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1 About this manuscript

This manuscript describes my recent work related to the Lagrangian modeling of turbu-
lent flows, to the modeling of particle motion in turbulent flows and the generation of
turbulence induced by a dispersed phase, and finally on flows involving a liquid metal
with non-conducting particles subjected to an alternating magnetic field. It is clear that
the content of the manuscript is not as general as the title might suggest, and this title
rather gives the keywords associated with the work presented in this dissertation.
In the first chapter, after an introduction on energy cascade of turbulent flow and inter-
mittency, I present recent development on the statistical analysis of the material derivative
of the velocity in isotropic turbulence and on the stochastic modeling of the fluid particles
dynamics. Obtaining numerical solutions of the Navier-Stokes equation with supercom-
puters, I highlight a relationship between the force on a fluid particle (the acceleration),
the kinetic energy and the dissipated power. This relation connects the idea of the energy
cascade, and its intrinsic multi-scale character to the dynamics of the tracer in turbulent
flows. By relying on this relation, I propose a vectorial stochastic model that effectively
describes the interaction of fluid particles with all other fluid particles of the flow. This
model presents some of the remarkable features of the fluid particle dynamics, in par-
ticular the occurrence of extreme events, the temporal asymmetry and the emergence of
anomalous scaling law.
The second chapter starts with a discussion on the Euler-Lagrange approach used to
model dispersed phase flows and on the coarse graining implied by this framework. Then,
statistical descriptions of the acceleration and hydrodynamic forces of particles that are
heavy or light, small or large is presented. Subsequently, we consider stochastic modeling
of the high frequency part of the dynamics of these particles, as well as its coupling with
the large eddy simulation approaches. Finally, the last part of the chapter focus on the
numerical modeling of the turbulent agitation induced by the rising of a swarm of bubbles,
and to the analysis of the specific properties of this flow resulting from the interactions
between wakes.
In the last chapter, we discuss our work on the magnetohydrodynamic of liquid metal
subjected to an alternating magnetic field. In the first part, I present the experimental
setup and the numerical simulations developed to study thermo-magneto-convection flows
induced by the Joule heating and the Laplace force. The second part focus on a modeling
approach, confronted to an experimental approach, of the perturbation of an alternating
magnetic field caused by the presence of bubbles in a liquid metal.

The common thread between these three chapters is the focus on the modeling of the
physical phenomena. I find that the 11 successive states of lithography "Le Taureau",
realized by Pablo Picasso in 1945, reproduced in the figure 1.1, illustrates quite well the
process of proposing an adequate model, as simple and smart as possible.1 How many

1Frederic Risso indicated to me that Christophe Clanet had used this same artwork to discuss the role of
modeling during a plenary Lecture at the international conference on multiphase flows and Wladimir
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Figure 1.1: Pablo Picasso, The 11 successive states of lithography "Le Taureau", 1945.

pencil strokes are needed to instantly recognize a bull or how many degrees of freedom
are needed to describe a system? The answer obviously depends on the level of detail one
want to reproduce: Is it an animal? Is it a cow or a bull? What is the color of the animal’s
coat? Is it wounded?. . . I reproduce an excerpt from Fernand Mourlot’s text, "Gravés dans
ma mémoire", Ed. Robert Laffont, 1979, which details Picasso’s creative process for his
engraving of the Bull, and which underlies the necessity to well grasp the physical behavior
of the system under study to propose an adequate model: "L’opération a duré quinze
jours. Le 5 décembre 1945, un mois après son arrivée rue de Chabrol, Picasso a dessiné
au lavis un taureau. Un taureau magnifique, très bien fait, gentil même. Et puis on lui
a donné l’épreuve; nous en avons tiré à peine deux ou trois, ce qui fait que ce taureau
est extrêmement rare. Une semaine après, il revient et il demande une nouvelle pierre;
il reprend son taureau au lavis et à la plume; il recommence le 18. Troisième état, le
taureau est repris au grattage à plat, puis à la plume en accentuant fortement les volumes;
le taureau est devenu un animal terrible avec des cornes et des yeux effroyables. Bon, ça
n’allait pas, Picasso éxécute un quatrième état, le 22 décembre, et un cinquième, le 24; à
chaque fois il simplifie le dessin qui devient de plus en plus géomètrique avec des aplats
noirs.
Sixième et septième états, les 26 et 28 décembre, puis, après le retour de Picasso, quatre
autres états, onze en tout, les 5, 10 et 17 janvier. Le taureau est réduit à sa plus simple
expression; quelques traits d’une maîtrise exceptionnelle qui symbolisent comme un jeu de
signes ce malheureux taureau avec sa petite tête d’épingle et ses cornes ridicules en forme
d’antenne. Les ouvriers se désolaient d’avoir vu un taureau aussi magnifique transformé

Bergez also reported to me that Lydéric Bocquet had also shown it to illustrate the reduction of
complexity during his inaugural lesson at the Collège de France. Although it is not as original as I
thought, I left it because I think it has its place here.
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en une espèce de fourmi. . .
. . . C’est Célestin qui a trouvé le mot de la fin : "Picasso, il a fini par là où, normalement,
il aurait dû commencer." C’est vrai, seulement pour arriver à son taureau d’une seule
ligne, il a fallu qu’il passe par tous les taureaux précédents. Et quand on voit son onzième
taureau on ne peut s’imaginer le travail qu’il lui a demandé".
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2 Turbulence

Contents

2.1 Universality, cascade and intermittency . . . . . . . . . . . . . 9
2.2 Lagrangian dynamics . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Scaling laws of the acceleration . . . . . . . . . . . . . . . . . 20

2.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Conditional statistics given the dissipation and the kinetic energy 20
2.3.3 Similarity of the conditional statistics given the dissipation . . . 23
2.3.4 Reynolds number dependence of the unconditional acceleration

variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.5 Multiplicative cascade for the acceleration . . . . . . . . . . . . 28

2.4 Stochastic modeling of the fluid-particle dynamics . . . . . . 30
2.4.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Parameters and numerical approach . . . . . . . . . . . . . . . 35
2.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Discussion and perspectives . . . . . . . . . . . . . . . . . . . . 44

2.1 Universality, cascade and intermittency

Turbulence is fascinating with all its eddies and vortices forming, deforming and dancing
together. As beautiful is the theoretical analysis of turbulent flows, looking for order
and coherence in this apparently erratic motion. Everything indicates that the spatio-
temporal evolution of turbulent flows can be described by the Navier-Stokes equation, and
in particular the numerical simulations which, in this context, are called “direct numerical
simulation” (or DNS). Nevertheless, bringing into play nonlinear and nonlocal interactions,
it still resists complete analytical method, despite having been proposed 200 years ago
[190]. So understanding all the details of turbulent flow remains, to say the least, a
formidable problem. The situation bears similarity with critical phenomena, in which the
interactions among the large numbers of degrees of freedom induce collective organization
at macroscopic scales that cannot be figured out from the behavior of individual particles.
The connection between the small-scale velocity fluctuations in turbulence and the large-
scale flow properties implies scaling relations. The cornerstone of the statistical description
of turbulent flows was advanced in the 40’s by Kolmogorov proposing a universal picture
of turbulence based on the idea of a cascade of kinetic energy and its dissipation into
heat. Completing the Kolmogorov statistical description approach and in particular its
bridging with the Navier-Stokes equations, remains one of the great challenges in the study
of turbulence.
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Cascade

Following the idea of the energy cascade due to Richardson [221], Taylor [250, 251] and
Kolmogorov [126, 125, 124], energy is injected at some length scale L where it causes
vortices of size L. As these large vortices do not dissipate energy, structures on smaller
scales must form. It is convenient to imagine these new length scales appearing as the
large vortices break up into smaller ones, giving rise to eddies of all possible sizes, at least
in an interval between L and η, the dissipative scale. The vortices at a given scale ℓ are
supplied with energy by the larger ones, at the same time they lose energy by disintegrating
themselves, after a time τℓ into smaller vortices. The key assumption here is that the
viscosity is not relevant for this process, and so if no dissipation occurs the energy transfer
rate (per unit of mass) εℓ is constant across scales in a steady regime. Assuming that the
eddies of size ℓ are characterized be a velocity uℓ, we find scale invariance in the energy
cascade:

u2
ℓ

τℓ
= u3

ℓ

ℓ
= εℓ = cst = ⟨ε⟩ . (2.1)

This inertial cascade takes place in a range of scales in which the viscosity has negligible
effect, that is to say as long as Reℓ ≫ 1, where Reℓ = uℓℓ/ν the Reynolds number of
the flow at scale ℓ. From this Reynolds number, one defines the dissipative length scale
η = ν3/4⟨ε⟩−1/4 which correspond to Reη = 1, corresponding to the end of the inviscid
cascade. And by conservation, in the original Kolmogorov theory, the characteristic energy
transfer rate is taken to be the average rate of dissipation of kinetic energy into heat ⟨ε⟩.
This cascade scaling finds a remarkable confirmation in the “4/5 law”, one of the few
exact results in turbulence, which relates the third moment of the velocity increments
(δru = u(x + r) − u(x)) to the average dissipation rate [125]: ⟨(δru)3⟩ = −4

5⟨ε⟩r + . . ..
For the second moment of the velocity increments, Kolmogorov also proposed an empirical
relation derived from similarity hypotheses [126]. From dimensional analysis we have

⟨(δru)2⟩ = fct(r, ν, ⟨ε⟩, L, . . .) = (⟨ε⟩r)2/3 Φ(r/L, r/η) . (2.2)

The first hypothesis proposed that for high enough Reynolds numbers, turbulence is
universal. For r ≪ L, it is assumed that the velocity increment statistics are inde-
pendent of the specific forcing mechanism which can be expressed mathematically as
limr/L→0 Φ(r/L, r/η) = ϕ(r/η). And in the second hypothesis, it is proposed that for r ≫
η velocity increment statistics become independent of the viscosity (limr/η→∞ ϕ(r/η) =
cst). With these two hypotheses, which correspond to a complete similarity hypothesis
using the Barenblatt terms [14], the variance of the velocity increments scales like

⟨(δru)2⟩ ∼ (⟨ε⟩r)2/3 (2.3)

for η ≪ r ≪ L. Although this relation is not derived from the Navier-Stokes equation, it
received many experimental confirmations.

Intermittency

Actually with similar arguments, one could generalize the previous scaling relation (2.3) to
higher moments of the velocity increment and obtain: ⟨|δru|p⟩ ∼ (⟨ε⟩r)p/3 ∼ ⟨(δru)2⟩p/2.
Such a scaling relation would imply that δru presents a Gaussian distribution with variance
σ2 ∼ (⟨ε⟩r)2/3. The problem is that although for very large separation r, δru presents a
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Gaussian distribution, experiments and numerical simulations have reported systematic
deviations from the Gaussian distribution when r is reduced [7, 49, 111]. This is known
as intermittency, because on small scales turbulent flows present weak fluctuations with
intermittent bursts of much larger fluctuations. And indicates that the large scales of the
flow keep influencing small-scale motion of the flow, or equivalently, that the structure of
the flow on small scales presents a Reynolds number dependence.
This observation is directly related to the Landau’s remark [138], which pointed out that
the 1941 picture of a universal inertial range depending only on the mean energy dissipation
rate is flawed, because the dissipation rate presents very large, intermittent, spatiotemporal
fluctuations. Therefore, the global average of ε is not the relevant scale, since locally it
can take values hundreds of times smaller or larger than ⟨ε⟩.
These remarks led Kolmogorov and Oboukhov to the refined similarity hypothesis by
introducing a local scale for the energy transfer rate based on a locally averaged dissipation
rate on a sphere of radius r [128, 192]

εr(x) = 3
4πr3

∫
|h|<r

ε(x + h)dh . (2.4)

Keeping the idea of the central role of the transfer rate, a local velocity scale is derived
vr = (εrr)1/3 as well as a local Reynolds number Rer = vrr/ν.
Using these local scales, they proposed local similarity hypothesis, that states that δru/vr

presents universal distribution, only dependent on Rer. Further, it was proposed that for
Rer ≫ 1 the distribution of δru/vr does not dependent on Rer. This translates in the
following scaling relation for the structure function when Rer ≫ 1:

⟨(δru)p⟩ ∼ rp/3⟨εp/3
r ⟩ . (2.5)

Further assuming a log-normal distribution of εr, with parameters that are scale-dependent,
for η ≪ r ≪ L the structure function can be expressed as:

⟨(δru)p⟩ = cp(r⟨ε⟩)p/3(L/r)αp (2.6)

where cp is a prefactor that depends on p and possibly on the large-scale features of
the flow, and αp is called intermittency exponent or anomalous exponent by analogy
with so-called critical points in phase transitions [90, 73, 16]. The later characterizes the
absence of scale separation that manifests as an influence of the large scales on the small
ones through the intermittency. This refined scaling of the velocity increments and the
intermittency exponent has been studied in much detail, in particular within the framework
of multifractal analysis [129, 79, 188, 49, 83, 262, 243].
With these refined hypotheses, the structure of the velocity field loses it universal behavior
as it depends on the large scales through the long-range correlation of ε which is set
by the specific forcing mechanism. However, in this view, what remains universal is
the cascade mechanism itself, which, as fragmentation processes, presents scale-to-scale
transformations with local similarities [51, 50, 48, 83, 37, 93, 235].
To summarize, the small-scale quantities, typically the velocity derivatives, present a
Reynolds number dependence1. They primarily depend on the local dissipation rate whose
statistics depend on the Reynolds number through the intermittency of the cascade (the

1Taking r = η in (2.6) we have ⟨(∂xux)p⟩ ≈ ⟨(δηu)p/ηp⟩ ≈ cp(⟨ε⟩/ν)p/2Re3αp/4 with L/η = Re3/4.
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depth of the cascade varies like ln Reλ, as discussed in the next subsection). This scal-
ing theory has been proposed in an Eulerian framework as it focuses on the length scale
and the question of the dynamics (time evolution) is not a central aspect of this descrip-
tion. Conversely, the Lagrangian description of the turbulence naturally focuses on the
dynamics and could be a bridge between Navier-Stokes theory and cascade scaling. More
specifically, the acceleration of fluid particles (i.e. the material derivative of the velocity)
is classically considered as a small-scale quantity [178, §21.5], meaning that it is deter-
mined by the dissipative scales of the turbulence. Indeed, it is intimately linked to the
dissipation rate of turbulence. However, various experimental and numerical works have
also reported its dependence on the kinetic energy (a quantity carried by the large scales).
This is generally attributed to long-range correlations, or intermittency, of the dissipation
rate, as discussed above. Bellow, in sections 2.2-2.3, we show that in addition to this
intermittency effect, there is a direct effect of the large scales of the flow structure on the
acceleration. This questions the pertinence of considering the acceleration as a small-scale
quantity only, and open the possibility of modeling the dynamics of a tracer in a turbulent
flow as presented in section 2.4.
Before presenting this aspect of the Lagrangian dynamics, we briefly present the multi-
plicative cascade model for the energy transfers rate, and the stochastic modeling of the
dissipation rate in the Lagrangian framework, which has been proposed consistently with
the cascade picture. Note that the reminder of this chapter is largely based on the paper
[274] published last year, with just minor additions and corrections2.

Dissipation as multiplicative cascade process

The image of the energy cascade is naturally associated with multiplicative processes
[191, 270, 127, 178, 157, 25, 80]. Such a model proposes to express the locally averaged
dissipation εn over a volume of size ℓ = Lλn, with L the large-scale of the flow and λ < 1,
as:

εn = ε0
ε1
ε0

. . .
εn

εn−1
= ε0

n∏
i=1

ξi . (2.7)

Assuming that ξi = εi/εi−1 are independent positive random numbers with identical
distribution across scales we write:

ln εn

ε0
=

n∑
i=1

ln ξi . (2.8)

Therefore according to the central limit theorem the term on the right tends to a normal
distribution with parameters µ = nµξ and σ2 = nσ2

ξ . The parameters µξ and σ2
ξ appear

as fundamental unknowns3. Setting ℓ = η (i.e. n = ln(η/L)/ ln λ ∼ ln Reλ) we obtain a
model for the local dissipation rate. The log-normal distribution for ε has been confirmed
for example by DNS of [271] or experiments [188] and is shown in figure 2.1.
Moreover the variance of the logarithm of the local dissipation rate is then given by
σ2 = σξ

ln λ
ln η/L = A + B ln Reλ as predicted by Kolmogorov and Oboukhov [128, 192].

2Actually it is the preparation of this chapter of the memoir that initiated the work published in Ref.
[274].

3Nevertheless, they are related by this relation µξ = −σ2
ξ /2 obtained from the moments of a log-normal

variable in order to guarantee that the average energy flux is conserved throughout the cascade.
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Figure 2.1: PDF of pseudodissipation (solid line) (left) and log of pseudodissipation (solid
line) (right) centered and normalized by µ = log(ε/⟨ε⟩) = −σ2/2 and σ2 = ⟨log2 ε⟩ −
⟨log ε⟩2 for Reλ = 50, 90, 150, 230 and 380 from orange to black. Comparison with the
actual dissipation for Reλ = 380 in black dashed line and with exp(−x2/2)/

√
2π in gray

dashed lines on the right panel.

Such evolution for σ2 has been also confirmed by the DNS of Ref. [271] showing that σ2 ≈
3/8 ln Reλ/10. Note that alternative Reynolds number dependence have been proposedin
Ref. [49].

Figure 2.2: Schematic representation of multiplicative cascades (image from gei-
dav.wordpress.com)

Implicitly the discrete model presented above assumes that the scale ratio λ is large enough,
so that successive values of the scaling factor ξi can be considered as statistically indepen-
dent. A continuous description of the evolution of energy transfer rate εr across scales,
i.e. for infinitesimal λ, by a Markovian stochastic process has been proposed in Ref. [189],
or similarly for the evolution of the velocity increments through scale r in Ref. [81].
Such a multiplicative process, that assumed that the coupling is local in scale, also implies
a logarithmic evolution of the spatial correlation of the dissipation rate as explained by
Mandelbrot [156]. To show that we consider the transfer rate at two points A and B, εA

n

and εB
n , both defined on the same scale n. The points A and B are separated by a distance

r (with r in the inertial range L > r > η) from each other and we note k = ln(r/L)/ ln λ,
then 0 < k < n. Clearly, as illustrated in the figure 2.2, the greater the distance between
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the two points, the larger the scale of their common root in the cascade:

εA
n = εAB

0
εAB

1
εAB

0
. . .

εAB
k

εAB
k−1

εA
k+1
εA

k

. . .
εA

n

εA
n−1

(2.9)

εB
n = εAB

0
εAB

1
εAB

0
. . .

εAB
k

εAB
k−1

εB
k+1
εB

k

. . .
εB

n

εB
n−1

. (2.10)

In the two previous equations, we have distinguished by the exponents A and B the
variables which are specific to points A and B and by AB those which are common. This
can be expressed as:

ln εA
n

ε0
=

k∑
i=1

ln ξAB
i +

n∑
i=k+1

ln ξA
i (2.11)

ln εB
n

ε0
=

k∑
i=1

ln ξAB
i +

n∑
i=k+1

ln ξB
i . (2.12)

The correlation between ln εA
n and ln εB

n is defined as

Rln ε(r) = ⟨(ln εA
n

ε0
− µ)(ln εB

n

ε0
− µ)⟩ = ⟨ln εA

n

ε∗
ln εB

n

ε∗
⟩ , (2.13)

where we noted ε∗ = ε0eµ. Introducing similarly ξ∗ = eµχ and ξ′ = ξ/ξ∗ we express the
correlation as:

Rln ε = ⟨
n∑

i=1
(ln ξA

i − µξ)
n∑

j=1
(ln ξB

i − µξ)⟩ = ⟨
n∑

i=1
ln ξ′ A

i

n∑
j=1

ln ξ′ B
j ⟩

= ⟨
 k∑

i=1
ln ξ′ AB

i +
n∑

i=k+1
ln ξ′ A

i

 k∑
j=1

ln ξ′ AB
j +

n∑
j=k+1

ln ξ′ B
j

⟩

=
k∑

i=1

k∑
j=1

δijσ2
ξ = kσ2

ξ . (2.14)

To obtain this results we used the hypothesis that within the same branch, the events at
a given scale are independent of those at another scale, ⟨ln ξ′ AB

i ln ξ′ AB
j ⟩ = δijσ2

ξ , as well
as the absence of correlation between branches A and B: ⟨ln ξ′ A

i ln ξ′ B
j ⟩ = 0. This gives a

logarithmic evolution of the correlation coefficient ρln ε = Rln ε/σ2, in the range η < r < L:

ρln ε =
⟨ln εA

n

ε∗
ln εB

n

ε∗
⟩

⟨ln2 εn

ε∗
⟩

= k

n
= ln L/r

ln L/η
= 1 − ln r/η

ln L/η
. (2.15)

Stochastic modeling of the dissipation

Although not trivial, this result can be transposed for the temporal correlation along a
particle path [240, 107, 169, 35]. The logarithmic behavior of the correlation is confirmed
by DNS, as it can be seen in Ref. [146] or in figure 2.3, where the evolution of the
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Figure 2.3: Autocorrelation of the log of the dissipation rate along the path of fluid
particles from the database of Refs. [21, 140] at Reλ = 420, comparison with ρln ε =
1 − ln(τ/τη)/ ln(τε/τη).

Lagrangian correlation of the logarithm of the dissipation is plotted from the DNS data
of [21, 140].
It has been proposed to model the dissipation rate as a stochastic multiplicative process.
Such a process can be generically expressed as :

dε = εΠdt + εΣdW (2.16)

with dW the increment of the Wiener process (⟨dW ⟩ = 0 and ⟨dW 2⟩ = dt) and where Π
and Σ are to be determined.
Considering that ε follows a log-normal distribution with parameter σ2 and µ = −σ2/2,
we define the standard normal variable χ (Gaussian random variable with zero mean and
unit variance) as:

ε

⟨ε⟩ = exp
(
σχ − σ2/2

)
. (2.17)

A stochastic process for χ has to be given in order to obtain the stochastic process for ε,
via the Ito transformation.
Pope and Chen [203] proposed to obtain χ from an Orstein-Uhnlebbeck process with a
characteristic time τε:

dχ = − χ

τε
dt +

√
2
τε

dW . (2.18)

According to the Ito formula, this gives for Π and Σ :

Π = −
(
ln ε/⟨ε⟩ − σ2/2

)
/τε , (2.19)

Σ =
√

2σ2/τε . (2.20)

This process gives, as expected, a log-normal distribution for ε (normal distribution for
χ) as well as an exponential decrease of the correlation of ln ε with a characteristic time
τε. This exponential behavior is not consistent with the multiplicative cascade model as
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discussed above. It rather corresponds to a direct energy transfer from large to small-
scales.
To ensure a logarithmic decorrelation of the dissipation, Chevillard [54] proposed to adapt
the Gaussian multiplicative chaos introduced by Mandelbrot [156]. This leads to a multi-
fractal model in which the increment of the Wiener process in Eq. (2.18) is replaced by a
fractional Gaussian noise:

dχ = − χ

τε
dt + 1

ΛdW 0
τc

, (2.21)

where, dW 0
τc

is formally a fractional Gaussian noise with a 0 Hurst exponent, regularized
at a timescale τc, and Λ is a normalization factor ensuring unit variance for χ. The value
of Λ is dependent on the specific regularization of dW 0

τc
. As explained in Ref. [54], this

process can be reexpressed as

dχ(t) =
(

− χ

τε
+ Γ

Λ

)
dt + 1√

Λ2τc

dW (2.22)

with dW the increments of a standard Wiener process and Γ corresponds to a convolution
of the Wiener increments:

Γ = −1
2

∫ t

−∞
(t − s + τc)−3/2dW (s) (2.23)

where dW (s) are the increments of the same realization of the Wiener process as in Eq.
(2.22). In Eq. (2.23), the regularization time τc prevents the divergence of the kernel when
s → t. The normalization factor Λ is estimated as Λ = ⟨X2⟩ where X obey the stochastic
Eq. (2.22) in which Λ has been set to 1.
The stochastic process (2.22) gives a logarithmic correlation for χ: ⟨χ(t)χ(t − s)⟩ ∼ ln τε

s
for τc ≪ s ≪ τε, as illustrated in the Fig. 2.4.

10-4 10-2 100 102

τ/τL
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2

Figure 2.4: Correlation of χ for various values of τε/τc.

With the Ito transformation, we obtain the process for ε from (2.22). This gives for Π
and Σ :

Π =
(

− ln ε

⟨ε⟩ + σ2

2Λ2

(
τε

τc
− Λ2

)
+ σ

ΛΓτε

)
/τε , (2.24)

Σ =
√

σ2

Λ2τc
. (2.25)
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2.2 Lagrangian dynamics

With the advances of experimental techniques and the increase in computing power of
the last decades, remarkable features of the dynamics of fluid particles in turbulent flows
have been discovered. Among them, the measurement of the probability distribution of
the acceleration of these tracers has been shown to be clearly non Gaussian with a high
frequency of observing very intense events [134, 264, 181, 180]. Even for moderate Reynolds
numbers, it is relatively common to observe accelerations more than 100 times greater than
their standard deviation. In addition, the components of acceleration and its norm present
very different correlation times, the ratio of these characteristic times increasing with the
Reynolds number [199, 182, 183] showing that the dynamics of the tracers is influenced
by the full spectrum of turbulence scales. On the one hand, the short-time correlation
of the acceleration component is connected to the centripetal forces in intense vorticity
filaments [30, 183]. On the other hand, the acceleration norm has been shown to be directly
correlated with the local dissipation rate of turbulence [217, 271, 106, 31], in accordance
with Kolmogorov’s hypotheses. Nevertheless, various experimental and numerical works
have also reported its dependence on the local kinetic energy [180, 241, 29, 62, 36, 217, 8],
which is generally attributed to nonindependence of the small-scale dynamics from those of
the large-scales. In this view, the Lagrangian acceleration is essentially given by the local
gradients of the velocity, but the latter present correlation with the kinetic energy caused
by direct energy transfers between large- and small-scales in the energy cascade [258]. The
absence of a proper scale separation explains that the Lagrangian correlation functions
present power-laws with anomalous exponents which can be described by the multifractal
formalism [55, 9, 28, 239, 139] as the signature of intermittency and persistence of viscous
effects. To end this list, we mention the asymmetry of the fluctuations of the mechanical
power received or given up by a fluid particle reflecting the temporal irreversibility of its
dynamics [198, 75, 268, 208, 68, 66].
Such a complex phenomenology must be attributed to the collective and dissipative ef-
fects. Indeed according to the Navier-Stokes equation, the acceleration of a fluid particle
is essentially given by the pressure field which is determined by the motion of all the other
particles [65, 259]. Moreover, although the Laplacian term in the Navier-Stokes equation is
of order Re−1 smaller than the pressure gradient term, the viscosity cannot be neglected.
Indeed, as a small force integrated over a long period could be significant, the viscosity
insidiously affects the fluid tracer velocity. Which in turn influences the particle accelera-
tion through modifications of the pressure gradient, and local interactions are intrinsically
inseparable from the nonlocal ones. This is manifested by the persistence of the effect of
the Reynolds number on the acceleration statistics, even for very large Reynolds numbers.
Such a scenario is supported by Refs. [61, 196, 56] who showed that adding some noise to
an inviscid Lagrangian flow causes the irreversibility of the dynamics.
Following the Kolmogorov first hypothesis [128, 126] stating that locally homogenous tur-
bulent flows are universal, it should be possible, in principle, to propose a stochastic
model that reproduces the dynamics of a single fluid particle by effectively accounting
for the interactions with all the other fluid particles. Let us note that the Kolmogorov
first hypothesis received some support from recent studies [249, 143, 37]. To propose such
a stochastic model, our main assumption is to write the increments of the acceleration
vector of a fluid particle as dai = Midt + DijdWj . Both M and D depend on particle
acceleration a and velocity u. The latter is simply given by the kinematic relation of

17



a fluid particle ui =
∫

aidt. It is indeed a necessary condition that a depends on u to
present a restoring effect that can counteract the diffusion in the velocity space and get a
statistically stationary dynamics of the fluid particle. We will propose closed expressions
for M and D from basic considerations using, as a starting point the acceleration statis-
tics conditioned on both the local values of the dissipation rate and the kinetic energy
observed from direct numerical simulations (DNS), which are presented bellow. It will be
shown that introducing a “maximal winding hypothesis” associated with a nondiagonal
diffusion tensor, this simple stochastic model reproduces all the statistical features of the
Lagrangian dynamics presented above, without any adjustable parameter.
Let us first review some previous works on the stochastic modeling of the Lagrangian dy-
namics (see also Ref. [8]). Among the pioneering works, Sawford [237] proposed a scalar
Gaussian model for the acceleration presenting a feedback term proportional to the veloc-
ity. Pope and Chen [203] devised a Langevin-like equation for the velocity coupled with
a log-normal model for the dissipation through the introduction of conditional statistics.
Similarly, Refs. [216, 215, 23] proposed an extension of the Sawford model leading to a
non-Gaussian scalar model for the acceleration. This work was further refined by Ref.
[136] who also advanced a non-Gaussian scalar model for the dynamics by prescribing
an ad hoc shape of the conditional acceleration statistics with the dissipation along with
a linear dependence on the velocity. The model introduced in Ref. [218] describes the
increments of the derivative of the acceleration in a so-called third-order model to bet-
ter account for the Reynolds number dependence on the acceleration statistics. Recently,
Ref. [261] proposed generalization to an infinite number of layers leading to smooth 1D
trajectory along with a multifractal correction to account for intermittency, as introduced
in Refs. [10, 157, 118]. An acceleration vector model has been proposed in Ref. [214] by
imposing an empirical correlation between velocity and acceleration, with additive noise
leading to Gaussian statistics for the acceleration. Likewise, Ref. [202] presented a 3D
Gaussian model, with a linear dependence on the velocity as well as an extension to non-
homogenous flows. To account for intermittency effect, in Refs. [92, 230, 279, 228, 17, 91]
the 3D acceleration vector is given by the product of two independent stochastic processes,
one for the acceleration norm and the other for its orientation. In these models, the ve-
locity feedback on the dynamics is realized by a coupling with a large eddy simulation
framework. To summarize, to our knowledge, a 3D vectorial model for the tracer dynam-
ics that is autonomous and reproducing the essential features of Lagrangian turbulence
(irreversibility, non-Gausianty, multifractality) has not yet been proposed.
The essential building block of previously cited models is the conditional acceleration
statistics. Previous studies have focused on conditional statistics with either the velocity
or the dissipation rate separately. From the extensive analysis of Ref. [271], one can
conclude that the acceleration variance conditioned on the dissipation rate ε presents
a power-law behavior at large values of ε with a Reynolds-number-dependent exponent
reflecting that the small-scale dynamics are not independent of large scales.
Regarding the links between the fluid particle acceleration and their velocity, Biferale
et al. [29] argued that according to the Heisenberg-Yaglom scaling for the acceleration
⟨a2⟩ ∼ a2

η = ⟨ε⟩3/2ν−1/2 = ⟨K⟩9/4L−3/2ν−1/2, with ν the kinematic viscosity, K = 1/2uiui

the kinetic energy and L the characteristic size of the large structures, one should expect
that the variance of the velocity-conditioned acceleration behaves like ⟨a2|K⟩ ∝ K9/4.
Then on the basis of the multifractal formalism, they proposed a very close scaling law,
⟨a2|K⟩ ∼ K2.3. The proposed relation was observed to be in agreement with DNS for
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large velocity, typically |u| > 3σu with σu =
√

2/3⟨K⟩. These events remain very rare
since the PDF of the fluid velocity is Gaussian so the range of validity of the power-law
is, at best, very limited. Alternatively, Sawford et al. [241] propose that ⟨a2

x|ux⟩ ∼ u6
x

based on a mechanism involving vorticity tubes. This scaling law which seems compatible
with the first measurements of the acceleration conditioned on velocity in Ref. [180],
is confirmed neither by the DNS of Ref. [29] nor in a second experimental paper by
Crawford et al. [62] which gave more credit to the K9/4 law. As mentioned above, it has
been proposed that the dependence of the acceleration on the velocity arises through the
dependence of the dissipation rate on the kinetic energy due to intermittency effect [29].
Additionally, Ref. [258] proposed that the dependence on velocity is a consequence of
direct and bidirectional coupling of large and small scales caused by kinematic relations
related to nonlocal interactions.

Here, we study the acceleration statistics conditional on both the kinetic energy and the
dissipation rate. To our knowledge such doubly conditional statistics of the accelera-
tion have never been presented. It will be shown that the variance can be expressed as
⟨a2|ε, K⟩ ∼ exp(αK/⟨K⟩ + γ ln ε/⟨ε⟩). This result is clearly in contrast with the pre-
viously proposed power-law dependence on velocity. It shows that the influence of the
large-scales through the intermittent distribution of the dissipation rate, which manifests
through the Reynolds number dependence of the coefficient γ, is supplemented by an ex-
plicit dependence on the local kinetic energy. This direct dependence on the large-scale
characteristics is of a kinematic nature as it appears independent of the Reynolds number.
The behavior of the doubly conditional acceleration can be interpreted as a consequence of
a scaling symmetry for the fluid-particle acceleration incorporating both the intermittency
and the kinematic effects of the flow structure. We also propose to apply the incomplete
similarity framework introduced by Barenblatt to explain the dependence of the statis-
tics of the acceleration conditioned to the dissipation rate on the Reynolds number and
to account for the intermittency effect. That enables us to provide as well new scaling
relations for the unconditional variance in good agreement with the DNS. Eventually the
doubly conditional statistics of the acceleration which gives a relation between the force,
the energy, and the power will serve as a corner stone to build the stochastic model for the
dynamics of a fluid particle mentioned above. Although such a model could be of inter-
est for practical applications, its construction is relevant to study the specificities of the
Lagrangian description of turbulence by linking the cascade picture to the fluid particles
dynamics on the basis of the behavior of the conditional statistics obtained by the DNS
of the Navier-Stokes equations.

In Sec. 2.3 we present the statistics of the acceleration conditioned on the local values
of the dissipation rate and kinetic energy obtained from DNS. Then we show that the
Reynolds number dependence on the acceleration conditioned on the dissipation rate can
be described using the Barenblatt incomplete similarity. We deduce a new relation for the
unconditional acceleration variances. To end this section, we show that these new results
can be interpreted as a multiplicative cascade for the acceleration with scale dependent
kinematic effects. Then in Sec. 2.4 we give the derivation of the stochastic model for a
single fluid-particle dynamics taking as an initial step the doubly conditional acceleration
variance, and present the outcome of the model for the Reynolds number up to Reλ = 9000,
along with comparison with DNS results when available.
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2.3 Scaling laws of the acceleration

2.3.1 Methodology

We present in this section results concerning the statistics of the acceleration of a fluid
particle. These results have been obtained from five direct numerical simulations (DNS)
of isotropic turbulence in a periodic box with Taylor-scale Reynolds numbers of Reλ = 50,
90, 150, 230 and 380. We used pseudospectral code as detailed in Refs. [275, 279, 144].
The DNS was carried with resolutions of 1283, 2563, 5123, 10243 and 20483 with the
large scale forcing proposed by Ref. [131]. For each simulation we have η/∆x = 1 with
η = ⟨ε⟩−1/4ν3/4 the Kolmogorov length scale and ∆x the grid size. The statistics are
computed from 40 3D fields sampled at roughly each large-eddy-turnover time.
We will show statistics of the acceleration conditioned by the dissipation rate and the
kinetic energy. Note that we consider here the pseudodissipation ε̃ = ν(∂jui)2, which is
the second invariant of the velocity gradient tensor multiply by the viscosity rather than
the dissipation ε = 1

2ν(∂jui + ∂iuj)2. We prefer to show here the statistics of the pseu-
dodissipation to be consistent with the next section, in which we will use the log-normal
distribution hypothesis for the dissipation. Indeed, this property is very well verified for
the pseudodissipation whereas it is only approximate for the dissipation [271]. Neverthe-
less, the statistics presented below have also been computed considering the dissipation,
ε, and no significant differences were observed. To lighten the writing, in the sequel, we
will drop the tilde in the notation of the pseudodissipation, as well, in the text, we will
write dissipation instead of pseudodissipation.

2.3.2 Conditional statistics given the dissipation and the kinetic energy

To illustrate the relationships between acceleration, energy dissipation and kinetic energy,
we show in Fig. 2.5 visualizations of these quantities at the same instant obtained from
our DNS. We notice that ln a2/⟨a2⟩ and ln ε/⟨ε⟩ show a fairly marked correlation although
the acceleration appears more diffuse than dissipation. We also notice that to some extent
the kinetic energy and the dissipation rate appears correlated. In addition, it seems that
some areas of the flow where the kinetic energy is high also correspond to regions of high
acceleration magnitude.
Figure 2.6 presents the variance of the acceleration of a fluid particle conditioned to the
local values of the kinetic energy and the dissipation rate: ⟨a2|ε, K⟩. In Fig. 2.6 (top), the
levels of the logarithm of the conditional variance are shown as a function of K and of ε. We
see that the conditional variance of the acceleration depends on these two quantities and
that the dependence on K seems somewhat similar to that of ln ε. In a more quantitative
way, we show in Fig. 2.6 (left) the variance of the acceleration as a function of ε for
different values of K. We can see that the shape of the curves remains globally unchanged
when K varies and also presents the same shape as the variance conditioned by ε only
as also presented in this figure. Essentially, it is observed that the conditional variance
presents power-law behavior for ε ≫ ⟨ε⟩ with an exponent close to 3/2 and a prefactor
depending on K. As discussed in more detail below, we observe a slight deviation of the
scaling law compared to the acceleration conditioned only by the dissipation.
Figure 2.6 (right) shows the variance of the acceleration as a function of K for different
values of ε. As expected, we find that the variance of the acceleration increases with K.
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Figure 2.5: Visualization of the instantaneous fields of the square of the acceleration, of
the dissipation and of the kinetic energy in a cut y − z of the flow by DNS at Reλ = 380.
Left: ln(a2/ < a2 >); middle: ln(ε/ < ε >) and right: K/ < K >.

We clearly notice an exponential growth of the variance over the whole range of K with a
growth rate α which appears independent of ε:

⟨a2|ε, K⟩ = cεa2
η exp(αK/⟨K⟩) (2.26)

with a2
η = ⟨ε⟩3/2ν−1/2 = ⟨ε⟩/τη the so-called Kolmogorov acceleration and the prefactor

cε depending on ε. From our DNS it appears that α ≈ 1/3 for all the Reynolds numbers
considered here. We also find the same value of α from the database of [21, 140] obtained
for Reλ = 400 suggesting that the value of α is independent of the Reynolds number.
This exponential behavior contrasts with the references mentioned in the introduction in
which power-laws behavior for the variance conditioned on K solely had been proposed.
Nevertheless, we can notice that exponential growth does not seem to disagree with the
data presented in these references. Interestingly, this relationship only depends on a char-
acteristic velocity, (not a time and a length scale separately). The absence of characteristic
time is attributed to the scale separation between large structures and small ones (the large
structures of the flows appear as quasi stationary and infinite to the smallest ones such
that only their relative velocity matters). The independence of the coefficient α on the
Reynolds number tends to confirm that the velocity scale used for the nondimensionaliza-
tion of the argument of the exponential is appropriate.
In appendix of [274] we propose to estimate the factor cε as:

cε ≈ A ⟨a2|ε⟩/a2
η (2.27)

where A =
(

1 − 2
3α

)3/2
, which is equal to A = 7

√
7/27 ≈ 0.686, for α = 1/3, neglecting

a small logarithmic dependence on ε/⟨ε⟩.
Consequently, for large Reynolds numbers, the doubly-conditioned variance of the fluid-
particle acceleration is expressed as

⟨a2|ε, K⟩ = A ⟨a2|ε⟩ exp(αK/⟨K⟩) . (2.28)
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Figure 2.6: Variance of acceleration conditioned on the local dissipation rate and ki-
netic energy obtained from DNS at Reλ = 380. Top: Map of ln⟨a2|ε, K⟩/a2

η ver-
sus ln ε/⟨ε⟩ and K/⟨K⟩. Left: Plot, in logarithmic scales, of ⟨a2|ε, K⟩/a2

η against
ε/⟨ε⟩ for K/⟨K⟩ = 0.025, 0.1, 0.5, 1, 2, 3, 5, 6.5 ± 30% from orange to black. Compari-
son with ⟨a2|ε⟩/a2

η in gray dashed line and with the power-law (ε/⟨ε⟩)3/2 in gray dot-
ted line. Right: Plot, in semilogarithmic scales, of ⟨a2|ε, K⟩/a2

η against K/⟨K⟩ for
ε/⟨ε⟩ = 0.01, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10, 50 ± 30% from orange to black. Comparison with
⟨a2|K⟩/a2

η in gray dashed line and with exp(αK/⟨K⟩) with α = 1/3 in gray dotted line.

This relation is confirmed in Fig. 2.7 which presents the conditional variance of the
acceleration normalized by Aa2

η exp(αK/⟨K⟩) as a function of ε for different values of K
as well as normalized by A⟨a2|ε⟩ = ⟨a2|ε, K = 0⟩ as a function of K for different values of
ε. It can be seen that a fairly good overlap of the various curves is obtained, confirming
the self-preserving character of the acceleration conditioned on both the kinetic energy
and the dissipation rate. We see in this relation an explicit effect of the local kinetic
energy on the acceleration. Since the argument of the exponential depends on K/⟨K⟩ not
on a local Reynolds number, it suggests pure kinematic effects for the acceleration which
is likely associated to the divergence free constrain and the nonlocality of the pressure
gradient. There is also an indirect effect through the dependence of the dissipation rate
on the large-scale structures. The later is manifested as Reynolds number dependence
of the conditional acceleration on the dissipation rate solely. This intermittency effect is
analyzed further in the next section. We postpone to Sec. 2.3.5 further comments on the
behavior of the doubly-conditioned variance.
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Figure 2.7: Normalized variance of acceleration conditioned on the local dissipa-
tion rate and kinetic energy obtained from DNS at Reλ = 380. (Left) Plot of
⟨a2|ε, K⟩/Aa2

η exp(αK/⟨K⟩) against ε/⟨ε⟩ for various values of K. Comparison with
⟨a2|ε⟩/a2

η in gray dashed line and with the power-law (ε/⟨ε⟩)3/2 in gray dotted line. (Right)
Plot of ⟨a2|ε, K⟩/⟨a2|ε, K = 0⟩ against K/⟨K⟩ for various values of ε/⟨ε⟩. Comparison
with ⟨a2|K⟩/a2

η in gray dashed line and with exp(αK/⟨K⟩) with α = 1/3 in gray dotted
line The ranges of the fixed values of K and ε for both plots are the same as in Fig. 2.6.

2.3.3 Similarity of the conditional statistics given the dissipation

We propose now to focus with more details on the scaling law of the acceleration variance
conditioned on the dissipation rate only, ⟨a2|ε⟩. For that we consider the DNS data from
Yeung et al. [271], along with our DNS data. Figure 2.8 (Left) presents the conditional
acceleration variance for Reynolds numbers in the range Reλ = 40 to 680. We first
notice that for weak values of the dissipation rate (ε ≪ ⟨ε⟩) the value of the conditional
acceleration variance tends towards an asymptotic value, which depends on the Reynolds
number. The saturation of the conditional acceleration shows that the local acceleration
is not only determined by the microstructure of the flow, and that it presents somehow
effects of the large structures of the flow which dominates in low dissipative regions. We
denote by a2

0 the asymptotic value of the conditional variance:

a2
0 = lim

ε→0
⟨a2|ε⟩ . (2.29)

Assuming that the acceleration of fluid particles in low dissipative regions is mainly influ-
enced by large scales, we can estimate a2

0 as a2
0 ∼ ⟨K⟩/τ2

L with τL the integral timescale
of the flow. This leads to the following estimate:

a2
0/a2

η ∼ τη/τL ∼ Re−1
λ . (2.30)

We test this scaling law for a0 in Fig. 2.8(right) by presenting a2
η/a2

0 as a function of Reλ

from the different DNS datasets. We observe a linear growth rate of a2
0/a2

η with 1/Reλ.
For large values of ε, we notice in Fig. 2.8(Left), as already reported in [271], that the
conditional variance presents a power-law behavior with ε. The exponent of this scaling law
is seen to evolve continuously with the Reynolds number, and seems to tend asymptotically

23



towards ε3/2. From dimensional analysis we define f as:

⟨a2|ε⟩
ε3/2ν−1/2 = f(ε/⟨ε⟩, Reλ) . (2.31)

In the inset of Fig. 2.8(Left), it is seen that f seems to admit an asymptotic constant value
for ε ≫ ⟨ε⟩ only in the limit of a very large Reynolds number. For intermediate Reynolds
numbers, f presents power-law behavior with ε for ε ≫ ⟨ε⟩ but with a Reynolds number
dependent exponent. This implies an absence of similarity of the flow when the Reynolds
number is changed and the persistence of the Reynolds number effect, even for large
Reynolds numbers, which highlights an absence of proper scale separation suggesting direct
coupling between large- and small-scales. This is reminiscent of the incomplete similarity
framework proposed by Barenblatt [15, 14, 13]. Following Barenblatt, we assume that f
presents an incomplete similarity in ε/⟨ε⟩ and absence of similarity in Reλ. Accordingly
we write

f(ε/⟨ε⟩, Reλ) = B (ε/⟨ε⟩)β (2.32)
where the anomalous exponent β, and the prefactor B are both functions of Reλ. Arguing
for a vanishing viscosity principle, it can be assumed that the critical exponent becomes
independent of the Reynolds number in the limit of asymptotically large Reynolds num-
ber. Finally arguing that the dependence of B and β on the Reynolds number is small,
Barenblatt further proposed that they present inverse logarithmic dependence on Reλ,
which is also in agreement with the log-similarity proposed by Refs. [51, 82]. Expending
β and B in power of 1/ ln(Reλ) yields, keeping only the leading-order term in Reλ:

β = β0 + β1/ ln Reλ (2.33)
B = B0 + B1/ ln Reλ . (2.34)

To have a finite limit, consistently with the vanishing viscosity principle, we need β0 = 0.
The remaining constants B0, B1 and β1 are then determined by comparison with the DNS
data. From the inset of Fig. 2.8(Left) we see that both β and B are increasing functions of
Reλ implying that both B1 and β1 are negative. In Fig. 2.9(Left) we assess the relations
(2.32)-(2.34) by plotting

χ = 1
γ

ln(1/B ⟨a2|ε⟩/a2
η) , (2.35)

with
γ = 3/2 + β , (2.36)

against ln(ε/⟨ε⟩) for various Reynolds numbers. It is observed that with B0 = 17.1,
B1 = −54.7 and β1 = −1, all the DNS data collapse on the line χ = ln(ε/⟨ε⟩) (the
bisectrix of the graph) for ε ≫ ⟨ε⟩, validating the scaling relation.
We can go a step further by using the low dissipative limit of the conditional acceleration.
For that we introduce χ0 = limε→0 χ = 1

γ
ln(1/B a2

0/a2
η). With this definition, χ − χ0 =

ln
[(⟨a2|ε⟩/a2

0
)1/γ

]
tends to 0 in the low dissipative regions (ε ≪ ⟨ε⟩ ). On the other hand,

for ε ≫ ⟨ε⟩, χ − χ0 should be equal to χ − χ0 = ln(ε/⟨ε⟩) − χ0 = ln
[
ε/⟨ε⟩

(
Ba2

η/a2
0
)1/γ

]
.

This is seen in Fig. 2.9 (right) that presents the evolution of
(⟨a2|ε⟩/a2

0
)1/γ against

ζ = ε/⟨ε⟩
(
Ba2

η/a2
0
)1/γ

(2.37)
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for the various Reynolds numbers considered here.
It is interesting to note that the curves are all overlapping even for intermediate values of
ε, suggesting that the conditional acceleration variance can be cast in a self-similar form:

⟨a2|ε⟩ = a2
0 (ϕ(ζ))γ (2.38)

with ϕ a universal function of only one argument ϕ = ϕ(ζ) with the asymptotics ϕ(ζ) = 1
for ζ ≪ 1 and ϕ(ζ) = ζ for ζ ≫ 1. Making a Taylor expansion of ϕ around ζ = 0 and
using a matching asymptotic argument, simply yields

ϕ(ζ) = 1 + ζ . (2.39)

It is seen in the inset of the Fig. 2.9 (right) that the proposed expression for ϕ gives a
good approximation of the data over the whole range of ε and Reλ. We can indeed observe
more than 5 decades of quasilinear growth of

(⟨a2|ε⟩/a2
0
)1/γ − 1 = exp(χ − χ0) − 1 with ζ.

The nondimensional function f introduced in Eq. (2.31) can, in consequence, be expressed
as:

f(ε/⟨ε⟩, Reλ) = B (ε/⟨ε⟩)β
(

1 + 1
ζ

)3/2+β

, (2.40)

where the term within the brackets is interpreted as a correction factor for small dissipative
regions. Accordingly, we obtain the following expression for the conditional acceleration
variance:

⟨a2|ε⟩ = Ba2
η

( 1
B

a2
0

a2
η

)1/γ

+ ε

⟨ε⟩

γ

. (2.41)

As γ = 3/2 + β and B evolve slowly with Reλ, their expressions remain speculative and
would require a much larger range of Reynolds numbers to be validated.
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ized by the Kolmogorov acceleration ⟨a2|ε⟩/a2

η. The continuous line are for our DNS for
Reλ = 50, 90, 150, 230 and 380 from orange to black; the dashed lines correspond to
the DNS of Yeung et al. [271] for Reλ = 40, 139, 238, 385, 680, from orange to black.
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2.3.4 Reynolds number dependence of the unconditional acceleration
variance

Assuming the distribution of the dissipation, we can integrate relation (2.41) to obtain
the unconditional variance

⟨a2⟩ =
∫

⟨a2|ε⟩P (ε)dε , (2.42)

and thus propose an alternative formula to the empirical relations proposed in Refs. [271,
241, 103]. We consider that ε/⟨ε⟩ presents a log-normal distribution with parameter
σ2 ≈ 3/8 ln Reλ/Rc with Rc = 10 as shown by Ref. [271] from DNS data, consistently
with the proposition of Kolmogorov and Oboukhov [128, 192]. Notice nevertheless that
other expressions for σ2 have been proposed in the literature reflecting the vanishing
viscosity limits [49]. Taking for ⟨a2|ε⟩ the expression (2.41), we perform the integration
numerically with the expression (2.33) and (2.34) for β and B with the values of B0,
B1 and β1 and the expression of a2

0/a2
η proposed above. The resulting evolution of the

acceleration variance with the Reynolds number is presented in Fig. 2.10. It is seen that
the predicted acceleration variance is in very good agreement with the DNS of Ref. [271],
our DNS, as well as the DNS of [42]4 and is also very close to the relation proposed by
Ref. [241] for Reλ < 1000.
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Figure 2.10: Evolution of the acceleration variance normalized by the Kolmogorov acceler-
ation with the Reynolds number. From our DNS data (black crosses), the DNS data from
[271] (gray dots), the DNS data from [42] (blue triangles) and from the stochastic model
(red plus) and comparison with the relation 3 × 1.9Re0.135

λ (1 + 85Re−1.35
λ ) from [241] (gray

dash dot line), with the numerical integration of ⟨a2⟩ =
∫ ⟨a2|ε⟩P (ε)dε with ⟨a2|ε⟩ given

by (2.41) and P (ε) log-normal (continuous red line), with its approximation of (2.45) (red
dotted lines), with the large-Reynolds number limit relation (2.44) (red dashed line) and
with the asymptotic power-law (2.46) (gray dotted lines).

The first term within the brackets in Eq. (2.41) is the footprint of the large-scale structures
whose effects are vanishing if the local dissipation rate is larger than ε/⟨ε⟩ ≫ (B a2

η/a2
0)−1/γ

and therefore can be neglected when the Reynolds number is large since a2
η/a2

0 ∼ Reλ.

4It worth noting that the Ref. [42] was published after the presentation of results in Ref. [274]. We can
thus see a stronger validation in the agreement between the model and the DNS of Ref. [42] over a
larger range of Reynolds number than the one initially available.
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Hence, for large Reynolds numbers, Eq. (2.41) reduces to:

⟨a2|ε⟩/a2
η = B

(
ε

⟨ε⟩

)γ

. (2.43)

With this expression, the acceleration variance is simply estimated from the moments of
the log-normal distribution as:

⟨a2⟩
a2

η

= B (Reλ/Rc)9/64+3β(1+β/2)/8 . (2.44)

This expression, also presented in Fig. 2.10, is shown to converge to the previous estimate
as the Reynolds number increases.
In appendix of [274], we show that the integral (2.42) can be expressed from the generalized
binomial series expansion. We further obtain the following estimation for the acceleration
variance keeping only the first two terms:

⟨a2⟩
a2

η

= B

(
Reλ

Rc

)3/16γ(γ−1)
1 + γ

(
1
B

a2
0

a2
η

)1/γ (
Reλ

Rc

)−3/8(γ−1)
 . (2.45)

In Fig. 2.10, it is seen that this relation almost overlaps with the direct numerical cal-
culation of the variance through Eq. (2.42). The term within the brackets enables us to
measure the contribution from small Reynolds number effects. At Reλ ≈ 100, the two
estimates (2.44) and (2.45) for the variance differ by about 20%, while there is about 8%
in difference at Reλ ≈ 500. That confirms that the term containing a2

0 is indeed vanishing
at large Reynolds numbers.
The previous estimations of the acceleration variance tend asymptotically to the following
power-law:

⟨a2⟩/a2
η = 7.62Re

9/64
λ , (2.46)

where we have used Eq. (2.33) to obtain the value of the prefactor, R
−9/64
c B0 exp(3β1/8) ≈

7.62. This expression is presented as well in Fig. 2.10, confirming that the convergence
toward the power-law is very slow, and that Eq. (2.44) should be considered as an inter-
mediate asymptotic expression for the acceleration variance.

2.3.5 Multiplicative cascade for the acceleration
Substituting Eq. (2.43) into Eq. (2.28), we can eventually estimate the doubly conditional
acceleration variance for large Reynolds numbers as:

⟨a2|ε, K⟩/a2
η = C exp(αK/⟨K⟩)

(
ε

⟨ε⟩

)γ

, (2.47)

where C = A B, with expressions of A and B determined above.
As mentioned above and apparent in the previous formula, the acceleration depends on the
local value of the kinetic energy, along with the local dissipation rate. The acceleration,
being mainly due to the pressure gradient, it presents a nonlocal behavior. The fact that
the acceleration depends on the local kinetic energy but not on a local Reynolds number
reflects that its nonlocality is a purely kinematic effect. Further, the exponential depen-
dence on the kinetic energy suggests that the acceleration can respond to the structures
of all sizes.
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To illustrate this point, we discuss a multiplicative cascade model for the acceleration
that incorporates the effect of the full spectrum of the flow structure. Fluctuations of the
locally-space-averaged dissipation rate can be modeled by multiplicative cascades [270,
127, 178, 157, 25, 80]. Such model proposes to express the local dissipation over a volume
of size ℓ = Lλn, with λ < 1 and L being the large-scale of the flow, as the product of n
random numbers ξi:

εℓ = ⟨ε⟩
n∏

i=1
ξi . (2.48)

Typically, for large n, this yields log-normal distribution of εℓ assuming the ξi are inde-
pendent and identically distributed (and have as well finite variance).
We propose likewise to write the squared acceleration, coarse-grained at scale ℓ, as :

a2
ℓ = a2

0

n∏
i=1

θi . (2.49)

The scale-to-scale factor θi is given by:

θi = exp
(

α

⟨K⟩
1
2v2

i

)
(ξi)γ = exp

(
α

⟨K⟩
1
2v2

i + γ ln ξi

)
, (2.50)

where vi is here the velocity of eddies of size ℓi = Lλi, which is also a fluctuating quantity.
The exponential modulation is then interpreted as an entrainment acceleration due to
these structures.
With this expression we obtain:

a2
ℓ = a2

0 exp
(

α

⟨K⟩
n∑

i=1

1
2v2

i + γ
n∑

i=1
ln ξi

)
. (2.51)

Setting n = ln(η/L)/ ln(λ) ∼ ln Reλ, η being the Kolmogorov length scale, we have
K = ∑n

i=1
1
2v2

i due to the additive nature of the kinetic energy. Thereby using Eq. (2.48),
we obtain back Eq. (2.47) by taking the conditional average of Eq. (2.51). The order of
magnitude of the eddy velocities can be estimated from the Kolmogorov relation, (εℓℓ)1/3,
showing that the sum is a priori dominated by the large-scales but, on the other hand,
because of the intermittent behavior of εℓ, it may well happen that the inertial-scale
structures can be dynamically important.
Note that in this multiplicative model, we have transposed the statistical relation (2.47)
to an instantaneous version. Such idealization, find support in the invariance of the con-
ditional PDF, which is shown in appendix of [274]. Another important point to mention
is that although we assume that the local acceleration depends both on K and ε it is not
assumed that those two variables are independent.
The dissipation presents large fluctuations leading to very important accelerations and,
even if the acceleration orientation is changing rapidly, it can cause a local increase of the
velocity. When the kinetic energy becomes significantly larger than its averaged value, then
the modulation of the acceleration by the exponential term becomes preponderant, thus
offering a feedback mechanism allowing obtaining the normal fluctuations of the velocity.
This dynamic scenario appears consistent with the recent DNS analysis of Ref. [197]
showing that the fluid-particles can undergo energy gains in intense dissipative regions
and is developed in the next section.
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2.4 Stochastic modeling of the fluid-particle dynamics

2.4.1 Model formulation

The foregoing multiplicative model suggests that the acceleration norm can be determined
from the local kinetic energy and dissipation rate. The relation (2.47) is pointwise and
so it applies equally well to both Lagrangian and Eulerian descriptions. However, in the
Lagrangian framework, the kinematic relation between velocity and acceleration allows
proposing a model for the acceleration depending only on the local dissipation rate. The
evolution of the later along the particle path is to be obtained from a stochastic pro-
cess. For the derivation of this model, we will rely on the relation (2.47), in which the
contribution from low dissipative events is neglected:

a2 = f(K, ε) = a2
ηC

(
ε

⟨ε⟩

)γ

exp
(

α
K

⟨K⟩

)
. (2.52)

We express the increments of a2 as a second order Taylor expansion in K and ε,

da2 = a2
(

α
dK

⟨K⟩ + γ
dε

ε
+ α2

2
dK2

⟨K⟩2 + γ(γ − 1)
2

dε2

ε2 + γα
dK

⟨K⟩
dε

ε

)
. (2.53)

We consider ε as stochastic variable reflecting the very large number of degrees of freedom
that control them. In a fairly general way, we consider that the dissipation ε follows a
multiplicative stochastic process:

dε = εΠdt + εΣdW , (2.54)

where dW are the increments of the Wiener process (⟨dW ⟩ = 0 ; ⟨dW 2⟩ = dt). We specify
the terms Π and Σ below. Substituting Eq. (2.54) into Eq. (2.53) one obtains, following
the Ito calculus, at first order in dt :

da2 = a2
[

α

⟨K⟩P + γΠ + γ(γ − 1)
2 Σ2

]
dt + γa2ΣdW . (2.55)

We used the identity dK = uidui = uiaidt = Pdt, where P is the mechanical power per
unit of mass exchanged by the fluid particle. Even if Π and Σ are given, eq. (2.55) is not
closed, as it remains to estimate P = aiui, which requires the knowledge of ai and ui.
As mentioned in the introduction, we introduce a vectorial stochastic model for the dy-
namics of a fluid particle. We are looking for a stochastic process of the form:

dui = aidt , (2.56)
dai = Midt + DijdWj , (2.57)

where dWj are the increments of the jth component of a tridimensional Wiener process
(⟨dWj⟩ = 0 ; ⟨dWidWj⟩ = dtδij). a priori, the vector M and the tensor D depend on the
vectors a and u =

∫
adt. Indeed, M must depend on u to allow the particle velocity to

reach a statistically steady state.
Now, we propose expressions for Mi and Dij . For this, we want to impose, on the one
hand, that the model is isotropic (⟨aiaj⟩ = 0 for i ̸= j) and, on the other hand, that
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its norm a2 = aiai is compatible with the Eq. (2.55). We therefore write the stochastic
equation for a2

ij = aiaj derived from Eq. (2.57), thanks to the Ito formula:

da2
ij = ajdai + aidaj + daidaj

= (Miaj + Mjai + DikDjk) dt + (ajDik + aiDjk) dWk . (2.58)

For the square of the norm a2 = aiai, we have:

da2 = (2aiMi + DijDij) dt + 2aiDijdWj . (2.59)

We then proceed by identification between Eqs. (2.59) and (2.55), in a similar way as Refs.
[89, 195], by identifying first the square of the diffusion term and then the drift term.

Identification of the diffusion term and the maximum winding hypothesis

Quite generally, we can decompose the diffusion tensor into:

Dij = c1δij + Sij + Ωij , (2.60)

where Sij is a zero-trace symmetric tensor and Ωij is an antisymmetric tensor. The latter
can be written as Ωij = ϵijkωk with ϵijk the Levi-Civita permutation symbol and ωk

a pseudovector. Sij must be zero in order to guarantee the statistical isotropy of the
acceleration. But Ωij can be different from 0. Indeed, the experimental results of Ref.
[181] and numerical results of Ref. [199] have shown that the acceleration presents a
scale separation between the evolution of the components and its norm, and that this
separation can be modeled using processes for the acceleration norm and its orientation
vector [276, 92, 228]. A stochastic model for orientation can be formulated as a diffusion
process with a rotational part in the diffusion tensor [92, 266]. Since the model for the
dynamics (2.56) - (2.57) involves only two vectors, a and u, we propose to form the
pseudovector ω from these two vectors in order to get a closed model: ωk = c2ϵklmalum.
The model remains statistically isotropic and the chirality of the flow is not broken either
since the odd moments of dWj are zero (Gaussian with zero mean). In other words, the
sign of c2 does not matters. We then have:

Dij = c1δij + c2(aiuj − ajui) . (2.61)

It is to be noted that c1 and c2 are not constant.
By identifying the square of the diffusion term between (2.55) and (2.59) we find

γ2(a2)2Σ2 = 4aiajDikDjk . (2.62)

Expanding it by using expression (2.61), we find

γ2(a2)2Σ2 = 4a2(c2
1 + c2

2(2a2K − P 2)) , (2.63)

which gives for c1:

c2
1 = γ2

4 a2Σ2 − c2
2(2a2K − P 2) = a2

(
γ2

4 Σ2 − 2c2
2K

(
1 − a2

T

a2

))
, (2.64)
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where we have introduced the tangential acceleration aT , as the projection of the acceler-
ation vector in the direction of the velocity vector: aT = aiui/

√
u2 = P/

√
2K. Equation

(2.64) imposes a constraint on c2 to guarantee the positivity of c2
1:

c2
22K ≤ γ2

4 Σ2 , (2.65)

since 0 ≤ 1 − a2
T

a2 ≤ 1. So, to guarantee the positivity of c2
1 whatever K, c2

2 must be

proportional to 1/K. Introducing a parameter cR as c2
2 = γ2

4 Σ2 c2
R

2K
, with the constraint

c2
R ≤ 1, we obtain

c2
1 = γ2

4 Σ2
(
a2(1 − c2

R) + c2
Ra2

T

)
. (2.66)

Subsequently, we only consider the limit cR = 1 that corresponds to the maximum rota-
tional part of the diffusion tensor. We will discuss this choice in more detail below in Sec.
2.4.3, when presenting the results.
Finally, from Eq. (2.61) and the expressions of c1 and c2, we write the components of the
diffusion tensor as

Dij =

√
γ2

4 Σ2
[√

a2
T δij +

√
a2

N ϵijkbk

]
, (2.67)

where we introduced the normal component aN of the acceleration a2
N = a2 − a2

T , and the
bi-normal unit vector5 bk = ϵklmulam/|ϵhijuiaj |.
Note that bk, aT and aN are not well defined when K = 0. However, c2 must vanish when
u = 0 and we can therefore consider that cR = 0 in that case.

Determination of the drift term

Identifying the drift term between Eqs. (2.59) and (2.55), we get:

2aiMi + DijDij = a2
(

α

⟨K⟩P + γΠ + γ(γ − 1)
2 Σ2

)
. (2.68)

From Eq. (2.67) the term DijDij is computed as 6

DijDij = γ2

4 Σ2
(
2a2 + a2

T

)
. (2.69)

We then have
aiMi = a2

(
α

2⟨K⟩P + γ

2 Π − γ

4 Σ2
)

− a2
T

γ2

8 Σ2 . (2.70)

5To obtain this relation we notice that aiuj − ajui = ϵijkϵklmalum and that the vector bk is the unit
vector collinear to ϵklmalum: bk = ϵklmalum/|ϵhijaiuj |. By expanding the norm, we have: (ϵhijaiuj)2 =
2a2K − P 2. We therefore write: ϵklmalum = bk

√
2a2K − P 2 = bk

√
2K
√

a2 − a2
T = bk

√
2K
√

a2
N .

6DijDij = γ2

4

a2
T δijδij︸ ︷︷ ︸

3

+a2
N ϵijkbkϵijlbl︸ ︷︷ ︸

2δklbkbl

, δklbkbl = 1 since b is a unit vector and with a2 = a2
T + a2

N ,

we obtain the result.
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To go further we must now specify the terms Π and Σ used for the stochastic process for
ε. Various models for the dissipation have been proposed. Pope and Chen [203] proposed
a simple model based on the exponential of an Orstein-Uhlenbeck process (see (2.18)).
Here, we rely on the model proposed in Refs. [54, 195]. This non-Markovian log-normal
model presents a logarithmic decrease in the correlation of ε which is consistent with the
idea of a turbulent cascade and a multiplicative process (see (2.22)), unlike the Pope and
Chen model which gives an exponential decrease, see also the discussion in Ref. [146]. As
presented in (2.24)-(2.25), the drift and diffusion terms are written, respectively, as:

Π = 1
τε

(
− ln ε

⟨ε⟩ + σ2

2Λ2
(τε

τc
− Λ2)+ σ

ΛΓ̂τε

)
, (2.71)

and

Σ =
√

σ2

Λ2τc
, (2.72)

with σ2 the variance of the logarithm of ε, τε the correlation time of ε, τc the regular-
ization timescale of the process (taken equal to the Kolmogorov dissipative time τη), Λ2

a normalization factor, and Γ̂ the convolution of the Wiener increments with a temporal
kernel, ensuring the non-markovian property of the process. In the process for ε proposed
by Refs. [54, 195], the latter corresponds to a fractional Gaussian noise with 0 Hurst
exponent [159] regularized at scale τc. The expression of the convolution kernel proposed
by Refs. [54, 195], (see (2.23)), applies to a scalar noise since the dissipation rate is a
scalar, whereas the acceleration model involves a vectorial noise. Therefore, the kernel in
Γ̂ includes a projection in order to apply to the vectorial Wiener increments:

Γ̂ = −1
2

∫ t

−∞

1
(t − s + τc)3/2 PjdWj(s) . (2.73)

By proceeding in a similar way as Ref. [195], the projection operator is obtained by
identification between the diffusion terms of Eqs. (2.55) and (2.59):

Pj = 2aiDij

γa2Σ =

√
a2

T − aT

a2 aj + ej (2.74)

where we have used the relation recall in footnote 5 and where ej is the unit vector tangent
to the trajectory, ei = ui/

√
2K. It is interesting to remark that the rotational part of the

diffusion tensor induces an asymmetry of the projector between positive and negative
power exchange (recall that P =

√
2KaT ). Indeed for P ≥ 0, Pj = ej while for P < 0

one has Pj = (1 − 2p2)ej − 2p
√

1 − p2bj with p = P/
√

2Ka2. In both cases, as it can be
readily checked, P is a unit vector.
Substituting the expressions (2.71) and (2.72) for Π and Σ in Eq. (2.70) we have

aiMi = a2
(

α

2⟨K⟩P − γ

2τε

(
ln ε

⟨ε⟩ + 1
2σ2 − σ

ΛΓ̂τε
))− a2

T

γ2

8
σ2

Λ2τc
. (2.75)

According to Eq. (2.52), we can write:

ln
(

ε

⟨ε⟩

)
= 1

γ

(
ln a2

a2
η

− ln C − α
K

⟨K⟩

)
, (2.76)
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which gives, once substituted into Eq. (2.75),

aiMi = a2

 α

2⟨K⟩

(
P + K

τε

)
− 1

2τε

ln
(a2

a2
η

)− ln C + γ

2 σ2 − γ
σ

ΛΓ̂τε︸ ︷︷ ︸
−Γ̂∗


− a2

T

τc

γ2

8
σ2

Λ2︸ ︷︷ ︸
σ2

∗

.

(2.77)

To simplify the notations, we have introduced Γ̂∗ = γ
σ

ΛΓ̂τε + ln C − γ

2 σ2 and σ2
∗ = γ2

8
σ2

Λ2 .

It is interesting to notice that in Eq. (2.77) the terms P + K

τε
= dK

dt
+ K

τε
acts as a

penalization leading the correlation of the kinetic energy to decay exponentially.
We then propose for Mi an expression compatible with Eq. (2.77). Proceeding by identi-
fication, we have the following relation:

Mi = α

2⟨K⟩

(
λaiP + (1 − λ)a2ui + ai

K

τε

)
−ai

(
ln
(a2

a2
η

)− Γ̂∗

)
1

2τε

−σ2
∗

τc

a2
T

a2 ai + Bi , (2.78)

where we have introduced the vector Bi, such that Biai = 0 as well as the factor λ that
both account for the indeterminacy inherent to the inverse projection. By assuming again
that there are only two vectors at our disposal, we can take Bi = α

2⟨K⟩λ′ (Pai − a2ui
)

by

introducing the factor λ′. Note that from the point of view of the projection, the factors
λ and λ′ are arbitrary in the sense that the scalar product of ai and Eq. (2.78) gives Eq.
(2.77) whatever their values. We can nevertheless notice that the terms involving λ and
λ′ can be combined, and, by noting cu = λ + λ′, we get:

Mi = α

2⟨K⟩

(
ai
(
cuP + K

τε

)− (cu − 1)a2ui

)
−ai

(
ln
(a2

a2
η

)− Γ̂∗

)
1

2τε

−σ2
∗

τc

a2
T

a2 ai . (2.79)

We can notice that the terms of the first line correspond to the coupling with the velocity,
those of the second take into account the log-normal and non-Markovian character of the
dissipation and the last term is due to the rotational part of the diffusion tensor. The
diffusion term (2.67) becomes, by using expression (2.72),

Dij =
√

2σ2
∗

τc

[√
a2

T δij +
√

a2
N ϵijkbk

]
. (2.80)

We have thus specified our stochastic model for the dynamics of a fluid particle. It is given
by Eqs. (2.56), (2.57), (2.79) and (2.80).
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2.4.2 Parameters and numerical approach

From a dimensional point of view, to determine the physical parameters of the stochastic
model, one must specify time and velocity scales as well as a Reynolds number. This
amounts for example to imposing the average kinetic energy ⟨K⟩, the average dissipation
rate ⟨ε⟩ and the viscosity ν. From these physical parameters, we calculate a2

η = ⟨ε⟩3/2ν−1/2,
τη = ⟨ε⟩−1/2ν1/2. We can also get the Reynolds number based on the Taylor scale Reλ =
u′λ/ν = 2

√
15/3 ⟨K⟩/

√
⟨ε⟩ν with u′ =

√
2⟨K⟩/3 and λ2 = 15νu′2/⟨ε⟩. We then deduce

the Lagrangian integral times scale τL as τL = 0.08Reλτη from the DNS results reported
by Refs. [101, 238].
The parameter σ2 is estimated using the relation given by Ref. [271]: σ2 ≈ 3/8 ln Reλ/Rc

with Rc ≈ 10 compatible with the prediction of Kolmogorov and Obhoukov [128, 192].
As mentioned in Refs. [128] and [178], the specific value of Rc is depending on the
large-scales. Since the influence of the large-scales is neglected in our modeling (see Sec.
2.3.4), we choose in the following simply σ2 ≈ 3/8 ln Reλ. We set as well α = 1/3 and
γ = 3/2 + β with β = −1/ ln Reλ in accordance with the results of the DNS presented

above. The prefactor C is computed as C = c0 A B where A =
(

1 − 2
3α

)3/2
≈ 0.686, B =

17.1−54.7/ ln Reλ as determined by DNS. The term c0 is introduced so that the predicted
acceleration variance follows Eq. (2.44), as one would expect from the construction of
the stochastic model, despite the fact that we take σ2 = 3/8 ln Reλ instead of σ2 =
3/8 ln Reλ/Rc. Consequently, we have c0 = (1/Rec)9/64+3β/8(1+β/2).
For simplicity we have used τc = τη and τε = τL. From τε and τc we calculate the value
of the normalizing constant Λ as explained after (2.23). Finally, for the parameter cu,
which is the only free parameter of the model, we have determined numerically that with
cu = 5.22 the ratio K/⟨K⟩ is 1 on average for all values of the Reynolds number.
The sample paths of this model are obtained by numerical integration of the stochastic
differential equation. Numerical integration is made with an explicit Euler scheme by
taking a time-step dt = τη,min/100 with τη,min =

√
ν/εmax, an estimation of the minimum

dissipative timescale likely to happen during the simulation. This is estimated from the
log-normal distribution of the dissipation: τη,min = τη exp(−xσ/2 + σ2/4), with x = 6 by
considering that the probability that a random number following the normal distribution
reaches a value of 6 standard deviation is sufficiently low (see Eq. (2.17)).
For the calculation of the convolution term Γ̂ appearing in Eq. (2.79), we propose in
appendix of [274] an efficient algorithm. Note also that a simple Python script presenting
the algorithm used to integrate the proposed stochastic model is available in supplemental
material of Ref. [274].

2.4.3 Results

We show in Fig. 2.11 a realization of this process for Reλ = 1100. We see the temporal
evolution of the components of acceleration and velocity. There is a very intermittent
acceleration with an alternation of periods in which the acceleration of the fluid particle is
almost zero with phases of very intense activity. This results in fluid-particle trajectories,
obtained by integration of the velocity xi =

∫
ui(t)dt, in long quasiballistic periods with

typical length of the order of the integral scale (L ≈ ⟨K⟩3/2/⟨ε⟩) and short-term disruptions
during which the trajectory rolls up on itself.
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Figure 2.11: A realization of the stochastic process for Reλ = 1100. Top left: evolution of
the acceleration with time, ax: red, ay: green, az: blue, |a|: black. Bottom left: evolution
of the velocity with time, ux: red, uy: green, uz: blue, |u|: black. Right: 3D trajectory of
a fluid particle for a duration of 100 τL.

We have simulated the stochastic model for 15 different Reynolds numbers between Reλ =
70 and 9000. In each case, we have computed 26,000 realizations. The simulations are
carried out over a period of 120τL, over which we exclude an initial transitional regime of
20τL for the calculation of the statistics. In all cases, the initial value of the components
of acceleration and velocity are sampled from the normal distribution having a standard
deviation of 10−9aη for the acceleration and 10−9√2⟨K⟩/3 for the velocity. We can indeed
notice from Eqs. (2.79) and (2.80) that, if the acceleration is exactly zero, the stochastic
model predicts that the acceleration would remain so. However, it should be noted that
this event has a zero probability, and that for arbitrarily small, but nonzero, accelerations,
the model presents evolution towards a nontrivial stationary state. This is illustrated in
Fig. 2.12, which presents the temporal evolution of the variance of the velocity and of the
acceleration for Reλ = 1100, calculated from all the realizations.
Figure 2.13 shows the evolution with the Reynolds number of the mean kinetic energy in
the stationary state. In this figure, we see that the average kinetic energy is equal, within
the statistical convergence, to the value prescribed to the model. We note that the value
of the average kinetic energy is directly related to the value of the parameter cu in Eq.
(2.79) as mentioned above.
Regarding the variance of the acceleration, we expect, by construction of the stochastic
model, that the predicted value follows the log-normal relation (2.44). We observe in
Fig. 2.10, that it is indeed the case, with only slight deviations for the largest Reynolds
numbers which are attributed to numerical errors. We recall that the underestimation of
the acceleration variance at small Reynolds numbers compared to the DNS or Eq. (2.45)
stems from the fact that the model is based on the relation (2.47) in which the effect of
low dissipative and large-scale structures are neglected (see the discussion in Sec. 2.3.3).
This simplification enables us to obtain the analytical formulation of the model proposed
here.
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Figure 2.13: Evolution with the Reynolds number, in the stationary regime, of the kinetic
energy obtained by the stochastic model normalized by the prescribed kinetic energy ⟨K⟩.

Figure 2.14 compares the autocorrelation of the components of the acceleration and of its
norm calculated from the stochastic model for Reλ = 400 with the calculations from the
DNS of [140, 21]. It can be seen that the characteristic times of these two quantities are
very different and that it is in good agreement with the DNS. It should be mentioned that
the scale separation between the components and the norm results from the rotational
part of the diffusion tensor. Indeed, no scale separation is found when cR is set to zero
in Eq. (2.66) (corresponding then to a diagonal diffusion tensor). We see in Eq. (2.67)
that considering this rotational part, leads to the decomposition of the acceleration into
its normal and tangential component. The former is associated with the intense rotation
that rapidly changes the acceleration direction, whereas the second is associated with the
variation of the kinetic energy of the particle.
Figure 2.14 also presents the evolution of the autocorrelation coefficient of the velocity
components and of the power. It can be seen here also that the agreement with the DNS
is relatively good. In Fig. 2.14, we also show the evolution of the characteristic correlation
times for these four quantities with Reynolds numbers in the range Reλ = 70 − 9000 as
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predicted by the stochastic model. The characteristic correlation time for the velocity,
the acceleration norm, the acceleration components and the power are τu =

∫
ρui(τ)dτ ,

τ|a| =
∫

ρ|a|(τ)dτ , τai =
∫ |ρai |(τ)dτ and τP =

∫ |ρP |(τ)dτ . It can be seen in Fig. 2.14 that
the scales for the norm of the acceleration and for the velocity normalized by τL remains
quasiconstant with the Reynolds number and that the ratio between the correlation scale
for the velocity and τL is of order 1. Note that the characteristic time entering the model
formulation is τε (the correlation time of the dissipation rate following the path of a fluid
particle). For the calculation of the model, we simply set τε = τL arguing that the two
quantities should be closed. It is therefore interesting to remark that the integral time of
the velocity is very close to the prescribe one τu ≈ τL. Regarding the correlation scales
for a component of acceleration and for the power normalized by τL, they both present a
variation close to 1/Reλ, as expected.
We also show in Fig. 2.14 autocorrelation coefficient of ai, (a2)1/2, P = aiui and ui for
Reynolds numbers in the range Reλ = 70 − 9000 obtained from the model. It is seen that,
when the time shift is normalized by the corresponding integral timescale, the correlation
coefficients of the power and of the acceleration component remains nearly unchanged
with the Reynolds number. We observe as well that the shape of the autocorrelation
obtained from DNS is well reproduced, although the decay predicted by the model is too
fast at very short time lag. This is attributed to the fact that the dissipative region is
only taken into account in the model via the cutoff τc = τη of the kernel Γ̂. We observe
that the correlation for the acceleration norm presents a logarithmic decrease, reflecting
the absence of characteristic time for its evolution. As expected, the correlation norm
exhibits a lower slope as the Reynolds number increases. This is directly attributed to
the use of the non-Markovian process of Ref. [54] for the dissipation rate, which proposes
a logarithmic evolution of the autocorrelation in agreement with the underlying model of
the turbulent energy cascade as discussed in section 2.1 (see figure 2.3).
The shape of the velocity correlation from the model is overall close to the DNS. At small
τ , it presents some dependence on the Reynolds number, while at large time shift (i.e. τ of
the order of τL) the correlation decreases exponentially, as it can be seen in the inset of Fig.
2.14(f), in agreement with DNS and experiments. The exponential relaxation results from
the terms P + K/τε = dK/dt + K/τε appearing in the drift part of the stochastic model
(2.78). It is interesting to remark that the presence of this term in the model is a direct
consequence of the exponential dependence of the conditional acceleration variance on the
kinetic energy (2.47). This term leads to the Reynolds number dependence on the velocity
correlation observed at small τ , which is connected to the logarithmic decorrelation of the
acceleration norm, to vanish at large τ at which it relaxes exponentially. This suggests
therefore anomalous scaling at intermediate time lag.
We show in Fig. 2.15 the velocity spectrum for Reλ between 400 and 9000, which we
compare with the DNS of Ref. [21] for Reλ = 400. We see a good agreement between
the DNS and the stochastic model. For higher Reynolds numbers, we clearly see that a
power-law behavior develops at intermediate scales. We see that the slope of the power-law
deviates from the Hinze spectra [256] predicted by dimensional arguments similar to those
presented by Kolmogorov, with spectra less stiff than ω−2. This shows that the proposed
stochastic model leads to an anomalous scaling that reflects the persistent influence of the
Reynolds number in the inertial-scales. We further notice that the slope that develops at
intermediate scales are close to −2 + 0.14, where 0.14 is the exponent of the asymptotic
power-law of the acceleration variance with the Reynolds number determined in Eq. (2.46)
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(see also Fig. 2.10). We see here a confirmation of the relation between the acceleration
scaling and the anomalous scaling of the velocity spectra proposed by Ref. [75].
We present in Fig. 2.16 the PDFs of the velocity and of the acceleration for Reλ = 400 ∼
9000, as well as the comparison with the DNS of Ref. [21]. First, we find that the velocity
distribution is very close to a Gaussian distribution for all Reynolds numbers, while the
acceleration presents a much more stretched distribution. For Reλ = 400 the acceleration
PDF is in very good agreement with the DNS, and, the model predicts an increase of the
stretching of the tails with increasing the Reynolds number. We also show in this figure
the PDF of the velocity increments for different time shifts δτ ui = ui(t + τ) − ui(t) at
Reλ = 400. We observe that the distribution gradually returns to a Gaussian distribution
as the time shift increases, and that at each time shift the agreement with the DNS of
Ref. [21] is very good. This is confirmed by the presentation of the flatness of the velocity
increments for Reλ = 400 ∼ 9000, which reflects the strongly non-Gaussian behavior
on small-scales which decreases to 3 for the larger-scales. Here also we notice a good
agreement with the DNS of [21] for Reλ = 400. We also show in the inset, a quasi-linear
increase of the flatness of the acceleration with the Reynolds number.
Finally, in Fig. 2.17 we show the second and third moments of the power P = aiui. It
is observed that the increases of both moments with the Reynolds number are in close
agreement with the power-law supported by the DNS results of Ref. [268], ⟨P 2⟩/⟨ε⟩2 ∼
Re

4/3
λ and −⟨P 3⟩/⟨ε⟩3 ∼ Re2

λ . Clearly, the third order moment is negative, meaning
that the time irreversibility of the dynamics of a fluid particle in a turbulent flow is
correctly reproduced by the proposed stochastic model. The skewness of the power, S =
⟨P 3⟩/⟨P 2⟩3/2, seems to converge to -0.5 as the Reynolds number increases, as reported in
Ref. [268].
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Figure 2.14: (a) Evolution of the autocorrelation of ai (black), (a2)1/2 (red), ui (blue) and
P = aiui (green) from the stochastic model for Reλ = 400 and comparison with the DNS
data from Ref. [21] in dashed lines. (b) Evolution of the integral timescale of ai (black),
(a2)1/2 (red), ui (blue) and P = aiui (green) normalized by τL with the Reynolds number.
(c,d,e,f) Evolution of the autocorrelation of ai, (a2)1/2, P = aiui and ui respectively, for
Reλ = 400, 567, 800, 1130, 1600, 2263, 3200, 4526, 6400 and 9051 from orange to black
and comparison with the DNS data from Ref. [21] in dashed lines. In these plots the time
lag is normalized by the corresponding integral timescale. For panel f, inset: logarithmic
scaling of the y-axis and comparison with exp(−τ/τu) in dotted line.
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Figure 2.15: Velocity spectra from the stochastic model for Reλ = 400 to Reλ = 9000
from orange to black and comparison with the DNS data from [21] at Reλ = 400 (gray
dashed line), with the Hinze spectra ω−2 (gray dot-dashed line), and with the power-law
with anomalous exponent ω−2+9/64 (gray dotted lines).
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Reynolds number and comparison with the linear law in the inset.
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2.5 Discussion and perspectives

We have analyzed the behavior of the acceleration statistics conditioned on both local
dissipation rate and local kinetic energy, which to our knowledge have not been considered
before. We have reported that the doubly conditional variance is proportional to the
acceleration variance conditional on the dissipation rate solely, with the proportionality
factor depending exponentially on the kinetic energy: ⟨a2|ε, K⟩ = A exp(αK/⟨K⟩) ⟨a2|ε⟩.
For large enough Reynolds number, we show that A = (1 − 2α/3)3/2 and we proposed
that the α coefficient is independent of the Reynolds number and its value α = 1/3 was
obtained from the DNS.
This expression shows a direct effect of the kinetic energy, a large-scale quantity, on the
Lagrangian acceleration. Furthermore since the argument of the exponential depends on
K/⟨K⟩, not on a local Reynolds number, it suggests a kinematic effect for the acceleration
which may be due to the nonlocality of the pressure. More specifically, these effects can
be due to the interaction of vorticity and strain [65]. In case of persistent large-scale
strain, intense vorticity tube would be generated and align with the principal direction
of the strain [175]. It was shown that such vortical structure can produce significant
acceleration in the direction of the vorticity [17, 145]. Anyway, although the proper
physical mechanism leading to the exponential dependence of the acceleration on the
kinetic energy deserves further studies, it is an additional effect to the influence of the
large-scales on the acceleration through the intermittency of the dissipation rate. To
study this later effect, we subsequently have proposed to account for the Reynolds number
dependence of the acceleration variance conditional on the dissipation rate within the
intermediate asymptotic framework [13] leading to: ⟨a2|ε⟩ = a2

ηB(ε/⟨ε⟩)3/2+β for ε ≫ ⟨ε⟩
with B and β depending logarithmically on the Reynolds number as the signature of the
intermittency and the persistence of viscous effects. Further, we advance an expression
for the conditional acceleration variance valid for the whole range of fluctuations of ε by
accounting for the dominant effect of the large-scale structures in low dissipative regions
(2.41). From this finding we determine the evolution of the unconditional acceleration
variance with the Reynolds number (2.45) and show that it is in good agreement with
DNS, which gives another empirical validation of the incomplete similarities assumption
used to obtain these results.
Eventually, for large Reynolds numbers, we propose to express the doubly conditional
variance as ⟨a2|ε, K⟩ = Ca2

η exp(αK/⟨K⟩ + γ ln ε⟨ε⟩), γ = 3/2 + β, which can be viewed
as the results of a multiplicative process for the acceleration. Such a process can be
interpreted as a momentum fluctuation cascade that includes kinematic effects by eddies
all along the turbulence spectrum.
Based on these results we propose a 3D stochastic model for the dynamics of a fluid particle
that reproduce the essential features of the Lagrangian dynamics observed from DNS and
experiments. To obtain such a model, (i) we have assumed, inline with the Kolmogorov
universality hypothesis, that the dynamics can be described as a set of stochastic differ-
ential equation dai = Midt + DijdWj ; dui = aidt, with Mi and Dij depending on the
velocity and acceleration along with Reynolds number dependent parameters. (ii) We used
the doubly conditional acceleration variance presented first, to model the instantaneous
relation of the dynamics between acceleration (or force), kinetic energy, and energy dissi-
pation. This amounts to consider that the remaining degree of freedom can be discarded
in procedure similar to an adiabatic elimination [84] as discussed by Ref. [49]. (iii) We
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introduce a nondiagonal diffusion tensor along with a maximum winding hypothesis to
ensure its physical realizability. (iv) We consider that the dissipation rate along the tra-
jectory is given by the non-Markovian log-normal process proposed recently by Ref. [54],
giving logarithmic correlation consistently with the turbulent cascade picture. The model
is closed by using the relation DK/Dt = P = aiui. For the model, it implies dependence
of K on ε through the dependence of a2 on ε. This can be interpreted as feedback of the
small scales on the large scales. On the other hand, the influence of the large-scales on the
small-scales is accounted for in the model through the intermittent cascade model for the
dissipation rate. With these four hypotheses, we obtain the model given by Eqs. (2.56),
(2.57), (2.79), and (2.80) which reads:

dai =
[

α

2⟨K⟩

(
ai
(
cuP + K

τε

)− (cu − 1)a2ui

)
− ai

(
ln
(a2

a2
η

)
+ Γ̂∗

)
1

2τε
− σ2

∗
τc

a2
T

a2 ai

]
dt

+
√

σ2
∗

τc

[√
a2

T δij +
√

a2
N ϵijkbk

]
dWj . (2.81)

We show that the proposed model predicts Lagrangian dynamics presenting non-Gausssianity,
long-range correlations, anomalous scaling and time irreversibility. Moreover statistics ob-
tained from the stochastic model are in good agreement with the DNS.
In Eq. (2.81) the term proportional to α, which follows directly from the exponential
dependence of the conditional acceleration on the kinetic energy, involves the coupling
between velocity and acceleration and leads to the exponential relaxation of the velocity
correlation for large time lag along with one-time Gaussian distribution for the velocity.
Introducing a rotational part in the diffusion tensor naturally leads to decomposition of the
acceleration vector into its tangential part and its normal components. Since the normal
part is associated with the curvature of the trajectory, the rotational part of the diffusion
leads to the emergence of a time-scale separation between the correlation of the norm and
the components of the acceleration. The term associated with the non-Markovianity of
the dissipation along with the rotational part produce irreversible dynamics, as seen by
the skewness of the exchanged power and ensures a scale separation between velocity and
acceleration. These three points can be easily checked, by taking α = 0 or cR = 0 in Eq.
(2.66) or by using for Π the Markovian log-normal dissipation model proposed by Ref.
[203] rather than the non-Markovian one of Ref. [54].
It is worth noting that from the conditional acceleration statistics obtained from DNS of
the Navier-Stokes equation, it is possible to establish, in a fairly natural way, that is to say
without using any other hypothesis than the cascade picture, a link between the refined
Kolmogorov assumption and the dynamics of fluid particles. It would be interesting to
analyze further the stochastic equation to demonstrate the irreversibility of the dynamics,
the emergence of anomalous scaling or to study the geometry of the particle trajectory e.g.
its curvature and torsion, as well as to further test the conditional statistics between the
acceleration and the velocity. Also interesting could be the improvement of the modeling
of the high frequency part of the spectrum. Indeed, the dissipative part of the spectrum
is not well reproduced by the model of Ref. [54] which intends to model the dissipation
rate in the inertial range.
To simplify the construction of the model, we have not taken into account the nonlocal
effects of the largest structures of the flow, arguing that their effect vanish as the Reynolds
number increases (term with a2

0 in eq. (2.41)). Based on the relation (2.41) it is possible
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to account for the large-scale in the stochastic modeling. However, since this term is de-
pendent on the Reynolds number, it is likely that it also depends on the flow configuration
and boundary conditions. The proposed stochastic model could be further generalized
to address shear flows [17] and improve Reynolds-averaged simulations [200, 109]. This
model could be used among other things to improve the calculation of the dynamics of
a dispersed phase with the large eddy simulation (LES) approach [279, 92, 280]. Finally,
let us mention that an interesting extension could be the coupling of the proposed model
with stochastic model for the evolution of the velocity gradients as proposed in Refs.
[89, 168, 114, 195].
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3 Particles and turbulence
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In this section, I present some works on the modeling of turbulent flows with dispersed
phases. Several problems are addressed: the a priori estimation of the statistics of the
forces experienced by a particle in turbulent flows, the stochastic modeling of the instan-
taneous value of the forces and its application to the large eddy simulations (LES), and
the turbulence induced by the rising of a cloud of bubbles.
One speaks of a dispersed phase when the evolution of each of these components, typically
a bubble, a drop or a solid particle, can be obtained from the Newton’s equation, by
applying the sum of the forces to the center of mass of the object

dxp(t)
dt

= vp ; mpap = mp
dvp(t)

dt
= Fp . (3.1)

We can decompose this resulting force by separating the hydrodynamic forces Ffluid re-
sulting from the exchange of momentum between the continuous phase (the carrier phase)
and the particle, from the external forces Fext, typically the weight: Fp = Ffluid + Fext1.
From a formal point of view, the hydrodynamic force on a particle is determined by in-
tegrating the fluid stresses Σ (normal stress and shear) on the surface of the particle
Ffluid =

∫
Sp

Σ · npds.

1There is also the force FI which translates the direct interactions between objects of the dispersed phase,
typically the collisions, but it can also be an electromagnetic force if the particles are charged or if the
medium conducts electricity . . .
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3.1 The Euler-Lagrange approach
In the Euler-Lagrange approach, the fluid is described in an Eulerian way and each object
of the dispersed phase in a Lagrangian way, based directly on Newton’s equation. One of
the limitations of this approach is that it requires the resolution of a differential equation
for each object of the dispersed phase, which is impossible if they are too many. The
alternative, logically called Euler-Euler approaches, is to give a continuous description of
the dispersed phase, by proposing statistical closures [33, 142, 245, 260, 77, 71, 78, 170,
211]. However, the main difficulty remains, that of estimating the resulting force on each
particle. Indeed, the calculation of the stress that the fluid exerts on a particle requires to
know precisely (i.e. at a scale smaller than the particle) the velocity and pressure field.
When the particles are small, or when the boundary layers developing around them are
small, in comparison of the other characteristic scales of the flow, it becomes impractical.
The Euler-Lagrange approach is based on an effective description of the fluid at a scale
ℓ larger than that of the particle. That is to say that the details of the velocity field are
removed: uf → uf , and with respect to this filtered velocity field, the particle is pointwise.
The resultant of the hydrodynamic forces is then estimated by a model which depends on
the filtered velocity field, without requiring to have the full details of the velocity field.
Formally, we can introduce a functional F giving the force on a particle from the (filtered)
velocity field of the fluid, the velocity of the particles up(t), their positions xp(t), as well
as their orientation θp(t) and rotation speed Ωp(t) . . . :

Ffluid = F [uf (x, t); up(t), xp(t), Ωp(t), θp(t) . . .] . (3.2)

In general, the expression of such a functional is unknown. As an example, in the case of
a fixed object in a uniform and stationary flow, we can make ℓ go to infinity, and obtain
the force (or at least its average value in time) from the value of the velocity far upstream
and its orientation relative to the object by relying on relations (most often empirical) for
the drag and lift coefficients.
For a turbulent flow which is obviously neither stationary nor uniform, the use of the
upstream velocity does not make sense. The method generally adopted is rather to use
the value of the velocity field at the position of the particle. Indeed, the field uf is defined
everywhere, including at the particle position. This is fully justified if we restrict ourselves
to particles with a diameter d much smaller than the smallest scale of the turbulence (the
dissipative scale of the turbulence η) d ≪ η. In this limit, one can consider that at an
intermediate scale ℓ, η ≫ ℓ ≫ d, the velocity field uf (x, t) is quasi-uniform2 at scale ℓ.
With this scale separation, the expression of the fluid force must depend only on the local
value of the fluid velocity field and its derivatives described at scale ℓ.
In this way, we can write that the hydrodynamic force must be a functional of the value
of the velocity and its derivatives at the position of the particle (and not of the whole field
as in (3.2)):

Ffluid = f [uf (x=xp(t),t) − up(t), ∇uf |xp , Dtuf |xp , dtup(t)] . (3.3)

Since the force must be Galilean invariant, only the relative velocity of the fluid and
the particle can be used to determine the force. For the same reason, it is the material

2This uniformity assumption also implies that we consider an isolated particle, or in practice sufficiently
diluted suspension.
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derivative of the velocity of the fluid that must intervene. Note that for simplicity, we
have omitted the terms involving the orientation and rotation of the particle.
The functional (3.3), and thus the expression of the hydrodynamic force, is only well
known for spherical objects moving in a quasi-uniform flow with a very small relative
velocity, so that their Reynolds number is small: Rep = |uf − up|d/ν ≪ 1. In this
case we can decompose the hydrodynamic force into drag force, history force (unsteady
effect of the drag)3, added-mass force and inertia force [86, 164, 152, 74]. When Rep

is larger, it is generally assumed that this decomposition remains valid if one corrects
certain force expressions (e.g. inertia effect on the drag force) and adds other forces such
as lift forces (note that several effects are grouped under the name of lift force). At high
Reynolds numbers Rep, the validity of the previous equation is more empirical than really
rigorously shown, see for example [171] which considers the case of a fixed particle in a
turbulent flow.
In practice the scale ℓ can be taken as the resolution scale of the numerical simulation
ℓ ≈ ∆x and uf corresponds then to the velocity resolved by the simulation. If, in addition,
the mesh is fine enough to resolve the turbulent fluctuations, we have η ≫ ℓ ≫ d. This
setting is sometimes described as quasi-DNS although the dynamics of the small particles
are obtained from a model for the hydrodynamic force. In Sec. 3.2, we discuss the
statistics of acceleration and particle forces in a turbulent flow obtained assuming such
scale separation.
In the case where ℓ ≫ η, the mesh cannot capture all the turbulent scales of the flow, we
then speak about Large Eddy Simulations. In this case the model for the hydrodynamic
force must take into account the fluctuations that are not resolved by the mesh. In Sec.
3.3 we discuss the stochastic model formulation for such an approach for small particles
ℓ ≫ η ≫ d as well as for large particles ℓ ≫ d ≫ η.
Finally, we consider the case where the particle size is not negligible compared to the size
of the mesh (the scale separation ℓ ≫ d is not verified anymore). In this case, due to the
presence of the particle, the velocity of the fluid uf close to the particle can be altered
considerably [231, 86, 164]. Therefore the fluid velocity uf at the particle position must
be corrected to reliably calculate the hydrodynamic force. This case can be encountered
when studying the effect of the particles on the carrier phase (this is called “Two-Way
coupling”), at least when one is interested in the effect of each particle more than in a
global effect resulting from a large mass or volume loading. We will discuss in Sec. 3.4 the
simulation of the turbulence induced by the rising of a cloud of bubbles and the correction
that we have proposed for the calculation of the force for bubbles generating a significant
wake.

3.2 Force and acceleration statistics for particles in turbulence

We present models for the variance of the acceleration of spherical particles in a homo-
geneous and isotropic turbulent flow. In this section, we consider that the particles are
isolated (negligible volume fraction) and that we can neglect the modifications they cause
on the flow of the carrier phase. We are interested in particles that can be heavy or

3Note that if history effects are neglected, the hydrodynamic force is given by the instantaneous value of
the velocity and its derivatives at the position of the particle so (3.3) can be understood as a function
(and not a functional).
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light with respect to the carrier phase and smaller or larger than the Kolmogorov scale.
Three dimensionless numbers are involved in the description of this problem: the ratio of
the particle size to the dissipative scale of the flow d/η, the density ratio ρp/ρf and the
Reynolds number of the flow, for example the Taylor scale Reynolds number Reλ.

3.2.1 Small particles
We first consider the case of small particles in the sense that both d < η and Rep < 1.
In this limit, it is reasonable to neglect lift and history force [153, 86, 164].
We can thus express the acceleration on these small particles as:

dup

dt
= −up − uf

τp
+ β

Duf

Dt
. (3.4)

The coefficient β depends on the density ratio of the particle:

β = 1 + CM

ρp/ρf + CM
(3.5)

with CM the added-mass coefficient which is CM = 1/2 for a sphere in an infinite medium
[153, 19]. For a particle of high density ρp/ρf ≫ 1 we have β → 0 and for an extremely
light particle ρp/ρf = 0 (typically the case of a bubble) we have β = 3. The relaxation
time of the particle τp is:

τp = (ρp/ρf + CM ) d2

18ν
. (3.6)

The expression is given here for the case where there is no slip of the fluid at the interface
of the object. In the case where there is free shear at the interface, it is appropriate to
replace the factor 18 by 12 as in Ref. [280]. This last condition corresponds in some cases
to a bubble with an uncontaminated interface, but we draw attention to the fact that the
interfacial dynamic is very rich is that a bubble is much more complicated than a light
particle with a slip condition [149, 207].
To describe the dynamics of such a small particle, we prefer to use the following dimen-
sionless numbers:

St = τp/τη ; β (3.7)

with τη = η2/ν the dissipative timescale of the flow structure. Note that in Eq. (3.4)
buoyancy has been neglected, which is valid for sufficiently intense turbulence and low
gravity, i.e. if Fr/St ≫ 1 [162], where Fr = aη/g [110, 22].

Small heavy particles

We consider first the case of small and heavy particles so that in the limit β → 0 only drag
force is important. In this case, the equation of motion of the particle simply becomes:

dup

dt
= −up − uf

τp
. (3.8)

This regime has attracted considerable attention for several decades, most certainly be-
cause of its interest in the understanding of many problems both industrial and natural,
but probably also because of the simplicity of the model.
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Among the remarkable aspects that have been highlighted is the formation of areas of
very high particle density (clusters) [12, 45, 246, 69]. Due to their inertia, the particles
tend to be ejected from areas of high rotation and accumulate in regions of high shear
[163]. This cluster formation is maximum for St numbers around unity. For larger Stokes
numbers, particles are expected to respond to structures with longer lifetimes, which are
less intense [94].
It is important to note that Eq. (3.8) shows that the inertia of the particle acts as a first-
order filter: high-frequency fluctuations in the fluid velocity along the particle trajectory
are filtered out.
As shown in Ref. [20] for weakly inertial particles (St < 1), the inertia does not have a
very large impact on the statistics of the particle acceleration which remain very close to
the rate of variation of the fluid velocity along the trajectory. However the acceleration is
sufficiently different from the acceleration of a fluid particle that would occupy the same
place, to deviate the trajectory of the inertial particle from that of fluid particles and leads
to cluster formation.
For larger inertia (St > 1) the fluctuations of the fluid along the trajectory of a particle
are effectively filtered out and the particle only responds to low frequencies. This results
in a much reduced variance of the particle acceleration compared to that of a fluid particle
occupying the same position, and the trajectories become much straighter, thus reducing
the phenomenon of preferential concentration. Particles with high inertia can pass through
the high rotation zones without being significantly affected.
As proposed in Ref. [92] this results in the following relations for the variance of the
acceleration of a particle. For St ≪ 1, the variance of the acceleration remains very close
to that of a fluid particle, so neglecting the preferential concentration, and the effect of
intermittency (which was discussed at length in the first chapter, but which we leave aside
for now) we have:

⟨a2
p⟩/a2

η = O(1) , (3.9)

where a2
η = ⟨ε⟩/τη. For very large inertia, St ≫ τL/τη where τL is the Lagrangian integral

scale of the flow, we can consider that the velocity fluctuations of the particle appear
decorrelated from the fluid ones, leading to a “thermalization” of the particle with the
flow. And because of the particle inertia the variance of the relative velocity will be equal
to that of the fluid: ⟨(up −uf )2⟩ ≈ ⟨u2

f ⟩. This gives the following estimate for the variance
of the particle acceleration:

⟨a2
p⟩/a2

η ∼ ReλSt−2 . (3.10)

To obtain this relation we used that τL ∼ ⟨u2
f ⟩/⟨ε⟩ and that τL/τη ∼ Reλ.

For intermediate inertia 1 ≪ St ≪ τL/τη one can make the assumption, similar to Kol-
mogorov, that the variance of the particle acceleration depends only on the average dissi-
pation rate ⟨ε⟩ and on the response time of the particle and obtain:

⟨a2
p⟩/a2

η ∼ St−1 . (3.11)

A comparison is made with results computed from the DNS database [21, 141] obtained
with the inertial particle model (3.8). We observe that the agreement is only partial
and that the three scaling laws seem to give rather the envelope of the evolution of the
variance with St. This comes from the fact that the Lagrangian inertial zone is very small
even at large Reynolds (at least large for the current capabilities of DNS). Indeed from
DNS we can see that τL/τη = 0.08Reλ [238, 101]. Thus for Reλ = 400 we have only
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τL/τη = 32 which strongly limits the inertial zone where 1 ≪ St ≪ τL/τη. Thus, without
invalidating the proposed scaling laws, it shows that the way of matching these laws has
a great importance to obtain an accurate estimate of the variance of the acceleration.
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Figure 3.1: Variance of the acceleration of an inertial particle normalized by the variance
of the acceleration of a fluid particle as a function of the Stokes number, obtained from
the DNS database of Refs. [21, 140] at Reλ = 400. Comparison with (3.9), (3.10) and
(3.11) relations in doted line, as well as with (3.14) in dashed lines.

A more systematic approach taking advantage of the linearity of (3.8) proposes to calculate
the associated transfer function [253, 104, 273, 279]. By taking the Fourier transform of
(3.8) we obtain a relation between the spectrum of the particle velocity and that of the
fluid velocity along the trajectory:

Ep(ω) = 1
1 + ω2τ2

p

Ef (ω) (3.12)

with Ep(ω) = ûpû⋆
p and Ef (ω) = ûf û⋆

f the spectral density of velocity of the particle and
of the fluid. The evolution of the spectrum of the fluid velocity along the trajectory of the
particle with St from DNS is shown in figure 3.2. Without going into details, we can see
that, on the one hand, for very weakly inertial particles, the spectrum of the velocity seen
by the particle is relatively well described by the Hinze spectrum [256, 184]:

Ef (ω) ≈ k0⟨ε⟩τ2
L

1 + τ2
Lω2 , (3.13)

at least for ω ≪ ωη = 2π/τη. Note that this spectrum simply corresponds to an exponential
decay of the Lagrangian autocorrelation of the velocity.
Moreover, we note that at frequencies lower than ω < 2π/τp we can consider that the spec-
tra of the fluid velocity are invariant with St. Specifically, the value of k0 seems constant.
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Using the normalization condition ⟨u2
f ⟩ = 2

∫
Ef (ω)dω we find that k0 = 1

π

⟨u2
f ⟩/⟨ε⟩
τL

where
⟨u2

f ⟩ represents the variance of the velocity of the particle along the trajectory. We mea-
sured from DNS k0 = 1.04. The dependence on St at higher frequency reflects, on the one
hand, the effect of the preferential concentration (moderate St) and, on the other hand,
the fact that the trajectory becomes more ballistic and thus cuts the turbulent structures
developing a more energetic spectrum at high frequency in agreement with the sweeping
mechanism proposed by Ref. [255].
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Figure 3.2: Spectrum of the fluid velocity along the trajectory of an inertial particle for
St = 0.24, 0.9, 1.5, 3., 4.5, 7. 5, 15, 30, 45, 60, 75 (from black to orange), obtained from
the DNS database of Refs. [21, 140] at Reλ = 420. Comparison with the relation ⟨ε⟩ω−2

and the relation (3.13).

The spectrum of the particle acceleration is simply obtained by multiplying that of its
velocity by ω2. We obtain an estimate of the variance of the acceleration by integration:

⟨a2
p⟩ = 2

∫ ∞

0
ω2Ep(ω)dω

≈ c0a2
η

1 − St2
L

[
tan−1(c1St)

c1St
− tan−1(c1τL/τη)

c1τL/τη

]
. (3.14)

The constant c1 = 2.8 appears, because the previous integral is truncated for ω > c1/τη

and we introduce c0 = 2c1k0 to simplify the notations. We also introduced StL = τp/τL =
St/0.08Reλ. The relation (3.14) is compared with the DNS in the figure 3.1. In this figure
the variance of the acceleration is normalized by the variance of the acceleration of a fluid
particle, which is estimated from (3.14) with St = 0. We can see a fairly good agreement
with the DNS, although around St ≈ 1 the variance of the acceleration is underestimated,
because the effect of the preferential concentration on the spectrum of the fluid velocity
has been neglected. One can check that the expression (3.14) is in agreement with the
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relations (3.9), (3.10) and (3.11). For example, in the case of large Reynolds numbers,
τL/τη = Reλ/0.08 ≫ 1 and τL/τη ≫ St, the relation (3.14) simplifies into

⟨a2
p⟩ ≈ c0a2

η

tan−1(c1St)
c1St

. (3.15)

This relation behaves indeed as St−1 for St ≫ 1 and tends to a constant for St ≪ 1. In
the limit where the Stokes number is large St ≫ 1 (and also τL/τη ≫ 1) we find:

⟨a2
p⟩ ≈ a2

η

k0π/2
St(1 + StL) . (3.16)

This corresponds to (3.10) and (3.11). We can notice that in the previous relation the
constant c1 is eliminated meaning that for large Stokes numbers the dissipative zone has
no more direct effect, because it appears anyway filtered by the inertia of the particle.
Moreover, it should be noted that k0 presents dependence with the Reynolds number in
order to account for the intermittency of the flow (as discussed in the first chapter, see
the relation (2.43)) reflecting that for very high Reynolds numbers even at high Stokes
numbers, one should expect that the large fluctuations at small scales might influence the
dynamics of the particle.

Small, heavy or light particles

We are now interested in particles with arbitrary density, small or large, but whose size
remains small (d/η ≪ 1 and Rep ≪ 1). We mention that bubbles can be assimilated to
very light particles 4. It is therefore a priori necessary to take into account the effect of
the inertia of the fluid, which includes the added-mass force and the Tchen force. The
dynamics of the particle is therefore given by (3.4). We note

FI = βDtuf , (3.17)

the inertia force per unit of displaced mass, and

FD = −(up − uf )/τp . (3.18)

The drag force also per unit of displaced mass, with the relaxation time always defined by
(3.6).
The first question concerns the importance of the inertia force of the fluid compared to
the drag force. In the case of very small inertia St → 0, the particle behaves like a tracer.
Therefore in this limit, its acceleration will be identical to the acceleration of a fluid
particle ap = af = Dtuf . Then from (3.4), and using (3.17), we have FD = (1 − β)af . It
implies that for β > 0

FD = 1 − β

β
FI . (3.19)

For example, for very light particles (β = 3), we expect that the two forces are of the same
order of magnitude, but of opposite directions.

4There are however some precautions to take, such as contamination of the interface by surfactants which
change the dynamics condition on the interface (free slip or no-slip), the deformation of the bubble,
characterized for example by the Weber number . . .
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As the inertia of the particle increases, the drag force (per unit mass) is expected to
decrease, as seen earlier. This suggests that for inertial particles with St ≫ 1, the fluid
inertia force can be important even if the density ratio is not very low. Moreover, for light
particles we expect the variance of the particle acceleration to increase with St, since FI

and FD are opposite.
These behaviors are confirmed in figure 3.3 showing the evolution of the variance of the
particle acceleration for different values of β. The reported values were obtained by Zhen-
tong Zhang from DNS [279] for β = 3, for β = 2.5 and 0.14 by those of Ref. [46], and
for β = 0 by Ref. [21]. We see that for β > 0, the variance of the acceleration tends to
a constant value when St becomes large, and that the asymptotic value depends on β.
This reflects the fact that the drag force becomes negligible at large St. For particles with
density less than the fluid (β > 1) we also see that the variance becomes larger than for a
fluid particle. In fact, we will show below that this asymptotic value is β2.
A remark is necessary: the model (3.4) is based on the hypothesis that d/η < 1 and
Rep < 1 but this imposes limits for the value of St and β as we can see with the relation:(

d

η

)2
= 18βSt

(1 + CM ) . (3.20)

For β = 3, the Stokes number must be less than 5 to guarantee that the diameter remains
small enough for neglecting the finite size of the particles (corresponding roughly to d/η <
10). Indeed on the figure 3.3, we see that for β close to 3, the experimental results show
a decrease of the variance when St increases, this is attributed to finite size effects of the
particle. These effects are discussed in paragraph 3.2.2. We come back to the condition
Rep ≪ 1 a little later.
The approach of Tchen can be generalized [104, 166, 3, 279] to account for the fluid inertia
force in order to propose an estimate of the variance of the acceleration of a small, heavy
or light particle as a function of St, β, and τL/τη ≈ 0.08Reλ:

⟨a2
p⟩

a2
η

≈ c0

[
β2 + 1 − β2

1 − St2
L

tan−1(c1St)
c1St

− 1 − β2St2
L

1 − St2
L

tan−1(c1τL/τη)
c1τL/τη

]
= Γa(St, β, τL/τη) .

(3.21)
Again with StL = τp/τL = Stτη/τL and c1 = 2.8. This estimate is compared to the results
of DNS in figure 3.3. We see that the agreement is relatively good, at least as long as the
finite size effects are negligible. We can notice that for β = 0, the relation (3.21) is indeed
identical to (3.14). For Reλ ≫ 1 and StL ≪ 1 we can simplify the relation:

⟨a2
p⟩

a2
η

≈ c0

[
β2 + (1 − β2)tan−1(c1St)

c1St

]
. (3.22)

We notice that for St ≪ 1 and Reλ ≫ 1 the variance of the acceleration tends to a constant
value ⟨a2

p⟩ ≈ c0a2
ηβ2.

The equation (3.21) is obtained from the following transfer function

Ep(ω) = H2
u(ω)Ef (ω) ; H2

u(ω) =
1 + β2ω2τ2

p

1 + ω2τ2
p

, (3.23)

and by estimating, as before, that the spectrum of the fluid velocity at the particle position
is given by (3.13). This transfer function is obtained at the cost of an approximation on
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Figure 3.3: Variance of acceleration normalized by the acceleration of a fluid particle from
the DNS of [279] for a bubble β = 3, Reλ = 215 (• and continuous line), the DNS of
[21, 140] for dense particles β = 0, Reλ = 400 (▲ and continuous line), the DNS of
[46] for β = 2.5 and Reλ = 180, with or without finite size correction (+ with dash-
dotted and dotted lines respectively), and β = 0.14 (+ and continuous line), experimental
measurements of [205] for Reλ = 145 − 230 and β ≈ 3 (× and dashed lines). Comparison
with the equation (3.21): ⟨a2

b⟩(St,β,τL/τη)/⟨a2
b⟩(0,1,τL/τη) with c1 = 2.8 and Reλ = 200 for

β = 0, 0.14, 0.5, 1, 1.5, 2, 2.5 and 3 from black to orange, in dash line, and with c1 = 2.8
and Reλ = 400, β = 0 in black doted line. Inset: the transfer function (3.23) as a function
of ωτb for β = 0, 0.5, 1, 2 and 3 from black to orange.

the total acceleration of the fluid at the particle position. We have indeed replaced the
total acceleration of the fluid at the position of the particle Duf /Dt by the Lagrangian
derivative along the trajectory of the particle duf /dt = ∂tuf + up.∇uf . This allows the
use of the linear response approach, since it is equivalent to considering that the velocity of
the particle responds only to the fluctuations of the fluid velocity along the trajectory and
its time derivative. This assumption can be evaluated by writing the material derivative
of the fluid in the following form

Dtuf = ∂tuf + uf ∇uf = dtuf − (up − uf ).∇uf . (3.24)

We thus see that our approximation is a priori valid for Stokes numbers small enough for
the relative velocity to be small (as discussed in the previous paragraph about the drag
force). Figure 3.4 compares the variance of Dtuf and dtuf , as well as the variance of
their difference, for the extreme cases β = 0 and β = 3. We notice that ⟨(Dtuf )2⟩ evolves
only slightly with St, although it presents a slightly lower value around St = 1 for both
β = 0 and β = 3. On the other hand, the Lagrangian derivative of the velocity along the
trajectory shows a clear increase with St. However, it should be noted that our estimate is
not so bad, because we have also neglected the phenomenon of preferential concentration
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(in fact the effect of St in the velocity spectrum seen by the particle Ef ), and thus the
variance of the inertial term predicted by the approach does not depend on St which is
finally in relatively good agreement with the DNS. This is the result of two errors which,
by chance, compensate each other.
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Figure 3.4: Evolution with St of the variance of the material derivative of fluid velocity
at the particle position Dtuf (black) and of its Lagrangian derivative along the particle
trajectory dtuf (blue/red), for inertial particles β = 0 at Reλ = 400 (left) and light
particles β = 3 at Reλ = 200 (right). The quantities are normalized by the variance of the
acceleration of a fluid particle computed on the whole domain. Inset: variance of Dtuf -
dtuf .

We just mention that in Ref. [279] we have also studied by DNS, the PDFs of the particle
acceleration for St = 3. We observe that for St = O(1), the flatness of the PDFs is
much larger than that for fluid particles. This is because the two forces FD and FI are of
the same order of magnitude and mostly anti-aligned, as the drag force responds quickly
to the solicitation imposed by the inertial force, leading to a relatively low acceleration.
However, when the two forces are aligned, this leads to very high accelerations.
Using the response function approach, we can estimate the variance of the drag force FD

as well as of the fluid inertia force FI :

⟨F 2
D⟩

a2
η

≈ c0
(1 − β)2

1 − St2
L

[tan−1(c1St)
c1St

− tan−1(c1τL/τη)
c1τL/τη

]
= ΓD(St, β, τL/τη) , (3.25)

⟨F 2
I ⟩

a2
η

≈ c0β2
[
1 − tan−1(c1τL/τη)

c1τL/τη

]
= ΓI(St, β, τL/τη) . (3.26)

We see that indeed the estimate of the predicted inertia force is independent of St, as
mentioned above.
The previous relations were obtained by assuming a Stokes regime for the flow around
the particle. This results in a Reynolds number of the particles that must necessarily be
very small in front of 1. Using the relation of the variance of the drag force (3.25), one
can estimate the evolution of the Reynolds number or more exactly of its second order
moment with St:
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⟨Re2
p⟩ = ⟨F 2

d ⟩τ2
p d2/ν2 = 18β

1 + CM
St3ΓD(St, β, τL/τη) . (3.27)

Effect of the finite Reynolds number of the particles

The relative velocity between the particle and the fluid increases with the inertia of the
particle. The inertial effects of the flow around the particle are characterized by the
Reynolds number of the particle Rep. These are generally considered to be present from
Rep = 0(1), although the drag force remains dominated by viscous effects until Rep =
0(100). Such inertial effects are not taken into account in (3.4) which assumes a Stokes
regime for the flow around the particle giving a drag force proportional to the relative
velocity. One can introduce a correction ϕ(Re) to the drag force to take into account
finite Reynolds number effects:

FD = −ϕ(Rep)up − uf

τp
. (3.28)

We choose5 by definition that for a solid particle with Rep ≪ 1 we have

ϕ(Re) = 1 . (3.29)

For a solid particle, we obtain the correction from the expression of the drag coefficient
proposed by Ref. [242], valid for Rep < 800:

ϕ(Rep) = 1 + 0.15Re0.687
p . (3.30)

This empirical relation is based on experimental data for the mean drag and tends towards
the Stokes solution in the limit Rep → 0. The ϕ correction can also integrate other effects
such as the mobility of the interface or its contamination, the viscosity of the fluid in the
case of drops or even the shape of the particle. For example, we can also consider the case
of clean spherical bubbles (spheres with a free shear condition at the interface), with the
Mei drag law valid for all Rep:

ϕ(Rep) = 2
3 + 2

3

(
8

Rep
+ 1

2

(
1 + 3.315

Re
1/2
p

))−1

. (3.31)

This relation is based on DNS and has been constructed so as to find in the limit Rep → 0
the viscous solution and the Oseen development [102, 227, 252]. At high Reynolds numbers
the relation (3.31) gives ϕ(Rep) = 2 and ϕ(Rep) = 2(1 − 2.211Re

−1/2
p ) corresponding

respectively to the Levich viscous potential solution [147] and the Moore correction [179]
taking into account the development of a boundary layer.
The ϕ correction coefficient is related to the drag coefficient by

ϕ(Re) = CD

CD,0
, (3.32)

with CD,0 = 48/Rep the drag coefficient of a solid particle in the Stokes regime as a ref-
erence. The evolution of ϕ with Rep corresponding to (3.29), (3.30) and (3.31) is shown

5This choice is different in [280] where we had chosen as reference the case of a clean spherical bubble,
i.e. with a free slip condition at the interface.
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Figure 3.5: On the left: ϕ(Rep) as a function of Rep. The case of a solid particle: (gray
dotted lines) Stokes solution ϕ = 1 (relation (3.29)); (thin gray dotted lines) the Oseen
solution ϕ = 1 + 3Re/8; (black dotted lines) the Schiller and Naumann relation (3.30).
For a spherical bubble: (black line) relation (3.31); (black dotted lines) Stokes regime
ϕ = 2/3; (thin gray dotted lines) the Taylor and Acrivos solution ϕ = 2/3(1+Re/8); (thin
gray dotted lines) the Moore relation ϕ(Rep) = 2

[
1 − 2.211Re

−1/2
p

]
; (gray dotted lines)

Levich’s solution ϕ(Rep) = 2.
Right : Evolution of ⟨Rep⟩ϕ′(⟨Rep⟩)/ϕ(⟨Rep⟩) as a function of ⟨Rep⟩. The symbols corre-
spond to the results of the DNS: (◦) for the law (3.31) and (×) for (3.30). The lines are
the analytical results.

in Figure 3.5. The expressions for ϕ are based on the implicit assumption, generally ac-
cepted, that the expression for the mean drag force is applicable to the instantaneous drag
force and that the decomposition of the force balance on the particle remains unchanged.
Such an assumption is certainly valid if the fluctuations of the Reynolds number are small
compared to its mean value and the transient effects (related to the history force) are very
brief.
In Ref. [280] we considered simulations for the three drag laws (3.29), (3.30) and (3.31),
with β = 3. We found that the instantaneous Reynolds number of the particles in these
three cases presents a distribution close to a log-normal with a mean of the same order of
magnitude as its standard deviation:

⟨Rep⟩ ≈
√

⟨Re2
p⟩/2 . (3.33)

To propose an estimate of the variance of the acceleration and forces, taking into account
the inertial effects in the response of the particle, we can decompose the Reynolds number
of the particle into an average part and a fluctuating part Rep = ⟨Rep⟩+Re′

p and approach
the drag force (3.28) thanks to a Taylor development of the function ϕ around ϕ(⟨Rep⟩):

FD = −ϕ(⟨Rep⟩)up − uf

τp
− Re′

pϕ′(⟨Rep⟩)up − uf

τp
+ . . . (3.34)

with ϕ′ the derivative of ϕ with respect to Rep. Although the Reynolds number of
the particle presents important fluctuations, we show in figure 3.5 by plotting the ratio
⟨Rep⟩ϕ′(⟨Rep⟩)/ϕ(⟨Rep⟩), that we can retain only the first term of the Taylor expansion,
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at least as long as we are interested in basic statistics (typically mean or variance). When
the Stokes number becomes very large, the second order is no longer negligible, but the
first term remains dominant.
The relation (3.34) allows introducing an effective relaxation time τ∗

p , as proposed for
example in Refs. [77, 26, 280], which allows to take into account the effect of the finite
Reynolds number of the particles:

τ∗
p = τp/ϕ(⟨Rep⟩) , (3.35)

and an effective Stokes number

St∗ = St/ϕ(⟨Rep⟩) . (3.36)

To illustrate the relevance of introducing St∗, we present on figure 3.6 the evolution of the
variance of the drag force and of the acceleration of the particles as a function of St and
St∗ for the DNS performed with the drag laws (3.29), (3.30) and (3.31) and β = 3. It can
be seen that the evolution with the Stokes number differs quite markedly when the drag
law is modified. When these evolutions are plotted as a function of St∗ we notice that the
different curves almost merge. This means that the effects of finite Rep can be taken into
account, at first order, thanks to the effective Stokes number.
Moreover, we have shown in the previous paragraph that for ϕ(Rep) = 1 we can estimate
the evolution of the variance of the forces and the acceleration as a function of St and β
thanks to the relations (3.21), (3.25), (3.26). Thus, the (approximate) self-similarity of the
variances as a function of St∗ in figure (3.6) indicates that we can estimate the variance
of the particle forces and acceleration taking into account inertial effects (Rep > 1) with
the formulas (3.21), (3.25), (3.26) evaluated with St∗ instead of St:

⟨a2
p⟩

a2
η

≈ Γa(St∗, β, τL/τη) (3.37)

⟨F 2
D⟩

a2
η

≈ ΓD(St∗, β, τL/τη) (3.38)

⟨F 2
I ⟩

a2
η

≈ ΓI(St∗, β, τL/τη) (3.39)

To use these relations one needs to estimate St∗, which requires to know the mean value
of the particle Reynolds number. By using (3.33), (3.34), (3.38) and the definition of
Rep, we can obtain an implicit relation allowing estimating, to the first order, the average
Reynolds number

⟨Rep⟩ ≈ St

ϕ(⟨Rep⟩)
d

η

(1
2ΓD(St/ϕ(⟨Rep⟩), β, τL/τη)

)1/2
(3.40)

This relation can be solved iteratively by taking for example as initial value ⟨Rep⟩ = 0.
A validation of (3.40) can be found in Ref. [280] based on comparisons with the DNS for
different drag laws.
Fluid inertia forces have a dominant role in the dynamics of light particles (ρp/ρf ≪ 1),
in contrast, it is generally considered that for very dense particles (ρp/ρf ≫ 1), the fluid
inertial force is irrelevant. This suggests that one can conclude about the relevance of the
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Figure 3.6: Left: Variance of the drag force normalized by the variance of the particle
acceleration. Right: Variance of the particle acceleration normalized by the variance of
the fluid particles. Top : Evolution as a function of St; bottom : Evolution as a function
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inertial force based only on the density. Using the estimates (3.38) and (3.39) for the drag
force and inertia force, we show in what follows that this is more subtle and also depends
on the particle size.
Figure 3.7 shows the evolution of the ratio ⟨F 2

I ⟩/⟨F 2
D⟩ estimated from (3.38) and (3.39)

for a range of density and particle size. For this figure we chose the Rep-correction (3.30)
corresponding to the drag force of a solid sphere given by the Schiller and Naumann
relation. The figure 3.7(a) presents 3 levels of the force ratio ⟨F 2

I ⟩/⟨F 2
D⟩ = 1%, 10% and

100% as a function of ρp/ρf and St. The shaded area indicates the region of parameter
space in which the fluid inertia force is not negligible (arbitrarily set to ⟨F 2

I ⟩/⟨F 2
D⟩ = 10%).

As expected, we observe that for light particles (ρp/ρf < 1), the inertia force of the fluid is
dominant, whereas for very heavy particles, ρp/ρf ≫ 1, we observe that the inertia force
of the fluid can be neglected. However, we observe that when the Stokes number of the
particle increases, the density threshold from which the inertia force is negligible increases.
Typically for St < 1, this force is negligible if ρp/ρf > 10, while for St = 100 it requires
ρp/ρf > 100. The non-negligible role of the fluid inertia force for very heavy particles and
of inertia (or size, both are related, see (3.20)) is simply explained by the observation that
at first order the fluid inertia force (per unit of displaced mass) is independent of particle
size, as long as finite size effects can be ignored, while the magnitude of the drag force
(again per unit of displaced mass) decreases with particle size, as shown in figures 3.1 and
3.6.
Moreover, considering the evolution of the force ratio as a function of ρp/ρf and d/η given
in figure 3.7(b), we can notice that for particles of size d/η ≈ 3 the inertial force remains
important even for very large density ratios. This observation depends on the Reynolds
number of the flow. Indeed, for Reλ = 400, the inertia force of the fluid should not be
neglected for particles larger than d/η ≈ 7. Since it has been proposed by Ref. [46]
that the finite size effect can be ignored for particles smaller than d/η ≈ 10, the results
presented in this section indicate that the added-mass force may turn out to be of the
order of magnitude of the drag force, when the inertia of the particles becomes large,
even for high density ratio. For higher Reynolds numbers, one has to keep in mind that
intermittency is not taken into account, and since the fluctuations of the fluid acceleration
can be much larger than its standard deviation, this contributes a priori to reinforce the
effect of the fluid inertia force.
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3.2.2 Large particles

We are considering the statistics of the acceleration of finite size particles, i.e. whose
diameter is not negligible in comparison with the Kolmogorov scale. Experimental works
of Refs. [264, 210, 209, 263, 38, 40, 267] have shown that for particles with d > η and having
a density ratio close to 1 the variance of their acceleration varies as ⟨a2

p⟩ ∼ ⟨ε4/3⟩d−2/3.
The experiments of Refs. [209, 38] have studied in detail the effect of size and density
for size ratios between d/η = 10 and 26 and density between 1 and 100. They showed
a complicated evolution of the variance of the acceleration with size and density. It also
appears that the tails of the PDFs of particle acceleration tend to shrink with increasing
size [263]. It should be noted, however, that this behavior is not observed in the results
of [209] which has PDFs that appear to be nearly invariant with size, this may be due to
the resolution limitations of the measurements.
On the other hand, in numerical simulations of Refs. [105, 57], at moderate Reynolds
numbers, it was observed that the variance varies as d−4/3. This would result from the
fact that the particle dynamics is dominated by large flow structures leading to ⟨a2

p⟩ ∼
ε2/3d−4/3⟨(uf − up)2⟩. It should be noted that studies on finite size particles are still
mainly experimental and that DNS at high Reynolds numbers are not yet available.
To model these different aspects, we can assume first that the decomposition of the hy-
drodynamic force (drag, mass added inertia force ... ) remains relevant for particles
much larger than the Kolmogorov scale. This remains, of course, hypothetical, because
there is no rigorous derivation of the hydrodynamic force for such particles (except for the
added-mass force). Many works are currently looking for empirical expressions of such
forces [150]. The main difficulty in this path being to define the fluid velocity seen by
the particle that appears in the expression of the forces. We return to this point in the
paragraph 3.4. In this hypothesis, we consider that the hydrodynamic force on the particle
can generally be given by the drag force and the inertia force, as in the previous part.
We discuss here, how the expressions of these two forces can be adapted to take into

63



account the finite size effect.
To determine the drag force it is necessary to take into account that the flow is non-
homogeneous at the scale of the particle, thus leading to exchanges of momentum between
the fluid and the particle, and which can be related to an additional drag. In Ref. [92]
it has been proposed to model this aspect by introducing an effective viscosity to account
for inertial effects in the drag calculation. The effective viscosity takes into account the
momentum flux induced by fluctuations at the particle scale. Using the Prandtl mixing
length model, it is estimated as:

νeff = ν + u′d = ν + cε
1/3
d d4/3 (3.41)

where u′ is the characteristic velocity at the scale of the particle that we estimated from
the Kolmogorov scaling law. Thus, εd must be understood as the dissipation rate averaged
at the particle scale. Putting aside for the moment the aspects related to νeff fluctuations
and intermittency, we write that νeff /ν = 1+(d/dc)4/3 where we have introduced dc ≈ 10η
the diameter of the particle from which the effects of finite size are felt. From this turbulent
viscosity, we can construct a turbulent response time for the particle:

τ∗
p → τp,eff = τ∗

p

ν

νeff
. (3.42)

We have used here τ∗
p = τp/ϕ(⟨Rep⟩) introduced in the previous paragraph (3.35) in order

to take into account also the finite Reynolds number effects (which are also inertial effects).
The idea is then to estimate the drag force, per unit mass, from the velocity field filtered
at the scale of the particle η ≪ d ≪ L, as (uf − up)/τp,eff .
The inertia forces of the fluid, which is directly proportional to the acceleration of the
fluid, can be seen as a multiplicative cascade (as discussed in Part 1). Thus this term
will be directly influenced by the filtering effect operated by the particle size. This is
equivalent to considering that from the point of view of the particle the turbulent cascade
stops at a scale d > η. Using a dimensional argument, we can write that the acceleration
of the fluid at scale d thus varies as ad ∼ ε

2/3
d d−1/3. This view is consistent with the

Faxen formulation used in [45] also see [135, 254, 148]. Thus the proposal is to replace
the material derivative of the fluid entering the expression of the fluid inertia term by a
filtered acceleration:

Dtuf → Dtuf ∼ Dtuf (d/dc)−1/3 . (3.43)

In this relation we used again dc ≈ 10η as introduced previously.
With the two previous ingredients, we propose to model the motion of large particles by
the following equation:

dtup = −up − uf

τp,eff
+ βeff Dtuf (3.44)

with βeff = β(d/dc)−1/3.
This amounts to introducing two dimensionless numbers Steff = St∗

ν

νeff
and βeff instead

of St∗ and β which are the relevant dimensionless numbers for the case of small particles.
One can notice that for d/η ≫ 1, Steff ∼ (d/η)2/3. Thus when the inertia force of the
fluid is negligible we expect to find (from what we saw with the equation (3.11)) that the
variance of the acceleration behaves as ⟨a2

p⟩ ≈ a2
η/St−1

eff ∼ a2
η(d/η)−2/3. On the other hand,
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when the inertia force dominates we saw with (3.22) that the variance of the acceleration
was given by ⟨a2

p⟩ ≈ a2
ηβ2

eff , which again gives the scaling law in (d/η)−2/3.
In fact, one can argue that for large particles η ≪ d ≪ L the various forces are dominated
by inertia and thus must exhibit a scaling law as ε

2/3
d d−1/3. This can be formalized

by considering the momentum exchanged between the particle and the fluid per unit
time dP/dt . Placing ourselves in the reference frame of the particle, we write that dP
is the mass of fluid swept by the particle (ρf u′πd2dt/4) multiplied by u′. Thus, with
u′ ∼ (εdd)1/3, we find that the acceleration of the particle, i.e. the momentum exchanged
per unit of time and displaced mass ((ρp + CM ρf )πd3/6) varies as:

a2
p ∼ (ρp/ρf + CM )−2ε4/3d−2/3. (3.45)

Finally, assuming that the relation (3.21) giving the variance as a function of St and β
proposed previously remains valid, providing we substitute β by βeff and St by Steff ,
one can thus obtain an estimate of the variance of the acceleration of large particles, given
here in the limit of large Reynolds numbers:

⟨a2
p⟩

a2
η

= Γa(Steff , βeff , τL/τd)

≈ β2
eff +

(
1 − β2

eff

) tan−1(Steff )
Steff

. (3.46)

The evolution of the estimate for the variance of the acceleration as a function of d/η and
ρp/ρf is shown in figure 3.8. This estimate is compared with the experimental results of
Refs. [205, 263, 209]. It can be seen that the agreement is reasonable over the range of
diameters and density considered experimentally. For d/η ≫ 1, we find that (3.46) behaves
like the asymptotic expression (3.45). The expression (3.46) is a priori valid only for large
enough d/η as βeff diverges for d/η → 0. However, we can note that (3.46) behaves as
(3.22) in the limit d/η → 0. This can be shown with the series expansion of tan−1(x)/x
around 0. This can also be observed in figure 3.8. Nevertheless, the behavior in the
transition zone between small particles (d < dc) and large ones (d > dc) is undoubtedly
much more complex as can be seen in figure 5 of Ref. [209]. It is quite likely that in
addition to preferential concentration effects, there is also the effect of lift forces.
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3.3 Stochastic modeling of the dynamics of a particle and
application to LES

In this section, we are interested in taking into account the fluctuations at subgrid scale
in the dynamics of particles.

3.3.1 The large eddy simulation approach

To compute a turbulent flow by the direct numerical simulation (DNS) method from the
Naviers-Stokes equations, all scales of the flow must be solved. The smallest scale of
the turbulence, the Kolmogorov scale η, imposes the resolution of the mesh, while the
size of the integration domain must include the largest structures. It is then usually
considered that the necessary number of meshes points N varies as N ∼ (L/η)3 ∼ Re9/4.
The strong dependence of the number of operations to be performed with the Reynolds
number, makes that the computational power remains the limiting factor to simulate flows
at high Reynolds numbers, despite an exponential increase in the computational power.
This is illustrated in figure 3.9 showing the time evolution of the largest number of mesh
points and the maximum Reynolds number, based on the Taylor scale, Reλ for DNS of
incompressible and isotropic turbulent flow. We can see in this figure the counterpart of
Moore’s law for fluid mechanics: since the 70s, the number of mesh points has doubled
every 2 years and the maximum Reynolds number Reλ has doubled about every 8 years6.
Nevertheless, we can note that lately, although the mesh number follows an exponential
growth, this does not seem to be the case for the Reynolds number reached by these
simulations. Indeed Refs. [68, 272] draw attention to the fact that the number of mesh
points required for a uniform mesh is certainly underestimated by the previous relation,
because of the occurrence of extreme events in the dissipation leading to fluctuations at
scale well below η. Thus, at this rate, even if the power of computers continues to grow
exponentially, the DNS at Reynolds numbers relevant to the applications will remain

6The Reynolds number based on the large scales Re ∼ Re2
λ doubles every 4 years
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inaccessible for a long time.
The alternative proposed by the large eddy simulation (LES) approach is to decouple the
required mesh size from the Reynolds number of the flow, by not resolving the small-
est structures. This approach is justified because the largest structures (those that are
resolved) contain most of the kinetic energy, are the most efficient in the transport phe-
nomena while being very dependent on the flow configuration (its forcing and boundary
conditions). The small (unresolved) structures are considered universal, at least when
the turbulence can be assumed to be locally homogeneous and isotropic (e.g. far from
the walls). Nevertheless, a model must be used for the effective action of small scales on
large-scale dynamics.
The equation for the filtered velocity field u is obtained in two steps, similar to those
used to study critical phenomena with the renormalization group technique [117]. The
first step of “decimation” consists in eliminating the small scales: ui(x, t) → ui(x, t) =∫

H∆(x′)ui(x−x′, t). where H∆ represents the kernel of the filter at the ∆ scale, typically
the mesh scale. The second step of “renormalization” consists of modifying the interaction
between the remaining degrees of freedom to leave unchanged the kinetic energy of the large
scales and its rate of change (transfer rate). Classically, this is obtained by introducing
an effective viscosity. We thus obtain the LES equation:

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ∂

∂xj
2ν∆Sij , (3.47)

with Sij = 1/2(∂jui +∂iuj) the rate of strain of the flow. The effective viscosity ν∆ models
the effect of unresolved scales on the resolved scales. It can be obtained from the mixing
length model 7: ν∆ = ν + (cs∆)2|Sij | with cs ≈ 0.2 for HIT flows [87, 58].
When ∆ ≫ η the computation cost is thus much less than for DNS. But this has a
price! At high Reynolds number, the dissipation is very intermittent. These very intense
fluctuations of the velocity gradients over very short distances (and whose statistics depend
on the Reynolds number) are not reproduced by the LES. The LES has a much lower
effective Reynolds number Reeff = Re ν/ν∆. Is this problematic? Yes, if one is interested

7This is the Smagorinski model, there are many other models for inhomogeneous flows [201, 232]
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in the coupling of the flow with other phenomena that depends on the small scales of the
flow.

3.3.2 Large eddy simulations for two-phase flows

The interactions between particles and turbulence depend a priori on all scales of the flow.
In order to calculate the hydrodynamic forces on the particles, it is necessary to have access
to the turbulent fluctuations of the velocity field at the particle scale. But with a LES
simulation the velocity field is filtered at the scale of the mesh ∆, so that the fluctuations
of the field between ∆ and d are not available. The naive approach then consists of simply
ignoring the problem and calculating the evolution of the particles directly from u. For
example, in the case of a small particle (d < η and Rep < 1) discussed earlier:

ap = dup

dt
= dup

dt

= −up − uf

τp
+ β

Duf

Dt
(3.48)

With such an approach one expects that the highest frequencies are eliminated. In order to
illustrate the problems of this approach, we compare in figures 3.10 and 3.11 the variance
and the PDF of the particle acceleration obtained by LES with the integration of (3.48)
with the one obtained with a finely resolved velocity field (DNS). This test is performed
for small, heavy β = 0 and light β = 3 particles, for different Stokes numbers and different
LES resolutions. We find that the acceleration of the particles is largely underestimated
with the LES approach and that the LES resolution has a strong effect on the acceleration
statistics. Moreover, we see that the PDF of the acceleration tends to a Gaussian shape
when the small scales are not taken into account in the calculation of the forces. This
reflects that the dynamics of the particles is clearly influenced by the small scales of the
flow, and shows that it is necessary to introduce the effect of the small scales not resolved
by the LES.
Different approaches have been considered to account for unresolved scales in the calcula-
tion of the drag force on small inertial particles. Many of them stochastically reconstruct
the subgrid scales of the fluid velocity carrying the particles [27, 204, 39, 76, 172, 115,
237, 236, 194]. Most of these models are energetic in nature and aimed primarily at recon-
structing a realistic spectrum of the velocity seen by the particles but do not exhibit an
explicit dependence on the Reynolds number. Therefore, the effect of the intermittency
of the flow in the dynamics of the particles cannot be reproduced. Moreover, none of the
cited approaches has addressed the issue of the fluid inertia force, which is essential in the
dynamics of light particles.
On the other hand, approaches have been proposed to reconstruct an Eulerian field which
will then be interpolated to move the dispersed phase [43, 44, 123, 88]. Among these
approaches, Ref. [229] introduced the decomposition of the instantaneous fluid acceleration
field into a filtered contribution and a random contribution to account for intermittency
at small unresolved scales (see also Refs. [230, 276, 228]).
In Refs. [92, 279] it was proposed to consider a similar decomposition for the instantaneous
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acceleration of particles:

ap = dup

dt︸︷︷︸
Filtered

acceleration

+ a∗︸︷︷︸
Stochastic

acceleration

. (3.49)

The first term represents the response of the particles at large scales governed by the fluid
velocity field resolved by the LES. The second, the residual acceleration, reproduces the
effect of fluctuations at unresolved scales in the particle momentum balance. According
to the Kolmogorov 62 hypothesis, fluctuations at unresolved scales are mainly attributed
to fluctuations in the rate of energy transfer to smaller scales.
Based on the separation of timescales for the evolution of the norm of the acceleration and
its orientation [199, 184], we consider here that the residual acceleration of the particles is
given by the product of two independent stochastic processes, one for the norm, the other
for the orientation.

a∗ = a∗e∗ (3.50)

The norm of the residual acceleration is obtained from the local value of the energy transfer
rate “seen” by the particle along its trajectory. This transfer rate at the particle scale is not
accessible from the velocity field computed by LES and will be obtained by a stochastic log-
normal model, from the energy transfer rate resolved by the LES. The stochastic process
for the norm should present a correlation over a time of the order of the integral scale.
The process for the orientation is obtained from a random walk on a sphere and presents
a fast decorrelation on the order of the dissipative time.

Model for the norm

More specifically for the stochastic process for the norm we consider, according to the
local similarity hypothesis (K62), that the main source of fluctuations comes from the
fluctuations of the dissipation rate [128, 49] and that the statistics of the acceleration of
the particle conditioned to the value of the dissipation seen by the particles are universal
and depend only on the characteristics of the particle (size, density)

⟨a2
p⟩ =

∫
⟨a2

p|εp⟩P (εp)dεp . (3.51)

In this relation εp represents the dissipation rate filtered on the particle timescale. It has
been shown that for particles and bubbles [92, 279] the acceleration conditioned by εp

evolves as a power law for εp/⟨ε⟩ ≫ 1:

⟨a2
p|εp⟩/⟨a2

p⟩ ≈ (εp/⟨ε⟩)3/2 . (3.52)

This relation is consistent with the case of fluid particles at large Reynolds number shown
in the first part (see figure 2.8). We then propose to write the norm of the subgrid
acceleration as

a∗ = ⟨a2
p|ε∗⟩1/2

= aηΓ1/2
a (St, β, Re∆)1/2 ε

3/4
∗

⟨ε⟩3/4 . (3.53)
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To obtain the second line in the previous equation we used the estimate of the acceleration
variance Γa(St, β, Re∆) introduced previously (3.21) (or (3.37) to take into account the
finite Reynolds number effects). In order to take into account only the non-resolved part
of the fluctuations, the function Γa is here evaluated with the Reynolds number of the
subgrid scale of the flow (τL/τη) → τ∆/τη = (∆/η)2/3 = Re

1/2
∆ , where we introduced the

characteristic time of the largest unresolved scales τ∆ = ∆2/ν∆.
The dissipation rate along the trajectory of the particle ε∗ is considered as a stochastic
variable. Its evolution is obtained here with the stochastic log-normal model of Pope
[203] (also discussed in the first part (2.18)). From the Ito transformation, we obtain the
stochastic process for ε

3/4
∗ which depends on the local value of the transfer rate ε∆(t) =

ν∆(∇u)2 computed at the scale of the LES mesh and interpolated to the particle position.

dε
3/4
∗

ε
3/4
∗

= dε
3/4
∆

ε
3/4
∆

−
ln

ε
3/4
∗

ε
3/4
∆

− 3
16σ2

 dt

τ∆
+
√

9
8

σ2

τ∆
dW . (3.54)

In this equation dW is the increment of the Wiener process and dε
3/4
∆ is the increment of

ε
3/4
∆ along the particle trajectory. This stochastic process ensures that ⟨ε∗⟩ = ⟨ε∆⟩ (see

[92]). The parameter σ2 = 1/2 ln τ∆
τp+τη

gives the depth of the cascade. The value of the
coefficient in front of the logarithm is set to reproduce the Reynolds number dependence
reported by [271]. The timescale τ∆ imposes the temporal correlation of ε∗. As discussed
previously this model does not reproduce satisfactorily all the constraints of the energy
cascade, but it is used here for simplicity and also because the work presented in the first
part, which is an improvement of this process, was done afterwards.
To illustrate the process (3.54) we compare in figure 3.12 a realization of the dissipation
rate ε along the trajectory of a solid particle at St = 1 and Reλ = 420 obtained the DNS
of [140] with the evolution of ε∆ obtained by LES under the same conditions with N = 643

and the realization of ε∗ obtained from stochastic process (3.54) and ε∆. We observe that
ε∆ (LES) shows much smaller fluctuations than ε (DNS), but that the stochastic model is
able to reproduce well the intermittency of the dissipation rate for ε∗ while ensuring some
correlation with ε∆.

Model for the orientation

With the stochastic model for orientation, we first want to impose the temporal correlation
of the components of the acceleration vector. In the case of weakly inertial particles, this
one persists over a time of the order of the Kolmogorov scale, much shorter than the
correlation scale for the norm. Thus the correlation of the components of the acceleration
will be given by that of its orientation. We thus propose to model the orientation of the
subgrid scale force by a random walk on a sphere with a unit radius:

de∗ = e∗ × αdt (3.55)

In this model the position e∗ is modified by a random angular displacement αdt. In the
simplest case, when the inertia force is neglected (β = 0), the angular velocity α follows a
diffusive process including restoring, damping and diffusion terms:

dα = −e∗ × dup/dt

∆ − α
dt

τe
+
√

σ2
e

τe
dW (3.56)
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Figure 3.12: (Left) A realization of the evolution of ε along a particle trajectory at St = 1
and Reλ = 420, from the DNS of [141]. (right) In red, a realization of the evolution of
ε∆ along a particle trajectory at St = 1 and Reλ = 420, from a LES with a mesh size of
N = 643; in black, a realization of the stochastic process for ε∗.

The diffusion term, in which dW is a 3D Wiener process, ensures the tendency to return
to a statistically isotropic orientation by allowing the vector e∗ to take all possible orien-
tations (i.e. to visit the whole sphere). The time to return to isotropy corresponds to the
characteristic time for the “walker” to invade the whole sphere and is therefore related to
its characteristic (angular) velocity σe. The damping term is necessary to control the rate
of return to isotropy at short times and thus guarantee that the orientation remains corre-
lated over a time of the order of τe. We chose τe = 1

2(τp +τη)) = 1/σe so that in the case of
fluid particles (τp = 0) the orientation correlation time is of the order of the Kolmogorov
time, and that for very inertial particles (τp ≫ τη) the orientation of the particle remains
correlated over a time of the order of τp reflecting the more and more ballistic character
of its trajectory. Finally, the restoring term tends to align e∗ with the orientation of the
resolved contribution dtup/|dtup|, and thus counteracts the diffusive tendency. Since the
return to small-scale isotropy results from the cascade, the alignment between the resolved
acceleration and the subgrid acceleration depends on the ratio between the resolved scale
and the Kolmogorov scale. We assume that the strength of the restoring force is estimated
as |dtup|/∆. For τe ≪ (|dtup|/∆)1/2 the orientation becomes independent of the large-
scale orientation, which is consistent with the assumption of local isotropy on small scales
at large Reynolds number. On the other hand, for τe ≫ (|dtup|/∆)1/2 the orientation is
imposed by the resolved scales.
An illustration of this diffusive process on the sphere is shown in figure 3.13.

In the case where the inertial force is not neglected (β > 0), we wish to take into account
the correlation between the inertia and drag forces. Indeed, in Ref. [279], we showed
that the strong increase in the flatness of the particle acceleration around St = 1 for light
particles (β = 3) should be attributed to the correlation between these forces and their
relative orientation rather than to preferential concentration effects. For St ≈ 1 the two
forces FD and FI are typically of the same order of magnitude and generally anti-aligned,
leading to a relatively small acceleration, whereas when these forces tend to align a high
acceleration will result. To reproduce this geometric effect we introduced the orientation
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Figure 3.13: A realization of the stochastic process (3.55) and (3.56) on the sphere.

of these two forces, respectively e∗
I and e∗

D :

a∗ = |FD|e∗
D + |FI |e∗

I (3.57)

where |FD| and |FI | represent the norm of the subgrid contribution of the drag and inertia
forces. We then write:

a∗ = aη
ε

3/4
∗

⟨ε⟩3/4

(
Γ1/2

D e∗
D + Γ1/2

I e∗
I

)
(3.58)

where the intensity of the drag and inertia forces are estimated by (3.25), and (3.26) and
considering that their conditional variance both vary as ε

3/4
∗ . By identifying (3.58) with

(3.50) and (3.53) we can write the vector e∗ as e∗ =
(
Γ1/2

D e∗
D + Γ1/2

I e∗
I

)
/Γ1/2

a . It should be
noted, however, that in this case the vector e∗ is no longer an orientation vector because
it does not necessarily have a unit norm. It depends on the orientation between the two
forces and their correlation:

e2
∗ =

(
ΓD + ΓI + 2Γ1/2

D Γ1/2
I e∗

D.e∗
I

)
/Γa = 1 + 2Γ1/2

D Γ1/2
I

Γa
(e∗

D.e∗
I − ⟨eI .eD⟩) (3.59)

To obtain the second equality, we assumed the separation of the timescales of orientations
and norms which allows us to deduce that the average orientation between eI and eD is
given by:

⟨eI .eD⟩ = ⟨FD.FI⟩
(⟨F 2

D⟩⟨F 2
I ⟩)1/2 = 1

2
Γa − ΓD − ΓI

(ΓDΓI)1/2 . (3.60)

This assumption was verified in Ref. [279].
To respect the constraint (3.60) in the modeling of e∗, we have introduced two, coupled,
stochastic processes for e∗

I and e∗
D. The evolution of the two orientation vectors e∗

I and
e∗

D is given by a model analogous to (3.55)-(3.56), but the restoring term of e∗
D imposes

an equilibrium configuration where e∗
I and e∗

D are anti-aligned. The details are given in
Ref. [279]. This model recovers the very strong increase in flatness observed by DNS
around St = 1. It is interesting to note that such a mechanism has already been proposed
concerning the antialigment between ∂tu and u∇u for a fluid particle [259]. Note that in
the limit β → 0 this model degenerates to the orientation model detailed above.
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Contribution of the resolved scales

The first term of the equation (3.49) represents the contribution of large scales to the
acceleration. It corresponds to the acceleration of the particles calculated from the LES
field filtered spatially and temporally: In the case where the particles are small we write :

dup

dt
= G∆,τ∆ ∗ dup

dt
= uf − up

max(τ∆, τp) + β
Duf

Dt
(3.61)

where G∆,τ∆ represents the convolution by a space-time filter eliminating the wave numbers
higher than ∆ and the frequencies higher than τ∆ = ∆2/ν∆. In the context of the LES,
we can consider that the spatial filtering is implicit because of the mesh resolution with
scale ∆. On the other hand, the time step of the simulation, which is fixed by the CFL
criterion, can be much smaller than τ∆ (τ∆/dt ∼ Re

1/4
eff ). Thus to avoid that the resolved

term develops high frequencies in response to the stochastic forcing a∗, we explicitly filter
the high frequencies of this term. This is simply done by replacing the response time of the
drag term by the characteristic time of the smallest resolved scales τ∆, if τp < τ∆. Note
that in the absence of stochastic forcing this time filter does not modify the dynamics of
the particle since the particle inertia effectively filters the flow fluctuations.

Results for small particles

Figures 3.10 and 3.11 present the variance and PDFs of particle acceleration obtained
by LES with the stochastic model compared to those obtained by DNS and by LES
without the subgrid model. We consider in these two figures the case of heavy (β = 0)
and light (β = 3) particles and a range of Stokes numbers. We can see that with the
stochastic model the LES reproduces these statistics in very good agreement with the
DNS, contrary to the LES without submesh model, as already discussed at the beginning
of the paragraph. Moreover, we find that the agreement with the DNS remains good even
when the resolution of the LES is strongly reduced. In the case of inertial particles, we
can see on figures 3.10 and 3.11 (left) that the LES without model approaches the DNS
when St increases, meaning that particles with high inertia filter out high frequencies of
the flow.
Other interesting results have been obtained. It is shown in Ref. [279] that the variance of
the particle velocity increments (equivalent to the Lagrangian velocity spectra) obtained
by the LES with the stochastic model becomes very close to the DNS while without the
model the LES gives a strong underestimation.
We have studied the variance of the particle acceleration conditioned on the instantaneous
value of the dissipation rate ε∗ estimated from the stochastic model. It was observed in Ref.
[279] that, similarly to the DNS results, the particle acceleration from the LES with the
model increases as ε

3/2
∗ for large values of the dissipation rate, and is independent of ε∗ for

small values of the latter. This behavior shows that the acceleration of particles in weakly
dissipative regions is given by the resolved contribution dtup, while larger fluctuations in
the acceleration are correctly reproduced with the stochastic model.
We are also interested in the power exchanged between the particles and the fluid P =
ap.up. This quantity presents very strong fluctuations, much larger than ⟨ε⟩. With the
stochastic model the LES is able to reproduce these large fluctuations, both the variance
and the shape of the PDFs as can be seen on figure 3.14, whereas the LES clearly un-
derestimates this quantity when the Stokes number is small. Nevertheless, we can notice
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Figure 3.14: (Left) Variance of the power exchange with the fluid per unit mass of a
particle normalized by the mean dissipation rate in logarithm scale. Crosses: LES with
the proposed model; circles: LES without the model; for the three meshes: 643 (black),
963 (dark gray) and 1283 (light gray). Comparison with the DNS of [21] in dashed lines.
Inset zoom for small Stokes number in linear scale. (Right) PDF of the power exchange
with the fluid normalized by its variance for St = 0.016, 0.16, 0.6, 1, 2, 3, 5, 10, 20
(respectively shifted upward by one decade from each other for clarity). gray: LES at 643

with the proposed model; black: LES at 643 without the model; black dashed line: DNS
of [21] and Gaussian distribution in gray dashed line.

that the LES with the stochastic model does not succeed in reproducing the asymmetry of
the PDF observed for small Stokes numbers, observed by DNS. This asymmetry is linked
to the temporal irreversibility of the flow (the power P being the variation of the kinetic
energy of the particles per unit of time). We have shown in the first part that for fluid par-
ticles this power asymmetry can be reproduced by a stochastic model and that it is linked
to both the winding of the particles and the non-Markovian character of the dissipative
model. This observation opens up new possibilities of improvement for the subgrid models
by adapting the developments proposed in the first part to the case of inertial particles.
On the other hand, it is interesting to note that when the Stokes number increases, the
asymmetry of the PDF becomes much more marked and that the LES is able to reproduce
it even without the addition of a stochastic model.

Results for large particles

For particles that are large compared to the Kolmogorov scale, we propose to start from
(3.44) based on the effective relaxation time of the particle taking into account its finite
size. In the case of the LES we write, assuming that the size of the particle remains much
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smaller than the mesh size η ≪ d ≪ ∆:

dtup = −up − uf

τp,eff
+ βDtuf + a∗e∗ (3.62)

In this equation we have kept β rather than βeff introduced earlier, since the particle is
smaller than the mesh it does not operate any additional filtering than the fluid acceleration
already filtered at the mesh scale Dtuf . The norm of the subgrid contribution is considered
to be given by the relation (3.45):

a∗ = 3
2CD

(
ρp

ρf
+ CM

)−1

ε
2/3
∗ d−1/3 . (3.63)

In this equation, ε∗ is the dissipation rate at the particle scale. To model this quantity
we use a stochastic equation similar to (3.54) but whose exponent is adapted from ε

3/4
∗

to ε
2/3
∗ . Another difference concerns the parameter σ2. This one is always expressed as

the logarithm of the ratio between the time of the largest non-resolved vortices (τ∆) and
the characteristic time of the particle. In the case of large particles, we estimate the
characteristic time from τp,eff introduced previously:

σ2 = 1
2 ln τ∆

⟨τp,eff ⟩ = 1
2 ln 18τ∆⟨ε⟩1/3

(ρp/ρf + CM )d2/3 ∼ 1
3 ln ∆/d . (3.64)

The model for orientation remains identical to (3.55)-(3.56) presented above.
Variances and PDFs for different particle sizes between 5 and 30 η and density of ρp/ρf =
50, 100 and 1000 are presented in Figure 3.15. The LES results with the model are
compared with the experimental results of Ref. [210, 263] and the standard LES approach,
i.e. LES without model for unresolved fluctuations, and using either the linear drag law
or the Schiller and Naumann drag law. The simulations are performed for a 643 mesh
size. Note that we only consider relatively heavy particles ρp/ρf > 50, as the added-mass
effects are not taken into account here. We see that both versions of the LES without model
predict a strong reduction in the variance of the acceleration with increasing d/η. We also
see that, as expected, in the linear drag case, the decrease is much more pronounced than
with the case using the drag law proposed by Schiller and Naumann. On the other hand,
with LES with the model, the decrease of the variance of the acceleration with d/η is much
less important and presents a behavior close to d−2/3.
We find that LES without model predicts a Gaussian distribution for the acceleration when
Stokes drag is used. This deviates considerably from the experimental results, for which the
tails of the PDF remain very broad even for a large value of d/η. With the nonlinear drag
the LES without model predicts a wider distribution, which seems to be independent of the
particle diameter. Nevertheless, the large fluctuations remain underestimated compared
to the experiments. With the LES supplemented with the stochastic model, the PDF tails
are in excellent agreement with the experiments of Ref. [263].
From (3.63), and considering that CD = 0(1), we estimate the variance of the acceleration
of large particles:

⟨a2
∗⟩ ∼ ⟨ε4/3

∗ ⟩
d2/3 (3.65)

From the log-normal model for ε∗ we can compute ⟨ε4/3
∗ ⟩ as ⟨ε4/3

∗ ⟩ = ⟨ε⟩4/3 exp 2σ2/9.
Consequently, with the expression of σ2 (3.64), we then estimate that ⟨a2

∗⟩ ∼ d−2/3−2/27 ∼

76



100 101

dp/η

10-7

10-6
10-5
10-4

10-3
10-2
10-1

100
101

 a
2 i
/
a

2 η

15 10 5 0 5 10 15
ai/ai, rms

10-5

10-3

10-1

101

103

105

107

109

 p
df

(a
i/
a
i,
rm
s
)

Figure 3.15: (Left) Variance of the large particle (∆ > d > η) acceleration normalized by
the Kolmogorov acceleration (a2

η = ⟨ε⟩3/2ν−1/2) in logarithm scale. Crosses: LES with
the proposed model; Circles: LES without the model with Stokes drag; Triangles: LES
without the model and with the drag correction of Schiller and Naumann. For three
density ratios: ρp/ρf = 50 (black), 100 (dark gray) and 1000 (light gray). For all cases the
mesh size is 643. Comparison with the experiments of Ref. [209] with the particle density
ratio around 50 in black squares and the power laws < a2

p >∼ d−2/3 in gray dashed line
and < a2

p >∼ d−0.8 in gray dotted line. (Right) PDF of the large particle (∆ > d > η)
acceleration normalized by its variance for d/η = 5 ,10, 20 and 26 (respectively shifted
upward by one decade from each other for clarity). light gray: LES with the proposed
model; black: LES without the model with Stokes drag; dark gray: LES without the
model and with the drag correction of Schiller and Naumann. In each case the density
ratio is ρp/ρf = 50 and the mesh size 643. Comparison with the Gaussian distribution
gray dashed line, with the experimental data of Ref. [263] (with d/η = 1.6, 8.2, 13.4 and
23.6) in black dashed line and with the fit from Ref. [209] in dotted line.

d−0.74. It is interesting to note that this scaling law is relatively close to the d−0.81 law
which is shown in Ref. [263] to better describe the experimental measurements than the
d−2/3 law.
These comparisons between LES with the model and experiments show the interest of the
proposed approach. Nevertheless it would be necessary to continue the comparison with
experiments and particle-resolved DNS to refine the formulation of the models.

3.4 Turbulence induced by a swarm of rising bubbles

In this part, we are interested in the flow induced by the rise of a cloud of bubbles. In
this system, the only source of momentum is the buoyancy acting on the bubbles, and
without the bubbles the liquid would remain at rest. It is a complex system in which the
movements of the bubbles and the liquid are coupled, leading to the emergence of collective
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phenomena and original properties of the flow. We consider the case of a homogeneous
swarm of large deformed bubbles, with a Reynolds number based on the bubble size and
terminal velocity v0 is of a few hundreds, so that each bubble generates an intense wake.
A first manifestation of collective effects is the decrease in the average bubble rising speed
as the gas volume fraction α increases [220]. On the other hand, the main cause of bubble
velocity fluctuations is attributed to wake instabilities. Indeed, when the deformation of
a bubble and its Reynolds number are large enough, the wake becomes unstable and the
bubbles exhibit path oscillations [186, 278, 72] and this seems to remain the case even
for high volume fractions, of the order of 30% [60]. These wake-induced fluctuations are
probably the reason why bubbly flows can remain homogeneous, and be generated in
laboratory bubble columns [265]. However, the stability of homogeneous bubble columns
remains an open problem and is limited to reasonably small geometries (of the order of
one meter) with well-controlled uniform bubble injection. In most industrial applications,
the gas volume fraction is not homogeneous throughout the flow and large-scale buoyancy-
induced motions develop [187].
Fluid fluctuations exhibit very specific properties that have been identified experimentally
[137, 277, 85, 224, 213, 161, 220, 167, 206, 5]. Several contributions to the fluid fluctua-
tions can be distinguished [223]. For a homogeneous swarm of bubbles, there are, on the
one hand, the localized perturbations around the bubbles (due to both potential effects
and their direct wake) and the turbulence induced by the bubbles. The latter is essen-
tially driven by the interactions between the bubble wakes [220, 219, 6, 223]. The mean
kinetic energy varies approximately as K ∼ αv2

0. The velocity fluctuations are strongly
anisotropic, with the variance of the vertical velocity being more intense than that of the
horizontal velocity. Their PDFs are non-Gaussian, with exponential tails and a strong
dissymmetry between the upward and downward directions.
The structure of this flow is also characteristic, and the velocity spectrum exhibits a rapid
k−3 decay in a wavenumber range extending around the bubble diameters [137, 220, 5].
The origin of such a scaling law as well as its precise limits in the spectral domain remain
poorly understood. From a dimensional point of view, we can write that the energy
spectrum must be written as

E(k) = f2k−3 (3.66)

where f is associated with the inverse of a timescale. Lance and Bataille [137] have
proposed that the k−3 regime is associated with an equilibrium between production and
dissipation and that this frequency results from the characteristic shear rate of the wakes.
Other flows also present a k−3 spectrum. This is the case, for example, of two-dimensional
turbulence at scales smaller than the energy injection scale. In this flow, the flow timescale
is imposed by the conservation of the enstrophy [130, 18]. Decaying turbulence subjected
to intense rotation also develops a k−3 spectrum with the timescale imposed by the rotation
rate [24]. Another example concerns the turbulence under the wave surface and this time
the timescale results from the frequency imposed by the swell [154, 257].

3.4.1 Simulation of the bubble swarm

Although the equations describing precisely this type of flow are relatively well known,
their numerical simulation remains out of reach, due to the large spectrum of temporal
and spatial scales involved. The smallest scales are a priori associated with the interfacial
dynamics and the development of a very thin boundary layer around the bubbles, while
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Figure 3.16: Cross-section of the vertical component of the liquid velocity field for α = 1%
and α = 7.5%. The blue points represent the position of the bubbles.

the largest scales are related to the length of the wakes and the evolution of the collective
dynamics of the flow that takes place. In order to simulate these flows, and to study the
structure of the fluctuations of the liquid velocity field and the stability of the bubble
swarm we proposed in Ref. [144] to abandon the precise description of the flow around the
bubbles as well as the capillary effects while keeping a realistic dynamic of the downstream
part of each wake. This modeling, based on the Euler-Lagrange approach, allows us to
simulate flows with a large number of bubbles and to focus on the interactions between
wakes. As we will detail below, the main difficulty of this type of calculation comes from
the self-interaction of a bubble with its own wake. We have proposed a method enabling
taking into account this effect and to calculate precisely the trajectory of each bubble.
This method allowed us to obtain numerical simulations of the turbulence induced by a
swarm of bubbles in agreement with the experiment, as illustrated in figure 3.16.

Modeling

The use of the Euler-Lagrange approach amounts to considering a filtering of the field near
the bubbles, as discussed at the beginning of the chapter. In this approach, the action of
the dispersed phase on the flow is introduced as a volume source of momentum localized
around the bubbles. The liquid velocity is given by the Navier-Stokes equations:

Dtuf = − 1
ρf

∇Pf + ν∆uf + f

ρf
; ∇.uf = 0 . (3.67)

where uf represents a filtered velocity field around the bubbles. The volume forcing of
the liquid phase is given by

f(x, t) = −
Nb∑
b=1

Ff→b(t)Gσ(x − xb(t)) (3.68)

where Ff→b is the momentum exchange rate between the fluid and the bubble b, and
Nb is the number of bubbles. Gσ is the Gaussian kernel of the projection and σ is its
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characteristic size which is of the order of the diameter of the bubble. The latter is
thus much larger than the mesh size: σ ≈ d > ∆x. Indeed, although the details close
to the bubbles are filtered, the flow presents scales much smaller than the bubble size.
These small-scale fluctuations result from the evolution of the turbulent wakes and their
interactions.
The trajectory of the bubbles is obtained by solving Newton’s equation (3.1) for each
bubble. It involves the hydrodynamic force which depends on the velocity of the liquid
(and its derivatives). This is called “two-way coupling” in the sense that the flow influences
the bubbles and the bubbles influence the flow.
The use of such an approach raises some questions. (i) Which models should be adopted
for the calculation of the hydrodynamic force on a bubble? (ii) Is such an approach able
to reproduce the wakes? (iii) How to correct the self-induced force to obtain an adequate
value of the hydrodynamic force on a bubble?

Hydrodynamic force on the bubbles As the flow is described on a smaller scale than the
bubbles (ℓ ∼ ∆x < d), the fluid motion directly induced by a bubble will be partly solved.
However, the expression of the hydrodynamic forces already takes into account the fluid
motion that the bubble induces in its vicinity (deviation of the streamlines, presence of a
boundary layer and its possible detachment...). We assume that the usual expression of
these hydrodynamic forces remains relevant, provided that their calculation is based on
a fluid field in which the flow disturbance due to this bubble has been removed. We will
note hereafter ũf,b such a field. We will see below that the definition of ũf,b is not trivial,
and that its introduction remains an artifact for the calculation of hydrodynamic forces.
Therefore rather than (3.3) giving the hydrodynamic force from the velocity described at
a scale ℓ ≫ d at the position of the bubble and its derivatives, we must consider:

Ffluid,b = f [ũf,b(x=xp(t),t) − up(t), ∇ũf,b|xp , Dtũf,b|xp , dtup(t)] , (3.69)

involving the field ũf,b.
To illustrate the importance of this correction, let us specify that since the momentum
exchanged with the bubble is injected over a volume of the order of σ3 ∼ d3, the velocity
of the liquid close to the bubble is of the order of the bubble velocity. Thus a naive
calculation (i.e. without correction, ũf,b = uf ) would lead to a very low drag force. As
this force does not oppose the buoyancy force, the bubble would present a non-physical
acceleration which can be interpreted as a spurious self-induced force.
Let us return to the question (i). We have considered in Ref. [144] that the bubble is
subject to the drag force, the added-mass force, the inertia force of the fluid, as well as the
buoyancy. We have not retained the history force because it has a priori a negligible effect
for large Reynolds numbers. On the other hand, when the velocity gradient is large at
the scale of the bubble, the lift forces can certainly play a role. Similarly, the anisotropic
effects of drag and added mass related to a non-spherical bubble are also important. We
aim to reproduce the experiments performed at IMFT for millimetric air bubbles in water.
Given the Reynolds number of the bubbles and the Morton number, the bubbles clearly
adopt a non-spherical shape [165]. However, to simplify the modeling of the problem, we
consider that the bubbles are spherical, assuming that in the case of the homogeneous
cloud, the anisotropic aspects are not a priori essential. Consistently, we have as well not
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retained the lift force8. Finally, considering that the density of the gas is very low we
obtain for the dynamics of the bubble:

CM
dvb

dt
= 3CD

4d
(vb − ũf,b)|vb − ũf,b| + (1 + CM )Dũf,b

Dt
− g + FI,b (3.70)

The drag coefficient is chosen, in agreement with the experiment of an isolated bubble, at
CD = 0.35 and the added-mass coefficient at CM = 0.5 in coherence with the spherical
bubble hypothesis. In this equation the bubble force is calculated from the corrected liquid
velocity ũf,b.
Finally, the term FI,b is a repulsive force between bubbles. It is introduced to prevent
the bubbles from overlapping and to ensure that the distance between bubbles remains
greater than the characteristic size σ of the momentum source.
The momentum exchanged between the bubble and the fluid via the volume force f in
(3.68) is given by the sum of the drag force and the added-mass force, the contributions
of the Tchen and Archimedes forces being already taken into account in the pressure term
in a way consistent with the zero divergence of the flow [59, 144].

Correction of the self-induced force The fluid velocity, corrected for the influence of
the bubble b, is defined by introducing the perturbation due to the bubble:

ũf,b(x, t) = uf − u∗
f,b . (3.71)

Because of the non-linearity of the system, this immediately raises the question of the
definition of the perturbation u∗

f,b. It is indeed non-trivial to isolate the influence of a
bubble among the fluctuations of the flow which include the effect of all the other bubbles.
We propose here to define the perturbed field u∗

f,b as the flow generated by an isolated
“imaginary” bubble, in a liquid at rest, which would have followed the same trajectory and
exchanged as much momentum with the liquid phase as the actual bubble b. Accordingly,
u∗

f,b is formally obtained by solving the following Navier-Stokes equation:

∇ · u∗
f,b = 0 , (3.72)

∂tu
∗
f,b + u∗

f,b · ∇u∗
f,b = −∇p∗ + ν∆u∗

f,b + 1
ρf

Ff→b(t)Gσ(x−xb(t)) , (3.73)

where the last term on the right-hand side is the forcing calculated by taking into account
the actual position of the bubble and the momentum actually exchanged between the
b-bubble and the liquid phase. This definition describes only the perturbation directly
generated by the b-bubble, but ignores indirect perturbations resulting from the fact that
the b-bubble may also have affected other bubbles and nonlinear interactions within the
liquid flow. Consequently, other definitions of u∗

f,b can be proposed. For example, instead
of isolating the trajectory of the b-bubble, one could define ũf,b(x, t) as the flow generated
by the motion of all bubbles except the b-bubble. Insofar as the Reynolds number Reb of
the bubble and the volume fraction are finite, these two definitions of ũf,b(x, t) are not
equivalent. We believe that there is no exact, or unambiguous, way to define ũ∗

f,b, and
this poses a fundamental problem for Euler-Lagrange approaches. At best the definition

8The value of the lift coefficient, and even its sign, being very dependent on the shape of the object, it
would be very delicate to choose its value anyway
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of the hydrodynamic force should be consistent with the expression of u∗
f,b. But this raises

the question of the experimental determination of the force, in order to establish a model
of the force, in situations more complex than an isolated bubble in a well-controlled flow.
In any case, computing u∗

f,b directly from (3.72)-(3.73) implies solving one additional
Navier-Stokes equation per bubble, which is not actually practicable and we must therefore
rely on approximate models.
We refer to Ref. [144] for a review of the different approaches proposed in the literature.
In general, the approaches proposed previously consider particles subjected only to the
viscous drag force and assume that their Reynolds number is small, in order to express the
perturbation of the velocity from the Green function of the Stokes equation (Stokeslet)
[231]. In Ref. [144] we propose an integral model to calculate u∗

f,b and its derivatives,
which can be used to obtain the correct value of all the components of the hydrodynamic
force and which is valid for the case of bubbles with large Reynolds number.
For the calculation of the hydrodynamic force, we only need to know u∗

f,b at the position of
the bubble b and in its neighborhood (to calculate its derivatives). The main assumptions
to obtain u∗

f,b are that in the vicinity of the bubble (i) given the importance of the Reynolds
number, one can neglect the viscous term in (3.73) and (ii) one considers that the flow is
quasi-parallel. The details of the derivation can be found in Ref. [144], but after a few
steps we obtain the following integral expression for u∗

f,b.

u∗
f,b(x,t) = 1

ρf

∫ t

0
Ff→b(s)Gσ(x−xb(s)+ℓadv(t,s))ds , (3.74)

where ℓadv(t, s) =
∫ t

s ũf,b(x=xb(s′),s′)ds′. The velocity perturbation at a given position and
time is obtained by integrating, over all previous instants, the momentum supplied by
the bubble at the material point of the liquid at that specific position. The material
point corresponding to the injection of momentum at an instant s can be advected by the
undisturbed flow, and will be found at a distance ℓadv(t, s) at the instant t > s. This ℓadv

term is essential to guarantee the Galilean invariance of the model. This is illustrated
in figure 3.17 showing a space-time diagram of the evolution of the perturbation. By
substituting (3.71) and (3.74) in the dynamics of the bubble (3.70) we notice that the
expression of the hydrodynamic force on a bubble depends on the history of the whole
velocity field. This amounts to say, as we wrote at the beginning of the chapter (see
Eq. (3.2)), that the hydrodynamic force must in general be written as a functional of the
velocity field of the fluid described at a scale ℓ (ℓ can be greater or smaller than d). In
fact, with the simple model (3.74) taken for the perturbation, one can write that the force
depends only on the history of the velocity field at the position of the particle, and on its
derivatives, which corresponds to the functional (3.3).
We do not detail here the discretization of (3.74). The details of its numerical implemen-
tation can be found in Ref. [144]. We just mention that we have developed an algorithm
similar to the one used in the first chapter to efficiently compute the history integral in-
volved for non-markovian stochastic process, by optimizing the amount of information to
be stored and the computation time. With this method, the extra cost of computing the
correction term is negligible.

Wake of an isolated bubble To validate this approach of modeling of the perturbation,
we considered the case of an isolated bubble rising in a liquid at rest. In this simple case,
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Figure 3.17: Spatio-temporal diagram of the evolution of the position of the bubble (contin-
uous black line) and that of the material point where the momentum was injected at t = t1
(dashed black lines). On the left: in the case of a zero carrier flow ũf,b(x=xb(t),t) = 0; on
the right: in the case of uniform advection by a uniform carrier flow ũf,b(x=xb(t),t) = −v0ez

with ez the vertical direction. The Galilean invariance imposes the preservation of the
length as shown in both cases by the distance ℓ(t1, t2). The shaded area represents the
region of the flow influenced by the momentum deposited at time t = t1.

we must have ũf,b = 0. This allows us to compare the wake generated by the bubble with
the experimental results and to determine the free parameters of the simulation (σ/d and
a parameter c0 involved in the discretization of (3.74)).
Without going into details (which can again be found in Ref. [144]), we have determined
that for a range of resolution of the simulation ∆x/d < 1 we have an optimal value for the
ratio σ/d around σ/d ≈ 0.25 allowing reproducing the wake accurately with nevertheless a
clear underestimation of the velocity near the bubble. Larger values of σ further increase
the filtering of the velocity near the bubble, while smaller values lead to a destabilization
of the simulation due to a quantity of motion injected in a very concentrated area (the
fluid velocity can thus become higher than that of the bubble).
We were able to verify that the model for the calculation of the perturbation works cor-
rectly by giving ũf,b = 0 as well as for its material derivative Dtũf,b = 0. This allows us
to calculate correctly the transient dynamics of the bubble and to obtain a correct rising
speed and thus also to well predict the rate of momentum exchange with the liquid.
We could mention that the correction of the self-induced effect can be forgotten when
ℓ ≫ d whereas when ℓ < d this correction is essential. To be more precise we say that the
correction is negligible if |ũf,b − vb| ≫ |u∗

f,b| and |Dtũf,b − dtvb| ≫ |Dtu
∗
f,b|. This can be

tested a posteriori (once the simulation is done) by analyzing the trajectories. But we can
also obtain a priori, in the simple case of the isolated rising bubble, that :

|u∗
f,b|

|ũf,b − vb|
∼ CD

d2

σ2 . (3.75)

We conclude that it is essential to correct the fluid velocity for bubbles at high Reynolds
number, since in this case CD = O(1) and σ/d = O(1). Note that for particles moving at

low Reynolds number, an estimate obtained by the Stokeslet gives
|u∗

f,b|
|ũf,b − vb|

∼ O(d/∆x)
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[231, 32], which means that the correction can be forgotten for small enough objects and
a sufficiently coarse description of the velocity field.
It is interesting to note that although the coupling between the two phases conserves
momentum, it does not conserve its energy [269, 247]. Indeed, the power Pb of the hydro-
dynamic force working at the bubble velocity is a priori greater than the power Pf of the
diffuse force working at the fluid velocity:

Pb =
∑

b

Ff→b · vb > Pf =
∫

dx3f · uf . (3.76)

From a physical perspective, it is acceptable that energy is dissipated during the coupling.
We consider a coarse description of the continuous phase, in which the strong velocity
gradients in the close vicinity of the bubbles are not described. The dissipation of kinetic
energy into heat that occurs in the region surrounding the bubble at scales smaller than
σ cannot be calculated from the resolved velocity uf . In the case of the isolated bubble,
we can estimate analytically that

Pf

Pb
= CD

64

(
db

σ

)2
. (3.77)

Consequently an important part of the mechanical energy is dissipated around the bubbles,
in the boundary layer and the near wake.

3.4.2 Analysis of the bubble swarm
Presentation of the simulations

With this method we simulated the flow of the rising bubble swarm. The parameters
correspond to a 2.5 mm air bubble in water. The Reynolds number based on the terminal
velocity of an isolated bubble is Re0 = v0d/ν = 760. A cubic domain of dimension
L/d = 70 with tri-periodic boundary conditions is used. The characteristic size of the
force projection kernel is σ/d = 0.28 and the resolution of the mesh is ∆x/d = 1/15 which
corresponds to 1024 points in each direction. We can notice that the number of mesh
points per bubble can seem important for a method which does not try to solve precisely
the dynamics around the bubbles. However, one must keep in mind that (i) the resolution
with interface tracking methods (level-set or VOF type) for such a Reynolds number of
bubbles, requires about 100 meshes per bubble (or even more) to capture the boundary
layer which develops on the bubble [67] and (ii) the resolution is chosen here to capture
the small scales which develop in the wakes, far from the bubbles, as we will see below.
We have simulated this flow for volume fractions of α = 1%, 2%, 5%, 7.5% and 10%
corresponding to a number of bubbles ranging from 6500 to 65000. See the visualization
of this flow for α = 1% and 7.5% in the figure 3.16. In this figure, we can see the wakes
generated by the passage of each bubble, and their interactions giving birth to the agitation
induced by the rise of a bubble swarm.

Comparison with the experiment

We show in figure 3.18, the PDF of the horizontal and vertical components of the liquid
velocity, obtained by simulations for the different α and by the experiments of Ref. [220].
It is found that for both components the PDF presents an exponential decay and that
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Figure 3.18: PDF liquid velocity for the horizontal velocity component (left) and the
vertical velocity component (right) from the simulation for various α and comparison with
the experiments of Ref. [220].

the PDF of the vertical component is clearly asymmetric. We further observe that the
normalized PDFs are nearly invariant with α as the central part of the experimental PDFs.
This behavior is the signature of the turbulence induced by the interactions between wakes.
For large fluctuations, the experimental PDFs show a second region characterized by a
less steep exponential decay. This behavior has been attributed to the large localized
fluctuations very close to the bubbles, as well as to the self-sustained oscillations of the
bubble trajectories [222]. As this region is not described in our modeling, we indeed find
that the second exponential part of the PDFs is not reproduced by the simulations.
For the same reason, the mean velocity of the bubbles decreases only very slightly with
α according to the simulations, whereas experimentally, it is observed to decrease as
⟨v⟩/v0 ≈ 0.6α−0.1 [220]. Also the kinetic energies of the liquid and the bubbles are
underestimated compared to the experiment.
Figure 3.19 compares the longitudinal spectra9 of the vertical and horizontal velocity
Ez(kz) and Ex(kx) obtained experimentally and by simulations10. We can see that the
spectra of the vertical and horizontal components are in fairly good agreement with the
experiment. In particular, the simulations seem to reproduce a k−3 evolution of the spectra
as experimentally observed on small scales (large wavenumbers) and a k−1 decay at large
scales.
However, we note, on the one hand, an underestimation of the kinetic energy at small
scales for the simulations. We attribute this underestimation to the lack of near-bubble
resolution which leads to an underestimation of the power injected at the bubble scale
(as discussed in the previous section). On the other hand, we also notice that the largest

9That is to say Ex(kx) =
∫

1/2ϕxx(k′)δ(k′.ex −kx)d3k′ and Ez(kz) =
∫

1/2ϕzz(k′)δ(k′.ez −kz)d3k′ with
ϕij(k) =

∑
k′ ⟨ûi(k′)û∗

i (k′)⟩δ(k − (k′)) and û the coefficients of the Fourier series of the velocity field
uf (x) =

∑
k

eik.xû(k).
10With this approach, the spectra of the velocity field are very easy to obtain because the uf field is

smooth, whereas with a DNS type approach, or experimentally, the velocity of the liquid is not defined
everywhere which poses some problems to make a spectral analysis. Here the approximations are made
prior to the simulation, at the modeling phase, and there is no particular precaution to take for the
calculation of the spectra.
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Figure 3.19: (Left) Longitudinal velocity spectra of the vertical component in the vertical
direction (Ez(kz)) (continuous lines) and of the horizontal component in the horizontal
direction (dashed lines) from the simulations for various α (Ex(kx)). Comparison, with
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(Right) Frequency spectra of the liquid velocity at the bubble position from the numerical
simulation and comparison with the experimental spectra of the liquid velocity of the flow
past a random array of fixed spheres [6] in blue and with the ω−1 and ω−3 power laws.

scale of the horizontal component is also underestimated, due to the absence of bubble
trajectory oscillations which limit the redistribution of the fluid energy between these
vertical and horizontal components.
It has also been reported that experimentally the spectra are invariant with the volume
fraction and the bubble diameter. When the spectra of the numerical simulations are
normalized by the injected power and by the viscosity, we observe the same invariance of
the spectra of the numerical simulation with α.
In figure 3.19 we also present the frequency spectra of the vertical liquid velocity measured
at the position of the bubbles (the true velocity not the corrected velocity). These spectra is
compared with the frequency spectrum of the velocity of the flow passing through an array
of spheres held at a fixed position obtained in the experiments of Ref. [6] for a Reynolds
number, based on the sphere diameter, of 600. Although these two flows are different, we
can consider that this characterizes the fluctuations of the liquid in the reference frame of
the bubble cloud. It can be seen that the simulations and the experiment also show a good
agreement. For frequencies lower than d/v0 the spectrum shows a ω−1 behavior while at
high frequencies, the cutoff is much stronger with a slope close to ω−3. It is interesting
to note that this behavior seems invariant with α in the simulations and that from the
experiments these temporal spectra had been reported as invariant with the Reynolds
number, provided that Re > 200 [6].
In conclusion, we have a simulation approach which, although imperfect, allows obtaining
the main characteristics of the turbulence induced by the bubble swarm as it accounts for
the main ingredient: the interactions between wakes.
The spherically averaged spectra of the velocity11 are shown in figure 3.20. Contrary to

11i.e., E(k) =
∫

1/2ϕii(k′)δ(|k′| − k)d3k′.
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Figure 3.20: Sphericaly averaged spectra of the velocity field E from the numerical simu-
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the longitudinal spectra presented in figure 3.19, the 3D spectra show a more complicated
evolution with k as well as a rather clear dependence with α at large scales. Several
regions can be distinguished. The local maximum, located around kη ≈ 2 on the figure,
coincides, as we will see, with the scale of the bubbles which gives the cut-off scale of the
energy injection. We see that for larger wavenumbers, a region in k−3 clearly develops as
α increases. The local minimum, located at large scales, corresponds to the wake scale.
Between these two scales, the energy spectrum grows as k2/3 for the 3 largest α and
corresponds to the scales directly influenced by the wakes. The fact that the spherically
averaged spectra E show such a qualitative difference at large scales with the spectra
averaged over planes obviously indicates that the flow has a strong anisotropy at these
scales. We will come back to the characterization of the anisotropy below.

Characteristic scales

The flow being dominated by the wakes of the bubbles and their interactions, an essential
scale of the flow is the characteristic length of the wakes. To determine the latter, we
consider the mean field conditioned on the position of a bubble (equivalent to a spatial
phase average):

⟨uf ⟩b(x) = 1
T

∫
dt

1
Nb

Nb∑
b=1

uf (x − xb(t), t) . (3.78)

This mean field is illustrated in figure 3.21 for the case α = 5%. This figure also shows
the evolution of the vertical velocity along the vertical axis passing through the bubble
for the different volume fractions, as well as for an isolated bubble. The first observation
is that the wakes are much shorter in the case of the bubble swarm than the wake of an
isolated bubble. By plotting the logarithmic derivative of the wakes (also on the figure
3.21) we see that the wakes present a self-similar evolution for all α and that the velocity
presents an exponential decrease with z. This remarkable feature is in agreement with the
experimental results presented in Ref. [225]. This exponential decay of the wakes is likely
due to the diffusion of the vorticity between the wakes, leading to the cancellation of the
vorticity as proposed by Ref. [108].
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We choose the relaxation length of the exponential as the characteristic scale of the wakes
Lw. The evolution of the ratio Lw/d as a function of α is presented in figure 3.22. We can
see that the length of the wakes shows evolution in Lw ∼ dα−1/3. One can interpret this
evolution as a simple geometrical relation, considering that the wakes tend to screen each
other. It should be noted, however, that this is quite a notable difference compared to the
experiments of Ref. [225] in which the characteristic length of the wakes is observed to be
independent of α. This certainly reflects that there is additionally a dependence of Lw on
CD since in the experiments the average speed of the bubbles decreases with α.
From this characteristic length of the wakes, we define an inverse timescale f = v0/Lw.
This frequency f can be considered as imposing a shear-rate scale to small scales k > 1/d.
This assumption allows us to estimate the average dissipation rate in the simulations as

⟨ε⟩ = νf2. (3.79)

Equivalently, we can interpret Lw as the Taylor length scale based on the velocity v0,
λ =

√
νv2

0/⟨ε⟩. This is confirmed in figure 3.22 which shows that the evolution of λ/d

varies as Lw/d in α−1/3.
The volume averaged power injected in the system corresponds to ⟨Ptot⟩ = nb⟨Pb⟩ with nb

the average number of bubbles per unit of volume and Pb = Ff→b.vb the power given by the
bubble b. In the steady regime, this quantity is approximately given by ⟨Ptot⟩ = αgv0 and
as we have discussed above, it is larger than the power effectively received by the fluid in
our simulations: ⟨Ptot⟩ > ⟨Pf ⟩ = ⟨ε⟩. We will thus interpret ⟨Pf ⟩ as the mechanical energy
effectively injected in the wakes. Combining the previous relations, we find ⟨Ptot⟩/⟨ε⟩ ∼
αRe0CD(Lw/d)2 with CD = 4gd/3v2

0. Therefore at CD and Re0 constant, the proportion
of energy injected in the wakes decreases as α−1/3.
From the estimate (3.79) of the mean dissipation rate, we compute the dissipative scale
η = ν3/4⟨ε⟩−1/4 =

√
ν/f ∼ d Re

−1/2
0 α−1/6. It is this scale that is used to normalize the

spectra presented in figures 3.19 and 3.20.
For α ≥ 5% we observe that the kinetic energy of the liquid is invariant with α and is
commensurate with v2

0. Consequently we estimate the integral scale Lint = ⟨K⟩3/2/⟨ε⟩
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Figure 3.22: Evolution of the characteristic scales Lw, λ, η and Lint in the simulations of
the bubble swarm with α. Comparison with the power law α−1/3 in dashed lines, α−1/6

in dotted lines and α−2/3 in dot-dashed lines.

to varies as Lint ∼ d Re0α−2/3. This behavior is observed for α ≥ 5% in the figure 3.22.
Note that in the experiments of Ref. [220] it is observed that the liquid kinetic energy
varies roughly as αv2

0. The discrepancy of the numerical simulations with the experiments
is once again attributed to the absence of the fluctuations localized in the vicinity of the
bubbles, which scales with α.

Spectral analysis of the bubble-induced turbulence

In order to identify the different regions of the spectra and to explain the observed scaling
laws, we are interested in the spectral decomposition of the energy balance:

d

dt
E(k) = T (k) − D(k) + P (k). (3.80)

The terms of the right-hand side correspond respectively to the inter-scale energy transfer
from a scale k (T ), the kinetic energy dissipation at a scale k (D) and the energy injection
(P ). The expressions of these different terms are obtained from the Navier-Stokes equation
(3.67). The transfer term T is the contribution of the non-linear terms12, D(k) = 2νk2E(k)
and P (k) is the integral over the wave numbers |k| = k of the real part of f̂iû

∗
i . At steady

state, the left-hand term of (3.80) is zero, so T = D − P . We present in figure 3.23 the
terms P (k) and D(k) for the various α. We can see that the production term presents a
cutoff for k > 1/σ (we recall that σ/d = 0.28), and that on large scales it grows as k2 for
the largest α, while it is roughly constant for small α. Concerning the dissipation term,
we notice that it also presents a peak around k ∼ 1/σ. At large scales, the production
dominates compared to the dissipation, which implies that P (k) ≈ −T (k). On the other
hand, the dissipation dominates on small scales (D(k) ≈ T (k)). From the absence of scale
separation between the peaks of production and dissipation, we can conclude that this
flow does not present an inertial zone. These budgets also show that there is no range of
scales in which there is an equilibrium between P and D. This contradicts the hypothesis

12T (k) =
∫ ∑

k′

[
−ik′

j(ûiuj ûi
∗ + P̂ ûj

∗)
]

δ(k′ − k)δ(|k| − k)d3k + C.C., where +C.C. denotes the complex
conjugate terms
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Figure 3.24: Spectra of the force Ef for the various α and comparisons with (3.81) in
dotted line.

made in [137] to explain the presence of a k−3 zone in the velocity spectra. Furthermore,
we notice that the k−1 region of D, which corresponds to the k−3 region of the velocity
spectra, is observed in the crossover between the production dominated scales and the
dissipation dominated scales.
To interpret the behavior of the production term P , we study the spectra of the force
applied to the flow, Ef (k), corresponding to the spherical averaged of f̂if̂

∗
i . From the

expression of the coupling force between the phases (3.68), we can obtain the following
analytical expression for Ef :

Ef (k)/ασg2 = 1
12π

(d/σ)3(kσ)2e−(kσ)2
. (3.81)

For this calculation we have assumed that (i) the positions of the bubbles are independent
from each other and that (ii) the fluctuations of the rate of momentum exchanged between
the bubble and the liquid are small: ⟨F 2

f→b⟩ ≈ ⟨Ff→b⟩2 = (ρgπd3/6)2. The spectra of the
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force is presented in figure 3.24. We note that for all volume fractions the agreement
with the proposed expression is relatively good. We distinguish two regions: a region
which grows as k2 which reflects the equipartition of the fluctuations of the forces at large
scales (k < 1/σ) and an exponential cut-off imposed by the Gaussian projection kernel for
k > 1/σ. We notice that for high volume fractions, the positions of the bubbles are not
really independent anymore, because they cannot overlap, which explains the discrepancy
with (3.81).
Similarly, considering that the fluid velocity at the position of the bubbles is independent
between the different bubbles and of the order of the bubble velocity we can estimate that
P follows the same behavior as Ef . Namely, we can have :

P/αgv0σ ∼ (kσ)2e−(kσ)2 (3.82)

Indeed P presents an exponential damping for k > 1/σ, that overlaps for all α when
normalized by αgv0σ as can be seen in the figure 3.23 (left). For k < 1/σ, P increase
roughly as k2 in agreement with the previous relation for α > 2%. The underestimation
of P at large scales is attributed to the fact that the fluctuations of the velocity at the
bubble position are important as can be seen on the frequency spectrum if figure 3.19
(right): ⟨uf (x = xb)2⟩ > ⟨uf (x = xb)⟩2. For small α, P no longer follows the proposed
relation on large scales due to the presence of large structures in the flow leading to a
significant correlation of the liquid velocity between distant bubbles.
For completeness, we present in figure 3.23 (right) the production and dissipation terms
normalized by the dissipative scales ⟨ε⟩ and η for the various α. As noticed previously, with
this normalization, we observed an overlap of the high wavenumber (typically k > 1/2η)
part of D for all α. From the estimates of the characteristic scales of the previous section,
we have d/η = Re

1/2
0 α1/6, indicating that the gap between the production dominated

scales and the dissipation dominated scales increases, slowly, with α. It seems that the
k−1 subrange of D is observed in this gap of scales, provided that α is large enough.
In conclusion, we consider that for k < 1/d the flow structure is driven by the interactions
between wakes, while in the range 1/d < k < 1/η the strong damping of the wakes imposes
a shear scale.
This assumption of constant shear rate f across scales allows us to explain the presence of
a power law in k−3 for the flow, thanks to a matching argument similar to that proposed
by Kolmogorov in 1941. It is assumed that at scales that are small compared to the length
of the wakes (k ≫ 1/Lw) the structure of the flow depends only on the diameter of the
bubbles d, the viscosity, and the shear rate f :

E = E(k; d, ν, f). (3.83)

It is assumed that at scales larger than η =
√

ν/f , one can neglect the effect of viscosity.
Therefore, in this limit we can write:

E = EI(k; d, f) = d3f2ΦI(kd) (3.84)

where ΦI is a dimensionless function. Conversely, at scales much smaller than the bubble
size, we will suppose that this diameter does not play a role anymore, and we will make
the hypothesis that

E = ES(k; ν, f) = ν3/2f1/2ΦS(kη) (3.85)
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where ΦS is another dimensionless function. Finally, if we assume that for a range of
intermediate scales (1/d ≪ k ≪ 1/η), the two previous relations remain valid, we have
ES(k) = EI(k). Since kd and kη can vary independently, the previous equality can hold
only if the following expressions are constant:

(kd)3ΦI(kd) = (kη)3ΦS(kη) = c (3.86)

This gives us for the velocity spectra:

E(k) = cf2k−3 (3.87)

in a range of scales where the shear rate can be considered constant.

The temporal spectra of the velocity seen by the bubbles (presented in figure 3.19 right)
is influenced by the fact that the bubbles cut the wake of other bubbles. Thus the high
frequencies of the temporal spectrum are dominated by the Doppler shift due to the high-
speed crossing, of the order of v0, of the dissipative structures of the flow. So using (3.87)
and taking the argument of Ref. [255], with ω ∼ v0k, we can estimate the high frequency
behavior of the frequency spectra:

E(ω) = E(k) k

ω
= f2v2

0ω−3 . (3.88)

The temporal spectra from both the experiments and the simulations present a ω−3 zone
at high frequency.

We have seen that at large scales (k ≪ 1/d), where the flow is dominated by wake inter-
actions, there is a balance between production and inertia. At these scales we notice that
the 1D spectra of the velocity present a k−1 dependence. This means that each decade
contains an equal amount of energy. This behavior can be explained by the intermittence
of the wake passages, giving rise to an alternation between periods of activity and calm
[158]. At these scales, the characteristic velocity no longer depends on a specific length
scale and corresponds to the typical velocity of the bubbles v0. These periods of activ-
ity (the wakes) are characterized by their self-similar character [11, 160] and present a
variable intensity and duration, whereas the calm periods follow a Poissonian distribution
reflecting the quasi-uniform distribution of the bubbles. The absence of a characteristic
length leads directly to the absence of a characteristic time for the fluctuations. Hence the
frequency spectrum of the velocity also shows a decay close to ω−1 at low frequency. As
pointed out by Mandelbrot [155], these behaviors in ω−1 and k−1 must also be connected
to the non-Gaussianity of the velocity distributions as well as to a long-range correlation
of the velocity.

To extend the discussion on the large scales, we need to take into account the anisotropy of
the flow. For the characterization of the anisotropy, it is necessary to distinguish the fact
that the energy can be carried mainly by one component of the velocity vector (anisotropy
between components) from the fact that the fluctuations in certain directions can carry
more energy (directional anisotropy) [233]. To characterize the latter, we consider a spher-
ical coordinate system of the wave vector space, as schematized in the figure 3.25. The
angle θ characterizes the orientation of the wave vector with respect to the vertical di-
rection: sin θ = kz/|k| (sin θ = 0 corresponds to fluctuations in the horizontal direction
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and sin θ = ±1 to fluctuations in the vertical direction). We then consider the directional
spectra E(k, θ) which allows decomposing the energy of the fluctuations according to the
wavelength and the orientation with respect to the vertical direction13.
We show in the figure 3.25 the directional spectra of the velocity for α = 10%. It can be
seen that at large scales (k < 1/σ) the energy is concentrated in the horizontal direction.
This concentration is characteristic of vertically aligned tubular structures [47], which can
be seen on the flow visualization in figure 3.16. At smaller scales (k ≫ 1/σ), one can
see that the directional spectra become invariant with θ indicating that the directional
anisotropy tends to vanish.
To characterize the anisotropy between components, we present as well in the figure 3.25
the directional spectrum for the vertical component of the velocity and for the horizontal
component14. At large scales, we notice that the spectra of the vertical kinetic energy is
very similar to that of the total kinetic energy, which indicates that at these scales the
vertical component caries almost all the kinetic energy. This can be explained simply by
the fact that the forcing due to the bubbles is essentially vertical. We can also note that the
horizontal component of the velocity presents a very weak directional anisotropy. Finally,
at small scales, we notice that the flow tends to become much more isotropic and presents
both a decrease of the difference between the components and between the directions.
This indicates that at scales where the energy injection is zero, there is a redistribution
between the components that ensures a return to isotropy as k increases.
It should be noted that when considering the spectra with angular dependence for the
horizontal and vertical components, no k−3 zone is distinguished. Thus, as noticed by Ref.
[24] for the decaying turbulence under strong rotation, the k−3 region for the spherically
averaged spectra results from an average between the different directions and the different
components, raising the question of the universality of the k−3 power-law subrange.
If the structure of the flow becomes locally isotropic at scales much smaller than σ, one
should expect the appearance of a k−5/3 inertial range for the velocity spectra, if the
local Reynolds is large enough, since at these scales there is no more energy injection.
Such inertial range is not present in the numerical simulations reported here, but seems
visible in the spectra obtained from the experiments of Ref. [220] (see figure 3.19 left). In
case the velocity spectra first present evolution as E(k) ∼ f2k−3 followed by an inertial
range E(k) ∼ ⟨ε⟩2/3k−5/3, the characteristic length of the crossover between these two
regimes would be given by ℓI =

√
⟨ε⟩/f3. It is interesting to note that this length scale

corresponds to the classical estimates of the scale from which a turbulent flow subject to
mean shear can be considered as locally isotropic [53, 201]. Taking the usual Kolmogorov
scale η = ν3/4⟨ε⟩3/4, the extension of the inertial regime is given by ℓI/η = (⟨ε⟩/νf2)3/4.
In the simulations, as mentioned previously, no inertial range is present (ℓI = η) and
we have indeed ⟨ε⟩ = νf2. It is likely that a larger power injection in the simulations
(e.g. increasing CD) would allow to obtain a separation between the scales of return to
isotropy and the dissipative scales and thus to obtain a −5/3 range in agreement with the
experiments. Nevertheless, even in absence of the k−5/3 regime, this indicates that the

13In a more formal way E(k, θ) is defined by integration on all “longitudes” for a fixed “latitude”
and modulus of the wave vector: E(k, θ) =

∫
1/2ϕii(k′)δ(|k′| − k)δ(k′

z/|k′| − sin θ)d3k′/2π cos θ =∫ 2π

0 1/2ϕii(k, θ, ϕ)k2 sin θdϕ/2π cos θ. The normalization factor 2π sin θ is introduced to correct the ge-
ometrical effect due to the fact that a band near the poles covers a less important surface than a band
near the equator.

14Because of the axisymmetry of the flow we have E(k, θ) = Ez(k, θ) + 2Ex(k, θ).
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Figure 3.25: (a) Scheme of spherical coordinates in the Fourier space. (b) (c) and (d)
Directional spectra of, respectively, the velocity vector, the vertical velocity component
and a horizontal velocity component, for α = 10%. Note that the spherical spectra
corresponds to an integral along a gray dashed line, while the longitudinal spectra in the
vertical direction are obtained by integration along a black dashed line.

rate of shear imposed by the bubble wakes control the relaxation to small-scale isotropy.

3.4.3 Summary

We summarize the results presented in this section. Firstly, regarding the coarse-grained
numerical approach, we have shown that it is possible to use the Euler-Lagrange framework
for simulating the dynamics of large objects, that is to say much larger than the grid size.
For this, it is mandatory to correct the spurious self-induced effect in the dynamics of the
bubbles. For that purpose we proposed a model that allows determining the undisturbed
fluid velocity for objects moving with quite a large Reynolds number, and then to obtain
a relative velocity of the objects used for the computation of the hydrodynamic forces.
Although this approach has some limitations, since the fine scales in the vicinity of the
bubbles cannot be reproduced, it is nevertheless a nice tool to study the collective phenom-
ena at play in the bubble column flow. We have shown that the interacting wakes lead to
a screening mechanism of bubble wakes, as observed experimentally. We have also shown
that the k−3 subrange of the energy spectra results from a rate of shear imposed by the
bubble wakes. On larger scales the energy spectra evolves as k−1 indicating a Poissonian
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spatial distribution of the wakes along with long-range correlation.

3.5 Perspectives
Concerning the statistical analysis of the dynamics of particles in turbulence, presented
in §3.2, we can mention the following tracks for future works. Firstly, we would like to
complete the panorama of the effect of the various forces by accounting for the effect of
gravity and lift forces. We have done some preliminary work on the subject during the
PhD of Zhentong Zhang, where we observed a significant anti-correlation between the
fluid inertia force and the lift force for bubbles in a turbulent flow with Stokes numbers
larger than one. To explain this observation we proposed to express the particle dynamics
equation as ap,i = −Rij(up,j − uf,j) + Bj , where the acceleration of the particle dynamics
is given by a relaxation tensor R, with a diagonal part that accounts for the drag and a
skew-symmetric part due to the lift force, and a forcing term B that accounts for fluid
inertia effects and gravity. Qualitative explanation of these correlations were obtained by
estimating the order of magnitude of the invariant of R. But a further analysis of this
problem would be interesting as complex interplays between the various forces are present.
It would also be useful to study the statistics of the particle acceleration and hydrodynamic
force contributions conditional on the velocity of the particle, or of the fluid, similarly to
the work presented in the first chapter for a fluid particles (see §2.3), and more specifically
to analyze the effect of the Stokes number and density ratio on the correlation between
velocity and acceleration.

Regarding the second part of this chapter dealing with the stochastic modeling for LES
simulations (see §3.3), we would like to develop further stochastic model for the particles
accounting for the, probable, dependence on the velocity, as discussed in the point just
above. Based on the approach proposed in §2.4, we could propose an alternative frame-
work to the decomposition between the norm/orientation presented in §3.3. Beside being
simpler, we think that it can offer a more accurate and general description of the particle
dynamics. A first step in this direction would be to consider the coupling of the model
proposed in the first chapter for fluid particles with LES. Also of interest would be to con-
sider the coupling with Lagrangian models for the velocity gradient tensor, as proposed
for example in Refs. [89, 168, 114, 195]. With such an approach, we could obtain the evo-
lution of the fluid velocity, acceleration and spatial derivatives along the path of particles.
That opens the way to propose stochastic modeling of the particle dynamics accounting
for further forces (e.g. lift forces), but also more complex sub-grid scale phenomena such
as the fragmentation. Finally, let us mention that the goal of LES is to be able to pre-
dict flows in complex geometries, and in those conditions the local isotropy assumption at
sub-grid scale may not hold, due for example to strong means shears. In that respect, it
would be interesting to account for anisotropy and non-homogeneity of the flows, on the
subgrid scale motion of the particles. Recently, Ref. [17] proposed stochastic modeling for
the subgrid scale contribution with a preferred direction for the orientation imposed by
the mean shear. Alternatively, we could extend the vectorial stochastic model proposed
in the first chapter (2.4) to introduce dependence on the mean rate of shear tensor in the
drift and diffusion terms.

Finally, let us mention some perspective concerning the simulations of the bubble swarm
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presented in §3.4. First, regarding the approach, although we obtained a very good agree-
ment for the energy spectra with the experimental measurements, the simulation will cer-
tainly be more accurate if one adopts a more detailed description of the bubble dynamics
accounting for example for lift force, and non-spherical bubble shape (implying a tensorial
drag and added-mass coefficients). It will also be interesting to consider the model for the
large particles presented in §3.2.2 and 3.3.2. Although this model was derived for particles
with size lying in the inertial range of locally isotropic turbulence, it could be an efficient
way to account for fluid fluctuations at bubble scale in this flow. We could also improve
the self-induced force correction. The model presented above can be seen as a first-order
model, and one can consider a perturbative approach to account for correction terms at
the higher orders. Since the bubble Reynolds number remains moderate, it is possible
that only the second-order terms may be enough to account for the non-linear effect and
reproduce, at least qualitatively, the wake induced instability of the bubble path. Note
that, to our knowledge, no simulation in the Euler-Lagrnage framework has reproduced
the zigzagging or spiraling motions of a rising bubble. Moreover, as discussed in §3.4.2 we
think that the absence of this intrinsic instability is one of the main missing features of the
simulations. Finally, we think that the model for the correction of the self-induced force
can also present some interest outside the framework of Euler-Lagrange approach. As such
model enables to define the fluid velocity at the particle position and thus the particle rel-
ative velocity, it can be of some help to propose a model for the hydrodynamic forces from
measurements of the particles acceleration and total forces obtained from experiments and
detailed DNS resolving the bubble interfaces.
We think that one of the interests of the kind of simulation presented in §3.4, is to provide
a way of studying the stability condition of a bubble swarm. In the simulation presented
above, the bubble cloud was observed to remain homogenous, but usually large-scale bub-
ble columns tend to develop some instabilities that eventually lead to non-homogenous
bubble distribution and large-scale recirculations. One way of studying the question could
be to consider the simulations subject to various initial distribution of bubbles and bound-
ary conditions to first analyze the sensitivity to injection conditions, and the presence of
shear. We can also focus on setting with a large scale forcing of the flow, as considered for
example in Ref. [5] or by Gabriel Ramirez (who his preparing his PhD at CEA). We could
then study under which conditions in terms of length and energy scales the peculiar dy-
namics induced by a cloud of rising bubbles could be predominant, or how the turbulence
will be modulated by the presence of the bubbles.
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4 Magnetic fields, particles and turbulence
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The coupling between electromagnetism and fluid mechanics, or MHD for magnetohydro-
dynamics, finds applications in very varied contexts ranging from liquid metal or ionized
gas at a laboratory scale to conducting matter constituting the planets and the stars. In
this chapter, we mainly discuss two projects, in which we have worked in collaboration
with the CEA. The first one is about the magneto-thermoconvection of a liquid metal,
in a context of prevention of nuclear power plant accidents. It has been the PhD subject
of Sébastien Renaudière de Vaux and of Julien Guillou supervised with Wladimir Bergez
and Philippe Tordjeman. The second one is related to bubble detection in a liquid metal,
in the context of fast neutron reactors cooled by liquid sodium, and was studied during
the PhD of Rafael Guichou, and Antoine Afflard and the PhD of Youssef Nasro Allah also
supervised with Wladimir Bergez and Philippe Tordjeman. The common point of these
two projects, and their main originality, is to involve flows subjected to an alternating
magnetic field.

4.1 Convection of a liquid metal subject to alternating magnetic
field

When an alternating electromagnetic field is applied to an electrically conductive fluid,
typically a metallic liquid, electric currents are induced in it, they are called eddy currents
or Foucault’s currents. The induced currents generate both a heating of the fluid by
Joule effect, and a volume force in the fluid resulting from their interactions with the
applied magnetic field. These effects are used for induction heating or electromagnetic
stirring applications. Additionally, when temperature heterogeneities are important, the
buoyancy differences in the liquid can also lead to natural convection.
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The objective of this project is to identify the different regimes that can be encountered
when a metallic liquid is subjected to an alternating magnetic field and a different temper-
ature on the boundary. In particular, we are interested in the influence of these regimes
on the heat transfers. For this purpose, we consider the configuration of a liquid metal
in a cylindrical container whose upper and lower walls are controlled in temperature (like
in the Rayleigh-Benard convection, RBC) and surrounded by a coil through which an
alternating current flows as depicted in figure 4.1. This device allows controlling the im-
portance of the Laplace force and of the buoyancy force as well as the relative importance
of the volume heating compared to the wall heating. During the thesis of Julien Guillou,
we studied this flow by direct numerical simulations and experimentally, thanks to an
experimental setup developed during the thesis. This study was motivated to simulate
inductive heating experiments for studying severe accidents in the nuclear industry [116].

3.3 Modélisation du problème 41

T2                                           D/2=H/2

B
∂T
∂r=       g0 H

T1

Figure 3.1. – Schéma explicatif du système étudié avec le cylindre contenant le liquide
conducteur en électricité placé au centre d’une bobine. Plusieurs les lignes
de champ magnétique sont représentées pour une fréquence donnée et
permettent, pour cette configuration, de visualiser l’e�et de peau.

3.3. Modélisation du problème

Nous proposons d’étudier le champ magnétique total B dans le système décrit par la
figure 3.1 :

B = B0 + b, (3.1)
où B0 représente le champ magnétique en absence de mouvement du fluide et b les
variations du champ magnétique par rapport au cas statique dues aux mouvements
du fluide. Les équations modélisant notre problème de magnéto-thermo-fluidique sont
les suivantes :

@B0

@t
= ÷�B0, (3.2a)

@b

@t
= ÷�b + r ◊ (u ◊ b) + r ◊ (u ◊ B0), (3.2b)

Ò · J = 0, (3.2c)
Ò · B0 = Ò · b = 0, (3.2d)

µ0J = Ò ◊ B (3.2e)
@u

@t
+ (u · Ò)u = ≠1

fl
ÒP ú + ‹�u + 1

fl
J ◊ B + g—T, (3.2f)

Ò · u = 0, (3.2g)
@T

@t
+ (u · Ò)T = –�T + J2

‡flCp
. (3.2h)

L’équation (3.2a) décrit le champ magnétique imposé par les bobines dans un solide.
L’équation (3.2b) représente la perturbation du champ magnétique imposé par la vitesse
du fluide. La somme des deux champs magnétiques correspond au champ magnétique
total tel que B = B0 + b. Les équations (3.2f,3.2g) décrivent le mouvement du fluide.

Figure 4.1: Diagram of the system studied with the cylinder containing the galinstan placed
in the center of a coil. Several magnetic field lines are represented for a given frequency
and allow, for this configuration, to visualize the skin effect.

The stirring effects of an isothermal liquid metal by an alternating magnetic field depend
on three dimensionless numbers, the magnetic Reynolds number, Rem = UL

η , the shielding
parameter, Sω = 2L2

δ2 , and the Hartman number, Ha = B0L
√

σ
ρν where L is the charac-

teristic size of the cell (say its diameter), B0 is the magnitude of the magnetic field, σ and
ρ are the electrical conductivity and mass density of the fluid, η = 1/µ0σ is the magnetic
diffusion coefficient, µ0 being the permeability of vacuum, and δ is the skin depth. It has
been shown that for a similar configuration and for Rem ≪ 1, the kinetic energy of the
fluid presents a maximum value for Sω ≈ 20 and decreases for higher Sω [177, 248]. The
Lorentz force, responsible for the flow forcing, is distributed in the skin depth, which is a
function of the AC pulsation ω: δ =

√
2η
ω . The presence of this optimal forcing is due to

the fact that the intensity of the Laplace force increases with the frequency as the intensity
of the induced currents, while the volume in which the Laplace force is significant is of the
order of δ × L2 and thus decreases with the frequency.
On the other hand, the natural convection in RBC configuration is controlled by two
dimensionless numbers, the Rayleigh number Ra = gβ∆T0L3

κν , and the Prandtl number,
Pr = ν

κ , where ∆T0 is the characteristic temperature difference, ν, κ and β are the liquid
viscous and thermal diffusion coefficients and the liquid thermal expansion coefficient,
and g is the gravitational acceleration. Grossmann and Lohse [96], have established the
existence of turbulent flow regimes characterized by scaling laws of the Reynolds number
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Re and the Nusselt number Nu, as functions of Ra and Pr, based on the kinetic and
thermal dissipation rates in the bulk and in the boundary layer. Here Re and Nu are
defined as Re = UL

ν and Nu = hL
κ where U is the referenced velocity, h is the heat

transfer coefficient and κ is the thermal conductivity of the fluid.
For steady magnetic fields (or magnetic varying with very low frequencies), it is known that
the Lorentz force damps the flow as it is mainly opposite to the component of the velocity
perpendicular to the direction of the magnetic field. By accounting for the Hartmann
layer thickness, the scaling relation of Grossmann and Lohse for standard RBC has been
extended to the magnetoconvection subject to steady vertical magnetic field [281]. The
recent simulation of Ref. [2] of the RBC with a constant and uniform external magnetic
field show that flow pattern becomes quasi-two-dimensional for large Hartmann number
Ha. We show that beyond a certain frequency this situation changes radically. The
induced currents force the flow resulting in a very significant increase in the heat flux
as well as a qualitative change in the flow structure compared to the Rayleigh-Benard
configuration.

4.1.1 Characteristic scales

We consider here the flow of liquid metal in a cylindrical cell under both the effects of
an imposed temperature difference and an ac magnetic field. Two velocity scales can be
defined, derived from the buoyancy force and the Lorentz force, UB =

√
gβ∆TH and

UL = B0/
√

µ0ρ, respectively. In these expressions H is the height of the cell, ρ is the mass
density of the fluid and µ0 is the vacuum magnetic permeability.
As well, two scales of temperature can be introduced, one given by the temperature differ-
ence imposed at the bottom and top walls of the cylindrical cell, ∆T0, and one correspond-
ing to the characteristic temperature difference due to the Joule heating and obtained by
an energy balance, ∆TQ = <qJ >

ρcp

H
U . Here, < qJ > is the time-volume average power

density due to the Joule effect, cp is the specific heat of the liquid metal and U is the
characteristic liquid velocity, which is either UL or UB. Depending on the choice of U two
definitions of ∆TQ follow with different scalings at high and low frequencies:

• for U = UB: ∆TQ ∼ S2
ωHa2 at Sω < 1, and ∆TQ ∼ SωHa2 at Sω > 1;

• for U = UL: ∆TQ ∼ S2
ωHa at Sω < 1, and ∆TQ ∼ SωHa at Sω > 1.

Then one expects four main regimes depending on UL/UB and ∆TQ/∆T0:

• ∆TQ < ∆T0 and UL < UB: Flow is driven by the buoyancy force corresponding to
RBC;

• ∆TQ > ∆T0 and UL < UB: dynamics are controlled by the buoyancy force and the
volume heating by Joule effect ;

• ∆TQ < ∆T0 and UL > UB: the Lorentz force governs the dynamics, and the heat
flux is due to the imposed temperature difference ∆T0;

• ∆TQ > ∆T0 and UL > UB: the Lorentz and the heating by Joule effect dominate.
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4.1.2 Modeling
The magnetic induction in a liquid metal results from the time variation of B(r, t) and the
velocity of the liquid. Owing to the linearity of the Maxwell equation, the magnetic field
in the liquid can be expressed as the sum of the magnetic field in the absence of motion,
B0(r, t), and the perturbation due to the velocity field, b(r, t):

B = B0 + b . (4.1)

The induction equation for b is obtained from the Maxwell equations and the Ohm law
assuming that the electrical conductivity is constant in the liquid and that the displacement
currents are negligible:

∂tb = η∇2b + ∇ × (u × b) + ∇ × (u × B0) . (4.2)

The last two terms represent the induction of the magnetic field due to the motion of
the liquid metal. The flow of the liquid metal is given by the Navier-Stokes equations,
including the additional buoyancy force (expressed with the Boussniesq approximation)
and the Lorentz force and is supplemented by the temperature equation with Joule heating:

∂tu + u · ∇u = −1
ρ

∇P + ν∆u + βTg + 1
ρµ0

B · ∇B, (4.3a)

∂T

∂t
+ u · ∇T = κ∆T + J2

ρcpσ
, (4.3b)

∇ · u = 0. (4.3c)

In the momentum equation (4.3a), P is the total pressure including the magnetic pressure
∇B2/2µ01. The boundary conditions are a no-slip condition on the walls for the velocity,
a Dirichlet conditions on top and bottom walls for the temperature with a difference
∆T0 on the two sides, and an adiabatic condition on the vertical wall. For the induction
equation (4.2), the boundary conditions are integral relations ensuring the matching with
the solution outside the metal ∇2b = 0, with continuity of b and its derivatives (in the
absence of surface currents) at the boundary [112, 99].
The second term on the right-hand side of the induction equation (4.2), ∇ × (u × b), can
be neglected when Rem ≪ 1. At small frequency, i.e. Sω ≪ 1, and Rem ≪ 1, eq. (4.2)
reduces to the quasi-static diffusion equation (η∇2b = −∇×(u×B0)). In the quasi-static
approximation, the eddy currents are obtained from B0 explicitly, J = σ(∇Φ + u × B0),
where the electrical potential is obtained by a Poisson equation ensuring that ∇ · J = 0.
At high frequency, i.e. Sω ≫ 1, the quasi-static assumption is not valid. We can decompose
the current density in the liquid as J = J0 + j, where J0 denotes the current density in
absence of flow induced by the time variation of the magnetic flux and j is, according to
the Ohm law, j = σ(e + u × B0 + u × b), with e the perturbation of the electrical field
due to the flow. For large enough frequency and small magnetic Reynolds number, j can
be neglected compared to J0, as we can estimate that O(|J0|/|j|) =

√
Sω/Rm. Therefore

for Rem ≪ 1 and Sω ≫ R2
m it is possible to completely decouple the resolution of the

flow from the resolution of the magnetic field. The magnetic field provides sources of
1The Lorentz force can be expressed as FL = J ×B = 1/µ0B.∇B −∇B2/2µ0, assuming the liquid metal

is incompressible, the second term contributes only to the hydrostatic pressure.
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momentum and heat for the liquid with no influence of the liquid motion on these sources.
Therefore as in the quasi-static approximation it is not required to solve the induction
equation (4.2).
The magnetic and electrical fields, B0 and E0, applied to the system, at rest, are solutions
of the set of equations:

∇ · B0 = 0, (4.4a)

∂tB0 = −∇ × E0, (4.4b)

∇ × B0 = µ0(J0 + Je(t)), (4.4c)

J0 = σE0, (4.4d)

where J0 and Je(t) are respectively the current density in the liquid metal and in the
coil. For the later we impose its amplitude Je and pulsation ω which fix Ha and Sω. The
magnetic field B0 within the cell and outside is computed with Comsol for the various
values of current intensity and frequency. The Maxwell equations (4.4) have been solved
in 2D axisymmetric geometry for H = D = 0.1 m and a coil of rectangular section 5 × 5
mm2 having 19 turns and 3 layers.
The equations (4.3a)-(4.3c) are solved with the finite volume code Jadim. The magnetic
field computed with Comsol, with a resolution much finer than the DNS grid, is sampled
at the vertices of the DNS grid. The Comsol simulations provide the magnitude and
phase of the magnetic field inside the liquid. Consequently, the magnetic field and thus
the momentum and heat sources can be computed at each instant in the DNS simulations.
The details of the numerical simulations can be found in Refs. [100, 99].

4.1.3 Characterization of the magnetic forcing

In figure 4.2 we present the spatial distribution of the norm of 1/µ0B0.∇B0 for Sω = 15.
This figure shows that the force is dominant close to the two edges, top and bottom, of
the cylinder. The right part of Fig. 4.2 presents the amplitude of the Joule power density
qJ = J2

0
σ = η

µ0
(∇ × B0)2 due to Joule effect also for Sω = 15. It is seen that the Joule

heating is located in the skin depth close to the vertical wall.
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Figure 4.2: Distribution of | 1
µ0

B0 · ∇B0| responsible for the fluid motion (left part of the
cell cross-section) and qJ (right part) for I0 = 1A and Sω = 15.
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Figure 4.3: Left: Joule heating total power QJ in the liquid metal volume normalized by
Qc versus the shielding parameter Sω. Right: Volume-average Lorentz force normalized by
FB versus the shielding parameter Sω. Each curve is computed at I0 = 1 A; the power laws
in Sω are mentioned on each curve. The colored domain indicates the range of variation
of Sω for the DNS.

.

The total power deposited by Joule effect in the liquid metal, QJ =
∫

qJ dV , normalized
by the heat transferred by pure conduction, Qc = k∆T0

πD2

4H , is plotted as a function of Sω

in figure 4.3. This curve shows that there are two asymptotic behaviors: the power scales
as S2

ω for Sω < 1, and
√

Sω for Sω > 100. Additionally, the spatially averaged amplitude
of the Lorentz force, normalized by the buoyancy force, FB = ρgβ∆T0

π
4 D2H, scales as

Sω, for Sω < 1, and is constant for Sω > 100. We find that these scaling relations are the
same as in the case of an infinite cylinder. In this work, all the simulations are realized in
the intermediate region, i.e. 1 < Sω < 100.

4.1.4 Experimental setup
During the PhD of Julien Guillou, we develop an experimental setup that allows us to
study the dynamics of a metal liquid in a Rayleigh-Bénard cell subjected to an ac magnetic
field combined with a thermal gradient (see schematic representation in figure 4.4).
The convection cell is a cylinder with a unit aspect ratio and internal diameter D = 10cm.
The top and bottom walls are two silicon carbide (SiC) disks and the lateral wall is made
in polyether ether ketone (PEEK). Both these materials are good electrical insulators,
and are therefore not affecting the magnetic field. SiC has a high thermal conductivity
contrary to PEEK, so we can consider that the lateral wall is adiabatic whereas the top
and bottom plates are at constant temperature. The two plate temperatures are set by
circulation of water with different imposed temperatures.
A copper coil with an internal cooling (made by SEF) with a height of 10.2 cm and
an external diameter of 17.4 cm, surrounds the convection cell. The coil is made of
57 turns with four insulated layers. The coil power supply is obtained by transforming
the three-phase electrical power of the laboratory in continuous current and then to an
alternating current with specified amplitude and frequency thanks to a H-bridge coupled
with a Pulse With Modulated controller (made by Arcel). The coil with the cylinder fill
with galinstan behaves as a low-pass filter with a cut-off frequency at about 11 Hz. To
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Figure 4.4: Diagram of the experimental device setup. (a) : Thermocouples, UDV trans-
ducer and flowmeter data acquisition system. (b) : Thermal regulation of the bottom side
of the RBC cell. (c) : Rayleigh-Bénard cylinder heated by induction and position of ther-
mocouples and the UDV transducer (green). A water circulation fixes the temperature
difference between the top and bottom walls; flowmeters record the water flow rate in the
disk. (d) : coil power supply, capacitors, oscilloscope and function generator. (e) : coil
cooling device.

perform experiments at higher frequency, we connected a rack of capacitors in series with
the coil. We have used up to three 70 µF capacitors mounted in parallel in the rack. The
number of capacitors is variable to adapt the resonance close to the current frequency.
We were then able to drive the intensity of the current I0 between 2 and 67 A and the
frequency f between 15 and 1000 Hz. Note that the experiment is designed to reach
current intensity up to 500 A, but the capacitor used in the first experiments presented
here does not allow too high currents.

The heat flux on both bottom and top plates are obtained by measuring the flow rate of
the circulating water and its temperature difference between inlet and outlet. To measure
the temperature distribution in the liquid, three rings of 11 type T thermocouples are
placed in the cell close to the wall and at three different heights: H/4, H/2 and 3H/4.
3 thermocouples are also positioned along the axis of the cylinder at the same heights.
Finally, an acoustic transducer (UDV) with a diameter of 8 mm and placed at 1 cm from
the wall, allows measuring the vertical distribution of the convection velocity close to the
cylinder wall.

The details of the setup and the experimental protocol are presented in Ref. [99].

Experiments have been realized for 15 ≤ f ≤ 1000 Hz, 2 ≤ I0 ≤ 67 A and 2 ≤ ∆T0 ≤ 11 K.
Under these conditions, we have 6 ≤ Ha ≤ 200, 1 ≤ Sω ≤ 70, 2.3 × 105 ≤ Ra ≤ 3.1 × 106

for galinstan, and 3 × 107 ≤ Ra ≤ 2 × 108 for water.
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Figure 4.5: Left: Streamlines in vertical cross section of the time and azimuth averaged
velocity for I0 = 100A and Sω = 34 computed by DNS. Right: standard deviation of the
vertical velocity in vertical cross-section for I0 =50A and Sω = 10, obtained from time
and azimuthal averaging.

4.1.5 Flow structures and heat flux
We focus on the regime dominated by the Lorentz force (UL > UB), and heat transfer
controlled by the wall temperature difference ∆T0 > ∆TQ. Hence we study the dynamics
of the liquid metal under forced convection by Lorentz force, perturbed by Joule heating
and buoyancy force.
When imposing an alternating magnetic field, the global flow patterns are drastically
modified compared to the RBC flow. From the numerical simulation, we show that in the
Laplace force forced convection regime, the flow is organized in two toroidal recirculation
cells in agreement with the literature [185, 63]. This is illustrated in the figure 4.5, showing
the average vertical velocity for Ha = 301 and Sω = 34 in a vertical plane of the vessel. It
is seen that both cells have an opposite azimuthal vorticity. For z < H/2 the liquid metal
goes upward close to the wall and goes downward in the bulk, and conversely, for z > H/2.
This double-torus flow structure appears very robust for all intensity and frequency. Only,
for the lowest intensity consider in our DNS (10A), the torus appears and disappears
alternatively, showing that the flow is characterized by a mixture between free convection
and forced convection.
The toroidal cells are separated by a mixing zone located at mid-height plane. In this
region, the flow presents on average the structure of a plane jet pointed radially inward,
and subject to mean vertical temperature gradient. As the mean vertical velocity is zero in
this region, the momentum and heat transfer between both half of the vessel, are controlled
by excursion or bursting of the recirculation cells across the midplane, as seen in figure
4.5 showing the standard deviation of the vertical velocity for Ha = 150 and Sω = 10.
This figure points out that the velocity fluctuations are maximum in the mid plane and
close to the wall, where the Joule heating is the largest. In this region, the characteristic
value of the RMS is of the order of UL/10. We mentioned that the normalized variance
map remains similar whatever the Ha value, at high frequency ( Sω ≥ 10).
We present in Fig. 4.6 the average temperature of the three rings of thermocouples at
various Ha and Sω as well as the profile of the temperature averaged over the horizontal
plane from the DNS. We observe that DNS and experiments present the same trends in
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Figure 4.6: Vertical profile of the average temperature. The solid lines represent the
average of the dimensionless liquid temperature from the DNS for different values of Ha
and Sω: Ha = 150 and Sω = 10 (orange), Ha = 150 and Sω = 51 (green), Ha = 301 and
Sω = 68 (blue) and RBC (red). The points represent the measurements of the experimental
average dimensionless temperature of the three rings of thermocouples for Ha = 56.4 and
Sω = 34.1 (square), Ha = 65.3 and Sω = 68 (star), Ha = 113 and Sω = 50.9 (cross) and
RBC (red dots).

Ha and Sω in presence of the Lorentz force, the average temperature display a two-plateau
profile. Each toroidal recirculation cells present different average temperatures, showing
that within a recirculation cell the temperature is rapidly homogenized whereas the heat
transfers between the two cells is not as efficient. When the Joule heating becomes signif-
icant, the average temperatures of the two cells shift to higher values and the difference
between the two plateau temperatures decreases.
We consider the evolution of the average heat flux at the bottom and top walls obtained
from DNS and the experiments. Based on the standard definition, Nu is equal to the ratio
of these fluxes to the flux in absence of fluid motion and Joule heating, Qc = k∆T0

πD2

4H .
From the mean thermal budget, the difference between the bottom and top Nusselt num-
bers is given by:

Nu+ − Nu− = QJ/Qc , (4.5)
where the evolution of QJ/Qc with Sω is given in the left panel of figure 4.3, Note that
QJ/Qc also varies as Ha2.
We observed that the heat flux increases significantly with respect to RBC when the
Lorentz force is applied. This is visible even for small frequency and intensity. For example,
at I0 = 10A and Sω = 1, the Nu is increased by a factor ≈ 1.5.
To characterize the forced convection we introduced a Péclet number defined with a char-
acteristic velocity Uω = ULf(Sω), Peω = UωH/κ. The function f(Sω) characterizes the
influence of the frequency on the Lorentz force. It behaves as f(Sω) ∼ Sω for Sω ≪ 1 and
for Sω ≫ 1 it tends to a constant. The evolution of the function f(Sω) is obtained by
solving the Maxwell equations and is shown in the right panel of figure 4.3.
Figure 4.7 displays the Nu variations with Pe at the top wall for the experimental and
numerical data. We first observe that all the results merge in a unique curve which presents
two regimes: for Sω < 10 and Ha < 30, which corresponds to QJ/Qc < 1, Nu is constant.
This result can be understood by considering that UL ≲ UB and the heat transfer is mainly
driven by ∆T0. For Sω ≥ 10 and Ha ≥ 30, which corresponds to QJ/Qc ≥ 1, Nu scales
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Figure 4.7: Evolution of Nu+ vs. Peω in Lorentz forced convection. The red points
correspond to experimental data for QJ/Qc > 1. The blue points correspond to experi-
mental data for QJ/Qc < 1. The square gray points correspond to DNS. For QJ/Qc > 1,
Nu ∼ Pe2/3.

as Pe2/3. Under this condition, UL > UB and the Lorentz force controls the heat transfer
by producing two toroidal recirculation cells. Note that the heat flux on the bottom wall
can be obtained from (4.5). As long as the Joule effect can be neglected (QJ/Qc ≪ 1),
Nu+ ≈ Nu−. When the Joule heating becomes significant, for high frequency and current
intensity, the difference between the heat flux at the bottom and top rise and is directly
given by eq. (4.5).

4.2 Perturbation of eddy-currents by inclusions in liquid metal
In this project we focus on the modifications of the magnetic field caused by the presence
of a dispersed phase in a liquid metal. More specifically we are interested in electro-
magnetic measurements of the dispersed phase properties such as the void fraction, the
characteristic size of particles or bubbles, and their velocity. Such measurements, even
for a single inclusion, remain challenging because of the opacity of liquid metal. In this
goal, various technics have been developed, based and acoustic method [70], X-ray imag-
ing [4, 121, 122], or perturbation of electromagnetic fields [151]. Here we consider the
use of an Eddy Current Flow Meter (ECFM) to detect and characterize the voids in a
liquid metal. ECFM is currently used for measuring the flow rate of liquid metal flows
in pipes [244]. In this device, an alternating magnetic field is generated in the flow by
a primary coil. The fluid motion induces small eddy currents that perturb the magnetic
field. These perturbations induced a variation of the magnetic flux that can be measured
on the variation of electromotive force (emf) on a secondary coil.
More specifically, we consider the design depicted in figure 4.8, which consists of three
external coils surrounded the pipe. A primary coil generates an alternating magnetic field
in the flow, and the two secondary coils, located on each side of the primary coil, measure
the difference of magnetic flux in two cross-sections of the flow. This configuration present
the advantage of being easy to set up and not perturbing the flow. In the thesis of Mithlesh
Kumar [132, 133] advised by Wladimir Bergez and Philippe Tordjman, it was shown that
that the electrical potential difference between the two secondary coils of the ECFM, can
be decomposed, at first order, as two independent contributions, one related to the global
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Figure 4.8: The ECFM is composed of three coils surrounding the pipe. P is the primary
coil, S1 and S2 are the secondary coils; J is the eddy current field generated by P which
is perturbed by the presence of the non-conducting inclusion (in blue).

velocity of the conductor, characterized by a magnetic Reynolds number Rem, and the
second due to the variation of the void fraction α. In the thesis of Rafaël Guichou [97, 98]
the perturbation of the magnetic flux by the presence of an electrically non-conducting
spherical particle in the liquid metal has been studied theoretically and experimentally. For
low pulsations of current in the primary coil, it was shown the perturbation of the magnetic
vector potential due to the inclusion satisfies a Poisson equation. Solving this equation,
one can model the voltage in the secondary coil as a function of the particle diameter,
its radial position in the pipe and the primary current frequency. This model is in good
agreement with experimental results, for a small shielding parameter, Sω ≪ (R/Rb)2,
where the shielding parameter is defined as Sω = ωR2/η = 2(R/δ)2, with R the radius of
the pipe, δ =

√
2η/ω the skin depth, and Rb it the particle radius. In the post-doctorate

of Youssef Nasro Allah and the PhD of Antoine Afflard, we are developing this approach
to account for inductive phenomena and extend the validity to higher frequency. We
also performed numerical solutions and experiments to confirm the model. These results
are presented below. We are also addressing the inverse problem of finding the size and
position of the bubbles from the voltage signal of the secondary coils.

4.2.1 Model for the perturbation of the magnetic field due to an inclusion

We consider, a non-conducting particle of diameter d traveling along an infinite cylindrical
pipe filled with a liquid metal and passing through an ECFM, as shown in figure 4.8. The
effect of the traveling void inclusion is modeled with the vector and scalar potentials A
and ϕ. Their equations in dimensionless form, satisfying the gauge condition ∇ · A = 0
reads:

∇2A = nSω
∂A

∂t
− nRemu × ∇ × A + n∇φ − je , (4.6)

∇2φ = nRem∇ · (u × ∇ × A) , (4.7)
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Figure 4.9: Distribution of A0,θ(r, z). Right: real part. Left: imaginary part.

where n is equal to 1 in the liquid metal and 0 elsewhere, u is the velocity field in the liquid
metal and je is the external electrical current density applied in the primary coil. Here
the magnetic Reynolds number is defined as Rem = UR/η, with U the average velocity of
the liquid metal in the absence of a particle. At infinity we have the condition |A| = 0.
The source term Je is modeled as a harmonic in time, unit azimuthal current density
uniformly distributed in the volume corresponding to the primary coil. The advantage of
considering the vector potential is that the emf on the secondary coils is directly obtained
by computing the circulation of A on these coils. The emf (in dimensional form) induced
by one turn of a coil is

emf

ωµ0JeR3 = dt

∮
c
A.dℓ (4.8)

where c is the contour of the turn of the coil.
The main hypothesis is to consider that the velocity and void position are quasi-static
compared to the frequency of the current. We will further assume that Rem and the
void fraction α are small. With these approximations, we can obtain the linear response
of the ECFM. For that we decompose the potential vector in A = A0 + Au + Aα +
O(Re2

m, α2, αRem) where A0 is the vector potential in the absence of flow and particle,
Au is the perturbation of the vector potential due to the liquid metal flow without any
particle, and Aα is the perturbation due to the presence of the particle2. According to
[132], we have O(|Au|/|A0|) = Rem and O(|Aα|/|A0|) = α ∼ (Rb/R)3. With the previous
approximations, the scalar potential is zero and the equations for the Fourier transform
in time of A0, Au and Aα are

∇2A0 − in0SωA0 = je , (4.9)
∇2Au − in0SωAu = −n0Remu × ∇ × A0 + O(Re2

m) , (4.10)
∇2Aα − in0SωAα = −inbSωA0 + O(Re2

m, α2, αRem) , (4.11)

where i2 = −1, n0 equals 1 in the pipe (liquid metal without any particle) and 0 elsewhere,
and nb equals 1 in the particle and 0 elsewhere (note that n + nb = n0). According to
the quasistatic hypothesis, when the particle moves, one has to consider that n and nb are
two slowly varying functions of time, i.e. time plays the role of a parameter in Eq. (4.11).
Exact solution of (4.9) has been obtained for an infinite cylinder [98]. In this case A0 is
azimuthal (A0 = A0(r, z)eθ), and an example of its real and imaginary part is shown in
figure 4.9.

2In this decomposition their is no effect of liquid metal flow perturbation due to the particle motion. this
could be introduced as higher order terms.
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Figure 6. Partie réelle ( ) et partie imaginaire ( ) en fonction de r pour di↵érentes
valeurs de z , de la fonction de Green pour le problème de la perturbation du potentiel
vecteur A↵.
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Figure 4.10: Real part (left) and imaginary part (right) of the green function for the
perturbation of the vector potential Aα as defined in (4.13) as a function of r for various
values of z for a fixed value θ = θ′ = 0, r′ = 1/2 and z′ = 0, corresponding here to the
position of the source.

Equation (4.11) is a Helmholtz equation with a source term depending on A0. Accordingly
the perturbation of the vector potential is given by

Aα(r) = −iSω

∫
nb(r′) G(r, r′) · A0(r′) dr′3 , (4.12)

where G(r, r′) is the tonsorial Green function solution of

∇2G(r, r′) − in0SωG(r, r′) = −δ(r − r′) · (er ⊗ er + eθ ⊗ eθ + ez ⊗ ez) . (4.13)

To obtain this Green function, we apply the Fourier transform in z and θ. The resulting
Fourier coefficients are solutions of a Bessel equation, and can thus be expressed as a
combination of Bessel functions. Finally, the Green function in physical space is obtained
from an inverse Fourier transform performed numerically. An example of the resulting
G(r, r′) is shown in figure 4.10.
For a small particle volume, taking the pointwise limit for the source term, nb(r′) in (4.12)
becomes vbδ(rc − r′), where vb is the particle volume normalized by the pipe radius and
rc the position of its center, also normalized by the pipe radius. This leads to an algebraic
equation for the vector potential Aα:

Aα(r) = −ivbSωG(r, rc) · A0(rc) . (4.14)

The condition of the validity of this solution (vbSω ≪ 1) means that the particle must
be small enough when the gradients of the eddy currents become large. Equation (4.14)
shows that, in the linear approximation, the perturbation of the vector potential due to
the presence of the particle, varies linearly with its volume as it has been already found
for small particles at low frequencies [132, 98].
With this model, we can compute the time evolution of the amplitude of the tension
difference between the two secondary coils ∆Vα generated by a traveling inclusion. In order
to validate this approach, we compare the results of this model with numerical simulations,
performed with Comsol, of (4.7) with Rem = 0 and the quasi-static approximation. Such
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Figure 4.11: Theoretical ECFM response. Solid line: linear model; broken lines: numerical
solution. Left: modulus of the complex amplitude of the ECFM response; right: its phase.
Blue: Rb = 1 mm, Rc = 9 mm; brown: Rb = 3 mm, Rc = 4 mm; in both cases, frequency
1000 Hz. Abscissa Z corresponds to the axial position of the particle. The red and green
areas show the positions inside the secondary and primary coils, respectively.

comparisons are shown in figure 4.11 for two non-conducting beads of different diameters,
Rb = 1mm and Rb = 3mm, traveling in the pipe of radius R = 13mm with two constant
radial positions Rc = 9mm and Rc = 4mm, respectively. In both cases the frequency of
the current in the primary coil is 1000 Hz corresponding to vbSω = 8.8 × 10−3 and 0.24
respectively for the two bead sizes. In figure 4.11 we present the evolution of the modulus
|∆Vα| of the generated signal as well as its phase arg ∆Vα = ϕα with respect to the current
in the primary coil. We observed a very good agreement between the Comsol simulations
and the model for both quantities. As seen in this figure, as the bead is traveling through
the ECFM, the signal experience an oscillation. We note ∆V ∗ = ∆Vα(zmax) , where zmax

is the position of the bead giving the maximum of |∆Vα|.
Based on the inversion of the mapping (Rb, Rc) → (|∆V ∗

α |, ϕ∗
α) we proposed in ref. [1] a

method to measure the size of an inclusion in a liquid metal.

4.2.2 Experimental setup

The capability of an ECFM to detect a particle and measure its size has been verified
experimentally. Two experimental setups have been designed as depicted in figure 4.12.
The first one enables us to validate the model for the detection of small beads of known
diameter and position. In a second setup, we consider a bubble column in order to apply
the method to a real fluid system.
For both setup, we have a tube filled with galinstan. The tube is in PVC with inner
diameter 26 mm and thickness 3 mm. We applied an alternating electrical current of
amplitude 0.2 A in the primary coil. We use a transconductance amplifier to impose a
constant amplitude of the current independently of the variation of the impedance of the
system caused by the traveling of the inclusions.
For the first setup, the particles are 3D printing PMMA beads of diameter 1, 2, 3 and 4
mm, whose positions are imposed by a thin fishing wire with diameter 0.08 mm. In the
second experimental setup, we inject argon bubbles at the bottom of the tube.
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Figure 4.12: Experimental setups for detection and characterization of non-conducting
inclusion by an ECFM. Left: beads of known diameters and position are traveling in a
tube filled with galinstan. Right: Argon bubbles are rising in a tube filled with galinstan.

In figure 4.13 we compare the prediction from the model with the experimental response
of the ECFM for the first setup. We present the evolution of the modulus and the phase
of ∆V ∗

α with the frequency of the current in the primary coil, for a bead size of Rb = 3mm
and for 3 positions Rc = 0, 4.8 and 8.6 mm. The linear approximation also agrees with the
experience for moderate frequencies (up to 3000Hz), but present some deviation at larger
frequencies which seems consistent with the limit of validity of the model vbSω = 1 that
corresponds here to a frequency of 4200 Hz. At high frequency the skin depth becomes
very small which implies strong variations of the vector potential over the size of the bead.
Thus the approximation of integrals made to obtain (4.14) from (4.12) is not valid. Finally,
the simple model (4.12) predict ∆V ∗

α = 0 for a bead traveling along the axis of the cylinder,
Rc = 0, since due to symmetry, A0(r = 0) = 0. In this case also one should consider finite
volume effect of the bead though (4.14) instead of using the pointwise approximation of
(4.12).

In figure 4.14, we present results of the bubble experiments. We show in this figure the
time signal of |∆Vα| generating by the rising bubbles. From the detection of the peaks,
we obtained |∆V ∗

α | and ϕ∗
α corresponding to each event of a bubble passing through the

ECFM, from which we can estimate the bubble size and radial position. Figure 4.14
presents histograms of the bubble size and bubble radial position. The total mass of
bubbles injected in the galinstan is obtained by a time integration of the gas flow rate.
The sum of the estimated volume of each bubble matches the measured mass of gas with
an error of less than 2%. These preliminary results come as confirmation that the bubble
size, and position, can be inferred from the measurement of the amplitude and phase of
the signal of an ECFM.
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Figure 4.13: Effect of the frequency on the ECFM response for a particle of radius Rb = 3
mm and for three radial positions. Left : amplitude of the maximum |∆V ∗

α |; Right: the
phase of the maximum ϕ∗

α. Blue: Rc = 8.6 mm; red: Rc = 4.6 mm; green: Rc = 0 mm.
Continuous lines: linear model; crosses: experimental data.
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Figure 4.14: Top: time evolution |∆Vα| of the ECFM generating by rising bubbles in
cylinder fill with galinstan. Right: Histogram of the estimated of the bubble size. Left:
histogram of the estimated bubble radial position.
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4.3 Perspectives

We present some perspectives envisaged extending these research activities around the
MHD with variable fields.
Concerning the study of the single-phase flow presented in the paragraph 4.1, a direct
extension is to further explore the parameter space of this original flow. We could firstly
consider the situation in which the buoyancy force dominate the Lorentz force (UB > UL)
for example by considering taller domain, as well as different aspect ratio of the vessel. It
will also be interesting to study the flow when a more intense magnetic field is applied.
In the work presented above, the technical limitations of our experimental setup and the
capabilities of numerical simulations allowed us to study the effect of Hartman numbers
up to Ha ≈ 300, corresponding to intensities in the primary coil of the order of 100A.
The installation of power capacitors on the experimental setup would allow us to reach
currents up to 500A and thus to obtain Hartman numbers around Ha = 1500. For such
Hartman numbers, we estimate that the flow velocity will be sufficient to obtain magnetic
Reynolds numbers of the flow slightly higher than 1 and giving access to new regimes.
In such a situation, one can expect magnetic induction mechanism to be important along
with a strong influence of the imposed magnetic field similarly to Refs. [174, 173]. As
a consequence the induced currents will depend on the local structures of the velocity
field, and can be important, at least locally, compared to the currents induced by the
temporal variation of the applied field. Consequently high velocity regions could then
be prone to strong buoyancy forcing due to local Joule dissipation, leading to a feedback
loop mechanism that tends to reinforce the largest velocity fluctuations. For the numerical
study of this regime, it will be necessary to resolve the induction equation with its nonlocal
boundary conditions to account for the ∇ · B = 0 condition outside the liquid metal.
However, these simulations would remain challenging in terms of the size of the numerical
grid, and may require to consider subgird scale modeling of the flow.
Regarding the study of the perturbation of magnetic fields by inclusions, we would like to
pursue the approach to consider multi-bubble detection. For not too high volume fraction,
we expect that (4.12) remains valid, it is then a priori possible the determine the ECFM
response to a given distribution of voids. The challenge will be to propose an inverse
procedure to obtain an estimate of the volume fraction as well as the distribution of the
size and position of the inclusion. We would also consider the more realistic situation of
gas bubbles in a turbulent pipe flows. We are planning to realize an experiment with a
loop of flowing galinstan and bubble injection. We would try to use the ECFM to, on
the one hand, measure velocity profile and characterize the velocity fluctuations in the
liquid, and on the other hand, to confirm the capability of the ECFM to detects bubbles
in the flow. It will also be interesting to consider higher order terms in the modeling of
the ECFM response to measure the velocity perturbation induced by the passing of the
bubbles.
We would also like to study a suspension of metallic particles subject to strong (in the
sense of high Ha) alternating magnetic field. The electric currents induced in each particle
generate Joule effect and interact with the applied field resulting in a Lorentz force (and
possibly a torque). As a result, the phase is set in motion due to both the drag and the
heating (buoyancy force) of the metallic suspension. Such a problem for a suspension of
particles in a creeping flow has been studied both theoretically [176] and experimentally
[34] but the heating effects causing local sources of buoyancy and its interactions with
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turbulent fluctuations of the velocity field remains unexplored. On the other hand, there is
an extensive literature on the preferential concentrations effects and formation of clusters of
particles heavier than the carrier phase caused by turbulent flows. The question therefore
is to analyze how the formation of inhomogeneity in such a suspension can appear due to
hydrodynamic interactions between the two phases and due to the direct magnetic dipole-
dipole interaction at short range. Since the flow would respond to such self-organization
of the particles (due to the modification of the interphase heat transfer), we can expect
to observe, as in Ref. [275], a clustering transition which generates strong fluctuations at
all scales, in analogies with systems close to a critical point. Of particular interest is the
question of the percolation of electrical conductivity. Indeed, once packing of particles is
attained, one should expect a dramatic modification of the eddy currents and therefore
significantly change the induced Joule dissipation and the Lorentz force. This flow could be
studied numerically and experimentally. In order to focus on collective effects, we plan to
use Lagrangian tracking and point-particle approximation for the modeling of the metallic
dispersed phase. Within this framework, the dynamic equation of the particles needs to
be supplemented in order to account for both the Lorenz force and torque as well as a heat
source caused by the applied magnetic field. Such additional source terms can be obtained
from dipole moment [176] assuming that the magnetic field remains homogenous at the
scale of a particle. Preliminary work on the subject is presented in Ref. [212]. On the
other hand, the screening of the magnetic field caused by the particles can be estimated
by extending the two-way coupling between continuous and dispersed phase based on the
magnetic field perturbation caused by a dipole as proposed in Refs. [120, 98].
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