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Short abstract

Brain organoids (BO) are promising recent brain models, but tools are lacking to follow their
development, with very few images available. This thesis aims to automate the extraction
and appropriately characterize their morphologies on small datasets.

A small dataset was augmented by various generative adversarial networks (GANs) and
the best one was optimized. Most optimisations are suitable to enrich the dataset. The effect
of a noise variation by GAN to generate images closer to the exceptions has been studied,
and these images have also been validated automatically, statistically and psychovisually.

The shape of the original BOs was then extracted by deep learning and a better accuracy
was obtained if the training is carried out by an optimized GAN. The architecture of the
extraction has been reduced to adapt it to small datasets.

Thanks to the segmented images, morphology of the organoids was characterized by
calculating morphological indices, but also by finding their imprint by analyzing topological
data. Characterizing an index of their development (neuroepithelia) in association with
another laboratory would be a future step, such as validating this approach on other brain
cultures and for various microscopic acquisition methods.



Résumé

Les organoides cérébraux (OC) sont des modeles récents et prometteurs pour le suivi du
développement cérébral. Cependant, les biologistes manquent d’outils d’analyse automa-
tique ou semi-automatique pour suivre leur développement in vitro, du fait de la faible
quantité d’images disponibles actuellement. Dans ce contexte, cette these vise a automa-
tiser I'extraction et a caractériser de facon adaptée la morphologie des organoides cérébraux
sur de petits datasets d’images acquises en microscopie a divers stades de la croissance de
ces cultures.

Dans cet objectif, un petit dataset a été augmenté par divers réseaux adverses génératifs
(GAN) et le meilleur d’entre eux au regard de critéres psychovisuels, statistiques et, quan-
titatifs a été optimisé. Quel que soit 'optimisation utilisée pour générer des images,
elle enrichit le dataset de maniere constructive, excepté pour un groupe. De maniere
complémentaire, l'effet d’une variation du bruit par GAN pour générer des images plus
proches des exceptions a été étudié, et les images générées ont été validées également au-
tomatiquement, statistiquement et psychovisuellement.

Dans la continuité de cette premiere contribution, la forme des OC originels a été ex-
traite par deep learning et nous montrons qu’'une meilleure précision peut étre obtenue si
Pentrainement est réalisé par un GAN optimisé. L’architecture de I'extraction a été réduite
pour 'adapter aux petits datasets.

Enfin, grace aux images segmentées, la morphologie des OC a pu étre caractérisée par
calcul d’indices morphologiques, mais également en déterminant leur empreinte par analyse
de données topologiques. Caractériser un indice de leur développement (neuroépithéliums)
en association avec un autre laboratoire serait une étape future comme la validation de
cette approche sur d’autres cultures cérébrales et pour diverses modalités d’acquisition mi-
croscopiques.
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Chapter 1

Introduction

The Human brain is one of the most complex organ to study in terms of functions and
structures. Thus, researchers in Neuroscience use models to study and attempt to under-
stand our brain such as animals models (in vivo), post-mortem brain slices (ex vivo) and
cellular cultures (in vitro) (Kelava et al., 2016a). However, each one of these models have
limitations: In vivo, the cell diversity is different between the Human and animal models,
and some cognitive processes are peculiar to Humans; Ex vivo, ethical considerations limit
some studies when the quick cell death does not allow it (Arlotta et al., 2019); In vitro, 2D
cell cultures do not reproduce the brain architecture, and suffer from the lack of connections
between cells (Poli et al., 2019).

A promising alternative lies on brain cultures. To understand our brain development
or disease, different research teams have been trying to cultivate brain cultures for over a
century (Madeline A Lancaster and Knoblich, 2014). In 2013, this goal was reached by the
Lancaster team: Brain Organoids, better known as Minibrains, became a reality (Madeline
A. Lancaster et al., 2013). Brain organoids are 3D brain-like structures mimicking some
brain regions measuring around 4 mm of diameter and suffering from Batch syndrome:
despite being grown in the same environment, they develop differently. For example instead
of developing two lateral ventricles, one can innately develop none, although its neighbor
can have ten.

The lack of knowledge about the physiological development of brain organoids, precludes
biologists to use them as alternative solutions to others models (animal, post-mortem). To
accomplish this, morphology is analyzed by acquiring images by various methods (Brémond
Martin et al., 2021b). However, at this moment, no adapted tool exists to extract and
characterize the complex shape of cerebral organoids automatically.

In the literature, solutions are often constituted with software assembly, or implies the
use of pre-processing step by a human operator to segment (extract the shape from the
background inside the image) or characterize (calculate some morphological indexes on these
shape). The machine learning solutions scarcely developed cannot been applied on other
datasets. The only automatic solution dedicated to extract the shape of brain organoids
concerns only ventricular cavities and uses deep learning (Albanese et al., 2020). However,
deep learning strategies requires an amount of data to their training phase, while only a few
image datasets are available, consisting of a couple of images. My PhD aims to address the
following needs :

e The automation of processing step on image analysis for brain organoids.

e A dedicated shape extraction tool for the overall morphology of brain organoids and
facilitate the following of their growth.



e An increase of the amount of data in tiny datasets in order to use deep learning
strategies.

e Morphological characterisation tools dedicated to the complex shape of brain organoids.

1.1 Objectives

This thesis aims at presenting an insightful approach to extract and characterize brain
organoid culture images. This work is centered on the automatic shape extraction and
characterisation, with tiny dataset constraint, which is an issue for both the industrial and
academic point of view.

Neoxia, the project’s partner company, has a strong expertise in process industrialisa-
tion from academic projets. Recently, they created a spin-off company, Witsee, from a
consortium between academics and industrial partners during a ”Projet d’investissement
d’Avenir” (PIA2). The proof of concept was based on preclininal research, including neu-
rological (Alzheimer) and oncological (cancer) disease using various models (animal, 3D
culture). The output of this project was the creation of a collaborative platform of large
biomedical data processing, including microscopic images processing and analysis. Similarly
to academic laboratories, Witsee runs into the lack of large available datasets issue. To solve
this problem, data augmentation strategies are used so deep learning methods can be im-
plemented (Hamdi, Bouvier, Delzescaux, et al., 2021; Hamdi, Bouvier, Delzesceaux, et al.,
2021). In the context of collaborative projects, the platform developed by Witsee relies on
classical morphological tools to help customers characterize the shape of biological contents
in images. However, morphological indexes (described in Section 2) are not adapted to the
particular growing shape of brain organoids.

The CELL team from ETIS laboratory, UMR 8051 (CY Cergy Paris University, ENSEA,
CNRS), is specialized in smart embedded systems for bio-medical applications. This team
has a strong expertise in automated learning in constraint spaces (limited database, embed-
ded calculation...) specially for real-time detection of polypes in video-coloscopy (Bernal
et al., 2017; Leenhardt et al., 2019), a project financed by the PIA2 (Initiative d’Excellence
Paris Seine, I-Site 2017) and by the SATT IdfInnov (creation of the startup “Augmented-
Endoscopy”). The lack of data and the variability of biomedical tiny datasets force them
to use machine learning strategies before deploying deep based systems in capsule image
endoscopy (Houdeville et al., 2022; Romain et al., 2022). This team also brings solutions
in optimisations for signature representations in deep learning strategies (P. Jacob et al.,
2019), and other solutions focus on the spectral analysis of cell cultures (De Roux, Terosiet,
Kolbl, et al., 2017; De Roux, Terosiet, Kolbl, et al., 2017).

In this thesis, we pave the way to analyse tiny datasets of brain organoid images, in an
attempt to answer the following points (also see Figure 1.1):

e Generating images: in a pandemic situation, acquiring our own brain organoid images
at different developmental stages became a real issue. Another issue is to find a
database with enough images to train deep-learning based solutions. In such tiny
databases constraint, synthetic learning images must be generated. The choice of the
type of image generation and the kind of architecture and optimisation needed to
get the most qualitative images, as well as similar to the original dataset. Does a
comparative automatic validation of the generated images corroborate with a human
expert validation? Can we use these results to construct a new automatic tool which
could replace Human evaluation of generated images and gain time?



Addressed drawbacks for brain organoid image analysis

Few image databases No dedicated shape characterisation

No deep based shape extraction tools

Figure 1.1: Summary of the three drawbacks we attempt to answer in this thesis

e Segmentation of brain organoid images: this topic raises the question of using a ma-
chine learning or a deep-based strategy. While machine learning solutions are not
suitable for all the datasets, in the second case the requirement of amount of images
is a break. Which strategy will best fit the segmentation of brain organoids? How to
validate a small segmentation architecture designed for tiny datasets? Another ques-
tion raised linked to the first item is: is a validated data augmentation strategy more
useful to improve a deep learning segmentation than no validated data augmentation?
Or classical machine learning segmentation strategies are they sufficient to extract the
shape of brain organoids tiny datasets?

e Morphological characterisation of particular developmental or pathological shape: does
a classical morphological index characterize the best the biological state or develop-
mental stage of a brain organoid culture? Are new topological methodologies solu-
tions to accurately classify BO according to developmental stage, or physiopathological
state? Are the neuroepithelial formations detected with such tools? If some topolog-
ical or morphological indexes are given during the segmentation training, does this
improve its accuracy?

1.2 Development and contributions

Development and contributions are summarized in Figure 1.2. The first months of the thesis
were dedicated to a literature review on the image acquisition and analysis of brain organoids
cultures, presented and updated in section 2 The lack of appropriate morphological analysis
tools is depicted in this review and used by other researcher in the field. This work helps
identify all available brain organoid databases. Our work and that of Chakradhar, 2016
shows the difficulties to develop this kind of culture in normal and more specifically in
pandemic restrictions with no laboratory access.

The access of databases containing a certain amount of images could help to develop
automated image analysis tools.

Among the few database available, we needed to choose one allowing to study the devel-
opment of brain organoid, and thus with an imaging strategy bearing it. Once we select a
bright-field brain organoid image database from Gomez-Giro et al., 2019, the augmentation
of number of images is a requirement, to use and develop appropriate deep based segmenta-
tion tools. In Brémond Martin et al., 2021a, we compare various generative architectures to
classical transformation of brain organoid dataset, we verify the effect of loss optimisation
thanks to automated metrics and observe the contribution of each loss in both clustering
and in segmentation training stages. This original contribution highlights the normalised
Wasserstein loss, originally proposed in this study, which outperforms other losses. As the
metric validation is still contentious for generative evaluation, we compare it with a Human



validation and describe possible alternative metric combinations, for the first time to our
knowledge (article under submission). The images generated are in the same statistical
space than the original ones, except for some with a particular gradient background. Thus
we study the effect of adding different noises inside the generative process and proceed as for
the loss optimisations. We do not highlight a particular noise to naturalize the generation
in Brémond Martin et al., 2022 and in Section 3.6 (unpublished).

Regarding organoid image segmentation methods, we first verified the contribution of
each loss optimized generated image on the segmentation accuracy by using U-Net (Brémond
Martin et al., 2021a). We then checked if a training performed using psycho-visually val-
idated generated images could help to increase the accuracy of the segmentation, see Sec-
tion 4.2 (original research, not published). Due to time and huge computational require-
ments, we search to implement a small architecture with few input image requirements,
which has never been implemented before, and compared it with two others architectures.
This work was presented at the ” Towards pragmatic learning in a context of limited labeled
visual data” GDR-ISIS communication.

We also produce an ablation study, which consists in suppressing parts from the original
segmentation architecture one by one obtaining a new one. This study contributes to vali-
date this latest architecture as the best one to segment bright-field brain organoid images
(see Section 4.3). On this small segmentation architecture, we verify the contribution of all
the optimized loss and the adding of psychovisual validated images to the training step and
discuss the results compared to machine learning approach for segmentation.

Once the organoid shape is extracted, we perform morphological characterisation. We
first calculate morphological indexes documented in the literature and summarized in Brémond
Martin et al., 2021b. Then we implement a topological data analysis tool (increasingly used
in the biomedical field), and mix it with a clustering approach in order to classify the
organoids developmental stage (Brémond-Martin et al., 2022).

We also characterize their state (physiological or pathological) (see Section 5.4 ) and, the
cross-factor analysis of their developmental stage according to their state (see Section 5.5),
which are not published parts. We compare morphological indexes clustering with TDA, to
determine the most fitted analysis for brain organoids characterisation.

We finally create a pipeline dedicated to brain organoid bright-field images with the
best optimisations and the best architectures for each kind of the three steps summarized
in Figure 1.3. This pipeline is validated for other datasets for the steps highlighted.

1.3 Outline

The manuscript is written in the five subsequent chapters summarized in Figure 1.2:

e The Chapter 2 describes the recent trends and perspectives for the brain organoid
imagings.

e The Chapter 3 presents a brief review of data augmentation strategies for biomedical
images, and the different architectures, loss and noise optimisations we use, along with
validation. In this part we also describe evaluation of synthetic images, and discuss
the results.

e The Chapter 4 focuses on segmentation: we present the different algorithms used in
the biomedical field, and describe the architecture we choose and its drawback for tiny
datasets. We describe then an ablation study and the Mu-Net architecture we create.
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We show the inflow of generated images validated by metrics of psychovisual evalu-
ation on the segmentation accuracy on our new architecture compared to previously
described approaches.

The Chapter 5 concerns shape characterisation, based on morphological indexes and
on topological data analysis. We show the results obtained using our TDA cluster-
ing, reverse it on original images, and compare it with the characterisation using the
classical morphological indexes.

The last Chapter 6 summarizes our work and the perspectives on brain organoid tiny
datasets analysis.



Chapter 2

State of the art

This section is the update of our review paper published in July 2021 at Frontiers in
Neuroscience (Brémond Martin et al., 2021b).

2.1 Historical context

Experimental cerebral models are used to observe and analyze structure and function, both
of which are complex to identify in human brain tissues (Stan et al., 2006). These models are
often classified in three categories: in vivo; post-mortem; in vitro. However, in vivo and post-
mortem brain animal models are often prone to controversy due to ethical considerations
added to technical impairments due to divergences with the Human brain structures (Lodato
et al., 2015; Kelava et al., 2016b). Key benefits of in vitro models are these cultures can be
derivatives from human cells on the one hand, and on the other hand, be more relevant to
replicate its physiology. Despite this great asset, standard 2D neuronal cultures lack of tissue
structures, diversity of self-patterning cells and some disease patterns, presenting then with
strong limitations for in vitro study. Three-dimensional (3D) brain cultures (Kapalczynska
et al., 2016; Bolognin et al., 2019; Cederquist et al., 2019) have become in the last years a
very promising alternative to overcome these limitations.

In this context, recently, cerebral organoids (CO) have emerged by the differentiation of
induced pluripotent stem cells (iPSCs), or human embryonic stem cells (hESCs) (Madeline
A. Lancaster et al., 2013). Such 3D cultures are no larger than 4 mm in diameter and they
develop some structures similar to those developed by the brain during the second semester
at numerous random locations (Kelava et al., 2016a). To study these cerebral organoids,
researchers use methods originally developed to analyze other post-mortem and in vitro
models: enzyme-linked immunosorbent assay (ELISA (Raja et al., 2016)), quantitative
retrotranscriptase-polymerase chain reaction ( RTqPCR (Sakaguchi, Taisuke Kadoshima,
et al., 2015)), ribonucleic acid sequencing (RNAseq (Quadrato et al., 2017)), micro-electrode
array ( MEA (Monzel et al., 2017)) and others techniques focused on for example proteins or
metabolites. Because these techniques can lead to complex and costly experimental set-up,
in addition to them, imaging techniques are now used in almost every study focusing on
cerebral organoids both to complete and to validate other molecular analysis. It can also be
used to observe features that are unavailable with other methods, for example to quantify
the growth of such cerebral organoids (Iefremova et al., 2017).

The commercialisation of cerebral organoids since 2016 (Chakradhar, 2016) has resulted
in the widespread generalisation of their use by laboratories (see Figure Consequently, the
microscope technique, analysis methods and tools must be tailored for the issue at hand.
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Given this increase and the importance of the image analysis in this field, it has become
essential to identify the methods employed to study cerebral organoids, as well as the im-
provements that can be performed and the challenges that need to be overcome to handle
image analysis on cerebral organoids at a larger scale.

2.2 Scope and positioning

This review summarizes the recent advances in 3D brain cultures imaging and analysis, and
particularly for cerebral organoids. We performed statistical analysis on the 457 articles on
cerebral organoids referenced by Pubmed between January 2018 and June 2020. We chose
to perform this review study starting from 2018 because the number of articles per year was
less than 100 before this date. Of note, 670 articles on key words “cerebral organoids” have
been published since 2013 according to Pubmed. Among these 457 articles, 63 mentioned
these key words but are not on this topic, and 46 % of the remaining articles are reviews.

Most of these reviews focus on brain diseases (Donegan et al., 2020), comparison of
cultures (Chhibber et al., 2020), ethical considerations (Bayne et al., 2020), challenges in
vascularisation (Hong et al., 2019) and connectivity between cells (Marton and Pasca, 2020).
A few reviews focus on evolution (Stefano L Giandomenico et al., 2017), biobanking (S. Li
et al., 2020), or summarizing a single article (Madeline A. Lancaster, 2018). This includes
a review on the possible emergence of cerebral organoids connected to other organ models
(Chukwurah et al., 2019).

Most of these reviews addressed brain diseases, cultures comparisons including a review
on the possible emergence of cerebral organoids connected to other organ models (Chuk-
wurah et al., 2019), and development Figure Less than 3% of the reviews addressed 3D
brain cultures images analysis. Among them, only three about image analysis applied to
cerebral organoids data have been published. (Poli et al., 2019) reviewed computational
models of formation and organisation of these cultures, and also reviewed protocols and
other experimental methods (in electrophysiologic field) applied on cerebral organoids. For
these authors, even if cerebral organoids are promising in terms of in vitro models of human
brain, the generation protocols and procedures characterisation still need refinement. (Booij
et al., 2019) analyzed imaging techniques, image analysis methods and high-content images
in 3D cultures but not particularly focused on cerebral organoid cultures. They concluded
on the requirement to “validate these technologies and to demonstrate clearly that using
biologically relevant in vitro systems actually improves the efficiency of early drug discov-
ery. A direct comparison of the predictive value of 2D and 3D models for in vivo efficacy
is required.” (Grenier et al., 2020) mentioned in a diagram the perspective of generating
a high-throughtput platform for drug testing including image analysis on cleared cerebral
organoids with deep learning to identify functional and architectural markers. The authors
also discussed the challenges allowing integration of additional variables and risk factors
(toxic agents, vasculature) in order to make cerebral organoids a formidable and scalable
system to improve our understanding, provide precision to diagnostic and prognostic pre-
dictions and personalize drug discovery efforts for neurodegenerative diseases. Of note, in
another field, (M. E. Boutin et al., 2019) studied retinal organoids to summarize perspec-
tives on drug testing. Omne of their expectations was also to apply machine learning on
both high-content cell imaging and others chemical methods for their retinal model. They
expected work was “being done to apply machine learning approaches to score and predict
control versus disease phenotypes from cell imaging assays, including work on photoreceptor
outer segment formation. Most of this work has so far been done in 2D systems, and the
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hope is that with the development of techniques that allow HT cell imaging in 3D, those
will be applied to this more complex systems.”

In the time range considered for our paper, we did not find any review focused on image
analysis tools dedicated to cerebral organoids. However, a very recent study was published
by Albanese et al., 2020 (December), creating for the first time a pipeline named Scout
including deep-learning methods to segment the ventricular zone of 3D images of cleared
cerebral organoids. They gave a first attempt to an holistic approach to characterize the
content and structure of cerebral organoids in 3D.

The current review focuses on the recent trends in acquisition and image analysis meth-
ods on cerebral organoids to highlight the specific needs of the field. For all 214 included
articles published on cerebral organoids, between January 2018 and July 2020, we identified:
their scope; the kind of organoid generated; the acquisition method of images presented in
the figures; the analysis methods used specifically, the software and algorithms developed
or used; and finally advantages and limitations of the proposed approaches.

The following section gives an overview of the emergence of 3D brain cultures. Then
we describe the sample preparation and the image acquisition methods. Three-dimensional
imaging is particularly detailed in this paragraph because it captures better the shape and
allows quantification for the full brain culture. In the third section, image analysis method-
ologies are described in two parts: quantification and morphological analysis. Software used
to that aim are presented in the fourth section. They remains for the most part semi-
automatic due to the recent generation of this model. Following this methodology section,
we discuss the pros and cons of each described method, as well as the potentially insightful
image analysis tools to implement in order to handle the increasing amount of generated
data.

2.3 Three dimensional brain cultures

Advent of cerebral organoids

One of the first 2D neural models were neural rosettes stabilized from iPSCs or hESCs
(Chambers et al., 2009). These rosettes are structures composed by neural cells surrounding
a lumen. Cerebral organoids were derived from these rosettes.

Over the past ten years, a considerable increase in the use of 3D cultures has been
observed. Figure 2.1 shows an exponential growth in the number of articles citing spheroids,
organoids and cerebral organoids.

Between 2013 and June 2020, 671 out of 4509 published articles on organoid cultures
were treating about cerebral organoids. Before explaining how imaging cerebral organoids,
we summarized in this section what are cerebral organoids and how their generation has
evolved in the last decade.

Organoids mimic organs: they contain multiple organ-specific cell types, are spatially
organized, and simulate organ-specific functions (M. A. Lancaster et al., 2014).

The first 3D neural organoid was a self-organized optic cup made of retinal epithelium
(Eiraku et al., 2011). Two years later, (T. Kadoshima et al., 2013) created guided forebrain
organoids and (Madeline A. Lancaster et al., 2013) the first self-patterned cerebral organoids.
These organoids replicate human fetal brain growth during the second semester (Kelava et
al., 2016a). The discrepancy between these two cultures is mainly due to the growth pattern
and both methods are currently used for cerebral organoid generation.

(Pagca et al., 2015) created cortical spheroids, also called dorsal forebrain organoid
(Arlotta et al., 2019), an assembly of differentiated cells producing deep and superficial
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Figure 2.1: Graphic representation of the soaring of three-dimensional cultures based on a
pubmed search of the following keywords: “spheroid”, “organoid”, and “cerebral organoid”.
Cerebral organoid articles are a subset of the keyword “organoid” research. The expanding
of published articles is explained by an exponential model at 89 % (Rsquared: 0.8876:
Growth Model = log(Count) Year:Culture). The first generation of cerebral organoids was
in 2013, so the previous few articles identified by pubmed contain the two key words but do
not talk about these 3D brain cultures inside the body of the text. The points in 2020 are
not on the curves due to the fact that the year was not over the time of counting.
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Figure 2.2: Evolution of 3D brain cultures over time. Non-brain cultures which led the way
are labeled in italics. The abbreviation CO is used for “cerebral organoid”.

layers around ventricular zones. Then, 3D bio-printing bioreactors allowing the generation
of cerebral region-specific organoids (forebrain, midbrain and hyppocampic) have emerged
(Qian, H. N. Nguyen, et al., 2016). While these region-specific have been created, some
authors proposed to fuse them to reproduce the connectivity observed between structures
in the human brain (Birey et al., 2017; Bagley et al., 2017). One of the remaining weaknesses
of this system is the absence of vasculature, later (Mansour et al., 2018) transplant cerebral
organoids inside in vivo model to vascularize the culture. Others teams observed that
human organoid transplantation inside injured in vivo mice brains helped lost functions
recovering (S.-N. Wang et al., 2019). Nevertheless, the inter-organoid heterogeneity and
their cell diversity, failing to reproduce the topological organisation of the human brain,
conduct others authors to axially pattern cerebral organoids as occurring during the fetal
growth (Cederquist et al., 2019).Only recently, cerebral organoids have been co-cultured
with others cell type (tumoral for example), to model disease progression (Krieger et al.,
2020). Figure 2.2 summarizes the evolution of 3D cultures from sponges to modern cerebral
organoids.
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Figure 2.3: Neuroepithelium formation inside cerebral organoids. This formation is present
at discrete random locations around lumen ventricles in cerebral organoids. It grows from the
apical perimeter thanks to progenitor cells to the basal zone. Cells migrate and differentiate
along these axes. Cerebral organoids’ neuroepithelium are made of 3 zones: a ventricular
zone (VZ), a subventricular zone (SVZ) and a cortical plate (CP) each composed of specific
cell types.

Variability in 3D brain cultures

The importance of imaging cerebral organoids is linked to their particular constitution.
The cyto-architectural complexity of cultures mimicking brain formation (see Figure 2.2)
greatly depends on the culture protocol (Sidhaye et al., 2020). Cerebral organoids con-
taining self-patterned regions are larger and more complex than cortical spheroids showing
rosette patterns. In turn, these are more complex than an assembly of different cell-types in
a neurosphere (Kelava et al., 2016a). However, differentiating a regional cerebral organoid
(i.e. dorsal or ventral forebrain) is more tedious than letting a cerebral organoid self pat-
tern, as such differentiation requires various factors additions to the media at specific times
(Madeline A. Lancaster et al., 2013; Bagley et al., 2017).

During the cerebral organoid generation process, model complexity increases with time.
First, iPSCs are derived and aggregated in an embryoid body, which undergoes a neural
induction (containing a core and a peripheral zone). It is then embedded in a matrix
for maturation (Kelava et al., 2016a). During the maturation phase, cerebral organoids
innately almost mimic second semester fetal brain growth by developing neuroepithelium
regions (Figure 2.3 (Madeline A Lancaster and Knoblich, 2014)). Similarly to human
development, neuroepithelium are constituted by a ventricular zone surrounding lumen, a
subventricular zone (more recenlty, both inner and outer subventricular zone were generated
(Qian, Su, et al., 2020)) and a cortical plate constituted by various cell populations with
neurons producing action potentials and synapses (Madeline A. Lancaster et al., 2013).
Moreover, comparative studies between fetal human brain developmental stage and cerebral
organoids showed some similar transcriptome even if few genes are down or up regulated
(Qian, H. N. Nguyen, et al., 2016). However, there are more complex signatures in the
human case due in part to vascularisation, to radial glia frequency, and to consequent
neuron generation in later fetal stages (Bershteyn et al., 2017; Qian, H. N. Nguyen, et al.,
2016). Despite these differences and different growth conditions, parallels can potentially be
made between human brain and cerebral organoid tissues development, as investigated in
some studies, using histological images (LaMonica et al., 2013; Ostrem et al., 2015; Kostovi¢
et al., 2019).
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Table 2.1: Percentage of articles studying diseases on cerebral organoids over 2019 and
2020. Neurodegenerative diseases include articles on Alzheimer and Parkinson. Neurode-
velopmental diseases include autism, lissencephaly, microcephaly, skizophrenia and various
syndromes. Tumors include glioblastoma invasion in cerebral organoids. Infections corre-
spond to viral infections; injury to brain lesions.

Organoid model Articles (%)
Healthy 52.34
Neurodevelopmental 14.95
Neurodegenerative 11.68
Tumor 8.41
Infection 8.41
Injury 3.74

Time and growth are also quite important parameters, since they can lead to necroses at
the core of cultures, mostly due to shortage in nutrients and oxygenation. An answer to this
problem consists in slicing cerebral organoids during their growth (Qian, Su, et al., 2020).
Such a process increases the number of neuroepithelium layers and the culture longevity.

An important morphological variability between cultures of the different batches exists
(“batch to batch syndrome”), as well as variability within a given batch (“batch syndrome”),
although not as important as the former. Such variability consists in regions developing in
various locations and in an undetermined number (Madeline A. Lancaster et al., 2013). One
explanation lies in the non homogenisation between pluripotent stem cells at the origin of
the cerebral organoid colonies in term of morphology and pluripotency. Another reason
is the thickness of media culturing (Poli et al., 2019). Such variability precludes atlas
creation for cerebral organoids (Zaslavsky et al., 2014). In order to reproduce the brain
cyto-architectural development with a higher reproducibility, some studies investigated the
addition of specific factor to the media (WNT, SSH, FGF) (Krefft et al., 2018; Cederquist
et al., 2019; H. Kim et al., 2019; Sivitilli et al., 2020) whereas others used bioreactors (Qian,
H. N. Nguyen, et al., 2016; Velasco et al., 2019; Eremeev et al., 2019) or changed the type
of culture (Berger et al., 2018; Nickels et al., 2020).

Many authors also chose to study cerebral organoids replicating various diseases (neuro-
developmental, neuro-degenerative, tumoral, infectious or injury models) originating from
patient biopsies (A. Tian et al., 2020). Indeed, almost the half of the reviewed articles
studies cerebral organoids model disease (Table 2.1). Cerebral organoids are complex to
produce and to standardize, but they are already used in pathological cases. The complex-
ity of studying cerebral organoids is also related to protocols and imaging methods described
in the following section.

Microscopic studies of 3D brain cultures

Cerebral organoids and other 3D brain cultures are studied both as a whole and at the
molecular, cellular or regional level. The frequencies, aims and major disadvantages are
summarised in Table 2.2.

Cerebral organoids are most often studied by microscopic observation and analysis. A
small fraction of articles do not use microscopy: these either propose a new model or they
only rely on RNAseq for the analysis. Cerebral organoids are generally studied first intact
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Table 2.2: Methodology to study cerebral organoids

Percentages Advantages Inconvenient
Microscopy  95% Visualize proteins sliced in 2D
RNAseq 50.5% Full Transcriptome Only on thousand cells located
RTqPCR  34.1% Detect /identify proteins Localisation lost
WB 26.2% Detect /identify proteins Localisation lost
ELISA 7.2% Detect antigens Localisation lost

and then sliced, as shown Figure 2.4.

A few studies (4.33 %) study whole clarified organoids. Most studies produce fluorescent
images from confocal microscopy (54.53%). The two main analysis performed on these
images of 3D cultures are quantifications (counting cells and their components, measuring
marker intensity or advanced quantifications in particular regions) and morphological mea-
surements (size, shape, etc.) (details in section 2.5). The great majority of studies rely on
software or lab-developed scripts for image analysis maybe due to the quicker accessibility
of results by automation and the accessibility to reproducible results. The remaining 4.21 %
realized only image observations or manual analysis such as cell counting with 1.05%. One
can argue that observation does not allow quantification but contrary to manual counting,
it is far less time consuming.

2.4 Preparation and imaging

Sample preparation

Immunohistochemistry Using a microscope may require the preparation of the 3D brain
culture through fixation, slicing and immunolabeling.

e Fixation. The fixation step allows the preservation and the long term storage of tissues,
by stopping enzymatic reactions (Stanly et al., 2016). In our search, paraformaldehyde
was the most commonly used fixation method for cerebral organoids.

e Slicing. Most of the protocols generating cerebral organoids and spheroids cut the

samples in slices to facilitate imaging. In the 214 articles analyzed for this review,
slices are cut between 5pm and 50 pm. Slices are realized with different apparatus
depending of culture conservation method: cryostat or microtome for frozen samples
in the major cases(Mansour et al., 2018); microdissection laser microscopes when only
a region is used (Buchsbaum et al., 2020); and a few use vibratome for cultures stored
in PBS and agarose (Logan et al., 2020; Gomez-Giro et al., 2019; Nickels et al., 2020;
Monzel et al., 2017; Berger et al., 2018; Lisa Maria Smits et al., 2020). Paraffin em-
bedded methods are rarely used on cerebral organoids, due to the size of these cultures
(less than a few millimeters).
In order to avoid slicing and to image a full cerebral organoid in a single acquisition,
(Durens et al., 2020) created a protocol aiming at reducing the organoid thickness
to around 100 pm. This protocol enables imaging by a single acquisition with high
throughput imaging systems, such as confocal microscopes.
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Table 2.3: References of articles using clarification on 3D brain cultures and corresponding
image analysis between January 2018 and June 2020. Protocol abbreviations are: hyperhy-
drating solutions (HS), tissue transformation (TT), high-refractive index aqueous solutions
(HIAS), organic solvent (OS).

Reference Clarification Category Image analysis

(Sloan, Andersen, et al., 2018)  OS cell migration

(Masselink et al., 2019) HIAS fluorescence intensity and regional marker observation
(Rakotoson et al., 2019) HIAS or HS nuclear detection and intensity

(Sakaguchi, Ozaki, et al., 2019) TT observation of markers

(Krieger et al., 2020) Hybrid HIAS and HS  tumor invasion

(Buchsbaum et al., 2020) (O cell migration

(Wilpert et al., 2020) HIAS observation of marker intensity

e Immunolabeling. Immunolabeling is a crucial biochemical step to prepare samples for

the detection and the localisation of an antigen — often a protein — inside a cell, a
tissue or an organ. To detect these antigens, a complex of antibodies targeting them
are tagged. Fluorescent tags are used for confocal microscopy but an enzyme that
catalyzes a colored reaction can be used for other microscopic methods, less used to
study 3D brain cultures.
Immunolabeling is used in 3D brain cultures to detect a cell components such as nuclei
(Gomez-Giro et al., 2019), microtubules (Buchsbaum et al., 2020), or mitochondria
(Daviaud et al., 2018); a given cell type (neurons (Lisa M. Smits et al., 2019) dopamin-
ergic ones (Bolognin et al., 2019), microglia (Ormel et al., 2018), oligodendrocytes
(Marton, Miura, et al., 2019), astrocytes (Watanabe et al., 2017)); or an extracellular
marker (Y.-T. Lin et al., 2018). Regions are also identified thanks to immunolabeling,
with the combination of different cells markers (Anastasaki et al., 2020; R. Li et al.,
2017). Marked cells allow to monitor the tumor invasion inside cerebral cultures (Liu
et al., 2020).

Organoids clarification To study a whole 3D sample without cutting, an old practice
from the early 1900s consists in rendering it transparent: this method is called clarification.
There are 4 main clarification protocols: based on organic solvents (OS), high-refractive
index aqueous solutions (HIAS), hyperhydrating solutions (HS) and tissue transformation
(TT). To find out more about each of the cited protocols, you can find more information in
Matryba et al., 2019. Clarification is not commonly used for cerebral organoids: only 4%
of articles use it (Table 2.3).

The major drawback of this method is the time required by the the protocols; the trans-
parency varies over time and is tissue-dependent; protocols can modify the morphological
aspect of the culture, inducing over-sizing or shrinking; and some reagents are not compat-
ible with the use of some immunolabelings. Nevertheless, clarification protocols are widely
developed for the study of other organs models and even tumoral spheroids (Costa et al.,
2019; Molly E. Boutin et al., 2018; Schmitz et al., 2017; Niirnberg et al., 2020). Clarified
3D brain cultures are acquired with confocal (mono-photon), multiphoton or light-sheet
microscopy.
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Table 2.4: Percentage of articles per microscopy and per task performed for the analysis of
cerebral organoids.

Task Bright-field Confocal Light-sheet Not mentioned Other / None  Total
Observation 0.84 3.79 0.42 0.42 4.1 9.47
Morphology 3.79 19.16 2.11 2.32 9.4 36.84
Quantification 0.42 30.53 0.00 4.21 12.5 47.58
None - - - - - 6.1
Total 5 53.5 2.5 6.9 32.1 100

Imaging Techniques

High quality images are necessary to perform reliable analyses on 3D brain cultures. Bright-
field, confocal and light-sheet microscopy are the most often used modalities in this context
(Table 2.4). We do not further describe microscopic methods not reaching 2% of use, such
as inverted and phase contrast microscopy; those are grouped in the “others” category. The
microscope used to acquire an images is chosen based on brain culture type, more specifically
the thickness and preparation (Thorn, 2016), as well as the desired analysis to be performed.

Bright-field microscopy Bright-field microscopy is used to observe shape (Monzel et
al., 2017) and surface parameters (Iefremova et al., 2017) of 3D brain cultures. On other
3D organ cultures, these images are also used to measure the overall size with automatic
methods (Borten et al., 2018; Kassis et al., 2019; Hasnain et al., 2020). In such cases, samples
do not require any particular preparation. Cultures can be examined without staining and
the illumination does not alter the true colors of the sample. This system is simple and
practical to use.

The light source is emitted below the sample and contrasts are created by the absorption
of light in the sample. The in-plane resolution does not exceed 2 pm.

The issue often met using Bright-field microscopy is its 2-dimensional nature: although
very useful for length and areas measures, only partial shape measures can be realized as
the 3-dimensional information is not captured. Another problem is that the quality of the
observation is reduced when the contrast is too high, creating distortions in the image. At
low contrast, most of the cells are not observable as they are not stained. Confocal mi-
croscopy, for example, is better suited for cell observation.

Confocal microscopy The most commonly used fluorescence microscope for 3D brain
cultures is the confocal microscope (Table 2.4). The acquired images are analyzed to
measure various parameters at the sub-cellular level such as: intensity (Raja et al., 2016);
shape (Cullen et al., 2019); surface (Karzbrun et al., 2018); cell distribution (Qian, H. N.
Nguyen, et al., 2016) or for 3D reconstruction (Monzel et al., 2017). Confocal microscopy
allows the study of samples in the third dimension, which is impossible in bright-field. This
optical microscope acquires images at low depth of field (around 500nm). A laser sweeps
the objective via a reflecting mirror. The beam goes through the sample to be imaged
and a diaphragm reduces the light received by the sensor to the desired field of view. The
whole image is acquired as a mosaic, making possible leveling down the sample plate of a
increment of z to image the depth of the culture, and sweep another image. As a result,
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these stacked images can be used to reconstruct the 3D volume, enabling measures of 3D
parameters characterizing culture structural properties. Immunolabeling via fluorescent tags
is necessary to observe confocal images, contrary to bright-field, which conserves the natural
color of samples.

One of the principal issues of confocal microscopy is the long acquisition time, particu-
larly for in-depth imaging (in the z plane) where several hours per slice can be necessary.
Moreover, only the first few slices produce a sharp signal. For these reasons, some teams
prefer to use light-sheet microscopy for 3D culture imaging even though it requires a longer
and more complex sample preparation protocol.

Light-sheet microscopy Light-sheet is commonly used to observe 3D samples. However,
only 3% of cerebral organoid studies rely on this imaging method, mainly because of the
high cost of the device and samples preparation. The illuminating laser source is in the
acquisition plane, forming a light-sheet between 4 pm and 10 pm of depth, and of the sample
width. The light-sheet is divided in 3 sub-beams (to limit artifacts) which converge toward
the sample.

Light-sheet microscopy can acquire organoid images but the in-plane resolution and the
light depth penetration are not sufficient to reconstruct a connectivity map according to
(Poli et al., 2019). For spheroids, which are 4 times smaller than cerebral organoids, the
imaging of clarified data is feasible by light-sheet or confocal microscopy (Costa et al., 2019;
Molly E. Boutin et al., 2018).

Other imaging methods Others methods are sometimes used to study cerebral organoids
for live imaging (Madeline A. Lancaster et al., 2013), to acquire C'a™™ activity (Sakaguchi,
Ozaki, et al., 2019), or to monitor permeability to certain molecules (Bergmann et al., 2018).

2.5 Image analysis

The aim of cerebral organoids image analysis is to quantify and characterize cell types
(stem or proliferative cells, neuronal populations, oligodendrocytes, astrocytes, microglia
or epitheliums), cells components (nucleus, neurites as dendrites or axons, mitochondria,
synapses), pathological markers of specific disease, cell migration, permeability of tissues
to specific molecules, necrosis and structure formations inside the core of culture. In case
of group studies, analysis is used to compare size, shape, and dimensions between cerebral
organoid groups. In some cases, these results are used to complete and validate information
obtained with another method (RTqPCR, ELISA, etc).

Pre-analysis stages are sometimes required to prepare data for future investigations. For
example, 3D-reconstruction from acquired slices avoids counting cells multiple times when
they appear in multiple z planes (Kartasalo et al., 2018). 3D-reconstruction also allows
the visualisation of the multi-view images acquired from light-sheet microscopy (Dobosz
et al., 2014). Reconstruction methods from histological slices are based on different fea-
tures: Fourier, blob or high level features. Validation methods are based on observation,
landmark detection, or measures of overlaps (Pichat et al., 2018). After pre-processing,
cerebral organoid images are processed with different methods described in this section. As
previously mentioned, the two main tasks performed on these images are quantification and
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Table 2.5: Quantifications performed on cerebral organoid images, given in percentage of
the reviewed articles.

Quantification Type Percent
Cell 20.84
Protein 8.21
Countin Nuclei 6.74
& Synapses 1.89
Pathological 1.05
Mitochondria 0.21
Density Various markers 7.16
Total 47.58

morphology (Figure 2.1).

Quantification

Quantification is the main analysis realized on cerebral organoid images (occurring in more
than 47% of the reviewed studies, see Table 2.5). Quantification includes markers detection
and identification, counting, calculation of intensity and advanced methods for studying
cerebral organoid regions.

Counting Counting is performed on specific cells or cell components. In this section,
after describing the different quantified structures, we detail some of the counting methods
described in the literature.

e Biological structures.

— Neurons and glial cells: cell counting constitutes 20% of image analysis per-
formed on cerebral organoids (Table 2.5). Brain growth can be tracked by
counting markers of neural stem cells (Lisa M. Smits et al., 2019), proliferative
cells (Cullen et al., 2019) or differentiated neurons (Berger et al., 2018). In addi-
tion to neurons, the brain is constituted of glial cells. Astrocytes are responsible
for nutrition and neuronal communication while oligodendrocytes constitute the
neuronal myelin gain. Both cell types have been quantified in previous studies
(Cullen et al., 2019; Nickels et al., 2020; X. Zhong et al., 2020; H. Kim et al.,
2019). Counting of microglia — another kind of glial cell responsible for immu-
nity — has also been investigated (Brownjohn et al., 2018; Ormel et al., 2018).
Quantifying organoids microglial cells can help study both their development
and their interaction with neurons in case of disease. The last kind of glial cell,
constituting the epithelium barrier of brain cavities, is also quantified in choroid
plexus organoid models (Pellegrini et al., 2020). Their function of secretion is
measured in this previous article by quantifying a typical molecule of transport
(transthyretin) only expressed in choroid plexus.

— Nuclei: The nuclear compartment present in eukaryotic cells contains its genetic
information. Brain culture development is assessed by counting the total nuclei
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number (and therefore the total cell number) in a slice, a particular region or
an entire brain culture (Berger et al., 2018; F. Jacob et al., 2020; Bagley et al.,
2017; Qian, Su, et al., 2020; Park et al., 2018; Kielkowski et al., 2020). Identifying
nuclei also allows identifying the proportion of apoptosis (cell death), helpful to
quantify organoid viability (Lisa M. Smits et al., 2019; Zheng et al., 2020; Pedrosa
et al., 2020; Nickels et al., 2020). A similar process with a counter-stain permits
the characterisation of the neuronal population density. For example, (Lisa M.
Smits et al., 2019) and (Berger et al., 2018) segment nuclei and dopaminergic
neuronal markers in midbrain organoids to determine the neurons proportion of
their models.

— Synapses: connective zones between neurites of neurons where the information
is transmitted. Number of synapses and their functionalities are altered in case
of organoid models of various diseases (Gomez-Giro et al., 2019; Ghatak et al.,
2019).

— Pathological and physiological proteins: Proteins constitute cells and play various
roles in transmitting information or regulating factors. In cerebral organoids,
proteins are quantified to identify for example a particular cell component such
as regulating factors of transcription or tubulin markers (Madeline A. Lancaster
et al., 2013). To quantify diseases markers, a key is to count any excessive or
insufficient amount of physiological marker, or identifying a pathological marker.
For example, the number of Abeta puncta is used to identify Alzheimer markers
in cerebral organoids (Y.-T. Lin et al., 2018).

— Mitochondria: involved in energy conversion resulting from cellular respiration.
Mitochondrial abnormalities caused by genetic mutations in some diseases like in
parkinson organoid models (midbrain organoids) can result in cell death (Bolognin
et al., 2019).

e Counting methods. Counting cell markers relies on many different procedures. For
example, different studies use the following steps: first, images are denoised using
median filtering. Second, a Gaussian filter is applied in order to obtain a mask for
the marker. Then a median filtering is used on masks, and connectivity is search to
remove small connected components (Berger et al., 2018; Lisa M. Smits et al., 2019;
Bolognin et al., 2019; Nickels et al., 2020). Finally, expression levels of markers are
expressed in pixels or percentage, and sometimes are normalized by the expression
level of nuclear markers.

Another way to count cells consists in binarizing each channel using Otsu thresholding
(Otsu, 1979a), and separating overlay cells using watershed (Meyer, 1994). Images are
then denoised and channels are overlayed to count cells and calculate ratios (Cullen
et al., 2019).

Most nuclei identification methods use a foreground and background image which are
first convolved with a Gaussian filter, then substracted from one another to obtain
segmented nuclei (Berger et al., 2018; Bolognin et al., 2019; Nickels et al., 2020). In
some cases, the Gaussian filtering is applied directly on the Hoechst channel (Lisa M.
Smits et al., 2019).

A way to quantify synapses is to manually segment them using a specific software
(Quadrato et al., 2017; Gomez-Giro et al., 2019). Others choose to co-localize pre-
synaptic and post-synaptic punta inside a population of neuronal cells by semi-automatic
tools and quantify them per micrometer of neurite length (Ghatak et al., 2019).

In order to quantify mitochondria, (Bolognin et al., 2019) segmented the plate of
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organoid culture, cell nuclei, cell and then a mitochondrial mask was defined via a
difference of Gaussians. Masks were refined using a sequence of operations (connected
component removal, erosion and skeletonisation).

Intensity In order to quantify the proportion of cell components or molecules inside brain
cultures, marker intensity measure has been proposed (around 7% of the image analysis).
Different markers can then be measured: neurotransmitters (Jorfi et al., 2018; Sartore et al.,
2017), molecule transporters (Wilpert et al., 2020), infiltration of tumors (Liu et al., 2020),
nuclei (Rakotoson et al., 2019) or pathological markers (Y.-T. Lin et al., 2018).

To measure the neurotransmitter intensity, the mean grey value of this specific marker
is measured in three points of each cerebral organoid border, delimited by a rectangular
selection. This fluorescence intensity is then normalized for the tissue background (Jorfi et
al., 2018). To assess the neurotransmitter intensity per particular neurons, this parameter
is normalized to total neuronal intensity (Ghatak et al., 2019). To quantify the tumoral
infiltration regions the fluorescence intensity is thresholded (Liu et al., 2020). For intensity
of nuclear markers, background image was subtracted from stained one, the image (originally
in 16bits) is converted in 8bit gray-scale and, the intensity of this marker is measured
(Stachowiak et al., 2017).

Advanced regional quantification When (Madeline A. Lancaster et al., 2013) gener-
ated the first cerebral organoid, they discovered the presence of various brain regions, similar
to the ones already described in human brain. It is possible to identify regions using a com-
bination of different markers, marker density or marker location. (Pagca et al., 2015) were
the first to quantify different types of cells inside cortical spheroid regions: a ventricular
zone (VZ), a deep layer and a superficial layer. One year later (Raja et al., 2016) counted
nuclei expressing a caspase to determine the cell death from the center to the external cortex
of a cerebral organoid. Indeed, markers of cell death and proliferation are often measured
in VZ and SVZ regions (Qian, Su, et al., 2020; Anastasaki et al., 2020; F. Jacob et al.,
2020; W. Zhang, Ma, et al., 2020). Other articles also calculate the percentage of particular
neurons in VZ, SVZ, outer SVZ (R. Li et al., 2017) or CP (W. Zhang, S.-L. Yang, et al.,
2019). With the emergence of fused specific region organoid, (Bagley et al., 2017) expressed
the percentage of various fluorescent markers in dorsal and ventral forebrain organoids.

As of today, regional quantification mostly remains on a semi-automatic process (Albanese
et al., 2020). All of the articles cited use imageJ after a manual extraction of the region of in-
terest. Regional organisation is also scored manually by three authors in “no organisation”,
“geographic segregation” and “laminar structures” to determine the degree of differentiation
(Cullen et al., 2019).

Between January 2018 and June 2020, we only found classic segmentation methods to
identify cell components. It would be interesting to test various segmentation methods to
identify the most adapted to accurately identify cellular components.

Morphological analysis

Morphological analysis represent approximately 37% of the studies of 3D cerebral organoids
images and are summarized in Table 2.6.

Upon these morphological parameters harvested, two categories are further detailed in
this section: basic and advanced metrics containing 2D (diameter, perimeter, length, area,
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Table 2.6: Morphological analysis performed on cerebral organoid images, given in percent-
age of the reviewed articles.

Type Analysis Percent Dimension
Diameter 484 2D
Perimeter 0.84 2D
Unspecified size 2.95 2D
Distances 421 Mix
Basi Neurite 295 2D
asIe Radialisation 042 2D
Ventricles 1.68 2D
Nuclear Morphology 021 2D
Area 11.58 2D
Volume 1.26 3D
Thickness 463 2D
Folding 0.63 2D
Tortuosity 0.21 2D
Advanced Curvature and Wrinkling 021 2D
Circularity 1.05 2D
Sphericity 0.42 3D
Total 36.84

folding, wrinkling, curvature and circularity) and 3D analysis (volume, sphericity and dis-
tances) see Figure 2.5.

Basic metrics: two dimensional analysis Some studies investigated organoid global
growth, by measuring size indices to identify the state of growth and well being of the cul-
ture, as well as to compare methods of culturing or disease models of cerebral organoids.

e Diameter, Perimeter. Diameter and perimeter are measured in (6%) of cerebral
organoid articles. They are part of tools to measure the size of cerebral organoid
to evaluate their growth or to compare different groups of culture (healthy and disease
models for example). Indeed, their size is evaluated by their diameter (Monzel et al.,
2017; Sartore et al., 2017; Sivitilli et al., 2020) or perimeter (Buchsbaum et al., 2020)
on bright-field images. Others authors use confocal microscopy to measure the size in
term of perimeter (Iefremova et al., 2017).

To measure these parameters, semi-automatic tools are provided in some software.
One of the method is to sample diameter twice in a perpendicular angle using the
line tool of FIJI, on maximum z-projections made from image stacks acquired by con-
focal microsocopy (Schindelin et al., 2012). In bright-field microscopy, perimeter of
an element inside an image is measured on boundaries of manual or semi-automated
selected regions. For diameter, the longest distance between two points of a selected
region is measured. These measures had to remain in early stage of development due
to heterogeneous shape in later stage in this culturing model.

Such metrics could become an indicator of cerebral organoid shape only in early stages.
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Figure 2.5: Summary of major morphological analysis performed on cerebral organoids. The
first line in this table corresponds to basic morphological analysis and the second one to
advanced. Basic parameters are used to calculate the advanced ones.

Nevertheless in other kind of organoid models, diameters are an indicator of their shape
all along their growth as most of them stay spherical and a few are elliptical (Kassis
et al., 2019). In this article, intestinal organoids are identified, and their diameters
are measured thanks to deep neural network based on anchor boxes and features pyra-
midal network from (T.-Y. Lin et al., 2018). Some software are developed solely to
measure the spheroid perimeter (W. Chen et al., 2014).

e Length. The first form of measuring distances is measuring it at cell scale. Measuring
cell component allow to identify characteristic of growth culture. Researchers measure
for example neurites (Xiang et al., 2019; Cullen et al., 2019; Ao et al., 2020; Durens
et al., 2020) or cilium length (W. Zhang, S.-L. Yang, et al., 2019). Using lengths, ra-
tio can be calculated to compare neurites in different regions inside cerebral organoids
(Xiang et al., 2019), or to evaluate the direction of growing of this cell component
(Durens et al., 2020).

To measure the length of cell components, semi-automatic tools are used to define the
boundaries of each of neurites or cilium, and distances between the two boundaries
are calculated.

e Area. The surface area better represents cerebral organoids shape in latter stages
than other 2D parameters, being more acute on non-spherical shape. Area is the most
calculated morphological parameter on 3D brain culturing (12%), and is used to com-
pare various cerebral organoids growth in different conditions or groups (Watanabe
et al., 2017). At the sample level, the surface area of 3D reconstruction of light-sheet
microscopic images can be performed (Qinying Wang et al., 2020; Yun Li et al., 2017).
Nevertheless, some authors prefer measuring regions (VZ and SVZ and CP) in term
of areas on slices to follow there growth (Watanabe et al., 2017; Iefremova et al.,
2017). Particularly ventricular lumen area are measured in order to know the state of
3D brain culture or to test a pharmacological component (Qian, H. N. Nguyen, et al.,
2016; lefremova et al., 2017; Sartore et al., 2017; Di Matteo et al., 2020). Area can also
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serve to determine the culture viability. The necrotic and viable areas are measured in
the case of comparisons of two kind of culturing (Berger et al., 2018). The calculation
of an expressed marker area without considering the regional segregation can also be
done (in entire slices). The area of a kind of neurons or glial cells (Park et al., 2018)
and the area of all the nucleus (Cullen et al., 2019) are another example of this kind
of measurement. Of note, measuring area enables the evaluation of co-localisation of
some markers (Ao et al., 2020) like presynaptic and postsynaptic ones.

To identify the growth of cerebral organoid culture, authors calculate the total surface
area of the whole organoid. Regions of interest are surrounded manually around the
entire organoid from a bright-field microscopy image, and thanks to an imageJ module
(“Area Measurements of a Complex Object”), the surface area is calculated (in pixels)
(W. Zhang, Ma, et al., 2020; Gomez-Giro et al., 2019). Viability of cultures can be
assessed both at regional or cellular level. (Berger et al., 2018) choose a typical fluores-
cent marker not expressed in necrotic core region and measure its surface expression
related to the total surface area. This parameter is measured as the minimum area in
pixels that an object must have after its selection, thanks to semi-automatic tools (Zen
software). For cell viability, areas of some cell component markers (such as plasmic
membrane or enzyme) are also calculated. To that aim, (Cullen et al., 2019) convert
the two channel corresponding to plasmic membrane and enzyme in 8 bits images,
then binarize images to obtain cell shape regions. The area of these two markers is
then quantified, and their ratio is calculated. Synapses quantification can be achieved
using marker areas co-localisation. Synapse areas are for example calculated by over-
lapping Homer (post-synaptic) and Bassoon (pre-synaptic) channel signal in the case
of assembloid of organoids using a lab-developed tool (Sloan, Darmanis, et al., 2017).
For particular cerebral organoids, areas are even calculated. For example in fused
ventral and dorsal forebrain organoids, areas of typical expressed markers are also cal-
culated (Bagley et al., 2017). For the blood brain barrier organoids, areas are equally
measured, particularly the core area by measuring it at 50 pm from the surface. A
scale bar is used as a reference to correctly assess the distance (Bergmann et al., 2018).
In mammalian, colon and intestinal organoids, the whole area of the entire organoid
digitized after bright-field imaging is calculated (Borten et al., 2018; Ren et al., 2018;
Hasnain et al., 2020). As an example, for (Borten et al., 2018), after a segmentation
of colon organoids (by a conversion, opening-closure, thresholding, filtering to denoise,
filling holes, denoising and removing debris), the surface area of identified region of
interest is measured.

Basic metrics: three-dimensional analysis Measuring the cerebral organoid size in
3D is also possible in light-sheet images, where the volume of this 3D brain culture is as-
sessed (Qinying Wang et al., 2020; Yun Li et al., 2017). Only few authors calculated this
parameter, possibly because this imaging modality is poorly used. Indeed 2.5% of articles
use light-sheet, and 1.3 % calculate the volume of cerebral organoids (Table 2.5).

The outline of the cerebral organoid is delineated and used to compute both volume and
surface area, with semi-automatic tools (Yun Li et al., 2017). Such metric could be use to
indicate if an antitumoral treatment works like it was made for spheroids. However, the
number of spheroids is too important to semi-automatically or manually measure volume
when performing drug testing. (Wojaczek et al., 2019; Kalaydina et al., 2019) use deep
learning method based on the YOLOv2 architecture (using anchor boxes instead of fully
connected layers) (Redmon et al., 2016) to identify spheroids and calculate their volume V'
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from the radius r, assuming a perfect sphere. Manual calculation of the radius r was made
by measuring the diameter twice for each spheroid, then averaged and divided to obtain r,
using a scale bar as a reference. After automated identification, coordinates of predicted
bounding box enable the measurement of radius and the volume calculation (Kalaydina
et al., 2019).

Advanced metrics

e Length and thickness. Advanced specific distances are calculated in Cederquist et al.,
2019 article to identify the cerebral organoid patterning. First, the center of mass
(CM) of a factor-organizing cells is computed, inside a grid applied on the image.
The CM is a function of its mean gray value intensity and the total intensity. After
choosing a marker of a typical protein, intensity is thresholded and regions of interest
(ROI) are identified. Finally the Euclidean distance between each ROI and the CM
is obtained.

The second kind of distance is the neuroepithelium thickness. In cerebral organoids,
this thickness is used to characterize an organoid model (Watanabe et al., 2017; Sak-
aguchi, Ozaki, et al., 2019; W. Zhang, Ma, et al., 2020; Di Matteo et al., 2020;
Buchsbaum et al., 2020) and to follow the patterning of the culture (Cederquist et al.,
2019) or the effect of various culturing on the growth of the regions contained in it
(Qian, Su, et al., 2020).

A specific feature of the neuroepithelium thickness is the relative thickness Rk,
which is the ratio of the total layer thickness T L. over the VZ region thickness
V Zinick (W. Zhang, S.-L. Yang, et al., 2019):

T Linick — V Zthick

Rinicr. = 2.1
thack T Linick (21)

Another way to calculate the relative VZ thickness is defined as the ratio of VZ thick-
ness to VZ plus outer layer thickness (Qian, H. N. Nguyen, et al., 2016).

e Circularity and Folding. The shape of the cerebral organoid is one of the parameter
used to distinguish it from spheroids, and a marker of later stage of the cerebral
organoid growth. Circularity (C') is a shape parameter measured in the early stage
(day 6) of development in intact cerebral organoids, and is defined by Yoon et al.,
2019 as:

A2
C =47 .- = 2.2
5 (22)
where A is the object area and P is the perimeter. An index of 1 reflects a perfect
circle.

Human cortical surface is characterized by folding (gyri and sulci), which is not al-
ways present in mammalian models (Kelava et al., 2016b). To determine if a cerebral
organoid model reproduces gyrification, (S. Li et al., 2020; Qinying Wang et al., 2020)
quantify folding. On bright-field or in higher magnification view images, the Canny
edge detector is used to extract edges. Once edges are found, their total length is used
to compute a folding index (Wojaczek et al., 2019).
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e Wrinkling and Curvature. Wrinkling occurs at two brain formation stages: during the
emergence of folds along the neural tube, and during the expansion of surface area.
Measuring wrinkling is a relevant index to characterize diseases such as lissencephaly.
(Karzbrun et al., 2018) calculate the wrinkling and the curvature inside cerebral
organoid. 2D wrinkling is the measure of the real perimeter of the organoid divided
by the total maximal perimeter as a circle containing the organoid. The curvature is
defined as the average of the tangent angle 6(r) derivative along the surface of inner
and outer neuroepithelium perimeter contour nré(r).

e 3D: Sphericity and Distances. For 3D images, circularity cannot be characterized,
hence the identification of brain gyrification uses the sphericity (how spherical an
object is) on light-sheet images (S. Li et al., 2020; Qinying Wang et al., 2020). The
calculation of sphericity, ¢ originally generated by Wadell in 1932, is defined as the
ratio of the cell surface area of a sphere over the cell surface area of a particle, with
V' the volume of the particle and A the surface area of the particle:

1/3 6V 2/3
b = 7T(A> (2.3)

The latest measure performed on cerebral organoids evaluates the tumor propagation
in some models. The distances between tumoral cells or between them and the cen-
ter of the cerebral organoid is computed. From binarized images, several steps are
then performed: exclusion of single cells (using by connected components), holes fill-
ing, organoid surface approximation (by a Delauney triangulation). Normal distances
between tumoral cell voxels is then calculated (Krieger et al., 2020).

Summary on morphological parameter extraction Over the considered time range
(January 2018 to June 2020), we only found methods focusing on classic extraction of
shapes. More recently ((Albanese et al., 2020)), authors extracted ventricular region of
cleared organoids using a Deep-Learning approach (U-net architecture (Ronneberger et al.,
2015a)). This original work paves the way to Deep-based approaches and clearly shows
the potential of such methods. Similar methods could potentially be used for all types of
cerebral organoids structures.

2.6 Software

Pre-analysis software

Most imaging platforms include a software able to perform pre-analysis. For example, the
tiles module and the position module of the Zen software can be used to reconstruct multi-
view images in 3D (Watanabe et al., 2017); while the NIS imaging software (Nikon) can
measure the size of cerebral organoids (Berger et al., 2018).

However, these software packages are generally not adapted to perform the tasks vari-
ability required by researchers who want to analyze cerebral organoid imagings. To analyze
images, neuroscientists choose dedicated software depending on the study topic, imaging
type, ease of use, source code flexibility, their computing knowledge, and budgets. ImagelJ,
Matlab, CellProfiler and Imaris, are the most used software solutions in this context, as
shown in table 2.7.
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Table 2.7: Software used to analyze cerebral organoid images.

Software Open source Automatism percent
imageJ / Fiji  yes semi-automatic  51.37
Matlab no automatic 4.42
CellProfiler yes semi-automatic 0.84
Vast yes semi-automatic 0.42
Imaris no semi-automatic 3.16
Visiopharm no automatic < 0.2
ImageScope yes automatic <0.2

ImageJ / Fiji

ImageJ is an open-source software which can run on all the main operating systems (Win-
dows, macOS, Linux/Unix). It does not require knowledge in coding and the interface is
somewhat user friendly; for example it supports “drag and drop” of the image to analyze.
ImageJ is the most widely used software for the analysis of 3D brain cultures (used in
over half the articles surveyed, see table 2.7). The most popular modules include the “cell
counter” plugin, the “particle” counter, the “length” and “area” measurement functions,
the “ROI tool”, and the “Canny edge detection” to measure folding density.

For those who need further analysis, the advantage of this software is the possibility to
code macros in Java to automate analysis or to create new tools (Raja et al., 2016; Ormel
et al., 2018). One drawback is that some file extensions require additional plugins to be
handled (for example bioformat files) while in-house extensions are not handled at all. Also,
ImageJ performances are impacted when used with large images and may require increasing
memory allocation.

Theoretically, it is possible to perform 3D analysis with the “ImageJ3Dviewer” plugin.
However, to our knowledge, these tools have not been used for the analysis of 3D brain
cultures.

Matlab

Matlab is a numerical computing environment and proprietary programming language widely
used by the scientific community, for example for image and data processing or simulations .
Matlab can also run on the main operating systems. Many toolboxes exist and can be used
to develop new tools. Matlab is more versatile and faster than the other software on large
amounts of data, but it requires specialized knowledge to develop and validate new tools.
Matlab is the second most used software (with 5% of use), and has been used for a wide
range analysis tasks: nuclei segmentation (Lisa M. Smits et al., 2019); cell segmentation
(Bolognin et al., 2019); puncta co-localisation (Sloan, Darmanis, et al., 2017); curvature,
folding and surface measurement (Karzbrun et al., 2018); and tumoral cell dispersion eval-
uation (Krieger et al., 2020).

CellProfiler CellProfiler is an open source software developed in Matlab; it thus requires
a Matlab license. Many plugins are available and used by different teams analyzing 3D brain
cultures (Park et al., 2018; Pedrosa et al., 2020). The major inconvenient is that not all

!MathWorks, Matlab
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image formats are currently accepted. Specific scripts must be developed, but new plugins
can be coded in Matlab as mentioned before.

Vast Vast “ is a Matlab-based semi-automatic segmentation tool for 2D and 3D images and
is used to segment images from transmission electron microscopy, including segmentation of
synaptic compartment in cerebral organoids (Quadrato et al., 2017).

Imaris

Imaris is a commercial software which allows 3D and 4D (along the time) analysis of cell
cultures, but it remains a semi-automatic tool. User selects objects inside images to detect
and process them. Imaris is used in 3% of the articles surveyed for this review, and is
particularly used to reconstruct images in 3D (T. Kadoshima et al., 2013; M. Renner et al.,
2017), to count cells (R. Li et al., 2017) and to quantify volumes, surface area and sphericity
(Yun Li et al., 2017).

Others solutions

Visiopharm® is a commercial solution composed of a range of Al-based image analysis and
tissue mining tools. It has been used on fluorescent cerebral organoid images to count cells
(Stachowiak et al., 2017). ImageScope’ is a commercial automatic quantitative software
for widefield microscopy, used to count pixels labeled with a specific marker for prion in a
Creutzfield-jacob model of cerebral organoid images (Groveman et al., 2019).

Others methods have been validated for the study of non-cerebral organoids: Cytocensus
for retinal organoids (Hailstone et al., 2020); OrgDyn for widefield images of mammalian
organoids (Hasnain et al., 2020); OrganoSeg for 3D bright-field images of colon organoids
(Borten et al., 2018). Most of these tools are based on image filtering and segmentation. No-
tably, OrgaQuant locates and quantifies the size distribution of human intestinal organoids
in bright-field images based on a deep learning network (Kassis et al., 2019). Only recently
a software was created to characterize the cytoarchitectures of cerebral organoids imaged
by light-sheet microscopy (Albanese et al., 2020).

2.7 Available datasets

The number of available dataset in the organoid/spheroid field is limited see Table 2.8, and
only few of them could be used to characterize the development of brain organoids. We
choose to use the bright-field brain organoid dataset to our work and ask to other authors
if they could let us some others bright-field brain organoid images. Even if this dataset
contains only a few samples, these images represents some advantages: open access, and
acquired at three different developmental stages; The imaging method of this dataset is the
one usually used to follow brain organoids growth, and organoids are centered within the
image. Therefore, such dataset allows a developmental morphological characterisation.

About the ground truth The first work before segmenting images is to prepare the
dataset. One of the preparations consists in creating the ground truth (GT) of images. The
ground truth is the manual annotation of images which allow to compare fairly automatic

2https://software.rc.fas.harvard.edu/lichtman /vast/
3https://www.visiopharm.com/
4https:/ /www.leicabiosystems.com/fr/imagerie-pathologique/analyser/
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Table 2.8: Available organoid/spheroid image datasets found in the literature.

Reference Culture type Acquisition Healthy/Total Size
Gomez-Giro et al., 2019  Brain org. Brighfield 20/40 1388 x 1038
Nickels et al., 2020 Midbrain org. Brightfield 300/300 1388 x 1038)
Kassis et al., 2019 Intestinal org. Brightfield 756/756 450 x 450
Borten et al., 2018 Colon and breast  Brightfield 120/120 864 x 648
cancer spheroid
Stachowiak et al., 2017  Brain org. Confocal 16/40 1389 x 1040
Gomez-Giro et al., 2019  Brain org. Confocal 30/60 1907 x 2355
Lisa M. Smits et al., 2019 Midbrain org. Confocal 76/76 1388 x 1040
Nickels et al., 2020 Midbrain org. Confocal 10/10 1024 x 1024
Schmitz et al., 2017 Melanoma Light-sheet 2/2 690 x 726
spheroid
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Figure 2.6: Ground truth annotation on itksnap and variations in ground truth annotation
by a biological expert. Three manual segmentation have been made by the experts, and F1
score has been calculated. Kruskall-wallis test performed on the dice score between control
and GT comparison group does not show significant differences (p-value > 0.05).

with a biological expert annotation. The ground truth has been created by a superimposition
of 3 annotations of experts witch selected the contour of images with the ITK-SNAP software
www.itksnap.org (Yushkevich et al., 2006a). To verify the three manual segmentation are
quite similar we compare the annotation variations Figure 2.6.

Resources We develop all the scripts in Python 3.6 with an Anaconda framework con-
taining Keras 2.3.1 and Tensorflow 2.1 and run them on an Intel Core i7-9850HCPU with
2.60 GHz and a NVIDIA Quadro RTX 3000s GPUdevice.

2.8 Discussion

This section gives an overview of the current limits in: cerebral organoids generation, existing
imaging solutions and analysis methods and tools. We also present expectations for new
image and volume analysis tools. Indeed, one of the keypoint in the context of image analysis
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Figure 2.7: Main domains of reviews published. Percentages less than 5% are not mentioned.

of cerebral organoids is the faisability of the analysis supported by the quality of generated
images and on their imaging.

Cerebral organoid generation limitations

Some limitations remain in the generation of cerebral organoids. The main limitation is
the necrosis occurring during the growth of cerebral organoids due to lack of nutrients and
oxygenation. Slicing the organoid and optimizing the culture medium have reduced this
necrosis (Qian, Su, et al., 2020; Berger et al., 2018). However, the lack of vasculature of
cerebral organoids remains the root of the problem. In some protocols cerebral organoids
are transplanted in mice brains for irrigation (Mansour et al., 2018; Pham et al., 2018; Shi
et al., 2020) while others generate blood-brain barrier organoids (Cho et al., 2017; Nzou
et al., 2018; Bergmann et al., 2018) but these solutions lack the self-patterning of vessel
generation. Recently, the theoretical elucidation of this problem has been exposed based on
two models of gradient diffusion of the vascular endothelial growth factor (Hong et al., 2019).
A recent study also documents the generation of telencephalic and choroid plexus organoids
allowing the production of cerebrospinal fluid (Pellegrini et al., 2020). A combination of
these barriers in a cerebral organoid model could potentially increase its lifespan.

“Batch syndrome” and batch-to-batch variability as previously described are a major
inconvenient for the commercialisation and robust analysis of cerebral organoids. A pre-
requisite for commercialisation consists in measuring size and morphological complexity (cf
2.3) to validate the model (Choudhury et al., 2020). However, existing tools to measure the
overall size present drawbacks like time consumption as they are manual or semi-automatic,
making them unsuitable for mass production. Though the generation of this model is less
than a decade old and not well stabilized, growth monitoring of cerebral organoids neglected
for the benefit of articles comparing pathological and physiolocal cerebral organoid models.
Almost half of the related articles and reviews included in this review are about pathological
organoids (Table 2.1, Figure 2.7). In others organ models, automatic tools have emerged
to measure the size or to classify the morphology of others organ models (Hasnain et al.,
2020; Borten et al., 2018; Kassis et al., 2019). We think a similar tool for cerebral organoids
could help to measure and identify the growing step of cerebral organoids.

The large amount of cells to handle in generated cerebral organoids, in addition to their
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variability in numbers, also increases the difficulty in analyzing images (from 3000 to 11000
cells at 6 months depending on the protocol). Nethertheless, similar problems have already
been addressed. For example, connectome has already been investigated for larger central
nervous systems like drosophilae (25000 neurons and their projection), but also in part for
the human brain (containing around 86 billions of neurons and their projections) (Scheffer
et al., 2020; Rosen et al., 2021; Maller, 2019). The Human Connectome Project requires
to create collaborations between laboratories and a large storage capacity, as terabytes of
storage are required in computing resources for a whole human brain. In order to investigate
the development of cerebral organoid connectome under various protocols, we think it could
be necessary to create a similar initiative collaboration, and biobanks dedicated to cerebral
organoids images. Another review discussed about the benefit and limitations of conserving
cerebral organoid generated or their cell contents inside biobanks (S. Li et al., 2020). It
could help also to investigate for instance each neuropathological model created in cerebral
organoids as it has been done for glioblastoma (brain tumor) cultures of patients (F. Jacob
et al., 2020).

Generation of cerebral organoids is not the only limitation of these models, to an image
analysis point of view, the imaging remains an issue.

Preparation and imaging method limitations

Preparation Sectioning during preparation restricts the efficiency and throughput of
organoids and spheroids (Pagca et al., 2015). The loss of bio-material is critical for these
small cultures that do not exceed 4 mm in diameter for cerebral organoids and 0.5 mm for
spheroids. Moreover 3D reconstructions computed from these altered images can introduce
a bias (Richardson et al., 2015). To avoid slicing and to obtain a full cerebral organoid
image in a single acquisition, (Durens et al., 2020) generate an organoid with a thickness
of 100 um. Another problem of classic immunohistochemistry methods is the poor diffusion
of markers in the depth of cultures. A possible solution is to use clarification. Nowadays,
only a few teams use this expensive solution on cerebral organoids (see Table 2.3). The
aim in the near future is to use clarification in high-throughput platforms (Poli et al., 2019;
Grenier et al., 2020). Very recently, out of the time scope of this review, cleared cerebral
organoids, were analyzed in one of this expected platform called SCOUT (Albanese et al.,
2020). Others authors tried also others clarified methods to analyze in 3D their cerebral
organoids (Adhya et al., 2021; H. Renner et al., 2020). However, contrarily to the spheroids
field, to our knowledge there is no article comparing existing clarification methods to find
the most accurate one, allowing better image analysis on 3D brain cultures (Niirnberg et
al., 2020). An appropriate clarification method applied on cerebral organoids could help to
acquire images of quality and allow the most accurate 3D analysis.

Imaging FEach of the various acquisition methods used on cerebral organoids has specific
limitations. Bright-field microscopy is only used to analyze intact samples and is a powerful
and simple acquisition modality to identify 2D morphology and follow the growth, however
not suited for inner cells study. The resolution of confocal microscopy is satisfactory only for
the superficial sweeps while only a halo of markers are visible in the deepest views (Lisa M.
Smits et al., 2019). Accordingly, only cell counting in a single acquisition plane is possible
(Qian, Su, et al., 2020). Light-sheet microscopy is only used by few teams (See Table 2.1).
This method is an expensive solution that requires to be tested on cerebral organoids clarified
by various protocols before obtaining good quality data. This imaging method has been
used in the recently published articles on only one clearing method (Albanese et al., 2020;

33



Adhya et al., 2021). A comparison of images resulting from various clarification protocols
in light-sheet and confocal modality, not already provided to our knowledge, could be an
important step to identify the best methodology for the observation and analysis of 3D
cerebral organoids. Such image acquisition methods diversity yields additional complexity
in the automated analysis tools standardisation (Table 2.1).

Analysis

Some authors chose to develop their own algorithm rather than using already available
software modules (Stachowiak et al., 2017; Berger et al., 2018; Lisa M. Smits et al., 2019;
Cullen et al., 2019; Bolognin et al., 2019; Krieger et al., 2020). In addition to software
imaging and updates high costs, these are usually not optimized for their specific imaging
modalities. Also, commercialized software source code is not always available, to be modified
to fit custom needs. With regard to clarified samples images, only a few software are allowing
3D-data analysis (See section 2.6). Noteworthy is the fact that most of the existing solutions
remain semi-automatic. In the actual context of data expansion and increase of organoids
models (Ashok et al., 2020; Choudhury et al., 2020), the development of fast and automated
tools is mandatory.

Indeed, manual characterisation of spheroids, smaller than cerebral organoids, is time
consuming (Soetje et al., 2020). In contrast, automated processing based on computational
neural network (CNN) can provide real time measures (Kalaydina et al., 2019; Anagnostidis
et al., 2020; Wojaczek et al., 2019). In other imaging disciplines such as MRI brain tumor
detection, similar methods are already widely developed (Gordillo et al., 2013).

Aside from quantification speed optimisation, another benefit of CNNs is that they are
not subject to human error (except from the manual annotation process). Nowadays, CNNs
are used to measure size parameters from 3D intestinal organ models, (Kassis et al., 2019)
or to count cells in retinal organoids (Hailstone et al., 2020).

Despite the fact that is widely developed for others 3D cultures, to our knowledge,
only one article included deep learning methods in order to segment ventricules of their
cerebral organoids (Albanese et al., 2020). However, the comparison of machine learning
methods applied to cerebral organoids would bring precise information on analysis precision
and reproducibility. Nevertheless, the lack of shared images databases precludes such a
comparison (Chakradhar, 2016).

Need of analysis tools

Automatic monitoring during cerebral organoids development, although essential for their
commercialisation (Chakradhar, 2016) and management of the increase culture amount
(Figure 2.1), is still lacking.

In others organ models — i.e. mammary organoids (Hasnain et al., 2020) —, automated
tools allowed the discovery of various groups of morphology. Such classification would be
interesting to highlight in cerebral organoids.

Studying the morphology and measuring the size of a cerebral organoid in 2D images can
help to compare groups inside a study (Watanabe et al., 2017; Monzel et al., 2017; Iefremova
et al., 2017). However, the tools used to that aim are still semi-automatic or manual. A
possible answer lies in the use of CNNs, which can help identifying and characterizing
cerebral organoids in the culture (Kassis et al., 2019; Wojaczek et al., 2019; Kalaydina
et al., 2019; Anagnostidis et al., 2020; Soetje et al., 2020). These tools completed with
transcriptome analysis in various locations inside some cerebral organoids blindly selected
in a batch, could help to automatically validate the growing step of a cerebral organoid, in a
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productivity chain. Such a tool used in research would improve the speed of organoid groups
comparison. Additionally, automated size and growth measurement could be helpful in other
3D cultures (organ models or spheroids), less complex in term of morphology (Friedrich et
al., 2009).

Another interesting feature of cerebral organoids is the presence of regions mimicking
similar human brain regions, but at random location, with shape variability and in random
numbers (Madeline A. Lancaster et al., 2013). Regional quantification has already been
performed in two dimensions with semi-automatic tools (Qian, Su, et al., 2020; Anastasaki
et al., 2020; F. Jacob et al., 2020; W. Zhang, Ma, et al., 2020). Conversely, automatic 3D
structures extraction has not been done yet, except for ventricular regions (Albanese et al.,
2020). To observe or quantify molecules in specific brain regions, researchers use atlases on
the assumption that structures localisation and shapes are identical to the ones found in
a healthy subject. Such assumptions are not valid for cerebral organoids, because of the
previously mentioned variability. Moreover, atlas creation process is a complex task, even
in the case of in vivo models or human brain (Bazin et al., 2020; Johnson et al., 2010;
Quanxin Wang et al., 2020). Recently, some authors developed a brain atlas based on deep
learning in order to automate the segmentation of mice brain regions, which are variable
in size and shape (Igbal et al., 2019). This study demonstrates the feasibility of localizing
brain structures despite mild brain variability, and could be translated to cerebral organoid
study.

Additionally, the minimal density of markers defining a region in 3D would be interesting
to highlight. Such characterisation could help identifying unknown functional and architec-
tural markers, as mentioned in Grenier et al., 2020, with the perspective of generating a
high-throughput deep learning-based image analysis platform for drug testing.

Such platform could benefit many other applications. Defining regions with a reduced
number of markers on a single sample could leave room for another marker, more relevant for
a specific study. Moreover, organoids structures are manually extracted to count markers,
or are cut to analyze in RNAseq (Buchsbaum et al., 2020; Sloan, Andersen, et al., 2018).
Nevertheless, structures are microscopic, and the tools enabling the selection of regions
depend on the accuracy of the operator. This becomes particularly critical when regions are
cut with laser microscopes. Precision in cerebral organoid cutting could be increased using
automatic region identification, or error correction through a dedicated analysis tool.

Automated quantification of cells and their components would be of great interest, as
such measures remain the main analysis realized on cerebral organoids Figure 2.4. While cell
counting is the principal quantification realized on cerebral organoids (cf Table 2.5), authors
only use classical segmentation (thresholding, watershed for example) (Cullen et al., 2019).
Similarly quantifying physiological or pathological markers inside cerebral organoid regions
has been performed only with semi-automatic tools (Qian, Su, et al., 2020; Anastasaki et al.,
2020; F. Jacob et al., 2020; W. Zhang, Ma, et al., 2020). Automatic tools developed for
other culture models could potentially be used to achieve such quantification (Piccinini et
al., 2020). Development of new methods could also be inspired by approaches already used
for in vivo brain models (C. Zhang, 2017), however with some limitations regarding methods
used for real human brain tissue study. In this specific case, cell counting is based on three
different approaches: histological or stereological approaches, DNA extraction and isotropic
fractionnating. Only the first method keeps the localisation of the cells (Von Bartheld et al.,
2017) and would therefore be suited for cerebral organoids.

Another interesting project to develop is the creation of cerebral organoid connectomes.
We think connectivity mapping has to be developed at various scales, between two organoids
of an assembloid, between regions inside an organoid, but also between the constituting
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cells. In assembloids, the connectivity could help to explain neurodevelopmental defects
using pluripotent stem cells derived from neurological diseases patients and to test potential
therapeutic compounds (Bagley et al., 2017). Another review addresses the challenge of
connecting an organ culture with cerebral organoids, in order to reproduce important axes
in the human body, although this raises major ethical questions (Chukwurah et al., 2019).

New computational methods identifying connections could help to understand organoid
inner structure. For instance, regional connectivity could be helpful to identify a pathological
formation inside the neuroepithelium, and help to understand the neurodevelopemental
formation (Seto et al., 2019). Finally, characterizing the full connectivity of the whole
organoid, or inside a particular region, could help distinguishing relations between different
cell types, relevant to identify neurodegenerative diseases (Marotta et al., 2020).

The identification of cell interactions has been described in another review (Poli et al.,
2019), and is based on a connectivity map realized after segmentation of clarified tissues
and visualized with virtual reality. This method could also be applied for fused regional
cerebral organoids or for connected organ culture with the brain one. A unified analysis
tools platform would benefit simultaneously to the manufacturing process standardisation
and 3D cultures research (summarized in Figure 2.8).

2.9 Conclusion

The use of cerebral organoids in laboratories has increased exponentially since their first
creation in 2013. However, we observe in this review that actual tools to study images
from these 3D brain cultures in all their dimensions suffer from some limitations. The
structural variability occurring during maturation needs to be limited by improved protocols
or by computational analysis solutions. The best combination of “clarification protocol -
microscopic device” remains to be highlighted to acquire images from cerebral organoids
that could be analyzed in all their dimensions. Specific tools need to be developed to
improve the speed and the accuracy of their identification and quantification, but also to
better understand their physiology and their entire 3D cyto-architecture. However, such an
approach implies access to very large image datasets, which seems only possible when they
will be stored in the “Organobanks”.

As already mentioned by two other teams, and once the current limitations are overcome,
the ideal platform would combine molecular /transcriptome and high throughput image anal-
ysis tools (Grenier et al., 2020; Poli et al., 2019). The first milestone of this kind of research
was very recently published (Albanese et al., 2020; H. Renner et al., 2020). However, cere-
bral organoids dedicated image analysis tools remain to be developed, as summarized in
Figure 2.8.

We are convinced that cerebral organoids coupled with high performance image analysis
tools have the potential to highlight features others brain models are not able to show yet,
and will help evaluating theories in the neuroscience field.
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Chapter 3

(Generation

The scarcity of public datasets of annotated biomedical images remains an unresolved bot-
tleneck to develop specialized and robust automatic analysis tools. Research groups do not
usually share experimental data for privacy reasons. The high costs of equipment, long ac-
quisition times, and necessary in-depth expertise can be a brake to acquisitions (Chakradhar,
2016). To benefit from the advances in deep-learning (DL) for automated image analysis,
large training datasets are necessary. Moreover, original dataset constraints create a problem
of class imbalance with deep learning training procedures. These problems are emphasized
with small sets, reduced to a few images (Tajbakhsh et al., 2016).

A solution widely used in various domain is data augmentation (N. K. Singh et al.,
2021). This concept gathers techniques used to increase the amount of data by adding
slightly modified copies of already existing data or newly created synthetic data from existing
data. Data augmentation aims to reduce over-fitting when training a machine or deep
learning model. The main current applications in the biomedical field are in detection and
classification,but has been used before for synthesis and reconstruction or detection and
segmentations (Yi et al., 2019; Y. Chen et al., 2022). Usually three data augmentation
strategies are described: classical, deep learning-based, or a combination of both (Chlap
et al., 2021).

3.1 State of the art on data augmentation

3.1.1 Classical data augmentation

Classical data augmentations gather the oldest, and the most often used strategies, mostly
because of high processing speed. These strategies are divided in six methodologies: geo-
metric, color space, noise, filter, mixture (or patch), and erasing based.

Color augmentation gathers contrast transformation (increase, reduction, linear, gamma...),
histogram equalisation or whitening of images (Mikolajczyk et al., 2018), while color space
augmentation is based on RGB pixel values manipulation or hue transformation, or color jit-
tering (Wu et al., 2015). Affine geometric transformations contain shear, scale, translation,
reflection, rotation, flip-flop, skew, random crop, occlusion, edge enhancement (Mikolajczyk
et al., 2018; Taylor et al., 2018). Others transformations include kernel filtration, patch or
noise injection (such as Gaussian, Uniform, Salt and Pepper, sharpening, blur, or emboss)
(Hussain et al., 2017; S.-H. Wang et al., 2021; Chlap et al., 2021).

Most of these transformations have been compared by Taylor et al., 2018 experiment on
CIFARI10, showing a not so strong accuracy in classification tasks, with a maximal accuracy
of 79%, obtained by cropping. A possible explanation of this result is the lack of variation in
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transformed images, in comparison with the original ones. Other transformations have been
proposed to overcome this limitation. Displacement based on mapping (a reference image
and a second one which is deformed, to become similar to the first) (Krivov et al., 2018),
diffeomorphic image registrations combined with affine augmentation (Nalepa et al., 2019)
or atlas based (Tustison et al., 2019) are also in the spectrum of possible transformations,
although they require a reference images or an atlas of the object. Spline interpolation
is another mathematical transformation which smoothly deforms the image content. Two
interpolation methods, thin and B spline, are common. The thin is the most use, however
the content is sometimes unrecognizable (Chlap et al., 2021). Concerning the latest kind of
classical transformations, they mix patches of images of various content or, erase randomly
including important parts which do not allow to well train algorithms (Summers et al., 2019;
Takahashi et al., 2020; Z. Zhong et al., 2020).

Recently, other classical approaches has emerged such as statistical shape models, which
describe the shape variability inside a dataset with a model, used to generate deformations
within the range of original parameters, with a dimensional reduction approach for instance.
However, the variability in image intensities between protocols and acquisitions, and the
absence of shape references of biological contents lead to errors (Bhalodia et al., 2018;
Corral Acero J, 2019).

In summary, classical data augmentation are the most used and the fastest methods,
but should be used with caution due to severe drawbacks such as: clone images with no
variability, unrecognizable generated data, non natural biological shape in the content, need
of a reference or a template and mathematically limited number of transformations.

3.1.2 Deep learning based data augmentation

Deep learning (DL) data augmentation approach automatically learn the representation of
images and generate realistic but not clone images, and is generally used to increase the
model generalities, synthesizing variable images, and reduce over-fitting during training by
the increase number of images. DL strategies are in majority composed of four groups
described below: feature space augmentation, adversarial training, generative adversarial
networks (and variations), and neural style transfer.

Feature space augmentation

The principle of feature space augmentation consists in increasing not the input database,
but the learned space by adding noise, interpolating, or extrapolating by a neighborhood
search (Chawla et al., 2002; Nacereddine et al., 2012). An example of this data augmentation
strategy is illustrated in Figure 3.2.

The deep learning architecture used for this approach is a sequential autoencoder. The
autoencoder is constituted by an encoder which receive the input and transform it by ap-
plying one or more nonlinear parameters into a new representation of a lower dimension.
The decoder also uses nonlinear transformations to reconstruct the original image with the
lower dimensional representation. An illustration of the classical auto-encoder architecture
is given Figure 3.1. Autoencoder are usually divided in many fields: sparse, denoising,
contractive, etc.

During the forward step, the hidden states of the recurrent layers are propagated through
the layer stack. The encoder hidden states at the final time step, called the context vector,
seeds the hidden state of the decoder at its first time step. The sequential auto-encoder
works similarly; however, the encoder and decoder use recurrent layers which can encode
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Figure 3.1: Auto-encoder architecture.(X;,X;) corresponds to input information, circle non
linear transformed resulting vectors, C; represents the context vector also called latent space
and (Y;,Y4) the output information.
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Figure 3.2: An example of feature space augmentation lying on a sequential auto-encoder
illustration based on (DeVries et al., 2017). C;, C and C) represent context vectors, in blue
are the process and in green images. Encoder architecture and the sequential decoder are
illustrated in grey.

and decode variable length sequences. Indeed, the decoder learns on the context vector at
each time step and not on the first step, which improves the reconstruction (Kyunghyun
et al., 2014).

A limitation of this method comes from the proposed data augmentation, based on
simple transformations: only a limited number of transformations can be calculated on the
contextual vector.

Adversarial training: origin of Generative Adversarial Networks

Generative adversarial networks (GANSs) are unsupervised deep learning-based architectures
composed of generator (G) and a discriminator (D). The generator aims at creating visually
realistic and natural images while the discriminator tries to decipher whether the result is
generated or belongs to the original dataset. Created for the first time by Goodfellow et
al., 2014, its surname is Vanilla due to its architecture, directly drawing samples from the
original image distribution, without needing to model the underlying probability density
function; An illustration is given in Figure 3.3.

The generative model (GM) maps the images into the space (z) by an objective function
(F') while the discriminative model (DM ) determines the probability for which a point from
z belongs to the original dataset (o) or to the generated dataset (¢). Training F' increases the
probability that the data synthesized is attributed to o. The probability of correct sample
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Figure 3.3: Vanilla Generative Adversarial Network from (Goodfellow et al., 2014)

labeling (belonging to generated g or original o) is maximised by D. Simultaneously, GM
is trained to leverage the discriminator function expressed by:

Ig}\}[l%aj\g{F(DM’ GM) =E; ~ po(l‘)[lOgDo] + B, ~ pz(z)[ZOg(l - D(Gz))] (31)

Both networks are trained simultaneously with the same loss joint function, usually using
binary cross entropy loss function. To explain equation 3.1, we define: H the cross entropy
and x a sample which have 50% to belong to the probability to belongs to the original
dataset p, or, the generated dataset p, and, suppose y = 1 if z is real or y = 0 if x is
generated. Joint entropy for the discriminator is described as:

H(y,y') = H(y, D(x)) (3-2)

D(x) is the probability for which D is confident about x belongs to p,. With the cross
entropy formula, we obtain H(y, D(x)) with N the size of the dataset:

H(y, D(x) = E,[-logD(s)] = 7 - yilog (D) (33)

We then split the sum in equation 3.3 in two parts, as each class possesses N/2 samples:

N/2 N

H(y, D(a)) = ~( S pilog(D(i) + 7 3 (1= yilog(1 = D)) (34

i=N/2

The first part of equation 3.4 represents the distribution of p, and the second part the
distribution of p,. We then convert all the sums in expectations as all the yi could be
validated, and 2 is a constant:

H(y, D()) = ~( Eupoflog(D(wi))) + 3 Eupy(log(1 ~ D(zi) (35

The p, sample data (equation 3.5) being outputs from G, it can be replaced with D(G(z)),
with z explained by p, to obtain the discriminator loss function Lp which goal is to minimize
itself:

Lp = max(E, ~ p,()(log(D(z,))) + E. ~ p-(2)(log(1 = D(G(2))))) (3.6)

The generator goal is to maximizes incertitude, proven to be equivalent to minimizing the
Jensen Shannon divergence between p,(x) and py(x):

Lg = min(E; ~ p.(2)(log(1 — D(G(2))))) (3.7)
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Table 3.1: Limitations of Generative adversarial networks and possible causes.

Drawback Description

Collapse generation of identical images as the input (fail in a local minima)

Noise/Blur generation of noisy images or blurry when the training is not enough
or when the generator is incertain when receiving the feedback

Overfitting generated model contains more characteristics that the initial dataset

Vanishing gradient the discriminator won, it determines better the false images and does
not give enough feedback to the generator, so the generator fails to train
due to the vanishing gradient

Divergence model learns a pattern that provokes the generation of images more
and more distant from the input

Coupling these two loss functions, we obtain the adversarial loss written in equation 3.1.

Compared to feature space augmentation, there is no restriction for the latent space
size generation with GAN. However several drawbacks have been highlighted. Table 3.1
describes the most often observed.

To overcome these limitations, others GAN architectures have been proposed over the
last years.

GANSs architecture variations

Since its first creation, multiple GAN architecture variations have been proposed to generate
and extend datasets (Y. Chen et al., 2022; Ferndndez et al., 2021; Lan et al., 2020). Among
the various architecture variations, we only describe here the most known which allow to
overcome some Vanilla’s limitations. We also classify them in generator and discriminator
objective variations.

Generator objective variations To stabilize the training of Vanilla GAN, one solution
is to replace residual blocks architectures using fully connected layers by fully convolutional
downsampling /upsampling layers such as DCGAN (Radford et al., 2015) (Figure 3.4). Pool-
ing layers are replaced by strided convolutions for the discriminator and by fractional strided
convolution for the generator. It contains BatchNorm for regulating the extracted feature
scale (Yoffe et al., 2015), and LeakyRelu for preventing dead gradients (Maas et al., 2013).
ReLU activation is used in generator for all layers except for the output, which uses Tanh
and LeakyReLU activation in the discriminator for all layers (Radford et al., 2015).
Another generator architecture variation used in the literature consists in replacing the
fully connected layers by an auto-encoder (Larsen et al., 2016; Kingma et al., 2013; Makhzani
et al., 2015; Isola et al., 2017; Zhu et al., 2017) (Figure 3.5). Where in the Vanilla GAN,
the generator transforms the z sample into g belonging to G(g), the VAEGAN uses pixel-
wise reconstruction loss to enforce the decoder part of VAE to generate structures to match
the real images (Larsen et al., 2016). In this architecture, the GAN becomes conditional
(cGAN) and the generation process drives the output to have certain properties, expressed
as vg = G(z,c) where ¢ is an image. Another VAE from (Kingma et al., 2013)uses a
KL divergence penalty to impose a prior distribution on the hidden code vector of the
autoencoder. In Makhzani et al., 2015, the proposed AEGAN uses an adversarial training
procedure by matching the aggregated posterior of the hidden code vector with the prior
distribution and outperforms VAE architectures on test likelihoods of real-valued MNIST
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Figure 3.4: “DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform
distribution Z is projected to a small spatial extent convolutional representation with many
feature maps. A series of four fractionally-strided convolutions (in some recent papers, these
are wrongly called deconvolutions) then convert this high level representation into a 64 x

64 pixel image. Notably, no fully connected or pooling layers are used” from (Radford et al.,
2015)

datasets. Concerning image-to-image translation neural network, pix-2-pix is the most
known and presents generator updates (Isola et al., 2017). Indeed, this generator is a
“U-Net”-based architecture to avoid vanishing gradient (Ronneberger et al., 2015b), which
differs from the encoder-decoder original architecture, by applying skip connections between
the mirror layers from the two networks.

However, pix2pix requires aligned training data. This is not the case with CycleGAN
(Zhu et al., 2017) , which is made of two generators and discriminators. Synthetic result
from a generation is given as an input to the second generator, and contains cycle consistency
loss. However, this architectures is limited by the performance of the discriminative loss.

Discriminator objective variations The discriminator is also a structure which could
spread limitations in the generative network. Two main strategies are generally chosen to
optimize this part: varying the loss or the latent vector. A few teams start to modify the
discriminator architecture.

To stabilize the training and avoid mode collapse, various losses for the discriminative
network are proposed. In Nowozin et al., 2016, the interest of using variational divergence
functions on the complexity and quality of the generative model is discussed. Kullback
Leibler (KL), reverse LM, Pearson X2, Squared Heligner, Jensen-Shannon and GAN loss
functions are compared, and the kind of activation layer best for each case, depending on the
application, is discussed. As previously mentioned, the binary cross entropy loss (BCFE),
originally used by Goodfellow et al., 2014 is the most used function, but since 2016 an
amount of new loss based upon regularisation loss or type loss has emerged. Among these
losses, we will discuss the most popular such as the least square loss optimisation, which
avoids vanishing gradient (Mao et al., 2017):

LD = %Eg; ~ po(x)((D(z0) — lo)z) 4 %Ez ~ p.((D(G(2)) — lg)Q) (3.8)

LG = S . ~ p.(D(G(=)) ~ ) (3.9)

Where [, and [, are labels from original and generated images and h the hyperparameter G
wants D to recognize. When [,, [, and h responds to lo—h = 1 and lo —lg = 2, the Pearson
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Figure 3.5: Classical Gans architectures based on auto-encoders. The basic architecture is
given by the AAE from (Makhzani et al., 2015). Variations are given by numbers where:
1. KL divergence penalty to impose a prior distribution (Kingma et al., 2013); 2. U-Net
architecture with skip connections instead of a classical auto-encoder architecture (Isola et
al., 2017); 3. Reconstruction loss based upon pixel-wise (Larsen et al., 2016)

divergence between p, + p, and 2pg is minimized. Thus large errors, far from decision
boundaries, are penalized by D, and this provides sufficient gradient when G is updated,
contrary to the original GAN (Goodfellow et al., 2014).

The earth-mover’s (or Wasserstein) distance is also one of the most used loss functions
(Arjovsky et al., 2017):

LD = E; ~ po(z)(log(D(x0)) — E. ~ p:(log(1 — D(G(2))) (3.10)

Wasserstein reflects distance even when p, and p, do not overlap, is continuous and is
able to provide a valid gradient for training G. Thus, instead of using a binary classifier, D
fits a Wasserstein distance and behaves as a regression task, so the terminal sigmoid layer
is removed. This solves the vanishing gradient problem and the mode collapse.

Despite the great asset of these loss functions on the generative process, they still present
limitations. Some articles try updating the content loss, which is particularly used in super-
resolution generation of images or style transfer (Cheon et al., 2018; Kupyn, Budzan, et al.,
2018; Y. Gu et al., 2020). The perceptual content loss is a L2 content loss instead of the L1
content loss.

ContL1 = |y — /| (3.11)

ContL2 = (y —y)? (3.12)

Where y is an original tensor information and y’ its prediction. One of the WGAN improve-
ment consists in adding a perceptual (L2) content loss such as in Kupyn, Budzan, et al.,
2018. Others use a penalty gradient applied on the Wasserstein loss (Gulrajani et al., 2017):

LDQTad = LD+ )\Ex ~ px<x)(||AxD(G(Z))||2 - 1)2 (313)
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Adversarial loss
Figure 3.6: InfoGAN architecture. G and T acts like an autoencoder architecture which aim
is to find the embedding G(z) with ¢ conditions and minimizing the binary cross entropy

between ¢ and c’.

GAN Optimisation Architectures

Generator Discriminator

Architecture Latent space

Regularisation

Figure 3.7: Global overview of GAN optimisations, split in discriminator and generator
optimisation. However, other classifications exist.

Where A equals 10 and p, is a uniform sampling between paired point samples from the
po and p, distributions. In pix2pix discriminator they use a convolutional “PatchGAN”
classifier, which only penalizes structure at the scale of image patches to capture local style
statistics by applying a L1 instead of a L2 loss (which aim is to normalize) and avoids blur
results (Isola et al., 2017).

Another discriminator optimisation consists in updating the latent space. Another con-
ditional architecture with only one generator and discriminator, called InfoGAN, presents
the advantage of being lighter than CycleGAN, while the output of the generator is given to
feed the input at the subsequent iteration (B. Hu et al., 2019; Zhu et al., 2017). This archi-
tecture maximizes the mutual information between conditional variables and the synthetic
data by introducing a transformer 7" to predict ¢ with a certain G(z) fed with ¢ conditions,
see Figure 3.0.

Possible GAN optimisations detailed in this manuscript are summarized in Figure 3.7.Other
GAN optimisations based on discriminator or generator networks are available; however, the
efficiency of a particular GAN optimisation depends on the application it is used on. An
efficient GAN architecture is characterized by a good image quality, dataset diversity and
avoiding vanishing gradients (Zhengwei Wang et al., 2021).
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Figure 3.8: Number of publications on GAN’s applications per year in the biomedical field
since 2014.

3.1.3 Data Augmentation in the biomedical field

Generalities on data augmentation for biomedical datasets

The first GAN application on a biomedical dataset is from (Shang et al., 2017). The
approach is validated based on a combination of GAN and multimodal autoencoder to
implement missing values of two genetic databases, and uses the MNIST dataset (a dataset
of digits written by hand and largely used to train, developed and test deep learning models).
Since this proof of concept, the number of articles using GAN for biomedical applications
has kept increasing. In total, 3079 related articles are published as of today, according to
PUBMED see Figure 3.8.

Two kinds of uses are mentioned in the biomedical literature, linked with the generator or
discriminator objective: the first aims to study the structure of trained biomedical data and
avoid patient/biomedical image scarcity; the second aims to regularize or detect abnormal
data. A summary of the major GAN applications in the biomedical field, is given in the
next section.

GAN’s biomedical applications

The biomedical applications of GANs covers several domain. The main one is the detection
of biological contents in images (more than 20% of published applications), followed by
classification tasks (20%), segmentation (17%) and reconstruction (15%). Registration and
synthesis share almost the same proportion of GAN use (12%), see Figure 3.9.

The major image acquisition domain using GAN is X-rays followed by ultrasound, MRI
and CT, and histopathology (with a little more than 5%). The other microscopic or medical
image acquisitions consist in less than 5% (Figure 3.10).
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Figure 3.9: Publication on GAN’s biomedical field applications. We only count the number
of publications in the main domain and show it in percentages. Registration is also called
mapping in certain publications.
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Figure 3.10: Publication on GAN’s image acquisition applications. We only count the
number of publications in the main domain and show it in percentages. Others contains
PET (3.25%), Clarification (1.78%), Fundus (1.75%), Fluorescence (1,33%), Mammogram
(0,78%), Bright-Field (0.68%), Dermoscopy (0,26%) and others (3.34%).
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Limitations of GANs for biomedical applications

The use of GAN’s in the biomedical domain suffers from two major inconveniences: the
inter-image from patient or biological model variability, and the few examples of images
inside each database. These issues render GAN’s use difficult, notably for their efficiency.
Indeed, the efficiency of GANs increases with the network depth, which requires more data
than lighter architectures. This constraint, not always applicable for biomedical dataset,
forces researchers to optimize architectures and develop application-based solutions: for a
biological domain or for a particular image acquisition (Zhengwei Wang et al., 2021).

The second major problem lies in the validation of synthetic biological images.A par-
ticular problem encountered with GANs is the mislabeling of results to another category
due to the added noise at the input, which is a major problem for preclinical or clinical
data (Shorten et al., 2019). The validation of GAN synthetic images are another emerging
issue. Manual validation consists in validation of each image by an expert, while similitude
or qualitative metrics are used for automatic solutions. The first one is time consuming
whereas the second one is controversial (Borji, 2018): which kind of metric can highlight
similitude between biological contents and realistic image quality? Data augmentation for
brain organoids does not derogate to these limitations.

3.1.4 GAN for brain organoid culture images: our positioning
and strategy

The first question addressed in this part is: which kind of natural images have to be aug-
mented in the brain organoid field to extract their shape and characterize their development?
As previously discussed in part 2.7, the developmental bright-field images of brain organoid
from (Gomez-Giro et al., 2019) could be the best compromise between advantages and
drawbacks see Paragraph 2.7. As mentioned in part 3.1.3 and Figure 3.9, segmentation of
biological contents are the third GAN application in the biomedical field. However, bright-
field data augmentation by GAN’s are not well known (less than 1% of GAN applications in
the biomedical field, see Figure 3.10). Thus, attempting to identify a strategy to augment
brain organoid bright-field images in order to segment them and characterize their develop-
mental shape should be validated on other bright-field brain organoid datasets (and not on
midbrain or cortical organoids, see Annexes) to allow a generalisation of GAN use for this
particular microscopic acquisition.

The second question addressed is: what kind of strategy should be used to increase
image datasets, in order to generate the most natural synthetic brain organoid image? This
question can be divided in four sub-questions:

e Which GAN architecture fits the best such data augmentation application?

e Which kind of loss optimisation can improve brain organoid natural generation?
e Which kind of noise input generates the best microscopic features?

e How to validate these synthetic biological images?

The strategies adopted to answer these questions are summarized in the Figure 3.11.

To answer these questions, we compare GAN architectures, then update the loss function
on the best one, input various noises types, and we finally compare automatic (metric)
versus psychovisual (Human expert) evaluation of each image. The methodology, results
and discussion are summarized in the four following subsections.
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Figure 3.11: Global overview of GAN optimisation strategies we choose to develop. This
figure is an extension of the Figure 3.7.

3.2 GAN architectures for bright-field brain organoid
image generation

This section is almost entirely published in Brémond Martin et al., 2021a in VISAPP
conference in 2022. The unpublished parts address dimensional reduction methods,
results and discussion for GAN architecture comparisons and collapse figure.

The contribution of this section is to qualitatively and quantitatively investigate the

influence of various GAN-based approaches in the specific case of bright-field brain organoid
image generation using quantitative metrics from the literature and a dimensional reduction
of parameters.

3.2.1 Methods

Resources Our dataset is composed of 40 images from an open access database (Gomez-
Giro et al., 2019). Pathological (N=20) and healthy (N=20) CO were digitized using a
bright-field microscope, over 3 days. The grayscale images are 1088 x 1388 pixels. However,
to compare several networks within a reasonable time, the input images are cropped and
resized to 250 x 250 pixels, maintaining the original proportions.

Resources are described in part 2.7.

Generative Adversarial Networks To find the most suited GAN (described in section
3.1.2), we consider five of the most used architectures to increase the dataset: GAN (Good-
fellow et al., 2014) is the original implementation; CGAN (Yi et al., 2019)gives the correct
label (physiological or pathological) as a generator input; DCGAN (Yi et al., 2019)is con-
stituted by a convolutional neural network instead of the generator; INFOGAN (Yi et al.,
2019)uses the generated images at an epoch to train the subsequent; AAE (Makhzani et al.,
2015) uses an autoencoder as a generator.
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Figure 3.12: Procedure of GAN architecture comparison for the generation of bright-field
brain organoid images. S corresponds to synthesised images.

During a 1000 epoch training, input images (size of 250 x 250 pixels) are used to generate
synthetic images. In this work, the original 40 images of the dataset are used to generate
40 synthetic images for a better follow-up by each architecture. The number of images
generated are chosen to guarantee no mode collapse. We follow the procedure explained in
Figure 3.12.

Metric evaluation Six metrics are used to compare the similitude of the synthetic images
generated by the AAE to the original dataset. A blur metric is used to evaluate the quality
of these synthetic images.

The Frechet Inception Distance (FID) is calculated between two groups of images (Heusel
et al., 2017).This score tends towards low values when the two groups (original O or gener-
ated G images) are similar, with p the average value of the pixels of all images of a group,
and X the covariance matrix of a group:

FID(0,G) = |po — pal* +7 (Zo + ¢ — 2(X0%6)?) (3.14)

The Structural Similarity Index (SSIM) is calculated using luminescence, contrast and
structure between two images o and g belonging respectively to O and G (Zhou Wang,
Bovik, et al., 2004).

(2p0ptg + €1) (2009 + 2)
(2% 12+ )02 + 03 + )

where o represents the standard deviation, ¢; is a constant that ensures the luminance ratio
is always positive when the denominator is equal to 0, and ¢y is another constant for the
contrast stability. The SSIM ranges between 0 (no similitude) and 1 (high similitude).

The Universal Quality Metric (UQM) is based on the calculation of the same parameters
as SSIM (Zhou Wang and Bovik, 2002). UQM ranges between 0 and 1 (1 being the highest
quality):

SSIM(o, g) = (3.15)

Aftofighlo
UQM(o, g) = aic] 3.16
W9 =)oz + o) (310
Entropy-based Mutual Information (MI) measures the correlation between original and
generated images and ranges between 0 (no correlation) and 1 (high correlation) (Pluim
et al., 2003):

=> > P(o,9)log P(og()

22 Plo)P(g) (3.17)
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where P(o, g) is the joint distribution of o belonging to O and g from G.
The Mean Square Error (MSE) between an original image and a synthetic image is

calculated as:
m n

1 o _
MSE(O7g) = FZZ(O(LJ) _g(lhj))Q (318)
i=1j=1
The Peak Signal to Noise Ratio (PSNR) indicates a high signal power against noise, as
used in M. Jiang et al., 2021. High values correspond to qualitative images. Pixels in images
are ranked between 0 and 255, so the maximum pixel value of an image is noted maz(0)
and equals at most 255.

PSNR(o, g) = 201log max (o) — 20 log MSE(o, g) (3.19)

To evaluate image quality, we calculate the blur index based on local image variance
(Tsomko et al., 2008), where low score stands for a sharp image. In the following equation,
the size of the image is (m,n), the predictive residues for a given image pixel are (p(i, 7))
and their median (p'(7, j)):

1 Ui fe 12

Blur = ; j;[p(m) —p'(i,7)] (3.20)
The FID is designed to compare groups of images. We thus successively compare each
group of synthetic images with the original input images. The FID reference range is
calculated on the original image developmental stages. The SSIM, UQM, PSNR, MI and
MSE are designed to compare two images. For each group of synthetic images (all 6 losses),
we successively compare every image with each original image and then compute the average
of these 40 x 40 values. We also calculate these values on all pairs of original images to
compare the results to the original range. The Blur index is calculated on individual images.
We store the minimum and maximum value of this index for the original images and the

average value per loss for the synthetic images.

Dimensional Reduction The dimensional reduction goal is to observe in the same sta-
tistical space if, for each optimisation, generated image representations are close or far from
the original image representations. We choose to perform a t-distributed Stochastic Neigh-
boor Enbending (t-SNE) dimensional reduction. Contrary to others dimensional reduction
methods, t-SNE preserves the local dataset structure by minimizing the divergence between
the two distributions with respect to the locations of the points in the map. To avoid sub-
jective or calculated indexes, we perform t-SNE directly on images features extracted from
the GAN networks. t-SNE is constituted with Stochastic Neighbor Embedding where first
an asymmetric probability (p) based on dissimilarities (symmetric) is calculated between
each object (z;), and its probably neighborhood (z;) (Hinton et al., 2003). The effective
number of local neighbors called perplexity (k) is chosen manually:

_ llzi—ayl?
exp 302
E _ llzi =z
ki €XP 202

The larger the perplexity, the larger the variance of a Gaussian kernel used to have an
uniform induced distribution. We therefore choose the maximal value possible which is
80, the number of individuals in our dataset. To match the original (p;;) and induced

(3.21)

Pij =

o1
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Figure 3.13: Mode collapse for each generation with a GAN architecture. From left to right:
with 40, 80 and 160 image generation. Mode collapse occurs when the model only fit a few
data distribution samples, and ignore the rest of them. All the SSIM values up to 90 are
considered as mode collapse (in blue).

distributions (p};) in a low dimensional space (the enbending aim), the objective is to
minimize the Kullback-Leibler (KL) cost function:

C=3"Y pi,log i = (3.22)
] 2,9

This minimisation allows t-SNE to preserve the dataset structure contrary to other dimen-
sional reduction methods (as Principal Component Analysis). Then, Student t-distribution
with one degree of freedom is used to avoid the crowding problem (Maaten et al., 2008).
We use a momentum term to reduce the number of iterations required (set at 1000
iterations at the beginning)The map points have become organized at 450 iterations in a
scatterplot. Each point in the map corresponds to the feature vector while the axes are
the embedding following the similarity properties i.e. the neighborhood of points. Each
run of the t-SNE algorithm generates a diffe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>