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Abstract

In this manuscript, we shall develop new methodologies to cluster nodes of networks,
possibly holding textual edges. We aim at providing an end-to-end modelling, capable of
using the texts exchanged between the nodes as well as the network topology to extract
salient information at the core of the dataset. This work is motivated by questions arising
in different fields such as social sciences. Gathering and understanding large datasets from
social media may help researchers to answer questions, regarding the way a policy may be
perceived, for instance. We adopt a probabilistic modelling framework to classify nodes and
analyse texts. Among other things, these models provide information on the uncertainty of
our estimates as well as a framework that has proven to be robust historically. Furthermore,
in order to benefit from the efficiency of deep neural networks to encode complex types of
data, our methodologies strive to include them within a probabilistic framework. Several
analyses of real data are provided. In particular, during several months preceding the
2017 French presidential election, each publication of one social media, as well as their re-
publications, involved with one of the candidates were gathered to form a data base. Our
methodology helps understanding the groups present on the social media as well as the way
interactions were taking place during this particular time period. Python implementations
associated with the methodologies developed in this manuscript have been made public.

Keywords Statistical network analysis, topic modelling, model-based node clustering,
variational inference, Bayesian variational inference, variational graph autoencoder
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Résumé

Dans ce manuscrit, nous développerons de nouvelles méthodologies pour regrouper les
nœuds de réseaux comportant, éventuellement, des arêtes textuelles. Notre objectif est
de fournir une modélisation de bout-en-bout, capable d’utiliser les textes échangés entre
les nœuds ainsi que la topologie du réseau pour extraire les motifs à l’origine de ce jeu de
données. Ce travail est motivé par des questions qui se posent dans différents domaines
comme en sciences sociales par exemple. La collecte et la compréhension de gros volumes
de données provenant des réseaux sociaux peuvent, par exemple, aider les chercheurs à
répondre à des questions concernant la manière dont une politique est perçue. Nous
adoptons un cadre de modélisation probabiliste pour classifier les nœuds et analyser les
textes. Entre autres, ces modèles renseignent sur l’incertitude de nos estimations et
fournissent un cadre qui s’est avéré robuste historiquement. De plus, afin de bénéficier de
l’efficacité des réseaux de neurones profonds pour encoder des types de données complexes,
nos méthodologies combinent les modèles probabilistes avec les derniers avancement dans
ce domaine. Plusieurs analyses de données réelles sont fournies. En particulier, durant
plusieurs mois précédant l’élection présidentielle française de 2017, chaque publication d’un
média social, ainsi que leurs rediffusions, impliquant l’un des candidats ont été rassemblées
dans une base de données. Notre méthodologie permet de comprendre les groupes présents
sur les réseaux sociaux ainsi que la manière dont les interactions se sont établies au cours
de cette période particulière. Les implémentations Python associées aux méthodologies
développées dans ce manuscrit ont été rendues publiques.

Mots-clés Analyse statistique des réseaux, modélisation de thèmes, classification de
nœuds basée sur des modèles, méthodes variationelle pour l’inférence, Méthodes varia-
tionelle pour l’inférence bayésienne, autoencodeur de graphe variationnel

5





Contributions

De nombreuses interactions impliquent des textes, comme dans les réseaux d’auteurs/co-
auteurs, les réseaux sociaux ou les emails par exemple. Lorsque le nombre d’interactions
augmente, il devient rapidement difficile de comprendre et de tirer du sens de ces don-
nées. Pour les représenter et les analyser, une structure très générale et complexe, appelée
réseau, a été développée au XXème siècle. Un réseau est composé de nœuds, connectés ou
non, tel que deux nœuds sont connectés s’ils sont liés par une arête ou arc dans le cas ori-
enté. Les arcs, ou plus généralement connexions, peuvent parfois être associées à l’échange
d’un texte dans certaines applications, comme dans les exemples cités précédemment. La
capacité de stockage n’ayant de cesse d’augmenter, les réseaux représentant des échanges
textuelles deviennent de plus en plus fréquents et volumineux. Afin de rendre de tels
réseaux intelligibles pour les humains, il apparaît nécessaire de développer des méthodolo-
gies pour obtenir des informations sur les textes échangés entre les nœuds ainsi que sur
la structure des connexions. Des exemples concrets d’utilisation de l’analyse de réseaux
en sciences humaines sont présentés dans Borgatti et al. (2009). Citons l’utilisation des
réseaux pour étudier l’impacte de la structure d’un groupe de travail sur la vitesse de
transmission de l’information au sein de celui-ci. Contre-intuitivement, bien que le plus
court-chemin moyen puisse être plus petit dans un réseaux très connecté, un groupe hiérar-
chique avec, en son milieu, une personne identifiée comme au centre par tous les nœuds,
pourra faire passer l’information plus vite dans le réseau. Ainsi, plusieurs questions se
posent lorsque l’on souhaite analyser et comprendre ce type de données. Par exemple,
dans le cadre de réseaux échangeant des textes, il est légitime de se demander quels sont
les thèmes abordés dans ces textes ? Y a-t-il des thèmes récurrents autour desquels se
forment les échanges ? Y a-t-il des comportements et des discussions faisant émerger une
structure sous-jacente, organisant le réseau ? Dans ce manuscrit, nous proposons trois
nouvelles méthodologies pour comprendre la formation d’un réseau que nous présentons
ci-dessous.

Comprendre la structure à l’origine d’interactions impli-
quant du texte

Pour commencer, nous proposons une nouvelle méthodologie repoussant les performances
des modèles existants. La rencontre de l’analyse de réseaux et de la modélisation thé-
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Graph obtained by SBM Graph obtained by SBM and ETM Graph obtained by ETSBM

Figure 1: Exemple de l’amélioration apportée par ETSBM en incluant les thèmes découvert
à l’aide d’un modèle thématique profond (correspondants à la couleur des arcs), dans la
détection des clusters des nœuds (correspondants à la couleur des noœuds).

matique est récente et les méthodes proposées reposaient jusqu’alors, sur la fréquence
des mots présents dans les documents, sans incorporer de sens sémantique. Notre pre-
mière contribution, le embedded topic in the stochastic block model (ETSBM), pallie ce
manque en s’appuyant sur les avancées de la modélisation de thèmes. Elle a pour ob-
jet de classifier les nœuds, et d’analyser simultanément les textes échangés, en intégrant
des représentations de mot pré-entraînées. Ce sont ces représentations qui, possiblement
pré-entraînées sur un large corpus, peuvent incorporer le sens sémantique des mots. Par
conséquent, notre méthode fournit des clusters de nœuds, en utilisant les connexions et
les thèmes abordés dans les documents échangés. Un autre aspect important de cette
méthodologie est sa flexibilité pour modéliser tout type de structure de connexion. Pour
éclairer ce besoin, nous présentons l’exemple d’un réseau social organisé autour de quelques
comptes centraux, et des comptes périphériques, faiblement connectés entre eux mais très
connectés aux autre comptes centraux. Ce type de structure de connexion ne peut pas
être détecté par ce qu’on appelle des méthodes de détection de communautés. En effet,
nous réserverons le terme de communauté à des groupes de nœuds densément connectés
entre eux mais faiblement connectés au reste du graphe. Au contraire, le terme de cluster
désignera un groupe de nœuds partageant un modèle de connectivité similaire, pouvant
être différent du concept de communauté. Par exemple, contrairement aux communautés,
un motif en étoile est défini par deux clusters avec de faibles probabilités d’intra-connexion
et de grandes probabilités d’inter-connexion (Latouche, Birmele, Ambroise, 2012). Ce
type de cluster ne peut pas être déceler par les méthodes de détection de communautés.
La figure 1 illustre la nécessité de combiner le clustering de graphes et la modélisation de
sujets afin de distinguer les quatre clusters et d’obtenir des sujets plus significatifs pour
chaque cluster. Pour modéliser les sujets échangés entre les nœuds, les documents sont
encodés avec un réseau de neurones profond pour bénéficier de leur flexibilité. Le décodeur
est constitué de vecteurs représentants les mots et les thèmes, comme dans Dieng, Ruiz,
Blei (2020), et nous proposons une auto-agrégation des documents au niveau du clus-
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True network SBM & LDA ETSBM Deep−LPTM

Figure 2: Illustration de l’avantage procuré par Deep-LPTM pour représenter un réseaux
comportant des textes sur les arcs avec des algorithmes utilisés à posteriori de l’analyse. La
couleur des nœuds indique son cluster et la couleur des arcs correspond au thème principal
du document correspondant.

ter, en Q2 méta-documents avec Q le nombre de clusters. En particulier, notre stratégie
d’inférence est capable d’optimiser directement la construction des méta-documents via
la procédure d’inférence.

Représentation de réseaux comportant du textes

Dans un second temps, nous proposons le deep latent topic model (Deep-LPTM), une
méthodologie capable de produire une représentation de graphes incorporant l’analyse des
thèmes des documents et la modélisation des communautés pour déterminer la position
des nœuds. Le modèle que nous proposons est le premier à regrouper simultanément les
nœuds d’un réseau, à découvrir les sujets dans les textes échangés entre les nœuds et à
produire une représentation à la fois des sujets et des arcs dans un espace euclidien, en se
basant sur une approche probabiliste. Dans ce but, nous proposons un modèle génératif
supposant que chaque nœud et chaque arcs sont représentés dans un espace latent par
un mélange de densités gaussiennes. Ce faisant, nous incorporons le clustering dans le
processus génératif à deux niveaux. D’un côté, les nœuds sont représentés par un mélange
dont chaque composante modélise un cluster. De l’autre, les documents sont également
modélisés par un mélange de sorte que chaque composante représente les thèmes abordé
entre une paire de clusters. De plus, notre modèle se distingue des méthodes précé-
dentes en permettant à chaque nœud ou arc d’être représenté par une position latente et
pas seulement par le groupe auquel il appartient. Ceci est illustré dans la figure 2. Un
algorithme externe, à savoir l’algorithme de Fruchterman-Reingold (Fruchterman, Rein-
gold, 1991), considérant la présence de connexions uniquement dans le réseau, a dû être
utilisé pour la représentation graphique des réseaux non estimés par Deep-LPTM. La figure
de droite présente les résultats Deep-LPTM. Contrairement aux méthodes précédentes,
Deep-LPTM est capable de rassembler des informations sur la structure du réseau ainsi
que les documents échangés dans les positions des nœuds tout en trouvant la véritable
partition et les véritables sujets des nœuds. Une représentation du graphique est directe-
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ment obtenue par la procédure d’estimation de sorte qu’aucun algorithme de représentation
graphique externe n’est nécessaire. Comme nous le verrons, les positions des nœuds sont
calculées en considérant à la fois les connexions et le contenu des documents correspon-
dants. Nous dérivons un algorithme E-M variationnelle (VEM) en deux étapes pour estimer
les paramètres du modèle ainsi que les paramètres a posteriori des positions latentes. La
première étape s’appuie sur des formules analytiques pour mettre à jour les probabilités
d’appartenance aux clusters ainsi que les paramètres de mélange. La deuxième étape utilise
un algorithme de descente de gradient stochastique pour maximiser la borne inférieure de
la vraisemblance, en optimisant par rapport aux paramètres de l’autoencodeur de graphe
variationnel (VGAE) et aux paramètres de l’autoencoder variationnel pour la modélisa-
tion de thèmes. En particulier, la modélisation des thèmes est capable de tirer parti des
représentations pré-entraînées. Par conséquent, introduire un sens sémantique dans les
représentations de mots est possible ainsi qu’apprendre la représentation de zéro. Afin de
choisir les nombres pertinents de clusters et les dimensions de l’espace latent, nous intro-
duisons la vraisemblance classifiante et latente intégrée (IC2L) pour effectuer la sélection
de modèle. Ce critère étend la vraisemblance classifiante intégrée (ICL), conçu pour les
modèles de mélange, en prenant en compte les représentations latentes des nœuds et des
arc. La pertinence du critère est fortement confirmée par l’évaluation sur les données syn-
thétiques ainsi que par le cas d’utilisation réel fourni. De plus, en sélectionnant de faibles
dimensions concernant l’espace des représentations des nœuds, IC2L favorise les modèles
dotés d’une capacité de représentation forte et directe.

Généralisation de la représentation de réseaux via une mod-
élisation par bloc

Notre dernier travail se concentre sur l’analyse de réseaux, sans texte, dans l’optique de
combiner les autoencoders de graphes variationnels avec une modélisation par bloc. Dans
certains domaines, les experts peuvent fournir des connaissances sur la structure de la
connectivité d’un réseau, mais il est souvent nécessaire de la déduire des données. Cette
flexibilité a été apportée par des approches de modélisation par bloc, permettant d’analyser
tout type de structure de connectivité au sein du réseau. Toutefois, cette flexibilité se
fait au détriment de la représentation. En effet, ces méthodes ne fournissent pas de
représentations continues des nœuds, mais uniquement des méta-réseaux, où les clusters
sont représentés par des nœuds, la taille des clusters par la taille des nœuds et le nombre
de connexions entre clusters par la largeur des arcs. Cette méta-représentation peut
cacher certaines propriétés de nœuds spécifiques. Par exemple, un nœud d’un cluster peut
également être connecté à un autre groupe plus intensément que le reste de son cluster. Il
est souhaitable que cela transparaisse dans la représentation estimée, ce nœud pouvant être
crucial dans le réseau, précisément parce qu’il se situe entre deux clusters. Pour représenter
le réseau, les méthodologies basées sur la position, c’est à dire sur une représentation
continue des nœuds, s’appuient sur la similarité entre les représentations latentes des
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nœuds pour évaluer leur probabilité de connexion. Malheureusement, ces méthodes se
concentrent sur l’estimation de communautés et impliquent une propriété de transitivité
dans le réseau. Pour palier ce manque, nous proposons une marginalisation d’un modèle par
bloc stochastique, encodé par un réseau de neurones adapté. En notant Π ∈ MQ×Q((0, 1))

la matrice de probabilité de connexion, A ∈ MN×N({0, 1}) la matrice d’adjacence binaire,
et η = (ηi)i=1,...,N ∈ MN×,Q((0, 1)), chacune tirée selon une loi logistique normale, nous
supposons que la probabilité de connexion est donnée par :

p(A | η,Π) =
∏
i ̸=j

(η⊤i Πηj)
Aij(1− η⊤i Πηj)

1−Aij .

L’estimation de ce modèle repose sur une approche variationnelle combinée à des formes
analytiques pour mettre à jour les paramètres. Des premiers résultats sont présentés sur
les représentations obtenues pour différents types de structures, telles que des étoiles, des
hub ou des communautés.

Nos contributions ont été partagées à travers une publication dans une revue interna-
tionale à comité de lecture,

• Embedded topics in the stochastic block model, joint work with Pierre Latouche
and Charles Bouveyron, Statistics and Computing (2023),

une autre a été soumise à un journal,

• The Deep Latent Position Topic Model for Clustering and Representation of
Networks with Textual Edges, joint work with Pierre Latouche and Charles Bou-
veyron, Pre-print hal-04068665 (2023),

et notre dernier travail est en cours de finalisation en vue de la soumission à un journal
scientifique,

• The Deep Latent Position Block Model, joint work with Pierre Latouche and
Charles Bouveyron.

Nos contributions sont accompagnées d’implémentations en Python, la première est
disponible à l’adresse https://plmlab.math.cnrs.fr/rboutin/etsbm_package, et la deux-
ième à l’adresse https://plmlab.math.cnrs.fr/rboutin/deeplptm_package.
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. . .

Numerous interactions imply the exchange of texts, as in co-authors networks, or emails.
Since both the storage capacity as well as the number of interactions grow quickly, under-
standing the dataset at hand is a difficult task. The models developed in this manuscript
aim to make these datasets intelligible to human beings. Before diving into the mathe-
matical requirements to analyse such data in the next chapter, we start by introducing two
types of data that will be the main focus of this thesis, namely the corpus of texts and
the networks, or graphs. These types of data are encountered on a daily basis, through
social media for instance, or for specific tasks such as social sciences studies. Nonetheless,
both of these data types are very challenging and require the development of a specific
methodology to extract interesting patterns. This introduction will serve to present an
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example of textual corpus, with the arXiv abstract dataset and an example of a network
with the Sampson monastery dataset. Those examples will serve to illustrate common
questions related to those data types, such as how is structured the network, or what are
the main threads in the texts and examples of answers will be provided. Eventually, we will
discuss some limitations of those methods and we will highlight the differences between
modelling and describing the data.

1.1 Textual data, corpus, and topics

1.1.1 Representation of documents

Retrieving information from a large amount of documents is crucial in different fields, such
as social sciences, and literature, or even to provide features for another analysis. Whether
it is through emails, messages, books or articles, for instance, sources providing texts are
spiking, in number and volume, and with them have grown the need to quickly obtain
information about those corpus. When the documents are too long, and/or the number
of documents is too large, reading all of the material quickly becomes impossible, as well
as summarising the content of the documents. For instance, we might not be interested
in sports articles but very interested in articles dealing with the economy. Reading all of
the articles in a journal to determine which ones belong to a topic of interest is highly
inefficient. Thus, we would like to find a way to determine which articles deal with the
topics we are interested in. Before going further, it is necessary to transform the data
so that the texts can be represented as a mathematical object. One of the most basic
approaches is called the bag of words, which corresponds to the creation of a document-
term matrix to represent the texts. Essentially, it consists in representing each document
by a vector of the same size as the vocabulary, with each coordinate corresponding to the
number of occurrences of the word in the document, as presented in Table 1.1. Notice
that this representation of the documents discards the order of the words, which may be
crucial information for some applications. This type of data is referred to as count data
and is often modelled with a Poisson distribution.

Document-term matrix

Documents
Vocabulary

What is your name My John a beautiful

What is your name 1 1 1 1 0 0 0 0

John, my name is John 0 1 0 1 1 2 0 0

What a beautiful name 1 0 0 1 0 0 1 1

Table 1.1: Example of a document term matrix W ∈ M3×8(R), using a bag-of-words
representation, corresponding to the three documents on the left-hand side.
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1.1.2 Desired properties of topics

While the mathematical formulation of a topic will be given in the next chapter, this
section aims to give insights about the desired properties of a topic. The first interesting
property for a topic would be to distinguish two semantic meanings of the same word. For
instance, the word “apple” may refer to a computer brand as well as a fruit. Therefore,
we would like the topic dealing with fruit as well as the topic dealing with computers to
identify the word “apple” as important. In other words, a topic should be able to deal
with polysemy. Another interesting feature for a topic would be to deal with synonymy.
Indeed, considering that the words “performance” and “show” may be used similarly, we
would like a topic using one to describe an exhibition to also be able to identify the
other as relevant. This has been theorised in Deerwester et al. (1990), where the authors
proposed to find a latent semantic meaning of the documents by looking for models sharing
properties including: “adjustable representational richness”, that is a model with sufficient
power to represent the semantic structure of the documents and “explicit representation
of both terms and documents” such that the simultaneous representation of both terms
and documents permits to retrieve documents closed to a topic.

To summarise, the topics are built to capture semantic information of the documents.
Even though two words are not in a document, they may have a close semantic meaning.
Hence, we would like to represent words and documents in a same subspace to be able to
measure their similarity, as we shall develop in the next chapter. The next section presents
an example of the results we may expect when looking for the topics shaping a corpus.

1.1.3 An example with the arXiv abstract dataset

In this section, we illustrate how topics help to get information from a corpus of texts. To
do so, we used the arXiv corpora composed of 1.7 million papers (Clement et al., 2019),
from which we kept almost 110,000 papers related to statistics. To capture, the different
subfields in statistics, we analysed the abstracts of these papers using the latent Dirichlet
allocation model (Blei, Ng, Jordan, 2003). The results are presented in Figure 1.2. From
a qualitative point-of-view, it is interesting to see some traditional fields, such as the
statistical test theory (Topic 5) or Bayesian statistics (Topic 7) present as well as more
recent fields such as reinforcement learning (Topic 1) or deep neural networks (Topic 9),
very well represented in the papers present on arXiv.

Some other questions arise naturally, such as the evolution of the papers published over
the years, or when did a new topic appear. This is precisely the type of information relevant
to a taxonomy, and that may help obtain a better understanding of the different threads
shaping a field. For more information about time-based topic models, see Vayansky,
Kumar (2020).

29



1.
In

tr
od

uc
ti
on

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

bounds learning model analysis test

bound algorithm time machine distribution

optimal algorithms causal paper sample

problem optimization treatment learning testing

lower problem effects results tests

regret gradient effect research power

algorithm performance models representations based

convex training using al detection

linear methods study statistical value

log method prediction work hypothesis

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

time distribution model neural model

process bayesian method networks data

processes distributions estimation network information

series model regression learning based

function posterior proposed models systems

kernel inference estimator model models

stochastic clustering methods deep using

functions matrix models graph approach

non prior data training different

gaussian models based classification domain

Table 1.2: Top-10 most probable words estimated by a latent Dirichlet allocation using
10 topics on ArXiv abstract dataset, restricted to the statistical field.
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Figure 1.1: Example of a network on the left-hand side with its associated binary adjacency
matrix on the right-hand side.

1.2 Networks

To analyse interactions between a set of agents, called nodes or vertices, the common
approach is to use a network defined as a set of connections, or edges, between some of
the nodes. Before diving into the mathematical representation of networks in the next
chapter, we use this introduction to provide an illustration of a simple network. We move
on and give three real-life examples of interactions from different fields to show the variety
of situations represented by networks. Then, we will dive into some details concerning the
representation of this type of data, using Sampson’s monk dataset. Several difficulties
will arise, and we will present some methods developed to solve them as well as their
limitations.

1.2.1 A vanilla network

Before giving real-life examples of applications, it is important to precise the meaning of a
network and the reasons for its use. Figure 1.1 represents the connections between three
nodes. Namely, the node 1 is connected to node 2, 2 to 3 and 3 to 1. On the

1.2.2 Three different examples of interactions

We begin those examples with the challenge of understanding gene co-expression patterns.
From a biological point-of-view, as well as for medical purposes, discerning the genes
involved in the creation of a protein is crucial. For instance, assuming that the relationships
between genes and proteins were known, discovering abnormalities among genes may allow
to prevent diseases. One way to represent the co-expression of genes is to use a co-
expression similarity, a function that measures the similarity of expression between two
genes, and to assume that genes expressing similarly are interacting together. Then, it
is possible to create a network of interactions between the nodes and to find patterns
on that network using the available methodologies in the network literature, see Zhang,
Horvath (2005) for more details.

To stress the variety of applications relying on graph-structured data, we now present an
application to ecological networks. For instance, we can consider species and assume inter-
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actions representing “who eats who?”, as well as interactions between “plants/pollinators”.
In Thébault, Fontaine (2010), the authors described how the very different structures of
these networks impact the stability of the system, and the species coexistence.

Eventually, we end our examples with a very different field in the name of social sciences.
Among the many applications in this domain, we mention the strength and weak ties
theory (Granovetter, 1973). Granovetter proposed to analyse how the topology of a social
relationship network may impact the social life of the persons composing the network.
In a nutshell, Granovetter assumed that strong ties between people, e.g. close friends,
and family members, often bring redundant information in a relationship, while weak ties
can easily be unconnected with the rest of someone’s relations, making it more likely
to bring novel information. This methodology has been extended to the idea of social
capital: the set of persons someone is connected to, as well as how those persons are
connected together, enables them to access resources, that may lead to better jobs and
faster promotions. Here again, the structure of the network is assumed to play a role in
social life. Other examples can be found in Borgatti et al. (2009).

Those three questions, as different as they may seem at first sight, can be gathered into
a unified framework. Let us represent the individuals, e.g. the genes, the plants/insects,
or the persons respectively, by nodes and the interactions between the nodes, e.g. similar
genes, one is eaten by the other, or two persons are connected respectively, by edges. This
corresponds to the definition of a network and has been studied extensively to answer some
of the questions raised before or to evaluate the likelihood of generative assumptions re-
garding the network. We present Sampson’s monk dataset in the next section. We will use
it, first, to provide some illustrations of a network, second, to show how important graph-
ical representation may be to understand the data and finally, to present some difficulties
to obtain these figures. We hope to convince the reader that the network framework is
both natural and very general.

1.2.3 Sampson monastery dataset

In his PhD dissertation, Sampson reported his observations about the social interactions
that took place during his stay in a cloister composed of 18 monks. He classified the
monks into four categories: the “loyal opposition”, the “young Turks”, the “outcasts” and
the “waverers”. After a political “crisis in the cloister”, four monks were expelled, including
the leader of the “young Turks”. This led five other “young Turks” to leave, followed by
three “waverers”. Eventually, with two other monks leaving, only four of the 18 original
monks were still in the monastery at the end. Several datasets have been created by
Sampson, from the information he gathered. We will focus on the first affect relations
network, which was built by asking each monk to name the three persons he had the
most positive relationships with. Hence, a directed edge is created from monk A to monk
B if A named B among his top choices. While the data is much richer, for instance,
Sampson gathered that information at different time steps to study the evolution of the
relationships, we chose to focus on this dataset for clarity’s sake. The network is composed
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(a) Sampson’s monastery Network.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1
2
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5
6
7
8
9

10
11
12
13
14
15
16
17
18

0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

(b) Adjacency matrix with 1 in coordinate (i, j) if i is
connected to j and 0 otherwise. For instance, node
10 is connected to node 4 and A10,4 = 1.

Figure 1.2: Network of the affect relationship in the cloister observed by Sampson.

of 18 vertices and 55 edges.

In Figure 1.2, we display the row adjacency matrix as well as a possible representa-
tion of the network obtained by using the Fruchterman-Reingold algorithm (Fruchterman,
Reingold, 1991). Other node features gathered by Sampson are available to obtain a more
informative representation. For instance, for each monk, Sampson provided information
about the group to which he belonged, as well as an indicator concerning his attendance
to the minor seminary of "Cloisterville" before coming to the monastery.

One possibility to get a better understanding of Sampson’s network is to find groups
of close monks, which comes down to splitting the nodes into groups highly connected
together but poorly to the nodes in the other groups. This type of group is called a
community and many community detection methods have been developed, such as the
modularity (Newman, 2006), or more advanced statistical network analysis model as the
latent position model (LPM Hoff, Raftery, Handcock, 2002), as we shall see later on. As
stated in Girvan, Newman (2002), one of the core motivations for the development of these
methods is that many networks share the property of transitivity, which is the property that
two vertices that are both neighbours of the same third vertex have a heightened probability
of also being neighbours of one another. However, in many cases, a more complex structure
may be responsible for the observed network. We will give a deeper treatment on the
necessity to use model-based methodologies at the end of this introduction. Also, we will
introduce some of the core methods enabling the discovery of latent structures that may

33



1.
In

tr
od

uc
ti
on

arise in complex real-life networks and may not be distinguished by community detection
methods.

1.2.4 A first limitation of community detection methods: an example
with some latent structures

Since looking for communities may be too restrictive and may prevent from capturing more
complex underlying patterns, this section aims to provide some examples of a few other
structures.

This consideration is not just theoretical but is observed in real-life datasets. For
instance, let us mention the case of social networks. In many cases, they hold few nodes
with a high degree, that is nodes with a large number of connections and many nodes
with low degrees. This property is referred to as the “the small world property” in social
sciences (Watts, Strogatz, 1998). To give an example, many Twitter accounts follow
media accounts, politician accounts and so on, which may lead to hundreds of thousands
of connections while a random node would only have hundreds of connections or much less
on average. This type of pattern is not a community. Other patterns, described below,
may also appear.

In Figure 1.3, we start by presenting the community structure on a simulated network,
as well as three other latent structures that cannot be uncovered by traditional community
detection methods. The first one is called a bipartite graph and is used for networks with
two types of nodes, such as clients and servers for instance, and illustrates how clients
are connected to servers. Thus, the bipartite graphs are composed of two groups with
nodes only connected to nodes in the other group. The second one is composed of a hub
corresponding to the blue nodes. This is a group of nodes highly connected to several
groups of the graph and/or a group to which several groups are connected to, as well as
two other communities. The third one, named a star, is composed of two groups, namely
a star, where one node (the blue node), is connected to the other nodes of a group (the
green nodes), but where the nodes in the other groups are very poorly connected together.

In each of these three topologies, the property of transitivity does not hold, making
the community detection methods fail. For instance, in the hub structure, a node from
cluster green and a node from cluster red may share a common neighbour in cluster blue
but it does not imply that they also have a higher probability to be connected. This is also
true for the bipartite network as well as the star network. This first limitation is part of
a broader limitation of traditional heuristic-based methods. In the next section, we give a
deeper treatment of this aspect, as well as a motivation for probabilistic modelling, which
will be formally presented in the next chapter.

1.2.5 An introduction to networks with textual edges

Before diving into the limitations of the descriptive methods, we give a brief example of
networks with textual edges and motivate the development of tailored methodologies. Go-
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Table 1.3: Example of four networks with a latent structure composed of (top to bottom)
three communities, a bipartite graph, two communities with a hub and a star. The networks
on the left-hand side are obtained by using only the connection without any suitable method
to represent them. On the contrary, a tailored representation is displayed in the third
column, taking the true structure to highlight what we could expect. The group of a node
is indicated by its colour. The second and fourth columns represent the adjacency matrix
unordered and ordered by cluster, or block, respectively. The dark square corresponding
to coordinates (i, j) indicates that node i is connected to node j.
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ing back to Sampson’s monastery network, all the information provided about the monks,
as well as the different time periods at which the data was gathered and other information,
could not be incorporated into the analysis since the methods are not able to include them.
This may induce a loss of crucial information and thus, degrade the results. Therefore,
in this manuscript, we focus on networks with textual edges and aim at incorporating the
content of the texts exchanged between the nodes, to improve the quality of the results. A
network with textual edges is a network in which each edge models an interaction involving
a document, as depicted in Figure 1.3.

In Figure 1.3, the same network is displayed three times. The first network represents
the data without any analysis, the second network presents the clustering results obtained
with community detection methods. The last network presents the results obtained with
a specifically designed methodology, capable of including the texts as well as the network
connectivity to obtain relevant node clusters. This is one of the core motivations for the
development of such methodologies, that we will pursue in this manuscript.

1.3 Descriptive methods and their limitations

In this section, we first introduce descriptive methods, as described in Peixoto (2021). We
will give examples of some of the most-used methods, in the name of the min-cut/max-
cuts, as well as the modularity maximisation. Eventually, we will present some of the
limitations of descriptive methods. In particular, we will show that they may perform
poorly in some settings and that they are not able to understand patterns in the data but
only to describe them.

1.3.1 Descriptive methods

In this manuscript, we call descriptive methods a heuristic-based method, relying on an
objective function that is designed to answer a specific purpose. In particular, the algo-
rithms do not try to understand how the data was generated, or the rules responsible for
the observed patterns. They are only intended to detect motifs related to the objective
function defining the corresponding algorithm, not to explain the data. One of the weak-
nesses of such a method comes from the dependence of the notion of community on the
algorithm itself, and its objective function.

We want to emphasise that understanding the data is not always necessary in practice
and having a good description can be well-suited for certain applications. For instance,
Peixoto mentioned the design of very large-scale integrated circuit (VLSI), that aims at
combining millions of transistors into a microprocessor chip in an efficient way. Thus,
finding a good partition to obtain smaller modules with few connections between them,
providing an optimal positioning of the transistors, is sufficient to build the chip. Let us
mention some descriptive algorithms, including the modularity algorithm which is arguably
the most used technique to detect communities in a network.

36



1.
In

tr
od

uc
ti
on

1

2

3 4

5

6

78

9

10 11

12

Temperatures
are rising.

Droughts will be
more common.

Raphael Nadal won its
14th Roland-Garros.

Clarisse Agbégnénou
won 2 Olympic titles.

I love cinema.
Léa Seydoux is a
brilliant actress.

(a) A network with textual edges.
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(b) The community detection results on the network alone. Since these methods cannot deal with
textual data, the documents are discarded from the analysis.
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(c) The results obtained with a methodology analysing simultaneously the texts and the network
connectivity.

Figure 1.3: Example of a simple network with textual edges. The node (edge respectively)
colours denote the node cluster memberships (the edge majority topics).
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Figure 1.4: The partitions obtained with a stochastic block model on the left-hand side,
and a Louvain algorithm for community detection on the right-hand side. The node colours
indicate the cluster memberships.

Min cut/ max cut methods An intuitive idea to discover communities is to look for
groups of nodes minimising the number of edges between the groups. Many implementa-
tions of this algorithm have been developed, see Stoer, Wagner (1997) for instance.

Modularity based techniques In cases where the cluster sizes are not fixed beforehand,
an easy solution would be to place all nodes in a single cluster and therefore to have no edge
between the two clusters. To avoid this trivial, yet uninformative solution, a constraint can
be placed on the size of the clusters. This can be seen as quite arbitrary. To solve those
shortcomings, the modularity-based algorithm has been proposed by Newman (2006). In
this paper, the author stressed that taking this problem as just a minimisation of the
number of edges between groups is not the right way to look at this. Instead, the aim
should be to look for evidence of a structure, by comparing the observed number of edges
between clusters with the number of expected edges obtained based on a random chance.
For instance, the Louvain algorithm (Blondel et al., 2008) is an efficient modularity-based
algorithm to perform community detection on a graph.

1.3.2 Limitations of such methods

These methods are created to describe the data and not to understand how the net-
work was generated. In Figure 1.4, we provide an example suggested in Peixoto (2021),
where detecting the communities, in the sense of the modularity, is very different from
understanding the structure behind the generation of the network.

The network presented in Figure 1.4 was simulated by first drawing 10 nodes among
140, called central nodes, and drawing an edge between them with 0.45 probability. Then,
for each star, 13 nodes were drawn at random and connected to the corresponding central
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node. At first sight, the network on the right-hand side of Figure 1.4, obtained using
the Louvain algorithm, may seem to better recover the communities in the network than
the stochastic block model, located on the left-hand side. First, note that those are
not communities but stars, which is already misleading and highlights the problem of the
definition of a community in the Louvain algorithm. Let us now describe the generative
process responsible for this network. We picked 10 nodes among 140 at random, the centre
of each star, and for each star, we picked 13 nodes at random that were connected to the
central node of the cluster. Clearly, in the generative process, the latent structure of the
network is twofold. First, the central nodes are picked, and then the nodes around each
centre. The stochastic block model, which will be presented in the next chapter, should be
looked at as an example of a generative model for now, precisely to capture these patterns.
This example displays the main difference between describing and explaining the data.

Another limitation of descriptive methods is the absence of quantification of the uncer-
tainty. On the contrary, statistical network analysis, may provide estimates of the variance
of quantities and ensure it is reasonable enough to use the results for decision-making,
which can be decisive in industrial processes for instance.

Eventually, we also mention some drawbacks in terms of the performance of descriptive
methods. In settings with very little data, or with a lot of noise, these methods may tend
to overfit. In Figure 1.5, we fitted a stochastic block model on networks composed of 100
nodes, with three communities, allocated to a group with equiprobability. This corresponds
to the network at the top of Table 1.3. Two nodes of different groups are connected with
a 0.01 probability while two nodes of the same community have a probability ρ to be
connected, varying along the abscissa axis. The higher ρ is, the more separated are the
communities, and the easier it becomes to retrieve them. Conversely, for ρ lower than
0.05, the graph is very close to an Erdős–Rényi random graph, that is a graph in which
any two nodes have a probability p to be connected, hence does not have any community
structure. Figure 1.5 highlights the efficiency of SBM in most settings with a structure
and to decay very quickly when the structure becomes evasive if not inexistent. This
avoids being overconfident in settings with no real structure. On the contrary, Louvain’s
algorithm performances are not as good as the SBM on structured networks but still
report community structure for very low probabilities of connection. Another performance
limitation of the modularity-based method is the well-known resolution limit depending
on the size of the network and the interconnectedness of the communities, preventing
small-sized communities from being discovered (Fortunato, Barthelemy, 2007). The next
section presents the framework developed to overcome the limitations described in the
previous sections.

1.3.3 Motivation behind Generative modelling

To end this chapter, we introduce the notion of generative modelling, a methodology that
answers the limitations raised above. Before explaining this notion, we recall a central
idea behind modelling a phenomenon, often named Occam’s razor. This property has
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Figure 1.5: Evolution of the adjusted rand index (ARI) in function of the noise for three dif-
ferent methods. The methods are averaged over 20 networks, composed of three commu-
nities, with an intra-connection probability ρ and an inter-connection probability η = 0.01.
The noise is modelled by the probability of connection within a community ρ such that the
lower it is, the less structured the graph and the more difficult it is to find the communi-
ties. An ARI of 1 means a perfect recovery of the partition of the nodes while an ARI of 0
means that is as good as a random guess. The K-means corresponds to naively applying
the K-means algorithm on the rows of the adjacency matrix.

been formulated in many ways, for instance by Aristotle: “We may assume the superiority
[other things being equal] of the demonstration which derives from fewer postulates or
hypotheses.”. In other words, among two competing theories, or models, leading to the
same results, one should favour the simplest one (the one with the fewest hypothesis).
This statement can be retrieved in Bayesian statistics where each assumption comes with
a prior probability impacting the posterior probability on the data, favouring parsimonious
model, see Jefferys, Berger (1991) for more details.

Relying not only on the evidence of the data assuming that the assumptions hold
but also evaluating the assumptions is a core idea in statistics. We will take our time
to describe the assumptions regarding the generation of the data in each one of our
models. We emphasise that this is indeed the main difference with descriptive methods
and one of the biggest strengths of probabilistic models. This is highlighted by the following
considerations.

In statistical network analysis, we are often interested in the probability of our data A

given the partition, or node cluster memberships, C, denoted P (A | C), that we would
like to maximise. Conversely, Bayesian modelling aims at computing the probability of C,
when observing A using Bayes’ rule:

P (C | A) =
P (A | C)P (C)

P (A)
.

It has been linked to the idea of compression, see Grünwald, Roos (2019) for more details,
such that the description length Σ(A,C), corresponding to the length, in bits, necessary
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to describe the network A with the partition C through the following relationship:

P (A | C)P (C) = 2−Σ(A,C). (1.1)

The Equation (1.1) implicates the equivalence between inferring the partition C and com-
pressing the network using this partition. Note that the description length can be decom-
posed into two terms

Σ(A,C) = L(A | C) + L(C),

where L(A | C) is the number of bits required to encode the network given the parameters
and the partition, and L(C) the amount of bits required to encode the parameters of the
model and the partition. Hence, a partition decreasing the number of bits necessary to
encode the network but increasing the number of bits necessary to encode the parameters
will be relevant if the sum of the two diminishes. This property is essential to understand
what drives the compression. In addition, this is a way of understanding how compression,
as well as inference, avoids overfitting thanks to the famous Shannon’s theorem. Indeed,
since any distribution has a minimal description length equal to its entropy, it bounds the
compression possibility.

Going back to description methods, the same framework gives important insights on
the difference between the two approaches. Let us consider the objective function of the
description method W (A,C) that we would like to maximise, for instance, the modularity.
Thus, using a Gibbs measure, we can write this description method as an inference problem
such that

P (C | A) =
eβW (A,C)

κ(A)
,

where κ(A) =
∑

C e
βW (A,C). Moreover, denoting κ(C) =

∑
A e

βW (A,C) as well as
κ =

∑
A,C e

βW (A,C), and making the assumption that

P (A) =
κ(A)

κ
and P (C) =

κ(C)

κ
,

we obtain the following likelihood of the model:

P (A | C) =
eβW (A,C)

κ(C)
.

Thus, the length description in nats units, that is using the natural logarithm in the
definition of the information of a random variable, is given by:

Σ(A,C) = − ln (P (A | C))− ln (P (C))

= − ln (P (A | C)) + ln (κ)

= −βW (A,C) + ln

(∑
A′,C′

eβW (A′,C′)

)
.
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Thus, any description methods rely on a model that is not explicit and can be asso-
ciated with the inference of the corresponding model. Saying otherwise is a misuse of
language, that may be encountered in this manuscript. Indeed, since the underlying as-
sumptions are not known, they may be poorly chosen, and not have any impact on the
compression of the data, as stated in Peixoto (2021): “Although we mentioned [...] that
inference and compression are equivalent, the compression achieved when considering a
particular generative model is constrained by the assumptions encoded in its likelihood and
prior. If these are poorly chosen, no actual compression might be achieved, for example
when comparing to the one obtained with a fully random model. This is precisely what
happens with descriptive community detection methods: they overfit because their implicit
modelling assumptions do not accommodate the possibility that a network may be fully
random, or contain a balanced mixture of structure and randomness.”
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In the following chapter, we present the mathematical formalism of the generative mod-
elling used in this manuscript. This will lay the ground for a presentation of the inference
tools underlying the developed models. We will also present some of the core models
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in topic modelling as well as statistical network analysis, taking great care of exposing
their generative assumptions. Eventually, a brief introduction to graph neural networks is
provided.

2.1 Introduction to probabilistic modelling

2.1.1 Graphical models

For a statistical model to be useful, it is often necessary to obtain interpretable results. For
instance, in industrial processes, it is common for experts to require a deep understanding
of the results as well as a causality between the variables and the output. Graphical models
are specifically designed to make assumptions regarding the relationships responsible for
the observed data. Let X1, . . . , Xp be p random variables, such that the joint distribution is
denoted p(X1, . . . , Xp), a graphical model is a set of assumptions concerning the variables
and their dependencies allowing to factorise the joint distribution. This can be represented
by a graph, as illustrated in Example 2.1, giving the name to these models. In this
manuscript, we will only consider directed graphical models. In directed graphical models,
the set of assumptions represents the hypothesis made on the causalities between variables,
or in a probabilistic language, induces conditional independences between the variables.
This allows us to factorise the joint distribution using Bayes rules.

Definition 1. A directed graphical model is a set of assumptions on the relationships
between the variables X1, . . . , Xp, inducing a set of ancestors π(Xl) for any l = 1, . . . , p,
such that the joint distribution can be factorised as

p(X1, . . . , Xp) =

p∏
l=1

p(Xl | π(Xl)).

Remark 1. Any joint distribution can be factorised using Bayes’ rule iteratively as

p(X1, . . . , Xp) = p(X1 | X2, . . . , Xp)p(X2, . . . , Xp)

= p(X1 | X2, . . . , Xp)p(X2 | X3, . . . , Xp) . . . p(Xp)
(2.1)

Therefore, Definition 1 may seem futile at first sight. But Equation (2.1) does not require
any assumption and is not informative. Indeed, it is possible that all variables depend on
each other. On the contrary, a graphical model implies that assumptions are made to char-
acterise the dependencies between the variables and provides an informative factorisation
of the joint distribution as in Example 2.1.

In some cases, the variables involved in the generative model are not observed, they
are called latent variables. A large literature has focused on models with latent variables.
Indeed, those models benefit from interesting properties, such as the expressiveness of the
model, as well as the uncertainty measures they can produce. In the last 20 years, new
inference strategies have been developed allowing the analysis of very large datasets. In
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the next sections, we shall detail both what we mean by latent variables as well as some
core inference strategies used in this manuscript.

Example 2.1: A directed graphical model

Figure 2.1: A
directed graphical
model

X1

X2X3

X4X5

This graphical model corresponds to the following
factorisation of the joint distribution

p(X1, . . . , X5) =p(X5 | X4, X3, X2)p(X4 | X2)

p(X3 | X1)p(X2 | X1)p(X1).

Additional assumptions can be made on each con-
ditional distribution to specify the family (for in-
stance Gaussian, Poisson, binomial ...). If all con-
ditional distributions are specified and each distri-
bution can be sampled, it is possible to generate
data from the model distribution.

2.1.2 Latent variable models and inference

Let θ be a collection of parameters, η a random vector that is not observed, called a latent
variable, or hidden variable, and Y = (Y1, . . . , YN), N observed variables. A latent variable
model makes assumptions about the joint-distribution of η and Y, such that the marginal
likelihood is given by integrating over the latent variable,

p(Y | θ) =
∫
η

p(Y,η | θ)dη, (2.2)

where p(Y,η | θ) is the complete data likelihood.
In many cases, the integral in Equation (2.2) is not tractable and an adapted inference

strategy needs to be deployed to tackle this issue. We will briefly present some of the
common inference strategies to solve this problem and will detail the E-M algorithm as
well as the variational inference methods which are the main ingredients of the works
presented in this manuscript.

Example 2.2: Probabilistic PCA and factor analysis

The factor analysis model as well as the probabilistic principal component analysis
(PPCA), assume that an observed random vector Y ∈ RP is a linear transformation
of a latent (not observed) variable X ∼ NK(0, IK), with K < P , combined with an
additive noise ε ∼ NP (0,Ψ),

Y = WX + µ+ ε,

where W ∈ MP×K(R) and µ ∈ RP . On the one hand, factor analysis does not
make any assumption regarding Ψ. On the other hand, PPCA assumes that Ψ =
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σ2IP which induces the matrix W to model the covariances between variables. The
graphical representations of those two basic models are given below, with the factor
analysis model on the left-hand side and the PPCA on the right-hand side. An empty
circle denotes a latent variable, and a shaded circle refers to an observed variable.
The parameters are not in a circle and the plate indicates the factorisation of the
distribution due to conditional independencies.

Figure 2.2: Factor analy-
sis

Yi

Xi

Ψ W

µ

N

i

Figure 2.3: PPCA

Yi

Xi

Wσ2

µ

N

i

To estimate the parameters θ, the common approach is to obtain maximum-likelihood
estimates (MLE). However, the integral in Equation (2.2) is often not tractable. Among
the most used methods to tackle this issue, we mention the approximations of the integral,
e.g. a Laplace approximation, the Monte Carlo and Markov Chains (MCMC) methods, for
instance using a Gibbs sampler or a Metropolis-Hastings algorithm to approximate the pos-
terior distribution of the parameters θ (Chapter 7 and 8, Robert, Casella, Casella, 1999),
the gradient-based methods (Kingma, Welling, 2014; Rezende, Mohamed, Wierstra, 2014)
as well as the E-M algorithm (Dempster, Laird, Rubin, 1977) or the variational inference
(Chapter 10, Bishop, 2006). The last two methods will be detailed in the next sections.

2.1.3 The E-M algorithm

The E-M algorithm surged after the 70’s, as one of the most natural ways to deal with
missing values. Indeed, to estimate the parameters of a model with missing values, it
is quite natural to first evaluate the most likely value of the unobserved variable using
the most likely parameters as well as the data (E-step) and then, to find the parameters
maximising the complete likelihood, with the missing value estimated in the E-step (M-
step). In this section, we present this algorithm in a unified framework, as intended in the
classical paper of Dempster, Laird, Rubin (1977).
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Example 2.3: Gaussian mixture model

One of the most used latent variable models is the Gaussian mixture model (GMM).
It relies on the assumption that the data is composed of several groups, each one
sampled from a specific Gaussian distribution. To keep this example concise, we
assume that the variables are one-dimensional. Formally, the observed variables Y =

(Y1, . . . , Yn) are independent, and the cluster membership variables C = (C1, . . . , Cn)

are not observed, and Ciq = 1 if i is in cluster q and 0 otherwise. We will denote
µq (σq respectively) the mean (standard-variation) of group q, α = (α1, . . . , αQ) ∈
∆Q the probability of cluster memberships and θ = ((µq, σq)q, α) the collection of
all the model parameters. Therefore, the density of observation i is obtained by
marginalising out the cluster membership variable

p(Yi | θ) =
Q∑

q=1

αqN (Yi | µq, σ
2
q ).

Hence, the complete log-likelihood is given by

log p(Y,C | θ) =
n∑

i=1

log p(Yi, Ci | θ)

=
n∑

i=1

Q∑
q=1

Ciq log
(
αqN (Yi;µq, σ

2
q )
)
,

(2.3)

while the marginal log-likelihood is obtained as

log p(Y | θ) =
n∑

i=1

log

(
Q∑

q=1

αqN (Yi;µq, σ
2
q )

)
. (2.4)

Those two expressions highlight the need for a tailored inference. Indeed, while the
likelihood of the complete-data (2.3) could be optimised with respect to the param-
eters, the first-order conditions of the observed likelihood (2.4) does not provide
closed-form updates.

The general algorithm Denoting the marginal log-likelihood ℓ(Y, θ) = log p(Y | θ), we
are interested in finding the maximum likelihood estimate (MLE)

θ⋆ ∈ arg max
θ∈Θ

ℓ(Y, θ).

The E-M algorithm aims at finding maximum likelihood estimates in latent variable models.
Since the marginal log-likelihood cannot be computed, the E-M algorithm relies on a
distribution r to approach the posterior distribution of the latent variables p(η | Y, θ) and
then maximises the (approximated) expected complete log-likelihood. For GMM described
in Example 2.3, η corresponds to the cluster memberships C. First, let us establish the
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basics that will also be useful for the variational inference section. Let R be a family
distribution over η and r ∈ R a distribution, the following algebra allows to split the
marginal log-likelihood into two terms to perform the inference:

ℓ(Y, θ) = Er(η) [log p(Y | θ)]

= Er(η)

ï
log

p(Y,η | θ)
p(η | Y, θ)

ò
applying Bayes’ rule

= Er(η)

ï
log

Å
p(Y,η | θ)

r(η)

r(η)

p(η | Y, θ)

ãò
= L (Y, θ; r) + KL

[
r(η) || p(η | Y, θ)

]
, (2.5)

where KL
[
r || p

]
=
∫
x
r(x) log (r(x)/p(x)) dx. Moreover,

L (Y, θ; r) = Er(η)

ï
log

p(Y,η | θ)
r(η)

ò
= Er(η) [log p(Y,η | θ)] +H [r(η)] ,

where H [r(η)] = −
∫
η
r(η) log r(η)dη corresponds to the entropy of the distribution r.

Remark 2. For any distribution r over η and any parameter θ ∈ Θ, the following equality
holds true

L (Y, θ; r) = ℓ(Y, θ)−KL
[
r(η) || p(η | Y, θ)

]
.

Since KL ≥ 0, L (Y, θ; r) is a lower bound of the marginal log-likelihood and is named
the expected lower bound (ELBO). The difference between the ELBO and the marginal
log-likelihood corresponds to the Kullback-Leibler divergence between the variational distri-
bution and the latent posterior distribution. Indeed, in the case where r(η) = p(η | Y, θ),
we obtain exactly L (Y, θ; r) = ℓ(Y, θ).

The E-M algorithm comes down to iterate between estimating the best variational
distribution r (E-step) and maximising the expected complete likelihood with respect to
the parameters θ. This is summarised in Algorithm 1.

Algorithm 1: General E-M algorithm.

Input: t = 0; Initialise θ(0) and r(0)(η);
while L (Y, θ(t); r(t)) has not converged do

(E-step) r(t+1) ∈ arg max
r

L (Y, θ(t); r) (2.6)

(M-step) θ(t+1) ∈ arg max
θ

L (Y, θ; r(t+1)) (2.7)

t = t+ 1;
end

Remark 3. It is possible to present the E-M algorithm without introducing the surrogate
distribution r(·) and simply considering the posterior distribution p(η | Y, θ), in the case
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where this quantity can be easily computed, see for instance the GMM case in Example
2.4. Denoting θ(t) the parameter at the t-th iteration, and denoting

Q(θ | θ(t)) = Ep(η|Y,θ(t)) [log p(Y,η | θ)] ,

the two steps of the E-M algorithm can be rewritten as
Algorithm 2: E-M algorithm with explicit posterior p(η | Y, θ).

Input: t = 0; Initialise θ(0);
while Q(θ | θ(t)) has not converged do

(E-step) Compute p(η | Y, θ(t)) and Q(θ | θ(t));
(M-step) Compute θ(t+1) ∈ arg max

θ∈Θ
Q(θ | θ(t)).

t = t+ 1;
end

Those notations allow us to understand the two difficulties of the problem. First,
since the marginal likelihood cannot be maximised straightforwardly, an expectation of the
complete likelihood is used instead (E-step). Second, the term obtained in the E-step can
be maximised with respect to the parameter (M-step) and hopefully will tend toward a
MLE.

This algorithm increases the value of both the ELBO and the marginal log-likelihood
at each iteration since,

ℓ(Y, θ(t)) = L (Y, θ(t); r(t+1))

≤ L (Y, θ(t+1); r(t+1)) (M-step)

≤ L (Y, θ(t+1); r(t+2)) = ℓ(Y, θ(t+1)). (E-step)

Hence, the sequence (ℓ(Y, θ(t)))t is non-decreasing in the sense that the ELBO will never
get worse. However, this does not provide any result on the convergence toward a local
or global maximum if it exists, and, more importantly, if the parameters (θ(t))t converge
toward a MLE. While the first convergence properties of the E-M algorithm are discussed
in Dempster, Laird, Rubin (1977), Wu (1983) is the first to provide a rigorous proof of
the convergence of the parameters. In particular, the author showed that any limit of
(θt)t is a stationary point of the likelihood and, in unimodal cases, with some assumptions
regarding the differentiability of the likelihood, (θt)t converges toward the unique MLE
θ∗. For instance, any distribution in the exponential family meets those sufficient con-
ditions and gives closed-form updates that ensure convergence toward a MLE. For more
details about the E-M algorithm for distributions in the exponential family, see Wainwright,
Jordan (2008), or more generally in Bishop (2006).

Unfortunately, in some cases, the E-step cannot be solved because of the the posterior
distribution p(η | Y, θ) that cannot be computed directly, as in the stochastic block model
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for instance. The next section presents an assumption on the family distribution R giving
rise to an approximation of the E-step making the computations tractable.

Example 2.4: Gaussian mixture model with an E-M based inference

To obtain an estimate of the MLE, we would like to use the first-order conditions
with respect to the parameters on Equation (2.4). Unfortunately, this does not
provide closed-form updates, see Bishop (2006) Chapter 9 Section 2. Therefore,
we apply the E-M algorithm and use the explicit posterior p(Y,C | θ), as in Remark
3

Q(θ | θ(t)) = Ep(C|Y,θ(t)) [log p(Y,C | θ)] .
First, let us compute the quantity p(C | Y, θ)

p(C | Y, θ) ∝ p(Y | C, θ)p(C | θ)

∝
N∏
i=1

Q∏
q=1

(
αqN (Yi;µq, σ

2
q )
)Ciq .

Since Ciq is a binary variable with zeros everywhere except on the coordinate q

corresponding to the cluster membership of i, we obtain

p(Ciq = 1 | Yi, θ) =
αqN (Yi;µq, σ

2
q )∑Q

l=1 αlN (Yi;µl, σ2
l )

= γiq(θ),

where γiq(θ) is the posterior probability for i to belong to cluster q. Therefore,

Q(θ | θ(t)) = Ep(C|Y,θ(t))

[
n∑

i=1

Q∑
q=1

Ciq log
(
αqN (Yi;µq, σ

2
q )
)]

=
n∑

i=1

Q∑
q=1

γiq(θ
(t)) log(αq) + γiq(θ

(t)) log(N (Yi;µq, σ
2
q )).

(2.8)

Adding the term λ(1−
∑Q

q=1 αq), with λ ∈ R, associated with the constraint α ∈ ∆Q

to Q(θ | θ(t)) and computing the first-order conditions gives the following updates:

µ(t+1)
q =

1

N
(t)
q

N∑
i=1

γiq(θ
(t))Yi,

σ2(t+1)
q =

1

N
(t)
q

N∑
i=1

γiq(θ
(t))∥Yi − µ(t+1)

q ∥2,

α(t+1)
q =

N
(t)
q

N
,

with N
(t)
q =

∑N
i=1 γiq(θ

(t)), the expected size of cluster q. The mean (standard
deviation, respectively) of group q corresponds to the classical mean (standard de-
viation) with each term weighted by the observation contribution to the group q,
corresponding to the a posteriori probability membership of the observation to the
group γiq(θ).
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2.1.4 The mean-field variational inference

In some cases, the latent posterior distribution p(η | Y, θ) cannot be computed, making
the E-step intractable. One way to tackle this issue is to restrain the family distribution R
to cases where the computations can be done. The most common set of distributions that
makes the E-step tractable is the mean-field assumption. This comes down to assuming
that all latent variables are independent one from another. For instance, if η = {η1, . . . , ηp}
is a set of p random variables, the mean-field assumptions states that

r(η) =

p∏
l=1

rl(ηl),

where rl is a distribution over ηl for all l ∈ {1, . . . , p}. For the sake of brevity, the subscript
under the distribution is not specified in the rest of this manuscript and rl(ηl) becomes r(ηl).
The previous E-step can now be decomposed into p iterative computations, as in a Gibbs
sampler, updating each distribution iteratively. Indeed, let us denote r(η−l) =

∏
k ̸=l r(ηk),

we can write the ELBO with respect to ηl

L (Y, θ; r) =Er(η) [log p(Y,η | θ)]− Er(η) [log r(η)]

=

∫
η

log
(
p(Y,η | θ)

) p∏
k=1

r(ηk)dηk −
∫
η

log

(
p∏

k=1

r(ηk)

)
p∏

k=1

r(ηk)dηk

=

∫
ηl

{∫
η−l

log
(
p(Y, ηl, η−l | θ)

)∏
k ̸=l

r(ηk)dηk

}
r(ηl)dηl

−
p∑

k=1

∫
ηk

log
(
r(ηk)

)
r(ηk)dηk

=

∫
ηl

Er(η−l)

[
log p(Y, ηl, η−l | θ)

]
r(ηl)dηl

−
∫
ηl

log (r(ηl)) r(ηl)dηl + cst.

Following Bishop (2006), Chapter 10, Section 1, we can define the quantity

log p̃(Y, ηl) = Er(η−l)

[
log p(Y,η | θ)

]
+ cst,

such that, the ELBO can be written

L (Y, θ; r) =

∫
ηl

log

Å
p̃(Y, ηl)

r(ηl)

ã
r(ηl)dηl + const

= −KL (r(ηl) || p̃(Y, ηl)) + const.

Hence, the variational distribution r⋆(ηl) minimising the ELBO is given by

r⋆(ηl) ∝ exp
{
Er(η−l)

[
log p(Y,η | θ)

]}
. (2.9)
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At this stage, it is important to note that the expectation on the right-hand side of
Equation (2.9) does not involve ηl, thanks to the mean-field assumption. Thus, computing
the best variational distribution requires to compute Equation (2.9) for all l = 1, . . . , L.
Let us remark it is closely related to the updates of a Gibbs sampler, where each variable
distribution is updated, keeping the others fixed. In the context of the variational inference,
this algorithm is often referred to as coordinates ascent variational inference (CAVI, Blei,
Kucukelbir, McAuliffe, 2017). The E step of the E-M algorithm becomes the evaluation of
each distribution r⋆(ηl), that is tractable in many cases, even when Ep(η|Y,θ)

[
log p(Y,η | θ)

]
is not.

Algorithm 3: Coordinate ascent variational inference

Input: t = 0; Initialise θ(0) and r(0)(η);
while L (Y, θ(t); r(t)) has not converged do

for l = 1, . . . , L do
r(t+1)(ηl) ∝ exp

¶
Er(t)(η−l)

[
log p(Y,η | θ(t))

]©
;

end
θ(t+1) ∈ arg max

θ
L (Y, θ; r(t+1));

t = t+ 1;
end

The mean-field assumption is arguably one of the standard choices in the literature.
However, getting rid of this assumption and considering more general variational distri-
butions is still an active research field. For instance, in Saul, Jordan (1995), the authors
present a variational inference for a hidden Markov model applied to networks with bi-
nary stochastic units. They add to the classical mean-field Boltzmann distribution a term
to account for interactions between groups of units. This line of work has grown with
Ghahramani (1997) that extended the results of Saul, Jordan (1995) to variational distri-
bution from the exponential family with a polynomial sufficient statistic of arbitrary order.
In Hoffman, Blei (2015), the authors restored dependencies between the variables by as-
suming that the variational distribution is composed of local hidden variables and global
parameters. Thus, the variational distribution is factorised conditionally on the global
parameter. Taking advantage of the developments in automatic differentiation, and the
reparametrisation trick Kingma, Welling (2014); Rezende, Mohamed, Wierstra (2014),
Rezende, Mohamed (2015) proposed the normalising flows as smooth invertible trans-
formation, used to parametrised the variational distribution and with easy-to-compute
Jacobian matrix to perform efficient learning. Ranganath, Tran, Blei (2016) used a prior
distribution on the variational parameters, that are assumed to be dependent, and intro-
duce efficient inference, for instance by using a normalising flow to parametrise the prior
distribution as well as a hierarchical ELBO, which is a lower bound of the ELBO.

2.1.5 Optimising the ELBO with gradient-based algorithms

At this point, a major drawback of variational inference is its computational complexity.
Indeed, for the sake of clarity, we omitted the subscript denoting the observations, but
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assuming that there is a one-to-one relationship between the observed variable Yi and the
latent vector ηi, using the notation r(η−l) =

∏N
i=1 r(ηi,−l) =

∏N
i=1

∏
v ̸=l r(ηi,v), the E-step

requires to compute for each l = 1, . . . , L:

Er(t)(η−l)

[
log p(Y, η | θ(t))

]
=

N∑
i=1

Er(t)(η−l)

[
log p(Yi, ηi | θ(t))

]
.

Therefore, the E-step requires the computation of NL terms at each iteration, which
is intractable for datasets with hundreds of thousands or even millions of observations.
This bottleneck prevents variational inference from scaling to large datasets. One way
to overcome this issue is to estimate the expectation, using mini-batches. Moreover, the
advancements in gradient descent allow to perform optimisation (towards local optimum)
without deriving closed-form equations. While this is called black-box variational inference,
we want to emphasise that the only thing that is unknown are the closed-form updates
but the model may be completely explicit.

Here, we propose an algorithm that can be applied to general parametric variational
distributions, parametrised by ϕ. Therefore, the ELBO will be denoted L (Y, θ;ϕ) instead
of L (Y, θ; rϕ). To begin with, it is worth noticing that obtaining an estimate of the
parameter θ is straightforward since

∇θL (Y, θ;ϕ) =∇θErϕ(η)

[
log p(Y,η | θ)− log rϕ(η)

]
=Erϕ(η)

[
∇θ {log p(Y,η | θ)− log rϕ(η)}

]
=Erϕ(η)

[
∇θ log p(Y,η | θ)

]
.

Hence, a classical Monte-Carlo estimate can be obtained by sampling S variables ηs i.i.d∼
rϕ(η) and computing

∇θL̂ (Y, θ;ϕ) ≈ 1

S

S∑
s=1

∇θ log p(Y,η
s | θ). (2.10)

However, the same derivation with respect to ϕ fails short because the expectation is
taken with respect to rϕ(η) that depends on ϕ,

∇ϕL (Y, θ;ϕ) =∇ϕErϕ(η)

[
log p(Y,η | θ)− log rϕ(η)

]
̸=Erϕ(η)

[
∇ϕ {log p(Y,η | θ)− log rϕ(η)}

]
.

In the following, we introduce two methods addressing this issue, the Reinforce algo-
rithm and the reparametrisation trick.

Reinforce algorithm The reinforce gradients have been introduced for variational infer-
ence in Ranganath, Gerrish, Blei (2014) as a mean to estimate gradients of the ELBO
with respect to the variational parameters, using Monte-Carlo estimates. In some cases,
for instance, if the distributions are in the conjugate-exponential family, closed-form equa-
tions may appear for the gradients, simplifying the computations, see Hoffman, Blei, et
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al. (2013). Here, no restriction is made on the parametric variational distribution. The
gradient of the ELBO with respect to ϕ is given by

∇ϕL (Y, θ;ϕ) =∇ϕErϕ(η)

[
log p(Y,η | θ)− log rϕ(η)

]
=

∫
η

∇ϕ {rϕ(η) (log p(Y,η | θ)− log rϕ(η))} dη

=

∫
η

∇ϕrϕ(η) (log p(Y,η | θ)− log rϕ(η)) dη

−
∫
η

rϕ(η)∇ϕ log rϕ(η)

=

∫
η

∇ϕrϕ(η) (log p(Y,η | θ)− log rϕ(η)) dη

=Erϕ(η)

[
∇ϕ log rϕ(η) (log p(Y,η | θ)− log rϕ(η))

]
,

where we used that the score function ∇ϕ log rϕ(η) = ∇ϕrϕ(η)/rϕ(η) is centred since∫
η
rϕ(η) (∇ϕrϕ(η)/rϕ(η)) dη = ∇ϕ

∫
η
rϕ(η)dη = ∇ϕ1 = 0. Therefore, we managed to

express the gradient of the ELBO as an expectation, allowing to use Monte-Carlo methods
to approximate this quantity as:

∇ϕL̂ (Y, θ;ϕ) ≈ 1

S

S∑
s=1

∇ϕ log rϕ(η
s) (log p(Y,ηs | θ)− log rϕ(η

s)) ,

with S the number of samples, and ηs i.i.d∼ rϕ(η). A major drawback of this method is the
large variance of those estimates, which have been addressed using Rao-Blackwelisation
and control-variates (Ranganath, Gerrish, Blei, 2014). This method has been observed to
give higher variance gradient estimates than the reparametrisation trick presented in the
next section.

Reparametrisation trick In Kingma, Welling (2014) and Rezende, Mohamed, Wier-
stra (2014), the authors proposed to transform the variational distribution using a reparametri-
sation. Let g be an invertible and differentiable function such that

η = g(ϵ, ϕ,Y), (2.11)

with ϵ a random variable independent of ϕ and Y. For any integrable function f , the law
of the unconscious statistician, gives that:

Erϕ(η) [f(η)] = Ep(ϵ) [f(g(ϵ, ϕ,Y))] ,

and the gradient with respect to ϕ can be computed as

∇ϕErϕ(η) [f(η)] = ∇ϕEp(ϵ) [f(g(ϵ, ϕ,Y))]

= Ep(ϵ) [∇ϕf(g(ϵ, ϕ,Y))]

≈ 1

S

S∑
s=1

∇ϕf(g(ϵ
s, ϕ,Y)),
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with S the number of ϵ sampled from p(ϵ).
To end this section, we introduce two core model selection criteria allowing to choose

the best model among several, making it possible, for instance, to select the dimension
of a space, the number of mixture components or the number of topics, which are crucial
questions in many latent variable models, such as mixture models.

2.1.6 Selection model criteria

In this section, we present two selection model criteria, used to choose the best model
among several. In mixture models, this may be useful to select the number of mixture
components.

Bayesian criterion information The data is denoted Y = (Y1, . . . YN), with (Yi)i, N
independent variables of the same distribution, of unknown density f . Let Mm be a para-
metric model, that is a set of densities Mm = {gMm(·, θ), θ ∈ Θm} with gMm(·, θ) the density
under the model m and parameter θ ∈ Θm, and M1, . . . ,MM , M models that we wish to
compare. The Bayesian information criterion (BIC) selects the model with the largest a
posteriori probability:

MBIC = arg max
Mm

p(Mm | Y). (2.12)

Using Bayes’ rule, the probability in Equation (2.12) can be written as

p(Mm | Y) =
p(Y | Mm)p(Mm)

p(Y)
.

A non-informative prior on Mm is then chosen. Hence, finding the best model according
to the BIC criterion only requires computing P (Y | Mm), involving an integral over the
parameter θ:

p(Y | Mm) =

∫
θ

p(Y, θ | Mm)dθ =

∫
θ

gMm(Y, θ)p(θ | Mm)dθ. (2.13)

where gMm(Y, θ) =
∏n

i=1 gMM
(Yi, θ).

Lemma 1 (Laplace approximation). Let f : Rd → R be a mapping three times differen-
tiable, that admits a unique maximum at θ⋆, then∫

θ

enf(θ)dθ = enf(θ
⋆)

Å
2π

n

ã d
2

| − f
′′
(θ⋆)|−

1
2 +O(n−1).

Proof. A proof of this lemma can be found in De Bruijn (1981) in Section 4.4 or in
Lebarbier, Mary-Huard (2006) in Appendix A.

Remark 4. This can be interpreted as assuming that the function is picked at its maximum
and decays quickly, as a Gauss curve, implying that the integral, or the surface under
the curve, can be well approximated using only the maximum and the Hessian matrix.
This lemma gives an approximation of the error and its demonstration relies on a Taylor
expansion of the function around its maximum.
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In order to apply the Laplace approximation on the quantity p(Y | Mm), we use the
following transformation

gMm(θ) = log (p(θ | Mm)gMm(Y, θ)) = log p(θ | Mm) +
N∑
i=1

log gMm(Yi, θ).

Denoting LN,Mm(θ) =
gMm (θ)

N
, we can apply the Laplace approximation on LN,Mm(θ) such

that

p(Y | Mm) =

∫
θ

eNLN,Mm (θ)dθ = egMm (θ⋆)

Å
2π

N

ã νY
2

|AMm(θ
⋆)|−

1
2 +Op(N

−1),

where νY is the number of parameters with respect to Y (here, the number of parameters
in θ) and

AMm(θ
⋆) =

Å
−∂

2LN,Mm

∂θj∂θl
(θ⋆)

ã
1≤j,l≤di

.

This can be written as

log p(Y | Mm) = log gMm(Y, θ
⋆)+log p(θ⋆ | Mm)+

νY
2

log

Å
2π

N

ã
−1

2
log (|AMm(θ

⋆)|)+Op(N
−1).

(2.14)
Unfortunately, the best parameter θ⋆ is unknown. Hence, we want to estimate it and

plug it into egMm (θ⋆) as well as in AMm(θ
⋆). This can be achieved using the asymptotic

convergence of the MLE towards θ⋆, with the MLE given by

θ̂MLE = arg max
θ∈Θ

gMm(Y, θ).

Moreover, for any θ ∈ Θi,

LN,Mm(θ) =
1

N

N∑
i=1

log gMm(Yi, θ)︸ ︷︷ ︸
Op(1)

+
1

N
log p(θ | Mm)︸ ︷︷ ︸

Op(N−1)

−→
N→∞

E [log gMm(Y, θ)] .

Thus, the matrix AMm(θ
⋆) can be asymptotically estimated by the Fisher information matrix

evaluated for θ̂MLE,

IMm(θ̂) = −E

[Ç
∂2 log gMm(Y, θ̂

MLE)

∂θj∂θl

å
1≤j,l≤di

]
. (2.15)

Replacing the true parameter with its estimate introduces an error term of the order of
N−1/2. Eventually, replacing θ⋆ with θ̂MLE and assembling together Equations (2.14) and
(2.15), we obtain

log p(Y | Mm) = log gMm(Y, θ̂
MLE)− νY

2
log(N)

+ log p(θ̂MLE | Mm) +
νY
2

log(2π)− 1

2
log
Ä
|IMm(θ̂

MLE)|
ä
+Op(N

−1/2)

≈ log gMm(Y, θ̂
MLE)− νY

2
log(N).

(2.16)
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The last approximation discards the terms that are constant or decreasing when taking
the absolute value, with N . Note that those terms emerge from the assumptions made
regarding the prior distributions of the models. As remarked in Raftery (1995), those
terms can in practice be much smaller than O(1) by using a reasonable prior, allowing the
terms to be of the order of O(n−1/2) instead. For instance, this order is recovered with a
Gaussian centred around the MLE and with a covariance matrix equal to the inverse of the
expected Fisher information matrix. In the end, multiplying by −2 (for historical reasons,
as in the AIC criterion), gives the BIC criterion:

MBIC = arg min
Mm

− 2 log

(
N∑
i=1

gMm(Yi, θ̂
MLE)

)
+ νY log(N).

Interested readers may refer to the very good introduction to the BIC criterion proposed by
Lebarbier, Mary-Huard (2006) that inspired most of this section, as well as Raftery (1995).

ICL In the context of a finite mixture model, that is a model with observations sampled
from Q different distributions, the BIC-like approximation is no longer theoretically backed,
in particular if the true number of groups Q

′
< Q, it implies that Q − Q

′
parameters will

tend to zero and be on the boundary space, which prevents from using the BIC criterion
(Biernacki, Celeux, Govaert, 2000). Moreover, the BIC is not designed for latent variable
models, and the Q groups are not observed, thus the clustering purpose is not incorporated
into the criterion (this holds true for other types of latent variables). Indeed, the BIC
objective of Equation (2.12) becomes

log p(Y,C | Mm) =

∫
θ

log p(Y,C | θ,Mm)p(θ | Mm)dθ. (2.17)

Assuming an a priori distribution on θ factorising as p(θ) = p(µ, σ)p(α) allows to split
Equation (2.17) in two terms:

log p(Y,C | Mm) = log p(Y | C,Mm) + log p(C | Mm),

with the first term that can be decomposed using a BIC-like approximation and the second
term that can be computed explicitly, see Lemma 3.1 in Biernacki, Celeux, Govaert (2000).
Indeed, since each Ci is a binary variable with zeros everywhere except on the coordinate
q corresponding to the cluster membership of i, we have that for any i ∈ {1, . . . , N},
Ci ∼ D(δ1, . . . , δQ), with δ = (δ1, . . . , δQ). Using Equation (2.16), we obtain that,

log p(Y,C | Mm) ≈ max
µ,σ

log p(Y | C, µ, σ,Mm)−
νY
2

log(N) + log p(C | Mm),

with the term log p(C | Mm) equal to

p(C | Mm, Q) =

∫
p(C | δ′,Mm, Q)p(δ

′)dδ′

=
Γ
Ä∑Q

q=1 δq
ä

∏Q
q=1 Γ (δq)

∏Q
q=1 Γ(nq + δq)

Γ
Ä∑Q

q=1 nq + δq
ä ,
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where nq :=
∑N

i=1Ciq. To obtain a simpler criterion, one can use a BIC-like approximation
on log p(C | M ), assuming that all the nq are large enough, which comes down to

log p(Y,C | Mm) ≈max
µ,σ

log p(Y | C, µ, σ,Mm)−
νY
2

log(N)

+max
δ

log p(C | δ,Mm)−
Q− 1

2
log(N).

(2.18)

To match the BIC criterion, we can multiply the last equation by −2 and obtain

MICL = arg min
Mm

− 2 log p(Y | C, µ̂, σ̂,Mm) + νY log(N)

− 2 log p(C | δ̂,Mm) + (Q− 1) log(N),
(2.19)

where µ̂, σ̂ and δ̂ are solutions of the maximisation problem in Equation (2.18).

Remark 5. While the ICL criterion has been developed for mixture models, we extended
it to the more general case of hierarchical latent distributions combining continuous and
discrete latent variables as we shall see in Chapter 4.

2.2 Deep generative models

During the last decade, probabilistic modelling has known new developments with the
emergence of deep neural networks as an efficient way to encode and decode data. Before
diving into the deep probabilistic modelling details, we give a quick reminder on deep neural
networks. Then, a summary concerning deep probabilistic models as well as an associated
inference strategy are presented. This section will end with the variational autoencoder,
presented in Kingma, Welling (2014); Rezende, Mohamed, Wierstra (2014), that made
possible the scaling to large datasets.

2.2.1 Supervised deep learning in a nutshell

This section aims at presenting the basics of deep learning, in the supervised setting. To
begin with, let us consider a d-dimensional random variable X and Y a target random
variable such that the two are assumed to be linked through an unknown function f ⋆ as

Y = f ⋆(X) + ϵ,

with ϵ a 0 noise variable. This setting raises two major questions.
First, given a function f , it is necessary to evaluate the goodness of this function to

approximate Y given X. To do so, we introduce a loss function L to compare f(X) with
Y . Eventually, we want to minimize the risk, associated with L and the joint-distribution
p(X, Y )

R(f(X), Y ) = Ep(X,Y ) [L(f(X), Y )] . (2.20)
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Unfortunately, the distribution p(X, Y ) is unknown, making the computation of (2.20)
intractable. Thus, using the observed data (X,Y) = ((X1, . . . , XN), (Y1, . . . , YN)), the
empirical risk R̂N is used to estimate (2.20):

R̂N(f(X),Y) =
1

N

N∑
i=1

L(f(Xi), Yi). (2.21)

As an example, let us mention two of the most used loss functions, namely the Euclidean
distance for continuous variables, L(f(X), Y ) = ∥f(X) − Y ∥2, and the standard cross-
entropy for categorical data L(f(X), Y ) = −

∑Q
q=1 Yq log f(X)q.

Second, it is necessary to restrict the search of f to a class of function F for the
estimation to be tractable. While famous family comes to mind (the linear model for
regression, the logistic function for binary classification), more complex types of functions
have been studied during the past fifty years. In particular, neural networks have raised a lot
of attention in the past thirty years, due to excellent prediction results and state-of-the-art
models in numerous domains (vision, object detection, natural language processing, and
many others). We give a brief presentation of the feed-forward neural network, arguably
the simplest deep neural network architecture, that will be the core of the deep neural
networks used later on.

Feed-forward neural network

We would like to define a class of functions that contains good approximations of f . A
feed-forward neural network is a mapping fθ defined as

fθ :

®
Rd −→ Rdout

x 7→ hL ◦ · · · ◦ h1(X),
(2.22)

where θ = (Wl,bl)l, and the result of each function hl(·) is called a layer. It is defined as
a linear operation followed by an activation function, often non-linear,

hl :

®
Rdl −→ Rdl+1

x 7→ σl (Wlx+ bl) ,
(2.23)

with Wl ∈ Mdl×dl+1
(R), bl ∈ Rdl+1 and σl(·) an activation function applied element-wise.

The dimension dl denotes the number of units in layer l. When L = 1, this function is
called a shallow neural network. On the contrary, when L > 1, which will always be the
case in this manuscript, such a function is called a multilayer perceptron (MLP). This class
of function will be denoted FMLP = {fθ, θ ∈ Θ}. The parameters Wl and bl need to be
estimated in order to obtain the best function f̂θ for our problem

f̂θ = arg min
fθ∈FMLP

R̂n(f(X),Y).

Using non-linear activation functions permits to capture non-linear features of the data.
Indeed, in Hornik, Stinchcombe, White (1989), the authors showed that any continuous
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function can be approximated as well as wanted, given enough units. However, in practice,
the number of units required to obtain a good approximation is not known. In Montufar
et al. (2014), the authors showed that the number of linear regions carved out by deep
neural networks using rectified linear units as activation functions increases exponentially
with the depth of the network. Moreover, empirical works suggest that greater depth
results in better generalisation (Bengio et al., 2006) and advocate that a deeper network
can be seen as a useful prior over the space of functions.

Back-propagation algorithm, learning and stochastic gradient descent

The next section presents the back-propagation combined with the stochastic gradient
descent algorithm, to be able to optimise quickly the parameters of the deep neural network
using very large datasets. This capacity of scaling to high dimensional data and a large
number of observations plays a central role in the spread of these techniques in real-life
applications.

In order to optimise the parameters of the neural network, we would like to be able
to compute the gradient of the loss function with respect to each parameter to be able
to use a gradient descent algorithm. For certain well-chosen loss functions and activation
functions, the differentiation of each layer with respect to its parameters is straightfor-
ward and has a closed form (no approximation is required). Therefore, the gradients of
the objective function with respect to the parameters of the d-th units of layer l can be
computed analytically by using the chain rule, as detailed in Chapter 6, Section 5 in the
book by Goodfellow, Bengio, Courville (2016). It makes it possible to build an efficient
learning algorithm (LeCun et al., 1998). In particular, the automatic differentiation, im-
plemented in computer science packages, such as Pytorch Paszke et al. (2019), builds on
the GPU’s efficiency to parallelise computations when performing matrix multiplications
and the construction of a graph to efficiently back-propagate during the gradient descent
algorithm. This is crucial to quickly compute gradients, which is one of the building bricks
to obtain efficient optimisation algorithms for deep neural networks. Thus, we need to
compute the gradients of our objective function at each step, such that,

∇̂θR̂N(fθ(X),Y) =
1

N

N∑
i=1

∇̂θL(fθ(Xi), Yi).

Since this computation has to be done for each observation, it becomes intractable or even
inefficient for datasets with hundreds of thousands or even millions of observations N , as
pointed out in Bottou, Bousquet (2007) where the authors compare different optimisation
algorithms and their performances. To reduce the computational cost, sampling B obser-
vations from the datasets to form the mini-batch B, with B << N can drastically diminish
the computation, and provide faster good approximations of the gradient. A Monte-Carlo
estimate of the gradient using only the mini-batch B is obtained by computing:

∇θR(fθ(X), Y ) ≈ ∇θR̂B(fθ(XB),YB) =
1

B

∑
(Xi,Yi)∈B

∇θL(fθ(Xi), Yi).
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Repeating this scheme iteratively gives Algorithm 4.

Algorithm 4: The stochastic gradient algorithm
Input: θ0, f , X, Y
while θt has not converged do

Sample the mini-batch B;
Compute the gradient estimate ĝt = 1

B

∑
(Xb,Yb)∈B ∇̂θL(fθ(Xb), Yb);

Update the parameter θt+1 = θt − atĝt;
t = t+ 1;

end

More information about deep learning theory can be found in the book by Goodfellow,
Bengio, Courville (2016).

2.2.2 Unsupervised deep learning with latent representation of the
data

Among the important tasks solved by DNN, one is known as representation learning.
Contrary to the previous setting, we are no longer performing supervised learning, with
an observation X and a target variable Y , but unsupervised learning instead. Let Y =

(Y1, . . . , YN) be N independent samples of a distribution p. We would like to find a
homogeneous representation h of the heterogeneous data Y , using a smooth function f .
For instance, the principal component analysis (PCA) learns a latent representation h ∈ Rd

of the data Y ∈ Rp, with d < p, using a linear mapping such that h = f(Y ) = W⊤Y + b.
This can be extended to non-linear functions, to extract non-linear features. In particular,
the expressiveness of deep neural networks has played a major role in the development of
the field of representation learning. We present two core models, the autoencoder and the
variational autoencoder, that are central to this manuscript.

Autoencoder

An autoencoder is a function composed of an encoder, or feature-extracting mapping,
h = Encoderϕ(Y ), and a decoder, or reconstruction mapping Ŷ = Decoderθ(h), aiming
at copying its input, while learning a meaningful hidden layer, or representation, h. The
objective function of this problem can be written as

ϕ̂, θ̂ = arg min
ϕ,θ

L̂N(Y; θ, ϕ) =
1

N

N∑
i=1

L(Yi,Decoderθ(Encoderϕ(Yi))).

with L(·, ·) a loss function (for instance the Euclidean distance for continuous data). This
function can then be optimised using (stochastic) gradient descent algorithm with respect
to ϕ, θ. When the dimension of h is less than the dimension of Y , the autoencoder is called
undercomplete and is forced to learn the most salient features of the data to be able to
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replicate Y . For instance, if we assume that the decoder is linear and the loss function
is the MSE, an under complete autoencoder will learn to span the same subspace as the
one obtained with a PCA. Using a non-linear decoder will permit to obtain more complex
features than the standard linear PCA. However, if the encoder and decoder are complex
enough, they may be able to encode and decode each data point. For instance, Yi could be
encoded as i and i be decoded as Yi, without learning any aspect of the data distribution.
To prevent this and to obtain a meaningful latent space, different regularisations have
been investigated. In particular, a sparsity constraint using a lasso-like penalty has been
used Ranzato et al. (2006). This can be seen as using a Laplace prior over the model
distribution over the latent variable h. More details can be found Chapter 14, Section 2.2
of the book by Goodfellow, Bengio, Courville (2016).

Applications: words embeddings

One of the advantages of learning representation is the ability to represent discrete data
in a continuous space. In Mikolov, Chen, et al. (2013); Mikolov, Sutskever, et al. (2013),
the authors proposed the skipgram model as well as the continuous-bag of words model
(CBOW) to efficiently learn continuous representations of words from a large corpus, using
the context of a word, which corresponds to its closest neighbours. Let W = (W1, . . . ,WD)

be a corpus of text, with D documents. A window size c is chosen such that the documents
are now decomposed into sequences of 2c + 1 words, centred around a word wt. The
document indicator is dropped from the notations since all sequences are treated as i.i.d
observations. Then, each word is one-hot encoded, such that the t-th word wt ∈ {0, 1}V ,
with 0 everywhere excepted on the coordinate corresponding to its index in the vocabulary.
We denote the neighbours of the t-th word nt = (wt−c, . . . , wt−1, wt+1, . . . , wt+c), the
indices of the neighbours i(t) = {t − c, . . . , t − 1, t + 1, . . . , t + C}, the input weights
are denoted ρI = (ρ1, . . . , ρV ) ∈ ML×V and the output weights, corresponding to the
word embeddings, ρO = (ρ′1, . . . , ρ

′
V )

⊤ ∈ MV×L. The skipgram model estimates for any
t′ ∈ i(t), the distribution of a word to be in the context given the centred word of the
sequence wt as,

p(wt′,v′ = 1 | wt,v = 1) =
exp(ρ′v′

⊤ρv)∑V
k=1 exp(ρ

′
k
⊤ρv)

.

Eventually, the matrix ρO can be used as embeddings of the words to perform operations
such as measuring similarities or distance between words in a continuous space.

On the contrary, CBOW aims at predicting the word at the centre using its context.
The notation vt is used to refer to the vocabulary index of the t-th word such that wt,vt = 1.
The estimated probability of a word given the context is here defined as

p(wt,v = 1 | ht) = softmax

Ñ
1

C

∑
t′∈i(t)

ρvt′
⊤ρ′v

é
v

.

Eventually, the cross-entropy is used as the loss function to evaluate the estimated prob-
abilities. The model can be trained using a stochastic gradient descent algorithm to
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optimise the loss function with respect to the word embeddings ρO and the input weights
ρI . Since we only wish to provide an example of an autoencoder, we only give the models
and architecture of the networks. The implementation details are out of the scope of this
manuscript. However, the popularity of those models is due to their ability to scale to
very large datasets, up to millions of samples in the case of the CBOW, thanks to the
hierarchical softmax and the negative sampling, as described in the original paper (Mikolov,
Sutskever, et al., 2013).

2.2.3 Variational autoencoder

One of the drawbacks of autoencoders is the necessity to choose a loss function. In
addition, the latent space obtained using an autoencoder may lack of regularity. Some
regularisation techniques have been proposed for autoencoders, as we already mentioned.
Remember that for classical autoencoders, η does not incorporate any randomness and is
considered as a determinist transformation of Y, such that we can define the distribution
of the data as

pθ(Y,η) = p(Y | Decoderθ(η))p(η).

While classical autoencoders directly maximise the term p(Y | Decoderθ(η)) where
η = Encoderϕ(Y), with an external regularity term, the variational autoencoder as-
sumes that η incorporates randomness and is therefore treated as in a latent variable
model. Hence, for computational efficiency, the variational inference is combined with the
reparametrisation trick. This unleashes the possibility to use (deep) parametric functions
to encode the observed data Y into the parameters of the variational distribution. While
this may seem restrictive (since it prevents the parameter from being free), the choice of
the function as well as the use of the same function for all observations, called amortised
inference Gershman, Goodman (2014), induces a modelling choice. Moreover, instead of
increasing the number of parameters linearly with the number of latent variables, this can
be seen as learning a more general approximation, in the sense that it should generalise on
unseen data. Let the variational distribution be

rϕ(η | Y) = r(η | Encoderϕ(Y)).

Contrary to what we have presented so far, the variational distribution is conditioned on
the observation. This gives the following ELBO

L (θ, ϕ) = Erϕ [log pθ(Y,η)]− Erϕ [log rϕ(η)]

= Erϕ [log p(Y | Decoderθ(η))]︸ ︷︷ ︸
Reconstruction error

−KL (r(η; Encoderϕ(Y)) || p(η | Y))︸ ︷︷ ︸
Regularisation term

.

Interestingly, we retrieve the objective of the autoencoder, the reconstruction term, pe-
nalised by the Kullback-Leibler divergence term, which can be seen as a regularising term
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arising from the modelling choices, in particular, in the architecture of the encoder. The
standard choice for the variational distribution, when dealing with continuous data, is the
Gaussian distribution, such that:

(µϕ(Y), σϕ(Y)) = Encoderϕ(Y),

rϕ(η | Y) = N (η;µϕ(Y), σϕ(Y)2).

To be able to estimate the parameters of the neural network ϕ, we use the reparametri-
sation trick

g(ϵi, ϕ,Y) = µϕ(Y)i + σϕ(Y)iϵ,

and ϵ = (ϵi)i. Hence, the ELBO can be written as

L (θ, ϕ) = Ep(ϵ) [log pθ(Y | η)] + Ep(ϵ) [log pθ(η)]− Ep(ϵ) [log rϕ(η)] ,

where ηi = g(ϵi, ϕ,Y). Using Equation (2.10) with ηi = g(ϵi, ϕ,Y), we can directly obtain
Monte Carlo estimates of the gradient and optimise L (θ, ϕ) as described in Algorithm 5.

Algorithm 5: Inference of a variational autoencoder.

Input: ϕ(0), θ(0), t = 0

while ELBO has not converged do
Sample a minibatch B;
Sample ϵi ∼ p(ϵ) for every datapoints in B;
Compute the approximation of the ELBO L̂ (θ(t), ϕ(t), ϵ) and the gradients
∇θ,ϕL̂ (θ(t), ϕ(t), ϵ);

Update θ(t) and ϕ(t) using a stochastic gradient descent optimiser;
end

Although we only presented the VAE for Gaussian distributions, other distributions
can be considered. In particular, approximations of discrete variational distributions have
emerged over the year, Nalisnick, Smyth (2016); Maddison, Mnih, Teh (2017). More
complex distribution has also been considered by transforming the parameters with invert-
ible and differentiable functions (Rezende, Mohamed, 2015). For more details regarding
variational autoencoders, the reader can refer to Kingma, Welling, et al. (2019).

To summarise this section, let us insist on the possibilities that offer deep probabilistic
models. In particular, variational autoencoders permit to use complex hierarchical varia-
tional distributions, which in turn allows for meaningful latent representations. In addition,
deep neural networks can be used to encode the data into the latent space without increas-
ing the number of parameters with the size of the samples. This differs from traditional
variational inference and translates the capacity of the encoder to represent well the data
into the latent space. Neural networks can also be used to parametrise the model distri-
bution in the decoder part. Using the ELBO as the objective function, efficient stochastic
gradient descent algorithms, such as Adam (Kingma, Ba, 2014), showed very good results
in practice.
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2.3 Topic Modelling

This section starts by presenting the rise of probabilistic models in topic modelling. In
particular, we will present the latent Dirichlet allocation, arguably one of the most central
models in the field. Eventually, we will present new developments, relying on variational
autoencoders introduced previously.

2.3.1 The rise of generative models in topic modelling

The statistical analysis of topics emerged in the late 90s with Papadimitriou et al. (1998),
developing statistical results for the latent semantic indexing (LSI), first proposed by Deer-
wester et al. (1990). LSI relies on a spectral analysis of the “term frequency-inverse doc-
ument frequency” and successfully captures synonymy between words. To overcome the
lack of probabilistic foundations of LSI, Hofmann (1999) introduced the probabilistic latent
semantic index (pLSI) which models each word distribution as a mixture model such that
each mixture component corresponds to a “topic”. The topic membership of each word is
modelled by a multinomial random variable in pLSI. Even though the topic membership of
the words depends on the document, a major drawback of pLSI is the absence of a model
at the document level. This was overcome by Blei, Ng, Jordan (2003) with the latent
Dirichlet allocation (LDA).

2.3.2 The latent Dirichlet allocation

In this manuscript, the documents will be denoted W = (W1, . . . ,WD), with D the
number of documents, and Wd = (wv

dn)n,v ∈ MNd×V ({0, 1}) such that wv
dn = 1 if the

n-th word of document d is the v-th word of the vocabulary, and 0 otherwise. The size
of the vocabulary is denoted V . Moreover, the word topic will be used to refer to a
distribution over the vocabulary. In other words, a topic k ∈ {1, . . . , K}, where K denotes
the number of topics, is represented by a vector βk ∈ ∆V , where ∆V denotes the V -
dimensional simplex and β = (β1, . . . , βK)

⊤ ∈ MK×V (R) denotes the topic matrix. Let
T = (T1, . . . ,Td) be the topic memberships, with Td = (td1, . . . , tdNd

)⊤ ∈ MNd×K({0, 1})
the topic memberships of words in document d, such that tkdn = 1 if the n-th word of
document d is from topic k and 0 otherwise. The latent Dirichlet allocation assumes
that each document is sampled from a mixture of topics with its own proportion denoted
θd, and θ = (θ1, . . . , θD). The generative model is summarised in Generative model 1.
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Generative model 1: Generation of the corpus under the latent Dirichlet alloca-
tion model.

Parameters: β,θ0
for d = 1, . . . , D do

Draw the mixture proportions associated with document d:
θd ∼ DirK(θ0);
for n = 1, . . . , nd do

Draw the topic of n-th word: tdn ∼ MK(1; θd);
Draw the n-th word: wdn | tkdn = 1 ∼ MV (1; βk);

end
end

Using the generative model, the complete distribution of document d can be factorised
as

p(Wd,Td, θd | θ0,β) = p(θd | θ0)p(Td | θd)p(Wd | Td,β)

= p(θd | θ0)
Nd∏
n=1

p(tdn | θd)p(Wdn | tdn,β).

Hence, the likelihood of document d requires to marginalise on θd and td,

p(Wd | θ0,β) =
∫
θd

p(θd | θ0)

(
Nd∏
n=1

∑
tdn

p(wdn | tdn,β)p(tdn | θd)

)
dθd.

Given the parameters β and θ0, the distribution can be factorised over the documents,
resulting in the following observed likelihood:

p(W | θ0,β) =
D∏

d=1

∫
θd

p(θd | θ0)

(
Nd∏
n=1

∑
tdn

p(wdn | tdn,β)p(tdn | θd)

)
dθd.

Since the integral is not tractable, we can rely on the variational mean-field inference
introduced in Section 2.1.4, with a variational distribution factorising as

rϕ(T,θ) =
D∏

d=1

(
r(θd; θ̃d)

Nd∏
n=1

r(tdn; t̃dn)

)
,

with ϕ = ((θ̃d)d, (t̃dn)d,n). Hence, the ELBO is obtained as

L (θ0,β; rϕ) = Erϕ [log p(W,T,θ | θ0,β)]− Erϕ [log rϕ(T,θ)] .

Using the first-order conditions, as well as the conjugacy properties on the exponential
family (see Section 4 of Blei, Kucukelbir, McAuliffe, 2017), of the ELBO with respect
to the variational parameters (E-step), we obtain the following approximated posterior
distribution of the latent variables

r(tdn; t̃
⋆
dn) = MK(tnd; 1, t̃

⋆
dn),

r(θd; θ̃
⋆
d) = DK

Ä
θd; θ̃

⋆
d

ä
,

66



2.
Fo

un
da

ti
on

s
2.

Fo
un

da
ti
on

s

where

t̃⋆kdn ∝ βk,wdn
exp

(
Erϕ [log θdk]

)
,

θ̃⋆d = θ0 +

nd∑
n=1

t̃⋆dn,

and Erϕ [log (θdk)] = Ψ
Ä
θ̃k
ä
−Ψ
Ä∑K

l=1 θ̃l
ä
, (see Appendix A.1 in Blei, Ng, Jordan, 2003).

Next, optimising the ELBO with respect to parameter β (M-step) using first-order
conditions provides the following update,

βkv ∝
M∑
d=1

Nd∑
n=1

t̃⋆dniw
j
dn.

An online version of this algorithm has been proposed in Hoffman, Bach, Blei (2010).
However, the Dirichlet distribution makes the topics almost uncorrelated and does not
directly model correlation. Blei, Lafferty (2006) then proposed to use a normal-logistic prior
instead of a Dirichlet prior on the topic proportion to directly model the correlations. All
these models require to derive the equations for any new generative model. In Srivastava,
Sutton (2017), they bridged the gap between topic modelling and autoencoders, taking full
advantage of gradient descent for those models. Nevertheless, all the former approaches
do not incorporate semantic meaning to the words, as embeddings such as the CBOW
or skipgram presented in Section 2.2.2. Indeed, since the model is only based on the
document term-frequency matrix, they lose the information provided by the order of the
words. The embedded topic model (ETM), Dieng, Ruiz, Blei (2020) used the strength of
word embeddings, such as the continuous bag of words (CBOW) or skipgram (Mikolov,
Chen, et al., 2013) as a part of the decoder of a variational autoencoder. We give a brief
overview of this model, that can be considered as an extension of LDA

2.3.3 The embedded topic model and other neural topic models

To benefit from the neural network representational power, let each word v ∈ {1, . . . , V },
where V denotes the vocabulary size, be represented by a vector ρv ∈ RL, called embedding
in literature, such that ρ = (ρ1, . . . , ρV ) ∈ ML×V (R) is the embedding matrix. Similarly,
each topic k is represented in the same latent space by a vector αk ∈ RL, and α =

(α1, . . . , αK) ∈ ML×K(R) such that the distribution associated with topic k is obtained as

βk = softmax
(
ρ⊤αk

)
,

and β = (β1, . . . , βK)
⊤ ∈ MK×V . In addition, the generative model marginalises over the

word-topic membership variables as described in Generative model 2.
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Generative model 2: Generation of the corpus under the embedded topic model.
Parameters: ρ, α, βk = softmax

(
ρ⊤αk

)
, k = 1, . . . , K

for d = 1, . . . , D do
Draw the variable associated with the topic proportions:
δd ∼ NK(0, I);
Compute the topic proportions:
θd = softmax(δd);
for n = 1, . . . , nd do

Draw the word n: wdn ∼ MV (1; θ
⊤
d β);

end
end

As for the LDA, the likelihood can be obtained by marginalising over the latent variable
such that

p(W | α,ρ) =
∫
δ

p(W | δ,α,ρ)p(δ)dδ.

Unfortunately, the softmax function prevents from obtaining any closed form. Therefore,
as in the LDA, we rely on a variational inference strategy. However, in order to fully take
advantage of the variational autoencoder, the variational distribution is now parametrised
using a neural network such that

r(δ | W) =
D∏

d=1

NK(δd;µϕ(W)d, diag(σ
2
ϕ(W)d)).

where ϕ denotes the neural network encoder parameters. We can directly obtain the ELBO
as

L (α,ρ; rϕ) = Erϕ [log p(W, δ | α,ρ)]− Erϕ [log rϕ(δ)] .

Using the reparametrisation trick to approximate the ELBO and the gradients, the optimi-
sation can be carried out with a stochastic gradient descent algorithm, such as Adam, and
an automatic differentiation package such as Pytorch. In practice, ETM allows to initialise
the matrix ρ with embeddings already pre-trained on very large corpora, with CBOW or
skipgram model for instance. In practice, using pre-trained embeddings showed a signifi-
cant improvement in the metrics. Other neural topic models have been developed during
the last decade (Meng et al., 2020; Zhao, Phung, Huynh, Le, et al., 2021). In particular,
in Wu et al. (2023), the authors managed to overcome one of the main limits of ETM,
named topic collapsing. Indeed, Zipf’s law (Piantadosi, 2014) states that few words have
a high frequency and many have a low frequency, such that the word distribution tends to
be long-tailed in real-life corpora. According to Wu et al. (2023), this tends to bias topics
into favouring words with high frequency, ending in some topics being very similar one to
another. To tackle this phenomenon, the authors combined the topic model approach with
an embedding clustering regularisation showing significant improvement in the results. For
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a review of classical methods relying exclusively on the document term frequency matrix,
the reader may refer to Vayansky, Kumar (2020), while the reader interested in neural
topic models may refer to Zhao, Phung, Huynh, Jin, et al. (2021).

2.4 Statistical network analysis

This section aims to give a brief overview of the statistical network analysis field. In
particular, as in topic modelling, the first developed methods were heuristic-based. The
uncertainty measure appeared later on thanks to probabilistic modelling. Two core models
to represent complex networks will be presented, namely the stochastic block model as
well as the latent position cluster model. The introduction of deep neural networks in the
field will be treated in the last section of this chapter.

Notations

In this manuscript, a network, or graph, is defined as a couple G = (V , E), where V =

{1, . . . , N} is a set of N vertices and E = {(i, j) : i, j ∈ {1, . . . , N}, i⇝ j} a set of M
edges. The notation i ⇝ j indicates that i is connected to j. The connections, or
edges, are represented by the binary adjacency matrix A ∈ MN×N({0, 1}) such that i is
connected to j, or (i, j) ∈ E , if and only if Aij = 1. The number of clusters is denoted Q.

2.4.1 From heuristic-based methods to probabilistic modelling

Statistical network analysis first started with random graph theory, initiated by Erdos,
Rényi, et al. (1960). They studied probabilistic properties of graphs with binary connections
and a unique probability for any connection to exist. However, real-life datasets do not
show such regularity. Therefore, more complex and realistic graph structures have been
considered. Here, a structure designates a partition of the nodes such that nodes in a
cluster present a homogeneous connectivity pattern. For example, a community is a group
of nodes highly connected one to another but with few connections to the rest of the
graph. If the graph is only composed of communities, reordering the adjacency matrix by
group would output a block diagonal matrix. Another direction emerged with Fienberg,
Wasserman (1981) who first introduced a probabilistic model assuming that the probability
for two nodes to be connected only depends on the group they belong to and applied it
to Sampson’s monastery dataset (Sampson, 1969). Introducing a latent representation
of the nodes then became popular. For instance, the latent position model (LPM, Hoff,
Raftery, Handcock (2002)) obtains an informative representation of the network in a
Euclidean space by assuming that each node can be modelled by a Gaussian variable in a
low dimensional space. In Handcock, Raftery, Tantrum (2007), the authors proposed an
extension, the latent position cluster model, that we shall detail in the next section.
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2.4.2 The latent position cluster model

LPM was extended to the latent position cluster model (LPCM Handcock, Raftery,
Tantrum, 2007) to incorporate clustering in the generative model. The authors assumed
that the latent node positions are sampled from a mixture of normal distributions. This ex-
tension incorporates the clustering within the model and therefore combines the clustering
task with the network representation.

A cluster membership vector Ci is associated with each node i ∈ {1, . . . , N} such that:

Ci
i.i.d∼ MQ(1, γ), (2.24)

with γ ∈ ∆Q and Ci ∈ {0, 1}Q being one hot encoded so that Ciq = 1 if node i belongs to
cluster q and Ciq = 0 otherwise. Thus, denoting C = (C1, . . . , CN)

T ∈ MN×Q({0, 1}) the
cluster membership matrix, we have:

p(C | γ) =
N∏
i=1

Q∏
q=1

γCiq
q . (2.25)

Moreover, given its cluster membership, the node i is assumed to be represented by a
Gaussian vector Zi in a p-dimensional latent space,

Zi | Ciq = 1 ∼ N
(
µq, σ

2
qIp
)
. (2.26)

Eventually, the connection between two nodes is assumed to depend on the closeness
of the node representations in the latent space. Therefore, denoting ηij := κ − ω⊤

0 xij −
ω1∥Zi−Zj∥, where xij is an edge vector feature, the probability for node i to be connected
to node j is:

P (Aij = 1 | Zi, Zj, κ, ω0, ω1) =
1

1 + e−ηij
, (2.27)

where a logistic function is used as a link function. For the sake of brevity, we will denote
pij = (1 + e−ηij)

−1 and Z = (Z1, . . . , ZN). Finally, the joint distribution of the adjacency
matrix, the latent node vectors, as well as the cluster memberships can be factorised as
follows:

p(A,Z,C | κ, ω0, ω1,µ,σ, γ) = p(A | Z, κ)p(Z | C,µ,σ)p(C | γ).

where µ = (µq)q and σ = (σq)q.

Generative model 3: Generative model of the latent position cluster model
Parameters: κ, µ, σ, γ, ω0, ω1

for each node n do
Draw a cluster membership Ci ∼ MQ(1, γ);
Draw a node embedding Zi | Ciq = 1 ∼ Np

(
µq, σ

2
qIp
)
;

end
for each pair of nodes i ̸= j do

Compute pij = (1 + e−ηij)
−1 where ηij = κ− ω⊤

0 xij − ω1∥Zi − Zj∥ ;
Draw an edge Aij | Zi, Zj, κ ∼ B(pij);

end
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Inference

In the original paper, the authors proposed two different inference strategies. The first
consists of a two-stage MLE estimation. First, the MLE of the LPM parameters are
computed. Then, considering the LPM parameters fixed, the MLE of the cluster mem-
berships parameters can be derived. However, as raised by the authors, this method
does not allow the position of the nodes to take into account the cluster memberships.
Therefore, the authors proposed a Bayesian inference strategy, combining a Gibbs sampler
with Metropolis-Hastings steps giving better results at the expense of a computationally
intensive algorithm.

LPCM gives representations of the network in a Euclidean space, but can only analyse
networks with communities, that is groups where the nodes are highly connected with
nodes in the same group but poorly connected to the rest of the graph. Block models
are able to model any connectivity pattern between groups, making it a more flexible
framework for complex networks as we shall see.

2.4.3 The stochastic block model

The stochastic block model (SBM) is another core model for statistical network analysis
that relies on latent variables denoting node cluster memberships. As for the LPCM, the
node cluster membership vectors Ci are modelled by a multinomial distribution,

p(C | γ) =
C∏
i=1

Q∏
q=1

γCiq
q . (2.28)

The notations are the same as in Section 2.4.2.

Besides, given the cluster memberships of the nodes, the connections are assumed to
be independent. In particular, if node i is in cluster r and node j in cluster q, the nodes
are connected with probability πqr. Thus, given C and the probability matrix Π = (πqr),
the probability of the node connections is

p(A | C,Π) =
N∏
i ̸=j

Q∏
q,r

Ä
πAij
qr (1− πqr)

(1−Aij)
äCiqCjr

. (2.29)

Eventually, the joint-probability of the adjacency matrix A, and the cluster memberships
vector C, is obtained by multiplying Equations (2.28) and (2.29),

p(A,C | Π, γ) = p(A | C,Π)p(C | γ). (2.30)

71



2.
Fo

un
da

ti
on

s
2.

Fo
un

da
ti
on

s

Generative model 4: Generative model of the stochastic block model
Parameters: γ,Π
for each node i do

Draw a cluster membership Ci ∼ MQ(1, γ);
end
for each pair of nodes i ̸= j do

Draw an edge Aij | CiqCjr = 1, πqr ∼ B(πqr);
end

Inference

To estimate the parameters, the classical MLE would be obtained by maximising the
following log-likelihood:

log p(A | γ,Π) = log

(∑
C

p(A | C,Π)p(C | γ)

)
.

Unfortunately, this requires computing QN terms, which is exponential in the number of
nodes and quickly becomes intractable for networks with hundreds of nodes. Indeed, Sni-
jders, Nowicki (1997) mentioned that the E-M algorithm can only be used for small graphs
because of this limitation. Therefore, they proposed to use a Bayesian inference strategy
relying on a Gibbs sampler to infer the posterior distribution of the cluster memberships
and the probability matrix. In Daudin, Picard, Robin (2008), the authors proposed an-
other strategy, based on a mean-field variational inference strategy, allowing to analyse
larger graphs, and with simple updates. Since we will use this strategy, let us give some
insights about the computation. First, since C are discrete latent vectors, the mean-field
variational distribution can be written, just with the full factorisation hypothesis, as

rτ (C) =
N∏
i=1

MQ(Ci; 1, τi) =
N∏
i=1

Q∏
q=1

τ
Ciq

iq .

Hence, the ELBO can be written

L (γ,Π; τ ) = Erτ [log p(A,C | γ,Π)]− Erτ [log rτ (C)] . (2.31)

The following propositions give the updates of the parameters.

Proposition 1. Denoting b(πqr, Aij) = π
Aij
qr (1 − πqr)

1−Aij , the updates of the parameters
of the mean-field variational inference, for the SBM are given by

τiq ∝ γq
∏
j ̸=i

Q∏
r=1

(
b(πqr, Aij)b(πrq, Aji)

)τjr
,

γq =
1

N

∑
i=1

τiq,

πqr =

∑
i ̸=j τiqτjrAij∑

i ̸=j τiqτjr
.
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Proof. The proof is given in Appendix 7.1.1

This was extended to the Bayesian setting in Latouche, Birmele, Ambroise (2012),
where the authors proposed a variational Bayes expectation maximisation (VBEM). The
classification can either be deduced from the latent variable distribution or be incorporated
in the optimisation strategy with a hard clustering, for instance using the classification vari-
ational expectation maximisation (CVEM) algorithm (Bouveyron, Latouche, Zreik, 2018).
The choice of the number of cluster Q can either be done through a model selection
criterion (Daudin, Picard, Robin, 2008; Latouche, Birmele, Ambroise, 2012), through
a greedy search (Côme, Latouche, 2015) or through a non-parametric scheme (Kemp
et al., 2006). Many extensions have been developed to incorporate valued edges, as in
Mariadassou, Robin, Vacher (2010), as well as categorical edges in Jernite et al. (2014)
or to add prior information in Zanghi, Volant, Ambroise (2010). Some developments
also focused on looking for overlapping clusters (Airoldi et al., 2008; Latouche, Birmelé,
Ambroise, 2011) as well as dynamic networks (Matias, Miele, 2017; Zreik, Latouche,
Bouveyron, 2017; Corneli, Latouche, Rossi, 2016). For more insights about SBM devel-
opments, see Lee, Wilkinson (2019). For reviews on statistical network modelling, we also
relate to Snijders (2011) and Matias, Robin (2014).

Unification of positional and block modelling We end this section with an approach
unifying the two previous types of modelling, namely block modelling and positional learn-
ing. This unification, proposed in Hoff (2007), uses a new framework to describe the
probability of connection between nodes i and j. Indeed, the author proposed to create
a similarity matrix, using node representations Zi and a similarity function α(Zi, Zj) and
to model the probability of connection using a probit function based on the output of the
similarity function. Assuming that Zi ∈ Rd and α(Zi, Zj) = −∥Zi − Zj∥2 would provide
the same distribution as LPM while considering ui as a one hot encoded cluster member-
ship and taking α(Zi, Zj) = mZi,Zj

would provide the same modelling as the stochastic
block model. Using this similarity-based formulation of the model, the author introduced a
more general similarity function, encapsulating both previous examples, using a continuous
node latent representation Zi ∈ Rd and α(Zi, Zj) = Z⊤

i ΛZj where Λ is a diagonal ma-
trix. However, this method relies on a Monte-Carlo Markov Chain algorithm, preventing it
from scaling to large networks. In addition, the continuous latent representation prevents
from clustering the nodes of the network with the flexibility of traditional block modelling
approaches.

Daudin, Pierre, Vacher (2010) also proposed a way to combine continuous node rep-
resentations with a block modelling approach. Instead of assuming that the mixture is at
the network level and that each node belongs to a single cluster, they proposed a model
based on a mixture at the node level, such that each node is a mixture of extremal nodes,
and the probability of connection between node i and node j is given by Z⊤

i ΠZj where
the Zi ∈ ∆Q and Π ∈ MQ×Q([0, 1]).
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2.5 Joint analysis of texts and networks

While both topic modelling and statistical network analysis gave rise to many publica-
tions over the last 20 years, only a few works have combined the two approaches. The
community-user topic model (CUT, Zhou et al. (2006)) added a latent variable to the
author-topic model (AT, Rosen-Zvi et al. (2004) to represent the communities either as a
set of co-authors or as a set of topics. Thereafter, the community-author-recipient-topic
model (CART, Pathak et al. (2008)) used communities both at the document generation
level and at the author and recipient generation level which corresponds to the network
generation. However, the high number of parameters combined with the inference based
on a Gibbs sampler does not allow to scale those models to large datasets. The topic-
link LDA, presented in Liu, Niculescu-Mizil, Gryc (2009), also offers a joint analysis of
texts and links in a unified framework by conditioning the generation of a link on both
the topics within the documents and the community of authors. The inference relies on a
variational E-M algorithm to scale the approach to large datasets. However, this method
only deals with undirected networks. Finally, the topic-user-community model (TUCM)
was introduced in Sachan et al. (2012) and was able to discover topic-meaningful com-
munities. The main feature of this model is its capacity to incorporate different types
of interactions, well-suited for social network applications. The inference relied on Gibbs
sampling approach which can be limiting when dealing with large datasets. More recently,
the stochastic topic block model (STBM) presented in Bouveyron, Latouche, Zreik (2018)
was the first model to handle the simultaneous clustering of nodes and edges while keeping
the inference tractable to large datasets thanks to a variational classification EM-based
inference. This model was extended in Bergé et al. (2019) for the simultaneous clustering
of bipartite networks with textual edges. It was also adapted for dynamic networks in
Corneli, Bouveyron, et al. (2019).

2.6 Deep neural networks on graphs

To end this chapter, let us present a deep probabilistic model adapted to graph-structured
data. We focus on the most central architecture of our work, which leads to the con-
volutional graph neural networks. This line of work relies on the symmetric normalised
Laplacian matrix to represent the graph, given by L = IN −D−1/2AD−1/2 with D the di-
agonal matrix of node degrees, Dii =

∑
j Aij. Since L is a real symmetric matrix (see for

instance Von Luxburg (2007) for more properties on Laplacian matrices), the matrix can
be decomposed in the orthogonal group such that there exists U ∈ MN×N(R), comprising
the eigenvectors as columns, ordered by eigenvalue, such that

L = U∆U⊤,

where ∆ = diag(λ0, . . . , λN−1) is the diagonal matrix of the ordered eigenvalues.
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2.6.1 Graph signal processing

Let us consider a signal x ∈ RN on the nodes of the graph. As in signal processing, it is
possible to define the graph Fourier transform,

F(x) = U⊤x.

This transformation maps a signal belonging to the graph domain to the Fourier domain.
Since U is orthogonal, that is UU⊤ = IN , the inverse graph Fourier transform is naturally
given by F−1(x̂) = Ux̂ for x̂ ∈ RN . As a result, it is possible to define a graph convolution
of the signal x with a filter f ∈ RN as a product in the Fourier domain

x ⋆G f = F−1(F(x)⊙F(f))

= U(U⊤x⊙U⊤f). (2.32)

Let us remark that, denoting f̃ = diag(U⊤f), Equation (2.32) can be rewritten as

x ⋆G f̃ = Uf̃U⊤x.

In the rest of this manuscript, this equation will be used as the definition of the graph
convolution of signal x with filter f .

2.6.2 From spectral-based convolutional graph neural networks to
the variational graph autoencoder

All the spectral-based convolutional graph neural networks follow this definition. However,
they distinguish one from another by their respective filter f̃ . For instance, Bruna et
al. (2013) considered the filter as a set of learnable parameters and composed their neural
network architecture as the aggregation of multiple channels and hidden layers to gather
local information iteratively. The ChebNet architecture, proposed in Defferrard, Bresson,
Vandergheynst (2016), relies on some approximations concerning the filtering, allowing an
important gain regarding the complexity (from O(N3) to O(M)). In particular, the authors
proposed to approximate the filter f̃ with Chebyshev polynomial fθ =

∑L
l=0 θlTl(∆̃) where

∆̃ = (2λ−1
max∆) − IN ∈ MN×N([−1, 1]) and the Chebyshev polynomial are defined as

Tl(x) = 2xTl−1(x)− Tl−2(x), T0(x) = 1 and T1(x) = x. This gives the following form

x ⋆G fθ = U

(
L∑
l=0

θlTl(∆̃)

)
U⊤x

=
L∑
l=0

θlUTl(∆̃)U⊤x

=
L∑
l=0

θlTl(L̃)x, (2.33)
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where L̃ = 2λmaxL− IN . The equality Tl(L̃) = UTl(∆̃)U⊤ for any l ∈ {0, . . . , L} can be
proofed by induction. Eventually, Kipf, Welling (2017) relied on a first-order approximation
of the ChebNet filter to obtain an architecture easier to implement. Indeed, assuming
that L = 1 and λmax = 2 (expecting the neural network to adapt to this change of scale),
Equation 2.33 can be written as

x ⋆G fθ = θ0x− θ1D
−1/2AD−1/2x.

Assuming that θ0 = −θ1 (since limiting the number of parameters might address overfit-
ting) leads to the following definition of the convolution for GCN

x ⋆G fθ = θ(IN +D−1/2AD−1/2)x. (2.34)

However, IN +D−1/2AD−1/2 has eigenvalues in the range [0, 2]. Therefore, repeating this
operation might lead to numerical instabilities. Therefore, for numerical stability reasons,
IN + D−1/2AD−1/2 is replaced with Â = D̃−1/2ÃD̃−1/2 where Ã = A + IN and D̃ is a
diagonal matrix, where D̃ii =

∑N
j=1 Ãij. This gives the following new definition of a graph

convolution

x ⋆G fθ = θD̃−1/2ÃD̃−1/2x. (2.35)

Until now, we assumed that the input signal was 1-dimensional for each node, and restricted
to the case of 1 filter being used. Kipf, Welling (2017) extended the definition of graph
convolution to C-dimensional signals X ∈ MN×C(R), and F filters Θ ∈ MN×F (R) by
considering

X ⋆G FΘ = ÂXΘ, (2.36)

This multi-dimensional convolution is at the core of the graph convolutional network, which
builds upon Equation (2.36) to construct layers on top of each other. In particular, Kipf,
Welling (2017) proposed the following architecture, referred to as graph convolutional
network (GCN) in the rest of this manuscript,

Z = softmax
Ä
ÂReLU

Ä
ÂXW(0)

ä
W(1)

ä
, (2.37)

where W(0) ∈ MC×H0 and W(1)(R) ∈ MH0×H1(R).
This graph convolutional network has been used as an encoder in a variational autoen-

coder, named the variational graph autoencoder (VGAE) (Kipf, Welling, 2016). Many
extensions are built upon the variational graph autoencoder. In Pan et al. (2018), the
authors regularise VGAE by using an adversarial inference strategy to improve the results.
Unfortunately, those models rely on external methods, such as K-means, on the posterior
node representations, to achieve node clustering. As an answer to this limit, Mehta, Duke,
Rai (2019) presented an extension of the overlapping stochastic block model (Latouche,
Birmelé, Ambroise, 2011). They proposed to encode the node embeddings with a neural
network. Lately, Liang et al. (2022) combined the two and introduced the deep latent
position model (Deep-LPM). Indeed, the model relies on VGAE and assumes that the
latent representations are distributed according to a mixture of Gaussians, depending on
the node cluster memberships. Their results advocate the incorporation of the clustering
into the latent representations.
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Many real-life interactions induce the exchange of texts, as in co-authorship networks, so-
cial networks or emails for instance. Since the storage capacity keeps increasing, networks
with textual data on the edges become even more frequent. To make such networks,
called communication networks, intelligible to humans, it is of great interest to gather
information about the texts exchanged between the nodes and to summarise the connec-
tivity structure. While those two questions have been studied independently, the work we
propose aims at bridging the gap between the two by modelling the joint distribution of
texts and edges. To the best of our knowledge, the interest in making the two disciplines
of topic modelling, when texts are present on the edges, and model-based graph clustering
meets is recent and the methods that have been proposed only rely on the frequency of
words within the documents without incorporating semantic meaning. In this paper, we
propose to take advantage of pre-trained word embeddings in the topic-model as presented
in Dieng, Ruiz, Blei (2020) in order to incorporate semantic meaning of the words and
to obtain topic-meaningful clusters. An introduction to the data analysed in this chap-
ter as well as our contribution are exhibited in Section 3.1. The embedded topics for
the stochastic block model (ETSBM) is presented in Section 3.2. The inference and the
model selection are presented in Section 3.3. Eventually, the model is evaluated against
state-of-the-art algorithms on synthetic data and we present results for a real word exam-
ple built from tweets during the last French presidential election in Sections 3.4 and 3.5,
respectively. Section 3.6 presents some concluding remarks and further work.

3.1 Introduction and contribution

3.1.1 Introduction

Many real-life interactions induce the exchange of texts, as in co-authorship networks, so-
cial networks or emails for instance. Since the storage capacity keeps increasing, networks
with textual data on the edges become even more frequent. To make such networks,
called communication networks, intelligible to humans, it is of great interest to gather
information about the texts exchanged between the nodes and to summarise the connec-
tivity structure. While those two questions have been studied independently, the work we
propose aims at bridging the gap between the two by modelling the joint distribution of
texts and edges. To the best of our knowledge, the interest in making the two disciplines
of topic modelling, when texts are present on the edges, and model-based graph clustering
meets is recent and the methods that have been proposed only rely on the frequency of
words within the documents without incorporating semantic meaning. In this chapter, we
propose to take advantage of pre-trained word embeddings in the topic-model as presented
in Dieng, Ruiz, Blei (2020) in order to incorporate semantic meaning of the words and to
obtain topic-meaningful clusters.

78



3.
E
T

SB
M

3.
E
T

SB
M

3.
E
T

SB
M

3.1.2 Our contribution

In this chapter, we propose a new methodology called the embedded topics in the stochastic
block model (ETSBM), to look for node partitions incorporating the connectivity patterns
as well as the topics exchanged between the nodes. We will reserve the term community
to groups of nodes that are densely connected together but poorly connected to the rest of
the graph. In the block model literature, the term cluster denotes a group of nodes that
share a similar connectivity pattern which goes beyond the concept of community. For
instance, contrary to communities, a star pattern is defined by two clusters with low intra-
connection and large inter-connection probabilities (Latouche, Birmele, Ambroise, 2012).
Such a pattern is particularly common in social networks. This type of cluster cannot
be retrieved by community detection methods. In this chapter, we will also assume that
the nodes of the same cluster share a similar use of topic proportions. To find clusters
complying with this definition, (i) we propose a generative model assuming that each node
belongs to a cluster and that the probability of connection between two nodes, as well as
the topic proportions of a document, only depend on the clusters of the corresponding
nodes. Figure 3.1 illustrates the necessity to combine graph clustering and topic modelling
in order to distinguish all four clusters and to obtain more meaningful topics for each
cluster. (ii) To model the topics exchanged between the nodes, the documents are encoded
with a deep neural network to benefit from their flexibility. (iii) The decoder is made
of word and topic embeddings, as in Dieng, Ruiz, Blei (2020). (iv) In this chapter,
the documents are aggregated at the cluster level, into Q2 meta-documents with Q the
number of clusters. The meta-documents are obtained by weighting each document with
the cluster membership probabilities of the corresponding nodes. In particular, our inference
strategy is able to directly optimise the construction of the meta-documents through the
inference procedure.

3.2 The ETSBM Model

3.2.1 Notations

In this chapter, we focus on data represented by a directed graph G = {V , E}, such that
V = {1, . . . ,M} denotes the set of nodes and E := {(i, j) : i, j ∈ {1, . . . ,M}, i ⇝ j} the
set of edges, where i ⇝ j indicates that i is connected to j. The connections, or edges,
are represented by a binary matrix A ∈ MM×M({0, 1}) such that i is connected to j, or
(i, j) ∈ E , if and only if Aij = 1. In the applications we consider, this implies that node i
sent textual information to j such as one or a series of emails for instance. These texts
are denoted Wij = {W 1

ij, . . . ,W
Dij

ij } with Dij the number of documents sent from i to j

and are gathered in the collection W = {Wij, (i, j) ∈ E}. Each document d in Wij is a

collection of words of size Nd
ij, i.e W d

ij = {wd1
ij , . . . , w

dNd
ij

ij }. The size of the vocabulary is
denoted V and the words are identified by their index in the vocabulary: each word w is in
{1, . . . , V }. Finally, only graphs without self-loops are considered in this chapter, therefore
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Graph obtained by SBM Graph obtained by SBM and ETM Graph obtained by ETSBM

Figure 3.1: Comparison of results on a simulated network with the use of SBM on the
left, SBM and ETM in the middle and ETSBM on the right. The colours of the nodes
indicate the cluster of the vertices. The colours of the edges indicate the most-used topic
in the corresponding documents. Note that SBM alone does not provide edge information.
Thus, the left network only has a single-edge colour. On the left-hand side, SBM clustering
results uncover 3 clusters. Again, in the middle, SBM is used and uncovers 3 clusters of
nodes. ETM edge information is added to the network through the 3 edge colours green,
grey and blue. On the right-hand side, ETSBM clustering results uncover 4 clusters. The
cluster coloured in green, in the middle of the figure, is split into two clusters on the
right-hand side, the green one and the red one, each discussing a different topic, the blue
and grey topic respectively. The clusters of nodes of the figure on the right-hand side are
coherent both in terms of topology and topics of discussion contrary to the figure in the
middle.
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Aii = 0 for all i ∈ V. Notice that all the present work can be extended to undirected
networks using Wij = Wji for all pairs (i, j) such that Aij = Aji = 1. The directed case
is more adequate for messages sent from i to j while the undirected case is better suited
for co-authorship networks for instance.

The notation Md×p(F) will be used to denote the space of d× p matrices with coeffi-
cients in F while the notation Md(N,ω) will be used to denote the multinomial distribution
with parameters N ∈ N and ω ∈ ∆d where

∆d =:

{
x ∈ Rd : ∀i ∈ {1, . . . , d}, xi ≥ 0,

d∑
i=1

xi = 1

}
.

3.2.2 Modelling the interactions

In this chapter, we assume that each node belongs to a single cluster. Moreover, we assume
that the connexion probability between two nodes only depends on the cluster memberships.
Indeed, let Ci denotes the cluster membership of node i for any i ∈ {1, . . . ,M}. All Ci

are assumed to follow a multinomial distribution and to be independent and identically
distributed (i.i.d), given the cluster proportions γ ∈ ∆Q, lying in the simplex of dimension
Q,

Ci | γ
i.i.d∼ MQ(1, γ).

Thus, each node i is associated with cluster q with probability γq. Then, we define the clus-
ter membership matrix C by stacking the node cluster membership vectors (Ci)i together
such that C = (C1 · · ·CM)⊤ ∈ MM×Q({0, 1}). The probability of C is given by

p(C | γ) =
M∏
i=1

Q∏
q=1

γCiq
q . (3.1)

Besides, the connections between nodes are supposed to be independent given their cluster
memberships. Moreover, if nodes i and j are respectively in clusters q and r, an edge is
assumed to be present with probability πqr,

Aij | CiqCjr = 1, πqr
i.i.d∼ B(πqr), (3.2)

where B(µ) denotes the Bernoulli distribution with probability µ. Thus, given the cluster
memberships of the nodes C and the probability matrix Π = (πqr)qr ∈ MQ×Q(bbr), the
probability of all node connections is given by

p(A | C,Π) =
M∏
i ̸=j

Q∏
q,r

Ä
πAij
qr (1− πqr)

(1−Aij)
äCiqCjr

. (3.3)

Eventually, the joint-probability of the adjacency matrix A, and the cluster memberships
vector C, is obtained by multiplying Equations (3.1) and (3.3),

p(A,C | Π, γ) = p(A | C,Π)p(C | γ). (3.4)

Combining Equations (3.1), (3.3), and (3.4), we retrieve the SBM distribution (Daudin,
Picard, Robin, 2008).
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3.2.3 Modelling the texts

Our approach extends ETM to capture information from groups of texts. Essentially,
texts are assumed to be generated according to a mixture of topics with latent topic
vectors only depending on node clusters. More precisely, a text sent from node i in
cluster q to node j in cluster r is assumed to have a logistic-normal topic proportion
vector θqr = (θqr1, . . . , θqrK)

⊤ ∈ ∆K , with the number of topics K fixed beforehand. It is
obtained by applying the softmax function to a Gaussian random vector δqr,

Yqr ∼ N (0K , IK),

θqr = softmax(Yqr),

where softmax(x) =
Ä∑K

k=1 e
xk

ä−1
(ex1 , . . . , exK )⊤.

In the rest of this chapter, the notation θ = (θqr)1≤q,r≤Q is used to refer to the topic
proportions while Y = (Yqr)1≤q,r≤Q will refer to the sampling of the random variable. If
two nodes i and j are connected and if they are respectively in cluster q and r, the words
in document Wij are assumed to be i.i.d. Indeed, the n-th word of the d-th documents
is assumed to be distributed according to a mixture of topics conditionally on the node
clusters,

W dn
ij | CiqCjrAij = 1, θqr,α,ρ ∼ MV (1, θ

⊤
qrβ), (3.5)

where the matrix β = (β1 · · · βK)⊤ ∈ MK×V (R) corresponds to the distribution over
the vocabulary for each topic such that βk = softmax

(
ρ⊤αk

)
for any k ∈ {1, . . . , K}.

The matrix ρ ∈ ML×V (R) corresponds to the matrix of the vocabulary embedded into
an L-dimensional vector space, and α = (α1 · · ·αK) ∈ ML×K(R) the matrix of topics
represented into the same vector space.

Therefore, the probability of texts can be computed as follows:

p(W | C,A,θ,α,ρ) =
M∏
i ̸=j

Dij∏
d=1

p(Wij | Ci, Cj, Aij = 1,θ,α,ρ)

=
M∏
i ̸=j

Dij∏
d=1

Nd
ij∏

n=1

Q∏
q,r

V∏
v=1

( K∑
k=1

θqrkβkv

)W dnv
ij AijCiqCjr

=

Q∏
q,r

V∏
v=1

( K∑
k=1

θqrkβkv

)W v
qr

. (3.6)

The number of time the word v of the dictionary is used in texts sent from cluster q to clus-

ter r is denotedW v
qr =

∑M
i ̸=j

∑Dij

d=1

∑Nd
ij

n=1W
dnv
ij AijCiqCjr. Here, Wqr = (W 1

qr, . . . ,W
V
qr)

⊤ ∈ NV

shall be designated as meta-document (q, r). Moreover, we shall use the bag of words nota-
tions such that for any connected pair of nodes (i, j) ∈ E , Wij = (W 1

ij, . . . ,W
V
ij )

⊤ ∈ NV

with for any v ∈ {1, . . . , V }, W v
ij represents the total count of word v for all documents

sent from i to j. The model is represented in Figure 3.2.
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Figure 3.2: Graphical representation of the model.

3.2.4 Distribution of the model and links with SBM and ETM.

Given a cluster configuration Y , the joint probability of the model is obtained using Equa-
tions (3.3) and (3.6)

p(A,W | C,α,ρ) = p(W | C,A,α,ρ)p(A | C,Π). (3.7)

At this point, we emphasise that meta-documents between pairs of clusters of nodes are
constructed using the cluster memberships C and the node connections A. Assuming that
the cluster membership C is available as well as all the network information held by Π and
γ, the model we propose would simply correspond to ETM applied on the meta-documents
(Wqr)1≤q,r,≤Q, computed with the available C.

On the other hand, if no texts are exchanged between nodes or the texts are not
available, the distribution would reduce to the second term of Equation 3.7. In that case,
the conditional distribution of a standard SBM (Daudin, Picard, Robin, 2008) is recovered.
It is also worth noticing that if a Dirichlet prior is assumed on the topic proportion instead
of a logistic-normal, and no factorisation in an embedded latent space is considered, the
model corresponds to STBM. By construction, ETSBM generalises SBM and ETM to
incorporate both textual data and network information.

3.3 Inference

This section presents the Bayesian framework considered for inference. It also describes
the variational-bayes E-M algorithm used to maximise the integrated joint likelihood.

3.3.1 Bayesian framework for the graph modelling part

First, a Dirichlet distribution is assumed as a prior distribution on the proportions γ of
nodes in each cluster,

γ ∼ DirQ(γ0). (3.8)

where γ0 is set to (1, . . . , 1) ∈ RQ, which corresponds to a uniform prior on the simplex.
Moreover, each coefficient of the probability matrix π ∈ MQ×Q(R), is assumed to be
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sampled from a Beta distribution, such that for any pair (q, r) ∈ {1, . . . , Q}2,

πqr
i.i.d∼ Beta(a, b).

In particular, a and b are set to 1. Thus, the Beta prior corresponds to a Uniform distri-
bution between 0 and 1.

3.3.2 Variational inference

Eventually, the integrated joint log-likelihood is given by:

log p(A,W | α,ρ) = log

(∑
C

∫
Y

∫
γ

∫
Π

p(A,W,C,Π, γ,Y | α,ρ)dΠdYdγ

)
. (3.9)

Unfortunately, this quantity is intractable since it requires computing it for the QM config-
urations of C, which is naturally computationally too demanding. Moreover, the integral
with respect to Y is not tractable either because of the softmax function. Thus, it cannot
be optimised directly. However, it is possible to overcome this issue using a variational-
bayes expectation-maximisation algorithm (VBEM) proposed in Attias (1999). This comes
handy as it makes the inference scalable to large datasets.

The variational approach consists in splitting Equation (3.9) in two terms using a
surrogate distribution on C,Π, γ and Y, denoted R(,Π, γ,Y).

Proposition 2. Denoting R(·), a distribution on C,Π, γ and Y, the integrated joint log-
likelihood can be decomposed as follow:

log p(A,W | α,ρ) = L (R(·);α,ρ) + KL(R(·)||p(C,Π, γ,Y | A,W,α,ρ)),

where

L (R(·);α,ρ) =
∑
C

∫
Π,γ,Y

R(C,Π, γ,Y) log
p(A,W,C,Π, γ,Y | α,ρ)

R(C,Π, γ,Y)
dΠdYdγ.

Proof. The proof is provided in 7.2.1.

To make L (R(·);α,ρ) tractable, we use the following mean-field assumption:

R(C,Π, γ,Y) = R(C)R(Π)R(γ)R (Y) . (3.10)

Following the optimality results of Latouche, Birmele, Ambroise (2012), we impose the
following variational distributions:

R(C) =
M∏
i=1

R(Ci) =
M∏
i=1

MQ(Ci; 1, τi),

R(Π) =

Q∏
q,r=1

R(πqr) =

Q∏
q,r=1

Beta(πqr; π̃qr1, π̃qr2),

R(γ) = DirQ(γ; γ̃). (3.11)
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Each vector τi is of size Q and encodes the (approximate) posterior probabilities for node i
to be in each cluster. Given τ = (τi)i, the set of posterior cluster membership probabilities,
for any pair (q, r) the corresponding expected meta-document can be computed as

W̃qr =
∑
i ̸=j

τiqτjrWij. (3.12)

By construction, the v-th element of vector W̃qr is the expected pseudo count of word v
for all documents sent from nodes in cluster q to nodes in cluster r. Finally, the variational
distribution on latent topic proportions is assumed to be:

R(Y) =

Q∏
q,r=1

R(Yqr) =

Q∏
q,r=1

N
(
Yqr;µqr(τ , ν), diag(σ

2
qr(τ , ν))

)
, (3.13)

with (µqr(τ , ν), σqr(τ , ν))
⊤ = f(W̃ norm

qr (τ ); ν) the output of a parametric function, typically
a (deep) neural network, with parameters denoted ν. Hereafter, the ETM encoder will
be used as the function f parametrised by ν. The normalised expected meta-documents
W̃ norm

qr (τ ) =
Ä∑V

v=1 W̃
v
qr(τ )

ä−1
W̃qr(τ ) ∈ RV are then given to the encoder which outputs

the mean and variance vectors (µqr(τ , ν), σqr(τ , ν))
⊤ of the posterior distribution. Our

inference strategy is inspired by Dieng, Ruiz, Blei (2020) and finds its roots in the original
work of Kingma, Welling (2014) for classical data. However, as we shall see, a critical
property of our methodology is that the (approximate) posterior allocation probabilities τ

will change through the updates and so will the inputs of the encoder. In all experiments
we carried out, we used a 3-layer architecture with 800 units for the hidden layers, as
originally proposed in Dieng, Ruiz, Blei (2020). In order not to increase the number of
parameters ν linearly with the number of pairs of groups, the amortised inference is used
as advocated in Gershman, Goodman (2014) or Kingma, Welling (2014).

Proposition 3. Using the assumptions described in Equations (3.10), (3.11) and (3.13),
the ELBO, which is a functional of the variational distribution, reduces to a function of
the variational parameters and can be split into two terms associated with the network
and with the texts respectively:

L (R(·);α,ρ) = L (τ , π̃1, π̃2, γ̃, ν;α,ρ) (3.14)

= L net(τ , π̃1, π̃2, γ̃;α,ρ) + L texts(τ , ν;α,ρ), (3.15)

where π̃1 = (π̃qr1)qr, π̃2 = (π̃qr2)qr.

Proof. The proof and the exact value of the ELBO are detailed in 7.2.1

3.3.3 Optimisation and Algorithm

We now aim at maximising the ELBO with respect to the variational parameters π̃, γ̃, τ
and ν and to the parameters ρ and α. On the one hand, following Latouche, Birmele,

85



3.
E
T

SB
M

3.
E
T

SB
M

3.
E
T

SB
M

Ambroise (2012), the variational parameters π̃ and γ̃ only depend on τ and are updated
as follow:

γ̃q = γ0q +
M∑
i=1

τiq

π̃qr1 = π0
qr1 +

M∑
i ̸=j

τiqτjrAij, π̃qr2 = π0
qr2 +

M∑
i ̸=j

τiqτjr(1− Aij). (3.16)

On the other hand, ν, as well as ρ and α are optimised by a stochastic gradient
descent algorithm using Pytorch automatic differentiation (Paszke et al., 2019) and the
Adam optimiser (Kingma, Ba, 2014) with a learning rate of 10−4. Once both parts are
done, we only need to update τ using the already up-to-date parameters. To do so, we
switch from τ lying on the simplex ∆Q to the unconstrained space RQ−1 using for any
i ∈ V and q ∈ {1, . . . , Q− 1}:

ξiq = ln(τiq)− ln(τiQ).

We then use the automatic differentiation and the Adam optimiser with a learning rate of
0.55 to maximise the ELBO with respect to ξ. It is worth emphasising that the ELBO is
optimised over the whole set of allocation probability vectors τ = (τi)i contrary to STBM
which looks for a hard allocation of nodes to clusters, one allocation being optimised at a
time, all the others being fixed. Moreover, by optimising the entry of the encoder through
τ , thus looking for an optimal allocation of documents to pairs of clusters, the moves in τ

aim at uncovering the optimal direction in the posterior distribution in (θqr)qr maximising
the ELBO. In that regard, ETSBM has links with the quasi-branching bound algorithm of
Jouvin et al. (2021) for document clustering. Considering a unique core for illustration,
on an Intel(R) Core(TM) i7-10875H 2.30 GHz CPU and a Nvidia GeForce RTX 2080
Super 8 Go GPU, it takes about 15 seconds to analyse a dataset with 100 nodes and
1,000 documents. Moreover, studying a dataset with more than 200,000 documents, and
characterising all the connections between 1,500 nodes is done in approximately 6 minutes.
In practice, we emphasise that the running time can be reduced even more by considering
extensive parallelisation, as well as stochastic variational inference strategies adapted for
networks as in Gopalan, Blei (2013). The Python implementation of the complete method-
ology we propose is available at https://plmlab.math.cnrs.fr/rboutin/etsbm_package.

3.3.4 Model selection

Finally, the selection of the number of clusters Q is performed using the ELBO. It is
useful to remind that the model aims to select the number of clusters providing the most
meaningful results. Therefore, relying on Latouche, Birmele, Ambroise (2012), we take
advantage of the Bayesian framework that automatically penalises the complexity of the
model with respect to Q. The best number of clusters Q is then selected by estimating
the parameters for models with different numbers of clusters Q and keeping the one with
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the highest ELBO. Our experiment Section 3.2 confirms that this procedure provides a
relevant model selection criterion. In this chapter, the number of topics K is not selected.
Indeed, we choose to keep a high K as advocated in Dieng, Ruiz, Blei (2020). In practice,
once the inference of the topics is done, a classical approach consists in focusing the
interpretation on the results associated with the most frequent topics. As we shall see, in
the experiment section, provided that the value of K chosen is large enough, the proposed
procedure provides an accurate estimate of Q.

3.4 Numerical experiments

In this section, a series of experiments is presented to assess the proposed methodology.
First, three scenarios used for benchmarking are described. Second, an illustration of the
results provided by ETSBM on a simulated dataset from one of the scenarios is given.
Then, results from experiments to evaluate the model selection criterion on the three
scenarios considered are brought. Moreover, various strategies to initialise ETSBM are
compared. Finally, an extensive set of experiments on the three scenarios with three levels
of difficulty is carried out to evaluate the clustering performances of ETSBM against
competitive algorithms.

3.4.1 Simulation setup

The networks with textual edges are generated following three scenarios A, B, C, as
originally introduced in Bouveyron, Latouche, Zreik (2018).

Sampling networks with textual edges

• Scenario A is composed of three communities, each defining a cluster, and four top-
ics. By definition, a community is defined such that more connections are present
between nodes of the same community. For each cluster, a specific topic is employed
to sample all the documents associated with the corresponding intra-cluster connec-
tions. Besides, an extra topic is considered to model documents exchanged between
nodes from different clusters. Thus, by construction, the clustering structure can be
retrieved either using the network or the texts only.

• Scenario B is made of a single community and three topics. Thus, all nodes connect
with the same probability. Then, the community is split into two clusters with their
respective topics. An extra topic is used to model documents exchanged between
the two clusters. Therefore, in such a scenario, the network itself is not sufficient to
find the two clusters but the documents are.

• Scenario C is composed of three communities and three topics. Two of the commu-
nities are associated with their respective topics, say t1 and t2. Moreover, following
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the previous scenario, the third community is split into two clusters, one being associ-
ated with topic t1 and the other with t2. Thus, considering both texts and topology,
each network is made of four node clusters. Fundamentally, both textual data and
the network itself are necessary to uncover the clusters. This scenario will be of ma-
jor interest in this experiment section since it allows to ensure that the two sources
of information are correctly used to retrieve partitions.

The edges holding the documents are constructed by sampling words from four BBC
articles, focusing each on a given topic. The first topic deals with the UK monarchy,
the second with cancer treatments, and the third with the political landscape in the UK.
The last topic deals with astronomy. In the general setting, for all scenarios, the average
text length for the documents is set to 150 words. The parameters used to sample data
from the three scenarios are given in Table 3.1. Moreover, three examples of networks
generated from A, B and C are presented in Figure 3.3.

Clustering performance evaluation The main criterion used in the following to evaluate
the clustering performances of the different strategies is the adjusted random index (ARI).
ARI measures how close two partitions are. The closer ARI is to 1, the better the results
are. A random cluster assignment leads to an ARI of 0, while a perfect retrieval of the
cluster memberships gives an ARI of 1.

Scenario A Scenario B Scenario C
Q (clusters) 3 2 4
K (topics) 4 3 3

Communities 3 1 3

πqr (connection probabilities)
η = 0.25, ϵ = 0.01

Ñ
η ϵ ϵ

ϵ η ϵ

ϵ ϵ η

é Ç
η η

η η

å á
η ϵ ϵ ϵ

ϵ η ϵ ϵ

ϵ ϵ η η

ϵ ϵ η η

ë
Topics between pairs of clusters

(q, r)

Ñ
t1 t4 t4
t4 t2 t4
t4 t4 t3

é Ç
t1 t3
t3 t2

å á
t1 t3 t3 t3
t3 t2 t3 t3
t3 t3 t1 t3
t3 t3 t3 t2

ë
Sufficient information to uncover

the clusters
Network Topics Network & Topics

Table 3.1: Details of the three simulation scenarios to evaluate our model.

Different levels of difficulties To evaluate ETSBM against state-of-the-art STBM in
Sections 3.4.3 and 3.4.5, two levels of difficulty are introduced. The first one, named Hard
1, makes it particularly hard to distinguish connectivity patterns by using an intra-cluster
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Scenario A Scenario B Scenario C

Figure 3.3: An example of each scenario is presented. The node colours denote the cluster
memberships and the edge colours denote the most-used topic within the corresponding
documents. The scenarios A, B and C are composed of 3, 1 and 3 communities respec-
tively.

connectivity probability of 0.2. In Table 3.1, it corresponds to ϵ = 0.2 instead of 0.01. The
second one, named Hard 2, introduces difficulty on the text part by using smaller texts of
110 words on average instead of 150 and by adding noise. In our case, this translates into
fixing:

θqr = (1− ζ)θ⋆qr + ζ ∗
Å
1

K
, . . . ,

1

K

ã⊤
, (3.17)

with ζ = 0.7. Thus, for each pair of clusters (q, r), the texts are sampled according to a
mixture between a multinomial distribution with probability 1 on the corresponding topic
and a uniform distribution over all topics considered. Finally, the intra-cluster connection
probability is decreased from 0.2 to η = 0.1.

3.4.2 An introductory example

A first glimpse at the ETSBM results on a single network simulated with Scenario C is
presented here. In Figure 3.4, the evolution of the ELBO and ARI values are monitored at
each iteration of the inference of ETSM applied on this single simulated network. As we
can see, both the ELBO and the ARI increase after each iteration. In particular, starting
from the clustering initialisation with an ARI value of 0.62, the algorithm converges to a
value of 1, characterising a perfect cluster recovery. This figure illustrates the ability of
the methodology proposed to retrieve the true node partition, by combining the textual
and network data.

In addition, Figure 3.5 provides representations for the expected posterior estimates π̂
and γ̂ computed as follows π̂qr = π̃qr1/(π̃qr1+ π̃qr2) and γ̂q = γ̃q/(

∑Q
r=1 γ̃r). We emphasise

that the matrix characterises the connexion probabilities between clusters with a 10−2

rounding. It matches the expected connectivity structure described in Table 3.1.
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Figure 3.4: Evolution of ETSBM ELBO and ARI (y-axis) at each iteration (x-axis) on the
Scenario C after initialising τ with the K-means algorithm.

Eventually, the topics learnt as well as the clustering results on the network are pre-
sented in Figure 3.6. In the network representation, the node colours correspond to the
cluster memberships while the edge colours indicate the most used topic in the corre-
sponding documents. Moreover, for each topic tk with k ∈ {1, 2, 3}, the 10 words with
the highest probabilities, according to the corresponding topic vector βk, are displayed.
The three topics presented are well-separated and can be identified as the topics dealing
respectively with astronomy, the political landscape in the UK, and the UK monarchy, as
expected. In addition, four clusters have been retrieved and the edge topics, or colours,
match the description of the Scenario C setup. To conclude, ETSBM successfully renders
both the network topology and the edge topics.

Finally, Figure 3.7 provides a high-level representation of the results. On the one
hand, the “meta-nodes” represent ETSBM clusters and their size is proportional to the
number of nodes assigned to the corresponding clusters. Moreover, the “meta-node”
colours are consistent with the colours in Figure 3.6. On the other hand, the edges
represent the meta-documents. We recall that they correspond to the expected posterior
estimate of a document for a given pair of clusters. The edge colours correspond to
the most used topic within the meta-document. The edge widths are determined by the
posterior probabilities of connections between pairs of clusters. This figure underlines
ETSBM capability to produce an intelligible and accurate data summary. We emphasise
that graphs with thousands of edges, which sometimes cannot be represented because of
memory issues, are able to be summarised in easy-to-read meta-graphs.

To conclude, this introductory example showed the ETSBM capacity to render mean-
ingful summaries by combining both network and text information. It is worth reminding
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Figure 3.5: On the left-hand side, the expected posterior estimate of the connectivity
matrix Π provided by ETSBM. On the right-hand side, the expected posterior estimate of
the cluster proportions γ. The graph was generated following Scenario C.

that, since it comes from Scenario C, those results could not have been retrieved with
models handling only network or texts as SBM, LDA or ETM.

3.4.3 Effect of the initialisation

This experiment aims to evaluate the impact of the initialisation on the final performance of
our methodology. The networks are generated according to the Hard 2 difficulty, to easily
visualise the differences between the tested configurations. Moreover, the experiment is
performed on Scenario C to ensure both the network and textual data are used. Three
different initialisations are compared: clusters may be randomly assigned to the nodes
(random), or initial clusters can be determined by a K-Means algorithm fitted on the
adjacency matrix A. Finally, the dissimilarity procedure proposed in Bouveyron, Latouche,
Zreik (2018) is evaluated as the last initialisation strategy (dissimilarity). It uses both
network and textual information to build a similarity matrix based on the topics discussed
between nodes. Then, a K-means algorithm is performed on this similarity matrix to find
a cluster allocation for each node. This initialisation strategy requires providing the topic
proportion of each edge. Thus, ETM is trained on the texts and the estimated topic
proportions (θij)(i,j)∈E are used for the dissimilarity initialisation. Figure 3.8 presents the
ARI results with, for each initialisation strategy, a boxplot of the raw initialisation and
ETSBM clustering.

While the random initialisation is close to 0 for ARI, both the K-means and the dis-
similarity initialisation fluctuate in terms of ARI, with no clear advantage for one of the
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Figure 3.6: On the left-hand side, the top 10 words of each topic according to ETSBM
results. Thus, for each topic tk with k ∈ {1, 2, 3}, the 10 words with the highest probability
values, according to the corresponding topic vector βk, are displayed. On the right-hand
side, ETSBM clustering result is illustrated. The node colours indicate the node clusters
while the edge colours correspond to the most used topic within the document.

two strategies. However, ETSBM provides much better results with the dissimilarity ini-
tialisation than with K-means. It is also worth noticing that the gap between the random
and K-Means initialisations has largely been closed by ETSBM algorithm. One possibility
is that the model suffers the same flaws as SBM, which is for the ELBO to fall into local
minimum. The use of texts in the dissimilarity initialisation may limit this effect. There-
fore, we will only use the dissimilarity initialisation in the rest of the chapter as it provides
the best results in most cases.

3.4.4 Model selection

This experiment aims to assess the efficiency of the model selection criterion, presented
in Section 3.3.4. Let us remind that we do not aim at selecting the number of topics K
since it is handled afterwards. As a consequence, the model selection criterion is evaluated
for different values of K to ensure that the performances remain high, in all cases. For
each scenario, 50 networks are sampled following the setup described in Section 3.4.1.
For each network, ETSBM parameters are estimated taking the best initialisation out of
10. Table 3.2 presents the percentage of time a number Q is selected using the strategy
proposed in Section 3.3.4 over the 50 networks, for each K value. It is worth noticing that
the right model is selected more than 75% of the time, except for the Scenario B with
K = 5, slightly below with 68%. In addition, as advocated before, for K = 10, the right
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ETSBM clustering results represented with a meta-graph

Figure 3.7: Meta representation of ETSBM results. On the one hand, the clusters are
represented by the node colours, the node widths are proportional to the expected posterior
estimate of the cluster proportions, and their colours correspond to the same cluster colours
as in the network in Figure 3.6. On the other hand, the edges are coloured as the most
used topic within the meta-document and the widths are proportional to the posterior
probabilities of connections between clusters.

model is selected more than 80% of the time in each scenario. This experiment illustrates
the capacity of the model selection criterion to retrieve the number of clusters. Moreover,
keeping a high value of K is confirmed to be compatible with an efficient cluster number
selection.

3.4.5 Benchmark study

To end this section, ETSBM is evaluated against state-of-the-art clustering algorithms for
STBM. We recall that STBM is currently the only algorithm capable of simultaneously
analysing the texts on the edges as well as the node connections to cluster the nodes.
To provide baselines, we also give the results obtained with SBM as well as a spectral
clustering algorithm (SC) presented in Shi, Malik (2000); Von Luxburg (2007), with a
radial basis function as a kernel and a normalised symmetric Lagrangian. Those methods
are evaluated on the three levels of difficulty presented in Section 3.4.1. Besides, results
for LDA as well as ETM for text clustering are also provided. For each level of difficulty
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Figure 3.8: This figure displays the boxplots of the initialisation ARI (the boxplot without
stripe) and of ETSBM clustering ARI with the same initialisation (the boxplot with stripes).
This experiment was performed on 50 networks generated following Scenario C in the Hard
2 setting.

and each scenario, Table 3.3 displays the mean and the standard deviation of the ARI
values obtained over 50 graphs. Both the node and edge clusters ARI are provided but we
recall that the main interest of this model concerns the node clustering performances. In
the Easy and Hard 1 settings, the ARI is always 1, which indicates that the true partitions
are successfully retrieved by ETSBM and STBM. On the contrary, SBM and SC are not
able to distinguish clusters in Scenario B since all nodes connect one another with the
same probability. Identically, in Scenario C, SBM and SC alone cannot differentiate the
nodes highly connected but discussing different topics. For instance, in the Easy case, this
translates into an ARI of 0.01 and 0.69 respectively for SBM, and 0.00 and 0.63 respectively
for SC. In the Hard 2 setting, ETSBM node clustering significantly outperforms STBM.
In particular in Scenario C, Hard 2, ETSBM results reach an ARI of 0.91 against 0.63
for STBM. Even though it is not the main focus of this model, the edge ARI is always
higher than 0.84, which is satisfactory, and is competitive when not higher than STBM.
These significant gaps in the noisy settings highlight ETSBM clustering improvement
upon STBM. To conclude, our experiments strongly indicate that ETSBM node clustering
performances are either the same or significantly better than STBM.
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K

Q Scenario A Scenario B Scenario C
2 3 4 5 10 2 3 4 5 10 2 3 4 5 10

2 0 94 6 0 0 74 24 2 0 0 0 0 92 8 0

3 0 90 10 0 0 78 18 4 0 0 0 0 90 10 0

4 0 78 20 2 0 76 20 4 0 0 0 0 94 6 0

5 0 86 14 0 0 68 28 4 0 0 0 0 84 16 0

10 0 88 10 2 0 82 18 0 0 0 0 0 86 14 0

Table 3.2: This table presents the percentage of time a number of clusters have been
selected on 50 simulated networks. The experiment is repeated for different values of K,
and Scenarios A, B and C. For instance, in Scenario A with K = 3, the model with Q = 3

clusters was selected in 90% of cases.

3.5 Real World example: analysing the French presiden-
tial election with a Twitter dataset

In this section, we now consider the analysis of a real dataset. We start by describing
the context of the study. The dataset is then presented and the results obtained with
ETSBM are given. To complete this study, the results obtained with SBM and ETM
employed independently are also provided. Finally, a comparison of these results with the
ones obtained with ETSBM is performed.

3.5.1 Context

This section presents a use case on a Twitter dataset dealing with the French presidential
election of 2022. The election resulted in Emmanuel Macron being re-elected as President
of France. The objective is to use ETSBM to capture the global trends on Twitter
before the first round of the French presidential election in April 2022. The network has
been constructed using tweets collected by Linkfluence, a Meltwater company, during a
collaboration between journalists of the French newspaper Le Monde and two authors of
this article (Laurent, 2022). Newspapers such as Le Monde may be interested in having a
good understanding of the global dynamics on social media during an electoral period, to
understand the interest of the public opinion. Thus, interpretable topics and meaningful
clusters may help them get a grasp on the core factors interesting the elector. During the
last 50 years, the French political landscape has been split between two main parties, the
left-democrat, mainly represented by the socialist party, and the right-liberal, represented
by Les Républicains (formerly UMP). A shift occurred in 2017 when a three-way split
between the far-left political families, the centrists, or liberals, and the far-right emerged.
This analysis aims to capture the major topics discussed before the election. In addition,
we want to understand the way those topics shape interactions between user groups.
However, this study does not aim at making any form of prediction about the election.
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Table 3.3: Benchmark of our model against STBM, SBM, SC and LDA. When a model does
not provide information, a line is displayed instead of the result. For instance, SBM does not
provide edge information.

Scenario A Scenario B Scenario C

Node ARI Edge ARI Node ARI Edge ARI Node ARI Edge ARI

E
as

y

ETSBM 1.00± 0.00 0.99± 0.03 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

STBM 0.98± 0.04 0.98± 0.04 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

SBM 1.00± 0.00 −−−−−− 0.01± 0.01 −−−−−− 0.69± 0.07 −−−−−−
SC 0.97± 0.07 −−−−−− 0.00± 0.01 −−−−−− 0.63± 0.11 −−−−−−
LDA −−−−−− 0.97± 0.06 −−−−−− 1.00± 0.00 −−−−−− 1.00± 0.00

ETM −−−−−− 0.96± 0.14 −−−−−− 1.00± 0.00 −−−−−− 1.00± 0.00

H
ar

d
1

ETSBM 1.00± 0.00 0.95± 0.03 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.97± 0.04

STBM 1.00± 0.00 0.90± 0.13 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.98± 0.03

SBM 0.01± 0.01 −−−−−− 0.01± 0.01 −−−−−− 0.01± 0.01 −−−−−−
SC 0.00± 0.02 −−−−−− −0.00± 0.01 −−−−−− −0.00± 0.01 −−−−−−
LDA −−−−−− 0.90± 0.17 −−−−−− 1.00± 0.00 −−−−−− 0.99± 0.01

ETM −−−−−− 0.93± 0.07 −−−−−− 1.00± 0.00 −−−−−− 0.98± 0.03

H
ar

d
2

ETSBM 0.98± 0.06 0.83± 0.07 1.00± 0.00 0.86± 0.03 0.91± 0.12 0.84± 0.12

STBM 0.75± 0.27 0.82± 0.22 1.00± 0.00 1.00± 0.00 0.63± 0.19 0.77± 0.15

SBM 0.96± 0.05 −−−−−− 0.00± 0.00 −−−−−− 0.63± 0.11 −−−−−−
SC 0.98± 0.08 −−−−−− −0.00± 0.01 −−−−−− 0.60± 0.11 −−−−−−
LDA −−−−−− 0.77± 0.09 −−−−−− 0.88± 0.02 −−−−−− 0.84± 0.04

ETM −−−−−− 0.83± 0.08 −−−−−− 0.85± 0.03 −−−−−− 0.86± 0.04

3.5.2 Dataset construction and method

In the collected data, each node represents a Twitter account. An account i is connected
to j if the former retweeted the latter or if i “mentioned” j with an “@account_name" in a
tweet. The texts on the edges are the tweets themselves. Our database has been created
by saving any tweet talking about one of the twelve candidates. If several tweets appear
from i to j, the edge (i, j) holds all those tweets stacked together. We only keep edges
with text length greater than 100 characters. Then, a lemmatisation procedure is used
to reduce the vocabulary size. The “stopwords”, defined as non-informative words such as
“and” or “it”, are withdrawn, as well as numeric characters and words with a length inferior
to 3 characters. In the end, we keep the largest connected component of this graph. Our
dataset holds 2, 730 nodes and 403, 768 edges. This means that the graph is sparse at
94.58%. We emphasise that this level of sparsity is quite high and makes the data analysis
particularly challenging. The number of topics is set to K = 20. Also, for each Q value,
the model is trained for 10 different initialisations and the best result among those 10,
ELBO-wise, is kept. Then, the number of clusters is selected using our model selection
criterion. Figure 3.9 shows that the most appropriate model according to our criterion
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corresponds to a number of clusters Q = 5.
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Figure 3.9: After running ETSBM with a different number of clustersQ, the ELBO suggest
keeping five clusters.

3.5.3 Results

The meta-graph presented in Figure 3.10a is a high-level representation of the network.
The “meta-nodes” correspond to ETSBM clusters and the edges to the meta-documents
as defined in Equation (3.12). A translation of the top words is provided in Appendix
7.1. It is interesting to note the two types of clusters uncovered. In particular, Cluster
5 is composed of central accounts such as French politicians and their communication
teams, for instance Jean-Luc Mélenchon, Guillaume Peltier, En Marche #avecvous, les
Républicains or Eléonore Lhéritier. Some popular French media such as BFMTV, Le
Figaro, Valeurs actuelles, franceinfo are also in this cluster. On average, the accounts in
this cluster have been retweeted or mentioned 299 times against 12 times for the whole
network. This cluster does not correspond to a political trend but to accounts with a
high level of interactions with the rest of the graph. Despite the small size of this cluster,
composed of 25 nodes, ETSBM is able to detect it and render its central function as a
relay of information to other parts of the graph. This is stressed by Topic 1, the main
topic discussed within Cluster 5. It regards the election as a democratic process: “round",
“vote", “power", “president", and “first" which we assume stands for “first round". This
core cluster is retweeted differently by the four other clusters which on the contrary hold
clear political trends. Cluster 2 and Cluster 3 are interested in Jean-Luc Mélenchon (Topic
2) and left parties in general (Topic 4) but they seem to differ in terms of function.
Cluster 2 relays information about Jean-Luc Mélenchon and is interacting with Cluster 4,
interested in Eric Zemmour. On the contrary, Cluster 3 seems to only relegate content
without being retweeted. Eventually, Cluster 4, interested in Eric Zemmour (Topic 5),
appears to relegate content from the central accounts as well as sharing much of its own
content. This dynamic differs from Cluster 1 interested in Emmanuel Macron (Topic 3),
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which mainly retransmits information without many self-interactions. To conclude, the
three-way split of the French political landscape is rightfully captured. ETSBM is also able
to detect subtleties such as a split within the left wing, with the orange cluster interested
only in Jean-Luc Mélenchon and the biggest one exchanging about different left-political
front runners, Jean-Luc Mélenchon, Yannick Jadot, Fabien Roussel and Anne Hidalgo.
ETSBM combines the connection information, for instance all clusters are connected to
Cluster 5, and the topics information, for instance Cluster 2 and Cluster 3 should be
separated, to provide relevant insights about the information organisation within the social
network. This level of detail is promising and highlights how ETSBM gives a better
comprehension of the complex dataset at our disposal.

3.5.4 Comparison with SBM and ETM fitted independently

Description of the results We now give the results obtained using SBM and ETM
independently on the Twitter dataset in Figure 3.11. The number of topics is set to
K = 20 again, but only the ones appearing in the meta-graph are presented. As in the
previous section, we restrict the search of the number of clusters between 2 and 8 to keep
the results easily interpretable and to provide a fair comparison with ETSBM. The ICL
criterion selects a number of clusters Q = 8 which is the maximum value considered. SBM
detects a central cluster in terms of connectivity of the graph (cluster 8), such that all
other clusters are connected to it. It is composed of two accounts, the BMFTV account
as well as Jean-Luc Mélenchon account. Most connections deal with Topic 2, which is
very general but not informative.

Comparison with ETSBM results The topics in Figure 3.11 do not provide much in-
formation to understand the content of the connections in the network. In particular,
Topic 2, which is general and not specific, is the most used in the meta-network. This
can be explained by the independence between the construction of the clusters and the
content of the tweets. Therefore, the meta-documents exchanged between clusters have
no reason to be specific or to share a common topic. As a result, Topic 2 emerges as the
most used topic between clusters. Compared to ETSBM results, the connections are not
informative and the topics exchanged are too general to be considered for interpretation.
We emphasise that among the 20 topics estimated by ETM, some are very informative but
do not emerge in the meta-graph, backing the claim that the clusters are not meaningful.
In addition, the number of clusters selected by the ICL (8), is higher than the number
of clusters selected by ETSBM (5). Having a low number of clusters can help make the
results easier to understand.
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Topic 5

(a) Meta-network obtained with ETSBM. Each node corresponds to a cluster and the
node widths are proportional to the posterior cluster proportions. On the other hand, the
edges are coloured as the most used topics within the meta-documents and the widths are
proportional to the posterior probabilities of connections between clusters.
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(b) The most important words of the topics presented in the meta-graph above for ETSBM.
A translation is provided in Figure 7.1 of the appendix.

Figure 3.10: ETSBM results on the Twitter dataset for Q = 5 clusters.
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(a) Meta-network estimated with SBM. Each node corresponds to a cluster and the node
widths are proportional to the cluster proportions. On the other hand, the edges are
coloured as the most used topics of the documents exchanged between the pairs of clusters
found by SBM alone. Such topics are obtained by applying ETM alone. The widths of the
edges are proportional to the probabilities of connections between clusters.
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(b) Meta-topics estimated with ETM on the Twitter dataset. A translation is provided in
Figure 7.2 of the appendix.

Figure 3.11: SBM and ETM results on the Twitter dataset for Q = 8 clusters.
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3.6 Conclusion and discussion

The embedded topics for the stochastic block model (ETSBM) is well suited to simultane-
ously find meaningful node and edge clusters. In addition, ETSBM provides an intelligible
high-level representation of the graph. It can be used both on directed and undirected
graphs and is suited for large datasets thanks to the variational inference. The numerical
experiments showed that the ELBO is a relevant model selection criterion to estimate the
number of node clusters Q in this Bayesian framework. Moreover, this criterion provides
a good estimate of Q for a high number of topics K. In the end, a use case on a Twit-
ter dataset proved the usefulness of the method. ETSBM clustering results were both
meaningful and humanly intelligible. Further work may be directed toward the study of the
theoretical foundations of the model selection criterion proposed. Adding temporal infor-
mation concerning the connectivity patterns and the topics modelling could also contribute
to obtain useful information on the data.
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Chapter 4
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Topic Model
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Numerical interactions leading to users sharing textual content published by others are
naturally represented by a network where the individuals are associated with the nodes and
the exchanged texts with the edges. To understand those heterogeneous and complex data
structures, clustering nodes into homogeneous groups as well as rendering a comprehensible
visualisation of the data is mandatory. To address both issues, we introduce Deep-LPTM,
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a model-based clustering strategy relying on a variational graph autoencoder approach as
well as a probabilistic model to characterise the topics of discussion. Deep-LPTM allows
to build a joint representation of the nodes and the edges in two embedding spaces. The
parameters are inferred using a variational inference algorithm. We also introduce IC2L,
a model selection criterion specifically designed to choose models with relevant clustering
and visualisation properties. An extensive benchmark study on synthetic data is provided.
In particular, we find that Deep-LPTM better recovers the partitions of the nodes than
the state-of-the-art ETSBM and STBM. Eventually, the emails of the Enron company
are analysed and visualisations of the results are presented, with meaningful highlights of
the graph structure. The next section provides some motivating examples as well as our
contributions. In Section 4.2, we present the assumptions concerning the generation of
the data. The inference as well as the model selection criterion are presented in Section
4.3. In Section 4.4, Deep-LPTM and the impact of the initialisation are evaluated on
synthetic data. An extensive benchmark study against state-of-the-art methods is also
provided. Eventually, the emails of the Enron company are analysed with Deep-LPTM in
Section 4.5. The results as well as the visualisations are presented to illustrate the ease
of interpretation of the model outcomes.

4.1 Introduction

Numerical interactions between individuals often imply the creation of texts. For instance,
on social media such as Twitter, it is possible to publish some content, a tweet or a post,
that will in turn be republished, or re-twitted, by other accounts. Also, it is possible to
mention another account directly in the publication. In the same way, the exchange of
emails between collaborators can be seen as connections between accounts exchanging
documents. Both examples can be represented by a network with the nodes corresponding
to the accounts, and the edges to the exchanged texts. Such data structure is particularly
difficult to apprehend, due to the heterogeneity and the volume of the data. One solution
is to cluster homogeneous nodes into groups to obtain intelligible and useful information.
However, very few methods performing node clustering are able to simultaneously exploit
both the texts present on the edges and the connections.

In the following, we first present the advancements in the statistical network analysis
field. We then review some of the core probabilistic models that can capture the main
topics in a corpus of texts. Eventually, we close this section with models considering both
texts and networks to cluster nodes, before introducing the contribution of the present
work.

Main contributions of the chapter The model proposed in the present chapter is the
first to simultaneously cluster the nodes of a network, uncover the topics in the texts ex-
changed between the nodes and output a representation of both the topics and the edges
in a Euclidean space. To this aim, (i) we propose a generative model assuming that each
node and each edge is represented in a latent space by a mixture of Gaussians. By doing so,
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True network SBM & LDA ETSBM Deep−LPTM

Figure 4.1: Illustration of Deep-LPTM main contributions on a synthetic network. The
colours of the nodes and the edges denote the node clusters and the main topics of the
corresponding documents respectively. The true node partition as well as the true topics of
the documents are represented on the left-hand side. The three other figures are based on
the respective results of SBM and LDA (second figure), ETSBM (third figure) and Deep-
LPTM (fourth figure). Only Deep-LPTM is able to provide node positions incorporating
information about the network structure as well as the document contents. The four
figures were obtained with the gplot function from the sna library (Pavel N. Krivitsky et
al., 2003). While the first network is plotted manually to highlight the generative structure,
the two networks in the middle are based on the Fruchterman-Reingold algorithm while
the fourth graph uses the node positions estimated by Deep-LPTM.

we incorporate the clustering in the generative process such that each mixture component
models either a cluster of nodes or the documents exchanged between a pair of clusters
of nodes. Moreover, our model distinguishes itself from former methods by allowing each
node or edge to be represented by a latent position and not only by the group it belongs to.
This is illustrated in Figure 4.1, where the first graph depicts the true node clusters and
main topics of the corresponding documents of a simulated dataset. The second graph
gives, for this dataset, the node clusters provided by SBM and the topics estimated by
LDA. SBM does not retrieve the true node partition and does not provide node positions
to apprehend the results. An external algorithm, namely the Fruchterman-Reingold algo-
rithm (Fruchterman, Reingold, 1991), considering the presence of connections only in the
network, had to be used for graph representation. The third graph is based on state-of-
the-art ETSBM and does not recover the node partition either. Moreover, ETSBM is not
able to render a comprehensive representation of the full network. Again, as for SBM,
the Fruchterman-Reingold algorithm had to be used for graph representation Finally, the
figure on the right-hand side presents the Deep-LPTM results. As opposed to the previous
methods, Deep-LPTM is able to gather information about the network structure as well
as the exchanged documents into the node positions while finding the true node partition
and topics. A representation of the graph is directly obtained by the estimation procedure
such that no external graph representation algorithm is needed. As we shall see, the node
positions are computed by considering both the connections and the content of the cor-
responding documents. (ii) We derive a two-stage variational expectation-maximisation
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(VEM) algorithm for estimating the model parameters as well as the posterior parameters
of the latent positions. The first stage relies on analytical formulas to update the cluster
probabilities as well as the mixture parameters. The second stage uses a stochastic gra-
dient descent algorithm to update the expected lower bound with respect to the VGAE
parameters and the deep topic model parameters. In particular, the deep topic model can
make the best out of pre-trained embeddings. Thus, introducing semantic meaning into
the word representations is possible as well as learning the representation from scratch.
(iii) To choose the relevant numbers of clusters and latent space dimensions, we introduce
the integrated classification and latent likelihood (IC2L) for model selection. It extends
the integrated classification likelihood criterion, which was conceived for mixture models,
to account for the latent representations of the nodes and of the edges. The criterion
relevance is strongly upheld by the evaluation on synthetic data as well as the provided
real-world use case. Moreover, by selecting a low dimension regarding the node embedding
space, IC2L praises models with a strong and direct capacity of representation.

4.1.1 Notations

In this chapter, we are interested in data represented by a graph G := {V , E} where
V = {1, . . . , N} denotes the set of vertices. The set E denotes the edges between the
nodes with M = |E| the number of edges. We focus on binary a adjacency matrix A =

(Aij)ij ∈ MN×N({0, 1}) such that Aij equals 1 if (i, j) ∈ E , and 0 otherwise. The graph is
assumed to be directed and without any self-loop. Therefore Aii = 0 for all i ∈ V. Finally,
Q denotes the number of clusters of nodes.

Each edge in the graph represents a textual document sent from one node to another.
An edge from node i to node j exists or equivalently (i, j) ∈ E , if and only if node i sent
a textual document to node j, denoted Wij. We use a bag-of-word representation of the
texts where Wij =

(
W 1

ij, . . . ,W
V
ij

)
∈ NV denotes the vector of word occurrences in the

document between nodes i and j such that W v
ij is the number of times word v appears in

the document, Mij =
∑V

v=1W
v
ij is the total number of words in document Wij and V the

size of the vocabulary. The set of documents will be denoted W := (Wij)(i,j)∈E and the
number of topics is denoted by K. Eventually, the simplex of dimension d will be denoted
∆d.

4.2 Model

In the following, the assumptions about the graph generation as well as the hypothesis
concerning the construction of the documents are presented.

4.2.1 Graph generation

Assuming that the number of clusters Q is fixed beforehand, each node i is assumed to
belong to a cluster, represented by the cluster membership variable Ci. The variables Ci,
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for any i ∈ V, are assumed to be independent and identically distributed (i.i.d) according
to a multinomial distribution such that for any node i ∈ {1, . . . , N}:

Ci ∼ MQ(1, γ), (4.1)

with γ ∈ ∆Q and Ci ∈ {0, 1}Q being one hot encoded so that Ciq = 1 if node i belongs to
cluster q and Ciq = 0 otherwise. Thus, denoting C = (C1, . . . , CN)

T ∈ MN×Q({0, 1}) the
cluster membership matrix, we have:

p(C | γ) =
N∏
i=1

Q∏
q=1

γCiq
q . (4.2)

Moreover, given its cluster membership, the node i is assumed to be represented by a
Gaussian vector Zi in a p dimensional latent space such that:

Zi | Ciq = 1 ∼ N
(
µq, σ

2
qIp
)
. (4.3)

Eventually, the connection between two nodes is assumed to depend on the closeness of
the node representations in the latent space. Therefore, denoting ηij := κ − ∥Zi − Zj∥,
the probability for node i to be connected to node j is:

P (Aij = 1 | Zi, Zj, κ) =
1

1 + e−ηij
, (4.4)

where a logistic function is used as a link function. For the sake of brevity, we will denote
pij = (1 + e−ηij)

−1. Finally, the joint-distribution of the adjacency matrix, the latent node
vectors, as well as the cluster memberships can be factorised as follows:

p(A,Z,C | κ,µ,σ, γ) = p(A | Z, κ)p(Z | C,µ,σ)p(C | γ). (4.5)

where µ = (µq)q and σ = (σq)q. It is worth noticing that the model described in Equations
(4.1), (4.3) and (4.4) corresponds to the latent position cluster model Handcock, Raftery,
Tantrum (2007). The fundamental difference with our approach for this part of the model
will arise in the inference, as discussed in Section 4.3.

4.2.2 Generation of the texts on the edges

At the core of our approach is the motivation to be able to use textual data to obtain
more homogeneous and meaningful clusters.

To begin with, we assume that each edge can be represented in a latent space by a
Gaussian vector, depending only on the node cluster memberships. Thus, given (Ci)i∈V ,
the latent variables Yij are assumed to be i.i.d such that:

Yij | AijCiqCjr = 1 ∼ N (mqr, s
2
qrIK), ∀(i, j) ∈ E , (4.6)

where mqr ∈ RK , sqr ∈ R+ and Y = (Yij)ij.
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Figure 4.2: Graphical representation of the model without the parameters for the sake of
clarity.

Moreover, we assume that the topic proportions of the document Wij, denoted θij,
can be deduced from the latent variables such that:

θij = softmax(Yij), (4.7)

where softmax(x) =
Ä∑F

f=1 e
xf

ä−1
(ex1 , . . . , exF )⊤ if x ∈ RF .

Hence, assuming that the documents are i.i.d given their corresponding topic propor-
tions, we have for any edge (i, j) ∈ E :

Wij | Aij = 1, θij ∼ MV

(
Mij,β

⊤θij
)
, (4.8)

where βk = softmax(ρ⊤αk) ∈ RV , β = (β1 . . . βK)
⊤ ∈ MK×V (R), ρ ∈ ML×V (R),

αk ∈ RL and α = (α1 . . . αK) ∈ ML×K(R). Thus, denoting m = (mqr)qr, s = (sqr)qr,
the joint likelihood of the texts, the latent representation of the documents, as well as the
clusters memberships can be computed as:

p(W,Y | A,C,ρ,α,m, s) = p(W | A,Y,ρ,α)p(Y | A,C,m, s), (4.9)

where m = (mqr)1≤q,r≤Q and s = (sqr)1≤q,r≤Q.
Figure 4.2 gives a graphical representation of the generative assumptions presented

above. We omitted the parameters for the sake of clarity but the full version can be found
in Appendix 7.3. Interestingly enough, those assumptions can be linked to existing models
as we shall see in the next section.

4.2.3 Link with other models

On the one hand, if the topic modelling alone is considered, restricting all topic proportions
to be equal for all (i, j) such that CiqCjr = 1 corresponds to the text modelling in ETSBM
(Boutin, Bouveyron, Latouche, 2023). In that sense, Deep-LPTM increases the freedom
of each edge representation compared to ETSBM. Additionally, Deep-LPM corresponds to
Deep-LPTM when the textual data present on the edges are disposed of (or LPCM if no
GCN-based encoder is used in the inference strategy). Accordingly, Deep-LPTM prolongs
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Deep-LPM and LPCM to networks with textual data. On the other hand, discarding the
information provided by the graph and the clustering of the nodes would correspond to
ETM applied to the observed documents. Therefore, Deep-LPTM extends ETM to texts
with a connectivity structure to improve the topic modelling.

4.3 Inference

In the next section, the inference of the model is presented as well as the model selection
criterion.

4.3.1 Likelihood

In this work, we consider the marginal likelihood of the network and the texts for parameter
estimation. The latent variables are denoted by C = (Ci)

N
i=1, Z = (Zi)

N
i=1 and Y =

(Yij)(i,j)∈E , and the set of parameters is Θ = {γ,µ,σ, κ,m, s,α,ρ} .Thus, the marginal
log-likelihood is given by:

L(Θ;A,W) = log p(A,W | Θ) = log

(∑
C

∫
Z

∫
Y

p(A,W,C,Z,Y | Θ)dZdY

)
. (4.10)

Unfortunately, this quantity is not tractable since the sum over C requires to compute QN

terms. Besides, it involves integrals that cannot be computed analytically. Therefore, we
choose to rely on a variational inference approach for approximation purposes.

Decomposition of the marginal log-likelihood For any distribution R(C,Z,Y), the
following decomposition holds:

L(Θ;A,W ) = L (R(·); Θ) + KL(R(·)||p(C,Z,Y | A,W)), (4.11)

where

L (R(·); Θ) = ER

ï
log

p(A,W,C,Z,Y | Θ)

R(C,Z,Y)

ò
. (4.12)

Since the Kullback-Leibler divergence is always positive in Equation (4.11), the ELBO
L (R(·); Θ) is a lower bound of the marginal log-likelihood. Moreover, the closer R(·) is to
the posterior distribution of the latent variables, in terms of Kullback-Leibler divergence,
the closer the ELBO is to the marginal log-likelihood. Since the marginal log-likelihood
does not depend on R(·), maximizing the ELBO with respect to R(·) is equivalent to
minimizing the Kullback-Leibler divergence between R(·) and the posterior distribution. To
make the ELBO tractable, we restrict the family of variational distributions by considering
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a mean-field assumption as well as the following hypotheses:

R(C,Z,Y | A,W) = R(C)R(Z | A)R(Y | A,W), (4.13)

R(C) =
N∏
i=1

Rτi(Ci) =
N∏
i=1

MQ(Ci; 1, τi), (4.14)

R(Z | A) =
N∏
i=1

RϕZ
(Zi | A) =

N∏
i=1

N (Zi;µϕZ
(A)i, σ

2
ϕZ
(A)iIP ), (4.15)

R(Y | A,W) =
∏
i ̸=j

RϕY
(Yij | Wij)

Aij =
∏
i ̸=j

N
(
Yij;µϕY

(Wij), diag
(
σ2
ϕY
(Wij)

))Aij ,

(4.16)

where τ = (τi)
N
i=1 with ∀i ∈ {1, . . . , N}, τi ∈ ∆Q. Moreover, in Equation 4.15, the map-

ping µϕZ
: MN×N(R) 7→ MN×P (R) (σ2

ϕZ
: MN×N(R) 7→ (R+)N respectively) is

the mapping normalising the adjacency matrix by its degree, D−1/2AA−1/2, and encoding
the normalised adjacency matrix into the approximated posterior means (standard devia-
tions) of the node latent positions. The diagonal matrix D is filled with Dii, the degree
of node i, for all nodes. The two mappings µϕZ

and σ2
ϕZ

rely on a GCN parametrised by
ϕZ (Kipf, Welling, 2016). Similarly, in Equation 4.16, µϕY

: MM×V (R) 7→ MM×K(R)
(σ2

ϕY
: MM×V (R) 7→ MM×K(R+) respectively) encodes the documents into the ap-

proximated posterior means (standard deviations) of their corresponding latent vectors.
However, the two functions rely on the ETM encoder with parameter ϕY (Dieng, Ruiz,
Blei, 2020). In practice, in all the experiments we carried out, we used a feed-forward
neural network to encode the documents, with three layers and 800 units on each layer.
The first two layers are shared to encode the variances and the means while the last
layer is specific to each vector. Regarding the encoder of the adjacency matrix, we
rely on Kipf, Welling (2016) such that, µϕZ

(A) = ÃReLU(ÃW0)Wµ and log σ2
ϕZ
(A) =

ÃReLU(ÃW0)Wσ, where Ã = D−1/2AD−1/2 and ReLU(x) = (max(0, x1), . . . ,max(0, xF ))

if x ∈ RF . µϕZ
(·) and log σ2

ϕZ
(·) share the first-layer parameter W0 ∈ MN×D with D = 10

in all the experiments we carried out, and Wµ,Wσ ∈ MD×P . For the sake of brevity, we
will take the exponential of the encoder of the log variance and consider σ2

ϕZ
(·).

Thus, the ELBO can be decomposed as follow :

L (R(·); Θ) = ER [log p(A | Z, κ)] + ER [log p(W | A,Y,ρ,α)] + ER [log p(C | γ)]
+ ER [log p(Z | C,µ,σ)] + ER [log p(Y | A,C,m, s)]− ER [logR(C)]

− ER [logR(Z | A)]− ER [logR(Y | A,W)] . (4.17)

The computation of each term in Equation (4.17) is detailed in Appendix 7.3.2. To opti-
mise the ELBO, we propose here to alternate between closed-form updates and stochastic
gradient descent steps thanks to the results presented in the next section.
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4.3.2 Optimisation

Analytical updates

Given a variational distribution R(·) complying with Equations (4.13) to (4.16), the model
parameters, as well as τ , can be updated using Propositions (4) and (5).

Proposition 4. Let R(·) be a variational distribution complying with Equations (4.13) to
(4.16). The parameters of the node embedding distributions maximising the ELBO are
given by:

µq =
1

Nq

N∑
i=1

τiqµϕZ
(A)i, (4.18)

σ2
q =

1

pNq

N∑
i=1

τiq
(
pσ2

ϕZ
(A)i + ∥µϕZ

(A)i − µq∥22
)
, (4.19)

where Nq =
∑N

i=1 τiq is the posterior mean of the number of nodes in cluster q.

Proof. The proof is given in Appendix 7.3.3.

Interestingly, this proposition states that the µq are the weighted mean of the (approx-
imated) posterior mean nodes positions µϕZ

provided by the DNN. It also indicates that
each σq is updated as the sum of two terms: the first one corresponds to a weighted mean
of the posterior variances while the second one is the intra-cluster variance weighted by
the posterior clusters membership probabilities τi.

Proposition 5. For a given variational distribution R(·) complying with Equations (4.13) to
(4.16), with parameters τ, µϕY

, σϕY
, the parameters of the edge embeddings distributions

maximising the ELBO are given by:

mqr =
1

Nqr

N∑
i,j=1

AijτiqτjrµϕY
(Wij), (4.20)

s2qr =
1

KNqr

N∑
i,j=1

Aijτiqτjr

[
K∑
k=1

σ2
ϕY
(Wij)k + ∥µϕY

(Wij)−mqr∥22

]
, (4.21)

where Nqr =
∑N

i,j=1Aijτiqτjr denotes the expected number of documents sent from cluster
q to cluster r under the approximated posterior distribution.

Proof. The proof is given in Appendix 7.3.3

The interpretation following Proposition 4 can also be applied to Proposition 5 while
a second DNN is used. The main difference lies in the weighting that here corresponds to
the probability that the pair of nodes composing each edge belong to a pair of clusters.
For instance, for the edge (i, j), the posterior probability that node i belongs to cluster q
and node j to cluster r is given by τiqτjr.
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Proposition 6. For a given variational distribution R(·) complying with Equations (4.13)
to (4.16), with parameters τ, µϕY

, σϕY
, the parameters τiq maximising the ELBO is given

by:

τiq =
γqe

−KLZ
iq −

∑
j ̸=i

∑Q
r=1(AijτjrK

Y
ij,qr+Ajiτjr KLY

jirq)∑Q
l=1 γle

−KLZ
il −

∑
j ̸=i

∑Q

l′=1

(
Aijτjl′K

Y
ij,ll′+Ajiτjl′ KLY

jil′l

) .

Proof. The proof is given in Appendix 7.3.3.

The stochastic gradient descent

The other model parameters κ,ρ and α, and variational parameters ϕZ and ϕY cannot
be updated with analytical formulas because of the integral involving the variational dis-
tribution R(·) in the ELBO. In the following section, we aim at deriving estimates of the
gradients of the ELBO with respect to these parameters, to perform stochastic gradient
descent.

Model parameters The partial derivatives of the ELBO with respect to each parameter
κ, ρ and α are obtained thanks to Monte-Carlo estimates. For instance, the gradient of
the ELBO with respect to κ is estimated by:

∂

∂κ
L (R(·); Θ) =

∂

∂κ
ER [log p(A | Z, κ)]

= ER

ï
∂

∂κ
log p(A | Z, κ)

ò
≈ 1

S

S∑
s=1

∂

∂κ
log p(A | Z(s), κ),

where Z(s) = (Z
(s)
1 , . . . , Z

(s)
N ) and Z

(s)
i

i.i.d∼ N (µϕZ
(A)i, σ

2
ϕZ
(A)iIp). The same computa-

tions result in estimates for the partial derivatives of the ELBO with respect to ρ and α.
In practice, we rely on the common practice in the field of VAE and set S = 1.

Variational parameters The last parameters to update are the variational parameters
ϕY and ϕZ . Ideally, we would like to use the same computation as in the previous section.
For instance, we would like to compute the following partial derivates of the ELBO with
respect to ϕZ :

∂

∂ϕZ

L (R(·); Θ) =
∂

∂ϕZ

ER [log p(A | Z, κ) + log p(Z | C,µ,σ)− logR(Z)]

=
∂

∂ϕZ

ER [log p(A | Z, κ)]]

−
N∑
i=1

Q∑
q=1

τiq
∂

∂ϕZ

KLZ
iq (µϕZ

(A)i, σϕZ
(A)i, µq, σq) , (4.22)
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with

KLZ
iq (µϕZ

(A)i, σϕZ
(A)i, µq, σq) = log

σp
q

σϕZ
(A)pi

− p

2
+
pσ2

ϕZ
(A)i + ∥µϕZ

(A)i − µq∥22
2σ2

q

.

See Appendix 7.4 for the computational details. Unfortunately, the expectation of the term
ER [log p(A | Z, κ)], is taken with respect to the variational distribution which depends on
ϕZ . Therefore, the derivation of this quantity is not straightforward. Thanks to Kingma,
Welling (2014) and Rezende, Mohamed, Wierstra (2014), this difficulty can be tackled
by using the reparametrisation trick. In particular, let εi be a centred, normalised and P -
dimensional Gaussian vector. Hence, the vectors Zi and µϕZ

(A)i⊕ [σϕZ
(A)i ⊙ εi] have the

same distribution. Therefore, the expectation can be taken with respect to ϵ = (εi)i=1...,N

which gives:

∂

∂ϕZ

ER [log p(A | Z, κ)]] = ∂

∂ϕZ

Eε

[
log p (A | µϕZ

(A)⊕ [σϕZ
(A)⊙ ϵ] , κ)

]
,

where µϕZ
(A)⊕[σϕZ

(A)⊙ ϵ] =
(
µϕZ

(A)i⊕[σϕZ
(A)i ⊙ εi]

)
i=1,...,N

, ⊙ denotes the Hadamard

product and ⊕ the element-wise sum. A Monte-Carlo estimate of this quantity is derived
by sampling S centred and reduced P -dimensional Gaussian vectors ϵ(s)i with s = 1, . . . , S,
i = 1, . . . , N and with ϵ(s) = (ε

(s)
i )i=1,...,N . Plugging it back into (4.22) gives the following

estimate:

∂

∂ϕZ

L (R(·); Θ) ≈ 1

S

S∑
s=1

[ ∂

∂ϕZ

log p
Ä
A | µϕZ

(A)⊕
î
σϕZ

(A)⊙ ϵ(s)
ó
, κ
ä]

−
N∑
i=1

Q∑
q=1

τiq
∂

∂ϕZ

KLZ
iq

(
µϕZ

(A)i, σ
2
ϕZ
(A)i, µq, σ

2
q

)
.

The same derivation steps lead to a similar estimate for the partial derivatives of the
ELBO with respect to ϕY . Thanks to the low variances of the gradients estimated with
the reparametrisation trick and to avoid increasing the computations, we use a sample
size S = 1, as advised in the VAE literature. In addition, the computation of the partial
derivatives is implemented with Pytorch automatic differentiation framework (Paszke et
al., 2019) to take full advantage of the computational efficiency of GPUs. Moreover,
we rely on the Adam optimiser (Kingma, Ba, 2014) to carry out the stochastic gradient
descent with a learning rate of 0.002 (0.005 respectively) for the optimiser of κ and ϕZ

(ϕY respectively).

4.3.3 Model selection

To complete the inference, we present IC2L, a new model selection criterion account-
ing for both the clustering partition as well as the latent representations. In all previous
sections, we considered the number of clusters Q, the number of topics K and the di-
mension of the node latent space P fixed beforehand. In this section, we aim at selecting
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the triplet (K,P,Q) that captures the most information out of the data without over-
parametrisation. The integrated complete (or classification) likelihood (ICL) (Biernacki,
Celeux, Govaert, 2000) was introduced for mixture models and is now a common model
selection criterion in this context.

First, considering a mixture model M , with observed data X, latent cluster member-
ships C, Q clusters and the distribution parameters in the set Θ, the complete likelihood
refers to p(X,C | M , Q,Θ). This quantity depends on both the clustering and the model
parameters. Then, to account for the uncertainty over the set of parameters and to pe-
nalise the model complexity, Biernacki, Celeux, Govaert (2000) proposed to integrate over
Θ and to evaluate the quantity log p(X,C | M , Q) =

∫
θ∈Θ log p(X,C | M , Q, θ)dθ. Since

the integral is not tractable for many statistical models, the authors relied on a BIC-like
approximation of this quantity, as presented in Chapter 2.1.6. In the present section, we
propose to extend ICL to include the evaluation of the node embeddings Z, as well as the
edge embeddings Y. Denoting M the model presented in Sections 4.2.1 and 4.2.2, we
are interested in:

log p(A,W,Z,Y,C | M , Q,K, P ) = log

∫
θ

p(A,W,Z,Y,C | θ,M , Q,K, P )p(θ)dθ.

(4.23)
Since this quantity is not tractable, we derive an estimate in the following proposition.

Proposition 7. Let us consider a model M , as described in Section 4.2, with Q denoting
the number of clusters, K the number of topics and P the dimension of the node latent
space. In addition, let us assume that the prior distribution over the model parameters
fully factorises, as p(κ, γ,µ,σ,m, s,ρ,α) = p(κ)p(γ)p(µ)p(σ)p(m)p(s)p(ρ)p(α). Then,
the IC2L criterion is given by:

IC2L(M , Q,K, P, Ẑ, Ŷ, Ĉ) =max
θ

log p(A,W, Ẑ, Ŷ, Ĉ | θ,M , Q,K, P )

− Ω(M , Q,K, P ).

Denoting this quantity ˆIC2L(M , Q,K, P ) to avoid cumbersome notations, we obtain:’IC2L(M , Q,K, P ) =max
κ

log p(A | Ẑ, κ,M )− 1

2
log(N(N − 1))

+ max
µ,σ

log p(Ẑ | Ĉ,µ,σ,M , Q, P )− QP +Q

2
log(N)

+ max
ρ,α

log p(W | A, Ŷ,ρ,α,M )− V L+KL

2
log(M)

+ max
m,s

log p(Ŷ | A, Ĉ,m, s,M , K)− Q2K +Q2

2
log(M)

+ max
γ

log p(Ĉ | γ,M , Q)− Q− 1

2
log(N),

with Ẑ, Ŷ and, Ĉ the maximum-a-posteriori estimates, and

Ω(M , Q,K, P ) =
1

2
log(N(N − 1))

+
Q(P + 2)− 1

2
log(N) +

L(V +K) +Q2(K + 1)

2
log(M).
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Scenario A Scenario B Scenario C

Figure 4.3: Networks sampled from each scenario. The node colours denote the node
cluster memberships and the edge colours denote the majority topic in the corresponding
documents.

Proof. See Appendix 7.3.3.

Ultimately, the relevance of this criterion as well as the parameter estimations are
assessed in the next section on synthetic data. Moreover, an extensive comparison with
baseline methods is provided.

4.4 Numerical experiments

This section is dedicated to the assessment of the proposed methodology. We start
with an introductory example to illustrate the results obtained with Deep-LPTM. We
continue with an evaluation of the initialisation impact on our method. Then, we move
on to Section 4.4.4 to provide numerical evidence of the robustness of IC2L against the
dimensions of the parameter spaces. We close this section with a benchmark study to
compare Deep-LPTM with the state-of-the-art ETSBM and STBM. Our code is available
at https://plmlab.math.cnrs.fr/rboutin/deeplptm_package.

4.4.1 Simulation settings

To begin with, we introduce three simulation scenarios to be used for evaluating the
methodology on different conditions detailed hereinafter.

Scenarios

• Scenario A is constituted of three communities, each defining a cluster, and four
topics. By definition, a community is a group of nodes more densely connected
together than with the rest of the network. For each cluster, a specific topic is
employed to sample the documents associated with the intra-cluster connections.
Besides, an extra topic is employed to model documents sent between nodes from
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different clusters. Hence, by construction, the clustering structure can be retrieved
either using the network or the texts only.

• Scenario B is made of a single community and three topics. Consequently, all nodes
connect with the same probability. Then, the nodes are spread into two clusters
using distinct topics. An extra topic is used to model documents exchanged between
the two clusters. Accordingly, the network itself is not sufficient to find the two
clusters but the documents are.

• Scenario C comprises three communities and three topics. Two of the communities
are associated with their respective topics, say t1 and t2. Furthermore, following
Scenario B, the third community is split into two clusters, one being associated with
topic t1 and the other with t2. Thus, considering both texts and topology, each
network is made up of four clusters of nodes. Consequently, both textual data and
the network are necessary to uncover the clusters. This scenario will be of major
interest in this experiment section since it ensures that the two sources of information
are correctly used to uncover the node partition.

For all scenarios, networks with 100 nodes are sampled and the edges holding the docu-
ments are constructed by sampling words from four BBC articles, focusing each on a given
topic. The first topic deals with the UK monarchy, the second with cancer treatments,
the third with the political landscape in the UK and the last topic deals with astronomy.
In the general setting, for all scenarios, the average text length for the documents is set
to 150 words. The parameters used to sample data from the three scenarios are given in
Table 4.1. Moreover, three examples of networks generated from A, B and C are pre-
sented in Figure 4.3. To summarise, the three proposed scenarios inspect different facets
of the model. Scenario A ensures that the model rightfully uses the network structure,
and Scenario B focuses on the usage of the topics to recover the node partition. Finally,
Scenario C combines the two scenarios to guarantee that both sources of information are
correctly utilised simultaneously.

Clustering performance evaluation The adjusted rand index (ARI) is used as a measure
of the closeness between two partitions. In this chapter, ARI compares the true node labels
with the node partition provided by a model. In particular, obtaining an ARI of 0 suggests
that the clustering is as close to the true node labels as a random cluster assignment
of the nodes. On the contrary, the closer the ARI is to 1, the better the results are.
Ultimately, an ARI of 1 signifies that the true partition was perfectly recovered (up to a
label permutation).

Level of difficulty To generate more situations from the three scenarios, we introduce
the Hard difficulty to test the model robustness against two aspects. First, we want to
test the model against documents using several topics. Thus, in the Hard difficulty, the
documents are formed of multiple topics such that, for any edge (i, j) with node i in
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Scenario A Scenario B Scenario C
Q (clusters) 3 2 4

K (topics) 4 3 3

Communities 3 1 3

γqr (connection probabilities)
η = 0.25, ϵ = 0.01

Ñ
η ϵ ϵ

ϵ η ϵ

ϵ ϵ η

é Ç
η η

η η

å á
η ϵ ϵ ϵ

ϵ η ϵ ϵ

ϵ ϵ η η

ϵ ϵ η η

ë
Topics matrix T between pairs of

clusters (q, r)

Ñ
t1 t4 t4
t4 t2 t4
t4 t4 t3

é Ç
t1 t3
t3 t2

å á
t1 t3 t3 t3
t3 t2 t3 t3
t3 t3 t1 t3
t3 t3 t3 t2

ë
Table 4.1: Details of the three simulation scenarios used to evaluate our model.

cluster q and node j in cluster r, the topic proportions are computed as a ratio between
the pure topic proportions θ⋆qr ∈ {0, 1}K , with zeros everywhere except at the coordinate
corresponding to the true topic, and between the uniform distribution over the topics. This
combination is controlled by a parameter ζ such that ζ = 0 corresponds to a pure topic
case while ζ = 1 leads to a uniform distribution over the topics. This translates into:

θqr = (1− ζ)θ⋆qr + ζ ∗
Å
1

K
, . . . ,

1

K

ã⊤
, (4.24)

with ζ = 0.7 in the Hard setting. The second aspect tested by the Hard setting is the
robustness in the presence of less connected communities. Consequently, the intra-cluster
connection probability is decreased from η = 0.25 in the classical setting to η = 0.1 in the
Hard one.

4.4.2 Main features of Deep-LPTM

This section gives an overview of the main features of Deep-LPTM on one network sim-
ulated according to Scenario A, with an intra-cluster connection probability η equal to
0.15, an inter-cluster connection probability ϵ fixed to 0.05 and the parameter control-
ling the topic proportions ζ set to 0.5. In addition, ϕY ,ρ,α, the parameters referring to
the topic modelling, are pre-trained for only 5 epochs with ETM alone. Conversely, the
parameters ϕZ , κ,µ,σ, related to network modelling, are randomly initialised without pre-
training to illustrate the evolution of the node embeddings during the optimisation. In the
rest of the chapter, those parameters will be pre-trained by running ETM and Deep-LPM
independently beforehand.

On the one hand, the evolution of the ELBO as well as the ARI of the nodes and the
edges are presented in Figure 4.4. The node ARI and the edge ARI increase to reach an
ARI of 1 following the evolution of the ELBO. We only display the first 200 epochs for
the sake of clarity, but the entire training is provided in the appendix.
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Figure 4.4: Evolution of the ELBO, as well as the node and edge ARI during the optimi-
sation of Deep-LPTM.

Iteration 1 Iteration 333 Iteration 666 Iteration 1000

Figure 4.5: Evolution of the latent node positions during the training of Deep-LPTM.
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Cluster 1
Cluster 2
Cluster 3

Topic 1
Topic 2
Topic 3
Topic 4

Figure 4.6: The meta-network is a representation of the network at the cluster level based
on Deep-LPTM estimates. Each cluster is represented by a node, the node sizes depend
on the number of nodes assigned to each cluster, the node positions as well as the major
topics between two connected clusters (denoted by the colours of the edges) are estimated
by the parameters (µq)q as well as (mqr)qr respectively and the sizes of the edges depend
on the number of connections between two clusters.

On the other hand, Figure 4.5 features the evolution of the node latent positions during
the training. Interestingly enough, Deep-LPTM finds a meaningful representation of the
network even with a random initialisation. This difficult problem requires training the model
longer when no initialisation is provided. In the rest of the chapter, the GCN parameters
as well as the topic model parameters are initialised beforehand. In addition, the node
cluster membership probabilities are initialised with a similarity-based method between the
topic proportions θ of the node neighbours (Bouveyron, Latouche, Zreik, 2018).

The meta-network, represented in Figure 4.6, describes the connectivity at the cluster
level. The node sizes depend on the number of nodes assigned to each cluster q and are
given by

∑N
i=1 Ĉiq, with Ĉiq = 1 if arg maxrτir = q and 0 otherwise. The cluster positions

are estimated by (µq)q and the major topics (denoted by the colours of the edges on the
figure) between two clusters are estimated by the mqr for all pairs of clusters (q, r). Finally,
the sizes of the edges depend on the number of connections between clusters, given by∑N

i,j=1 ĈiqĈjr for all pairs of clusters (q, r).
Eventually, Table 4.2 presents the topics obtained by Deep-LPTM. They are both

very interpretable and distinguishable one from another which is crucial to understand
complicated datasets. This will be stressed in the analysis of the Enron email dataset in
Section 4.5.

4.4.3 Impact of the initialisation and the pre-trained embeddings

This section aims to evaluate the improvement of our method upon the initialisation, with a
warm start and without. In this regard, Table 4.3 presents the ARI of a random initialisation
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Table 4.2: Topics of the model in Scenario A Easy

1 2 3 4

1 cancer black princess seats
2 cell hole birth david
3 occur gravity charlotte political
4 genes light cambridge lost
5 cancers shadow queen kingdom
6 due credit granddaughter black
7 mutations event duchess party
8 radiation disc palace part
9 princess princess london resentment

10 include horizon great united

as well as a dissimilarity initialisation (Bouveyron, Latouche, Zreik, 2018), denoted random
and dissimilarity respectively, in Table 4.3. The initialisation alone (without any model
name preceding it in the table) as well as the model with the initialisations (with the model
preceding the initialisation) are provided. Moreover, the Deep-LPTM node clustering is
evaluated with and without pre-trained skipgram embeddings (Mikolov, Chen, et al., 2013),
denoted PT in the table. The results are obtained by averaging the ARI over 10 graphs
for each scenario and difficulty and can be summarised in three points.

First, in all cases where the initialisation has not already reached an ARI of 1, Deep-
LPTM improves the node clustering, even in difficult settings with no warm start. For
instance, in Scenario A with the Hard setting, the model starts from an ARI of 0.31,
with the dissimilarity initialisation, to reach 0.99 and 1.00 without and with pre-trained
embeddings respectively.

Second, the improvement provided by the pre-trained embeddings depends on the sce-
nario. On the one hand, Scenario A benefits from the usage of pre-trained embeddings
which always improves the results. For instance, in the Hard setting with random initiali-
sation, the ARI increases from 0.80 ± 21 to 0.95 ± 0.05. On the other hand, Scenario B

and C always favour the results without pre-trained embeddings. As an example, with a
random initialisation in the Hard setting, the ARI decreases from 0.95±0.05 to 0.73±0.30

and 0.47±0.02 to 0.45±0.04 in Scenario B and C respectively. The same deduction can be
made with the dissimilarity initialisation. Since Scenario B and C are the ones evaluating
the text contribution to the clustering, we advise not to use pre-trained embeddings.

Finally, the best ARI are all obtained with the dissimilarity initialisation. Consequently,
Deep-LPTM will only be initialised with it in the rest of the chapter.

4.4.4 Model selection

In order to assess the model selection criterion, this section provides two experiments.
First, we evaluate IC2L relevancy to select Q on all three scenarios. Second, we test IC2L
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Scenario A Scenario B Scenario C

Easy

Random init 0.00± 0.00 0.00± 0.00 0.00± 0.00

Dissimilarity init 0.97± 0.06 1.00± 0.00 0.98± 0.03

Deep-LPTM random 1.00± 0.00 1.00± 0.01 0.63± 0.20

Deep-LPTM dissim 1.00± 0.00 1.00± 0.00 1.00± 0.00

Deep-LPTM - PT random 1.00± 0.00 0.90± 0.30 0.55± 0.15

Deep-LPTM - PT dissim 1.00± 0.00 1.00± 0.00 1.00± 0.00

Hard

Random init 0.00± 0.00 0.00± 0.00 0.00± 0.00

Dissimilarity init 0.31± 0.14 1.00± 0.00 0.38± 0.24

Deep-LPTM random 0.80± 0.21 0.95± 0.05 0.47± 0.02

Deep-LPTM dissim 0.99± 0.02 1.00± 0.00 0.89± 0.15

Deep-LPTM - PT random 0.95± 0.05 0.73± 0.30 0.45± 0.04

Deep-LPTM - PT dissim 1.00± 0.01 1.00± 0.00 0.85± 0.18

Table 4.3: Adjusted rand index (ARI) of the initialisations and the results of Deep-LPTM
in terms of node clustering, without and with pre-trained embeddings (denoted PT in that
case). ARI is averaged over 10 graphs, for each scenario and difficulty.

Scenario A Scenario B Scenario C
Q⋆ = 3 Q⋆ = 2 Q⋆ = 4

Q = 2 0 10 0

Q = 3 10 0 0

Q = 4 0 0 10

Q = 5 0 0 0

Q = 10 0 0 0

Table 4.4: Number of times a value Q is selected by the IC2L criterion over 10 graphs
with the true value of K and P = 2.

efficiency to select the triplet (K,P,Q) on Scenario C specifically.

Selection of Q with P = 2 and the true K Keeping P set to 2 and K fixed to its true
value for the moment, Table 4.4 assesses the effectiveness of IC2L to select the number
of clusters Q. In all three scenarios, IC2L selects the true model 10 times out of 10.

Selection of the triplet (P,K,Q) Let us now consider selecting the triplet (K,P,Q)

simultaneously. Table 4.5 displays the number of times a triplet is selected by IC2L for
10 graphs simulated according to Scenario C (with Q⋆ = 4 and K⋆ = 3 the true values).
The selected node embedding dimension is always P = 2, thus, we only provide K and Q
in the table. First, it is satisfactory that IC2L always selects the true number of topics
and clusters. Second, by always picking the dimension P = 2, IC2L favours models with a
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K = 2 K = 3 K = 4 K = 5 K = 6

Q = 2 0 0 0 0 0

Q = 3 0 0 0 0 0

Q = 4 0 10 0 0 0

Q = 5 0 0 0 0 0

Q = 6 0 0 0 0 0

Table 4.5: Number of times a triplet (K,P,Q) is associated with the highest IC2L over
10 graphs simulated according to Scenario C (Q⋆ = 4 and K⋆ = 3). All the models with
the highest IC2L value correspond to P = 2. Therefore, only the table corresponding to
this value is shown.

lower complexity. In our case, this translates into choosing models able to directly visualise
the data in two dimensions, simply by plotting the latent vectors Zi. This suits our purpose
of building an explainable model.

4.4.5 Benchmark

We close this section with a benchmark study presented in Table 4.6 to compare Deep-
LPTM with state-of-the-art ETSBM and STBM. We also provide SBM and Deep-LPM
as baselines even though they are not able to take into account the text edges. As in
the previous sections, the table presents the average of the ARI over 10 graphs. Each
graph result is obtained by running each method with five different initialisations and by
taking the one resulting in the highest ELBO. The table is presented for three different
models, namely STBM, ETSBM and Deep-LPTM. The last two models are evaluated
with and without pre-trained embedding. In all cases, Deep-LPTM is either as good as
or better than other models. In particular, in Scenario C with difficulty Hard, the ARI of
Deep-LPTM node clustering is higher than all other methods, by at least 0.15. Likewise,
in Scenario A with difficulty Hard, Deep-LPTM always recover the true partition while
STBM only reaches an ARI of 0.66± 0.18.

4.5 Application to the analysis of the Enron email net-
work

Enron, formed in 1985, was an American company selling natural gas in North America. In
2001, the securities and exchange commission (SEC) opened an investigation on October,
31th, for fraud, while on August, 14th, the company was "probably in the strongest and
best shape that it [had] probably ever been in" according to its CEO. In early December
of the same year, the company filed for the largest bankruptcy at that time. We propose
here to concentrate on the critical period from September, 1st to December, 31st leading
to the downfall of the company to understand the organisation of the company during this
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Scenario A Scenario B Scenario C

Easy

SBM 1.00± 0.00 −0.00± 0.01 0.73± 0.05

STBM 1.00± 0.00 1.00± 0.00 1.00± 0.01

ETSBM 0.99± 0.03 1.00± 0.00 0.96± 0.04

ETSBM - PT 1.00± 0.00 1.00± 0.00 0.96± 0.05

Deep-LPTM 1.00± 0.00 1.00± 0.00 1.00± 0.00

Deep-LPTM - PT 1.00± 0.00 1.00± 0.00 1.00± 0.00

Hard

SBM 0.97± 0.03 0.00± 0.00 0.62± 0.1

STBM 0.63± 0.23 1.00± 0.00 0.66± 0.19

ETSBM 0.96± 0.10 0.90± 0.30 0.72± 0.25

ETSBM - PT 0.99± 0.01 1.00± 0.00 0.74± 0.21

Deep-LPTM 0.99± 0.02 1.00± 0.00 0.89± 0.15

Deep-LPTM - PT 1.00± 0.01 1.00± 0.00 0.85± 0.18

Table 4.6: ARI of the node clustering averaged over 10 graphs in all three scenarios for
the two levels of difficulty Easy and Hard. Deep-LPTM, as well as ETSBM, are presented
with and without pre-trained embeddings (denoted PT). Moreover, STBM and SBM are
also provided as baselines.

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7

Topic 1
Topic 2
Topic 3
Topic 4
Topic 5
Topic 6
Topic 7
Topic 8
Topic 9
Topic 10

Figure 4.7: Deep-LPTM representation of Enron email network. The nodes positions, the
node cluster memberships (denoted by the colour of the nodes) as well as the majority
topic in the documents (denoted by the colour of the edges) are estimated by Deep-LPTM.
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Figure 4.8: The 10 most probable words of each topic according to Deep-LPTM.
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crucial period. Thanks to the decision of the federal energy regulatory commission (FERC),
the dataset is publicly accessible and contains all 20,940 emails exchanged between 149
employees. All edges holding multiple messages were coerced into a single meta-message
by stacking the documents together. As a result, the network holds 1,234 edges between
the 149 employees. The dataset can be found at https://www.cs.cmu.edu/~./enron/.

The estimation of Deep-LPTM is conducted for all triplets (Q,K, P ) where Q ∈
{5, 7, 10}, K ∈ {3, 5, 7, 10} and P ∈ {2, 4, 8, 16}. The highest value of IC2L corresponds
to the triplet (Q,K, P ) = (7, 10, 2). Deep-LPTM clustering results are displayed in Figure
4.7. The node cluster memberships as well as the edge majority topics are represented
by their respective colours. In addition, the topics are interpreted by looking at their
corresponding most probable words in Figure 4.8.

Topics analysis The topics can be depicted as follow:

• Topic 1 concerns Charles Watson, Dynegy CEO at the time, who negotiated a deal
to finance Enron, involving the transwestern pipeline, and to merge the companies

• Topic 2 refers to regional energy

• Topic 3 deals with business operations

• Topic 4 is related to office supplies and day-to-day work

• Topic 5 mentions the energy usage and delivery

• Topic 6 is related to legal and strategical aspects of Enron’s business, involving
Sara Shakleton (vice president of Enron North America Corporation), and Debra
Perlingiere, from the legal department

• Topic 7 is concerned with infrastructures and geographical projects

• Topic 8 corresponds to discussions about Enron activities in Afghanistan, which may
be seen as sensitive given the American situation in 2001

• Topic 9 focuses on financial aspects

• Topic 10 mentions the California electricity crisis, which almost led to the bankruptcy
of the Southern California Edison corporation

The topics as well as the visualisation provide significant information on the dataset. In
particular, Deep-LPTM identifies different departments and cases of the company through
the topics and successfully represents it in the graph structure as we shall detail.
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Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7

Topic 1
Topic 2
Topic 3
Topic 4
Topic 5
Topic 6
Topic 7
Topic 8
Topic 9
Topic 10

Figure 4.9: Enron email meta-network, based on Deep-LPTM estimates, represents the
clusters and their interactions. The node sizes depend on the number of email accounts
assigned to each cluster and the node positions are estimated by Deep-LPTM. The colours
of the edges refer to the majority topic between the respective clusters and the sizes of
the edges depend on the number of connections between the clusters. We keep only the
edges corresponding to more than five connections for readability purposes.
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Cluster analysis The meta-network in Figure 4.9 gives an overview of the results to
analyse the clusters. We keep only the edges corresponding to more than five connections
for readability purposes. However, important details provided by Figure 4.7 could not be
uncovered with the meta-network only.

First, Clusters 1 and 2 are well separated from the rest of the graph. Moreover, each
one is characterised by a specific topic. Cluster 1 is involved in discussions about a financial
deal and a possible merger (Topic 1) and more than half of the employees in Cluster 1 have
a managerial position or work in the legal department (vice presidents, directors, lawyers).
Cluster 2 refers to the regional energy business (Topic 2) and nine out of the 15 nodes
correspond to either employees or traders.

Second, Cluster 6 displays a high level of internal connectivity and is essentially featured
by discussions involving the legal department (Topic 6) as well as the financial aspects of
the company (Topic 9). The status of employees in that cluster are mainly composed of
directors, vice presidents as well as presidents of the company. Interestingly, Deep-LPTM
placed a president, corresponding to the node with the highest degree in the graph, at the
centre of the network, and allocated it to the cluster of managers of the company. This
graphical property, unique to Deep-LPTM, stresses the incorporation of the connections,
as well as the topics in the emails, to obtain a meaningful representation of the network.
Conversely, in Figure 4.9, the meta-network is not able to dissociate the connectivity of a
node with a different connectivity than the rest of the cluster. Thus, Cluster 6 is central
as a whole in the network in Figure 4.9.

Third, the topics involved in emails of Clusters 3 and 4 are the main drivers of the
characterisation of the two clusters. For instance, Cluster 3 is highly connected to the
graph and is involved in discussions about infrastructures and geographical aspects (Topic
7), as well as financial aspects (Topic 9). Emails related to Afghanistan were exchanged,
mainly involving nodes from Cluster 3. It is worth noticing that nodes in cluster 3 corre-
spond to people with a high position in the hierarchy of the company (almost two-thirds
of the employees in the clusters are either managers, directors, vice presidents, presidents
or CEO). In addition, although many nodes in Cluster 4 are involved in regional energy
discussions (Topic 2) like Cluster 2, they also discuss day-to-day business questions (Topic
4), and are highly connected with the rest of the network, unlike Cluster 2.

Finally, Cluster 7 is composed of four nodes that are at the crossroads between several
clusters and topics. We close this analysis with Cluster 5 which is composed of nodes mainly
receipting emails and poorly connected to the graph, highlighted in the representation by
the node positions being on the rim of the network.

4.6 Conclusion

We introduced a novel deep probabilistic model, named the deep latent position topic
model (Deep-LPTM) to analyse networks with textual edges. Deep-LPTM allows to si-
multaneously clustering nodes, modelling the topics in the documents, and providing a
network visualisation. To represent networks in an Euclidean space, most methodologies
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rely either on heuristic method used a posteriori, such as K-Means, or only focus on the
connectivity of the graph. On the contrary, this work tackles this problem by incorporat-
ing the network representation into the modelling, enabling the clustering as well as the
topic modelling to be included in the calculation of the node positions. To benefit from
the flexibility of deep neural networks, our methodology is based on a graph convolutional
network (GCN) to encode the nodes into a vector space using the connectivity of the
graph as well as a neural topic model to encode the documents and the topics into a
vector space. Even though we focused on directed networks, the extension to undirected
networks is straightforward. The applications of this methodology are numerous, including
social sciences, journalism and social network analysis. The proposed methodology relies
on a variational inference algorithm to maximise the marginal likelihood. The optimisation
combines analytical formulas and stochastic gradient descent steps to estimate the pa-
rameters. In this chapter, we also derived the integrated classification and latent likelihood
(IC2L) criterion to choose relevant numbers of clusters and topics as well as the dimension
of the node latent space. Both the extensive benchmark study, as well as the Enron emails
analysis, highlighted the visualisation power and the clustering efficiency of the proposed
methodology.
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The Deep Latent Position Block
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. . .

Network structures are able to represent any type of relations between objects. This
key property makes networks very appealing to analyse complex datasets, such as gene
co-expression networks or social networks. However, to capture meaningful information
from a network data structure, it is necessary to identify the patterns responsible for the
data generation, as well as be able to visualise them. In this chapter, we introduce the
deep latent block model (Deep-LPBM). This model uses continuous node representations,
obtained with a graph convolutional network, to encode the node cluster membership
probabilities and a marginalised block model to estimate the existence of an edge between
a pair of nodes. In particular, the method we propose offers a high flexibility by considering
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a mixture model at the edge level. As a result, the node embeddings can be projected
into a 2-dimensional space and therefore, provide a representation of the entire network
incorporating the block modelling estimations. To estimate the parameters of the model,
a variational inference strategy is used to obtain a lower bound of the intractable likelihood
and is used as the objective function to maximise. The optimisation combines closed-
form updates as well as a stochastic gradient descent algorithm. This is an ongoing
work, an extensive benchmark will be provided later on as well as the analysis of a real-
life dataset. A comparison of Deep-LPBM representations with the variational graph
autoencoder as well as the deep latent position model on synthetic data is provided, as well
as the assessment of the clustering efficiency of the model, on three distinctive network
architectures. To the best of our knowledge, this is the first model able to combine
continuous node representation with block modelling as well as a graph convolutional
network.

The first section is dedicated to motivating this work as well as presenting our con-
tribution. In Section 5.2, the assumptions regarding the generative models are exposed.
Section 5.3 provides the inference strategy adopted to estimate the parameters of the
model. Eventually, we compare Deep-LPBM clustering results with the VGAE and the
deep latent position model in Section 5.4.

5.1 Introduction and contribution

5.1.1 Introduction

Networks are encountered in a variety of fields, ranging from social sciences, and biology
to social networks. Among their attractive properties, their capacity to represent any
type of object and relationship is well appreciated. However, they present difficulties to
apprehend since non-observed features, such as node cluster memberships, may impact
the observed network topology and engender specific connectivity patterns. This requires
the development of specifically fashioned methods, models and inference strategies to
capture information. For instance, for some specific types of groups, methods have been
developed specially designed. To give an example, one of the most studied types of
groups is called a community and corresponds to nodes highly connected to nodes of the
same group but poorly connected to nodes from other groups. The community-detection
methods are numerous but do not necessarily generalise to other types of structure such
as stars (a group of nodes connected to nodes of different groups but not connected
together). Therefore, being able to capture the structure underlying the data is essential
to model any type of relationship, even without prior knowledge of the network topology.
This flexibility was provided by block model approaches, enabling to model any type of
connectivity patterns among the network. However, this flexibility comes at the cost of
representation. Indeed, those approaches do not provide a direct representation of the
network, but only a high-level depiction of the underlying patterns, where clusters are
represented as nodes, cluster sizes as node sizes, and the number of connections between
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clusters as edge widths. This meta representation may hide some node-specific properties
of specific nodes. For instance, a node in a cluster may be more connected to another
group than the other nodes in its cluster. Hence, this feature should appear in the network
representation, since this node might play a crucial role in the network, precisely because it
connects two clusters. To represent a network, positional approaches have been proposed
by performing link prediction based on the similarity between estimated continuous node
representations. Unfortunately, such methods only estimate communities. This chapter
aims at combining block modelling with a positional approach, by incorporating graph
neural network capacity to provide informative embeddings of the nodes. To this end, a
marginalised block model is introduced, where a logistic-Gaussian distribution models the
node cluster membership probabilities and is used for visualisation purposes.

5.1.2 Main contribution and notations

A new methodology bridging the gap between block modelling and network positional
learning is introduced. Deep-LPBM takes advantage of a graph convolutional network
combined with a new decoder to make the most of the block modelling flexibility. In
particular, Deep-LPBM is able to analyse disassortative graphs as well as communities and
provide meaningful representations and clustering. This is assessed through experiments
led on varying network structures. In particular, it provides convincing results on the
improvement of our method over competitors.

The work presented in this chapter is still under development and will come with a
Python package.

Notations In this chapter, matrices and collections of vectors are denoted in bold cases
X, the space of n×m matrices with coefficient in E is denoted Mn×m(E), and should not
be confused with the multinomial distribution denoted Mn(m, p) where n is the dimension
of the vector, m is the number of draws and p = (p1, . . . , pn) ∈ ∆n is the probability vector.
The n-dimensional simplex is denoted

∆n :=

{
p ∈ Rn : ∀i, pi ≥ 0 and

n∑
i=1

pi = 1

}
.

Moreover, the network is denoted G = (V , E) where V = {1, . . . , N} denotes the set of
vertices and E the set of edges.

5.2 Assumptions regarding the network generation

In this section, we present the assumptions concerning the graph generation. Assuming
that the number of clusters Q is fixed beforehand, each node i ∈ V is assumed to belong
to a cluster, represented by the cluster membership variable Ci. The variables (Ci)i are
assumed to be independent and identically distributed (i.i.d) according to a multinomial
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distribution such that:

Ci
i.i.d∼ MQ(1, γ),

with γ ∈ ∆Q the vector of cluster proportions. The vectors Ci ∈ {0, 1}Q are one hot
encoded, with Ciq = 1 if node i belongs to cluster q and Ciq = 0 otherwise. Denoting
C = (C1, . . . , CN)

T ∈ MN×Q({0, 1}) the cluster membership matrix, its probability is given
by:

p(C | γ) =
N∏
i=1

Q∏
q=1

γCiq
q . (5.1)

Assuming that the cluster membership matrix C is given, the nodes are assumed to be
independent, and each node i is assumed to be represented by a Gaussian vector Zi in a
Q− 1 dimensional latent space:

Zi | Ciq = 1
i.i.d∼ NQ−1

(
µq, σ

2
qIQ−1

)
. (5.2)

The set of node embeddings is denoted Z = (Zi)i in the rest of the paper, and the set of
means and variances are denoted µ = (µq)q and σ2 = (σ2

q )q respectively.
To link the the latent representations of the nodes Zi, with the block modelling, we rely

on the bijective softmax transformation, as presented in Xu, Ke, Wang (2014), h : Zi ∈
RQ−1 7→ ηi ∈ ∆Q where:

ηiq =

{
eZiq/

Ä
1 +

∑Q−1
r=1 e

Zir

ä
if q ∈ {1, . . . , Q− 1}

1/
Ä
1 +

∑Q−1
r=1 e

Zir

ä
if q = Q

, (5.3)

and we denote η = (η1, . . . , ηN)
⊤ ∈ MN×Q

(
(0, 1)

)
. The mapping h aims at encoding

the (Zi)i into cluster membership probabilities. Eventually, the probability of connection
between two nodes is assumed to depend on their respective cluster membership proba-
bilities ηi. Eventually, the probability of connection follows a Bernoulli distribution with
parameters depending on η such that:

p(A | Z,Π) =
∏
i ̸=j

p(Aij | Zi, Zj,Π)

=
∏
i ̸=j

(
η⊤i Πηj

)Aij
(
1− η⊤i Πηj

)1−Aij
, (5.4)

where Π = (πqr)1≤q,r≤Q ∈ MQ×Q

(
(0, 1)

)
is the matrix of probability of connection between

clusters.
Finally, the joint distribution of the adjacency matrix, the latent node representations,

as well as the cluster memberships can be computed with Equations (5.1) (5.2) and (5.4)

p(A,Z,C | Π,µ,σ,γ) = p(A | Z,Π)p(Z | C,µ,σ)p(C | γ). (5.5)
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5.2.1 Link with other models

The mixed-membership stochastic block model The mixed-membership stochastic
block model (MMSBM, Airoldi et al., 2008) assumes that for any edge from node i to j,
each node plays a specific role identified by a membership indicator Uij ∼ MQ(1; ηi) for
the initiator and Vij ∼ MQ(1; ηj) for the receiver. The probabilities are sampled according
to ηi ∼ DQ(γ). While the authors aimed at maximising the quantity p(A | U, V,Π), Deep-
LPBM focuses on a marginalisation over U, V of this quantity. Indeed, doing so would
result in the probability of connection provided in Equation (5.4). In addition, contrary to
Deep-LPBM, this model does not incorporate a node cluster membership variable C.

The latent variable modelling of relational data The latent variable model of rela-
tional data (Hoff, 2007) is also related to mixture models introduced at the node level by
considering a probability of connection between two nodes as a probit function of ηiΠηi,
where ηi is a vector of free parameters in RQ and Π ∈ MQ×Q(R) is a diagonal matrix with
entries that may be positives or negatives. First, Deep-LPBM does not assume a specific
form of the matrix Π but constrained its values between 0 and 1. Second, this model
does not assume a generative assumption for each variable nor introduce a node cluster
membership variable allowing to incorporate the clustering within the probabilistic model.

The extremal vertices model for random graph The extremal vertices model for ran-
dom graph (EVMRG, Daudin, Pierre, Vacher, 2010) also relies on a marginalisation of
MMSBM, but does not directly incorporate a node cluster membership variable in the
generative model. Moreover, η is not considered as a variable but as a parameter to
estimate.

5.2.2 Identifiability of the model

In Daudin, Pierre, Vacher (2010), the authors proposed a model closely related to ours
with two major distinctions. First, they assumed that ηi was a parameter to estimate.
Second, they do not incorporate a cluster variable in the generative model but instead use
ηi as a vector of cluster memberships probabilities and deduce the most likely cluster for
each node. Indeed, they rely on Q extremal hypothetical vertices as representations of
each cluster.

The authors showed that the model introduced above is not identifiable and proposed a
way to circumvent this issue. First, the non-identifiability of the model may be illustrated
by considering a matrix H ∈ MQ×Q(R) such that H−1 exists and with its columns
summing to one H1Q = 1Q, where 1d is a d-dimensional vector filled with ones. Denoting
η̃ = ηH and Π̃ = H−1Π(H⊤)−1, and assuming that η̃ ≥ 0 and Π̃ ∈ MQ×Q([0, 1]), we
obtain: ®

η̃Π̃η̃⊤ = ηHH−1Π(H⊤)−1H⊤η⊤ = ηΠη⊤,

η̃1Q = ηH1Q = η1Q = 1N .
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Therefore, (Π̃, η̃) and (Π,η) are equivalent since they correspond to the same model (see
Daudin, Pierre, Vacher (2010) for the existence of H). As a consequence, for any (Π,η)

such that Π ∈ MQ×Q([0, 1]) and η = (η1, . . . , ηN)
⊤ with ηi ∈ ∆Q for any i, we consider

the classes of equivalence

[Π,η] =
¶
(Π̃, η̃) ∈ MQ×Q([0, 1])×MN×Q(R+), η̃Π̃η̃⊤ = ηΠη⊤ and η̃1Q = 1N

©
.

The objective is now to first, infer the best equivalence class and second, to choose a set
of parameters among the best class of equivalence. For the second step, Daudin, Pierre,
Vacher (2010) proposed to choose the parameters (Π⋆,η⋆) maximising

∑N
i=1 ∥ηi∥22 within

the class of equivalence. This may be interpreted as favouring the configurations resulting
in spiked node cluster membership probabilities. This corresponds to nodes belonging
to a single cluster instead of belonging to several. In other words, this may be seen as
favouring more interpretable models. Although the generative model we propose is close
to the model in Daudin, Pierre, Vacher (2010), we consider η as random variables and
not as parameters. Hence, we are currently investigating the identifiability of our model.
In practice, no difficulty has been encountered.

5.3 Inference

The next section presents the inference as well as the optimisation.

5.3.1 Likelihood

In this chapter, we consider the marginal likelihood of the network for parameter estima-
tion, with latent variables C and Z, and the set of parameters Θ = {Π,µ,σ,γ}. From
Equations (5.1), (5.2) and (5.4), we can deduce that the marginal log-likelihood is given
by:

L(Θ;A) = log p(A | Θ) = log

(∑
C

∫
Z

p(A,C,Z | Θ)dZ

)
. (5.6)

Unfortunately, this quantity is not tractable since the sum over C requires to compute
QN terms. Besides, it involves integrals that cannot be computed analytically because of
the softmax function. Therefore, we choose to rely on a variational inference strategy for
approximation purposes.

Decomposition of the marginal log-likelihood For any distribution R(C,Z), the fol-
lowing decomposition holds:

L(Θ;A) = L (R(·); Θ) + KL (R(·)||p(C,Z | A)) , (5.7)

where

L (R(·); Θ) = ER

ï
log

p(A,C,Z | Θ)

R(C,Z)

ò
. (5.8)
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Since the Kullback-Leibler divergence is always positive in Equation (5.7), the ELBO
L (R(·); Θ) is a lower bound of the marginal log-likelihood. Moreover, the closer R(·) is to
the posterior distribution of the latent variables, in terms of Kullback-Leibler divergence,
the tighter the lower bound. Since the marginal log-likelihood does not depend on R(·),
maximizing the ELBO with respect to R(·) is equivalent to minimizing the Kullback-Leibler
divergence between R(·) and the posterior distribution. To make the ELBO tractable, we
restrict the family of variational distributions by considering a mean-field assumption as
well as the following hypotheses:

R(C,Z | A) = R(C)R(Z | A), (5.9)

R(C) =
N∏
i=1

Rτi(Ci) =
N∏
i=1

MQ(Ci; 1, τi), (5.10)

R(Z | A) =
N∏
i=1

Rϕ(Zi | A) =
N∏
i=1

NQ−1(Zi;µϕ(A)i, σ
2
ϕ(A)iIQ−1), (5.11)

where τ = (τi)
N
i=1 with ∀i ∈ {1, . . . , N}, τi ∈ ∆Q. Moreover, in Equation 5.11, the

mapping µϕ : MN×N(R) 7→ MN×(Q−1)(R) (σ2
ϕ : MN×N(R) 7→ (R+)N respec-

tively) is the mapping normalising the adjacency matrix (with 1 on its diagonal for numeric
stability) by its degree, Ã = D−1/2(A + IN)D

−1/2, and encoding the normalised adja-
cency matrix into the approximated posterior means (standard deviations) of the node
latent positions. The diagonal matrix D is filled with Dii =

∑N
j=1(A + IN)ij. The

two mappings µϕ and σ2
ϕ rely on a GCN parametrised by ϕ. Regarding the encoder of

the adjacency matrix, we based our neural network architecture on Kipf, Welling (2016)
such that, µϕ(A) = ÃReLU(ÃW0)Wµ and log σ2

ϕ(A) = ÃReLU(ÃW0)Wσ, where
ReLU(x) = (max(0, x1), . . . ,max(0, xF )) if x ∈ RF . The mappings µϕ(·) and log σ2

ϕ(·)
share the parameters of the first layer W0 ∈ MN×D(R) with D = 64 in all the experi-
ments we carried out, and Wµ,Wσ ∈ MD×(Q−1)(R). For the sake of brevity, we will take
the exponential of the encoder of the log variance and consider σ2

ϕ(·). Thus, the ELBO
can be decomposed as follows:

L (R(·); Θ) =ER [log p(A | Z,Π)]

+ ER [log p(Z | C,µ,σ)]− ER [logR(Z | A)]

+ ER [log p(C | γ)]− ER [logR(C)] .

=ER [log p(A | Z,Π)]︸ ︷︷ ︸
Reconstruction loss

−KL(R(Z | A)||p(Z | C,µ,σ))−KL(R(C)||p(C | γ))︸ ︷︷ ︸
Regularising term

.

(5.12)
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Hence, the ELBO is given by:

L (R(·); Θ) =
N∑

i,j=1

{
AijER

[
log η⊤i Πηj

]
+ (1− Aij)ER

[
log
(
1− η⊤i Πηj

)]}
−

N∑
i=1

Q∑
q=1

τiq KLiq (µϕ(A)i, σϕ(A)i, µq, σq)

−
N∑
i=1

Q∑
q=1

τiq log
τiq
γq
,

(5.13)

where

KLiq (µϕ(A)i, σϕ(A)i, µq, σq) = log
σ
(Q−1)
q

σϕ(A)
(Q−1)
i

− Q− 1

2
+

(Q− 1)σ2
ϕ(A)i + ∥µϕ(A)i − µq∥22

2σ2
q

.

The computation of each term in Equation (5.12) is detailed in Appendix 7.4.1. To op-
timise the ELBO, we propose here to alternate between closed-form updates and stochastic
gradient descent steps thanks to the results presented in the next section.

5.3.2 Optimisation

We begin this section by providing analytical updates for the parameters τ , γ, µ and σ.

Analytical updates with respect to the variational parameter τ Using the first-order
condition, it is possible to derive an analytical update for the variational parameters τ , as
detailed in the following proposition.

Proposition 8. Let L (R(·); Θ) denote the ELBO, as describe in Equation (5.12). The
first-order conditions with respect to τ = (τi)i give the following updates for any node i
and cluster q

τiq =
γqe

−KLiq∑Q
r=1 γre

−KLir

. (5.14)

Proof. See Appendix 7.4.2.

One way to interpret Equation (5.14) is to note that for a given set of parameters
and a node i, the optimal probability of node cluster membership with respect to cluster q
decreases exponentially fast with the Kullback-Leibler divergence between the variational
distribution of Zi and the distribution of the representation of cluster q. Each term is
scaled by the proportion of the corresponding cluster.
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Analytical updates with respect to the model parameters γ, µ and σ The first-order
conditions applied to the ELBO with respect to the model parameters give closed-form
updates stated in the following proposition.

Proposition 9. Let L (R(·); Θ) denote the ELBO described in Equation (5.12). The
first-order conditions with respect to γ, (µq)q and (σq)q give the following updates:

γq =
1

N

N∑
i=1

τiq, (5.15)

µq =

(
N∑
i=1

τiq

)−1 N∑
i=1

τiqµϕ(A)i, (5.16)

σ2
q =

(
(Q− 1)

N∑
i=1

τiq

)−1 N∑
i=1

τiq
(
(Q− 1)σ2

ϕ(A)i + ∥µϕ(A)i − µq∥22
)
. (5.17)

Proof. See Appendices 7.4.2.

The update of γ corresponds to the approximated posterior expectation of the cluster
proportions in the network. On the one hand, the optimal µq is given by the posterior
means of (Zi)i weighted by each node contribution to the corresponding cluster. On
the other hand, the optimal variance σ2

q is given by the sum of two terms. The first one
corresponds to the weighted mean of the posterior variances of the nodes. The second one
corresponds to the weighted mean of the squared Euclidean distances between the node
posterior means and µq. In other words, the variances incorporate both the uncertainty
about the posterior variance, illustrated by the σ2

ϕ(A)i terms, as well as the variance of
node embeddings, corresponding to the ∥µϕ(A)i − µq∥22 terms.

Stochastic gradient descent One of the core difficulties in this model is the estimation of
the parameters Π and the variational parameters ϕ. This is due to the impossibility to com-
pute ER [log p(A | Z,Π)] because of the intractable expectations ER

î
log(

∑
q,r ηi,qηj,rπqr)

ó
.

To overcome this issue, we rely on a stochastic gradient descent algorithm using the
reparametrisation trick (Kingma, Welling, 2014; Rezende, Mohamed, Wierstra, 2014) en-
abling easy computations of the gradient estimates with low variances.

Ideally, we would like to use the same computations as in the previous section. For
instance, we would like to compute the following partial derivates of the ELBO with respect
to ϕ:

∂

∂ϕ
L (R(·); Θ) =

∂

∂ϕ
ER [log p(A | Z,Π) + log p(Z | C,µ,σ)− logR(Z | A)]

=
∂

∂ϕ
ER [log p(A | Z,Π)]−

N∑
i=1

Q∑
q=1

τiq
∂

∂ϕ
KLiq (µϕ(A)i, σϕ(A)i, µq, σq) ,

(5.18)
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Unfortunately, the expectation of the term on the left-hand side of Equation (5.18) is
taken with respect to R(·), which depends on ϕ. Therefore, the derivation of this quan-
tity is not straightforward. Thanks to Kingma, Welling (2014) and Rezende, Mohamed,
Wierstra (2014), this difficulty can be tackled by using the reparametrisation trick. In par-
ticular, let εi be a centred, normalised and (Q − 1) dimensional Gaussian vector. Hence,
the vectors Zi and µϕ(A)i ⊕ [σϕ(A)i ⊙ εi] have the same distribution. Therefore, the
expectation can be taken with respect to ϵ = (εi)i=1...,N which gives:

∂

∂ϕ
ER [log p(A | Z,µ,Π)]] =

∂

∂ϕ
Eε

[
log p (A | µϕ(A)⊕ [σϕ(A)⊙ ϵ] ,Π)

]
,

where µϕ(A) ⊕ [σϕ(A)⊙ ϵ] =
(
µϕ(A)i ⊕ [σϕ(A)iεi]

)
i=1,...,N

, ⊙ denotes the Hadamard

product and ⊕ the element-wise sum. A Monte-Carlo estimate of this quantity is derived by
sampling S centred and reduced (Q−1)-dimensional Gaussian vectors ϵ(s)i with s = 1, . . . , S,
i = 1, . . . , N and with ϵ(s) = (ε

(s)
i )i=1,...,N . Plugging it back into (5.18) gives the following

estimate:

∂

∂ϕ
L (R(·); Θ) ≈ 1

S

S∑
s=1

[ ∂
∂ϕ

log p
Ä
A | µϕ(A)⊕

î
σϕ(A)⊙ ϵ(s)

ó
,Π
ä]

−
N∑
i=1

Q∑
q=1

τiq
∂

∂ϕ
KLZ

iq

(
µϕ(A)i, σ

2
ϕ(A)i, µq, σ

2
q

)
.

Thanks to the low variances of the gradients estimated with the reparametrisation trick
and to avoid increasing the computations, we use a sample size S = 1, as advised in the
VAE literature. In addition, the computation of the partial derivatives is implemented with
Pytorch automatic differentiation framework (Paszke et al., 2019) to take full advantage of
the computational efficiency of GPUs. Moreover, we rely on the Adam optimiser (Kingma,
Ba, 2014) to carry out the stochastic gradient descent with a learning rate of 0.002 and
a weight decay of 0.01 for the optimiser of Π and ϕ. Since πqr lies between 0 and 1,
we cannot perform gradient descent directly on this parameter. To solve this, we use
the bijective transformation f : x ∈ (0, 1) 7→ tan(π(x − 0.5)) ∈ R and the inverse
function f−1 : y ∈ R 7→ 0.5+π−1 arctan(y) ∈ (0, 1) to perform the gradient descent on the
unconstrained variable π̃qr = f(πqr) ∈ R and switch back to πqr = f−1(π̃qr) to compute
the ELBO.

5.3.3 Initialisation strategy

We advocate for a tailored initialisation to avoid the regularising term to prevent discovering
patterns at the beginning of the estimation, when the clusters have not been estimated
yet, nor the encoder has been initialised. Indeed, we experienced in practice a collapse of
the clusters toward a single cluster assignment when using the regularising term from the
start of the optimisation in our objective function. Therefore, we first run a stochastic
block model to obtain an estimation of Π. Then, the GCN parameters are estimated to
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minimise the reconstruction loss, with Π fixed, such as to obtain an encoder matching with
Π. During this step, we use a learning rate of 0.1. Since we optimised only with respect
to the reconstruction loss, the cluster parameters have not been initialised at this stage.
The value of the parameters related to the clustering is set after the GCN initialisation,
using the updates described in Proposition 9.

Algorithm 6: Algorithm summarising the optimisation steps to estimate Deep-
LPBM parameters, θ(t) = {γ(t),µ(t),σ(t)}

Input: t = 0;
Initialise Π(0) and τ (0) with SBM;
Initialise ϕ(0) by maximising the reconstruction loss with Π(0) fixed;
Initialise γ(0),µ(0),σ(0) with Proposition 9;
while L (θ(t);R(t)) and µ(t)

ϕ have not converged do
Update ϕ(t) by minimising −L (θ(t+1);Rτ (t+1) , Rϕ) with a SGD algorithm;
Update γ(t),µ(t),σ(t) with Proposition 9;
Update τ (t) with Proposition 8;
Compute L (θ(t+1);R(t+1));
t = t+ 1;

end

5.4 Evaluation on synthetic datasets

In real-life datasets, quantifying the relevance of a network representation as well as node
partitions is a challenging task since no partition of the node exists. Therefore, to assess
Deep-LPBM ability to cluster the data, it is necessary to compare its clustering results
with a ground truth on synthetic data. First, we present the network structures used in this
section to evaluate our methodology. Second, we illustrate the information provided by
Deep-LPBM results on the challenging disassortative structures. Third, a comparison of
Deep-LPBM representational capacity with VGAE and Deep-LPM on the three proposed
connectivity structures is exposed. To end this section, we give a quantitative assessment
of the clustering results on the community, the hub and the disassortative structures and
compare our results with Deep-LPM clustering and the K-means algorithm applied on
VGAE embeddings.

5.4.1 Presentation of network structures and Deep-LPBM results

To assess Deep-LPBM capacity to represent different network topologies, we evaluate our
methodology on three different structures, all composed of 100 nodes and 5 clusters, such
that:

- the community structure is composed of nodes divided into 5 clusters with sizes
sampled according to a multinomial distribution with 100 draws and an equiprob-
ability for each cluster to be drawn, such that two nodes of the same cluster are
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connected with probability 0.5, while two nodes from different clusters are connected
with probability 0.01

- the disassortative structure splits the nodes into 5 clusters with sizes sampled
according to a multinomial distribution with 100 draws and an equiprobability for
each cluster to be drawn. Two nodes from the same cluster have a probability of
0.01 to be connected while two nodes from different clusters are connected with a
probability of 0.5

- the hub structure contains 4 communities, and 1 hub, with sizes sampled according
to a multinomial distribution with 100 draws and a probability two times superior to
be sampled from a community than from the hub. An edge between a node in the
hub and any other node exists with probability 0.5.

We use those specific connectivity patterns to inspect different properties of our algo-
rithm. First, the community structure tests the ability to group together nodes having a
high probability of being connected, corresponding to the main focus of the standard posi-
tional models. Second, the disassortative graph evaluates the capability to group together,
in the latent space, non-connected nodes, which cannot be captured by canonical positional
models. Third, the hub structure appraises the relevance of the obtained representation
when dealing with a cluster connected to the entire network.

Learning node representations

These two sections highlight the flexibility of Deep-LPBM by analysing both the block
modelling estimates as well as the network representation. We start with the latter, with
the evolution of the representation during the optimisation presented in Figure 5.1.

The results provided in this section are obtained by fitting Deep-LPBM on a disassor-
tative network and projecting the estimated embeddings in R2 with a t-sne algorithm (Van
der Maaten, Hinton, 2008). First, we observe an efficient separation of the clusters which
cannot be obtained with a similarity-based decoder since the probability of connection
would increase with the correlation of the node embeddings. Therefore, the latent space
would not be able to show any structure, as depicted in Figure 5.3. On the contrary, the
model we propose is capable of imposing a structure on the variational distribution such
as to obtain a node latent space matching with the connectivity patterns of the network.

Block modelling information

Conversely to the previous section, Figure 5.2 can only be obtained by a block modelling
strategy. The connectivity structure of the graph, captured by the matrix Π, is displayed in
Figure 5.2 as well as the associated meta-graph. A meta-graph is a network composed of
nodes representing the estimated clusters with a size proportional to the estimated cluster
proportions γ. The edge widths of the meta-graph are proportional to Π and inform us
about the probability of connection between the corresponding clusters. In large networks,
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Figure 5.1: Evolution of the node embeddings during the estimation of Deep-LPBM on a
disassortative network. The networks at the top (at the bottom respectively) correspond,
from left to right, to the embeddings at the start of the GCN initialisation, the end of the
GCN initialisation, iteration 100 and iteration 200 of Deep-LPBM (iteration 500, 1000,
1500, 2000 respectively). The embeddings were projected in R2 using the t-sne algorithm.

1 2 3 4 5

1

2

3

4

5

0.01 0.5 0.51 0.52 0.49

0.5 0.0 0.48 0.54 0.52

0.51 0.48 0.0 0.49 0.52

0.52 0.54 0.49 0.0 0.5

0.49 0.52 0.52 0.5 0.02

Figure 5.2: Meta-network based on Deep-LPBM results with an underlying disassortative
structure. On the left-hand side, we provide the estimation of the connection probability
matrix Π. On the right-hand side, the meta-network is composed of nodes representing
the clusters, their size is proportional to the corresponding estimated cluster proportion
γ and the edge widths are proportional to Π. A threshold has been set such that edges
corresponding to a probability of connection lesser or equal to 0.02 are not displayed.
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this type of representation presents the advantage of being easily interpretable as well
as focusing on the generative understanding of the network. Here, it is clear that the
clusters are highly connected one to another but nodes from the same cluster are poorly
connected together. This summary of information is not straightforward in canonical
positional models

5.4.2 Representational power on three network structures

In Figure 5.3, both the VGAE and the Deep-LPBM efficiently render a latent space cap-
turing the community structure. In addition, the hub is also well depicted by both models.
Eventually, the structure presenting the biggest trouble is the disassortative graph. Let
us recall that the decoder of a variational graph autoencoder models the probability of
connection between two nodes with a sigmoid function applied to the cosine similarity
between their respective latent positions. Therefore, it necessarily fails to capture the
disassortative structure of the network. Hence, two nodes in the same cluster, that have
a low probability of connection cannot be represented similarly, and thus cannot be close
in the latent space. Conversely, Deep-LPBM is able to translate the connectivity pattern
into the position of the nodes, such that nodes of the same cluster, poorly connected
together, are close in the latent space.

5.4.3 Clustering evaluation on synthetic data

In this section, we use the same network structures as the one described in the previous
section. We aim to assess the clustering performance of our methodology and compare it
with the deep latent position model (Deep-LPM) that relies on node embedding similarity
as a decoder. We also provide a baseline with the variational graph autoencoder used to
estimate the node embeddings and a K-means algorithm fitted on these embeddings to
obtain partitions of the nodes. The benchmark is performed on networks with 100 nodes
and Q = 5 clusters. The results are displayed in Table 5.1. First, we note the efficiency
of Deep-LPBM on communities and hubs, reaching an ARI of 1 in both cases. It does
not degrade the good performance of its competitors on these architectures, with ARIs
of 1 and 0.97 for the VGAE and K-means, and an ARI of 1 on both structures for Deep-
LPM. However, these competitors are not able to represent any connectivity structure in
the disassortative case. In particular, as shown in Figure 5.3 for the VGAE, they cannot
find relevant node clusters in this setting and end up with an ARI of 0.02 and 0. On the
contrary, our methodology reaches an ARI of 0.8, much higher than its competitors.

5.5 Conclusions

This chapter introduced a new methodology combining a block model with a deep la-
tent position model. By modifying the edge distribution and marginalising over a bijective
transformation of the node latent representations, we managed to use the node embed-
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Figure 5.3: Example of three networks with a latent structure composed of (top to bottom)
five communities, a disassortative network with five clusters and four communities with a
hub. On the left-hand side, the networks represent the results obtained fitting Deep-LPBM
and using a t-sne projection (left) as well as a PCA (right). On the right-hand side, the
variational graph auto encoder is fitted and projected with the same two methods. Each
node colour corresponds to its true cluster membership.

Communities disassortative Hub

VGAE + Kmeans 1.00± 0.01 0.02± 0.02 0.97± 0.06

Deep LPM 1.00± 0.00 0.00± 0.00 1.00± 0.00

Deep LPBM 1.00± 0.00 0.80± 0.08 1.00± 0.00

Table 5.1: Comparison of the partition obtained by a K-means algorithm applied on the
VGAE node embeddings, the Deep-LPM and Deep-LPBM partitions. For each network,
each model was run 10 times and the one corresponding to the highest ELBO was kept
as a result. The mean and standard deviations were obtained over 10 networks for each
graph structure.
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dings as cluster probability memberships. This framework bridges the gap between deep
block modelling and deep latent position model. Consequently, we obtain richer results,
simultaneously providing a high-level meta-network, summarising the information, as well
as a full network representation, allowing node specificity possibly to be incorporated as
they may hold crucial detail. Our methodology is based on the encoder of a graph vari-
ational autoencoder combined with a novel block model decoder. A variable incorporates
the clustering within the model instead of performing the clustering a posteriori on the
node embeddings. This allows to obtain node cluster probability memberships. The opti-
misation of our model combines analytical formulas as well as stochastic gradient descent.
On the network structures studied in this section, namely the community, the hub and
the disassortative topologies, our methodology rightfully translated the network salient
information into the latent space. In addition, the clustering results are competitive with
the state-of-the-art Deep-LPM. This work is currently under study. In particular, a more
extensive benchmark will be provided in a later work as well as an analysis of a real-world
dataset.
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Chapter 6

Conclusion and perspectives

6.1 Summary of the contributions . . . . . . . . . . . . . . . . . . . 145
6.2 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.2.1 Mini-batch training in network with textual edges . . . . . . . . . . 147
6.2.2 Implementation of fast and flexible packages . . . . . . . . . . . . 149
6.2.3 Advancements in Deep-LPBM. . . . . . . . . . . . . . . . . . 150

. . .

6.1 Summary of the contributions

To conclude this manuscript, we provide a summary of the contributions exposed in the
previous chapters.

Chapter 1 is dedicated to the introduction of the notions of network and textual data.
We advocated for the necessity to understand the patterns responsible for the generation
of the network as well as the texts. In particular, we stressed the relevance of probabilistic
modelling to meet this goal.

Chapter 2 provided the mathematical background necessary for the rest of the manuscript.
Chapters 3 and 4 presented two models aiming at explaining the patterns responsible

for the generation of networks with textual edges, each model focusing on a specific aspect.
In Chapter 3, the focus was set on finding any type of connectivity patterns, by introducing
the embedded topic in the stochastic block model (ESTBM), allowing an auto-aggregation
of documents. This allowed us to simultaneously perform node clustering, based on a
variational inference strategy, as well as topic modelling, by relying on a neural topic model
able to incorporate pre-trained embeddings holding semantic meaning. To assess the
relevance of the proposed model selection criterion and ETSBM clustering performances,
we carried out an extensive benchmark on synthetic data as well as an analysis of a Twitter
network dataset.
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In Chapter 4, we concentrated on the possibility of obtaining visualisations of the net-
works incorporating textual information by presenting the deep latent topic model (Deep-
LPTM). This methodology is based on a variational graph autoencoder combined with
a neural topic model to cluster the nodes of a network as well as render a meaningful
representation of the graph. We derived a model selection criterion, namely the integrated
classification and latent likelihood, and provided a thorough evaluation of our methodology
on synthetic data as well as the Enron emails dataset.

Eventually, in Chapter 5, we studied networks without textual edges. We provided an
approach capable of performing node clustering, using a block modelling approach, as well
as rendering a meaningful visualisation of the entire network. The variational distribution
is based on graph neural networks, allowing us to obtain complex node representations,
and to impose a structure on the variational distribution to capture relevant connectivity
patterns, thanks to the novel decoder proposed in our work.

All the models presented in this manuscript incorporated the latest advancement in
topic modelling for the embedding topics in the stochastic block model, and the latest
advancement in graph neural network for the deep latent position topic model, and the
deep latent position block model. Interestingly, new architectures of graph neural net-
works can be used without modification of the model. All these approaches share the
property to combine stochastic gradient descent, which allows to consider complex vari-
ational distributions, as well as closed-form updates. We showed that such complexity
resulted in improvements in clustering performances and ameliorations of visualisation and
comprehension of the results.

Our first contribution was shared with the community through a publication in an
international peer-reviewed journal

• Embedded topics in the stochastic block model, joint work with Pierre Latouche
and Charles Bouveyron, Statistics and Computing (2023)

the second contribution is under revision,

• The Deep Latent Position Topic Model for Clustering and Representation of
Networks with Textual Edges, joint work with Pierre Latouche and Charles Bou-
veyron, Pre-print hal-04068665 (2023).

and our latest work is on-going

• The Deep Latent Position Block Model, joint work with Pierre Latouche and
Charles Bouveyron.

The Python implementations of our methodologies have been made public. ETSBM
can be found at https://plmlab.math.cnrs.fr/rboutin/etsbm_package, and Deep-LPTM
at https://plmlab.math.cnrs.fr/rboutin/deeplptm_package.
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6.2 Perspective

This last section presents some of the perspectives of research that we find interesting
and we believe are worth studying.

6.2.1 Mini-batch training in network with textual edges

We would like to speed up the optimisation procedure of Deep-LPTM to be able to
scale to large networks. Several approaches have been proposed in the literature to apply
stochastic gradient descent to estimate parameters of network probabilistic models, such
as in Gopalan, Blei (2013). Two main differences appear with our procedure. First, one
comes from the model itself since Deep-LPTM also analyses textual data and as such,
requires additional care to ensure that the parameters ρ and α, as well as ϕY , are correctly
optimised. Second, we relied on analytical formulas to update the parameters µ,σ,m, s. In
a full-batch setting, it seemed beneficial as it permitted to make larger steps with regard to
these parameters, and hopefully optimise the ELBO faster. In a mini-batch setting, using
analytical formulas would imply that at each iteration, the new values of the parameters
are based only on the subsampled graph. We believe that this would hurt the optimisation.
Therefore, we propose to adopt a fully gradient-based optimisation. We begin by recalling
the ELBO expression:

L (R(·); Θ) =ER [log p(A | Z, κ)] + ER [log p(W | A,Y,ρ,α)] + ER [log p(C | γ)]
+ ER [log p(Z | C,µ,σ)] + ER [log p(Y | A,C,m, s)]− ER [logR(C)]

− ER [logR(Z | A)]− ER [logR(Y | A,W)] . (6.1)

Instead of using the entire graph to compute the ELBO, it may be possible to sample
nodes, edges, or a combination of both to obtain an efficient optimisation as well as
memory gain. To formalise this, we base our notations on Gopalan, Blei (2013). Hence,
the sampling density of an edge is denoted g(i, j) for any pair of nodes (i, j). Contrary
to Gopalan, Blei (2013) that only deals with a network without edge information, we also
have to incorporate the sampling strategy into the topic modelling terms. Sampling a pair
of nodes (i, j) according to g, we have:

ER [log p(A | Z, κ)] = Eg

ï
1

g(i, j)
ER [log p(Ai,j | Zi, Zj, κ)]

ò
,

ER [log p(W | A,Y,ρ,α)] = Eg

ï
1

g(i, j)
ER [log p(Wi,j | Ai,jYi,j,ρ,α)]

ò
.

Hence, denoting (I, J) a random vector with density g, we can reorder the terms of
the ELBO to make explicit the expectation with regard to the sampling density g(I, J),
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and obtain an unbiased expectation of the ELBO:

L (R(·); Θ) =
N∑
i=1

ER [log p(Ci | γ)]− ER [logR(Ci)]

+
N∑
i=1

ER [log p(Zi | Ci,µ,σ)]− ER [logR(Zi | A)]

+ Eg

ï
1

g(I, J)
(ER [log p(AI,J | Zi, Zj, κ)] + ER [log p(WI,J | AI,J , YI,J ,ρ,α)])

ò
+ Eg

ï
1

g(I, J)
(ER [log p(YI,J | A, CI , CJ ,m, s)]− ER [logR(YI,J | A,WI,J)])

ò
.

(6.2)

Therefore, we can compute an unbiased estimator of the gradient with respect to mqr.
To avoid cumbersome notations, the last term in Equation (6.2) will be denoted:

KLqr
IJ = KL

(
NK

(
µϕY

(WI,J | A), σϕY
(WI,J | A)

)
|| NK

(
mqr, s

2
qrIK

))
,

and therefore,

ER

ï
log

p(YI,J | A, CI , CJ ,m, s)

R(YI,J | A,WI,J)

ò
= −

Q∑
q,r=1

τIqτJrAI,J KLqr
IJ . (6.3)

To illustrate the new optimisation strategy, we detail the computations to update the
parameter mqr. Noting that the only term depending on mqr in Equation (6.2) is the one
detailed in Equation (6.3), the partial derivative of the ELBO with respect to mqr is given
by:

∂

∂mqr

L (R(·); Θ) = −Eg

ï
τIqτJrAI,J

g(I, J)

∂

∂mqr

KLqr
IJ

ò
= −Eg

ñ
τIqτJrAI,J

g(I, J)

1

σ2
qr

(mqr − µϕY
(WI,J))

ô
.

The last expectation can easily be estimated by sampling edges according to g. However,
a more efficient strategy, taking into account the sparsity of the graph as well as the
neighbours of the nodes to pass local information, may favour the optimisation. The next
section presents the strategy advised in Gopalan, Blei (2013) and adapts it to our case.

Sampling sets of edges for better and faster optimisation

Instead of sampling edges at random, more advanced sampling strategies may be beneficial
to gather information provided by node neighbours while keeping each iteration fast enough.
To this aim, Gopalan, Blei (2013) proposed four sampling strategies and advocated for
the use of the stratified random node sampling. It consists in defining, for each node i,
the “link set” , composed of edges corresponding to the connections to which the node
is connected, and the “non-link sets” , split into m subsets since the number of non-links
may be very high in sparse networks. At each iteration, a node is sampled at random.
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Then, either the “link-set” or “non-link set” is sampled at random. If the “non-link set”
is selected, one of the m subsets is sampled uniformly. Consequently, the density of the
proposed sampling scheme is given by:

h(S) =

{
1
2N

if the link set is sampled,
1

2mN
if one of the m non-link set is sampled.

Therefore, a non-biased estimate of the gradient can be computed as:

∂

∂mqr

L̂ (R(t)(·); Θ(t)) = − 1

h(St)

∑
(i,j)∈S(t)

τ
(t)
iq τ

(t)
jr Aij

σ
(t)2
qr

(m(t)
qr − µ

ϕ
(t)
Y
(Wij)).

Remark If we consider a non-directed graph, each edge is present in 2 sets. Therefore,
it is necessary to multiply the expected term of the ELBO with respect to h by 1/2, see
Gopalan, Blei (2013).

From there, plugging this estimate into a gradient descent algorithm with an adapta-
tive stepsize υt provides a stochastic gradient descent algorithm with update at the t-th
iteration:

m(t+1)
qr = m(t)

qr + υt
∂

∂mqr

L̂ (R(t)(·); Θ(t)),

with for all t, υt > 0,
∑

t≥0 υt = ∞ and
∑

t≥0 υ
2
t < ∞ to ensure convergence (Robbins,

Monro, 1951). A common choice in variational inference is to set υt = (t + υ0)
−κ, with

κ ∈ (0.5, 1] (Hoffman, Blei, et al., 2013). This can be applied to other parameters. For
instance, parameters τ depend on all other nodes, as stated in Proposition 6. Therefore,
we advocate for also using a stochastic gradient descent algorithm to optimise it, as
described above, to avoid basing the value of τ only on the sampled sub-graph.

6.2.2 Implementation of fast and flexible packages

As stated above, the implementations accompanying our contributions have been made
publicly accessible. Since advancements in graph neural networks are thriving, we advo-
cate for the development of flexible implementations, allowing to switch from one graph
architecture to another. To this end, we emphasise the possibilities offered by Pytorch
Geometric Python package (Fey, Lenssen, 2019). It provides a unifying framework to
compare new graph neural network encoders and decoders, as well as Python class to
make it easy to tweak the architecture of the graph neural network. From a statistical
perspective, it offers the possibility to easily change the parametrisation of the variational
distribution without necessarily modifying the generation assumptions of the graph. Going
even further, this may motivate a deeper investigation, for a given methodology, about the
amount of information captured that is due to the modelling assumptions and the amount
that can be attributed to the encoding hypothesis, or in other words, to the variational
distribution.
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6.2.3 Advancements in Deep-LPBM

To end this section concerning our perspectives of research, let us present improvements
under consideration concerning Deep-LPBM. First, a model selection criterion adapted to
our objective of simultaneously obtaining a network visualisation, as well as performing
node clustering, is presented. Second, an extensive benchmark is proposed, with a set of
experiments on synthetic data as well as a real-world use-case.

Selection model criterion for Deep-LPBM

A selection model criterion needs to be assessed for Deep-LPBM. In Liang et al. (2022),
the authors suggest to use the ELBO as VAEs have been known to be self-regularising.
However, Chapter 4 has highlighted the benefit of incorporating the latent variables in the
model selection criterion. Another natural candidate would be to evaluate the quantity

log p(A,Z,C | M , Q).

Since Z,C are not observed and this quantity is intractable, we can rely on BIC-like
approximation to estimate this quantity with IC2L(M , Q, Ẑ, Ĉ) such that:

IC2L(M , Q, Ẑ, Ĉ) =max
θ

log p(A, Ẑ, Ĉ | θ,M , Q)− Ω(M , Q), (6.4)

where Ω(M , Q,K, P ) = 1
2
log(N(N − 1)) + QP+Q

2
log(N) + Q−1

2
log(N). A proof based on

the same arguments as in Appendix 7.3.3 may be derived.

Eventually, a comparison between the ELBO, the ICL (Daudin, Picard, Robin, 2008),
and the IC2L, proposed in this manuscript, would help to understand the differences be-
tween these quantities. In particular, it would be interesting to establish which one of
those criterion best capture the structure of the latent space and thus select the model
with the best representational power.

Evaluation of Deep-LPBM clustering robustness to noise

We recall that Deep-LPBM aims at clustering nodes using a block modelling strategy
combined with a latent position approach. To make sure of the efficiency of Deep-LPBM
to cluster nodes, we propose to compare the ARI obtained by fitting Deep-LPBM against
both a VGAE followed by a K-means algorithm on the node embeddings as well as Deep-
LPM clustering results. To this aim, noise can be added to the structures proposed in
Section 5.4.1, namely the community structure, the disassortative one as well as the hub.
In particular, the underlying topology can be more difficult to detect using a noise control
variable ϵ as presented in Table 6.1.
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Communities Disassortative Hubâ
η ϵ ϵ ϵ ϵ

ϵ η ϵ ϵ ϵ

ϵ ϵ η ϵ ϵ

ϵ ϵ ϵ η ϵ

ϵ ϵ ϵ ϵ η

ì â
ϵ η η η η

η ϵ η η η

η η ϵ η η

η η η ϵ η

η η η η ϵ

ì â
η η η η η

η η ϵ ϵ ϵ

η ϵ η ϵ ϵ

η ϵ ϵ η ϵ

η ϵ ϵ ϵ η

ì
Table 6.1: Example of connection probability matrices Π for the communities, the dis-
assortative and the hub structures. The parameters ϵ would be set to 0.01 for instance,
while η would vary from 0.5 (topological structure) to 0.01 (noisy structure).

Real world dataset To illustrate the performance of Deep-LPBM over other methods,
it would be interesting to analyse a well-known dataset, in particular a network that has
already been studied by canonical positional models such as the Karate Club dataset as
a small network example (34 nodes and 156 edges) as well as the Cora dataset for an
evaluation on a larger network (2, 708 nodes and 10, 556 edges).
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Appendix
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7.3.4 Numerical experiments. . . . . . . . . . . . . . . . . . . . . 166

7.4 Appendix of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . 166

7.4.1 Computation of the ELBO terms . . . . . . . . . . . . . . . . 166

7.4.2 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 167

. . .

This chapter is dedicated to provide additional materials, proofs and technical details
associated with the manuscript.

7.1 Appendix of Foundations

In this section, we provide some additional material to Chapter 2.
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7.1.1 SBM derivations

The ELBO is given by the following expressions

L (γ,Π; τ ) = Er [log p(A,C | γ,π)]− Er [r(C; τ)]

=
∑
i ̸=j

Q∑
q,r=1

Er [CiqCjr log b(Aij, πqr)]

+
N∑
i=1

Q∑
q=1

Er [Ciq log(γq)]−
N∑
i=1

Q∑
q=1

Er [Ciq log(τiq)]

=
∑
i ̸=j

Q∑
q,r=1

τiqτjr log b(Aij, πqr) +
N∑
i=1

Q∑
q=1

τiq log

Å
γq
τiq

ã
.

(7.1)

τ update

Note that we did not add any constraint on τ to keep it in the simplex and that will be
taken care of afterwards. The derivative of the ELBO, detailed in Equation (7.1), with
respect to τml is given by

∂L

∂τml

(γ, π; τ) =
∑
n̸=m

Q∑
k=1

τnk (log b(Amn, πlk) + log b(Anm, πkl)) + log(γq)− log(τiq)− 1

Setting this derivative to zero gives the following update

log(τiq) =
∑
n̸=m

Q∑
k=1

τnk (log b(Amn, πlk) + log b(Anm, πkl)) + log(γq) + const

which can be written as

τml ∝ γl
∏
n̸=m

Q∏
k=1

(b(Amn, πlk)b(Anm, πkl))
τnk

γ update

Since γ ∈ ∆Q, we add the constraint λ(1 −
∑Q

q=1 γq) to the Equation (7.1), giving the
Lagrangian function that we shall optimise, using the first-order conditions. The derivative
of the Lagrangian with respect to γq is given by

∂L

∂γq
(γ,Π; τ ) =

N∑
i=1

τiq log(γq)− λ.

Setting this to zero gives that λ = 1
γq

∑N
i=1 τiq which can be written as γqλ =

∑N
i=1 τiq.

Summing over q on both sides gives that λ = N . Plugging it back into the previous
equation gives

γq =
1

N

N∑
i=1

τiq.
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Π update

The partial derivative of the ELBO with respect to πlk gives

∂L

∂πqr
(γ, π; τ) =

∑
i ̸=j

τiqτjr

Å
Aij

1

πqr
− (1− Aij)

1

1− πqr

ã
=
∑
i ̸=j

ß
τiqτjrAij

Å
1

πqr
+

1

1− πqr

ã™
−
∑
i ̸=j

ß
τiqτjr

1

1− πqr

™
=

1

πqr(1− πqr)

∑
i ̸=j

{τiqτjrAij} −
1

1− πqr

∑
i ̸=j

τiqτjr.

Setting the derivative to zero and multiplying by 1− πqr gives

∑
i ̸=j

τiqτjr =
1

πqr

∑
i ̸=j

τiqτjrAij.

Therefore, the update of πqr is given by

πqr =

∑
i ̸=j τiqτjrAij∑

i ̸=j τiqτjr
.

7.2 Appendix of Chapter 1

7.2.1 Inference

Proof of Proposition 2. The ELBO can be decomposed as follow:

log p(A,W | α,ρ) = ER [log p(A,W | α,ρ)]

= ER

ï
log

p(A,W,C,Π, γ,Y | α,ρ)
p(C,Π, γ,Y | A,W,α,ρ)

ò
applying Bayes rule

= ER

ï
log

p(A,W,C,Π, γ,Y | α,ρ)
R(C,Π, γ,Y)

+ log
R(C,Π, γ,Y)

p(C,Π, γ,Y | A,W,α,ρ)

ò
= L (R(·);α,ρ) + KL(R(·)||p(C,Π, γ,Y | A,W,α,ρ)).
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Proof of Proposition 3.

L (R(·);α,ρ) =

L texts(τ ,π̃qr1,π̃qr2γ̃;α,ρ):=︷ ︸︸ ︷
ER

ï
log

p(W | C,A,Y,α,ρ)p(Y)

R(Y)

ò
+

L net(τ ,ν;α,ρ):=︷ ︸︸ ︷
ER

ï
log

p(A | C,Π)p(C | γ)p(Π)p(γ)

R(C)R(Π)R(γ)

ò
=ER [log p(W | C,A,Y,α,ρ)]
+ ER [log p(Y)]− ER [logR(Y)]

+ ER [log p(A | C,Π)]

+ ER [log p(C | γ)]− ER [logR(C)]

+ ER [log p(Π)]− ER [logR(Π)]

+ ER [log p(γ)]− ER [logR(γ)]

=
M∑
i ̸=j

Q∑
q,r

AijτiqτjrER

log p(wij | Yqr,α,ρ)︸ ︷︷ ︸
T

Yqr
ij


−
∑
q,r

KL(N (µqr(τ, ν), σqr(τ, ν))||N (0, I))

+
M∑
i ̸=j

Q∑
q,r

τiqτjrAij (ψ(κqr1)− ψ(κqr2))

+
M∑
i ̸=j

Q∑
q,r

τiqτjr(ψ(κqr2)− ψ(κqr1 + κqr2))

+
M∑
i=1

Q∑
q=1

τiq

(
ψ(γq)− ψ

(∑
q

γq

))
+ logB(1Q) + log(B(a, b))

−
M∑
i=1

Q∑
q=1

τiq log(τiq)−
∑
q,r

logB(κqr1, κqr2)− logB(γ). (7.2)

where,

T
Yqr

ij =

Dij∑
d=1

Nd
id∑

n=1

V∑
v=1

wdnv
ij log

(
K∑
k=1

θqrkβkv

)
. (7.3)

and θqr = µqr(τ, ν) + σqr(τ, ν)ϵ, ϵ ∼ N (0K , IK).
The Kullback-Leibler divergence between two Gaussian variables has a close form and

is easy to compute. All the terms can be computed except for the expectation of T Yqr

ij

that can be approximated using a Monte-Carlo estimator, by drawing S samples for each
pair (q, r), such that:

ϵs ∼ N (0, IK), Y s
qr = µqr(τ, ν) + σqr(τ, ν)⊙ ϵs, θsqr = softmax(Y s

qr).
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with ⊙ denoting the Hadamard product. Thus, for each pair of nodes (i, j) and pair of
clusters (q, r), the estimate is given by:

T̂ qr
ij = S−1

S∑
s=1

T
Y s
qr

ij .

Plugging T̂ qr
ij in the Equation (7.2) gives the final estimator of the ELBO.
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Figure 7.1 provides a translation of topics found by ETSBM on the real dataset and
appearing in the meta-network.

7.2.2 Real data

round

all

make

go

to vote

power

vote

president

thanks

first

hour

melenchonwillwin

world

erepublic

melenchon

meeting

popularunion

program

walkforthe

melenchontf

macron

candidat

emmanuel

campaign

zemmour

presidential

journalist

debate

live

via

melenchon

jadot

jlm

roussel

to vote

left

vote

round

hidalgo

right

zemmour

eric

ivotezemmour

support

ivotezemmourthe

hofthereconquest

zemmourpresident

share

zemmourvsmacron

now

Topics

Figure 7.1: The most important words of each topic present in the meta-graph translated
in English.
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Figure 7.2 provides a translation of topics found by ETM on the real dataset and
appearing in the meta-network.

zemmour

eric

macron

france

french

all

make

hofreconquest

more

zemmourpresident

make

all

say

go

no

good

more

see

power

as

zemmour

to vote

macron

make

all

france

more

go

mlp

alone

melenchon

make

hour

all

round

more

to vote

program

go

melenchonwillwin

Topics

Figure 7.2: The most important words of each topic present in the meta-graph translated
in English.
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7.3 Appendix of Chapter 2

We provide some material accompanying Chapter 3.

7.3.1 Graphical Model

Figure 7.3 provides the graphical representation of the model with its parameters.

WijAij Observed data

Zi Zj Yij Latent representation in a vector space

CjCi Clusters

(i, j)

γ

M

ρ

α

Nµ

σ

N m

s

Figure 7.3: Graphical model with the parameters of Deep-LPTM where the Zis denote the
latent node vectors, Yijs the latent document vector, Cis the node cluster memberships,
A = (Aij)ij ∈ MN×N({0, 1}) the binary adjacency matrix and Wij the document sent by
node i to node j.

7.3.2 Computation of the ELBO terms

In this section, computational details regarding the ELBO are provided term by term.
First, ER [log p(A | Z, κ)] is given by:

ER [log p(A | Z, κ)] =
N∑

i,j=1

{
AijER [log pij] + (1− Aij)ER

[
log
(
1− pij

)]}
,

where pij = (1 + e−ηij)
−1 and ηij := κ− ∥Zi − Zj∥.

Second, denoting βk = softmax(ρ⊤αk) ∈ RV , β = (β1 . . . βK)
⊤ ∈ MK×V (R) and wv

ij =

(β⊤θij)v, the probability for the word v to appear in document Wij ,for any v ∈ {1, . . . , V },
ER [log p(W | A,Y,ρ,α)] is:

ER [log p(W | A,Y,ρ,α)] =
N∑

i,j=1

AijER

[
logMV

(
Wij;Mij,β

⊤ softmax(Yij)
)]

=
∑
i,j

AijER

[
log

Mij!∏V
v=1(W

v
ij)!

V∏
v=1

(wv
ij)

W v
ij

]
.
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The difference between the terms related to the cluster memberships, ER [log p(C | γ)]
and ER [logR(C)], gives the following:

ER [log p(C | γ)]− ER [logR(C)] =
M∑
i=1

Q∑
q=1

ER [Ciq log γq]− ER [Ciq log τiq]

=
N∑
i=1

Q∑
q=1

τiq log
γq
τiq
.

The difference between the generative distribution of the node positions term ER [log p(Z | C,µ,σ)]
and the one related to the variational distribution of the node positions ER [logR(Z | A)]

gives:

ER [log p(Z | C,µ,σ)]− ER [logR(Z | A)]

=
N∑
i=1

Q∑
q=1

ER

[
Ciq logN

(
Zi;µq, σ

2
qIp
)]

−
N∑
i=1

ER

[
logN

(
Zi;µϕZ

(A)i, σ
2
ϕZ
(A)iIp

)]
= −

N∑
i=1

Q∑
q=1

τiq KL
(
N
(
µϕZ

(A)i, σ
2
ϕZ
(A)iIp

)
|| N

(
µq, σ

2
qIp
))

= −
N∑
i=1

Q∑
q=1

τiq

ñ
log

σp
q

σϕZ
(A)pi

− p

2
+
pσ2

ϕZ
(A)i + ∥µϕZ

(A)i − µq∥22
2σ2

q

ô
︸ ︷︷ ︸

KLZ
iq(µϕZ

(A)i,σϕZ
(A)i,µq ,σq)

= −
N∑
i=1

Q∑
q=1

τiq KLZ
iq (µϕZ

(A)i, σϕZ
(A)i, µq, σq) .

Symmetrically, the term regarding the edge positions is obtained as follow:

ER [log p(Y | A,C,m, s)]− ER [logR(Y | A,W)]

=
N∑

i,j=1

Q∑
q,r=1

ER

[
AijCiqCjr logN

(
Yij;mqr, s

2
qrIK

)]
−

N∑
i,j=1

ER

[
Aij logN

(
Yij;µϕY

(Wij), diag
(
σ2
ϕY
(Wij)

))]
=−

N∑
i,j=1

Q∑
q,r=1

Aijτiqτjr KL
(
N
(
µϕY

(Wij), diag
(
σ2
ϕY
(Wij)

))
|| N

(
mqr, s

2
qrIK

))
(7.4)

Moreover, denoting KLY
ijqr (µϕY

(Wij), σϕY
(Wij),mqr, sqr) the Kullback-Leibler term in Equa-

tion 7.4, we have:

KLY
ijqr (µϕY

(Wij), σϕY
(Wij),mqr, sqr)

= K log sqr −
K∑
k=1

log σϕY
(Wij)k −

K

2
+

∑K
k=1 σ

2
ϕY
(Wij)k + ∥µϕY

(Wij)−mqr∥22
2s2qr
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7.3.3 Inference

Optimisation

In this section, we provide the optimisation steps to recover the parameters maximising
the ELBO. To begin with, let us recall the ELBO expression:

L (τ , ϕZ , ϕY ; γ,µ,σ, κ,m, s,α,ρ) := L (R(·),Θ)

=
∑
i,j

{
AijER [log pij] + (1− Aij)ER

[
log
(
1− pij

)]}
+
∑
i,j

AijER

[
log

Mij!∏V
v=1(W

v
ij)!

V∏
v=1

(wv
ij)

W v
ij

]

−
N∑
i=1

Q∑
q=1

τiq KLZ
iq

(
µϕZ

(A)i, σ
2
ϕZ
(A)iIp, µq, σ

2
qIp
)

−
N∑

i,j=1

Q∑
q,r=1

Aijτiqτjr KLY
ijqr

(
µϕY

(Wij), diag
(
σ2
ϕY
(Wij)

)
,mqr, s

2
qrIK

)
+

N∑
i=1

Q∑
q=1

τiq log
γq
τiq
.

(7.5)

Update of τ First, we optimise the ELBO with respect to τiq. Since τi ∈ ∆Q−1, the
term ci(1−

∑Q
q=1 τiq) is added to the ELBO, giving the Lagrangian of the function. Thus,

the derivative of the Lagrangian with respect to τiq gives:

∂

∂τiq
L(R(·); Θ) = −KLZ

iq −
N∑
j=1

Q∑
r=1

{
Aijτjr KLY

ijqr +Ajiτjr KLY
jirq

}
+ log

γq
τiq

− 1− ci.

Setting this partial derivative to zero gives:

log τiq = −KLZ
iq −

N∑
j=1

Q∑
r=1

{
Aijτjr KLY

ijqr +Ajiτjr KLY
jirq

}
+ log γq − 1︸ ︷︷ ︸

Tiq

−ci.

Thus τiq = eTiqe−ci. Moreover, since
∑Q

q=1 τiq = 1, we have eci =
∑Q

q=1 e
Tiq . Therefore,

τiq = eTiq/(
∑Q

q=1 e
Tiq). The complete form is:

τiq =
γqe

−KLZ
iq −

∑
j ̸=i

∑Q
r=1(AijτjrK

Y
ij,qr+Ajiτjr KLY

jirq)∑Q
l=1 γle

−KLZ
il −

∑
j ̸=i

∑Q

l′=1

(
Aijτjl′K

Y
ij,ll′+Ajiτjl′ KLY

jil′l

) . (7.6)

Update of γ Since γ ∈ ∆Q−1, this constraint is added to the function to obtain the
lagrangian. This corresponds to adding the term c

Ä
1−

∑Q
q=1 γq

ä
to the ELBO. Thus, the
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partial derivative of the Lagrangian L with respect to γq of the lagrangian is:

∂

∂γq
L(R(·); Θ, c) =

N∑
i=1

τiq
γq

− c.

Setting this to zero gives:

1

γq

N∑
i=1

τiq = c.

Multiplying by γq and summing over q gives that c = N . Therefore, after plugging it back
into the previous expression, the following holds:

γq =
1

N

N∑
i=1

τiq. (7.7)

Updates of µq and σq Taking the partial derivative of the ELBO with respect to µq gives
the following:

∂

∂µq

L (R(·); Θ) = −
N∑
i=1

τiq
2σ2

q

(2µq − 2µϕZ
(A)i) .

Therefore, setting this quantity to zero gives the following update for µq:

µq =

(
N∑
i=1

τiq

)−1 N∑
i=1

τiqµϕZ
(A)i. (7.8)

The partial derivate of the ELBO with respect to σq is:

∂

∂σq
L (R(·); Θ) = −

N∑
i=1

τiq

Ç
p

σq
−
pσ2

ϕZ
(A)i + ∥µϕZ

(A)i − µq∥22
2

2σq
σ4
q

å
.

Thus, the first-order condition on σq gives the following:

p

σq

N∑
i=1

τiq =
1

σ3
q

N∑
i=1

τiq
(
pσ2

ϕZ
(A)i + ∥µϕZ

(A)i − µq∥22
)

σ2
q =

(
p

N∑
i=1

τiq

)−1 N∑
i=1

τiq
(
pσ2

ϕZ
(A)i + ∥µϕZ

(A)i − µq∥22
)
. (7.9)

Updates of m and s As in the previous sections, we optimise the ELBO with respect to
m and s with the first-order conditions. The partial derivate of L with respect to mqr is:

∂

∂mqr

L (R(·); Θ) = − 1

2s2qr

N∑
i,j=1

Aijτiqτjr
(
2mqr − 2µϕY

(Wij)
)
.
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Therefore, setting this expression to zero gives the following update for mqr:

mqr =

(
N∑

i,j=1

Aijτiqτjr

)−1 N∑
i,j=1

AijτiqτjrµϕY
(Wij). (7.10)

The partial derivate of the ELBO with respect to sqr is:

∂

∂sqr
L (R(·); Θ) = −

N∑
i=1

Aijτiqτjr

Ç
K

sqr
−
∑K

k=1 σ
2
ϕY
(Wij)k + ∥µϕY

(Wij)−mqr∥22
2

2sqr
s4qr

å
.

Thus, the first-order condition on sqr gives the following:

s2qrK

N∑
i,j=1

Aijτiqτjr =
N∑

i,j=1

Aijτiqτjr

[
K∑
k=1

σ2
ϕY
(Wij)k + ∥µϕY

(Wij)−mqr∥22

]

s2qr =

(
K

N∑
i,j=1

Aijτiqτjr

)−1 N∑
i,j=1

Aijτiqτjr

[
K∑
k=1

σ2
ϕY
(Wij)k + ∥µϕY

(Wij)−mqr∥22

]
. (7.11)

Derivation of the selection model criterion

Proof of Proposition 7. Assuming a fully factorised prior distribution such that
p(κ, γ,µ,σ,m, s,ρ,α) = p(κ)p(γ)p(µ)p(σ)p(m)p(s)p(ρ)p(α), Lemma 3.1 in Biernacki,
Celeux, Govaert (2000) can be directly extended to our case to decompose the integral in
(4.23):

log p(A,W,Z,Y,C | M , Q,K, P ) = log p(A | Z,M ) + log p(Z | C,M , Q, P )

+ log p(W | A,Y,M ) + log p(Y | A,C,M , K)

+ log p(C | M , Q). (7.12)

Unfortunately, this expression cannot be computed since each term requires an integral with
respect to the corresponding parameter. For instance, p(A | Z,M ) cannot be integrated
analytically because of the logistic link function. Fortunately, a BIC-like approximation can
be derived for p(A | Z,M ), p(Z | C,M , Q, P ), p(Y | A,C,M , K) and p(W | A,Y,M ).
For instance, p(A | Z,M ) can be approximated by:

log p(A | Z,M ) = log

∫
κ

p(A | κ,Z,M )p(κ)dκ

≈ max
κ

log p(A | Z, κ,M )− νA,M

2
log(nA),

where νA,M = 1 denotes the number of free components in κ and nA = N(N − 1) denotes
the number of observations in A. This can be applied to all terms except p(C | M , Q)

since the posterior cluster memberships probabilities τi can be on the boundary of the
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parameter space. Fortunately, this term can be computed analytically. By assuming a
Dirichlet prior DQ(δ1, . . . , δQ) on the topic proportions γ:

p(C | M , Q) =

∫
p(C | γ,M , Q)p(γ)dγ

=
Γ
Ä∑Q

q=1 δq
ä

∏Q
q=1 Γ (δq)

∏Q
q=1 Γ(nq + δq)

Γ
Ä∑Q

q=1 nq + δq
ä ,

where nq :=
∑N

i=1Ciq. In this paper, we consider the non-informative Jeffreys prior
distribution (δq = 1/2), as in Biernacki, Celeux, Govaert (2000) and Daudin, Picard,
Robin (2008). Moreover, since Ci is not available, we replace it with its maximum-a-
posteriori estimate Ĉi where Ĉiq = 1 if q = arg max(τi1, . . . , τiQ), and 0 otherwise, which
in turn gives n̂q :=

∑N
i=1 Ĉiq. Using Stirling formula to approximate the Gamma function

for a large value of N , we obtain:

p(Ĉ | M , Q) ≈ p(Ĉ | γ̂,M , Q)− Q− 1

2
log(N). (7.13)

To conclude, since Z and Y are not available, we replace the missing data with their
maximum-a-posteriori estimates Ẑ and Ŷ. Denoting ’IC2L(M , Q,K, P ) the quantity
log p(A,W, Ẑ, Ŷ, Ĉ | M , Q,K, P ), we have:’IC2L(M , Q,K, P ) =max

Θ
log p(A,W, Ẑ, Ŷ, Ĉ | Θ,M , Q,K, P )

− Ω(M , Q,K, P )

=max
κ

log p(A | Ẑ, κ,M )− 1

2
log(N(N − 1))

+ max
µ,σ

log p(Ẑ | Ĉ,µ,σ,M , Q, P )− QP +Q

2
log(N)

+ max
ρ,α

log p(W | A, Ŷ,ρ,α,M )− V L+KL

2
log(M)

+ max
m,s

log p(Ŷ | A, Ĉ,m, s,M , K)− Q2K +Q2

2
log(M)

+ max
γ

log p(Ĉ | γ,M , Q)− Q− 1

2
log(N),

where

Ω(M , Q,K, P ) =
1

2
log(N(N − 1))

+
Q(P + 2)− 1

2
log(N)

+
L(V +K) +Q2(K + 1)

2
log(M).
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Figure 7.4: Evolution of the ELBO, as well as the nodes ARI during optimisation for 1000
iterations

7.3.4 Numerical experiments

This section provides the entire ELBO evolution as well as the evolutions of the node ARI
and the edge ARI, corresponding to the example in Section 4.4.2.

7.4 Appendix of Chapter 3

7.4.1 Computation of the ELBO terms

In this section, computational details regarding the ELBO are provided term by term.
First, ER [log p(A | Z,Π)] is given by:

ER [log p(A | Z,Π)] =
N∑

i,j=1

{
AijER

[
log γ⊤i Πγj

]
+ (1− Aij)ER

[
log 1− γ⊤i Πγj

]}
.

The difference between the terms related to the cluster memberships gives the follow-
ing:

ER [log p(C | γ)]− ER [logR(C)] =
M∑
i=1

Q∑
q=1

ER [Ciq log γq]− ER [Ciq log τiq]

=
N∑
i=1

Q∑
q=1

τiq log
γq
τiq
.

The difference between the generative distribution of the node positions term ER [log p(Z | C,µ,σ)]
and the one related to the variational distribution of the node positions ER [logR(Z | A)]
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gives:

ER [log p(Z | C,µ,σ)]− ER [logR(Z | A)]

=
N∑
i=1

Q∑
q=1

ER

[
Ciq logN

(
Zi;µq, σ

2
qIp
)]

−
N∑
i=1

ER

[
logN

(
Zi;µϕ(A)i, σ

2
ϕ(A)iIp

)]
= −

N∑
i=1

Q∑
q=1

τiq KL
(
N
(
µϕ(A)i, σ

2
ϕ(A)iIp

)
|| N

(
µq, σ

2
qIp
))

= −
N∑
i=1

Q∑
q=1

τiq

ñ
log

σp
q

σϕ(A)pi
− p

2
+
pσ2

ϕ(A)i + ∥µϕ(A)i − µq∥22
2σ2

q

ô
︸ ︷︷ ︸

KLiq(µϕ(A)i,σϕ(A)i,µq ,σq)

= −
N∑
i=1

Q∑
q=1

τiq KLiq (µϕ(A)i, σϕ(A)i, µq, σq) . (7.14)

7.4.2 Optimisation

Update of τ

First, we optimise the ELBO with respect to τiq. Since τi ∈ ∆Q, the term λi(1−
∑Q

q=1 τiq)

is added to the ELBO, giving the Lagrangian of the function. Thus, the derivative of the
Lagrangian with respect to τiq gives:

∂

∂τiq
L(R(·); Θ) = −KLiq − log

τiq
γq

− 1− λi.

Setting this partial derivative to zero gives:

log τiq = −KLiq + log γq − 1− λi

= −KLiq + log γq + ci

with the constraint that
∑Q

q=1 τiq = 1 which translates into ci = − log(
∑Q

q=1 γq KLiq).
Therefore,

τ ⋆iq =
γqe

−KLiq∑Q
r=1 γre

−KLir

. (7.15)

Update of γ

Since γ ∈ ∆Q, the term c
Ä
1−

∑Q
q=1 γq

ä
is added to the ELBO and gives the Lagrangian

function, that incorporates the constraint on γ. Thus, the partial derivative of the La-
grangian L with respect to γq of the Lagrangian is:

∂

∂γq
L(R(·); Θ, c) =

N∑
i=1

τiq
γq

− c.
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Setting this to zero gives:

1

γq

N∑
i=1

τiq = c.

Multiplying by γq and summing over q gives that c = N . Therefore, after plugging it back
into the previous expression, the following holds:

γ⋆q =
1

N

N∑
i=1

τiq. (7.16)

Updates of µq

Taking the partial derivative of the ELBO with respect to µq gives the following:

∂

∂µq

L (R(·); Θ) = −
N∑
i=1

τiq
2σ2

q

(2µq − 2µϕZ
(A)i) .

Therefore, setting this quantity to zero gives the following update for µq:

µq =

(
N∑
i=1

τiq

)−1 N∑
i=1

τiqµϕZ
(A)i. (7.17)

Updates of σq

The partial derivative of the ELBO with respect to σq is:

∂

∂σq
L (R(·); Θ) = −

N∑
i=1

τiq

Ç
d

σq
−
dσ2

ϕ(A)i + ∥µϕ(A)i − µq∥22
2

2σq
σ4
q

å
.

Thus, the first-order condition on σq gives the following:

d

σq

N∑
i=1

τiq =
1

σ3
q

N∑
i=1

τiq
(
dσ2

ϕ(A)i + ∥µϕ(A)i − µq∥22
)

σ2 ⋆
q =

(
d

N∑
i=1

τiq

)−1 N∑
i=1

τiq
(
dσ2

ϕ(A)i + ∥µϕ(A)i − µq∥22
)
. (7.18)
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