is also a seed of the p-Riccati equation with respect to tpng
and tpna. Thus we can suppose that (g, a) ∈ Fq[[t]]. Let us write gp−1 =

∑∞
n=(p−1)ν(g) gn−(p−1)ν(g)t

n.
For any h :=

∑∞
n=0 hnt

n we have

dp−1

dtp−1 (gp−1h) = −
∞∑
n=0

pn+p−1∑
k=0

gk−(p−1)ν(g)hpn+p−1−k

 tpn
= −

∞∑
n=0

 pn+p−1∑
k=(p−1)ν(g)

gk−(p−1)ν(g)hpn+p−1−k

 tpn (3.4)

Remark 3.3.15. — We consider that gk = 0 for k < 0.

Applying this to h =
∑ν(g)−1
k=ν(a) fkt

k ensures that for all i ∈ J1; ν(g) − ν(a)K the coefficient of

tp(ν(g)−i) in
(
g d

dt

)p−1
(h) is given by

−
p(ν(g)−i)+p−1∑
k=(p−1)ν(g)

gk−(p−1)ν(g)fp(ν(g)−i)+p−1−k = −
ν(g)−pi+p−1∑

k=0
gkfν(g)−pi+p−1−k

= −
ν(g)−ν(a)−1−p(i−1)∑

k=0
gkfν(g)−1−p(i−1)−k
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Remark 3.3.16. — The last line comes from the fact that ν(h) ⩾ ν(a). In particular if
ν(g)−1−p(i−1)−k < ν(a), which is to say that k ⩾ ν(g)−ν(a)−p(i−1), then fν(g)−1−p(i−1)−k =
0

We deduce the following result:

Proposition 3.3.17. — Let g ∈ Fq((t)) be such that
(
g d

dt

)p
= 0 and a ∈ Fq((t)) such

that ν(a) < ν(g). Let η = ν(g) − ν(a) and Dp−1
g ∈ Mη(Fq) be a matrix such that for any

(fν(a), . . . , fν(g)−1) ∈ Fηq ,

Dp−1
g


fν(a)

...
fν(g)−1


is the vector whose entries are the coefficients of tpν(a), . . . , tp(ν(g)−1) in

(
g d

dt

)p−1 (∑ν(g)−1
k=ν(a) fkt

k
)
.

Finally let (g0, . . . , gη−1) be the approximation at relative precision η of gp−1 and r be the
remainder in the Euclidean division of η − 1 by p. Then

Dp−1
g = −



0

gr · · · g0
... . . .

gη−1−p · · · g0 0 · · · 0
gη−1 · · · gp gp−1 · · · g0


Notation 3.3.18. We fix a Fp-basis B of Fq with q = pd. Let a ∈ Fq. We denote by M(a) ∈
Mn(Fp) the matrix in the basis B of the multiplication by a on Fq seen as a Fp-vector space.
The map a ∈ Fq 7→M(a) ∈Md(Fp) is a ring homomorphism which induces a morphism

M : Mk(Fq) → Mkd(Fp)
(ai,j)i,j 7→ (M(ai,j))i,j

.

Theorem 3.3.19. — Let g ∈ Fq((t)) be such that
(
g d

dt

)p
= 0 and a ∈ Fq((t)). Let η :=

ν(g)− ν(a) and q = pd. Algorithm 4 determines whether the p-Riccati equation relative to g and
a has a solution and computes a seed of it in

Õ

((
η

p
d log(p) + η + η2

p
+ dω−1

)
d log(p)

)

bit operations.

Proof. Let Φp ∈ Md(Fp) be the matrix of the Frobenius endomorphism on Fq. Let also
(a0, . . . , aη−1) and (g0, . . . , gη−1) be the respective approximations of a and gp−1 at relative
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Input: g, a ∈ Fq((t)) known at relative precision η := ν(g)− ν(a)
Output: (f0, . . . , fη−1) a seed of the p-Riccati equation relative to g and a if it exists.

1. Set (a0, . . . , aη−1) the approximation of a at relative precision η.

2. Set d := logp(q).

3. Compute (g0, . . . , gη−1) ∈ Fq((t)) an approximation of gp−1 at relative precision η.
Cost: Õ(ηd log2(p)) bit operations.

4. Compute A = Φp −M(g0), with Φp the matrix of the Frobenius endomorphism of Fq.
Cost: Õ((d log(p))2) bit operations.

5. Set l :=
⌈
η
p

⌉
6. For i from 0 to η − l do:

• Set fi := ai.

Cost: O(ηd log(p)) bit operations.

7. For i from η − l + 1 to η − 2 do:

• Set fi := ai +
(∑η−1−p(η−i−1)

k=0 gkfη−1−p(η−i−1)−k
)pd−1

Cost: Õ((η
2

p + η + η
pd log(p))d log(p)) bit operations.

8. Set Y = apη−1 +
∑η−1
k=1 gkfη−1−k.

Cost: Õ((η + log(p))d log(p)) bit operations.

9. If AX = Y has a solution fη−1:

• Return (f0, . . . , fη−1).

Else:

• The p-Riccati equation relative to g and a has no solution.

Cost: Õ(dω log(p)) bit operations.

Algorithm 4: p-Riccati_seed
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precision η. From Proposition 3.3.17 we know that (f0, . . . , fη−1) is a seed of the p-Riccati
equation relative to g and a if and only if

(M(Dp−1
g ) + diag(Φp))


f0
...

fη−1

 =


Φp(a0)

...
Φp(aη−1)

 .

Let l =
⌈
η
p

⌉
. From the form of Dp−1

g we know that M(Dp−1
g ) + diag(Φp) is a lower triangular

matrix. Furthermore for i ⩽ η− l+1, the only nonzero coefficient of the i-th row is the diagonal
coefficient which is Φp. Thus fi−1 = ai−1.
Then for i ∈ Jη − l + 2 : η − 1K, the diagonal coefficient of the i-th row is still Φp which proves
the correctness of step (7).
Finally the diagonal coefficient of the η-th row is Φp −M(g0) so we have (Φp −M(g0))fη−1 =
apη−1 +

∑η−1
k=1 gkfη−1−k as in step (8).

This proves the correctness of the algorithm.

To proves the cost of Algorithm 4 it suffices to bound the cost of each step of the algorithm.
Step (3) can be done by computing the (p − 1)-th power of the truncated power series of g in
Fq [t]/tη. By using a fast exponentiation method this can be done in O(log(p)) multiplications in
Fq [t]/tη. FFT algorithms can do multiplications in Fq [t]/tη in Õ(η) operations Fq. Again, FFT
algorithms allow to do computations in Fq in Õ(d) operations in Fp, or Õ(d log(p)) bit operations.

Next step (4) can be accomplished by computing the p-th powers of an Fp-basis of Fq.
Similarly to the previous point, each p-th power can be computed in Õ(d log2(p)) bit operations
and the cost follows from the fact that [Fq : Fp] = d. The cost of computing M(g0) is d
multiplication in Fq which is to say Õ(d2 log(p)) bit operations, which is also to cost of computing
the difference Φp −M(g0). The cost follows.

Step (6) is just a matter of reading η− l+ 1 elements of Fq which can be done in O((η− l+
1)d log(p)) = O(ηd log(p)) bit operations.

Step (7) consist in doing ∑l−1
k=0 r + kp = O(lr + l2p) = O(lp + l2p) multiplications in Fq

and computing l pd−1-power in Fq. Since l ∼ η
p the multiplications correspond to a cost of

Õ((η + η2

p )d log(p)) bit operations while the computation of the pd−1 powers has a cost of
O(ld log(p)) multiplications in Fq or Õ(ηpd

2 log2(p)) bit operations. Step (8) has the cost of O(η)
operations in Fq and computing one p-th power in Fq which yields the cost. Finally step (9) is
the cost of solving a linear system of d equations in d variables in Fp which can be done in dω

operations in Fp.

We now tackle the question of computing a solution of the p-Riccati equation at a chosen
precision. Let’s precise our goal. Given g ∈ Fq((t)) such that

(
g d

dt

)p
= 0, a ∈ Fq((t)) and

N ∈ N we want to compute f ∈ Fq((t)) such that
(
g

d
dt

)p−1
(f) + fp = ap +O(tpN ).

If N ⩾ ν(g) this also implies that there exists a solution f∗ of the p-Riccati equation relative to
g and a verifying f = f∗ +O(tpN+(p−1)(1−ν(g))).
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For this purpose we are going to use Proposition 3.3.6. This requires first to compute a seed
of the p-Riccati equation relative to g and a. This can be done using Algorithm 4. Then we
need for a given f ∈ Fq((t)) to compute F ∈ Fq((t)) such that

(
g d

dt

)p−1
(F ) = fp. This is the

content of the proposition below.

Notation 3.3.20. Let f ∈ Fq((t)). For m ∈ N We denote by dfem the truncated series such
that f = dfem +O(tm).

Input: N ∈ N, a ∈ Fq((t)) known at absolute precision N and g ∈ Fq((t)) known at
absolute precision pN + (p− 2)(1− ν(g)) + 1−min(ν(g), ν(a)).
Output: f ∈ Fq[t±1] such that

(
g d

dt

)p−1
(f) + fp = ap +O(tpN ).

1. Set η := min(ν(g), ν(a)).

2. Compute g∗ := dgp−1epN+(p−1)−η and h∗ = dg1−pepN+(p−1)(1−ν(g))−η.

3. Compute (fν(a), . . . , fν(g)−1) a seed of the p-Riccati equation relative to g and a.

4. Set f0 :=
∑ν(g)−1
k=ν(a) fkt

k.

5. Set N0 := ν(g).

6. While N0 < N do:

(a) If pN0 + (p− 1)(1− ν(g)) ⩽ N do:
• Set N1 := p(pN0 + (p− 1)(1− ν(g))).

Else
• Set N1 := pN .

(b) Set
• N2 := N1 − pN0 + (p− 1)(1− ν(g)).
• N3 := N1 + p− 1− η.
• N4 := N1 + (p− 1)(1− ν(g)).

(c) Set f1 :=
⌈

dp−1

dtp−1

(
dg∗eN3f0

)⌉N1 .

(d) Set f2 := dap − fp0 eN1 − f1.

(e) Set f3 :=
⌈
−tp−1dh∗eN2f2

⌉N4

(f) Set f0 := f0 + f3.
(g) Set N0 = N1/p.

7. return df0epN

Algorithm 5: p-Riccati_Fq((t))

Theorem 3.3.21. — Let g, a ∈ Fq((t)) such that
(
g d

dt

)p
= 0 and N ∈ N. Suppose q = pd.
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Then Algorithm 5 computes f ∈ Fq((t)) such that(
g

d
dt

)p−1
(f) + fp = ap +O(tpN ).

in asymptotically Õ(p(N−ν(g))d+C(g, a)) bit operations where C(g, a) is the cost of computing
a seed of the p-Riccati equation relative to g and a.

Proof. We know that at the end of step (2), f0 is such that
(
g d

dt

)p−1
+ fp0 = ap + O(tpν(g)).

We claim that at each iteration of the loop of step (6), if f0 at the start of the iteration is such
that

(
g d

dt

)p−1
+ fp0 = ap + O(tpN0), then at the end of the iteration we have

(
g d

dt

)p−1
+ fp0 =

ap+O(tN1) (or N if N1 ⩾ N). Furthermore, ν(f0) is constant from step (4) and greater or equal
to min(ν(a), ν(g)).

Indeed, suppose that at step (6a), ν(f0) ⩾ min(ν(a), ν(g)). Then at step (6b) we have

f1 = dp−1

dtp−1 ((gp−1 +O(tN1+p−1−ν(f0)))f0) +O(tN1)

= dp−1

dtp−1 (gp−1f0) +O(tN1)

And at step (6c),

f2 = ap − fp0 −
(
g

d
dt

)p−1
(f0) +O(tN1).

In particular since N0 ⩾ ν(g), N1 = p(pN0 + (p − 1)(1 − ν(g))) > pN0. Thus ν(f2) ⩾ pN0.
Finally at step (6d), we have

f3 = −tp−1
(
g1−p +O(t(p−1)(pN0+(p+1)(1−ν(g))−1))

)
(f2) +O(tN1+(p−1)(1−ν(g)))

= −tp−1g1−p(ap − fp0 −
(
g

d
dt

)p−1
(f0)) +O(tn∗) +O(tN1+(p−1)(1−ν(g)))

where

n∗ := min
(
N1−pN0, (p−1)(pN0 +(p+1)(1−ν(g))−1)+(p−1)ν(g)

)
+pN0 +(p−1)(1−ν(g)).

But
N1 − pN0 − (p− 1)(pN0 + (p+ 1)(1− ν(g))− 1)− (p− 1)ν(g))

= N1 − p2N0 − (p− 1)p(1− ν(g))
= N1 −N1 = 0

Thus we have

n∗ = N1 − pN0 + pN0 + (p− 1)(1− ν(g))
= N1 + (p− 1)(1− ν(g))

It follows that

f3 = −tp−1g1−p(ap − fp0 −
(
g

d
dt

)p−1
(f0)) +O(tN1+(p−1)(1−ν(g)))

Then according to Lemma 3.3.8 we have that(
g

d
dt

)p−1
(f3) = ap − fp0 −

(
g

d
dt

)p−1
(f0) +O(tN1)
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and ν(f3) ⩾ pN0 + (p− 1)(1− ν(g)).

At the end of step (6e), f0 is updated to a function f0∗ := f0 + f3. We have

ap − fp0∗ −
(
g d

dt

)p−1
(f0∗)

= ap − fp0 − f
p
3 −

(
g d

dt

)p−1
(f0)−

(
g d

dt

)p−1
(f3)

= ap − fp0 −
(
g d

dt

)p−1
(f0)− ap − fp0 −

(
g d

dt

)p−1
(f0) +O(tN1) + fp3 = O(tN1)

This proves the correctness of Algorithm 5.

To bound the complexity of the algorithm it is enough to show that step (6) can be done
in ˜p(N − ν(g)d bit operations. Each iteration of the loop consists in O(1) operations (multipli-
cations and additions) of power series at precision O(p(N − ν(g))). Thus each iteration of the
loop can be done in Õ(p(N − ν(g))) operations in Fq, that is Õ(p(N − ν(g))) bit operations.

Let n0 = ν(g) and nk+1 = pnk + (p− 1)(1− ν(g)). We have

nk = pkn0 + (p− 1)(1− ν(g))
k−1∑
i=0

pi = pkn0 + pk − 1
p− 1

(1− ν(g))

In particular nk ⩾ N if and only if k ⩾ logp(N − ν(g) + 1). Thus the number of iteration of
the loop at step (6) is O(logp(N − ν(g))) which gives the result.

3.3.3 Application: an irreducibility test on K〈∂〉

Before moving on to solving the p-Riccati equation over a global field, we describe here an
irreducibility test for N(∂p) ∈ C[∂p], where N is an irreducible polynomial over C. The core
objects of this test are the completions of KN over their different places (see Notation 3.2.11).

Any field F equipped with a valuation ν : F → Z∪ {∞} (that is to say that ν verify (i), (ii)
and (iii) of Definition B.1.11) is a metric space for the distance dν(x, y) := 2−ν(x−y) in which
the addition, the multiplication and the division are continuous. We say that (F, ν) is a valued
field.

Definition 3.3.22. — Let (F, ν) be a valued field. For a valued field (F̃, ν̃) we say that

• (F̃, ν̃) is a valued field extension of (F, ν) if F̃ is a field extension of F and ν̃|F = ν.

• That (F̃, ν̃) is the completion of (F, ν) if it is a valued field extension of (F, ν), complete
for dν̃ such that F is dense in F̃ .

Any valued field admits a unique (up to a unique isomorphism of valued field) comple-
tion [Sti08, Proposition 4.2.3].

Notation 3.3.23. Let N be an irreducible polynomial over C. For any place P of KN we
denote by KN,P the completion of (KN , νP).
For any place of P of CN , we denote by CN,P the completion of (CN , νP).
For any algebraic function field F we denote by PF the set of places of F as defined in Defini-
tion B.1.10. For more details on places in algebraic function fields, we refer to the Appendix B.
Throughout this section, for any place P ∈ PKN

, we denote h′ := d
dx(h) for any h ∈ KN,P, and

KN,P〈∂〉 := KN,P[∂, Id, d
dx ].
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Proposition 3.3.24. — Let P be a place of KN , GP be the residue class field of KN in P and
tP be a prime element of P. Then

KN,P = GP((tP))

where GP((tP)) is equipped with the usual valuation of Laurent series fields.

Proof. Let k̃ be the subfield of elements of KN that are algebraic over Fp. If [GP : k̃] = 1 then
the result is just [Sti08, Theorem 4.2.6].
If [GP : k̃] > 1 then we consider the constant field extension F := KNGP/GP of KN/Fp. Let P′

be a place of F above P. P′ is unramified ([Sti08, Theorem 3.6.3(a)]), so tP is a prime element
of P′. Furthermore GP is the residue class field of F in P′ ([Sti08, Theorem 3.6.3(g)]). Thus
from what precedes, the completion of F in P′ is precisely GP((tP)). Thus we have a continuous
(for νP) injection

KN → F → GP((tP)).

Let a0 ∈ GP. There exists a′
0 ∈ OP such that a′

0(P) = a0. Thus a0 − a′
0 ∈ tPGP[[tP]]. Let a1 be

the constant coefficient in GP of a0−a′
0

t .
By induction we construct a sequence (a′

n)n∈N ∈ KN
N such that

ν

(
a0 −

n∑
k=0

akt
k
P

)
> n.

Thus a0 ∈ KN the (topological) closure of KN in GP((tP)). Since KN contains GP and all
powers of tP, it is equal to GP((tP)) which is thus the completion of KN .

From this we see that d
dx has a unique prolongation to KN,P for any P ∈ PKN

. Indeed
from Proposition B.2.8 we know that d

dx is a continuous map on KN for any place P ∈ PKN

thus it can be extended to a continuous map over KN,P which we easily verify is a derivation.
Furthermore from Lemma 3.3.2 we see that if a derivation prolongs d

dx it is of the form g d
dtP

with g = d
dx(tP) thus it is unique.

It follows that we have an injection

KN 〈∂〉 → KN,P〈∂〉

for all P ∈ PKN
. Furthermore f 7→ fp is an isomorphism between KN and CN so and induces

a one-to-one correspondence κ : PKN
→ PCN

. Then f 7→ fp is also an isomorphism between
KN,P and CN,κ(P) for any P ∈ PKN

. In particular KN,P = CN,κ(P)[tP] and is of dimension p

over CN,κ(P) which is the field of constants of KN,P for d
dx .

Proposition 3.3.25. — Let P ∈ CN [Y ] and P ∈ PKN
.

KN 〈∂〉/P (∂p)⊗CN
CN,κ(P) ' KN,P〈∂〉/P (∂p).

Proof. From the above discussion we know that we have two natural injections ι1 : KN 〈∂〉/P (∂p)→
KN,P〈∂〉/P (∂p) equal over CN and ι2 : CN,κ(P) → KN,P. Furthermore since CN,κ(P) is the subfield
of constants in KN,P we see that ι1(h)ι2(c) = ι2(c)ι1(h) for any h and c in the domains of ι1
and ι2 respectively.
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Let B be a CN -algebra and ϕ1 : KN 〈∂〉/P (∂p) → B and ϕ2 : CN,κ(P) → B be CN -algebras
homomorphism such that ϕ1(h)ϕ2(c) = ϕ2(c)ϕ1(h) for any h and c in the domains of ι1 and ι2
respectively. Let us show that there exists a unique CN -algebra homomorphism

ϕ : KN,P〈∂〉/P (∂p)→ B

such that ϕ ◦ ιi = ϕi for i ∈ {1, 2}.

We know that KN,P = CN,κ(P)[tP] so such a morphism is uniquely determined over KN,P

and exists if and only if ϕ1(tP)p = ϕ2(tpP), which turns out to be true because ϕ1 and ϕ2 are
morphisms of CN -algebras. Then we know that there exists a unique morphism ϕ : KN,P〈∂〉 → B

extending ϕ on KN,P and sending ∂ to ϕ1(∂). We only have to verify that

ϕ1(∂)ϕ(f) = ϕ(f)ϕ1(∂) + ϕ( d
dt
f)

for all f ∈ KN,P, but this is easy since it is true on CN,κ(P) and for (tP)i ∈ KN .
Since ϕ(P (∂p)) = 0 we get the desired morphism by factoring.

Thus KN,P〈∂〉/P (∂p) verifies the universal property of the tensor product and we get the desired
result.

The basis for our irreducibility test is the following proposition

Proposition 3.3.26. — Let N be an irreducible polynomial over C. N(∂p) is reducible in
K〈∂〉 if and only if the p-Riccati equation

f (p−1) + fp = yN

has a solution in KN,P for all P ∈ PKN
.

Proof. We know that N(∂p) is reducible in K〈∂〉 if and only if DN(∂p) ' KN 〈∂〉/(∂p−yN ) is isomor-
phic to Mp(CN ). That is to say that KN 〈∂〉/(∂p−yN ) is equal to zero in the Brauer group of CN ,
Br(CN ). We know that D 7→⊕

P∈PCN
D⊗CN

CN,P induces an injective group morphism [GS06,
Corollary 6.5.4]

Br(CN ) ↪→
⊕

P∈PCN

Br(CN,P).

In particular this means that KN 〈∂〉/(∂p−yN ) is isomorphic to Mp(CN ) if and only if

KN 〈∂〉/(∂p−yN )⊗CN
CN,P

is isomorphic to Mp(CN,P) for all P ∈ PCN
.

Besides we know that KN 〈∂〉/(∂p−yN ) ⊗CN
CN,P is isomorphic to KN,κ−1(P)〈∂〉/(∂p−yN ). Thus

KN 〈∂〉/(∂p−yN ) is isomorphic to Mp(CN ) if and only if KN,P〈∂〉/(∂p−yN ) is isomorphic to Mp(CN,κ(P)
for all P ∈ PKN

.

Lastly KN,P is of the form Fq((tP)) for q some power of p. In particular it is a field verifying
Hypothesis 2.1.37. Thus KN,P〈∂〉/(∂p−yN ) is isomorphic to Mp(CN,P) if and only if the equation

f (p−1) + fp = yN

has a solution in KN,P (see Lemma 3.2.6).
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If P ∈ PKN
is a place in KN , it follows from from Corollary 3.3.12 that if νP(yN ) ⩾ νP(t′P)

then
f (p−1) + fp = yN

always has a solution in KN,P. But if P is not a place over P∞, we know from Proposition B.2.8
that νP(t′P) ⩽ 0. In particular, if P is not a pole of yN then the equation has a solution in
KN,P. Thus the set of places P of KN such that νP(yN ) < pνP(t′P) is a finite set included in
places at infinity and poles of yN .

Theorem 3.3.27. — Let N ∈ C[Y ] be a separable irreducible polynomial. Let

S := {P ∈ PKN
|νP(yN ) < pνP(t′P)}.

Then N(∂p) is irreducible if and only if there exists P ∈ S such that the Fp-linear system

dp−1

dxp−1

νP(t′P)−1∑
k=ηP

fkt
k

+
νP(t′P)−1∑
k=ηP

fpk t
pk = yN +O(t

pνP(t′P)
P )

has no solution in G
νP(t′P)−ηP
P where

ηP := min(νP(yN ), νP(t′P)).

Proof. This is a direct consequence of the above discussion and Theorem 3.3.11.

We can now write an algorithm for testing the irreducibility of an operator N(∂p) where N is
an irreducible polynomial over C. From Lemma 3.2.12 we know that we can take Q ∈ K[Y ] such
that Qp(Y ) = N(Y p) and KN ' K[Y ]/Q. If we denote by a the image of Y in KN then yN = ap.
This representation is easier to manipulate (because smaller by a factor p in all generality) so
we consider that the entry of our algorithm is the polynomial Q. Thus the goal of the algorithm
can be stated as such: Given a separable irreducible polynomial N ∈ K[Y ], is Np(∂) irreducible
in K〈∂〉?

Evaluating the complexity of Algorithm 6

The correctness of Algorithm 6 is easily deduced from the discussion that precedes. Evaluating its
complexity is difficult without specifying the algorithm used to choose primes elements because
the sole property of being a prime element does not bound the size of said element.

Example 3.3.28. — In the rational function field Fq(x), x is a prime element of the place 0,
as are the elements x(x+ 1)n for n ∈ N.

We leave aside this question for the time being and will circle back to it later. To simplify
the complexity evaluation of this algorithm, we assume that K = Fq(x) with q = pb and that
N ∈ Fq[x, y] with dx = degxN and dy = degyN . It follows that KN is a field extension
of Fq(x) of degree dy. As such, any f ∈ KN can be represented by d rational functions in
Fq(x). For any element f = 1

Df

∑dy−1
i=0 fia

i ∈ KN such that Df , f0, . . . , fdy−1 ∈ Fq[x] with
gcd(Df , f0, . . . , fdy−1) = 1 we write

deg f := max(degDf , deg f0, . . . , deg fdy−1).
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Input: N∗ ∈ K[Y ] a separable irreducible polynomial.
Output: Whether or not Np

∗ (∂) in irreducible in K〈∂〉

1. Set KN := K[a] = K[Y ]/N∗ where a is a root of N∗.

2. Compute S := Supp(a)− ∪ Supp(x)−.

3. For P in S do:

(a) Compute tP a prime element of P.
(b) Compute t′P and set η := νP(t′P)− νP(a).
(c) If η > 0 do:

i. Compute gP, the Taylor expansion of t′P in tP at relative precision η.
ii. Compute aP the Taylor expansion of a in tP at relative precision η.
iii. Check if a seed of the p-Riccati equation relative to gP and aP exists using

Algorithm 4.
iv. If it doesn’t, return False and stop the algorithm.

4. return True

Algorithm 6: irreducibility_test

The concept of Algorithm 6 is to transform a global problem (meaning a problem on a global
field) to several local problems that can be solved using “small” precisions. As such the cost of
this irreducibility test can be divided in two distinct categories:

• Doing the conversion from global to local. Those are step (1) to step (3)(c)(ii).

• Solving the local problems. Those are steps (3)(c)(iii) and (3)(c)(iv).

This separation is particularly relevant since, while the size of the local prime elements tP
influences the cost of computing t′P and the cost of computing the Taylor expansions, once those
step are done it does not influence the complexities of solving the local problems.

Theorem 3.3.29. — When applying Algorithm 6 to N , solving the local problems can be done
in Õ(bω(dx + dy)ω log2(p)) bit operations.

Proof. First, let P ∈ Supp(a)−\ Supp(x)− and let ηP = νP(t′P) − νP(a). We can suppose that
ηP > 0. Since P /∈ Supp(x)−, νP(t′P) ⩽ 0. Thus ηP ⩽ νP(a). Theorem 3.3.19 states that step
(3)(c)(iii) relative to P can be done in

Õ

((
ηP
p
bdeg(P) log(p) + ηP +

η2
P

p
+ (bdeg(P))ω−1

)
bdeg(P) log2(p)

)

bit operations or, less precisely, in Õ((ηPbdeg(P))ω log(p)) bit operations. It follows that step
(3)(c)(iii) over all the places of Supp(a)−\ Supp(x)− can be done in

Õ

 ∑
P∈Supp(a)−

(−bνP(a) deg(P))ω log2(p)

 ⊂ Õ(bω deg (a)ω−) log2(p))
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bit operations. According to Proposition B.3.7, deg (a)− = [KN : Fq(a)] ⩽ dx. Thus step
(3)(c)(iii) over all the places of Supp(a)−\ Supp(x)− can be done in Õ((bdx)ω log2(p)) bit oper-
ations.

We do the same reasoning for the places P ∈ Supp(x)−. We find that ηP = νP(t′P)−νP(a) ⩽
e(P|P∞)− νP(a) and that step (3)(c)(iii) can be done in

Õ((b(deg (x)− + deg (a)−))ω log2(p))

bit operations, or
Õ(bω(dy + dx)ω log2(p))

bit operations, according to Proposition B.3.7. The result immediately follows.

Evaluating the complexity of the first part of the algorithm is a harder task. We begin by
the cost of computing the Taylor expansions. Let P ∈ PKN

and tP ∈ KN be a prime element of
P. We set dt := deg tP as defined earlier.

Lemma 3.3.30. — Let f, g ∈ KN of respective degrees df and dg. Then

• deg fg ⩽ df + dg +O(dxdy).

• deg f−1 = O((df + dx)dy).

• If f = F (x, a) with F ∈ Fq[x, Y ], then deg f ′ ⩽ df +O(dxdy).

Proof. • Let f = F (x, a) and g = G(x, a) with F,G ∈ Fq(x)[Y ]. We have degx(FG) = df+dg
and degY (FG) ⩽ 2(dy − 1). Then fg can be represented by R(x, a) where R is the
remainder of the Euclidean division of FG by N . It is easy to see that each step of the
naive Euclidean division algorithm only makes the degree in x grow by dx. Since there are
at most dy − 1 steps we have

deg fg ⩽ df + dg + dxdy.

• Let f = F (x, a) with F ∈ Fq(x)[Y ]. Then the coefficients of f−1 can be expressed as
minors of the Sylvester matrix of F and N . The minors of the Sylvester matrix have a
degree in x which is O((df + dx)dy).

• Let f = F (x, a) with F ∈ Fq[x, Y ]. Then

f ′ = ∂xF (x, a) + a′∂yF (x, a).

But we also have
a′ = −∂xN(x, a)

∂yN(x, a)
.

From the previous points we see that deg a′ = O(dxdy). But then

deg(f ′) ⩽ df +O(dxdy).
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Input: f ∈ KN , P ∈ PKN
, tP a prime element of P, N ∈ N

Output: The list of coefficients of the Taylor expansion of f in tP at relative precision N

1. If νP(f) < 0, set f∗ = t
−νP(f)
P f .

2. Else set f∗ = f .

3. Set L = [ ] an empty list.

4. For k from 1 to N do:

(a) Compute v := f∗(P).
(b) Set f∗ ← (f∗ − v)t−1

P .
(c) Append v to L.

5. return L.

Algorithm 7: Naive_Taylor_expansion

We can now evaluate the cost of computing the Taylor expansions in steps (3)(c)(i) and
(3)(c)(ii) in terms of bit operations and evaluations in KN . We use a naive algorithm

Remark 3.3.31. — If P is not of degree 1, this algorithm requires to compute the constant
field extension KN · GP of KN , where GP is the residue class field of KN in P.

Lemma 3.3.32. — Let f ∈ KN be of degree df . Algorithm 7 computes the Taylor expansion of
f at order N in N evaluations of functions of degree O(df + N(dt + dx)dy) and Õ(Ndy(df +
N(dt + dx)dy)) operations in KN,P.

Proof. The result comes from the fact that if f∗ is of degree df∗ then at step (4)(b), f∗ is updated
to a function of degree df∗ + O((dt + dx)dy). Since step (4) is repeated N times we see that
Algorithm 7 manipulates functions of degree O(df + N(dt + dx)dy). Now the algorithm does
N multiplications of those functions. Each of these can be realised in Õ(dy(df +N(dt + dx)dy)
operations in KN,P which yields the desired result.

The final cost of steps (3)(c)(i) and (3)(c)(ii) thus depends on the “size” of the prime ele-
ments tP.

Computing local uniformisers In 2011, Jordi Guardia, Jesús Montes and Enric Nart pre-
sented in [GMN11] an algorithm designed for number fields called Montes algorithm. This
algorithm takes in input a monic irreducible polynomial f(x) ∈ Z[x] which defines a number
field K = Q[θ], where θ is a root of f , and a prime number p ∈ Z.
The algorithm returns a full factorisation pe1

1 . . . p
eg
g of the ideal pZK as a product of prime ideals

of ZK , where ZK is the subring of elements of K which are integral over Z, as well as generators
α1, . . . , αg verifying pi = pZK + αiZK .

The settings of number fields and algebraic function fields are actually very similar and
Montes algorithm can be easily adapted to this last one. The analogous algorithm would take
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in input a monic irreducible polynomial f(x, y) ∈ Fq[x][y] generating an algebraic function field
of positive characteristic F ' Fq(x)[y]/f(x,y), and an irreducible polynomial P ∈ Fq[x].
It would return the divisor (P ) = e(P1|P ) ·P1 + . . . + e(Pg|P ) ·Pg as well as prime elements
tPi for all the places in Supp(P ).

Montes algorithm is the basis of a lot of algorithms to work in number fields or algebraic
function fields. Among other things, in [BNS13], a version of Montes algorithm where the gen-
erators αi are not computed is used as a key element to compute OM-representations (see for
example [Nar11]), of the ideals dividing p, from which the generators can be obtained as a
byproduct.
In [PW22, section 6], Adrien Poteaux and Martin Weimann stated that for a number field
K = Q[x]/(F ), where F is a monic integral polynomial, and a prime p ∈ Z, an OM-representation
of the prime ideals dividing p can be computed in Õε(degy(f)δ) operations in Fp, where δ is the
valuation of Disc(F ) in p, if p > degy(f) or Oε(degy(f)δ + δ2) operations in Fp otherwise.
The analogous result for algebraic functions fields is that for an algebraic function field F =
Fq(x)[y]/f(x,y), where f is a monic integral polynomial, and an irreducible polynomial P ∈ Fq[x],
an OM-factorisation of the prime ideals dividing P can be computed in Oε(deg(P ) degy(f)δ)
operations in Fq if char(Fq) > degy(f), and Oε(deg(P )(degy(f)δ + δ2)) operations in Fq other-
wise, where δ is the valuation of Disc(F ) in P .

In a personal communication, Martin Weimann explained to us, as a consequence of [GMN11,
Proposition 4.28] and of results of a paper in preparation [PWed], that a prime element tP of
a place P ∈ Supp(P ) can be computed with deg tP = O(deg(P ) δ

degy(f)) at the cost of an OM-
factorisation and O(deg(P )δ) operations in Fq.

Lemma 3.3.33. — Steps (3)(c)(i) and (3)(c)(ii) of Algorithm 6 can be done in O(dx + dy)
evaluations of algebraic functions in KN of degree O(d2

xdy + dxd
2
y) and Õ((d3

xd
2
y + d2

xd
3
y)b log(p))

bit operations.

Proof. To apply the results previously mentioned we must first bring ourselves back to the case
where KN is generated by an integral element over Fq[x]. Let us denote lc the leading coefficient
of N . If a is not integral then lca is integral, of minimal polynomial over Fq[x]

Nint = ldy−1
c N(Y/lc).

Furthermore we have
Disc(Nint) = ldy−1

c Disc(N).

Let P ∈ Supp(a)−\ Supp(x)−. Applying Lemma 3.3.32 to f = t′P and dt = O(deg(P )δ/dy)
yields that the Taylor expansion of t′P and a in tP at precision −νP(a) can be computed in
−νP(a) evaluation of algebraic functions in KN of degree O(−νP(a)(deg(P )δ + dxdy)) where
P|P and δ is the valuation of Disc(Nint) in P , and Õ(−dyνP(a)2(deg(P )δ + dxdy)) operations
in KN,P.
We know that deg(P )δ ⩽ deg Disc(Nint) = O(dxdy).

Remark 3.3.34. — We could also have δ = 0 in which case deg tP would still verify deg tP =
O(deg(P )). But since P is a pole of a this means that P is a zero of lc. In particular this means
that deg(P ) ⩽ dx.
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Furthermore since −νP(a) ⩽ dx we find that the Taylor expansion of t′P and a in tP at pre-
cision −νP(a) can be computed in −νP(a) evaluations of functions in KN of functions of degree
O(d2

xdy) and Õ(−νP(a)2dxd
2
y) operations in KN,P, which is to say Õ(−νP(a)2 deg(P)dxd2

yb log(p)
bit operations. We make the summation of those for P ∈ Supp(a)− and get that steps (3)(c)(i)
and (3)(c)(ii) can be for all those places can be done in O(dx) evaluations of functions in KN

of degree O(d2
xdy) and Õ(d3

xd
2
yb log(p)) bit operations.

The symmetrical reasoning for places in Supp(x)− (we just exchange the roles of dx and dy)
yields the final result.

Remark 3.3.35. — We have skipped places in Supp(a)− ∩ Supp(x)−. The reasoning is the
same but one has to replace −νP(a) by e(P)− νP(a). Then we have∑
P∈Supp(a)∩ Supp(x)−

(e(P)− νP(a)) deg(P) ⩽
∑

P∈Supp(x)−

e(P) deg(P)−
∑

P∈Supp(a)−

νP(a) deg(P)

⩽ dy + dx

and this doesn’t modify the final result.

Now we can give an upper bound on the cost of doing the conversion from global to local in
Algorithm 6.

Theorem 3.3.36. — Steps (1) to (3)(c)(ii) in Algorithm 6 can be done at the cost of computing
(a)− and (x)− as well as Oε(dxdyb log(p)) bit operations from computing OM-representations
and prime elements, O(dx + dy) evaluation of functions in KN of degree O(d2

xdy + dxd
2
y) and

Õ((d3
xd

2
y + d2

xd
3
y)b log(p)) bit operations.

Remark 3.3.37. — In particular, testing the irreducibility of N(∂p) with N an irreducible
polynomial C[Y ] can be done in polynomial time in log(p)

3.4 A factorisation algorithm on algebraic function fields

The goal of this section is to write a complete factorisation algorithm over K〈∂〉. Our work in
Section 3.2.3 teaches us that we first need to solve (3.2). We begin this section by presenting
a method to solve the p-Riccati equation. To this end we use algebraic geometry tools such as
Riemann-Roch spaces and the Picard group of KN .
Solving the p-Riccati equation is somewhat easy to do when K = Fq(x), where q is a power of
p, and χmin(L)(Y ) = Y −a with a ∈ K. In [vdPS03, §13.2.1], van der Put and Singer presented
a method to find a solution when it exists. We recall briefly their method as it will serve as a
guideline for the techniques we shall develop afterwards in the general case.

We suppose that K = Fq(x). In this case the p-Riccati equation can be written as

b(p−1) + bp = gp
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with g ∈ Fq(x). We write g = P1
P2

with P1, P2 ∈ Fq[x] coprime. Let P2 =
∏
i∈I N

νi
i where the Ni

are pairwise distinct irreducible polynomials and let f ∈ Fp(x) verify

f (p−1) + fp = gp.

For all irreducible polynomial P we find:

νP (gp) = pνP (g)

= νP (f (p−1) + fp)

⩾ min(νP (f (p−1)), pνP (f))
⩾ min(νP (f)− (p− 1), pνP (f)).

Furthermore we have an equality if νP (f (p−1)) 6= pνP (f). In particular we find νP (g) = νP (f) if
νP (f) ⩽ −2. This implies that if f has a pole that is not a pole of g, then it is a simple pole.
Let us suppose that P is a pole of f which is not a pole of g. We write f = f1 + f2 with f2 = Q

P ,
νP (f1) ⩾ 0 and deg(Q) < deg(P ). The fact that we are able to do such a decomposition is a
consequence of partial fraction decomposition. Since νP (gp) ⩾ 0 and νP (f (p−1)

1 + fp1 ) ⩾ 0 it
follows that νP (f (p−1)

2 +fp2 ) ⩾ 0. Moreover, since ν∞(f2) > 0, we also have ν∞(f (p−1)
2 +fp2 ) > 0.

Since f (p−1)
2 + fp2 has no poles outside of P , this means that f (p−1)

2 + fp2 has no poles but has at
least one zero (at ∞). Thus f (p−1)

2 + fp2 = 0.
Thus f1 is also a solution of the p-Riccati equation with no pole in P and no poles outside of
those of f .

We deduce that there is a solution f∗ of the p-Riccati equation whose denominator divides
P2. We write f∗ = R

P2
. Then

f
(p−1)
∗ + fp∗ = (RP p−1

2 )(p−1) +Rp

P p2
= P p1
P p2

.

Thus
p deg(P1) ⩽ max(pdeg(R),deg(R) + (p− 1)(deg(P2)− 1))

and equality holds if p deg(R) 6= deg(R) + (p− 1)(deg(P2)− 1). Thus

deg(R) ⩽ max(deg(P1),deg(P2)− 1).

Finding R is now just a matter of solving a finite dimensional Fp-linear system since R 7→
(RP p−1

2 )(p−1) +Rp is an Fp-linear map.
An important part of our work on the structure of factorisations of L (and N(∂p)) is made
under the assumption that DN(∂p) is isomorphic to a matrix algebra. A consequence of the
above discussion is the following:

The idea for solving the p-Riccati equation in all generality over algebraic function fields is
the same as the one developed above for rational functions, that is to say to look at the poles of
a solution and show that another solution has “few” poles outside those of yN . The situation is
more complicated than in the rational case because we do not have an equivalent to the partial
fraction decomposition. In other words, in the rational case we remove unwanted poles P of a
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solution by adding a multiple of P ′

P to our solution. This method works because it is always
possible to create rational functions of chosen numerators and denominators. That is to say,
that it is always possible to choose exactly the zeros and poles of a rational function.
Such a thing is not true for algebraic functions and we will have to measure “how far” a certain
combination of zeros and poles is from being represented by an algebraic function. The object
measuring this obstruction is called the Picard group of KN and is a finite commutative group.
This analysis will allow us to restrain our search for solutions to a finite dimensional Fp-vector
space of algebraic functions in KN whose poles can only appear in a finite number of places
and are of bounded multiplicity. Such spaces are called Riemann-Roch spaces and are a clas-
sical tool in algebraic geometry. A number of algorithms to compute them have been devel-
oped [ABCL22, ACL22, LGS20, BCL22].

3.4.1 p-Riccati equation over algebraic function fields and Picard group

We now present our theorical results from which we will deduce an algorithm to solve the p-
Riccati equation. As we will see, a fully deterministic approach to solving this equation would
require one to compute the cokernel of the multiplication by p on the Picard group of KN with
relations which is a notoriously difficult task. Although algorithms polynomial in the genus of
KN and in the characteristic exist for computing l-torsion subgroups as well as the cokernel of
the multiplication by l (see for example [EC11, Theorem 13.6.2]), they only work for primes l
coprime with the characteristic. To our knowledge there is no algorithm computing the cokernel
of the multiplication by p on the Picard group of KN in polynomial time in the genus of KN

and in p.
This is why the actual algorithm will take a more probabilistic approach which cannot on

its own guarantee the irreducibility of N(∂p) if no solution is found, and combine it with the
irreducibility test presented in the previous section.
The methods presented in this section will work to find irreducible divisors of operators with
coefficients in any algebraic function field K. However, for the sake of simplicity, we will limit
our complexity analysis to K = Fq(x) where q is a power of p.

As previously mentioned, the idea behind this method is the same as for the method over
Fq(t) which is to say that we study the poles of a given solution. Before we begin let us fix some
notation.

Notation 3.4.1. We continue to use Notation 3.2.11. We also recall that if N ∈ C[Y ] is a
separable irreducible polynomial then we denote by SN := {f ∈ KN |f (p−1) + fp = yN}.
We also use the notations of Appendix B to which we refer for more details on the objects used
in this section. From now on we will often denote places of KN by P. The valuation associated
with P will be denoted νP and tP will always be a prime element of the place P, which is to
say that νP(tP) = 1. If f ∈ KN verifies νP(f) ⩾ 0 we will denote by f(P) the image of f in the
residue field of P.
As we did earlier, the set of places over an algebraic function field F will be denoted PF . The
group of divisors of F will be denoted by Div(F ) and its divisor class group (or Picard group)
by Cl(F ). For f ∈ KN we denote by (f) its principal divisor, (f)+ its zero divisor and (f)− the
divisor of its poles. We will designate by Diff(KN ) the different divisor of KN .
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Finally, if D ∈ Div(F ) we will denote by L(D) the associated Riemann-Roch space.

We begin by proving some results, analog to Lemma 3.3.10 for algebraic functions.

Proposition 3.4.2. — Let N ∈ C[Y ] be a separable irreducible polynomial. Let P be a place
of KN , tP be a prime element of P and f ∈ SN . Then

νP(f) ⩾ min(p−1νP(yN ), νP(t′P)− 1).

Proof. Let f ∈ KN be a solution of the p-Riccati equation over KN (3.2). Then we have

νP(yN ) = νP(f (p−1) + fp)

⩾ min(νP(f (p−1), pνP(f))

Furthermore we have an equality if νP(f (p−1)) 6= pνP(f).
In particular if νP(f) < νP(t′P)− 1 then, according to Proposition B.2.8,

pνP(f) < νP(f) + (p− 1)(νP(t′P)− 1) ⩽ νP(f (p−1))

and
νP(yN ) = pνP(f).

When solving the p-Riccati equation over Fq((t)) we showed that we could find another
solution verifying a slightly better bound. The same principle applies here locally.

Definition-Proposition 3.4.3. — Let f ∈ SN and P be a place of KN verifying νP(yN ) ⩾
pνP(t′P). Then there exists a unique k ∈ Fp such that for all g ∈ KN , if νP(g) ≡ k mod p then
f − g′

g ∈ SN and νP
(
f − g′

g

)
⩾ νP(t′P). We call k the ramified residue of f in P and write

ReP(f) := k.

Proof. The fact that for any g ∈ K×
N , f − g′

g ∈ SN is a direct consequence of Lemma 3.2.19.

If νP(f) ⩾ νP(t′P) then we can take k = 0. Indeed in this case if νP(g) ≡ 0 mod p then
there exists l ∈ N such that g = tplPu with νP(u) = 0. Then

g′

g
= u′

u
+ pl

t′P
tP

= u′

u
.

Since νP(u) = 0, we can write u =
∑∞
n=0 unt

n
P and u′ = t′P

∑∞
k=0(n + 1)un+1t

n
P. Thus

νP(u′) ⩾ νP(t′P) and νP
(
g′

g

)
⩾ νP(t′P) which yields the result.

Suppose now that νP(f) < νP(t′P). From Proposition 3.4.2, this means that νP(f) =
νP(t′P) − 1. We set e = 1 − νP(t′P), a := (te−1

P t′P)(P) and c := (tePf)(P). Let us show
that c ∈ F×

p a. Since we know that p does not divide e (see Proposition B.2.8), we know that
νP(f (p−1)) = −pe. Furthermore we know (Proposition 3.3.8) that

f (p−1) := dp−1

dtp−1
P

(tp−1
P f).
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It follows that
(tpeP f

(p−1))(P) = −ap−1c

and
(tpeP f

p)(P) = cp.

But
tpeP (f (p−1) + fp)(P) = (tpeP yN )(P) = 0

since νP(yN ) > −pe.
It follows that

tpeP (f (p−1) + fp)(P) = cp − ap−1c

= 0.

Thus cp−1 = ap−1 and c ∈ F×
p a. We set k := c ·a−1. Let g ∈ KN be such that νP(g) ≡ k mod p.

There exists l ∈ Z and u ∈ KN such that νP(u) = 0 and g = tpl+kP u. Then

g′

g
= k

tP
tP

+ u′

u
.

Since νP(u) = 0, νP(u′) > −e and νP
(
g′

g

)
= −e. Then(

teP
g′

g

)
(P) = k(te−1

P t′P)(P) = ka = c.

Thus (
teP

(
f − g′

g

))
(P) = 0

which is to say that
νP

(
f − g′

g

)
⩾ 1− e = νP(t′P).

Thus we see that if SN is not empty and if P ∈ PKN
is such that yN has no pole of greater

multiplicity than −pνP(t′P), then SN contains an element with no pole in P of multiplicity
greater than −νP(t′P). This is also the valuation of the divisor Diff(KN ) − 2(x)− in P(see
Proposition B.4.17). In particular if P is neither ramified nor a pole of yN then SN contains an
element with no pole in P. This local improvement on the bound provided in Proposition 3.4.2
is accomplished by adding an element of the form g′

g . Unfortunately adding such an element
makes new poles appear in general so we cannot proceed as we did over Fq(t). Instead we take
a more global approach.

Theorem 3.4.4. — Let f ∈ SN and V := {P ∈ PKN
|νP(yN ) < pνP(t′P)}. Set

Re(f) :=
∑

P∈PKN
P/∈V

ReP(f) ·P.

Let D′, Dp ∈ Div(F ) be such that
Re(f) ∼ D′ + pDp.

There exists f∗ ∈ SN verifying νP(f∗) ⩾ νP(t′P) for all places P outside V ∪ supp(D′).
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Proof. Since Re(f) ∼ D′ + pDp, there exists g ∈ KN such that Re(f)−D′ − pDp = (g). From
Lemma 3.2.19, we deduce that f − g′

g ∈ SN . Let P ∈ PKN
\(S ∪ supp(D′)). Then we find

νP(g) = νP(Re(f))− νP(D′)− pνP(Dp)
= νP(Re(f))− 0− pνP(Dp)
≡ νP(Re(f)) mod p

≡ ReP(f) mod p

By definition of ReP(f), f− g′

g is an element of SN verifying for any place P outside V ∪Supp(D′)
that

νP(f − g′

g
) ⩾ νP(t′P).

We consider Gp
N = Cl(KN )/pCl(KN ). According to Proposition B.3.10, Gp

N is a finite commu-
tative group of the form Gp

N '
(
Z/pZ

)n
for some n ∈ N∗.

Definition 3.4.5. — Let D1, D2 ∈ Div(KN ). We define the maximum of D1 and D2 as

max(D1, D2) :=
∑

P∈P(KN )
max(νP(D1), νP(D2)) ·P.

Corollary 3.4.6. — For each place P ∈ PKN
we denote by tP a prime element of P.

Let (D1, . . . , Dn) ∈ Div(KN )n be a lifting of a generating family of Gp
N viewed as a Fp-vector

space.
Let S =

⋃n
i=1 SuppDi and set

A := max

∑
P∈S

P + Diff(KN )− 2(x)−,
(yN )−
p

 .
If SN is not empty then it contains an element of L(A).

Proof. Let f ∈ SN and let Re(f) be defined similarly as in Theorem 3.4.4. Since D1, . . . , Dn is
a basis of Gp

N there exists a linear combination D′ = a1D1 + . . .+ anDn such that Re(f) ≡ D′

mod pDiv(KN ). Thus there exists Dp ∈ Div(KN ) such that

Re(f) ∼ D′ + pDp.

But Supp(D′) ⊂
⋃n
i=1 Supp(Di) = S.

According to Theorem 3.4.4, SN contains an element f∗ verifying for all places outside of
Supp(D′) (in particular for all places outside of S) that νP(f∗) ⩾ min(νP(t′P), p−1νP(yN )).
The result follows from Proposition 3.4.2 and Proposition B.4.17.

Definition 3.4.7. — For any effective divisor D (see Definition B.3.2) over KN , we define

A(D) := max

 ∑
P∈SuppD

P + Diff(KN )− 2(x)−,
(yN )−
p

 .
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We say that D is a generating divisor of Gp
N if (P)P∈SuppD is a generating family of Gp

N . In
this case

SN = ∅⇔ SN ∩ L(A(D)) = ∅.

For a family of effective divisors (D1, . . . , Dn) we define

A(D1, . . . , Dn) = A(D1 + . . .+Dn).

Notation 3.4.8. We denote Cl0(KN ) the subgroup of Cl(KN ) generated by the divisors of
degree 0 and Gp,0

N = Cl0(KN )/pCl0(KN ).

According to Proposition B.3.10, Gp
N ' Z/pZ × Gp,0

N . Furthermore if D1, . . . , DN is a gener-
ating family of Gp,0

N then (P)P∈
⋃

i∈J1;nK SuppDi
is a generating family of Gp

N if at least one place
of ⋃ni=1 SuppDi is of degree coprime with p. This is very likely to happen and since this lat-
ter family of divisor is really the one we work with, in most cases we only need to care about Gp,0

N .

As we mentioned earlier, from now on we will limit our complexity analysis to the case
K = Fq(x) with q = pb. With no loss of generality, we can suppose that N ∈ Fq[xp, Y ]. As we
did in Algorithm 6, the input we take is not N itself, but an irreducible polynomial N∗ ∈ Fq[x, Y ]
such that Np

∗ (Y ) = N(Y p). Let a be a root of N∗ in KN . We have KN = K[a].

Remark 3.4.9. — Such a N∗ is always uniquely defined. In order to simplify the notations,
we extend the notations depending on N to N∗. That is to say:

• CN∗ := CN .

• KN∗ := KN .

• ϕN∗ := ϕN .

• SN∗ := SN .

• Gp
N∗

:= Gp
N .

• Gp,0
N∗

:= Gp,0
N .

Similarly we refer to the p-Riccati equation relative to N∗ to mean the p-Riccati equation relative
to N .
This convention poses a small conflict of notation when N∗ ∈ C[Y ]. However in this case, this
means that yN is a p-th power of an element in CN which is a trivial solution to the p-Riccati
equation relative to N . Thus we can suppose that N∗ is not a polynomial with coefficients in C.

We write dx := degxN∗ and dy := degY N∗.
Let

τ : KN → KN

f 7→ f (p−1) + fp
.

For any P ∈ Fq(x), and any integers r,m ∈ N we denote

Fq[x, a]⩽r,<m
P

:= {P−1 · f(x, a)|f ∈ Fq[x, Y ], degx(f) ⩽ r and degY (f) < m}.
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For a finite family of functions B ⊂ KN there exists P ∈ Fq[x] and an integer r ∈ N such that

τ(B) ⊂
Fq[x, a]⩽r,<dy

P
.

Notation 3.4.10. Let B ⊂ KN be a finite family of functions in KN and (ν1, . . . , νb) an Fp-basis
of Fq. If r ∈ N and P ∈ Fq[x] are such that

τ(B) ⊂
Fq[x, a]⩽r,<dy

P

then we denote by TP,r(B) the matrix whose columns are the images of the elements of B by τ
written in the basis (

νkx
iaj

P

)
k∈J1,nK
i∈J0,rK
j∈J0,dyJ

.

Input: N∗ ∈ K[Y ] an irreducible separable polynomial.
Output: fS ∈ SN∗ a solution (if it exists) of the p-Riccati equation relative to N∗.

1. Set dy := degY N∗ and KN∗ := K[a] = K[Y ]/N∗.

2. Compute (a)− and (x)−.

3. Compute D1, . . . , Dn a lift of a basis of Gp
N∗

as defined in Corollary 3.4.6

4. Set A := Diff(KN )− 2(x)−.

5. For P ∈
⋃n
i=1 Supp(Di) do:

• A← A+ P.

6. A← max((a)−, A).

7. Compute B a basis of L(A)

8. Compute TP,r(B) (see Notation 3.4.10) and v = P · ap.

9. If v ∈ Fq[x, a]⩽r,<dy do:

• Set V the vector whose coordinates are those of v in the basis (νkxiaj).

10. Else:

• The p-Riccati equation relative to N∗ has no solution.

11. Solve TP,r(B)X = V .

12. If a solution exists, reconstruct it from X and return it.

Algorithm 8: p-Riccati: a first attempt

We present a first version of our algorithm in Algorithm 8. Written as such, this algorithm is
“semi-recursive” in the sense that while we do not precise how the choices of the divisors Di or
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the choice of the returned solution is made, it is sure to find a solution to the p-Riccati solution
relative to N if such a solution exists. As such, it also serves as an irreducibility test for N(∂p).
However it necessitates to compute a family of divisor whose classes constitute a basis of Gp

N∗
.

To our knowledge, there is no easier way of doing this than by computing the whole divisor
class group of KN∗ . While operations in the divisor class group can be computed in polynomial
time in the genus of KN [KM07], it appears that computing lattices of relations of divisors in
Cl0(KN∗) can only be done in exponential time1.
This is why we prefer to use a probabilistic approach for our algorithm and pick divisors ran-
domly, hoping to pick a generating family of Gp,0

N without actually verifying if it is indeed one.
Since such a technique cannot on its own confirm or rebut the existence of a solution to the
p-Riccati equation, we test the irreducibility of N(∂p) beforehand using Algorithm 6 presented
in Section 3.3.3. This approach will be treated in Subsection 3.4.2.

Remark 3.4.11. — An algorithm testing the irreducibility and computing a solution to the p-
Riccati equation at the same time in polynomial time in the genus of KN and the characteristic
p could still be found if one was able to test whether a randomly chosen family of divisors
generates Gp

N or not in polynomial time in the aforementioned datas.

Another option would be to compute the Fp-dimension of Gp,0
N beforehand to know approx-

imately how many divisors to pick. We say a few words of how this could be done though this
is not the option we chose. Recall that Cl0(KN ) is a finite commutative group. As such it can
be written as a product

Cl0(KN ) '
η∏
i=1

Z/pνiZ×G.

where G is a finite commutative group of order coprime with p, and νi ∈ N∗. Since the mul-
tiplication by p in G is surjective, Gp,0

N is isomorphic to the product of the cokernels of the
multiplication by p in the Z/pνiZ which is isomorphic to Z/pZ.
Thus

Gp,0
N ' Fηp.

Similarly, G contains no p-torsion element so the p-torsion subgroup Cl0(KN )Tp of Cl0(KN ) is
isomorphic to the product of the p-torsion subgroups of the Z/pνiZ. Again those are isomorphic
to Z/pZ. This proves that

Cl0(KN )Tp ' Fηp
and the following result:

Lemma 3.4.12. — There exists an isomorphism of Fp-vector spaces

Gp,0
N ' Cl0(KN )Tp .

Remark 3.4.13. — This isomorphism is not canonical in general and depends on the choice of
basis of Gp,0

N and Cl0(KN )Tp .

To our knowledge, this isomorphism cannot be used to compute a basis of Gp,0
N . However, it

can be used to compute its dimension by cohomological means as illustrated in [Ser03, Propo-
sition 10]. It also shows as a direct consequence in the same paper that Cl0(KN )Tp cannot be

1Based on a draft from F . Hess Computing relations in divisor class groups of algebraic curves over finite fields

http://www.staff.uni-oldenburg.de/florian.hess/publications/dlog.pdf
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of a dimension higher than the genus g of KN which, as a consequence is also the case for Gp,0
N .

Computing the dimension of Cl0(KN )Tp is doable in time polynomial in dx and dy and linear in p.

Thus we could conceive an algorithm taking in input N∗ and a probability ρ which would
compute the dimension of Gp,0

N and select enough randomly chosen divisors that the probability
of N not being irreducible if a solution is not found is smaller than ρ.

3.4.2 A polynomial time algorithm in degrees and characteristic.

We now develop our approach which consists in testing whether or not N(∂p) is irreducible
beforehand using Algorithm 6. If it is not the case we pick enough randomly chosen divisors
to have a good enough probability of generating Gp

N . We actually need to explicit the method
used to pick randomly chosen divisors in Div(KN ).

We refer to [Bru13, Section 3.5] in which the author present an algorithm to select uniformly
random elements in Cl0(KN ). If KN is seen as the regular function field of a curve C, [Bru13,
Algorithm 3.7] presupposes the choice of a line bundle L over C of degree at least 2g + 1. Since
we are working over finite fields, line bundles of arbitrary degrees exist and we can choose a line
bundle of degree exactly 2g+ 1. Then we can use [Bru13, Algorithm 3.7] to pick uniformly ran-
dom elements in Cl0(KN ) represented by uniformly random effective divisors of degree 2g + 1
in polynomial time in g and log(q). However, [Bru13, Algorithm 3.7] also suppose that the
zeta function of C is known in order to ensure the uniform distribution of the divisors. The
computation of the zeta function can be done in time polynomial in g and linear in b and p

(precisely Õ(pbd6
xd

4
y) bit operations [Tui17]). This is not really a problem for us as other parts

of our algorithm work in polynomial time in p, such as the computation of reduced norms and
p-curvatures, or the computation of the linear system representing the p-Riccati equation as we
will see later.
However, if one wishes to avoid computing the zeta function, they could also refer to [EC11,
section 13.2] in which the authors present a method to pick random elements in the Picard group
with a distribution close enough to the random distribution. We suspect the problem pointed
out by the authors about only being able to generate a big subgroup of Cl0(KN ) arises because,
unlike Gp,0

N , Cl0(KN ) is only a Z-module and not a vector space. While we would have to pick
(O(dy) times) more divisors, using this algorithm ensures that picking enough divisors can be
done polynomial time in g and log(q).

Remark 3.4.14. — In [EC11, section 13.2] the authors also state that Cl0(KN ) is generated
by the places of degree less than 1 + 2 logq(4g − 2). This in turns guarantees the existence of a
generating divisor D of Gp

N∗
of degree Õ(dxdy). However the probability of generating Gp

N with
O(g) uniformly chosen effective divisors of degree less than 1 + logq(4g − 2) could be very low
which is why we do not use it for our algorithm.

From now on we will assume that we are able to pick uniformly random elements in Cl0(KN ).
We recall the following classical result:

Lemma 3.4.15. — Let (ν1, . . . , νd) be a family of d vectors in Frp with r ∈ N and d ⩾ r. The
probability that (ν1, . . . , νd) is not a generating family of Frp is smaller than p−d pr−1

p−1 .
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Proof. Let us consider the event E: (ν1, . . . , νd) is not a generating family of Frp. Then there
exists an hyperplane H of Frp such that (ν1, . . . , νd) are all vectors of H. For a given hyperplane
H, the probability that (ν1, . . . , νd) randomly chosen in Frp would all be elements of H is pd(r−1)

prd =
p−d. Thus

P(E) ⩽
∑

H hyperplane
p−d.

The set of hyperplanes of Frp is in bijection with Pr−1(Fp) of cardinality pr−1
p−1 . Thus we find

P(E) ⩽ 1
pd
pr − 1
p− 1

.

Since we know that dimFp G
p,0
N ⩽ g, it follows that in all generality, by picking g+1 uniformly

random elements in Cl0(KN ), the probability of generating Gp
N is greater than 1− 1

p(p−1) ⩾ 1
2 ,

ensuring that we only have to pick random divisors O(1) times.

Proposition 3.4.16. — Let (VN )n∈N ∈ (Frp)N be a sequence of uniformly random vectors and
T = min{n ∈ N|Frp = Vect(V1, . . . , Vn)}. Then

E(T ) ⩽ r

(
1 +O

( 1
p2

))
+O

( 1
p3

)
Proof. We have

E(T ) =
∞∑
d=r

dP(T = d)

=
∞∑
d=r

dP(dim Vect(V1, . . . , Vd−1) = r − 1 ∧ Vd /∈ Vect(V1, . . . , Vd−1))

=
∞∑
d=r

dP(dim Vect(V1, . . . , Vd−1) = r − 1)P(Vd /∈ Vect(V1, . . . , Vd−1)| dim Vect(V1, . . . , Vd−1) = r − 1)

=
∞∑
d=r

dP(dim Vect(V1, . . . , Vd−1) = r − 1)p− 1
p

⩽ p− 1
p

r r−2∏
k=0

pr − pk

pr
+

∞∑
d=r+1

dP(Frp 6= Vect(V1, . . . , Vd−1))


⩽ r

r∏
k=1

pk − 1
pk

+ p− 1
p

∞∑
d=r+1

d

pd
pr − 1
p− 1

= r
r∏

k=1

pk − 1
pk

+ pr − 1
p2

∞∑
d=r+1

d

pd−1

= r
r∏

k=1

pk − 1
pk

+ pr − 1
p2

(
(r + 1)p−r

1− p−1 + p−r−1

(1− p−1)2

)

⩽ r + r + 1
p(p− 1)

+ 1
p(p− 1)2 .

The result follows.
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This result states that if Gp,0
N is of dimension r over Fp then, provided that we are able

to choose uniformly random elements in Gp,0
N , we would only need on average to select O(r)

elements to generate Gp,0
N .

We now discuss in more details the computation of TP,r(B) (and in more generality of the
linear system representing the p-Riccati equation over some L(A(D))), where B is a basis of
L(A(D)) for some effective divisor D. We recall that TP,r(B) is defined in Notation 3.4.8 and
is the matrix of the application τ : f 7→ f (p−1) + fp over L(A(D)). A naive algorithm is to
compute f (p−1) + fp in the form 1

Qf

∑dy−1
i=0 fia

i where Qf , f0, . . . , fdy−1 is a family of globally
coprime polynomials in Fq[x]. Then we compute a common denominator QB = lclmf∈BPf and
compute QB(f (p−1) + fp) for every f ∈ B, which can be represented by a bivariate polynomial
Pf (x, y) ∈ Fq[x, y] for every f ∈ B. We can then set r = maxf∈B degx Pf .

Let us assume for now that elements of B can be represented by d+ 1 polynomials in Fq[x]
(one denominator and d coefficients of powers of a) of degree O(1). Lemma 3.3.30 states that
f (p−1) + fp has coefficients of degree O(pdxdy). Thus TP,r(B) is a matrix of size linear in
p. A first simplification of the algorithm follows from the observation that for any f ∈ KN ,
f (p−1) + fp ∈ CN which is to say that it belongs in the image the Frobenius endomorphism of
KN .

Notation 3.4.17. We denote
ΦN : KN

∼−→ CN
f 7→ fp

Thus instead of computing f (p−1) + fp for every f ∈ B, we can compute Φ−1
N (f (p−1) + fp)

and instead look for a solution of the equation

Φ−1
N (f (p−1) + fp) = a.

Proposition 3.4.18. — Let D ∈ Div(KN ) and let f ∈ L(A(D)) (see Definition 3.4.7). Then
Φ−1
N (f (p−1) + fp) ∈ L(A(D)).

Proof. Let P ∈ PKN
. If P /∈ Supp(A(D)) then by definition of A(D), f is not a ramified place

and f has no poles in P. Thus neither f (p−1) nor fp has a pole in P. Thus Φ−1
N (f (p−1) + fp)

has no pole in P.

For P ∈ Supp(A(D)), we let tP be a prime element of P. We know that

νP(Φ−1
N (f (p−1) + fp)) ⩾ min(p−1 · (νP(f) + (p− 1)(νP(t′P)− 1)), νP(f))

Besides we know that if νP(f) ⩽ νP(t′P)− 1 then p−1 · (νP(f) + (p− 1)(νP(t′P)− 1)) ⩾ νP(f) so
in that case we get that

νP(Φ−1
N (f (p−1) + fp)) ⩾ νP(f)

which implies the desired result since f ∈ L(A(D)).
If now we have νP(f) > νP(t′P)− 1 then p−1 · (νP(f) + (p− 1)(νP(t′P)− 1)) > νP(t′P)− 1. Since
valuations have to be integers we deduce that

νP(Φ−1
N (f (p−1) + fp)) ⩾ νP(t′P) ⩾ −νP(A(D)).

Thus Φ−1
N (f (p−1) + fp) ∈ L(A(D)).
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Proposition 3.4.18 ensures that for a function f in L(A(D)), Φ−1
N (f (p−1) + fp) and f have a

common bound on the size of their coefficients which should allow to drop the factor p in the size
of Tp,r(B). However, naively computing Φ−1

N (f (p−1) + fp) still requires to derive a function p− 1
times. According to Lemma 3.3.30, if a function f has coefficients of size O(1), the coefficients
of f (i) are of size O(idxdy). It follows that computing the p − 1 derivative of f will take at
least O(p2dxd

2
y) operations in Fq. Our goal is to reduce to the complexity of our algorithm with

regard to p.

Definition 3.4.19. — Let f ∈ KN . There exist unique f0, . . . , fp−1 ∈ KN such that

f =
p−1∑
i=0

fpi x
i.

For all i ∈ J0; p− 1K We denote by Si(f) := fi the i-th section of f .

Although we define sections for all i ∈ J0; p− 1K, we will really only be interested in Sp−1 as
shown in the following lemma:

Lemma 3.4.20. — For any f ∈ KN ,

Φ−1
N (f (p−1)) = −Sp−1(f).

Proof. Let f :=
∑p−1
i=0 f

p
i x

i. It suffices to show that f (p−1) = −fpp−1. But this is obvious since
f (p−1) = (p− 1)!fpp−1 and (p− 1)! = −1 mod p.

Thus another way of writing p-Riccati equation is

b− Sp−1(b) = a.

We now use the fact that Lemma 3.4.20 also holds over KN,P for any P ∈ PKN
. Let P be a

place over KN that does not belong in Supp(A(D)). Then the injective homomorphism from
KN to its P-completion induces an injective homomorphism of Fq-vector spaces

L(A(D)) ↪→ GP[[tP]].

It follows that there exists a constant N ∈ N such that for all f ∈ L(A(D)), f = 0 if and only
if νP(f) ⩾ N .

Lemma 3.4.21. — Let P ∈ Div(KN )\ Supp(A(D)) and let d := deg(A(D)). For any f ∈
L(A(D)),

f = 0⇔ νP(f) > d

deg(P)
.

Proof. Since f ∈ L(A(D)), if f 6= 0 then we know that deg(f)− ⩽ d. But since deg(f)− =
deg(f)+ we know that deg(f)+ ⩽ d. But since P /∈ Supp(A(D)) we know that f has no pole in
P and deg(f)+ ⩾ νP(f) deg(P) which yields the result.

Thus it suffices for a function f ∈ B (where B is a basis of L(A(D))) to compute the image

of f − Sp−1(f) modulo t

⌊deg(A(D))
deg P

⌋
+1

P in GP[[tP]]. If one writes f =
∑∞
k=0 fit

i
P then Sp−1(f)

mod t

⌊deg(A(D))
deg P

⌋
+1

P can be deduced from knowing the coefficients fpk+p−1 for k ⩽ deg(A(D))
degP .
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To that end we can compute the full Taylor expansion of f up to its p
⌊

deg(A(D))
degP

⌋
+ p − 1

coefficient. To that end we first compute the Taylor expansion of a in tP up to the desired
precision (by definition of A(D), a ∈ L(A(D))) with a Newton iteration in Õ(pdeg(A(D))dy)
operations in Fq (we can suppose that dx = O(deg(A(D)))) as we will show later. Then, know-
ing that elements of L(A) are given by polynomials F (x, a) we get their Taylor expansions by
composition for an additional cost of Õ(p deg(A)dy) operations in Fq.

Note that this method requires that the coefficients of elements of B must have no pole in
P (otherwise we would have to compute the Taylor expansion of a up to a higher precision).
For that purpose, just choosing P /∈ Supp(A(D)) is insufficient. Let us discuss the poles of the
coefficients of the elements of B.

Proposition 3.4.22. — Let KN∗ = Fq(x)[a] where N∗ ∈ Fq(x)[Y ] is an irreducible polynomial
and a is a root of N∗. We denote dy := degY N∗.
Let Qi be the quotient of the Euclidean division of N∗(x, Y ) by Y i+1 for any i ∈ N. Then for
any f :=

∑dy−1
k=0 fka

k ∈ KN∗ and any i ∈ J0; dy − 1K,
fi = TrKN∗/Fq(x)

(
Qi(x, a)f
∂YN∗(x, a)

)
.

Proof. Let us fix N∗(x, Y ) =
∑dy

k=0 ηk(x)Y k. From [Ser04, Lemma 2 section III. 6] we know that
TrKN∗/Fq(x)

(
ai

∂Y N∗(x,a)

)
= 1

ηdy
δi,dy−1, for all i ⩽ dy − 1. Thus the result holds for i = dy − 1,

since Qdy−1 = ηdy . Then for all i we have Qi = Qi+1Y + ηi+1. We assume the Proposition to
be true for i+ 1. Then

TrKN∗/Fq(x)

(
Qi(x, a)f
∂YN∗(x, a)

)
= TrKN∗/Fq(x)

(
Qi+1(x, a)af
∂YN∗(x, a)

)
+ ηi+1TrKN∗/Fq(x)

(
f

∂YN∗(x, a)

)

and by hypothesis TrKN∗/Fq(x)
(
Qi+1(x,a)af
∂Y N∗(x,a)

)
is the coefficient of ai+1 in af , which is given by

fi −
fdy−1ηi+1

ηdy
, while TrKN∗/Fq(x)

(
f

∂Y N∗(x,a)

)
is the coefficient of ady−1 of f

ηdy
.

TrKN∗/Fq(x)

(
Qi(x, a)f
∂YN∗(x, a)

)
= fi −

fdy−1ηi+1

ηdy

+ ηi+1
fdy−1

ηdy

= fi.

Corollary 3.4.23. — Assume that N∗ ∈ Fq[x, Y ]. Let D ∈ Div(KN∗) and P be an irreducible
polynomial in Fq[x] coprime with Disc(N∗) and the leading coefficient of N∗. If Supp(A(D))
does not contain any place above P then for f ∈ L(A(D)), none of the coefficients of f in the
basis (1, a, . . . , ady−1) have a pole in P .

Proof. Let lc be the leading coefficient of N∗. The function lca is integral and its minimal
polynomial is N ′

∗ = l
dy−1
c N∗(x, Y/lc). Hence ∂YN ′

∗ = l
dy−2
c ∂YN∗(x, Y/lc). If x1 is such that

N ′
∗(x1, Y ) and ∂YN

′
∗(x1, Y ) have a common root then x1 is either such that N∗(x1, Y ) and

∂YN∗(x1, Y ) have a common root, or it is a root of lc. In the latter case, N ′
∗(x1, Y ) = Y dy and

∂YN
′
∗(x1, Y ) = dyY

dy−1, therefore N ′
∗(x1, Y ) and ∂YN

′
∗(x1, Y ) have a unique common root of

multiplicity dy − 1. Thus Disc(N ′
∗) = l

dy−1
c Disc(N∗).
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We have

(∂YN∗(x, a))+ ⩽ (∂YN ′
∗(x, lca))+ ⩽ (dy − 1)(lc)+ + (Disc(N∗))+.

Let Diff(KN∗)0 be the different divisor of KN∗ outside of the places at infinity. Since lca is
integral we know from Corollary B.4.16 that

Diff(KN∗)0 ⩽ (∂YN ′
∗(x, lca))+.

Let OP be the valuation ring associated to P in Fq(x) and O′
P its integral closure in KN∗ .

Let Qi be the quotient of the Euclidean division of N∗ by Y i+1.
By construction, P is such that if for some i, P was a pole of Qi(x,a)f

∂Y N∗(x,a) for some f ∈ L(A(D))
then P ∤ P . Indeed

P ∈ Supp(Qi(x, a))− ∪ Supp(f)− ∪ Supp(∂YN∗(x, a))+

⊂ (Supp(x)− ∪ Supp(a)−) ∪ Supp(A(D)) ∪ Supp(Disc(N∗)+).

We have Supp(a)− ⊂ Supp(A(D)) and P is not the infinity place thus, by construction, P ∤ P
and neither does its conjugates. This means that

Qi(x, a)f
∂YN∗(x, a)

∈ O′
P .

By virtue of [Sti08, Corollary 3.3.2] this means that

TrKN∗/Fq(x)

(
Qi(x, a)f
∂YN∗(x, a)

)
∈ OP .

After Corollary 3.4.22, we conclude that for all i, the coefficient of ai in f has no pole in P .

Notation 3.4.24. Let B be a basis of L(A(D)) with D ∈ Div(KN ), and P ∈ Fq[x] an irreducible
polynomial verifying the hypothesis of Corollary 3.4.23. Let P ∈ P(KN ) be lying over P , tP be
a prime element of P and B0 be an Fp-basis of GP.

We denote by TP(B) the matrix with coefficient in Fp whose columns are the Taylor expansion
of the images of the elements of B by the map f 7→ f − Sp−1(f), at precision

⌊
degA(D)

degP

⌋
+ 1

written in the basis B0 × (tiP)ideg(P)⩽deg(A(D)).

When knowing the Taylor expansion of a up to the desired precision, computing the Taylor
expansion of an element f of L(A(D)) by composition requires to compute the Taylor expansion
of its coefficients. This can be done in Õ(pmax(η, degA(D))dy) operations in Fq where η is the
degree of the coefficients of f . As we show now, by construction of A(D), η and deg(A(D)) have
the same order of magnitude.

Proposition 3.4.25. — Let D ∈ Div(KN ) and f = 1
f−1

∑dy−1
i=0 fia

i ∈ L(A(D)) where
f−1, f0, . . . , fdy−1 ∈ Fq[x] are globally coprime polynomials.
Then for any i ∈ J−1; dy − 1K, both deg(fi) and deg(A(D)) are in O(deg(D) + dxdy).

We begin by proving an intermediary result.
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Lemma 3.4.26. — Let f ∈ KN and P ∈ PFq(x).

νP(TrKN/Fq(x)(f)) ⩾ min
(

0,min
P′|P

⌊
νP′(f)
e(P′|P)

⌋)
.

Proof. Let OP be the valuation ring associated to the place P and O′
P be its integral closure in

KN . For any f ∈ KN , if f ∈ O′
P then TrKN/Fq(x)(f) ∈ OP [Sti08, Corollary 3.3.2].

It follows that if P is a pole of TrKN/Fq(x)(f), then at least one of the places lying under P is a
pole of f . Let P∗ above P be such that⌊

νP∗(f)
e(P∗|P)

⌋
= min

P′|P

⌊
νP′(f)
e(P′|P)

⌋
.

Set k =
⌈−νP∗ (f)
e(P∗|P)

⌉
and P ∈ Fq(x) a prime element of P. Then for any P′ above P we have

νP′(P kf) = ke(P′|P) + νP′(f).

By definition k ⩾ − νP′ (f)
e(P′|P) thus νP′(P kf) ⩾ 0.

It follows that

νP(TrKN/Fq(x)(P kf)) = νP(P k TrKN/Fq(x)(f))
= k + νP(TrKN/Fq(x)(f))
⩾ 0

νP(TrKN/Fq(x)(f)) ⩾ −k

which is the desired result.

Proof of Proposition 3.4.25. Let P ∈ Fq[x] be an irreducible polynomial and let Qi denote
the quotient of the Euclidean division of N∗ by Y i+1 applied to x and a. If P is a pole of
TrKN∗/Fq(x)(Qif):

νP (TrKN∗/Fq(x)(Qif)) deg(P ) ⩾ min
P|P

⌊
νP(Qi) + νP(f)

e(P|P )

⌋
deg(P )

⩾
∑
P|P

(νP(Qi) + νP(f)) deg(P)

⩾
∑
P|P

(νP(Qi)− νP(A(D))) deg(P)

It follows that
deg(TrKN∗/Fq(x)(Qif))− ⩽ deg(Qi)− + deg(A(D)).

But
A(D) ⩽ D + Diff(KN )− 2(x)− + (a)−

thus, according to Proposition B.4.18

degA(D) ⩽ deg(D) + dx + 2g − 2.
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Since g ⩽ (dx− 1)(dy − 1) (see [Bee09, Corollary 2.6]), it follows that deg(A(D)) = O(deg(D) +
dxdy) and

deg(TrKN∗/Fq(x)(Qif))− = O(dxdy + deg(D)).

Thus, according to Corollary 3.4.22, ∂yN∗(x, a)f has coefficients of degree O(dxdy + deg(D)).
Since (∂yN∗(x, a)f)−1 has coefficients of size dxdy, the result follows.

Thus, knowing that dimL(A) = O(degA(D)). This justify the following result.

Lemma 3.4.27. — Let D ∈ Div(KN ) and let B be a basis of L(A(D)). Let P ∈ Fq[x] be an
irreducible polynomial verifying the hypothesis of Corollary 3.4.23 and P be a place above P .
Recall that q = pb. Under the assumption that neither the zeros of the leading coefficient of N ,
nor the places at infinity are wildly ramified, the matrix TP(B) can be computed in

Õ(bpdy(dxdy + deg(D))2 + (b(dxdy + deg(D)))2)

bit operations.

Proof. We know that both deg(L(A(D)) and the degree of the coefficients of elements of L(A(D))
can be bounded by O(dxdy + deg(D)).

Moreover dimFq (L(A(D)) = O(degA(D)) = O(dxdy + deg(D)) and the cost of computing
the Taylor expansion of a to the desired precision is Õ(pdy(deg(A(D))) = Õ(pdy(dxdy+deg(D)))
operations in Fq. The latter is also the cost of computing (by composition) the Taylor expansion
of any element of L(A(D)). We can thus compute the Taylor expansion of the O(dxdy+deg(D))
elements of the basis of L(A(D)) at the required precision in Õ(pdy(dxdy+deg(D))2) operations
in Fq or Õ(pbdy(dxdy + deg(D))2) bit operations.

To get the result for an Fp-basis of L(A(D)) one only needs to multiply the Taylor expansion
of an Fq-basis by an Fp-basis of Fq which can be done in Õ(b2(dxdy + deg(D))2) operations in
Fp which yields the result.

Remark 3.4.28. — In fact we only need to know the coefficients of pk+ p− 1-th powers of tP
of elements of L(A(D)) and not their full Taylor expansion. Using [BCCD19, Theorem 4.1] we
should be able to compute those coefficients in time polynomial in dx, dy and deg(D) as well as
quasi-linear in √p, provided that their result extends nicely to other denominators.

We can now write the final version of our algorithm the solve the p-Riccati equation in
Algorithm 9.

Theorem 3.4.29. — Algorithm 9 returns if it exists a solution of the p-Riccati equation relative
to N∗ whose coefficients are of degree O((dxdy)2) at the cost of

• testing the irreducibility of Np
∗ (∂) using Algorithm 6

• factoring the divisors (a)− and (x)−
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Input: N∗ ∈ K[Y ] an irreducible separable polynomial.
Output: fS ∈ SN∗ a solution (if it exists) of the p-Riccati equation relative to N∗.

1. Test if Np
∗ (∂) is irreducible using Algorithm 6.

2. If Np
∗ (∂) is irreducible return.

3. Set dy := degY N∗ and KN∗ := K[a] = K[Y ]/N∗.

4. Compute (a)−.

5. Set A := Diff(KN∗)− 2(x)−.

6. Select (D1, . . . , Dg+1) ∈ Div(KN∗)g+1 a family of g + 1 randomly chosen divisors
of degrees 2g + 1

7. Set A(D1, . . . , Dg+1) := A.

8. For P ∈ SuppO ∪
⋃g+1
i=1 SuppDi do:

• A(D1, . . . , Dg+1)← A(D1, . . . , Dg+1) + P

9. A(D1, . . . , Dg+1)← max((a)−, A(D1, . . . , Dg+1)).

10. Compute a basis B of L(A(D1, . . . , Dg+1))

11. Select P ∈ Fq[x] an irreducible polynomial verifying the hypothesis of
Corollary 3.4.23 and P|P .

12. Compute the Taylor expansion V of a in tP at precision
⌊

degA(D1,...,Dg+1)
degP

⌋
+ 1

13. Compute TP(B) (see Notation 3.4.24).

14. Solve TP(B)X = V .

15. If a solution X exists reconstruct a solution to the p-Riccati equation from it and
return it.

16. Else redo from step 6

Algorithm 9: p-Riccati_with_irreducibility
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• computing the different divisor of KN∗

• selecting O(dxdy) uniformely random elements of Div(KN∗) of degree 2g + 1

• computing a basis of a Riemann-Roch space of dimension O((dxdy)2)

• Õ(bpdy(dxdy)4 + bω(dxdy)2ω) bit operations.

The total complexity of the computation is polynomial in logp(q), dx and dy and linear in p.

Proof. The cost of steps (1) to (3) in Algorithm 9 is the cost of using Algorithm 6. The cost
of step (4) is the cost of computing (a)−, (x)− and Diff(KN∗). The cost of step (6) to (9) is
essentially the cost of selecting uniformely random divisors of degree 2g + 1. By definition of
A(D1, . . . , Dg+1), it is of degree O(dxdy + g2). Since g = O(dxdy) we find that A(D1, . . . , Dg+1)
is of degree O((dxdy)2).
Since we know that the solution of the p-Riccati equation constructed by Algorithm 9 is an
element of L(A(D1, . . . , Dg+1)), Proposition 3.4.25 states that this solution has coefficients of
degree O((dxdy)2).
The cost of step (10) is thus the cost of computing a basis of L(A(D1, . . . , Dg+1)) which is of
dimension O(deg(A(D1, . . . , Dg+1)) (Theorem B.3.13) that is to say O((dxdy)2).
Step (11) requires the computation of Disc(N∗) whose cost is negligible in regard of the final
result.
Applying Lemma 3.4.27 we know that step (12) and (13) can be done in Õ(bpdy(dxdy)4 +
b2(dxdy)4) binary operations.
Finally, step (14) is a matter of solving a Fp-linear system of size O(b(dxdy)2) × O(b(dxdy)2)
which can be done in Õ(bω(dxdy)2ω) operations in Fp.
Reconstructing the solution to the p-Riccati equation is a matter of summing O(dy(dxdy)2)
polynomial coefficients in Fq[x] of degree O((dxdy)2) which can be done in Õ(bdy(dxdy)4) binary
operations.

The sum of those cost yield the final result.

Remark 3.4.30. — While the divisor class group of KN is generally not trivial, Gp,0
N is usually

much smaller and has a much nicer structure. Indeed, if, for example, Cl0(KN ) is of the form
Z/nZ for some n ∈ N, which happens often on randomly chosen N , then Gp,0

N is either 0 or equal
to a Fp-vector space of dimension 1. In this case, a basis of Gp,0

N is just a divisor which is not a
multiple of p in Cl0(KN ). For a randomly chosen divisor, the probability that this happens is p−1

p .

As such, there is a good chance that

SN = ∅⇔ SN ∩ L(A(0)) = ∅.

This is why in practice we prefer picking increasingly more divisors Di and try to solve the
p-Riccati equation on increasingly larger Riemann-Roch spaces. Precisely, at each step we want
to double the amount of divisors selected and redo Algorithm 9 from step 7 to step 15.

When dimFp G
p
N∗

= O(1) this allows us to find a solution to the p-Riccati equation whose
coefficients are of degrees O(dxdy) and with sufficiently good assumptions on the ramifications
of KN∗ (see Lemme 3.4.27), this can be done instead in Õ = (bpdy(dxdy)2 + bω(dxdy)ω).
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More generally if dimFp G
p
N∗

= r then by will yield a solution whose coefficients are of degrees
O(rdxdy) in Õ(bpdy(rdxdy)2 + bω(rdxdy)ω) bit operations.

The overall cost of this technique could be further reduced (although only by a multiplicative
or logarithmic factor and not an order of magnitude) by using iterative techniques, allowing to
reuse the work of each step for the next one. Indeed, if A and D are two effective divisors of
sufficiently large degrees (2g and 2g + 1 respectively) then ([Mum11, Theorem 6])

L(A+D) = L(A)L(D).

Heuristics, possible improvements

In [BCCD19], the authors improved the complexity in secondary parameters of a previously
established approach to computing the N th coefficient of an algebraic power series f ∈ Fq[[t]] in
Õ(log(N)) bit operations. The approach relied on the fact that there existed a finite dimensional
Fq-vector space containing f which, much like the spaces L(A(D)), are stable under the sections
operators. As a matter of fact, if F := Fq(x)[f ] then the Riemann-Roch space L(max(Diff(F )−
2(x)−, (f)−)) can be shown to be such a space.
The improvement brought by the paper stems for the choice by the authors of another space,
of a higher dimension but conceptually simpler, which they prove to also be stable under the
section operators. Let ϕ ∈ Fq[x, y] be the minimal polynomial of f , h := degx ϕ and d := degy ϕ.
The authors show that the spaces

Fq[x, f ]<r,<d
∂yϕ(x, f)

with r ⩾ h are also finite dimensional vector spaces stable under the section operators.
We conjecture that a similar idea could be used to simplify the computation of solutions to

the p-Riccati. We keep the same notations as the previous sections.

Heuristic 3.4.31. — Let N∗ ∈ Fq[x, y] be a separable irreducible polynomial and let dx :=
degxN∗ and dy := degyN∗. Let a be a root of N∗ in KN∗ . Remember that by definition

A(0) = max(Diff(KN∗)− 2(x)−, (a)−).

Then
L(A(0)) ⊂

Fq[x, a]⩽dx,<dy

∂yN∗(x, a)
.

This conjecture was verified on all generic examples and randomly chosen N∗ against which
it was tested, however results like Corollary 3.4.22 are not enough to prove it. In the case where
Gp,0
N∗

= {0} this conjecture would allow us to use a simpler algorithm which does not require to
compute any Riemann-Roch space. Instead we can use the fact that Fq [x,a]⩽dx,<dy

∂yN∗(x,a) is stable by
the section operators [BCCD19, Lemma 3.3] which bound the precision to which computing the
Taylor expansion of its elements to solve

b− Sp−1(b) = a.

While this approach will not lower the cost of steps 11 to 14 of Algorithm 9 by any order of
magnitude, it is in practice much faster since we do not need to compute a Riemann-Roch space,
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or to compute the divisors (a)−, (x)− and Diff(KN∗) (which depending on the chosen algorithm
may require to compute an integral basis which for small values of p is usually the bottleneck
of the algorithm).

In the case where Gp
N∗

is not reduced to 0, we conjecture that a similar approach could be
developed.

Heuristic 3.4.32. — With the same notations as in Conjecture 3.4.31, let D be a generating
divisor for Gp

N∗
and let Q(x, a) ∈ Fq[x, a]\{0} be such that for any place P outside infinity,

νP(Q(x, a)) ⩾ νP(D).

Denote lx := degxQ and ly := degy Q. Then

L(A(D)) ⊂
Fq[x, a]⩽dx+lx,<dy+ly
Q(x, a)∂yN∗(x, a)

.

This second conjecture has not yet been tested, nor were its applications to the computation
of solutions to the p-Riccati equation, as constructing testing polynomials N∗ verifying both
that Np

∗ (∂) is reducible in Fq(x)〈∂〉 and that Gp,0
N∗

is not trivial is hard.

The proof of [BCCD19, Theorem 2.2] can be easily adapted to show that the spaces

Fq[x, a]⩽dx+lx,<dy+ly
Q(x, a)∂yN∗(x, a)

are also stable under the section operators, and we expect an analog of [BCCD19, Lemma 3.3]
to be true there as well.

If that conjecture was verified, we could also replace the selection of random divisors by
the choice of successive random polynomials Q(x, a) ∈ Fq[x, a]. The exact parameters of these
choice remain to be determined. The fact that Algorithm 9 select random divisor of degree
2g + 1 suggest that we could take lx = dx and ly = dy. There is however no guarantee that a
uniform distribution of polynomials Q(x, a) corresponds to a uniform distribution in Gp,0

N∗
.

Similarly, it could be argued that one could limit their selection to lx = dx and ly = 0,
meaning polynomials P (x) ∈ Fq[x] of degree dx. Such polynomials verify in general that
deg(P (x))+ = dxdy, however it is unknown how efficiently the selection of random polynomials
would allow a selection of a generating divisor for Gp

N∗
.

3.4.3 Factorisation algorithm

Now that we have a working algorithm to solve p-Riccati equations and degree bounds for the
solutions, we discuss how it fits in the broader context of differential operators factorisation. We
begin by discussing how to go from a solution of the p-Riccati equation relative to N , to the
corresponding irreducible divisor of N(∂p). From Theorem 3.2.22 we know that when N(∂p) is
reducible,

f 7→ gcrd(N(∂p), ϕ−1
N (∂ − f))
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is a bijection between the set of solutions to the p-Riccati equation relative to N , and the set
of irreducible divisors of N(∂p). While this formula is technically also an algorithm, it is not
efficient and does not reflect the actual size of the irreducible factors. Indeed, ϕ−1

N is given by a
matrix ΦN ∈Mpdy (K) whose coefficients are of size linear in p. Combined with the computation
of a gcrd with an operator of order dyp, a naive approach states that the size of the coefficients
of the irreducible divisor of N(∂p) is at least linearly dependent in p2. However we now show
they are of size independent from p.

Proposition 3.4.33. — Let N ∈ C[Y ] be a separable irreducible polynomial and f ∈ KN be a
solution to the p-Riccati equation relative to N . Then gcrd(ϕ−1

N (∂ − f), N(∂p)) is a generator
of the kernel of the canonical K-linear map

K〈∂〉 → KN 〈∂〉/KN 〈∂〉(∂−f).

Proof. By construction of ϕN , the following diagram commutes:

K〈∂〉 DN(∂p)

KN 〈∂〉/(∂p−yN ) KN 〈∂〉/KN 〈∂〉(∂−f)

πN(∂p)

π′
fϕN

πf

Thus, ker(π′
f ) = ϕ−1

N (ker(πf )) = ϕ−1
N (KN 〈∂〉(∂−f)/(∂p−yN )) = DN(∂p)ϕ

−1
N (∂ − f).

Finally ker(π′
f ◦ πN(∂p)) = π−1

N(∂p)(DN(∂p)ϕ
−1(∂ − f)) = K〈∂〉gcrd(ϕ−1

N (∂ − f), N(∂p)).

Furthermore, we now any solution f ∈ KN of the p-Riccati equation relative to N satisfies
ord(gcrd(N(∂p), ϕ−1

N (∂ − f))) = dy (as a consequence of Corollary 3.1.7(iii), since it is an irre-
ducible divisor of N(∂p)). Thus the kernel of the K-linear map K〈∂〉⩽dy → KN 〈∂〉/(∂p−yN ) is a
K-vector space of dimension 1 and any element of it is equal to gcrd(N(∂p), ϕ−1

N (∂ − f)) up to
a multiplicative element of K.

Corollary 3.4.34. — Let N ∈ C[Y ] be an irreducible polynomial and f ∈ KN be a solution
to the p-Riccati equation relative to N . Set dy = deg(N).
Let a0 = 1 and for all i ∈ J0; dy−1K, ai+1 = aif+a′

i. Consider the matrix M(f) in Mdy ,dy+1(K)
whose columns are the coefficients of the ai (in some fixed K basis of KN ). Then all v ∈
ker(M(f)) is K-collinear with the vector of Kdy+1 whose coordinates are the coefficients of
gcrd(ϕ−1

N (∂ − f), N(∂p)).

Proof. By Proposition 3.4.33 we know that L := gcrd(ϕ−1
N (∂ − f), N(∂p)) is a generator of the

kernel of the morphism πf : K〈∂〉 → KN 〈∂〉/KN 〈∂〉(∂−f). Since we also know that it is of order
d, it follows that the restriction of πf to the K-vector space of operators of order at most d is a
K-linear map with a 1-dimensional kernel containing L.
We claim that the matrix M(f) is the matrix of this restriction from the basis (1, ∂, · · · , ∂d) to
the K-basis of KN ' KN 〈∂〉/KN 〈∂〉(∂−f) we have fixed.
Indeed let L′ = ∂klk + ∂k−1lk−1 + · · · + l0 be any differential operator in KN 〈∂〉. Then there
exists an operator B = ∂k−1bk−1 + · · ·+ ∂b1 + b0 ∈ KN 〈∂〉 and b−1 ∈ KN such that

L′ = B(∂ − f) + b−1.
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Then

L′ =
k−1∑
i=0

∂i+1bi −
k−1∑
i=0

∂i(b′
i + fbi) + b−1

= ∂kbk−1 +
k−1∑
i=0

∂i(bi−1 − b′
i − fbi)

and we find that li = bi−1− b′
i− fbi or equivalently bi−1 = li + b′

i + fbi and bk−1 = lk. We apply
this result to L′ = ∂k. It immediately follows that the corresponding b−1 is the k-th term of the
recursive sequence defined by a0 = 1, ai+1 = aif + a′

i.
We have shown that ak = πf (∂k). It follows that if v = t(v0, . . . , vdy ) ∈ Ker(M(f)) then
πf (vdy∂

dy + . . .+ v0) = 0. Thus there exists µ ∈ K such that µ · L = vdy∂
dy + . . .+ v0.

It is now easy to see that the coefficients of gcrd(N(∂p), ϕ−1
N (∂ − f)) are of size independent

from p as long as its also the case of the coefficients of f , which we know to be the case from
Theorem 3.4.29.

Lemma 3.4.35. — We keep the notation of Corollary 3.4.34 with the additional hypothesis that
f ∈ L(A(D)) where D ∈ Div(KN ) is a generating divisor of Gp

N . Then for all i ∈ J1; dyK,
ai ∈ L(iA(D) + (i− 1) max(Diff(KN )− 2(x)−), 0).

Proof. We know that a1 = f ∈ L(A(D)) so the proposition is verified here. Now suppose
established the fact that ai ∈ L(iA(D) + (i − 1) max(Diff(KN ) − 2(x)−), 0) for a given i. Let
P ∈ P(KN ). Then we know that

νP(ai+1) ⩾ min(νP(a′
i), νP(aif))

⩾ νP(ai) + min(νP(t′P)− 1, νP(A(D))).

Furthermore if p|νP(ai) then we have

νP(ai+1) ⩾ νP(ai) + min(νP(t′P), νP(A(D)))

in which case we trivially have

νP(ai+1) ⩾ −(i+ 1)νP(A(D))− iνP(Diff(KN )− 2(x)−).

Thus let us assume that p does not divide νP(ai). Furthermore we can assume that

νP(ai) = −iνP(A(D))− (i− 1) max(νP(Diff(KN )− 2(x)−), 0)

otherwise the result is trivial. If νP(A(D)) > −νP(t′P) then we find that νP(ai+1) ⩾ νP(ai) −
νP(A(D)) which yields the result. Thus let us assume that νP(A(D)) ⩽ −νP(t′P). By definition
of A(D), νP(A(D)) ⩾ −νP(t′P). Thus νP(A(D)) = −νP(t′P). Furthermore, by definition the
divisor (i+ 1)A(D) + imax(Diff(KN )− 2(x)−, 0) is effective so we can assume that P is a pole
of ai+1. This is only possible if P is a zero of A(D) or is such that νP(t′P) ⩽ 0. Since we showed
that we could assume νP(A(D)) = −νP(t′p), this means that νP(t′P) ⩽ 0.
We claim that νP(t′P) < 0. Indeed, if it was not the case then P could only be a pole of a′

i if it
was a pole of ai. Since P is a pole of ai+1, this means that P would be a zero of A(D), which
could not be the case since we supposed that νP(A(D)) = −νP(t′P) = 0.
We have shown that νP(t′P) < 0. Then νP(A(D)) ⩾ 1 and νP(t′P)− 1 ⩾ −max(νP(Diff(KN )−
2(x)−), 0)− νP(A(D)). The result follows.
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Input: N∗ ∈ Fq(x)[Y ] an irreducible separable polynomial, f a solution of the p-Riccati
equation relative to N∗.
Output: L ∈ K〈∂〉 the smallest monic multiple of ∂ − f with coefficients in K.

1. Set KN∗ = Fq(x)[a] with a a root of N∗.

2. Set dy := degN∗.

3. Set a0 := 1.

4. For i going from 1 to dy do:

• Set ai := a′
i−1 + fai−1

5. Set M ∈Md,d+1(Fq(x)) the matrix whose columns are the ai
written in the Fq(x)-basis (1, a, . . . , ady−1) of KN∗ .

6. Solve MX = 0.

7. Reconstruct L from a solution and return it.

Algorithm 10: Irreducible_factors

Theorem 3.4.36. — Let N∗ ∈ Fq(x)[Y ] be a separable irreducible polynomial. Keeping the
notations of the previous sections, we suppose that dimFp G

p
N∗

= r. Using Remark 3.4.30 we can
compute a solution f of the p-Riccati equation relative to N∗ whose coefficients are of degrees
O(rdxdy). Then Algorithm 10 computes an irreducible divisor of Np

∗ (∂) whose coefficients are
of degree O(rdxd3

y) in Õ(rdxdω+2
y ) operations in Fq.

Proof. The coefficients of the irreducible divisor returned by Algorithm 10 can be expressed using
the minors of the matrix M whose columns are the ai written in the basis (1, a, . . . , ady−1). Since
we know that f has coefficients of degree O(rdxdy), by immediate recurrence we get that ai has
coefficients of degree O(rdxd2

y). Thus the minors of M are of degree O(d2
yrdxdy) since M is a

matrix of size d × (d + 1). Furthermore, the coefficients ai can all be computed in Õ(rdxd3
y)

operations in Fq. It finally remains to solve a linear system of size d× (d+ 1) with coefficients
in Fq(x) of degree O(rdxd2

y). This can be done in in Õ(rdxdω+2
y ) operations in Fq [Sto03].

Proposition 3.4.37. — Let N∗ ∈ Fq[x, Y ] be a separable irreducible polynomial. We keep the
notations of the previous sections and set N ∈ Fq[xp, Y ] such that Np

∗ (Y ) = N(Y p).
Let f be a solution of the p-Riccati equation relative to N whose coefficients are of degree O(rdxdy)
with r = dimFp G

p
N and let Ni = gcrd(N(∂p), ϕ−1

N (∂ − f + i
x) and Li = lclmi

k=0Nk/lclmi−1
k=0Nk.

Then each Li is irreducible and

N(∂p) = Lp−1Lp−2 . . . L1L0.

Furthermore Li has coefficients of degree O(i2rdxd5
y).

Proof. The fact that N(∂p) = Lp−1Lp−2 . . . L1L0 is obvious as each successive terms telescopes
so it is the same as saying that N(∂p) = lclmp−1

i=0Ni which we know to be the case from Theo-
rem 3.2.22 applied to L = N(∂p). Moreover the Li are well defined operators as lclmi

k=0Nk is
in particular a multiple of all Nk for k ⩽ i− 1, so lclmi−1

k=0Nk is a right divisor of lclmi
k=0Nk.
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Figure 3.1: Linear growth of the relative size of an irreducible factor compared to its associated
solution with regards to dy

Furthermore, since the Ni are a fully coprime family of divisors, ord(Li) = idy − (i − 1)dy =
dy = degy(N) so Li is irreducible.
Now we know from [BCSL12, Theorem 1] that lclmi

k=0Nk is of order idy and has coefficients of
degree at most rdxd3

yi(dy(i− 1) + 1) = O(i2rdxd4
y). Similarly lclmi−1

k=0Nk also has coefficients of
size O(i2rdxd4

y). Since ord(lclmi
k=0NK)− ord(lclmi−1

k=0Nk) = dy the result follows.

Remark 3.4.38. — In practice, experiments have shown that the irreducible factors returned
by Algorithm 10 had coefficients of degree closer to Õ(rdxd2

y). This also suggests that the bound
on the degree of the coefficients of Li in Proposition 3.4.37 could be improved by a factor dy.
This phenomenon is illustrated by Figure 3.1. This figure was obtained on randomly generated
separable irreducible polynomials N∗ in F41[x, y] of degree 2 in the variable x, all verifying that

SN ∩ L(A(0)) 6= ∅

and the solution to the p-Riccati equation relative to N∗ was taken in F41[x,a]⩽2,<dy

∂Y N∗(x,a) . A possible
explanation for this phenomenon stems from the following discussion.

Lemma 3.4.39. — Let L/k be a separable differential field extension and let ∂ : L → L be the
derivation over L. Then for any σ ∈ Gal(L/k),

σ ◦ ∂ = ∂ ◦ σ.
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Proof. Let ν ∈ L and let Pν(X) ∈ k[X] be its minimal polynomial. Since L/k is separable, so
is Pν . In particular, ∂XPν(ν) 6= 0. Thus we know that

∂(ν) = −∂(Pν)(ν)
∂XPν(ν)

.

But since L/k is a differential field extension, ∂(Pν) ∈ k[X] since ∂(k) ⊂ k. Thus we have

σ ◦ ∂(ν) = σ

(
−∂(Pν)(ν)
∂XPν(ν)

)
= −σ(∂(Pν))(σ(ν))

σ(∂XPν)(σ(ν))

= −∂(Pν)(σ(ν))
∂XPν(σ(ν))

and since Pν is also the minimal polynomial of σ(ν)

∂(σ(ν)) = −∂(Pν)(σ(ν))
∂XPν(σ(ν))

and thus
σ ◦ ∂(ν) = ∂ ◦ σ(ν).

It follows from Lemma 3.4.39 that if K ′/K is a separable field extension, then any σ ∈
Gal(K′/K) extends in an automorphism

σ : K ′〈∂〉 → K ′〈∂〉
∂ 7→ ∂

f 7→ σ(f)

Proposition 3.4.40. — Let N ∈ C[Y ] be a separable irreducible polynomial and L/KN be the
splitting field of N over K. Let f ∈ KN be a solution of the p-Riccati equation relative to N .
Then for any σ ∈ Gal(L/K), ∂ − σ(f) is a right divisor of gcrd(N(∂p), ϕ−1

N (∂ − f)).

Proof. We know that σ is an automorphism of L〈∂〉, so it preserves divisibility and ∂ − σ(f) =
σ(∂ − f) must thus be a right divisor of σ(gcrd(N(∂p), ϕ−1

N (∂ − f))) = gcrd(N(∂p), ϕ−1
N (∂ − f))

Corollary 3.4.41. — Let N ∈ C[Y ] be a separable irreducible polynomial and K ′
N be the

splitting field of N over K. Let also f be a solution of the p-Riccati equation relative to N . Then

gcrd(N(∂p), ϕ−1
N (∂ − f)) = lclmσ∈Gal(K′

N/K)(∂ − σ(f))

Proof. We know that gcrd(N(∂p), ϕ−1
N (∂−f)) is a common left multiple of the ∂−σ(f). Further-

more, since the action of Gal(K′
N/K) preserves divisibility and acts transitively the conjugates of

f , for any σ′ ∈ Gal(K′
N/KN),

σ′(lclmσ∈Gal(K′
N/K)(∂ − σ(f))) = lclmσ∈Gal(K′

N/K)(∂ − σ(f)).



148 Chapter 3. Factorisation and p-Riccati equation

Since K ′
N/K is a Galois extension (as the splitting field of a separable polynomial), it follows

that lclmσ∈Gal(K′
N/K)(∂ − σ(f)) has coefficients in K.

Since gcrd(N(∂p), ϕ−1
N (∂ − f)) is the smallest left multiple of ∂ − f in K〈∂〉 the result follows.

This result states that if N ∈ C[Y ] has degree dy, then an irreducible divisor of N(∂p)
can be found as a lclm of dy conjugate operators of order 1. This formula is not effective as
the σ(f) generally lie in a non trivial field extension of KN . Even if it were, it would not
necessarily yield better bounds ([BCSL12, Theorem 1]). It highlights however that the situation
is similar to the problem of finding vanishing operators for algebraic function given by a bivariate
polynomial f(x, a) ∈ KN . Indeed in this case, the minimal polynomial of f is also given by
Pf = lclmσ∈Gal(KN/Fq(x))(Y − σ(f)). And similarly, one could find Pf , or a multiple of it, by
computing nontrivial element of the right kernel of the matrix Mf ∈ Mdy ,dy+1(Fq(x)) whose
vector columns are the elements f i for i ∈ J1; dyK written in any basis of KN . This technique
yields a polynomial whose coefficients are bounded by O(d2

y(df + dx)) where df is the maximal
degree of the coefficients of f in the chosen basis. However such a polynomial is also given by
resT (Y − f(x, T ), N(x, T )) whose degree in x is bounded by O(dy(dx + df )). A similar method
may perhaps exist for our problem.

Figure 3.2: Variation with p of the relative size of the coefficients of a computed irreducible
factor compared with original operators of order 2 generated with Method 1.

Let us now say a word of the size of a factorisation of an operator in general. Let L ∈
K〈∂〉 be a divisor of N(∂p) and R ∈ K〈∂〉 such that LR = N(∂p). With the notations of
Proposition 3.4.37, we know that for at least ord(L)

dy
of the Ni, lclm(Ni, R) ·R−1 is an irreducible

right factor of L (Theorem 3.2.22).
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Proposition 3.4.42. — We keep the notations of Proposition 3.4.37. Let d be the maximum
degree of the coefficients of R and k := ord(R)

dy
. Then lclm(Ni, R) ·R−1 has coefficients of degree

O(dy(rkdxd3
y + d))

Proof. If lclm(Ni, R) ·R−1 6= 1 then it is an irreducible polynomial of order dy and lclm(Ni, R)
is of order kdy + dy.
We consider the map

Syl : K〈∂〉⩽kdy ×K〈∂〉⩽dy → K〈∂〉⩽dy(k+1)
(U, V ) 7→ UNi + V R

Since lclm(Ni, R) is exactly of order dy(k+ 1) it follows that this map has a kernel of dimension
exactly 1 and there exists U ∈ K〈∂〉⩽k such that (U, lclm(Ni, R) ·R−1) is a non trivial element
of it.
Since gcrd is defined up to a multiplicative coefficient in Fq(x), we can suppose that Ni has
polynomial coefficients. Furthermore for all h ∈ Fq(x)×, a common left multiple of hR and Ni

is a common left multiple of R and Ni. Thus lclm(hR,Ni) = lclm(R,Ni). It follows that if h is
the smallest common denominator of the coefficients of R, then lclm(Ni, R) ·R−1 = lclm(Ni, R) ·
(hR)−1 · h. With no loss of generality, we can suppose that R has polynomial coefficients.
polynomial coefficients in which case the coefficients of the matrix Syl in the canonical basis has
kdy column vectors with polynomial coefficients of degree at most rdxd3

y and dy of degree at
most d. Since the coefficients of lclm(Ni, R) ·R−1 can be expressed as quotient of minors of this
matrix, it follows that they are of degree at most

kdyrdxd
3
y + dyd = dy(krdxd3

y + d).

Remark 3.4.43. — Again, this result could be improved if Remark 3.4.38 was proven.

The real degree of the coefficients found with this method is hidden in the innocuous notations
d and k. Indeed, if L is of small order compared to pdy then in general both k and d are linearly
dependent of p. Conversely if L is of order of the same magnitude as pdy then k will be small but
the coefficient of L, and thus of R which is obtained by Euclidean division of N(∂p) and L, will
often also be of size linearly dependent of p. Thus in all generality the result of Proposition 3.4.42
hides a linear dependance in p.

Remark 3.4.44. — Although we are not able to avoid the dependency in p, it should be noted
that being able to find “small” divisor of N(∂p) gains us a factor p for operators of small order
compared with using Lemma 3.2.23.

We recall that another way of finding an irreducible right factor of L is by computing a
solution b ∈ KN of the operator L(∂ + f). Then ∂ − f − b′

b is a right factor of L, and the
corresponding irreducible right factor of L can be recovered using Algorithm 10. We have com-
pared the two methods for divisors of ∂p in Fp(x)〈∂〉 for varying p and present the results in the
Figures 3.2 to 3.7

Generating random non irreducible divisors of ∂p is in general not a trivial task, as a random
product of m operators of the form ∂ − b′

b has more chances of being an indecomposable factor
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Figure 3.3: Variation with p of the relative size of the coefficients of a computed irreducible
factor compared with original operators of order p−1

2 generated with Method 1.

of ∂mp than a divisor of ∂p. We construct our testing operators as follows:

• Method 1: For a specified order 1 < m < p, we select m random functions b1, . . . , bm ∈
Fq[x] of degree 2 and return lclmm

i=1(∂ − b′
i
bi

).

• Method 2: For a specified order 1 < m < p we use the first method to generate an
operator L of order p−m and return ∂p · L−1.

Then, to find a solution of a given operators we can use the proof of [Clu03, Theorem 3.8].
Figure 3.2 presents the quotient of the maximal degree of the coefficient of a computed irre-

ducible operators L′ of L, divided by the maximal degree of a coefficient of L, for L ∈ Fp(x)〈∂〉
an operators of order 2 generated with Method 1.
We clearly see that both methods yield a result of size linearly dependent in p, despite the
relative small size of the operators L which was expected, at least for the lclm method. Indeed,
applying Proposition 3.4.42 to this particular case would yield k = p− 2 and d = O((p− 2)dL)
where dL is the maximum degree of the coefficients of L and so we predicted this linear growth
in p.
The specific parameters chosen for the comparison show that the lclm-method is slightly better
here for small operators, but this may not be true anymore for operators of bigger starting
degrees. All in all, both method seem sensibly equivalent in this case.

Figure 3.3 presents similar data, but for operators of order p−1
2 . Again we see a linear depen-

dence in p arise which is again expected for the lclm-method as by applying Proposition 3.4.42
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we now have k = p+1
2 and d = O(p+1

2 dL).

Figure 3.4: Variation with p of the relative size of the coefficients of a computed irreducible
factor compared with original operators of order max(1, p− 2) generated with Method 1.

In Figure 3.4 we once again do a similar comparison for operators of order max(1, p − 2).
This time both curves seem to converge to a finite bound. That is not to say that the solution
obtained has a size independent from p, however this dependence is hidden in the size of the
coefficients of the operator L. The figure also suggests that the lclm-method yields bigger oper-
ators for operators of high order (although only by a constant factor).

Since the lclm-method works by computing a cofactor of L to N(∂p) it is also interesting to
see what happens for operators generated with method 2.

On Figure 3.5 we see that whereas the resolution method still yields operators of size linear
in p and dL, the lclm-method always returns an irreducible operators whose coefficients are of a
size similar to that of L.

Remark 3.4.45. — This again does not mean that the result has a size independent from p

but that this dependence is hidden in the size of L itself.

In Figures 3.6 and 3.7 we repeat the comparison tests for operators L of order p−1
2 and

max(1, p − 2), constructed this time with Method 2. This time while the coefficients of the
irreducible factors computed by resolution seems to grow only by a constant factor compared to
the coefficients from L, for the irreducible factors found with the lclm-method, the curve seem
to follow an expression of the form y = a/p for some coefficient a > 0. This last phenomenon
is actually expected since in those case, by construction, L has actually coefficients of size O(p)
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Figure 3.5: Variation with p of the relative size of the coefficients of a computed irreducible
factor compared with original operators of order 2 generated with Method 2.

times those of its cofactor.

The results from this experiment suggest that the lclm-method is at worst as good (or not
much worse) than the resolution method, while it is much better (by a factor p) for cofactors of
classic operators, at least for the complexity with regard to p.

For both of these methods, we are able to compute an irreducible right factor of L in quasi-
linear time in p2 at worst. However for the special case of finding rational solutions for operators
in Fq(x)〈∂〉, Alin Bostan and Eric Schost described in [BS09, Proposition 2] to compute a basis
of solution of a given operator in quasilinear time in p making it much faster for this specific
task.

Proposition 3.4.46. — Let L ∈ Fq(x)〈∂〉 be a right divisor of N(∂p). Let Ni = gcrd(N(∂p), ϕ−1
N (∂−

f + i
x)). Let R ∈ Fq(x)〈∂〉 be such that RL = 0. There exists {i1, . . . , il} ⊂ J0; p − 1K with

l = ord(L)
dy

such that we can take

Lk = lclm(Ni1 , . . . , Nik , R)/lclm(Ni1 , . . . , Nik−1 , R)

and have
L = LlLl−1 . . . L1.

Proof. This products simplifies and we only have to show that L = lclm(Ni1 , . . . , Nir , R) ·R−1.
But from Theorem 3.2.22 we know that there exists a subfamily {i1, . . . , il} such that

L = lclml
k=1(lclm(Nik , R) ·R−1).
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Figure 3.6: Variation with p of the relative size of the coefficients of a computed irreducible
factor compared with original operators of order p−1

2 generated with Method 2.

We claim that LR = N(∂p) is the least common left multiple of the lclm(Nik , R). Indeed if is
wasn’t then by dividing by R we would find a common multiple of the lclm(Nik , R) · R−1) of
smaller order than L which is impossible.

Thus we have N(∂p) = lclml
k=1lclm(Nik , R) = lclm(Ni1 , Ni2 , . . . , Nil , R) and

N(∂p) ·R−1 = L = lclm(Nil , . . . , Ni1 , R) ·R−1.

We can show similarly as what we have done for the factorisation of N(∂p), that the size of
the factors of L will have a size linearly dependant of p2, which for operators of order m yields
a factorisation of size at least linearly dependant of mp2. Thus in terms of size of a classical
factorisation of an operator there is no fundamental difference between factoring N(∂p) and
factoring one of its factors.
However while we are able to find “small” factors of N(∂p), this is not the case for its divisors
in general.

Theorem 3.4.47. — Algorithm 11 always returns a non trivial factor of L whose coefficients
are of degree O(pd2r5) in polynomial time in d and r and linear time in p2.

Proof. From [BCS16, Proposition 3.6], we know that N∗ in step 1 can be accomplished in
Õ((d+ r)ω

√
dp) operations in Fq.

Then [BCS15] states that D in step 2 can computed in Õ(pdrω) operations in Fq.
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Figure 3.7: Variation with p of the relative size of the coefficients of a computed irreducible
factor compared with original operators of order max(1, p− 2) generated with Method 2.

Then χmin(L)(D) is an operator of order O(r2) and of coefficients of degree at most pd. R is then
an operator of order O(pr) with coefficients of size O(pd) and can be computed in quasi-linear
time in p2 and polynomial time in r and d.
N∗ is a polynomial in Fq[x, Y ] of bidegree (d, r) and can be factored in polynomial time in d

and r and yields N1 ∈ Fq[x, Y ] of bidegree smaller than (d, r). Then computing a solution to
the p-Riccati equation relative to N1 can be done quasi-linear time in p and polynomial time
in r and d according to Theorem 3.4.29 and yields f1 whose coefficients are of size O((rd)2) if
a solution exists. If it doesn’t exists then the algorithm returns Np

1 (∂) whose coefficients are of
size O(pd).
Computing H0(∂) using Algorithm 10 is done in polynomial time in d and r and yields an
operator whose coefficients are of degree O(r2d4) according to Theorem 3.4.36. This bound is
also true for the Hi as they are also the smallest multiple of ∂ − f + i

x in Fq(x)〈∂〉 so the same
result can be applied.
We claim that at least one of the Hi does not divide R. Indeed we know that lclmp−1

i=0 (Hi) =
Np

1 (∂). If all the Hi divided R then it follows that R would be a multiple of Np
1 (∂). So we could

write R = R′Np
1 (∂) and χmin(L)(∂p) = χ′(∂p)Np

1 (∂).
Then it would follow that

LR′ = χ′(∂p)

which contradicts the minimality of χmin(L). Thus at least one of the Hi does not divide R
(in practice we will often found that none of them do as Hi dividing R can be seen as the
hyperplane defined by Hi containing the space defined by R, which happens rarely for randomly
chosen vector spaces.) Then for this Hi we find that lclm(R,Hi) · R−1 is an operator of order
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Input: L ∈ Fq[x]〈∂〉 .
Output: L′ ∈ Fq[x]〈∂〉 an irreducible divisor of L.

1. Compute N∗ ∈ Fq(x)[Y ] such that Np
∗ (Y ) = χmin(L)(Y p) using

[BCS16, Proposition 3.6].

2. Compute R ∈ Fq(x)〈∂〉 such that LR = χmin(L)(∂p).

3. Compute N1 an irreducible factor of N∗.

4. Compute f1 ∈ KN1 a solution of the p-Riccati equation with respect to N1 using
Algorithm 9.

5. If no solution is found, end the algorithm and return L′ := Np
1 (∂).

6. Set H0(∂) := gcrd(Np
1 (∂), ϕ−1

N1
(∂ − f)) using Algorithm 10

7. For i going from 0 to p− 1 do:

(a) Compute Hi := H0(∂ + i
x).

(b) If Hi is not a right divisor of R do:
i. Compute the remainder R∗ of the Euclidean division of R by Hi.
ii. Return L′ := lclm(R∗,Hi) ·R−1

∗ .

Algorithm 11: Irreducible_factor_general

ord(Hi) = deg(N1) and is a divisor of Np
1 (∂) so it has to be irreducible. Furthermore, it is a

divisor of L. Indeed, χmin(L)(∂p) is a common multiple of R and Hi so we there exists L′′ such
that

L′′L′R = χmin(L).

But since
LR = χmin(L)

it follows that L′′L′ = L and L′ is an irreducible right factor of L.
According to Proposition 3.4.42, L′ has coefficients of size O(pd2r5) since R is of order O(pr)
and has coefficients of degree O(pd).

LetR = QHi+R∗. SinceR andHi are coprime, so too areR∗ andHi. Thus ord(lclm(R∗,Hi)) =
ord(R∗)+ord(Hi). It follows that there exists U, V ∈ Fq(x)〈∂〉 with ord(U) = ord(Hi) such that

UR∗ + V Hi = 0.

By definition, U = lclm(R∗,Hi) ·R−1
∗ . We have

UR+Ni(V −Q) = 0.

Thus we also have U = lclm(R,Hi) ·R−1.
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In order to compute R∗, we can compute ∂k mod Hi for k ⩽ ord(R) in Õ(p2) bit opera-
tions (and in polynomial complexity in r and d). R∗ has coefficients of degree linear in p and
polynomial in r and d. lclm(R∗,Hi) · R−1

∗ can then be computed in quasilinear time in p and
polynomial time in r and d.

Remark 3.4.48. — It should be possible to compute a right factor of a given operator L
in quasi-linear time in p, provided that an analog of [BS09, Proposition 2] could be found for
seeking algebraic solutions in KN of a given operator in KN 〈∂〉. The method would then not
require to compute a cofactor L. Instead, once a solution to the p-Riccati equation f relative
to N1 is found, we can compute the operator L(∂ + f). Since we know ∂p − f (p−1) − fp divides
χ(ψLp )(∂p), it follows that ∂p divides χ(ψl(∂+f)

p )(∂p) which means that L(∂+ f) has solutions in
KN . If g is such a solution then we know that ∂ − g′

g is a right factor of L(∂ + f) which means
that ∂ − f − g′

g is a right factor of L.
To find the corresponding right factor of L with coefficient in Fq(x) we would once again use
Algorithm 10

3.5 On computing lclm decomposition

The goal of this section is to present some potential ways to compute a lclm decomposition
of a given differential operator. lclm decompositions of differential operators are often more
interesting than classical factorisations as a product of irreducible differential operators because
the space of solutions of a differential operators is the sum of the spaces of solutions of its right
factors. In particular if we have a decomposition L = lclm(L1, L2) with gcrd(L1, L2) = 1 then
the space of solutions of L is the direct sum of the spaces of solutions of L1 and L2. We can
generalise this type of decomposition, already mentioned in Corollary 2.1.31, to one where each
factor is in a sense indecomposable. As we will see later on, indecomposable operators are not
the same as irreducible operators.
In classical factorisation, being able to find a right factor L′ of L is enough since we can then
apply recursively the algorithm to L′ and L ·L′−1. This is not the case for lclm decompositions
since finding what we will call a direct factor does not automatically yields its complementary
factors. This is the main difficulty of the lclm decomposition. This work has not yet lead to a
complete lclm decomposition algorithm and only present some results in that direction.

Definition 3.5.1. — Let L ∈ K〈∂〉. We say that L is indecomposable if and only if L can not
be written as a lclm of of two coprime smaller operators.
Through Corollary 2.1.31, this is equivalent to saying that DL is indecomposable as a K〈∂〉-
module.

The notion of indecomposability in positive characteristic p is tightly linked to the p-
curvature.

Lemma 3.5.2. — Let L ∈ K〈∂〉. L is indecomposable if (DL, ψLp ) is an indecomposable K[T ]-
module.

Proof. If L is decomposable then there exists L1 and L2 ∈ K〈∂〉 non invertible such that
DL = DL1 ⊕DL2 . Then DL1 and DL2 are stable for ψpL.
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This is in fact an equivalence but the reverse implication is more complicated and will be a
consequence of a later result. The reason is that subspaces of DL stable for ψLp are not necessarily
stable K〈∂〉-submodules.

Definition 3.5.3. — We say that a finite family F of differential operators are fully coprime
if it verifies one of the equivalent property below:

i) ∀f ∈ F, gcrd(f, lclms∈F\{f}(s)) = 1.

ii) ord(lclmf∈F f) =
∑
f∈F ord(f).

iii) There exists a bijection u : J1; Card(F )K → F such that for all k ∈ J1; Card(F ) − 1K,
gcrd(u(k + 1), lclmk

i=1(u(i))) = 1.

iv) For all bijection u : J1; Card(F )K → F , and for all k ∈ J1; Card(F ) − 1K, gcrd(u(k +
1), lclmk

i=1(u(i))) = 1.

Proof. Let’s show that those are indeed equivalent properties.

i⇒ iv Let u be a bijection J1; Card(S)K → S. Then for all k ∈ J1; Card(S) − 1K, lclmk
i=1(u(i))

is a right divisor of lclmf∈S\{u(k+1)}f . Since u(k + 1) and lclmf∈S\{u(k+1)}f are coprime,
this is also the case for u(k + 1) and lclmk

i=1u(i).

iv ⇒ iii is obvious.

iii⇒ ii is an obvious induction.

ii⇒ i Let f ∈ F . We know (Lemma 2.1.32) that ord(lclms∈F\{f}s) ⩽
∑
s∈F\{f} ord(s).

Since lclms∈F s = lclm(f, lclms∈F\{f}s) it follows that

ord(lclms∈F (s)) ⩽ ord(f) + ord(lclms∈F\{f}s)

with an equality if and only if gcrd(f, ord(lclms∈F\{f}s)) = 1.
Furthermore we know that ord(lclmf∈F f) =

∑
f∈F ord(f) ⩾ ord(f) + ord(lclms∈F\{f}s).

Thus we have an equality and the result.

Remark 3.5.4. — While the two notions are equivalent in the commutative case, this notion
is stronger than the simple notion of pairwise coprimality. For example the family (∂, ∂ −
1
x , . . . , ∂ −

p−1
x , ∂ − 1

x+1) is pairwise coprime but not fully coprime in Fp(x)〈∂〉. This is because
lclmp

i=1(∂ − i
x) = ∂p and

gcrd(∂p, ∂ − 1
x+ 1

) = ∂ − 1
x+ 1

.

Example 3.5.5. — The family (∂ − i
x)i∈J1;pK is fully coprime in Fp(x)〈∂〉.

Example 3.5.6. — Let L ∈ K〈∂〉. If we write χ(ψLp ) := Nν1
1 . . . Nνn

n with the Ni being pairwise
coprime irreducible polynomials in C[Y ], then (gcrd(L,Nνi

i (∂p))i∈J1;nK is a fully coprime family
and

L = lclmn
i=1gcrd(L,Nνi

i (∂p)).
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Proof. Since the Ni are pairwise coprime, the family (Nνi
i (∂p))i∈J1;nK is fully coprime. Further-

more for any k ∈ J1;nK and any i 6= k, gcrd(L,Nνi
i (∂p)) is a right divisor of Nνi

i (∂p) so it is
a right divisor of lclmi 6=kN

νi
i (∂p). It follows that lclmi 6=kgcrd(L,Nνi

i (∂p) is a right divisor of
lclmi 6=kN

νi
i (∂p). Thus a common right divisor of gcrd(L,Nνk

k (∂p) and lclmi 6=kgcrd(L,Nνi
i (∂p))

would also be a common right divisor of Nνi
k (∂p) and lclmi 6=kN

νi
i (∂p).

Since the family (Nνi
i (∂p))i∈J1;nK is fully coprime, it must be equal to 1. Thus we conclude that

the family (gcrd(L,Nνi
i (∂p)))i∈J1;nK is fully coprime.

As in the proof of Theorem 2.2.9, we know that ord(gcrd(L,Nνi
i (∂p)) = νi deg(Ni). Thus

ord(lclmn
i=1gcrd(L,Nνi

i (∂p))) =
n∑
i=1

νi deg(Ni) = deg(N) = ord(L).

Thus L = lclmn
i=1gcrd(L,Nνi

i (∂p)).

Definition 3.5.7. — Let L ∈ K〈∂〉 and F ⊂ K〈∂〉 a finite family of operators such that
L = lclmf∈F (f). We say that this identity is a lclm decomposition of L if F is a family of fully
coprime indecomposable operators.

Definition 3.5.8. — Let L ∈ K〈∂〉 and L1 be a right divisor of L. We say that L1 is a direct
right factor of L is there exists a right divisor L2 of L coprime with L1 such that L = lclm(L1, L2).
We call L2 a complementary direct right factor of L1.

As previously said, being able to find a direct right factor of L is not enough to conceive a full
decomposition algorithm since it does not enables us to find a complementary direct right factor.

From Exemple 3.5.6 we know that one can find a first decomposition of L as a lclm of a
family of fully coprime differential operators by computing its gcrd with the full irreducible
components of the characteristic polynomial of its p-curvature.
Thus in this section we make the following hypothesis

Hypothesis 3.5.9. — There exists N ∈ C[Y ] irreducible such that χ(ψLp ) = Nm for some
m ∈ N∗.

It follows that DL has a structure of DN(∂p)m-module. Let us first evacuate the case where
DN(∂p) is a division algebra. In this case N(∂p) is irreducible and L is a multiple of N(∂p),
since gcrd(L,N(∂p)) is a divisor of L and N(∂p) which is not 1. It follows that L is a power
of N(∂p) (otherwise dividing L by the highest power of N(∂p) which divides it would provide a
nontrivial factor of N(∂p) which is impossible). Furthermore, the same reasoning can be applied
to any divisor of L. Thus no nontrivial divisor of L is a direct factor of L and it follows that L
is already indecomposable.
Thus we will suppose from now on that DN(∂p) is a matrix algebra.
From now on, we make the assumption that N is separable and keep the notations CN , yN and
KN of the previous sections.

Remark 3.5.10. — The results of this section could probably be extended to the inseparable
case by setting instead

KN = CN [Y ]/Y p−xp.
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This definition coincides with the usual definition ofKN as the smallest extension ofK containing
both CN and K in the separable case as we illustrate in Proposition 3.5.11. In the inseparable
case we can equip this KN with the derivation

d
dY : KN → KN∑p−1

k=0 fnY
k 7→

∑p−1
k=1 kfnY

k−1

We should then verify that the results of Subsection 3.2.3 extend to this new setting. This is
not completely trivial because KN is not a field, or even an integral domain in the inseparable
case.

Proposition 3.5.11. — Let KN be the smallest extension of K containing CN . We have a
commutative diagram

CN

CN [Y ]/Y p−xp KN
ι:Y 7→x

.

ι is an isomorphism if and only if for all f ∈ K\C, CN does not contain a p-th root of fp.

Proof. We know that K = C[x] ' C[Y ]/Y p−xp. Then CN [Y ]/Y p−xp ' K ⊗C CN . Let us sup-
pose that CN does not contain a p-th root of an element of C. Then in particular, CN does
not contain x. It follows that [CN [x] : CN ] = p. Furthermore CN [x] contains CN and K so
KN ⊂ CN [x]. Thus we either have KN = CN or KN = CN [x]. Since CN does not contain x,
KN = CN [x] ' CN [Y ]/Y p−xp.

Let us now suppose that KN ' CN [Y ]/Y p−xp. Then in particular CN [Y ]/Y p−xp is a field so
Y p − xp is irreducible over CN so CN does not contain a p-th root of xp. Let f ∈ K\C. Then
fp ∈ C. Thus [C[f ] : C] = p and K = C[f ]. But if CN contained a p-th root of fp then we
would have an injection K ↪→ CN mapping C to C. Thus KN = CN and CN → KN is the
identity. But this is impossible since dimCN

CN [Y ]/Y p−xp = p and ι is an isomorphism. Thus CN
does not contain a p-th root of fp.

With the assumption that N is separable, we now give a generalization of Proposition 3.2.13.

Lemma 3.5.12. — There is an isomorphism of C-algebras

ϕN,m : DN(∂p)m
∼−→ KN 〈∂〉/(∂p−yN )m.

Proof. There is a natural map ϕ : K〈∂〉 → KN 〈∂〉/(∂p−yN )m. Let L ∈ kerϕ. We can write
L =

∑
i,j∈J0;p−1K li,j(∂p)xi∂j with li,j ∈ C[Y ]. Since L ∈ kerϕ, it follows that (∂p− yN )m divides

all of the li,j(∂p). Thus yN is a root of multiplicity at least m of all the li,j . Since N is irreducible,
it is the minimal polynomial of yN over C, thus Nm divides the li,j .
Thus kerϕ = K〈∂〉N(∂p)m. We conclude by equality of dimensions over CN .

This lemma allows us to reduce the case where N is separable to the case N is of degree one.

Lemma 3.5.13. — Let L ∈ KN [∂p]. We can write L =
∑p−1
i=0 lix

i with li ∈ CN [∂p]. Then

(∂ − L)p = ∂p − Lp + li
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Proof. We consider the ring of differential operatorsKN [T ]〈∂〉 where ∂ acts onKN [T ] as d
dx . The

differential field (KN (T ), d
dx) verifies Hypothesis 2.1.37. The we can consider the p-curvature of

elements of KN [T ]〈∂〉 ⊂ KN (T )〈∂〉.
Furthermore for any g ∈ KN (T ), µg : ∂ 7→ ∂ − g induces an automorphism of KN (T )〈∂〉.
It follows that χ(ψ∂−g

p )(∂p) = (∂ − g)p. Indeed since µg is an automorphism, we know that
(∂ − g)p = µg(∂p) is a central element, of order p which is a multiple of ∂ − g. It can only be
the reduced norm of ∂ − g, that is to say χ(ψ∂−g

p )(∂p).
We can apply Lemma 3.2.4. It follows that for any g ∈ KN [T ],

(∂ − g)p = ∂p − dp−1g

dxp−1 − g
p.

Evaluating this equality in T = ∂p yields the result.

Theorem 3.5.14. — We have an isomorphism of C-algebras:

DN(∂p)m ' DN(∂p)[T ]/Tm.

Proof. Using Lemma 3.5.12 we can assume that N is of degree 1 of the form N = Y − r with
r ∈ C. We set ξ1 = 0. We construct a sequence (ξn)n∈N ∈ C[∂p]N such that

• ξn+1 ≡ ξn mod Nn.

• N(∂ + xp−1ξn) ≡ 0 mod N(∂p)n

Suppose that we have constructed ξn verifying the second condition. Then we seek ξn+1 of the
form ξn + PN(∂p)n with P ∈ C[∂p]. Then we have

N(∂ + xp−1ξn+1) = (∂ + xp−1ξn+1)p − rp

= ∂p − ξn+1 + xp(p−1)ξpn+1 − r
p

= ∂p − ξn − PN(∂p)n + xp(p−1)ξpn + xp(p−1)P pN(∂p)np − rp

≡ N(∂ + xp−1ξn)− PN(∂p)n mod N(∂p)n+1

Since by hypothesis, N(∂p)n dividesN(∂+xp−1ξn), we can choose P such thatN(∂+xp−1ξn+1) ≡
0 mod N(∂p)n+1.

We deduce a morphism

ϕm : DN(∂p) → DN(∂p)m

∂ 7→ ∂ + xp−1ξm
.

Since DN(∂p) is either a division algebra or a matrix ring over a field, it has no nontrivial two-
sided ideal. Thus ϕm is injective.
Note that since for all k ∈ J0, p−1K, ord((∂+xp−1ξm)) ≡ k mod p, the family ((∂+xp−1ξm)k)0⩽k⩽p−1
is a K[∂p]-basis of K〈∂〉.

Mapping T to N(∂p) allows us to define a morphism

ϕ : DN(∂p)[T ]/Tm → DN(∂p)m .
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Furthermore a sum
p−1∑
k=0

m−1∑
l=0

fk,l(∂ + xp−1ξm)kN(∂p)l

with fk,l ∈ K is only divided by N(∂p)m if all fk,l = 0.
Thus ϕ is injective, and bijective by equality of dimensions over C.

It follows that if N is separable over C then DL is a DN(∂p)[T ]/Tm-module. Remember that
we suppose here that DN(∂p) is isomorphic to a matrix algebra.

Theorem 3.5.15. — Let Nm1 |Nm2 | · · · |Nmk be the Frobenius invariants of ψLp . Then there
exists L1, . . . , Lk ∈ K〈∂〉 indecomposable such that

• L = lclm(L1, . . . , Lk) is a lclm decomposition of L.

• ord(Li) = mi deg(N).

Proof. We know that DL is a DN(∂p)[T ]/Tm-module. Since DN(∂p) is isomorphic to Mp(CN ) it
follows that DL is a Mp(CN )[T ]/Tm-module. It is important to note that for any L′ in DL,
T · L′ = N(∂p)L′ by construction.
Then DL corresponds to some CN [T ]/Tm-module M through Morita’s equivalence. Then there
exists a unique decomposition

M = CN [T ]/Tm
1 ⊕ · · · ⊕ CN [T ]/Tm

k

which corresponds to a decomposition

DL = M1 ⊕ · · · ⊕Mk

of indecomposable K〈∂〉-modules. Furthermore Tmi is the minimal polynomial of the multipli-
cation by T over Mi. Thus the minimal polynomial of ψMi

p is µ(ψMi
p ) = Nmi . Moreover

dimK(Mi) = p−1 dimC(Mi) = dimC CN [T ]/Tm
i = mi deg(N).

Then χ(ψMi
p ) = µ(ψMi

p ) = Nmi and the Mi fits the criteria of the Frobenius decomposition of
ψLp and is a decomposition of DL as a direct sum of indecomposable K〈∂〉-modules. The result
immediately follows.

Although this result allows to compute the form of a lclm factorisation of L from the Frobe-
nius decomposition of ψLp , we can’t directly compute such a factorisation from it. This is because
we have no guarantee the sub-K-vector spaces of DL that would come with a Frobenius decom-
position of ψLp would be K〈∂〉-modules.
It should be noted that being able to compute a solution to the p-Riccati equation relative to
N allows us to explicitly compute Morita’s equivalence.

Lemma 3.5.16. — Let L be an indecomposable divisor of N(∂p)m or order mdeg(N). Then
DL is a free C[∂p]/N(∂p)m-module of dimension p.

Proof. Since L is indecomposable, it corresponds through Morita’s equivalence to CN [T ]/Tm '
C[∂p]/N(∂p)m so it must be isomorphic to (C[∂p]/N(∂p)m)p as a C[∂p]/N(∂p)m-module.
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Theorem 3.5.17. — Let L be an indecomposable divisor of N(∂p)m or order mdeg(N).

ιL : DN(∂p)m → EndC[∂p]/∂p(DL)
M 7→ (L′ 7→ML′ mod L)

is an isomorphism of C[∂p]/N(∂p)m-algebras.

Proof. Let us show that ι is injective which will yield the result by dimension equality. Let M ∈
ker(ι). Then for any L′ ∈ K〈∂〉, ML′ is a left multiple of L. In particular M is a left multiple
of L. But L is similar to all the direct indecomposable factors of N(∂p)m. Thus for any direct
indecomposable factor Lb of N(∂p)m we have an isomorphism of K〈∂〉-module ϕ : DL → DLb

.
Furthermore since ϕ is a morphism of K〈∂〉-module it follows that ϕ ◦ ιL(M) ◦ ϕ−1 = ιLb

(M).
Thus we find that any direct indecomposable factor of N(∂p)∗ is a right factor of M . It follows
that N(∂p)m is a right divisor of M .

Theorem 3.5.17 allows us to write an explicit isomorphism between DN(∂p)m and a matrix
algebra. This in turn would allow us to explicitly compute the Morita equivalence to find a lclm
decomposition.

Lemma 3.5.18. — For all n ∈ N, the operator ∂(x∂)n is indecomposable of order n+ 1.

Proof. By multiplicativity of the reduced norm, we know that the characteristic polynomial
of the p-curvature of ∂(x∂)n is Y n+1 so the p-curvature of ∂(x∂)n is nilpotent. We want to
show that χmin(L) = Y n+1 which will prove that ∂(x∂)n is indecomposable according to Theo-
rem 3.5.17. It is enough to show that ker(ψ∂(x∂)n

p ) is 1-dimensional over K which is to say that
the space of solutions of ∂(x∂)n is 1-dimensional over C.

Let f =
∑p−1
i=0 fix

i with the fi ∈ C. We find

∂(x∂)n =
p−2∑
i=0

(i+ 1)n+1fi+1x
i.

Thus f is a solution of ∂(x∂)n if and only if f ∈ C and ∂(x∂)n is indecomposable.

Corollary 3.5.19. — For any f ∈ KN , (∂ − f)(x(∂ − f))n is indecomposable of order n+ 1.

Proof. We consider the automorphism of KN 〈∂〉, τf : ∂ 7→ ∂ + f . Then (∂ − f)(x(∂ − f))n is
indecomposable if and only if τf

(
(∂ − f)(x(∂ − f))n

)
is indecomposable. But τf

(
(∂ − f)(x(∂ −

f))n
)

= ∂(x∂)n which is indecomposable by Lemma 3.5.18.

Lemma 3.5.20. — Let f ∈ SN . If L ∈ K〈∂〉 is a left multiple of order m deg(N) of (∂ −
f)(x(∂ − f))m−1 then L is indecomposable.

Proof. We claim that ϕN,m(DN(∂p)mL) is the submodule of KN 〈∂〉/(∂p−yN )m generated by (∂ −
f)(x(∂ − f))m−1, which we denote M . Indeed we know that ϕN,m(DN(∂p)mL) is the submodule
generated by gcrd(L, (∂p − yN )m). Since L is a multiple of (∂ − f)(x(∂ − f))m−1,

ϕN,m(DN(∂p)mL) ⊂M.

Then by equality of the dimensions over C we get the result.
It follows that DL is isomorphic to the quotient module of KN 〈∂〉 by the left ideal generated by
(∂ − f)(x(∂ − f))m−1 and is thus indecomposable.
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We can use Lemma 3.5.20 to compute direct factors of N(∂p)m whose coefficients are of
degrees independent from p and use it to explicitly compute Morita’s equivalence.

We fear that this method may not be very efficient since to compute Morita’s equivalence we
to view KN as a CN -vector space which induces a heavy dependence in p. The rest of this section
is a collection of results that we hope could lead to an analog expression of a lclm decomposition
to Theorem 1.3.2 in the case m = 1.

Lemma 3.5.21. — Let N ∈ C[Y ] irreducible and separable such that N(∂p) is not irreducible.
Then for all m ∈ N∗, there exists L1,m, . . . , Lp,m fully coprime indecomposable operators of order
m deg(N) such that

N(∂p)m = lclm(L1,m, · · · , Lp,m)

Proof. DN(∂p)m is isomorphic to Mp(CN [T ]/Tm and is thus mapped through Morita’s equivalence
to
(
CN [T ]/Tm

)p, which is to say that there exists a decomposition DN(∂p)m = M1⊕· · ·⊕Mp with
dimK(Mi) = mdeg(N) which yields the result.

Example 3.5.22. — Let f ∈ SN and let (gi)i∈J1;pK be a C-basis of K. We set Li = (∂ − f −
g′

i
gi

)(x(∂ − f − g′
i
gi

))m−1. Then
(∂p − yN )m = lclmp−1

i=0 (Li).

Proof. We know that each Li is an indecomposable factor of (∂p− yN )m. We only have to show
that the family (Li)i∈J0;p−1K is fully coprime. By using the shift ∂ 7→ ∂ + f we can assume that
f = 0. By reccurence, we show that gcrd(Lk, lclmk−1

i=0 Li) = 1 for all k ∈ J0; p−1K. Let us assume
that we have shown that the family (Li)i<k is fully coprime. Let L∗ be a divisor of both LK

and lclmk−1
i=0 Li. If L∗ /∈ K then we can assume that L∗ is irreducible and thus is equal to ∂− g′

k
gk

.
Thus gk is a solution of lclmk−1

i=0 Li in K.
Since (Li)i<k is fully coprime by hypothesis, the quotient module by lclmk−1

i=0 Li is isomorphic
with ⊕k−1

i=0 DLi . In particular the dimension of the kernel of its p-curvature is

k−1∑
i=0

dimK ker(ψLi
p ).

But we know that the space of solutions of Li in K is 1-dimensional over C and generated by
gi. Thus

k−1∑
i=0

dimK ker(ψLi
p ) =

k−1∑
i=0

1 = k.

It follows that the space of solutions of lclmk−1
i=0 Li in K is ⊕k−1

i=0 giC. But this space does not
contain gk.
Thus gcrd(Lk, lclmk−1

i=0 Li) = 1.

Lemma 3.5.23. — Let N(∂p)m = lclm(N1, · · · , Np) be a lclm decomposition. Then for all
m′ ⩽ m we have

N(∂p)m′ = lclmp
i=1(gcrd(Ni, N(∂p)m′))

which is also a lclm decomposition.
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Proof. It is enough that we show this result for m′ = m−1 and then conclude by finite induction.

Let N ′
i := gcrd(Ni, N(∂p)m′) for all i. It is easy to see that the N ′

i are fully coprime. Indeed
for any i ∈ J1; pK, lclmj 6=i(N ′

j) is a right divisor of lclmj 6=i(Nj) and N ′
i is a right divisor of Ni.

Thus if they were not coprime then Ni and lclmj 6=i(Nj) would have a non trivial common right
divisor which is impossible since the Ni are supposed fully coprime.

We want to show that

DN(∂p)mN(∂p)m−1 =
p⋂
i=1
DN(∂p)mN ′

i .

The “⊂” direction is trivial since
p⋂
i=1
DN(∂p)mN ′

i =
p⋂
i=1

(DN(∂p)mNi +DN(∂p)mN(∂p)m−1).

To conclude we show that we have an equality of codimension.

Since the N ′
i are fully coprime we have

codimK

p⋂
i=1
DmN(∂p = ord(lclmp

i=1N
′
i) =

p∑
i=1

ord(N ′
i).

To conclude it is enough to show that for all i, ord(N ′
i) = (m− 1) deg(N).

We have ord(N ′
i) ⩽ (m − 1) deg(N). Indeed if such was not the case then N ′

i would be of
order mdeg(N) and be equal to Ni. But then N(∂p)m−1 would have an indecomposable factor
of order strictly more than (m− 1) deg(N) which is impossible.

We now want to show that deg(N ′
i) ⩾ (m− 1) deg(N) which is equivalent to

ord(lclm(Ni, N(∂p)m−1)) ⩽ mdeg(N) + (m− 1)p deg(N)− (m− 1) deg(N)
= ((m− 1)p− 1) deg(N).

This again is equivalent to saying that

dimK(DN(∂p)mNi ∩ DN(∂p)mN(∂p)m−1) ⩾ mp deg(N)− ((m− 1)p− 1) deg(N)
= (p− 1) deg(N)

But DN(∂p)mNi ∩DN(∂p)mN(∂p)m−1 is the kernel of the multiplication by N(∂p) in DN(∂p)mNi.
It follows that

dimK(DN(∂p)mNi) = dimK(ker×N(∂p)m)
⩽ mdimK(ker×N(∂p))

which translates to

m(p− 1) deg(N) ⩽ mdimK(DN(∂p)mNi ∩ DN(∂p)mN(∂p)m−1)
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and finally to
dimK(DN(∂p)mNi ∩ DN(∂p)mN(∂p)m−1) ⩾ (p− 1) deg(N)

which is the desired result.

Lemma 3.5.24. — Let L be a right divisor of some N(∂p)m. If L∗ is a right indecomposable
factor of L of maximal order then it is also a direct factor.

Proof. DL · L∗ is a submodule of DL whose quotient is indecomposable and of maximal order.
Morita’s equivalence maps DL to a CN -vector space E provided with an endomorphism u ∈
L(E), and DL ·L∗ to a subspace V of E stable by u such that (E/V/,u) is cyclic with dim(V ) =
dim(E) − deg(πu) (where πu is the minimal polynomial of u). Let E∗ be the dual of E and
u∗ : l 7→ l◦u be the dual endomorphism of u. V is the dual of a cyclic stable (for u∗) subspace of
E∗ of maximal dimension. Thus, it admits a complementary subspace stable by u. Thus there
exists L∗ a right divisor of L such that DLL∗ ⊕DLL∗ = DL which gives the result.

Theorem 3.5.25. — Let L ∈ K〈∂〉 be a divisor of N(∂p)m with m minimal, and R ∈ K〈∂〉
such that LR = N(∂p)m. Let

N(∂p)m = lclm(L∗
1, · · · , L∗

p)

be an lclm factorisation of N(∂p). Then there exists i ∈ J1; pK such that

lclm(R,L∗
i ) ·R−1.

is a direct right indecomposable factor of L of maximal order.

Proof. We show that for at least one i ∈ J1; pK, gcrd(L∗
i , R) = 1. Indeed if such was not the case

then for each iJ1; pK there would exists Ni an irreducible factor of N(∂p) which would be a right
divisor of both L∗

i and L. But then for all k ∈ N, lclmk
i=1(Ni) is a right divisor of lclmk

i=1(L∗
i ).

Since gcrd(L∗
k+1, lclmk

i=1(L∗
i )) = 1 it follows that gcrd(Nk+1, lclmk

i=1(Ni)) = 1, thus

N(∂p) = lclmp
i=1(Ni)

by checking the orders. It follows that N(∂p) would be a right divisor of R. Let us then write
R = R′N(∂p). Then LR′ = N(∂p)m−1 which contradicts the minimality of m.
Thus there exists i ∈ J1; pK such that gcrd(R,L∗

i ) = 1.
It follows that DN(∂p)mR∩DN(∂p)mL∗

i is of K-codimension mdeg(N) in DN(∂p)mR. Furthermore
the injection DN(∂p)mR ↪→ DN(∂p)m induces an injection

DN(∂p)mR/DN(∂p)mR∩DN(∂p)mL∗
i ↪→ DL∗

i

and by dimension equality we deduce that the two spaces are isomorphic as K〈∂〉-modules.
Thus Dlclm(R,L∗

i )·R−1 ' DN(∂p)mR/DN(∂p)mR∩DN(∂p)mL∗
i is indecomposable and lclm(R,L∗

i ) ·R−1 is
an indecomposable right factor of L.
We still have to show that it is a direct factor. This stems from Lemma 3.5.24 and that we have
shown that it is a maximal indecomposable right factor.

Theorem 3.5.25 gives us a way to compute the first direct factor of a lclm decomposition of L
by knowing a lclm decomposition of N(∂p)m. We know that decompositions of this last operator
are not hard to find (meaning not harder than finding a solution to the p-Riccati equation with
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respect to N). However, lclm decompositions are not as simple as classical factorisations in the
sense that knowing a first factor does automatically allow one to compute a cofactor upon which
one could reccursively use his algorithm.
The following result states that if we are able to find several then indecomposable factors,
provided some conditions are verified, they will still constitute direct factors.

Lemma 3.5.26. — Let L be a divisor of N(∂p)m and let Nmd |Nmd−1 | · · · |Nm1 be the Frobenius
invariants of its p-curvature. Let L1, · · · , Lk be a family of indecomposable factors of L such
that ord(Li) = mi deg(N). If the Li are fully coprime, then lclm(L1, · · · , Lk) is a direct factor
of L.

Proof. We begin by showing that

Dlclmk
i=1(Li) =

k⊕
i=1
DLi

. We proceed by recurrence on k. The result is obviously true for k = 1. We write L∗ =
lclmk−1

i=1 (Li). Since (L1, . . . , Lk) is a family of fully coprime operators, it follows that gcrd(L∗, Lk) =
1 which is to say that

DLL∗ +DLLk = DL.

Then
DLL∗/DLL∗∩DLLk ⊕ DLLk/DLL∗∩DLLk → DL/DLL∗∩DLLk

(M1,M2) 7→ M1 +M2

is an isomorphism.
Since DL∗/DLL∗∩DLLk ' DL/DLLk ' DLk

and DLk/DLL∗∩DLLk ' DL/DLL∗ ' DL∗ we have the result
by immediate recurrence.

Let E be the CN [T ]-module corresponding to DL through Morita’s equivalence and V

be the submodule corresponding to DLlclmk
i=1(Li). From the hypothesis we get that E '⊕d

i=1 CN [T ]/Tmi and E/V '
⊕k
i=1 CN [T ]/Tmi . It is well known that such a V admits a supplemen-

tary CN [T ]-submodule.

We have seen that we have ways of finding indecomposable factors of a given L. They can
be interpreted as computing the intersection of DL and a generic indecomposable submodule
of DN(∂p) of the right dimension, under a dimension condition. Our hope is that by taking
randomly constructed indecomposable submodule of DN(∂p), the intersection of DL and those
submodule would most often be of generic dimension (meaning that the intersection of two sub-
modules of respective codimensions l and n would be of codimension l + n). However it would
be better here to think of our submodules not as vector spaces but as stables subspaces for a
nilpotent endomorphism, and the intersection might not generically behave as it does for vector
spaces.

However if it did then we could design an iterative algorithm based on Lemma 3.5.26 and
Theorem 3.5.25 to compute lclm decompositions of L.
We also note that through Lemma 3.5.20, we know of a way to find many indecomposable factors
of N(∂p)m of maximal order. Not all indecomposable factors of N(∂p)m are of this form however.
We conjecture that a classical product of m random irreducible divisors of N(∂p) will most often
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end up being an indecomposable factor of N(∂p)m. We see this as the probability of picking a
nilpotent endomorphism of CmN of nilpotence order m among the nilpotent endomorphisms of
CmN . Note however that CN does not naturally come with a probability measure so this is just
a heuristic.
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Appendix A

Morita’s theorem

A.1 Noncommutative tensor product

In this appendix, we study the construction and universal properties of the tensor product of
non necessarily commutative rings.

Definition A.1.1. — Let R and S be two (non necessarily commutative) rings and M be an
abelian group. We say that M is a R − S-bimodule if and only if M is provided with a left
R-module structure and a right S-module structure and if for all (r, s) ∈ R× S and all m ∈M :

(rm)s = r(ms).

An R−R-bimodule is called an R-bimodule.

Definition A.1.2. — Let R be a ring and M be a left R-module and N a right R-module.
Let G be an abelian group and f : M ×N → G be a biadditive map.
f is said to be R-associative if for any (r,m, n) ∈ R×M ×N

f(mr, n) = f(m, rn).

Let R be a ring, M be a right R-module and N a left R-module.
There exists an abelian groupM⊗RN , unique up to unique isomorphism, and a unique biadditive
R-associative map M × N → M ⊗R N such that for all abelian group G and biadditive R-
associative map ϕ : M×N → G there exists a unique group morphism ϕ such that the following
diagram commutes:

M ×N G

M ⊗R N

ϕ

ϕ

Indeed the quotient of the free Z-module generated by M ×N by the sub-group generated
by the (m+m′)⊗ n−m⊗ n−m′⊗ n, m⊗ (n+ n′)−m⊗ n−m⊗ n′, mr⊗ n−m⊗ rn is such
a group.

Proposition A.1.3. — Let R1 be a ring. If M is a R1-R-bimodule, then M ⊗R N is a left
R1-module.
Let R2 be a ring. If N is a right R2-module then M ⊗R N is a right R2-module.
If both conditions are satisfied, then M ⊗R N is a R1-R2-bimodule.
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Proof. Let r ∈ R1. There is a map

ϕr : M ×N → M ⊗R N
(m,n) 7→ rm⊗ n.

This map is biadditive: ϕr(mr1, n) = ϕr(m, r1n). Thus it induces a map ϕr : M ⊗R N →
M ⊗R N .
We deduce the following map:

· : R1 ×M ⊗R N → M ⊗R N
(r,m) 7→ ϕr(m)

.

All that is left to do is to show that (r1 ·r2) ·m = r1 ·(r2 ·m) which is to say that ϕr1r2 = ϕr1 ◦ϕr2 .

ϕr1r2(m,n) = r1r2m⊗ n
= ϕr1(r2m⊗ n)
= ϕr1(ϕr2(m,n))

The proof is the same for the right R2-module structure. If both conditions are verified then
it is easy to see that for any r1, r2 ∈ R1 ×R2,

(r1 ·m) ·m2 = r1 · (m · r2).

Proposition A.1.4. — Let R1 and R2 be two rings, M be a right R1-module, N a R1-R2-
bimodule and N ′ a left R2-module. Then

(M ⊗R1 N)⊗R2 N
′ 'M ⊗R1 (N ⊗R2 N

′)

Proof. The proof is tedious but not hard. One must construct two morphism (M ⊗R1 N) ⊗R2

N ′ → (M ⊗R1 (N ⊗R2 N
′) and M ⊗R1 (N ⊗R2 N

′)→ (M ⊗R1 N)⊗R2 N
′. By universal property

it will follow that the composition of the two maps is the identity.

A.2 Morita’s theorem

Let R be a ring (not necessarily commutative). We denote P := Rn. P has a natural Mn(R)-
R-bimodule structure. We denote by P ∗ := HomR(P,R). P ∗ has a natural R-Mn(R)-bimodule
structure.

Remark A.2.1. — P ∗ is the set of morphism of right R-module from P to R while Mn(R) can
be seen as the set of endomorphism of P as a right R-module.

Lemma A.2.2. —
P ⊗R P ∗ 'Mn(R)

and
P ∗ ⊗Mn(R) P ' R
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Proof. We write πi : P → R the projection on the i-th vector of the canonical basis. The first
isomorphism is induced by the following application:

Φ : P × P ∗ → Mn(R)
(u, ϕ) 7→ (πi(u)ϕ(ej))i,j

The induced morphism on P ⊗R P ∗ is surjective since the elementary matrix Eij = Φ(ei, e∗
j ). It

is now easy for any biadditive map P ⊗P ∗ → G to construct a morphism Mn(R)→ G verifying
the universal property of P ⊗R P ∗.

The second isomorphism comes from the map

Ψ : P ∗ × P → R

(ϕ, u) 7→ ϕ(u)

Let us show that R verifies the universal property of the tensor product. Let G be an abelian
group and f : P ∗ × P → G be a biadditive and R-associative map. We define

f : R → G

r 7→ f(e∗
1, e1 · r)

.

Then f ◦ ψ = f . Indeed
f ◦Ψ(ϕ, u) = f(e∗

1, e1 · ϕ(u))

Let M ∈Mn(R) such that Mej = e1 · ϕ(ej).

f(e∗
1, e1 · ϕ(u)) = f(e∗

1,M · u)
= f(e∗

1M,u)

But e∗
1M = ϕ so

f ◦Ψ = f.

Theorem A.2.3. — The functors

F : ModgR → ModgMn(R)
X 7→ P ⊗R X

and
G : ModgMn(R) → ModgR

X 7→ P ∗ ⊗Mn(R) X

are quasi-inverse of one another.

Proof. This is obvious from what precedes and the associativity of the tensor product.

Corollary A.2.4. — Let D ⊂ R be a division algebra. F denote the same functor as in the
previous theorem.

i) Let M be a left R-module. Then dimD F (M) = n dimDM .

ii) Two Mn(D)-modules are isomorphic if and only if they have the same dimension as right
D-modules.
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Proof. i) For any left R-module, R⊗RM 'M . Thus F (M) '
⊕n
i=1M .

ii) If two left Mn(D)-modules are isomorphic then in particular, there are isomorphic as D-
modules so they have the same dimension.
Conversely if M and N are two left Mn(D)-modules of same dimension, we write F (M) =
X1 and F (N) = X2. Then dimDM = n dimDX1 and dimDN = n dimDX2.
Thus dimDX1 = dimDX2. It follows that X1 ' X2 so M ' N .

Remark A.2.5. — The same things are true for right modules and bimodules.



Appendix B

Reminder: Places, Zeros and Poles
in algebraic function field

The goal of this appendix is to recall some theory on places over algebraic function fields. The
formalism we use is the one of [Sti08]. We refer to it for the missing proofs. The notions
developed here are used to conceive an irreducibility test for differential operators of the form
N(∂p) ∈ C[∂p] where N is irreducible over N , and to compute solution of the p-Riccati equation
in KN .

B.1 General Notions

Definition B.1.1. — Let K be any field and F be a field extension of K. We say that F/K
is an algebraic function field if and only if F contains an element x, transcendental over K such
that F is algebraic over K(x).

Example B.1.2. — • Q(x)/Q is an algebraic function field.

• In the context of our work we will study the algebraic function field KN/Fp. KN is a
separable finite extension over Fp(x) so KN/Fp fits our definition of algebraic function
fields.

Remark B.1.3. — The choice of the transcendental element x is not fixed. As such one could
also see K(x) as an algebraic extension of K(x2).
However, notice that K(x, y)/K, where x and y are independent variables, is never an algebraic
function field no matter the choice of the transcendental element. This is because by definition
an algebraic function field F/K is of transcendental degree 1 over K. Since K(x, y)/K has two
algebraically independent element over K, x and y, it is of transcendental degree 2.

Definition B.1.4. — A valuation ring of the algebraic function field F/K is a ring O ⊂ F

such that:

• K ⊊ O ⊊ F .

• For every z ∈ F , either z ∈ O or z−1 ∈ O.
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Example B.1.5. — What motivates this definition is the observation that in K(x)/K, the
following rings are valuation rings.

i) Let P ∈ K[x] be an irreducible polynomial.

OP :=
{
f

g

∣∣∣∣(f, g) ∈ K[x]2, P ∤ g
}
.

ii)

O∞ :=
{
f

g

∣∣∣∣(f, g) ∈ K[x]2, deg(f) ⩽ deg(g)
}
.

We will show later that those are in fact the only valuation rings of K(x).

Proof. Let P be an irreducible polynomial and (f, g) ∈ K[x]2 such that f
g /∈ OP . We can suppose

that gcd(f, g) = 1. Since f
g /∈ OP this means that P ∤ f and f

g ∈ OP . Furthermore, since P is
irreducible, K[x]\PK[x] is a multiplicative set. This means that OP is indeed a subring of K(x).

The fact that for any (f, g) ∈ K[x]2 we either have f
g ∈ O∞ or g

f ∈ O∞ is obvious and it is
easy to check that O∞ is stable by addition and multiplication.

Example B.1.6. — Let K be a field and N ∈ K[x, y] be an irreducible polynomial. FN :=
K(x)[y]/N(x,y) is an algebraic function field overK. For any (xα, yα) ∈ P2(K) such thatN(xα, yα) =
0

Oxα,yα := {f(x, y)|f(x, y) ∈ F×
N , f

−1(xα, yα) 6= 0} ∪ {0}

defines a valuation ring.
Another way to think about Oxα,yα is that its the ring of regular functions over the curve
defined by N(x, y) = 0, well defined in (xα, yα). When K is algebraically closed, those are the
only valuation rings of FN/K. This justify the later denomination of “places”, since we can
think of those as the points of a curve.

Proposition B.1.7. — Let O be a valuation ring of the function field F/K. Then:

i) O has a unique maximal ideal P = O\O×.

ii) The field K̃ := {x ∈ F |x is algebraic over K} is imbedded in O× ∪ {0}.

iii) K̃ ∩P = {0}.

Proof. i) If O has a unique maximal ideal then it has to be O\O× since we know that any non
invertible element is included in a maximal ideal. We only have to prove that P := O\O×

is an ideal. Let x ∈ P and z ∈ O. If x is not invertible then neither is xz (otherwise x
would have an inverse). Let now x, y ∈ P. We want to show that x+ y ∈ P. Since O is a
valuation ring, either x

y or y
x belong to O. We can suppose that x

y ∈ O. Thus 1 + x
y ∈ O as

well and y(1 + x
y ) = x+ y ∈ P. P is thus stable by addition and multiplication by element

of O and is an ideal of O.

ii) Let x ∈ F be algebraic over K. Then x−1 ∈ K[x] and conversely x ∈ K[x−1] since x−1

is also algebraic over K. It follows that K[x] = K[x−1]. Since O is a valuation ring we
either have x ∈ O and x−1 ∈ O. In both case K[x] = K[x−1] ⊂ O and x ∈ O× ∪ {0}.
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iii) This is immediate from what precedes.

Proposition B.1.8. — Let O be a valuation ring of F/K and let P be its maximal ideal.

i) P is a principal ideal.

ii) Let P = tO. For all z ∈ F× there exists a unique n ∈ Z and a unique u ∈ O× such that
z = tnu.

iii) O is a principal ideal domain.

Proof. The proof rely on the following fact:

Lemma B.1.9. — Let (xi)i∈J1;nK ∈ Pn be a family of elements of P . If for any i ∈ J1;n − 1K,
xi ∈ xi+1P then (xi)i∈J1;nK is a K(x1)-free family.

In particular such a family cannot be of higher cardinality than [F : K(x1)] which is finite
since x1 ∈ P is transcendental over K and F is of transcendental degree 1 over K.

i) Let us assume that P is not principal and let y1 ∈ P. By our assumption there is
y2 ∈ P\y1O. This means that y2

y1
/∈ O. But since O is a valuation ring y1

y2
∈ O and is not

invertible so y1
y2
∈ P which means that y1 ∈ y2P.

By induction we construct a sequence (yn)n∈N ∈ PN such that yn ∈ yn+1P. But according
to Lemma B.1.9 such a sequence has to be finite which is a contradiction. Thus P is
principal.

ii) Let tnu = tmv with n,m ∈ Z and u, v ∈ O×. With no loss of generality we can suppose
that n ⩾ m. Then tn−mu = v. It follows that tn−m is invertible so n−m = 0 and u = v.
Let us show that such a pair (n, u) always exists.
Let z ∈ F . We can show the result for z or z−1. Since O is a valuation ring we can restrict
ourselves to the case z ∈ O. If z ∈ O× z = z fits so we can suppose that z ∈ P.
We claim that {k ∈ N|z ∈ tkO} is finite. Indeed let d = [F : K(z)]. Then x1 = z,
x2 = td, . . . , xd+1 = t is a family of elements of P verifying xi ∈ xi+1P so it is a free
K(z)-family of cardinality d+ 1 which is in contradiction with the definition of d.
Let n := max{k ∈ N|z ∈ tkO.}. Then z = tnu for some u ∈ O. Since n is maximal, u /∈ P

so u ∈ O×.

iii) Let I be a nonzero ideal of O. Let n := min{k ∈ N|tk ∈ I}. This n exists necessarily
since if a is a nonzero element of I it is of the form tku with u ∈ O× and tk = au−1 ∈ I.
Then we claim that I = tnO. The fact that tnO ⊂ I is obvious since I is an ideal. Now
let a ∈ I. There exists (k, u) ∈ N×O× such that a = tku. Since tk = au−1 ∈ I it follows
that k ⩾ n and a ∈ tnO.

The only thing left is to demonstrate Lemma B.1.9. Let (xi)i∈J1;nK ∈ Pn be such that xi ∈ xi+1P

and assume that it is K(x1)-linearly dependent. Then there exists (ϕi(x1))i∈J1;nK ∈ K(x1)n such
that

n∑
i=1

ϕi(x1)xi = 0.
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With no loss of generality we can suppose that all ϕi(x1) ∈ K[x1] and furthermore that x1 does
not divide them all (or that ϕi(0) is not equal to 0 for all i). Then we can set j ∈ J1;nK such
ϕj(0) 6= 0 but ϕi(0) = 0 for all i > j. Then

ϕj(x1)xj =
∑
i<j

ϕi(x1)xi +
∑
i>j

ϕi(x1)xi.

But for all i < j we have xi ∈ xjP, and for all i > j, ϕ(x1) ∈ x1O thus ϕ(x1)xi ∈ x1P ⊂ xjP.
It follows that ϕj(x1)xj ∈ xjP. Thus ϕj(x1) ∈ P and again ϕj(0) ∈ K ∩ P. But since
K ∩P = {0} we have a contradiction as per the definition of j.
Thus (xi)i∈J1;nK is K(x1)-linearly independent

We can now easily define the places of a algebraic function field and the valuations in those
places.

Definition B.1.10. — Let P be the unique maximal ideal of a valuation ring of F/K. We say
that P is a place of F/K (or a place of F ). We denote by PF the set of places of F .
Let t ∈ P be such that P = tO. Such an element t is called a prime element of P. For any
x ∈ F× there exists a unique n ∈ Z and u ∈ O× such that x = tnu. We call that n the valuation
of x in P, which we denote by νP(x).
If x = 0 then by convention we set νP(x) =∞.

The valuation νP is a valuation in the usual term, which is to say that it verifies the following
conditions:

Definition B.1.11. — Let ν : F → Z ∪ {0}. We say that ν is a valuation if and only if:

i) ν(x) =∞⇔ x = 0

ii) ν(xy) = ν(x) + ν(y) for all x, y ∈ F .

iii) ν(x+ y) ⩾ min(ν(x), ν(y)) for all x, y ∈ F .

iv) There exists z ∈ F such that z = 1.

v) ν(a) = 0 for all a ∈ K.

The fact that νP verifies (i), (iv) and (v) have already been shown previously. As for (ii), if
x = tνP(x)u and y = tνP(y)v then xy = tνP(x)+νP(y)uv. Finally, if we suppose that νP(x) ⩽ νP(y)
then x + y = tνP(x)(u + tνP(y)−νP(x)v). Since a := u + tνP(y)−νP(x)v ∈ O, its valuation in P is
positive which yields (iii). Furthermore, when νP(x) 6= νP(y), a has to be invertible otherwise
u would belong in P. This yields the strict triangle inequality:

Proposition B.1.12. — Let P be a place of F/K. For any x, y ∈ F , if νP(x) 6= νP(y) then

νP(x+ y) = min(νP(x), νP(y)).

The notion of valuation as in Definition B.1.11 is another way of defining the places of an
algebraic function field as, if ν is a valuation over F/K then Oν := {x ∈ F |ν(x) ⩾ 0} is a
valuation ring of unique maximal ideal Pν := {x ∈ F |ν(x) > 0}.
Then let z ∈ F be such that ν(z) = 1. z is a generator of Pν and ν = νPν . There is thus a
bijection between valuations and valuation rings over F/K. In particular, all valuations of F/K
verify Proposition .
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Lemma B.1.13. — Any valuation ring of F/K is a maximal proper subring of F .

Proof. Let O be a valuation ring of F/K and P be its unique maximal ideal. Let now z ∈ F\O.
We want to show that F = O[z]. Let y ∈ F . Since z /∈ O there exists k ∈ N sufficiently large so
that νP(yz−k) ⩾ 0, thus y ∈ zkO ⊂ O[z].

The maximality of valuation rings allows us to conclude Example B.1.5:

Corollary B.1.14. — The valuation rings presented in Example B.1.5 are the only valuation
rings of K(x)/K.

Proof. Let O be a valuation ring of K(x)/K and P be its unique maximal ideal.

• 1st case: x /∈ O. Then νP(x) < 0 and for all Q ∈ K[x], νP(g) = νP(x) deg(g). It follows
that for any f, g ∈ K[x], f

g ∈ O if and only if deg(g) ⩾ deg(f). Thus O = O∞.

• 2nd case: x ∈ O. Then K[x] ⊂ O. Let I = P ∩K[x]. I is an ideal of K[x] so it is of the
form PK[x] for some P ∈ K[x]. Furthermore P is irreducible. Indeed if P isn’t then at
least one of its irreducible factors P1 must have a valuation in P strictly positive and so
belongs in I. But then P1K[x] ⊂ PK[x] ⊂ P1K[x] so P must be equal to P1.
Let f, g ∈ K[x] be such that P ∤ g. Then g ∈ O× so f

g ∈ O. It follows that OP ⊂ O. Since
we have shown that OP is a valuation ring, it is a maximal proper subring so we must
have O = OP .

We can now define the zeros and poles of an algebraic function.

Definition B.1.15. — Let f ∈ F and P be a place of F/K. We say that

• P is a zero of f if and only if νP(f) > 0.

• P is a pole of f if an only if νP(f) < 0.

As is the case for rational functions in K(x)/K, “non constant” functions (that is to say,
transcendental element of F over K) always have at least one zero and one pole. To show it we
demonstrate a stronger result.

Proposition B.1.16. — Let K ⊊ R ⊊ F be a ring and {0} ⊊ I ⊊ R be a proper ideal of R.
There exists a valuation ring O of unique maximal ideal P such that R ⊂ O and I ⊂ P.

Proof. Let
F := {S|S is a subring of F , R ⊂ S and IS 6= S}

.
F is not empty, as it contains R. Furthermore, we claim that it is inductively ordered by
inclusion. Indeed, if F ′ is a totally ordered subset of F then

T =
⋃
S∈F ′

S
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is a subring of F containing R. Furthermore IT 6= T . Indeed if such was the case then there
would be (i1, . . . , in) ∈ In and (t1, . . . , tn) ∈ Tn such that

1 =
n∑
k=1

iktk.

But since F ′ is partially ordered, all the tk would belong to some S ∈ F ′ and so we would have
IS = S which is impossible, thus IT 6= T and T ∈ F .
Since F is inductively ordered by inclusion it contains a maximal element O ⊂ F . We want to
show that O is a valuation ring.
Suppose that there is z ∈ F\O such that z−1 /∈ O. Then but maximality of O in F , IO[z] = O[z]
and IO[z−1] = O[z−1]. Thus there exists n and m ∈ N (we can take them minimal) and
a0, . . . , an, b0, . . . , bm ∈ IO such that

1 = a0 + a1z + . . .+ anz
n

1 = b0 + b1z
−1 + . . .+ bmz

−m.

With no loss of generality, we can suppose that m ⩽ n. Thus

1− b0 = (1− b0)(a0 + a1z + . . .+ anz
n) = (1− b0)a0 + . . . (1− b0)anzn

and
anz

n = anz
n(b0 + . . .+ bmz

−m)

which is to say that
0 = (b0 − 1)anzn + b1anz

n−1 + . . . bmanz
n−m.

Since all the terms of those equalities are in IO, summing the two equalities yields

1 = c0 + c1z + . . .+ cn−1z
n−1

with the ci ∈ IO, contradicting the minimality of n.

Thus O is a valuation ring. Since IO 6= O it is included in its maximal ideal P and
I ⊂ IO ⊂ P.

Corollary B.1.17. — Any transcendental element z of F has at least one zero or one pole.

Proof. This is immediate by applying the previous proposition to R = K(z) and I = zK(z) to
find a zero. A pole of z is a zero of z−1 which is also transcendental.

Places are not all of equal “importance” so to say. For example let us consider the algebraic
function field K(x)/K and P ∈ K[x]. Any xα ∈ K such that P (xα) = 0 defined a zero of P
as νx−xα(P ) > 0. We know that if K is algebraically closed, then all the zeros of P are of this
form. Thus to one zero of P corresponds one root of P in K.
However if K is not algebraically closed then P can be a multiple of an irreducible polynomial
P1 of higher degree and P1 would thus be a zero of P which correspond this time to deg(P1)
roots (counted with multiplicity) of P in an algebraic closure K̃ of K.
This motivates the following notion of degree of a place.
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Definition-Proposition B.1.18. — Let P ∈ PF and O be the associated valuation ring.
FP := O/P is a finite field extension of K called the residue class field of F in P.
We define the degree of P as

deg(P) = [FP : K].

For any z ∈ P, deg(P) ⩽ [F : K(z)]. For any f ∈ O we write f(P) the image of f ∈ FP.

Proof. Let z ∈ P. Let (z1, · · · , zn) ∈ On. We claim that if the family (z1, . . . , zn) is linearly
dependent over K(z) then (z1(P), . . . , zn(P)) is linearly dependent over K. Indeed, if there is a
family (ϕi)i∈J1;nK ∈ K(z)n not all equal to zero such that

n∑
i=1

ϕi(z)zi = 0

then with no loss of generality we can suppose that the ϕi are polynomial and that at least one
of them as a nonzero constant coefficient. It follows that the ϕi(z)(P) ∈ K are not all equal to
zero and

n∑
i=1

ϕi(z)(P)zi(P) = 0.

In particular if (z1, . . . , zn) ∈ FnP is a family of cardinality strictly higher than [F : K(z)] then
it is K-linear dependent.
Thus [FP : K] ⩽ [F : K(z)].

Remember that the goal of this section is to develop a method to solve the p-Riccati equation
in KN ,

b(p−1) + bp = yN

by comparing the poles of an hypothetical solution to those of yN . The following result ensure
that those are always finitely many poles to consider. This is consistent with what we already
know of the zeros and poles of rational functions.
The proof depends heavily on a result called the Weak Approximation Theorem. While this
result is important to the general theory of algebraic function field, we will not be using this
result directly for our purpose. Thus we choose to refer to [Sti08, Corollary 1.3.4] for the proof
of the following proposition.

Proposition B.1.19. — Any element of F only has a finite number of poles and zeros.

Notation B.1.20. From now on if P is a place of some algebraic function F/K then OP will
designate its associated valuation field and tP will designate a prime element of P.

B.2 Places and algebraic field extension

As previously mentioned, the algebraic function fields that we will consider don’t exist in a vac-
uum but are separable extension of Fp(x). In this part we explore how places behave through
algebraic function field extensions. We also suppose that for any algebraic function field of the
form F/K considered from now on, K is its own integral closure in F .

Let F/K and F ′/K ′ be algebraic function fields such that F ′ and K ′ are algebraic (finite)
field extensions of F and K respectively.
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Definition B.2.1. — i) An algebraic function field F ′/K ′ is called an algebraic extension
of F/K if and only if F ′ is an algebraic extension of F ′ and K ⊂ K ′.

ii) An algebraic extension F ′/K ′ of F/K is called a constant field extension if and only if
F ′ = FK ′.

iii) An algebraic extension F ′/K ′ of F/K is called finite if [F ′ : F ] <∞.

Remark B.2.2. — An algebraic function field extension F ′/K ′ of F/K is actually finite if and
only if [K ′ : K] < ∞. Indeed, if [F ′ : F ] < ∞ then F ′/K can be considered as an algebraic
function field. Then K ′ is included in the field of elements of F that are algebraic over K. In
particular it is a subfield of any F ′

P for any place P of F ′/K, which is finite dimensional over
K.
Conversely, if [K ′/K] < ∞ then any element x transcendental over K is also transcenden-
tal over K ′. It follows that [F ′ : K ′(x)] < ∞. But as K ′(x) = K(x) ⊗K K ′ we also have
[K ′(x) : K(x)] = [K ′ : K]. Thus [F ′ : F ] ⩽ [F ′ : K(x)] = [F ′ : K ′(x)][K ′(x) : K] <∞.

In particular, any algebraic function field extension F ′/K ′ of F/K can be decomposed as
the combination of the constant field extension FK ′/K ′ of F/K and the finite field extension
F ′/FK ′ of FK ′/K ′.

Definition B.2.3. — Let F ′/K ′ be an algebraic extension of F/K. A place P′ of F ′ is said
to lie over a place P of F if and only if P ⊂ P′. We write P′|P.

Proposition B.2.4. — Let F ′/K ′ be an algebraic extension of F/K. Let P′ ∈ P′
F and P ∈ PF

and OP′ and OP be their respective associated valuation rings. The following assertions are
equivalent:

i) P′|P.

ii) OP ⊂ OP′

iii) There exists e ∈ N∗ such that for all f ∈ F ,

νP′(f) = e · νP(f).

Proof. Let us suppose that P′|P and suppose that there exists u ∈ OP\OP′ . Then u /∈ P

otherwise u would belong in P ⊂ P′ ⊂ OP′ . Thus νP(u) = 0. Let e := νP′(tP). Then

νP(uetP) = e · νP(u) + ν ′
P(tP) = 1.

But
νP′(uetP) = eνP′(u) + νP′(tP) ⩽ −e+ e = 0.

Thus uetP ∈ P\P′ = ∅ which is a contradiction.
Thus P ⊂ P′ ⇒ OP ⊂ OP′ .

Let us now suppose that OP ⊂ OP′ . We claim that tP ∈ P′. Indeed, O×
P ⊂ O

×
P′ and if tP was

not an element of P′ then so too would it be invertible in OP′ . It would result that F× ⊂ O×
P′
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and F would be imbedded in F ′
P′ . However F ′

P′ is algebraic over K which is a contradiction.

Let e := νP′(tP). Then for any f ∈ F there exists u ∈ O×
P ⊂ O

×
P′ such that f = t

νP(f)
P u. But

then
νP′(f) = νP(f)νP′(tP) + νP′(u) = eνP(f).

Finally let us suppose that there exists e ∈ N∗ such that for any f ∈ F , ν ′
P(f) = eνP(f).

Then if f ∈ P, νP(f) > 0, thus νP′(f) = eνP(f) > 0 and f ∈ P′. It follows that P ⊂ P′.

Proposition B.2.5. — Let F ′/K ′ be an algebraic extension of F/K.

• For each place P′ ∈ P′
F there exists a unique place P ∈ PF such that P′|P

• For each place P ∈ PF there is at least one, and finitely many places P′ ∈ P′
F such that

P′|P.

Proof. • O := OP′ ∩ F is a valuation ring. It is obvious that for any z ∈ F , z ∈ O or
z−1 ∈ O. We have to show that O ⊊ F . But if we had O = F then for any valuation ring
OP of F we would have OP ⊂ O×

P′ . It follows that for any element f of F and any place P

of f , νP(f) = e−1νP′(f) = 0 for some e ∈ N∗ which is a contradiction since transcendental
element of F have at least one pole and one zero.

• tP is a transcendental element over K ′ as such it has at least one and finitely many zeros.

Definition B.2.6. — Let F ′/K ′ be an algebraic extension of F/K and let P′ ∈ P′
F be lying

over P ∈ PF . The integer e ∈ N∗ such that for all f ∈ F , ν ′
P(f) = e · νP(f) is called the

ramification index of P′ over P and is denoted by e(P′|P).
We say that P′ is ramified if and only if e(P′|P) > 1.

[Sti08, Corollary 3.5.5] states, among other things, the following result.

Proposition B.2.7. — Any algebraic function field extension only has a finite number of
ramified places.

The finiteness of the set of ramified places of an algebraic function field extension is a very
important property for our work. This is because the relations between valuations and deriva-
tion are harder to control in those places. A consequence is that all the solutions of the p-Riccati
equation over KN could have a pole in any ramified place of KN . Fortunately, those are only
finitely many places to check.

We can now explore the relations between derivation and valuations.

Proposition B.2.8. — Let F ′/K ′ be an separable extension of Fp(x)/Fp. Let P be a place of
F ′ and f ∈ F ′. Let t ∈ F ′ be a prime element of P.

1. νP(f ′) ⩾ νP(f) + νP(t′)− 1 with it being an equality if and only if p ∤ νP(f).

2. Let e be the ramification index of P.
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• if P ∤ P∞, νP(t′)− 1 ⩽ −e.
• if P[P∞, νP(t′)− 1 ⩽ e

Both are equalities if and only if p ∤ e. Furthermore p never divides νP(t′)− 1.

3. If P is not a ramified place and p ∤ νP(f) then:

• if P ∤ P∞, νP(f ′) = νP(f)− 1
• if P|P∞, νP(f ′) = νP(f) + 1.

4. If P is not ramified and P is not a pole of f then P is not a pole of f ′.

Proof. 1. Assume for now that deg(P) = 1. Then according to [Sti08, Theorem 4.2.6], F ′ is
imbedded in K ′((t)). Thus there exists (ai)i∈Z ∈ KZ such that

f =
∞∑

i=νP(f)
ait

i.

Thus

f ′ = t′
d
dt

 ∞∑
i=νP(f)

ait
i

 = t′
∞∑

i=νP(f)
iait

i−1.

νP(
∑∞
i=νP(f) iait

i) ⩾ νP(f)−1 with it being an equality if and only if p ∤ νP(f). The result
follows.

If deg(P) 6= 1 then there exists an algebraic extension K ′′ of K ′ such that all places of
F ′K ′′ lying over P are of degree 1. Let P′|P in F ′K ′′. Then ([Sti08, Theorem 3.6.3]) for
all g ∈ F ′ we have

νP′(g) = νP(g)

and we can apply the result for places of degree 1.

2. • Since F ′/K ′ is an algebraic extension of Fp(x)/Fp and P ∤ P∞, there exists P ∈ Fp[x]
an irreducible polynomial such that P|P . Then

νP(P ) = e

and
νP(P ′) = 0 = νP(t′) + νP

( dP
dt

)
.

Furthermore νP
(

dP
dt

)
⩾ e− 1 so

0 = νP(t′) + νP

( dP
dt

)
⩾ νP(t′)− 1 + e.

The result follows. Furthermore dP
dt = e− 1 if and only if p ∤ e.

We also see that
νP(t′)− 1 ≡ −1− νP

( dP
dt

)
mod p.

Thus for p to divide νP(t′)− 1 we would need νP
(

dP
dt

)
≡ −1 mod p which is impos-

sible.
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• If now P|P∞ then we have
νP

(1
x

)
= e

and
νP(−1/x2) = 2e = νP(t′) + νP

( d
dt

1
x

)
.

Furthermore νP
(

d
dt

1
x

)
⩾ e− 1 so

2e = νP(t′) + νP

( d
dt

1
x

)
⩾ νP(t′) + e− 1.

The result follows. Furthermore dP
dt = e − 1 if and only if p ∤ e. In this case it is

obvious that p doesn’t divide νP(t′)− 1 = e.

If p|e however we have

νP(t′)− 1 ≡ −1− νP
( d

dt
1
x

)
mod p

and the same argument as for P ∤ P∞ applies.

3. This is a direct consequence of the previous propositions in the case e = 1.

4. If P is not a pole of f then νP(f) ⩾ 0. If νP(f) ⩾ 1 then νP(f ′) = νP(f) − 1 ⩾ 0. If
νP(f) = 0 then p|νP(f) and

νP(f ′) ⩾ νP(f) + νP(t′P) = νP(f) = 0.

B.3 Divisors and Riemann-Roch spaces

Finally we need to introduce two very important results for solving the p-Riccati equation that
is to say Riemann-Roch spaces and the Picard group, or divisor class group, of KN . Both of
those objects requires that we first introduce the formalism of divisors on KN .

Definition B.3.1. — Let F/K be an algebraic function field. The group of divisor of F ,
Div(F ), is the free group generated by PF . In other words a divisor is a formal sum

D =
∑

P∈PF

nPP

with nP ∈ Z being almost all (but a finite number) equal to zero.

Definition B.3.2. — A divisor D ∈ Div(F ) is called effective if and only if D ⩾ 0.

Example B.3.3. — Let F/K be an algebraic function field. We know that any f ∈ F× has
finitely many zero and poles. It follows that

(f) :=
∑

P∈PF

νP(f) ·P
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is a divisor of F which we call the principal divisor of f . We can also define the divisor of zeros
and poles of f , respectively:

(f)+ :=
∑

P∈Zeros(f)
νP(f) · P

and
(f)− :=

∑
P∈Poles(f)

−νP(f) · P.

This example actually defines a interesting class of divisors of F called principal divisors
which will play an important role in our work.

Definition B.3.4. — We say that a divisor D over F is principal if and only if there exists
f ∈ F such that D = (f).

We denote Princ(F ) the set of principal divisor of F . It is a subgroup of Div(F ).

Notice that if f ∈ F , then its valuation in a place P can be read on the corresponding
coefficients of (f). This motivates the following generalisation:

Definition B.3.5. — Let F/K be an algebraic function field and D =
∑

P∈PF
nPP be a

divisor over F . For all P ∈ PF ,
νP(D) := nP.

Furthermore we can now define the degree of a divisor.

Definition B.3.6. — Let F/K be an algebraic function field and D ∈ Div(F ).

deg(D) =
∑

P∈PF

νP(D) · deg(P).

An important property of principal divisor is that all principal divisors have the same degree
as stated in the following proposition:

Proposition B.3.7. — Let F/K be an algebraic function field. For all f ∈ F×,

deg (f)+ = deg (f)− = [F : K(f)]

and
deg (f) = 0.

Proof. This is a direct consequence of [Sti08, Theorem 1.4.11].

Notation B.3.8. We denote by Div0(F ) the subgroup of Div(F ) formed by the divisors of
degree 0.

Definition B.3.9. — Let F/K be an algebraic function field. We define the divisor class
group of F as Cl(F ) := Div(F )/Princ(F ). We also define Cl0(F ) := Div0(F )/Princ(F ).
We will also refer to those groups as the Picard group and Picard 0 group of F respectively.

For two divisors D,D′ ∈ Div(F ) we say that

D ∼ D′

if and only if their classes in Cl(F ) are equal ie if there exists f ∈ F such that

D = (f) +D′.
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We will use Cl0(KN ) to mesure how close or how far a given divisor is from being a principal
element. An most important property of Cl0 is the following:

Proposition B.3.10. — Let F/Fq be an algebraic function field over some finite constant field.
Then Cl0(F ) is a finite group and Cl(F ) ' Z× Cl0(F )

Proof. The fact that Cl0(F ) is a finite group can be found in [Sti08, Proposition 5.1. 3]. Let
now η = min{deg(D)|D ∈ Div(F )} ∩ N∗ and O ∈ Div(F ) such that degO = η. Then for any
divisor D ∈ Div(F ), η| degD. Indeed if that was not the case then there would exists u, v ∈ Z
such that 0 < deg(uD + vO) < η which is a contradiction.
We claim that

ϕ : Z× Cl0(F ) → Cl(F )
(n,D) 7→ nO +D

is an isomorphism. It is injective since ϕ(n,D) = 0 implies deg(nO+D) = 0 and since deg(D) =
0 it follows that n = 0 and thus D = 0. It is furthermore surjective since if D ∈ Cl(F ) then
D = ϕ(deg(D)

η , D − degDηO).

This proposition allows us to “bound”, in a sense, how far any divisor can be from being
principal.

We now introduce the second important tool of the resolution of the p-Riccati equation:
Riemann-Roch spaces. For that purpose it is important to note that Div(F ) is a partially
ordered set.

Definition B.3.11. — Let F/K be an algebraic function field and D,D′ ∈ Div(F ). D ⩽ D′ if
and only if

νP(D) ⩽ νP(D′).

for all P ∈ PF .

Definition B.3.12. — Let F/K be an algebraic function field and A ∈ Div(F ). We define the
Riemann-Roch space associated to A by

L(A) := {x ∈ F |(x) ⩾ −A} ∪ {0}.

For all A ∈ Div(F ), L(A) is a K̃-vector space, where K̃ is the field of all K-algebraic elements
in F .

Theorem B.3.13 (Riemann-Roch). — For all A ∈ Div(F ):

• If deg(A) ⩾ 0 then dimK̃(L(A)) ⩽ deg(A) + 1.

• If deg(A) < 0 then L(A) = {0}.

Proof. For the second point, see [Sti08, Corollary 1.4.12].
According to [Sti08, Proposition 1.4.9], the first point holds if A ⩾ 0. If this is not the case then
we can assume that L(A) 6= {0}. Then there exists g ∈ L(A)\{0} which means that (g) ⩾ −A
and A+(g) ⩾ 0. Then L(A+(g)) = g−1L(A) so dimL(A) = dimL(A+(g)) ⩽ deg(A+(g))+1 =
deg(A) + 1.
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Remark B.3.14. — It can in fact be shown ([Sti08, Theorem 1.5.17]) that if A is a divisor of
degree higher than 2g − 1 (with g being the genus of F/K) then

dimK̃(L(A)) = deg(A) + 1− g.

This will be useful later for complexity analysis.

We introduce one last notation to denote the set of places for which a divisor’s valuation is
not zero.

Definition B.3.15. — For any D ∈ Div(F ) we define the support of D as

supp(D) := {P ∈ PF |νP(D) 6= 0}.

B.4 Representations of places and algorithmic aspects

B.4.1 Places and prime ideals of integral closure

Definition B.4.1. — An integral domain A is called a Dedekind ring if it is Noetherian and
integrally closed and if every non-zero prime ideal of A is maximal.

Example B.4.2. — • Any principal domain is a Dedekind ring.

• In particular, if F is an algebraic function field and O is a valuation ring of F , then O is
a Dedekind domain.

• [Sam70, Theoreme I Section 3.4] If A is a Dedekind ring, K is its fraction field and L is a
finite separable extension of K, then the integral closure of A in L is a Dedekind ring.

Definition B.4.3. — • Let A be an integral domain and K be its fraction field. A A-
module I of K is called a fractional ideal of A if and only if there exists a ∈ A such that
aI is an ideal of A.

• Let A be an integral domain and I, I ′ be two fractional ideal of A. Then

II ′ =
{ ∑

finite
sis

′
i | (si, s′

i) ∈ I × I ′
}

is a fractional ideal of A. This operation provides the set of fractional ideal of A with a
monoid structure.

• A fractional ideal I of A is said to be invertible if there exists I ′ a fractional ideal of A
such that II ′ = A.

Theorem B.4.4. — [Sam70, Théorème 2 section 3.4] Let A be a Dedekind ring. Every maximal
ideal of A is invertible.

Theorem B.4.5. — [Sam70, Théorème 3 section 3.4] Let A be a Dedekind ring and let P be
the set of non-zero prime ideals of A. Then

• Every non-zero fractional ideal b of A can be uniquely written

b =
∏
p∈P

pnp(b)

where for any p ∈ P , np(b) ∈ Z and is equal to zero for almost all p ∈ P .
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• The monoid of non-zero fractional ideals of A is a group.

Definition B.4.6. — Let A be a commutative ring and p be a prime ideal of A. We denote

Ap = (A\p)−1A

the localised of A in p.

Corollary B.4.7. — Let A be a Dedekind ring, K be its fraction field and p be a non-zero
prime ideal of A. Then Ap is a valuation ring of K.

Proof. –Let l ∈ K\Ap. We want to show that l−1 ∈ Ap. Let

I = {a ∈ A|al ∈ A}.

I is an ideal of A and since l /∈ Ap, we know that I ⊂ p. Let nI = max{n ∈ N|I ⊂ pn}. There
exists an ideal I ′ not contained in p such that I = pnI I ′. By definition of I, lI is also an ideal
of A. Let nl = max{n ∈ N|lI ⊂ pn}. There exists an ideal I ′′ not contained in p such that
lI = pnlI ′′.
But then, if nl 6= 0 we see that that

l(Ip−1) = (lI)p−1

= pnl−1I ′′ ⊂ A

It follows that Ip−1 ⊂ I by definition but this is absurd. Thus nl = 0 and there exists s ∈ lI\p.
Let a ∈ A be such that al = s. Then l−1 = a

s ∈ Ap.

Corollary B.4.8. — Let A be a Dedekind ring which is not a field, K be its fraction field and
A ⊂ O be a valuation ring of K of maximal ideal p. Then O = AA∩p.

Proof. Since A ⊂ O, A ∩ p is an ideal of A. Furthermore, since p is a prime ideal of O, A ∩ p is
a prime ideal of A. Finally let π be a nonzero element of p. Since K is the fraction field of A,
there exists a ∈ A\{0} such that aπ ∈ A and since A ⊂ O, aπ ∈ p.
Thus A ∩ p 6= {0}. It follows that AA∩p is a valuation ring of K. It is also the smallest ring
containing A in which all the element f ∈ A\p are invertible. O is also a ring containing A

in which all the elements of A\p are invertible. Thus AA∩p ⊂ O. Since valuation rings are
maximal, we have the result.

Proposition B.4.9. — Let A be a Dedekind ring, K its fraction field and L a finite separable
extension of K. We denote A′ the integral closure of A in L. The following map is a bijection:

P : Spec(A′)\{0} → {O ⊂ L|O is a valuation ring of L and A ⊂ O}
p 7→ Ap

Proof. We know from Corollary B.4.7 that P is well defined. It is also injective. Indeed if p and
p′ are two non zero prime ideals of A′ such that Ap = Ap′ then p is included in the set of non
invertible elements of Ap′ , so it is included in p′. By symmetry, we conclude that p = p′.

Let now O be a valuation ring of L containing A. We know that L = Frac(A′). Since O is
integrally closed it must contain A′. But then we know that O = A′

A′∩p where p is the maximal
ideal of O.
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We now fix a perfect field k and a F finite separable extension of k(x). F/k is an algebraic
function field.
Let O′ be the integral closure of k[x] in F and O′

∞ be the integral closure of the ring

O∞ =
{
P

Q
∈ k(x)|P,Q ∈ k[x] and deg(P ) ⩽ deg(Q)

}
.

Corollary B.4.10. — There is a canonical bijection:

P : (Spec(O′)\{0}) t (Spec(O′
∞)\{0})→ PF .

Furthermore if I′ denote the group of nonzero fraction ideal of O′ and I′
∞ the one of O′

∞ then
we have a commutative group isomorphism

Div : I′ × I′
∞ → Div(F ).

Proof. This is a direct consequence of the previous proposition applied to A = k[x] or A = O∞
because we know that any places P of F either lie over an irreducible polynomial of k[x], in
which case its valuation ring contains k[x], or lie over the place at infinity, in which case its
valuation ring contains O∞.

The representation of places as nonzero prime ideals of either O′ or O′
∞ is for example the

one used in the symbolic computation software Sagemath.

Computing the divisor (f) when f is an element of F is the same as factoring the fractional
ideal generated by f (meaning, as a product of nonzero prime ideals or their inverses) in both
O′ and O′

∞.

For this representation to be effective, one needs in particular to be able to compute O′ and
O′

∞

Theorem B.4.11. — [Abe20] If F = k(x)[y]/f(x,y) where f(x, y) ∈ k[x, y] verifies degx f = dx
and degy f = dy, then O′ and O′

∞ can be computed in polynomial time in dx and dy.

Remark B.4.12. — The results from [Abe20] are actually much more precise as the author does
a full complexity analysis on three different algorithm. The complexity of the best algorithm is
given in [Abe20, Theorem 3]. However, this algorithm still lacks a proper implementation.

B.4.2 The different

We keep the notations of the previous section.

Definition B.4.13. — [Ser04, Section III.3]

• Let A be a Dedekind ring, K be its fraction field and L be a finite separable extension
of K. Let B be the integral closure of A in L. We call the codifferent of B over A the
fractional ideal of B:

I = {y ∈ L|∀x ∈ B,TrL/K(xy) ∈ A}.

• The different of B over A, denoted DB/A, is the inverse ideal of the codifferent of B over
A. It is an ideal of B.
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• We define the different divisor of F as

Diff(F ) = Div(DO′/k[x]) + Div(DO′
∞/O∞).

Theorem B.4.14. — The different is computable in polynomial time.

Proposition B.4.15. — [Ser04, Section III.6 Corollary 2] Let A be a Dedekind ring, K be its
fraction field and L be a finite separable extension of K. Let B be the integral closure of A in
L and let a ∈ B, of minimal polynomial f with coefficients in A of degree [L : K].

Then f ′(a)B ⊂ DA/B and we have an equality if and only if B = A[a].

Corollary B.4.16. — Let F = k(x)[a] and suppose that a is integral over k[x] of minimal
polynomial f(x, y) ∈ k[x, y]. Then for any place P which is not at infinity,

νP(Diff(F )) ⩽ νP(∂yf(x, a)).

Proposition B.4.17. — Remember that F is a finite separable extension of k(x). For any
place P ∈ PF , let tP be a prime element of P.

Diff(F ) = 2(x)− −
∑

P∈PF

νP(t′P)P.

Proof. The proof is inspired by that of [Ser04, Proposition 13]. We refer to it for the missing
details.

Let P′ ∈ PF and tP′ be a prime element of P′. We want to show that

νP(t′P) = −νP′(Diff(F ))

if P′ is not a place at infinity, and

νP′(t′P′) = 2e(P′)− νP′(Diff(F ))

otherwise.
Let P ∈ Pk(x) be an irreducible polynomial such that P|P . Let OP′ and OP be the valuation

rings associated to P et P respectively.
By localising and completing, we can suppose that OP′ and OP are complete discrete valua-

tion rings. Furthermore we can suppose that P′|P is totally ramified [Ser04, Section III.5 Corol-
lary 3]. Let e = e(P′|P). There exists an Eisenstein polynomial

f(x, y) = Xe +
e−1∑
i=0

ai(x)yi.

Such that ai ∈ P2 for i ∈ J1; e− 1K and a0 ∈ P\P2 [Ser04, Section I.6 Proposition 18].

Furthermore, since OP′ = OP[tP′ ] we know that νP′(Diff(F )) = νP′(∂yf(x, tP′)).

However we know that
t′P′ = −∂xf(x, tP′)

∂yf(x, tP′)
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Furthermore,

∂xf(x, tP′) =
e−1∑
i=0

a′
i(x)tiP′ .

Since a0 ∈ P\P2 and all the other ai are in P2 it follows that νPfrak′(a′
0) < νP′(a′

it
i
P′) for i > 0

and
νP′(∂xf(x, tP′) = νP′(a′

0).

It follows that

νP′(t′P′) = νP′(a′
0)− νP′(∂yf(x, tP′)) = νP′(a′

0)− νP′(Diff(F )).

Now since νP(a0) = 1, if P′ is not a place at infinity then νP′(a0) = 0 and if P is a place at
infinity, νP′(a0) = 2e which yields the result.

Proposition B.4.18. — [Sti08, Corollary 3.4.14] Let g denote the genus of F .

deg(Diff(F )− 2(x)−) = 2g − 2.
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Abstract:

The study of linear differential operators is an important part of the algebraic study of differential
equations. Rings of linear differential operators share many properties with rings of polynomials,
but the noncommutative aspect of the multiplication makes the design of factorisation algorithms
harder. This thesis focuses mainly on developing an algorithm computing an irreducible right
factor of a given linear differential operator with coefficients in an algebraic function field of
positive characteristic p. The situation differs greatly from the same problem in characteristic
0 because algebraic function fields of characteristic p are finite dimensional over their field of
constants. This simple fact provides the ring of differential operators in characteristic p with an
additional structure of Azumaya algebra, which gives additional tools to attack our problem.

A first step in this direction is the computation of the p-curvature, a classical invariant of
primary importance attached to differential operations in characteristic p. The first important
result of this thesis is an algorithm computing, for a given operator L in characteristic 0 and an
integer N , all the characteristic polynomials of the p-curvatures of its reduction modulo p, for
all primes p ⩽ N .

The second part of the thesis is dedicated to the factorisation itself. We use the Azumaya
algebra structure to show that finding irreducible right irreducible factors reduces to solving the
p-Riccati equation

f (p−1) + fp = ap

in K[a], where a is a suitable algebraic function over K. This observation leads to two impor-
tant algorithms. The first one is an application of the global-local principle which eventually
provides a polynomial time irreducibility test for differential operators. The second one is an
actual resolution algorithm for the p-Riccati equation that uses tools of algebraic geometry for
curves such as Riemann-Roch spaces and Picard group. We perform a complexity analysis of
this algorithm, and show that the p-Riccati equation always admits a solution whose size is
comparable to that of the parameter a. As a byproduct, this algorithm makes the factorisation
of central operators possible (a situation which was often left aside) and lower the size of right
factors of general operators by a factor p compared to previous works. We finally deduce a full
factorisation algorithm for differential operators of positive characteristic.
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Résumé :

L’étude des opérateurs différentiels linéaires est une partie importante de l’étude algébrique
des équations différentielles. Les anneaux d’opérateurs différentiels linéaires partagent de nom-
breuses propriétés avec les anneaux de polynômes, mais le caractère non commutatif de la
multiplication rend la conception d’algorithmes de factorisation plus compliquée. L’objet de
cette thèse est le développement d’un algorithme calculant un facteur droit irréductible d’un
opérateur différentiel linéaire donné dont les coefficients sont des éléments d’un corps de fonc-
tions algébriques de caractéristique p. La situation diffère grandement du problème analogue en
caractéristique 0 car les corps de fonctions algébriques de caractéristique positive sont de dimen-
sion finie sur leur corps des constantes. De ceci découle une structure additionnelle d’algèbre
d’Azumaya qui fournit des outils supplémentaires pour attaquer le problème de la factorisation.

Une première étape est le calcul de la p-courbure, un invariant classique de première impor-
tance des opérateurs différentiels en caractéristique p. Le premier résultat significatif de cette
thèse est un algorithme calculant, pour un opérateur différentiel L en caractéristique 0 et un
entier N ∈ N∗ donnés, tous les polynômes caractéristiques des p-courbures des réductions de L
modulo p, pour tous les nombres premiers p ⩽ N .

La deuxième partie de la thèse est consacrée à la factorisation en elle-même. Nous utilisons la
structure d’algèbre d’Azumaya pour montrer que la recherche de facteurs irréductibles à droite
revient à la résolution de l’équation de p-Riccati

f (p−1) + fp = ap

dans K[a], où a est une certaine fonction algébrique sur K.
Cette observation nous permet de développer deux algorithmes importants. Le premier est

une application du principe global-local conduisant à un test d’irréductibilité de complexité
polynomiale pour les opérateurs différentiels. Le second est un algorithme de résolution de
l’équation de p-Riccati utilisant plusieurs outils de la géométrie algébriques pour les courbes,
dont les espaces de Riemann-Roch et les groupes de Picard. Nous effectuons une analyse de
complexité approfondie de cet algorithme et montrons que l’équation de p-Riccati admet toujours
une solution dont la taille est comparable à celle du paramètre a. Cet algorithme rend en
particulier possible la factorisation des opérateurs centraux (un cas qui a souvent été laissée de
côté par le passé) et diminue la taille des facteurs droits irréductibles d’opérateurs différentiels
linéaires d’un facteur p en comparaison des travaux précédents.

On en déduit finalement un algorithme de factorisation complet pour les opérateurs différen-
tiels linéaires de caractéristique positive.


