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Short abstract

Brain organoids (BO) are promising recent brain models, but tools are lacking to follow their
development, with very few images available. This thesis aims to automate the extraction
and appropriately characterize their morphologies on small datasets.

A small dataset was augmented by various generative adversarial networks (GANs) and
the best one was optimized. Most optimisations are suitable to enrich the dataset. The effect
of a noise variation by GAN to generate images closer to the exceptions has been studied,
and these images have also been validated automatically, statistically and psychovisually.

The shape of the original BOs was then extracted by deep learning and a better accuracy
was obtained if the training is carried out by an optimized GAN. The architecture of the
extraction has been reduced to adapt it to small datasets.

Thanks to the segmented images, morphology of the organoids was characterized by
calculating morphological indices, but also by finding their imprint by analyzing topological
data. Characterizing an index of their development (neuroepithelia) in association with
another laboratory would be a future step, such as validating this approach on other brain
cultures and for various microscopic acquisition methods.



Résumé

Les organoides cérébraux (OC) sont des modeles récents et prometteurs pour le suivi du
développement cérébral. Cependant, les biologistes manquent d’outils d’analyse automa-
tique ou semi-automatique pour suivre leur développement in vitro, du fait de la faible
quantité d’images disponibles actuellement. Dans ce contexte, cette these vise a automa-
tiser I'extraction et a caractériser de facon adaptée la morphologie des organoides cérébraux
sur de petits datasets d’images acquises en microscopie a divers stades de la croissance de
ces cultures.

Dans cet objectif, un petit dataset a été augmenté par divers réseaux adverses génératifs
(GAN) et le meilleur d’entre eux au regard de critéres psychovisuels, statistiques et, quan-
titatifs a été optimisé. Quel que soit 'optimisation utilisée pour générer des images,
elle enrichit le dataset de maniere constructive, excepté pour un groupe. De maniere
complémentaire, l'effet d’une variation du bruit par GAN pour générer des images plus
proches des exceptions a été étudié, et les images générées ont été validées également au-
tomatiquement, statistiquement et psychovisuellement.

Dans la continuité de cette premiere contribution, la forme des OC originels a été ex-
traite par deep learning et nous montrons qu’'une meilleure précision peut étre obtenue si
Pentrainement est réalisé par un GAN optimisé. L’architecture de I'extraction a été réduite
pour 'adapter aux petits datasets.

Enfin, grace aux images segmentées, la morphologie des OC a pu étre caractérisée par
calcul d’indices morphologiques, mais également en déterminant leur empreinte par analyse
de données topologiques. Caractériser un indice de leur développement (neuroépithéliums)
en association avec un autre laboratoire serait une étape future comme la validation de
cette approche sur d’autres cultures cérébrales et pour diverses modalités d’acquisition mi-
croscopiques.
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Chapter 1

Introduction

The Human brain is one of the most complex organ to study in terms of functions and
structures. Thus, researchers in Neuroscience use models to study and attempt to under-
stand our brain such as animals models (in vivo), post-mortem brain slices (ex vivo) and
cellular cultures (in vitro) (Kelava et al., 2016a). However, each one of these models have
limitations: In vivo, the cell diversity is different between the Human and animal models,
and some cognitive processes are peculiar to Humans; Ex vivo, ethical considerations limit
some studies when the quick cell death does not allow it (Arlotta et al., 2019); In vitro, 2D
cell cultures do not reproduce the brain architecture, and suffer from the lack of connections
between cells (Poli et al., 2019).

A promising alternative lies on brain cultures. To understand our brain development
or disease, different research teams have been trying to cultivate brain cultures for over a
century (Madeline A Lancaster and Knoblich, 2014). In 2013, this goal was reached by the
Lancaster team: Brain Organoids, better known as Minibrains, became a reality (Madeline
A. Lancaster et al., 2013). Brain organoids are 3D brain-like structures mimicking some
brain regions measuring around 4 mm of diameter and suffering from Batch syndrome:
despite being grown in the same environment, they develop differently. For example instead
of developing two lateral ventricles, one can innately develop none, although its neighbor
can have ten.

The lack of knowledge about the physiological development of brain organoids, precludes
biologists to use them as alternative solutions to others models (animal, post-mortem). To
accomplish this, morphology is analyzed by acquiring images by various methods (Brémond
Martin et al., 2021b). However, at this moment, no adapted tool exists to extract and
characterize the complex shape of cerebral organoids automatically.

In the literature, solutions are often constituted with software assembly, or implies the
use of pre-processing step by a human operator to segment (extract the shape from the
background inside the image) or characterize (calculate some morphological indexes on these
shape). The machine learning solutions scarcely developed cannot been applied on other
datasets. The only automatic solution dedicated to extract the shape of brain organoids
concerns only ventricular cavities and uses deep learning (Albanese et al., 2020). However,
deep learning strategies requires an amount of data to their training phase, while only a few
image datasets are available, consisting of a couple of images. My PhD aims to address the
following needs :

e The automation of processing step on image analysis for brain organoids.

e A dedicated shape extraction tool for the overall morphology of brain organoids and
facilitate the following of their growth.



e An increase of the amount of data in tiny datasets in order to use deep learning
strategies.

e Morphological characterisation tools dedicated to the complex shape of brain organoids.

1.1 Objectives

This thesis aims at presenting an insightful approach to extract and characterize brain
organoid culture images. This work is centered on the automatic shape extraction and
characterisation, with tiny dataset constraint, which is an issue for both the industrial and
academic point of view.

Neoxia, the project’s partner company, has a strong expertise in process industrialisa-
tion from academic projets. Recently, they created a spin-off company, Witsee, from a
consortium between academics and industrial partners during a ”Projet d’investissement
d’Avenir” (PIA2). The proof of concept was based on preclininal research, including neu-
rological (Alzheimer) and oncological (cancer) disease using various models (animal, 3D
culture). The output of this project was the creation of a collaborative platform of large
biomedical data processing, including microscopic images processing and analysis. Similarly
to academic laboratories, Witsee runs into the lack of large available datasets issue. To solve
this problem, data augmentation strategies are used so deep learning methods can be im-
plemented (Hamdi, Bouvier, Delzescaux, et al., 2021; Hamdi, Bouvier, Delzesceaux, et al.,
2021). In the context of collaborative projects, the platform developed by Witsee relies on
classical morphological tools to help customers characterize the shape of biological contents
in images. However, morphological indexes (described in Section 2) are not adapted to the
particular growing shape of brain organoids.

The CELL team from ETIS laboratory, UMR 8051 (CY Cergy Paris University, ENSEA,
CNRS), is specialized in smart embedded systems for bio-medical applications. This team
has a strong expertise in automated learning in constraint spaces (limited database, embed-
ded calculation...) specially for real-time detection of polypes in video-coloscopy (Bernal
et al., 2017; Leenhardt et al., 2019), a project financed by the PIA2 (Initiative d’Excellence
Paris Seine, I-Site 2017) and by the SATT IdfInnov (creation of the startup “Augmented-
Endoscopy”). The lack of data and the variability of biomedical tiny datasets force them
to use machine learning strategies before deploying deep based systems in capsule image
endoscopy (Houdeville et al., 2022; Romain et al., 2022). This team also brings solutions
in optimisations for signature representations in deep learning strategies (P. Jacob et al.,
2019), and other solutions focus on the spectral analysis of cell cultures (De Roux, Terosiet,
Kolbl, et al., 2017; De Roux, Terosiet, Kolbl, et al., 2017).

In this thesis, we pave the way to analyse tiny datasets of brain organoid images, in an
attempt to answer the following points (also see Figure 1.1):

e Generating images: in a pandemic situation, acquiring our own brain organoid images
at different developmental stages became a real issue. Another issue is to find a
database with enough images to train deep-learning based solutions. In such tiny
databases constraint, synthetic learning images must be generated. The choice of the
type of image generation and the kind of architecture and optimisation needed to
get the most qualitative images, as well as similar to the original dataset. Does a
comparative automatic validation of the generated images corroborate with a human
expert validation? Can we use these results to construct a new automatic tool which
could replace Human evaluation of generated images and gain time?



Addressed drawbacks for brain organoid image analysis

Few image databases No dedicated shape characterisation

No deep based shape extraction tools

Figure 1.1: Summary of the three drawbacks we attempt to answer in this thesis

e Segmentation of brain organoid images: this topic raises the question of using a ma-
chine learning or a deep-based strategy. While machine learning solutions are not
suitable for all the datasets, in the second case the requirement of amount of images
is a break. Which strategy will best fit the segmentation of brain organoids? How to
validate a small segmentation architecture designed for tiny datasets? Another ques-
tion raised linked to the first item is: is a validated data augmentation strategy more
useful to improve a deep learning segmentation than no validated data augmentation?
Or classical machine learning segmentation strategies are they sufficient to extract the
shape of brain organoids tiny datasets?

e Morphological characterisation of particular developmental or pathological shape: does
a classical morphological index characterize the best the biological state or develop-
mental stage of a brain organoid culture? Are new topological methodologies solu-
tions to accurately classify BO according to developmental stage, or physiopathological
state? Are the neuroepithelial formations detected with such tools? If some topolog-
ical or morphological indexes are given during the segmentation training, does this
improve its accuracy?

1.2 Development and contributions

Development and contributions are summarized in Figure 1.2. The first months of the thesis
were dedicated to a literature review on the image acquisition and analysis of brain organoids
cultures, presented and updated in section 2 The lack of appropriate morphological analysis
tools is depicted in this review and used by other researcher in the field. This work helps
identify all available brain organoid databases. Our work and that of Chakradhar, 2016
shows the difficulties to develop this kind of culture in normal and more specifically in
pandemic restrictions with no laboratory access.

The access of databases containing a certain amount of images could help to develop
automated image analysis tools.

Among the few database available, we needed to choose one allowing to study the devel-
opment of brain organoid, and thus with an imaging strategy bearing it. Once we select a
bright-field brain organoid image database from Gomez-Giro et al., 2019, the augmentation
of number of images is a requirement, to use and develop appropriate deep based segmenta-
tion tools. In Brémond Martin et al., 2021a, we compare various generative architectures to
classical transformation of brain organoid dataset, we verify the effect of loss optimisation
thanks to automated metrics and observe the contribution of each loss in both clustering
and in segmentation training stages. This original contribution highlights the normalised
Wasserstein loss, originally proposed in this study, which outperforms other losses. As the
metric validation is still contentious for generative evaluation, we compare it with a Human



validation and describe possible alternative metric combinations, for the first time to our
knowledge (article under submission). The images generated are in the same statistical
space than the original ones, except for some with a particular gradient background. Thus
we study the effect of adding different noises inside the generative process and proceed as for
the loss optimisations. We do not highlight a particular noise to naturalize the generation
in Brémond Martin et al., 2022 and in Section 3.6 (unpublished).

Regarding organoid image segmentation methods, we first verified the contribution of
each loss optimized generated image on the segmentation accuracy by using U-Net (Brémond
Martin et al., 2021a). We then checked if a training performed using psycho-visually val-
idated generated images could help to increase the accuracy of the segmentation, see Sec-
tion 4.2 (original research, not published). Due to time and huge computational require-
ments, we search to implement a small architecture with few input image requirements,
which has never been implemented before, and compared it with two others architectures.
This work was presented at the ” Towards pragmatic learning in a context of limited labeled
visual data” GDR-ISIS communication.

We also produce an ablation study, which consists in suppressing parts from the original
segmentation architecture one by one obtaining a new one. This study contributes to vali-
date this latest architecture as the best one to segment bright-field brain organoid images
(see Section 4.3). On this small segmentation architecture, we verify the contribution of all
the optimized loss and the adding of psychovisual validated images to the training step and
discuss the results compared to machine learning approach for segmentation.

Once the organoid shape is extracted, we perform morphological characterisation. We
first calculate morphological indexes documented in the literature and summarized in Brémond
Martin et al., 2021b. Then we implement a topological data analysis tool (increasingly used
in the biomedical field), and mix it with a clustering approach in order to classify the
organoids developmental stage (Brémond-Martin et al., 2022).

We also characterize their state (physiological or pathological) (see Section 5.4 ) and, the
cross-factor analysis of their developmental stage according to their state (see Section 5.5),
which are not published parts. We compare morphological indexes clustering with TDA, to
determine the most fitted analysis for brain organoids characterisation.

We finally create a pipeline dedicated to brain organoid bright-field images with the
best optimisations and the best architectures for each kind of the three steps summarized
in Figure 1.3. This pipeline is validated for other datasets for the steps highlighted.

1.3 Outline

The manuscript is written in the five subsequent chapters summarized in Figure 1.2:

e The Chapter 2 describes the recent trends and perspectives for the brain organoid
imagings.

e The Chapter 3 presents a brief review of data augmentation strategies for biomedical
images, and the different architectures, loss and noise optimisations we use, along with
validation. In this part we also describe evaluation of synthetic images, and discuss
the results.

e The Chapter 4 focuses on segmentation: we present the different algorithms used in
the biomedical field, and describe the architecture we choose and its drawback for tiny
datasets. We describe then an ablation study and the Mu-Net architecture we create.
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We show the inflow of generated images validated by metrics of psychovisual evalu-
ation on the segmentation accuracy on our new architecture compared to previously
described approaches.

The Chapter 5 concerns shape characterisation, based on morphological indexes and
on topological data analysis. We show the results obtained using our TDA cluster-
ing, reverse it on original images, and compare it with the characterisation using the
classical morphological indexes.

The last Chapter 6 summarizes our work and the perspectives on brain organoid tiny
datasets analysis.



Chapter 2

State of the art

This section is the update of our review paper published in July 2021 at Frontiers in
Neuroscience (Brémond Martin et al., 2021b).

2.1 Historical context

Experimental cerebral models are used to observe and analyze structure and function, both
of which are complex to identify in human brain tissues (Stan et al., 2006). These models are
often classified in three categories: in vivo; post-mortem; in vitro. However, in vivo and post-
mortem brain animal models are often prone to controversy due to ethical considerations
added to technical impairments due to divergences with the Human brain structures (Lodato
et al., 2015; Kelava et al., 2016b). Key benefits of in vitro models are these cultures can be
derivatives from human cells on the one hand, and on the other hand, be more relevant to
replicate its physiology. Despite this great asset, standard 2D neuronal cultures lack of tissue
structures, diversity of self-patterning cells and some disease patterns, presenting then with
strong limitations for in vitro study. Three-dimensional (3D) brain cultures (Kapalczynska
et al., 2016; Bolognin et al., 2019; Cederquist et al., 2019) have become in the last years a
very promising alternative to overcome these limitations.

In this context, recently, cerebral organoids (CO) have emerged by the differentiation of
induced pluripotent stem cells (iPSCs), or human embryonic stem cells (hESCs) (Madeline
A. Lancaster et al., 2013). Such 3D cultures are no larger than 4 mm in diameter and they
develop some structures similar to those developed by the brain during the second semester
at numerous random locations (Kelava et al., 2016a). To study these cerebral organoids,
researchers use methods originally developed to analyze other post-mortem and in vitro
models: enzyme-linked immunosorbent assay (ELISA (Raja et al., 2016)), quantitative
retrotranscriptase-polymerase chain reaction ( RTqPCR (Sakaguchi, Taisuke Kadoshima,
et al., 2015)), ribonucleic acid sequencing (RNAseq (Quadrato et al., 2017)), micro-electrode
array ( MEA (Monzel et al., 2017)) and others techniques focused on for example proteins or
metabolites. Because these techniques can lead to complex and costly experimental set-up,
in addition to them, imaging techniques are now used in almost every study focusing on
cerebral organoids both to complete and to validate other molecular analysis. It can also be
used to observe features that are unavailable with other methods, for example to quantify
the growth of such cerebral organoids (Iefremova et al., 2017).

The commercialisation of cerebral organoids since 2016 (Chakradhar, 2016) has resulted
in the widespread generalisation of their use by laboratories (see Figure Consequently, the
microscope technique, analysis methods and tools must be tailored for the issue at hand.
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Given this increase and the importance of the image analysis in this field, it has become
essential to identify the methods employed to study cerebral organoids, as well as the im-
provements that can be performed and the challenges that need to be overcome to handle
image analysis on cerebral organoids at a larger scale.

2.2 Scope and positioning

This review summarizes the recent advances in 3D brain cultures imaging and analysis, and
particularly for cerebral organoids. We performed statistical analysis on the 457 articles on
cerebral organoids referenced by Pubmed between January 2018 and June 2020. We chose
to perform this review study starting from 2018 because the number of articles per year was
less than 100 before this date. Of note, 670 articles on key words “cerebral organoids” have
been published since 2013 according to Pubmed. Among these 457 articles, 63 mentioned
these key words but are not on this topic, and 46 % of the remaining articles are reviews.

Most of these reviews focus on brain diseases (Donegan et al., 2020), comparison of
cultures (Chhibber et al., 2020), ethical considerations (Bayne et al., 2020), challenges in
vascularisation (Hong et al., 2019) and connectivity between cells (Marton and Pasca, 2020).
A few reviews focus on evolution (Stefano L Giandomenico et al., 2017), biobanking (S. Li
et al., 2020), or summarizing a single article (Madeline A. Lancaster, 2018). This includes
a review on the possible emergence of cerebral organoids connected to other organ models
(Chukwurah et al., 2019).

Most of these reviews addressed brain diseases, cultures comparisons including a review
on the possible emergence of cerebral organoids connected to other organ models (Chuk-
wurah et al., 2019), and development Figure Less than 3% of the reviews addressed 3D
brain cultures images analysis. Among them, only three about image analysis applied to
cerebral organoids data have been published. (Poli et al., 2019) reviewed computational
models of formation and organisation of these cultures, and also reviewed protocols and
other experimental methods (in electrophysiologic field) applied on cerebral organoids. For
these authors, even if cerebral organoids are promising in terms of in vitro models of human
brain, the generation protocols and procedures characterisation still need refinement. (Booij
et al., 2019) analyzed imaging techniques, image analysis methods and high-content images
in 3D cultures but not particularly focused on cerebral organoid cultures. They concluded
on the requirement to “validate these technologies and to demonstrate clearly that using
biologically relevant in vitro systems actually improves the efficiency of early drug discov-
ery. A direct comparison of the predictive value of 2D and 3D models for in vivo efficacy
is required.” (Grenier et al., 2020) mentioned in a diagram the perspective of generating
a high-throughtput platform for drug testing including image analysis on cleared cerebral
organoids with deep learning to identify functional and architectural markers. The authors
also discussed the challenges allowing integration of additional variables and risk factors
(toxic agents, vasculature) in order to make cerebral organoids a formidable and scalable
system to improve our understanding, provide precision to diagnostic and prognostic pre-
dictions and personalize drug discovery efforts for neurodegenerative diseases. Of note, in
another field, (M. E. Boutin et al., 2019) studied retinal organoids to summarize perspec-
tives on drug testing. Omne of their expectations was also to apply machine learning on
both high-content cell imaging and others chemical methods for their retinal model. They
expected work was “being done to apply machine learning approaches to score and predict
control versus disease phenotypes from cell imaging assays, including work on photoreceptor
outer segment formation. Most of this work has so far been done in 2D systems, and the
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hope is that with the development of techniques that allow HT cell imaging in 3D, those
will be applied to this more complex systems.”

In the time range considered for our paper, we did not find any review focused on image
analysis tools dedicated to cerebral organoids. However, a very recent study was published
by Albanese et al., 2020 (December), creating for the first time a pipeline named Scout
including deep-learning methods to segment the ventricular zone of 3D images of cleared
cerebral organoids. They gave a first attempt to an holistic approach to characterize the
content and structure of cerebral organoids in 3D.

The current review focuses on the recent trends in acquisition and image analysis meth-
ods on cerebral organoids to highlight the specific needs of the field. For all 214 included
articles published on cerebral organoids, between January 2018 and July 2020, we identified:
their scope; the kind of organoid generated; the acquisition method of images presented in
the figures; the analysis methods used specifically, the software and algorithms developed
or used; and finally advantages and limitations of the proposed approaches.

The following section gives an overview of the emergence of 3D brain cultures. Then
we describe the sample preparation and the image acquisition methods. Three-dimensional
imaging is particularly detailed in this paragraph because it captures better the shape and
allows quantification for the full brain culture. In the third section, image analysis method-
ologies are described in two parts: quantification and morphological analysis. Software used
to that aim are presented in the fourth section. They remains for the most part semi-
automatic due to the recent generation of this model. Following this methodology section,
we discuss the pros and cons of each described method, as well as the potentially insightful
image analysis tools to implement in order to handle the increasing amount of generated
data.

2.3 Three dimensional brain cultures

Advent of cerebral organoids

One of the first 2D neural models were neural rosettes stabilized from iPSCs or hESCs
(Chambers et al., 2009). These rosettes are structures composed by neural cells surrounding
a lumen. Cerebral organoids were derived from these rosettes.

Over the past ten years, a considerable increase in the use of 3D cultures has been
observed. Figure 2.1 shows an exponential growth in the number of articles citing spheroids,
organoids and cerebral organoids.

Between 2013 and June 2020, 671 out of 4509 published articles on organoid cultures
were treating about cerebral organoids. Before explaining how imaging cerebral organoids,
we summarized in this section what are cerebral organoids and how their generation has
evolved in the last decade.

Organoids mimic organs: they contain multiple organ-specific cell types, are spatially
organized, and simulate organ-specific functions (M. A. Lancaster et al., 2014).

The first 3D neural organoid was a self-organized optic cup made of retinal epithelium
(Eiraku et al., 2011). Two years later, (T. Kadoshima et al., 2013) created guided forebrain
organoids and (Madeline A. Lancaster et al., 2013) the first self-patterned cerebral organoids.
These organoids replicate human fetal brain growth during the second semester (Kelava et
al., 2016a). The discrepancy between these two cultures is mainly due to the growth pattern
and both methods are currently used for cerebral organoid generation.

(Pagca et al., 2015) created cortical spheroids, also called dorsal forebrain organoid
(Arlotta et al., 2019), an assembly of differentiated cells producing deep and superficial
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Figure 2.1: Graphic representation of the soaring of three-dimensional cultures based on a
pubmed search of the following keywords: “spheroid”, “organoid”, and “cerebral organoid”.
Cerebral organoid articles are a subset of the keyword “organoid” research. The expanding
of published articles is explained by an exponential model at 89 % (Rsquared: 0.8876:
Growth Model = log(Count) Year:Culture). The first generation of cerebral organoids was
in 2013, so the previous few articles identified by pubmed contain the two key words but do
not talk about these 3D brain cultures inside the body of the text. The points in 2020 are
not on the curves due to the fact that the year was not over the time of counting.
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Figure 2.2: Evolution of 3D brain cultures over time. Non-brain cultures which led the way
are labeled in italics. The abbreviation CO is used for “cerebral organoid”.

layers around ventricular zones. Then, 3D bio-printing bioreactors allowing the generation
of cerebral region-specific organoids (forebrain, midbrain and hyppocampic) have emerged
(Qian, H. N. Nguyen, et al., 2016). While these region-specific have been created, some
authors proposed to fuse them to reproduce the connectivity observed between structures
in the human brain (Birey et al., 2017; Bagley et al., 2017). One of the remaining weaknesses
of this system is the absence of vasculature, later (Mansour et al., 2018) transplant cerebral
organoids inside in vivo model to vascularize the culture. Others teams observed that
human organoid transplantation inside injured in vivo mice brains helped lost functions
recovering (S.-N. Wang et al., 2019). Nevertheless, the inter-organoid heterogeneity and
their cell diversity, failing to reproduce the topological organisation of the human brain,
conduct others authors to axially pattern cerebral organoids as occurring during the fetal
growth (Cederquist et al., 2019).Only recently, cerebral organoids have been co-cultured
with others cell type (tumoral for example), to model disease progression (Krieger et al.,
2020). Figure 2.2 summarizes the evolution of 3D cultures from sponges to modern cerebral
organoids.
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Figure 2.3: Neuroepithelium formation inside cerebral organoids. This formation is present
at discrete random locations around lumen ventricles in cerebral organoids. It grows from the
apical perimeter thanks to progenitor cells to the basal zone. Cells migrate and differentiate
along these axes. Cerebral organoids’ neuroepithelium are made of 3 zones: a ventricular
zone (VZ), a subventricular zone (SVZ) and a cortical plate (CP) each composed of specific
cell types.

Variability in 3D brain cultures

The importance of imaging cerebral organoids is linked to their particular constitution.
The cyto-architectural complexity of cultures mimicking brain formation (see Figure 2.2)
greatly depends on the culture protocol (Sidhaye et al., 2020). Cerebral organoids con-
taining self-patterned regions are larger and more complex than cortical spheroids showing
rosette patterns. In turn, these are more complex than an assembly of different cell-types in
a neurosphere (Kelava et al., 2016a). However, differentiating a regional cerebral organoid
(i.e. dorsal or ventral forebrain) is more tedious than letting a cerebral organoid self pat-
tern, as such differentiation requires various factors additions to the media at specific times
(Madeline A. Lancaster et al., 2013; Bagley et al., 2017).

During the cerebral organoid generation process, model complexity increases with time.
First, iPSCs are derived and aggregated in an embryoid body, which undergoes a neural
induction (containing a core and a peripheral zone). It is then embedded in a matrix
for maturation (Kelava et al., 2016a). During the maturation phase, cerebral organoids
innately almost mimic second semester fetal brain growth by developing neuroepithelium
regions (Figure 2.3 (Madeline A Lancaster and Knoblich, 2014)). Similarly to human
development, neuroepithelium are constituted by a ventricular zone surrounding lumen, a
subventricular zone (more recenlty, both inner and outer subventricular zone were generated
(Qian, Su, et al., 2020)) and a cortical plate constituted by various cell populations with
neurons producing action potentials and synapses (Madeline A. Lancaster et al., 2013).
Moreover, comparative studies between fetal human brain developmental stage and cerebral
organoids showed some similar transcriptome even if few genes are down or up regulated
(Qian, H. N. Nguyen, et al., 2016). However, there are more complex signatures in the
human case due in part to vascularisation, to radial glia frequency, and to consequent
neuron generation in later fetal stages (Bershteyn et al., 2017; Qian, H. N. Nguyen, et al.,
2016). Despite these differences and different growth conditions, parallels can potentially be
made between human brain and cerebral organoid tissues development, as investigated in
some studies, using histological images (LaMonica et al., 2013; Ostrem et al., 2015; Kostovi¢
et al., 2019).
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Table 2.1: Percentage of articles studying diseases on cerebral organoids over 2019 and
2020. Neurodegenerative diseases include articles on Alzheimer and Parkinson. Neurode-
velopmental diseases include autism, lissencephaly, microcephaly, skizophrenia and various
syndromes. Tumors include glioblastoma invasion in cerebral organoids. Infections corre-
spond to viral infections; injury to brain lesions.

Organoid model Articles (%)
Healthy 52.34
Neurodevelopmental 14.95
Neurodegenerative 11.68
Tumor 8.41
Infection 8.41
Injury 3.74

Time and growth are also quite important parameters, since they can lead to necroses at
the core of cultures, mostly due to shortage in nutrients and oxygenation. An answer to this
problem consists in slicing cerebral organoids during their growth (Qian, Su, et al., 2020).
Such a process increases the number of neuroepithelium layers and the culture longevity.

An important morphological variability between cultures of the different batches exists
(“batch to batch syndrome”), as well as variability within a given batch (“batch syndrome”),
although not as important as the former. Such variability consists in regions developing in
various locations and in an undetermined number (Madeline A. Lancaster et al., 2013). One
explanation lies in the non homogenisation between pluripotent stem cells at the origin of
the cerebral organoid colonies in term of morphology and pluripotency. Another reason
is the thickness of media culturing (Poli et al., 2019). Such variability precludes atlas
creation for cerebral organoids (Zaslavsky et al., 2014). In order to reproduce the brain
cyto-architectural development with a higher reproducibility, some studies investigated the
addition of specific factor to the media (WNT, SSH, FGF) (Krefft et al., 2018; Cederquist
et al., 2019; H. Kim et al., 2019; Sivitilli et al., 2020) whereas others used bioreactors (Qian,
H. N. Nguyen, et al., 2016; Velasco et al., 2019; Eremeev et al., 2019) or changed the type
of culture (Berger et al., 2018; Nickels et al., 2020).

Many authors also chose to study cerebral organoids replicating various diseases (neuro-
developmental, neuro-degenerative, tumoral, infectious or injury models) originating from
patient biopsies (A. Tian et al., 2020). Indeed, almost the half of the reviewed articles
studies cerebral organoids model disease (Table 2.1). Cerebral organoids are complex to
produce and to standardize, but they are already used in pathological cases. The complex-
ity of studying cerebral organoids is also related to protocols and imaging methods described
in the following section.

Microscopic studies of 3D brain cultures

Cerebral organoids and other 3D brain cultures are studied both as a whole and at the
molecular, cellular or regional level. The frequencies, aims and major disadvantages are
summarised in Table 2.2.

Cerebral organoids are most often studied by microscopic observation and analysis. A
small fraction of articles do not use microscopy: these either propose a new model or they
only rely on RNAseq for the analysis. Cerebral organoids are generally studied first intact
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Table 2.2: Methodology to study cerebral organoids

Percentages Advantages Inconvenient
Microscopy  95% Visualize proteins sliced in 2D
RNAseq 50.5% Full Transcriptome Only on thousand cells located
RTqPCR  34.1% Detect /identify proteins Localisation lost
WB 26.2% Detect /identify proteins Localisation lost
ELISA 7.2% Detect antigens Localisation lost

and then sliced, as shown Figure 2.4.

A few studies (4.33 %) study whole clarified organoids. Most studies produce fluorescent
images from confocal microscopy (54.53%). The two main analysis performed on these
images of 3D cultures are quantifications (counting cells and their components, measuring
marker intensity or advanced quantifications in particular regions) and morphological mea-
surements (size, shape, etc.) (details in section 2.5). The great majority of studies rely on
software or lab-developed scripts for image analysis maybe due to the quicker accessibility
of results by automation and the accessibility to reproducible results. The remaining 4.21 %
realized only image observations or manual analysis such as cell counting with 1.05%. One
can argue that observation does not allow quantification but contrary to manual counting,
it is far less time consuming.

2.4 Preparation and imaging

Sample preparation

Immunohistochemistry Using a microscope may require the preparation of the 3D brain
culture through fixation, slicing and immunolabeling.

e Fixation. The fixation step allows the preservation and the long term storage of tissues,
by stopping enzymatic reactions (Stanly et al., 2016). In our search, paraformaldehyde
was the most commonly used fixation method for cerebral organoids.

e Slicing. Most of the protocols generating cerebral organoids and spheroids cut the

samples in slices to facilitate imaging. In the 214 articles analyzed for this review,
slices are cut between 5pm and 50 pm. Slices are realized with different apparatus
depending of culture conservation method: cryostat or microtome for frozen samples
in the major cases(Mansour et al., 2018); microdissection laser microscopes when only
a region is used (Buchsbaum et al., 2020); and a few use vibratome for cultures stored
in PBS and agarose (Logan et al., 2020; Gomez-Giro et al., 2019; Nickels et al., 2020;
Monzel et al., 2017; Berger et al., 2018; Lisa Maria Smits et al., 2020). Paraffin em-
bedded methods are rarely used on cerebral organoids, due to the size of these cultures
(less than a few millimeters).
In order to avoid slicing and to image a full cerebral organoid in a single acquisition,
(Durens et al., 2020) created a protocol aiming at reducing the organoid thickness
to around 100 pm. This protocol enables imaging by a single acquisition with high
throughput imaging systems, such as confocal microscopes.
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Table 2.3: References of articles using clarification on 3D brain cultures and corresponding
image analysis between January 2018 and June 2020. Protocol abbreviations are: hyperhy-
drating solutions (HS), tissue transformation (TT), high-refractive index aqueous solutions
(HIAS), organic solvent (OS).

Reference Clarification Category Image analysis

(Sloan, Andersen, et al., 2018)  OS cell migration

(Masselink et al., 2019) HIAS fluorescence intensity and regional marker observation
(Rakotoson et al., 2019) HIAS or HS nuclear detection and intensity

(Sakaguchi, Ozaki, et al., 2019) TT observation of markers

(Krieger et al., 2020) Hybrid HIAS and HS  tumor invasion

(Buchsbaum et al., 2020) (O cell migration

(Wilpert et al., 2020) HIAS observation of marker intensity

e Immunolabeling. Immunolabeling is a crucial biochemical step to prepare samples for

the detection and the localisation of an antigen — often a protein — inside a cell, a
tissue or an organ. To detect these antigens, a complex of antibodies targeting them
are tagged. Fluorescent tags are used for confocal microscopy but an enzyme that
catalyzes a colored reaction can be used for other microscopic methods, less used to
study 3D brain cultures.
Immunolabeling is used in 3D brain cultures to detect a cell components such as nuclei
(Gomez-Giro et al., 2019), microtubules (Buchsbaum et al., 2020), or mitochondria
(Daviaud et al., 2018); a given cell type (neurons (Lisa M. Smits et al., 2019) dopamin-
ergic ones (Bolognin et al., 2019), microglia (Ormel et al., 2018), oligodendrocytes
(Marton, Miura, et al., 2019), astrocytes (Watanabe et al., 2017)); or an extracellular
marker (Y.-T. Lin et al., 2018). Regions are also identified thanks to immunolabeling,
with the combination of different cells markers (Anastasaki et al., 2020; R. Li et al.,
2017). Marked cells allow to monitor the tumor invasion inside cerebral cultures (Liu
et al., 2020).

Organoids clarification To study a whole 3D sample without cutting, an old practice
from the early 1900s consists in rendering it transparent: this method is called clarification.
There are 4 main clarification protocols: based on organic solvents (OS), high-refractive
index aqueous solutions (HIAS), hyperhydrating solutions (HS) and tissue transformation
(TT). To find out more about each of the cited protocols, you can find more information in
Matryba et al., 2019. Clarification is not commonly used for cerebral organoids: only 4%
of articles use it (Table 2.3).

The major drawback of this method is the time required by the the protocols; the trans-
parency varies over time and is tissue-dependent; protocols can modify the morphological
aspect of the culture, inducing over-sizing or shrinking; and some reagents are not compat-
ible with the use of some immunolabelings. Nevertheless, clarification protocols are widely
developed for the study of other organs models and even tumoral spheroids (Costa et al.,
2019; Molly E. Boutin et al., 2018; Schmitz et al., 2017; Niirnberg et al., 2020). Clarified
3D brain cultures are acquired with confocal (mono-photon), multiphoton or light-sheet
microscopy.
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Table 2.4: Percentage of articles per microscopy and per task performed for the analysis of
cerebral organoids.

Task Bright-field Confocal Light-sheet Not mentioned Other / None  Total
Observation 0.84 3.79 0.42 0.42 4.1 9.47
Morphology 3.79 19.16 2.11 2.32 9.4 36.84
Quantification 0.42 30.53 0.00 4.21 12.5 47.58
None - - - - - 6.1
Total 5 53.5 2.5 6.9 32.1 100

Imaging Techniques

High quality images are necessary to perform reliable analyses on 3D brain cultures. Bright-
field, confocal and light-sheet microscopy are the most often used modalities in this context
(Table 2.4). We do not further describe microscopic methods not reaching 2% of use, such
as inverted and phase contrast microscopy; those are grouped in the “others” category. The
microscope used to acquire an images is chosen based on brain culture type, more specifically
the thickness and preparation (Thorn, 2016), as well as the desired analysis to be performed.

Bright-field microscopy Bright-field microscopy is used to observe shape (Monzel et
al., 2017) and surface parameters (Iefremova et al., 2017) of 3D brain cultures. On other
3D organ cultures, these images are also used to measure the overall size with automatic
methods (Borten et al., 2018; Kassis et al., 2019; Hasnain et al., 2020). In such cases, samples
do not require any particular preparation. Cultures can be examined without staining and
the illumination does not alter the true colors of the sample. This system is simple and
practical to use.

The light source is emitted below the sample and contrasts are created by the absorption
of light in the sample. The in-plane resolution does not exceed 2 pm.

The issue often met using Bright-field microscopy is its 2-dimensional nature: although
very useful for length and areas measures, only partial shape measures can be realized as
the 3-dimensional information is not captured. Another problem is that the quality of the
observation is reduced when the contrast is too high, creating distortions in the image. At
low contrast, most of the cells are not observable as they are not stained. Confocal mi-
croscopy, for example, is better suited for cell observation.

Confocal microscopy The most commonly used fluorescence microscope for 3D brain
cultures is the confocal microscope (Table 2.4). The acquired images are analyzed to
measure various parameters at the sub-cellular level such as: intensity (Raja et al., 2016);
shape (Cullen et al., 2019); surface (Karzbrun et al., 2018); cell distribution (Qian, H. N.
Nguyen, et al., 2016) or for 3D reconstruction (Monzel et al., 2017). Confocal microscopy
allows the study of samples in the third dimension, which is impossible in bright-field. This
optical microscope acquires images at low depth of field (around 500nm). A laser sweeps
the objective via a reflecting mirror. The beam goes through the sample to be imaged
and a diaphragm reduces the light received by the sensor to the desired field of view. The
whole image is acquired as a mosaic, making possible leveling down the sample plate of a
increment of z to image the depth of the culture, and sweep another image. As a result,
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these stacked images can be used to reconstruct the 3D volume, enabling measures of 3D
parameters characterizing culture structural properties. Immunolabeling via fluorescent tags
is necessary to observe confocal images, contrary to bright-field, which conserves the natural
color of samples.

One of the principal issues of confocal microscopy is the long acquisition time, particu-
larly for in-depth imaging (in the z plane) where several hours per slice can be necessary.
Moreover, only the first few slices produce a sharp signal. For these reasons, some teams
prefer to use light-sheet microscopy for 3D culture imaging even though it requires a longer
and more complex sample preparation protocol.

Light-sheet microscopy Light-sheet is commonly used to observe 3D samples. However,
only 3% of cerebral organoid studies rely on this imaging method, mainly because of the
high cost of the device and samples preparation. The illuminating laser source is in the
acquisition plane, forming a light-sheet between 4 pm and 10 pm of depth, and of the sample
width. The light-sheet is divided in 3 sub-beams (to limit artifacts) which converge toward
the sample.

Light-sheet microscopy can acquire organoid images but the in-plane resolution and the
light depth penetration are not sufficient to reconstruct a connectivity map according to
(Poli et al., 2019). For spheroids, which are 4 times smaller than cerebral organoids, the
imaging of clarified data is feasible by light-sheet or confocal microscopy (Costa et al., 2019;
Molly E. Boutin et al., 2018).

Other imaging methods Others methods are sometimes used to study cerebral organoids
for live imaging (Madeline A. Lancaster et al., 2013), to acquire C'a™™ activity (Sakaguchi,
Ozaki, et al., 2019), or to monitor permeability to certain molecules (Bergmann et al., 2018).

2.5 Image analysis

The aim of cerebral organoids image analysis is to quantify and characterize cell types
(stem or proliferative cells, neuronal populations, oligodendrocytes, astrocytes, microglia
or epitheliums), cells components (nucleus, neurites as dendrites or axons, mitochondria,
synapses), pathological markers of specific disease, cell migration, permeability of tissues
to specific molecules, necrosis and structure formations inside the core of culture. In case
of group studies, analysis is used to compare size, shape, and dimensions between cerebral
organoid groups. In some cases, these results are used to complete and validate information
obtained with another method (RTqPCR, ELISA, etc).

Pre-analysis stages are sometimes required to prepare data for future investigations. For
example, 3D-reconstruction from acquired slices avoids counting cells multiple times when
they appear in multiple z planes (Kartasalo et al., 2018). 3D-reconstruction also allows
the visualisation of the multi-view images acquired from light-sheet microscopy (Dobosz
et al., 2014). Reconstruction methods from histological slices are based on different fea-
tures: Fourier, blob or high level features. Validation methods are based on observation,
landmark detection, or measures of overlaps (Pichat et al., 2018). After pre-processing,
cerebral organoid images are processed with different methods described in this section. As
previously mentioned, the two main tasks performed on these images are quantification and
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Table 2.5: Quantifications performed on cerebral organoid images, given in percentage of
the reviewed articles.

Quantification Type Percent
Cell 20.84
Protein 8.21
Countin Nuclei 6.74
& Synapses 1.89
Pathological 1.05
Mitochondria 0.21
Density Various markers 7.16
Total 47.58

morphology (Figure 2.1).

Quantification

Quantification is the main analysis realized on cerebral organoid images (occurring in more
than 47% of the reviewed studies, see Table 2.5). Quantification includes markers detection
and identification, counting, calculation of intensity and advanced methods for studying
cerebral organoid regions.

Counting Counting is performed on specific cells or cell components. In this section,
after describing the different quantified structures, we detail some of the counting methods
described in the literature.

e Biological structures.

— Neurons and glial cells: cell counting constitutes 20% of image analysis per-
formed on cerebral organoids (Table 2.5). Brain growth can be tracked by
counting markers of neural stem cells (Lisa M. Smits et al., 2019), proliferative
cells (Cullen et al., 2019) or differentiated neurons (Berger et al., 2018). In addi-
tion to neurons, the brain is constituted of glial cells. Astrocytes are responsible
for nutrition and neuronal communication while oligodendrocytes constitute the
neuronal myelin gain. Both cell types have been quantified in previous studies
(Cullen et al., 2019; Nickels et al., 2020; X. Zhong et al., 2020; H. Kim et al.,
2019). Counting of microglia — another kind of glial cell responsible for immu-
nity — has also been investigated (Brownjohn et al., 2018; Ormel et al., 2018).
Quantifying organoids microglial cells can help study both their development
and their interaction with neurons in case of disease. The last kind of glial cell,
constituting the epithelium barrier of brain cavities, is also quantified in choroid
plexus organoid models (Pellegrini et al., 2020). Their function of secretion is
measured in this previous article by quantifying a typical molecule of transport
(transthyretin) only expressed in choroid plexus.

— Nuclei: The nuclear compartment present in eukaryotic cells contains its genetic
information. Brain culture development is assessed by counting the total nuclei
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number (and therefore the total cell number) in a slice, a particular region or
an entire brain culture (Berger et al., 2018; F. Jacob et al., 2020; Bagley et al.,
2017; Qian, Su, et al., 2020; Park et al., 2018; Kielkowski et al., 2020). Identifying
nuclei also allows identifying the proportion of apoptosis (cell death), helpful to
quantify organoid viability (Lisa M. Smits et al., 2019; Zheng et al., 2020; Pedrosa
et al., 2020; Nickels et al., 2020). A similar process with a counter-stain permits
the characterisation of the neuronal population density. For example, (Lisa M.
Smits et al., 2019) and (Berger et al., 2018) segment nuclei and dopaminergic
neuronal markers in midbrain organoids to determine the neurons proportion of
their models.

— Synapses: connective zones between neurites of neurons where the information
is transmitted. Number of synapses and their functionalities are altered in case
of organoid models of various diseases (Gomez-Giro et al., 2019; Ghatak et al.,
2019).

— Pathological and physiological proteins: Proteins constitute cells and play various
roles in transmitting information or regulating factors. In cerebral organoids,
proteins are quantified to identify for example a particular cell component such
as regulating factors of transcription or tubulin markers (Madeline A. Lancaster
et al., 2013). To quantify diseases markers, a key is to count any excessive or
insufficient amount of physiological marker, or identifying a pathological marker.
For example, the number of Abeta puncta is used to identify Alzheimer markers
in cerebral organoids (Y.-T. Lin et al., 2018).

— Mitochondria: involved in energy conversion resulting from cellular respiration.
Mitochondrial abnormalities caused by genetic mutations in some diseases like in
parkinson organoid models (midbrain organoids) can result in cell death (Bolognin
et al., 2019).

e Counting methods. Counting cell markers relies on many different procedures. For
example, different studies use the following steps: first, images are denoised using
median filtering. Second, a Gaussian filter is applied in order to obtain a mask for
the marker. Then a median filtering is used on masks, and connectivity is search to
remove small connected components (Berger et al., 2018; Lisa M. Smits et al., 2019;
Bolognin et al., 2019; Nickels et al., 2020). Finally, expression levels of markers are
expressed in pixels or percentage, and sometimes are normalized by the expression
level of nuclear markers.

Another way to count cells consists in binarizing each channel using Otsu thresholding
(Otsu, 1979a), and separating overlay cells using watershed (Meyer, 1994). Images are
then denoised and channels are overlayed to count cells and calculate ratios (Cullen
et al., 2019).

Most nuclei identification methods use a foreground and background image which are
first convolved with a Gaussian filter, then substracted from one another to obtain
segmented nuclei (Berger et al., 2018; Bolognin et al., 2019; Nickels et al., 2020). In
some cases, the Gaussian filtering is applied directly on the Hoechst channel (Lisa M.
Smits et al., 2019).

A way to quantify synapses is to manually segment them using a specific software
(Quadrato et al., 2017; Gomez-Giro et al., 2019). Others choose to co-localize pre-
synaptic and post-synaptic punta inside a population of neuronal cells by semi-automatic
tools and quantify them per micrometer of neurite length (Ghatak et al., 2019).

In order to quantify mitochondria, (Bolognin et al., 2019) segmented the plate of
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organoid culture, cell nuclei, cell and then a mitochondrial mask was defined via a
difference of Gaussians. Masks were refined using a sequence of operations (connected
component removal, erosion and skeletonisation).

Intensity In order to quantify the proportion of cell components or molecules inside brain
cultures, marker intensity measure has been proposed (around 7% of the image analysis).
Different markers can then be measured: neurotransmitters (Jorfi et al., 2018; Sartore et al.,
2017), molecule transporters (Wilpert et al., 2020), infiltration of tumors (Liu et al., 2020),
nuclei (Rakotoson et al., 2019) or pathological markers (Y.-T. Lin et al., 2018).

To measure the neurotransmitter intensity, the mean grey value of this specific marker
is measured in three points of each cerebral organoid border, delimited by a rectangular
selection. This fluorescence intensity is then normalized for the tissue background (Jorfi et
al., 2018). To assess the neurotransmitter intensity per particular neurons, this parameter
is normalized to total neuronal intensity (Ghatak et al., 2019). To quantify the tumoral
infiltration regions the fluorescence intensity is thresholded (Liu et al., 2020). For intensity
of nuclear markers, background image was subtracted from stained one, the image (originally
in 16bits) is converted in 8bit gray-scale and, the intensity of this marker is measured
(Stachowiak et al., 2017).

Advanced regional quantification When (Madeline A. Lancaster et al., 2013) gener-
ated the first cerebral organoid, they discovered the presence of various brain regions, similar
to the ones already described in human brain. It is possible to identify regions using a com-
bination of different markers, marker density or marker location. (Pagca et al., 2015) were
the first to quantify different types of cells inside cortical spheroid regions: a ventricular
zone (VZ), a deep layer and a superficial layer. One year later (Raja et al., 2016) counted
nuclei expressing a caspase to determine the cell death from the center to the external cortex
of a cerebral organoid. Indeed, markers of cell death and proliferation are often measured
in VZ and SVZ regions (Qian, Su, et al., 2020; Anastasaki et al., 2020; F. Jacob et al.,
2020; W. Zhang, Ma, et al., 2020). Other articles also calculate the percentage of particular
neurons in VZ, SVZ, outer SVZ (R. Li et al., 2017) or CP (W. Zhang, S.-L. Yang, et al.,
2019). With the emergence of fused specific region organoid, (Bagley et al., 2017) expressed
the percentage of various fluorescent markers in dorsal and ventral forebrain organoids.

As of today, regional quantification mostly remains on a semi-automatic process (Albanese
et al., 2020). All of the articles cited use imageJ after a manual extraction of the region of in-
terest. Regional organisation is also scored manually by three authors in “no organisation”,
“geographic segregation” and “laminar structures” to determine the degree of differentiation
(Cullen et al., 2019).

Between January 2018 and June 2020, we only found classic segmentation methods to
identify cell components. It would be interesting to test various segmentation methods to
identify the most adapted to accurately identify cellular components.

Morphological analysis

Morphological analysis represent approximately 37% of the studies of 3D cerebral organoids
images and are summarized in Table 2.6.

Upon these morphological parameters harvested, two categories are further detailed in
this section: basic and advanced metrics containing 2D (diameter, perimeter, length, area,
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Table 2.6: Morphological analysis performed on cerebral organoid images, given in percent-
age of the reviewed articles.

Type Analysis Percent Dimension
Diameter 484 2D
Perimeter 0.84 2D
Unspecified size 2.95 2D
Distances 421 Mix
Basi Neurite 295 2D
asIe Radialisation 042 2D
Ventricles 1.68 2D
Nuclear Morphology 021 2D
Area 11.58 2D
Volume 1.26 3D
Thickness 463 2D
Folding 0.63 2D
Tortuosity 0.21 2D
Advanced Curvature and Wrinkling 021 2D
Circularity 1.05 2D
Sphericity 0.42 3D
Total 36.84

folding, wrinkling, curvature and circularity) and 3D analysis (volume, sphericity and dis-
tances) see Figure 2.5.

Basic metrics: two dimensional analysis Some studies investigated organoid global
growth, by measuring size indices to identify the state of growth and well being of the cul-
ture, as well as to compare methods of culturing or disease models of cerebral organoids.

e Diameter, Perimeter. Diameter and perimeter are measured in (6%) of cerebral
organoid articles. They are part of tools to measure the size of cerebral organoid
to evaluate their growth or to compare different groups of culture (healthy and disease
models for example). Indeed, their size is evaluated by their diameter (Monzel et al.,
2017; Sartore et al., 2017; Sivitilli et al., 2020) or perimeter (Buchsbaum et al., 2020)
on bright-field images. Others authors use confocal microscopy to measure the size in
term of perimeter (Iefremova et al., 2017).

To measure these parameters, semi-automatic tools are provided in some software.
One of the method is to sample diameter twice in a perpendicular angle using the
line tool of FIJI, on maximum z-projections made from image stacks acquired by con-
focal microsocopy (Schindelin et al., 2012). In bright-field microscopy, perimeter of
an element inside an image is measured on boundaries of manual or semi-automated
selected regions. For diameter, the longest distance between two points of a selected
region is measured. These measures had to remain in early stage of development due
to heterogeneous shape in later stage in this culturing model.

Such metrics could become an indicator of cerebral organoid shape only in early stages.

24



2D D
(slice) (w?fmlo)

CRNO

Pgﬁlrlrll%tt%rl Length Area Volume
Thickness Cire ularlty Wrinkling Distances Sphericity

Folding Curvature

Figure 2.5: Summary of major morphological analysis performed on cerebral organoids. The
first line in this table corresponds to basic morphological analysis and the second one to
advanced. Basic parameters are used to calculate the advanced ones.

Nevertheless in other kind of organoid models, diameters are an indicator of their shape
all along their growth as most of them stay spherical and a few are elliptical (Kassis
et al., 2019). In this article, intestinal organoids are identified, and their diameters
are measured thanks to deep neural network based on anchor boxes and features pyra-
midal network from (T.-Y. Lin et al., 2018). Some software are developed solely to
measure the spheroid perimeter (W. Chen et al., 2014).

e Length. The first form of measuring distances is measuring it at cell scale. Measuring
cell component allow to identify characteristic of growth culture. Researchers measure
for example neurites (Xiang et al., 2019; Cullen et al., 2019; Ao et al., 2020; Durens
et al., 2020) or cilium length (W. Zhang, S.-L. Yang, et al., 2019). Using lengths, ra-
tio can be calculated to compare neurites in different regions inside cerebral organoids
(Xiang et al., 2019), or to evaluate the direction of growing of this cell component
(Durens et al., 2020).

To measure the length of cell components, semi-automatic tools are used to define the
boundaries of each of neurites or cilium, and distances between the two boundaries
are calculated.

e Area. The surface area better represents cerebral organoids shape in latter stages
than other 2D parameters, being more acute on non-spherical shape. Area is the most
calculated morphological parameter on 3D brain culturing (12%), and is used to com-
pare various cerebral organoids growth in different conditions or groups (Watanabe
et al., 2017). At the sample level, the surface area of 3D reconstruction of light-sheet
microscopic images can be performed (Qinying Wang et al., 2020; Yun Li et al., 2017).
Nevertheless, some authors prefer measuring regions (VZ and SVZ and CP) in term
of areas on slices to follow there growth (Watanabe et al., 2017; Iefremova et al.,
2017). Particularly ventricular lumen area are measured in order to know the state of
3D brain culture or to test a pharmacological component (Qian, H. N. Nguyen, et al.,
2016; lefremova et al., 2017; Sartore et al., 2017; Di Matteo et al., 2020). Area can also
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serve to determine the culture viability. The necrotic and viable areas are measured in
the case of comparisons of two kind of culturing (Berger et al., 2018). The calculation
of an expressed marker area without considering the regional segregation can also be
done (in entire slices). The area of a kind of neurons or glial cells (Park et al., 2018)
and the area of all the nucleus (Cullen et al., 2019) are another example of this kind
of measurement. Of note, measuring area enables the evaluation of co-localisation of
some markers (Ao et al., 2020) like presynaptic and postsynaptic ones.

To identify the growth of cerebral organoid culture, authors calculate the total surface
area of the whole organoid. Regions of interest are surrounded manually around the
entire organoid from a bright-field microscopy image, and thanks to an imageJ module
(“Area Measurements of a Complex Object”), the surface area is calculated (in pixels)
(W. Zhang, Ma, et al., 2020; Gomez-Giro et al., 2019). Viability of cultures can be
assessed both at regional or cellular level. (Berger et al., 2018) choose a typical fluores-
cent marker not expressed in necrotic core region and measure its surface expression
related to the total surface area. This parameter is measured as the minimum area in
pixels that an object must have after its selection, thanks to semi-automatic tools (Zen
software). For cell viability, areas of some cell component markers (such as plasmic
membrane or enzyme) are also calculated. To that aim, (Cullen et al., 2019) convert
the two channel corresponding to plasmic membrane and enzyme in 8 bits images,
then binarize images to obtain cell shape regions. The area of these two markers is
then quantified, and their ratio is calculated. Synapses quantification can be achieved
using marker areas co-localisation. Synapse areas are for example calculated by over-
lapping Homer (post-synaptic) and Bassoon (pre-synaptic) channel signal in the case
of assembloid of organoids using a lab-developed tool (Sloan, Darmanis, et al., 2017).
For particular cerebral organoids, areas are even calculated. For example in fused
ventral and dorsal forebrain organoids, areas of typical expressed markers are also cal-
culated (Bagley et al., 2017). For the blood brain barrier organoids, areas are equally
measured, particularly the core area by measuring it at 50 pm from the surface. A
scale bar is used as a reference to correctly assess the distance (Bergmann et al., 2018).
In mammalian, colon and intestinal organoids, the whole area of the entire organoid
digitized after bright-field imaging is calculated (Borten et al., 2018; Ren et al., 2018;
Hasnain et al., 2020). As an example, for (Borten et al., 2018), after a segmentation
of colon organoids (by a conversion, opening-closure, thresholding, filtering to denoise,
filling holes, denoising and removing debris), the surface area of identified region of
interest is measured.

Basic metrics: three-dimensional analysis Measuring the cerebral organoid size in
3D is also possible in light-sheet images, where the volume of this 3D brain culture is as-
sessed (Qinying Wang et al., 2020; Yun Li et al., 2017). Only few authors calculated this
parameter, possibly because this imaging modality is poorly used. Indeed 2.5% of articles
use light-sheet, and 1.3 % calculate the volume of cerebral organoids (Table 2.5).

The outline of the cerebral organoid is delineated and used to compute both volume and
surface area, with semi-automatic tools (Yun Li et al., 2017). Such metric could be use to
indicate if an antitumoral treatment works like it was made for spheroids. However, the
number of spheroids is too important to semi-automatically or manually measure volume
when performing drug testing. (Wojaczek et al., 2019; Kalaydina et al., 2019) use deep
learning method based on the YOLOv2 architecture (using anchor boxes instead of fully
connected layers) (Redmon et al., 2016) to identify spheroids and calculate their volume V'
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from the radius r, assuming a perfect sphere. Manual calculation of the radius r was made
by measuring the diameter twice for each spheroid, then averaged and divided to obtain r,
using a scale bar as a reference. After automated identification, coordinates of predicted
bounding box enable the measurement of radius and the volume calculation (Kalaydina
et al., 2019).

Advanced metrics

e Length and thickness. Advanced specific distances are calculated in Cederquist et al.,
2019 article to identify the cerebral organoid patterning. First, the center of mass
(CM) of a factor-organizing cells is computed, inside a grid applied on the image.
The CM is a function of its mean gray value intensity and the total intensity. After
choosing a marker of a typical protein, intensity is thresholded and regions of interest
(ROI) are identified. Finally the Euclidean distance between each ROI and the CM
is obtained.

The second kind of distance is the neuroepithelium thickness. In cerebral organoids,
this thickness is used to characterize an organoid model (Watanabe et al., 2017; Sak-
aguchi, Ozaki, et al., 2019; W. Zhang, Ma, et al., 2020; Di Matteo et al., 2020;
Buchsbaum et al., 2020) and to follow the patterning of the culture (Cederquist et al.,
2019) or the effect of various culturing on the growth of the regions contained in it
(Qian, Su, et al., 2020).

A specific feature of the neuroepithelium thickness is the relative thickness Rk,
which is the ratio of the total layer thickness T L. over the VZ region thickness
V Zinick (W. Zhang, S.-L. Yang, et al., 2019):

T Linick — V Zthick

Rinicr. = 2.1
thack T Linick (21)

Another way to calculate the relative VZ thickness is defined as the ratio of VZ thick-
ness to VZ plus outer layer thickness (Qian, H. N. Nguyen, et al., 2016).

e Circularity and Folding. The shape of the cerebral organoid is one of the parameter
used to distinguish it from spheroids, and a marker of later stage of the cerebral
organoid growth. Circularity (C') is a shape parameter measured in the early stage
(day 6) of development in intact cerebral organoids, and is defined by Yoon et al.,
2019 as:

A2
C =47 .- = 2.2
5 (22)
where A is the object area and P is the perimeter. An index of 1 reflects a perfect
circle.

Human cortical surface is characterized by folding (gyri and sulci), which is not al-
ways present in mammalian models (Kelava et al., 2016b). To determine if a cerebral
organoid model reproduces gyrification, (S. Li et al., 2020; Qinying Wang et al., 2020)
quantify folding. On bright-field or in higher magnification view images, the Canny
edge detector is used to extract edges. Once edges are found, their total length is used
to compute a folding index (Wojaczek et al., 2019).
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e Wrinkling and Curvature. Wrinkling occurs at two brain formation stages: during the
emergence of folds along the neural tube, and during the expansion of surface area.
Measuring wrinkling is a relevant index to characterize diseases such as lissencephaly.
(Karzbrun et al., 2018) calculate the wrinkling and the curvature inside cerebral
organoid. 2D wrinkling is the measure of the real perimeter of the organoid divided
by the total maximal perimeter as a circle containing the organoid. The curvature is
defined as the average of the tangent angle 6(r) derivative along the surface of inner
and outer neuroepithelium perimeter contour nré(r).

e 3D: Sphericity and Distances. For 3D images, circularity cannot be characterized,
hence the identification of brain gyrification uses the sphericity (how spherical an
object is) on light-sheet images (S. Li et al., 2020; Qinying Wang et al., 2020). The
calculation of sphericity, ¢ originally generated by Wadell in 1932, is defined as the
ratio of the cell surface area of a sphere over the cell surface area of a particle, with
V' the volume of the particle and A the surface area of the particle:

1/3 6V 2/3
b = 7T(A> (2.3)

The latest measure performed on cerebral organoids evaluates the tumor propagation
in some models. The distances between tumoral cells or between them and the cen-
ter of the cerebral organoid is computed. From binarized images, several steps are
then performed: exclusion of single cells (using by connected components), holes fill-
ing, organoid surface approximation (by a Delauney triangulation). Normal distances
between tumoral cell voxels is then calculated (Krieger et al., 2020).

Summary on morphological parameter extraction Over the considered time range
(January 2018 to June 2020), we only found methods focusing on classic extraction of
shapes. More recently ((Albanese et al., 2020)), authors extracted ventricular region of
cleared organoids using a Deep-Learning approach (U-net architecture (Ronneberger et al.,
2015a)). This original work paves the way to Deep-based approaches and clearly shows
the potential of such methods. Similar methods could potentially be used for all types of
cerebral organoids structures.

2.6 Software

Pre-analysis software

Most imaging platforms include a software able to perform pre-analysis. For example, the
tiles module and the position module of the Zen software can be used to reconstruct multi-
view images in 3D (Watanabe et al., 2017); while the NIS imaging software (Nikon) can
measure the size of cerebral organoids (Berger et al., 2018).

However, these software packages are generally not adapted to perform the tasks vari-
ability required by researchers who want to analyze cerebral organoid imagings. To analyze
images, neuroscientists choose dedicated software depending on the study topic, imaging
type, ease of use, source code flexibility, their computing knowledge, and budgets. ImagelJ,
Matlab, CellProfiler and Imaris, are the most used software solutions in this context, as
shown in table 2.7.
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Table 2.7: Software used to analyze cerebral organoid images.

Software Open source Automatism percent
imageJ / Fiji  yes semi-automatic  51.37
Matlab no automatic 4.42
CellProfiler yes semi-automatic 0.84
Vast yes semi-automatic 0.42
Imaris no semi-automatic 3.16
Visiopharm no automatic < 0.2
ImageScope yes automatic <0.2

ImageJ / Fiji

ImageJ is an open-source software which can run on all the main operating systems (Win-
dows, macOS, Linux/Unix). It does not require knowledge in coding and the interface is
somewhat user friendly; for example it supports “drag and drop” of the image to analyze.
ImageJ is the most widely used software for the analysis of 3D brain cultures (used in
over half the articles surveyed, see table 2.7). The most popular modules include the “cell
counter” plugin, the “particle” counter, the “length” and “area” measurement functions,
the “ROI tool”, and the “Canny edge detection” to measure folding density.

For those who need further analysis, the advantage of this software is the possibility to
code macros in Java to automate analysis or to create new tools (Raja et al., 2016; Ormel
et al., 2018). One drawback is that some file extensions require additional plugins to be
handled (for example bioformat files) while in-house extensions are not handled at all. Also,
ImageJ performances are impacted when used with large images and may require increasing
memory allocation.

Theoretically, it is possible to perform 3D analysis with the “ImageJ3Dviewer” plugin.
However, to our knowledge, these tools have not been used for the analysis of 3D brain
cultures.

Matlab

Matlab is a numerical computing environment and proprietary programming language widely
used by the scientific community, for example for image and data processing or simulations .
Matlab can also run on the main operating systems. Many toolboxes exist and can be used
to develop new tools. Matlab is more versatile and faster than the other software on large
amounts of data, but it requires specialized knowledge to develop and validate new tools.
Matlab is the second most used software (with 5% of use), and has been used for a wide
range analysis tasks: nuclei segmentation (Lisa M. Smits et al., 2019); cell segmentation
(Bolognin et al., 2019); puncta co-localisation (Sloan, Darmanis, et al., 2017); curvature,
folding and surface measurement (Karzbrun et al., 2018); and tumoral cell dispersion eval-
uation (Krieger et al., 2020).

CellProfiler CellProfiler is an open source software developed in Matlab; it thus requires
a Matlab license. Many plugins are available and used by different teams analyzing 3D brain
cultures (Park et al., 2018; Pedrosa et al., 2020). The major inconvenient is that not all

!MathWorks, Matlab
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image formats are currently accepted. Specific scripts must be developed, but new plugins
can be coded in Matlab as mentioned before.

Vast Vast “ is a Matlab-based semi-automatic segmentation tool for 2D and 3D images and
is used to segment images from transmission electron microscopy, including segmentation of
synaptic compartment in cerebral organoids (Quadrato et al., 2017).

Imaris

Imaris is a commercial software which allows 3D and 4D (along the time) analysis of cell
cultures, but it remains a semi-automatic tool. User selects objects inside images to detect
and process them. Imaris is used in 3% of the articles surveyed for this review, and is
particularly used to reconstruct images in 3D (T. Kadoshima et al., 2013; M. Renner et al.,
2017), to count cells (R. Li et al., 2017) and to quantify volumes, surface area and sphericity
(Yun Li et al., 2017).

Others solutions

Visiopharm® is a commercial solution composed of a range of Al-based image analysis and
tissue mining tools. It has been used on fluorescent cerebral organoid images to count cells
(Stachowiak et al., 2017). ImageScope’ is a commercial automatic quantitative software
for widefield microscopy, used to count pixels labeled with a specific marker for prion in a
Creutzfield-jacob model of cerebral organoid images (Groveman et al., 2019).

Others methods have been validated for the study of non-cerebral organoids: Cytocensus
for retinal organoids (Hailstone et al., 2020); OrgDyn for widefield images of mammalian
organoids (Hasnain et al., 2020); OrganoSeg for 3D bright-field images of colon organoids
(Borten et al., 2018). Most of these tools are based on image filtering and segmentation. No-
tably, OrgaQuant locates and quantifies the size distribution of human intestinal organoids
in bright-field images based on a deep learning network (Kassis et al., 2019). Only recently
a software was created to characterize the cytoarchitectures of cerebral organoids imaged
by light-sheet microscopy (Albanese et al., 2020).

2.7 Available datasets

The number of available dataset in the organoid/spheroid field is limited see Table 2.8, and
only few of them could be used to characterize the development of brain organoids. We
choose to use the bright-field brain organoid dataset to our work and ask to other authors
if they could let us some others bright-field brain organoid images. Even if this dataset
contains only a few samples, these images represents some advantages: open access, and
acquired at three different developmental stages; The imaging method of this dataset is the
one usually used to follow brain organoids growth, and organoids are centered within the
image. Therefore, such dataset allows a developmental morphological characterisation.

About the ground truth The first work before segmenting images is to prepare the
dataset. One of the preparations consists in creating the ground truth (GT) of images. The
ground truth is the manual annotation of images which allow to compare fairly automatic

2https://software.rc.fas.harvard.edu/lichtman /vast/
3https://www.visiopharm.com/
4https:/ /www.leicabiosystems.com/fr/imagerie-pathologique/analyser/
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Table 2.8: Available organoid/spheroid image datasets found in the literature.

Reference Culture type Acquisition Healthy/Total Size
Gomez-Giro et al., 2019  Brain org. Brighfield 20/40 1388 x 1038
Nickels et al., 2020 Midbrain org. Brightfield 300/300 1388 x 1038)
Kassis et al., 2019 Intestinal org. Brightfield 756/756 450 x 450
Borten et al., 2018 Colon and breast  Brightfield 120/120 864 x 648
cancer spheroid
Stachowiak et al., 2017  Brain org. Confocal 16/40 1389 x 1040
Gomez-Giro et al., 2019  Brain org. Confocal 30/60 1907 x 2355
Lisa M. Smits et al., 2019 Midbrain org. Confocal 76/76 1388 x 1040
Nickels et al., 2020 Midbrain org. Confocal 10/10 1024 x 1024
Schmitz et al., 2017 Melanoma Light-sheet 2/2 690 x 726
spheroid
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Figure 2.6: Ground truth annotation on itksnap and variations in ground truth annotation
by a biological expert. Three manual segmentation have been made by the experts, and F1
score has been calculated. Kruskall-wallis test performed on the dice score between control
and GT comparison group does not show significant differences (p-value > 0.05).

with a biological expert annotation. The ground truth has been created by a superimposition
of 3 annotations of experts witch selected the contour of images with the ITK-SNAP software
www.itksnap.org (Yushkevich et al., 2006a). To verify the three manual segmentation are
quite similar we compare the annotation variations Figure 2.6.

Resources We develop all the scripts in Python 3.6 with an Anaconda framework con-
taining Keras 2.3.1 and Tensorflow 2.1 and run them on an Intel Core i7-9850HCPU with
2.60 GHz and a NVIDIA Quadro RTX 3000s GPUdevice.

2.8 Discussion

This section gives an overview of the current limits in: cerebral organoids generation, existing
imaging solutions and analysis methods and tools. We also present expectations for new
image and volume analysis tools. Indeed, one of the keypoint in the context of image analysis
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Figure 2.7: Main domains of reviews published. Percentages less than 5% are not mentioned.

of cerebral organoids is the faisability of the analysis supported by the quality of generated
images and on their imaging.

Cerebral organoid generation limitations

Some limitations remain in the generation of cerebral organoids. The main limitation is
the necrosis occurring during the growth of cerebral organoids due to lack of nutrients and
oxygenation. Slicing the organoid and optimizing the culture medium have reduced this
necrosis (Qian, Su, et al., 2020; Berger et al., 2018). However, the lack of vasculature of
cerebral organoids remains the root of the problem. In some protocols cerebral organoids
are transplanted in mice brains for irrigation (Mansour et al., 2018; Pham et al., 2018; Shi
et al., 2020) while others generate blood-brain barrier organoids (Cho et al., 2017; Nzou
et al., 2018; Bergmann et al., 2018) but these solutions lack the self-patterning of vessel
generation. Recently, the theoretical elucidation of this problem has been exposed based on
two models of gradient diffusion of the vascular endothelial growth factor (Hong et al., 2019).
A recent study also documents the generation of telencephalic and choroid plexus organoids
allowing the production of cerebrospinal fluid (Pellegrini et al., 2020). A combination of
these barriers in a cerebral organoid model could potentially increase its lifespan.

“Batch syndrome” and batch-to-batch variability as previously described are a major
inconvenient for the commercialisation and robust analysis of cerebral organoids. A pre-
requisite for commercialisation consists in measuring size and morphological complexity (cf
2.3) to validate the model (Choudhury et al., 2020). However, existing tools to measure the
overall size present drawbacks like time consumption as they are manual or semi-automatic,
making them unsuitable for mass production. Though the generation of this model is less
than a decade old and not well stabilized, growth monitoring of cerebral organoids neglected
for the benefit of articles comparing pathological and physiolocal cerebral organoid models.
Almost half of the related articles and reviews included in this review are about pathological
organoids (Table 2.1, Figure 2.7). In others organ models, automatic tools have emerged
to measure the size or to classify the morphology of others organ models (Hasnain et al.,
2020; Borten et al., 2018; Kassis et al., 2019). We think a similar tool for cerebral organoids
could help to measure and identify the growing step of cerebral organoids.

The large amount of cells to handle in generated cerebral organoids, in addition to their
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variability in numbers, also increases the difficulty in analyzing images (from 3000 to 11000
cells at 6 months depending on the protocol). Nethertheless, similar problems have already
been addressed. For example, connectome has already been investigated for larger central
nervous systems like drosophilae (25000 neurons and their projection), but also in part for
the human brain (containing around 86 billions of neurons and their projections) (Scheffer
et al., 2020; Rosen et al., 2021; Maller, 2019). The Human Connectome Project requires
to create collaborations between laboratories and a large storage capacity, as terabytes of
storage are required in computing resources for a whole human brain. In order to investigate
the development of cerebral organoid connectome under various protocols, we think it could
be necessary to create a similar initiative collaboration, and biobanks dedicated to cerebral
organoids images. Another review discussed about the benefit and limitations of conserving
cerebral organoid generated or their cell contents inside biobanks (S. Li et al., 2020). It
could help also to investigate for instance each neuropathological model created in cerebral
organoids as it has been done for glioblastoma (brain tumor) cultures of patients (F. Jacob
et al., 2020).

Generation of cerebral organoids is not the only limitation of these models, to an image
analysis point of view, the imaging remains an issue.

Preparation and imaging method limitations

Preparation Sectioning during preparation restricts the efficiency and throughput of
organoids and spheroids (Pagca et al., 2015). The loss of bio-material is critical for these
small cultures that do not exceed 4 mm in diameter for cerebral organoids and 0.5 mm for
spheroids. Moreover 3D reconstructions computed from these altered images can introduce
a bias (Richardson et al., 2015). To avoid slicing and to obtain a full cerebral organoid
image in a single acquisition, (Durens et al., 2020) generate an organoid with a thickness
of 100 um. Another problem of classic immunohistochemistry methods is the poor diffusion
of markers in the depth of cultures. A possible solution is to use clarification. Nowadays,
only a few teams use this expensive solution on cerebral organoids (see Table 2.3). The
aim in the near future is to use clarification in high-throughput platforms (Poli et al., 2019;
Grenier et al., 2020). Very recently, out of the time scope of this review, cleared cerebral
organoids, were analyzed in one of this expected platform called SCOUT (Albanese et al.,
2020). Others authors tried also others clarified methods to analyze in 3D their cerebral
organoids (Adhya et al., 2021; H. Renner et al., 2020). However, contrarily to the spheroids
field, to our knowledge there is no article comparing existing clarification methods to find
the most accurate one, allowing better image analysis on 3D brain cultures (Niirnberg et
al., 2020). An appropriate clarification method applied on cerebral organoids could help to
acquire images of quality and allow the most accurate 3D analysis.

Imaging FEach of the various acquisition methods used on cerebral organoids has specific
limitations. Bright-field microscopy is only used to analyze intact samples and is a powerful
and simple acquisition modality to identify 2D morphology and follow the growth, however
not suited for inner cells study. The resolution of confocal microscopy is satisfactory only for
the superficial sweeps while only a halo of markers are visible in the deepest views (Lisa M.
Smits et al., 2019). Accordingly, only cell counting in a single acquisition plane is possible
(Qian, Su, et al., 2020). Light-sheet microscopy is only used by few teams (See Table 2.1).
This method is an expensive solution that requires to be tested on cerebral organoids clarified
by various protocols before obtaining good quality data. This imaging method has been
used in the recently published articles on only one clearing method (Albanese et al., 2020;
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Adhya et al., 2021). A comparison of images resulting from various clarification protocols
in light-sheet and confocal modality, not already provided to our knowledge, could be an
important step to identify the best methodology for the observation and analysis of 3D
cerebral organoids. Such image acquisition methods diversity yields additional complexity
in the automated analysis tools standardisation (Table 2.1).

Analysis

Some authors chose to develop their own algorithm rather than using already available
software modules (Stachowiak et al., 2017; Berger et al., 2018; Lisa M. Smits et al., 2019;
Cullen et al., 2019; Bolognin et al., 2019; Krieger et al., 2020). In addition to software
imaging and updates high costs, these are usually not optimized for their specific imaging
modalities. Also, commercialized software source code is not always available, to be modified
to fit custom needs. With regard to clarified samples images, only a few software are allowing
3D-data analysis (See section 2.6). Noteworthy is the fact that most of the existing solutions
remain semi-automatic. In the actual context of data expansion and increase of organoids
models (Ashok et al., 2020; Choudhury et al., 2020), the development of fast and automated
tools is mandatory.

Indeed, manual characterisation of spheroids, smaller than cerebral organoids, is time
consuming (Soetje et al., 2020). In contrast, automated processing based on computational
neural network (CNN) can provide real time measures (Kalaydina et al., 2019; Anagnostidis
et al., 2020; Wojaczek et al., 2019). In other imaging disciplines such as MRI brain tumor
detection, similar methods are already widely developed (Gordillo et al., 2013).

Aside from quantification speed optimisation, another benefit of CNNs is that they are
not subject to human error (except from the manual annotation process). Nowadays, CNNs
are used to measure size parameters from 3D intestinal organ models, (Kassis et al., 2019)
or to count cells in retinal organoids (Hailstone et al., 2020).

Despite the fact that is widely developed for others 3D cultures, to our knowledge,
only one article included deep learning methods in order to segment ventricules of their
cerebral organoids (Albanese et al., 2020). However, the comparison of machine learning
methods applied to cerebral organoids would bring precise information on analysis precision
and reproducibility. Nevertheless, the lack of shared images databases precludes such a
comparison (Chakradhar, 2016).

Need of analysis tools

Automatic monitoring during cerebral organoids development, although essential for their
commercialisation (Chakradhar, 2016) and management of the increase culture amount
(Figure 2.1), is still lacking.

In others organ models — i.e. mammary organoids (Hasnain et al., 2020) —, automated
tools allowed the discovery of various groups of morphology. Such classification would be
interesting to highlight in cerebral organoids.

Studying the morphology and measuring the size of a cerebral organoid in 2D images can
help to compare groups inside a study (Watanabe et al., 2017; Monzel et al., 2017; Iefremova
et al., 2017). However, the tools used to that aim are still semi-automatic or manual. A
possible answer lies in the use of CNNs, which can help identifying and characterizing
cerebral organoids in the culture (Kassis et al., 2019; Wojaczek et al., 2019; Kalaydina
et al., 2019; Anagnostidis et al., 2020; Soetje et al., 2020). These tools completed with
transcriptome analysis in various locations inside some cerebral organoids blindly selected
in a batch, could help to automatically validate the growing step of a cerebral organoid, in a
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productivity chain. Such a tool used in research would improve the speed of organoid groups
comparison. Additionally, automated size and growth measurement could be helpful in other
3D cultures (organ models or spheroids), less complex in term of morphology (Friedrich et
al., 2009).

Another interesting feature of cerebral organoids is the presence of regions mimicking
similar human brain regions, but at random location, with shape variability and in random
numbers (Madeline A. Lancaster et al., 2013). Regional quantification has already been
performed in two dimensions with semi-automatic tools (Qian, Su, et al., 2020; Anastasaki
et al., 2020; F. Jacob et al., 2020; W. Zhang, Ma, et al., 2020). Conversely, automatic 3D
structures extraction has not been done yet, except for ventricular regions (Albanese et al.,
2020). To observe or quantify molecules in specific brain regions, researchers use atlases on
the assumption that structures localisation and shapes are identical to the ones found in
a healthy subject. Such assumptions are not valid for cerebral organoids, because of the
previously mentioned variability. Moreover, atlas creation process is a complex task, even
in the case of in vivo models or human brain (Bazin et al., 2020; Johnson et al., 2010;
Quanxin Wang et al., 2020). Recently, some authors developed a brain atlas based on deep
learning in order to automate the segmentation of mice brain regions, which are variable
in size and shape (Igbal et al., 2019). This study demonstrates the feasibility of localizing
brain structures despite mild brain variability, and could be translated to cerebral organoid
study.

Additionally, the minimal density of markers defining a region in 3D would be interesting
to highlight. Such characterisation could help identifying unknown functional and architec-
tural markers, as mentioned in Grenier et al., 2020, with the perspective of generating a
high-throughput deep learning-based image analysis platform for drug testing.

Such platform could benefit many other applications. Defining regions with a reduced
number of markers on a single sample could leave room for another marker, more relevant for
a specific study. Moreover, organoids structures are manually extracted to count markers,
or are cut to analyze in RNAseq (Buchsbaum et al., 2020; Sloan, Andersen, et al., 2018).
Nevertheless, structures are microscopic, and the tools enabling the selection of regions
depend on the accuracy of the operator. This becomes particularly critical when regions are
cut with laser microscopes. Precision in cerebral organoid cutting could be increased using
automatic region identification, or error correction through a dedicated analysis tool.

Automated quantification of cells and their components would be of great interest, as
such measures remain the main analysis realized on cerebral organoids Figure 2.4. While cell
counting is the principal quantification realized on cerebral organoids (cf Table 2.5), authors
only use classical segmentation (thresholding, watershed for example) (Cullen et al., 2019).
Similarly quantifying physiological or pathological markers inside cerebral organoid regions
has been performed only with semi-automatic tools (Qian, Su, et al., 2020; Anastasaki et al.,
2020; F. Jacob et al., 2020; W. Zhang, Ma, et al., 2020). Automatic tools developed for
other culture models could potentially be used to achieve such quantification (Piccinini et
al., 2020). Development of new methods could also be inspired by approaches already used
for in vivo brain models (C. Zhang, 2017), however with some limitations regarding methods
used for real human brain tissue study. In this specific case, cell counting is based on three
different approaches: histological or stereological approaches, DNA extraction and isotropic
fractionnating. Only the first method keeps the localisation of the cells (Von Bartheld et al.,
2017) and would therefore be suited for cerebral organoids.

Another interesting project to develop is the creation of cerebral organoid connectomes.
We think connectivity mapping has to be developed at various scales, between two organoids
of an assembloid, between regions inside an organoid, but also between the constituting
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cells. In assembloids, the connectivity could help to explain neurodevelopmental defects
using pluripotent stem cells derived from neurological diseases patients and to test potential
therapeutic compounds (Bagley et al., 2017). Another review addresses the challenge of
connecting an organ culture with cerebral organoids, in order to reproduce important axes
in the human body, although this raises major ethical questions (Chukwurah et al., 2019).

New computational methods identifying connections could help to understand organoid
inner structure. For instance, regional connectivity could be helpful to identify a pathological
formation inside the neuroepithelium, and help to understand the neurodevelopemental
formation (Seto et al., 2019). Finally, characterizing the full connectivity of the whole
organoid, or inside a particular region, could help distinguishing relations between different
cell types, relevant to identify neurodegenerative diseases (Marotta et al., 2020).

The identification of cell interactions has been described in another review (Poli et al.,
2019), and is based on a connectivity map realized after segmentation of clarified tissues
and visualized with virtual reality. This method could also be applied for fused regional
cerebral organoids or for connected organ culture with the brain one. A unified analysis
tools platform would benefit simultaneously to the manufacturing process standardisation
and 3D cultures research (summarized in Figure 2.8).

2.9 Conclusion

The use of cerebral organoids in laboratories has increased exponentially since their first
creation in 2013. However, we observe in this review that actual tools to study images
from these 3D brain cultures in all their dimensions suffer from some limitations. The
structural variability occurring during maturation needs to be limited by improved protocols
or by computational analysis solutions. The best combination of “clarification protocol -
microscopic device” remains to be highlighted to acquire images from cerebral organoids
that could be analyzed in all their dimensions. Specific tools need to be developed to
improve the speed and the accuracy of their identification and quantification, but also to
better understand their physiology and their entire 3D cyto-architecture. However, such an
approach implies access to very large image datasets, which seems only possible when they
will be stored in the “Organobanks”.

As already mentioned by two other teams, and once the current limitations are overcome,
the ideal platform would combine molecular /transcriptome and high throughput image anal-
ysis tools (Grenier et al., 2020; Poli et al., 2019). The first milestone of this kind of research
was very recently published (Albanese et al., 2020; H. Renner et al., 2020). However, cere-
bral organoids dedicated image analysis tools remain to be developed, as summarized in
Figure 2.8.

We are convinced that cerebral organoids coupled with high performance image analysis
tools have the potential to highlight features others brain models are not able to show yet,
and will help evaluating theories in the neuroscience field.
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Chapter 3

(Generation

The scarcity of public datasets of annotated biomedical images remains an unresolved bot-
tleneck to develop specialized and robust automatic analysis tools. Research groups do not
usually share experimental data for privacy reasons. The high costs of equipment, long ac-
quisition times, and necessary in-depth expertise can be a brake to acquisitions (Chakradhar,
2016). To benefit from the advances in deep-learning (DL) for automated image analysis,
large training datasets are necessary. Moreover, original dataset constraints create a problem
of class imbalance with deep learning training procedures. These problems are emphasized
with small sets, reduced to a few images (Tajbakhsh et al., 2016).

A solution widely used in various domain is data augmentation (N. K. Singh et al.,
2021). This concept gathers techniques used to increase the amount of data by adding
slightly modified copies of already existing data or newly created synthetic data from existing
data. Data augmentation aims to reduce over-fitting when training a machine or deep
learning model. The main current applications in the biomedical field are in detection and
classification,but has been used before for synthesis and reconstruction or detection and
segmentations (Yi et al., 2019; Y. Chen et al., 2022). Usually three data augmentation
strategies are described: classical, deep learning-based, or a combination of both (Chlap
et al., 2021).

3.1 State of the art on data augmentation

3.1.1 Classical data augmentation

Classical data augmentations gather the oldest, and the most often used strategies, mostly
because of high processing speed. These strategies are divided in six methodologies: geo-
metric, color space, noise, filter, mixture (or patch), and erasing based.

Color augmentation gathers contrast transformation (increase, reduction, linear, gamma...),
histogram equalisation or whitening of images (Mikolajczyk et al., 2018), while color space
augmentation is based on RGB pixel values manipulation or hue transformation, or color jit-
tering (Wu et al., 2015). Affine geometric transformations contain shear, scale, translation,
reflection, rotation, flip-flop, skew, random crop, occlusion, edge enhancement (Mikolajczyk
et al., 2018; Taylor et al., 2018). Others transformations include kernel filtration, patch or
noise injection (such as Gaussian, Uniform, Salt and Pepper, sharpening, blur, or emboss)
(Hussain et al., 2017; S.-H. Wang et al., 2021; Chlap et al., 2021).

Most of these transformations have been compared by Taylor et al., 2018 experiment on
CIFARI10, showing a not so strong accuracy in classification tasks, with a maximal accuracy
of 79%, obtained by cropping. A possible explanation of this result is the lack of variation in
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transformed images, in comparison with the original ones. Other transformations have been
proposed to overcome this limitation. Displacement based on mapping (a reference image
and a second one which is deformed, to become similar to the first) (Krivov et al., 2018),
diffeomorphic image registrations combined with affine augmentation (Nalepa et al., 2019)
or atlas based (Tustison et al., 2019) are also in the spectrum of possible transformations,
although they require a reference images or an atlas of the object. Spline interpolation
is another mathematical transformation which smoothly deforms the image content. Two
interpolation methods, thin and B spline, are common. The thin is the most use, however
the content is sometimes unrecognizable (Chlap et al., 2021). Concerning the latest kind of
classical transformations, they mix patches of images of various content or, erase randomly
including important parts which do not allow to well train algorithms (Summers et al., 2019;
Takahashi et al., 2020; Z. Zhong et al., 2020).

Recently, other classical approaches has emerged such as statistical shape models, which
describe the shape variability inside a dataset with a model, used to generate deformations
within the range of original parameters, with a dimensional reduction approach for instance.
However, the variability in image intensities between protocols and acquisitions, and the
absence of shape references of biological contents lead to errors (Bhalodia et al., 2018;
Corral Acero J, 2019).

In summary, classical data augmentation are the most used and the fastest methods,
but should be used with caution due to severe drawbacks such as: clone images with no
variability, unrecognizable generated data, non natural biological shape in the content, need
of a reference or a template and mathematically limited number of transformations.

3.1.2 Deep learning based data augmentation

Deep learning (DL) data augmentation approach automatically learn the representation of
images and generate realistic but not clone images, and is generally used to increase the
model generalities, synthesizing variable images, and reduce over-fitting during training by
the increase number of images. DL strategies are in majority composed of four groups
described below: feature space augmentation, adversarial training, generative adversarial
networks (and variations), and neural style transfer.

Feature space augmentation

The principle of feature space augmentation consists in increasing not the input database,
but the learned space by adding noise, interpolating, or extrapolating by a neighborhood
search (Chawla et al., 2002; Nacereddine et al., 2012). An example of this data augmentation
strategy is illustrated in Figure 3.2.

The deep learning architecture used for this approach is a sequential autoencoder. The
autoencoder is constituted by an encoder which receive the input and transform it by ap-
plying one or more nonlinear parameters into a new representation of a lower dimension.
The decoder also uses nonlinear transformations to reconstruct the original image with the
lower dimensional representation. An illustration of the classical auto-encoder architecture
is given Figure 3.1. Autoencoder are usually divided in many fields: sparse, denoising,
contractive, etc.

During the forward step, the hidden states of the recurrent layers are propagated through
the layer stack. The encoder hidden states at the final time step, called the context vector,
seeds the hidden state of the decoder at its first time step. The sequential auto-encoder
works similarly; however, the encoder and decoder use recurrent layers which can encode
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Figure 3.1: Auto-encoder architecture.(X;,X;) corresponds to input information, circle non
linear transformed resulting vectors, C; represents the context vector also called latent space
and (Y;,Y4) the output information.
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Figure 3.2: An example of feature space augmentation lying on a sequential auto-encoder
illustration based on (DeVries et al., 2017). C;, C and C) represent context vectors, in blue
are the process and in green images. Encoder architecture and the sequential decoder are
illustrated in grey.

and decode variable length sequences. Indeed, the decoder learns on the context vector at
each time step and not on the first step, which improves the reconstruction (Kyunghyun
et al., 2014).

A limitation of this method comes from the proposed data augmentation, based on
simple transformations: only a limited number of transformations can be calculated on the
contextual vector.

Adversarial training: origin of Generative Adversarial Networks

Generative adversarial networks (GANSs) are unsupervised deep learning-based architectures
composed of generator (G) and a discriminator (D). The generator aims at creating visually
realistic and natural images while the discriminator tries to decipher whether the result is
generated or belongs to the original dataset. Created for the first time by Goodfellow et
al., 2014, its surname is Vanilla due to its architecture, directly drawing samples from the
original image distribution, without needing to model the underlying probability density
function; An illustration is given in Figure 3.3.

The generative model (GM) maps the images into the space (z) by an objective function
(F') while the discriminative model (DM ) determines the probability for which a point from
z belongs to the original dataset (o) or to the generated dataset (¢). Training F' increases the
probability that the data synthesized is attributed to o. The probability of correct sample
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Figure 3.3: Vanilla Generative Adversarial Network from (Goodfellow et al., 2014)

labeling (belonging to generated g or original o) is maximised by D. Simultaneously, GM
is trained to leverage the discriminator function expressed by:

Ig}\}[l%aj\g{F(DM’ GM) =E; ~ po(l‘)[lOgDo] + B, ~ pz(z)[ZOg(l - D(Gz))] (31)

Both networks are trained simultaneously with the same loss joint function, usually using
binary cross entropy loss function. To explain equation 3.1, we define: H the cross entropy
and x a sample which have 50% to belong to the probability to belongs to the original
dataset p, or, the generated dataset p, and, suppose y = 1 if z is real or y = 0 if x is
generated. Joint entropy for the discriminator is described as:

H(y,y') = H(y, D(x)) (3-2)

D(x) is the probability for which D is confident about x belongs to p,. With the cross
entropy formula, we obtain H(y, D(x)) with N the size of the dataset:

H(y, D(x) = E,[-logD(s)] = 7 - yilog (D) (33)

We then split the sum in equation 3.3 in two parts, as each class possesses N/2 samples:

N/2 N

H(y, D(a)) = ~( S pilog(D(i) + 7 3 (1= yilog(1 = D)) (34

i=N/2

The first part of equation 3.4 represents the distribution of p, and the second part the
distribution of p,. We then convert all the sums in expectations as all the yi could be
validated, and 2 is a constant:

H(y, D()) = ~( Eupoflog(D(wi))) + 3 Eupy(log(1 ~ D(zi) (35

The p, sample data (equation 3.5) being outputs from G, it can be replaced with D(G(z)),
with z explained by p, to obtain the discriminator loss function Lp which goal is to minimize
itself:

Lp = max(E, ~ p,()(log(D(z,))) + E. ~ p-(2)(log(1 = D(G(2))))) (3.6)

The generator goal is to maximizes incertitude, proven to be equivalent to minimizing the
Jensen Shannon divergence between p,(x) and py(x):

Lg = min(E; ~ p.(2)(log(1 — D(G(2))))) (3.7)
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Table 3.1: Limitations of Generative adversarial networks and possible causes.

Drawback Description

Collapse generation of identical images as the input (fail in a local minima)

Noise/Blur generation of noisy images or blurry when the training is not enough
or when the generator is incertain when receiving the feedback

Overfitting generated model contains more characteristics that the initial dataset

Vanishing gradient the discriminator won, it determines better the false images and does
not give enough feedback to the generator, so the generator fails to train
due to the vanishing gradient

Divergence model learns a pattern that provokes the generation of images more
and more distant from the input

Coupling these two loss functions, we obtain the adversarial loss written in equation 3.1.

Compared to feature space augmentation, there is no restriction for the latent space
size generation with GAN. However several drawbacks have been highlighted. Table 3.1
describes the most often observed.

To overcome these limitations, others GAN architectures have been proposed over the
last years.

GANSs architecture variations

Since its first creation, multiple GAN architecture variations have been proposed to generate
and extend datasets (Y. Chen et al., 2022; Ferndndez et al., 2021; Lan et al., 2020). Among
the various architecture variations, we only describe here the most known which allow to
overcome some Vanilla’s limitations. We also classify them in generator and discriminator
objective variations.

Generator objective variations To stabilize the training of Vanilla GAN, one solution
is to replace residual blocks architectures using fully connected layers by fully convolutional
downsampling /upsampling layers such as DCGAN (Radford et al., 2015) (Figure 3.4). Pool-
ing layers are replaced by strided convolutions for the discriminator and by fractional strided
convolution for the generator. It contains BatchNorm for regulating the extracted feature
scale (Yoffe et al., 2015), and LeakyRelu for preventing dead gradients (Maas et al., 2013).
ReLU activation is used in generator for all layers except for the output, which uses Tanh
and LeakyReLU activation in the discriminator for all layers (Radford et al., 2015).
Another generator architecture variation used in the literature consists in replacing the
fully connected layers by an auto-encoder (Larsen et al., 2016; Kingma et al., 2013; Makhzani
et al., 2015; Isola et al., 2017; Zhu et al., 2017) (Figure 3.5). Where in the Vanilla GAN,
the generator transforms the z sample into g belonging to G(g), the VAEGAN uses pixel-
wise reconstruction loss to enforce the decoder part of VAE to generate structures to match
the real images (Larsen et al., 2016). In this architecture, the GAN becomes conditional
(cGAN) and the generation process drives the output to have certain properties, expressed
as vg = G(z,c) where ¢ is an image. Another VAE from (Kingma et al., 2013)uses a
KL divergence penalty to impose a prior distribution on the hidden code vector of the
autoencoder. In Makhzani et al., 2015, the proposed AEGAN uses an adversarial training
procedure by matching the aggregated posterior of the hidden code vector with the prior
distribution and outperforms VAE architectures on test likelihoods of real-valued MNIST
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Figure 3.4: “DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform
distribution Z is projected to a small spatial extent convolutional representation with many
feature maps. A series of four fractionally-strided convolutions (in some recent papers, these
are wrongly called deconvolutions) then convert this high level representation into a 64 x

64 pixel image. Notably, no fully connected or pooling layers are used” from (Radford et al.,
2015)

datasets. Concerning image-to-image translation neural network, pix-2-pix is the most
known and presents generator updates (Isola et al., 2017). Indeed, this generator is a
“U-Net”-based architecture to avoid vanishing gradient (Ronneberger et al., 2015b), which
differs from the encoder-decoder original architecture, by applying skip connections between
the mirror layers from the two networks.

However, pix2pix requires aligned training data. This is not the case with CycleGAN
(Zhu et al., 2017) , which is made of two generators and discriminators. Synthetic result
from a generation is given as an input to the second generator, and contains cycle consistency
loss. However, this architectures is limited by the performance of the discriminative loss.

Discriminator objective variations The discriminator is also a structure which could
spread limitations in the generative network. Two main strategies are generally chosen to
optimize this part: varying the loss or the latent vector. A few teams start to modify the
discriminator architecture.

To stabilize the training and avoid mode collapse, various losses for the discriminative
network are proposed. In Nowozin et al., 2016, the interest of using variational divergence
functions on the complexity and quality of the generative model is discussed. Kullback
Leibler (KL), reverse LM, Pearson X2, Squared Heligner, Jensen-Shannon and GAN loss
functions are compared, and the kind of activation layer best for each case, depending on the
application, is discussed. As previously mentioned, the binary cross entropy loss (BCFE),
originally used by Goodfellow et al., 2014 is the most used function, but since 2016 an
amount of new loss based upon regularisation loss or type loss has emerged. Among these
losses, we will discuss the most popular such as the least square loss optimisation, which
avoids vanishing gradient (Mao et al., 2017):

LD = %Eg; ~ po(x)((D(z0) — lo)z) 4 %Ez ~ p.((D(G(2)) — lg)Q) (3.8)

LG = S . ~ p.(D(G(=)) ~ ) (3.9)

Where [, and [, are labels from original and generated images and h the hyperparameter G
wants D to recognize. When [,, [, and h responds to lo—h = 1 and lo —lg = 2, the Pearson
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Figure 3.5: Classical Gans architectures based on auto-encoders. The basic architecture is
given by the AAE from (Makhzani et al., 2015). Variations are given by numbers where:
1. KL divergence penalty to impose a prior distribution (Kingma et al., 2013); 2. U-Net
architecture with skip connections instead of a classical auto-encoder architecture (Isola et
al., 2017); 3. Reconstruction loss based upon pixel-wise (Larsen et al., 2016)

divergence between p, + p, and 2pg is minimized. Thus large errors, far from decision
boundaries, are penalized by D, and this provides sufficient gradient when G is updated,
contrary to the original GAN (Goodfellow et al., 2014).

The earth-mover’s (or Wasserstein) distance is also one of the most used loss functions
(Arjovsky et al., 2017):

LD = E; ~ po(z)(log(D(x0)) — E. ~ p:(log(1 — D(G(2))) (3.10)

Wasserstein reflects distance even when p, and p, do not overlap, is continuous and is
able to provide a valid gradient for training G. Thus, instead of using a binary classifier, D
fits a Wasserstein distance and behaves as a regression task, so the terminal sigmoid layer
is removed. This solves the vanishing gradient problem and the mode collapse.

Despite the great asset of these loss functions on the generative process, they still present
limitations. Some articles try updating the content loss, which is particularly used in super-
resolution generation of images or style transfer (Cheon et al., 2018; Kupyn, Budzan, et al.,
2018; Y. Gu et al., 2020). The perceptual content loss is a L2 content loss instead of the L1
content loss.

ContL1 = |y — /| (3.11)

ContL2 = (y —y)? (3.12)

Where y is an original tensor information and y’ its prediction. One of the WGAN improve-
ment consists in adding a perceptual (L2) content loss such as in Kupyn, Budzan, et al.,
2018. Others use a penalty gradient applied on the Wasserstein loss (Gulrajani et al., 2017):

LDQTad = LD+ )\Ex ~ px<x)(||AxD(G(Z))||2 - 1)2 (313)
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Adversarial loss
Figure 3.6: InfoGAN architecture. G and T acts like an autoencoder architecture which aim
is to find the embedding G(z) with ¢ conditions and minimizing the binary cross entropy

between ¢ and c’.

GAN Optimisation Architectures

Generator Discriminator

Architecture Latent space

Regularisation

Figure 3.7: Global overview of GAN optimisations, split in discriminator and generator
optimisation. However, other classifications exist.

Where A equals 10 and p, is a uniform sampling between paired point samples from the
po and p, distributions. In pix2pix discriminator they use a convolutional “PatchGAN”
classifier, which only penalizes structure at the scale of image patches to capture local style
statistics by applying a L1 instead of a L2 loss (which aim is to normalize) and avoids blur
results (Isola et al., 2017).

Another discriminator optimisation consists in updating the latent space. Another con-
ditional architecture with only one generator and discriminator, called InfoGAN, presents
the advantage of being lighter than CycleGAN, while the output of the generator is given to
feed the input at the subsequent iteration (B. Hu et al., 2019; Zhu et al., 2017). This archi-
tecture maximizes the mutual information between conditional variables and the synthetic
data by introducing a transformer 7" to predict ¢ with a certain G(z) fed with ¢ conditions,
see Figure 3.0.

Possible GAN optimisations detailed in this manuscript are summarized in Figure 3.7.Other
GAN optimisations based on discriminator or generator networks are available; however, the
efficiency of a particular GAN optimisation depends on the application it is used on. An
efficient GAN architecture is characterized by a good image quality, dataset diversity and
avoiding vanishing gradients (Zhengwei Wang et al., 2021).
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Figure 3.8: Number of publications on GAN’s applications per year in the biomedical field
since 2014.

3.1.3 Data Augmentation in the biomedical field

Generalities on data augmentation for biomedical datasets

The first GAN application on a biomedical dataset is from (Shang et al., 2017). The
approach is validated based on a combination of GAN and multimodal autoencoder to
implement missing values of two genetic databases, and uses the MNIST dataset (a dataset
of digits written by hand and largely used to train, developed and test deep learning models).
Since this proof of concept, the number of articles using GAN for biomedical applications
has kept increasing. In total, 3079 related articles are published as of today, according to
PUBMED see Figure 3.8.

Two kinds of uses are mentioned in the biomedical literature, linked with the generator or
discriminator objective: the first aims to study the structure of trained biomedical data and
avoid patient/biomedical image scarcity; the second aims to regularize or detect abnormal
data. A summary of the major GAN applications in the biomedical field, is given in the
next section.

GAN’s biomedical applications

The biomedical applications of GANs covers several domain. The main one is the detection
of biological contents in images (more than 20% of published applications), followed by
classification tasks (20%), segmentation (17%) and reconstruction (15%). Registration and
synthesis share almost the same proportion of GAN use (12%), see Figure 3.9.

The major image acquisition domain using GAN is X-rays followed by ultrasound, MRI
and CT, and histopathology (with a little more than 5%). The other microscopic or medical
image acquisitions consist in less than 5% (Figure 3.10).
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Figure 3.9: Publication on GAN’s biomedical field applications. We only count the number
of publications in the main domain and show it in percentages. Registration is also called
mapping in certain publications.
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Figure 3.10: Publication on GAN’s image acquisition applications. We only count the
number of publications in the main domain and show it in percentages. Others contains
PET (3.25%), Clarification (1.78%), Fundus (1.75%), Fluorescence (1,33%), Mammogram
(0,78%), Bright-Field (0.68%), Dermoscopy (0,26%) and others (3.34%).
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Limitations of GANs for biomedical applications

The use of GAN’s in the biomedical domain suffers from two major inconveniences: the
inter-image from patient or biological model variability, and the few examples of images
inside each database. These issues render GAN’s use difficult, notably for their efficiency.
Indeed, the efficiency of GANs increases with the network depth, which requires more data
than lighter architectures. This constraint, not always applicable for biomedical dataset,
forces researchers to optimize architectures and develop application-based solutions: for a
biological domain or for a particular image acquisition (Zhengwei Wang et al., 2021).

The second major problem lies in the validation of synthetic biological images.A par-
ticular problem encountered with GANs is the mislabeling of results to another category
due to the added noise at the input, which is a major problem for preclinical or clinical
data (Shorten et al., 2019). The validation of GAN synthetic images are another emerging
issue. Manual validation consists in validation of each image by an expert, while similitude
or qualitative metrics are used for automatic solutions. The first one is time consuming
whereas the second one is controversial (Borji, 2018): which kind of metric can highlight
similitude between biological contents and realistic image quality? Data augmentation for
brain organoids does not derogate to these limitations.

3.1.4 GAN for brain organoid culture images: our positioning
and strategy

The first question addressed in this part is: which kind of natural images have to be aug-
mented in the brain organoid field to extract their shape and characterize their development?
As previously discussed in part 2.7, the developmental bright-field images of brain organoid
from (Gomez-Giro et al., 2019) could be the best compromise between advantages and
drawbacks see Paragraph 2.7. As mentioned in part 3.1.3 and Figure 3.9, segmentation of
biological contents are the third GAN application in the biomedical field. However, bright-
field data augmentation by GAN’s are not well known (less than 1% of GAN applications in
the biomedical field, see Figure 3.10). Thus, attempting to identify a strategy to augment
brain organoid bright-field images in order to segment them and characterize their develop-
mental shape should be validated on other bright-field brain organoid datasets (and not on
midbrain or cortical organoids, see Annexes) to allow a generalisation of GAN use for this
particular microscopic acquisition.

The second question addressed is: what kind of strategy should be used to increase
image datasets, in order to generate the most natural synthetic brain organoid image? This
question can be divided in four sub-questions:

e Which GAN architecture fits the best such data augmentation application?

e Which kind of loss optimisation can improve brain organoid natural generation?
e Which kind of noise input generates the best microscopic features?

e How to validate these synthetic biological images?

The strategies adopted to answer these questions are summarized in the Figure 3.11.

To answer these questions, we compare GAN architectures, then update the loss function
on the best one, input various noises types, and we finally compare automatic (metric)
versus psychovisual (Human expert) evaluation of each image. The methodology, results
and discussion are summarized in the four following subsections.
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Figure 3.11: Global overview of GAN optimisation strategies we choose to develop. This
figure is an extension of the Figure 3.7.

3.2 GAN architectures for bright-field brain organoid
image generation

This section is almost entirely published in Brémond Martin et al., 2021a in VISAPP
conference in 2022. The unpublished parts address dimensional reduction methods,
results and discussion for GAN architecture comparisons and collapse figure.

The contribution of this section is to qualitatively and quantitatively investigate the

influence of various GAN-based approaches in the specific case of bright-field brain organoid
image generation using quantitative metrics from the literature and a dimensional reduction
of parameters.

3.2.1 Methods

Resources Our dataset is composed of 40 images from an open access database (Gomez-
Giro et al., 2019). Pathological (N=20) and healthy (N=20) CO were digitized using a
bright-field microscope, over 3 days. The grayscale images are 1088 x 1388 pixels. However,
to compare several networks within a reasonable time, the input images are cropped and
resized to 250 x 250 pixels, maintaining the original proportions.

Resources are described in part 2.7.

Generative Adversarial Networks To find the most suited GAN (described in section
3.1.2), we consider five of the most used architectures to increase the dataset: GAN (Good-
fellow et al., 2014) is the original implementation; CGAN (Yi et al., 2019)gives the correct
label (physiological or pathological) as a generator input; DCGAN (Yi et al., 2019)is con-
stituted by a convolutional neural network instead of the generator; INFOGAN (Yi et al.,
2019)uses the generated images at an epoch to train the subsequent; AAE (Makhzani et al.,
2015) uses an autoencoder as a generator.
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Figure 3.12: Procedure of GAN architecture comparison for the generation of bright-field
brain organoid images. S corresponds to synthesised images.

During a 1000 epoch training, input images (size of 250 x 250 pixels) are used to generate
synthetic images. In this work, the original 40 images of the dataset are used to generate
40 synthetic images for a better follow-up by each architecture. The number of images
generated are chosen to guarantee no mode collapse. We follow the procedure explained in
Figure 3.12.

Metric evaluation Six metrics are used to compare the similitude of the synthetic images
generated by the AAE to the original dataset. A blur metric is used to evaluate the quality
of these synthetic images.

The Frechet Inception Distance (FID) is calculated between two groups of images (Heusel
et al., 2017).This score tends towards low values when the two groups (original O or gener-
ated G images) are similar, with p the average value of the pixels of all images of a group,
and X the covariance matrix of a group:

FID(0,G) = |po — pal* +7 (Zo + ¢ — 2(X0%6)?) (3.14)

The Structural Similarity Index (SSIM) is calculated using luminescence, contrast and
structure between two images o and g belonging respectively to O and G (Zhou Wang,
Bovik, et al., 2004).

(2p0ptg + €1) (2009 + 2)
(2% 12+ )02 + 03 + )

where o represents the standard deviation, ¢; is a constant that ensures the luminance ratio
is always positive when the denominator is equal to 0, and ¢y is another constant for the
contrast stability. The SSIM ranges between 0 (no similitude) and 1 (high similitude).

The Universal Quality Metric (UQM) is based on the calculation of the same parameters
as SSIM (Zhou Wang and Bovik, 2002). UQM ranges between 0 and 1 (1 being the highest
quality):

SSIM(o, g) = (3.15)

Aftofighlo
UQM(o, g) = aic] 3.16
W9 =)oz + o) (310
Entropy-based Mutual Information (MI) measures the correlation between original and
generated images and ranges between 0 (no correlation) and 1 (high correlation) (Pluim
et al., 2003):

=> > P(o,9)log P(og()

22 Plo)P(g) (3.17)
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where P(o, g) is the joint distribution of o belonging to O and g from G.
The Mean Square Error (MSE) between an original image and a synthetic image is

calculated as:
m n

1 o _
MSE(O7g) = FZZ(O(LJ) _g(lhj))Q (318)
i=1j=1
The Peak Signal to Noise Ratio (PSNR) indicates a high signal power against noise, as
used in M. Jiang et al., 2021. High values correspond to qualitative images. Pixels in images
are ranked between 0 and 255, so the maximum pixel value of an image is noted maz(0)
and equals at most 255.

PSNR(o, g) = 201log max (o) — 20 log MSE(o, g) (3.19)

To evaluate image quality, we calculate the blur index based on local image variance
(Tsomko et al., 2008), where low score stands for a sharp image. In the following equation,
the size of the image is (m,n), the predictive residues for a given image pixel are (p(i, 7))
and their median (p'(7, j)):

1 Ui fe 12

Blur = ; j;[p(m) —p'(i,7)] (3.20)
The FID is designed to compare groups of images. We thus successively compare each
group of synthetic images with the original input images. The FID reference range is
calculated on the original image developmental stages. The SSIM, UQM, PSNR, MI and
MSE are designed to compare two images. For each group of synthetic images (all 6 losses),
we successively compare every image with each original image and then compute the average
of these 40 x 40 values. We also calculate these values on all pairs of original images to
compare the results to the original range. The Blur index is calculated on individual images.
We store the minimum and maximum value of this index for the original images and the

average value per loss for the synthetic images.

Dimensional Reduction The dimensional reduction goal is to observe in the same sta-
tistical space if, for each optimisation, generated image representations are close or far from
the original image representations. We choose to perform a t-distributed Stochastic Neigh-
boor Enbending (t-SNE) dimensional reduction. Contrary to others dimensional reduction
methods, t-SNE preserves the local dataset structure by minimizing the divergence between
the two distributions with respect to the locations of the points in the map. To avoid sub-
jective or calculated indexes, we perform t-SNE directly on images features extracted from
the GAN networks. t-SNE is constituted with Stochastic Neighbor Embedding where first
an asymmetric probability (p) based on dissimilarities (symmetric) is calculated between
each object (z;), and its probably neighborhood (z;) (Hinton et al., 2003). The effective
number of local neighbors called perplexity (k) is chosen manually:

_ llzi—ayl?
exp 302
E _ llzi =z
ki €XP 202

The larger the perplexity, the larger the variance of a Gaussian kernel used to have an
uniform induced distribution. We therefore choose the maximal value possible which is
80, the number of individuals in our dataset. To match the original (p;;) and induced

(3.21)

Pij =
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Figure 3.13: Mode collapse for each generation with a GAN architecture. From left to right:
with 40, 80 and 160 image generation. Mode collapse occurs when the model only fit a few
data distribution samples, and ignore the rest of them. All the SSIM values up to 90 are
considered as mode collapse (in blue).

distributions (p};) in a low dimensional space (the enbending aim), the objective is to
minimize the Kullback-Leibler (KL) cost function:

C=3"Y pi,log i = (3.22)
] 2,9

This minimisation allows t-SNE to preserve the dataset structure contrary to other dimen-
sional reduction methods (as Principal Component Analysis). Then, Student t-distribution
with one degree of freedom is used to avoid the crowding problem (Maaten et al., 2008).
We use a momentum term to reduce the number of iterations required (set at 1000
iterations at the beginning)The map points have become organized at 450 iterations in a
scatterplot. Each point in the map corresponds to the feature vector while the axes are
the embedding following the similarity properties i.e. the neighborhood of points. Each
run of the t-SNE algorithm generates a different setting of the scatterplot. Even if point
locations are different, the grouping remains similar. We launch the t-SNE between original
and all the generated features 10 times to validate the similar grouping. We retrieve the KL
divergence values between original and each generated distributions which could indicate a
degree of similitude. A low KL divergence means that the two distributions are close.

3.2.2 Results

We aim at generating qualitative images of cerebral organoid by GAN strategies to increase
the open-source dataset (Gomez-Giro et al., 2019).

To determine the maximum number of images generated without collapse, we calculate
the SSIM between original and generated images. The summary of GAN collapse generation
with 40, 80 or 160 image generations can be observed in Figure 3.13.

We observe that the maximal similitude without creating a twin content is 0.90 (the
maximum of similitude between two original images is only of 0.87). Generated images are
at the minimum 45 % similar to original images. When we double the generative process,
some identical images appear. We choose to generate only 40 images for each case in the
testing phase to avoid these duplicates. To verify the best suited GAN architecture for
cerebral organoid bright field images, we first compare the original images and the ones
generated using the five architectures.
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Table 3.2: Image quality and similitude of cerebral organoids generated by various GAN
architectures. Scores within the original range are in gray, and best values are displayed in
bold.

Original GAN CGAN DCGAN INFOGAN AAE
9 > 8 @ =0
metric  best > 5 T Rk
FID low 0.47 — 0.80 2.02 2.13 >4 2.89 1.20
SSIM  high  0.65 - 0.71 0.12 0.12 0.27 0.10 0.63
UQM  high  0.63 — 0.87 0.79 0.80 0.69 0.66 0.81
MI high  0.21 —0.47 0.17 0.24 0.25 0.19 0.37
BLUR low 0.10 — 86.28  2504.24 7561.47 704.47 724.38 135.93
PSNR low 11.9 - 16.6 12.16 12.64 28.35 28.35 12.89
MSE low  93.25 - 106.23 105.41 103.07 107.12 107.14 102.72

In Table 3.2, sample images produced with GAN, CGAN and AAE are the most re-
sembling images compared to the originals. Mode collapse is the most seen in GAN and
CGAN architectures as reported in the literature. We can observe also a strong noise for
these two architectures results with a white imprint around the shape of the organoid in the
GAN case. While AAE generated images are characterized with blurry contours, DCGAN
and INFOGAN generate a divergent background making the images difficult to exploit. To
verify these observations, we calculate qualitative and similitude metrics, introduced in the
section 3.2.1, by pairing first original images and then original and generated images.

Table 3.2, presents these results. For the output images, we underline the metric values
within range of the original images. We observe only a low proportion of architecture metric
within the original range. Indeed, only the AAE and the CGAN answer to only four metrics
(UQM, MI, PSNR, MSE) on the seven calculated and only the UQM is within the range of
original ones for all the architectures. Regarding FID, SSIM, UQM, and MI scores, AAE
generate the most comparable images to the original ones.

In term of quality, this architecture generate the sharpest images, even if the blur index
is higher than original images indexes. All the architectures express MSE of between the
minimal and maximal values of this metric calculated for the original images. However,
regarding the PSNR only the GAN, CGAN and AAE produce images with a score of between
the original images limits. To summarize, according to the metric values, AAE is the most
suited architecture to generate cerebral organoid images.

Dimensional Reduction To analyze all at once the similitude and the variability of the
generated images with various GAN architectures, we study images in the same statistical
space. Dimensional reduction is implemented on the extracted features of 20 synthetic
images from each architecture (the minimal number of images without mode collapse for
one architecture) in the generative process with the dimensional reduction methodology
called t-SNE see Figure 3.14.

Feature space representation of original images (in black) and generated (others colors)
are in the same range. Particular original images are grouped in the bottom of the repre-
sentation and only ponctual generation are in their space. cGAN and GAN representations
seem as spread as the original images, while AAE representations are at the center of the
group. We observe that point representations of two generative networks are distant from
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Figure 3.14: t-SNE representation of GAN architecture comparisons.
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Figure 3.15: Kullback Lieber divergences calculated on t-SNE representations.

the others representations: InfoGAN and DCGAN, which is consistent with qualitative and
similitude calculations.

We compare Kl divergences between original and generated representations from 10 t-
SNE launches and plot the results in Figure 3.15. This bar-graph suggests DCGAN and
INFOGAN from point cloud t-SNE representation diverge from Original representation.
These results highlight cGAN, GAN and AAE architectures can bring various and maybe
complementary information during the generative process.

3.2.3 Discussion

This work presents for the first time to our knowledge data augmentation of cerebral
organoids bright-field images, using GAN and comparisons between different networks ar-
chitectures. We avoid mode collapse by stopping the generation with a limited number of
qualitative images. The AAE architecture outperforms other GANs architectures chosen
in this work qualitatively and quantitatively based upon metrics. Dimensional reduction
strategy shows two architectures generate foreigner synthetic images, not represented in the
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same statistical space, while three are within the original range representations. Statisti-
cally, cGAN, GAN and AAE feature space are in the space of original image and suggest
these images could be used in other tasks.

Mode collapse is avoided by generating at each step a few sampling of images. We observe
since the doubling of the original dataset a lot of mode collapse with GAN and, and we
decide to compare every architecture only on the same effective as the original dataset. In
other published works, the generation still give a considerable amount of images (hundreds
to thousands of images (Sandfort et al., 2019)). However, their relevance is to discuss, as
they are almost identical and do not provide useful information for resulting model if used
for segmentation. While the consensus is to use amounts of data to train deep learning
based tasks, we thought, maybe for the first time of GAN generation, generating only few
examples more representatives to the original dataset, but not identical, could help to these
tasks.

Synthetic images generated with AAE are coherent with original dataset quality contrary
to other architectures, with almost no collapse mode but also adding a sought diversity
similar to the acquisition of the original dataset. This architecture has already show its
advantages in data augmentation (Makhzani et al., 2015). The particularity to update the
generator in an auto-encoder structure helps to impose a specific distribution on the latent
variable in its encoding layer (Makhzani et al., 2015). An update of this architecture (for
example replacing the autoencoder part by a U-Net) may improve these results(Isola et al.,
2017). However, the major inconvenient with this architecture is the blurry content, which
has already been described in Goodfellow et al., 2014; Larsen et al., 2016; Zemouri, 2020.
Second, we chose to focus only on the use of five architectures to generate our images, we
could compare these results with other types of GANs such as CycleGAN or PixtoPix (T.
Zhou et al., 2017; Isola et al., 2017).

The synthetic images from an AAE are not in the range of original Blur metric, however,
they give the best result for this metric. This inconvenient render the biological image not
natural, or seems like the microscopic device acquisition has to be transformed to be analyzed
(Jasim, 2019), so not useful in the biomedical field. We think a discriminative loss update
could maybe help with this de-bluring task (Kupyn, Budzan, et al., 2018; Gulrajani et al.,
2017; Isola et al., 2017; Mao et al., 2017).

Statistically feature generated images from three architectures are in the space of features
from original images encoded. Statistical results from Figures 3.14 and 3.15 are consistent
with qualitative and similitude metrics calculated in Table 3.2. Indeed, GAN, cGAN, and
AAE, which have similitude metrics in the range of the original are also the three ar-
chitectures containing their feature representations in the range of original. However, as
mentioned before, if cGAN and GAN are spreading in the original feature spaces, AAE are
grouped in the center of the representation which could be a problem for the variety of the
synthesis: some original space are not represented by the AAE. We think a variation of noise
given in the generative process could help to generate some diversity with this architecture
(Sonderby et al., 2016; Salimans et al., 2016; Feng et al., 2021). Indeed, the microscopic
acquisition of bright-field images are characterized by shot noise, while the usually noise
used in a GAN is a Gaussian one (Boyat et al., 2015; Goodfellow et al., 2014) The other
idea could be giving to the input a label representing the physiological or pathological state
of input images such as in ¢cGAN (Yi et al., 2019).

Two architectures provides non natural images, worst results in term of similitude and
quality, and all features representations are totally out of the original ones. For DCGAN,
we could explain the results by the fact with have a small dataset, while it requires a lot
of images and deep architecture to render better results than those obtained in our work
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(Radford et al., 2015). The only optimisation could be to increase the number of images
inside the dataset or increase the generative steps. For INFOGAN, these results could
be explained by the learning of a small part of the image, and learning only this pattern
(which feed the subsequent step) (B. Hu et al., 2019), the generation became biologically
not sense. We think these two architectures should not be applied on small datasets of
biological bright-field images in the future.

There is still room for improvement in the proposed GAN architecture strategy evalua-
tion. First, to propose a quantitative evaluation of the generalisation of the results obtained
on cerebral organoid bright-field images: we would like to use this methodology on others
bright-field biomedical images (Nickels et al., 2020) and Table 2.8. The best way to evalu-
ate synthetic images and, compare various results of GAN optimisations is still a challenge
(Algahtani et al., 2019). Indeed there is no commonly approved specific metric to evaluate
whether GAN-generated synthetic images can be considered as natural (Borji, 2018) and
statistical space comparisons with a dimensional reduction strategy do not allow us to elect
a particular architecture as the best in this work (it highlight three of them). Biological
experts aim at psychovisually evaluating the generated images, and strengthen the quantita-
tive evaluation proposed. In particular, we project to validate the suitability of the metrics
we use and observe the training effect on the segmentation task with only validated images
by biological experts and maybe highlight a metric combination which could replace the
time consuming psychovisual evaluation.

For the first time to our knowledge, we compare GAN architectures for brain organoid
Results remains exploratory with the mentioned small dataset we used. Improvements
could be augmenting the number of input images for all of the architectures, increasing the
training time, update the auto-encoder architecture in the generative part, or update the
discriminator loss of an AAE, which provide the best results in term of quality, similitude and
a same feature space with the original dataset. Indeed the major inconvenient highlighted
by this work is the blurry content in brain organoid synthetic images generated with an
AAE. The effect of the loss variations on this architecture could be of interest.

3.3 AAE loss optimisations

This part is published in Brémond Martin et al., 2021a for the VISAPP conference of
2022. Discriminative loss Figure is a supplementary work not published.

In this work, we improve the best GAN architecture (AAE, already described in the
previous section 3.2) to generate cerebral organoid bright-field images. If the loss effect has
already been explored for others biological models in MRI (Lv et al., 2021), to our knowledge,
there is no systematic comparative study proposed in the specific context of CO bright-field
image generation that gives a quantitative appreciation of this effect. In particular, we
are interested in choosing a loss while guaranteeing good quality of the generated data, as
well as a good variability of images obtained compared with the inputs in order to improve
characterisation tasks.

3.3.1 Methods

We proceed as in the previous section, with the same resources described in part 3.2.1 and
the AAE previously selected by the architecture comparison in Section 3.2. We use the same
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Figure 3.16: Procedure of AAE loss optimisation comparison for the generation of bright-
field brain organoid images.

metric evaluation and dimensional reduction described in respectively in paragraphs 3.2.1
and 3.2.1. The procedure of this work is described in Figure 3.16.

Loss Optimisations

The images generated by the AAE architecture we use are somewhat blurry. To overcome
this phenomenon we study how the discriminator loss can influence the quality of the im-
age generation. We consider six losses: the Binary Cross Entropy (BCE) which is most
commonly used in GANs and five other losses which are specifically known to improve the
contrast or sharpness of the generated images.

BCE is the most commonly used loss for GANs and the baseline of this work. It is
calculated by:

BOE =~ 3" (yi(log(s}))) — (1 — i) (los(1 ~ ))) (3.23)
i=1
with y the real image tensor and y’ the predicted ones (Makhzani et al., 2015) and n the
number of training.

Summing the L1 norm to the BCE is reported to reduce over-fitting (Wargnier-Dauchelle
et al., 2019). We hypothesize this norm could improve the quality of the generation as
reported in image restoration tasks which does not over-penalize large errors (H. Zhao et
al., 2017).

1 n
Ll==>" |y —uil (3.24)

ni4
BCEr; = BCE + al.1. (3.25)

« is set to 1074, as in the original paper.
The least square loss (LS) is reported by Mao et al., 2017 to avoid gradient vanishing in
the learning process step resulting in better quality images:

n

S (i — y)? (3.26)

i=1

1
LS =—
n
A Poisson loss is used in Wargnier-Dauchelle et al., 2019 to improve the sensitivity of a

segmentation task:
1 n
LPoisson = g Z(y; - y’L> lOg(y; + 6) (327)

i=1
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Figure 3.17: Experimental scheme of AAE supporting data augmentation of cerebral
organoids bright-field images. The generator tries to persuade the discriminator that it
has generated a true and slightly variable image of input dataset. The discriminator tries to
find the true ones. They improve each other by backpropagation, formulated by an objective
function based on a loss. Losses variations implemented in this article are symbolized by
A. Input image is from (Gomez-Giro et al., 2019).

where € is a regularisation term set to 0.25.

The DeblurGAN was developed to unblur images using the Wasserstein loss (Kupyn,
Budzan, et al., 2018). Since we are also interested in deblurring the output images, we have
tested this loss with the proposed AAE where (P(y,%')) is the joint distributions of y and
y’ for which the distributions are equal to Py and Py’, and p(y,y’) the proportion of y or
y’ to move to have Py = py’:

n

Wass(P(y,y)) = >_

: . y
=~ p(l}gfy,)) Eyiyirdp(|lyi — yi'l]) (3.28)
However, we do not apply a 12 content loss such as in Kupyn, Budzan, et al., 2018 added to
the Wasserstein loss, or add a penalty gradient to the Wasserstein loss such as (Gulrajani et
al., 2017). Since the dataset contains various subclasses (physiological and pathological brain
organoid images acquired at three developmental stages), we aim at creating a Normalized
Wasserstein loss to avoid imbalanced mixture proportions (Balaji et al., 2019). We apply
the L2 normalisation on the Wasserstein loss, producing a new loss we call the Perceptual
Wasserstein loss for the first time to our knowledge, applied on an AAE architecture:

P.Wass(P(y, ) =Z¢ inf By 0p(|lyi — yi'|])2 (3.29)
i1V p(Pyiyi))
Training

Figure 3.17 shows the global training setup. The 40 original images are used to generate
40 synthetic images for each architecture (each loss). Input and output images measure
250 x 250 pixels. Training lasts 2000 epochs for each optimisation; this corresponds to the
plateau before over-fitting for all loss optimisations, see Figure 3.18.
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Table 3.3: Samples of original and synthetic images generated by the AAE. We show 3 of
the 40 images for each group: original and per AAE loss variation.

Original BCE + L1 LS Poisson ~ Wasserstein ~ P. Wass.

v
.
&

3.3.2 Results

We first present samples from each loss optimisation, the metric evaluation of the synthetic
images, and then dimensional reductions.

3
L
‘

0
.
.

Qualitative evaluation

Sample images produced by each AAE variation are shown in Table 3.3 more particularly
three of the 40 images generated for each of the six AAE variations. While some of the
generated samples are blurry and present a white imprint (BCE, BCE + L1, LS). Others
show sharper edges and less visible imprints (Poisson, Wasserstein and P. Wass.). For this
group of three losses, only a few of the generated images seem to be identical to the input
images: these networks do not suffer from mode collapse.

Metric evaluation

To quantitatively confirm the visual analysis of the generated images, we calculate several
metrics on both the original and synthetic images. Results are shown Table 3.4. The AAE
loss optimisations allow generated images to be within the range on five metrics with the
Wass. and P. Wass. loss (against four for the other loss). Indeed, the Blur index is with
these two optimisations within the range of original images. Of the 7 metrics calculated,
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Table 3.4: Metric evaluation of AAE brain organoid bright-field generated images. We have
calculated metrics on generated images from each AAE loss variations, with the BCE loss
as the baseline. Scores outside the original range are in gray, best values are displayed in
bold.

Metric Best Original BCE BCE + L1 LS Poisson Wass. P. Wass.

FID low  0.47 - 0.80 1.20 1.41 1.33 141 1.10 0.82
SSIM  high  0.65 — 0.71 0.63 0.62 060  0.63  0.62 0.50
UQM  high  0.63 - 0.87 0.83 0.83 0.84  0.84  0.83 0.82
MI high ~ 0.21 — 0.47 0.37 0.39 036 041  0.46 0.42
Blur  low  0.10 -86.28 13503 11630 13500 10671  59.84  59.00

PSNR low 11.9 - 16.6 13.47 13.74 13.53 13.74 13.17 12.86
MSE  low 93.25 -106.23 103.13 103.35 104.01 103.33 103.11  102.93

only FID and SSIM are not in the range for all the optimisations. However, the FID for the
P. Wass. loss is quite close to the upper bound of the input range (0.82 vs. 0.80).

Quantitatively, Wass. and P. Wass. networks generate better image quality than other
networks, based on lower PSNR, MSE score and Blur index.

Otherwise, the similarity seems to depend on the architecture. Based upon the FID, the
P. Wass. loss generates the most similar images. MI is higher for the images generated using
Wass. networks. However, compared to images produced with BCE and Poisson, images
produced with P. Wass. loss are not similar to the original dataset regarding the SSIM.
Images generated with a Poisson or LS loss have the best UQM index.

The P. Wass. loss is the most appropriate loss optimisation for generating cerebral
organoid images with the AAE. It performs best for four metrics and is within the original
range for five metrics.

Dimensional reduction

To analyze all at once the similitude and the variability of the generated images with AAE
loss optimisation, we study images in the same statistical space. We implement a dimen-
sional reduction on the features extracted on images in the generative process with t-SNE,
see Figure 3.19. We first observe that, independantly from the loss optimization, similar
positions in the map are kept between original and generated images. Some original im-
ages constitute a cluster and are distant to the generated ones. This could be explained
by the incapacity of generated images to replicate a background similar to the bright-field
acquisition with a light gradient. While at the exterior of the map images generated with a
Poisson a Wasserstein or a Perceptual Wasserstein loss are represented, inside the map BCE,
BCE~+L1, and LS losses are. This observation suggests that each loss optimisation could
bring different information during the generative process. We compare the KL divergences
between original and generated images which remains similar (all results are approximat-
ing the null: inferior at 0.3). To summarize, loss optimisations generate similar contents
to original images keeping its variability and creating intermediate shapes not seen in the
original population.
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Figure 3.19: t-SNE representation of original and generated images with optimized AAE

3.3.3 Discussion

We present data augmentation of cerebral organoid bright-field images, using various loss
optimisation of an Adversarial Autoencoder (AAE). The Perceptual Wasserstein discrimina-
tor loss optimisation outperforms the state-of-the-art original loss article to generate these
images, according to the metrics used. Nevertheless, our dimensional reduction experiments
suggest that any loss optimisations can bring some variability to the generative process
while remaining similar to the original dataset. Each loss present a particular interest for
specific tasks (segmentation, classification, detection etc.)

As in the previous Section 3.2, synthetic images generated with AAE are still coherent
with original dataset in terms of image quality, with almost no collapse mode but also
adding a sought diversity similar to the acquisition of the original dataset. As previously
discussed, generative architecture can potentially be optimized by implementing a U-Net
generator instead of a simple Auto-encoder (Isola et al., 2017).

The Perceptual Wasserstein loss optimisation of AAE performs best according to metrics
see Table 3.4. Other loss optimisations also show high similitude, though with a lower qual-
ity. Poisson and Wasserstein loss bring the best results after the Perceptual Wasserstein. It
could be interesting to observe if a regularisation term such as in the Perceptual Wasserstein
for the Poisson loss can outperforms such result. Indeed, the Poisson loss increases when
the prediction is a generated example (Wargnier-Dauchelle et al., 2019). Another potential
improvement is to update the perceptual part with a L1 normalisation, as it might avoid
blur Isola et al., 2017 and therefore avoid the white imprints around the shape. We also
aim at trying others embedded losses (already used for segmentation tasks) during the gen-
erative process based upon high level prior like object shape, size topology or inter-regions
constraints (El Jurdi et al., 2021; Kingma et al., 2013). These losses could be used on the
condition that the morphological development of CO is better characterized.

However, the dimensional reduction experiment suggests that some loss functions can be
used to generate more images and a good diversity enriching the original training set. Such
observation raises the following question: which role can each loss optimisation results have
for biomedical applications? The GAN optimisations dedicated to a particular biomedical
application have already been discussed in Zhengwei Wang et al., 2021. In this context,
we plan to explore what type of information each loss brings during the image generation:
such as comparing the effect of each loss variation in each segmentation task. However the
Perceptual Wasserstein and Wasserstein losses seem to be the nearest to extreme spaces of
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the original range and provide the best diversity while BCE losses, LS and Poisson are more
in the heart of original feature representations. This could be explained by the Wasserstein
loss aim, which is to transform a distribution into another at a minimal cost (Arjovsky et
al., 2017). Thus the point feature distributions of Wasserstein and Perceptual Wasserstein
images are near all the feature original limit distributions.

Noteworthy is the the similarity of original images in the t-SNE right corner. Generated
images were not able to generate a similar background such as the lightning gradient of
some bright-field acquisition in white light (Boyat et al., 2015). To resolve this issue, we
aim at studying the effect of a similar bright-field background injection during the generative
process.

There is still room for improvement in the proposed optimized AAE network strategy
evaluation. A first possibility is to quantitatively evaluate the generalisation of the results
obtained on cerebral organoid bright-field images: we would like to use this methodology
on others bright-field biomedical images ((Nickels et al., 2020) and Table 2.8). The best
way to evaluate synthetic images and, compare various results of GAN optimisations is
still a challenge (Algahtani et al., 2019). Indeed there is no commonly approved specific
metric to evaluate whether GAN-generated synthetic images can be considered as natural
(Borji, 2018) and statistical space comparisons with a dimensional reduction strategy do not
allow us to elect a particular loss optimisation as the best in this work. Biological experts
aim at psychovisually evaluating the generated images, and strengthen the quantitative
evaluation proposed. In particular, we project to validate the suitability of the metrics we
use and observe the training effect on the segmentation task with only validated images by
biological experts and maybe highlight a metric combination which could replace the time
consuming psychovisual evaluation.

This study answer to the first emerging issue in the cerebral organoid field, highlighted
in Brémond Martin et al., 2021b and updated in Section 2. These results show that small
databases augmentation of cerebral organoids bright-field images is possible using GANSs.
Particularly the AAE Perceptual Wasserstein loss optimisation generates the most qualita-
tive images, while being similar to the original dataset. However it remains to discover what
kind of information each loss optimisations can bring during the generative process, with
coherent diversity in the initial dataset. For these applications, we need to psychovisually
validate the synthetic images. We also aim to generate particular backgrounds by injecting
noise during the generation, similar to bright-field acquisition noise.

3.4 AAE optimisation by noise injection

This section is published in Brémond Martin et al., 2022 for the IPTA conference in
2022.

In the previous Section 3.3, we highlight that Perceptual Wasserstein loss contributes
to generate the most qualitative and similar results as the original images, with a certain
amount of variability. However, the background of the generated images remains different
from original bright-field images background, usually characterized by a shot noise (Boyat
et al., 2015; Gilroy, 2019).

In recent years, noise addition has been largely investigated for improving data augmen-
tation strategy. In the literature, Salt and pepper or Gaussian noise are usually used to
increase datasets (S.-H. Wang et al., 2021; Hussain et al., 2017; Chlap et al., 2021). For
feature space augmentation, others authors use Gaussian noise to increase the dataset inside
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Figure 3.20: Procedure of noise injection comparison in AAE with P.Wass loss optimisation
for the generation of bright-field brain organoid images more similar to microscopic natural
acquisition. S corresponds to synthesized images.

the learned space (Nacereddine et al., 2012). In the GAN field, some authors already use
Gaussian noise but do not compare the effect of different noise types in the generation to
synthesize more natural images, and not try adding a microscopic natural noise such as the
shot one (Salimans et al., 2016; Sonderby et al., 2016; Feng et al., 2021). To our knowledge,
no study have already used GAN to produce at the same time a realistic microscopic image
background, and a similar content of the object acquired in microscopy.

The contribution of this part lies in the quantitative and feature statistical space inves-
tigation of the influence of a noise injection during the generative process using AAE. The
goal is to find the noise type generating images with both satisfying quality and a good
variability, so that they can be incorporated in the learning dataset and improve automated
characterisation tasks. We validate data variability by a dimensional reduction of the feature
space related to generated images and compared to real ones. We summarize the procedure
in Figure 3.20.

3.4.1 Methods

Resources, metric evaluation and dimensional reduction are the same as in Section 3.2. As
in the previous section we use an AAE with a Perceptual Wassertstein loss optimisation as it
render the best qualitative and similitude images to the original bright-field brain organoid
images (Brémond Martin et al., 2021a) and see Section 3.2. In the original implementation,
Gaussian noise is added to the generative part. However in our case, generated images
have a different background from natural microscopic images and occasionally presents a
white imprint (Brémond Martin et al., 2021a). Usually, bright-field images background is
characterized with a shot noise (Boyat et al., 2015; Gilroy, 2019). We aim at quantifying and
visualizing the effect of various specific noises or mixture noises injected on the decoding part
of the generative process. The summary of experimental scheme is described in Figure 3.21.

Noise injection

The overall goal is to generate synthetic images as close as possible to real bright-field ones,
including realistic background. In the literature, shot noise is the signal emitted in this
acquisition modality (Boyat et al., 2015; Gilroy, 2019). We therefore inject shot noise Shot.
in the generative step instead of the usual Gaussian noise Gauss. (a variation applied to
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Figure 3.21: AAE supporting data augmentation of brain organoids bright-field images with
noise injection procedure.

cach pixel value between 0.1 and 0.05).

We calculate the pixel noise estimation from (Immerkser, 1996) in original images to
obtain an estimated value of shot noise ¢ to apply on generated images. For each original
image (I of dimensions X=Y=250) we first convolve an approximation of the Laplacian
matrix (L of 3X3 pixels) of I at N positions (x,y) to obtain the ¢ term.

N XY

c=> 3 (L1 (3.30)

4,j=0 z,y=0

This term is used to found o of an original image I calculated such as:

— w2 ! 3.31
U_C*\/g(X—Q)(Y—Q) (331)

Then we calculate the median of the o for all the original images to obtain the value of noise
to reach (represented by the blue line at 50 in Figure 3.22).

To find a satisfying shot noise (pixel variance=50), we produced 500 images of shot
noise with a variation of the peak parameter (ranging from 0 to 500). Then we calculate
each image’s noise variation and selected the shot noise image equal to . To visualize
the selection, we plot the noise variation in function of the shot noise peak value used to
produce the shot noise image with the line representing the baseline o (see Figure 3.22):
the intersection of the two curves corresponds to the selected value to produce a shot noise
image with an estimated noise variation similar to the original dataset. We found the best
shot noise peak to be 200.

To verify if and how another type of noise can modulate the generated image, we imple-
ment both Salt and Pepper noise SaltPepp. (25% of the pixels, randomly selected, are set
to 255 or 0) and Speckle noise Spe.. Moreover, to verify the effect of a mixed noise on the
generative process, we inject Shot with one of the three other noises.
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Table 3.5: Sample of generated images from each AAE with noise injection optimisation.
Gaussian loss is the baseline. We add two other samples for each case compared to the

published article.

Table 3.6: Metrics calculated on generated images from each AAE noise injection, with

Gaussian loss as the baseline.

FID SSIM uQM MI BLUR PSNR MSE
Original 0.47 to 0.80 0.65 to 0.71 0.63 to 0.87 0.21 to 0.47 0.10 to 86.28 11.9 to 16.6 93.25 to 106.23
Gaussian 1.19 0.60 0.84 0.83 169.70 14.2 2 998
Salt & Pepper 1.18 0.38 0.84 0.64 822.58 14.2 281639.8
Speckel 1.28 0.51 0.76 0.74 791.24 12.3 29410.33
Shot 1.40 0.67 0.82 0.70 76.21 13.8 430051.75
Shot + Gaussian 0.99 0.56 0.84 0.81 231.98 14.0 3216.23
Shot + Salt & Pepper 1.11 0.46 0.73 0.71 1273.29 11.5 1148012.25
Shot + Speckle 1.05 0.59 0.84 0.82 172.88 14.0 319333.2

65



3.4.2 Results
Influence of noise injection

To reproduce the effect of bright-field acquisition, we inject various noises (Gaussian, Salt
and Pepper, Speckle and Shot, and mixed Shot noise) to the decoding part of the generative
process. Sampling of the generated images is represented in Figure 3.5. Original images of
brain organoids are characterized with a core and peripheral zones with neuroepitheliums
(projections around the core) on a diffuse background with a shot noise and gradients of
light. With Gaussian noise, a slight white imprint is generated around the organoid shape.
The Salt and Pepper injection results in more contrasted brain organoid contours than with
Gaussian noise. However, the generated images are black and white, which is different
from grey-level original bright-field images. Speckle noise injection adds a dense zone in the
middle of the core and a white imprint around its shape, whereas the shot noise injection
renders the entire image pale. Mixed shot noise renders all the images less contrasted than
a single noise does. The generated image background (whatever the noise injected) seems
modified respectively to the original AAE loss optimisation from (Brémond Martin et al.,
2021a). Neuroepithelial zones are more observable in images generated with a salt and
pepper injection, but remains visible with other noise injections.

To strengthen the previous observations, we choose to calculate a set of metrics (Ta-
ble 3.0), indicating the quality of generated images and their similitude with original im-
ages. Even though shot noise is related with bright-field acquisitions in the literature, only
the BLUR shows the lowest score and the highest SSIM. According to others metrics
(UQM, MI, MSE), Gaussian noise seems the best suited to generate COs bright field
images. However, only the shot noise produces images with four metric scores in the range
of original scores (SSIM, UQM, BLUR and PSNR). Mixing the shot noise with another
noise does not significantly improve nor the quality nor the similitude with the original
dataset according to the computed metrics (except for the UQM). Of note, the M SE score
is higher for generated images than for original ones, independently from the used noise.

Dimensional Reduction

To verify that the image generation with noise injection respects the original image variabil-
ity, we study image representation in the same optimized statistical space. We implement
a dimensional reduction on the feature extracted on images during the generative process
with t-SNE, see Figure 3.23.

To observe the t-SNE representation we remove three outlying points corresponding to
three images generated with a speckle noise. Keeping these outliers completely skews the
output representation. The remaining 316 image points are represented the figures plotted
with t-SNE. One of the 10 representations is shown in Figure 3.23. All the image points
(original and generated) are in the same representation space and not clustered per noise.
Only three images (one original, and one generated with a Salt and Pepper injection or a
Gaussian injection) are in the center of the circle represented in the plot and some generated
are not on the circle.

However when we compare KL divergence between original and generated images with
these optimisations, no significant difference exists (less than 0.3). To summarize Fig-
ure 3.23, noise injection in the optimized AAE allows to generate both similar content and
background when compared to original ones. It also add a certain amount of statistical vari-
ability: the generated images using purposely noise injection fill the gaps between original
images as illustrated in Figure 3.23.
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Figure 3.23: t-SNE representation of original and generated images with various noise in-
jected in AAE.

3.4.3 Discussion

For the first time to our knowledge, we propose in this work an enriched generation of
brain organoid image using a purposely injection of noise in an AAE architecture. We
show that shot noise injection provides an overall better quality and realistic images than
our gaussian baseline while the Gaussian noise injection provides the best scores. The
dimensional reduction experiment shows that noise modulations fill the gaps between each
original image representation.

Our experiment demonstrates noise injection modulates AAE-generated images. In the
original implementation, a Gaussian noise is used (Makhzani et al., 2015; Goodfellow et
al., 2014). However, this noise is not suited to generate bright-field organoid images, as
suggested in Brémond Martin et al., 2021a. The current study also shows that other type
of noise can be used to change the content and background of AAE generated images, to
make them more realistic.

The main idea of our work is to generate images with similar background than an actual
microscopic acquisition. A shot noise injection seems to produce the better range of quality
and similitude metrics compare to original images. This noise injection outperforms the
others noise injections including the classic one used in all others submission (Gaussian
noise) (Goodfellow et al., 2014). Shot noise characterize the bright-field acquisition (Gilroy,
2019; Boyat et al., 2015) this could explain why in this application it render the best results.
To our knowledge, the noise in GAN is only Gaussian, and no implementation has concerned
various noise injections comparisons (Salimans et al., 2016; Sonderby et al., 2016; Feng et
al., 2021). It could be interesting to assess if such noise injection is appropriate to augment
brain organoids image databases taken with other microscopy modalities (i.e. confocal,
light-sheet) or for other bright-field biomedical images (see part 2.8).

Only four score metrics are in the range of the original images scores with the shot
noise, and some metrics calculated are never in the range of the original metrics and thus
whatever the noise injection used such as M I or the F'I D while others are always in the range
(UQM, PSNR). If UQM and PSN R characterize the best the similitude and the quality
estimation on natural and generated images, they cannot be used as a discriminating metric
with the used optimisation strategy. Regarding the mutual information, this similitude
index is based upon the relationship calculations between pixels and does not take into
account pixel’s respective neighborhood. Given that the generative process creates regions
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similar to original ones, including neuroepithelial formation, it could be interesting to test
another metric more suited for regions such as the regional mutual information used in
registration (Russakoff et al., 2004). The FID remains too high in our generative process,
however its calculation, based on covariance and mean, (Borji, 2018) is the precursor of
SSIM calculation.

A first interpretation lies in the assumption that the defined metrics are not well suited
to the current problem. To validate the use of metrics, Human psycho-visual evaluation of
generated images could be used as a complementary approach.

The second interpretation is that the generative process needs to be improved to gener-
ate images with more similar scores to the original range. To tackle this issue, the proposed
architecture can be optimized. For example, it could be split in two, as it has been done
in others studies, to provide a better global precision: one architecture part will be impli-
cate for local precision (a discriminator which take in input only patches); the second one
will be implicate for global precision (a discriminator which take in input global images)
(Kupyn, Martyniuk, et al., 2019). It could be interesting to use noise injection with the
split architecture in order to observe if similitude increases.

The dimensional reduction strategy shows that generated images are in the same sta-
tistical space as original images, independently from the type of injected noise during the
generative process (except for generated images from a speckle AAE optimisation). The gen-
erated images obtained with other noise injection better cover the statistical space than the
loss optimisations (Brémond Martin et al., 2021a). This optimisation reaches the generation
of gradient light background that could not been achieved with just loss optimisation, and
thus avoid an original image cluster formations. These images could be used in tasks requir-
ing a larger dataset due to their variability covering original images space, after validation
by biological experts. Speckle noise is not implicated in bright-field acquisitions, explaining
its part remoteness in the t-SNE graph (Boyat et al., 2015; Gilroy, 2019). However, its
implication in other microscopic acquisition could be interesting, such as in fluorescence or
light-sheet microscopy (2D or 3D).

In our case, we study noise injection in the AAE architecture used in Brémond Martin
et al., 2021a. Future works will test noise injection in the generative process of others GAN
architectures, to assess the increase in quality and similitude of the generated images. Noise
optimisations will also be tested to increase the original dataset of brain organoid images
in others microscopic acquisition modalities. Another perspective is the potential use of
other noise mixture (Gaussian, Speckle or Salt based noise). All the results must also be
validated on larger and more diverse datasets, as the original data can have an effect on the
generation.

We use various noise injections during the generative process of an AAE in order to
increase the size of a brain organoid bright-field image dataset. We observed the modulation
of generated images, and quality and similitude metrics in the range of original image ones
calculated with a shot noise injection, observed in real bright-field images. Dimensional
reduction points out the generated images are in the same statistical space as the original
images. After validation, generated images can be incorporated in the dataset used to train
a model using deep learning strategies, and then used for segmentation to characterize brain
organoid morphological development.
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Figure 3.24: Procedure of loss optimisation psychovisual evaluation in AAE for the gener-
ation of bright-field brain organoid images more similar to microscopic natural acquisition.
S corresponds to synthesized images.

3.5 Evaluation of loss-optimized synthetic brain organoid
images

This section takes part of a work submitted to Computers in Biology and Medecine,
and entitled “Brain Organoid Data Synthesis and Evaluation”.

The validation of synthetic images remains a challenge (Algahtani et al., 2019). Psycho-
visual evaluation is a time consuming gold standard which requires many subjects to reduce
its” intrinsic subjectivity. On the other hand, there is no commonly approved specific metric
to evaluate whether GAN-generated synthetic images can be considered as natural. The use
of common metrics is also controversial (Borji, 2018). To improve the sharpness during the
generation of brain organoid bright-field images, we test various loss functions to improve
the adversarial network (Brémond Martin et al., 2021a). However, these results are based
upon metric calculation and a dimensional reduction to compare all feature images (original
and generated with each optimisation) in the same statistical space. Indeed some metrics
may not been suited to identify the naturality of an image as they are originally created to
test the similitude or the quality of images (Brémond Martin et al., 2021a; Borji, 2018). If
these images still deserve to train a DL segmentation algorithm, another fundamental issue
remains unresolved: do these synthetic images seem natural to a biological expert point of
views as for metric(s)? Psychovisual evaluations have been already made on others bright-
field cell synthetic cell generation (Malm et al., 2015). This evaluation is an important step
for the validation of a particular generative model of images. Thus the selected images as
natural by Human Biological experts could maybe help to train deep based segmentation
methods and characterize their development but with now a double psychovisual-metric
validation.

We propose to evaluate the synthetic images generated an AAE (Brémond Martin et al.,
2021a) using both with similarity metrics and biological experts. The other part of this
work attempt to dechipher a metric or a combination of metrics which could replace the
psychovisual validation. The procedure is summarized in Figure 3.24.
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3.5.1 Methods

Resources, AAE architecture and metric evaluations are the same than in article 3.2. Loss
optimisations and trainings are the same detailed in article 3.3. For the psychovisual evalu-
ation methodologies and the comparisons between metrics and psychovisual evaluations see
the following method parts.

Psychovisual evaluation

Dataset of original and synthetic images The dataset to evaluate contains two classes
of images the 40 microscopic acquisitions mentioned in section 2.7 and the 240 synthetic
images created by the previous mentioned AAE loss optimisations: binary cross entropy
(BCE), binary cross entropy with a L1 normalisation (BCE + L1), least squares (LS),
Poisson, Wasserstein (Wass.), perceptual Wassertein (P. Wass). The dimension of these 280
images is 250 x 250 pixels.

Randomisation To perform a double blind test the images are not labelled during the
visualisation so neither the experts or the team can be biased by the images information
(real, generated, nor its kind of generation). Real and generated images are randomized at
each test run. Fach biological expert evaluates the complete randomized dataset (280 im-
ages). The randomisation and corresponding labels are stored in a .csv file which is only
accessible for result analysis.

Experts The experts who evaluated the database are biologists from ERRMECe labora-
tory, EA1391, CY Cergy Paris University. The group of 8 experts is composed of 3 men and
5 women who are either PhD students, research engineers or researchers. They all have an
expertise in neuronal culture and microscopy acquisition. We do not allow duplicate evalua-
tors across evaluation procedure. During each evaluation session the evaluator is physically
isolated from the other participants, without knowledge of other experts responses or images
labels.

Evaluation software To help experts in their evaluation and to ensure consistency
throughout the entire experiment, we built a dedicated software using Python 3.6, as shown
Figure 3.25. The interface consists of a displayed image (250 x 250 pixels), a cursor with 3
buttons: Real, Generated, Next and the number of remaining images to classify. Keyboards
shortcuts are available for Real, Generated and Next buttons (respectively A, P and Tab
keys on an AZERTY keyboard) to facilitate the process. Images on the screen are updated
each time Nezt is hit (or the corresponding keyboard shortcut. Clicks on Next are counted
as a pass if not preceded by a Real or Generated click.

Experimental protocol An operator enters the expert name and the date and hour of
the recording. All eight experts chose to use their own mouse with the experiment laptop.
The protocol, consisting of a single session and including all 280 images (real and synthetic),
is described in Figure 3.25. A pass is consider as an answer. The decision and answer time
are saved at each click in a .csv file only accessible to analyze the results. The operator is
present nearby to verify the smooth functioning of the experimental process and to capture
any comments made by the experts. The list of questions the expert has to answer after
the process is listed below:
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Figure 3.25: Experimental procedure of psychovisual evaluation. a) represents a sample from
original dataset and b) a specific loss optimised sample generated with an AAE. Screenshot
of the software helping biological experts to decipher natural to non natural content of brain
organoid culture images. Eight biological experts test this procedure.

e Why do you classify this generated image as a false? The operator show a generated
image with the longest hesitation.

e Why do you classify this original image as a false? The operator show an original
image with the longest hesitation if this situation exists.

e What should we improve in future sessions?

We summarize the answers of these questions in the result part.

Each evaluation run produces two .csv files: One stores the randomisation i.e. the order
and label of each image presented. The second stores the experts’ name and for each image
present the answer time and the decision

Analysis

The first analysis step consists in associating the randomisation and the results files. We
obtain, for each expert and for each image the decision and the decision time. The decision
is then labeled as true positive (TP) or false negative (FN) for the original images and false
positive (FP) or true negative (TN) for the synthetic images.

Parameter Calculations It is then standard to calculate the error rate (ER), defined as
the number of false decisions divided by the total number of decisions.

FP + FN
ER = 3.32
FP+FN+ TP+ TN (3:32)
For the original images, this becomes:
FN
ERp = ——— 3.33
°T FN+ TP (3:33)
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and for the synthetic images:
FP

- FP+ TN’
However, we wish to compare the proportion of synthetic images falsely labeled as true,
with the proportion of original images label as true. We thus calculate the Positive Rate
(PR) of the original images:

ERg (3.34)

TP

PRO:1_ERO:m

(3.35)
For the synthetic images PRg = ERg.

As a second parameter, we calculate the decision occurrence for each modality for each
subgroup by a simple counting and render it in a % according to the total effective of a
group of images.

We also evaluate the number of positive answers given by each expert as a count and
the number of images given as a positive by zero expert, one expert,2 experts etc. or
the 8 experts. Time decision and all these parameters are calculated between original and
generated images, or between original and each modality of loss generation (BCE, BOCE+L1,
LS, Poisson, Wass., P. Wass.), globally or by each decision subgroups (F'P, FN, TP, TN).
All results are rendered as bargraphs representing variables (Time Decision in seconds or
occurrence in % or error rates) according to one or many factors (group and subgroups of
decision).

Metric versus human decision To verify if some metrics highlight the same loss as
producing the most natural images as experts, we plot each metric values for each loss
group by each decision factor modality (FP, FN, TP, TN). In the dot representations for
each loss group, each metric is plotted according to the Normalized Error Rate NER with
individuals decision time ¢ for the F'P and for F'N modality:

FP x tFp + FN x (AN

NER = .
R FP+FN+TP+ TN (3:36)

where tpp and tpy are the average decision time respectively for FP and FN. In practice,
this becomes, for the original images:

FN x tEN
NERo = ———— )
Ro=mxirp (3:37)
and for the synthetic images:
FP x tpp
NERg = ———. 3.38
“" FP+TN (3:38)

To verify if a relation exists between a metric or a particular combination of metrics (M)
and the decision or the time decision (DT), we calculate KL divergences on dimensional
reduction results (Joyce, 2011).

KL(M||DT) = ¥ M(x) x log ( ZZD\{F(ZU))) (3.39)

We only represent here KL divergence correlation plots for each individual metric (and not
metric combinations) for space considerations. We consider all possible metric combinations
C:

C=nklke N k<n (3.40)
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Table 3.7: Metric combinations explored as alternative to psychovisual evaluations.

Factorial ‘ 1 2 3 4 5 6 ‘ Total
Blur ~ Blur,SSIM  Blur,SSIM,PSNR  Blur,SSIM,PSNR,MSE  Blur,SSIM,PSNR,MSE,MI  Blur,SSIM,PSNR,MSE,MI,UQI
SSIM  Blur,PSNR  Blur,SSIM,MSE  Blur,SSIM,PSNR,MI  Blur,SSIM,PSNR,MSE,UQI
PSNR  BlurMSE  Blur,SSIMMI  Blur,SSIM,PSNR,UQI  Blur,SSIM,PSNR,MIUQI
MSE  Blur,MI  Blur,SSIM,UQI  Blur,SSIMMSEMI  Blur,SSIM,MSE,MLUQI
MI  Blur,UQI  Blur,PSNR,MSE  Blur,SSIM,MSE,UQI  Blur,PSNR,MSE,MILUQI
UQI  SSIM,PSNR  Blur,PSNR,MI Blur, SSIMMLUQI  SSIM,PSNR,MSE,MLUQI

SSIMMSE ~ Blur,PSNR,UQI  Blur,PSNR,MSE,MI
SSIM,MI Blur MSEMI  Blur,PSNR,MSE,UQI
SSIMUQI  Blur,MSE,UQI  Blur,PSNR,MILUQI
PSNR,MSE  Blur, ML,UQI Blur, MSE,MLF
PSNR,MI  SSIM,PSNR,MSE  SSIM,PSNR,MSE,E
PSNR,UQI ~ SSIM,PSNR,MI  SSIM,PSNR,MSE,F
MSEMI  SSIM,PSNR,UQI  SSIM,PSNR,MLF
MSE,UQI ~ SSIMMSEMI  SSIM,MSEMILUQI
MLUQI ~ SSIMMSE,UQI ~ PSNR,MSEMILUQI

SSIM,MLUQL

PSNR,MSE,MI

PSNR,MSE,UQI

PSNR,MLF

MSE,MLF

Effective | 6 15 20 15 6 1 63

where n = 6 is the total number of metrics. The total number of metric combinations con-
sidered is thus 63. In total we consider 63 metric combinations calculated using a binomial
low with the subsequent binomial coefficient B for k among M metrics, with k belonging to
(0:L): A summary of each metric combination is given in the following Table 3.7.

We then calculate Pearson and Kendall correlations between metric combinations and
KL divergence results (for error rate and time decison) for original and synthetic groups. We
show the Pearson correlation for the ten best metric combinations. The best representation
of these results (error rate or time by KL divergence) are represented as a scatter plot.

Statistical analysis The normality is verified by a Shapiro and quantile to quantile graph-
ics. We verify the homoscedasticity in normal cases by a Bartlett test and in the case of
non-normality by a Levene test. In case of a normality and homoscedasticity, parametric
tests are used (Anova), and non-parametric tests otherwise (Kruskall-Wallis with a Tuckey
post-hoc test). Regression models are implemented to verify the interaction of factors (group
and decision) on a specific variable (time or error rate or occurrence for instance). We use a
post-hoc Holm test to compare two by two the effect of factors on variables after the regres-
sion. We take an alpha risk at 5%. Correlation matrices are based on Pearson correlation
tests.

3.5.2 Results
Psychovisual evaluation of synthetic images

We compare the mean positive rate between the original and synthetic images in Figure 3.26
left and observe that it is significantly higher for the original images. In Figure 3.26 right, we
compare the occurrence of each decision in percentage for original and generated groups.
A misleading corresponds to a false positive answer. There is less misleading in original
and generated group than right decisions. However, 40% of misleading are observed in the
generated group.

We found that the number of false positive selected images by all the participants is small
(less than 20), and 30 images are selected by 5 participants (Figure 3.27, left). Almost 70
synthetic images are not selected at all by experts as being natural (first column). To observe
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Figure 3.27: Study of positive answers. Right: Number of images per number of positive
answers. Left: Number of Positive answers by experts.

the number of false positive answer by each experts, see Figure 3.27 right. Three experts
answer less positive answers than the others (less than the half of the visualized dataset).
Two of these expert are experts in microscopic acquisitions and not only biologists. One
expert labelled around 150 images as being natural.

We retrieve the decision time before the expert give an answer whatever the kind of
generation (Figure 3.28) left. Biological experts answer in the same time for generated
and original images. This is confirmed also when the kind of generation is considered see
Figure 3.28 left. However, the time is increased when they are misled.

Feedback on the psychovisual procedure

When we ask experts why they classify a generated image as a synthetic with hesitation, they
point out the background (imprint, superimposed contours or artifact) or the image high
noise, but they hesitate longer due to the credible organoid content. When they classify an
original image as synthetic, it is because of a microscopic acquisition artefact, learned by an
architecture, and reproduced on the worst synthetic images. Feedbacks on the experiment
include having less images to label in a session, and a larger image on the screen.
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Figure 3.29: Overall results of decision per loss optimisation groups. Left: Effect of loss
optimisations on the error rate. The baseline (original) corresponds to Positive rate (PR).
Right: Occurrence of answer per loss optimisations.

Psychovisual evaluation of loss optimisation

The error rate is particularly higher in the Wass. and P. Wass groups than for the original
one, see Figure 3.29 left. These particular loss optimisations drive the experts to mislead
and consider the images from these two groups as natural. In Figure 3.29 (right), there
is a difference between false positives of original and generated images from BCE, BCE +
L1, Wass. and P. Wass. loss optimisation. However if we consider the intra-factor loss
comparison, we can observe statistical differences between Fp and T of each for the BCE,
BCE + L1, LS and Poisson loss rendering too small the proportion of misleading. There is
no differences between these two occurrences decision for images generated by a Wass. or a
P. Wass. loss showing 42 % of Fp and almost 60 % of Fp.

To observe which group of images is the most selected as positive, we observe the number
of images selected by group in the Figure. 3.30 left. P. Wass. and Wass. images are selected
as natural by the most of experts (a few Poisson, and a few BCE by 7 experts and L1 +
BCE). The same three experts as in 3.27 only answer positive in most of the case for P. Wass.
images see Figure 3.30 b). Four experts answer more synthetic images but more even for
P. Wass. Only one expert seems to answer identically for all synthetic group of images.

If we do not consider the kind of decision, there is no difference of decision time per group
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Table 3.8: Average and standard deviation of five of metrics on original and synthetic images
per psychovisual decision (true or false) and per loss optimisation.

Decision Count Blur SSIM PNSR MSE MI UQIl
avg. — o avg. o avg. o avg. o avg. o avg. o

POSITIVE

Original TP 297 64 —50 0.78 —0.17 42.13 -41.49 2974 — 3164 0.90 - 0.46 0.86 —0.12
BCE FP 79 100 - 15 0.62 -0.06 13.52 - 3.20 3713 - 2611 0.86 —-0.14 0.83 - 0.10
BCEL1 FP 77 104 -39 0.61 -0.07 13.54 - 2.94 3549 - 2320 0.82 - 0.13 0.83 - 0.09
LS FP 39 156 —-45 0.59 - 0.07 13.77 - 3.00 3404 - 2276 0.78 —0.11 0.84 - 0.09
Poisson FP 74 93 -23 0.63 -0.06 13.86 - 2.84 3275 -2140 0.86 - 0.14 0.84 —0.09
Wass. FP 134 61 -18 0.61 -0.06 13.33 - 2.38 3499 - 1980 0.90 - 0.14 0.83 —0.07
P. Wass. FP 197 47 - 17 0.63 - 0.07 1248 - 2.44 4272 -2389 0.95 - 0.17 0.80 — 0.07
NEGATIVE

Original FN 23 45 -25 0.71 -0.01 10.10 - 0.90 6418 - 1326 0.88 —0.23 0.78 — 0.04
BCE TN 241 105 - 21 0.62 -0.06 13.57 - 3.16 3647 — 2555 0.85 -0.13 0.83 - 0.10
BCEL1 TN 243 110 -39 0.60 -0.07 13.60 - 2.87 3478 - 2248 0.81 - 0.13 0.83 - 0.09
LS TN 281 157 —44 0.58 -0.06 13.79 - 2.80 3307 - 2119 0.78 -0.11 0.84 — 0.09
Poisson TN 246 106 —25 0.62 -0.06 13.86 - 2.77 3249 - 2090 0.84 - 0.13 0.84 - 0.09
Wass. TN 186 57 -~ 17 0.63 - 0.07 1341 - 258 35102116 0.90 -0.13 0.83 - 0.07
P. Wass. TN 123 41 - 14 0.63 - 0.07 12.69 - 2.55 4124 - 2415 0.95 - 0.16 0.80 — 0.08

of synthesis, (Figure 3.31 left. When we study the decision time per group, the experts take
more time to answer only when they are confronted to synthetic images generated with a
least square optimisation (Figure 3.31 right.

Concordance of metrics and psychovisual evaluations

After observing the psychovisual decisions by generated groups, we compare qualitative and
similitude metrics to the previous results in order to verify if the same groups are selected,
but also to verify if some metrics or metric combinations can be used as a proxy to human
psychovisual evaluation.

An overview of these results is given in Table 3.8 shows no differences between decision
whatever the group of loss optimisation or the calculated metric. F'id is the highest for
Poisson loss than for others groups whatever the kind of decision. BLUR metric is the
highest for the decision with LS generated images. In term of SSIM, UQI indexes and
PSNR, the decision is the highest for original images and no improvement is visible with
generative methods. For MSE and MI the decision rate are the highest similarly for original
and P. Wass. generated images. No differences are visible in term of decision with UQI.

Correlations To identify the metrics which corresponds the best the psychovisual evalu-
ation, we plot metrics against error rate, the divergences between points inside these repre-
sentations in Figure 3.32. We only show here the Blur scatterplot as an example of point
representations (others scatterplot for single metrics are represented in Figure 7.1). In this
graphic, we observe that the lighter color points (Original) are near the darker-violet ones
(P. Wass.). This is represented in green in the successive heatmap, while purple represents
a high KL divergence between two groups of points (such as between P. Wass. and LS).
BLUR, SSIM, MI, Ugi maps represents the best the psychovisual evaluation decision (green
cases for the last line). PSNR, MSE, and FID does not highlight the same results as
psychovisual evaluation for each group.

The Figure 3.33 summarizes the correlations between the psychovisual assertion and the
time or error rate according to each metric or metric combination. The main result is the
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Figure 3.33: Correlations between metrics and psychovisual assessment (left error rate and
right time) on various synthetic images. a) Correlation matrix of the ten best combinations
b) Left Blur and FID representation and Right Blur Ssim MI UQI representation.

absence of correlation for single metrics, however, combination with a Blur metric, FID
(for the error rate correlations) and Ssim-FID-Mi (for the time correlation) render the best
results in Figure 3.33 top. The same result is represented in Figure 3.33 bottom. To observe
the group representation between the Error rate or the Time and the KL divergence of points
represented for these two combinations (Blur-FID and Blur-SSIM-FID-MI), see Figure 3.33
bottom left. The LS and BCE group are far from the others point representations. P. Wass.
group is superimposing the original one with Wass. Others groups are not distinguishable,
however, there are at the peripheral zone of the perceptual-original amount. The t-sne
representation of these two metric combinations are Figure 3.33 bottom right.

3.5.3 Discussion

In this part we present to our knowledge the first psychovisual and metric evaluation compar-
ison of Loss optimized generative adversarial network of brain organoid bright-field images.
This study helps at validating most natural images generated by various AAE loss optimi-
sations. We also contribute to strengthen metric evaluation by highlighting some images
from optimized generated adversarial network to be percepted by Human biological expert
as natural microscopic images: with a P. Wass. loss perception neurobiologists are misled
60% of the time and 40% by Wass.. They take more time to answer when they are misled.
We compare human and metric evaluation and found mutual information to be the most
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related to their decision metric, although no correlation appeared in our experiment for
single metrics, but only for combinations including blur.

Biomedical experts select around 40% of synthetic images as natural compared to the
original dataset. Thus, the generation by AAE networks generate a large part of realistic
images such as the background of bright-field acquisition or, their content. The non selected
images where considered sometimes as non natural due to some artefacts reproduced in some
of them, or by a superposition of contours. Nethertheless the selected images could help
in the future at training task for DL segmentation algorithms on brain organoid images for
instance.

A first argument of the strong validation of the selected images as natural is the time to
take a decision (Shaffrey et al., 2002). If the time to answer natural for a generated group
corresponds to the time to answer natural or original images, we could consider these two
groups are perceived as similar. We found no differences between original and generated
images and thus whatever the kind of loss optimisation used to produce them. So they are
not doubting when they classify an image as natural or generated. However psychovisual
evaluation shows an increase of decision time before answering when they answer as false
positive (depending of the loss optimisation) or false negative. This behavior is specifically
shown from a Least Square Loss Optimisation generated images considered as natural.
When we ask to participants why they have doubt on a particular image, they answer us
it was linked with some acquisition artefact learned by the generated process and found on
a lot of images (a bunch of cells) or, by a blurry contour which could may be due to the
acquisition in the case of original images(Ali et al., 2022). For false negative answers, they
only said that the artefact acquisition is also present (and they thought it was a generated).
In the future, we think a pre-process image treatment has to be done on images to correct
the acquisition artefact before the generative process, to avoid these false negative in the
psychovisual evaluation or, to add a component in the generative network to avoid these
artifacts (Ali et al., 2022; Galteri et al., 2017).

However only 15 images are selected by all the experts as natural. Five experts select
a huge amount of images as natural and three less. This study raises a question: could we
use images considered by only five experts as natural in a training step? Thus we thought
we need to increase the number of biological experts to overcome future studies in order to
be more precise on the number of images considered as natural. We could also analyze the
answers by the field of expertise of biological experts too (separate those who made only
culture or only microscopic acquisition from those working in both fields).

Nonetheless, human Psychovisual experts choose in majority images from generative ad-
versarial network as natural if they are from Wass. and P. Wass. loss and, a few BCE,
BCE-L1. These two first kinds of generation are also highlighted by most of the metrics
in another study to have the better quality and to be the most similar to original im-
ages (Brémond Martin et al., 2021a) and see part 3.3. Thus, the psychovisual evaluation
strengthen the choice of the use of these two and particularly the perceptual one in genera-
tive process. We can now confirm the idea that the regulation term of the Wass. distance
between two images (Kupyn, Budzan, et al., 2018) could improve the learning of the pat-
tern or characteristics of brain organoids in images and contribute to generate more natural
images in term of content and aspects. We have also to consider to remove in a future
study the non selected images by human psychovisual experts in the training session, in
order to observe if it could increase the segmentation accuracy and see the impact on their
morphological characterisation.

However the few BCE and BCE-L1 images selected as natural by psychovisual experts
could maybe have also a great interest whereas the metric are not pointing them as natural
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images (Brémond Martin et al., 2021a) and see part 3.3. As we know the use of metric is still
controversial for the GAN evaluation as they are measuring similitude and quality (Borji,
2018).Here, we could not highlight a strong correlation between the use of certain metrics
and the decision to reject or not a generated image as natural. To correlate a metric and
psychovisual evaluation instead of a binary answer 'natural’ or 'not natural’, some authors
use a graduation scale (Pedersen, 2015; Pedersen and Hardeberg, 2012). This could explain
our results, we use only a binary answer (natural or not) and not a graduation scale. In
future studies we could use a graduation scales instead of a binary answer.

In consequence, no metrics used in this study could replace a human perceptual evalu-
ation to decipher the naturality of an image generated. There is a certain link with FID,
BLUR or MI and the group and MI with the mean decision but it remains weak. We could
only say that similitude and referenced-bases metrics are more linked to the decision than
qualitative metrics and non reference-based metrics. And when we compare metrics with
decisions some patterns appear according to the kind of loss optimisation. The use or not
of a measure to decipher natural generated examples is an issue recently discussed (Borji,
2018). To compare fairly images generated by various optimised models, there is no con-
sensus for a use of a particular metric. In other fields such metric comparisons highlight
a wsi and SSIM metric in term of quality assessment(Pedersen, 2015). However, we do
not want an identical image but one just resembling as a natural one. This could explain
these metrics are not well designed for the GAN specific evaluation when they are lonely
considered. This study comparing the overall psycho-visual evaluation and 7 metrics is a
first step to help at pointing a metric of “natural”.

Based upon our KL divergence maps, we suggest that a combination of metric (BLUR,
SSIM, MI, UQI which represents the best the psychovisual evaluation decision) could maybe
help at replacing one day the human psychovisual evaluation which is time consuming. Nev-
ertheless, this work on metric combinations replacing a psychovisual evaluations need to be
further studied. In other fields the combination of metrics help at pointing out some re-
sults in term of quality or similitude (Susu Yao et al., 2005; Pedersen and Hardeberg, 2012;
Okarma et al., 2021). Another idea could also to use non reference quality metrics combi-
nations (Rubel et al., 2022). Some authors also try to implement directly a discriminator
of generative adversarial networks based upon human perception, this could be a solution
if not time consuming (Arnout et al., 2021; Fujii et al., 2020). It is not the case in this
study, as we for us, an important task is to found an appropriate metric for highlighting
“the naturality” of the image and replacing the psycho-visual evaluation. An idea is to test
psycho-metrics instead of classical similitude or quality metrics such as Hype from (S. Zhou
et al., 2019) which is an alternative of F'ID from (Heusel et al., 2017), or implementing the
GFI quality assessment created by Y. Tian et al., 2022.

We could also applied this psychovisual evaluation on others datasets to attempt to
answer more specifically to the metric replacement. We thought about noise optimised
generated images of brain organoids with an AAE for the same aim (Brémond Martin et al.,
2022). It could be interesting to observe if with a noise injection, similar to the bright-field
acquisition images, generated images are more perceive as natural even if metrics are not
pointing a particular kind of noise. Indeed, qualitative and similitude metrics point out
Gaussian noise and shot noise injection. But as said previously, this could maybe only due
to the metric choice (Borji, 2018). An analysis of Psychovisual evaluation could maybe help
at highlighting a combination of metrics. In this future study, it could be also interesting to
observe for example the microscopic experience of the Biological expert as a new criterion.
A larger application of this methodology could be made on others kind of generation (such
as on GAN (Goodfellow et al., 2014), DCGAN (Radford et al., 2015)...) and maybe help
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at pointing out the better GAN model for brain organoid generation used during a training
segmentation task.

In this study we use an unbalanced dataset with more synthetic images than original ones.
Nethertheless, biological experts does not know the number of real or synthetic images, so the
test is unbiased. In future studies, we need to obtain and use more original images in order
to balance the set. We use an in-house software created specifically for the psychovisual
task for brain organoid images, and identified a few limitations. We have to run batch
process with pauses to limit the tiredness of biological experts, in the same way thant
others psychovisual evaluations (Shaffrey et al., 2002). We also have to add a cursor with
a score instead of a button to estimate a natural range, to facilitate correlations studies
(Y. Tian et al., 2022). The size of the image of the screen has to be increased, but not
for all the participants. Depsite the identified limitations, the use of the software is simple
and practical according to users feedbacks. Concerning the Biological experts, we have to
increase their number to strengthen our statistical analysis. Another amelioration would
consist in increasing the number of biological experts. However, it could include biases of
the experts: it requires knowledge of which image is considered as natural and which one
is not for the target domain, so the number of experts available in the field is diminished
while our task required more experts. The performance of human judges is not fixed and
can improve over time, other articles choose a validation by 15 experts for instance which is
not possible in our biomedical context which requires experts in the field (Salimans et al.,
2016; Denton et al., 2015). More over, psychovisual evaluation is limited to the number of
images that can be reviewed in a reasonable time (Borji, 2018).

In this study psycho-visual evaluations allow us to:

e Validate some synthetic image generated from loss optimisation of generative brain
organoid images with an AAE in term of decision time and decision.

e Describe the quality and similitude of the synthetic images with the original dataset
by a metric validation.

e Verify if some synthetic images could be considered as natural by psychovisual expert
decision.

e Compare psychovisual and metric evaluations.

e Paves the way to finding a metric or a metric combination that mimics psychovisual
evaluations.

This selected images could be use in the training phase of a segmentation task in order to
help at their morphological development characterisation.
We also need to evaluate psychovisually noise injected optimized synthesized images.
In future studies we suggest a combination of metrics or a perceptual metric could maybe
help at replacing the psycho-visual assessment which is time consuming. Such methodology
could be used for others brain organoid data-sets generated with a generative adversarial
network.

3.6 Evaluation of noise-injected synthetic brain organoid
images

This section describes unpublished works. ]
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Figure 3.34: Procedure of noise injection psychovisual evaluation in AAE with P.Wass
loss optimisation for the generation of bright-field brain organoid images more similar to
microscopic natural acquisition. S corresponds to synthesized images.
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Figure 3.35: Decision per original and generated group. Left: Error rate per original and
generated group. Right: Occurrence of answers per original and generated group. * if p-
values < 0.05, ** if p-value < 0.01 and with *** if p-value < 0.001.

Previously we validate psychovisually the effect of loss optimisation on generative net-
work synthesizing brain organoid bright-field images. In this part, we attempt the same
procedure on noise optimized generative network results which is summarized in Figure 3.34.

We process as similarly to 3.5. The only difference consist in the number of Biological
experts: only five of them could conduct this evaluation for time consideration.

3.6.1 Results

Psychovisual evaluation of original and synthetic images

To observe differences between the original and synthetic groups, we first compare the error
rates in Figure 3.35. The Error rate ratio is increased in the case of synthetic images by 3
times. If we compare inside generated group, TN answers are significantly higher than FP,
but there is a difference between FP and TN answers.

Individual answers show most of images are classified in non natural and only 5 images
are classified as natural by all the experts see Figure 3.36 left. Three experts choose more
than 100 images as natural and the others two 75 and 50 images only see Figure 3.36 right.

There is no differences of decision time between the synthetic and the original group,
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Figure 3.37: Mean decision time for all the experts. a) Per original and generated group b)
And per kind of decision

however, when they are mislead, experts took statistically more time to answer within the
synthetic or the original group, but not between the groups see Figure 3.37.

Feedback on the psychovisual procedure

When we ask to experts why they classify a generated image as a synthetic with hesitation,
they answer the background contains an imprint, or there is an artefact, or the image is
too noisy, but they hesitate longer due to the possible content. When they classify an
original image as a synthetic is because of a microscopic acquisition artefact, learned by an
architecture, and reproduced on the worst synthetic images. They would like to have less
images in a session, and a larger image on the screen.

Psychovisual evaluation of noise optimized synthetic images

The error rate and occurrence of each decision per group of synthesis are summarized in
Figure 3.38. There is no difference between original and the various synthetic groups due
to variations. However, while looking at the decision occurrence, a statistical difference is
observed in Poisson, Speckle, Poisson Gaussian and Poisson Speckle such as in the original
group. Only the Gaussian, Salt and Poisson Salt groups presents no differences between the
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Figure 3.39: Study of positive answers per NOISE optimisation. Left: Number of images
per loss optimisation per number of positive answer. Right: Number of positive per loss
optimisation for each expert

TN and FP. More over, a difference is observed between FP in the Salt group confronted to
the original, showing, this group mislead particularly the experts.

The individual answers per groups show interestingly original images are only deciphered
by 4 or 5 experts, in Figure 3.39. If we compare experts positive answers, three experts
answer more for positive for the salt group, one for the Poisson and one for the Poisson.

We do not observe differences for decision time between the original and various noise
synthesis Figure 3.40 and also whatever the kind of decision.

Concordance of metrics and psychovisual evaluations

After the observation of psychovisual evaluation, we compare metrics evaluation with the
psychovisual one. The aim of this part is to verify if they highlight the same results and in
a second time if some metric combination could replace the psychovisual evaluation.

An overview of these results is given in Table 3.9. For positive answers, only the UQI
and PSNR show best results for Gaussian and almost for Speckle and Poisson Gaussian
mixture. All the other metrics have the best value for the original group. Concerning the
Poisson Salt it reaches the worst values for almost all metrics, and Salt, the second worst
values.
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Table 3.9: Average and standard deviation of five of metrics on original and synthetic images
per psychovisual decision (true or false) and per noise injection.

Decision Count Blur SSIM PNSR MSE MI UQI
avg. 0 avg. o avg. o avg. o avg. - 0 avg. o

POSITIVE
Original TP 61.95 - 48 0,68 — 0.08 14.87 — 14.28 4298 — 2819  0.93 — 0.56 0.81 — 0.09
Gaussian FP 166 — 53 0.60 - 0.06 14.26 - 2.82 1975 - 1935.35 0.83 - 0.13 0.85 — 0.09
Poisson FP 76 - 6 0.67-0.06 1382 206 3018 1484  0.70 - 0.10 0.82 —0.08
Salt FP 1231 1260 0.48 —0.13 11.32 - 3.24 6027 - 3694 0.70 - 0.14 0.82 - 0.13
Speckle FP 731 305 0.39 - 0.08 14.19 - 2.30 2844 - 1549  0.64 — 0.09 0.84 —0.07
Poisson Gaussian FP 167 —49 0.59 - 0.06 14.01 — 3.13 3289 - 2312 0.83 -0.12 0.84 - 0.10
Poisson Salt FP 2099 #14 0.38 -0.16 10.01 — 2.62 7636 — 4266 0.67 — 0.13 0.66 —0.14
Poisson Speckle FP 251 —83 0.54 - 0.07 14.08 - 2.95 3157 — 2131 0.80 - 0.12 0.84 —0.09
NEGATIVE
Original FN 66 —46 0.67 —0.08 14.80 — 14.27 4308 — 2801 0.91 - 0.57 0.81 —0.09 -
Gaussian TN 173 46 0.59 —0.06 14.23 — 2.77 2982 1924  0.82 - 0.12 0.85 — 0.09
Poisson TN 76 — 5 0.66 -0.06 1380 2.06 3026 - 1487  0.69 —0.09 0.82 —0.08
Salt TN 541 799 0.53 —0.09 12.94 — 3.33 4287 3032 0.75 - 0.12 0.79 - 0.12
Speckle TN 805 314 0.37 - 0.07 14.12 - 2.29 2886 — 1564  0.63 —0.09 0.84 —0.07
Poisson Gaussian TN 175 — 59 0.58 - 0.06 14.03 - 3.03 3231 -~ 2221 0.81 - 0.12 0.84 — 0.09
Poisson Salt TN 901 1295 0.49 — 0.15 12.29 -~ 3.16 4943 3677  0.72 - 0.13 0.77 - 0.14
Poisson Speckle TN 224 —68 0.55 -0.06 14.01 — 2.95 3202 - 2149 0.80 - 0.12 0.84 —0.09

For negative answers, they do not reach highest or worst values for a metric. The
Gaussian noise reaches the best value in UQI, and speckle the worst in MI.

The Figure 3.41 summarize correlations between the pondered error rate and metric
values. The highest Blur, UQI, PSNR MSE, MI and SSIM correlations are observed for Salt
injected optimized generation. Then Poisson-Speckle mixtures reaches the highest values
for Blur, SSIM, MSE, MI and UQI. The third one is Poisson Salt for PSNR.

Original and Gaussian show similar correlations values for MI, PSNR and Blur. Original
shows similar correlations values to Poisson also for the Blur, Uqi, Psnr and Ssim (and a
few for MI). Original correlations are the most different with Salt ones except for the MSE.

The ten best metric combinations recapitulating the best the relations between the
psychovisual evaluation and the kind of synthesis are shown in Figure 3.42. Best correlations
are observed for Salt and Poisson-Salt in term of decision, but no strong correlations are
observed concerning the time. The ten best combinations for the decision are composed by
Blur (and for almost by PSNR) while the ten best combinations for the time are composed
by MSE (and for the almost by MI). The Original correlations are similar to those from

86



Original -

120000
Gaussian -
100000
Poisson -
salt - 80000
Speckle - 60000
Poisson Gaussian -
N
Poisson Salt -
N -20000
Poisson Speckle -
- . -0
Original - 2000
Gaussian -
6000
Poisson -
5000
Salt -
Speckle -
. . - 3000
Poisson Gaussian -
Poisson Salt - - 2000
Poisson Speckle - -1000
-0
Original -
Gaussian - 2500
Poisson -
2000
Salt -
Speckle - 1500
Poisson Gaussian -
- 1000
Poisson Salt -
. -500
Poisson Speckle -
| i ' ' . -0
> & g
2 O & S g P g
P ST
s » € R 2> L R
& & & o
& sy
& ¢
QQ\
Mi

Figure 3.41: Comparisons of Metrics and various pondered error rate according to the noise

injected.

87

Original -
Gaussian -

Poisson -

Salt -

Speckle -

Poisson Gaussian -
Poisson Salt -

Poisson Speckle -

> o (& & SN @
& F e & F &L
PR & &S &
& Q°\ '—P(‘
o &
\l, ™
N
Ugi
Original -
Gaussian -
Poisson -
Salt -
Speckle -

Poisson Gaussian -
Poisson Salt -

Poisson Speckle -

Original -
Gaussian -

Poisson -

Salt -

Speckle -

Poisson Gaussian -
Poisson Salt -
Poisson Speckle -

N &
R
& P

>
,({D

&

2500

2000

1500

-1000

- 500

le6

2500

2000

1500

-1000

- 500



. 1.0 1.0
Blur Ssim - Mse -

Blur Psnr UQI - Mse UQI -
S . 0.8 S ) . 0.8
2 Blur Ssim UQI - 2 Mse Ssim Mi-
2 Blur Ssim FID - - Mse Ssim UQI- o
£ Blur UQI FID - ) £ Mse Ssim FID - i
Q Blur Psnr Mi UQI - o Mse Mi UQI -
O . -04 O . -04
] Blur Psnr Mi FID - L Mse Mi FID -
@ Blur Psnr Ssim Mi UQI - | s D Mse Ssim Mi FID - o2
= Blur Psnr Ssim UQI FID - ) = Mse Mi UQI FID - )
Blur Ssim Mi UQI FID - oo Mse Ssim Mi UQI FID - | oo
\ < & 2 3 & 2
SO SO e
PO R R TP R 2 R
%%’ N g & N
R P ,,)O(Q &
& < & <
Q ]
35 .
e
207 *°, ? .
30 L l" .
25 15 .
20 5 :i. .
- ()
e € e
g5 = 10 .o .
o 53"'{"‘
%% 3 ? ik o
5 3 Ty .o
13 T e
0 0 Y .
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.0 0.2 0.4 0.6 0.8 10 12 14
KI KI

Figure 3.42: Correlations between metrics and psychovisual assessment (left error rate and
right time) on various noise injected synthetic images. Top: Correlation matrix of the ten
best combinations. Bottom: representation and representation

Gaussian, Poisson and Poisson-Gaussian mixture in decision or time. The two figures at the
bottom of Figure 3.42 recapitulate the two best combination of metrics

3.6.2 Discussion

In this part we evaluate psychovisually a synthetic dataset of brain organoid bright field
images generated with various AAE noise injections, and compare it with automatic evalua-
tion. Results highlight generated images with noise injection could be considered as natural
by Biological experts. They take more time to answer when they are misled except for
Poisson noise injection. Gaussian, Salt, and Poisson-Salt variations images are the most
considered as natural while in a metric point of view, Salt and Poisson-Salt give the worst
results. However we have to consider the few number of experts in this experiment and there
is some uncertainty to conclude on the best noise optimisation according to these results.
Gaussian seems the best in term of metric and decision comparisons, and Poisson gives sim-
ilar profile of correlations (of metric and pondered error rate) to the original images. The
combination of metrics which could replace the psychovisual decision contains Blur, and for
the time MSE. A discussion on all of these results follows in this subsection.

Thirty percents of AAE generated images with noise injection are considered as natu-
ral by biological experts. This percent is the same with previous reported results on Loss
optimisations with this same architecture and highlight some consistency see Section 3.3.
As previously discussed the non natural aspect of synthetic images is due in majority to
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reproduced artifacts (white imprint, bluriness, or a noise too strong on the image), already
discussed in previous GAN studies with a biological purpose (Salimans et al., 2016; Goodfel-
low et al., 2014). These selected images could help to train a DL task such as classification
or segmentation of brain organoide images.

The validation of Poisson images is strengthen by the fact they take less time to answer
to this kind of generation which is not reproduced with other noise injected synthetic images.
Natural bright-field acquired images are based upon this noise also called shot noise (Boyat
et al., 2015; Gilroy, 2019). However, only a few of Poisson synthetic images (around 20%)
are considered as natural, which result in the fact not only the noise injection could allow to
consider these images as natural see Figure 3.38. We suppose, biological experts, misled by
those images displaying sibling background of natural images with a high contrast content,
answer directly they are natural.

The noise injected synthetic images producing the most misleading are Gaussian, Salt
and Gaussian Salt mixture images with almost 40% of images from each group selected
as natural. This is less than for our previous observation on loss optimisation (with the
only Perceptual Wasserstein optimisation around 60% of image generated are considered as
natural) see Figure 3.29 in the part 3.3. The addition of noise during the generation could
maybe attenuate the natural of images. It could be interesting to ask to experts if an image
only optimized by a perceptual wasserstein loss is most natural for them than a perceptual
wasserstein with noise in another experiment. The Gaussian noise is the noise the most
used for GAN synthesis (Salimans et al., 2016; Sonderby et al., 2016; Feng et al., 2021).
Interestingly Poisson noise images are not the one considered as the most natural while
the background of original microscopic images are exhibiting this noise(Boyat et al., 2015;
Gilroy, 2019). Only the Poisson Salt mixture and the Salt synthetic images are similarly
to the Gaussian images considered as natural. The other noise mixtures are not producing
satisfying results (Poisson - Gaussian and Poisson-Speckle), while our first thought is to
hypothesize the most used and most similar background mixture noise could be more natural
(Salimans et al., 2016; Boyat et al., 2015; Tanh et al., 2015). The explanation could be the
mixture of Poisson and Gaussian noise characterize the electronic and IRM acquisitions and
not the bright-field microscopic one. More over, the Poisson Salt mixture and Salt render
the worst results according to metric considerations, which render the strong validation by
Biological experts surprising see Section 3.4. The Salt noise is not considered in a biological
point of view to be natural because in biomedical images is created during the acquisition
in the data transmission step (Salimans et al., 2016). We think the combination of Poisson
and salt and pepper noise added during the acquisition is better recognize by Biological
experts than a single Poisson noise added in synthetic images. And thus Biological expert
validate more synthetic images producing some features of acquisition issues. Looking at
the particular images considered as natural for each individual, we observe almost the same
10 salt images are selected by the 5 experts, which could highlight those images could maybe
also used in future tasks. It raises a question what bring some noise optimisation for some
images which are not given in others from the same group of generation and are so not
validated? Furthers studies need to be engaged on this domain to answer this question.

However, these results have to be analyzed with caution. Only five experts could answer
to this experiment contrary to the one from 3.3 and thus, these results are less robust than
the previous study. Maybe with more Biological expert we will highlight others noise to
be considered by individual as the best. Here the Gaussian noise seems the one preferred
by four experts, but one answer positively 30 times on 40 for Salt synthetic images. The
doubling of experimental experts could help us to conclude on this part.

Comparing metric and psychovisual evaluation highlight the Gaussian noise as the best
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noise optimisation, while correlation highlight the Poisson one. Metrics could not allow us
to choose a particular noise optimisation as the best one, nor the statistical analysis with
dimensional reduction in the previous part see Section 3.4, nor an expert validation. It
seems only a combination of Human and automatic evaluations could decipher a particular
noise optimisation as the best. The question which is raised until then is: Do we have to
choose a comparison or a correlation to highlight this best noise image generation, or could
we choose the both noise?

Such as in previous experiment on loss optimisation see part 3.5, a Blur metric combina-
tion could maybe replace a psychovisual decision but not the time consideration. Similarly
as previously discussed, we may not conclude as we only have five point of views, and more
should help to strengthen this result.

In future articles, we should thus increase the number of biological as previously dis-
cussed, but not only. The analysis of Biological expert background need to be further
analyzed: These experts are only experts in biological cultures, or also in microscopic ac-
quisition? In this study it may influence the final decision. We could also modify the binary
button with a graduation scale to calculate, such as others articles, directly the correlation
between the certainty of natural decision and numeric metric values (Pedersen, 2015; Ped-
ersen and Hardeberg, 2012). Another experiment could be to ask to the biological expert
to compare and select the most natural image between a not and a noise injected synthetic
image. We also have to consider to incrise the size of image inside the screen to facilitate
the decision of Biological experts. Finally another psychovisual experimentation could be
conducted on other noise mixture, we do not consider here for time considerations, such as
Gaussian or Salt based.

In this part we:

e Validate noise injected synthetic images as natural by Biological experts.

e Consider various group of noise injection to be the most validated as natural, and
that depends at the same time from the noise of the background similar to a natural
biological image and from the sharpness of the content.

e Conclude on the requirement to increase the Biological expert number in future ex-
periments.

e Gaussian and Poisson noise are highlighted by Metric and Psychovisual comparison
and correlation.

e We show for the second time a combination of metric based upon the Blur may replace
psychovisual evaluation.

We expect these validated noise injected synthetic bright-field brain organoid images could
help to train DL algorithm, for a classification or a segmentation purpose.

3.7 Discussions and conclusions on generation

The aim of this generative part is to increase the number of a tiny dataset of bright-field
brain organoid images, in a qualitative manner in order to segmente and characterize lat-
ter their shape with DL algorithms. By comparing various architecture comparisons, loss
optimisation and noise injection, we produce certain synthetic images which may imper-
sonate natural images from three point of view: automatically by metrics, statistically by
dimensional reduction and psychovisually by Biological experts. In this discussion we will
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highlight the benefits of these results, some drawbacks, the initial work on other datasets
and, academic/ industrial future perspectives of research of this work.

Discussion on our work In our work we validate an AAE architecture with a Per-
ceptual Wasserstein Loss optimisation with certain noise injections to synthesize the most
natural synthetic images of bright-field brain organoid images. Thanks to this work the
brain organoid field could now compensate the lack of bright-field images for their develop-
mental characterisation (Chakradhar, 2016) by applying this data augmentation strategy.
This strategy could be improve by comparing others architectures or other optimisations,
however, it gives yet satisfying results in three validation ways and we think could be use
in future works such as segmentation or classification tasks as given. It could be interesting
for others microscopic acquisition of brain organoid images, which are also suffering from
limited number, such as confocal two-photons or light-sheet microscopy ((Brémond Martin
et al., 2021b) or see part 2 to follow the same procedure of data augmentation comparison
strategy, we propose here). Similarly, we need to compare various GAN architectures, loss
and noise optimisations on these others microscopic acquisition of brain organoid cultures.
It could be interesting particularly to study the effect of noise injections in this context:
such as light buzzing for confocal (Tanh et al., 2015), or bi-photon (Scott et al., 2021),
or light-sheet microscopy Gaussian beam effect (Hillman et al., 2019). The validation on
other images of bright-field biological models could help to generalize our procedure. For
instance, a validation step could be made on developmental blastocytes bright-field image
dataset from this link https://bbbc.broadinstitute.org/image_sets.

Initial work on perspectives The main developed annexed work concerns the validation
of our procedure with another bright-field cortical organoid image datasets from the Nice
Sofia-Antipolis Valrose Biological Institute with Physiological and Pathological mechanisms
of brain development team (thanks to Michele Studer and Michele Bertacchi).In this dataset
only 30 images could be used for the data augmentation process we increase the dataset
as previously with only metrics and statistical evaluations. Some results are summarized
in the annexes part 7.1.1. Additional works concern the effect of combined loss instead of
a single loss on the generative process, and the effect of updating loss during the learning
step, developed by two master students.

Academic and industrial perspectives Industrial and academic perspectives from this
work are various:

e [t confirms for biological culture type, on a certain acquisition modality, for a tiny
dataset, a comparison sheme has to be established. The most use architecture, and
optimisations are not suited to augment this dataset.

e The interest of this comparison scheme is it could be developed and propose to augment
others biological models.

e We nonetheless have to compare others architectures such as double Auto-encoder gen-
erative architecture to augment the background and content simultaneously (Kupyn,
Martyniuk, et al., 2019)and observe the impact of each noise on this kind of generation.

e We also have to test a DifAugment architecture which augment real and false samples
to produce a best generation of image according to (S. Zhao et al., 2020). With the
same idea we also have to test or improve architectures based upon transformers such
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as InfoGAN which render bad synthetic images (B. Hu et al., 2019) but which seems
to be promising for the future.

The effect of input number variation during the generation has also to be studied.

Concerning the loss optimisation, we could apply the perceptual component or a regu-
larisation term on all the other available loss tested, to observe its impact (Isola et al.,
2017).

For other microscopic acquisition and for other biological models, a loss/noise com-
parison and other losses/noise should be tested.

The noise injection impact should be tested on the input of the generative architecture,
or/and on the feature space.

The architecture developped is not adapted to generate specific stages of culture, or
a particular pathological organoid state, given the very few input images available
(approx. 3 per category). In the future, instead of using a ¢cGAN (Yi et al., 2019),
we could try an AAE (Makhzani et al., 2015) which take in input the label of each
image. An idea could be to complete it with a shape prior based loss such as in El
Jurdi et al., 2021, a topological loss (Clough et al., 2020), or a constraint loss (Bateson
et al., 2021) originally produced for segmentation tasks, to synthesize a more accurate
generation per group.

The development of each of these ideas could open new issues to answer and to de-
velop. The main idea would be developing a scalable comparative methodology which
augment in the best way each biological tiny dataset whatever its kind of acquisition.

Conclusion This work is the first to:

This

Augment brain organoid images with GANs,

To compare architectures, loss and noise optimisation for this aim.

To compare automatic and psychovisual evaluation

To attempt replacing psychovisual evaluation by a combination of metrics.

To be validated on another dataset (except yet for the psychovisual validation part).

work and approach should be tested on others models in order to generalize it. It

opens various perspectives of research and development for the futur. An interesting work
would be to verify the interest of the generation of synthetic brain organoid images on a
segmentation task.
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Chapter 4

Segmentation

Image segmentation aims at representing a given input image in meaningful form in order
to identify a region of interest, measure the volume or size of a particular object and, help
at characterizing its content. For a while, segmentation was made by hand, but this task
is time consuming for biomedical experts. Numbers of biomedical segmentation algorithms
have been created to relieve the experts, among them traditional and, more recently deep
learning-based segmentation algorithms.

Nowadays, brain organoid shape extraction is almost not automated. Most of the time,
neurobiologists use a software combination or semi-automatic solutions such as ImageJ or
Imaris (Brémond Martin et al., 2021b) and see Paragraph 2. A few teams constitute their
own solution by creating some macros in these software. One team uses the automatic U-Net
a deep learning algorithm to segment ventricular zones (Albanese et al., 2020). However,
automated and accurate segmentation has been already well studied in other biomedical
fields and some architectures seem more suited to particular datasets (Maier et al., 2019).
The solutions for biomedical content segmentation of small datasets has been also poorly
described inside the literature and, segmentation could be more accurate with machine
learning solutions (Qi et al., 2020). The need of implementing a dedicated shape extraction
algorithm for small brain organoid datasets is important for neurobiologists who want to
use them as a model.

In this section, we describe the various segmentation methodologies used in biomedical
field and for brain organoids, the drawbacks and limitations of these architectures, as well
as our strategy and contribution to segment them properly.

4.1 State of the art on segmentation

4.1.1 Classical segmentation

Classical segmentation strategies are constituted by various group of methodologies classified
in: threshold, region, clustering, graph, shape and morphological based methods.

A threshold segmentation consists in classifying a pixel into an object or a non object
class, depending on a level of a pixel value called threshold. The most known threshold
segmentation is called Otsu which is automatic, in other segmentation methods, the thresh-
old is set by hand (Otsu, 1979b). In this particular threshold segmentation method, the
intra-class variance is minimized in order to set the optimal threshold which would best
separate the two classes. The first step is to characterize the histogram and probabilities of
each intensity levels and, initializing variables. Next, mean and variance probability are cal-
culated for all the possible thresholds. Finally, the minimal intra-class variance is retrieved
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to be used as the threshold. The various step of a threshold by Otsu are summarized in the
pseudo-code described in 77.

The most known regional segmentation is called the region growing algorithm (Adams
et al., 1994). The principle of this segmentation is to initialize seed points and explore their
neighborhood. The neighborhood corresponds to a certain pixel intensity, or a particular
texture or color, and, is categorized as an object or a non object class. The process is
achieved when all the pixels of an image are classified. The pseudo-code in 77 illustrates
the region growing algorithm segmentation.

A widespread clustering strategy for segmenting an image is the Kmean (Vora et al.,
2013). The initialisation is made by fuzzy or by random partition, then a pixel is compared
to a cluster which contains a centroid. Thus the pixel is associated to the cluster with the
nearest mean, the centroid is updated, and the process is iterated. The process is achieved
when the centroids could not be updated due to the well clusterisation of each pixel. The
pseudo-code of this procedure is described in 7?7 with randomisation.

One graph based method is for instance the graph cut algorithm (X. Chen et al., 2018).
This segmentation is based upon Kmean and energy functions.

Two shape based methods are for instance the active contour and level set algorithms
(Menet et al., 1990; Meziou et al., 2012). The active contour is compared as the snake
game, it uses energy minimizing. The principle is to apply a distortion spline influenced by
constraint and forces, that pull the spline towards object contours and internal forces that
resist deformation. The pseudo-code is represented in ?7?.

The morphological segmentation is represented most of the time by a watershed algo-
rithm (Sharma et al., 2022). This name takes part of the process of filling water inside a
recipe, which is compared as geographical valley and, mountains obtains are the shapes of
the segmented object. Technically, this method uses local minima of the gradient of the
image as markers, which are determined often manually by user.

Other classic segmentations exist and, most of the time optimisations are proposed
according to certain applications to improve them.

4.1.2 Deep learning based segmentation

Deep neural networks are used in many applications, among them the segmentation requires
often this use. The pre-processing step on data is an important step to its use. Generally,
the dataset is divided in three parts: training, validation and test datasets. Then, various
architectures are used for segmentation purposes.

Convolutional Neural Networks

Convolutional Neural Networks (CNN) (Z. Li et al., 2021), see Figure 4.1, are constituted by
three main types of layers: convolution, pooling and, fully connected layers. The convolution
consists in a multiplication of local neighbours of an image pixel with various kernels, in order
to produce feature maps. The pooling is a subsampling, it reduces the width and height of
the given input and computational requirements. Contrary to a single convolutional layer,
each input vector influences every output of the output vector in the fully connected layer
to give the result.

Fully convolutional neural network (FCN) consists in transforming the latest fully con-
nected layer, into a fully convolutional one. The inconvenient is the high time computation,
and, low resolution of images obtained with fuzzy boundaries, due to propagation through
alternate convolution and pooling layers (Milletari et al., 2016).
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Figure 4.2: U-Net architecture inspired by the original from (Ronneberger et al., 2015a)

Recurrent convolutional networks, works with feed-backs. After the convolutions and
the activation, a filtration is produced on the feature map which allow a better accuracy
and performance thanks to its update (Qiu et al., 2021).

The ’atrous’ convolution drives the resolution at which feature responses are computed.
DeepLab is the first network to propose these convolutions, with atrous spatial pyramid
pooling (L.-C. Chen et al., 2017). Convolutional layers use filters with multiple sampling
rates and, enlarged the field of view which allow to capture image context and objects
at multiple scales, without increasing the number of parameters or the computation time.
Since then others DeepLab versions have been developed.

U-Net and its derivatives

A common segmentation model based upon encoder-decoder is called U-Net created by
Ronneberger et al., 2015a, see Figure 4.2. This network uses the FCN architecture in the
downsampling part to extract the features. In this part, each successive block contains
two successive 3 x 3 convolutions, followed by a ReLLU activation unit and a max pooling
layer. The upsampling part uses deconvolutions to decrease the number of feature maps
and obtains an accurate localisation: each bloc upsamples the feature map using a 2 x 2
up-convolution. The feature map is reduced by a 1 x 1 convolution to the required number
of channels and produces the segmented image. Between the contractive and upsampling
part, skip connections (crop and concatenation) are given to avoid pixel information at the
edge, which contains less information. It allows to propagate contextual information. An
issue found for U-Net is the slow down computation time, due to accumulations in the same
scale feature map while skipping connections.

Since its creation a lot of U-Net variants have been proposed, to overcome the limitations
of this network.

In 3D U-Net, all the operations are replaced by 3D in order to segment volume in three-
dimensional images (Cigek et al., 2016). In attention U-Net, some gate are used to avoid the
propagation of non useful features in the expansive path before concatenation (Oktay et al.,
2018). A gate accelerates the procedure and gives an accurate segmentation. In inception U-
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Net, various filter sizes are tried on each layer, and, render the network available to segment
images with various heterogeneity (Rad et al., 2020). Residual U-Net is a deeper network.
With this framework based on the ResNet architecture, the input to a convolutional layer
is added (by an element-wise addition) to the output from the following convolutional layer
using a skip connection (Kerfoot et al., 2019).

However, these networks are not appropriate, to segment multimodal images (from vari-
ous microscopic scales). MultiResNet proposes to combine an Inception and Residual U-Net.
In this architecture, they replace the convolutional layer sequence by a block constituted
from an inception block filter with concatenation, to preserve the features with different
context size. Then, these filters are factorized to create successive layers with a resid-
ual connection, to preserve the dimensions (Ibtehaz et al., 2020). Also for multimodal
images, MRN employs multiple encoders corresponding to different resolutions, that are
structurally identical for downsampling, and one single decoder for upsampling(F. Gu et
al., 2018). Hook-Net proposes to combine two U-Net structures: one for the target (in a
high focus point of view) and one for the context (for low focus) in histopathological images
(Van Rijthoven et al., 2021), and, outperforms U-Net and MRN for this task but has not
been compared with MultiResNet architecture.

In all these architectures, a limitation persists: the residual skip connection does not
allow to preserve from vanishing gradient. The solution is to use Dense U-Net which consists
in replacing convolutional layers by DenseNet architecture in deep networks. Compared
with ResNet, each layer receives the features from all the previous layers, and, the maps are
combined by concatenation into tensors(Dong et al., 2019).In one hundred layer Tiramisu
network, they use DenseNet to work as a FCN by upsampling path to recover the full
input resolution. The upsampling path results in a number of feature maps with very
high resolution prior to the softmax layer (Jégou et al., 2017). U-Net++ avoids the loss of
semantic information between the upsampling and downsampling part by transforming each
level by a dense block. For this aim, skip connections are used between mirrored layers (Z.
Zhou et al., 2018). Unet3+ variation uses full-scale skip connections and deep supervisions
(Huang et al., 2020).

Attention based models

CNN networks have the limitation to produce segmentation mask without accurate bound-
aries. This particularity come from the consecutive pooling and convolutional information,
which does not allow the extraction of a right context and necessary features. This becomes
a challenge in biomedical image datasets, which are composed by intra-class variations, inter-
class non distinct features and, noise. In order to improve the accuracy of the segmentation,
some models propose to use attention mechanisms for semantic segmentation.

Attention Gated Networks (AG) use a 3D-Unet, in which two attention modules have
been added in the contractive path. The aim of these modules is to suppress irrelevant re-
gions in an input image and, highlight salient features useful for the segmentation (Schlemper
et al., 2019). CE-Net is similar to U-Net architecture, with two additional blocks at the
U-shape basement: a dense atrous convolution and, a residual multi-kernel pooling to pre-
serve more high-level features and more spatial information (Z. Gu et al., 2019). For real
time images, Bilateral Segmentation Network (BiSeNet) has been propose. To preserve the
spatial information and keep high-resolution features, they create a spatial path with a small
stride, and conserve the context by increasing the speed of the downsampling path. They
use a feature fusion module to combine these two paths (Yu et al., 2018). In BA-Net (for
boundary aware), they add some modules to retrieve the meaningful contextual information
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to drive the decoder part. Between the encoder and decoder architecture, they use an atrous
spatial pyramide pooling module, and between each mirrored layer they successively process
a pyramide edge extraction, a mini multitask learning module and a cross feature fusion (R.
Wang et al., 2022). BA-Unet gives better results than others architectures such as U-Net
or CE-Net, multiresUnet or DeepLabV3. In the same way, SA-Net proposes scale attention
modules between the encoder and decoder mirrored layer before the concatenation(J. Hu
et al., 2021). Sau-Net uses for textural information a U-Net architecture. However, the
encoder is replaced with dense blocks from DenseNet-121 similar to the Tiramisu and the
decoder block used is a dual attention decoder (Sun et al., 2020). Instead of using a U-Net
architecture, the Multi-scale dual guided attention module applies a ResNet architecture,
with four focus attention modules for each dense local features(Sinha et al., 2020).

Instead of using attention modules, some architectures use directly the shape, or topo-
logical information to guide the segmentation. In BB-Unet the encoder layers are fed with
the image for contextual feature extraction, similarly to U-Net. Bounding filter, a binary
map which indicates the position of the object, is fed independently to the additional BB-
ConV layer for shape and location feature extraction (El Jurdi et al., 2020). Others prefer to
update the loss functions with shape or topological information. Instead or complementary
to fitting loss (Dice or cross entropy based), some authors apply regularisation prior loss
based upon size, shape, inter-region or topology of contents inside the image to improve the
segmentation (El Jurdi et al., 2021).

Light architectures

All these architectures presented previously, are designed for big datasets, contrary to the
original U-Net and, and most of the time requires a lot of computation time. Moreover, the
attention gate limitations have a high complexity and, are relatively less interpretable. To
perform a segmentation on very small datasets, reducing the U-Net architecture seems to
be a solution which start to appear.

In U-Net ++ the structure for instance is lightened by giving dense nested strip pathways
(Z. Zhou et al., 2018). The stripped-down U-Net (SD-Unet) is constituted by depth-wise
separable convolutions with a weighted standardisation, in order to avoid the slow perfor-
mance and high computing time. This model contains less parameters to learn, a smaller
size architecture and lower computation time than U-Net (Gadosey et al., 2020). Contrary
to SD-Unet, SmaAT-Unet proposes an attention module added to the use of depth-wise
separable convolutions (Trebing et al., 2021). In the CNL-Unet structure, a pre-trained
encoder is proposed to allow the segmentation of small datasets. By using the transfer
learning properties of the encoder, the modified skip connections to reduce the gaps be-
tween mirrored layers and, the classifier and localiser module CNL, they learn efficiently
the small amount of data(Shuvo et al., 2021). Another update of the encoder architecture
consists in using transformers after convolutional layers, to lighten the architecture such as
in LeViT-Unet(Xu et al., 2021).

However, these procedures modify the simple aspect of the U-Net architecture, the en-
coder and decoder structure. Recently a Unet-Mini architecture has been created to segment
small datasets, which reduce the number of parameters drastically only by updating three
elements (Jirik et al., 2020): they use element-wise skip connection (addition instead of a
concatenation), reduce the number of layers and the kernel size.

Another strategy consists in transforming the learning session for a small dataset, par-
ticularly when they are partially or not annotated. Some solutions work also with weakly
supervised (or semi-supervised such as few or one shot learning), and unsupervised (also
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Figure 4.3: Number of publications on segmentation per year in the biomedical field since
2000.

called zero-shot learning or self training) (Pastore et al., 2021).

Recent segmentation architectures

GAN based Other particular U-Nets exist, such as adversarial U-Net. This adversarial
structure uses a U-Net inside the generative part of a GAN, which takes in input an image,
and produces its segmentation. The discriminator has the aim to decipher synthetic segmen-
tations from the given ground truth (Mirza et al., 2014).A ¢cGAN, using a Markovian-GAN
inside the discriminator part, aims at segmenting better the images by calculating errors
and optimizing them (Rezaei et al., 2018). The aim is to outperforms the GT segmentation
applied on certain images.

Multi-Adaptative U-Net and pipelines An existing pipeline containing an automatic
segmentation (after a manual split of the dataset) is the InstantDL software. The segmen-
tation process is based upon a Mask-RCNN with a ResNet50 architecture. However, this
architecture has been validated only on some cells (Waibel et al., 2021) and for a kind of
microscopic acquisition. Scalable architectures are necessary to be adaptative to all micro-
scopic acquisitions or biomedical datasets. (Isensee, Jaeger, Kohl, Petersen, and Maier-Hein,
2021), proposes nn-Unet, an adaptative U-Net architecture, which automatically optimizes
itself according to the given database.

4.1.3 Segmentation in the biomedical field

Biomedical image segmentation has increased over the last decade see Figure 4.3. Segmen-
tation is one of the main operation realized on biomedical images, and its automation seems
necessary to save time for biomedical experts.
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Figure 4.4: Publication on segmentation per imaging applications. We only count the
number of publications in the main domain and show it in percentages (on 109307 inputs).

Among the imaging the most often segmented, we found X-ray, ultrasound and histopatho-
logical images with more than 50% of the use see Figure 4.4.

And the domain of application concerns most of the time the segmentation of cell compo-
nents (more than 50% of use) tumor, heart, brain and eyes. The segmentation of biomedical
cultures concerns only 11% of the cases, see Figure 4.5.

The most use architecture remains U-Net and its derivatives (almost the half of the use)
see Figure 4.6. The second are CNN based architectures. With less than 10 %, the FCN,
atrous and light architectures are only emerging architectures for segmentation purpose.

4.1.4 Segmentation of brain organoid culture image: our posi-
tioning and strategy

The segmentation of brain organoid images has been made in majority with semi-automatic
tools see part 2. Only one team segmented brain organoid ventricles with U-Net trained
with classic data augmentation strategies (Albanese et al., 2020). No segmentation tool has
been compared and developed to extract accurately the shape of brain organoid images to
characterize their development. The constraint is to accurately and automatically segment
a small dataset.

The summary of segmentation optimisation strategies are given in Figure 4.7. The devel-
oped strategy in this work is to test various classical segmentation methodologies and deep
learning based methodologies. The second part proposed is to validate a data augmentation
strategy to better segment with deep learning tools. Then the last part of this work consists
in reducing the size of the architecture to be appropriate to small datasets.
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Figure 4.5: Publication on segmentation per organ. We only count the number of publica-
tions in the main domain and show it in percentages (on 109307 inputs).
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Figure 4.6: Architecture segmentations most use in the Biomedical field. We only count the
number of publications in the main domain and show it in percentages (on 125461 inputs

since 2017).
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Figure 4.7: Global overview of Segmentation optimisation strategies we choose to develop.

4.2 Validation of GAN optimisations by a deep learning-
based segmentation

This section is in part published in Brémond Martin et al., 2021a in VISAPP confer-
ence in 2022. Noise optimized and psychovisually validated images used during the
training are not published parts.

Segmentation allows the extraction of an image content from its background. Various
segmentation procedures exists see part 4.1. In the biomedical field, U-Net architecture is
the most used see Figure 4.6 but requires a certain amount of images (Ronneberger et al.,
2015a).

However, in the case of tiny dataset, such as for brain organoid cultures, which kind
of data augmentation could contribute to accurate the segmentation when they are used
during the training step?

To determine the effect of data augmentation strategies on a segmentation task, we
consider several training scenarios using various synthetic datasets:

e The effect of synthetic images resulting from various loss optimisation of AAE (see
Section 3.3)

e The effect of synthetic images validated by none to 8 biomedical experts (see Sec-
tion 3.5)

e The effect of synthetic images resulting from various noise optimisation of AAE (see
Section 3.4)

4.2.1 Methods

Datasets

We aim to segment images from (Gomez-Giro et al., 2019) which is composed of 40 images in
open access. Twenty pathological and twenty healthy brain organoids were numerized with
a bright-field microscope over 3 days. The grayscale images are 1088 x 1388 pixels. However,
to compare several networks within a reasonable time, the input images are cropped and
resized to 250 x 250 pixels, maintaining the original proportions.

The first “classical” training dataset for comparisons purpose is composed by 80 classi-
cal augmentations involving flip-flops, rotations, whitenings, or crops. The “loss” training
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datasets are constituted by the generated images from each AAE loss optimisation see Sec-
tion 3.3: BCE, BCE+LI1, LS, Poisson, Wass. P.Wass. The “noise” training datasets are
composed by the generated images from each AAE noise injection 3.4: Gaussian, Poisson,
Salt, Speckle, Poisson Gaussian, Poisson Salt, Poisson Speckle. The “psychovisual” training
dataset is composed by the psychovalidated images from AAE loss optimisation see Sec-
tion 3.5: 0 expert validations, 1 expert validation, 2 expert validation, until the 8 expert
validation. While the “loss” and “noise” training are compared with the “classical” training,
in the “psychovisual” training case, if an image is validated by 0, 1, 2, 4, 6 or 8 experts, it
replaces classical augmented images among the 80 to conserve the number of images inside
the training dataset for each of the mentioned group.

Ground truth as been generated with the ITK-SNAP software see Paragraph 2.7 and,
resources are the same as written in previous sections and Paragraph 2.7.

U-Net

To segment these images we use the U-Net architecture, widely used in the biomedical field
(Ronneberger et al., 2015a). Segmentation allows the extraction of an image content from
its background. Various segmentation procedures exist but we have chosen U-Net for its
advantages to work well for small training sets with data augmentation strategies, and to
have already been used for the ventricle segmentation of cleared brain organoids (Albanese
et al., 2020).

Training

To make the performance evaluation more robust, a “leave-one-out” strategy is used, result-
ing in 40 training sessions (numbers of images in our original dataset). For the “loss” and
“noise” case each training is performed on 79 images. We stop the training at 1000 epochs
with an average time of training of more than 1 hour for each leave one out loop (7 cases
of augmentations x 40 images = 280 hours almost for the total training step for noise and
240 hours for loss). For the “psychovisual” case each training is performed on 119 images.
We stop the training at 1000 epochs with an average time of training of more than 1 hour
for each leave-one-out loop (6 cases of augmentations x 40 images = 240 hours almost for
the total training step).

The summary of the leave-one-out strategy for every tested case is summarised in Fig-
ure 4.8.

Comparison of segmentations

To compare ground truth cerebral organoid content segmentation (GT) and U-Net (u) ones
in various conditions, mean Dice scores are calculated as:

2|GT Nul

4.1
GT] + Ju] (4.1)

DiCG(GT’u) =
Thanks to the TP, FFP, TN and FN we could calculate the Accuracy, the Specificity,
the Sensitivity, and the Fl-score. The Accuracy is the ratio of true on the positives labels:

TP+TN
TP+ FP+TN+ FN

(4.2)

Accuracy =

102



Traditional Datasets

Loss Noise m Transformations
experts

Original Dataset Synthetic Datasets

BCE Gaussian rotations
BCE~+L1Salt & Pepp. lexpert flip-flop
LS Speckle 2experts whitening
Poisson Shot dexperts crop
Wass Shot+Gaussian 4experts shear
P. Wass. Shot+Salt 6experts 700
Shot+Speckle 7Texperts
8experts

Y
mmga |.cave-one-out

n—=40

A

Model

Lo

Figure 4.8: Experimental scheme of the leave-one-out strategy to test the effect of various
data augmentation on the segmentation quality.
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Classic BCE+L1 Poisson Wass. P.Wass.

wlylelple el

Table 4.1: Sample of each segmentation with a particular loop optimisation training.

The Sensitivity is the ratio between how much were correctly identified as positive to how
much were actually positive:

TP

—_— 4.3
TP+ FN (43)

Sensitivity =
The Specificity is the ratio between how much were correctly identified as negative to how
much were actually negatives:

TN

—_— 4.4
TN+ FP (44)

Speci ficity =
The Precision is the ratio between how much were correctly identified as positives to how
much were actually labeled as positives:

TP
Precision = W (45)

The F1-Score allow to summarize the precision and the recall (Sensitivity) in an unique

metric:

F1 — Score — 2 Precision x Sensitivity

4.6
Precision + Sensitivity (4.6)

Visualisation

To highlight real /false positive/negative segmentation we create a superimposed image com-
posed by the ground truth and a sample of each segmentation resulting from the various
trainings. We update the pixels values in lightpink the F'P cerebral organoid segmentations
and, in lightgreen the F'N.

4.2.2 Results

Influence of loss optimised synthetic images in training step of a segmentation
task

To illustrate the influence of generated images by an optimised AAE against classical data
augmentation, we tackle a segmentation task in a leave-one-out strategy (n=79 for training
and n=1 for testing). We choose the classic U-Net architecture and we consider the different
losses to compare the segmentation performance for each data augmentation.

Psychovisually, samples in Figure 4.1 are the best segmented with a training involving
images resulting from the AAE Perceptual Wasserstein optimisation. They show the less
false positive and negative segmentations compared to others AAE optimisations and to
classical data augmentation.

Quantitatively the mean Dice index highlight the segmentation performance. Results are
summarized in Table 4.2. Mean Dice index is higher for segmented images with Perceptual
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Table 4.2: Sample Cerebral Organoid image (left) with ground truth (GT) segmentation
(our baseline), compared to Classical and AAE-based data augmentation, and the corre-
sponding Mean Dice index and Standard Deviation (SD). Pixels are colored according to the
following legend: Black and white represent respectively true negatives and true positives
while magenta highlights false positives and cyan a false negatives. The best Dice index is
displayed in bold.

Classic BCE BCE + L1 LS Poisson Wass. Per. + Wass.

Mean Dice 0.87 0.85 0.87 0.86 0.87 0.88 0.90
SD 0.03 0.05 0.05 0.14 0.09 0.05 0.04
Accuracy 0.77  0.84 0.82 0.77 0.75 0.83 0.84
Sensitivity 0.95 0.95 0.90 0.92 0.90 0.97 0.90
Specificity 0.92 0.51 0.75 0.93 0.75 0.37 0.96
F1-score 0.88 0.61 0.73 0.87 0.75 0.57 0.88
Classic 2 experts 4 experts 6 experts 8 experts

wlplelolelele

Table 4.3: Sample of each segmentation with various data augmentation strategies validated
by a certain number of experts.

Wasserstein augmentation, in accordance with the selected visual illustration. The standard
error, accuracy, and fl-score are the best for classic and near followed by the Perceptual
Wasserstein group.

In conclusion, images generated from Perceptual Wasserstein AAE allow a more accu-
rate segmentation than other AAE loss, in accordance with previous results on quality. The
influence of the Perceptual loss combined with Wasserstein distance, such as a data attach-
ment term based on the difference of generated and images features maps, improve their
sharpness and textural information, making it a viable strategy for data augmentation in
this context.

Influence of psychovisually-validated images

Then the second task is to verify the interest of using synthetic images in a training seg-
mentation task which have been validated by 0, 1...or 8 biological experts.

Qualitative results To observe the quality of the segmentation, we observe a ground
truth segmentation performed with the ITK-SNAP software, and automatic segmentations
performed with a U-Net architecture with various data augmentation strategies see Fig-
ure 4.3. In the 0 expert group: the synthetic images used during the training are selected
by none of the experts. In the others training images are previously selected by 2, 4, 6
and 8 experts. We observe less false positive (in pink) and false negative (in green) region,
if the segmentation is realized with a training step constituted with a dataset containing
images validated by 8 experts or 6 experts. If the synthetic images are selected by 6 or more
experts, we could observe almost no errors.
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GT classical 0 2 4 6 8

Nbr of synthetic images - 0 33 41 22 16 14

Dice 1.0 0.80 0.62 0.59 0.61 0.67 0,82
Accuracy 1.0 0.77 0.63 0.61 0.68 0.62 0.93
Sensitivity 1.0 0.94 0.96 0.97 0.87 0.83 0.91
Specificity 1.0 0.92 0.50 0.48 0.60 0.56 0.94
F'1-score 1.0 0.84 0.64 0.61 0.64 0.59 0.87

Table 4.4: Comparison of segmentation according to the number of expert validations. All
metric results are the mean calculated on a group of segmented images: GT, training with
classical data augmentation, non validated images, 2, 4, 6, or 8 experts validating some
images.

Classic Gaussian  Sal& Pepp.  Speckle Shot

whylelelele

Table 4.5: Sample of each segmentation with various noise optimised synthetic images used
during the training.

Quantitative results Some parameters calculations between the ground truth segmen-
tation and classical or automatic with various data augmentation strategies are summarized
in Table 4.4. The segmentation is better with 8 experts selected images for the training
(with higher levels of Dice, Accuracy, Sensibility and Fl-score). The sensitivity is higher
for segmentations with 0 or 2 experts groups training, however the Specificity is lower than
the ground truth group and the segmentation is worst than the classical one.

Influence of noise optimised synthetic images

In this part, we study the influence of various noise optimisations used during the generation
of synthetic images used during the training step of the segmentation. We compare four
kind of noise optimisation : Gaussian, Salt & Pepper, Speckle and Shot.

Qualitative results Similarly as previously, we obtain the segmentation with U-Net from
various training with noise optimized AAGAN synthesized images see Figure 4.5. These
segmentations are compared with a segmentation from a classical training, and with the
ground truth. Only a few external shape of neuroepithelial regions are not well segmented
whatever the noise optimisation. With shot noise two neuroepithelial regions seems not well
segmented for this image. However, false positive segmentation are bigger in Gaussian and
Salt & Pepper noise optimisation training than for images segmented with Speckle or Shot
optimized images for an AAE. These False positive regions represent cells conglomerates
and not the brain culture.

Quantitative Results The quantification of the effect of various GAN noise optimisa-
tion used during the training of brain organoid segmentation is summarized in Table 4.6.
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classical Gaussian Salt & Pepp. Speckle Shot

Nbr of synthetic images 0 40 40 40 40

Dice 0.83 0.76 0.77 0.77 0.74
Accuracy 0.77 0.80 0.80 0.81 0.73
Sensitivity 0.95 0.79 0.80 0.79 0.87
Specificity 0.92 0.95 0.96 097 0.84
F1-score 0.88 0.80 0.81 0.82 0.78

Table 4.6: Comparison of segmentation according to noise optimisation.

The best Dice score is obtained with Salt and Pepper or Speckle training, while the best
Accuracy is obtained with the shot noise. The optimum F'1-score, Specificity and Accuracy
are obtained with the Speckle. In summary none of the noise injected produce better results
than a segmentation produced with a classical data augmentation strategy except for the
Speckle noise.

4.2.3 Discussion

Approaching a segmentation experiment, images generated with a Perceptual Wasserstein
loss could bring a better precision to a segmentation task. Other losses may be interesting
for different tasks. The psychovisual validation of these trained images highlight accurate
segmentation with more experts validation. The 8 expert validation of GAN images used
during the training allow to improve all the segmentation score compared to a classical
transformation used during the training. Speckle noise optimized augmented images used
during the training of the segmentation improve the segmentation quality.

Attempting to distinguish the contribution of each loss optimisation, this strategy can
potentially bring better pixel-wise precision for segmentation tasks. Shown here as a proof
of concept, using a U-Net architecture, we demonstrate that the Perceptual Wasserstein
loss can fruitfully enrich the original dataset. This may also show a kind of regularisation
achieved by the Perceptual loss leading to a good variability of generated data without
being too generic. The contribution of others loss could not been highlighted in this task.
Nevertheless, segmentation could be even more appropriate with algorithms suited for small
datasets or by increasing the number of training iterations. In future parts we extract
morphological parameters, such as areas, perimeters or higher-order statistics needed for
the growth follow-up of cerebral organoid cultures on segmented images, see Section 5. In
this work, we only segmented organoid vs. non organoid regions. Another objective could be
reproducing the same work differentiating the peripheral and the core zones of the cerebral
organoid in these images.

The more experts validate the dataset, the best is the segmentation quality. This sug-
gests that more experts are available to select images, and strenghen the 'naturality’ of the
synthetic dataset used during the training, it could improve the accuracy of the segmen-
tation results. However, even if the psychovalidation of certain synthetic images allow us
to improve the segmentation, this method is still subjective. It could include biases of the
experts about the model, its configuration, and the project objective. It requires knowledge
of which images are considered as natural and which ones are not for the target domain, so
the number of experts available in the field diminished while our task required more experts.
It is limited to the number of images that can be reviewed in a reasonable time (Booij et al.,
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2019).

Validation by six experts is the minimum to improve the segmentation, but quantitative
analysis show us, 8 experts validation is the minimum due to the equilibrium state between
the Specificity and the sensibility. The performance of human judges is not fixed and can
improve over time, other articles choose a validation by 15 experts for instance which is not
possible in our biomedical context which requires experts in the field (Salimans et al., 2016;
Denton et al., 2015).

Segmented images with a training made upon Speckle optimized augmented image are
the most accurate according to the metrics we choose. Speckle is a granular textural noise
which does not takes part of bright-field image acquisition which makes its contribution
to the improvement of the segmentation process more difficult to interpret. Indeed, the
natural noise contained in bright-field images (shot noise), which render the best data aug-
mentation strategies can not render similar improvement of the segmentation (Gilroy, 2019;
Brémond Martin et al., 2022). Thus the explanation of this result should be in another
domain. Speckle is present in other biomedical acquisition modalities such as radar to-
mography or ultrasound images and has to be eliminated in order to highlight relevant
biological structures (Liba et al., 2017; P. Singh et al., 2021; Karaoglu et al., 2022). Edge
extraction on images containing this noise is particularly difficult due to the direction of
contents edges while, the speckle is randomly distributed. The segmentation render best
quantitative results with a Gabor-based anisotropic diffusion pre-processing denoising sys-
tem on ultrasound images for instance (Haobo Chen et al., 2021). However, in our case, the
noise is injected in the feature space of images during the generative process of the GAN
and not on the image, see Section 3.4 and (Brémond Martin et al., 2022). Considering our
results, an explanation could be the power of generalisation on a segmentation task trained
with data augmentation with GAN noise optimized image, is the best with a speckle noise
injection. Indeed, speckle noise is the only noise which follows a gamma distribution (Arul-
pandy et al., 2020), this property could explain its particularity to generate generic images
that will allow a better training. The other noise optimisations could maybe improve the
result of other tasks which has to be studied.

In future studies, a metric based method or a qualitative based approach which could
replace the validation of 8 or more experts could help to automate or, win some time during
the segmentation procedure, could be useful. It could be interesting to segment others
images from others GAN variations such as one from noise optimisation (Brémond Martin
et al., 2022). In the training step, we only use psychovalidated images without verifying
the kind of optimisation. In another part, we only use a specific GAN variation during
the training. As in 8 expert validation images contained in the training set are in majority
from the P.Wass or Wass loss optimisation considered as the best optimisation to produce
the most realistic images and to accurate the segmentation, it strengthen this result 3.3
and 3.5.3. To be fair, it could be interesting to test a similar 8 expert validation set with
others optimisations in the same number. The 0 to 4 expert dataset contains almost all
BCE, BCE+I11, LS psychovalidated images, however, these images are specifically blur with
white imprint and others issues see Section 3.3. Maybe, the blur and artefacts of these
generations provoke the huge amount of F'P around the segmented shape of the organoids
for these groups due to the increase of incertitude.

Then, other biomedical datasets could be segmented with this methodology to estimate
the range of experts needed at minimum and maximum for validating GAN images.

In this part we aim at studying the effect of various GAN data augmentation strategies
on the segmentation quality. We bring new insights on which kind of optimisation could
benefit to the best learning process on a segmentation procedure for brain organoid bright-
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field images. We verify the Perceptual Wasserstein loss optimisation on AAE is the best
loss optimisation to give the best segmentation results. We verify the most biological expert
validate a synthetic image used during the training step, the better is the segmentation.
Finally we highlight the speckle noise injection during the generative process of synthetic
images used during the training of segmentation give the best accurate segmentations.

4.3 Mu-Net a light architecture for small dataset seg-
mentation

This article will be soon submitted for publication consideration. It has been presented
in a special session of the GDR-ISIS called “Towards pragmatic learning in a context
of limited labeled visual data” at this link .

In the previous Section 4.2 we observe the effect of various data augmentation strate-
gies and optimisation on a deep learning segmentation based upon U-Net. We observe
a huge training time and a certain amount of data are required. Recently some reduced
architectures for segmenting small datasets have appeared see Paragraph 4.1.2.

In this part, we will study the effect of various data augmentation strategies on the
reduction of the segmentation architecture.

4.3.1 Methods

Resources

Original 40 images are from the dataset (Gomez-Giro et al., 2019). Twenty pathological and
physiological cultures are captured with a bright-field microscope over 3 days. The grayscale
images are 1088 x 1388 pixels. However, to execute our script in a reasonable time, the input
images are cropped and resized to 250 x 250 pixels, maintaining the original proportions.
Transform groups are original images transformed by linear data augmentation strategies
chosen randomly (flip flop, rotation and whitening) in order to compare AAE with a classical
approach. We created 40 transformed images. Generated groups are constituted by: 240
images in 6 loss group optimisation of an Adversarial Auto-encoder (AAE) (Brémond Martin
et al., 2021a) and 160 in 4 noise groups optimized in AAE from (Brémond Martin et al.,
2022). The each 6 loss groups are composed by 40 images generated with a binary cross
entropy (BCE), a BCE with a normalisation (BCE +L1), a least square (LS), a poisson
(POISSON), a wassertein (Wass.), and a perceptual wasserstein loss (P.Wass.) whereas
each of the 4 noise groups are composed by 40 images generated with a gaussian, a speckle,
a salt and pepper and a shot noise injection. Bright-field image acquisitions are characterized
with shot noise (Gilroy, 2019). Resources are listed in paragraph 2.7.

Segmentation architectures
We choose to realize an architecture based on the U-Net architecture as we want to reduce

the time execution but conserving its precision.

U-Net Originally created in 2015 by Ronneberger et al., 2015a, U-Net creates detailed
segmentation maps that are particularly well used in the biomedical domain thanks to its two
part (encoder and decoder) u-shape architecture which spread the contextual information of

109



Dataset Effectives Sample

1) Original 40 ‘
2) Transformed 40 -

3) Loss optimisation AAE 240 o
4) Noise injection AAE 160 '

Table 4.7: Sample view for each dataset. 1) is from (Gomez-Giro et al., 2019), 3) and 4)
samples are respectfully from (Brémond Martin et al., 2021a; Brémond Martin et al., 2022).
Only samples from 2) are purposely transformed from the original dataset 1).

images inside the network. The encoder part use a CNN architecture: two 3 x 3 convolutions
followed by a ReLU activation unit and a max-pooling layer repeated several times. The
difference between U-Net and others previous CNN is the second part called decoder part
where at each stage, the feature map is up-sampled using 2 X 2 up-convolution. In the
encoder part, the feature map from the corresponding layer is cropped and concatenated
onto the up-sampling map which is a long skip connection. The ultimate stage consists in
a 1 x 1 convolution to reduce the feature map and produce the segmented image.

UNet-Mini Segmenting a small dataset is an actual challenge in the domain, in 2020,
(Jirik et al., 2020) realize a new architecture based on U-Net with a few changes: they update
the skip connections with addition as an element-wise product instead of concatenations;
they reduce the layer number at four to reduce over-fitting situations and also the number
of kernels used in each convolution (ks = 3 x 3 and stride s = 1 and they use a soft-
max activation task for their non binary). This last update reduce the number of hyper-
parameters to learn (and the execution time) at 128K instead of 17M with the original
implementation.

Mu-Net Our reduced U-Net architecture contains as similarly with the UNet-Mini 4
encoder-decoder layers with 16, 32, 64 and 64 number of kernels as our objective is to reduce
the execution time. However we conserve the original skip connections. Indeed, we choose
the concatenation for the feature re-usability and compaction. We also update size strides
(the amount of steps between filter applications to the input image) when we down-sample
in convolution layers while stride stay at 1 whatever the convolution layer in UNet-Mini. We
used an Adam optimizer, with a binary cross entropy loss and a sigmoid activation (because
of the binary segmentation purpose). Summarized model is recapitulated on the subsequent
Table 4.8
To observe the differences between the three models see Table 4.9.

Training

To segment original images, we train the chosen architectures in a leave one out strategy:
all the original and an augmentation group are used during the training stage except one
original image which is segmented during the test phase thanks to the model generated.
We process 40 leave one out training models * 6 loss groups + 40 leave one out training
models * 4 noise groups + 40 leave one out training models with a classical augmentation
dataset constituted by flip flop, rotation, or whitening of original images: which results in
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name filter parameters
Conv2D 16X16  [k=3,s=1,a=relu]
Conv2D 16X16  [k=3,s=2,a=relu]
BatchNorm
Conv2D 32X32  [k=3,s=1,a=relu]
Conv2D 32X32  [k=3,s=2,a=relu]
BatchNorm
Conv2D 64X64  [k=3,;s=1,a=relu]
Conv2D 64X64  [k=3,s=2,a=relu]
BatchNorm
Conv2D 64X64  [k=3,s=1,a=relu]
Conv2D 64X64  [k=3,5=2,a=relu]
BatchNorm
Dropout [d=0.5]
Maxpooling [p=2,2]
DConv2D 64X64  [k=3,s=1,a=relu]
DConv2D 64X64  [k=3,;s=2a=relu]
Upsampling  64X64 [k=2,a=relu,sz=2,2]
Concatenation
DConv2D 64X64 [k=3,a=relu]
DConv2D 64X64 [k=3,a=relu]
Upsampling  32X32 [k=2,a=relu,sz=2,2]
Concatenation
DConv2D 32X32 [k=3,a=relu]
DConv2D 32X32 [k=3,a=relu]
Upsampling  16X16 [k=2,a=relu,sz=2,2]
Concatenation
DConv2D 16X16 [k=3,a=relu]
DConv2D 16X16 [k=3,a=relu]
Conv2D 2X2 [k=3,a=relu]
Conv2D 1X1 [k=1,a=sigmoid]

Table 4.8: Mu-Net Model. k corresponds to the kernel size, s to the stride, a to activation,
d to dropout, p to pool size, sz to upsampling size

Update Name Unet UNet-Mini Mu-Net
Layer Number D 4 4
Filter 64, 128, 256, 512, 1024] [16,32,64,64]  [16,32,64,64]
Stride default(1) default(1) 1or2
Activation Sigmoid Softmax Sigmoid
Skip connections Concatenation Addition  Concatenation

Table 4.9: Summary of differences
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Figure 4.9: Mu-Net Architecture. Arrows are representing operations and blocs are repre-
senting convolutional or deconvolutional layers constituted by two 3 x 3 convolutions (except
for the latest blue bloc which is constituted by two 3 x 3 and one 1 x 1 deconvolution).

440 training launch for each model. We retrieve the time of training of models. To stop the
training and avoid over-fitting, we retrieve the models before the loss value hits a 'plateau’.
Original, transformed and generated images are manually segmented with the ITK-SNAP
software to obtain a ground truth purpose (Yushkevich et al., 2006b).

Comparison of segmentations

To compare all the strategies we compare median scores between groups with all the metrics
already described in Paragraph 4.2.1. We retrieve execution time for each image segmented
by a network, and for an entire leave-one-out process (the procedure of the leave-one-out
strategy is summarized in Figure 4.10).

The visualisation of segmented images is similar to the one described in Paragraph 4.2.1.

Ablation study

In order to validate the benefit and inconvenience of our methodology, we perform an abla-
tion study between Unet, UNet-Mini and our architecture in term of scores. It results we
tested N models with only:

e Unet,

o “Layer”,
o “filter”,

e ‘“kernel”,
e “Ewise”,

e “layer + filter”,

e “layer + kernel”,
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Original Dataset
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Synthetic Datasets Traditional Datasets
BCE Gaussian rotations
BCE+L1 Salt & Pepp. flip-flop
LS Speckle whitening
Poisson Shot crop
Wass Shot+Gaussian shear
P. Wass. Shot+Salt Z00om
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Figure 4.10: Experimental scheme of the leave-one-out strategy to test the effect of various
data augmentation on segmentation. The synthetic and traditional datasets are generated
at each loop without the leaved one out image.
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e “layer + ewise”,

o “Filter + kernel”,

o “Filter + ewise”,

o “Kernel 4 ewise”,

o “layer + filter + kernel”,

e “layer + kernel + ewise”,

o ‘“layer + filter + ewise”,

e “filter 4+ kernel + ewise”,

e “layer + filter 4+ kernel + ewise”,

o “layer + filter + kernel + stride” (Mu-Net),
e “layer + filter + kernel + ewise + stride + activation” (UNet-Mini).

We decide to determine a binary content and always use a sigmoid activation.

4.3.2 Results

We suggest to tackle a segmentation task in a leave-one-out strategy (n=79 for training
and n=1 for testing for each data augmentation strategy). We choose the classic U-Net
architecture and its two lighten architectures as UNet-Mini and the purpose Mu-Net.

Qualitative

We suppose that the data augmentation strategy used during each architecture training
time could modify the segmentation results. Table 4.10 represents segmented samples from
U-Net, UNet-Mini and Mu-Net according to the AAE loss optimisations against classical
data augmentation strategies while Table 4.10 represents segmented samples according to
the AAE noise injection. Concerning the Table 4.10, U-Net architecture seems to be the
most accurate while UNet-Mini and particularly Mu-Net segmentations show high amounts
of false positive pixels except for Wassertein loss optimisations. Concerning the Table 4.11,
U-Net and Mu-Net show almost similar result with again a small amount of false positives
around the shape of the cerebral organoid. For UNet-Mini, a particular false positive around
the contour of images are seen, and the salt of paper is characterized by a huge amount of
false negative.

Quantitative

As we cannot decipher the real precision of segmentations, with human observation on a
single image from a dataset, we calculate median scores for each case summarized for loss
optimisations in Table 4.12 and for noise injections in Table 4.13. Dice scores are for all the
architectures more elevated for each AAE loss optimisation strategy respectfully to classic
data augmentation. The highest Dice score is reached by U-Net architecture when AAE
Perceptual Wassertein loss optimisation is used during training. This loss optimisation used
in UNet-Mini training allow also to reach the highest score however lower than for the U-Net
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GT Classic  Gaussian Salt & Pepp.
U-Net H
Unet-Mini m E “ m
9
Mu-Net m D :: i

Table 4.10: Observation of Segmentation realized with several loss optimisation data aug-
mentation strategy during the training for U-Net and its derivatives architectures. GT
corresponds to the ground truth segmentation. False positive pixels are colored in purple
and false negatives in cyan, real negatives in black and real positives in white.

GT Classic ~ BCE  BCE+L1 LS Poisson ~ Wass.  P.Wass.
U-Net
o el i i hd i i m
o i m el nd L) el

Table 4.11: Observation of segmentations realized with several noise injections for data
augmentation strategy during the training for U-Net and its derivatives architectures. GT
corresponds to the ground truth segmentation. False positive pixels are colored in purple
and false negatives in cyan, real negatives in black and real positives in white.
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Classic BCE BCE + L1 LS POISSON Wass.
U-Net 0.68 0.87 0.87 0.86 0.87 0.88
Layer 0.83 0.89 0.88 0.87 0.90 0.88
Filter 0.85 0.56 0.84 0.82 0.83 0.85
Kernel 0.85  0.17 0.84 0.85 0.68 0.85
Ewise 0.51 0.69 0.72 0.80 0.66 0.68
Layer + Filter 0.84 0.87 0.87 0.85 0.88 0.87
Layer + Kernel 0.34 0.35 0.68 0.68 0.35 0.50
Layer + Ewise 0.33 0.21 0.28 0.28 0.25 0.32
Filter + Kernel 0.71 0.78 0.72 0.59 0.70 0.71
Filter + Ewise 0.67 0.39 0.77 0.76 0.59 0.31
Kernel + Ewise 0.17  0.65 0.55 0.59 0.64 0.65
Layer 4 Filter + Kernel 0.83 0.91 0.88 0.86 0.87 0.88
Layer + Kernel + Ewise 0.35 0.33 0.16 0.16 0.21 0.31
Layer + Filter + Ewise 0.42 0.28 0.19 0.36 0.13 0.29
Filter + Kernel + Ewise 0.50 0.34 0.29 0.29 0.45 0.37
Layer + Filter + Kernel + Ewise  0.85 0.88 0.87 0.89 0.87 0.89
(Mu-net)
Layer + Filter + Kernel + Stride 0.84 0.83 0.85 0.78 0.84 0.82
Layer + Filter + Kernel + Stride +  0.86 0.84 0.87 0.88 0.85 0.88

Activation + Ewise (Mini-Unet)

Table 4.12: Dice scores for segmentation with several loss optimisation of data augmentation
strategies during training

architecture. According to Table 4.13, Mu-Net seems the most accurate in term of median
Dice scores, followed by U-Net and by UNet-Mini. Images from an AAE optimized with a
Gaussian noise injection used during the training of Mu-Net show the highest Dice scores.
However, others noise injections in the generative process do not improve the segmentation
task.

To summarize, U-Net gives the most accurate results in term of segmentation of bright-
field images from brain organoids. However, Mu-Net is a promising alternative with its
almost same accuracy with classical data augmentation strategy and particularly execution
time.

To verify the effect of each component of the architecture on the segmentation precision
of bright-field image in a specific data augmentation strategy, we realize an ablation study.
It consists in suppressing or adding an architecture component (one by one) and calculating
then the median Dice scores for each intermediate architecture. Results of this study are
summarized in the lowest part of Tables 4.12 and 4.13. At first sight, the layer reduction
allows an increase in Dice score whatever the data augmentation strategy realized, whereas
the filtration does not improve the results. The kernel reduction allows the highest Dice score
for the binary cross entropy. Layer reduction of the U-Net architecture allow to increase the
segmentation accuracy particularly when images from a generative process with perceptual
Wasserstein loss are used during the training time of this model. Similar results are obtained
with a layer, a filter and a kernel reduction combined with generated images from BCE loss
used during the training. Best results are obtained with P.Wass loss used for generated
images used during the training time. Regarding noise injections, best results are obtained
with a Gaussian noise whatever the reduction made.
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0.73
0.88
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0.37
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0.65
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0.87
0.37
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Classic Gaussian Salt Pepp. Speckle Shot

U-Net 0.68 0.83 0.82 0.74 0.74
Layer 0.83 0.91 0.83 0.83 0.85
Filter 0.85 0.83 0.52 0.73 0.74
Kernel 0.85 0.64 0.72 0.58 0.75
Ewise 0.51 0.73 0.22 0.18 0.38
Layer + Filter 0.84 0.88 0.83 0.69 0.80
Layer + Kernel 0.34 0.70 0.77 0.49 0.40
Layer + Ewise 0.33 0.20 0.54 0.20 0.32
Filter + Kernel 0.71 0.74 0.59 0.55 0.62
Filter + Ewise 0.67 0.65 0.45 0.10 0.21
Kernel + Ewise 0.17 0.56 0.45 0.11 0.26
Layer 4 Filter + Kernel 0.83 0.87 0.81 0.77 0.74
Layer + Kernel + Ewise 0.35 0.42 0.37 0.26 0.32
Layer + Filter + Ewise 0.42 0.18 0.14 0.08 0.14
Filter + Kernel 4+ Ewise 0.50 0.21 0.29 0.26 0.16
Layer + Filter + Kernel + Ewise  0.85 0.88 0.80 0.81 0.83
(Mu-Net)

Layer + Filter + kernel + stride 0.84 0.81 0.59 0.75 0.81
Layer + Filter + Kernel + Stride +  0.86 0.82 0.74 0.48 0.77

Activation + Ewise (Mini-Unet)

Table 4.13: Dice scores for segmentation with several noise optimisation of data augmenta-
tion strategies during training

Architecture Time (1 launch s=h) Time (LOO s=h)

U-Net 990=16.5 39613=660
UNet-Mini 157=2 6282=104
Mu-Net 151=2 6044=100

Table 4.14: Training time execution for each segmentation architecture in seconds for one
image and for the entire leave one out process (LOO on 40 images). The time is written in
seconds=hours (s=h).

Computational comparisons

We also verify our supposition measuring the average execution time for a training and
a test phase for a single image and for the full leave one out strategy (40 passages) for
each architecture, whatever the data augmentation strategy used while training, which are
summarized in Table 4.14. As supposed, UNet-Mini and Mu-Net realize the quickest
execution compare to the original implementation.

4.3.3 Discussion

The main outcomes of this study are: we presents a new light segmentation methodology
(Mu-Net), compared with architectures from literature, according to various data augmen-
tation strategies, to segment small bright-field image datasets of brain organoids, which
have particular formations essential to extract. The presented framework based on U-Net
network runs the quickest for a single launch or for an entire leave-one-out process. Mu-Net
reaches almost the highest scores obtained with U-Net in term of precision with the par-
ticularity of reaching it with classical data augmentation strategies used during its training
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time, whereas similar scores are obtained with optimized AAE strategies with U-Net. The
ablation study confirms that another intermediate architecture, based upon a single layer
reduction could be used to obtain higher scores.

To our knowledge, this is the first automated segmentation dedicated to small dataset of
two dimensional bright-field images of brain organoids. Segmentation of small datasets (not
always labeled) remains an actual issue in the domain of biomedical images. In the case of
brain organoid growth following, segmentation is a crucial tool to extract their morphological
shape and characterize their physiological or pathological development, in order one day to
make them a brain in vitro model which could fill the gaps of in vivo models (Madeline A.
Lancaster et al., 2013). Only U-Net has been used to segment automatically ventricular
zones in the Scout software for clarified brain organoid images and to extract the shape of
two dimensional brain organoid images in order to validate the accurate data augmentation
strategy (Albanese et al., 2020; Brémond Martin et al., 2021a). However, training time
consideration, the amount of labelled images required and, the approximate segmentation
of neuro-epithelial regions (essential to determine if the culture is well developed) convinced
us to found an appropriate solution for these particular cultures.

Among light U-Net architectures, Mu-Net allows a reduction of training time execution.
This could be explained by the drastic reduction of learned hyper-parameters, and also by
the layer reduction in these networks. Usually, the sophistication of the architectures aims
at producing highly accurate segmentation, however it involves a cost in term of proceeding
and computation. Contrary to others U-Net derivatives applied on others biomedical images
(3D, attention, inception, residual, current neural network, and adversarial) reducing the
architecture remains a few update proceeding task (Siddique et al., 2020) and could be
quickly implemented on platform rendering image segmentation.

Mu-Net is almost as accurate as U-Net according to the data augmentation strategy
used during the training. In contrast, UNet-Mini never reaches higher Dice scores than
0.85 though they shared an important part of similitude in their implementation. This
is explained by the transfer learning method used during the training time: while U-Net
and our Mu-Net architecture use concatenations to long skip connections, UNet-Mini uses
an additional long skip connection based upon an element-wise product (Jirik et al., 2020;
Ronneberger et al., 2015a). A skip connection skips layers in the neural network and feeds
the output of one layer as the input to the next layers. In addition, data captured in the
initial layers are features corresponding to lower semantic information that are extracted
from the input and shared to output. In concatenation, low-level information is shared
between the input and output, and this information is directly shared across the network.
This method allow the feature compaction and high standardisation which is not possible
with addition.

The particularity of Mu-Net is to reach highest Dice scores in case of a classical data
augmentation strategy is used during the training time. The ablation study confirmed that
the combination of layer reduction and kernel size allows to conserve a high Dice score
segmentation and not only the layer reduction. The supposition we propose would be the
combination of the reduction layers + kernel size and the concatenation allows a transfer
learning on essential features. Classical data augmentation chosen here is supported by
simple transformations such as flip-flop, rotations of 90 degrees or whitening of images by
applying a filtration. GAN solutions are based on two part generative and discriminative
networks which have to be train and optimised. If this behaviour is observed with another
dataset of bright-fields images, it could render this architecture more attractive (to avoid
using data augmentation strategies based upon GAN architectures which is time consuming).

We notice a high rate of false positives in samples chosen to illustrate the architecture
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results in the case of classical data augmentation. A false positive is defined as an instance
of an organoid region that is present in the predicted mask has zero intersection with the
ground truth mask region. Surroundings of brain organoids are constituted by spreading
cells (Kelava et al., 2016a) that could be interpreted by these network as organoid regions.
The ground truth could have an effect on this result. This may be due to the small amount of
dataset used to be trained combined with the less deeper architecture which could cause the
approximate learning of surrounding details. It could be interesting to realize a segmentation
with all data augmentation strategies in the same training dataset in order to observe its
segmentation effect.

A comparison that could be done is to compare this Mu-Net architecture with others
U-Net variation such as described in Siddique et al., 2020. We observe the fundamental
role of concatenation in this architecture, however others U-Net variations are characterized
by dense connections (Hoang et al., 2021). Such update could be interesting to combine
with the reduced architecture in order to observe its contributions to the bright-field image
segmentation of these cultures. We choose also a supervised version (with manually labeled
datasets as ground truth) but in future comparisons it could be interesting to realize a
zero shot learning solution in order to avoid the neurobiologist time vanishing in manual
segmentation (Qi et al., 2020). Another possible comparison could be also made with
machine learning tools (active contours, Kmean etc.). Concerning the metrics comparison,
we could calculate others known scores (F1, accuracy...) in future studies. Augmentation
strategies could be also realized with non linear transformations or others GAN architectures
(Yi et al., 2019). We mention the noise injection optimisation benefit during the training
need to be thorough. We verify the contribution on ablation study which implies only a few
configuration. In the future, it will be interesting to realize an ablation study on filtering,
kernel reduction, or even others skip connections. The main future objective is particularly
to reproduce all these procedures on another bright-field data-set of brain organoid images,
or of another biomedical model if there is no available.

We propose our first results on Mu-Net a framework for bright-field brain organoid image
small data-set segmentation. Apart from validating our methodology on a second data-set,
we need also to compare the particular contribution of the combination of a lighten architec-
ture with others specific transfer learning methodologies. Once validated, this segmentation
architecture could help at deciphering the particular growth formation on these cultures in
two dimensions in a quickest time than the original U-Net implementation and maybe help
at their morphological characterisation. Transferring this framework to others biomedical
models bright-field images could also be useful.

4.4 Machine learning segmentation of brain organoids

This part has not been published. ]

In recent articles the advent of deep learning methodologies has been exposed, however,
for some use, classical tools could maybe more accurate. Particularly when the training
set is too small, the model cannot learn well the task and the segmentation became less
accurate than others. To verify if the previous developed deep tools render better results
than classical machine learning ones, we compare some classical segmentation tools with
the best deep methodology.
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Figure 4.11: Qualitative comparisons of ML segmentations with Mu-Net. a) Real, b) GT,
c¢) Threshold, d) Active contour, e) Kmean, f) Region, g) Watershed, h) Mu-Net.

(d)

4.4.1 Methods

The protocol is the same as developed previously in part 4.3 and we use the same resources
and metric comparisons as previously. The classical segmentation algorithm does not require
training time.

Machine learning tools

We decide to compare the segmentation results by testing one of each machine learning
methods described in 4.1.1. We test an Otsu thresholding from (Otsu, 1979b), a region
growing algorithm (Adams et al., 1994), a Kmean clustering with a particle swarm optimi-
sation from (Vora et al., 2013), an active contour from (Menet et al., 1990), a level set from
(Meziou et al., 2012), and a watershed method from (Sharma et al., 2022). The threshold
has been set to 185 pixel value. For region growing algorithm, we set the regional threshold
to 0.2, and the size of growth to 1.

Deep learning tool

We compare U-Net, Mu-Net and the previous detailed classic segmentation algorithms with
the Dice, Fl-score, Accuracy, Sensitivity and Specificity as previously described.

4.4.2 Results

The interest of this work is to compare various machine learning algorithm with Mu-Net,
our deep-learning lighten architecture, first by observing a sample of images obtained, then
quantitatively by using metrics.

Qualitative analysis

A sample of each segmentation is presented in Figure 4.11. Qualitatively, the threshold,
active contour, Kmean and Mu-Net seems to render the best results. The region growing
algorithm and threshold render the worst result with the watershed maybe due to their
lower precision linked to the manual setting of some parameters.

Quantitative analysis

The metric comparisons between GT and each segmentation in Table 4.15 are consistent
with the previous observations in Figure 4.11. Comparisons of indices between Mu-Net
results with classical ml show it render best results with the Kmean algorithm. But does
not outperform this method in term of Dice and Specificity scores but in F1-score, Sensitivity
and Accuracy a see. Others segmentation methods does not reach high scores, and are the
worst for the threshold and region growing algorithms.
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Threshold Active Kmean Region Watershed Mu-Net

Dice < 0.1 0.62 0.89 < 0.1 0.61 0.88
F1-score 0.40 0.66 0.72 0.20 0.61 0.77
Sensitivity 0.39 0.69 0.77 0.19 0.53 0.90
Specificity 0.96 0.84 0.89 0.86 0.94 0.86
Accuracy 0.83 0.90 0.90 0.7 0.88 0.92

Table 4.15: Mu-Net with classical segmentation comparisons

4.4.3 Discussion

In this part, we originally compare our original segmentation contribution Mu-Net with clas-
sical machine learning (ML) algorithms. Some ML segmentation algorithms seem not well
suited to extract the shape of brain organoid without the optimisation of a pre-processing
step and, are only semi-automated. Mu-Net also outperforms almost all the ML procedures,
except the Kmean clustering algorithm for some scores.

ML strategies do not give strong results of segmentation. The main drawback observed
in this study is the use of pre-setting of some parameters in ML solutions. Set most of
the time manually, and despite the fact of testing various combinations, these parameters
render the segmentation process semi-automated and, especially not expected scores. The
non expected scores are also linked with the fact ML algorithms are not appropriate for
datasets with strong variations (Malhotra et al., 2022). However, in early developmental
stage of brain organoids there is no neuroepithelial formation while after 14 days the shape is
transforms due to this structure (Gomez-Giro et al., 2019). They are also influenced by the
batch syndrome: brain organoids are growing differently in the same environment producing
one or a multiple of these neuroepithelial zones (Madeline A. Lancaster et al., 2013). Thus
instead of furnishing a pre-setting parameter for each image contained in particular dataset,
ML solution are not dedicated for these cultures.

The Kmean machine learning algorithm is an exception and reaches the best segmenta-
tion scores. Taking appart the number of parts to segment (here the background and the
brain organoid), this algorithm do not require another setting which will influence the score,
and this setting could be given automatically. The particularity of the Kmean clustering
algorithm is to compare the cluster containing a centroid with a pixel (Vora et al., 2013).
The addition of the particle swarm optimisation allow to get a more precise clustering ef-
ficiency and thus a better Accuracy than a single Kmean algorithm. Taken together, this
could explain why the Kmean render the best results and should be used to segmente brain
organoid tiny datasets images.

Mu-Net outperforms the ML strategies except the Kmean. Our reduced model of seg-
mentation for brain organoid tiny dataset of images, is automated and do not require pre-
setting. The light architecture allow to perform the segmentation of an image almost as
quickly a Kmean algorithm and produce similar results. However, for now, this architecture
need to be improve to be the one to choose to segment brain organoid tiny datasets. An
improvement could be to use prior information during the Mu-Net training (such as giving
shape or topological information on the kind of image segmented) (El Jurdi et al., 2021), but
this will require a better knowledge of the morphological characterisation of these cultures.

To conclude in this part, the comparative study helps highlighting Mu-Net architecture
can render almost as accurate segmentation as the Kmean and, should be proffered to replace
others ML strategies as Mu-Net outperforms their scores. We are convinced an optimisation
by shape/topological information given during the data augmentation step to train better
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our model could improve the segmentation results of brain organoid tiny datasets and, may
outperforms also the Kmean in the future.

4.5 Discussions and conclusions on segmentation

The objective of this segmentation part is to extract the shape of brain organoid tiny
datasets of microscopic bright-field acquisition in order to characterize their morphology.
We first compare various training procedure with the golden standard deep learning segmen-
tation methodology which is U-Net, in order to decipher the most usefull data augmentation
methodology for a tiny dataset. Then, we reduce this architecture which requires a certain
amount of data and trianing time in order to simplify it and we obtain particular accurate
segmentation which are not far from a ground truth (manual segmentation). In the last
part we show how a reduced deep learning architecture with a particular data augmentation
strategy for tiny datasets could produce the most precise segmentation compared to ML
architectures. In this discussion, we will highlight the benefits of these results, some draw-
backs, the pioneer work we attempts, and the industrial and future perspectives of research
in the segmentation domain for these tiny datasets.

4.5.1 Discussion on our work

In our work we propose to verify the influence of data augmentation during the learning step
of a deep learning segmentation process. We propose a light U-Net architecture dedicated
to the extraction of brain organoid shape in bright-field acquisition and, verify if it succeed
to be better than ml processes. Thanks to this work the brain organoid field can now
count into an automatic way to extract their shape which is fast, and does not require
a lot of training steps. This architecture can be improved by shape prior, topological or
contextual information. It could be also interesting to test the segmentation with this
architecture on other microscopic acquisition of this culture. Similarly, we need to compare
this architecture with others non U-Net variation architectures such as CNN, FCN, or
attention based models detailed in Paragrap 4.1.2. It could be also interesting to test the
effect of Few, One or Zero shot learning on this kind of architecture such as proposed in
Pastore et al., 2021. The interest of learning a small database in an unsupervised way
will be a challenge to raise in the future. Then, in order to generalize its use on others
bright-field images, it could be interesting to test this architecture on others biological
models such as the already cited blastocystes bright-field image dataset from this link https:
//bbbe.broadinstitute.org/image_sets.

4.5.2 Initial work on perspectives

The main future work concerns the test on others architectures such as described in part 4.1.2.
Concerning the comparisons with ML architecture, we need to observe the influence of some
optimisations particularly on the initialisation step. The validation on other bright-field
biomedical microscopic images has steel to be tested in order to generalize the use of Mu-
Net.

4.5.3 Academic and industrial perspectives

Industrial and academic perspectives from this segmentation work on segmentation are
various:
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e The Mu-Net architecture could help to segment accurately tiny datasets of bright-field
brain organoid images.

e [t confirms the data augmentation used during the training step of a deep learning
based segmentation algorithm influence the accuracy of the shape extraction. In an
automatic procedure to extract every shape accurately, on a tiny dataset, the test of
various data augmentation strategies is required.

e The interest of this comparison scheme is to propose to segment other biological mod-
els, or other microscopic acquisitions on brain organoid images.

e We nonetheless have to compare others optimisation of the Mu-Net architecture to
outperform a Kmean optimized machine learning segmentation.

e The effect of few-, one- and zero-shot learning needs to be tested.

e The test of this architecture on others biomedical models or on the other microscopic
acquisitions of brain organoids could help to verify the generality of this algorithm
and spread its use in other applications.

e Once brain organoid is characterized, an interesting perspective could be to add a
prior shape/topological/channel/cnstraint knowledge to extract the shape of others
brain organoid datasets according to their development more accurately.

e The development of these ideas could open new issues to answer and develop. Devel-
oping a scalable algorithm which could be optimized or reduced according to the tiny
dataset given in the biomedical field could be also of interest.

4.5.4 Conclusion

The main contributions of this chapter are:

e The effect on the segmentation accuracy of brain organoid bright-field images of various
data augmentation strategies based upon GAN optimized used during the training
session, has been verified.

e Perceptual Wasserstein loss and Speckle noise optimisation, or psychovalidated images
by 8 experts, for a training synthetic dataset render the best qualitative segmentations.

e We propose a lighten U-Net architecture dedicated to the brain organoid shape ex-
traction.

e We validated this architecture on another dataset, we propose an ablation strategy,
and compare it with other deep or ml based algorithms.

This work and approach should be tested on others models in order to generalize it. An
interesting work could be to to use, and thus verify, our segmentation strategy to characterize
the brain organoid development.
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Chapter 5

Characterisation

The study of the morphology of biological structures, is essential to characterize the physi-
ological development. Morphology originally describes a branch of biology that deals with
the form and structure of animals and plants. Also called set theory in other domains, is
used to extract features representing a regional shape in images (Hausdorff, 2005).

In the previous sections we generated synthetic images of brain organoid cultures in
order to segment their shape see Sections 3 and 4. The binary images obtained are used
to characterize the morphology of brain organoid cultures. The interest of morphological
characterisation is to better understand these structures in order to predict a developmental
stage, or, to distin a physiological and pathological development, or to follow the growth of
a culture.

In this section we describe morphological calculation which describe biological contents
in images: first the traditional operations, then the topological based analysis, and the
deep learning methods, the use of these tools in the biomedical field, our strategy and our
contributions.

5.1 State of the art on characterisation

5.1.1 Classical morphological characterisation

Traditional morphological characterisation contains various types of index calculations de-
pending on boundary or regional descriptors (Gonzales et al., 1987). Here, we describe
the brain organoid literature classical descriptors without taking into account those only
describe in Section 2.

Boundary descriptors

Also called simple descriptors, boundary descriptors contain the length, diameter, curvature
the shape number, Fourier descriptors and moments. The length is the simplest descriptor,
it consists in counting the number of pixel constituting an axis of a shape. While the
diameter of a boundary consists in creating a line connecting the two extreme points of the
boundary, and is also called the major axis. The curvature is a rate of slope changes, and is
more difficult to calculate than the length and diameter due to no continuous boundaries,
and the various length of individual segments. It consists in decomposing the boundaries
into straight segments which simplify the description process and then calculating slopes.
At a point p, the curvature descriptor is described by ranges of change slope: p takes part
of the nearest segment if the change is less than 10°, p takes part of a corner if the change
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exceed 90°. Thus the boundary vertices can also be interpreted as curvature descriptors: a
vertex point p takes part of a convex segment if the change of slope at p is non negative
and, p takes part of a concave segment in the contrary.

Another boundary descriptor takes its origin from the chain coded boundary and is called
the shape order. A chain code boundary represents the boundary by a connected sequence
of straight lines and each direction of a segment is encoded by a number. The difference
between chain code boundaries are the starting point. While the shape order takes into
account only the number of values constituting the representations. For instance a square
s with a starting point at the top left corner has a shape order of 4, a chain code of 0321
and a difference of shape number of 3333.

Fourier descriptors distinguish boundary shapes, are not sensitives to the starting point,
and the level of details can be modified by increasing or decreasing the number of ele-
ments. The Cartesian descriptor, also called elliptical Fourier descriptor, can describe some
invariants. Indeed, to compare shapes, a Fourier descriptor is invariant to geometric trans-
formations, which is at minimum: for scale changes, translation, rotation and curvature
for 2D and for 3D. For an arbitrary closed 2D polygon Poly of V' from (v,0,...,0y-1), &
sequence of p points representing the vertices of Poly we set a number of Fourier coefficient
pairs Np and the length of Fourier descriptors will be 2Mp + 1 (see Appendix pseudocode
?7?).

Moments describe the shape of boundary segments or signatures. Signatures are 1D
representations of boundaries by plotting the distance from the centroid to the boundary as
an angle. This method allow to reduce the boundary to a 1D representation, which is simpler
to describe, and translation invariant. However, they are rotation and scale-dependant.
Thus if a shape is noisy, the dependencies generate errors. A segment is represented as a
1D function g(v) of a variable v, and its amplitude as a random variable a. The amplitude
histogram (AH), with i increments of a (1 : K) is then calculated, with K the total number
of amplitude increments, or in a normalisation case of g(v) with v (1 : B) where B is the
number of boundary points. The n** moment is then defined by the mean and variance of
a or v such as described in equation 5.1 and 5.2, 5.3 and 5.4.

= gaiAH(ai) (5.1)
o = 3 = " A (0) 52
= 3 ) 6.3

Hn(o) = i(vi —my)"g(v;) (5.4)

i=1
Usually, to differentiate signature of distinct shapes, only the first moments are used. For

instance i, is related to the shape of g(v): the second moment measures the spread of
the curve of m,; the third moment measures the symmetry of m,,.

Regional descriptors

Boundary descriptors are not sufficient to describe the morphology of images. They are
completed by regional descriptors such as: perimeters, areas, compactness, and axes or
more complex as topological, or textural descriptors.
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The perimeter is defined as the length of the boundary while the area is defined as the
number of pixels contained inside the boundary. These two morphological indexes compose
the compactness, which is insensitive to scale changes and orientation:

perimeter?

Compactness = (5.5)

area
The direction of a region inside a shape corresponds to the biggest eigenvalue and its eigen-
vector. Matrix covariance eigenvectors are also called principal axes and obtained from
pixels inside a region described by a vector from a population of random vectors with n
dimensions « = [z1, 22...xn] and its mean as m, = Ex where F is the expected value:

Covar, = E(x —my)(x —my)" (5.6)

These descriptors are insensitive to rotations, but depends on the scale changes. To overcome
this issue, the ratio of the largest to the smallest eigenvalue is taken as the descriptor.

A more complex regional descriptor is to quantify the texture which measures the reg-
ularity or smoothness for instance of images. To calculate these descriptors, statistical,
structural and spectral approaches are used. The statistical approach usually uses moments
of the gray-level histogram from a region and, the methodology is optimized with the po-
sition of pixels. The structural approach yield with regular parallel space lines while the
spectral approach deals with detect the periodicity in images by highlighting the high energy
peaks in Fourier spectrums.

5.1.2 Topological based characterisation

Traditional morphological analysis may miss some information when the analysis concerns
some extreme datasets such as tiny or big datasets in the biomedical field. Topology is the
study of the figure properties which are not affected by any transformation (Zomorodian
et al., 2012). For instance, a topological descriptor can be defined by the number of holes
H in a region, which are not affected by rotations. Second topological descriptor is the
number of connected components C' inside a region. Connected component is a subsample
of maximal size, with a connected curve joining two points of its points. The number of
Euler €, the third topological property is defined then by:

e=C—-—H (5.7)

For a polygon P, regions are represented with straight line segments, and the region interior
with a number of faces F', holes H, vertices V' and edges E and the Euler number is then
defined by:

C—-H=V-FE+F (5.8)

The principle of topological data analysis (TDA) is to convert complex datasets due to
the huge amount or the lack of information into a simple summary of their features and
render may be a solution to this issue. TDA is split in two strategies: persistence homology
and mapper (Skaf et al., 2022; Iniesta et al., 2022).

Mapper is dedicated to the visualisation, it transforms a high dimensional data into
a skeleton which form a simplicial complex. The skeleton of a region is obtained by a
thinning and most of the time is defined by the medial axis transformation M AT. In M AT,
the nearest neighbor of the border B is found for each point p in a region R. When p has
more than one neighbor, it belongs to the medial axis, also called the skeleton of R. The
neighborhood depends on the distance chosen.
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In the mapper case, a data set is a point cloud expressed by p in P and a filter as a
function f(p) is applied on each p to obtain its = coordinate in the P space. These values
are then displayed vertically to obtain a map with overlapping intervals in colors which form
boxes. These boxes represent the pullback of f(p): a box contains p when the values are
in the range of the same colors. Points inside a pullback are finally clustered as a node
(0-simplex), and if two clusters have a point in common, their nodes are linked to form the
simplicial complex.

The persistence homology lies on homology and on persistence properties. The homology
counts the topological features for each dimension. The number of connected components
in 0 dimension is called 50 and points belonging to the same connected component are
described as homologous. The unique 1-dimensional hole in 1 dimension is called 51 while,
2-dimensional hole such as a cavity or a void is called §2. To summarize, in homology,
By is called the n*Bettinumber and describes the useful information inside a shape, but
must be use with persistence. The persistence aims at connecting points close together and
proceed as a Vietoris Rips complex formation by creating simplicial complexes and barcodes
for instance. At each step (range values), the number of connections added depends on a
parameter (radius) which rule the distance at which each point should be connected. First
each connected component is link to its data point p, and only p. Thus 50 equals to the
number of connected components and the number of points which is the number of birth
(departure of lines) of persistence barcode. During the second step, around each point a ball
of radius 7 is set and if two balls are overlapping the points pl and p2 are connected and
takes part of the same connected component. This is represented by a death in a persistence
barcode (one of the line which has been birth die), and the balls and radius are representing
simplicial complexes. If there is no overlapping the line is continued in the persistence
barcode. While the number of 50 is superior than 1 (and thus the lines constituting the
barcode are not dead), updates of homology are collected and, the radius is increased.

5.1.3 Deep learning for morphological characterisation

Thanks to morphological characterisation, the images can be classified or used to predict the
developmental stage or pathological state of its content. Classification is the main task in
deep learning use (almost 30% ) and is followed by the prediction (27.53%)in the biomedical
field see Figure 5.1. To compare these results segmentation is around 27% of the use and
GAN and detection are minor applications. However, we have to mention, classification do
not use only deep learning strategies.

Three kind of features can be extracted (W. Wang et al., 2020). Low-level features
are extracted upon grayscale density, color, texture shape or position inside the image,
or hand-crafted by an expert. Mid-level features are known as word descriptors. These
extracted features can be made upon support vector machine(SVM), clustering strategies
such as Kmean or fuzzy C-means, or scale-invariant feature transform (SIFT). And high level
features are extracted by deep learning solutions such as CNN, FCN or inception networks.
The issue with high level features extraction is based on the high amount of image required
during the training step of classification based on deep learning strategy.

The disease evolution, or a physiological developmental stage of a particular structure
are the two main applications of the prediction. Thus, the goal of classification is to assign
one or more labels to an image. After extracting features, the label are assigned to various
contents in images by a classifier(Cai et al., 2020).

In the case of small datasets, two strategies are preferred to use deep learning methods
for classifications. The first consists in using GANs to increase the original data set number
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Figure 5.1: Deep learning use in the Biomedical field. We only count the number of publi-
cations in the main domain and show it in percentages (on 27617 inputs since 2013).

of images and its variability (J. Wang et al., 2017), and the second is based upon transfer
or active learning. The principle of GAN have been already described in chapter 3 so here
we will focus on learning strategies.

A requirement for these large datasets, is on top of that to be labeled. Sometimes only a
small part of a large dataset is labeled, particularly for diagnosis applications. A way to allow
deep learning prediction of small non labeled datasets is to use active learning (Beluch et al.,
2018). The use of active learning is in majority used in non deep learning strategy (such as
SVM). Recently certain active learning strategies for deep-learning classification tools has
emerged such as: ensembles to estimate the prediction uncertainty of deep neural networks
in the context of outlier detection and reinforcement learning; uncertainty estimation by
measuring the variance. Transfer learning for medical image classification is also used in
case of few labeled data. The transfer of information takes birth from the parameters
of an original image. Two kind of transfers are existing: by feature extraction when the
convolutional layers are frozen or by fine tuning when the model is fit (H. E. Kim et al.,
2022).

5.1.4 Morphological characterisation in the biomedical field

Morphological characterisation in the biomedical field has increase since the last decade see
Figure 5.2.  Among the imaging modalities, the most often characterized morphology, we
found histopathological images with 40% of the use and X-ray with 23%, see Figure 5.3.
The domain of application concerns most of the time the morphological characterisation
of tumors and cultures (around 20%) see Figure 5.4.
Since 2013, the number of articles in the biomedical field studying the topology are 187.

5.1.5 Positioning and strategies on morphological characterisa-
tion

Morphological characterisation has been used for various biomedical images and microscopic

acquisitions. Morphological characterisation on cultures concerns almost 20% of the stud-

ies and histopathological use are the most studied images. However, the main question
raised is if the morphological indexes are adapted to the complex growing of brain organoid
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Figure 5.2: Number of publications on morphological characterisation per year in the
biomedical field for microscopic acquisition since 2013.
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Figure 5.5: Morphological characterisation strategy. Topological analysis is the main strat-
egy developed in this thesis. Non tested strategies are in red.

and their physiological characterisation? We theoretically explain the reasons why such
characterisation could not be used alone in Section 2.

We hypothesize a topological data analysis could help to characterize the shape of brain
organoid, due to its particularity to reduce the complexity of high dimensional information
contained in images. We characterize the morphology of brain organoids by two strategies:
the traditional index calculation and the topological analysis in order to compare their con-
tribution to their characterisation, and attempt it also on physiological and pathological
images. We attempt to strenghen the analysis by a TDA-clustering strategy. In a second
part, we attempt to predict the physiological state by using these topological analysis and
we try also to detect directly the neuroepitheliall formation (a clue of their correct develop-
ment). We are convinced that a deep learning based strategy is not the accurate solution
to predict nowadays the brain organoid development with a small dataset and we develop
a new solution based upon Morse Theory compared with deep learning-based strategy.

Our strategy is in summary based upon morphological characterisation by TDA and
indices. We think these tools could then be used in few set learning strategies in deep
learning-based solutions. This order seems to us a logical way to understand the develop-
mental growth of brain organoid and allowing in the future an accurate prediction of its
physiological or pathological developmental stage. The summary of the strategy realized is
presented in Figure 5.5.

5.2 Evaluation of morphological indexes and segmen-
tation strategies for organoid shape characterisa-
tion

This section describes unpublished work. ]

The morphological index calculation is the main used approach nowadays to characterize
the brain organoid morphology. Indeed, morphological characterisation distinguish a physi-
ological from a pathological state or various stages of their culture. However, no article has
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Figure 5.6: Procedure of morphological characterisation of brain organoid with index cal-
culations.

searched which morphological index is dedicated to best characterize a brain organoid at a
particular step: all morphological parameters are used according to the subjectivity of the
authors.

The second issue resides in the manual or the semi-automated solutions which are used to
calculate their morphology; at this moment no article uses an automatic morphological index
calculation. Indeed, to calculate morphological parameters, they use one or more software
which realize manually or semi-automatically acontour of the shape. This approach is time
consuming for biological experts which have to set some parameters before using these tools.

In this part we propose to automatically characterize the shape of brain organoids at
particular states or stages by morphological indexes used in others articles. The particularity
of our index calculation approach is based upon the comparison of manual, semi-automatic
and our automated optimized training segmentation of shape extraction. This methodology
is also designed to decipher which kind of morphological parameters could be dedicated to
the brain organoid characterisation and to avoid calculate useless parameters in future. The
summary of the procedure is presented in Figure 5.6.

5.2.1 Methods

Datasets

We consider 40 binary images (250 x 250 pixels), resulting from the segmentation of the 40
bright-field images of brain organoids (Gomez-Giro et al., 2019) (see Chapter 4). Images
are acquired at 9 days (7 images), 14 days (6 images) and 15 days of culture (6 images) for
physiological group and, at 9 days (7 images), 14 days(6 images) and 15 days(6 images) for
the pathological group.

We use a second dataset constituted by images of cortical organoids given by the Val-
rose Institute of Nice. Cortical organoid images are acquired 3 by 3 images every 3 days
between day 1 and 55 days with a bright-field microscope with 2 experimental protocol of
cortical organoid formations. On the 77 images acquired, only 29 could be used in this
data augmentation protocol as we need to use entire images. This cortical organoid dataset
is constituted by 512 x 341 pixel images and centered and focused on the entire cortical
organoid. The acquisition render RGB images with no canal alpha. These images are re-
sized for time consideration of algorithms and homogeneisation of the dataset in 250 by 250
pixels.

We constitute three datasets based upon our previous works with the Gomez-Giro et al.,
2019 dataset, the second has not been split. The interest is to compare morphological index
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calculation on a manual (by ITK-SNAP software), semi-automated (by Kmeans clustering)
and automated segmentation (U-Net Ronneberger et al., 2015b and Mu-Net trained with
generated images from a GAN optimized with a Perceptual Wassertein loss optimisation)
see Chapter 4. All scripts are written in python.

Morphological index calculation

The morphological index calculation is based upon parameters described in Chapter 2 and
in Brémond Martin et al., 2021b. Among parameters listed, we choose the ones described
in the literature and not only the morphological parameters originally calculated on the
original images from the article (Gomez-Giro et al., 2019).

The parameters calculated are: the area, aspect ratio, bounding box area, barycenters
(x and y), compactness, circularity, convexity, elongation, folding, convex hull, perimeter,
specificity, solidity, wrinkling.

Dimensional reduction strategies

To verify if each morphological index contributes to characterize the morphological state
of brain organoid we conduct a dimensional reduction analysis based upon the Principal
Component Analysis (PCA) and compare it with t-SNE explained in previous sections see
Paragraph 3.2.1.

Statistical analysis

The group we aim to compare are the stages (with the 9, 14 and 15 days modalities) and, the
state of culture (with physiological or pathological modalities). To verify if a morphological
index is different between two states or the three stages, we verify the significance of each
difference with statistics. First we verify the homocedasticity and normality of the responses
variables for each group and then apply a T-test or Mann-Whitney test in the case of two
groups. We use the analysis of variance or the Kruskall Wallis test in the case of more than
two groups comparisons.

5.2.2 Results

We first compare the classical morphological indexes found in the literature to characterize
the brain organoid morphology for various stage of culture from various extractive methods:
manual (by ITK-SNAP software), semi-automatic (Kmean), and automated (optimized U-
Net and Mini-Unet) strategies. We first observe in the manual case 6 morphological index
which are significantly different between three developmental stages, see Table 5.2. The area,
circularity, convexity, hull and solidity are the highest while the wrinkling is the lowest in
the earliest stage. The 14" day is characterized by the lowest circularity and solidity and
the highest wrinkling. The latest stage by the lowest area, convexity, and hull. The semi-
automatic method highlights other measures such as the aspect ratio and the elongation
which are the highest at later stages, and the bounding box at the 14" day. They share the
hull but not in the same way: the later stages have highest scores. Automated solutions
share the circularity differences with the manual and the convexity, but only for the Mini-
Unet extraction.

If we pay attention to the physio-pathological comparison, see Table 5.1, first in a man-
ual way. Healthy brain organoid have highest bounding box, folding, hull, perimeter and
wrinkling than pathological brain organoi models and a smaller compactness, and circularity
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Table 5.1: Physiological and pathological comparison of morphological indexes calculated
on various segmentation strategies on brain organoids.

Index State Manual Kmean U-Net Mu-Net
area Physiological | 17177.06 22160.26  19046.5**  18678.67
Pathological 13249.26 26731.11  14118.68**  20337.21
aspect ratio  Physiological 1.10 0.847H%* 0.95 0.82
Pathological 1.03 0.88%H* 0.93 0.85
bounding box Physiological | 31901.11%** 44816 33887.56***  36570.94
Pathological | 22044.63***  42600.17  23106.79*** 34723.05
barycentersx  Physiological 128.35 127.98%** 129.12 122.45
Pathological 127.40 122.72%%* 129.49 130.66
barycentersy  Physiological 122.38 123.87 121.97 113.42
Pathological 125.47 122.13 124.82 120.79
compactness  Physiological 0.06*** 0.16 0.41 0.26
Pathological 0.09%*** 0.17 0.47 0.34
circularity =~ Physiological | 1115.80%**  4635.98 7817.46 6382.73
Pathological | 1140.68*** 7963.78 7454.26 7168.54
convexity Physiological 14.29 25.59*H* 29.67 28.46
Pathological 13.78 23.05%H* 28.19 28.78
elongation  Physiological 0.81 0.83 0.83 0.77
Pathological 0.85 0.86 0.86 0.83
folding Physiological | 803.28%**  17536.21  622.94*** 703.61
Pathological | 611.21***  21702.67  466.63*** 711.37
hull Physiological | 26523.5%**  32487.26 22963.11*** 25998.28
Pathological | 19469.26***  35668.56 16372.58*** 24941.53
perimeter  Physiological | 1836.11*%%*  1295.79 768.06%** 863.83
Pathological | 1407.84*** 1752.78 577.74%%* 860.53
sphericity ~ Physiological 0.38 0.27 0.45%* 0.36
Pathological 0.43 0.32 0.55%* 0.40
solidity Physiological 0.64 0.68 0.84%** 0.72
Pathological 0.68 0.77 0.91%*** 0.83
wrinkling Physiological 3.35%k* 1.65 1.18 1.24
Pathological 2,947 2.15 1.18 1.24

index. Similarly as previously, the semi-automated approach highlights other parameters
such as a lowest aspect ratio, or highest x coordinate of the barycenter and convexity index.
However, the U-Net automated approach only show similar differences with the manual so-
lution but with other indexes such as the lowest area, and the highest sphericity and solidity
in the pathological case.

In cross factor comparisons see Tables 5.3 and 5.4, we observe at the same time the
influence of the day of culture and the physio-pathological state. Manual and automatic
algorithms based upon U-Net show significant differences between the day and state for the
area, bounding box, and hull. However, the U-Net highlight more stages differences and
also in aspect ratio and convexity. Semi-automated does not show as much difference as
manual solution and automated based upon Micro-Unet does not highlight any differences.
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Table 5.2: Developmental stage comparison of morphological indexes calculated on various
segmentation strategies on brain organoids.0.05: *, 0.01:** below = ***

Index Developmental ‘ Manual Kmean U-Net Mu-Net
area 9 days 17893.21*  20632.8  18811.57 17829.71
14 days 14431.67*  27631.45 16343.75 22004
15 days 12476.18*  26251.55 13782.27 19246.92
aspect ratio 9 days 1.02 0.80* 0.92 0.80
14 days 1.12 0.90* 0.91 0.87
15 days 1.06 0.91%* 0.98 0.85
bounding box 9 days 30286.21  35439.53* 28406.71 33365.93
14 days 28072.25  50739.82* 30787.92 40202.82
15 days 21108.55  48052.36* 25623.27 34055.08
barycentersx 9 days 125.86 119.83 126.53 116.79
14 days 131.52 129.17 133.40 132.47
15 days 126.41 129.30 128.39 132.87
barycentersy 9 days 126.35 130.75 124.07 115.90
14 days 122.93 118.26 122.74 116.21
15 days 122.07 117.26 123.37 119.64
compactness 9 days 0.08 0.15 0.47 0.31
14 days 0.07 0.17 0.39 0.30
15 days 0.089 0.17 0.45 0.29
circularity 9 days 1430.85%**  3419.90  9048.06* 6752.28*
14 days 891.45***  11147.47 6719.16% 7199.96*
15 days 1002.55%**  5228.28  6822.04* 6446.66*
convexity 9 days 15.14%%* 20.92 28.47 27.58%
14 days 13.40%*** 30.00 29.76 31.84*
15 days 13.31%%* 23.39 28.54 26.89*
elongation 9 days 0.85 0.79* 0.84 0.76
14 days 0.80 0.87* 0.84 0.83
15 days 0.84 0.89* 0.86 0.82
folding 9 days 700.79 17291.33  554.93 602.21
14 days 784.42 17862.91 581.08 754.18
15 days 622.55 24361.27  485.18 787.83
hull 9 days 25509.36*  27033.6*%  20205.79 22524.07
14 days 23654.25%  40778.82* 21251.75 30071.27
15 days 18759.82*  36838.27* 16955.73 24644.75
perimeter 9 days 1658.71 1374.67 691.71 745.71
14 days 1752.83 1559.36 711.25 919.45
15 days 1413 1672.45 598.45 945.42
sphericity 9 days 0.41 0.31 0.56 0.37
14 days 0.38 0.32 0.47 0.38
15 days 0.41 0.26 0.46 0.40
solidity 9 days 0.70%* 0.77 0.94 0.76
14 days 0.62%* 0.64 0.82 0.76
15 days 0.67** 0.73 0.84 0.80
wrinkling 9 days 2.95% 1.76 1.22 1.17
14 days 3.49* 2.11 1.27 1.24
15 days 2.99* 1.85 1.041 1.32
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Table 5.3: Cross factor comparison of morphological indexes calculated on various segmen-
tation strategies on brain organoids.

Index Developmental State ‘ Manual Kmean U-Net, Mu-Net
area 9 days physiological | 20416.29***  19902.75 22434** 18381.57
pathological | 15370.15%%*  21467.14 15189.15%* 17277.86
14 days physiological | 16825.17*  15350.83**  18970.83** 18940.5
pathological | 12038.16667*  42368.2**  13716.66667**  25680.2
15 days physiological 13064.4 33943.6 14394.8* 18780.4
pathological 11986 19841.5 13271.83* 19580.14
aspect ratio 9 days physiological 1.06 0.78 0.94 0.75
pathological 0.98 0.82 0.91 0.86
14 days physiological 1.16 0.80* 0.91 0.90
pathological 1.08 1.01* 0.92 0.83
15 days physiological 1.08 1.00 1.014* 0.83
pathological 1.05 0.83 0.96* 0.86
bounding box 9 days physiological | 35161.57** 38368.88 34886.14***  34062.57*
pathological | 25410.86** 32091.71 21927.29%**  32669.29*
14 days physiological | 35050.17** 42823* 36424** 41152.5
pathological | 21094.33** 60240* 25151.83** 39063.2
15 days physiological 23557.6 57523 20445 8%+* 34584.8
pathological 19067.67 40160.17 22437.83***  33676.71
barycentersx 9 days physiological 127.87 120.20 125.59 104.39
pathological 123.85 119.40 127.46 129.19
14 days physiological 128.35 131.31 129.89 131.20
pathological 134.69 126.60 136.90 133.99
15 days physiological 129.01 136.42 133.13 137.24
pathological 124.25 123.37 124.44 129.75
barycentersy 9 days physiological 123.73 128.51 122.71 103.98
pathological 128.97 133.32 125.43 127.82
14 days physiological 120.65 117.98 120.58 118.29
pathological 125.21 118.58 124.90 113.72
15 days physiological 122.57 123.52 122.60 120.79
pathological 121.65 112.04 124.01 118.82
compactness 9 days physiological 0.04 0.15 0.46 0.23
pathological 0.11 0.15 0.50 0.39
14 days physiological 0.05%* 0.11 0.37 0.26
pathological 0.08** 0.25 0.40 0.34
15 days physiological 0.08 0.23 0.39 0.30
pathological 0.09 0.13 0.49 0.28
circularity 9 days physiological 1430.10 3924.39 9935.04 6224.23
pathological 1431.60 2843.35 8161.07 7280.34
14 days physiological 896.72 2398.97 6616.28 5761.44
pathological 886.17 21645.66 6822.04 8926.19
15 days physiological 938.69 8458.95 6294.26 7350.19
pathological 1055.77 2536.05 7261.86 5801.28
convexity 9 days physiological 15.10 23.88 30.46 26.04
pathological 15.17 17.55 26.48 29.12
14 days physiological 14.17 24.74 28.76 32.42
pathological 12.63 36.32 30.76 31.14
15 days physiological 13.30 29.36** 29.65* 27.07
pathological 13.31 18.41%* 27.61* 26.77
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Table 5.4: Cross factor comparison of morphological indexes calculated on various segmen-
tation strategies on brain organoids.

Index Developmental State ‘ Manual Kmean U-Net Mu-Net
elongation 9 days physiological 0.82 0.78 0.80 0.69
pathological 0.88 0.80 0.88 0.83
14 days physiological 0.80 0.79 * 0.87 0.83
pathological 0.80 0.97* 0.82 0.83
15 days physiological 0.82 0.97 0.83 0.81
pathological 0.86 0.83 0.88 0.82
folding 9 days physiological 802.57 13674 634.57 605
pathological 599 21425.43 475.29 599.43
14 days physiological 898.83 14601.33 686.5 72717
pathological 670 21776.8 475.67 786.6
15 days physiological 689.6 27237.6 530.4 813.4
pathological 566.67 21964.33 447.5 769.57
hull 9 days physiological | 29059.71 **  27427.25 24534.14** 23610.57
pathological 21959** 26583.71  15877.43** 21437.57
14 days physiological | 28742.33*%*  29953.83*  24326.17* 29513.83
pathological | 18566.17**  53768.8*  18177.33*  30740.2
15 days physiological | 20310.4* 43623.4 19128** 25122.4
pathological | 17467.67* 31184 15145.5%%  24303.57
perimeter 9 days physiological 1884 1157.88 788.43 761.29
pathological 1433.43 1622.43 595 730.14
14 days physiological 2031.83 1231 837.67 907.83
pathological 1473.83 1953.4 584.83 933.4
15 days physiological 1534.2 1594.2 656 954.6
pathological 1312 1737.67 550.5 938.86
sphericity 9 days physiological 0.34 0.26 0.48 0.29
pathological 0.49 0.36 0.65 0.45
14 days physiological 0.36 0.30 0.46 0.38
pathological 0.41 0.35 0.48 0.38
15 days physiological 0.46 0.26 0.40 0.44
pathological 0.37 0.26 0.52 0.37
solidity 9 days physiological 0.69 0.72 0.92 0.68
pathological 0.70 0.83 0.96 0.83
14 days physiological 0.59 0.56 0.79 0.70
pathological 0.65 0.74 0.85 0.84
15 days physiological 0.64 0.75 0.77 0.79
pathological 0.68 0.71 0.90 0.81
wrinkling 9 days physiological 3.13 1.52 1.22 1.14
pathological 2.77 2.04 1.22 1.20
14 days physiological 3.87 1.90 1.29 1.17
pathological 3.12 2.35 1.25 1.33
15 days physiological 3.04 1.54 1.01 1.48
pathological 2.95 2.12 1.06 1.21
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5.2.3 Dimensional Reduction

We reduce the dimension of all the calculated variables to observe which one could explain
and characterize the dataset, we made a PCA based upon the morphological indexes calcu-
lated from shape extracted with an optimized U-Net algorithm. The summary of this PCA
is shown in Figure 5.7.

The two first dimensions of the top left graph explain around 55% of the variance which
is calculated with eigenvalues. The eigenvalues measure the explained variance quantity by
each axis and allow to determine the number of principal components. If we pay attention to
the first three columns in the top right correlation plot we observe most of the morphological
indexes contribute to these dimensions, which is observed with in strong blue color the highly
correlated variables.

These variables are then represented in the circle plot below. These variables are rep-
resented according to their correlation (the length of the arrow tendering toward the limit
of the circle represents the most explainable variables) and a cos2 value (the square cosine
of variables which show the quality of variable representation in heat colors). Thus, the
solidity, area, hull and bounding box are the most explainable variables, then the spheric-
ity, folding, perimeter, and convexity. We consider not orange to red values to not well
characterize the shape of brain organoids.

In the lowest graph are represented each brain organoid position according to the two
first dimensional axis. The day of culture is represented by the dotted size, and the patho-
physiological state in color. The space point is homogeneously distributed, but, early stages
are concentrate in the top of the graph and pathological state at the left and physiological
states at the right. However, due to the small amount of data, we could not predict the
point distribution of another assertion. We could not classify a new point at some location
into a physiological or pathological group (at the top of the graph between -2 and 1) without
uncertainty, and we cannot say nothing of the day of culture.

If we observe the dimensional reduction with another strategy (t-SNE), the clustering is
similarly not observed, even if a grouping is almost visible by state, but not with the stage
see Figure 5.8

Validation on the cortical dataset

In this part, we validate the morphological index characterisation on a second dataset based
on cortical organoids. As previously we calculate morphological indexes on optimized U-
Net extracted shapes and then realize a dimensional reduction strategy based upon PCA
summarized in see Figure 5.7.

The two first dimensions of the top left graph explain around 50% of the variance which is
calculated with eigenvalues. This explainability is a bit lower than for the first dataset. The
correlation plot show a few variations with the previous subsection. The most explainable
variables are near to the limit of the circle, and in orange colors, and thus are: the perimeter,
folding, bounding box, hull, area, circularity, convexity, and wrinkling (which are almost
the same as the first dataset). The only two exceptions concern the wrinkling which is here
below 0.50 cos2 for the first dataset, and the sphericity, which here does not characterize
the dataset, but represents more than 0.50 in cos2.

We also observed the distribution of the images according to these morphological indexes
scores in dimensional reduction as black points in the bottom right graphic. There is no
cluster formation and the data seems homogeneously distributed. However, if we superim-
pose the distribution of the morphological index calculated on the synthetic images deserved
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Figure 5.7: PCA on morphological index calculated on extracted images with an optimized
U-Net on a brain organoid dataset. a) Variance of each axis of the PCA. b) Correlation of
those dimensions with the variables measured. In darkblue are the strongest correlation. c)
Variables explaining the PCA according to the first two dimensions. The best qualitative
variable are in red cos2 values. d) Projection of data on the PCA dimension. The stage is
represented by the size and state by the color.
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Figure 5.8: Dimensional reduction strategies made upon morphological index calculation

with t-SNE for the characterisation of brain organoids.
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Figure 5.9: Dimensional reduction on morphological index characterisation based upon a
U-Net segmentation with an optimized training on a cortical organoid dataset. From left to
right: top line represents the correlation plot with the variables explaining each dimension,
the second the variances per dimension, the third the visual representation of PCA with in
black original images and in green generated which have been used to train U-Net optimized
algorithm, and then the variable plot of the PCA.
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to train the U-Net algorithm, they are not well superimposing, thus the synthetic images
are creating contents with maybe not usual brain organoid shapes.

5.2.4 Discussion

In this part, we conduct morphological index calculation on brain organoid cultures in order
to better characterize their morphology, and realize a dimensional reduction strategy to ob-
serve if a classification could be made based upon morphological indexes and finally select
better the morphological index to characterize these cultures. Some morphological indexes
seems better to characterize the morphology of brain organoid than others parameters ac-
cording to their developmental stage (circularity, convexity, hull, solidity, wrinkling), their
physiopathological state (bounding box, folding, hull, perimeter, sphericity, solidity) or the
both(area, bounding box, hull, convexity). These indexes best characterize the morphology
with an automatic optimized U-Net extraction compared to other manual, semi-automated
or another automatic strategy. However, the dimensional reduction strategy shows: no
clustering formation appear clearly with a PCA. We could not classify a new point into a
developmental stage or a physiopathological state; the synthetic images which deserve to
train the extraction have a slightly modified morphology .

The morphological index which best characterize a brain organoid culture is the hull.
Indeed, this parameter is a strong tool to decompose the boundary by computing the smallest
convex set contained inside the set. This particularity could allow to this parameter an index
of a region inside the shape or for the full shape and explain why is found to characterize
at the same time a developmental stage, a physiopathological stage and the combination of
the both.

Others parameters seem dedicated to a single task: the physio-pathological characterisa-
tion or the developmental stage, but not for the both such as the solidity and the wrinkling.
The solidity is also link to the convexity a shape, its calculation is a fraction between the
area and the convexity. However, the wrinkling is measured as the contour length, normal-
ized by the length of an outer convex contour averaged over all brain organoids. The notion
of convexity to characterize the brain organoid state or stage seems of the main impor-
tance. If we look at parameters for the both state and stage characterisation, the convexity
calculation appear too, with the area, and bounding box.

Some indexes are particular to the developmental stage such as the circularity which
decrease with the growth and the formation of neuroepithelial formation, or the folding and
perimeter for the physiopathological state which is dedicated to the particular pathology
studied here. Thus, it will be of interest to see, in other pathological models of brain
organoids, if these parameters appear to characterize their developmental stage.

Another point to discuss is the particularity of the optimized U-Net extraction method-
ology to extract almost as similarly to the manual segmentation the shape of brain organoids
but not the others semi or automated solutions. We think using the best synthetic images,
according to their similitude, quality triple-validation, during the training of the extraction,
allows to perform an accurate segmentation which renders possible to highlight the same
parameters as a manual extraction and more. The difference with the other automatic
extraction solutions resides in the smallest architecture, and the slightly less accuracy of
the segmentation, particularly for the neuro-eptihelial formations. We think the extractive
automated methods could be improved for instance by giving a shape or topological prior
information during the synthesis of images used during the training step for instance (El
Jurdi et al., 2021). Indeed, we observe during the dimensional reduction the morphological
index calculation of these synthetic images are not well superimposed for a cortical organoid
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dataset on the original, and thus the generation need to be improved.

Concerning the dimensional reduction, the PCA allows to observe some particular spread-
ing of groups but not sufficient to allow a good classification of a new image. To allow a
better clustering strategy we think first of using others parameters not mentioned in the
literature review of brain organoid (Brémond Martin et al., 2021b), but described in the
Paragraph 5.1.1, such as using signatures, or topological data analysis. By coupling meth-
ods, maybe the dimensional reduction will allow to segregate some clustering formations.
Also the clustering strategy we used may not be the most suited. Indeed, recently U-MAP
or t-SNE based dimensional reduction strategy provide more accurate clusterisation (Hin-
ton et al., 2003; Zu et al., 2022; Devassy et al., 2020). Another solution could be to use
classifiers based upon deep learning solutions, as described in Paragraph 5.1.2.

Another question raised by this study concerns the availability of morphological index
calculation to describe the shape and stage of brain organoids. Indeed, in the literature of
brain organoids, only certain morphological indexes has been used by the neurobiological
community. However, we observe previously in Section 5.1, others morphological descriptors
could be used in term of boundary (such as signatures or Fourier descriptors), or regional
descriptors (textural or topological). Indeed, with a completion of other approaches not used
in the neurobiological field, the characterisation could be more accurate and a prediction
could be attempted. Another characterisation could be also attempted, with deep learning-
based strategies with classifiers (see Section 5.1.3).

In conclusion, the morphological index calculation is an accurate solution to characterize
the morphology of brain organoids. However, it cannot help to predict a physiological or
pathological state and has to be taken with caution. We now want to verify, if a topological
approach could help to characterize and predict the state and stage of these cultures contrary
to the morphological index calculation.

5.3 TDA-clustering for brain organoid characterisa-
tion

This subsubsection is published in the 2nd Topological Data Analysis MICCAI con-
ference in 2022 Brémond-Martin et al., 2022.

Our aim is to develop a clustering solution to help neurobiologists automatically char-
acterize their images and recognize their developmental stage. We use Topological Data
Analysis (TDA) to infer high dimensional structures from low dimensional representations
to assemble discrete points into global structures such as persistence diagrams. TDA, in-
creasingly used in the biomedical domain, converts the original data into global topological
objects (Skaf et al., 2022).

Previously, brain organoid shapes were extracted from bright-field images using a U-
Net segmentation algorithm with various data augmentation strategies (Brémond Martin
et al., 2022) (see Section 5.2). Here we propose to characterize the developmental stage
of segmented brain organoids images with TDA and TDA-clustering. As a new analysis
method for these biological images, we combined TDA with Kmean and SVM to group
features within each diagram. We pave the way to identify the developmental stage of these
cultures by using TDA as a predictive solution.
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Figure 5.10: Dataset of binary images on which the TDA is performed. A sample organoid
from (Gomez-Giro et al., 2019) is given for each developmental stage. All input segmentation
masks are shown. First row: 9 days. Second row: 14 days. Third row: 15 days.

5.3.1 Methods

Resources We consider 19 binary images (250 x 250 pixels), shown Fig. 5.10. They
result from the segmentation of the 19 bright-field images of healthy brain organoids from
the largest public dataset available (Gomez-Giro et al., 2019). Images are acquired at 9
days (7 images), 14 days (6 images) and 15 days of culture (6 images). These images were
segmented with a U-Net framework trained with a classical data augmentation strategy
(Ronneberger et al., 2015a; Brémond Martin et al., 2022). All scripts are written in python.

TDA We based our implementation on the Ripser algorithms as it outperforms others
codes in computation times and memory efficiency and proposes a Vietoris—Rips filtration
step (Bauer, 2021; Tralie et al., 2018). We perform TDA on each image by first computing
the Persistence Homology (PH). PH maps a set of points P with a distance function F' to
retrieve topological features in segmented images.

To summarize this approach, a Sy(P) space is defined by all points within the distance
d (a disc centered in P with a d radius) from a point p in P. A connection is equal to
two discs overlapping in the same topological space. If d is small, the number of connected
components (C') in the space is equal to p in P, while if d increase, C is equal to one.
Thus, for a given d, the topological feature vector associated contains shape information
and the aim is to study them (Edelsbrunner et al., 2002; H. Edelsbrunner et al., 2008; H.
Edelsbrunner et al., 2010).

A barcode encodes the topological feature evolution. The beginning of a bar represents
the "birth” of a feature. All zero-dimensional features are "born” at zero and their length
represents the non-static nature of the clustering. The largest code is the most persistent
feature. The connected components are sorted by increasing d value. Lower d correspond
to high components similarities (H. Edelsbrunner et al., 2010; Ghrist, 2007).

Persistence diagrams describing data structures can also be used to compare PH. A point
in this diagram represents a topological feature according to its” birth (abscesses) and death
(ordinate). We plot zero-dimensional and one-dimensional topological features, respectively
HO and H1. HO represents the connected components of the point cloud; H1 corresponds
to holes and informs about dynamics (Otter et al., 2017). We compare the PH of brain
organoid images at different developmental stages of these cultures.
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Clustering feature vectors We cluster the feature vector points from the persistence
diagrams (B. Yang et al., 2017a). Our goal is to observe if HO and H1 feature clustering are
identical; if some clusters, representing the structure of brain organoids are linked to each
other; if the clustering varies according to the developmental stage. We implement clustering
both with Kmean (Panagopoulos, 2022) and with a SVM (Garcia et al., 2007) and obtained
identical clustering in all cases. We thus refer to the algorithm generically as “the clustering
algorithm”. To automatically select the number of clusters k£, we calculate elbow points on
inertia curves (N.-K.-K. Nguyen et al., 2021): we retrieve the distance between each data
point and its centroid, squaring this distance, and summing these squares across a cluster
for all the dataset. k equals to 4 for HO and H1 at each developmental stage.

Quantitative comparisons To compare the persistence diagrams we first perform a lin-
ear regression on the H1 point clouds (Baas et al., 2020). Then we compute the average point
cloud entropy (Bouleux et al., 2019), dispersion (Turner, 2020), and persistence (N.-K.-K.
Nguyen et al., 2021) for each developmental stage and for each cluster within each develop-
mental stage. We also compute the pairwise Wasserstein distance between developmental
stages and between clusters (Berwald et al., 2018).

We compare each feature vector in the same statistical space with a t-distributed Stochas-
tic Neighbor Embedding (t-SNE). t-SNE preserves the local dataset structure by minimizing
the divergence between two distributions respective to the map point locations (Hinton et
al., 2003). An asymmetric probability based on dissimilarities is calculated between an ob-
ject and its probable neighbor (Hinton et al., 2003). We choose the effective number of local
neighbors as the number of clusters points. To match distributions in a low dimensional
space, we aim at minimizing a Kullback-Leibler (KL) cost function such as in Maaten et al.,
2008. One-degree freedom Student t-distribution avoids the crowding issue (Maaten et al.,
2008). We reduce iterations with momentum. To compare feature vectors representation,
we calculate the KL divergence between groups.

5.3.2 Results

Qualitative Global barcodes and persistence diagrams for each stage of brain organoid
cultures are shown Fig. 5.11. For each developmental stage we show a global representation,
instead of sample barcodes and persistence diagrams corresponding to an individual input
image. Barcode patterns differ between each developmental stage. Bars at 9 days are
shorter than from 14 and 15 days. This reveals a most persistent H1 feature of the point
cloud at later stages, whereas HO features are similar between groups. HO and H1 features
of persistence diagrams seems less dispersed at 9 days than for later stages.

To further compare feature vector distributions between groups we combine TDA with
clustering. HO and H1 clustering seems different in term of point proportions and positions
according to the stage of culture. To quantify these observations, we calculate several metrics
on HO and H1 features.

Quantitative In this section all calculations are made on the individual feature vectors
for all images and rendered as a mean. We calculate the linear regression on the H1 feature
diagrams. Tab. 5.5 shows the slope and intercept of these linear regressions, as well as the
entropy, dispersion, and average persistence for each developmental stage. We also compute
the pairwise average Wasserstein distance between features for each developmental stage.
The linear regression for H1 at 9 days is markedly different from that at 14 and 15
days. The entropy for H1 at 14 days is slightly higher than for 9 and 15 days. All other
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Figure 5.11: Average representation for each developmental stage of barcode and HO and
H1 persistence diagrams. First row: 9 days. Second row: 14 days. Third row: 15 days.
For this figure, average barcode and persistence clustering diagrams are calculated from the
individual representations for each input image.
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Table 5.5: Slope and intercept from the linear regression; entropy, dispersion and average
persistence for each developmental stage; pairwise average Wasserstein distance between
each developmental stage.

Linear reg. Entropy Dispersion Average Wasserstein distance
Slope Intercept (x1031) persistence 9 14 15
HO 9 - - 47.92 9.82 5.38 x 1017 561222 579195 609972
HO 14 - - 47.93 10.07 5.44 x 1017 - 597156 627910
HO 15 - - 47.93 10.23 5.48 x 1017 - - 658 625
H1 9 06 704 10.46 9.82 8.70 x 102 633 656 632
H1 14 11 304 12.26 10.69 8.66 x 102 - 672 651
H1 15 14 208 9.31 10.23 8.26 x 102 - - 617

Table 5.6: Point distribution across clusters and entropy within clusters for each develop-
mental stage for HO and H1.

Points (%) Entropy
HO H1 HO H1
9 14 15 9 14 15 9 14 15 9 14 15
Co 50 o1 46 42 39 27 10.33 10.34  10.23 9.72 9.39 10.03
C1 1 1 1 13 13 24 4421 4421  44.21 4.40 2.56 4.21
Cc2 18 21 20 27 27 17 9.41 9.89 9.51 5.78 5.41 4.64
c3 31 27 33 18 21 32 9.98 10.01 9.96 6.18 3.20 4.83

parameters are quite close within HO and H1 for all three developmental stages. We calculate
the average Wasserstein distance between all points in every pair of developmental stage.
For HO, distances are greater for 15 days than for 9 or 14 days. For H1, 14 days has the
biggest distance with others groups and within itself.

Table 5.6 shows the point distribution across clusters (in percentage) and the entropy
within clusters for each developmental stage for HO and H1. For HO, the entropy is greater
for C1 clusters and lower for clusters further from the origin, for all three groups. For H1,
the entropy is greater for CO clusters and lower for C1 clusters. For both HO and H1 features,
the percentage of points in a persistence diagram constituting a cluster is largest at CO for
the earliest stages and the lowest for C1. The differences are attenuated at the latest stage
for H1.

We calculate the average pairwise point to point Wasserstein distance between clusters to
them within a persistence diagram, see Tab. 5.7. For HO features, there is no pair of feature
that is consistently the furthest or the closest over time. However, the average distance
between clusters is greatest at 14 days. For H1, the distance between clusters is strikingly
bigger than that within clusters. The distances are also greater at 14 days, especially for
C3.

Table 5.8 shows the Wasserstein distances within each cluster for each developmental
stage. The distance is greatest at 15 days for HO and at 14 days for H1. To analyze the
variability and potential prediction of an image, we compare persistence feature vectors in
the same statistical space using t-SNE, see Tab. 5.9. For HO, distances between and within
groups are near. For H1, the distance between 14 and 15 days is markedly greater than all
other distances.

Figure 5.12 shows the KL divergence between developmental stages and clusters. For
HO, the divergence between clusters of different groups is much bigger than that within a
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HO Co C1 C2 C3 H1 Co C1 C2 C3
9-CO0 43.54 4499 5494 5231 9-C0 4549 183.15 561.63 870.68

9-C1 - 38.16 47.61 50.55 9-Cl1 55.78 478.48 687.54
9-C2 - - 54.75 5894 9-(C2 - - 31.31 488.46
9-C3 - - - 58.73 9-C3 - - - 53.20
14 - CO 71.84 7485 70.74 7491 14-C0 53.86 235.34 520.37 965.67
14 - C1 - 73.80 70.14 72.68 14 -C1 - 51.85 401.07 750.29
14 - C2 - - 66.15  69.20 14 - C2 - - 48.66 531.16
14 - C3 - - - 71.28 14 - C3 - - - 71.50

15 - CO0 50.09 59.48  30.65 44.81 15-C0 47.43 13796 546.72 706.30

15-C1 61.85 37.19 5385 15-C1 43.98 408.77 568.35
15-C2 - - 18.03  26.50 15-C2 - - 35.09 439.85
15-C3 - - - 3797 15-C3 - - - 55.16
Table 5.7: Average Wasserstein distance between clusters.
HO (x10%) 9 14 15 H1 (x10%) 9 14 15

Co 0.990 0.263 3.038 Co 1.056  2.892  2.249

C1 1.395 0.929  4.577 C1 1.471  3.780  3.186

C2 1.838 1.646  5.628 C2 2.146  6.497  3.922

C3 2.285 2271  6.426 C3 2,671  5.123  5.080

Table 5.8: Wasserstein distances within each cluster for each developmental stage.

HO (x10%) 9 14 15 HI 9 14 15
9 283 281 275 9 3886 1215 2648
14 - 323 285 4 - 3682 5741
15 - - 2.76 15 - - 2556

Table 5.9: KL divergence between developmental stages for HO and H1 feature vectors
reduced by t-SNE.
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Figure 5.12: KL divergences between developmental stages and clusters for HO (a) and H1
(b) feature vectors reduced by t-SNE.

group. For H1 the biggest divergences are for certain clusters at 14 days.

5.3.3 Discussion

Our aim is to automatically characterize brain organoid morphology according to the step
of culture using TDA-clustering. The TDA pattern of brain organoids and their feature
clusters evolve according to the developmental stage. The persistence diagram of early
cultures approaches a right line characterized by a lower slope and higher intercept than that
of later cultures. The clustering strategy strengthens the characterisation of developmental
groups by showing differences in distances and entropy in inter-intra groups. Dimensional
reduction on clustered feature vectors confirms the particularity of the 14th day.

There is an evolution in the persistence diagram over the culture development which
could be linked to neuroepithelial formation, a crucial event that occurs before 14 days of
culture (Stefano L. Giandomenico et al., 2021). Our goal is to find a single representation of
images by persistence diagram that characterize this formation which is usually determined
by the calculation of multiple morphological indexes (Brémond Martin et al., 2021b).

To verify these qualitative results, we calculate parameters currently used to compare
persistence diagram representations (N.-K.-K. Nguyen et al., 2021; Turner, 2020; Bouleux
et al., 2019; Baas et al., 2020; Berwald et al., 2018). All parameters, except the dispersion
and persistence average, seem to support the qualitative results. The slope and entropy
increase with later stage while the intercept decreases. The Wasserstein distance between
feature points representations evolves between early and later stages. Another calculation of
dispersion and persistence average, based upon the difference of distribution inside cluster
proposed in N.-K.-K. Nguyen et al., 2021, could be used to see if such difference persist in
future studies.

To further analyze the feature point distributions of persistence diagrams from brain
organoid images, we observe TDA with two clustering methodologies (B. Yang et al., 2017b;
Garcia et al., 2007). Instead of applying clustering on the overall feature vectors (N.-K.-K.
Nguyen et al., 2021), we segregate HO and H1 vectors. As SVM render same clustering
as Kmean, we calculate the parameters on clusters from each persistence diagrams once.
Analysis of feature cluster representations at various days, allows to further characterize
the brain organoid morphology pattern. Some clusters are characterized by extreme met-
ric values. The relation between the clusters and the morphological characteristics of the
segmented images must still be explored.
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The groups clusters comparison, based upon feature vectors constituting the diagrams,
needs to be further studied. We could also try other dimensional reduction methodologies
or, propose a better classification of feature clustering, based on a Random forest classi-
fier on persistence images (Frahi et al., 2020). Another topic to explore is the comparison
of TDA-clustering strategies with classical shape analysis on brain organoid cultures (in-
dex calculation such as perimeter, surfaces...) or others strategies usually calculated on
biomedical images (Brémond Martin et al., 2021b; Minggiang et al., 2008; Thibault et al.,
2013). When TDA-clustering strategy will be validated on other brain organoid image
datasets, such automatic methodologies could help follow the growth of these cultures, pre-
dict their developmental stage, or compare physio-pathological models (Brémond Martin
et al., 2021b).

We propose using TDA-clustering to characterize the morphological development of brain
organoids. TDA-clustering allows us to highlight some patterns verified by the calculation
of parameters on persistence diagrams and this both with Kmean and SVM clustering.
The evolution of the TDA representation seems to appear before 14 days of culture and,
could be linked to neuroepithelial formations. t-SNE analysis applied on TDA-clustering
feature vectors suggests such strategy could help the developmental stage prediction of
segmented images. Future work will include putting these clusters in relation with the
corresponding morphological characteristics of the segmented images. We need to verify the
physio-pathological characteristics before exploring this perspective.

5.4 TDA-clustering for the physio-pathological classi-
fication of brain organoids

This section describes unpublished work. ]

The objective of the work presented in this section is to pave the way to compare phys-
iological and pathological brain organoids images using TDA and TDA-Clustering. We
propose to ally TDA with clustering in order to intent classify features into low representa-
tion as coming from a physiological or a pathological content. We propose to use SVM or
Kmean clustering strategies.

Contributions are many-folded: we propose TDA for the characterisation of physiological
and pathological brain organoid models; We observe if the TDA-Clustering by a Kmean
methodology allow an accurate characterisation of brain organoid shape; We propose to
classify images into physiological or pathological content by a TDA-Clustering-Predictive
novel strategy.

5.4.1 Methods

Resources

Our dataset contains 38 binary images (16 physiological and 16 pathological) of 250 x 250
pixels. We process a U-Net with a classical data augmentation strategy on the (Gomez-Giro
et al., 2019) to obtain this dataset, such as described in Section 4.2.

Topological Data Analysis (TDA)

The TDA strategy is the same as described in the previous Section 5.3.1.
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Figure 5.13: Inertia according to the number of clusters and their elbow point highlighted
in dotted red line.

Clustering

We cluster feature vector points in persistence diagram (B. Yang et al., 2017a) and observe:
if HO or H1 feature clustering are identical (if some C, structuring the content of brain
organoids, are linked to each others); if between the two states clustering are identical
(if their diagrams change with the model). To do so we propose to combine the TDA
with a Kmean algorithm (Panagopoulos, 2022). To initialize the number of clusters k
automatically, we calculate the elbow points (the point where the inertia begins to slow)
(N.-K.-K. Nguyen et al., 2021). We retrieve the distance between each data point and
its centroid, squaring this distance, and summing these squares across one cluster for all
the dataset D: inertia = 3,1 D(z; — Cy)* (N-K.-K. Nguyen et al., 2021). We plot
inertia relative to the number of clusters for each feature vectors. Thanks to the curves in
Figure 5.13, we find k = 4 for Kmean.

Characterisation

We compare the diagrams, by calculating five parameters within each cluster (by SVM or
Kmean) or within each entire feature vector: the average persistence (N.-K.-K. Nguyen et
al., 2021), the point dispersion (Turner, 2020), the entropy (Bouleux et al., 2019), the slope
and intercept (Baas et al., 2020), the Wasserstein Distance (Berwald et al., 2018). Results
are rendered as mean for each parameter per group or cluster per group.

Prediction

To predict the belonging group of persistence diagram of brain organoid images, we compare
each feature vector in the same statistical space thanks to t-distributed Stochastic Neighbor
Embedding (t-SNE). This method preserves the local dataset structure by minimizing the
divergence between the two distributions respectively to the map point locations (Hinton
et al., 2003). An asymmetric probability based on dissimilarities is calculated between an
object and its probable neighbor (Hinton et al., 2003). We choose the effective number of
local neighbors, as the maximal number (the number of clusters points for each groups in
our dataset). To match the distributions, in a low dimensional space, we aim at minimizing
a Kullback-Leibler cost function. Omne-degree freedom Student t-distribution avoids the
crowding issue (Maaten et al., 2008). We use only 250 iterations thanks to a momentum.
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Table 5.10: Barcode, Persistence Diagrams and TDA-Clustering for Physiological and
Pathological Images

We compare feature vectors representation from groups calculating KL divergences.

5.4.2 Results

To compare physological and pathological contents of segmented images, we first observe
qualitatively the barcode and persistece diagrams, then we quantitatively compare param-
eters calculated on those diagrams, and then predict the state of images.

Qualitative

Average barcodes and persistence diagrams representations of each barcode and persistence
diagrams from HO and H1 feature vectors are represented in Figure 5.10. We could observe
average barcodes for physiological images are more narrowed than for pathological images.
HO and H1 feature vectors representations are more dispersed for physiological than for
pathological images. Point proportions seem identical for HO and H1 vectors in the case
of physiological image, however, CO clusters seems less populated than other clusters and
more dispersed in the case of pathological images.

To verify the qualitative observations on barcodes and persistence diagrams from HO
and H1 feature vectors, we calculate metrics on persistence diagrams.

Quantitative

Summary of calculated metrics on the overall persistence diagrams are shown in 5.11. We
first calculate a linear regression on H1 persistence diagrams of each image from the two
conditions to measure the slope and the intercept. Slope is smallest for pathological im-
ages and the intercept is higher. Persistence of H1 feature vectors is similarly lower for
pathological images. For others parameters, there is no differences observable.

To go further in comparisons, we calculate metrics in intra-cluster persistence diagrams,
see Table 5.12. Point proportions in each cluster seem higher in CO. Only a few points are
clustered in C1 and C2 and C3 have similar proportion of points whatever the considered
feature vector and group. Dispersion are similar between physiological and pathological
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Physiological Pathological

Slope 1.3 1.3
Intercept —121.1 —80.6
Dispersion-H0 (10'7) 5.0 5.0
Entropy-HO 47.9 479
Persistence-HO (10'8) 1.0 1.0
Dispersion-H1 543.3 484.6
Entropy-H1 14.3 14.1
Persistence-H1 1086.6 969.2

Table 5.11: Phy and Pathological metric calculation on persistance diagrams.

Physiological Pathological
Co C1 C2 C3 Co C1 C2 C3
Points-HO (%) 0.5 0.0 0.2 0.3 0.5 0.0 0.3 0.3
Dispersion-H0 (10'8) 8.3 3.3 8.3 8.3 8.3 3.3 8.3 8.3
Entropy-HO 10.3 44.2 9.9 10.0 10.3 44.2 9.6 10.0
Persistence-H0 (10'%) 1.0 2.0 1.0 1.0 1.0 2.0 1.0 1.0
Wasserstein-H0 (10'%) 1.5 1.6 2.1 2.7 0.9 1.5 1.9 2.3
Points-H1 (%) 0.4 0.3 0.1 0.2 0.4 0.2 0.2 0.2
Dispersion-H1 (10%) 5.5 22.3 6.5 20.0 4.8 8.5 14.8 22.4
Entropy-H1 7.1 1.4 5.2 1.7 7.3 4.5 1.6 7.2
Persistence-H1 12477  1768.8  1542.6  1481.3 1034.2 1951.5 1488.2 13254
Wasserstein-H1 (10'9) 3.8 4.5 6.1 7.0 2.1 3.3 4.0 5.2

Table 5.12: Intra-cluster physiological and pathological calculations

groups except for H1 where C1 and C2 dispersion are different. For the pathological group,
dispersion is higher in clusters further from the origin. Entropy is similar for HO features,
while for H1 foreign clusters are different between physiological and pathological groups.
Persistence average is similar between clusters of the 2 groups from HO feature vectors. The
H1-C1 persistence is higher to others clusters whatever the group consider. Others clusters
persistence values are higher in the physiological group than for the pathological group. In
the physiological group, Wasserstein distance intra-cluster is lower in nearest clusters than
further clusters. Intra-cluster Wasserstein distance seems higher in the physiological group
than for the pathological group, whatever the feature vector considered.

To observe more particularly the inter-cluster Wasserstein distance in same persistence
diagrams and between clusters from the other group, see Tab. 5.13. For HO, the inter-cluter
Wasserstein distance is greater for CO between two diagrams from physiological images. For
pathological images, is between C3 and C0. Between two identical clusters of physiological
and pathological, C3 is the cluster with a maximal distance.

For H1 inter-cluster Wasserstein distance, C3 with all others clusters has the biggest
distance for physiological diagrams and CO for pathologicals. Physiological and pathological
distances from same type of cluster are biggest than if clusters are compared from the same
group, except for C2.

To observe the grouping of features, to pave the way of a tool to predict the group, we
realize a dimensional reduction and calculate KL divergences on the rendered representation,
the summary of these calculations are shown in Table 5.14 and in Figure 5.14.For HO, the
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HO Co C1 C2 C3
phy-C0 81.3 73.4 75.0 76.7

phy-C1 47.5 61.9 67.0
phy-C2 — - 66.2 69.2
phy-C3 - - - 71.3
path-C0 65.0 69.8 73.3 68.6
path-C1 - 60.8 54.7 60.4
path-C2 - - 38.5 47.1
path-C3 — — - 54.3
H1 Co C1 C2 C3

phy-C0 479.54 561.03 506.39 687.67

phy-C1 572.13 582.54 680.24
phy-C2 - - 432.02 700.30
phy-C3 - - - 693.56
path-CO  488.27 412.71 408.20 458.53
path-C1 - 260.59 254.23 330.78
path-C2 - - 172.91 319.40
path-C3 — — - 379.70

Table 5.13: Inter-cluster and inter-group Wasserstein distance comparisons.

HO (10'%) Physiological ~Pathological

Physiological 2.70 2.83
Pathological 3.28 3.12
H1 Physiological Pathological
Physiological 3317.9 3628.1
Pathological 2830.3 2568.4

Table 5.14: KL divergences between groups on overall representations after a t-SNE reduc-
tion

KL divergence in intra-cluster is higher between foreign clusters, and particularly for the
C2. For H1, intra-cluster KL divergence is greater for C2 clusters and for CO in the case
of physiological diagrams only. If we compare Physiological and Pathological clusters, the
greatest difference appears between phy-C1 and patho-C1 as well as between phy-C3 and
patho-C3.

5.4.3 Discussion

An important issue in the brain organoid field is the morphological comparison of two of
these models knowing they are suffering from batch syndrom, and there is no dedicated
tools (Kelava et al., 2016a). Here we propose to use TDA-clustering methodology to answer
this problem. Physiological TDA brain organoid morphology is characterized by the largest
dispersion and persistence in H1 feature vectors compared to a pathological model and
some metric values are higher in specific clusters and particularly the persistence, dispersion
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Figure 5.14: Intra-cluster KL divergence and between groups

and Wasserstein distance (for the foreigner cluster). Dimensional reduction applied on the
resultant feature vectors shows also a particular signature in the physiological group.

Resulting persistence diagrams are different between physiological and pathological brain
organoid models particularly marked with a different dispersion of point clouds but not for
slope and intercept. However, previous work show the slope and intercept evolve according
to the culture stage (Brémond-Martin et al., 2022). It would be interesting to observe the
TDA pattern of a concomitant culture condition and the culture stage to strengthen results.

Physiological images have a higher dispersion and persistence value which could be linked
with they higher size area and development such as described in Gomez-Giro et al., 2019.
The benefit of TDA methodology contrary to morphological index calculation on the overall
segmented image are: its non subjective aspect, we do not choose the metric to compare the
two models, because it is based upon features directly; a single representation can highlight
the difference, which is not the effect with morphological index calculation; we do not need
a combination of morphological indexes to characterize the two models; information missed
by traditional morphological calculation is uncovered by TDA (Skaf et al., 2022). However,
the TDA rendering time is higher to process than a morphological index calculation. The
comparison of each diagrams and feature vectors need to be lightened.

The clustering approach allow us to more specifically compare pathological and physi-
ological segmented brain organoid images. Indeed, physiological segmented image feature
topological vectors clusters are represented by a higher dispersion, persistence and distance
than for pathologicals. Particularly the nearest origin cluster and the furthest have specific
values in the two groups. In future studies, we need to retrieve the part of the segmented
image with each feature cluster in order to link which kind of part is specific in these groups,
such as suggested in Peldez et al., 2021.

The clustering methodology seems to not have an impact on the clustering representa-
tions, groupings are identical with Kmean and SVM. Another clustering methodology could
be used to make our approach more robust. We could also try a Random forest classifier on
persistence cluster images such as (Frahi et al., 2020).

The t-SNE KL divergence representation, show us physiological representations are more
variables than for pathological, but physiological and pathological representation are diverg-
ing. Another idea is to try to predict the belonging of an image at a group by making a
predictive analysis on t-SNE dimensional reduction (Bois et al., 2022). To further study
physiological and pathological images we could also combine a morphological development
study with the physiological and pathological condition. Maybe during the development,
their pattern are also evolving.
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Based on persistence diagrams, we can segregate physiological from pathological brain
organoid segmented images. Clustering approach helps at strengthening their differences
and a dimensional reduction show physiological images pattern are more diversified. This
study paves the way for an automatic morphological analysis of brain organoids based on
indexes. We also aim to analyse at the same time the state and stage of brain organoids
with TDA.

5.5 TDA cross-factor clustering for brain organoid char-
acterisation

[ This section describes unpublished work. ]

In the previous sections we characterize the topology of developmental stage or the
physiological or pathological state of a brain organoid culture. However, the topology may
be influenced by the two factors as the same time which as not been studied until then.

In order to verify the effect of the developmental stage (9,14 or 15 days) and the state
(physiological or pathological) of brain organoid cultures, we aim at producing a cross factor
analysis of their topology.

The methods are the same as described in the two previous Sections 5.3 and 5.4.

5.5.1 Results

Cross factoring of the state (physiological or pathological) and the developmental day (9,
14 or 15 days) of culture are confronted with TDA strategies.

The barcode for each combination are represented in Figure 5.15. For physiological HO
and H1 features, there is a physiological spreading with the developmental evolution. In HO
the spreading seems curved. While for pathological stage a tightening is observed with the
development.

On the persistence diagrams, these tightening and spreading are observed too Fig-
ure 5.16. Points representation are spreading with the developed stages in physiological
cases while the centering of points representations are observed in the pathological case.

To verify the assumptions observed previously we calculate parameters on the overall
persistence diagrams for each image and average it for each combination of conditions which
are summarized in Table 5.15. We first describe the H1 diagram parameters. The slope
increase with the developmental stage whatever the state. However, the slope value is
higher in a pathological state. Concerning the intercept, entropy and average they are at
their maximum for the earliest physiological state, and the maximum is reached by the
pathological state for the Wasserstein. The 14 day whatever the state obtain their lowest
values for these four parameters. For the HO, the physiological state obtains the maximal
values particularly for the 14 days, even if the differences remains slight.

In Table 5.16, we pay attention to intra-cluster parameters calculation. The earliest de-
velopmental stage obtains the higher values and more particularly the 2nd cluster whatever
the state. The entropy increase with the cluster number also whatever the developmental
stage and state. The average and H1 entropy values are higher in the pathological groups
than in physiological. This is the only difference between the two states.
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Figure 5.15: Average barcode representation of brain organoid images at each developmental
stage (from left to right 9, 14 and 15 days) and for each state(physiological is the top line
and pathological the bottom line).
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Figure 5.16: Average persistence diagrams representation of brain organoid images at each
developmental stage (from left to right 9, 14 and 15 days)and for each state(physiological is
the top line and pathological the bottom line).
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state | day | slope intercept entropy average dispersion Wasserstein
H1
phy 9 0.23 1027.52 28.12 8.55 44.70 185182.7
phy 14 | 0.76 655.62 2.22 1.02 30.82 568.05
phy 15 | 1.38 1.25 16.71 6.37 13.94 3.32
patho | 9 0.99 381.12 13.80 7.76 11.03 107904.3
patho | 14 | 1.44 47.83 2.29 6.47 168.14 487.77
patho | 15 | 1.43  380.17 26.26 7.71 49.08 8.43
HO
phy 9 - - 9.85 421.31 5.0 33.4
phy 14 - - 9.93 497.86 5.0 6.40
phy 15 - - 9.84 409.58 5.0 7.24
patho | 9 - - 9.69 427.06 5.0 30.7
patho | 14 - - 9.76 374.55 5.0 8.25
patho | 15 - - 9.83 373.92 5.0 8.63

Table 5.15: Parameters calculated on the entire persistence diagrams.

| HO | H1

state day cluster ‘ entropy average dispersion Wasserstein ‘ entropy  average dispersion Wasserstein
phy 9 0 10.28 - 5.0 97311.16 10.20 1059.23 82.79 45.49
phy 9 1 44.22 1.0 < 0.01 312539.3 3.21 1112.77 81.38 55.78
phy 9 2 9.92  496.02 5.0 608212.7 9.73 1518.36 87.86 31.31
phy 9 3 9.37 94.61 5.0 < 0.01 9.70 1324.95 81.78 53.20
phy 14 0 10.39 - 5.0 430.07 11.96 1248.69 25.78 53.86
phy 14 1 44.21 1.0 < 0.01 1346.77 6.72 1264.37 38.36 51.85
phy 14 2 10.00  447.80 5.0 2392.92 2.93 1441.45 131.86 48.66
phy 14 3 9.87 110.91 < 0.01 < 0.01 9.877726  1329.96 42.93 71.50
phy 15 0 10.35 - 5.0 1.47 10.27 680.83 64.44 5.26
phy 15 1 44.21 1.0 < 0.01 4.54 1.50 1187.49 56.71 3.48
phy 15 2 9.79 340.68 5.0 9.28 9.93 674.63 18.54 3.36
phy 15 3 8.25 72.45 < 0.01 < 0.01 8.27 889.44 3.63 4.53
patho 9 0 10.17 - 5.0 111075.2 10.20 836.66 40.69 16933.86
patho 9 1 44.21 1.0 < 0.01 27592.32 21.06 1149.61 34.17 1016632.0
patho 9 2 9.27  553.61 5.0 490494.8 6.48 894.27 8.46 0.0
patho 9 3 9.40 115.31 < 0.01 0.0 36.50 1039.40 34.72 2242588.0
patho 14 0 10.22 - 5.0 261.05 11.99 815.67 161.33 204.56
patho 14 1 44.21 1.0 < 0.01 1142.68 3.83 916.29 201.68 4119.82
patho 14 2 9.86 380.93 5.0 2701.52 9.71 1135.42 200.35 6031.74
patho 14 3 9.75 193.18 < 0.01 0.0 12.01 742.62 217.16 9690.95
patho 15 0 10.13 - 4.1 275.48 26.11 1130.37 48.14 1136.95
patho 15 1 44.21 1.0 8.3 1236.27 35.18  1471.51 172.80 4592.89
patho 15 2 9.27 540.69 5.0 2217.90 9.12 1216.01 66.51 4404.67
patho 15 3 9.88 115.31 < 0.01 0.0 32.68 887.13 47.10 9538.67

Table 5.16: Intra cluster parameters calculation according the state and stage of persistence
diagrams.
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5.5.2 Discussion

In this part, we evaluate the influence of the physiopathological state and the developmental
stage on the topology of brain organoid in order to characterize them. The pattern of
barcodes are different for the state and the developmental stage which is also observed in
the persistence diagrams. The quantitative analysis show a difference in slope, intercept,
entropy and dispersion with a root at 14 days of culture. The clustering analysis show the
entropy, average and Wasserstein distance analysis are particular.

We show for the first time the state and stage of a brain organoid culture is characterized
by particular barcode and persistence diagrams. Similarly as previous study in 5.3, and 5.4
we observe the topology can be used to characterize these brain cultures. The conclusions
are similar to these two parts. The clustering approach help to compare more specifically
the state and stage of brain organoids.

Similarly all the parameters calculated on the persistence diagrams are not highlighting
the state and stage differences between the culture topology. The question raised could
be which kind of parameters are dedicated to decipher similitude and differences between
two persistence diagrams due to the absence of consensus in the domain and standardize
methodology of comparison. A strategy could be to compare all the contribution of these
parameters in a dimensional reduction strategy.

Another contribution in the field could be to compare morphological index calculations
with the topological analysis made upon segmented brain organoid images in order to observe
which one could contribute to help the most to characterize these cultures. The other interest
could be to use these solutions in order to predict the state and stage of the culture, or to
help to follow their growth automatically.

This third study on the topological aspect of brain organoids reinforce the interest of
using this strategy to distinguish the state and stage of these cultures. Clustering approach
help to differentiate the developmental and physiopathological approaches at the same time.
Futur studies need to be set up to observe the contribution of topology versus the morpho-
logical index based calculation to predict the state and stage of these culture, or others on
the validation of metrics used to compare two topological approaches.

5.6 General discussion on characterisation

The goal of this characterisation part is to describe the shape of brain organoid in order
to understand their physiopathological development and help to the prediction of new cul-
tures. By comparing these various procedures based upon boundary, regional or topological
descriptors, we highlight some strategies are more accurate than others. In this discussion
we will highlight the benefits of these results, some drawbacks, the first work we attempts
such as the Morse theory for the neuroepithelial detection, and finally the industrial and
future perspectives of research for the characterisation of these tiny datasets.

Discussion on our work In this work we propose to verify first the manual, semi or
automated extraction in order to highlight the morphological index which seems to charac-
terize the most these cultures. This work highlight all the indexes related to the convexity
of the shape have a particular relation with the state and stage of brain organoids. We
validate it on two datasets, but if the results seems validated for an automated solution
(U-Net optimized with in the training step synthetic images triple validated), we do not
reach a similar results with the other automatic solution (Mini-Unet). Progress need to be
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Figure 5.17: Neuroepithelial detection in brain organoids: by Morse theory (top lines from
left to right original image, segmented map by the optimized U-Net, map of saddle points
and 3D density map: the first corresponds to an early developmental stage and the second
a later stage) and Deep learning methods (bottom line bounding box of neuroepithelial
detections obtained by Yolo

further investigated to reach similar results with this lower computational cost architecture,
and particularly a study on shape prior synthesis.

The second issue with a simple morphological index characterisation is this methodology
does not allow a prediction: maybe due to the not well accurate extraction on neuroepithelial
formation, or maybe due to the only boundary or region related link. For this reason we
propose to use topological data analysis which allow us first to characterize the stage, the
state and both for brain organoids. These results need to be verified on a second dataset.

Taken together, boundary, regional and topological characterisation could help to im-
prove the synthesis of supplementary images, which could accurate the segmentation and
thus improve also the morphological characterisation of tiny datasets.

Initial work on perspectives Concerning the future directions they are many folded.
First we attempt to detect the neuroepithelial formations by using morse theory and a deep
learning tool (Delgado-Friedrichs et al., 2014; Robins et al., 2011; Redmon et al., 2017). The
results are summarized in Figure 5.17. The idea behind the prediction of neuro-epithelial
formation is to better characterize the state of development of these culture, and the second
objective is to verify if the culture grow well. Thus a brain organoid which do not develop
these neuroepithelial formation need to be left apart from all the future analysis.

Academic and industrial perspectives Industrial and academic perspectives from this
characterisation work are various:

e First we provide an automatic solution to calculate morphological index parameter
usualy used to characterize brain organoid morphology which has been validated on
two datasets.

e This solution could be applied on other tiny datasets to characterize the morphology
of particular segmented structures.
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We observe the convexity based calculated parameters are the one which describes the
best the state and stages of these cultures, it could be interesting to study the case in
others organoids or other biomedical datasets.

We produce a new clustering-TDA strategy to complete the morphological index cal-
culation which could help to predict the state and stage of these cultures.

Similarly this strategy could be used on other datasets to characterize the morphology.

We observe however a particular drawback, if these solution are automated, they
could be accurated by improving the automatic extraction by giving synthetic images
used during the training step more similar to the reality by adding a prior shape of
topological knowledge information during the generation (F. Wang et al., 2020; Moor
et al., 2020).

We propose new perspective based upon the neuroepithelial detection in order to
better characterize the state of these brain organoid or their well growth.

The development of this latest axis could open new issues to answer and develop.

Conclusion This work contains major contributions such as:

This

We automate morphological index calculation based upon all the literature use.

The comparison of manual, semi-automated and automated extraction tools to high-
light morphological index calculation to characterize the shape of particular state and
stage of tiny datasets of brain cultures.

We highlight the interest of using particularly convex based tools for the brain culture
characterisation of state and shape alone or both and has been validated on other
datasets.

We show the interest of coupling region, boundary and topological based tools to
characterize these cultures, and particularly for predictive purpose.

We create an original clustering-TDA strategy which accurate the morphological char-
acterisation.

We propose two future strategies for the detection of neuroepithelial formation inside
these cultures and show on tiny datasets, the deep learning solution are maybe not
the solution.

work and approach should be tested on others models in order to generalize this

strategy.
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Chapter 6

Conclusion and perspectives

The objective of this PhD thesis was to study and propose new automatic tools for the
segmentation and the characterisation of brain organoid images with the constraint of tiny
datasets.

The first obstacle resided in the fact of augmenting the initial tiny datasets with a
natural but not identical content in image in order to train deep learning extracting tools.
The associated issue was to validate the synthetic images which was not under the control
of a consensus.

The second objective, once new synthetic natural images are created, was to segment the
shape of organoid from their background with automated tools and compare the machine
learning segmentation with deep learning. The main part was to propose a segmentation
architecture adapted to tiny datasets.

The third objective, once the shapes of brain organoid were well extracted was to char-
acterize them and compare morphological index found in literature with new methodologies
developed during the thesis. The latest objective is to predict their patho-physiological state
or their developmental stage.

The objective sub-latent is to validate each proposition by verifying each implementation
and result on minimum two tiny datasets of these brain culture in a pandemic situation and
almost no open source database available. The validation on other datasets could help to
generalize the results, and maybe use them in other situations in the case of the platform
proposed by the company involved in this CIFRE.

6.1 Results and contributions

The first contribution of this thesis was to realize a state of the art about the image analysis
made with brain organoid in order to highlight which kind of image analysis were needed
in this field. This study help us to highlight the lack of datasets and automatic extrac-
tive and morphological characterisation tools adapted to the shape of these cultures. This
contribution has been published in the review Frontiers in Neuroscience.

To increase the few image datasets found in the literature, we tested various data aug-
mentation strategies based on generative adversarial networks and optimized the loss func-
tion for the best architecture, which is based on an adversarial auto-encoder. We highlight,
a particular loss function (Perceptual Wasserstein) used during the generation to create the
most natural image. This work has been published in the International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications (Visap). We
validate the results by a triple validation due to the lack of a consensus on the use of vali-
dation tools for synthetic images: quantitatively by metrics, statistically by a dimensional
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reduction strategy, and manually by a psychovisual validation made by biological experts
in culture and microscopy. This comparison of generative tools and loss optimisations has
been published in the Visapp international conference, while the validation study has been
sent to the Frontiers in Neuroscience journal.

While doing the statistical comparison, we observe synthetic images do not have a specific
gradient background found in some original images. We thus study the effect of adding
various noise during the generative step and reproduce the same three step validation. Two
kinds of noise, Gaussian and Shot noise, help to produce more natural images according
to qualitative and psychovisual validation. Looking at the statistical space, we found each
noise contributes to generate images in the space of original images. The comparison of
various noise injection during the generative step has been published in the International
Conference on Image Processing Theory, Tools and Applications (Ipta), while the validation
has not been yet published.

Once these images were validated, we use them to train and compare the various data
augmentation strategies for the shape extraction by deep learning tools which requires a
huge amount of data. We found a U-Net deep learning extractive network produces the
best extraction if trained with Perceptual Wasserstein loss optimized synthetic images, or,
images selected by the most experts as natural, or by Speckle noise. These studies has not
been published as they require a second validation on a second dataset. We observe the
extraction was time consuming (the training requires time), are not well accurate due to
the small amount of data even augmented and in the literature, we found some reduction
of architectures could be more adapted to tiny datasets. We made an ablation study of
U-Net in order to produce a segmentation architecture Mu-Net more robust to various
data-augmentation strategies, which require less time of training and dedicated to tiny
datasets. This contribution has been presented in the GDR-ISIS on “Towards pragmatic
learning in a context of limited labeled visual data”, and the article is still unpublished. We
also segmented the shape by semi-automatic tools in order to observe if the best automatic
extraction by our optimized segmentation strategies outperform the non deep-learning tools
used in most of the case in the literature.

Once segmented, we characterized the shape of organoids of various state and stage
of culture. First we compare a manual, semi-automated, and automated extraction by
calculating on their shape only morphological index that we observed in our state of the art.
While some morphological parameters based upon convexity seems to correctly characterize
the shape of brain organoid at various state and stage, these parameters based upon regional
or boundary descriptors do not allow to predict the state or stage of a culture. Thus, we
also analyze the topology of their shape by topological data analysis (TDA) and propose a
clustering-TDA strategy which could allow the prediction of an image. The TDA-clustering
strategy to characterize and predict the developmental stage of brain organoids has been
published in the 2nd workshop of TDA of the Miccai international conference. We also
detect the neuroepithelial formations on two datasets by deep learning and machine learning
strategies. However, further analysis need to be furnish in the future to strenghen our results.

We are conscious the analysis on two datasets is not enough to provide a generalisation,
thus, we ask datasets to some laboratories as we could not acquired images due to pandemic
restriction. We obtain two new datasets from the Valrose institute from Nice and the MRC
Laboratory of Molecular Biology from Cambridge, which will allow to validate our approach
in the near future.
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6.2 Research perspectives

This work is a pioneer in the field of automated shape extraction and characterisation of
brain organoid, and we think many other lines of research could be studied both in academia
and industria. Here, we will describe some perspective of research highlighted on this thesis
(Figure 6.1).

Shape prior constraints for the synthesis of brain organoid images One of the
main perspective of research could be to use the morphological index calculation made upon
the boundary, regional and topological descriptors to help synthesize more natural images.
Indeed, we have observed the morphological index calculated on synthetic images are not
always in the range of morphological index calculated on original images see Section 3.3 and
3.4. This issue could contribute to explain why the tri-validation do not perform high scores
in some cases (Section 3.5 and 3.6), why some segmentation using these images during
the training do not reach high accurate score (Section 4.2), and the automatic extractive
solution have not exactly the same results to the manual(Section 4.4). Thus, giving a shape-
topological prior information during the generation could help to synthesize maybe more
natural images and improve all the chain of procedures. The strategy adopted could be to
first verify boundary, then the regional, and the topological and, in a third try to add the
three kind of information. This strategy may help to observe if a kind of morphological
characteristic helps better to naturalize the synthetic images than another, or if all or the
most information improve the results.

Few-shot synthesis of brain organoid images The second improvement in the genera-
tive process is trying to generate images with only two, one or unlabeled images. In the case
of tiny datasets, the partitioning of the dataset in batches to create a model of generation is
particularly a difficulty because the samples have to reach an equilibrium while we do not
have so much possibilities of combinations see Section 3.2. Using only two images by two,
or one, or generating images by a zero shot strategy could help maybe to reduce the time
required to analyze the dataset before using it during the generation. The strategy could
be to use a cascaded generative architecture in order to produce images in the range of few
images. We could then compare the variability and naturality of these generated images,
with a non few-shot strategy and combine it, if it render best results with the proposed loss
noise or shape-topological prior information.

Metric equivalent to the tri-validation of synthetic images Nowadays there is
no consensus on a metric which could select images has the most natural when they are
generated by a GAN, and the psychovisual evaludation is time and ressource consuming.
In this thesis we observe a combination of metrics could maybe replace the psychovisual
evaluation see Section 3.5 and 3.6. Instead of using various metric calculations, the idea is
to create a single metric. The strategy to create such metric is to combine the objective of
the metric which indicates synthetic images in the range of original.

Tri-validation extended on other biomedical datasets We validate synthetic im-
ages by tri-validation for brain organoid tiny datasets, but the main objective could be to
generalize this approach on other biomedical datasets or on other microscopic images see
Section 2.7. The idea could be to synthesize images by GAN on multiple contents and then
to validate by metric, statistic and psychovisual tools these images.
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Shape prior constraints for the segmentation of brain organoid images The
objective is similar to the shape prior constraint for the generation but applied to the
segmentation, in order to improve it. Here, we aim at adding the shape or topological
information to the training step of the segmentation process. This kind of process is still
in research and more difficult to implement than for classification or generation. The idea
could be to generalize it for other tiny biomedical datasets.

Scalable reduction of segmentation architecture for small biomedical datasets
A reduction of the segmentation architecture could be proposed according to the size of the
dataset. Indeed, proposing a deep and reduced architecture according to the kind of dataset
could help to improve the shape segmentation and strengthen the analysis. The algorithm
scalability is a recent opportunity to proposed dedicated solution for each application, and
thus for each dataset containing more or less content and more or less variability.

Explainability of convex shape descriptors for the characterisation of brain cul-
tures The convexity and its variations seems the most important morphological index to
characterize the morphology of brain organoids see Section 5.2. The idea is to better under-
stand the growth of brain organoids by calculating the convexity at each step of culture in
order to identify in the future the step of brain organoid culture automatically. The second
idea is to modele the convexity of the physiological growth of brain organoid in order to
understand the pathological development and, better understand why this measure is so
important.

Reverse TDA for the explainability of the morphological characterisation of
small biomedical datasets In this thesis we realize a TDA-clustering to characterize
and predict the state and stage of brain organoid cultures (see Sections 5.3, 5.4, and, 5.5).
However, which kind of the part is linked to each clustering formation in the persistence
diagram? During the thesis we made the supposition that some neuro-epithelial formations
are contained in some cluster and axes of boundaries others. By doing a reverse TDA-
clustering strategy, we could maybe highlight which part of the shape are evolving or staying
static during the growth or a state variation.

Classification of original brain organoid images The prediction of brain organoid
state and stage has been attempted in this thesis by the creation of a morse theory to
detect for instance neuro-epithelial zones, or using TDA-clustering strategies see Chapter 5.
However, these propositions has been made upon a segmented image, the idea is to classify
the images in groups by directly taking the original images not segmented. We suggest to use
deep learning tools and compare it with classical approaches.The use of data augmentation
strategies which will create only a kind of state or stage of brain organoid culture (for
instance based on few-shot generation) could help to this task.

Prediction of brain organoid culture stage and state We observe the prediction
is still tedious with morphological index and topological data analysis see Chapter 5. We
propose finally to use all the previous studies detailed in this perspective subsection to
combine them in a strong tool to predict the state and stage of brain organoids. We are
convinced the effort provided in all these perspectives could help to determine a predictive
solution to detect if a culture is well growing correctly.
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6.3 The last word

The last words aims at giving in a macroscopic point of view the interest of this thesis. First,
this thesis has shown even in a context of tiny dataset, brain organoid could be analyzed
with automated image analysis tools. Then, that a pandemic situation in which the access
of laboratory are forbidden to acquire images, some solutions such as data augmentation
and the literature research of open source database could help to furnish enough content to
develop some image analysis tools. We also could observe the generative process by GAN
solutions can be adapted and improve by some updates to produce more natural images
particularly the loss update and noise injections. A tri-validation of synthetic images help
to strengthen the accuracy of the segmentation step when they are used during the training,
even in a case of small amount of images used during the training. The validation of
synthetic images by metrics are not yet under a consensus and the psychovisual approach is
time consuming for biological experts, thus this thesis work proposes by this tri-validation
a strategy which could be a solution until finding a dedicated metric for this purpose of
synthetic image validation. The segmentation architecture for these tiny datasets can be
lightened in order to reduce the amount of data required and the training time. In a context
of energy cost diminution, the scalability of architectures adapted to the amount of data and
furnishing a similar accuracy is raised. A morphological characterization of brain organoid
lies on convex information, but only topological and topological clustering approach render
a prediction of the state and stage of culture. Another perspective could be to use these
shape-topological information in earliest steps in order to improve all the procedure and
thus the analysis of brain organoid tiny datasets of images.

We expect these tools associated with the development of brain organoids more similar
to the human brain structures could help to complete other brain model such as 2D cultures
or animal models, and maybe replace them in the future. The second expectation could
be to generalize these approach for other kind of datasets and propose this solution in an
industrial platform of biomedical image analysis services.
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Our perspectives

Generation Extraction Characterisation
Research new metric Mu-Net Loss Comp. TDA on Mu-Net
Melting loss creations ML Vs Mu-Net TDA Clustering on Mu-Net

Trivalidation others DSs Mu-Net Psychovisual Comp. Morse for ND
Few-shot Scalable reduction Prediction

Explainability convex
Reverse TDA Clustering

Neuroepithelial Detection (ND)

Classification

Figure 6.1: Summary of perspectives on brain organoid image analysis. In lightgray: in
progress; in red: work we would like to implement; arrows: shape prior information given
to other tasks.
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6.4 Published review

Clara Brémond Martin et al. (July 2021b). “Recent Trends and Perspectives in Cerebral
Organoids Imaging and Analysis”. en. In: Frontiers in Neuroscience 15, p. 629067

6.5 Published international conference papers

Clara Brémond Martin et al. (2021a). “AAEGAN Loss Optimizations Supporting Data
Augmentation on Cerebral Organoid Bright-Field Images”. en. In: Proceedings of the
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