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Introduction

The original purpose of cryptography was to guarantee the secrecy of messages by
encrypting them before the transmission. Since then, the field had to go beyond this
initial goal due to its large-scale use and the development of computers in the second
part of the 20th century. At that time, a revolution was also the invention of public-key
cryptography in 1976 [DH76]. It allowed parties to securely communicate without
meeting to agree on a common secret. As such asymmetric algorithms typically rely on
hardness assumptions about computational problems, this also strengthened the role of
mathematics and theoretical computer science in the discipline.

The paradigm to argue security is that an attacker that breaks the scheme can be
used as a subroutine to solve the intractable mathematical problem. It is thus important
that there does not exist any efficient solver. Another constraint is that the assumption
should contain enough expressivity for the intended application. This explains why
arbitrary hard problems are in general not relevant. Hopefully, some coming from
number theory were also shown to meet our second condition. The two most prominent
ones are by far Integer Factorization and the Discrete Logarithm problem, for which all
the best known algorithms are exponential or subexponential. A majority of public-key
schemes are based upon these assumptions or closely related ones.

However, in 1994, Peter Shor introduced a polynomial time quantum algorithm
[Sho94] for these problems. Assuming that it can be implemented, this implies that
all current asymmetric mechanisms will be insecure in a model where the attacker
has quantum capabilities. This lead to rethink cryptography with new alternative
assumptions believed to resist quantum computers. To encourage efforts in that
direction, the National Institute of Standards and Technology (NIST) initiated in
2017 a competition to select the most promising candidates. Clearly, a prerequisite for
such proposals remains their resistance to classical algorithms. Our work will focus on
this setting and we will not consider quantum adversaries.

Algebraic Cryptanalysis

The idea of recovering the cryptographic secret by solving a multivariate polynomial
system over a finite field goes back way beyond the boom in post-quantum schemes.
It was for example used in the analysis of symmetric ciphers [CP02; CMO03] and also
on the elliptic curve version of the Discrete Logarithm problem [Sem04]. It is however
clear that the approach has taken new scope in this recent context. Indeed, it has been
shown to affect code-based, lattice-based and multivariate proposals, which constitute
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the majority of the NIST submissions.

This general method takes the name of algebraic cryptanalysis. 1t requires both a
polynomial modeling of the cryptographic application and a study of solving algorithms
applied to these equations. These techniques are traditionally analyzed thanks to the
notions of ideals and Grobner bases. A recurrent challenge is that generic bounds given
by computer algebra do not take into account the specificities in the input system. They
are due to algebraic properties of the scheme or of the hard problem under scrutiny but
also more directly to the shape of the equations.

MinRank Problem

Most of our contributions concern the analysis of MinRank [BFS99] and related variants.
This hardness assumption states that it is computationally difficult to find a non-zero
low rank linear combination between (full-rank) public matrices.

It was brought in cryptography by [Cou01b] to design a zero-knowledge authentication
protocol. At about the same time, one also noted its strong connection with the security
of code-based schemes in the rank metric. More precisely, the generic decoding problem
for this metric — the Rank Decoding (RD) problem — can be expressed as a MinRank
instance with a structure coming from an extension field. On the contrary, in the area
of multivariate cryptography where it is the most popular, MinRank is not part of the
security reduction. There, it only serves as a cryptanalytic tool to retrieve the private
key. For a given scheme, it is thus important to select the right instance or to find
possibly easier ones. Addressing this second question was in particular the crux in the
devastating attacks of [Beu2la; TPD21].

Given its recentness compared to code-based and lattice-based assumptions, the
cryptanalysis of MinRank is not established yet. For example, we do not have a complete
picture of hardness for random instances in function of the parameters. In fact, since
MinRank appears almost exclusively in a structured form, it is not even clear that such
a result would be of any help. What is certain is that the nature of the problem paves
the way for both algebraic and combinatorial techniques, regardless of this structure.

Several polynomial modelings have already been proposed for MinRank. The
analysis of the oldest ones has been shown to be nicely connected to the theory of
determinantal ideals [F'SS10]. This relation remains to be understood for more recent
systems which lead to cryptanalysis breakthroughs, especially Support-Minors (SM)
[Bar+20b]. Independently, the extra structure in variants calls for a new analysis of
these generic modelings. It also leaves room for finding more relevant ones tailored to
these versions.

Structured Systems

We also studied other systems that are no longer related to MinRank but which still
admit particular features. In cryptography, the main solving technique boils down to
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computing a Grobner basis in some graded order using an F4/Fs-type of algorithm
[Fau99; Fau02], whose complexity is exponential in the maximal degree of a polynomial
appearing in this calculation. The challenge for the cryptanalyst is then to derive a tight
bound on this parameter based on the algebraic properties of the equations.

This has already been achieved in contexts where this structure is not apparent.
For example, polynomial systems arising from the direct attack on (variants) of Hidden
Field Equations (HFE) [Pat96] seem to have the same shape as random quadratic ones.
However, it was quickly noticed that the degree reached by the solver on these equations
is lower than the one on the latter [JF03]. It is now well-known that this parameter
is controlled by the rank of the MinRank problem which underlies the scheme [DH11;
DK12; DY13].

In the worst case scenario, such properties cannot be exploited or even uncovered.
In this situation, cryptographers do not hesitate to base their analysis uniquely on
experiments. Concretely, this means picking numerical parameter values and run the
solver on the resulting small-scale systems to see a general trend. The other extreme
would be to use the specific structure in order to speed-up the computation, for instance
by tweaking the general-purpose Grobner basis algorithm. This undoubtedly requires a
much deeper understanding of the system.

Contributions

The content of this manuscript is dedicated to the cryptanalysis of several types of
primitives and it falls almost exclusively within the scope of algebraic cryptanalysis.
Some of our works encompass all the aspects of such an attack, from deriving the
modeling to the cost estimate, while some others are restricted to the latter step. We
have attempted to exploit potential features in the input equations as far as possible.

Analysis of existing systems. Even when we proposed a new polynomial modeling,
this came from a study of the previous choices to understand why they were not
necessarily the most suitable. Thus, we first describe our contributions regarding the
analysis step.

e In [Bae+22], we demonstrated that the Support-Minors modeling could indeed
be applied to the MinRank problem introduced by [TPD21]. Tao et. al were not
able to estimate this solver due to the big-field structure. In addition and more
generally, we addressed the question of memory complexity when using SM.

e The results in [Bar+23] on the RD problem were also obtained from a preliminary
analysis of SM. In this structured context, our experiments showed that the
modeling does not behave as suggested in [Bar+20b] due to some algebraic relations.
We provided conjectures for the number of such cancellations and we managed
to explain a good part of them. It turns out that we also recover the MaxMinors
(MM) equations of [Bar+20a] when we run Grobner bases on SM.
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e In [BBBG23|, we focused on the Non Homogenous Rank Decoding (NHRD)
problem. This is a variant of RD where the error has a specific form. This shape
was used in [Agu+20] to boost the original RD solver by setting unknowns to zero
in both MM and SM. However, this method also causes a loss in the number of
equations which was not considered in their estimates. We have tried to understand
this drop in the case of MM to obtain a more accurate cost formula.

e The bilinear equations studied in [BL23] had been introduced by Loidreau at
WCC 2022! but our work is the first attempt to analyze them. We showed that
there exist degree fall polynomials coming from the kernel of structured Jacobians,
which allowed to partially explain the early steps of the Grébner algorithm. Even
if this content does not lead to an attack, it should give a better grasp of the
indistinguishability assumption which underlies Loidreau’s cryptosystem.

e The systems encountered in [Bou+23] are standard in the context of algebraic
cryptanalysis on arithmetization-oriented ciphers but they differ a great deal from
our other applications. This type of attacks is also rather new and each symmetric
design has its particularities. We managed to complement our experimental study
with a partial interpretation of the observed behaviour.

Starting from a new modeling.

e The work of [BTV21] corresponds to a full algebraic attack on a new multivariate
encryption scheme [RLT21]. The authors had already proposed an ad hoc MinRank
instance relevant to key-recovery. Sadly, in contrast to rank attacks on HFE, the
link between its solutions and the final (equivalent) key was unclear. Our first step
was thus to identify solutions which are suitable for an attack. By exploiting their
specific shape, we gave a polynomial strategy based on a dedicated modeling.

e The analysis in [Bar+23] also lead us to introduce another system for the RD
problem. Our arguments suggest that it may lead to better complexities than the
former SM method of [Bar+20b].

e The Rank Support Learning (RSL) problem is variant of RD with N > 1 decoding
instances where the coordinates in all the errors belong to the same subspace of
Fym. In [BB21], we gave a new SM-type modeling tailored to RSL. Its analysis
was in fact the starting point of [Bar+23] and the same proof techniques are used
in both papers.

e Our cryptanalysis of the Regular Syndrome Decoding (RSD) problem [B()23] can
also be seen as building upon a new algebraic system since it is not explicitly
mentioned in the literature. Our main contribution was to study its specific features.
There, the structural part comes from quadratic polynomials which model the
regular distribution. We have been able to fully understand these equations. This

Thttps://www.wcc2022.uni-rostock.de/home.
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analysis already provides a rather precise picture of the full modeling because the
rest of the polynomials are not structured and may be treated as random at least
in a first stage.

Hybrid techniques. In some of our works [BB21; Bar+23; B023], we also proposed
a hybrid approach by fixing unknowns in the initial system. The general goal is to obtain
a better cost in parameter zones where the plain algebraic attack does not perform
extremely well. Contrary to the folklore method where these variables are randomly
selected, we took care to choose structured specializations for which the resulting system
still keeps a similar shape. This is important because it may give better results while
allowing us to rely on the initial analysis. This also places the approach as a natural
interpolation between the original solver and combinatorial techniques which are often
better understood. Finally, we contributed to improving these latter algorithms in the
context of NHRD [BBBG23| and we have managed to apply them to the Loidreau
scheme [BL23].

Impact for Cryptographic Proposals

Multivariate cryptography. By building upon the almost-break of [TPD21], we
obtained the best known attack on variants of HFE. In particular, we managed to break
the parameters of pHFEv- [OSV21] which were resistant to [TPD21]. Concerning the
Sidon cryptosystem, the scheme can in theory be repaired by picking another type of
Sidon space. However, such a new construction has not been found so far.

Rank-based cryptography. Our work has contributed to strengthen the analysis of
cryptosystems relying on the rank metric. This was especially needed in the context of
the NIST call since algebraic methods had been much less studied than combinatorial
techniques. In the case of RD, [Bar+23] now represents the state-of-the-art. To the best
of our knowledge and even though it is not competitive when the number N of instances
is rather small, our approach on RSL [BB21] is still the only attack of algebraic nature
tailored to this problem.

Regular Syndrome Decoding. On some parameters used in pseudorandom cor-
relation generators [BCGI18], our approach has been shown to outperform standard
techniques such as ISDs and Statistical Decoding. This was especially true with the help
of the hybrid component.

Selecting parameters. The analysis of [BBBG23] and [Bou+23] are part of design
papers and they allowed to instantiate our proposals. As is often the case for this type
of ciphers, algebraic attacks were the limiting ones for Anemoi.
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Organisation du Manuscrit

Ce document est divisé en quatre grandes parties. La premiére contient des notions
préliminaires tandis que les trois autres sont dédiées a nos contributions, classées de
maniere thématique. Au sein de chaque partie, nous avons tenté d’adopter un ordre
logique entre les chapitres, sauf dans la Partie IV ou cela nous a semblé difficile.

Partie I Elle se compose de trois chapitres.

e Dans le Chapitre 1, nous donnons des éléments de cryptographie asymétrique et
de cryptanalyse. Nous formalisons aussi le cadre de la cryptanalyse algébrique
dans lequel s’inscrivent la quasi-totalité de nos travaux.

e [’étude de complexité pour ce type d’attaques amene a analyser des algorithmes
de résolution de systémes d’équations multivariées sur un corps fini. Le Chapitre
2 introduit la théorie des idéaux polynomiaux et des bases de Grobner qui sont
sous-jacents & ces méthodes. Il donne aussi un apercu des principales techniques
utilisées en cryptanalyse algébrique.

e Le Chapitre 3 revient en détail sur les problemes difficiles desquels sont issues
les modélisations rencontrées dans cette thése. Lorsque cela est pertinent, nous
présentons aussi les constructions cryptographiques basées sur les hypotheses de
sécurité associées.

Partie IT Cette partie est consacrée a nos résultats de cryptanalyse sur des schémas
multivariés qui font intervenir une extension de corps Fyn.

e Nous étudions la trappe Hidden Field Equations (HFE) et ses variantes dans le
Chapitre 4. Nous améliorons une attaque récente basée sur une instance MinRank
particuliere en employant la modélisation Support-Minors, que nous arrivons a
analyser dans ce contexte.

e Le Chapitre 5 donne une attaque polynomiale sur un nouveau mécanisme de
chiffrement reposant sur des sous-espaces particuliers de Fy» appelés espaces de
Sidon. La encore, nous considérons un probleme MinRank spécifique. Nous
proposons un systéme algébrique dédié pour le résoudre et nous montrons que cela
permet de casser le schéma.
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Partie III Elle contient nos attaques contre la plupart des hypotheses de difficulté
considérées en cryptographie en métrique rang. C’est la plus fournie de ce manuscrit.

e Mon travail de these le plus ancien s’est intéressé au probleme Rank Support
Learning. Il est décrit dans le Chapitre 6. Nous y introduisons la premiere
approche purement algébrique contre ce probleme. Nous donnons aussi une
méthode combinatoire issue d’'un article ultérieur dont I'idée de départ est similaire.

e Le Chapitre 7 revient sur le probleme plus fondamental du décodage générique.
Nous utilisons les mémes techniques de preuve que dans le chapitre précédent afin
de corriger 'analyse de complexité des solveurs algébriques existants. Ces outils
nous permettent aussi d’estimer le coiit de résolution d’une nouvelle modélisation
que nous proposons. Enfin, nous présentons une approche hybride structurée
s’appliquant aux systemes algébriques utilisés contre le probleme de décodage. Elle
a l'avantage de se généraliser a n’importe quelle attaque connue contre MinRank.

e Dans le Chapitre 8, nous nous focalisons sur une variante ou le vecteur de bruit a
une forme particuliere. La difficulté de ce probleme est utilisée dans RQC et dans
une nouvelle amélioration de ce cryptosystéme. En tenant compte de la structure
de l'erreur, nous analysons la modélisation algébrique MaxMinors et nous adaptons
I’approche combinatoire standard dans ce cadre précis.

e Le Chapitre 9 s’intéresse & un distingueur pour le schéma de Loidreau basé sur
des équations bilinéaires. Nous proposons une meilleure technique de résolution
s’inspirant des attaques combinatoires contre le décodage générique et nous mettons
en évidence des chutes de degré dues a la structure qui apparaissent dans les
premieres étape de I'algorithme de base de Grobner appliqué au systéme.

Partie IV Elle réunit nos deux travaux qui ne sont pas reliés au probleme MinRank
sous-jacent aux parties II et III.

e Le Chapitre 10 étudie une autre forme d’erreur spécifique dite réguliere dans le
cas du décodage en métrique de Hamming. Alors que le probléme initial est
plutdt sujet a des méthodes combinatoires, cette structure supplémentaire permet
I’application de techniques algébriques. Notre approche se base sur un systeme
relativement élémentaire pour lequel nous conjecturons une série de Hilbert et
dans lequel nous proposons de fixer des variables en accord avec la structure. Nous
montrons qu’elle peut étre compétitive vis-a-vis des attaques connues dans des
zones de parametres utilisées par les générateurs de pseudo-aléa corrélé (PCG).

e Un nouveau type de cryptographie symétrique utilisé dans les preuves zero-
knowledge s’avere vulnérable aux méthodes algébriques. La permutation Anemoi
a été récemment proposée afin de gagner en efficacité dans plusieurs systeémes de
preuve. Dans le Chapitre 11, nous étudions sa résistance contre deux modélisations
afin de déterminer ses parametres.
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Notation

Generic Notation

Symbol Meaning
Integers
N, Z, Z~q Natural numbers, integers, positive integers
{a..b} The set of integers between a and b
#1 The cardinality of a set [
(Z), (Z)q Binomial coefficient, Gaussian binomial coefficient
Vectors
v Bold lowercase letters denote row vectors
vl Transpose of the vector v
vi, VI The i-th component of v and the vector (v;)es for I < {1..4}
Matrices
M Bold capital letters denote matrices
MT Transpose of the matrix M
M; ; The entry in row ¢ and column j
My The submatrix obtained by considering row indexes in [
M, ; The submatrix obtained by considering column indexes in J
I, The identity matrix of size n
rk(M) The rank of the matrix M

’M‘a |N>X<7J|7 ’PI,*|
M®N

Determinant of the square matrix M (or of square submatrices N j, Py )
Kronecker product between two matrices M and IN

[M N ], [%} Concatenation between two matrices M and IN (with appropriate sizes)
Algebraic structures

R, R An arbitrary ring

K, K A field and its algebraic closure

Fy, For a prime power ¢, the field with ¢ elements

Fgn Degree n extension of [Fy

] For £ € N and x € Fy», the image 29" of z under the (-th iterate of the Frobenius map

xXvii



Polynomials and ldeals

The notation « = (x1,...,x,) stands for a vector of variables and we let K[x] denote
the ring of multivariate polynomials in the variables & with coefficients in K. The

polynomial system (resp. sequence) containing the polynomials f; € K[z] for 1 <i<m

will be denoted by F def {fi,---, fm} (resp. (f1,..., fm)). The ideal generated by this

system is defined by

def

Y (o ™ {igf : (gl,...,gm)eK[zc]m}.

Finally, the letter I may denote an arbitrary polynomial ideal.

Linear Codes

A linear code C of length n and dimension k over F, is an Fy-linear subspace of Fy
of dimension k. We say that it has parameters [n, k],. A generator matrix for C is a
full-rank matrix G € IF’;X" whose rowspace is equal to C, i.e., C = {mG, m e F’;} The
dual Ct of C is defined by

¢t {newy:veec, e’ =0}

It is an [n,n — k], linear code and we call parity-check matrix for C any full-rank

generator matrix H € an_k)xn of Ct. Finally, the puncturing and shortening operations
are classical ways to construct new linear codes from existing ones. For I < {1..n}, the
puncturing Pr(C) < Fi~#1 of C at I is the [n — #I, k' < k];-code defined by

PirC) Y {equicec). (1)
Similarly, the shortening at the same positions is
S1(C) = {C{l..n}\] :ceCandcy=0;}. (2)
We have S;(C*) = Pr(C)* and S7(C)* = P;(C1), so that this shortening operation is in
some sense dual to puncturing.
Asymptotic Notation
We consider the standard Bachmann—Landau notation for two functions f, g: N — R:
f(n) € O (g(n)) = 3IM >0, ¥neN, f(n) <M lg(n)|,
J(n) < Q2 (gm) = 3m >0, ¥ne N, f(n) > mg(n)].
() ofg(m)) = tim T g

Also, we will write f ~ni0 g if (f — g)(n) = o(g(n)) and f(n) = O (g(n)) if there
exists some constant ¢ > 0 such that f(n) = O (g(n) |log g(n)|).
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Relevant Concepts in Cryptology

This first preliminary chapter introduces some notions in cryptology in order to put our
work into this broader domain.

Cryptology traditionally encompasses the areas of cryptography and cryptanalysis.
Historically, the goal of cryptography was to devise mechanisms to guarantee the
secrecy of communications. Due to emerging applications which do not require to
transmit data, the motivation is now more general but a similar security concern
remains. Cryptanalysis gathers all the methods which aim at discovering flaws in such
cryptographic constructions.

Contents

1.1 Public-Key Cryptography . . . . . . .. .. ... ... .. ....
1.2 Security and Cryptanalysis . . . . . . .. .. ... ... ... ...
1.3 Algebraic Cryptanalysis . . . . . . .. ... ... ... ... .

[=2 3=~ T 5] GV

1.4 Post-Quantum Cryptography . . . . . . . .. .. ... ... ... ..

1.1 Public-Key Cryptography

At the core of the development of cryptography is the initial belief that two people had
to agree on a secret way of encrypting and decrypting messages in order to communicate.
Nowadays, the field of symmetric cryptography is the closest one to this original idea
since the parties need to share a common string, the secret key, in such mechanisms.
The most iconic scheme of this type is undoubtedly the Advanced Encryption Standard
or AES [DR02], which has been widely used since its standardization.

However, symmetric cryptography does not answer the question of distributing these
secret keys. History as well as the growing number of interactions through insecure
channels in everyday life applications have shown that this issue had to be addressed in
a secure but also efficient way. Luckily, in 1976, at about the same time as the early
stages of the Internet, the pioneering work of Diffie and Hellman [DH76] circumvented
this problem by finding an alternative to the secret-key paradigm to build cryptography.
Their new approach gave rise to what we call public-key or asymmetric cryptography. It
relies on the existence of trapdoor one-way functions, i.e., functions which are easy to
evaluate but whose inversion is far more complicated without the knowledge of a secret

3



4 Chapter 1. Relevant Concepts in Cryptology

quantity, a trapdoor. Since they are a special case of general one-way functions, whose
existence would imply P # NP, this abstract construction is related to one of the most
famous open conjectures in theoretical computer science.

Diffie and Hellman have not been able to find a concrete example to approximate
such ideal functions. Shortly after, in 1978, Rivest, Shamir and Adleman suggested
to use the exponentiation modulo the product N of two large prime numbers p and q.
It lead to the RSA cryptosystem [RSA78] which can be seen as the first realization of
public-key cryptography. Several other candidate trapdoor functions have been proposed
since then, still tied to problems mostly from number theory which are assumed to
be intractable. This is not the first time that mathematics had come to the rescue
of cryptology. The introduction of a mathematical formalism in this area since the
19th century actually explains why the field became a science well before the birth
of asymmetric cryptography. Relying on algebraic structures not initially tailored to
computer science is also a reason why public-key algorithms are computationally less
efficient than secret-key solutions. This justifies the use of hybrid encryption to combine
the advantages of both types of cryptography.

A common feature in asymmetric schemes is a Keygen algorithm to produce a pair
of keys (sk, pk). The secret key sk is kept by only one party while the public key pk can
be freely distributed. The way these keys are used depends on the intended application.

Encryption schemes. The most basic purpose of asymmetric cryptography is to
ensure confidential communication. This can be achieved thanks to public-key encryption
(PKE). Let us assume that Alice wants to securely transmit a message m to Bob. First,
Keygen provides a private key sk to the latter as well as a public key pk which is known
to any user. Alice can thus apply the encryption algorithm Encrypt with input pk to
obtain the ciphertext ¢ = Enc(pk,m). Only the owner of the secret key sk, namely Bob,
can finally Decrypt to recover m = Dec(sk, ¢).

While this seems reasonably satisfactory, this solution does not guarantee that the
message m was really sent by Alice. To ensure the authenticity of communication, one
can use digital signatures.

Digital signatures. In addition to Keygen, a digital signature scheme consists of
two algorithms (Sign, Verify). As in a PKE, the Keygen procedure generates a keypair
(sk’, pk’) but this time sk’ is sent to Alice. To show that she is legitimate, Alice then
builds a signature o = Sign(sk’,m) that she typically appends to her message. An
arbitrary signature & is publicly verifiable using pk’ by computing Verify(pk’, 5, m).
This boolean value indicates whether & is a valid signature for m or not.

Since a signature is tied to a given plaintext, such a mechanism also ensures integrity.
This means that the message cannot be corrupted during the communication.

Advanced functionalities. Due the development of technology and computer-based
communication, cryptography needs to answer new challenges which arise from these
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applications. Most of the time, they require cryptographic constructions with more
advanced functionalities.

In this context, a PKE and or a digital signature can still serve as the fundation
provided it has specific properties. The whole scheme is then obtained by adding external
algorithms. Interestingly enough, number-theoretic assumptions have proven helpful
to find such building blocks. For example, the RSA cryptosystem is multiplicatively
homomorphic and the Paillier scheme [Pai99] enjoys a similar property but for addition.
The latter is based on the Decisional Composite Residuosity Assumption (DCRA), which
becomes easy if one knowns how to efficiently factor large numbers. In the same fashion,
Identity-Based-Encryption (IBE) and group signatures are generalizations of PKE and
digital signatures whose early constructions [BF01; BBS04] heavily rely on bilinear maps
on appropriate groups.

However, some other applications have required brand new building blocks. For
instance, secure two-party computation (2PC) was introduced along with the notion
of garbled circuit [Yao86]. Since the goal is not restricted to secure communication
anymore, it is quite understandable that PKE and signatures were no longer sufficient.
Still, note that mathematics remain extremely present. Very often, they help to realize
a partial step towards the final functionality. To continue the example above, garbled
circuits rely on oblivious transfer (OT), whose initial construction [Rab05] is based on
the RSA assumption.

1.2 Security and Cryptanalysis

Attempts to find weaknesses in cryptographic mechanisms are traditionally referred to
as attacks. Due to Kerchkoffs’s principle [Ker83], such techniques are able to exploit a
public specification of the scheme. A consequence is that a cryptosystem which resists
several years of analysis by the community may be more trusted than a proposal that
no one has examined.

To study these attacks, modern cryptography has introduced a more precise
framework which goes beyond the intuitive meaning of security. Roughly speaking,
it consists in formalizing the capabilities of the adversary Eve (the model) and what
we allow her to achieve (the security notion). A security notion aims at making more
precise a security goal for a scheme in order to have a proof that this scheme indeed
meets this requirement. By construction, the security of asymmetric primitives is related
to mathematical problems which are believed to be difficult in the considered model of
computation. In this context, a security proof (or reduction) strengthens this connection
by showing that an adversary which can efficiently attack the targeted notion can be
used to solve efficiently the associated problem.

In fact, hardness assumptions remain the focus of cryptanalysis even when such a
reduction is missing. A security level which measures concrete security is often obtained
from the computational cost of the best known attacks. Finally, a break traditionally
refers to an attack whose complexity is below this security level.
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1.3 Algebraic Cryptanalysis

Algebraic cryptanalysis can be defined as the very general family of attacks which are
based on solving a system of multivariate equations. Even if it is difficult to give the
precise date of the first algebraic attack, the broad idea can already be traced back to
the work of Shannon [Sha49]. The general structure is in two steps:

1. Modeling. First, we set up a multivariate system which describes the scheme
from the knowledge of its specification. The requirement is that solving this system
should allow to recover the secret (message, private key, ...). The variables are
the secret itself or they can be related to it in a less direct way. In this second
case, additional steps might be needed to recover this secret.

2. System solving. As cryptosystems mainly operate on discrete data, there will be
no ambiguity in the definition of “solving” in our context: the set of solutions is a
finite list of vectors. Similarly to other types of cryptanalytic attacks, an algebraic
attack is said to be practical if we can efficiently recover these solutions. However,
to some extent, modern cryptography also considers non-practical ones!. In this
situation, the work of the cryptanalyst is to estimate a theoretical cost.

Both steps are equally important but they also go hand in hand. The first step is the
closest one to the initial cryptographic design and it sometimes calls for creativity. A
presumably good modeling should contain as much information as possible about the
scheme because this information may help for the solving process. Concretely, we would
like to find “simple” equations or as many equations as possible. However, we cannot
make a definitive statement on the quality of a modeling without studying efficient
algorithms for solving it. In particular, analyzing them may be challenging. Very often,
this is because we apply generic techniques to systems with specific features.

Regardless of its feasibility, the minimal condition to mount an algebraic attack is
that the cryptographic algorithm can be expressed into a set of multivariate equations.
For this reason, algebraic cryptanalysis is sufficiently general to be applied to both
symmetric and asymmetric schemes.

1.4 Post-Quantum Cryptography

While a large part of cryptography, starting from most of the symmetric primitives, does
not seem too strongly affected by the added capabilities of quantum computers, the
same does not hold for public-key cryptosystems. There is nothing really wrong with the
initial paradigm itself but sadly the essential building block which is used to instantiate it
is now defective. Indeed, both the Discrete Logarithm problem and Integer Factorization
are particular instances of the so-called Hidden Subgroup problem for finite abelian
groups, which can be solved in polynomial time by Shor’s algorithm [Sho94]. In response,

IFor instance to derive security levels and parameters.
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the keysize in current public-key mechanisms would have to be increased exponentially,
leading to truly uncompetitive schemes. In contrast, it is generally acknowledged that
doubling this keysize for most of the symmetric primitives should be sufficient to hedge
against Grover’s algorithm [Gro96].

Hopefully, this very fact also implies that building quantum-safe public-key
cryptography should not be too hard, at least in theory. It is just a matter of replacing
the flawed building block by a quantum-resistant one. In particular, the community has
already started to consider new hardness assumptions for which quantum computers do
not seem to help. Each of these difficult problems is associated to a branch of what we
call post-quantum cryptography. Interestingly enough, research in some of these branches
is prior to Shor’s algorithm. The most important ones? are:

e Code-based cryptography, relying on the hardness of decoding random linear

codes and other closely related assumptions,

e Hash-based cryptography, relying on the security of a given hash function,

e Isogeny-based cryptography, relying on difficult problems defined in terms of
isogenies between elliptic curves,

e Lattice-based cryptography, relying on the hardness of finding short vectors
in Euclidean lattices and other closely related assumptions,

e Multivariate cryptography, where most schemes are based on the difficulty of
solving random multivariate quadratic systems.

Even though the underlying assumptions are believed to be quantumly intractable, they
already provide extra material to classical cryptanalysts and in particular to algebraic
cryptanalysts. Indeed, some of them still involve a sufficient amount of structure for
such techniques to apply. This structure is often vital to build the cryptographic
trapdoor. Sometimes, more artificially, it is also a way to enhance the efficiency of a
given cryptographic construction. In Chapter 3, we will go back to some of these hard
problems through the lens of algebraic cryptanalysis.

Post-quantum standardization effort. To fully migrate to post-quantum cryptog-
raphy, we need to duplicate all the work performed for number-theoretic cryptography
by building efficient schemes based on new assumptions and later combine them into
procotols in order to reach more advanced functionalities. It turns out that these hard
problems also allowed to solve new cryptographic challenges. The most obvious example
so far is undoubtedly Fully Homomorphic Encryption (FHE) [Gen09], which has long
been regarded as the holy grail of cryptography [Mic10]. Indeed, all FHE proposals or
at least those used in commercial solutions are lattice-based.

The large-scale deployment of post-quantum cryptography also calls for standards.
To this end, the American National Institute of Standards and Technology (NIST)

2Presented in alphabetical order to avoid any unnecessary debate.
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launched in 2017 a process — often referred to as the NIST PQC competition (or project)
— to standardize post-quantum PKE and digital signatures. The initial call for proposals
gathered 82 submissions, most of them belonging to one of the abovementioned branches.
They have been analyzed in-depth by the entire cryptographic community and the
selection has been narrowed down through a series of 3 rounds. The outcome of the
Third Round was announced in July 2022: four candidates have been selected for
standardization and four additional algorithms have continued in a Fourth Round for
further study [Ala+22]. Among them, it should be noted that SIKE [Jao+17] was
subject to severe cryptanalysis since then [CD23; Mai+23; Rob23] and is now considered
as broken.

Table 1.1: Third Round outcome: ready for standardization.

Public-Key Encryption/KEMs| Digital Signatures
CRYSTALS-Kyber CRYSTALS-Dilithium
Falcon
SPHINCS™

Table 1.2: Third Round outcome: Fourth Round candidates.

Public-Key Encryption/KEMs | Digital Signatures
BIKE
Classic McEliece
HQC
SIKE (broken)

Most of the content of this thesis is closely related to the NIST PQC project. First, the
whole process has been a clear boost for the post-quantum branches which are arguably
the most vulnerable to algebraic cryptanalysis, namely multivariate cryptography and
code-based cryptography relying on the rank metric. More directly, a part of my PhD
work applies to some of the NIST candidates, for instance the rank-based schemes
ROLLO [Ara+19¢] and RQC [Agu+20] and the multivariate-based GeMSS [Cas+20]
and Rainbow [Din+20).

This selection process should not be considered complete. At the end of the Third
Round, NIST also asked for additional proposals for signature schemes. The main
justification was a lack of diversity among the candidates retained after the Third Round.
In particular, NIST was no longer interested in solutions based on structured lattices.
Another motivation was to have schemes with short signatures and fast verification.
These features are indispensable for some applications and they seemed to lack in the
algorithms kept after the Third Round.



Solving Polynomial Systems

The purpose of this chapter is to present the main notions relevant to the System Solving
step of an algebraic attack, from the underlying theory to the description of the solving
algorithms and their complexity analysis.

Contents
2.1 Ideals and Varieties . . . . . .. ... ... L. 9
2.2 Grobmer Bases . . .. ..o 11
2.2.1  Monomial Orderings . . . . . . .. .. ... ... ... .... 11
2.2.2  Grobner Bases: Definitions and Basic Properties . . . . . . 12
2.2.3  Solving with Grébner Bases . . . . . . .. ... ... .... 15
2.2.4  Homogeneous Ideals . . . ... ... ... ... ... ... 16
2.3 Generic SequUeNCES . . . . . . .. i e 17
2.3.1  Regular Sequences . . . ... ... ... .. .. ..., 17
2.3.2  Semi-Regular Sequences . . . . ... ... ... .. ..., 18
2.4 Solving Techniques . . . . .. .. ... .. ... ... ... ..... 20
2.4.1 Macaulay Matrix, Lazard’s Theorem . . . . . ... .. ... 20
2.4.2  Generic Algorithms . . . . . .. ... o oo 22
2.4.3 Towards Specific Strategies . . . ... .. ... ... .... 23
2.5  Systems in Applications . . . . . ... ..o oL 24
2.5.1  Affine Polynomials . . . . ... ... ... .. L. 24
2.5.2  Bilinear Equations . . . . . ... ... ... ... 26

2.1 Ideals and Varieties

The first algebraic object which may come in mind to formalize system solving is the one
of algebraic variety. The variety of a system F = {f1,..., fin} in n variables over a field
K can be defined as the subset of K" on which all the f;’s vanish simultaneously. This
object is in fact associated to the ideal I = (fi1,..., fm) € K[x] since it does not depend
on a generating set and we will denote it by V(I) or V({F)). To restrict ourselves to
solutions belonging to a subfield . « K, another convenient definition is

VL(I)dif{ZGL”:fi(z)=0fora111<i<m}={ze]L":erL f(z) =0}.

9
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Note that we recover V(1) = V(I). More specifically, we will be interested in Vi () when
K is the finite field F,. If Ir, stands for the ideal generated by F u {zf —z; : 1 <i < n},
we obtain V (Ir,) = Vg, (I).

Coming back to the general case, one can go in the opposite direction from an
arbitrary set a points W < K" by defining

IW) Y (feK[z]:VzeW, f(z)=0}. (2.1)

This choice of notation is hardly arbitrary since any such subset of K[x] is trivially a
polynomial ideal, that we call the ideal of W.

Radical ideals. This subset is far from being the unique ideal whose elements vanish
on W. Informally, it can be seen as the biggest one of this kind: if for some ¢ € Z~q
the polynomial f* belongs to I(W), it easily follows that f € I(W). This motivates the
following definition.

Definition 2.1 (Radical ideal). An ideal I < K[x] is said to be radical if for any
f € K[z], the existence of £ € Z~q such that f¢e I implies f € I.

The ideal introduced in Equation (2.1) is indeed radical according to Definition 2.1.
In the general case, the radical /T corresponds to the smallest radical ideal containing
1. More explicitly,

ﬁ:{feK[m]: I € Zeo, f‘fef}.

The famous (strong) Nullstellensatz [CLO15, 4, §2, Theorem 6] states that if I is an
ideal over an algebraically closed field K, then I(V(I)) = /1.

Zero-dimensional ideals. Another relevant notion for our applications is that of
zero-dimensional ideals, i.e., such that the associated variety is finite. Our interest in
this definition is due to the fact that any ideal of the form Iy, as we have just described
is both radical and of dimension 0. For the sake of simplicity, we do not expand on the
concept of Krull dimension and we only give the following property of 0-dimensional
ideals.

Proposition 2.1 (Degree of a zero-dimensional ideal). Let I < K[x] be a 0-
dimensional ideal, i.e., such that #V(I) < +0o0. Then, the quotient K[x]/I is a K-vector
space of finite dimension. This dimension is called the degree of I, denoted deg(I).

Similarly to the degree of a polynomial in the univariate case, this notion is closely
related to the number of solutions to an ideal. More precisely, it counts the number of
solutions in K with multiplicities, so that deg(I) < #V(I) and the equality holds when
I is radical. We finish by giving a classical bound on the degree when the number of
equations is the same as the number of variables.
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Proposition 2.2 (Bézout bound). Let I = {(fi,..., fn) < K[x] be a zero-dimensional
ideal and let dy,...,d, be the degrees of f1,..., fn respectively. We have

n

deg(I) < [ [ di

i=1

In practice, an ideal I as in our theoretical exposition will be given by a fixed set
of generators. However, as such, these polynomials might not really help to obtain the
properties of I we want. In that respect, Grébner bases that we now introduce turn out
to be more useful.

2.2 Grobner Bases

A first and rather standard way to present Grobner bases is to view them as a
generalization of the row echelon form for linear systems. In this section, we give
their definition as well as some elementary facts. We also provide some background on
homogeneous ideals.

2.2.1 Monomial Orderings

To carry on the analogy with linear systems, note that the row echelon form (even
reduced) is not unique because there are several ways to associate a matrix to a given
linear system in n variables. For instance, there are n! different orders on the columns
which correspond to n! distinct orders on the unknowns. Similarly, a Grébner basis
will be defined at least implicitly with respect to a monomial ordering. A monomial in
K[x] refers to any product of the form z{*...25", (a1,...,a,) € N, and the notion
of monomial ordering has to go beyond simply ordering variables because we now deal

with higher degree polynomials.

Definition 2.2 (Monomial ordering). A monomial ordering < of K[x] is a relation
on the set M of monomials of K[x] such that:

e the ordering < is total on M;
o if y; < pg and v e M, then v < pgv;

e < is a well-ordering, i.e., every nonempty subset of M has a smallest element
under <.

In the following, we will mostly focus on the so-called Lexicographical (LEX) and
Degree Reverse Lexicographical (DRL) orderings.

Definition 2.3 (Lexicographical ordering). Given a = (ai,...,a,) € N” and
B = (P1,...,0n) € N* we define:

o oL xlm <ex a:’fl .. xﬁ” if the leftmost non-zero entry o« — B is negative.
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On variables, we obtain z, <jex ‘- * <lex 1. On higher degree monomials, LEX is
still quite intuitive as it corresponds to the usual way of arranging words in alphabetical
order. To compare two monomials, one has to look at the largest variables first and
then keep in mind that a given variable dominates any monomial which involves smaller
variables.

Example 2.1. In K[z1,29, 23] we have z32323? <jox 232375 because (2,2,12) —

(3,2,1) = (—1,0,11) and x5 <jex #3753 because (0,0,7) — (0,5,1) = (0, —5,7).

As above, we can obtain n! analogous orders by sorting the initial variables in a
different way. Perhaps more crucially, the LEX order is an elimination ordering: if G is
a LEX-Grobner basis of I ¢ K[x], the set G n K[xy41,...,2,] is a LEX-Grobner basis
of the ideal I "nK[zy41,...,2,] for any 0 < v < n—1. As we will see below, this feature
makes it well-suited to solve polynomial systems.

Contrary to LEX, the Degree Reverse Lexicographical ordering is a graded ordering.
This means that monomials are sorted by total degree first, the total degree of z{* ... z0"
being defined as

d
deg(z{' ... 2%m) lef .

In case of a tie on this degree, variables involved come into play according to the following
rule. We keep the same notation as in Definition 2.3.

Definition 2.4 (Degree Reverse Lexicographical ordering). If deg(z{" ... 20") =
deg(ajf1 coeabe) 2 et <gn x?l ...xP7 if and only if the rightmost non-zero entry

in a — B is positive.

This second ordering is less intuitive. Among monomials of a given degree D, the
largest monomial is x{) , then come those in z; and x5 only, then involving x1, x2 and z3,
etc. Between two monomials in the same variables x1, ..., x;, the smallest one contains
the largest power of x;.

Example 2.2. In K[z, 79, 23] we have 232323 <41 232973 because (3,5,2) —(2,9,1) =

(1,—4,1). The graded LEX ordering would sort these monomials in reverse order.

In practice, DRL is of interest because it seems to give faster computation time
compared to other orders. However, we can always imagine the possibility of a more
appropriate choice which benefits from the structure of the input system. The main
issue is that it is unknown how to discover such an ordering in general.

2.2.2 Grobner Bases: Definitions and Basic Properties

This section gives the definition of a Grobner basis for an ideal I with respect to a
monomial order < as well as some elementary properties. Even if this notion does not
depend the generating set, we will often talk about Grobner bases of any polynomial
system F which generates I.
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For a polynomial f = >} c\jaupu € K[z], we denote the leading monomial by
LM< (f), i.e., max< {e M, a, # 0}, the leading coefficient by LC-(f) = ALV (f)

and the leading term by LT (f) = LC-(f)LM(f). For an ideal I or more generally
for a set S, we define the monomial ideal

LM (T) & ((LM.(f), feT}).

Dickson’s lemma [CLO15, 2, §4, Theorem 5] states that such an ideal is finitely generated
by monomials.

Definition 2.5 (Grobner basis). Let < be a monomial ordering and let I < K[x] be
an ideal. A Grobner basis for I with respect to < is any subset G = {g1,...,gx} < I
such that

LM (I) = {LM<(g1),---,LM<(gx))-

A first consequence of Definition 2.5 is that G is actually a generating set for I, hence
the name basis. Furthermore, it is easy to see that such a Grobner basis is not unique.
Any set of polynomials obtained by adding other elements of I is a larger Grobner basis
and we can also disrupt the non-leading monomials of the polynomials in G to obtain
another Grobner basis G’ such that #G’ = #G. This apparent issue is solved by the
following definition.

Definition 2.6 (Reduced Grobner basis). A Grobner basis G for an ideal I is said
to be reduced if for every polynomial g € G we have LC(g) = 1 and p ¢ LM(G\{g}).

Indeed, for a given monomial ordering, any ideal has a unique reduced Grébner basis.

Normal forms. The introduction of Grébner bases by Buchberger [Buc65] was
motivated by the study of the Ideal Membership problem. Given a set of polynomials
{hi,...,hn} and f € K[x], the goal is to decide whether f e [ = {(hy,...,hp). In the
univariate case n = 1, the ring K[] is principal so that any ideal I is generated by one
element. To solve the problem, a convenient generator is the ged g of all polynomials
in I because we simply have to check whether f is divisible by g. This ¢ is easily seen
to be the only element in the reduced Grobner basis of I. In the general case as well,
Grobner bases allow to solve the Ideal Membership problem by computing normal forms.
The normal form of a polynomial f with respect to an ideal I extends the notion of
remainder which makes sense when n = 1.

Proposition 2.3 (Normal form, Proposition 1 p. 83, [CLO15]). Given an ideal
I c K[z], a polynomial f € K[x] and a monomial ordering <, there exists a unique
decomposition f = p+ g such that g € I and such that no monomials present in p belong
to the ideal LM~ (I). The polynomial p is called the Normal Form of f with respect to I
and denoted by NFr -(f) or simply f mod< I.
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Proof. To prove uniqueness, we consider two decompositions f = p; + g1 and f = pa + go
such that g; # g2 belong to I and such that p; # p2 do not have any monomials in
LML (I). An ideal being stable by addition, the polynomial p; — p2 = g2 — g1 belongs to
I and, a fortiori, LM< (p1 — p2) € LM (I). By assumption on p; and pg, this implies
p1 — p2 = 0 and g1 = go. To prove existence, we rely on the following Algorithm 1.

Algorithm 1: Normal form.

Input: A monomial ordering <, a Grobner basis G for an ideal I with respect to
< and a polynomial f € K[z].
Output: A polynomial p € K[x] such that f — p € I and such that no
monomials present in p belong to the ideal LM (I).
p—1r
while 3 monomial t in p and g € G such that LM-(g) | t do
| PP Y
end
return p

This algorithm terminates as there is no infinitely decreasing sequence of monomials
with respect to < (this is a consequence of Dickson’s lemma). Its correctness is trivial in
regard to the condition in the while loop. O

Due to its reduction step, Algorithm 1 can be viewed as a multivariate extension of
the Euclidean division for univariate polynomials. Note also that it strongly relies on
the knowledge of a Grobner basis for I. This shows that Grobner bases are a crucial tool
for efficient computation in K[x]/I, which may have broader applications than testing
Ideal Membership.

Algorithm 1 can be generalized. For that purpose, we need to order polynomials
and thus consider polynomial sequences. For a sequence S = (s1,..., ) such that
{s1,...,8¢} is not necessarily a Grobner basis, there still exists a reduction algorithm.
Its output on a polynomial f is a polynomial usually called the reduction of f modulo

S, that we denote by p def NFs <(f)orp def f mod< S. Even if we do not make this
algorithm explicit, see [CLO15, Theorem 3 p. 64], two remarks are in order. The first
one is that this p coincides with the result of Algorithm 1 when {s1,..., s/} is a Grobner
basis. If 7(S) stands for an arbitrary permutation of the input sequence, the second one
is that NFs <(f) and NF(s) <(f) are in general different.

Buchberger’s algorithm [Buc76]. From now on, we fix an arbitrary order < and
our notations become implicit with respect to it. For such an ordering, the work of
Buchberger already provides a Grobner basis algorithm. It is based on the following
definition, whose motivation is to generate new leading terms by cancellation.

Definition 2.7 (S-polynomial). Let f, g be nonzero polynomials in K[z] and let
= lem(LM(f),LM(g)). The S-polynomial of the polynomial pair {f, g} with respect
to < is defined as

def 7
S e i)
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By construction, the S-polynomial S(f, g) is a polynomial combination between f
and g. Given a Grobner basis G = {g1,...,g¢}, this already explains that the result
of Algorithm 1 on S(g;, g;) for any 1 <14 < j < £ will be zero. For an arbitrary set of
polynomials, the converse is also true.

Theorem 2.1 (Buchberger’s first criterion, Theorem 6 p. 86, [CLO15]). Let
I ={(G) c K[x] be an ideal. The set G = {g1,...,q¢} is a Grébner basis if and only if
for all 1 <i < j </, the S-polynomial S(g;, g;) reduces to 0 modulo G.

From there, Buchberger’s algorithm proceeds incrementally starting from the set G
given by the input polynomial sequence. It consists in (a) selecting one pair of elements in
G and compute the S-polynomial (b) reducing it modulo the current basis (c¢) adding the
remainder to G if it is not zero, and overall repeating steps (a)(b)(c) until the conclusion
of Theorem 2.1 is satisfied. A full description can be found in [CLO15, Theorem 2 p.
91].

2.2.3 Solving with Grobner Bases

Even though other types of algorithms also exist!, we will be mostly interested in solving
strategies based, at least implicitly, on computing Grébner bases.

In this context, let us come back to the role played by the LEX ordering. From its
elimination property given in Section 2.2.1, we can obtain the following result.

Proposition 2.4. The LEX-Grébner basis of a 0-dimensional ideal I is of the form
Glex = U?:lgjf where

def
g; = {gjyl(azj,...ja:n),...,gj7sj(:cj,...,xn)}CK[:cj,...,xn],

such that s; =2 1 for 1 < j <n—1 and s, = 1. In particular, we have

Gn = {gn,sn (xn)} dif {gn(wn)} :

The shape of the Grébner basis in Proposition 2.4 is already enough for our purposes.
Indeed, we can proceed by back substitution starting from a fixed root of g, (z,) and
then solving a sequence of univariate polynomials. Under certain assumptions, it is even
enough to solve only one univariate equation.

Proposition 2.5 (Shape position, [GM87]). A 0-dimensional ideal I is said to
satisfy the Shape Lemma (or is in Shape position) if the LEX-Grobner basis of I is of
the form

{1‘1 - gl(xn)a <oy Tp—1 — gnfl(xn)a gn(l'n)}a
where deg (g,) = deg(I) and deg (g;) < deg(I) for 1 <i<n—1.

'For instance exhaustive search.
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Even if we will not need such a result, this proposition turns out to be generic for
radical ideals after a linear change of coordinates. More importantly for us, Proposition
2.4 and Proposition 2.5 show that solving the system is almost straightforward once the
LEX-Grobner basis Gy is known.

Unfortunately, obtaining it directly is in general slower than with another monomial
ordering. On the contrary, as already mentioned, computing DRL-Grébner bases is
faster from a practical perspective. This explains that the standard approach produces
Glex by means of another algorithm taking Gq,1 as input.

Change of ordering. To move between two Grobner bases for 0-dimensional systems,
one usually employs FGLM [FGLM93]. This procedure can be understood as a linear
algebra algorithm in K[x]/I, where the knowledge of the first Grobner basis allows for
efficient computation. Its complexity will be estimated by

O(ndeg(I)*), (2.2)

where n is the number of variables and where 2 < w < 3 is a linear algebra exponent.
As deg(I) < #V(I), this cost is polynomial in the number of solutions.

2.2.4 Homogeneous ldeals

Homogeneous polynomials correspond to polynomials whose all monomials have the same

total degree. For d € N; let us denote by Ry = K[x]4 the vector space of homogeneous
polynomials of degree d in R = K[x]. Since a classical basis is the set of all degree d
monomials, elementary combinatorics give dimg (Ry) = ("Jrg*l). A homogeneous ideal

is generated by homogeneous polynomials. Such an ideal I can be expressed as the

direct sum
=@
deN

where I “ra R, is finite-dimensional. The quotient ring R/I can then be written as

R/I = @ o Ra/la-
To capture the combinatorial structure of such a quotient, we will adopt the following
definitions.

Definition 2.8 (Hilbert function and Hilbert series). Let I — R be a homogeneous
ideal. The Hilbert function HF g/; of the quotient ring R/I is defined by

/H]:R/I :N— N
d — dimg(Rq/14),

and the Hilbert series Hp/; is the formal series defined by

[o0]
de
Hry1(2) =) I HF gyr(d)2.
d=0
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The case of 0-dimensional ideals is of particular interest. For such ideals, the quotient
R/I is a finite-dimensional vector space. Therefore, the Hilbert series is a polynomial
whose evaluation at 1 gives

Hpyr(1) = ) dimg(Rg/Iq) = dimg (R/T) = deg (I).
d=0

Finally, the degree of this polynomial is one less than the following integer which deserves
definition.

Definition 2.9 (Degree of regularity). Let I € R be a 0-dimensional homogeneous
ideal. The degree of regularity of I, denoted dyeg([), is the smallest integer d € N such
that Iy = Ry.

2.3 Generic Sequences

This section introduces regular and semi-regular sequences. We believe that presenting
these objects prior to describing solving algorithms may help the reader to better
understand their complexity analysis. A first reason is that such systems do not have
particular algebraic properties, which explains that their Hilbert series are known. Since
regularity is a generic property for polynomial equations (see Theorem 2.3 below),
another more pragmatic one is that we hope to encompass most practical applications.

Genericity. In algebraic geometry, a property is said to be generic in an irreducible
algebraic variety X if it holds on a non-empty Zariski open subset of X. In our case,
this variety is given by a family of polynomial sequences which is also a vector space of
finite dimension. In the following, we consider the vector space &, , 4 of homogeneous
sequences (f1,..., fm) in K[x] such that deg (f;) = d; for 1 <i < m.

2.3.1 Regular Sequences

The notion of regularity aims at describing the relationship between the dimension of
an ideal and the number of its generators. We caution the reader that it should not be
confused with the one of degree of regularity (Definition 2.9).

Definition 2.10 (Regular sequence). A homogeneous sequence (f1,..., fm) in R is
regular if for all 1 < ¢ < m, the polynomial f; does not divide 0 in the quotient ring

R/ f1y. .oy fic1).

In other words, the sequence (f1,. .., fim) is regular if and only if all algebraic relations
between the f;’s are a consequence of those of the form f;f; — f;fi = 0. In the general
case, such relations are called syzygies and these particular ones are referred to as trivial.

Definition 2.11 (Syzygy). Let F = (f1,..., fm) be a polynomial sequence in R (affine
or homogeneous). A syzygy for F is a vector (s;)1<i<m € R™ such that > s;f; = 0.
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Its degree is defined as maxj<ij<m (deg(f;) + deg(s;)). Finally, the set of all syzygies of
F is an R-module denoted by Syz(F).

We will come back to this definition in more depth when discussing the complexity
of computing Grébner bases. Prior to that, we note that the very simple form of Syz(F)
in the regular case allows to obtain an explicit formula for the Hilbert series as initially
announced.

Theorem 2.2 (Exercise p. 137, [Fr698]). Let F = (f1,..., fm) be a homogeneous
reqular sequence in Ey, n.q. We have

m _ Zdi
Hryry(2) = W (2.3)

Conversely, any sequence in Ey, n 4 whose Hilbert series is as in Equation (2.3) is regular.

In the particular case m = n, we obtain the polynomial

Hryr(2) ﬁ (14 +247).

=1

This implies that an ideal I generated by a regular sequence with as many equations as
variables is zero-dimensional with degree of regularity

reg i d - 1 (2.4)

This quantity is often referred to as the Macaulay bound [Laz83; Mac02]. Moreover,
the degree of I is easily seen to be equal to deg(I) = [ ]!, d;, which corresponds to the
upper bound in Proposition 2.2.

Finally, as mentioned above, “almost all” sequences in &,, ,, 4 are regular when n > m.

Theorem 2.3. When n = m, the set of reqular sequences is a non-empty Zariski open
subset of Epn.d-

Proof. See [Par10]. Note that the nonemptiness is trivial since the set of regular sequences

in &, n,q already contains (x‘lil, o admy, O

2.3.2 Semi-Regular Sequences

Sadly, Definition 2.10 is not relevant for systems such that m > n which abound in
our applications. This is because the polynomial f; will always be a zero divisor in
R/{f1,..., fi—1) for n < i < m. With this in mind, the notion of regularity has been
extended to this overdefined case m > n by Bardet in her thesis.
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Definition 2.12 (Semi-regular sequence, [Bar04]). Let F = (f1,...,fm) be a
homogeneous sequence such that the ideal I = (F) is 0-dimensional with degree of
regularity dreg. It is said to be semi-regular if I # R and if for any 1 < 7 < m, the equality

gifi = 0in R/{f1,..., fi—1) with deg (¢;fi) < dreg implies g; = 0 in R/{f1,..., fi—1)

Over [y, the Frobenius map 2 +— z? is the identity. This fact is taken into account
in the following definition, for boolean systems.

Definition 2.13 (Semi-regular sequence over Fy, [Bar04]). Let S denote the
quotient ring Fo[x]/(x?,...,22). A homogeneous sequence F = (f1,..., fm) with degree
of regularity dyeg is semi-regular over Fy if I # S and if for 1 < i < m, the equality
gifi =0in S/{f1,..., fi-1) with deg (g;fi) < dreg implies g; = 0 in S/{f1,..., fi).

It should not be so surprising that one knows the Hilbert series of a semi-regular
sequence. First, this is a polynomial of degree at most dreg. Moreover, the syzygies
in degree < dyeg Which are captured by the definitions are of the same nature as for
regular systems. In that respect, the proofs of Theorem 2.4 and Theorem 2.5 below are
extremely similar to the one of Theorem 2.2.

Theorem 2.4 (Proposition 3.2.5 p. 58, [Bar04]). Let F = (fi,...,[m) be a

m _ di
semi-reqular sequence in Epy n q and let Sy, p q4(2) = % We have

Hryr(2) = [Smmal2)]"

a7t d ; . .
with [ijo ajzj] 2] 2067, where ¢; = aj if a; > 0 for 0 < i < j and ¢; =0

otherwise (truncation after the first-non positive coefficient).

Theorem 2.5 (Corollary 3.3.8 p. 68, [Bar04]). Let F = (f1,..., fm) be a boolean

semi-reqular sequence in Ep p q and let Tp, , q(2) def %. We have
i=1

HR/<I>(Z> = [Tm,n,d(z)]+~

In these theorems, we reserve the term “Hilbert series” for the polynomial Hg/
and we will refer to Sy, .4 (resp. T, n.q) as the generating series of the ideal (F). Finally,
note that there is no analogue of Theorem 2.3 regarding the genericity of semi-regular
sequences. Such a result relies on the famous Froberg conjecture [Fro85], which has only
been proven in some specific cases (see [Bar04, Theorem 1.6.4 p. 22]).

Over a finite field, the Zariski topology is discrete and the set of semi-regular sequences
in &, n,q is obviously finite. To obtain a rough estimate for the probability of being
semi-regular, we can divide its cardinality by #&,, .4 (keeping in mind that this number
is possibly zero and for sure not computable in practice).
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2.4 Solving Techniques

While Buchberger’s method [Buc76] is already a Grobner basis algorithm, it is difficult
to analyze. This is due both to the dependency on the monomial order and the fact that
polynomial pairs are chosen at random to compute S-polynomials. However, relying on
a graded ordering seems to give a somewhat natural choice? by selecting pairs of smaller
degree first. It also allows to continue the analogy with linear algebra.

2.4.1 Macaulay Matrix, Lazard’s Theorem

This link will be more concrete thanks to the notion of Macaulay matriz, which can be
understood as a direct generalization of the matrix of a linear system.

Definition 2.14 (Macaulay matrix, [Mac94]). The Macaulay matrix in degree d of
a sequence F = (f1,..., fm) such that deg(f;) = d; with respect to a graded monomial
order <, denoted® Macgq(F), is the coefficient matrix of (11, f;)i. 1<j<m Where p; j is
any monomial of degree < d — deg(f;) and whose columns are indexed by all monomials
of degree < d sorted in decreasing order with respect to <.

Since the order on the rows is less important, we will mostly talk about Macaulay
matrices of systems rather than of sequences. A crucial remark is that row operations
on Macgy(F) readily correspond to polynomial combinations between the f;’s, hence
operations in the ideal generated by F. In particular, one can grasp polynomial reduction
in terms of Gaussian elimination.

If F is homogeneous generating an ideal I, we may restrict ourselves to the submatrix
of Macgq(F) given by the rows corresponding to monomials p; ; of exact degree d —
deg(fi) and then remove the rightmost columns labelled by degree < d monomials since
they will be all-zero. Let us denote by Macy(F) the final result. This time, performing
Gaussian elimination yields a basis for I;. Moreover, as we have considered columns in
decreasing order, the associated leading terms give LT (Iy).

Theorem 2.6 (Lazard’s theorem, [Laz83]). Let F = (fi1,..., fm) be a homogeneous
sequence such that deg(f;) = d;. There exists a degree D for which the polynomials
corresponding to the rows in the row-echelon form of Macy(F) for d = min (d;)]", to
d = D are a Grébner basis, with respect to <, of the ideal generated by F.

Following [CG21, Definition 6], the least possible degree D in Theorem 2.6 will be
referred to as the solving degree of F. From our discussion, it is easy to see that it is
an invariant of the ideal. Indeed, when the ideal is homogeneous, it coincides with the
maximal degree of a polynomial in the reduced Grébner basis (see for example [CG21,
Remark 7).

2Sometimes called normal strategy.
3The monomial ordering < will be implicit in the notation.
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The case of an affine system F can reduce to the homogeneous one. For instance, we
may consider the homogenized system F(*) = { fl(z), ce 7(,;2 )} obtained by introducing

an extra variable z and then applying the map

K[x] — K|z, z]

deg (f)
f(xl,...,xn)'—>f(z)(x1,...,:nn,z) dif <1> ) f(ﬂavxl) (25)

z z z

Theorem 2.6 states that Gaussian elimination on Macg(F (Z)) up to the solving degree
of F?) gives a Grobner basis. To come back to the initial system, we may specialize the
corresponding polynomials by

K[z, z] — K[x]
def

f(z)(xl,...,xn,z) — f(x1,...,2pn) = f(z)(xl,...,:vn,l).

General complexity bound. We can now deduce an upper bound on the cost of
computing a Grobner basis following Lazard’s approach.

Proposition 2.6 (Proposition 1, [BFS15]). Let F = {fi,...,fm} < K[x] be a
homogeneous system in n variables with solving degree D. The number of K-operations
to compute a Grobner basis for F is upper bounded by

o (mD (n H; - 1>w> , (2.6)

where 2 < w < 3 s the linear algebra exponent.

Proof. The complexity is clearly dominated by that of Gaussian elimination on the
Macaulay matrix Macp(F), which has < m("Jrg*l) rows and (”Jrg*l
that Storjohann’s algorithm [Sto00] allows to compute the row echelon form of an
M x N matrix of rank r in O(M N7“~2) operations. The result follows since the rank

of Macp(F) is upper bounded by (”+g_1). O

) columns. Note

Corollary 2.1. The number of K-operations to compute a Grébner basis for an affine
system F containing m equations in n variables such that F*) has solving degree D,

can be upper bounded by
n+ D\
O|mD, ) 2.7
(m ( D. > > 27

where 2 < w < 3 s the linear algebra exponent.

Obtaining the solving degree. In Lazard’s approach, the operating degree D must
be given as input to the algorithm. Another remark is that the costs in Equation (2.6)
and Equation (2.7) are exponential in the solving degree. These two observations make
it crucial to estimate this value in order to understand the complexity of computing a
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Grobner basis. For a homogeneous 0-dimensional ideal I, this reduces to studying the
dimensions of the vector spaces I;. In favorable cases, they can simply be read-off if we
know the Hilbert series. More systematically, we may consider the associated Macaulay
matrices. For an affine system F, it is not even clear that the solving degree of F(*) and
the cost given in Corollary 2.1 will be a good approximation of the original Grébner
basis complexity.

2.4.2 Generic Algorithms

This subsection presents the main solving algorithms which are generally considered in
algebraic cryptanalysis. At a very theoretical level, they can be obtained by combining
ideas from Buchberger’s and Lazard’s methods. In particular, we may express all these
techniques in terms of Macaulay matrices. Finally, we will refer to them as generic
because they do not exploit particular features of the input system.

Faugére’s algorithms. Faugere’s Fy [Fau99] and Fy [Fau02] represent the state-of-
the-art in terms of Grébner basis computation. In fact, they are used in a much broader
set of applications than the field of cryptology. Since describing these algorithms in
depth is outside the scope of this exposition, we simply stress the most important ideas.

Instead of considering polynomial pairs one at a time as in Buchberger’s original
approach, the Fj algorithm picks several pairs simultaneously. This is usually done
according to the normal strategy, by selecting all pairs for which the degree of the
S-polynomial is minimal. Once these critical pairs have been chosen, a pre-processing
phase builds a matrix containing the reductions by the current basis. Then, one performs
row-reduction as in Lazard’s method. Even though they are in general as wide as in
Lazard’s, matrices in £} are usually much smaller regarding the number of rows. Another
advantage is that the set of critical pairs can be updated using Buchberger’s criterion
(Theorem 2.1). This allows to avoid redundant computation and more importantly to
ensure termination without requiring an input solving degree. From a cryptanalytic
perspective, understanding how Fj; works is relevant since it is the default algorithm
implemented in the Magma computer algebra system [BCP97]. This software has been
adopted by a large part of the community and it is also the one used in most of our
experiments.

The rationale of F5 is to avoid reductions to zero in a much more systematic way
than in Fy. They correspond to row operations on the Macaulay matrix yielding zero
linear combinations. Coming back to the polynomial representation, these reductions are
associated to algebraic relations in the original system. More precisely, the Fy criterion
predicts the ones which are triggered by trivial syzygies. In the (semi)-regular case, this
means that all unnecessary computation can be avoided. To implement this criterion,
F5 introduced the notion of signature. This algorithm later gave rise to a wide class of
Grobner basis techniques relying on the same concept. We refer to [EF17] for a detailed
outline of this research area.
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XL family. The XL algorithm [CKPS00] was introduced for cryptanalytic purposes.
Its popularity among cryptographers lies in its simplicitly. Indeed, it was originally
described in terms of linearization even without mentioning Grébner bases.

The idea is to use Gaussian elimination on a Macaulay matrix in order to generate a
univariate equation. This formulation shows that an implicit LEX-like order has to be
chosen and that the operations in XL are actually performed within Lazard’s method.
A comparison with F5 was later made in [Ars+04], showing that XL offers no advantage.
Indeed, the degree Dxr, reached by the latter is never smaller than that of Grobner basis
algorithms and the XL matrices can be huge in comparison to F5. This second point
must not sound surprising as very little care is taken in removing reductions to zero.

In more recent papers, XL corresponds to a somewhat different algorithm. When the
system has a unique solution, it stands for a solver based on computing vectors in the
right kernel of a Macaulay matrix. If this matrix sparse enough, the hope is to benefit
from the use of the Wiedemann algorithm [Wie86] or its further improvements [Cop94;
Tho02]. Indeed, a row-echelon form is no longer required. In fact, the original paper
by Courtois et al. does not even mention sparse linear algebra. We may often refer to
this strategy as the “XL-Wiedemann approach”. Note that it has been implemented
and studied in [CCNY12|. In a very favorable setting where the degree is known, the
complexity is a follows. This bound implicitly assumes that the matrix is close to being
square of size the number of columns or that the cost of obtaining a full-rank square
submatrix is negligible compared to the XL complexity.

Proposition 2.7. Let D be such that the Macaulay matric Mac<p(F) has a non-trivial
right kernel, let n, its row weight and let M<p the number of columns. The cost of the
XL-Wiedemann approach by finding a solution to the linear system Mac<p(F)v" =0
s given by

O (nyM2p) . (2.8)

Remark 2.1. We will often choose a hidden constant equal to 3 for the Block-Wiedemann
algorithm, see for example [BBDO0S8, Proposition 3 p. 219].

2.4.3 Towards Specific Strategies

Particular properties of the input polynomials — among others, the presence of algebraic
structure or symmetries — must be taken into account in the analysis of generic solvers.
Indeed, they directly impact the ranks of the Macaulay matrices, the degree of regularity,
and more generally the Hilbert series of the ideal. A partial knowledge of these objects
is sometimes sufficient to derive a first cost estimate. In some cases, specific features
can be further exploited to devise enhanced algorithms.

Removing reductions to zero. A more complete understanding of the syzygy
module may help to avoid redundant computation by incorporating dedicated criteria in
the Grobner basis algorithm. Even though including them might be cumbersome and
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even if the asymptotic complexity is not better, this represents a noticeable improvement
in terms of running time and required memory in practice.

In this spirit, [FSS11] and [GNS23] proposed tweaked versions of F3 tailored to
bilinear and determinantal systems respectively. We will come back to bilinear sequences
in Section 2.5.2. Prior to these works, note that the idea of discarding unnecessary
reductions using extra knowledge on the system had already been suggested by Traverso
[Tra96]. However, his algorithm requires a Hilbert series, which is rarely available.

Hybrid techniques. On a given polynomial system, hybrid methods usually consist in
(a) choosing a subset of variables, (b) fixing them to some value, (c) solving the specialized
equations with less unknowns, and overall repeating (a)(b)(c) for all specializations until
a solution is found. These algorithms may be viewed as a way to benefit from a small
field size or as an interpolation between exhaustive search and Groébner basis solvers
when the initial parameter range is not favorable.

The hybrid approach has been studied by [BFP10; BEP12] in the case of semi-regular
sequences. Their analysis calls for an assumption on the semi-regularity of the systems
obtained after specialization. In a structured context, the effect of fixing unknowns will
actually depend on the way these variables are chosen. This type of situation will be
recurrent in this thesis.

2.5 Systems in Applications

Systems encountered in the cryptographic context may exhibit some characteristics
which are not the ones of generic sequences. As already mentioned, these particularities
play an essential role in the study of solving algorithms and they can make it tricky.
In fact, the absence of features is also difficult to quantify. For instance, Theorem 2.2
(resp. Theorem 2.4) shows that proving regularity (resp. semi-regularity) is as hard as
obtaining the Hilbert series of the system.

We now briefly review two standard traits — affine polynomials in Section 2.5.1 and
bilinear structure in Section 2.5.2 — which are often present in our applications. However,
note that the considered modeling may have a much more specific shape.

2.5.1 Affine Polynomials

In Corollary 2.1, we obtained a first upper bound on the complexity of computing
Grobner bases for affine sequences. In fact, in this context, we can define a solving
degree without relying on the homogenized system. In [DS13], this term is introduced
vaguely as the highest degree of a polynomial involved in the solving algorithm.

Definition 2.15 (Solving degree, Definition 6, [CG21]). Let F be a polynomial
system in K[x]. The solving degree of F with respect to a graded order < is the least
degree d such that the rowspace of Mac<q(F) contains a Grobner basis of F.
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This notion is no longer an invariant of the ideal since it highly depends on a
generating set. For instance, let us consider a radical ideal I whose variety contains
a single element (ai,...,a,) € K®. On the one hand, it is well-known that the set
G ={r1—ai,...,xy—ay} is a reduced Grobner basis of I for any term order. Its solving
degree in the sense of Definition 2.15 is thus equal to 1 for any graded order. On the
other hand, the solving degree of another set of generators can be much larger. This
example thus shows that contrary to the homogeneous case, the highest degree of a
polynomial in the reduced Grébner basis can be strictly less than the solving degree.

2.5.1.1 First Fall Degree

A more fine-grained analysis of the solving degree calls for the notion of degree fall. For
that purpose, we need to consider the homogeneous sequence F (h) — ( fl(h), e 7% )) such

that fi(h) is the homogeneous part of highest degree in f;. Let us assume that there exists
a degree d syzygy (t;)1<i<m for F™ in the sense of Definition 2.11, where (t;)1<i<m is a
vector of homogeneous polynomials. In the polynomial p = Z;n:l t; f;, we notice that the
homogeneous parts of degree d cancel out and thus deg (p) < d. Moreover, if there does
not exist any syzygy (s;)1<i<m for F such that sl(-h) = t; for 1 < i < m, this polynomial
does not reduce to zero.

Definition 2.16 (Degree fall polynomial, first fall degree). Let F be an affine
sequence. A degree fall polynomial for F corresponds to any polynomial p as described
above. The first fall degree, denoted dg, is defined as the smallest integer d such that a
syzygy in degree d for F® yields a degree fall polynomial for F.

Upper bounds on the first fall degree are much easier to obtain than on the solving
degree since it suffices to find non-trivial syzygies for F. However, the relationship
between the two can be complex.

The situation is favorable when the sequence F is semi-regular. Indeed, the first
degree fall polynomials occur at the degree of regularity and the rest of the computation
deals with polynomials of smaller degree. The complexity of solving the homogeneous
sequence is then used to estimate the overall cost.

Proposition 2.8 (Proposition 6, [BFSYO05]). Let F be an affine sequence such that
FW) is semi-reqular with degree of regularity dreg- The number of operations in K to
compute a Grébner basis of F with respect to a graded ordering can be upper bounded by

0 (md,«eg (” * Z“g B 1) ) : (2.9)
reg

where 2 < w < 3 s the linear algebra exponent.

In the general case, the gap between first fall degree and solving degree might be
large. For instance, [DS13] provides systems with a low dg but a high solving degree.
Even if these examples may sound pathological, computer algebra [BMT21] and algebraic
cryptanalysis offer many others where the two degrees do not coincide. Also, and perhaps
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paradoxically, this first fall degree is often adopted by cryptanalysts as an approximation
of the solving degree.

One has to be cautious in relying on such an assumption. On the one hand, an
estimation only based on the first fall degree will clearly underestimate the real cost if
dg turns out to be smaller than the solving degree. On the other hand, there is also a
chance that the first fall polynomials leak some information related to the secret. In
such a case, the first fall degree fall remains the key parameter in the attack complexity.

2.5.1.2 Exploiting Degree Falls

More broadly than the cryptographic setting, it is well-known that Grobner basis
techniques using the normal strategy can benefit from degree fall equations®. For
instance, in the case of Fy, critical pairs constructed with these lower degree polynomials
will be treated first. They may in turn yield new degree falls in the subsequent steps.
This sort of domino effect often explains the early termination of the algorithm. In fact,
this is also what motivates the above cryptanalytic assumption.

Another advantage comes from their definition. Indeed, degree falls for a sequence F
can be pre-computed if syzygies of F® are known. Adding these equations to the system
before computing a Grobner basis will actually help to side-step the early stages of the
algorithm®. An alternative is to consider them as a new polynomial system especially
when they have a specific shape. Of course, it is only relevant if this second system is
easier to solve than the original one. This type of situation will arise several times in
this manuscript.

2.5.2 Bilinear Equations

In virtue of their surprisingly high proportion in cryptographic applications, bilinear
systems also deserve a dedicated section. A bilinear sequence in two blocks of variables
x = (r1,...,%p,) and y = (y1,...,Yn,) is a quadratic sequence such that the degree
2 part in each equation only contains monomials of the form z;y;. For the sake of
simplicity, results in this section will be given for homogeneous bilinear polynomials. In
the case of an affine bilinear system F, we let the reader apply them to F(" and derive
statements on the degree fall polynomials for F as explained above.

2.5.2.1 Jacobian Matrices and Syzygies

The study of Jacobian matrices is at the core of the analysis of bilinear sequences.
In general, these matrices are defined for arbitrary vector-valued functions in several
variables.

Definition 2.17 (Jacobian matrix with respect to z). For a sequence F =
(fis--y fm) < K[a, y]™, the Jacobian with respect to « is the m x n, matrix denoted

“In the context of XL, these polynomials were referred to as mutants.
5We note that the definition of solving degree in [CG23] is based on Macaulay matrices with degree
falls added (see the discussion before Definition 1.1 there).
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by Jacg(F) whose entry in row i and column j is the partial derivative gg; We define

Jacy (F) analogously.

If F is homogenous bilinear, the matrix Jacy(F) (resp. Jacy(F)) contains linear
forms in the y variables (resp. @ variables). Lemma 2.1 shows the crucial connection
between the left kernel of this matrix and the syzygy module of F.

Lemma 2.1 (Consequence of Equation (1), [FSS11]; Proposition 1, [Ver+19]).
Let F = (fi,...,fm) < K|z,y] be a homogeneous bilinear sequence and let H =
(h1, ..., hin) € K[y]™ be a polynomial sequence. We have Y~ h;ifi = 0 if and only if
H viewed as a vector belongs to the left kernel of Jacg(F).

To find kernel vectors, one usually employs the following result. Applied to Jacobian
matrices, it yields generic syzygies for bilinear systems.

Lemma 2.2 (Lemma 3.1, [FSS11]). Let M € K[y]™*! be a matriz of linear forms
such that t < m. For any subset J = {j1 < jo < -+ < jiy1} < {1l..m} of size t + 1, let
us consider the row vector of maximal minors of M defined by

I N——
J¢J

d
v 0 ,...,5—1)5+1|M|JW€,...).
j:je
Then, we have vyM = 0.

Corollary 2.2. Let F = (f1,..., fm) < K[z,y] be a homogeneous bilinear sequence
such that |x| = n, and |y| = ny. Let us assume that n, < m. Then, there exist degree
ng+2 syzygies from vectors in the left kernel of Jacg(F). A similar result can be obtained
with the other Jacobian provided that n, < m.

Most of the time, see [FSS11, Conjecture 4.1], these vectors v ; generate the left kernel.
Based on this observation, [FSS11] define the notion of bi-regular bilinear sequence.
Roughly speaking, the syzygy module comes down to the relations given in Corollary 2.2.
As already mentioned, the authors also devise a dedicated version of F5 which removes
all reductions to zero for such systems.

More generally, for an affine sequence of n, + n, polynomials which is 0-dimensional,
the authors show that the maximal degree D reached by the Grébner basis for a graded
order is upper bounded by

D < min (ng + 1,ny + 1). (2.10)

2.5.2.2 Bilinear Systems Obtained from Matrix Products

Even if they do not yield bi-regular sequences, a special type of systems relevant to
our purposes will contain equations which are the coefficients in a matrix equality
AXY = 0,xp, where A € KP*™ is a matrix of scalars, where X e K[x]™*" contains
the variables of the block @ = (z; j)1<i<m,1<j<r and where the entries of Y € K[y]™*"
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are linear forms in the y variables. The following Lemma 2.3 gives the shape of the
Jacobian with respect to @ in this case. For an m x n matrix M, we denote by

row (M) def (M{1}7* M{m}“*) the row vector formed by the concatenation of the
rows of M and similarly col(M) = row(MT).

Lemma 2.3 (Lemma 1 in [Bar+20a]). The Jacobian matriz of the system AXY =
0pxn with respect to the x variables is given by

Jac,ow(x) (Tow(AXY)) = A® YT e Fly]™»*™
Jaceoix) (COl(AXY)) = YT @ A e Fy]"?*™.

2.5.2.3 Strategies in Practice

When the system is not generic, we cannot always exploit the expression of the Jacobians.
A more systematic approach is to investigate specific Macaulay matrices adapted to the

bilinear structure. Let us denote by K[z, y](4,5) = K[x]a ® Fly]|p the vector space of
bi-homogeneous polynomials of bi-degree (A4, B) in K[z, y].

Definition 2.18 (Macaulay matrix indexed by bi-degree). Let F = (f1,..., fm)
be a homogeneous bilinear sequence. The Macaulay matrix in bi-degree (A, B) is the
matrix Mac(4, g)(F) whose rows correspond to the polynomials jf; for all monomials
€ Flx,y]a—1,p—1) and 1 < j < m and whose columns correspond to all monomials in

F[$7 y] (A,B)-
Remark 2.2. Definition 2.18 can be easily generalized to the bi-homogeneous setting.

Let I be the bi-homogeneous ideal generated by F and let I 4 p) “rn K[z, y](4,B)-
The dimension of this vector space is exactly the rank of Mac(4 p)(F). In the case when
I'is also O-dimensional, let d be the smallest integer such that [(4 gy = K[z, y] (a,) for all
pairs (A4, B) with A+ B = d. Note that we may also have I 4/ g1y = K[z, y] (4’ p) at some
bi-degree (A’, B’) such that A’ + B’ < d. In particular, one can imagine XL strategies
which target a particular matrix Mac 4 g)(F) instead of another Mac( 4/ gy (F) even
when A + B = A’ + B’. This type of method based on Definition 2.18 has already been
adopted in [PS20; Beu2la].

Finally, let us come back to the hybrid approach. There, we might be tempted
to specialize variables in only one of the blocks. Due to Equation (2.10), we should
probably focus on the smallest one. In the extreme case when this set of unknowns is
tiny, we can even consider to fix it completely and then simply solve linear equations.



Post-Quantum Assumptions and
Algebraic Cryptanalysis

This chapter gives an overview of the difficult mathematical problems that we will study
in the second half of this thesis. In parallel, it describes some cryptosystems based on
the associated hardness assumptions.
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3.1 MinRank

Most of our contributions are closely or remotely related to the MinRank problem. Very
often, we will encounter it in a structured setting. First, of course, we need to define the
assumption in its most general form.

29
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3.1.1 Formulation

The MinRank problem was introduced in [BFS99], where it is proven to be NP-complete.
A bit later, Courtois suggested to use it in cryptography [Cou01b].

Problem 3.1 (MinRank problem). Given an integer d € N, K + 1 matrices
My, ..., Mg e Fy~ " and L a finite extension of ¥y, find field elements z; ..., zx € L

such that
K
rk (Mo +> xM) <d.
=1

Remark 3.1. Problem 3.2 will be called homogeneous if My = 0y, xn, and affine otherwise.

Note that we only provide the search version. In fact, most applications focus on
instances with a solution. Finally, even though the standard statement is L. = [F, we
need to adopt the more general one given in Problem 3.1. The reason will become
apparent in the upcoming sections.

From the very start, in the restricted case . = F,, Courtois noted the strong
connection between MinRank and the following problem from coding theory.

Problem 3.2 (Decoding problem). Given C an Fy-linear code of dimension k and
length n, a metric wt over ¥y, an integer d € N and a vector y € Fy, find a codeword
c e C and a vector e such that wt(e) < d and y = c + e.

In the setting when the matrices are square and diagonal, [Cou0la, §23.2.2] trivially
shows that MinRank is equivalent to Problem 3.2 in the Hamming metric, denoted wtp.
Roughly speaking, the diagonals of the M;’s for 1 < ¢ < K generate the linear code C
and the diagonal of M corresponds to the vector y.

A link with MinRank can still be drawn in general but one needs to change both the
code and the metric. In this case, the code is obtained from all the entries of the M’s.

Definition 3.1 (Matrix code). A matrix code is an [n, - n., K],-linear code whose
codewords will be viewed as matrices of size n, x n. over F,,.

The relevant distance more tailored to Problem 3.1 is called the rank metric. The
€

rank weight of M € Fj7*"e is defined as wt(M) Ik (M) and the Decoding problem
for a matrix code Cpat < IF;“‘X”C with basis M,..., Mg, target weight d and noisy
codeword Y asks to find (x1,...,2x) € ]Ff such that

rk (Y — Zszl .TUZMZ> < d.

The key here is that (Mo = —-Y;M3,..., M) and d € N is not anything more than
an affine MinRank instance with K + 1 matrices in Fy™*"¢, rank d and whose solutions
are searched in F,;. Going in the reverse direction from an affine MinRank problem is
analogous. Thus, MinRank and Problem 3.2 in the rank metric are equivalent.
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The average number of solutions to a random instance of Problem 3.2 is usually
measured in terms of the Gilbert-Varshamow distance dgv,u,e(q,n, k). We will define it
as a uniqueness bound. Roughly speaking, it is the largest integer d such that

Wz e T wi(z) < d} < ¢" ", (3.1)

In this case of the Hamming metric, Equation (3.1) becomes

i (n) (a—1)7 <q" ™" (3:2)

j=0 N

3.1.2 Use in Cryptography

In addition to its NP-hardness, the exponential cost of solving algorithms [Cou0la, §24]
was another motivation for introducing MinRank in the cryptographic context.

The first proposal is the Courtois’ zero-knowledge authentication protocol [Cou01b],
which can be turned into a signature scheme by using the Fiat-Shamir transform [FS87].
The drawback of this construction is that it is quite intricate and inefficient, mostly
due its soundness error of % This explains why MinRank-based cryptography had not
really progressed in the next two decades. Hopefully, recent paradigms allowed to change
this landscape. By reducing the soundness error, they helped to devise significantly
more competitive schemes. For instance, MR-DSS [BESV22] is an evolution of Courtois’
which combines the notion of o-protocol with helper [Beu20] together with cut-and-choose
techniques [KKW18]. Things are now moving very rapidly. Indeed, [BESV22] has already
been superseded by other contestants [ARV23; Fen22] based on the MPC-in-the-Head
approach [IKOS07]. All these constructions enjoy security reductions from the hardness
of MinRank. This means that solving average instances of Problem 3.1 is the only way
to attack them.

Cryptography relying on the random MinRank assumption already calls for
characterizing genericity. On this aspect, we prefer to refer to [F'SS10] for more formalism.
For random instances, one may use the Gilbert-Varshamow distance to estimate the
number of solutions over F,. From Equation (3.1) and the number of rank < d matrices
in IF'ZTX"C, this bound corresponds to the largest integer d such that

1=0

By approximating the left-hand side of Equation (3.3), one can recover the more standard
condition
K < (ny —d)(ne — d). (3.4)

On the one hand, when this inequality is strict, a generic affine MinRank problem will
not have a solution (even in IHTq) On the other hand, cryptographic instances always
have one: in this regime, it is expected to be unique. Finally, intuition from coding
theory suggests that MinRank should be the hardest when K is large. This may also
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be seen, to some extent, on the attack costs given in Section 3.1.3. In fact, as long as
K < (n, —d)(n.. — d) for n], < n, and n < n., we can imagine to solve a MinRank
instance with submatrices in ng“xn/c and still obtain the solution we want. The result is
that MR-DSS and [ARV23] chose parameters such that K = (n, — d)(n. —d) — 2.

3.1.3 Cryptanalysis

We now present the main solving strategies for the MinRank problem. Their cost will
be given on an affine MinRank instance My,..., Mk € Fy~"" without any specific

features and with a unique solution M = M + Zfi 1 xiM; of rank < d.

3.1.3.1 Kernel Search

A first approach, sometimes called combinatorial, only uses linear algebra techniques.
An exhaustive list of attacks in this framework can be found in [Cou0la, §24]. We here
focus on Goubin’s kernel search (also called kernel attack) [GCO00]. In fact, Courtois
notes that it is more powerful than any other algorithm mentioned in [Cou0la, §24]. To
describe it, let us assume without loss of generality that n, = n.. Let us also recall that
the entries of M are linear in the unknowns x; for 1 < i < K.

The kernel attack repeatedly tests the consistency of linear systems in these x;’s until
one of them has a solution. Each of these systems is obtained by performing a guess on
a vector in the (right) kernel of M. Since any vector v; € Fyc such that M v}— = 0p, x1
yields n, linear equations in the z;’s, we require at least [n—li] linearly independent ones
in order to test consistency. In fact, we even need K linearly independent equations

among the nr[nﬁ] > K collected ones by picking this minimum number of vectors'.

Since a random non-zero vector lies in ker (M) with probability ¢—¢

K
about qd[ﬁ] linear systems before finding a consistent one. The attack complexity in F,
operations is thus given by

, we expect to test

K
O 1K), (3.5)

where 2 < w < 3 is the linear algebra constant.

Echoing the above remark, note that this cost is an increasing function of K. More
crucially, it highly depends on ¢. Aside from hybrid techniques, this value will have
much less impact on algebraic attacks.

3.1.3.2 Early Algebraic Algorithms

Algebraic approaches mainly differ in the choice of the polynomial equations. The first
two MinRank modelings were the so-called Kipnis-Shamir and Minors systems. In our
exposition, we will assume that the n. — d leftmost columns of M are in the linear span
of the rightmost d ones.

!Note that the latter issue as well as the linear independence of the v;’s when guessing these vectors
is never formally discussed in [GC00; Cou0la]. Still, this should happen with at least constant probability
so that their analysis is not really affected.
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Kipnis-Shamir modeling. This method was proposed in [KS99]. It consists in
introducing extra variables which correspond to a systematic basis of ker (M). Note
that this vector space is of dimension at least n, — d. From our assumption on M, one
is left with solving the following equations.

Modeling 1 (Kipnis-Shamir [KS99]). The Kipnis-Shamir modeling is the affine

bilinear system in the unknowns x; € Fy and K € }ng(nc_d)

entries of the matriz

whose polynomials are the

(Mo + Zfil lez) {InIc{d] .

Remark 3.2. We may refer to the x;’s as the linear variables. The coefficients of K will
be called kernel variables.

The original approach on Modeling 1 was relinearization, see [KS99, §5.2]. As
mentioned in the last sentence of Section 2.5.2.3, another one is to fix all the kernel
variables to obtain a linear system. This actually gives the kernel attack.

Applying Grobner bases was later suggested by [FLP08]. They observe that Kipnis-
Shamir does not behave as a regular system regarding both the solving degree (conjectured
to be ~ d + 2) and the size of the variety. On the one hand, they manage to upper
bound the number of solutions with a Bézout bound argument [FLP08, Theorem 2].
Their result directly exploits the multi-homogeneous structure. Indeed, each equation
has the stronger property that it involves only one column in K. On the other hand,
this feature is not used to estimate the solving degree.

This issue was partially tackled in [FSS10]. The authors make the assumption that
the system behaves as a bi-regular one. In turn, they obtain the desired upper bound
from the analysis of generic bilinear sequences [FSS11]. Nonetheless, their estimate is
not sharp: Kipnis-Shamir equations seem to be solved faster in practice than bi-regular
ones®. Since the polynomials are multi-homogeneous in addition to being bilinear, this
should not sound so surprising.

The latter property actually translates into a specific shape for the Jacobian matrices
which is the one described in Section 2.5.2.2. Based on the work of [FSS11] that we
recalled in Section 2.5.2.1, the authors of [Ver+19] exhibit generic degree falls from
degree d + 2 to d + 1 for the Kipnis-Shamir system. This partly explains the behaviour
conjectured in [FLPOS].

Minors modeling. The Minors approach can be considered as folklore but it seems
to appear later than Kipnis-Shamir in the literature. It is based on the fact that solving
the problem is equivalent to solving the system of all (d + 1) x (d + 1) minors of M.

Modeling 2 (Minors). The Minors modeling on an affine MinRank instance
My, ..., Mg € Fyr="e with target rank d is the system in the linear variables x; whose
equations are given by all (d + 1) x (d + 1) minors of M, i.e.,

{{Magl:Ac{l.n}, #A=d+1 and Bc {l.n.}, #B =d +1}.

2This observation is already made in the conclusion of [FSS11].
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The first occurrence of this modeling is [CouOlc, §8], where it is used to solve the
MinRank problem of [KS99]. Later, it is proven in [FLP08] that the Minors equations
are included in the ideal generated by Kipnis-Shamir. As a consequence, [FLP08] did
not study Modeling 2 on its own.

A more in-depth analysis based on the theory of determinantal ideals is performed in
[FSS10; FSS13]. In the regime where n, = n. = n and when there is equality in Equation
(3.4), [FSS10] show that the Minors approach may outperform the Kipnis-Shamir one.
In fact, the authors use it to break the parameter set C from Courtois’ scheme [Cou01b]
which seemed to resist the Kipnis-Shamir method. Since K > (n —d)? in this case, some
linear variables are fixed before applying Modeling 2.

3.1.3.3 Support-Minors

The Support-Minors modeling was introduced in [Bar+20b]. We chose to separate it
from the rest of the algebraic attacks due to its relevance in our contributions.

The starting point, quite reminiscent of Kipnis-Shamir, is to factor the secret rank d
matrix as

M =My+YX oMY DcC, (3.6)

where D € L™ *% and C € K?" are unknown. Then, for 1 < j < n,, let T = M 4
be the j-th row of M and let

c; [g] . (3.7)

Note that the rank of C; is at most d. Thus, one can derive equations as in the Minors
modeling. More precisely, by setting all the (d + 1) x (d + 1) minors of this matrix to
zero and by repeating the process for 1 < j < n,, we obtain:

Modeling 3 (Naive Support-Minors). The Naive Support-Minors modeling to solve
an affine MinRank instance Mo, ..., M g € Fym*"e with target rank d is the system in
the linear variables x; and in the entries of C with equations

C))ws

c1<j<n, and Jc {l.n.}, #J =d+ 1},
where C; is defined in Equation (3.7).

By construction, Modeling 3 has a lot in common with both Kipnis-Shamir and
the Minors modeling. Actually, it has been shown in [BB22] that the Kipnis-Shamir
equations are included in Modeling 3 and that the associated ideals are the same. This
paper also grasps the degree falls of [Ver+19] in terms of the Support-Minors equations.
At first sight, all these results seem to indicate that Modeling 3 is not really better than
Kipnis-Shamir. In particular, they do not explain the evident success of this approach
compared to previous works.
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Minor variables. The main advantage of [Bar+20b] is on the practical side. In fact,
the authors do not focus on plain Modeling 3. Instead, they consider a more compact
system obtained from it by a change of variables.

Let 1 < j <n, and let J  {1..n.} be a subset of d + 1 columns in C;. By Laplace
expansion along the first row, [Bar+20b] indeed note that the maximal minor |(C})x /| is
bilinear in the coefficients of (r;); and in a second block given by some maximal minors
of C. Recalling that the entries of 7; are linear in the x;’s, this gives a bilinear equation
in z; for 1 <7 < K and ‘C*J\{g}’ for £ € J. In turn, setting ¢y = |C | for any subset
T < {1..n.} of size d as new unknowns in Modeling 3 in place of the coefficients of C
yields the following Modeling 4. This set of equations is the genuine Support-Minors
system.

Modeling 4 (Support-Minors (SM)). The Support-Minors modeling to solve an
affine MinRank instance M, ..., M g € Fyr"" with target rank d is the Naive Support-
Minors modeling 3 whose equations are viewed as bilinear in the linear variables x;
and in the so-called minor wvariables cp = \C*ﬂ, where T < {1..n.}, #T = d. For
Jc{l.n}, #J =d+1 and 1 < j < n,, we will denote by Q; 5 the polynomial |(C)x, 7|

Remark 3.3. The change of unknowns ¢y = |C 7| can be understood in terms of Pliicker
coordinates, see [BV8S8, p.6].

We now describe the solving approach adopted in [Bar+20b]. Since the system is
bilinear, they apply the specific type of XL technique sketched at the end of Section
2.5.2.3. Note that it will succeed as long as the initial MinRank problem has < 1 solution.

Multiplying by linear variables. The particularity of their algorithm is that it
simply constructs Macaulay matrices of the form Mac,1)(Q) for b > 1, where Q stands
for the SM polynomials. In other words, equations are only multiplied by the z;’s.

By an inclusion-exclusion argument, [Bar+20b] deduce the least degree b for which
the linear system Mac(,1)(Q)v' = 0 has a non-trivial solution. Note also that the row
weight of the Macaulay matrix does not depend on b. This is because multiplying an
equation by variables does not change the number of monomials. The base case b = 1 is
tackled in Lemma 3.1.

Lemma 3.1. Each SM polynomial contains at most (K +1)(d+1) monomials. Moreover,
for J < {l.n.}, #J =d+1 and 1 < j < n,, the ones present in Qj 5 = |(C;)x«,1| only
depend on J.

Proof. Let J ={j1 <+ < jg+1} and 1 < j < n,. By Laplace expansion along the first
row of (C})x,7, the monomials in @ ; belong to the set

{xiCJ\ju: 1<u<d+1and1<i<K}u{0J\ju: 1<u<d+1}.

The latter contains (K + 1)(d + 1) elements which are independent from j. O
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The increased sparsity of Mac,1)(Q) for large b justifies the use of the Wiedemann
algorithm. The corresponding complexity can be obtained from Proposition 2.7.

The restriction to bi-degree (b, 1) matrices was initially motivated by the great
imbalance between the two blocks of unknowns in practice. Indeed, we observe that
Macy, 1)(Q) is generally much smaller than any other Mac, (@) such that u+v = b+1.
The multiplication by ¢y variables is also more complicated to analyze. In fact, it call
for understanding the role of Pliicker relations (see for example [Jac96, Equation (3.4.10)
p. 110]). In our notation, for any subsets J = {ji1 <--- < jar1} < {l.ne}, #J =d+1
and U < {l..n.}, #U = d — 1, they correspond to the degree 2 cancellations

d+1

D (=Dfevogyengs = 0.
=1

3.2 Multivariate Cryptography

In Part 1I, we will study specific MinRank instances arising from multivariate schemes.
The first occurrence of Problem 3.1 in this field dates back to the historical attack on
Hidden Field Equations (HFE) [KS99]. At about the same time as [Cou01b], Courtois
noticed that it naturally appears in the analysis [Cou0lc, §8].

3.2.1 Introduction

Even without mentioning MinRank, multivariate cryptography (MPKC) can already be
seen as the post-quantum branch which is the most prone to algebraic cryptanalysis.
Indeed, it is directly built upon the difficulty of solving random quadratic equations.
To formalize the corresponding hardness assumption, we adopt the following
terminology. For a sequence (p1,...,pm) < Fy[x], we consider the polynomial map

P:F; — F
a— (pi(a),...,pm(a)).
It is said to be quadratic if the input polynomials have total degree at most 2.

Problem 3.3 (MQ problem). Given a quadratic map P : Fy — F7' and a target
t e F', find a preimage of t, i.e., a vector s € Fy such that P(s) =t.

Problem 3.3 is known to be NP-hard. On average, in practice, it is also believed
to be exponentially hard as long as m ~ n. A consequence is that there already exist
constructions whose security is only based on MQ [SSH11b; Che+18; Beu20].

However, the classical approach to MPKC requires another type of assumption. The
idea is to use a quadratic map F : Fy — Fg* with a special structure that makes it
easily invertible. This map is called the central map and it plays the role of a trapdoor.

The public key is then defined as the composition P def ToFoS, where S: Fy — Fy
and 7 : ;" — Fg* are randomly generated affine maps of maximal rank. To rely on MQ,
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the crux is now that P should be indistinguishable from a random quadratic system.
However, since the central map F is often ad hoc, very little attention has been given to
formalize such an assumption and more generally to provable security for trapdoor-based
MPKC [SSH11a).

This standard way of building multivariate cryptography is often referred to as the
butterfly construction. It can be used in both encryption mechanisms and signature
schemes.

Encryption. The ciphertext ¢ def P(m) € F" corresponds to the evaluation of the

public key P at the message m € Fy. Note that we must have m > n for decryption to
be injective. The decryption process consists in inverting each secret key component. In
other words, we compute S~ (F~! (T7!(c))) to recover the plaintext.

Signature. We do no longer need m > n. In fact, the lack of this constraint
may explain why the panorama is more promising for signature algorithms than it
is for encryption schemes. To sign a message m € Fj" when m < n, we apply the
abovementioned decryption algorithm to a vector (m,r) € Fy, where r € F;7™ is
randomly generated. If this vector does not have an inverse by P, we sample another
r e Fy~™ and we start again with (m,r’). Verifying a signature & is straightforward.
We simply compare the m leftmost components of P(&) to the original message.

While the complexity of encryption (resp. verification) only depends on the degree
of the public equations?®, the cost of decryption (resp. signing) is related to the structure
of F. This gives another constraint on the choice of this map in addition to the security
requirement.

3.2.2 Big-Field Schemes

The historical method was to consider a trapdoor which admits a simple description

over an extension field. The general structure is F def ¢poFo¢ ! where F e Fon [ X]
is of degree D and where ¢ : Fgn — Fp is an Fy-linear isomorphism. Since we want

a quadratic system, the polynomial F only involves monomials of the form X+ for
i, j € N. The rationale is that inversion reduces to univariate solving.

This big-field approach was pioneered by Matsumoto and Imai with the C*
cryptosystem [MI88]. The scheme was later broken by Patarin [Pat95], who proposed a
generalization called Hidden Field Equations (HFE) [Pat96]. In fact, most of the recent
constructions can be obtained from these two proposals by applying modifiers, such as
[CS19; CYS15] from C* and [Pet+15; DCPS17; Cas+20] from HFE.

Finally, we want to mention the Sidon cryptosystem [RLT21] that we will study in
Chapter 5. It cannot be viewed as a big-field scheme per se since it does not a have
butterfly shape. Still, as we will see, it heavily relies on an extension field.

3This actually justifies the choice of quadratic polynomials.
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3.2.2.1 Central Map and Cryptanalysis

The C* cryptosystem was defined with a polynomial F(X) = X9"*! for some integer
a € N such that ged(¢*+1,¢™ —1) = 1. This is in fact a monomial which can be inverted
via simple exponentiation. To avoid the attack of [Pat95], HFE considers a more general
one of the form

Definition 3.2 (HFE polynomial).

F(X)= Y ai X7+ 3 3X? 44, (3.8)
i,j€N keN
di+qi<D q"<D

where «; j, B and v are random elements in Fyn.

Inversion now requires to factor degree < D polynomials over F,» using, for example,
Berlekamp’s algorithm [Ber70]. To speed-up this step, it thus seems legitimate to choose
the value of D as small as possible. However, this would cause a serious problem for
security. The key notion here is the rank of the central map, which corresponds to the
rank of F when seen as a quadratic form in (X©,..., X" ). This is because attack
complexities increase with this value. Finally, note that it is bounded by log, (D) in the
case of HFE.

The direct attack is a message attack which applies to any MPKC. Rank attacks are
more specific. While they are not limited to big-field schemes, we will only study them
in that context.

Direct attack. This method consists in inverting the public system as if it was a
random MQ instance. For that purpose, all known solving algorithms can be employed.
In particular, using Grébner bases lead to break the first HFE challenge of Patarin
[JF03]. There, it was observed that the solving degree of P differs significantly from the
one of a regular sequence. Note that this already contradicts our handwaving assumption
on the security of F. Perhaps surprisingly, this degree seems to depend on D but not
on n. For some parameters, [JF03, §4, Table 2] even provides an upper bound. Their
argument actually relies on the rank of the central map, even if implicitly.

Rank attacks. These are attacks on the secret key which more directly exploit the low
rank of the central map. Indeed, they model key-recovery as an instance of Problem 3.1
whose rank is equal to the one of F. The initial C* attack [Pat95] falls into this category.
Since then, similar methods have been used on other schemes such as HFE [Pet+15;
VS17] or PFLASH/EFLASH [CS17]. The cryptanalysis works of [DS05; Beu2la; Beu22]
on Rainbow [Din+20] show that this approach is in fact not restricted to big-field
constructions.

Beyond these two techniques, differential attacks can also affect MPKC. A good
example of this is given by the cryptanalysis of SFLASH [DFS07; DFSS07]. However,
we seem to have good confidence that HFE-based proposals resist this type of methods
[Smil0].
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Coming back to parameters, one thus wants a low degree D for efficiency but a bound
logq(D) which is not too small for security. This is a first reason why HFE instantiations
stick to ¢ = 2 in general. Concretely, Patarin’s initial challenge achieving 80 bit security
was ¢ =2, m =n = 80 and D = 96. This would yield a ciphertext or signature size of
80 bits.

3.2.2.2 Rank Attacks

In contrast to the schemes presented in Section 3.1, MinRank only appears in the
cryptanalysis. Even though attacks relying on it may involve other steps, solving
Problem 3.1 will often be the dominant cost. Finally, the underlying instance will be
structured due to the use of an extension field.

Since rank attacks are a particular type of key-recovery attacks, let us start the
following definition.

Definition 3.3 (Equivalent keys). For an asymmetric scheme, two secret keys sk
and sky are equivalent if there is a public key pk such that (ski, pk) and (ska, pk) are
two valid keypairs. For a butterfly MPKC, this corresponds to two tuples (71, F1, S1)
and (72, F2,8S2) such that F; and F, are valid central maps satisfying

TioF1081 =Tz0F08,.

In the case of HFE and its variants, the structure of such a set of keys is well-known
[WP11, Theorem 4.13]. Concretely, in the attacks that we will describe, any non-zero
solution to the MinRank problem will yield several equivalent keys. In the subsequent
steps, the cardinality of this keyset will give degrees of freedom to the attacker for fixing
variables. Due to construction, the Sidon cryptosystem is also affected by a rank attack.
However, in this case, the relationship between the set of MinRank solutions and the
set of equivalent keys was unknown. It will in fact be instrumental in our approach
[BTV21].

The rest of this section presents the early rank attacks on HFE. We will only focus
on the MinRank step.

Historical attack [KS99]. As already mentioned, the first attempt can be attributed
to Kipnis and Shamir. Let us assume that ¢ is odd and let F = | f”]fj_:lo e Fya"
be the matrix of the quadratic form in X = (X0°,... ,an_l) associated to the HFE
polynomial of Equation (3.2) by F(X) “/ XFXT. Recall that this matrix has rank at
most d & [log,(D)]. To put it very briefly, the attack of [KS99] targets a multiple of
the form WFEWT, where W € F gnxn is a secret invertible matrix, as a solution to a
homogeneous MinRank instance with rank d, matrices in IFZIL,LX" and scalars ; € Fyn.

Revisiting Kipnis-Shamir’s approach [BFP13]. Instead of relying on univariate
maps over the extension field as in the original paper, [BFP13] gives a new description
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of the attack of [KS99] by using matrix-vector products. For our purposes, it will be

more convenient to focus on this reinterpretation.
def

Let B8 = (f1,...,0n) be a basis of Fg» when viewed as an F4-vector space and let
M e Fy*" be the associated Moore matrix defined by M def [quil]z;:lO' We consider

the following Fg-linear isomorphism ¢ between Fn and Fy attached to the basis 3:
¢:x—(z,... ,anil)M_l.

Its inverse is ¢~ : v — (vM);. Also, for 0 < k < n — 1, let F** ¢ Fgn" be the
matrix representing the polynomial F4". The coefficient in position (i, j) is equal to
ff_kk’ j—» Which means that this matrix can be obtained from F' by shifting its entries k
times to the northwest? and raising them to the power ¢*. Finally, for 1 < i < n, let

3, € Fy™" denote the symmetric matrix representing the quadratic polynomial f; € F,

i.e., fi(x) = x3;x". Since F = ¢po F o ¢!, we have for any vector v € Fy
(W', vE0) = (WMFM ", .. oMF" I MToT).

Let us come back to the public polynomials. In the same way as above, let P; € Fg™*"
represent p; for 1 < i < n. Let also § € F*" and T € Fj*" invertible matrices
associated to the linear maps S and 7 respectively. It is shown in [BFP13] that

(Py,...,P,)T M = (SMF*°M'S", ... . SMF*1MTST). (3.9)

From this equation, as both M and S are invertible, one eventually obtains a MinRank
problem.

Problem 3.4 (Theorem 2, [BFP13]). Recovering one column of V I rip e
FZK” amounts to solving the homogeneous instance of Problem 3.1 with target rank

d = [log,(D)], matrices M “p e Fy*™ and unknowns x; € Fyn for 1 <i < n.

3.2.2.3 Moadifiers

Modifiers refer to generic techniques which aim at strengthening the security of a
multivariate scheme by making both the direct attack and rank attacks less efficient.
This section focuses on the minus and vinegar modifiers, which are the most relevant
ones for HFE.

e Minus. Its consists in dropping 1 < a < n — 1 polynomials from the public
key, for example p1,...,p,. This amounts to considering P~ = 71, o P, where
7o : Fy' — Fy'™% is the projection on the last n — a coordinates. Since the system
now contains less equations than variables, this tweak can only yield signature
schemes.

“Indexes i — k and j — k are taken modulo n.
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def

e Vinegar. We introduce v > 1 extra unknowns y,, = (y1,...,¥yy) and we consider
the modified central polynomial
F(Xv yv) = Z a’ivaql—i_qJ + Z ﬂi(yv)qu + V(yv)a (31())
i,jEN ieN
q¢'+¢'<D q'sD

where this time «; j € Fyn, the §;’s are linear maps Fy — Fyn and v is a quadratic
map Fyg — Fyn. The new central map is ' = ¢o Fo: IFZ*” — [y, where

G FP X FY — Fon x FY
(z,y) — (671 (2),y).

To sign a message m € F,n, we compute the preimage m = 7! (m) and we lift it
to Fyn by applying ¢. Then, we pick random vinegar variables y € Fy to construct

a genuine HFE polynomial Fy(X) “ g (X,y). Finally, we proceed as in the
standard scheme by inverting a univariate equation. If it does not have a solution,
we select new vinegar values ¢’ and we start again with the HFE polynomial Fy.

Using those two modifiers in combination gives the so-called HFEv- signature scheme.
Its security with respect to the direct attack was analyzed in [DH11; DK12; DY13].
All these works aim at obtaining a tight upper bound on the solving degree of the
public system. Similarly, HFEv- better resists rank attacks compared to the original
construction:

e a HFE polynomial F'(X,y) with partial degree D in X and v vinegars corresponds
to a rank d + v matrix when viewed as a quadratic form in (X, y);

e with a minuses, an attacker can only consider linear combinations between n — a
fixed matrices in Problem 3.4, for example P,.1,...,P,. The vector space
generated by these elements will not necessarily contain rank d matrices anymore.

In short, relying on [KS99; BFP13], the natural MinRank problem to attack HFEv- with
a minuses and v vinegars has target rank d + a + v instead of d. With this in mind, the
GeMSS proposal [Cas+20] which is based on this trapdoor had been submitted to NIST
with good confidence in its security. Another similar construction was Gui [Pet+15] but
it failed to reach the Second Round.

Rank attack on HFEv- by Tao et al. The confidence in HFE variants has been
significantly affected by a recent attack [TPD21]. The breakthrough in this work was to
consider another MinRank problem on HFEv- with rank simply equal to d. Since it is
independent from the effect of the modifiers, solving this instance lead to a much smaller
complexity compared to previous attacks based on Problem 3.4. Overall, [TPD21]
strongly broke the GeMSS parameters and it contributed to the disqualification of the
scheme after the Third Round.
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In reaction to this attack, [@SV21] proposed to apply another modifier called
Projection. This tweak was originally introduced for another scheme [CYS15]. The point
of this approach is that it is more efficient than increasing the degree D of the central
polynomial to obtain the same security against [TPD21]. In turn, the authors provided
parameters which are immune to this former attack.

For the sake of clarity, details on both the attack of [TPD21] and Projection are
deferred to Chapter 4.

3.3 Rank-Based Cryptography

Code-based cryptography is undoubtedly the second area of post-quantum cryptography
where algebraic cryptanalysis was shown to be very effective. It also yields structured
MinRank versions, especially in the rank metric setting. This way of building
cryptosystems started at about the same time as number-theoretic cryptography when
McEliece proposed the first public-key encryption scheme based on error-correcting codes
in 1978 [McET78].

3.3.1 Introduction

The Decoding problem is the main underlying assumption for code-based cryptography.
Recalling the notation of Problem 3.2, we may often express it in terms of a full-rank
generator matrix G € IF’; X" for the linear code C. This problem also has a dual version,

where H € an_k) *" corresponds to a parity-check matrix.

Problem 3.5 (Syndrome Decoding problem). Given a full-rank matrix H €

an_k)xn, a metric wt over Fy, an integer d € N and s € Fg*k, find a vector e € Fy such

that wt(e) < d and eH' = s.

Regardless of the metric, Problem 3.2 and Problem 3.5 are equivalent. The Generic
version of these assumptions corresponds to a code C which is random among all codes
of parameters [n, k],. We will refer to it as DP when wt is the Hamming metric. There,
too, it is known to be NP-hard [BMT78].

McEliece’s scheme. As for the MQ problem, it is possible to devise cryptosystems
which are only based on DP [Ale03]. However, the security of the iconic proposal [McET78]
calls for another type of hard problem. This is because it is trapdoor-based, the trapdoor
being given by a family of codes with an efficient decoding algorithm. To still rely on
Generic DP, the crux is that codes in this family should admit generator matrices G
which are indistinguishable from random matrices. At a very high level, this assumption
can be compared to the one we described when defining butterfly MPKC. In code-based
cryptography, the major difference is that it is formalized. As a result, the McEliece
scheme has a security proof.
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Its construction is as follows. Let Fy,0q4 be a suitable family of codes as we discussed.
For the code in this family with parity-check matrix H, let Agecode, i denote an efficient
decoding algorithm. Finally, let d € N smaller than the error correction capacity.

McEliece’s scheme (sketch).

KGen(1*) Enc(pk, m) Dec(sk,y)
H —$ Fyo04q e—s{xe Fys wty(x) < d} e s Adecode’H(yHT)
sk «— Adecode, H y—mG+e I,Gr . € GLi(Fy)
pk — G € ]FZX", GH' =0 return y return (y — e’)IGZ}k

return (sk, pk)

McEliece’s original proposal for Fy,,q was the family of binary Goppa codes, which
admit efficient decoding. Following his work, many attempts were made by simply
substituting these codes with another family, for example Generalized Reed—Solomon
(GRS) codes, Reed-Muller codes or Geometric codes (which can be seen as a higher
genus version of GRS codes). However, a lot of them were shown to be insecure due to
their too strong algebraic structure. So far, binary Goppa codes as well as MDPC codes
[MTSB13] are the few remaining ones which have not been ruled out by cryptanalysis.
In fact, the latter do not have any algebraic structure since they are a generalization
of LDPC codes. LDPC codes are characterized by a sparse parity-check matrix with
constant row weight. In MDPC, this weight is of the order of O(y/n). This increase is
crucial as it permits to avoid attacks based on finding low weight codewords in the dual
while still allowing acceptable error correction performance. Quasi-cyclic MDPC codes
are used in the BIKE NIST submission [Ara+17a].

Finally, it is quite natural to wonder if algebraic techniques can affect McEliece’s
instantiations relying on algebraic codes. This is indeed the case and until very recently,
as shown by a series of works [FOPT10; Fau+11; BMT23; CMT23].

Using the rank metric. Even though we defined it in the context of MinRank, the
rank metric was introduced much earlier. It dates back to the work of Gabidulin, who
relied on it to build a McEliece-type PKE [GPT91]. Since then, this new approach
to code-based cryptography has been shown to be extremely fruitful to design various
types of primitives. Interestingly enough, the NIST PQC project has also provided new
momentum. We usually refer to this area as rank metric code-based cryptography or
rank-based cryptography.

3.3.2 Rank Decoding

However, the terminology hides a fundamental aspect regarding the hardness assumption.
If this type of cryptography were relying on generic instances of Problem 3.2 in the rank
metric, a better name would have been MinRank-based cryptography. In fact, rank-based
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schemes do not use random matrix codes. They focus on standard linear codes but over
an extension field qu5.

To see why these codes give specific matrix codes, let us start with some notation.
Let B = (51,...,0m) be a fixed basis of the Fq-vector space Fgm and let (e1,...,ep) be
the canonical basis of Fj'. We now have an F-linear isomorphism

ﬁﬁqum —>an

Bi — &;.

For a vector © = (71,...,Zn) € Fim, we consider® Mat(x) = (X;)i; € g™ the matrix
obtained by applying L£g coordinatewise. Note the relation & = 8 Mat(x). The point
now is that an F,m-linear code C of length n and dimension k is isomorphic to a matrix
code of parameters [m - n,km],. Indeed, if (g;,...,g;) € (Fgm)k is an Fym-basis of C,
the set of matrices (Mat(ﬁigj)) ., generates a matrix code Cryat over Fy of the
desired parameters.

I<ism, 155<

Similarly, we can define a notion of distance for vectors in Fii» from the underlying
rank metric on Fj"*" and the abovementioned isomorphism:

2| < wt(Mat (2)) = rk (Mat (z)).

Remark 3.4. We often use the letter r instead of d for the weight in this context.

An important remark is that we can read it on the vectorial representation in Fgm
as the dimension of the following IF,-vector space.

Definition 3.4 (Support of a word in Fjn). The support of a vector x € Fym is the
[F4-subspace of Fgm defined by Supp(x) def (T1,...,Tn)F,.-

Lemma 3.2. We have || = dimg, (Supp(x)).

We are now ready to state the relevant assumption for rank-based cryptography.
It simply corresponds to Problem 3.2 in the rank metric restricted to matrix codes
isomorphic to Fym-linear codes. This problem can also be viewed as another structured
version of MinRank.

Problem 3.6 (Rank Decoding (RD) problem). Given a full-rank matriz G € Fé”ﬁi”,
an integer r € N and y € Fym, find a vector e € Fym such that |e] <1 and y — e = mG
for some m € F’q“m.

Remark 3.5. We will sometimes call the triple (y,C,r) a problem instance, where C is the
F m-linear code generated by G. More precisely, we may refer to it as an RD instance
of parameters (m,n, k,r).

5We need to change the notation compared to Section 3.2.2 since the degree is not always correlated
with the length n.
5This notation is implicit with respect to B as the discussion does not depend on the choice of basis.
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Due to F m-linearity, Problem 3.6 is not a priori NP-hard contrary to both MinRank
and Generic DP. Still, there exists a randomized reduction to the latter due to Gaborit
and Zémor [GZ16]. Its interest remains theoretical since it holds for m > n? while the
cryptographically relevant zone is m of the order of n. In particular, several years of
cryptanalysis efforts may sound as a better security argument.

Finally, once again, we may derive a Gilbert-Varshamov distance dGV7||(qm, n, k). Tt
is no surprise that the condition is simply Equation (3.3) with r =d, n, =m, n.=n

and K = km:
r 7j—1 A m
2, (H(qn - q’)) (j) < g, (3.11)

j=0 \i=0

3.3.3 Pre-NIST Constructions

There are at least two reasons for using the Rank Decoding problem in place of MinRank
to build a rank-based version of McEliece. The first one is that all known families of
matrix codes with efficient decoding algorithm come from [Fym-linear codes. The second
one is for efficiency. Indeed, the latter have a more compact description than random
matrix codes. The systematic generator matrix of an [n, k]ym-code can be stored in
memory by using k(n — k)logy(¢™) = mk(n — k)logs(q) bits, which is m times less
than the mk(mn — km)logy(q) = m2k(n — k) logy(q) ones needed to represent a generic
matrix code of parameters [m-n, k-m],. This m factor explains why rank-based schemes
can achieve smaller key sizes compared to their Hamming metric counterparts.

The GPT cryptosystem [GPT91] and early variants relied on Gabidulin codes [Gab85],
which are the rank metric analogue of Reed-Solomon codes.

Definition 3.5 (Gabidulin code). Let (k,n,m) € N3 such that £ < n < m and
let g = (g91,---,9n) € Fym whose coordinates are linearly independent over F,. The
Gabidulin code Gg(n, k,m) is the code of parameters [n, k], defined by

Go(n,kym) < {P(g) : deg,(P) < k},

where P ranges through the set of g-polynomials, deg,(.) is the g-degree and P(g) =

(P(g1);- -5 P(gn))-

A code as in Definition 3.5 is known to have minimum distance n — k + 1. Moreover,

it benefits from an efficient decoder that can correct up to [”T_kj errors.

Here as well, their strong algebraic structure lead to devastating attacks [Ove05].
Later, another breakthrough came from the introduction of LRPC codes [Ara+19a]. An
LPRC code with row weight d can be defined from a parity-check matrix whose entries
belong to a subspace of Fym of dimension d. Such a code admits an efficient decoding
algorithm by exploiting codewords of low rank weight in the dual very much as MDPC
decoding takes advantage of dual vectors of small Hamming weight. This structure
allowed to devise rank-based analogues of the MDPC scheme [Ara+19a; Ara+17b;
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Ara+17c] which further lead to the NIST candidate ROLLO [Ara+19c]. Another rank-
metric contestant but with a radically different construction was RQC [Agu+20]. As its
name suggests, it is the rank-metric equivalent of the HQC cryptosystem [Agu+21].

Ideal codes. To reduce the keysize even more, ROLLO and RQC actually consider
Fym-linear codes with larger automorphism groups.
Let P € F,[X] denote a polynomial of degree n. The linear map

Yp :w= (g, up_1) = w(X) = 20 u X

is a vector space isomorphism between Fi» and Fgm[X]/(P). As the latter is also

. . d
a ring, we define a product over Fgn by transport of structure via uw -p v 2]

Y5 (w(X)v(X) mod P). Since

n—1 n—1
w-pv=1p (Z u; X" x v(X) mod P) = Y wip' (X'v(X) mod P),
1=0 =0

the multiplication by v € Fgin corresponds the product on the right by

Definition 3.6 (Ideal matrix). Let P € F,[X] a polynomial of degree n and let
v € Fym. The ideal matrix generated by v and P is

v

“Hx dP
TMp(w) def Vp ( QZJP(.’U) mod P) —

Yp! (X”—lzp}(v) mod P)

In the following, the notation will be implicit with respect to P.

In short, we have u - v = uZM(v) = vIM(u) = v - u.

The codes used in these submissions are called ideal codes. Roughly speaking, their
generator matrices are block matrices with blocks as in Definition (3.6). The motivation
is exactly the same as relying on module lattices or quasi-cyclic codes since they have a
more compact description.

Loidreau’s scheme [Loil7]. At PQCrypto 2017, Loidreau proposed a new McEliece-
type scheme relying on Gabidulin codes. It uses a different kind of masking compared
to GPT and its descendants in order to counteract Overbeck’s attack. The idea is to
right multiply the generator matrix which reveals the structure by an invertible matrix
whose entries lie in a small g -subspace of Fym of dimension A.
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Security. The security of all these primitives is based on the intractability of Problem
3.6. In fact, using an ideal structure requires a version where the code C is an ideal code.
So far, there are no known attacks which exploit this extra feature.

As ROLLO is a McEliece-type scheme, its security is also related to distinguishing
LRPC codes from random ones. In the ideal case, this problem was shown to be
significantly easier when P = X" —1 since this polynomial can be factored over the small
field Fyas X" —1=(X —1) Z;:& X7 [HT15]. However, when P is irreducible or when
there is no such structure, it is believed to be difficult. Even though there is no reduction
to Problem 3.6, all solving approaches boil down to using techniques from RD attacks.
Similarly, Loidreau’s cryptosystem is based on the difficulty of distinguishing the hidden
Gabidulin code from a random one. The hardness of this problem highly depends on
the value of A. First, we recover the broken GPT proposal when A = 1. When A =
2 and when the code rate is greater than 1/2, Coggia and Couvreur have proposed a
distinguisher that can be turned into a polynomial-time attack [CC20]. However, in the
general case, an higher value of A seems to resist structural attacks. The intuition is
that when this parameter grows, the problem becomes closer to the indistinguishability
assumption for LRPC codes of the same weight (which is slightly better understood as
we have just seen).

Finally, a nice aspect of RQC is that there is no structural masking. In other words,
the Rank Decoding problem is the only hardness assumption.

3.3.4 Cryptanalysis

In this section, we outline the main techniques to solve Problem 3.6. In fact, all MinRank
algorithms described in Section 3.1.3 can already be applied. However, as such, they do
not exploit the Fym-linear structure.

Section 3.3.4.1 presents combinatorial attacks, which can be seen as an RD version of
Goubin’s kernel search. In Section 3.3.4.2 and Section 3.3.4.3, we will describe algebraic
modelings which are tailored to the Rank Decoding problem. In all cases, our exposition
implicitly assumes that the input instance has a unique solution.

3.3.4.1 Combinatorial Methods

The core idea in combinatorial attacks is to perform a guess on a subspace F' < Fym of
dimension w > 7 which contains the support of e € Fy» and then to use this information
to solve a linear system derived from the parity-check equations. The main requirement
is that the dimension of F' cannot be too large compared to r for this system to be
overdefined. In that respect, such techniques can also be grasped as a rank-based
adaptation of Prange’s algorithm [Pra62].

In these algorithms, the final complexity is dominated by the inverse of the probability
of a correct guess. In the case of RD, the crux is that the probability can be greatly
increased thanks to F,m-linearity. This value has been improved in a series of papers
[CS96; OJ02; GRS16; AGHT18].
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The point of [AGHT18] is to relax the original condition Supp(e) c F. Instead, they
guess a subspace F' which contains an arbitrary multiple a Supp(e), « € Fym. The cost
of their attack in [ -operations is

an—m%ﬁfﬁ%mFm) (3.12)

3.3.4.2 Ourivski-Johanson Modeling

The seminal work of [0J02] can be considered as the first algebraic attack on the Rank
Decoding problem. However, at that time, the complexity derived from the initial anaysis
did not seem to improve upon that of combinatorial techniques.

Statement of the modeling. The starting point is to reduce Problem 3.6 to the

one of finding a weight r codeword in the code C, “e ® (Y)F,m, where C is generated
by the rows of G. Indeed, as long as the RD instance has a unique solution, all these
vectors are expected to be of the form Ae, A € Fym. For the purposes of notation, let us

still denote by e any of these non-zero scalar multiples and let H, € Fé?n_k_l) “™ be the
systematic parity-check matrix for C,. We thus obtain

eH, = 0. (3.13)

Then, by using the weight constraint, [0J02] rewrite Equation (3.13) as a bilinear
system”. In fact, they do it in the same way as in the Support-Minors approach. Even
though the latter applies to generic MinRank, it is worth mentioning now that it was
initially motivated by applications to rank-based cryptography.

As in Equation (3.6), the low rank matrix representation Mat(e) € F;"*" is expressed
as a product SC, where S and C' are full-rank matrices of unknowns in Fj**" and F;*"
respectively. The columns of S are a basis of the space Lg (Supp(e)) < " while the
i-th column of C' contains the coordinates of e; in this basis for 1 <7 < n.

Modeling 5 (Ourivski-Johansson (OJ)). Let C be the underlying [n, k]ym-code of

an RD instance with target weight r and noisy codeword y € Fim. Let Cy def C® <y>]qu

and let H,, def (—RT In_k_l) be a systematic parity-check matriz for this linear code.

The Ourivski-Johansson modeling is the system in the unknowns S € F**" and C € Fy*"
whose equations are the entries of the row vector

(B1,....Bm)SCH,,.

The authors eventually fix S, 1 = €1 in Modeling 5 since the target is an arbitrary
non-zero scalar multiple of the initial error. The resulting system contains n — k — 1
affine bilinear equations over Fym in (r — 1)m + rn variables over Fj,.

"Simply presented as “quadratic” in [0J02].
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3.3.4.3 MaxMinors Modeling

Unfortunately, until very recently, there had been little progress in algebraic attacks since
the work of [0J02]. We can still mention the RD modeling of [GRS16] which exploits
Fym-linearity by using g-polynomials. This situation has just changed, mostly because
rank-based NIST candidates required a more thorough study of algebraic techniques.
For instance, new attacks [Bar+20a; Bar+20b] have shown that these methods could
outperform combinatorial approaches in the parameter range which was critical for the
submissions. This was in fact the main argument not to select these schemes to advance
further on in the process.

A key ingredient of these recent works is the following Modeling 6. In [Bar+20a],
its equations were initially found as degree fall polynomials for the Ourivski-Johansson
system. The proof exploits the shape of Modeling 5 together with the content recalled
in Sections 2.5.2.1 and 2.5.2.2. More simply, we can also check that these polynomials
vanish on the RD solutions.

Modeling 6 (MaxMinors). Keeping the notation of Modeling 5, the MaxMi-
nors modeling 1is the system in the variables from C, denoted Pg,., defined by

{PJ}JC{I..n—k—l}, #J=r> where

d
P, |c(H])..,

. (3.14)

Modeling 6 contains ("_f_l) affine equations over F,m. Since they are computed
as r X r minors of a matrix whose coefficients are linear in the entries of C, they have
degree r in these unknowns.

Unfolding over F,. A recurring feature in Modelings 5 and 6 is that the coefficients
of the polynomials belong to Fy» while the variables are searched in F,. If I stands for
the ideal generated by Pp,,., we are thus more interested by the ideal Iy, with basis
Prm {C;{ ; — Cij} as defined in Section 2.1. This ideal being radical, it contains

Prvop 2 {£7 mod {Cl,—Cij}: fePrmand 0<L<m—1} < Fgm[Cy;]. (3.15)

Remark 3.6. The set of field equations is a Grobner basis so we really compute normal
forms here.

In practice, we may prefer to work with coefficients over ;. For that purpose, we
generalize the usual trace operator of the extension field Fgm to f € Fgm|[C; ;] by

def

m—1
Tr(f> = f + fq 4+ o+ f‘lmil — Z f[e] (316)
=0
Let now 8 = (8],...,,,) be an F -basis of the extension field®. It is easy to see that

the following system

Pr, & {Tr(Bif) mod {C; — Cij} : f € Pr and 1 < £ < m) (3.17)

8 A convenient choice in the analysis will be the dual basis 8% of the basis 8 considered above.
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can be obtained from [Fym-linear combinations between polynomials in Pgyop. Finally,
for any a € Fgm and any monomial p € Fgm[C} 5], let us observe that

Tr(ap) mod {C]; — C;;} = Tr(a)p mod {CY; — C; ;}.

This shows that Pr, = F,[C} ;] and that the monomial content is the same in both P,
and Pr,n (since Pr, m only contains squarefree monomials). The crucial advantage of
Pr, is that the solutions now boil down to the ones we want.

Modeling 7 (MaxMinors over F, (MM-F,)). Let 8’ = (51,...,0B,,) be an arbitrary
Fy-basis of Fgm. The MaxMinors modeling over I, is the system given in Equation
(3.17), where P, is Modeling 6. For 1 <{<m and J = {l.n—k—1}, #J =r, we
set

PE,J d;f TT’(ﬁéPJ) mod {C;{j - Ci,j}~

Using Modeling 7. As already mentioned, the MaxMinors modeling was instrumental
in both [Bar+20a] and [Bar+20b]. The initial approach of [Bar+20a] was to combine it
with the former bilinear Modeling 5 unfolded over [F,. This can be understood as the
generic way to take advantage of degree fall polynomials in a Grébner basis algorithm.
The subsequent paper [Bar+20b] makes a much better use of these equations. Some
elements of their work have been presented when describing the Support-Minors modeling.
For instance, it was noticed in [Bar+420a; Bar420b] that the MaxMinors polynomials
are linear in the minor variables ¢ = |C |*7T of C. This is consequence of

Lemma 3.3 (Cauchy-Binet formula). Let R denote an arbitrary ring, let A € R™*"
and let B € R™". We have

|AB| = > | Ay
Jc{l.n}, #J=r

| B J sl

Another contribution of [Bar+20b] was to fix variables by considering an identity
block I, for the r leftmost columns of C'. First, the resulting system still has solutions
with constant probability. Second, and more importantly, this new specialization offers
a significant benefit: we can simply solve for the c¢p’s and then recover the individual
entries of C from c(y .\ iyogsy = Ciy-

In this way, solving RD was performed by inverting the linear system in the minor
variables given by Modeling 7. In particular, if the weight r is below the Gilbert-
Varshamov bound and if m("_f _1) > (") — 1 (overdetermined case), it was considered
that this approach succeeds under a heuristic on the rank of the system.

Assumption 1 (Heuristic 1, [Bar+20b]). When m(nfffl) > (") — 1, with very
high probability, the rank of Modeling 7 is equal to (:f) —1.

Otherwise, in the underdetermined case, [Bar+20b] propose two different strategies:

e The first one is a form of hybrid approach by adding random linear constraints on
the c¢r variables.
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e The second one is to combine Modeling 7 with the Support-Minors modeling
applied to the underlying MinRank instance.

These two approaches will be examined in much more detail in Chapter 7.

3.3.5 Modern Schemes and New Assumptions

In addition to the cryptosystems presented in Section 3.3.3, rank-based cryptography
has been in the spotlight thanks to many other works. Moveover, among them, the IBE
scheme of [GHPT17] and the Durandal signature scheme [Ara+19b] show that it should
not be limited to PKEs and KEMs. They may even suggest that the rank metric is
more suitable for some applications than the Hamming metric.

3.3.5.1 Rank Support Learning

Designing more versatile rank-based primitives has required the introduction of new
assumptions. In particular, both [GHPT17] and [Ara+19b] rely on the so-called Rank
Support Learning (RSL) problem.

Problem 3.7 (Rank Support Learning (RSL) problem). Given a full-rank matriz

H e Fg?n_k)xn and a matric EH' € Févmx (n_k), where the coefficients of E € ]Févmx” lie in

a subspace V < Fym of dimension r, find V.

Remark 3.7. In other words, a problem instance corresponds to N instances of RD whose

errors (e; def E; .)1<i<n have the same support V < Fym. Thus, RSL trivially reduces
to RD.

Problem 3.7 was defined in [GHPT17] but its straightforward adaptation to the
Hamming metric had already been used for cryptographic purposes [KKS97; KKS05].
This latter version can be solved in polynomial time when N > r [GHPT17, §4.2]. On
Rank Support Learning, a polynomial algorithm of the same nature only exists whenever
N = nr [GHPT17, §4.2]. A bit later, the IBE of [GHPT17] was broken with different
techniques [DT18]. The authors proposed an algebraic attack on RSL which applies
when N > kr. In this regime, the complexity was expected to be subexponential. In
spite of this, we still have more flexibility in the number of errors than in the Hamming
case.

Durandal signature scheme. More recently, the RSL problem was used to build a
rank-metric signature scheme [Ara+19b]. Relying on this assumption allowed to adapt
the Schnorr-Lyubashevsky framework [Sch91; Lyu09] to the code-based setting, which
had not been possible so far in the Hamming metric. To avoid the attack of [DT18], the
original parameters were chosen such that N = k(r —2) or N = k(r — 1). In fact, at the
time of [BB21], they were already obsolete due to [Bar+20a; Bar+20b].
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3.3.5.2 Improving Existing Schemes

These recent attacks have for sure affected the confidence of the cryptographic community
in the associated schemes, a fortiori those submitted to NIST. On the positive side, one
can also view them as a way to better understand the complexity of solving RD. Besides,
NIST kept encouraging further research on rank metric cryptography” [Moo+20].

Subsequent works aimed at mitigating the impact of such attacks in order to maintain
attractive parameters for ROLLO and RQC.

In the initial ones, the weight of the error was of the order of O(4/n). This seemed to
correspond to a vulnerable zone in regard to algebraic techniques. Thus, it was proposed
in [Agu+22] to pick a larger weight. Concretely, they increase the weight of the error
to decode from r = O(y/n) to a value closer to the Gilbert-Varshamov distance. At
this point, from computation on concrete parameters, algebraic attacks were believed
to be relatively less efficient than combinatorial techniques. However, so far, there is
no theoretical result underlying such an assumption. The idea of [Agu+22] was also
employed in [Ara+22]. In these works, note that the benefit of using it comes at the
price of relying on RSL rather than on RD.

To limit the effect of cryptanalysis, the RQC submitters considered non-homogeneous
errors [Agu+20]. Regarding security, this slight variation in the noise distribution
lead them to formalize a structured version of RD called the Non-Homogeneous Rank
Decoding (NHRD) problem.

Problem 3.8 (Non-Homogeneous Rank Decoding (NHRD) problem). Given
a full-rank matriz H € F(qyynl)x(%JrnI), integers (w1, ws) € N2 and s € Ffﬁm, find a
vector e = (e, es,e3) € Fg:ffrm, e1 € Fym, ey € Fii, e3 € Ty, such that eH" = s,
|(e1,e3)| < w1, |ea| < w1+ wa and Supp(e1, e3) = Supp(es).

Remark 3.8. We recover the Rank Decoding problem when ws = 0.

RQC is restricted to a setting where n; = n. In Chapter 8, we will motivate and
study the general version due to a new proposal [BBBG23] which relies on it.

3.4 Regular Syndrome Decoding

In addition to MinRank and some variants, we studied a structured version of Problem
3.2 in the Hamming metric.

Problem 3.9 (Regular Syndrome Decoding (RSD) problem). Let (t,k, N) € N3

and n Y tN. Given a full-rank matriz H € an_k)xn and a vector s € Fy, find a vector
e (e1,...,e:) which is the concatenation of t random blocks e; € Fév with wty(e;) =1

and such that s = eH .

9«Despite the development of algebraic attacks, NIST believes rank-based cryptography should
continue to be researched. The rank metric cryptosystems offer a nice alternative to traditional hamming
metric codes with comparable bandwidth.”
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As we can see, its specificity lies in the error distribution. In the following, the
corresponding vector e will be referred to as regular.

Problem 3.9 was proposed by Augot, Finiasz and Sendrier [AFS05] as the underlying
assumption for the Fast Syndrome-Based hash function. It is also present in subsequent
work [FGS07; BLPS11; MDCE11]. Much later, this problem was used in Fiat-Shamir
code-based signatures relying on the MPC-in-the-Head paradigm [FJR22; CCJ23]. In
[FJR22], the original zero-knowledge proof for Problem 3.2 is adapted to Problem 3.9
in order to reach better size-performance trade-offs'’. In [CCJ23], the MPC protocol
is radically different since it is tailored to the regular distribution. Last but not least,
another field of application is in secure computation. The introduction of RSD in
this context was pioneered by [HOSS18]. As of now, we especially encounter it in
Pseudorandom Correlation Generators (PCGs) [BCGI18; Boy+19b; Boy+19a; Yan+20;
WYKW21]. Since our work targets the parameter setting adopted by these primitives,
we will spend a bit more time to describe them.

3.4.1 Pseudorandom Correlation Generators

Pseudorandom correlation generators refer to cryptographic constructions which allow
parties to locally generate long sources of correlated randomness from the knowledge of
short correlated seeds. As it is often straightforward to securely compute the desired
functionality from such long vectors, obtaining them efficiently is the cornerstone. In
PCGs, this efficiency lies in the short interactive phase which only serves as producing
the seeds.

At the core of these schemes is a pseudorandom generator (PRG) based on the
Decoding Problem!!. The pseudorandomness of the ouput is ensured by the hardness
assumption while its linear nature allows to preserve the target correlation. This PRG
is either (m,e) — mG + e (Primal) or e — eH" (Dual), where the sparse vector e
comes from a function secret sharing scheme [BGI15]. The point of using Problem 3.9
in place of Problem 3.2 is simply for better performance. Indeed, it is less costly to
securely share a regular vector e than a random one of the same weight.

These primitives all adopt a very particular setting. First and foremost, the noise rate
t/n is extremely low compared to the one usually considered in code-based cryptography.
Second, the field size g can be large, typically ¢ > 256. The rest of the parameters
depends on the instantiation. In the Primal case, since the PRG input contains an
arbitrary vector m € IF’;, one selects a very small code rate k/n to maximize the expansion
factor. The Dual case e — eH ' does not exhibit the same constraint since the seed is
just the compact description of a sparse vector. By fixing the weight and increasing n,
one can get an output size mostly independent of the seed size. In this situation, the
code rate is constant.

"The scheme of [FJR22] considers a generalization where the error is made of d > 1 blocks with
constant weight (RSD corresponds to d = t).
"PCG proposals often use the Learning Parity with Noise (LPN) terminology.
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3.4.2 Previous Cryptanalysis

The work of Chapter 10 will focus on the specific parameter range that we have just
described. In this case, the mapping e — eH' € [Fg—k is expected to be injective
regardless of the regular constraint'?. This means that an algorithm to solve the
Decoding problem will always output the regular solution when applied to Problem 3.9.
Thus, in our regime, RSD should be easier than Problem 3.2.

We will now present the main attacks which are relevant to this setting. For a more
detailed exposition, we refer to [HOSS18; CCJ23].

e Since we restrict ourselves to a highly injective map, we will not expand on neither
Generalised Birthday Attacks [Wag02; CJ04; Kirll] nor Linearization Attacks
[BMO7; Saa07] which are mostly tailored to multiple solutions. Note however that
these techniques can be enhanced using the regular distribution [CCJ23].

e The most important class of algorithms on the plain Decoding problem is arguably
Information Set Decoding (ISD). This refers to a series of improvements [Ste89;
FS09a; BLP11; MMT11; BJMM12; MO15] upon the work of Prange [Pra62] that
we briefly mentioned in Section 3.3.4.1. The basic idea is to guess k error-free
positions and then solve a linear system. In these improvements, one has to make
a further assumption of the weight distribution of the error vector. Thus, taking
advantage of the regular noise is not necessarily immediate.

e A last type of approach is Statistical Decoding [Jab01]. Recently, the 2.0 version
of [CDMT?22] showed that this technique can outperform ISDs in the standard
code-based crypto setting when the code rate is sufficiently small.

In light of these attacks, Boyle et al. proposed parameters to instantiate Problem
3.2 in PCGs [BCGI18, §5.1]. Later constructions also use them in a black box manner
[Yan+20; WYKW21]. What is important is that these parameters are kept the same
for RSD while it is precisely the zone where we could expect better solving algorithms.
On their values, the authors note that the limiting attack is either Prange, ISDs or
Statistical Decoding. Another remark is that advanced ISDs do not perform extremely
well due to the tiny noise regime [CS16].

More recently, [LWYY22] studied the same parameter range but in a slightly more
general context (larger fields or integer rings, various noise distributions). There, the
authors claim that the estimates of [BCGI18] are too conservative over large fields
regarding the ISD cost. Roughly speaking, the advantage of ISDs compared to Prange
quickly deteriorates when ¢ increases [Can17]. In addition, they argue that the complexity
of Statistical Decoding is much higher than presented in [BCGI18]. In particular, this
is no longer the best attack even by taking into account the algorithm of [CDMT22].
As this improvement is still quite new, a further analysis in this specific regime and/or
tailored to the regular shape remains to be made.

1211 the binary case, this will happen as long as 2k > (Z)
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3.5 ZK-Friendly Symmetric Primitives

We finally introduce a specific type of symmetric designs which are vulnerable to algebraic
techniques. They belong to a larger branch of symmetric cryptography which is motivated
by emerging applications in FHE, MPC and ZK proofs based on hash functions. In
contrast to the traditional symmetric-key setting which operates over Fo and which
turns out to be inefficient in this context, they work over a large finite field F, (where ¢
is a prime of cryptographic size or 2¢ with e > 64).

3.5.1 General Approach

Hash functions used in ZK should be such that it is easy to prove the knowledge of a
preimage. Note that the existence of several different proof systems may call for more
particular requirements.

In symmetric cryptography, a standard technique to build a hash function is to start
by constructing a permutation. The rough security goal is that it should behave as a
randomly sampled one. As a first approximation, we may consider such a pseudorandom
permutation P as being a keyless block cipher. Its general form is iterative, namely

P Ry oRy_10---0Ry,

where the R;’s correspond to cryptographically weak but simple transformations and
where n, € N is the number of rounds. Security is guaranteed by a careful selection of
these transformations (called round functions) and by a large enough value of n,. once this
choice has been made. A very frequent construction is that of Substitution-Permutation
Network (SPN) ciphers. There, the round function is the composition of a linear layer,
an Sbox, and an addition of constants (possibly in a different order).

The reason why classical block ciphers are not suited in this arithmetization-oriented
(AO) context is because the efficiency requirement is different. Indeed, we do not
necessarily need a permutation P which is easy to compute and invert but simply a
one with fast verification. More precisely, given a pair (x,y) € Fy* x Fg', it should be
efficient to check that P(x) = y. Another reason is due to the performance metric.
This time, in contrast to binary instructions, the relevant operations are the addition
and the multiplication over a large field. A first design concern was thus to minimize
the amount of F,-products, which explains why the initial attempts relied on a round
function R : F" — F7" with a low degree model. More precisely, there should exist a
polynomial map P : Fgm — Fg" with low multiplicative complezity such that y = R(x)
if and only if P(z,y) = 0. In particular, MiMC and its variants [Alb+16] as well as
Poseidon [Gra+21; GKS23] have adopted the simplest Sbox = + z? where d € Z-g
is the smallest degree for which this map is a permutation. A more subtle approach
initiated by Jarvis [AD18] and employed later in the Rescue family [Aly+20; SAD20]
was to consider a permutation whose inverse is of low degree.



56 Chapter 3. Post-Quantum Assumptions and Algebraic Cryptanalysis

3.5.2 Algebraic Techniques on Block Ciphers

The first application of algebraic cryptanalysis to symmetric schemes largely predates
the advances in AO constructions. It dates back at least to [CP02] where it was used
on the AES. Given a message/ciphertext pair, the authors model key-recovery as a
quadratic system whose unknowns come from the key and from intermediate variables
introduced at each round. Even though the original complexity claim was later shown to
be incorrect [Ars+04; CLO5], this attempt contributed to popularize algebraic methods
in block cipher cryptanalysis.

Note that early works in that direction already contain findings which are worth
mentioning before studying AO ciphers. The first one that highly differs from the
public-key setting is that the cost of computing an arbitrary Grébner basis should not
be taken as an indicator of the overall complexity. For instance, [BPW06a] showed that
the AES modeling proposed in [MR02] is a Grobner basis for a “degree-then-LEX” order
while the scheme still resists algebraic methods. The same proof technique was used in
[BPWO6b] to construct the block ciphers Flurry and Curry. The goal there was to give
proposals immune to classical techniques (e.g., linear and differential attacks) but for
which the standard modeling by introducing intermediate state variables is already a
Grobner basis. These works rely on the following well-known result.

Proposition 3.1 (Buchberger’s second criterion, Prop. 4 p. 106, [CLO15]).
Let G < K[x] be a finite set and let f, g € G whose leading monomials are coprime.
Then, the S-polynomial S(f,g) reduces to 0 modulo G.

In the strategy described in Section 2.2.3, this means that the change-of-order step
becomes the dominant part. Luckily for the AES, it appeared to be the bottleneck.
Indeed, its cost in the case of [BPW06a] was argued to be higher than the one of
exhaustive key search.

The crucial difference for AO primitives is that algebraic attacks typically become the
limiting ones. In some cases, this is due to the low degree representation that we have
just mentioned. A more likely and general reason is that classical techniques devised for
the field Fo do not translate well to the large field setting (they are at least less well
understood). Regarding the Grobner basis step, it was proven that it can be neglected
in MiMC [Alb+19] using the same argument as above. On an arbitrary cipher, its cost is
often derived assuming (semi-)regularity or from an experimental bound on the solving
degree. Here as well, the complexity of FGLM can be dominant and it boils down to
estimating the degree of the ideal. In this context, some systems were observed to reach
the Bézout bound (Proposition 2.2) but others also had less solutions. Such a particular
behaviour in Jarvis was observed and analyzed by Faugere and Perret based on the
underyling multi-homogeneous structure [BGL20, Appendix A].
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Analyzing Support-Minors on HFE
Variants

The content of this chapter is a joint work with John Baena, Daniel Cabarcas, Ray
Perlner, Daniel Smith-Tone and Javier Verbel [Bae+22]. It has been published at
CRYPTO 2022.

We give a rank attack on HFEv- which consists in solving the MinRank instance
of Tao et al. by applying Support-Minors. As noted in [TPD21], the unmodified
XL algorithm introduced by [Bar+20b] would fail in this context due to the big-field
structure. Thus, we decided to adopt a more standard Grobner basis approach that
we managed to estimate precisely. This analysis was missing in [TPD21] and it even
allowed us to improve upon their conjectures.

The second part of [Bae+22] is more general. We study the memory complexity of
attacks based on the Support-Minors modeling. Our results apply in particular to the
rectangular MinRank attack on Rainbow [Beu2la], where this issue had been a major
point of discussion'. Even if I actively participated in the writing, most of the ideas
were due to Ray Perlner and Daniel Smith-Tone. For this reason, the corresponding
content does not appear in this manuscript. We refer to the eprint version [Bae+21].
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4.1 Preliminaries

We start by providing more specific background in order to better understand our
contributions. Section 4.1.1 introduces the MinRank problem of [TPD21] which is
the basis for our work. Section 4.1.2 presents the Projection modifier. HFEv- with
Projection, pHFEv- for short, was proposed in [)SV21] as being immune to [TPD21].
Its parameters are now obsolete due to our attack.

4.1.1 Considered MinRank Problem

As discussed at the end of Section 3.2.2.3, the main component of [TPD21] is a new
MinRank instance to attack HFE variants. What was crucial at that time is that the
rank d = [log, (D)] does not depend on the modifiers.

To describe their approach, we assume that ¢ is an odd prime power? and we keep

the notation that we used for Problem 3.4. In particular, let 8 def (81, -, Bn) be a basis

of the vector space Fy» over [F, and let M = B

variables, we consider the augmented matrix

¢’ ]n—l

i+11i =0 Since we deal with vinegar

~r def M 0 (n4v) x(n+v)
M = [0 IJ € Fyn . (4.1)

Let us recall that the solutions to Problem 3.4 allowed to recover the coefficients of a
matrix depending only on the outer map 7, namely V = T~ M in Equation (3.9). In
[TPD21], the rank d matrix is related to the inner map S : Fy™** — Fg“’. More precisely,
the authors aim at obtaining the matrix

N sl e plntox ) (4.2)

where S € F,(]nw)x(nﬂ) is an invertible matrix representing S. For that purpose, they
solve the following MinRank instance.

Problem 4.1 (Theorem 2, [TPD21]). Let Py,...,Pp_4€ Fén+v)x(n+v) denote the
symmetric matrices associated to the HFEv- public polynomials and let (€1,...,€nty) be
the canonical basis of FZ*”. Forl1<i<n+w,let

Eipl
M, def e, P, def c F((ln—a)x(n-&-v)‘ (4.3)
EiPnfa

Then, the first row w def (U1, ..., Unty) Of the matriz U defined in Equation (4.2) is
a mon-zero solution to the homogeneous MinRank problem described by the M ;’s with
target rank d = [log, (D)].

2The results can be extended to the even characteristic, see for instance [Bae+21, Appendix A].
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As in the original MinRank problem proposed by Kipnis and Shamir [KS99], we are
interested in solutions over F,» while the public matrices are over F,. In particular, the

following observation of [TPD21] was already present in previous literature on big-field
MPKC [KS99; JDH07; BFP13; VS17].

Fact 1. Let v € IFZTT” be a non-zero solution to Problem 4.1. Then, for any X € F.,

the vector \v = (Av1,..., \niy) i another non-zero solution. Moreover, for any
0 <j<n—1, the same goes for the vector vl def (vy], . ,v,[fJ]rv).

This result should also be confronted with more rigorous ones on equivalent keys,
e.g., [WP11]. First, we do not expect spurious solutions. Second, any non-zero solution
u’ as in Fact 1 is the first row of a matrix U’ leading to an equivalent map S’. For the
rest of the key-recovery, we refer to [TPD21, Algorithm 1] and [TPD21, Algorithm 2].

Before we go on, we want to mention a similarity between [TPD21] and the rectangular
MinRank attack on Rainbow [Beu2la]. Even if we did not describe the latter, one thing
in common in these two works is that any matrix M; from the MinRank instance
contains data from all the public polynomials (see for instance Equation (4.3)). This is
in contrast to earlier attacks where each matrix was associated to only one equation (e.g.,
M ; = P; in Problem 3.4). Rectangular MinRank problems of the same type have also
been considered in the cryptanalysis of UOV [Beu+23, §4.5] and variants of it [F123].

4.1.2 Projection Modifier

The Projection modifier was introduced in order to repair the SFLASH signature scheme
after the break of [DFSS07], which lead to the design of PFLASH [CYS15]. In reaction
to [TPD21], the authors of [#SV21] also applied this modifier to HFEv-. In this context,
Projection consists in replacing the map S : Fp+ — Fy+" by § = LoS" : Fp+v—P — Fp+v,
where S : FpHV=P — Fp+~P is invertible and L : Fjj™~7 — Fy** is full-rank represented

by a matrix
A0 (ntv—p)x (n+v)
[ 0 Iv] e Fy .

The point now is that the rank of the matrix is bounded by d + p instead of d (cf.
[@SV21, Proposition 2]) and this upper bound is believed to be tight ([WSV21, Table
1]). In contrast to previous modifiers, this means that Problem 4.1 with Projection
admits a higher target rank. This very fact allowed [)SV21] to find secure parameters
for their new pHFEv- scheme by starting from weak HFEv- parameters. Even though
the complexity of inverting pHFEv- is ¢P times more than the one of inverting HFEv-
for the same degree D, it is also faster than solving a HFE polynomial of degree ¢PD.
Projection is thus interesting in that it is more efficient than simply increasing the degree
of the central map to obtain the same security.

The current GeMSS parameters as well as those of pHFEv- are given in Table 4.1.
In [®SV21], a secure pHFEv- parameter set was constructed from a GeMSS one by
choosing the least value of p such that the attack of [TPD21] is just above the security
level.
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Table 4.1: GeMSS and pHFEv- parameter sets.

Scheme g n v D a pfrom [OSV21]
GeMSS128 2 17412 513 12 0
BlueGeMSS128 2 175 14 129 13 1
RedGeMSS128 2 177 15 17 15 4
GeMSS192 2 265 20 513 22 5
BlueGeMSS192 2 265 23 129 22 7
RedGeMSS192 2 266 25 17 23 10
GeMSS256 2 354 33 513 30 10
BlueGeMSS256 2 358 32 129 34 11
RedGeMSS256 2 358 35 17 34 14

4.2 Applying Support-Minors

The first approach to solve Problem 4.1 retained in [TPD21] was to use the Minors
modeling (Modeling 2). Even if Support-Minors (SM) was already known at that time,
the authors considered that the large solution set from Fact 1 seemed to make the XL
technique of [Bar+20b] based on multiplying by linear variables inapplicable. For this
reason, they decided to run a standard Grobner basis algorithm that also multiplies by
minor variables. The complexity formula for this method [TPD21, p. 15] assumes that
the solving degree of SM is equal to 3 and it only relies on experiments.

In our work, we proceed according to their second strategy. However, we manage to
grasp the early steps of the Grobner basis computation. Our analysis turns out to be
sufficient — in the range of parameters of interest — to derive a less conjectural estimate.

e In Section 4.2.1, we consider a specialized SM system — Modeling 8 — by fixing two
variables. This modeling still admits solutions due to the properties of Problem
4.1 and that of the SM polynomials.

e In Section 4.2.2, we show that both the specialization and an advantageous
parameter range trigger degree 1 equations which are obtained as linear
combinations between the initial affine bilinear polynomials.

e By substitution in Modeling 8, these degree 1 polynomials allow to derive a
quadratic system — Modeling 9 — in only n — 1 variables. In Section 4.2.3, we solve
it using Grobner bases.
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4.2.1 Our Specialization

d . . . .
We set Z lef Z?:f u;M; for a candidate rank d matrix® and we consider its transpose

ZT. Asin [Bar+20b; Beu2la; TPD21], we restrict ourselves to a subset of Support-
Minors equations obtained from a submatrix in F,[u] (ntv)xn’ Up to relabelling of the
linear variables, we also fix u,4, = 1. This specialization is exactly the same as in
[BEP13, Theorem 7] and [TPD21], among many others. From Fact 1, we thus expect a
variety of the form {u, ﬁ[l], .. ,ﬁ["_l]}, where (@)1, = 1. By [TPD21, Proposition 5 &

Algorithm 1], recall that there exists an invertible matrix U’ € Féﬁw)x(nw) representing
an equivalent map such that
U
e =| 1 | eERET (4.4)
a1

Finally, since we can choose an arbitrary submatrix Z 1— g of Z" with #J = n/, we can
make sure that this submatrix is full-rank on its first d columns. Therefore, we fix the
minor variable ¢(;_ gy to 1.

Modeling 8. Let Z be a target rank d matriz of the form Z def 27:1” u;M;. We
consider the SM equations obtained from n' <n — a columns in Z" with coefficients in

Fy and solutions in Fyn, in which we fix up+y =1 and ¢y gy = 1.

This gives an affine bilinear system with (n+v)( d’jrll) equations. There are (n+v) (7;,)

monomials and in particular (n + v — 1)((72,) — 1) quadratic ones of the form u;cr for
l<i<n+wvand T # {1..d}.
We can clearly pick a number of columns n’ < n — a that yields a sub-system with

more equations than monomials. This will be the case when (n + v)( dZ/l) = (n+wv) (’Zl/),
i.e., n/ = 2d + 1. This is indeed achievable on GeMSS because the value of n — a is much
higher than 2d 4+ 1 in practice. Also, for these parameters, we do not go beyond the

MinRank uniqueness bound given by Equation (3.4) page 31 even when n’ = 2d + 1.

4.2.2 Linear Degree Fall Polynomials

From now on we assume that the number of columns is n’ > 2d + 1. If the corresponding
Modeling 8 were to have a unique solution, the XL approach of [Bar+20b] would succeed
in degree b = 1. Here however, it is not clear how to apply this technique. Indeed, the
linear system given by the Macaulay matrix has a large kernel. More precisely, since we
expect Modeling 8 to have n solutions which correspond to n linearly independent vectors
{v,v1, ... v[" 1} such that the first n 4+ v — 1 components of v are ()1, ..., (W)niv_1,
this kernel should have dimension > n. Moreover, for large enough n, this bound was
tight in our experiments. Thus, we adopt the following Assumption 2 in the rest of the
analysis.

3This notation is the one of [TPD21, Theorem 2].
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Assumption 2. Let n’ > 2d + 1. We assume that the number of linearly independent
equations in Modeling 8 is equal to

/

No = (n+v)(") —n.

Linear polynomials. Based on this assumption, we prove that there is a set £ of
degree 1 polynomials obtained from linear combinations between the initial equations.
In other words, there are degree falls from degree 2 to degree 1 in the Support-Minors
system Q.

Lemma 4.1. Under Assumption 2, one can generate Ny such linearly independent
polynomials, where

Ne= (") +v-1

Proof. By Assumption 2, the system of Modeling 8 contains Ng = (n + U)(Zl) —n
linearly independent equations. Note that one has

No=(m+v=1)((4)-1).

This means that the number of linearly independent affine bilinear equations is greater
than the number of bilinear monomials. In particular, there are non-trivial linear
combinations between the bilinear parts of the equations that are zero. In turn, by
performing linear algebra operations on Modeling 8, we obtain at least

\((n—kv)(fl{)—n)—(n—kv—l) ((Z,)—1> - (Zl)—kv—l

-

i Y
Ng ##bilinear monomials

linearly independent affine degree 1 polynomials. O

Eliminating variables. We use the system £ to simplify unknowns. For instance,
we choose to eliminate first and foremost all the n., = (Tg) — 1 minor variables by
considering an order such that ¢y > upiy—1 > -+ > ug > Upty = 1. Let Macgq (L)
denote the Macaulay matrix whose columns are sorted accordingly. Lemma 4.2 shows
that we have a good control on the shape of its row echelon form and that Lemma 4.1 is

actually an equality.

Lemma 4.2. Under Assumption 2, the reduced row echelon form of Mac<i(L) reads

def |1 o ¥ X (Neqp+n+v)
Li[%TK}erE ) (4.5)

Nzg—nern)x(n4v) .
where K € }FEI £ neg) (nto) is row reduced. Moreover, we have Nz = ne, + v.
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Proof. We denote by L the echelon form of Mac<i (L), namely

XTep (NL_W»CT)X(”"'U)

L% [N iy } ,where N € Fy7 ™7 and K € Fy

0 K

Let us assume that this matrix is not systematic on its first n., rows, i.e., N # I, .
On that hypothesis, there is a set of vy = Nz — n¢, + 1 = v + 1 linearly independent
vectors in the row space of L which have zero in their leftmost n., entries. This yields
v linearly independent vectors hy, ..., hy, € Fy*" orthogonal to % € Fgﬁf Y. In fact, since

these vectors are over [y, they are orthogonal to ! for any 0 < 7 <n— 1. Thus, the
matrix
U
. nx(n+v)
/{1..n},* = : € IFq"
=1

is not full-rank. This is a contradiction since U’ is invertible.

For the second part of the proof, the number of rows Nz — n., in K is at least v by
Lemma 4.1. In addition, since the vector 4 is a solution to the MinRank problem, there
exists w € IFZET corresponding to the minor variables such that

MaC<1(£)(w, (ﬁ)n-i-v—l) R (ﬁ)l) 1)T =0.

By the same argument, as the matrix Mac<(£) has its entries in F,, we obtain n
vectors in the right kernel:

VO <j<n—1, Macey(£)(wd @, . @V 1T =o.

As we recover Ul{l..n}, (1.ntv—1}’ these vectors are linearly independent. This shows that
the rank of K is at most (n + v —n) = v, hence Np — n.,. = v. O

From Lemma 4.2, it is then possible to express all the minor variables as well as v

. . . .. def . .
linear variables in terms of the remaining n,, = n — 1 linear variables. Moreover, by

reordering the linear variables if necessary, we may further assume that the remaining
ones are uj,...,u,—1. In this case, the matrix corresponding to the homogeneous degree
1 parts (by dropping the last column of L) is of the form

d I, 0Y epFUFNL
l-lleft ;f L*,{l..ncT"I‘U"rnu} = |: %T I W:| € F(/Z\/’EX(TL T o )7 (4.6)
v

Neqp XNy

where Y € Fy and W e g™,

4.2.3 Solving a Quadratic System

The end of Section 4.2.2 shows that by substituting £ in Modeling 8, the bilinear parts
reduce to quadratic parts in only n, = n — 1 linear variables.
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Modeling 9 (Quadratic System). We consider the affine quadratic system in n, =
n — 1 linear variables uy, ..., u,—1 obtained by plugging the linear polynomials of L into
the equations from Modeling 8.

The final stage of our approach is to solve Modeling 9 using Grébner bases. Before
starting, note that this system is extremely overdetermined since we have Ng — N, =

n+v—1) ((Z/) — 1) = (ny + v)ne, = nyne, quadratic equations in n, variables. In
particular, this should already correspond to a weak zone for MQ when n., is not

too small. Our precise analysis actually considers two situations in line with this first
observation.

Case n., > n,. Modeling 9 is even more overdetermined. In Proposition 4.1, we
prove that the Grobner basis computation actually terminates in degree 2. We rely on
Assumption 2 and on the following Assumption 3 about the echelon form L' from
Equation (4.6).

XMy,

Assumption 3. The matriz Y € IFZCT in Equation (4.6) is full rank.

Note that this assumption should hold with high probability if Y behaves as a
random matrix. However, since this matrix actually comes from the scheme, we have
also performed simulations to verify Assumptions 2 and 3. According to the results we
obtained for different sets of parameters (¢, n,v, D,a), it seems that if n’ is chosen such
that n’ > 2d + 1 and n., > n,, then these assumptions are satisfied almost 100% of the
times. The reader might find helpful to experimentally explore these assumptions using
the SageMath notebook [BV21].

Proposition 4.1. Under Assumptions 2 and 3 and if ne, = ny, a Grébner basis for
Modeling 9 can be obtained by Gaussian elimination on the initial equations.

Proof. By Assumption 2 and the first part of Lemma 4.2, the number of affine quadratic
equations which remain after the linear algebra step in Modeling 8 and that we can
expect in Modeling 9 is equal to Ng — Nz = (n +v —1) ((Z/) - 1) = (Ny + V)nep. As
we cannot construct extra degree falls between them, this implies that the linear span of
these equations contains an equation with leading monomial w;cp for any T, #1 = d,
T # {1..d} and any 1 < i < n, + v. Recall from Equation (4.6) the matrix

Lleft _ |:InCT 0 Y:| c IF,(/]\/L><(ncT-"-v—',-nu)7

o I, W
where n, =n—1,Y e F;7 "™ and W e [Fy ™. We also denote by ¢ the row vector of
. . d
length n., whose components are the minor variables and (uy, ..., Upty—1) lef (ut,u_),

where u is of length n, (remaining linear variables) and u_ is of length v (removed
linear variables). Then, there is a vector of constants o € FZCT such that

c'=-Yul —a'. (4.7)
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Since Y is full rank by Assumption 3, the linear system in the u, variables given by
Equation (4.7) can be inverted when n., > n,. Thus, all ("“2+1) quadratic leading

monomials will be found in the span of Modeling 9. O

Case n., < n,. In this situation, we do no longer control the value of the solving degree.
Still, we can argue that it is quite low for a significant range of parameters due to the
high number of equations. This discussion is essentially for the sake of completeness
because we can ensure that n., > n, with the parameters of GeMSS.

We keep the notation from the proof of Proposition 4.1. Recall that the linear
system of Equation (4.7) expresses the cp variables in terms of the remaining n, = n —1
linear variables w1, ...,u,—1 and that it is full rank by Assumption 3. When n., < n,,
there exists a set (’yz)?g of linear variables which can be written in function of these
minor variables. Let us denote the n, — n., remaining ones by (d,);, so that (n“#;“TH)
quadratic monomials ¢;0; are missing in degree 2. Now, Modeling 9 initially contains
> nyne, equations, which is generally much more than

(nu;l) _ (nu—T;cT-i-l) — NNy + %(nu _ nzT _ 1)
the possible number of leading monomials of the form ;7; or 7;6;. In such a case, for
each of these monomials ;, we hope to construct an equation f, = p + £, such that
deg (¢,,) = 1. Let us finally explain why the missing quadratic monomials ¢;0; might be
found in degree 3. For the sake of clarity, we do the reasoning for 67. For 1 <i < e, let

i1 def 701 and let p; 2 def v;02. Then, the S-polynomial

S(f,u«i,l? fm,2) = 622/%,1 - 616}%,2

is a polynomial of degree 2 which is found in degree 3 during the Grobner basis
computation. Finally, we can expect it to contain §2 for at least one index 1 < i < cp if
we treat the /,’s as random linear forms.

4.3 Complexity of Solving MinRank

In this section, we estimate the running time of our attack on GeMSS. As we have just
seen, the total cost comes down to two major steps, first generating Modeling 9 from
Modeling 8 and then solving Modeling 9 via Grobner bases. These steps are analyzed
in Section 4.3.1 and Section 4.3.2 respectively. In Section 4.3.3, we also discuss the
corresponding memory complexity.

Before we begin, note that the content of Section 4.2 also applies to pHFEv- with

rank equal to d’ gy p. We simply have to replace the condition n’ > 2d + 1 by
n' > 2d' + 1 in the discussion at the end of Section 4.2.1. Moreover, this minimal value of
n' already ensures n., > n, for all the GeMSS and pHFEv- parameters (see Table 4.1).
By Proposition 4.1, this means that Modeling 9 will be solved at degree 2. Independently,
some of our estimates will assume that v = o(n).
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4.3.1 Kernel of Macaulay Matrix

The first step of the attack aims at obtaining the linear system £ described in Section
4.2.2. In fact, it can be recovered from the right kernel of the first (affine) Macaulay
matrix for Modeling 8. Note that such a kernel is also computed in standard XL. Here,
we simply use it for different purposes.

A first method to obtain it is to rely on a row echelon form. The corresponding
complexity in F,-operations is

% <(n + ) <2dcj 1) <(n + ) <2d; 1>>w_1> , (4.8)

where 2 < w < 3 is the constant of linear algebra. By setting n, = n — 1 and
Nep = (del) —1, thisisa O (nijnij)

An alternative one is to apply Coppersmith’s Block-Wiedemann algorithm (BW).
Since our assumptions implied a dimension n for the kernel, we hope to find a basis of it
with good probability by running BW roughly n times. Recalling that the weight of a
SM equation is at most (n + v)(d + 1) (see Lemma 3.1), we get

0 (n X (n+0)(d+1) <(n + ) <2d; 1>>2> — O (dn2,nt) . (4.9)

4.3.2 Grobner Bases on Quadratic System

We have already discussed at the beginning of Section 4.3 that GeMSS and pHFEv- can
yield instances of Modeling 9 which are solved in degree 2. The cost of the Grébner
basis step is thus the one of row reducing the affine Macaulay matrix at this degree. The
number of columns is the number of initial monomials which is equal to 1 + n, + (n";l)
and there are more equations than monomials. The total complexity in F,-operations is

then

@ (nCT(n to—1) <1 g+ <n“2+ 1>>W1> = O (ne,n27Y), (4.10)

where 2 < w < 3 is the exponent in the complexity of matrix multiplication. Note that
the first step is expected to be more costly since n, < ne,.

4.3.3 Memory Demand

This section contains details about the memory costs which are naturally associated to
the attack. We restrict ourselves to Modeling 8 since the system given by Modeling 9 is
significantly smaller. In Sections 4.3.3.1 and 4.3.3.2, we study the space complexity of
the main step by describing two ways to store the Macaulay matrix Mac(Q) when used
within the BW algorithm. We choose ¢ = 2 as in concrete parameters, which means
that one element in [F, occupies one bit in memory. Finally, Section 4.3.3.3 provides a
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comparison between these two approaches in the case of GeMSS and it also gives the
space complexity of Strassen’s algorithm.

Note that the analysis presented here is quite different from the one performed in
the other part of [Bae+22]. There, we focus on the memory access costs which can be a
bottleneck when applying BW to very large Macaulay matrices arising from SM-based
attacks. In contrast to [Bar+20b; Beu2la] where they might be an issue, these costs
should not be concerning to attack HFEv-. Indeed, we only deal with the bi-degree (1,1)
Macaulay matrix which is very small in comparison. This can also be seen, to some
extent, from the data given in Table 4.2. Even if these numbers do not tell about memory
management and even if we did not describe state-of-the-art BW implementations (e.g,
[CCNY12]), such small values should give enough confidence in the feasibility of our
attack.

4.3.3.1 Naive Organization

This approach uses the sparsity of the matrix Mac(Q) in the most standard way. Recall
from Lemma 3.1 that every SM equation contains at most (n + v)(d + 1) nonzero
monomials. Thus, one way to store a single row of Mac(Q) is to keep track of the
indexes corresponding to nonzero positions. Hence we must store at most (n + v)(d + 1)
column indexes per row. Since the Macaulay matrix has (n + v) (del) columns and since

we usually drop several rows to get a square matrix, the space complexity is given by
2d+1 2 2d+1 _ 2
() (d+1)(n + v)?log, (( ) (n+ v)) = O (dn2nc, logy(ne,)) - (4.11)

4.3.3.2 Optimized Organization

A very simple way to improve upon the naive approach is to take advantage of the
structure of Macaulay matrix. This was pioneered by Niederhagen [Niel2, §4.5.3] in the
case of generic matrices. We adapt his techniques to the Macaulay matrix Mac(Q) by
noting that we can also use the SM structure.

Remark 4.1. This part of the paper was mostly Javier’s contribution.

Before instantiating the GeMSS case, we describe the approach on an arbitrary
MinRank problem with K matrices in Fy" ", target rank d and unknown vector
x. The core idea is to divide the Macaulay matrix into ( dicl) blocks Sy labelled by
J c {l.n.}, #J = d + 1 such that S; contains the equations Q; ; for 1 < j < n,. We
have seen in Lemma 3.1 that all these equations have the same monomials, so that the
set of columns potentially allocating nonzero entries are the same for each row in the
block. This is the key fact to get a more efficient storage. Our approach then splits the

storage of the matrix into four arrays Vi, Vo, V3, and Vy:

Vi This is a 2-dimensional array of size n, x (Kn.) which stores the coefficients of
the linear forms which are the entries of M € Fy[a]"*". The entry in position
(i,7) in V4 corresponds the coefficient of z(; moa iy+1 10 M [(j—1)/K]+1-
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V5 This stores the indexes of the nonzero values of the Macaulay matrix for each block
Sy, J ={j1,---,Jar1}. As seen in Lemma 3.1, the possibly nonzero coefficients
of Q; s only depend on J since they correspond to the monomials u;cy;,, 1 <
1< K, 1<{<d+1. Thus, we implement V5 as an array of length (d7-l|:1) such
that each coordinate is enumerated by a set J and stores the K (d + 1) potential

nonzero indexes. This requires
Ne [z
K({d+ 1)1 K 4.12
(o)) mtas e (7)) (412

V5 This indicates the columns of V; from which the nonzero coefficients of a given SM
equation should be taken. These column indexes are the same for all the equations
in one block S; since they correspond to the elements of J. This data can be
stored as an array of size ( dr_fl), where each coordinate contains a bit string of
length K(d + 1)logy (Kn.) bits of memory. So far, the only information missing
to be able to read the nonzero coefficients of a given SM equation is the index of

the row of V; from which they must be read. This is stored in Vj.

bits of memory.

V4 Since we usually drop several rows of the initial Macaulay matrix to end up with
a square matrix, we have to keep track of the row of M from which a given SM
equation comes from. Therefore, V stores the indexes of the corresponding row
in M for the K (ZC) equations chosen to construct this square Macaulay matrix.
This requires (") K logy(n,) bits of memory.

Now we explain how the allocations of the vectors Vi, ..., Vs fully store the Macaulay
matrix. Basically, for a given row of the Macaulay matrix, we show how to get the
coordinates and values of the potential nonzero entries by just accessing the memory
allocated in Vi, Vs, V3, and Vj. For the sake of clarity, let us assume that the coordinates
of the vector V, are enumerated by elements of the set

{(a,b):Oéai(d:L_c1> andlébénr}.

Then, for a given row (ag, by) we know:

1. The indexes of the coordinates containing the potential nonzero positions by
reading the bits in Va[ag].

2. The values corresponding to the indexes in V[ag] are obtained by reading in V;[bo]
the coordinates indicated by Vs[ag].

In our attack, we apply this approach to Modeling 8 with K = n+ v, n, = n+v and
ne = 2d + 1. In this case, one notices that the dominant cost is provided by Equation
(4.12), which reads

(2{;1:11) (n+v)(d+ 1)logy ((2dj1) (n+ v)) = O (dnyney logy(ney)) (4.13)

where n, =n—1<n., = (Qd;rl) —1.
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4.3.3.3 Sum-up

Table 4.2 presents the space complexity of the first step of our attack. Keep in mind
that the two approaches of Section 4.3.3.1 and Section 4.3.3.2 were tailored to Block-
Wiedemann (BW) and that the memory demand for this algorithm should not be much
more than the one to fully store the Macaulay matrix. It can even be significantly
lower if rows are generated on-demand, but this would increase the time complexity.
In contrast, the space complexity of Strassen’s algorithm is dominated by the memory

demand to store a square dense matrix of size (2dj1) (n + v), see Column “Strassen”.

Table 4.2: Memory (logs(#bytes)) needed to store the Macaulay matrix Mac(Q) to be
used in BW or Strassen’s algorithm.

Scheme BW Standard BW Optimized Strassen
GeMSS128 38.665 34.553 48.935
BlueGeMSS128 34.332 30.258 41.263
RedGeMSS128 27.645 23.729 29.873
GeMSS192 39.930 35.213 50.166
BlueGeMSS192 35.586 30.917 42.478
RedGeMSS192 28.897 24.410 31.073
GeMSS256 40.836 35.686 51.049
BlueGeMSS256 36.488 31.389 43.353
RedGeMSS256 29.800 24.905 31.940

As we can see in Table 4.2, the Optimized organization requires only a few GigaBytes
of shared memory to execute BW on any of the proposed parameters for GeMSS,
whereas the Standard one requires up to a few TeraBytes. To perform the same step
with Strassen’s algorithm, one would need up to more than two Petabytes. To sum up,
the amount of memory required by BW is small enough to be allocated even in a shared
memory device, especially if one uses the Optimized storing.

4.4 Applications

We now evaluate the effect of the attack on the security of GeMSS and pHFEv-.

Application to the GeMSS scheme. In Table 4.3, we give the time complexity
on the actual GeMSS parameters. We use Equation (4.8) or Equation (4.9) for the
linear algebra step on Modeling 8 (Step 1) and Equation (4.10) for the Grobner basis
computation on Modeling 9 (Step 2). We use w = 2.81 and a conservative constant of
7 for the concrete complexity of Strassen’s algorithm [Vol69], while a constant of 3 for
the concrete complexity of BW [Kal95, Theorem 7]. One can check that for the specific
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parameters proposed by the GeMSS team, the value n’ = 2d + 1 is high enough to ensure
to solve Modeling 9 in degree 2, i.e., ny < neyp.

Table 4.3: Complexity of our attack (logy(#gates)) versus known attacks from [TPD21]
for the GeMSS parameters.

Scheme Minors SM Step 1 Step 2 p

m [TPD21] [TPD21] (Strassen/BW)  (Strassen)
GeMSS128 139 118 76,72 54 21
BlueGeMSS128 119 99 65,65 51 17
RedGeMSS128 86 72 49/53 45 11
GeMSS192 154 120 7875 57 21
BlueGeMSS192 132 101 67/67 53 17
RedGeMSS192 95 75 51/55 48 11
GeMSS256 166 121 79/77 59 21
BlueGeMSS256 141 103 68,69 55 17
RedGeMSS256 101 76 52/57 50 11

The nature of our approach, although in theory similar to the one of [TPD21], allows
us to reduce significantly the complexity of the Support-Minors attack performed by
Tao et al. This is important since this improvement makes it completely infeasible to
repair GeMSS by simply increasing the size of its parameters without turning it into an
impractical scheme.

Our dominant cost is the initial linear algebra step on the SM equations, whereas in
[TPD21] an attacker needs to multiply these equations by linear and/or minor variables
to solve the system in expected degree 3. This explains why we obtain a much smaller
cost than the one presented in the third column “SM [TPD21]”. Another noticeable
difference between [TPD21] and our work is that their estimate is purely conjectural.

Application to pHFEv-. The behaviour of our attack on pHFEv- is presented in
Table 4.4. We keep the same choices and formulae as in GeMSS to compute the
complexities. In [PSV21], recall that the value of p was chosen such that the attack
of [TPD21] based on the Minors modeling is just above the security level. We adopt
the parameters of [WSV21, Table 2] obtained with we = 2.81. On these parameters,
one notices that our attack always succeeds in solving Modeling 9 at degree 2 with
n' =2d +1=2(d+ p)+ 1. As before, for those parameters, the values of d’ are indeed
high enough to guarantee n, < n.,.

The results from Table 4.4 also suggest that applying Projection to HFEv- will not
be sufficient to repair the scheme as we have significantly broken the parameters given
in [OSV21]. To meet the new security levels, the value of p should be increased by a
consequential amount, making the scheme inefficient. For example, to achieve security
level 128 with the former GeMSS128 parameters, one should take p = 14, increasing the
signing time by a factor ¢'4, which is considerable.
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Table 4.4: Complexity of our attack (logy(#gates)) versus known attacks from [TPD21]
for pHFEv-. The pHFEv- parameter set for level x consists of (¢, n,v, D, a,p), where
(q,m,v,D,a) is taken from GeMSSz and p > 0 is the smallest value such that the cost
of the Minors attack of [TPD21] is just above x.

Scheme Minors Step 1 Step 2 ,
p [TPD21; @SV21] (Strassen/BW)  (Strassen)

GeMSS128 0 139 76/72 54 21
BlueGeMSS128 1 128 71/69 53 19
RedGeMSS128 4 128 71/69 53 19
GeMSS192 ) 201 105/95 67 31
BlueGeMSS192 7 201 105/95 67 31
RedGeMSS192 10 205 105/95 67 31
GeMSS256 10 256 134/117 79 41
BlueGeMSS256 11 256 129/113 7 39
RedGeMSS256 14 263 129/113 77 39

4.5 Practical Experiments

We have performed experiments in Magma-2.23-8 to explore the feasibility of the attack
on GeMSS. We only present the results for the first step to generate £ because its cost
dominates the total complexity. In fact, the second step was also much cheaper from a
practical perspective. For these tests, we selected a = v ~ n/10, a small prime ¢ > 2
and d = [logq (D)] > 3. We chose the number of columns n’ to be the smallest integer

such that n., > n,, i.e. (fl{) > n, so that Modeling 9 is solved in degree 2.

Fig. 4.1 summarizes our results. In the graph, the theoretical value is the logarithm
in base two of the time complexity given in Equation (4.8) with n,, = n—1, n., = (Z,) -1,
w = 2.81 and a hidden constant from the Strassen’s algorithm taken equal to 7. The
experimental complexity is measured in terms of clock cycles of the CPU given by
the Magma command ClockCycles(). The matrix reduction was done via the Magma
command GroebnerBasis(Q, 2), which is equivalent to Reduce(Q) in this context?, yet
more efficient.

Our goal here is to discuss how feasible an attack on GeMSS is. For example, the
level T parameter set RedGeMSS128 is (¢, n,v, D,a) = (2,177,15,17,15), so that d = 5.
According to our estimates, its complexity is upper bounded by 2% as shown in Table
4.3. For this value of d, we have been able to run experiments up to n = 160, which is
quite close to the goal of 177. Fig. 4.1 also shows that the estimated complexity is a
good upper bound for the computation’s complexity. Note that the jump in the d = 4
curves corresponds to a change in the value of n’. Indeed, one can solve Modeling 9 at

4The two procedures are equivalent because the system is bilinear, hence quadratic, and Grébner
bases are automatically reduced in Magma.
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Figure 4.1: Experimental vs Theoretical value of the complexity of Step 1.

degree 2 with n’ = 2d + 1 = 9 as long as n < 126, and otherwise one has to consider
n’ > 2d + 1, for instance n’ = 2d + 2 for the rest of the data points in these curves.

A final note is that we also estimate the cost of Block-Wiedemann for this main
step. Therefore, it could be interesting to use the XL implementation of Niederhagen
provided in http://www.polycephaly.org/projects/x1/ in order to compute kernel vectors
of Mac(Q).


http://www.polycephaly.org/projects/xl/

A Polynomial Attack on the Sidon
Cryptosystem

In this chapter, we introduce the Sidon cryptosystem [RLT21] and we give our polynomial
attack on the scheme. This work was published in [BTV21] with Jean-Pierre Tillich and
Javier Verbel.

The proposal of [RLT21] is based on the theory of Sidon spaces, which correspond to
[F,-subspaces of Fy» with a multiplicative property. The core idea of the design already
makes it vulnerable to a MinRank attack over F;» with target rank 1. Even though
such a small rank might already be a sign of weakness, the authors remarked that the
underlying instance had many solutions and that an arbitrary one will not necessarily
lead to an attack.

We show that this particular feature is triggered by the explicit construction of a
Sidon space used to instantiate the scheme. In this case, we highlight solutions over a
subfield and from which we can efficiently recover an equivalent key.
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5.1 The Sidon Cryptosystem

This sections presents the building blocks of the Sidon cryptosystem without giving the
particular instantiation of [RLT21]. Of course, we need to define Sidon spaces.

5.1.1 Sidon Spaces

Sidon spaces were introduced in [BSZ15] while proving a theorem from pure mathematics.
Explicit constructions tailored to network coding were later given in [RRT17].

For ¢ a prime power and integers n and k, let G,(n, k) be the set of all F -subspaces of
Fqn of dimension k. Sidon spaces of dimension k correspond to the elements of G,(n, k)
which satisfy the following condition.

Definition 5.1. A subspace V € G,(n, k) is called a Sidon space if for all non-zero
a,b,c,deV, if ab = cd, then {aF,,bF,} = {cF,, dF,}.

Definition 5.1 is equivalent to the fact that any product of two non-zero elements in V
has unique factorization up to a constant factor in F,. In other words, Sidon spaces are the
multiplicative counterpart of Sidon sets {ai,as,...} = N from additive number theory,
for which all sums a; + a;, i < j, are distinct. Even before discussing constructions, a
rather natural question is whether there exist Sidon spaces of arbitrary dimension. A first
upper bound on k is given by [BSZ15, Theorem 18] and [RRT17, Proposition 3], where
it is proven that for a Sidon space V € G,(n, k), the space V? def spang, {uv : u,v € V}is
of dimension dimp, (V?) = 2k. Since V? < [Fgn, this implies that k£ < n/2. In particular,
Sidon spaces for which this bound is an equality are referred to as min-span.

A crucial property for the applications of [RRT17] was the existence of an efficient
factoring algorithm. Given a Sidon space V and a product m = ab between non-
zero elements a, b € V, this refers to any efficient method which recovers a pair

(Aa, A7), X e .

5.1.2 Description of the Scheme

The proposal of [RLT21] calls for Sidon spaces which meet the same constraint. Indeed,
it is a trapdoor-based scheme whose public key is an arbitrary description of such a
space V while the private key is a factoring algorithm. More precisely, let us now present
the standard PKE algorithms.

Keygen(1*):
e Pick V € G,4(n, k) a random Sidon space with an efficient factoring algorithm A.
Pick v %/ (v1,...,v) a random basis of V and B aef (81, ., Bn) a random basis

of the extension field Fyn.
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e Represent the matrix M (v) “WTye F’;ﬁk over the basis B by

M) =vTv Y Y gm0, (5.1)
=1

where M® ¢ FZX’“ forl <i<n.

e Output sk def (B, A,v) as secret key and pk def (M(l), . ,M(”)) as public key.

The message space corresponds to the equivalence class of pairs of elements {a, b} in the
Sidon space V, two pairs {a,b} and {c,d} being equivalent if their product ab = cd is

. . k
the same. If one views an element a of V as a vector a € IE"(;, i.e., a = Y, ;a;v;, then

the equivalence class associated to {a, b} corresponds to all pairs {c,d} such that either
a'b=c"dora'b=d e The reason why the message space is defined in this way will
become a bit more apparent from the decryption procedure described below.

Encrypt(pk = (M(i))?:l, {a,b}):

e The ciphertext associated to (the equivalence class of) {a, b} is
e = (e)ie @ (aMOBT)L, e T,

Note that this definition is compatible with the way the plaintext is defined: the
ciphertext does not depend on the particular pair {a,b} chosen in the equivalence
class of the message. An interesting property of the Sidon cryptosystem is that it
is homomorphic under the addition on half of the plaintext. That is, for two given
plaintexts {a1, b} and {asz, b}, we have

Enc(pk, {a1, b}) + Enc(pk, {a2,b}) = Enc(pk, {a1 + a2,b}).

To decrypt, Bob starts by interpreting the ciphertext ¢ as a product of two elements in
VY from the knowledge of 8. He can then recover its factors by applying Algorithm A.

Decrypt(sk = (8, A,v), c):
e Compute

i Bici = Zn: Bi (aM(i)bT) =aM(v)b'
i—1

i=1

k k
= aVTVbT = <Z aiuz) (Z bzljl> =abeV.

i=1 i=1
e Use Algorithm A on ab to recover {a,b} up to a multiplicative factor in Fy.

e Finally, retrieve {a, b} (up to a multiplicative factor) by representing {a, b} over
the basis v. Such an {a, b} defines the message in a unique way.
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5.1.3 MinRank Problem

Our mere description of Keygen already gives a rather obvious MinRank instance.

Problem 5.1. Let M,..., M, € IFI;XI“ denote the public key of the Sidon cryptosystem.
Then, the vector B = (B1,...,Bn) from the secret key is a solution over Fyn to the
homogeneous MinRank problem with target rank 1 defined by the M ;’s for 1 < i < n.

This readily brings us to the following questions.

(1) Is Problem 5.1 difficult ?
(2) Can we recover an equivalent key from any solution to it ?

In HFE, MinRank was the bootleneck. On the contrary, retrieving a secret key from
an arbitrary solution could be performed in polynomial time. The situation here will
be quite different. For the first point, this already stems from the fact that we look for
rank 1 matrices, which is unusual. For the second point, the variety of Problem 5.1 may
actually depend a lot on the choice of a Sidon space. It turns out that the one adopted
in [RLT21] yields a very large solution set.

5.2 Weakness of the Scheme

In this section, we present their construction and we study Problem 5.1 in this particular
case. Our attack based on this analysis will be described in Sections 5.3 and 5.4.

5.2.1 Choice of the Sidon Space

The scheme considers a min-span Sidon space, i.e., n = 2k, which is defined in terms

the subfield F» < Fgn. It is chosen according to the following Construction 1. There,

we denote by W, = {ut:ue For} and Wy = F e \Wy-1.

Construction 1 (Construction 15, [RRT17]). For q > 3 a prime power and k € N*,
let n = 2k and let v € Fyn be a root of an irreducible polynomial z2 + bx + ¢ over F gk
such that c € m L. Then, the subspace V = {u+uiy:ue ]Fqk} < Fyn is a Sidon space
of dimension k.

What justifies its use in [RLT21] is an efficient factoring procedure. The following
Algorithm 2 relies on the knowledge of an element ~ such that (1,7) is a basis of Fyn

1Such a polynomial is known to exist by [RRT17, Corollary 14].
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over F x. For z € Fyn, the notation [1](z) and [y](x) stand for the components of z in
this basis.

Algorithm 2: Factoring algorithm for V as in Construction 1.

Input: A product m = 7o, where m; = u + ufy and mo = v + viy € V, the
element « € F7, such that 72 + by + ¢ = 0 from Construction 1.

Output: {mF,, mF,}.

Decompose 7 in the basis (1,7):

qo < [1](7T) ; /* qo :U'U—C(’LL’U)Q */
a1 < [v](m) /* @ = uwv? + ulv — b(uv)? */
A‘_Tfl(QO); /* where T:x—x—cx?, A=uv */
B« q +bA7; /* B =uv?+ulv */

Compute the roots «, 8 of A + Bx + A%22 namely (a, ) = (=1/u?™t, —1/v971)
From a and f3, recover {uF,, vIF,} uniquely and therefore {mFy, molF,}.

Finally, since such a primitive element is actually sufficient to devise the algorithm,
one can assume a secret key of the form (3, ~,v) instead of (8, 4,v).

From now on, let V be a min-span Sidon space with random basis v as in Construction
1 as well as the matrices M) € F’;Xk associated to a random basis 8. In the following,
we study Problem 5.1 with this specific instantiation. For that purpose, we consider the
matrix code of parameters [k?, n]s» endowed with the rank metric defined by

def / ng( (n)
Conat <M o M >Fqn. (5.2)

5.2.2 General Comments

The solutions to Problem 5.1 correspond to all codewords of weight 1 in Cp,.t. Moreover,
as the generators M (@) are symmetric, all the elements in this code are symmetric. Thus,
rank 1 matrices in Cpas will be of the form 'y € }F];nXk for  collinear with y.

In this section, we will outline general properties of these codewords which are not
specific to Construction 1 and which even do not depend on the notion of Sidon space.

T

Linearity over F,». Since we are primarily interested in v'v € Cyat, we may want

to focus on

2, Y {a: ek caTwe cmat} . (5.3)

This set is clearly non-trivial as it contains v. Also, there is still one degree of freedom
coming from the Fn-linearity of Ciyat. For instance, since 11 # 0 in v, the set

Z]qus def {:L' € ZFqn 1T = s}

is also non-trivial for s € F;"n.
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Stability under Frobenius. As already observed on Problem 4.1 in Chapter 4 (see
Fact 1), applying the Frobenius morphism on a given solution provides another solution
to the same instance. More interesting to us is that the subset Z]Fqn is also stable under
this operation.

Notation 1. For a matrix M over Fyn and p € N, we use the same notation as for
vectors by considering M) the matriz obtained by applying the Frobenius map x — x4
p times on each entry.

Lemma 5.1. Let Cpqp be the code defined in Equation (5.2) and let qun the set defined
in Equation (5.3). If w € Zpn, then wl?l e Zpn for any p € N. More generally, if
M € Cypat, then MWl e, ., for any p e N.

Proof. Let w e ]F];n such that w € Zp,_,. By definition, there exists n = (11,...,m,) € Fyn
such that

M(w) = Y nMY.
(=1

Writing this for the entry in row ¢ and column j for 1 < 4,5 < k gives

Then, by iterating the Frobenius map p times on this equation for p € N and by noting
that MY ¢ F’;Xk, one obtains

This implies that the matrix
M(wl?l) = Z m[P]M(f)
(=1

belongs to Cpat for any p € N. The proof of the second statement is similar. O

So far, we have not used the fact that V is a Sidon space. More generally, all these
results apply to a random subspace W < [Fy» of dimension %k generated by w. In this
case, the M ()’s are still obtained from the decomposition of M (w) in an arbitrary basis
of Fgn. Also, we keep the same definition for Cpa, ZFqn and ZIFqn,s- For such a space,
the only solutions to Problem 5.1 that we observe in practice are given by Lemma 5.1.

Experimental observation 1. Let W be a random element in Gy(n, k) together with
a basis w and let s € Fy.. One has

#Z]Fqn s = 1.

Moreover, if s € IF;‘, then there exists u € F’;n with w1 = s such that

ZF s = {u, u[l], e u[”_l]} .
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5.2.3 Rank-One Matrices in a Subfield Subcode

The authors of the scheme had already noticed that the solution set to Problem 5.1 was
unexpectedly large. However, they did not examine it in further details.

In the case of Construction 1, we show that the variety cannot be boiled down to
the features exhibited in Section 5.2.2. This is because there exist specific solutions over
the subfield Fx, i.e., weight 1 codewords in the F«-linear code

def kxk
Dimat = Crmat qulj .

Remark 5.1. One can view Dy, as a subfield subcode.

Let us start with the content of our experiments.

Experimental observation 2. Let V € Gy(n,k) a random Sidon space as in
Construction 1. For s € F;‘k, we observed that

#Zr 0 = k(g" = 1).

Moreover, if t € FZ’“ t ¢ (s)r,, we observed that

#{we Ze, o im =t =k

To go beyond this observation, we will try to grasp some elements in Zﬁqu. For

1 <i <k, let u; € Fyr such that
vi = u; + uly. (5.4)
Note that u %</ (u1,...,ug) is necessarily a basis of F . over F,. Finally, let M (u) =

u'ue F];,fk

Proposition 5.1. Let V € G,(n, k) a random Sidon space as in Construction 1 with
basis v and let u the basis of F . over Fy associated to v by Equation (5.4). Let Cya

the Fyn-linear code generated by the matrices in pk and let Dyat = Car N F’;,fk Then,
the matriz M (u) belongs to Dpyas. More generally, the same is true for M (ulll) for any
integer j € N.

Proof. We only do the proof for M(u) = M (ul”) since the rest easily follows from
Lemma 5.1. By expressing the entries of M (v) € Ff}fk in the basis (1,7), there exists a

unique pair of matrices (A, B) € Fl;kxk X F’;?k such that M (v) = A +vyB. As we also
have M (v) = > | BiM () where M) € ]F']; *k it is in fact explicitly given by
n .
A=>5MY
i=1

B=imMW
=1
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where ; def di + i, 0i, i € e is the decomposition of 3; in (1,7) for 1 <4 < n. This
definition shows that both A and B belong to Dpyat. Also, recall from Construction
1 that the primitive element « is a root of the polynomial 22 4 bz + ¢ over Fgx. For
1 < 4,7 <k, one thus obtains

vivy = (u; + ufy)(u; +uly)
= (uguj — c(ugug)?) +y(uwud + ufu; — blujug)?). (5.6)
By (5.6), another expression for A is then A = M (u) —cM (ul). By (5.5), this matrix
also belongs to Dpat. More generally, using Lemma 5.1, the same is true for the matrices
A = Ml — v ()
AR = M (ul) — o M ()

k—1 k—1

A= = A=y — o M (ulF]) = M) — 8 M (w).

Then, by performing linear combinations over F ., one gets

k—1 ) 4 a k
A+ Yttt Al (T M (u) = (1 - o ) M (u).
i=1

a1 —
Note finally that ¢ ¢=T # 1 since ¢ € Wy_; in the construction. The matrix M (u) is

thus a linear combination between the All’s over F,x, which proves M (u) € Dpat- O

In fact, it is easy to find other rank 1 matrices in Dyt First, Equation (5.6) shows
that the matrix B € F’;Xk defined in Equation (5.5) satisfies B; ; = uiu? +uduj—b(uui)?
for 1 <4,j < k, hence

B — uTulll 4 (uu])Tu iy (u[u)Tum

T
= uTull + <u[1]> u — bM (ull). (5.7)
Second, this matrix also belongs to D,,qt by (5.5). Now, let A € ]Fqk and consider

T
M (u + Mull) = (u + )\u[l]) (u + )\u[l]>
T T
=ulu+ N\ (u[l]) ulll 4+ )\ {uTu[l] + (um) u}
= M(u) + X2M ) + AB + oM (ul')  (by (5.7)).

The last equality implies that the matrix M (u + Aull!) belongs to Dya¢. Since it is of
rank 1, we have just proven the following generalization of Proposition 5.1.
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T

Proposition 5.2. Let Zquk = {az € F’;k x'xE Dmat} and let w the basis of F . over

F, associated to v by Equation (5.4). One has
{)\u[j] + pal ™ (A ) € F2 and 0 < j < b — 1} c Zr,.
Assumption 4. We assume that the inclusion from Proposition 5.2 is an equality.

Assumption 4 implies that we have been able to characterize all the elements in
Zquk- It is in particular supported by our Experimental observation 2. Based on this
assumption, we will now describe our (equivalent) key-recovery attack which consists in
1. finding enough vectors in Z]Fqk (Section 5.3) 2. derive an equivalent key from these
elements (Section 5.4).

5.3 MinRank over Fqk

In this section, our goal is to determine vectors in the set

Zr, = {w € F’;k cx'xe Dmat}.

gk

Rather than relying on the generic techniques recalled in [RLT21, §4], we found that
it was more favorable to consider a dedicated algebraic modeling largely inspired by
[DT18, §5.4]. This system is presented in Section 5.3.1. In Section 5.3.2, we show that
it can be solved efficiently.

5.3.1 Parity-Check Modeling

The approach of [DT18, §5.4] simply exploits a parity-check matrix of Dy, when viewed
as a linear code of length k2. More explicitly, we use the linear isomorphism

. mkxk k2
vec : Fqk — Fqk
M—m

such that m;_1),4; = M, ; for 1 <i,j < k and we define

vec(Dimat ) = {vec(M) : M € Dyat} -

Let also
x% r1x9 - T1Tk
2
de ToX1 Xy - X2Tk
XY gTe= |77 72 77 (5.8)
2
TpXl T2 + - Ty

the matrix in the unknowns x; used to model solutions @ € Zy , . For an arbitrary parity-
q

2 2
check matrix H € IF((;Z 2k)xk , we consider the system containing k% — 2k quadratic
equations given by

Hvec(X)T = 0. (5.9)
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Lemma 5.2. The sequence of Equation (5.9) contains at most k* — 2k — (g) linearly
independent quadratic polynomials over F .

Proof. Let (g1,...,€;2) be the canonical basis of F’;i. Due to the symmetry of the

M® ’s, the vector

def
Oij = EG-Dk+j — E(j-1)k+i

belongs to the dual code vec(Dyat)* for any 1 < i < j < k. This means that there exists
a parity-check matrix of the form

ydef | U
H = [HJ, (5.10)

MY xk? k2 —2k— (%)) xk?
gi)x are the o; ;’s and where U e Fék (2))x
since the equations coming from H ,vec(X )T = ( all give the zero polynomial, the useful

part of the system reduces to

where the rows of H, € F . Finally,

Uvec(X)" = 0.

This set of equations is of cardinality k? — 2k — (’2“) equations. O

Modeling 10 (Parity-check modeling over F ). Let X be the matriz of unknowns

U
H,
for the code vec(Dqp as defined in Equation (5.10), where Dimat = Cat O Fl;,ﬁk We
consider the system F over F . whose polynomials are the entries of the column vector
Uvec(X)T.

defined in Equation (5.8) and let H' = [ } € FfllzL%)sz be a parity-check matriz

It is readily verified that the solutions to Modeling 10 are in one-to-one correspondence
with the elements of Zr , . Experimentally, these solutions were also all of the form
described in Proposition 5.2.

Fixing 2 variables. If one wants to find an element in Zquk in practice, two unknowns
can be fixed in Modeling 10 to reduce the number of solutions (the dimension of the
ideal (F) is at least 2). The corresponding variety over F . has size > k still by using
Proposition 5.2, and Assumption 4 states that it is an equality (the system is a fortiori
zero-dimensional). Since fixing more variables would result in a system with no solutions
with high probability, we focus on this specialized version.

Modeling 11 (Recovering an element in leqk). Let (s,t) € sz such that t ¢ {s)r,.
We consider the sequence Fgpee which is obtained by fixzing xp—1 = s and x, = t in
Modeling 10.
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5.3.2 Solving the Specialized System

On Fgpec, we adopt the standard approach for zero-dimensional systems that was recalled
in Section 2.2.3. First, note that the cost of FGLM can be considered polynomial in the
parameters since we expect k distinct solutions by Proposition 5.2 and Assumption 4.
Thus, we focus on the initial Grobner basis step for which we will also prove a polynomial
complexity. More precisely, we will show that — under the following Assumption 5 and
Assumption 6 — the system Fypec can always be solved in degree 3 regardless of the value
of k.

Coming back to Modeling 10, a first remark is that we can permute the coordinates
of the row-vector vec(X) and the columns of U accordingly so that the (kgl) leftmost
entries of vec(X) correspond to all distinct monomials z;x; for 1 <14 < j < k. This is
equivalent to choosing a grevlex ordering on the variables to label the columns of U.
Furthermore, by adding rows of H, to rows of U in H, we can assume that the last

(’;) columns of the matrix U are identically zero. Finally, we will rely on

Assumption 5. We assume that the submatriz V' def U* 1 (k;—l)}
PR Gk 2
1s full-rank.

On that hypothesis, we can construct (kgl) — 1 equations in the span of Modeling

10 with distinct leading monomials of the form z;x;, 1 <i < j < k — 2. Moreover, as
we fix ;1 and x}, to obtain Fpec, these monomials remain the same in Modeling 11.
Let us denote by Ggpec the corresponding set of quadratic polynomials whose leading
terms are all different. Since the total number of degree 2 monomials in z1,..., T _o is
equal to (kgl), this means that all of them appear except one.

The rest of the discussion will prove that the Grobner basis is either already computed
or close to be computed if the set Ggpec is known. We make the further assumption that

Assumption 6. The algebraic system Fgpee has evactly k distinct solutions which do
not belong to a common hyperplane of F];,:Q.

This hypothesis was investigated through experiments and it is natural when
considering Proposition 5.2 together with Observation 2 (which suggests that the inclusion
of Proposition 5.2 is an equality). Indeed, the shape of the variety we get from these
results suggests that Assumption 6 should typically hold.

Under these assumptions, let us finally explain why the Grébner basis computation
terminates in degree < 3. There are two cases to consider.
Case 1. The missing leading monomial in Ggpec is of the form x;z; for distinct indexes 7 #
j. Given arbitrary polynomials g, h € Gspec, Buchberger’s second criterion (Proposition
3.1) shows that the only case when S(g,h) were not reduced to 0 would be when the
leading monomials of g and h have a common factor. In this situation, this S-polynomial
is of degree at most 3 and since
(i) all cubic monomials appear as multiples of leading monomials in Ggpec,
(ii) all quadratic monomials appear as leading monomials except z;x;,
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it will reduce to a polynomial of the form f = px;z; + L(x) for some scalar p and
L € F[x] of degree 1. It is impossible that y = 0 and L # 0 since this would imply
that all k solutions to Fypee lie in the affine hyperplane L(x) = 0, which contradicts
Assumption 6. If p # 0, then it is clear by performing the same reasoning that all
S-polynomials S(f, gi), gi € Gspec Would reduce to 0 (since they would this time reduce
to affine forms which are necessarily 0 by the previous reasoning). By Theorem 2.1, we
are thus left with a Grobner basis.

Case 2. The missing leading monomial is of the form z?. The difference with the
previous case is that all degree 3 monomials appear as multiples of leading monomials
in Gspec except z3. In such a case, an S-polynomial S(g, h) will reduce to a polynomial
of the form f = Az + px? + L(x), where L is again an affine form and A, p € For. It
is readily seen that we cannot have A = y = 0 without that L = 0 itself (this would
contradict Assumption 6 in the same way as before). From this, it is readily seen that all
S-polynomials S(f, i), gi € Gspec reduce to 0 and that we have a Grébner basis again.

In both situations, this means that one needs to go up to degree 3 in the worst case
to compute the Grobner basis for Fgpec. The final complexity is then dominated by
that of performing Gaussian elimination at degree 3 on a matrix of size A x B with

A<B def (k_2+3), namely
k+1\“
o((57))

3
field operations. The cost of solving the system is thus in O (kS‘”), which is clearly
polynomial in the dimension of the Sidon space.

5.4 Finding an Equivalent Key

Retrieving elements in ZFqk can thus be performed in an efficient way. All that remains
is to explain how this allows us to recover an equivalent key. Note that this second issue
was not addressed in [RLT21]. There, they only evaluated the complexity of obtaining
arbitrary solutions to Problem 5.1.

In our context, such equivalent keys will correspond to particular Sidon spaces.

Fact 2. A Sidon space V' € Gy(n, k) with basis v/ € FX, such that the matriz M (V') is
a solution to Problem 5.1 can be used as an equivalent key provided one has access to an
efficient factoring algorithm A’.

Proof. Assume that v’ is a basis of a Sidon space V' such that the matrix M (V') is a
linear combination between the M()’s. From the knowledge of v/, one can construct
M (v') and then solve the linear system in the 5/’s given by M(v') = 3", BiM®,
Finally, the quantity Y ; Bic; is a product of elements in V' which can be factored using
Algorithm A’. O

We now show that we can efficiently find a Sidon space V' obtained by Construction
1 that meets the criteria of Fact 2 from a set of £ + 1 elements ¢1,... 1511 in Zquk by
applying the following procedure:
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1. Using these vectors, we recover some t def (t1,-+- ,tg) = Mulil) X e For, 0<J <
k —1, where w = (uq,--- ,us) is defined by Equation (5.4) from the secret basis v
of the genuine Sidon space V.

2. From the knowledge of t, we deduce the aforementioned Sidon space as
d
V' lef <t1 + ’)/ttf, st + ’y/tz>Fq ,

where 7/ € Fgn is generated like v in Keygen, namely as a root of an irreducible
polynomial 22 + ex + f over Fx such that f € W;_1. Note that this ~" is sufficient
to devise Algorithm 2 to factor in V'.

These two steps are described in more depth in Sections 5.4.1 and 5.4.2 below.

5.4.1 Targeting the \ul’l Vector

Assuming that the inclusion in Proposition 5.2 is an equality, one obtains that the set
Zquk is equal to the union of vector spaces

k
Z]Fqk = L_Jl W;, where W; def <u[i*1],u[i] >Fqk'

1=

Let us notice that the components W; satisfy the peculiar property that

W Wl = <um> (5.11)

)
Fqk

where for a set S of vectors, SI! stands for the set {z[! : € S}.

In other words, Equation (5.11) states that we can recover one of the ull’s up to
multiplication by an element of F « if we are able to produce one of those W;’s. This
can be achieved thanks to the pigeonhole principle: two among the solutions ¢; for
1 <i<k+1will fall into a same vector space W;,. These considerations lead to the
following Algorithm 3 for recovering one of those ulil’s (up to a multiplicative constant):

Algorithm 3: Extracting the relevant vector.

Input: A set of k 4+ 1 non-collinear vectors t1,...,tt 1 in quk.
Output: A set S containing at least one element collinear with one of the ul’s.
for i =1 tok do
for j=itok+1do
V «— <ti, tj>]Fqk
if dimV ~ V11 =1 then
‘ S—Su{z}; /* where x generates V n VI x/
end
end

end
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This algorithm is deterministic of complexity O(k?). Note that we do not necessarily
need k£ + 1 non-collinear vectors #1,...,t;41 in Zp , . Indeed, @(\/%) are sufficient by
using the birthday paradox if we content ourselves with a probabilistic version of success
probability €2(1).

5.4.2 Deducing V'

How a Sidon space V' with the right properties can be obtained from t collinear with
some ul’l is explained by the following proposition.

Proposition 5.3. Let 7' € Fgn be a root of an irreducible polynomial 2 +ex + f over
Fyx such that f € Wy_1. Then, the Fy-linear space V' generated by the ordered basis

vy +~'t1 is a Sidon space such that M (V') belongs to the linear span of the M ;’s.

Proof. Without loss of generality, let us assume that ¢ = Au for some A € F . We then
have

M) = M(t + ~'¢1))
— tTt 4+ (t[”)T $10  /gTel (t[”)T t

T T
= NuTu+ )\2(17'2 (u[1]> ull + Aty {uTu[l] + (u[1]> u} (using the definition of t)
T
= MM (u) + A9y M (ul) + ATy {(u +uT(w + ully —uTu - (u[l]) u[l]}

— N2M (w) + N2 M (ul) + A1y {M(u +ulll) - M(u) - M(u[ll)}

W . g "
= <M M >Fqn (by Proposition 5.2).

More concretely, we will thus

1. find an element +' satisfying the same constraints as v, i.e., 7/ is a root of an
irreducible polynomial 22 4+ ex + f over F,x such that fe Wy_q;

2. obtain V' as the F,-vector space generated by

d
VO o1t o1,

The overall cost boils down to finding 7' € Fyn in Step 1., which can be performed
in the same way as in Keygen. There, [RLT21] propose a random procedure whose
success probability can be estimated using [RRT17, Lemma 13]. Heuristically, it works
in constant expected time.
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Rank Support Learning Problem

This chapter presents two attacks on the Rank Support Learning problem.

The first one is an algebraic approach which I published with Magali Bardet [BB21].
The main application at that time was the Durandal signature scheme. On a large zone
of parameters relevant to this proposal, our work ourperforms the RD algorithms of
[Bar+20b]. Interestingly, our proof technique also helped us to gain understanding on
these previous methods. This will be a key ingredient in Chapter 7 where we describe
[Bar+23].

The second one is a combinatorial approach due to Philippe Gaborit included in our
joint work [BBBG23]. Even if it is slightly less efficient than [Bar+20b; BB21] when the
number of syndromes is reduced, it allows to widen the parameter range for which a
polynomial time algorithm exists on Problem 3.7.
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6.1 Preliminaries

Section 6.1.1 details the current designs which rely on the hardness of RSL. The Durandal
signature scheme [Ara+19b] was essentially the unique non-broken one when we published
[BB21]. Since then, encryption mechanisms also based on Problem 3.7 have emerged
[Agu+22; BBBG23; Ara+22|. In Section 6.1.2, we follow [GHPT17] by rewriting the
problem in terms of low weight codeword search in a particular Fg-linear code. This
content will be used in both [BB21] and [BBBG23].

91
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6.1.1 Cryptographic Applications

Let us recall that the Rank Support Learning problem was introduced for cryptographic
purposes in order to build an IBE [GHPT17]. Even if this proposal was later shown
to be insecure [DT18], this already illustrates the versatility of the assumption. In
particular, RSL also allowed to devise a signature scheme [Ara+19b], which is known to
be a challenging task in code-based cryptography.

6.1.1.1 Durandal Signature Scheme

We will first explain how Problem 3.7 appears within Durandal. We had briefly presented
the scheme in Section 3.3.5.1. In this context, RSL can be viewed as the analogue of the
Short Integer Solution (SIS) problem [Ajt96] used in Lyubashevsky’s signature [Lyu09].

Durandal is based on an ideal structure. In [Ara+19b], the secret key sk consists
of two matrices (E,E’) € Fgfnzk X Ff}?% whose entries lie in a subspace V < Fym of
small dimension r. The public key pk contains a random ideal double circulant matrix

H e FZ°" as well as T =l HE] € F}x' and T3 = HE! ¢ F’;nle. Clearly, the
pair (H, T % [gj) is an instance of Problem 3.7 with parameters (m, 2k, k,r) and
¢ + (' syndromes. However, a more relevant one to cryptanalysis is (H,T"), where
T € Fgﬁgl)kx,ﬂ is publicly obtained from T by taking the ideal shifts of all the rows. In
this way, key-recovery reduces to solving a structured instance with N = k(¢ + ¢).

In addition to RSL, the scheme relies on the hardness of the ad hoc PSSIT problem
[Ara+19b, Problem 5]. A recent attack by Aragon et al. [ADG23] has drastically
reduced the security of this second assumption and it contributed to break all existing
parameters. Thus, deriving new ones will require to take both [BB21] and [ADG23]
into account. However, since the cryptanalysis of PSSIT is less mature and since the
progress of [ADG23] was spectacular, one can expect that PSSIT attacks will be the
limiting ones.

6.1.1.2 PKE/KEMs with Multiple Syndromes

More recently, [Agu+22] pioneered a new approach to improve the efficiency of RD-based
cryptosystems. It was originally applied to ROLLO. A bit later, [BBBG23] and [Ara+22]
revisited the same idea on RQC and Loidreau’s [Loil7] respectively. As a result, all
these works obtained unstructured rank-based schemes with more competitive sizes than
those of similar Hamming-based or lattice-based proposals [Alb+20; Alk+20].

What matters here is that this leads to consider RSL in the security reduction. Indeed,
the ciphertext now contains N syndromes (s;)1<j<n associated to errors with the same
support V of dimension r. Roughly speaking, the rationale is that the underlying decoder
performs better when receiving several correlated syndromes instead of just one.

e In the case of an LDPC code with row weight d, the DFR decreases. Indeed, the
standard one is close to ¢"¢~ (*=¥)=1 while [Agu+22] devise an algorithm for multiple
syndromes with DFR approximately equal to g (k)N [Agu+22, Proposition 2.
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e In [Ara+22], the higher number of syndromes allows to improve the decoding
capability. This stems from the fact that a horizontally interleaved Gabidulin code
of order N can decode up to [NL_H(TL — k)| errors if one accepts a non-zero DFR
[SJB11, Equations (43),(44)].

As already mentioned in Section 3.3.5.2, the objective was to choose a higher rank r to

limit the impact of algebraic attacks. What is also interesting is that the value of N is

much smaller than in Durandal. In [Agu+22], the border condition rd = n — k + o(1)

is replaced by (n — k)N = rd + o(1) (see the discussion after [Agu+22, Lemma 1]). In

[Ara+22], the DFR formula inherited from [SJB11, Equation (44)] applies when the
N

input weight is > N and, a fortiori, when N < [z75(n — k).

6.1.2 Rephrasing the Problem

Rather than elaborating on [GHPT17, §4.2] and [DT18] which are tailored to a large
number of errors, we will describe the content of [GHPT17] that is used in our work.
Note that RSL with NV = 1 is simply Problem 3.6. In this situation, it was relevant
to consider the Fym-linear code Cy = C ®{y)r,m = C ®<{€)r . To tackle the general
case, the issue with this method is that {ej,... e N>]qu will quickly cover the full space
Fgm. Thus, the authors of [GHPT17] attacked another code containing all these errors

but which is simply Fy-linear. If 7 < Fgn k stands for the [F,-linear space generated by
the syndromes, a public description of this code is given by

Notation 2.

Cang ™ {w e T aHT e T} (6.1)

The crux is that it contains both the code C and

£ ler,...en)s, - (6.2)

This last observation shows that C,.s typically contains about ¢V codewords of
weight < r. The approach of [GHPT17] consisted in finding one of such vectors. If the
weight is exactly r, its support will reveal V. If the weight is smaller, it is a subspace
but which yields enough information.

Since one can also view C,yug as a matrix code of parameters [m - n, < km + N4, the
above task can be rephrased as the one of solving a homogeneous MinRank problem with
km + N matrices in Fj"*" and target rank < r. Even though the code is not Fym-linear,
this instance has a lot of structure. Indeed, Cyayg still admits a compact description over
the extension field by Equation (6.1).

6.2 Restricting the Number of Solutions

The MinRank and RD algorithms that we have presented so far aimed at solving instances
with essentially one solution. Since RSL can be seen as an in-between, we hope to be
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able to use similar techniques. However, even if there is only one vector space V, the
number of weight < r codewords in Cy,g is exponential in N.

Thus, we will try to attack a related problem with roughly one solution. Of course,
it should still allow to recover the initial support. Since what really matters is in fact
a subspace, we may look for vectors of weight w strictly smaller than r. To reduce
the number of such codewords even further, we may also work in a shortened code in
the sense of Equation (2). Indeed, for such a code S;(Cayg), weight < r vectors should
belong to S;(£). We study the weight distribution of this latter code in Proposition 6.1.

Proposition 6.1. Let £ be the code defined by Equation (6.2) viewed as a matriz code,

let I < {1.n}, #I = a and let S;(€) < anx(nfa) be the shortening at these positions
(by considering columns with indexes in {1.n}\I). We assume that its dimension is
N—ar. Forw <, let Xs,(g)w be the random variable counting the number of codewords
of weight w in S;(E), where the randomness comes from the choice of a support V of
dimension r and of the errors e; with this support. The expectation and the variance of
Xs;(6)w are respectively given by

Sw,r,n—a,q
E[Xs, () w] = N

1 1 \?
Var[Xsl(g)’w] = Sw,r,n—a,q x (q - 1) x <qT‘TL—N - <qrn—N> > ’

def

where Sy rn—aq = #{M € IF‘TX(n 2 rk(M) = w}. When q is a constant, this gives

E[Xs,(e)] = O(gWmmatrmw)mrmiNy — g(gN—or—(rmw)nma=w))
Var[XSI(g),w] = @(qN—ar+1—(r—w)(n—a—w)) — @(qN—W—(T—w)(n—a—w)).

Proof. For B € Fy a fixed basis of Fym over F, and Sy € Fy"*" a full-rank matrix
such that BSy is a basis of V, let us remark that each element e € Fyn® in S7(€) can
be written as e = BSyC for some C € ng(n_a). We consider the matrix code D of
parameters [r - (n —a), N — ar], generated by these C' matrices. Since Xs,(g)w = XD,u

for any w < r, the rest of the proof will focus on this latter code. For C € Fy x(n— ), let
us denote by lcep the random variable equal to 1 if C € D and 0 otherwise, so that
Xpw= Zwt(C’):w lcep. By linearity of expectation, one obtains

E[Xpw]= > E[lceel= > Pr[CeD].
wt(C)=w wt(C)=w

The probability that C' € D is the one to satisfy r(n a)— (N —ar) = rn— N independent
parity-check equations, hence Pr[C € D] = qm —=+. The result follows by summing over
all the codewords of weight w. For the variance, we start by computing the quantity

E[X%,w] = Z 2 E[1016D102€D]-

wit(C1)=w wt(C2)=w
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We have E[lc,epleyep| = Pr[Cy € D,C2 € D] by definition. The code D being F -
linear, the events C'y € D and C5 € D are not independent when Cs € <Cl>]}<‘q. In this
case, one has

1
qran :

PI‘[Cl € D,CQ eD | CQ [S <Cl>Fq] = PI‘[Cl S D] =

Therefore

1 1 \?
E[X%:w] = Z Z qran + Z Z <qrn’N’>
wt(Cl):w Cz€<C1>]Fq wt(C1)=w C2¢<CI>FQ
wt(Ca)=w wt(Ca)=w

1 1)
= Sw,r,n—a,q(q - 1)W + Sw,r,n—a,q (Sw,’r,n—a,q - (q - 1)) <q7‘n—N>

1 1 \?
= E[XD,w]2 +Sw,r7n—a,q x (q - 1) x <qrnN - <qrnN> ) :

O

In other words, our method is a reduction to a smaller RSL instance. Recall that our
goal is to attack one with a number of solutions which is essentially constant. This can
be done by choosing parameters according to Proposition 6.1 or more simply to Equation
(3.4) applied to S;(€) since we mostly care about its minimum distance. More precisely,
for a fixed weight w € {1..r}, we will pick the code corresponding to the maximal value
of a = 0 such that

N—-ar>r—-—w)n—a—w)<aw<N—(r—w)(n—uw).

To consider more cases in the optimization, we may also select slightly less syndromes

and attack codes of the form S;(£’), where &£’ =l (€l .., €p, < & is generated by the
associated errors which is a subset of {ej,...,en}. Since this number of syndromes
intervenes in our total amount of unknowns, there will be situations for which this
addition makes sense.

6.3 An Algebraic Approach

In [BB21], we introduced a polynomial system to solve the subproblem. To simplify the
notation, let us present it applied to the original RSL instance.

6.3.1 RSL-Minors Modeling

The point is to exploit the compact description of Cayg given in Equation (6.1). By
definition, a codeword e € Cayug is such that eH' € T, i.e., eH" = Zf\il \;8; for
coefficients A\; € Fy, 1 <@ < N. Since we target one of weight < r, we can also write it
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as in the MaxMinors case in the form e = 85y C, where 3 is a basis of Fyn over F,
Sy e F*" and C € F;*". This yields the equation

N
Z AZ'SZ' = ,BSVCHT.
1=1

From there, the rest follows as in Support-Minors by noting that the vector Zf\[: 1 Aisi is
a linear combination over F,m between the rows of CH T. This means that the matrix

A e [Tl disi] _ (25 N T @ gl xeen)
CH' C a

has rank at most 7. As in previous MinRank modelings, we can then adopt the system

of all its (r + 1) x (r + 1) minors. In addition, computing them by Laplace expansion

along the first row and by applying the Cauchy-Binet formula (Lemma 3.3) naturally
leads to consider minor variables ¢ = |C\y 7.

Modeling 12 (RSL-Minors). The RSL-Minors modeling is the system in the \;
variables and in the cr variables, defined by {AJ}JC{L”_“ 4i—ry1, Where

N . .
Ay L/ | Ay | = ‘[Zi:l )\28’} )
#,J

CHT

)

In the following, we will denote it by U.
A Dbit more explicitly, we obtain

Lemma 6.1. For an ordered subset T < {1..n} and t € T, let Pos(t,T) denote the
position of t in T. Let J c {1..n — k} such that #J =r + 1. We have

N
Ar=>N D, e Yy ETY M H o] (6.3)
i=1  Tc{l.n},#T=r t¢T

n—k

i +1) equations and N (:f)

In other words, Modeling 12 is a bilinear system with (
monomials \jer for 1 <i < N and T < {l.n}, #T =r.

Once again, the coefficients of the equations are over F,» while the unknowns \;

and cr are searched in F,. Thus, we can proceed as in the MaxMinors case to obtain
n—Fk

- +1) equations.

Modeling 13 containing m(

Modeling 13 (RSL-Minors-F,). Let 8’ = (B1,...,5],) be an arbitrary F,-basis of
Fym. Let Tr be the trace operation as in Equation (3.16) defined for polynomials in
Fgm[cr, A]. The RSL-Minors modeling over Fy is the system in the \; variables and in
the cr variables, defined by {AZ,J}KKW Je{ln—k}, #I=r+17 where

Ars ™ TrHBA ) mod {¢ — e, A — A}

In the following, we will denote it by U, .
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To solve this system, we use the same approach as in [Bar+20b] by multiplying the
polynomials by all linear variables A; for 1 < i < N. More precisely, we aim at recovering
the low weight codeword from a vector in the right kernel of the Macaulay matrix
Mac, 1)(Ur,) at the relevant bi-degree. Since the subproblem is chosen to have roughly
one solution, this corresponds to the least value such that the number of independent
rows is greater than the number of columns minus one. Over Fy or more generally when
q < b, this estimation has to take into account the field equations A — \; = 0. Indeed,
reduced modulo these polynomials, a homogeneous equation in bi-degree (b,1) may
become affine and possibly involve monomials of degree (b',1) for any 1 <V < b. In
this case, it will be favorable to consider the matrix Mac,1)(Ur,) Which contains all
equations up to this bi-degree.

Remark 6.1. For two codes S;(&') and S;(€) with & < £ as presented above, the
algebraic system for the same weight w should be solved at a lower degree on S;(€) than
on S;(&’). We may prefer to consider S;(€’) only when these degrees are equal. Indeed,
since the code dimension is also the number of linear variables, the size of the Macaulay
matrix will be smaller.

6.3.2 Analysis over the Extension Field

As in [Bar+20b], the complexity analysis calls for understanding the rank of the Macaulay
matrices. However, for Modeling 13, we cannot obtain an exact formula regardless of
the parameters. The situation is different with Modeling 12. There, indeed, the rank
is always given by the number of independent rows. In particular, we can provide the
precise value of rk (Mac(b,l)(l/{)) for any b > 1.

Let us start with the b = 1 case. Under the following elementary assumption on the
matrix of syndromes, Theorem 6.1 shows that there are no linear relations in the initial
system.

Assumption 7. Let S el [s] ... sk] € Foyn "N We assume that the matriz
S{1.n—k—r},« has rankn —k—r.

Theorem 6.1. Under Assumption 7, the equations of Modeling 12 are linearly
independent over IFym.

Proof. The proof will consist in row reducing the Macaulay matrix for a particular term
order. More precisely, we consider the grevlex monomial ordering on the variables \;
and ¢ such that

Clty<o<t,} < Clt,<-<tr} if and only if ¢; =¢; forall 1 <i < j and tj < t;,
T < AN < AN_1 < - <)\ VT < {l.n}, #T =r.

This means that A\;jer < Ajer if and only if er < ¢7v or er = ¢g7 and \; < A;. Using
the systematic form of H, we can sort the monomials in any equation as
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Lemma 6.2. For an ordered subset T < {l..n} and t € T, let Pos(t,T) denote the
position of t in T. For any subset J < {1..n — k} such that #J = r + 1, we have

N
Ay = Z Z(—1)1+Pos(j"])Si,j)\iC(J\{j})M + (smaller terms),
jeJi=1

where the smallest monomials \icp are the ones with T n {1..k} # J while the largest
ones satisfy T < J + k < {k + 1..n}.

Now, let I = {jo < -+ < jry1} < {l.n — k}, #I = r and let U; = {Apor:1 <

¢ < ja}. By Lemma 6.2, the Macaulay matrix reads

MCr+k .- ANCI+k
Agyor 0 81,1 e SN,1
Macal)(l/[l) = A{jl}ul 0 51,1 SN, j1 o= [0 5{1,,j2—1},* ] .
A{j2_1}u1 0 s14-1 SN, jo—1

Then, using Assumption 7 and up to a permutation of the syndromes, there exists an

(n—k—r)x(n—k—r)

invertible lower-triangular matrix L € F and an upper-triangular matrix

qTYL
Ue Fgﬁ_k_r)XN with ones on the main diagonal such that LSy ,,_j_,}+ = U. Noting
that jQ <n-— k—r + 1, we obtain L{l'.jQ_1}’{1',]-2_1}/\/[&6671) (Z/[]) = [0 U{l..jz—l},* .. .],

i.€.,

)\1C]+k e Aj2_]_C]+k
0 1 S U,17j2_1
L1 o131 go-yMac Un) = | 0 0 Ujy o1 *
0 0 0 1

Any row in this echelon form corresponds to an equation with leading term 1 - Aj cr4s
for any 1 < j; < jo. Overall, we obtain distinct leading monomials by repeating the
same operation on all subsystems Uy for I = {jo < -+ < jrp1} < {l.n—k}, #I =r.
This shows linear independence. O

From the proof of Theorem 6.1, we will also retain

Corollary 6.1. Under Assumption 7, the linear span of Modeling 12 admits a basis of

polynomials with distinct leading monomials, namely {ANJ} such that
Jc{l.n—k}, #J=r+1

N . de .
LM (AJ) = AT (NG ) +ks J1 e min(J).

At higher bi-degree, the shape of the system triggers combinatorial syzygies of the
same nature as in [Bar+20b, Proposition 6]. However, we are in a better situation.
Indeed, what is remarkable is that Assumption 7 used to control the b = 1 case still
allows us to obtain linearly independent equations once we get rid of these relations. In

the following Theorem 6.2, we reuse the basis {Z}} of Corollary 6.1.
Jc{l.n—k}, #J=r+1
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Theorem 6.2. Under Assumption 7 and for any b = 1, a basis of the rowspace of
Macp, 1) (U) is given by the polynomials

N
Bbdif H )\?jANJ:Zajzb—l and J c{l.n—k}, #J=r+1;. (6.4)

min(J)<j<N 7=1

This space is of dimension

n—k—r+1 d—1 .
def n—k—d N—-—j+1+b-2
RS ( o )2( e, (6.5)

d=2 j=1

Proof. Taking b = 1 is Theorem 6.1. Thus, we start from a complete proof of the b = 2
case. As the leading monomial of A is Ayin(.7)C\(min(J)})+k> the relations between
the polynomials can only come from the pairs /\jA{z\'}u/ I,)\i% [) for all subsets

I < {1.n — k} of size r and all indexes 1 < i < j < min(I). If we sort the rows of
Macy1)(U) in decreasing order with respect to the ordering « defined by

NA < AyAy if and only if (J <jex J') or (J = J' and i > i),
where J = {j; < -+ < jr11} <lex J' if and only if j; = j; V¢t > [ and j; < j],

then it is clear that when we compute a row echelon form without row pivoting, the only
rows that can reduce to zero are the rows corresponding to the polynomials A\; Ay with

Ic{l.n—k}, #I =r and 1 <i < j <min(J). There are Z;‘Q_:kl_rﬂ (j22_1) ("_T’j—lh) -
(n—k

i, +2) such rows. The complementary set is

{AJANJ Jc{l.n—k}, #J =r+1and min(J) < j < N}

and this is exactly By from Equation (6.4). These equations are already linearly
independent because their leading monomials are distinct. To finish the proof, we now

construct (::’2“) independent relations which involve elements outside of Bs.

Lemma 6.3. For any subset K < {1.n — k}, #K = r + 2, we have

— 0. (6.6)

[ B }
N
i1 Aisil, i

Each of these (:‘;5) equations is a relation between the \jAj’s (hence the AfAj’s).

Under Assumption 7, all these relations are linearly independent.

Proof. By definition of Modeling 12, the first and the last row of each matrix as in

Equation (6.6) are the same. We thus obtain (’;;’;) minors equal to zero. Then, by
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Laplace expansion along the last row, the minor corresponding to K def {k1 < ko <
-+« < kpyo} is also equal to

N 2 T+2 N
2N 2 (D) s A,y = ((—D“’*“ )y Awm) Ak (67)
i=1

T

u=1 u=1 i=1
Let now (Ayj)jc{i.n—k}#7=r+1 be the sequence associated to U by sorting the
polynomials with respect to the lex ordering on the J’s. Combining Equation
(6.6) and Equation (6.7) gives the syzygy G¥ such that (GX); = 0 if J ¢ K and

(GHK)y = (—1)r+Pos(wK) Zfil siui if K\J = {u}. In particular, the leftmost non-zero

coefficient corresponds to J = K g \{k1} and it is equal to

N
(_1)r+1 2 S“ﬂ)\i = (_1)w+1 (31,k1 v SN,kl) (/\1 “e )\N)T .
i=1

This leading position is the same for all syzygies GU}YE1 such that 1 < j < ky. Finally,

let L e ]ng_k_r)x(n_k_r) as in the proof of Theorem 6.1 and which exists thanks to
Assumption 7. We obtain ky syzygies from the rows of

g{l}uK1

Ly iy 1.01)
g{kl}UKl

Since the coeflicients in position Kj are equal to the components of

1...U17k1... )\1
(_1)r+1 . .
0 1 .. | AN
it is clear that these syzygies are linearly independent and so are the Gl}YKi’s  for
1 < j < k1. The same eventually holds for the full set {QK}KC{l..n_k}’#K:HQ. O

In the general case, note that the polynomials in

N
Bbdif H A?jE:Zaj:b—landjc{l..n—k}, #JI=r+1

min(J)<j<N Jj=1
have distinct leading monomials since

LM A Agggor) = A3 AWLM(A o) = A AR era

On the contrary, the polynomials AJ" - -+ ARY Aﬂ{;}zl such that j; < min(7), Zfil o =

b—1 and 251:_11 a; # 0 reduce to zero because they are divisible by some )\iZ; with
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i < min(J) and the latter reduces to zero. This means that B, indeed gives a basis.
Finally, its cardinality is

""fi“ n—k—jo ”21 N—ji+1+b—2
4 r—1 4 b—1 ’
J2=2 Jji=1

which is the right-hand side of Equation (6.5). O

Assumption 7 has been used in all our proofs. A nice observation is that it actually
holds in the Durandal case.

Lemma 6.4. Let m a prime number and let n € N such that k = n/2 is prime. Let

leN and let 8™ [SI s;l;{] € quk”k whose columns are the ideal shifts modulo an
irreducible polynomial P € F,[X] of | initial syndromes a'lT, e a'lT. Then, there exists
an invertible matriz U € F’;ﬁik such that

US = [Ik *]

Proof. As S is publicly constructed, we can assume that s, ..., sz are the ideal shifts
of one unique vector oT. In this case, the leftmost block of size k x k in S is equal
to the ideal matrix ZM(o)T. We also have o # 0 with overwhelming probability
because the double circulant ideal matrix H is generated as random in the scheme.
Since P is irreducible over F, and as both m and k are prime, [Ara+19¢, Lemma 1]
shows that there exists a vector u € F’;m such that ou = 1 mod P. This implies that

IM(o)IM(u) = Ij and we deduce Lemma 6.4 with U el IM(u)T. O

6.3.3 Coming Back to the Small Field

Similarly to the MaxMinors system over F, (Modeling 7), we had difficulty proving
results of independence for Modeling 13. Once again, this should not sound surprising
because at some point the value of rk (/\/lac(byl)(l/{q)) will no longer be obtained by a
reasoning on the rows. Thus, we assumed that this rank was equal to m times the one
of Mac, 1) (U ) as long as the latter is smaller than the number of columns and b < q.
As already mentioned, the second condition is due to the field equations.

Analyzing their contribution remains an open problem. Before studying Modeling
13, an easier task is to consider Modeling 12 reduced modulo these polynomials. We
focused on ¢ = 2 and we proposed the following conjecture.

Conjecture 6.1. In Modeling 12 reduced modulo the field equations, the number of
linearly independent polynomials at bi-degree (b, 1) when b < r + 1 is conjectured to be

n—=k . . .
Fo def ji—I\/n—k—j\(N—7j
M S () (e ) G od)

— il(_l)dH (7; J‘r S) <b ]jd>, (6.8)
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For any subset J = {j1 < ...jr+1} < {l..n — k}, multiplying ANJ by all squarefree
monomials [ | j1<j<N ?j with >’ ; & = b—1 produces distinct leading monomials which

are still squarefree since

LM( [T A7 x AJ> =N [T AP xenguyen
J1<j<N J1<j<N
This already gives a lower bound on NE 2. However, if we do the product by squarefree

monomials Aj; [] )‘?j with >’ j a;- = b — 2, the leading monomial before reduction

J1 <j<N
is divisible by )\?1 and we do not grasp the one after reduction. Still, we have found
experimentally that

e the leading monomial of A\;, ---\j, |

A7 after reduction is Ay NGy i)
e for1<d<b—1andigy <---<ip_q such that j;_1 < ig < jq the polynomials
DYIREED VI VINNRD YRV
reduce to zero.
Conjecture 6.1 follows from these observations since the complementary set has size
i “2’“ (jd—1> <n—k—jd> (N—jd>
d—1 r+1—d / b—d

d=1jg=1 RN

number of sets number of sets number of sets
{j1<<da—1} {dar1<-<ir+1} {Ga<-<ip_1}
in {1..jg—1} in {jg+1.n—k} in {jg+1..N}

We finish this section by giving the total complexity of our approach. As in Chapter
4, one can use dense or sparse linear algebra techniques to retrieve the kernel vector.
Provided that the operating bi-degree (b, 1) is known, the cost of the latter can be obtained

from Proposition 2.7. From now on, we will always assume that H (1. n) = Ik In
this case, Lemma 6.1 shows that we can take n, = N(’Hiﬂ). Moreover, the number of
columns corresponds to the number of monomials, i.e., M, def (TTL) (N +£’ 71) when b < q.

Proposition 6.2. For b € Z~q, let Ny as defined in Equation (6.5) and let M, =
(:f) (NT_I). Under Assumption 7 and the hypothesis on the unfolded system stated at the
beginning of this section, Modeling 13 can be solved in bi-degree (b,1), b < q whenever

mNy, = My, — 1. In this case, the global cost in Fq-operations is
O (min (MM~ N (MH)ME) ) (6.9)
where w s the linear algebra constant.

Over ¢ = 2, recall that we consider the full affine Macaulay matrix. The relevant

number of columns is thus M.; = Mo _, (3
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Proposition 6.3. For b € Z-g, let NE2 as defined in Equation (6.8), let NE% def

Z;’-:l N]I.F2 and let Mgi = (:f) ZZ/:l (é\/[) Based on Conjecture 6.1 and the hypothesis on
the unfolded system stated at the beginning of this section, Modeling 13 can be solved in
bi-degree (b,1) when q = 2 whenever mNgi > ME% — 1. In this case, the global cost in

Fy-operations is

0 <min (Ng (Mﬁi)“_l N ( Mgf)) , (6.10)

where w s the linear algebra constant.

Hybrid techniques can also be applied to Modeling 13. A first one is pretty similar to
the strategy adopted by [Bar+20b] on the MaxMinors system (e.g, the first method in
the underdetermined case given at the very end of Section 3.3.4.3). A second one which
does not exploit the structure as strongly as this first method is to perform an exhaustive
search on some )\; variables. For the sake of simplicity, we keep this paragraph short
and we refer to Chapter 7 for a more detailed description.

6.3.4 Application to Durandal

We now estimate the complexity of our (hybrid) attack on some parameters. First, note
that we do not outperform [Bar+4-20b] on the original Durandal values which had already
been broken by this prior work. However, they correspond to overdetermined RD cases
and it is likely that future parameters will be chosen outside of this weak range.

To perform a broader comparison, we have constructed alternative parameters
(m,n, k,r, N) which are immune to [Bar+20b] by taking into account the constraints
from the Durandal scheme mentioned in [Ara+19b, §6.1]. The empirical ways to avoid
the attack of [Bar420b] seemed to increase the pair (n, k) compared to m or to increase
the weight r. Our proposed values attempt to explore these two options. Contrary to
[BB21, Table 2], there is no longer mention of the cost of the best attack on PSSI*
because it has been significantly improved in [ADG23]. Note simply that [ADG23] would
break the instantiation d = r, ¢ = 1 given in [BB21] since the best attack on PSSI*
at the time of [Ara+19b] was close to the security target'. In other words, one must
view this section as a mere comparison between attacks on the RSL problem and not as
a cryptanalysis of Durandal. We compare ourselves with the RD attack of [Bar+20Db]
in Table 6.1 while combinatorial RSL techniques including the one of Section 6.4 are
irrelevant in this regime.

In Table 6.1, Column “RD” gives the cost of the hybrid approach on Modeling 7 in
the underdetermined case. The remaining columns correspond to our method. The three
leftmost ones are associated to the strategy by targeting an error of maximal weight
r and by shortening as much as possible. The rightmost columns concern the attack
by looking for a word of weight w < r and by shortening on a possibly non-maximal

!More precisely, the cost was a bit above 192 in a scenario where the adversary has access to 2%
signatures.



104 Chapter 6. Rank Support Learning Problem

number a > 0 of columns. Thus, we give the pair (w, a) leading to the best complexity.
In both cases, we also indicate the degree b to solve by linearization and the optimal
quantities for the hybrid approach. A starred cost value is obtained with the Wiedemann
algorithm, otherwise the Strassen algorithm is used. Finally, we write the value of the
best strategy in bold text when it improves upon the RD attack.

Table 6.1: Comparison with the RD solver of [Bar+20b] on parameters akin to the ones
used in Durandal.

‘ (m,n,k,r), N ‘RDHwzr‘b‘(ac,oo\)Hw<r‘b‘Value ofw‘ a ‘(ac,a)\)‘
(277,358,179, 7)
N =k(r—3) 130 173 |2| (0,0) | 174* [3| 6 60| (0,0)
N =k(r—2) 130 147 1| (0,0) | 126 |1 37| (0,2)
N=k(r—1) [130| 145 |1| (0,0) || 125 1] 5 19| (0,1)
(281,242, 121, 8)
N =k(r—2) 159 170 |2| (0,0) | 170 |3| 7 70| (0,0)

ot

N =k(r—1) [159| 144 (1| (0,0) || 128 |1 5 27 | (2,3)
(293,254,127, 8)

N =k(r—2) [152] 172 [2| (0,0) | 172* |3 7 73| (0,0)

N =k(r—1) [152| 145 (1| (0,0) || 125 |1 5 28| (1,4)
(307,274, 137,9)

N =k(r—2) [251| 187 [2| (0,0) | 187*|3 8 86 | (0,0)

N =k(r—1) [251] 159 (1| (0,0) | 165* |2| 8 103| (0,0)

We notice that our complexity is always below the one of the best RD attack of
[Bar4-20b] when N = (k — 1)r and it is very often the case for a slightly smaller number
of syndromes. We want to stress that this general improvement is not associated to a
precise value of N from which our attack will always be superior but it is particularly
obvious when the system can be solved in bi-degree (1,1). Note also that it is significant
on the set of parameters with » = 9, which suggests that our attack will probably be
more efficient for larger parameter values as well.

6.4 A Combinatorial Approach

In [BBBG23], the smaller RSL instance is solved with combinatorial techniques. There,
we focused on subproblems obtained by shortening as much as possible. This is mostly
because the number NV of syndromes in our proposal was not sufficient to target a weight
< r codeword.

Let a def [%J and let H be the matrix of Problem 3.7 still assumed to be in

(n—k)x(n—a)

systematic form on its last n — k positions. Let He Fom be a matrix obtained

from it by deleting a columns outside of these positions. The discussion of Section 6.2
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shows that the linear system in the unknowns € € Fj»“ and \; € F, given by

should have roughly one solution corresponding to a word of support V.

To solve it with the weight constraint, we proceed as in Section 3.3.4.1 by guessing
a larger subspace F' of dimension ;1 > r. However, we cannot use more advanced
techniques tailored to RD since our problem is not Fym-linear. For instance, we can
neither assume that 1 € V as in [GRS16] nor target an F' containing a scalar multiple
aV, a € Fyn as in [AGHT18]. The basic success probability is thus

("),

~ g mm), (6.11)

Then, expressing the coordinates of € in a basis of F' yields a linear system over Fym
with n — k equations and 71(n — a) + N unknowns searched in F,. As is standard
in combinatorial attacks, the system projected over F, is assumed to contain linearly

independent equations. Finally, we pick the maximum r; to obtain an overdefined
m(n—k)—N

— J , m) (as a value above m would not make sense).

def .
system, namely r; = min ([
From Equation (6.11), it is then clear that the attack is polynomial if and only if this

largest possible value is equal to m, i.e., F' is the full space Fym» and the naive linear

system is already overdefined. By recalling that a = L%J, this is equivalent to

—k)—N N N
mm)zm@mm—m>N©[J—>h (6.12)

n—a r m
It readily implies % — % >k, hence N > kr—"—. However, the converse is not true as

N = kr-™ does not always imply Equation (6.12). A sufficient condition for it to hold
is ¥ —1— 2 >k hence N > (k + 1)r-2

m—r"

Lemma 6.5. The proposed combinatorial technique on an RSL instance with parameters
(m,n,k,r, N) such that N = (k + 1)r-=- is expected to take polynomial time.

m—-r

Note that this condition for a polynomial complexity is more easily met than the
former bound N > nr given in [GHPT17] for most of the cryptographic parameters. In
the general case, we obtain

Proposition 6.4. The complexity in F,-operations to solve an RSL instance with
parameters (m,n, k,r, N) is given by

o (qr(ml““";’ii‘NJ)> |

where a def L%J






Rank Decoding Problem, MinRank
and Hybrid Techniques

In this chapter, we apply the same proof technique as on Rank Support Learning to
obtain more insight on algebraic methods for the RD problem. This lead to the paper
[Bar+23].

Our work shows that the estimates of [Bar+20b] regarding the attack by combining
the MaxMinors modeling and the Support-Minors modeling to solve underdetermined
RD are too optimistic. Indeed, we exhibit linear dependencies between these equations
and we introduce another system over F,=. Finally, we propose an algebraic attack
based on this new modeling as an alternative to the former approach of [Bar+20b]. This
system has the advantage of being more compact but also easier to analyze.

Another contribution was to generalize the hybrid technique of [Bar+20b, §4.3] on
MaxMinors to SM-like systems which still contain a block of minor variables. More
precisely, we provide a generic reduction to a smaller MinRank/RD problem which can
be used in combination with purely combinatorial techniques. In the context of generic
MinRank instances over a small field, it significantly improves the complexity of the
former SM approach.
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7.1 Solving RD in the Underdetermined Case

On a Rank Decoding instance with parameters (m,n, k,r) such that m("_f_l) = (?) -1
and under Assumption 1, recall that the MaxMinors modeling over F, (Modeling 7)
can be solved by direct linearization. Since the initial ROLLO and RQC values were
chosen in this range, this explains why the corresponding attack by [Bar+20b] strongly
affected these schemes. In the underdetermined case, i.e., m(”_f_l) < (:L), we had
briefly mentioned right below Assumption 1 the two solving strategies considered in

[Bar+-20b]. The contributions of this chapter will call for a broader exposition.

7.1.1 Hybrid Approach on MaxMinors

The idea of [Bar+20b, §4.3] was to decrease the number of minor variables ¢ in Modeling
7 but in a structured way. More precisely, they fix a = 0 columns in the matrix C in
order to obtain only (”;a) such unknowns. This is particularly obvious if these columns
are set to zero because we only need to keep the (") minors ¢p = |C | such that the
set 1" does not meet these columns. In the general case, the number of variables will drop
by the same amount if we assume that C' is in systematic form on its first r columns as
presented in Section 3.3.4.3 and if we fix columns in the n — r rightmost positions. We
will not elaborate more here and we refer to Section 7.4 for a more detailed explanation
and a generalization of this technique.

Under an analogue of Assumption 1 on the specialized system, the new condition
for linearization is now m(nfffl) > ("7 %) — 1. By picking the mininum number ag of
columns for which it holds, the global complexity in [F -operations is

o e 1)) ), g

where w is the linear algebra constant.

7.1.2 Adding Support-Minors Equations

In addition to Modeling 7, the other method considers the Support-Minors modeling
(Modeling 4). This is possible by viewing the RD instance as an inhomogeneous MinRank
problem in Fi**™ with K = km and with target rank r. The crux is that the blocks of
minor variables in both modelings are identical since we put into equation the same low
rank matrix. In spite of having a bigger system, another advantage of combining these
equations is that we can exploit the sparsity of the SM Macaulay matrix.

A bit more precisely, the authors of [Bar+20b] perform the XL-Wiedemann approach
that we have already encountered several times on a set of bi-degree (b, 1) polynomials
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obtained by multiplying the MaxMinors equations by degree b monomials in the
linear unknowns and the Support-Minors equations by degree b — 1 monomials in
the same variables. This technique requires to grasp the rank of the Macaulay matrix
Macy, 1)(Pr, v Q), where Pr, is Modeling 7 and Q is Modeling 4.

As long as this value is smaller than the number of columns, it is implicitly assumed
in [Bar+20b] that

rk (./\/lac(bvl)(P]Fq U Q)) =rk (./\/lac(bJ)(P]Fq)) + 1k (./\/lac(bvl)(Q)) . (7.2)

In other words, in this case, the MaxMinors and the Support-Minors systems are

supposed to behave independently at higher degree. Still under Assumption 1, note
gy . K+b—1 —k—1\ (K+b=1\ _:

that we trivially have rk(Pg,) = dim(Pp yr, (" 7)) = m(""77) (" 7)) since the

system Pr, is simply linear in the minor variables. For the other term in Equation (7.2),

[Bar+20b] keep the same analysis used for non-structured MinRank problems.

7.2 Support-Minors Modeling over F »

The starting point was to observe that Equation (7.2) did not hold in my practical
experiments. This lead me to study the Support-Minors modeling in light of the
[Fym-linear structure and to propose another set of equations for the RD problem.

This system is obtained from a slight variation of the argument of [Bar+20b] to
generate Support-Minors. We no longer consider the matrix version of

y+xG = (s1,...,8.)C

and we argue more directly that the vector y + G belongs to the row space of C. We

a:GC+ y} . These

polynomials still have an SM-like shape. Indeed, by performing Laplace expansion along
the first row, we notice that each of them is affine bilinear in the entries z; of @ for
1 <4 < k and in the maximal minors ¢p of C for T < {1..n}, #T = r. Note that the
coefficients as well as these former variables are in the extension field.

then adopt the equations given by the maximal minors of the matrix [

Modeling 14 (Support-Minors over F,n (SM-Fyn)). The Support-Minors modeling
over Fym to solve an RD instance with noisy codeword y, generator matriz G, and target
rank r is the system in the unknowns x; (still referred to as linear variables) and in the
mazximal minors cp of C, with equations

_||lzG +y
{Ql—[ C L,[

This modeling presents the advantage of being much more compact than the original
Support-Minors system: the number of linear variables is divided by m and the number
of equations is also divided by m. This was in fact my initial motivation to introduce

[ < {1.n}, #I=T+1}.
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these equations since I wanted to be able to run practical tests in Magma for higher
parameter values.

Independently, we see that the structure of Modeling 14 is similar to the one of
Modeling 12 for the RSL problem in the sense that these are bilinear equations which are
maximal minors of only one matrix. This is in contrast with the former Support-Minors
modeling where there were as many C'; matrices as the initial number of rows in the
MinRank problem. In the same way as in Chapter 6, it will make it easier to understand
the algebraic relations in our system than in general SM.

7.2.1 Analysis over the Extension Field

We now focus on the polynomials of Modeling 14 when multiplied by linear variables
x;, 1 € {1..k}. This part is organized as Section 6.3.2 from the previous chapter by
starting with the b = 1 case and then by studying equations at higher bi-degree (b, 1).
What will be remarkable is the relationship with the MaxMinors modeling over Fm
(Modeling 6). Thus, let us first separate the polynomials from both systems into different
sets by defining for nonnegative integers s and i € {1..k}:

0, QT {l.n}, #T =r + 1 and #(I n {1..k + 1}) = s},
0o, QT {ln}, #1 =r+1and #(I ~ {1..k + 1}) > s},
P P,
;P = {x;P: P e P}.
Contrary to the RSL case where we relied on an assumption (Assumption 7), our results
hold regardless of the RD instance. More precisely, we will only need

Fact 3. The input instance is equivalent to an RD problem where the underlying code

C has a generator matriz G in systematic form, i.e. G = [Ik. *], where y = (O,y€ 1 *)

and where the extended code C + (y) has a parity-check matriz H, in systematic form,
H

i.e., Hy = [* In,k,l]. Then, H def [ hy] is a parity-check matrixz for C for a vector

h = (*10,_4_1) lying in the dual C*. We have yh' = 1.

Proof. Up to a permutation of the coordinates, we can assume that G is in systematic
form G = [Ik *], and up to the addition of an element in C that y = (0f *). As
y contains an error of weight r, it is non-zero, so that up to a permutation of the
coordinates of the code and up to the multiplication by a constant in F,m, we assume
that y has the given shape y = (01€ 1 *) Now, if (fivy = [Ik+1 A] is a generator matrix

of Cy in systematic form, then H,, def [—AT I n_k_l] is suitable. By considering an h

linearly independent from the rows of H,, and such that yh" # 0, any linear combination
between h and the rows of H, still satisfies the same properties. Therefore, we may
assume that h = (* On_k_l), and moreover we have yhT = hiy1 # 0. Thus, the vector
hit h is indeed of the form (+ 1 0,_g_1). O
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Lemma 7.1. Let H, be the matriz of Fact 3. For any subset T < {1.n —k — 1}, we
have

(Hy)r k41| = 1,
(Hy)7rr| =0 if In{k+2.n}ET+k+1.

Proof. This immediately follows from the fact that H, is in systematic form in its last
n — k — 1 columns. O

In affine bi-degree (1,1), the following Propositions 7.1, 7.2 and 7.3 will show that
Qo < (Q1,D>2)p,

P, ) =P, Q>2> = (Q1, Q>2)r,,
F

1<i<k p

and that P u U1<i<k ;P U Q29 is a basis of the latter space. These results can be seen
as the analogue of Theorem 6.1 for Modeling 12. To state them, we will consider the
same grevlex ordering as used in its proof, i.e., such that ¢7 < zp < -+ < 21 and where
the cp’s are ordered with a reverse lexicographical order according to T'.

Proposition 7.1. The polynomials in Qg can be obtained as linear combinations between
the polynomials in Q=1. More precisely, for any subset T < {l.nm—k — 1}, #T =r +1,
we have

Qrik+1 = — Z |(Hy)1,1
Qrelz1

Qr. (7.3)

Proof. We first observe that any polynomial @ in Qg is of the form Qi1 for some
Tc{l.n—k—1}, #T =r + 1. Using the Cauchy-Binet formula gives

G+
R [ R YT ST
Ic{l..n}
#I=r+1

and this minor is equal to zero as (zG + y)H ;5 = 0. Finally, we apply Lemma 7.1 to
argue that |(Hy)7rr1k+1| = 1 and that |(Hy)7r | =0for I c {k+2.n}, I # T+ k + 1.
We obtain Equation (7.3) since the non-zero terms in the sum correspond to @) appearing
with coefficient 1 and to the Q’s in Qx1. O

Proposition 7.2. For any subset I < {l..n}, #I = r + 1 such that Qr € Q=2 and

i1 def min(I), the leading term of Qr is

LT(Q1) = miyepgiyy-
Mowveover, for any subset J < {1.n — k — 1}, #J = r, we have
LT(PJ) =CJ+k+1-

Finally, the variable cyip11 only appears as the leading term of Py and it is not present
in any of the polynomials in Q=2 U P\{Py}.
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Proof. The statement on the MaxMinors polynomials P; is already known so let us
focus on the Qr’s. By definition of Qs2, a subset I such that Q7 € Qs satisfies
i1 = min(I) < k. Computing by Laplace expansion along the first row then gives

[mG+y]
C *,1

)

Qr = = DD (@G, + i) eniy-

iw€l

If G and y are as in Fact 3 and for any i, € I~ = I n {1..k} (and at least i; € I~ by

assumption), we obtain Gy ;, +y;, = x;,. Then, for u € {1..r + 1}, let I, e I\{iy,}, so
that Iy > I» > --- > I, according to the reverse lexicographical ordering. The ordered
terms in Q7 are thus

Q] = X, Cq —JJG*J'QC]Z + -+ (_1)rxG*air+lCIr+l
/

~
smaller terms of degree 2

—YixCIy T+ F (_1)Tyi7'+1cfr+1 .

smaller terms of degree 1

This shows in particular that LT(Q7) = x4, cr,. For the last point, we observe that {i; <
io} < {1..k + 1} still by definition of Qs9. This implies that for any i, € I, the set I\{i,}
is not included in {k + 2..n}, and finally that the variables {cjix+1}1c({1.n—k-1}, #7=r
do not appear in Q. O

Corollary 7.1. The polynomials in P U Qo are linearly independent.

Proposition 7.3. For any subset J < {l.n — k — 1}, #J =r and for any i € {1..k},

we have
Py = Quryoaksny ) (1) ‘HJu{n—k},I‘ Qr, (7.4)
Qr€Q>2
2Py = Quyo(J+k+1) + 2 (—1)tFPostind) ‘(Hy)J,I\{i} Qr, (7.5)
Q[EQ;Q, el
where Pos(iy, I) = u for I = {i1,...,i,4+1} such that iy < -+ <ipiq.

[wG ty . On the one hand, the

C :| (HT)*,Ju{n—k}

Proof. Let us consider the minor

Cauchy-Binet formula gives

[:cG(;r y} (HT)*,Ju{n—k} = Z ’Hju{n_k-}J‘ Qr. (7.6)

Ic{l.n},#I=r+1

On the other hand, we use the particular shapes of H, y and h given in Fact 3:

Hy

h M
y=(0p1%),
h = (* 1 Onfkfl)a

H
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to obtain

xG +y| v _ [yH'] _ 'yH; yh'] _ [0, 1 1
|CH, Ch" CH, Ch'|’

This minor is thus also equal to

G +y
[ C ] H:kr,Ju{n—k}

Then, we use

~ (-1

C(Hy)us| = (-1)"Py.

H 0 1
= T T
CH, Ch Jw Jo{n—k}

‘H ’_ 0 ifIn{k+2.n}dJ+Ek+1,
T T Cr T = (k1o (T R+ ),

to remove zero terms in Equation 7.6. We finally get

Py = Quertyoreny (=17 D ‘HJu{nfk},I’Ql-
—_—

<o, QreQs2

Let us now prove the second equation. For i; € {1..k}, we denote by g, def Gy« the 11-

th row of the generator matrix G. We then consider the matrix H;, € Fgﬁl—k_l)xn defined
by H ;rl = [H ;/r siTl], where €;, is the 71-th canonical basis vector in Fy. This is a parity-

check matrix for the Fym-linear code C;, generated by {y,gl, o3 Gii—15Giy 410 - - ,gk}.
Since gilez = 1, we have

G +y HT _ xilgilHiTl _ 0
C i CH] CH, Ce! |’

For any J < {1.n — k — 1}, #J = r, we then compute

:Eil

0
HCH; Ch]

G +
|: C y:| (H;I;)*,Ju{nfk}

le| *,Ju{n—k}

= Z ‘(Hil)Ju{nfk},I‘ Qr =(—1)"z; C(H;—)*,J‘ = (=1)"z; Py.

Ic{l.n},#I=r+1
By Laplace expansion along the last row, we have ’(Hil)Ju{n_k}J’ =0if ¢; ¢ I and

‘(Hil)JU{n_k}’I‘ = (=1)rt1+Pos(in]) ‘(Hy)(LI\{il} if iy € I, where Pos(i1, I) denotes the
position of 41 in the ordered set I. From that, we can deduce:

2, Py = Z (—1)1+Posin, ) ‘(Hy)J,I\{il} Qr

Ic{l.n},#I=r+141€l

= Quyoarsny £ Y, (=1)tPestnD ‘(Hy)J,I\{il}
Qr€Q>2,i1€l

Qr-



114 Chapter 7. Rank Decoding Problem, MinRank and Hybrid Techniques

Corollary 7.2. The polynomials in Q1 generate the same Fym-vector space as the set
of equations P u Ule ;P taken modulo the polynomials in Q.

The difference with Modeling 12 is that all equations are not linearly independent
and that we observe degree falls. More precisely, there are (”_f_l) degree falls from
bi-degree (1,1) to bi-degree (0,1) that give the Py polynomials. If we then eliminate cp
variables using those linear equations, we get new reductions to zero which correspond
to the z;Pj’s.

Concretely, our discussion shows that the relevant system to start with is Q>9. Note
that it does not contain the variables ¢y ;1 for J < {1.n — k — 1}, #J = r. The
following Theorem 7.1 provides a basis in bi-degree (b, 1) which is of the same nature as
the one we found for Modeling 12, see Theorem 6.2.

Theorem 7.1. For any b > 1, the Fym-vector space generated by the polynomials in

Q=9 augmented in bi-degree (b,1) by multiplying by monomials of degree b — 1 in the x;
variables has basis

B, < [] = |Q:QreQsrand > aj=b—15. (7.7)
min(I)<j<k min(l)<j<k

This space is of dimension

N dgi(n;i)(k—i—é):ll—i) _(n—f—l)(k—i—i—l). 8)

Proof. The set By, defined by Equation (7.7) clearly contains linearly independent
polynomials since the leading terms are all different. More precisely,

o; « a;, +1 «
LT(aZil LTk kQ]) =24 1 Tk kcl\{i1}~

Its cardinality is the number of sets I and (a,, ..., ax) with sum equal to b — 1, hence
i ’“il n—is\ (k—i1+1+b—2
r—1 b—1 ’

i1=112=11+1

k+1 n—iz) _ (n—il) . (n—k—l)

This gives Equation (7.8) by considering the identities >,/ " 4 (- ., .

and 37y (TR = (),

It remains to see that B generates the desired vector space. As in the proof of
Theorem 6.2, it will be sufficient to show that the polynomials x;Q; for Q7 € Qx9, j€
{1..min(I) — 1} reduce to zero modulo Bz. On the one hand, the number of such
polynomials is equal to the number of subsets K = {k; < k2 < -+ < ky12} < {1..n} such
that k3 < k + 1. On the other hand, we can construct the same number of independent
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syzygies between the polynomials at bi-degree (2,1). Note that for any such K, we have
the relation

G +y
G +y = 0.

C #*, K

By Laplace expansion along the first row, we also obtain

r+2 k
0 = Tk, Qigyo forsa) — 2, (—1)" <Z TGk, + yk:) QR \ (k)

u=2 j=1

Since |K n {1..k + 1}| > 3, these cancellations are syzygies between the relevant Q7,
i.e., those such that |I n {1..k + 1}| > 2. It remains to show that they are linearly
independent. For that purpose, we keep the proof structure as the one of Lemma 6.3 and
we order the Q;’s according to a grevlex order on the subsets I's. The syzygy associated
to K is given by

k
K def 0, (=1t Z i Gjk, + Yg,
K\I={ky} Ic{l..n}, #I=r+1

The largest subset I such that the coefficient in front of Q7 in G¥X is non-zero is
=K% K \{k1} and this coefficient is equal to z,. The syzygies which have the same
leading position Qg, as G¥ are the GK1YU}’s for j € {1..k; — 1}. Finally, the highest
degree part in the coefficient in front of QJk, in gEivlit g xj, which shows that all these
syzygies are linearly independent. O

Since Theorem 7.1 holds regardless of the value of b, this means that the dimension
Nf " will always be smaller than or equal to the number of monomials

G (R A

Alternatively, by a simple computation, we can prove that Vb € Z=q, N,*" < M, 1.
A consequence is that the XL strategy cannot succeed on Q>5. The deeper reason is
because we have not taken into account the fact that the cr variables are searched in F,
(the overall system is not zero-dimensional)

7.2.2 Coming Back to the Small Field

To obtain more equations, a natural idea is to unfold the system. However, in our case,
the linear variables x; belong to the extension field. Thus, we start by expressing them

in the basis 8 as x; def 221 Bix; j, which yields m times more unknowns z; ;’s over
[F,. Finally, for ease of exposition, we adopt the dual basis 8’ = 8* in the unfolding
procedure.
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Modeling 15 (Support-Minors over F, (SM-F,)). Let B be an arbitrary F,-basis of
Fym and let B* = (B, ..., By,) be the dual basis. Let Tr be the trace operation defined in
Section 3.3.4.3. The Support-Minors modeling over Fy is the system in the x; ;j variables
xj = >ty Biwi; and in the cp variables, defined by {Rivf}léism, Te{ln), #I=r+17 where

d *
R 1 2 Tr(B; Q1) mod {c} — cr, af; — x;}.

For the first time in this manuscript, we can control the rank of an unfolded system.
This is in contrast with what we observed on both Modelings 7 and 13.

Proposition 7.4. For any subset I < {1.n}, #I =r + 1, i = min(7l), such that

Q1 € Q=2 and for any i € {1..m}, we have
LT(RZ'J) = xm‘lcl\{il}.

Proof. This directly follows from Proposition 7.2 showing that LT(Q;) = x4, cp g,y and
from our new definition of linear variables yielding ;, cp (5, = iy BiTi iy C1\(iy}- O

Corollary 7.3. Unfolding Q=2 gives linearly independent polynomials over F.

Finally, we show that Modelings 14 and 15 really deserve their names by proving
that R;; = Qi for all 1 < i < m and all I < {l.n}, #I = r + 1, where
{Qir}icicm Te{ln}, #1=r+1 is the genuine Support-Minors system of [Bar+20b] applied

to the underlying MinRank problem. Let us recall its definition below. We

. . . . . . de
consider the matrix code Cpat isomorphic to C with basis {M; i}, ... 1<j<k lef

{Mat(BiGj )} <icm, 1<j<i tOgether with the matrix My def Mat(y). As we have
already seen, solving RD with weight r is equivalent to solving the inhomogeneous
MinRank instance with target rank r, K = km and matrices

(Mo;Ml,l,...,Mka) eF;nxn‘ (79)

Notation 3. For x = (v1,...,%,) € Fym, we denote by Tr(x) the vector (Tr(z;))1<i<n
where the trace is applied componentwise. For a matriz A, we denote by Tr(A) the
matriz whose entry in row i and column j is equal to Tr(A; ;).

From the linearity of the trace over F, and with these notation, we obtain

Vie {1.m}, Tr(B x) = Mat(x); «, (7.10)
VC e FY®, VM e Fox°, Tr(CM) = CTr(M). (7.11)

Using Equation (7.10) and for ¢ € {1..m}, the i-th row of the MinRank solution associated
to the low rank vector y + G is equal to

r Y T (8 (y + 2G)). (7.12)
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Proposition 7.5. Let {Qi’]}lgigm, [e{l.n}, #1=r+1 be the Support-Minors modeling of
[Bar+20b] applied to the inhomogeneous MinRank problem with rank r, K = km and
with matrices given by Equation (7.9). Let {Ri 1}, ;. Ic{in), #1=rt1 b€ Modeling 14.
For any i€ {1..m} and any I < {l.n}, #I =r + 1, we have

Ri1=Qir.

Proof. Let I, be the ideal generated by the field equations {c¢f. — cr, ZL';»{ i~ Tijt We
use the linearity of the determinant according to the first row and the properties of Tr

to obtain
Rir=Tr (B/Qr) mod I, = Tr (‘ {ﬂi (yg wG)] ) mod I
#, 1
_ HT (B (y + wG))} _ H o
c *,1 c *,1 ’
The second last equality follows from Equation (7.12). O

7.3 New Combined Approach

This section presents another algebraic method for the RD problem based on Modeling
14. We will add to this system the MaxMinors equations unfolded over F, (Modeling 7)
as we have just observed that the mere P; polynomials over the extension field were
not enough to obtain a zero-dimensional ideal. Also, we will not unfold the equations
of SM-F,m over [, to avoid dealing with a system with m times more linear unknowns.
This increased compactness makes that even if our modeling were to be solved at higher
degree than the former SM-F,, it may still perform better from a complexity point
of view. Note finally that the analysis of this second system at arbitrary bi-degree
(b,1), b > 2 remains an open problem.

In other words, we consider the set T = {@} tQr € ng}, where @JI is the normal

form of @ modulo the P; ; polynomials'. We may also refer to it as the SM—F;m system.
Its elements do not involve any cp variable which is a leading term in Modeling 7. As
before, we construct and study the Macaulay matrix Mac, 1)(7). Note that the sparsity
of the initial equations ();’s is destroyed by the reduction step. Thus, we will only try to
apply dense linear algebra techniques. In this matrix, the relevant number of columns is

equal to
My = () () =m( ). (7.13)

Proposition 7.6 contains our estimate for the dimension of its rowspace when the number
of rows is smaller than Mf 7. Tt is based on Assumption 1 and on a counting argument
for the number of syzygies when we add the P; ; equations (Conjecture 7.1 below).

1Since they are linear, a Grébner basis of them is simply an echelon form.
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Proposition 7.6. The rowspace of ./\/lac(bJ)(T) has generic dimension

]Fq dgf qu ]Fq
Nb - Nb - Nb,syz

when qu < Ml])Fq, where qum is defined in Equation (7.8),

b .
F, def iv1(E+b—1—-1\(n—k—1
N9 = -1 —1 14
b,syz (m )7;( ) ( b—i r4+i ) (7 )

and where qu is defined in Equation (7.13).

The NE gyz term is the expected number of linearly independent syzygies due to the
P; ;’s. However, similarly to what we have seen in Modeling 13, we cannot obtain an
exact value. This is because there is now a solving degree above which any attempt for a
general estimate will fail. Our starting point are the following cancellations in bi-degree

(1,1):

Proposition 7.7. For any subset T < {1.n —k — 1}, #T =r + 1 and any i € {1..m},
we have the relation with coefficients in Fy:

Te(57)Qrr et + D Te(B; |(Hy)r.1))Qr = 0. (7.15)
Ic{l.n}
#I1=r+1

In{k+1.n}cT+k+1

Proof. For a square matrix M over Fg» and for £ € N, we consider the matrix M €]
obtained by iterating the Frobenius map ¢ times on the coefficients (see for instance

Notation 1 in Chapter 5). Note that we have ‘M [Z]‘ = |M| 9. Given a MaxMinors

equation Py, J < {l.n — k — 1}, #J = r, we denote by Py] the linear polynomial in
the cp’s obtained by applying ¢ times the Frobenius map and then by reducing modulo
{4 — er}. Since P,y = Te(B:Py) = Y (B PY and P = s 8P, 5 we have

Pyl <i<my, = P 0<e<m =g, (7.16)
For e {0.m—1}and T c {l.n—k—1}, #T =r +1, let

[wG—i—y

de
Y o

Ly =

By Laplace expansion along the first row, this minor is a linear combination with
coefficients in Fym|[x] between maximal minors of C(H y[e])I’T, more precisely the
P;¥s such that J < T. By Equation (7.16), the normal form of I';7 modulo the
unfolded MaxMinors polynomials is then equal to 0. Also, the Cauchy-Binet formula
shows that I'y 7 is the linear combination between )7 equations given by

Qrsk+1 + Z ’(Hym)T,I‘ Qr.
Ic{l.n},#I=r+1,
In{k+1.n}cT+k+1
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To conclude the proof, we use the fact that the set of previous equations for fixed T and
for all £ € {0..m — 1} generate the same vector space over F,m as the one containing

Te(B])Qrrnr1 + > Te(B! |(Hy)1.1))Q1
i

In{k+1.n}cT+k+1

for all i € {1..m}. O

n—k—

This proposition gives m( il 1) syzygies at bi-degree (1, 1) which include the ones
from Proposition 7.1 (the £ = 0 case in the proof). However, it does not tell about the
independance of such relations. In bi-degree (2,1), they are multiplied by all linear
variables to generate new ones and this time we are certain that they are not independent.
This is due to the identities

zG+y
$G+y (Hg[f])I,Tg :07
C

for any ¢ € {1..m — 1} and any subset 1o < {l1.n—k—1}, #T» = r+2. We obtain in this
way (m —1) (";ﬁ;l) relations in degree b = 2 between the syzygies of Proposition 7.7. If
we assume that the whole syzygy module boils down to such cancellations, then a similar
inclusion-exclusion argument as the one used to derive [Bar+20b, Heuristic 2] leads to
the following Conjecture 7.1. We verified it experimentally on small underdetermined

RD instances for b =2, b =3 and b = 4.

Conjecture 7.1. For b > 1, the number of independent syzygies is expected to be

b .
F i k+b—i—1\/n—-k—-1
Nb;yz:(mil)Z(l)H( b—1 >< T+ >’

=1
provided that it is < qu.

We conclude this section with the total cost of our method. Note that it is always
possible, whenever the ratio between equations and monomials is much larger than 1,
to drop excess polynomials by taking punctured codes much in the same way as in
[Bar+20b, §4.2]. Finally, we can also use the hybrid approach on the block of minor
variables sketched in Section 7.1.1 to improve the solving degree. We will come back to
it in the next section.

Corollary 7.4. Under Assumption 1 and Conjecture 7.1 which yield Proposition 7.6,
one can solve RD by applying dense linear algebra on the Macaulay matrix Mac(byl)('T)
whenever

N = M@ —1.
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In this case, the global complexity in Fq-operations is
-1
0 (msz‘l(qu)“ ) , (7.17)

where w is the linear algebra constant and where the m? factor accounts for expressing
each Fm-operation involved in terms of F,-operations.

7.4 Hybrid Technique on Minor Variables

In [Bar+23], we systematized the hybrid approach of Section 7.1.1 to any bilinear
modeling involving a block of minors variables. Our method applies to the system of
Section 7.3 for RD but also more generally to the Support-Minors modeling of the
MinRank problem. This is in fact a reduction to a smaller instance which does not
depend so much on the input system.

In the matrix C' which yields the minor variables, the idea is still to set a columns
to zero. Note that in the case of RD, this amounts to fixing a zero positions in the error
vector e. More precisely, we base ourselves on the following considerations.

1. If by chance these a positions are zero in the genuine RD solution and if they
belong to an information set of the code, it is possible to reduce the problem with
parameters (m,n, k,r) to a smaller one with parameters (m,n — a,k — a,r);

2. The condition in 1. is met with probability qir for a random instance;
3. It is possible to change the input problem into another one satisfying this constraint
either by exhaustive search among all ¢g®" possible transformations or by using a

rerandomizing trick that will succeed with probability O(q—").

Our method for RD is quite reminiscent of [GRS16, §5.2], where rerandomization is
implicit (see the proof of Proposition 3 there). As we will see, this technique is also valid
for generic MinRank.

In Section 7.4.1, we give a general presentation of the rerandomizing trick. In Section
and, we apply it to RD and MinRank respectively. Finally, we provide a probabilistic
description of our approach in Section.

7.4.1 Rerandomizing Trick

There is no reason a priori why a positions of the RD solution e nor a columns of the
low rank matrix M = Mg + Zfi 1 M; would be equal to 0. To create such zeroes, we
propose to multiply on the right by a square matrix P over F, which is invertible so
that the rank is preserved. Let us start with the RD case. If we make the following
assumption on the input instance,

Assumption 8. We assume that the first r positions of the solution e are independent
over [Fy.
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then we can restrict ourselves to the ¢ matrices in

d I, Orx(nfafr) -A
RM if PA = O(nfafr)xr In—a—r O(nfafr)xa tAe nga
Ogxr Oax(nfafr) Ia

The point of multiplying by an element of RM is that it leaves the (n — a) columns in
the first two blocks unchanged but it adds to the last a positions of e or to the last a
columns of M all possible linear combinations between the first r ones. Assumption 8
states that the product by one of these elements will yield an instance with the zero
positions we want.

Finally, the knowledge of these coordinates allows to reduce the dimension of the
underlying matrix code. This is easier to explain for RD because we will simply work in

the code Cx = {cP 4 : c € C} shortened at J = {n —a+ 1..n}. Let us also denote the
complementary subset by .J = {1.n —a}.

7.4.2 Application to RD

In the Rank Decoding case, when (eP4); = 0, we can reduce to the following smaller
instance under a mild condition on the code shortened at J.

Proposition 7.8. Let C’ el Sy(C) be the code C shortened at J. If this code is of
maximal dimension k — a, then by Gaussian elimination on a generator matriz G € Fgé"
of C, we can obtain a generator matriz of C in systematic form on the columns in J, i.e.,

J J
DG — G’ O(k—a)xa c F’;ﬁén,
B I,

where D € F]q“fé,k is invertible and where G' is a generator matriz for C'. If we further

assume that ey = 0 and if we let y’ def yj—y ;B el then (y',C',r) is a valid RD

instance with parameters (m,n — a,k — a,r) from which we can deduce a solution to the
initial problem.

Proof. The first point is just standard linear algebra. For the second point, let (¢, e =
y — c) € Fym x Fym be the solution to the original instance and let

(@', 2") = xD ™' € Fiu® x Fl , where ¢ = 2G.
Observe now that

ey =Yy;—CJ
=Y5— (‘BG)J
=y;— ((«, ") DG)J

=Yy, -z
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If we assume that e; = 0, we obtain y; = z”. Finally,

yj—«'G —xz"B

ej=Yj—¢j

/ /
=y;j—y;B-z G
\——v——/ M , ’
v =c'eC
hence y' — ¢’ is of rank weight r and the desired result. O

Proposition 7.8 will be used as follows. Recall that we solve the RD instance (y,C, )
with parameters (m,n, k, r) by considering the ¢* RD instances (y’,C’,r) of parameters
(m,n — a,k — a,r) obtained from all P4 € RM by computing a generator matrix
Ga I GA of Ca = {cP4 : ceC} and then by putting it in (partial) systematic form
on the columns in J by Gaussian elimination to get

J J
ndef | G O(k_ ) x
a)xa | .1
G [B : (7.18)

Under Assumption 8, one of these instances has a solution. By solving it, Proposition
7.8 eventually shows that we can recover the solution to the original problem.

It remains to check under which condition the matrix G 4 admits a partial systematic
form for any A € F;** as required to obtain Equation (7.18). In other words, we have
to examine when S;(C4) is of dimension k — a for any such matrix A. There are two
cases to consider:

Case a + r < k. In this situation, the relevant property holds under a very mild
condition on the code C.

Lemma 7.2. Provided that there ezists a systematic set for C that contains {1..r} u J,
the code S;(Ca) is of dimension exactly k — a for all matrices A € Fy*.

Proof. By reordering the positions, we may assume that the systematic set is {1..k},
that J = {r + 1..r + a} and that
I, —A Orx(n—a—r)
Py = Oaxr I, Oax(n—a—r)
O(nfafr)xr O(nfafr)xa I, o

By hypothesis, we can also choose a generator matrix of C as

G = I, R].
A generator matrix for C4 is then given by
I, —A Orx(n—a—r) R,
GP,y = Oaxr I, Oax(k—a—r) Ry |,

O(k—a—r)xr O(k’—a—r)xa Iy Rs

which shows that this code is still systematic in its first k£ positions and finally that
S7(C4) has dimension k — a. O
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Case a +r > k. This time, the Fym-linear code D of parameters [a + r, k] generated
by the matrix G (1. 307 € Fgﬁ(aw) cannot be the full code. Here, it will be helpful to
notice that S;(Ca) has dimension k — a if and only if the matrix G4 j — G, (1.} A is of

rank a. To verify whether or not this property holds, we use

Lemma 7.3. The existence of a matriz A € F*% such that Gy j — Gy (1. A is rank
defective is equivalent to the existence of a word of weight < a in the dual of D whose
support is spanned by the last a coordinates.

Proof. Let us assume that the matrix A € F;** satisfies rk (G*’J — G*,{l..r}A) < a.
This means that there exists a vector A4 € Fgm such that

— AN}
_G*7{1--""}AA£ + G*,J)‘L = G*,{l..r}uJ [ AL A:| = 0.
—_——
difv-r
A

In particular, the vector v4 € IFZ,# belongs to D+, its weight is < a (as the entries of
A belong to Fy) and its support is spanned by the a last coordinates. The converse
statement is similar by constructing an inverse of the map A — v 4. O

Under the assumption that D behaves as a random code of parameters [a + 7, k], we
can finally estimate the number of vectors as in Lemma 7.3.

Lemma 7.4. The probability that there exists a non zero vector of weight < a whose
support is spanned by the last a coordinates in the dual of a random Fym-linear code of
parameters [a + r, k] is upper-bounded by © (q(m+7")“_mk) when q goes to infinity.

Proof. This probability is upper-bounded by the simpler probability that there exists
a non zero codeword of weight < a. Let X denote the number of such codewords. We
use the fact that Pr[X # 0] < E[X] and that the expected number E[X] of non-zero
vectors of weight < a in such a code is given by

Bm,a-i—r,a -1

E [X] - quz

)

where By, 4+r,q is the size of a ball of radius a in Fgﬁ;r in the rank metric. Finally, by [Loil4,

Proposition 1], the size of such a ball is of the form © <q(m+“+’")a*“2> =0 (q(m”)a) for
any nonnegative integer a < m when ¢ goes to infinity.

7.4.3 Application to Generic MinRank

The reduction that we have just sketched for the RD problem also applies to MinRank.
This time, the relevant assumption is

Assumption 9. We assume the first d columns of the low rank matrix M are linearly
independent.
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Under Assumption 9, we will restrict ourselves to the elements of

def I, de(ncfafd) —-A dxa
7?/-/\/IMR = PA = O(ncfafd)xd Inc—a—d O(ncfafd)xa tAe IFq
Ouxd Oax(ncfafd) I,

To explain the form taken by the reduced RD problems we got in Subsection 7.4.2, recall
that it was convenient to put the generator matrix of the transformed code Cyp = CP 4
in systematic form. We start by introducing a similar formalism for Problem 3.1 from
which we will derive analogous results (Proposition 7.9).

In the MinRank case, it will be worthwhile to view a matrix as the vector formed by
the concatenation of its rows. To present the relevant systematic form that we will use,
we bring in the invertible linear map

p  FrXne _y [fene (7.19)
A = (Aij)ic1.m}jell.ne}s

where the image of p(A) is formed by the entries of A in column-major order. We can
now define

Definition 7.1. Let M, ..., M g be matrices in IF;‘"‘X”C and let £ be the linear code of
length n,n. generated by the vectors ¢(M;) for i € {1..K}. We consider the generator
matrix

(M)
LYoy, My : e FExmeme,

w(MK)

As noted in [BESV22, §4.4], any elementary row operation on L corresponds to
linear transformations of the variables z;, i.e., we can always replace the initial MinRank
instance by an equivalent one with L in echelon form. A stronger constraint is

Definition 7.2. We say that a MinRank instance (M; M, ..., M) is in systematic
form if its associated generator matrix L(M,..., M) is. We denote by S the set of
all systematic positions.

Remark 7.1. Tt is not always possible to put a MinRank instance in systematic form, as
a permutation of the columns does not always preserve the rank of the n, x n. matrix
associated to the row (this permutation must have a block structure so that it also acts
as a permutation on the columns of the matrix). However, [BESV22] note that a random
instance will be in systematic form with high probability.

Let us set J < {ne —a + 1.n}, J el {1..n.}, and let I be the elements in

{1..n,n.} that correspond to the columns indexed by the positions in J, that is [ aef
Ujes{(j — D)ny + 1..jn,}.
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Proposition 7.9. Let (Mo; M1,...,Mg) € Fym*" be an inhomogeneous MinRank
problem with rank d. Assume that the number a of fixed columns is such that an, < K
and that the solution x satisfies M, j = Op, xq, or equivalently o(Mo)r + Ly 1 = Oqp, .
Let £ % S1(L) be the code L shortened at I. If we assume that L' is of dimension
K — an,., then the solution x can be deduced from the solution to a smaller MinRank
instance (My; MY ..., MY .. ) in IF;’;TX(”C‘“) with target rank still equal to d.

More precisely, by Gaussian elimination on L, we can obtain a generator matriz of
L in systematic form on the columns in I, i.e., after permuting columns to bring these
positions to the last an, ones:

L O(K—anr)xanr
DL — { B e

where D € IFfXK is invertible and where the matriz L' € FgK_anT)XnT(nc_a) generates

L'. Finally, for every i€ {1..K — an,}, we define M, to be the n, x (n. — a) matriz
corresponding to the i-th row of L', and®> M) e e H(o(Mo); — o(Mo);B), where
=l {L.nyn\I. Then (My; M7,..., M _,, )€ Frr* (e s o MinRank instance
with target rank d whose arbitrary solution x’ gives a solution x = D(x’ ") to the
initial problem with €” = —p(My);.

Proof. To simplify the exposition, we assume that the positions in {1..n,n.} have
been permuted, so that the last an, positions belong to I. By hypothesis, we have

DL, = {IO ], so that if €D~ = (x’ ") with @’ of size K — an,, the hypothesis
an,

©(Mo)r +x Ly = 0 is equivalent to " + p(Mg); = 0. As M ; = 0, the matrix M ;
is of rank d. It is given by

(p(Mj) = (p(M)IV =x'L’ + "B + (,D(Mo)j
=a2'L' — (p(M())[B + (,D(M())IV,

K—an,

say M ; = M + Z x; M.
i=1

This is indeed the smaller MinRank problem described in the proposition. ]

Finally, we give a simple case where the shortened code has maximal dimension when
we do the product by all elements P4 € RMygr. Lemma 7.5 requires (d + a)n, < K
and it is the MinRank counterpart of Lemma 7.2.

Lemma 7.5. Let us assume the MinRank instance (Mo; M1, ..., M) is in systematic
form on a set of positions S that contains {1..dn,} U I and let L be the matriz code
generated by (My,...,Mg). For any A € nga, the shortening of LP 4 at I has
dimension K — an,.

: . X — —
*We abusively use the same name ¢ : Fj7*"e — Fyv" and Fq" (ne=a) _, prr(ne=a),
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Proof. For i € {1..K}, the matrix M# et M ;P 4 is identical to M; on the columns
with indexes in .J and the other ones are such that (M%), ; = (M;)s.y — (M) 1.0} A
We may reorder the indices in {1..n,n.} so that the systematic positions are the first
K ones and such that I = {dn, + 1..(d + a)n,}. If the input instance is in systematic
form, then for u € {1.n,}, v e {l.n.}, i = (v—1)n, + v € {l.nyn.}, the submatrix
(M )y {1..d+a}y has at most only one nonzero entry equal to 1 in position (u,v) if v < d+a
and it is all zero otherwise. This means that

(M) (1.4 = On, xd, hence MA = M, if i >dn, + 1,
and that if i € {1..dn,},
0
(Mf)*,J = _A’U7>I< )
0

where the non-zero row is the u-th row. This eventually shows that the generator matrix

positions in [

coefficients
14, ( der;;ﬂj;ﬂ%) 0 L1 an, ) {(d+a)ne+1.n0ne)
La= 0 Ion, 0 Lan,+1..(d+a)n -} {(d+a)ne+1.n0mc)
0 0 Ik _(dvayn.  Lid+ayn, +1.K},{([d+a)n+1.nne}

for LP 4 is full rank on the columns in I and thus that the shortening at these positions
has dimension K — an,.. ]

7.4.4 Probabilistic Version

The deterministic approach presented in the previous sections does not work if the initial
conditions on the solution M to the MinRank problem or on the solution e to the RD
problem are not met, i.e., the first d columns of M are not linearly independent nor the
first r entries in e are not linearly independent over F,.

We propose to fix this by considering instead a randomized algorithm, which consists
in multiplying the instance on the right by a random invertible matrix P over F, (no
longer in RM nor in RMyyr), which produces a new problem instance which satisfies
the right assumptions with constant probability and on which we can apply the former
technique. Let us detail the case of MinRank. Once we have solved the new instance,
we recover the solution to the original one simply by multiplying on the right by P~
The plain idea might even be improved slightly by multiplying on the right each time by
a new P and by directly including the bet on the a columns equal to 0 (in other words,
we directly consider the smaller instance with parameters (n,,n. — a, K — an,,d)). This
has a probability of €2 (q_“d) to happen.
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7.5 Application to MinRank and to RD Instances

This section provides the bit complexity of our hybrid approach. In Section 7.5.1, we
apply it to the SM solver on random MinRank problems. In Section 7.5.2, we present
its results on the new RD modeling. In both cases, we compare ourselves to previous
attacks.

7.5.1 Support-Minors on Generic MinRank

First, we obtain smaller complexities than the ones corresponding to the specialization of
[Bar+20b] by fixing linear variables. This is because we exploit the MinRank structure
and not only the bilinearity in the SM system. More interestingly, our technique offers a
trade-off between combinatorial attacks (e.g., Goubin’s kernel search) and pure algebraic
methods. Indeed, the bet that we make can be seen as guessing a > 0 vectors in the
right kernel of the low rank matrix similarly to Section 3.1.3.1. The difference here is
that we consider less vectors since we do not need to solve in degree 1.

Table 7.1 summarizes our results on the MR-DSS parameters [BESV22|, where A is

the security level. Column “Kernel (a)” is the cost of kernel search given in Equation

(3.5) with a = [£]. Column “Hybrid Kernel (a) [BESV22]” is the optimized kernel

Ny
attack of [BESV22]* which consists in guessing a < [n—[i] vectors instead of the maximum
number and then in solving the resulting MinRank problem using standard kernel search.
Its improvement upon Goubin’s complexity is by a polynomial factor in Equation (3.5).
Finally, regarding our attack, we report the triplet (b, a, neols) which leads to the best
cost: the number of guessed columns is a, the number of columns in the reduced MinRank
problem is ngos < ne — a, and b is the degree at which we solve via SM. Our values
were obtained with w = 2 as in [BESV22| and with a hidden constant of 7 in Strassen’s

algorithm.

Table 7.1: Comparison to kernel search variants on the parameters of [BESV22].

(¢,nr,ne, K,d) | A ||Kernel (a)|Hybrid Kernel (a) [BESV22]|Hybrid SM (b, a, ncols)
(16,16, 16, 142, 4)|128]| 166 (9) 158 (8) 161 (5, 6, no — a)
(16,19, 19,167, 6)(192| 238 (9) 231 (8) 931 (7, 6, ne — a)
(16, 22,22, 254, 6)|256 | 311 (12) 303 (11) 207 (1, 11, ne — a)

Note that the parameters proposed in [BESV22] already take into account our attack.
It is likely that it will also be the case in MinRank-based signatures submitted to NIST,
including [ARV23].

7.5.2 Combined Approach on Rank Decoding

A motivation for introducing SM—IF;Fm to solve the RD problem was also to have a
system that we can better analyze than the combination between MM-F, and SM-F,

3This attack is given in a revision of the paper which is subsequent to our work.
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considered in [Bar+20b]. In particular, we start by correcting the underestimated values
of [Bar+20b, Table 3] regarding the complexity of this former modeling, on ROLLO-I.
In Table 7.2, they correspond to the struck out numbers. There, we give the binary
logarithm of our attack cost and we keep track of the optimum values of a and b.
We compare ourselves to the combinatorial attack of [AGHT18] (“comb”) and to the
hybrid MaxMinors attack (“MM-IF,”). In contrast to [Bar+20b, Table 3] where all these
numbers where obtained with w = 2.81, we adopt the optimistic choice w = 2.

Table 7.2: Comparison between known attacks on the new ROLLO-I parameters
in [Bar+20b] and [Agu+20] after the 2021-04-21 update. The “*”-symbol indicates
that the best attack is on the code of parameters (m, 2k — [%J k- [%J ,d) used for key
recovery, where d refers to the row weight of the LRPC code. Otherwise, it corresponds
to solving an RD problem with parameters (m, 2k, k, ).

Instance q| k | m |r|d|MM-F;| a |p SM—IF;m b| a ||comb
new2ROLLO-1-128|2| 83 | 73 |7|8| 205 |[18|0| 486 202 [2|13| 212
new2ROLLO-1-102|2| 97 | 89 [8|8|| 226* |17|0(397* 223%* 1|14 282*
new2ROLLO-1-256|2|113|103(9|9|| 371* |30|1(283* 366*|1|27| 375*
ROLLO-I-128-spe |2| 83 | 67 |7|8| 212 [19]0 214 2/15|| 196
ROLLO-I-192-spe 2| 97 | 79 |8(8]| 242* |19]0 241* |2|15]| 251%
ROLLO-I-256-spe |2(113| 97 |9(9]| 380* |31|0 376%* 2|27(/353*

Figure 7.1 and Figure 7.2 contain a broader comparison between the same RD
attacks for (m,n, k) = (31,33,15) and for a weight r between 2 and 10 which is the rank
Gilbert-Varshamov distance when ¢ = 2.

Figure 7.1 represents the case ¢ = 2. In this setting, we can see that algebraic attacks
seem to become less efficient than the combinatorial ones for large r. This confirms the
observation made in Section 3.3.5.2 and which lead the designers of [Agu+22; Ara+22]
to increase the rank of the error. Note also that in [Agu+22], choosing d of the same
order as r increases the rank of the moderate weight codewords in the masked LRPC
code and thus it may allow to gain confidence in the indistinguishability assumption.

Figure 7.2 represents the case ¢ = 28, where the combinatorial attack becomes much
slower. The complexity of the hybrid technique on MM-F, and SM—IF;;m also worsens
but by a lesser amount since the cost contains a part which is independent from g,
for instance (”;a)w in MaxMinors. Independently, we notice that the approach based
on SM—F;% starts being interesting compared to MM-F, for small values of » when ¢
increases. Since the hybrid component of the complexity is polynomial in ¢ and since
it is more in important in MM-F, than in SM—F;FW (we can solve the latter at a larger
b by fixing less columns), the dependency in g is clear. The condition on r might be
explained by the fact that SM—IF;% yields bigger Macaulay matrices than MM-F, due to
the extra block of linear variables. These sizes may have even more impact when r is
larger since the block of minor variables also becomes larger.

Finally, we plot in Figure 7.3 the optimal values of a for the hybrid approach on
MM-F, and SM—IF‘;m for ¢ = 2 and ¢ = 25.
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Figure 7.1: Binary logarithms of the complexities of MM-F,, SM—IF;% and of the
combinatorial attack on RD instances with fixed (¢, m,n, k) = (2,31, 33, 15) as a function
of the rank r. The rank Gilbert-Varshamov distance is 10.
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Figure 7.2: Same comparison as in Figure 7.1 but with ¢ = 28.
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7.6 Application to the RSL Modeling

As announced at the end of Section 6.3.3 in the previous chapter, we finally come back
to the hybrid approach on Modeling 13. Once again, we will multiply on the right by
an invertible matrix P € [F;*" of the desired shape to force zero positions in the target
codeword e. Let us recall that the number of syndromes is N. For any i € {1..N}, we
observe that

eiH = e,PP'H" =e,P(HP )T =5, (7.20)



130 Chapter 7. Rank Decoding Problem, MinRank and Hybrid Techniques

Figure 7.3: Optimal value of a in the hybrid approach on MM-F, and SM—FJm for the
parameters of Figure 7.1 and Figure 7.2.
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Concretely, we use Equation (7.20) by keeping the same syndromes s; for i € {1..N}
but by considering the Fym-linear code with parity-check matrix H (P~1H)T and which

is simply CP. As in the RD case of above, we then shorten this code at the position

g {n—a+1..n}. Of course, we will need the same assumption regarding the dimension

of §;(CP) for the analysis but there is nothing new compared to Section 7.4.2 in that
respect. Contrary to what we have seen for MinRank and RD, note that this approach
has no effect on the linear variables A; from Modeling 13.



Rank Decoding Problem with
Non-Homogeneous Errors

This chapter contains our results on the Non-Homogeneous Rank Decoding problem
(NHRD, Problem 8.2). This work was initially motivated by its use in the Rank Quasi-
Cyclic (RQC) cryptosystem [Agu+20] to mitigate the impact of the algebraic attacks of
[Bar+-20a; Bar+20b]. More importantly, it also helped to select the parameters of our
new proposal [BBBG23], a more compact version of RQC.

First, we re-evaluate the complexity of the MaxMinors attack. We follow the
specialization adopted by the RQC submitters [Agu+20, §6.2.2] and we correct their
initial analysis by studying algebraic relations which occur in the system after fixing
variables. Second, we propose a simple adaptation of combinatorial techniques to the
non-homogeneous structure. There, the main technical point was the computation of
the underlying success probability.

Contents
8.1 Preliminaries . . . . . . . ... 131
8.1.1 RQC Cryptosystem . . . . . ... ... ... ... ..., 132
8.1.2  Non-Homogeneous Rank Decoding Problem . . . . .. ... 133
8.1.3  Making RQC More Efficient . . . . . . ... ... .. .... 133
8.1.4  Algebraic Analysisof NHRD . . ... ... ... ...... 135
8.2 Understanding MaxMinors on NHRD . . . . . ... ... ... ... 136
8.2.1  Effect of Fixing Variables . . . ... ... ... ... .... 136
8.2.2  Solving the Projected System . . . . ... ... ... .... 139
8.3 New Combinatorial Attack on NHRD . . . . ... ... ... .. ... 141
8.3.1  Probability of a Correct Guess . . . . .. ... ... . .... 141
8.3.2  Complexity of the Approach . . . . . .. ... ... ..... 144
8.3.3  Optimization Problem . . . ... ... ... ......... 144

8.1 Preliminaries

We start by describing the basic RQC scheme submitted to NIST and by explaining the
relevance of using non-homogeneous errors in this context. We then introduce our new

RQC variant. Finally, we give details on the preliminary analysis of NHRD made in
[Agu+20, §6.2.2].
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8.1.1 RQC Cryptosystem

For positive integers m, n and w, let
Sp(Fgm) = {x € Fm : [z| = w},

n
w,1

(Fgm) = {x € Fym : || = w and 1 € Supp(=x)},
and for a vector g € )} (Fym) with necessarily n < m and k < n, let G4(n, k,m) be the
Gabidulin code of dimension k generated by g (see Definition 3.5). Recall that such a
code can correct up to ["Tfkj errors in an efficient manner. In particular, let Gg4.Decode(.)
denote a polynomial time decoding algorithm.

This section presents the PKE version of the scheme as it was before the update of
[Agu+20]. In its name, the letters “QC” refer to the ideal structure. More precisely,
quasi-cyclic codes have been replaced by ideal codes between the First and the Second

Round due to the folding attack [HT15].

Setup(1"): Generates and outputs param = (n, k, §, w, wy, P), where (n, k, 6, w,w;) €
N* and where P € F,[X] is an irreducible polynomial of degree n.

Keygen(param): Samples h € Fl, g € S'(Fym) and (x,y) € S (Fym), computes
G € F’q“nxq” a generator matrix of the Gabidulin code Gg4(n,k,m), sets pk =
(g,h,s =x + h-y mod P) and sk = (x,y), returns (pk, sk).

Encrypt(pk,m,6): Uses randomness 6 to generate (r1,e,72) € Sor'(Fgm), sets u =
r1+h-ry mod Pand r = mG + s-ry + e mod P, returns ¢ = (u,v).

Decrypt(sk,c): Returns Gg.Decode(v —u -y mod P).

A first remark is that the code Gg4(n, k, m) is publicly known. Therefore, as already
mentioned, the security is not related to masking a Gabidulin code. It turns out that
the unique hardness assumption to prove IND-CPA is the difficulty of the ideal version
of RD. More concretely, one can hope to attack two types of instances:

[z y] [I, ZIM(R)] = s, |(2,y)| = w. (8.1)
T
[r1 e 2] {IO” Ion gﬁ((g] =[uv—mG]|, [(r1,e,72)| = wi. (8.2)

On the one hand, Equation (8.1) corresponds to an RD problem with parameters
(m,2n,n,w) whose solutions lead to key-recovery. On the other hand, solving the
instance of parameters (m,3n,n,w;) given by Equation (8.2) allows to retrieve the
message.
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8.1.2 Non-Homogeneous Rank Decoding Problem

In RQC, the fact that these two instances do not come from masking a secret code is
precisely why it was possible to replace the RD assumption by a more structured one.
More precisely, [Agu+20] introduce the following problem:

Problem 8.1 ([Agu+20]). Given a full-rank matriz H € Fglﬁxgn, integers (wy,ws) €
N2 and s € Fglh, find a vector e = (e1,ez,e3) € ]Fg%, e1 € Fim, € € Fim, €3 € Fm,
such that eH' = s, |(e1,e3)| < wy, |e2| < wy + w2 and Supp(ey, e3) = Supp(es).

Concretely, instead of sampling a random (71, e,73) € So7(Fgm), the new variant
[Agu+20] picks a random (71, e,r2) € Fgfh such that |(r1,72)| = w1 , |e|] = w1 + wy and
Supp(r1,r2) < Supp(e), where we € N is an additional parameter. In this way, Equation
(8.2) becomes an instance of Problem 8.1 where the error e has maximum weight. The
rationale for using such an assumption was to have more flexibility when choosing the
parameters. On the one hand, RD with parameters (m, 3n,n,w;) reduces to Problem
8.1 with we = 0 [Agu+20, Proposition 2.1.1]. On the other hand, a non-homogeneous
vector of weight (wy,ws) is both easier to decode and to store in practice than a random
vector of weight wi 4+ ws in FZ%.

Problem 8.2 introduced in Section 3.3.5.2 and recalled below is a generalization of
Problem 8.1 where the blocks ey, es and e3 do not have the same size. From now on,
we will focus on this second version.

Problem 8.2 (Non-Homogeneous Rank Decoding (NHRD) problem). Given

. % (2 .
a full-rank matriz H € F((Z?fm) ( n+n1), integers (w1, ws) € N and s € FZ;I”I, find a
vector e = (e1,es,€e3) € Fgﬁ“”, e1 € Fim, ey € Fi, e3 € Ty, such that eH'" = s,

|(e1,e3)| < w1, |e2] < wyp + we and Supp(ey, e3) < Supp(es).

Remark 8.1. In the following, an instance of Problem 8.2 will be referred to as a NHRD
instance of parameters (m,n, ny, wi, ws).

8.1.3 Making RQC More Efficient

While NIST appreciated the absence of secret code in RQC, they pointed out slightly
poorer performances compared to ROLLO [Ala+19, §3.16]. The need of greater efficiency
was also increased by the recent algebraic attacks [Bar4-20a; Bar+20b] since they lead
to choose higher parameters.

In [BBBG23], we proposed a new version of the scheme with sizes reduced of the order
of 50%. Moreover, similarly to [Agu+22], we managed to obtain a competitive variant
without ideal structure. In this work, I was the sole contributor to the cryptanalysis of
NHRD but I have not taken part in the design of the construction. Still, let us start by
presenting the additions to [Agu+20] which explain why it can achieve such performance
gains. First, we adopt the error distribution of Problem 8.2, namely (71, e, r2) such
that [(r1,72)] = w1 , |e] = w1 + w2 and Supp(ry,r2) < Supp(e). The difference with
Problem 8.1 is that we might consider e € F:}*ln with n; # n if it is relevant.



134 Chapter 8. Rank Decoding Problem with Non-Homogeneous Errors

Multiple syndromes. As pioneered in [Agu+22], several syndromes are packed in
one ciphertext. For nj, ny € N, let us denote by Fold(.) the linear map

v=(v1,...,0n,) €EF "™, v;eFa — [v] .. v} | e Fpa*™.
Its inverse is denoted by Unfold(.). Let us also extend the dot product modulo P between
vectors in T to the one by M e Fj2 "
def
v-M < [(U-Ml’l)T...(v~MT )T

*,11
The idea now is to consider ng non-homogeneous error vectors (ng ) el ), rgj )) for j e
{1..n2} which have the same support. Here, the ideal structure requires to choose the

three blocks rgj ), el and rgj ) of the same size n1. These errors are then grouped as
the matrix [R1 FE Rg] € IE"Z%X?’”l defined by

. de i de : de 1
Vi€ {l.no}, (R)jw 2 v (B);, @ e and (Ry);. < r{).

For a message m € F’;m of the same length as before, we pick h € IF‘;% and we keep the
definition s = x + h -y € Fi, where (z,y) € 812”"12 (Fgm). The new ciphertext is (U, V)
with U = Ri +h-Rs € IFZ%XM and V = Fold(mG) +s- Ry + FE € FZ‘%X"I. Finally,
decryption works as in the original scheme by decoding the vector Unfold(V —y - U) in
the Gabidulin code generated by G € F%". The crux is that this vector has the same
weight as the ng individual errors because their supports have been taken equal.

This trick allows to significantly decrease the public key size. In the original scheme,
recall that both public key and ciphertext could be seen as vectors whose length is a
constant multiple of the code length n. This time, the ciphertext (U, V) € Fgz™" x
F72X" can be stored as a vector of length 2niny (where niny plays the same role
as n) but the quantities h and s which appear in pk have length ng instead of nins.
This represents a reduction by a factor of the order of ny compared to the size of the
ciphertext.

Similarly to [Agu+22] where it was introduced, this technique comes at the price
of relying on the RSL problem. More precisely, we require an ideal version with non-
homogeneous errors, referred to as NHIRSL in [BBBG23, p. 9].

Changing the public code. Another contribution was to replace the public Gabidulin
code by another one which can correct more errors under certain conditions. Its definition
is as follows.

Definition 8.1 (Augmented Gabidulin code). Let (k,n,n’,m) € N* such that
k<n <m<mn Letg= (g1, ,9w) € S (Fym) and let g € Fym which is equal
to g padded with n — n’/ extra zeroes on the right. The Augmented Gabidulin code
Qg (n,n', k,m) is the code of parameters [n, k]~ defined by

G (n.n' k,m) & {P(g) : deg,(P) <k}
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where P ranges through the set of ¢g-polynomials, deg,(.) is the g-degree and P(g) def

(P(g1)y---,P(gn),0,...,0).
n'—k

The motivation is to go beyond the correction capacity | 5| of a Gabidulin code of

parameters [n’, k],m for some noise patterns. Indeed, for any € € {1..min (n —n’,n’ — k)},
a code as in Definition 8.1 can decode in a deterministic way errors of weight < [%J
whose last n — n’ coordinates span a vector space of dimension > €. In the general case,
this gives an algorithm with non-zero DFR by making a bet on the dimension on this

subspace [BBBG23, Proposition 2].

Removing ideal matrices. The gain in performance provided by these modifications
has led us to propose a non-structured version which remains very efficient. Roughly
speaking, the secret key now contains matrices (X,Y’) and the dot products h - Ra,
s- Ry are replaced by a standard matrix products RoH and R».S respectively, where H
is a random matrix and where S = X + HY . Since we still want to keep ny syndromes
and to decode in a code of length ning, the number of columns in S and thus X, Y
must be ni. However, there is no constraint on the number of rows apart from the fact
that it is the same as the width of R; and Rs. Concretely, the latter will be an integer
denoted by n (be careful that the code length is ning here) which has no relationship
with neither nq nor no. This flexibility justifies the use of Problem 8.2 with n # ni and
it explains why our non-ideal variant can achieve competitive sizes.

8.1.4 Algebraic Analysis of NHRD

Already at the time of [Agu+20], the introduction of NHRD lead the RQC submitters
to analyze the new modelings of [Bar+20b] in this structured context. In particular,
they remarked that the shape of the error could be exploited to decrease the number of
minor variables.

To see this, let us consider a non-homogeneous vector e = (e, es, e3) where e, ez €
n
Fym, €2 € Fyn, [(e1,e3)] < w1, [e2] < wi + w2 and Supp(er,e3) = Supp(ez). In

[Agu+20, §6.2.2], the row support of Mat(e) € IFZIX(%JF"I) is written as

9

_ | €1 C2 O3 _ p(wi+ws)x(2n+n1)
©= [ 0Ch 0 ] e

where Cy, C3 € F1*", Cy € F1 " and C, e [Fy2*". The point now is that all the
minors |C|, , #T = w1 + wy such that T'n {n + 1.n + n1} < wp — 1 vanish. As a
consequence, [Agu+20, §6.2.2] suggest to fix the corresponding unknowns to zero in the
MaxMinors and Support-Minors systems. This set of variables is given by

Cdif {ep : #T = w1 +wy and #(T n{n+ 1l.n+n1}) <wy —1} (8.3)
and it is of cardinality

wo—1
def B ni 2n
M e Y (J(wlw?_i). (8.4)

=0
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While the resulting modeling is clearly easier to solve since there are less variables,
we noticed that there were linear dependencies in the specialized system that had not
been taken into account in [Agu+20, §6.2.2].

8.2 Understanding MaxMinors on NHRD

In this section, we explain why we find less linearly indepedendent equations in the
MaxMinors modeling when the abovementioned minor variables are fixed to zero. We
then give a more realistic complexity formula for the MaxMinors attack.

As in the plain case, our analysis is on the system over F,= before projecting the
equations. There, this system was referred to as the MaxMinors system over Fgm,
MM-F,n or even Modeling 6. For the sake of simplicity, we will keep the same names
in this structured setting. The final cost estimate will be deduced in the same way as
in RD by assuming that there are no extra relations in the projected equations. Since
NHRD does not rely more heavily on the extension field than RD, we believe that such
an hypothesis is not significantly stronger than our assumption in the latter situation —
Assumption 1 — stating that the equations of the projected MaxMinors modeling (e.g.,
MM-F, or Modeling 7) were as linearly independent as possible. Still, as there are less
unknowns in the present case, the cancellation of few correlated coefficients (which is
likely to happen over F, for small ¢) may have more impact.

8.2.1 Effect of Fixing Variables

We now study the behaviour of the equations over [Fy» under the relevant specialization.
First, let us recall the following result that we have already used in Chapter 7.

Lemma 8.1 (Proposition 2, [Bar+4-20b]). With the notation of the MaxMinors
modeling over Fgm (Modeling 6), we have

Py=cjin+1 + Z CT‘Hy‘J’T. (8.5)
T-c{l.n+1},TTc(J+n+1)
T=T-UT+, #T=wi+wa, T~ %
Similarly, we will sort the minor variables ¢y with reverse lexicographical order
according to T'. The leading term of Pj is then equal to cjyni1.

To analyze the system, Equation (8.3) lead us to separate the initial MaxMinors
equations into several subsets in function of the presence or the absence of elements of ¢
in such polynomials. More precisely, we consider the partition P = Piogt LI Prest U Pindep,
where

Prost < APy #J = w1 +ws and #(J A {L.(n1 — 1)}) < wo — 2},

Prost & {Py - #J = wy +wo and #(J A {1.(ng — 1)}) = ws — 1},

Prndep 2 Py 4T = w1 +ws and #(J A {1..(ny — 1)}) > ws} .
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Using Lemma 8.1, it is easy to grasp the shape of the equations from Pios; and Pindep
after specialization.

Lemma 8.2. By fizing the minor variables from ( to zero in Modeling 6,
1. The equations in Pist all become the zero polynomial.

2. The equations in Pipqep keep the same leading terms so that they remain linearly
independent. They generate a space of dimension

#Pindep = Z;ﬂzl;wz (nlj_l) (w1+7111}2—j)'

Proof. For the first item, let us consider J < {1..n +ny — 1}, #J = w; + ws such that
Pj € Piost- By definition of P, the intersection of J +n + 1 with {n + 2..n + ny} is of
size < wg — 2. Thus, any subset T' =T~ uT" < {1..2n + ny} such that T~ < {1.n + 1}
and Tt < J + n+ 1 satisfies #(T n {n+ 1.n + n1}) < wy — 1 (because T~ might also
contain n + 1). By Equation (8.3), this means that ¢ € ¢. The conclusion follows from
the expression of P; given in Equation (8.5).

For the second item, recall that the leading monomials in Modeling 6 are initially
all different and that the one of Pj is equal to c¢jyn+1. When P; € Pipgep, this variable
does not belong to ¢ since #(J +n+1n{n+2.n+n1}) = #(J n{l.ng —1}) = wo.
Therefore, the leading terms are unchanged in Piqep and the equations are still linearly
independent. The last statement on the dimension is obvious. ]

Contrary to the ones in Pipgep, the equations in Pres; have their leading monomials
included in ¢. Thus, in these polynomials, the leading term is affected by fixing variables.
More precisely, using Lemma 8.1, an equation Pj; € Pyest becomes

=~ def
Py = 2 T-c{l.n+1}, Tt (J+n+1) CT‘HZJLLT
T=T= 0T+, n+1eT~, #(TT ~{n+2..n+n1})=wo—1
= Z T~ c{l.n+1}, Ttc(J+n+1) CT|Hy|J7T‘ (86)

T=T-UT*, n+1eT~, Tt n{n+2.n+n1}=(Jn{l..(n1—1)})+n+1

From now on, to simplify the notation, we still denote the specialized system by
Prest = {Py}j. We study it in Proposition 8.1.

Proposition 8.1. The equations from the specialized system Prest are independent from
from the set of polynomials Pi,gep. They generate an Fym-vector space of dimension
(Z};j) ("w_ll) and they contain at most (Z);j) (1207;) variables.

The first statement of Proposition 8.1 is clear. Using Equation (8.6), the leading
monomial of P; € Pt is a cp variable such that n + 1 € T while the one of any
Py € Pindep is ¢jr4nt+1 which is necessarily greater. Thus, what is left to prove in

Proposition 8.1 is that Prest spans a space of dimension ("lj) ("_1) and that the

be owing re
ny— n

B ) For this we rely on the following results.
wo—1/ \wy

number of variables is (
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Lemma 8.3. For any subset A < {n + 2..n +nq} such that #A = we — 1, let

Prest, A def {P;j:PrePrsand Jn{l.ng —1} =A—(n+1)}. (8.7)

The polynomials in Prest 4 have their monomials included in a set pa of size (120?)
Moreover, for any A # A’, the sets ua and py are disjoint.

Lemma 8.4. For any subset A < {n+ 2..n + n1} such that #A = wy — 1, let Prest.a as
defined in Equation (8.7). We have

diqum <7D7"est,A> = (nil)- (88)

w1

Conjecture 8.1. For any subset A < {n + 2..n + n1} such that #A = wa — 1, we will
assume that Equation (8.8) is an equality.

Before giving more details on the proofs, let us remark that Proposition 8.1 indeed
follows. First, Lemma 8.3 shows that we have the direct sum of F m-vector spaces

<Prest> = @ <Prest,z4> (8'9)

Ac{n+2.n+n1}, #A=wa—1

and that the total number of monomials is at most

(2n) X#{A:Ac{n+2.n+n1} and #A =wy — 1} = (fﬁ) (n171).

w1 wo—1

Then, the dimension (Piegt) is obtained from the direct sum of Equation (8.9) and from
that of the (Prest,4)’s provided by Conjecture 8.1.

Proof of Lemma 8.3. Equation (8.6) shows that we can take
A = {er : T < {1.2n4+n1}, #T = wi+ws and n+1€ T and Tn{n+2..n+n } = A}.
This set is of size (3}?) and it satisfies pa N p/y = & when A # A’ O

Proof of Lemma 8.4. Using Equation (8.6) once again, it is readily verified that the set
of leading monomials of all equations in Prest, 4 is

74 {cpanyoac 1 U {(n+n1 +2).2n +m1)}, #U = w}.

Since the equation Py, with Jy +n+1= A u {n+n; + 1} U U has leading monomial
C{n+1}uAuU € T4, this shows that dimg,,, (Prest,A) = #Ta = ("ujll) O

Before moving on to the next section, we give a sketch of reasoning for Conjecture
8.1. Note that a greater dimension than claimed in this conjecture for (Prest,a) would
be in the attacker’s favour.
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Argument for Conjecture 8.1. We implicitly use a randomness assumption on the entries
of the Py’s in Fym that we will not formalize any further. More precisely, we want to argue

that there is no element in (Prest, 4) Whose leading term does not belong to 74. Let us

consider Vy def {v%‘l) < < U(J) such that Py € Prest, 4 with J+n+1 def AuVjy. The

w1 +1}
variables from P; which belong to 74 are the ¢ ‘s such that 1 < j < wy+1.

{n+1}oAuV\{v}"}
To kill its leading monomial, we have to add an equation with the same one, namely

some P} with J' # J, J'+n+1= A U Vy and such that VJ\{U(J)} = VJ’\{UU/)} = B for
1 1

some subset B of size wy + we — 1. In this case, one can check that the only monomial
from 74 present in both Py and Py is ¢g,413040- This means that Py+ A Py contains
at least 2w; monomials from 74. Similarly, by using a third subset .J”, we can kill
at most one extra monomial in P; and in the worst case one in Pj as well. This
implies that a linear combination of the form Pj; + Ay Py + Ay Pyn will contain at
least 2(wy — 1) + (w1 + 1 — 2) = 3(w; — 1) monomials from 74, the lower bound being
reached if and only if those monomials in Py and P} are killed at the same time by
Ay Pyn. This is extremely unlikely if the coefficients of the MaxMinors equations are
random in Fgm. Thus, we may assume instead that Py + Xy Py + X7 Pjn contains at
least (w1 —1) +wy + (w1 +1—1) = 3wy — 1 monomials in 74. Relying on the same type
of assumption, one can proceed by induction on the numbers of terms to show that a
non-zero linear combination in (Pregt, 4) always has a monomial in 74. O

8.2.2 Solving the Projected System

Since we keep the same method as in the non-structured case, we need to consider
equations unfolded over the small field. More precisely, we will project the specialized
systems Pindep and (a basis of) Prest over Fy. As already mentioned, we do not expect
extra relations apart from those triggered by a too small number of monomials.

Assumption 10. Let Piyaepr, (resp. Prestr,) be the system over Fy obtained by

. . . d . d
projecting Pingep (resp. a basis of Prest), let Nf, 2] dimp, <77mdep,]yq>, let vr, 2]

dimp, <Pr€st7[5‘q> and let M as defined in Equation (8.4). We assume that

Nf, = min (meler2 (mfl)( " )v (2n+m) - M - 1)

q 1=w2 ) w1 +wa—1 w1 +wsg

and
vR, = mdim]}?qm <Prest> = m(Z;:D (nw_11)’

provided that the latter is < ("1_1) (2")

wo—1/ \wq

Remark 8.2. We chose not to give an estimation of v, when m(gzj) ("u;l) > (Z;j) (3}?)
-1

For cryptographic parameters, we always had m(”w1 ) & (fﬁ) Interestingly enough, our
Magma experiments were inconclusive in the other scenario.
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Since the system Pregt,r, is very underdetermined, one can imagine to use its equations
to substitute vp, variables in the system Pingepr, to get a new system P{ndepﬂq. As we
do no longer control the leading terms in the projected modelings, we make an additional
assumption.

Assumption 11. Let P;ndep,ﬂ“q the system constructed from Presir, and Pindepr, as
described above. We assume that

diqu<P§nd6p7Fq> = min <dimﬂrq <73mdep71pq>, (5;?1%) - M —vp, — 1).

Theorem 8.1 (Under Assumptions 10 and 11). Let Pindepr, and Presr, denote
the projections of Pindep and a basis of Prest respectively. We consider Pz{ndep,Fq the
linear system obtained from Pinaepr, by plugging vr, equations from the echelon form of
Prest, to substitute variables. When N]Fq = (5)?1312) — M —vp, — 1, we can solve the
NHRD instance of parameters (m,n,ny,wy,ws) by inverting P;ndepﬂq. The complexity

in F,-operations is
2n+ w-l
O <NFQ ((w?+2)12) - M - VFq) > ’

where w is a linear algebra constant.

When the condition of Theorem 8.1 does not hold, we propose a similar hybrid
approach as in the RD case. In fact, like it was done in [Agu+20, p. 6.2.2], we can
take advantage of the particular structure of C by fixing columns containing only w;
non-zero coordinates in Equation (8.1.4). Indeed, this leads to a smaller exponential
factor of ¢*“! in the final cost compared to the naive ga(w1+w2),

Corollary 8.1 (Under Assumptions 10 and 11). Let a € N be the smallest integer
such that
N, = (Fm-a) — M, — g, — 1, (8.10)

q w1 t+ws2

where M, def Z;’Jjal (") ( 2n—a ). The complexity in Fy operations of the hybrid

7 w1 twa—1i
approach on Piyge, v, by fizing a >0 columns in {1.n} U {n +n1 + 1.2n+n1} ds

9 _ w—1
© <qaw1NFq <( Z:Euza) — M, — VFLI) > 7
where w is a linear algebra constant.

Remark 8.3. In Theorem 8.1 and Corollary 8.1, it is possible to remove Assumption 11
if we simply attempt to invert the system Pingep,- Since we consider less equations,
this will require a slightly stronger constraint on the parameters.

Finally, note that we have not tried to analyze Support-Minors (Modeling 4) in
this particular case. From a practical perspective, finding non-homogeneous error
patterns with rather small parameters to perform experiments but which do not lead
to degenerated systems was more difficult than for RD. In addition, the new results
presented in Chapter 7 were not known at that time.
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8.3 New Combinatorial Attack on NHRD

We also proposed a combinatorial approach which exploits the specific shape of the
error support. Recall that we are interested in noises of the form e = (e, ez, e3) €

de . . .
Fgﬁf”"l, e1, ez € Fm and ey € Fyi, such that Sy lef Supp(ey, e3) is of dimension wy,

So def Supp(ez) is of dimension w; + we and S; < Ss.

The only change in our algorithm compared to the plain RD setting lies in the guessing
step. For instance, we still make use of the parity-check equations from the augmented
code Cy e ®{Y)r,m with full-rank parity-check matrix H, € Fé%er*l)X(Qner). Since
the support of the entire vector e is So, applying the naive technique by forgetting the
structure would consist in picking a candidate subspace V of dimension r > w; + wo
containing S». To take advantage of the error pattern, our idea instead is to guess a V'
of dimension r > w; such that S; < V and a tiny chunk Z of dimension p € {1..m — r}
such that V and Z are linearly independent and Sy < V @ Z. The motivation is to
increase the success probability even if it may cause a higher number of variables in the
linear system.

The rest of the approach is the same as in RD. Concretely, in the system
(61,62,63)H; = 0, we express the coordinates of (ej,es3) in a fixed basis of V' by
introducing 2nr unknowns over IF, and those of e; in a fixed basis of V @ Z by adding
ni(r + p) extra variables. Then, we project the equations over F,. Finally, as long as

m(n+ny —1) = 2nr + ny(r + p), (8.11)

we can check the consistency of our guess by inverting the resulting linear system.

For values of r, p such that Equation (8.11) holds, we give an estimate of the success
probability in Section 8.3.1. We then deduce the cost of our technique in Sections 8.3.2
and 8.3.3.

8.3.1 Probability of a Correct Guess
Let us recall that S; = Supp(ei,e3) and Sy = Supp(es) are such that S; < So.

We consider 11 def Pry 7 [S1 <V, S c V@ Z], where the randomness is taken over
randomly sampled F,-subspaces V, Z < F;m which are in direct sum.
Lemma 8.5. We have

II = ‘1/32 [51 cV, 52/51 C (V@Z + Sl)/Sl]

21?/1“[51CV] [52/51C(V®Z+Sl)/51|51CV]

Pr
V. Z

Proof. We prove the first equality since the second one is just the definition of conditional
probability. Let 7 denote the projection Fgm — Fym/S; and let us consider the events

A% “S1cV,ScV@®Z” and B def “S1cV, S3/S1 < (Ve Z+ S1)/S1”. We show
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A = B by double-inclusion. By applying the projection map we already obtain A c B.
If we take the inverse image we get B < 7~ 1(B), where

7B «S) cVoand 7 (n(Sh)) c (VD Z + S1))”. (8.12)

Observe now that the event “m~1(7(Ss)) = 7~ H(m(V@® Z + S1))” is more explicitly equal
to

“Sy + ker(m) =S5y + S1 =59
cVe®Z+S + ker(m)=VAZ+S1+5=VOZ+5.”
Hence 7= 1(B) =“S1cV, Soc VR Z+81"=“51cV, SecV®Z =A. O

In II, the first factor Pry, [S; < V] is easy to deal with so we will focus on the second

one. We denote it by Ilcong def Pryz[S2/S1c (V@ Z +51)/51 | S1 < V]. Note that
we have the decomposition into disjoint events

{SQ/Sl (e (V@Z + Sl)/Sl ‘ S c V} = {52/51 C (V@Z)/Sl}

r1 Sa/51 Ve 2)/S:
:H){dlmﬂrq(SQ/SlﬂV/Sl) :Z’ 32/31 ﬁV/Sl C V/Sl }
= ]uj {Ag N B} y
£=0

where Ay e « dimg, (S2/51 N V/S1) = £” and B @ « Sz/gff‘}/sl c (V‘@/Zgl/sl ”. For
def def

¢ € {0..wa}, let py = Pr[Ayn B], let s, = Pr[Ay] and let t, “l pr [B| A¢] so that

pe = setg and Heong = D352 pe- To compute the first factor s;, we rely on

Lemma 8.6 (Lemma 9.3.2 p. 269, [BCN89]). Let F' be an Fy-linear space of
dimension n.

1. If X is a j-dimensional subspace of F, then there are ¢% (”;j)q i-dimensional
subspaces Y such that X n'Y = 0.

71—

2. If X is a j-dimensional subspace of F, then there are ¢(—0U—0 (n_g)q(i)q 1-
dimensional subspaces Y such that X n'Y has dimension (.

More precisely, we use item 2. with F' = Fym /Sy, fixed X = S5/S1 < Fgm/S1 of
dimension j = wp and random Y = V/S; < Fym /S; of dimension i = r — w;. We obtain

s, = gr—wi1=0)(w2—0) (%1152111152)(] (u?)q
¢ q (m—wl)
q

r—wi

(8.13)

For the second factor ¢, note that condionned on dimg, (S2/51nV /S1) = £ the probability

that S2/51 - (V(‘?/Zsz1/51

5375 AVT5 is the probability that a random subspace of dimension p
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contains a fixed subspace of dimension wo — £ in the ambient space ]F‘{/T;é‘lgl ~ Fgm/V.

From there we obtain

(wgp—ﬁ)q
wo—~. q
Finally, by combining Equation (8.13) and Equation (8.14),
m—wi—w2 wa p
pe = q(r—wl—f)(u&—f) ( r—wrln—_fw3q( l )q (t:;_—f)q (815)
(r—wl )q (wg—l)q

Recall that we were interested in the sum Il ,q = ZZZO pe. We show in Lemma 8.7
that we can approximate it by its first term.

Lemma 8.7. Let Hcong = >/2 pe, where pg is defined in Equation (8.15). We have

Po < Hcond < (q + 3)]90.
Proof. We only need to prove the upper bound on Il o,q. For £ € {0..w3 — 1}, we consider

the ratio Ay def pe+1/pe. Using the identity (Zﬂ)q = %(atl)q, we compute
explicitly
AZ _ q(rfwl7271)(w27271)7(r7w176)(w27€)

1— qr—w1—é 1— qwg—Z 1— qwg—f 1— qm—’r—w2+ﬁ+1
X

1— qm—r—wz-‘rﬁ-‘rl X 1— qZ-‘rl 1— qp—wz-i-ﬁ-‘rl X 1— qwg—é

~(r—w1—0)—(wa—t-1) ,, (1= ¢ (1 =g
(1 _ q€+1><1 _ qp—w2+€+1)'

=4q

Since (1 — ¢"~ 1= (1 — ¢»27%) < ¢"1=¢ x ¢*27¢, we then obtain

—w1—4 —L
Ay < q—(r—wl—f)—(wz—g—l) % g x g _ q
(1 _ q2+1)(1 _ qp7w2+€+1) (1 _ qé+1)(1 _ qﬂ*ﬂ)2+z+1)

20

q 1-
s (T —1)2 <4

1 20—02

This gives pr+1 < ¢ ~2p, and then by induction py < ¢ po for any ¢ € {0..wy — 1}.
By plugging this bound in the formula for Il.o,q, this finally yields

-
1_L:ond < (1 +q+ 1)170 + Po Z q2j J
Jj=3
<(+q+Dpo+po Y, a7 =(2+q+q%/(g—1)po < (g+3)po.
>3

O]

Estimate 1. We estimate the probability 11 by po Pry [S1 < V], where py is Equation
(8.15) for £ = 0 and where Pry, [S1 < V] is the probability that a randomly sampled
r-dimensional subspace of Fym contains S1.
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8.3.2 Complexity of the Approach

As in the case of standard combinatorial attacks on RD, the expression of the total cost
is straightforward from the knowledge of the success probability. In fact, similarly to
[AGHT18], we can take advantage of F,m-linearity by considering a greater one of the

fOFlll m 1
q —_—

1L 8.16
p— (8.16)

5£[EIQEIF;‘m, aSicV, aSy V@Z] A

Theorem 8.2. As long as Equation (8.11) holds, the complexity of our algorithm in
Fy-operations can be estimated by

@(q<w1+w2)(m—”—w2p—m). (8.17)

Proof. The polynomial factor coming from solving the final linear system is included in
the O notation. For the success probability, we use Equation (8.16) which gives a ¢=™
factor together with Estimate 1. Recall that

(r—w1)wa (m;qﬂ‘;u&)q (“[’)2)q

Po =4 GERRRGON

r—wi w2

Using (‘Z)q — O(¢"®?) when max (a,b) — +0 gives

po = @<q(r—w1)w2 % q—(r—wl)wg % q—wg(m—r—p)> _ @(q—’wg(m—T—p))‘

The other term Pry [S; < V] = (l;l)q/ (ﬂ)q is the classical one that is encountered

in combinatorial attacks on RD. We obtain @(q*wl(m*’")) and the conclusion easily
follows. O

The best cost obtained with such a strategy can be found by optimizing Equation
(8.17) over values of (7, p) which yield an overdefined linear system. For this computation,
we focus on the exponent of ¢ and we neglect polynomial factors.

8.3.3 Optimization Problem

The problem of finding the minimum exponent subject to our constraints can be seen as
a very small Integer Linear Program (ILP). More precisely, for (r, p) € N2, we want to
maximize the quantity

(w1 + wa)r + wap

under the constraints

2n+4+ny)r+nip <m(n+n; —1),
w1 <,

w2 < P

r+p <m-—1



8.3. New Combinatorial Attack on NHRD 145

To derive the parameters of [BBBG23], we have performed a simple exhaustive search
over the finite set of possible pairs (7, p).

What would be more interesting from a theoretical perspective is to find a closed
form expression for the optimum provided it exists. We have addressed this question in
the case of the basic RQC scheme, where n; = n. The relevant ILP becomes

3nr+np < (2n—1)m,
w1 <r,

w2 < p,

r+p <m-—1

The first inequality is equivalent to 3r + p < 2m — m/n. Since we restrict ourselves to
integer values for (r, p) and since n < m < 2n in concrete parameters, we have replaced
this constraint by 3r + p < 2m — 2. A classical method to solve ILP is to remove the
requirement that r and p are integers and to consider the associated relaxed Linear
Program (LP). If we further assume that 1 + w;/wy < 3, an elementary geometrical
argument shows that the LP solution is at the intersection of the lines r + p = m — 1 and
3r+p=2m—2, ie,r=(m—1)/2and p=(m —1)/2. Since m is always odd!, this
corresponds to an integer solution and thus it is also the optimal solution to the ILP.

The impact on the security on RQC is as follows:

Fact 4. When n <m < 2n, w; > wy and 1 + wy/we < 3, our approach improves the
cost of the best known combinatorial attack on the scheme.

Proof. The best attack on NHRD which does not exploit the structure corresponds
to p = 0 in our strategy and thus we already outperform this technique. Since the
security of RQC also reduces to this second problem [Agu+20, Theorem 5.1], let us now
compare ourselves to the best combinatorial attack on an RD instance of parameters
(m,2n,n,w;). Using [AGHT18], its complexity is @(qwl(m_”)_m), where

|G| = - 2= P =
The same cost exponent can also be obtained with our method by performing the free
guess So < V®Z = Fym. We can include it in the previous ILP if we replace r+p < m—1
by r + p < m. As long as 1 + w;/wy < 3, the optimal solution to the new relaxed LP is
such that r + p =m and 3r + p = 2m — 2, i.e., r = (m — 2)/2 and p = (m + 2)/2. This
time this is not an integer solution and the ILP solution may be obtained by rounding
its entries to the nearest integer. In order not to violate the constraint r + p = m,
possible roundings are (r,p) = (271, ) and (r, p) = (22, 3). Note now that

2 0 2
(AL, i) violates 3r + p = 2m — 2 while (1, p) = (252, 23) corresponds to the pair

n practice, it is chosen to be a prime greater than 2.
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d . .
(r1, p1 et r1). The relevant comparison is thus between (r;,r — 1) and the former
(mz_ L mT_l) For this we consider the difference

def (m—1 m—1 m—3 m+ 3
§ = T(wl—kwg)—i— 5 wy | — T(wl—kwg)—i- 5 w9

= (w1 + wy) — 2we = wy — wo.

The expression of § shows that our approach offers a better exponential factor compared
to the one of solving (m,2n,n,w;)-RD when w; > ws but not when w; < wy. This
improvement is by a modest factor of g¥t~%2, O

We finally provide a simple example of the situation in Figures 8.1 and 8.2 below,
where wy; > we and wy > w; respectively. When w; > ws, the red point (rq,m — ry)
is strictly below the blue line with slope —(1 + w/w2) which passes through the blue
point ((m —1)/2,(m — 1)/2), and in this case our approach is an improvement. The
condition 1+ w1 /wy < 3 reflects the fact that this blue line is always sandwiched between
x+y=m—1and 3z +y = 2m — 2. We have not considered the case 1 + wy/ws > 3
(i.e., wi = 2ws) since it does not seem relevant from an efficiency standpoint and as it
does not correspond to any concrete parameters.
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Figure 8.1: Parameter set m =29, n <m < 2n, w; =5, wy = 3.
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Figure 8.2: Parameter set m =29, n <m < 2n, w; = 3, ws = 5.
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Assumption Underlying Loidreau’s
Scheme

The last chapter of this part is a joint work with Pierre Loidreau published at PQCrypto
2023 [BL23] about the cryptanalysis of schemes using distorted Gabidulin codes [Loil7;
Ara+22]. It heavily relies on the constrained linear system that Loidreau introduced in
an extended abstract presented at WCC 2022 and for which he proposed an enumeration
approach. It was also observed that its equations can be rewritten as a bilinear modeling.

My contribution was to replace the initial solving method by a more efficient one
which is directly borrowed from combinatorial attacks on RD. I have also tried to analyze
algebraic techniques on Loidreau’s bilinear polynomials. It turns out that the system
shares similarities with the Ourivski-Johansson modeling [0J02] and we can exhibit
degree falls in a rather similar way as in [Bar+20a].
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9.1 Preliminaries

This section gives some background on the scheme as presented at WCC 2022 and on the
system that was proposed to distinguish the underlying Gabidulin code from a random
one.

9.1.1 Loidreau’s Cryptosystem

For integers n < m and k < n, we consider a Gabidulin code Gg4 def Gg(n, k,m) as in the

previous chapter defined from a vector g € Fm whose coefficients are linearly independent
over F,. We still denote by Gg.Decode(.) a polynomial time decoding algorithm that can
decode errors of weight up to [anng and we let GL;,(Fym) be the group of non-singular
matrices of size n with entries in Fgm.

The scheme will also require an extra parameter A € N involved in the masking. Its
value is taken such that A < |(n—k)/2| for correctness but there are also extra constraints
due to previous cryptanalysis. When A = 2 and when the code rate k/n is > 1/2, Coggia
and Couvreur gave a distinguisher which can be turned into an efficient attack [CC20].
Their distinguisher actually works for arbitrary A as long as k/n > 1 — 1/\ and there
still exists an attack which is polynomial if A = 3 [Gha22] and a priori exponential if
A > 3 [Gha22; LP21]. The cost of latter should remain threatening as [LP21] advised to
choose values of A > 3 such that k/n <1 —1/\.

Keygen(1”):

e Pick a random element g € [ whose support has dimension n and construct
Gg(n,k, m) the Gabidulin code of dimension k associated to g.

e Select G € F’;ﬁé" an arbitrary full-rank generator matrix for this code. A standard

method is to start from the matrix whose rows are the vectors gli! for j e {0..k —1}
and then to multiply on the left by a random matrix in GLy(Fgm).

e Pick V a random F,-subspace of Fym of dimension A (by sampling A random

elements in Fyn which are linearly independent) and sample P a random invertible
matrix of size n whose entries belong to V.

e Set pk def Goub I GP~! and sk < (G, P).

Encrypt(pk, m € F’;m):

e Sample e € Fyn a random vector of weight |e| < [(n — k)/2A].

e The ciphertext is ¢ def mGp, + e.
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Decrypt(sk = (G, P), c):

e Decode the noisy codeword cP using the algorithm G,.Decode(.). Correctness
follows from the fact that the weight of eP is upper bounded by

le] x A< |[(n—k)/2XA x A\| = |[(n — k)/2].

9.1.2 Security

Let Cpup be the Fym-linear code of parameters [n, k] generated by the public matrix
Gpub- Even though no security proof is given, it is easy to see that IND-CPA is related
to the difficulty of solving the following two problems:

¢ Distinguish the code Cpyp, from a random Fym-linear code with the same parameters.

e Solve a generic RD instance of parameters (m,n, k,t = [(n—k)/(2N)]).

In this chapter, we will address the hardness of the first one.

9.1.3 A Constrained Linear System

We now describe the equations introduced by Loidreau in order to build a distinguisher.
More precisely, its solutions allow to devise a polynomial time decryption algorithm for
the public code Cpy1, (see Proposition 9.2).

Let » < — k. In the following, we overline with a hat data that are publicly known.

For instance, let ﬁpub eF ;é” an arbitrary parity-check matrix for Cp,p, and for o € Fym
a normal element, let Hyorm € [Fgm"™ be the matrix whose entry in row 7 and column j is
equal to ali*7=2] for any i € {1..r} and j € {1..m}. Note that & = (o, olll ,a[m_l])
is a basis of Fym over F;. Since the dual of a Gabidulin code is again a Gabidulin code,

there exists a vector h € Fym whose coeflicients are linearly independent over F, such
that a parity-check matrix for G, is

Rlol
HY | |emm (9.1)
plr—11

Then, it is easy to see that there exists a unique matrix S € GL, (F4m) such that
SH,;, = HP". (9.2)

This is because HPTGIT)ub =HPT(P")"'!G" = HG" = 0 and thus HP" is a parity-

check matrix for Cpup. Equation (9.2) then follows since any parity-check matrix, a
fortiori, Hpyp, is obtained by change of basis. Another straightforward proposition is
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Proposition 9.1. Let H € Fin" be a parity-check matriz for G as in Equation (9.1).
There exists a matriz M € F**™ of rank n such that

H = H,,.,, M. (9.3)

Proof. Let h = h!%) = (hy, ... hy,) denote the first row of H. We consider the matrix
M e Fy**" whose i-th column corresponds to the vector of length m over Fy formed by
the coordinates of h; in the basis &, for i € {1..n}. We have H = HpormM simply by
construction. Finally, as h1, ..., h, are linearly independent over F, by definition of a
Gabidulin code, the matrix M is necessarily of full rank. O

_ By combining Equation (9.2) and Equation (9.3) from Proposition 9.1, we obtain
SHpu]O = Hnorm (M PT) It will be relevant to view this equality as a hnear system in

the entries of S and T ¢ M PT under the constraint that the coefficients of T belong
to a small Fy-subspace of dimension A. The following proposition indeed shows that any
solution meeting this condition leads to a polynomial-time decryption algorithm.

Proposition 9.2. Let r = n — k and let ﬁpub be a parity-check matriz for Cpyup. Let
a € Fym be a normal element and let Hyopp, € Fgém be the matrix whose entry in row 1

and column j is equal to al"+1=21 forie {1..r} and j € {1.m}. From the knowledge of
any non-singular matriz V € Fg?f and W € W™*™ of rank n such that

VH, ., = HpormW (9.4)

and where W is an F,-vector subspace of Fgm of dimension < A, it is possible to decrypt
any ciphertext in polynomzal time.

Proof. We consider an arbitrary ciphertext ¢ = mGpu, + € € Fim such that [e| <
|(n—k)/2X| and also V € GL,(Fgm), W € W™*™ as in the statement of the proposition.
By definition of ¢ we have Hpubc = Hpube and thus

A~

VHpubeT = I/_\Inorm WeT
def( ol

Since the vector space W is of dimension < A, the error €’ has weight |e/| < A|e| <
|(n — k)/2]. We can therefore use an efficient decoder of the public Gabidulin code with
parity-check matrix Hmorm S X" to recover this vector. Finally, the map e — eW'T is
injective as W has rank n < m. This allows to retrieve e and the vector m € qu such
that mGpu, = ¢ — e in a unique way. O

To conclude this section, note that a naive approach would be to enumerate all
solutions (V, W) to Equation (9.4) and to test if they satisfy the constraint, i.e., the W
matrix has its entries in a small dimensional [Fg-vector subspace of Fym. This is clearly
infeasible because the solution set without the imposed condition is an F,m-vector space
of dimension at least 72 + (m — r)n.
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9.2 Combinatorial Approach

To exploit the constraint added to Equation (9.4), the idea adopted at WCC 2022 was to
enumerate candidate bases p e FF g‘m for the secret vector space W. Any such candidate
was then completed into a basis of Fy= in which one could express the coefficients of the
matrices V and W. In such a way, Equation (9.4) can be rewritten as a linear system
over [F,. Since each entry in W is assumed to belong to the [Fy-vector space spanned by
p, only A x mn unknowns over F, are introduced for this matrix instead of the naive
m x mn. Finally, as one typically has rmn » Amn 4+ mr?, this initial guess can be
tested by solving the resulting linear equations over [F, to check if they have a non-zero
solution. As is usual for this type of approach, the total cost contains two factors:

e an exponential one coming from enumerating the bases;

e a polynomial one which corresponds to the linear system solving over [F,.

9.2.1 Proposed Algorithm

We can cheaply gain in the exponential factor by employing the general technique already
used in combinatorial attacks on RD [0J02; GRS16; AGHT18]. Indeed, it is sufficient
to know (a basis for) a y-dimensional vector space U, v = A, which contains V to apply
the same algorithm provided that ~ is not too large. The advantage is that it is always
easier to find such a U than to guess a basis of V directly, the extreme case being v = m
for which we succeed with probability 1. Here, we even note that a vector space & which
contains an arbitrary multiple 2V for z € Fj instead of simply V is enough for our
purposes. This is because any pair (zV,zW) is a solution to the constrained linear
system. The following Proposition 9.3 gives the precise upper bound on ~y for our attack
to succeed.

Proposition 9.3. Assume that v = X € N is such that
rn = qn +re. (9.5)

Ifve Fgm is a basis for a vector space U which contains a multiple xV for x € Fym, the
linear system over Fy derived from Equation (9.4) by writing the coefficients of the secret
matriz W in the basis v is expected to have a solution space of dimension 1. If v does
not correspond to such a basis, this linear system will not have a non-zero solution with
overwhelming probability.

From this proposition, we can then use the same algorithm as sketched at the
beginning of Section 9.2 with v instead of A provided that v < (1 —r/n).

0.2.2 Estimated Cost

The exponential factor is now given by the inverse of the probability that a fixed subspace
U of dimension y contains a subspace of the form zV for some z € F},. According to
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[AGHT1S, §IIL.B.], this factor can be estimated by @ (g ™=1=7) = @(¢A-Dm=27) We
make the standard assumption that the optimum complexity corresponds to the highest
success probability regardless of the polynomial factors. This means that we consider
the largest possible value for v, i.e., v =l |7(1—r/n)].

It is still worth discussing the complexity of solving the linear system over IF,. This
is especially relevant because it is bigger (by a polynomial factor) than the ones from
the former combinatorial attacks on RD.

e On the matrix of size rnm x (yn + r?)m over F, which is associated to it, a first
approach is to apply Gaussian elimination. The corresponding cost in F,-operations
can be estimated by O((yn + 7?)m)¥), where 2 < w < 3 is the linear algebra
constant.

e However, checking that a linear system is consistent does not require to compute
a row echelon form. Instead, we can make use of the Wiedemann algorithm
which may offer an advantage since the input matrix is sparse. Note indeed
that the equations have about m(r + 7) non-zero coefficients while they contain
m(r? +4n) » m(r + ) unknowns. The standard estimate for this algorithm (i.e.,
Equation (2.8) with D = 1) would then give a complexity of

O (m3(r +7)(yn +1%)?). (9.6)

The final estimate at WCC 2022 was in fact a lower bound on the overall cost by replacing
Equation (9.6) by the smaller value m3r® (without any constant in front of it). We
follow exactly the same method so that the difference will only lie in the exponential

factor. Recalling that » = n — k and by introducing the code rate R def k/n, our lower

bound reads
m3(n _ k)5q(>\—1)m—>\[n(1—R)RJ‘ (97)

9.2.3 Applications

We instantiate Equation (9.7) with the parameters of the WCC 2022 paper and the ones
of LowMS [Ara+22]. We believe that the comparison is fair since the latter have been
obtained from the content presented at WCC 2022. In Table 9.1, Column “Lower bound”
contains the value of the binary logarithm of the cost of Equation (9.7). Our results
always improve the complexity of the structural attack simply because we have a better
exponent. If this complexity becomes smaller than the cost of the best RD attack, this
might lead to re-evaluate parameters in [Loil7] and [Ara+22].

9.3 A Bilinear System

Our second contribution was to partially analyze algebraic methods on the bilinear
system that had been introduced by Loidreau (Modeling 16). It turns out that the
original enumeration strategy corresponds to fixing the smallest block of variables as
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Table 9.1: Cost estimate on the parameters of [Loil7] and [Ara+22].

‘ (m,n, k,\) ‘Security‘ Source HLower bound‘Former‘

(128,128,20,3)] 128 |WCC 2022 263 311
(128,128,44,3)| 128 |WCC 2022 225 308
(59,50,25,3) | 128 | LowMS 123 158
(67,66,33,4) | 128 | LowMS 180 244
(83,74,37,3) | 192 | LowMS 157 211
(79,78,39,4) | 192 | LowMS 206 282

described in Section 2.5.2.3 when mentioning techniques tailored to the bilinear structure.
The same approach was also followed in [0J02, §3.2. Strategy 2.

This section presents the input equations and it provides early comments. We refer
to Section 9.4 for a more detailed analysis.

9.3.1 Statement of the Modeling

Let ,B’ denote an arbitrary basis of F,m over F,. For an element a € Fym, we consider
a € Fy" the m-dimensional vector of its coordinates over B , so that B&’T = a. For e Fym,
we also define M, € Fy"*™ the matrix of multiplication by u in the basis B This matrix
is such that

VYa, beFym, b= pa<b=aM].
Note that this choice of notation is implicit with respect to the basis. The claimed
bilinear system is as follows.

Modeling 16. Let ﬁpub = (/ﬁij)ZiLl,j:l and let Hyopm = (alitu=2yrm We consider

i=lu=1"

. . . - l

the bilinear equations over Fq in the non-zero unknowns vy, bl(j)
vectors g € Fy" which are given by

. r m A
Vie {l..r} S () _ ST
Vet DELIAEDIPIC LA (95)

2

and linearly independent

Modeling 16 contains mrn affine equations over F,. The linear parts involve mr

variables v, while the bilinear parts involve Amn + Am variables bq(fj) and iy respectively.
Proposition 9.4 states that its solutions are actually equivalent to the ones of the linear

equations (9.4) with the relevant constraints added.

Proposition 9.4. Let V = (vij) € Fgm” and let W = (wij) € W™ which satisfy the
constrained linear equations (9.4), where W is a A-dimensional subspace of Fgm that
contains the entries of W. We consider a basis (ji1, ..., ) € Fgm and we denote by

A
de l
wig Y0 (9.9)
(=1
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the unique decomposition of w;; in this basis. Then, the values vy,, 29 and [y correspond

]
to a solution to Modeling 16. Conversely, any solution v, bg), e to Modeling 16 yields
a pair of matrices V = (vij) and W = (wij) where wyj is defined by Equation (9.9)
for which Equation (9.4) holds and such that coefficients of W lie in a A\-dimensional
subspace.

If (V, W) stands for the genuine pair of matrices which is implicit from the description
of the scheme, we have already seen that any (V,W) = (zV,2W), z € Fn allows us
to decrypt. Concretely, to reduce the number of solutions to Modeling 16, we will thus:

e fix 7 to 1 and choose a basis B whose first element is also equal to 1;

e target a basis in systematic form, i.e.,

de ~
(LMQM"?/J/\)T :f I)\ B ) (910)

where R’ € F((I/\fl)x(mf)‘). We cannot always guarantee to have a solution in this

way but the success probability is constant.

Similar specializations have already been used in previous works, see for instance [CS96,
§3.4] or [0J02, §3.1.].

0.3.2 Particular Features

Our goal will be to understand the early steps of the generic Grébner basis algorithm on
Modeling 16. We start by describing the specificities in the equations that we have used
in the analysis.

An obvious one is the bilinear shape. More precisely, we recover the matrix product
structure as presented in Section 2.5.2.2. By that we mean equations which can be
viewed as the entries of a matrix M = AXY , where A is a matrix of scalars and where
X and Y are matrices of unknown coefficients. Using the notation from Modeling 16,

we can indeed write each column w; = (w1 ,...,wn, ;) € Fyn of the unknown matrix

AT
W as w]T =Cj(p1,...,pun)" = C;RB , where C, = (bz(‘?)?zie=1 and where the rows

of Re Fg‘xm are the vectors piy for £ € {1..\}. We then consider the system

Modeling 16-Fyn. For j € {1..n}, let f/L; € Fym denote the j-th column in ﬁpub. There

are v bilinear equations in the entries of ‘N/, R and C; from the equality
~~T A AT
Vh; =H,,mC;R3 .

By considering all columns, we obtain an affine bilinear system containing rn equations
over Fym in r2 unknowns vi; over Fgm and Amn + Am unknowns over Fy.
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Note that the former Modeling 16 captures exactly the same information as the
system over [, obtained from Modeling 16-F,~ by taking as variables the coefficients
of the vectors vy, instead of the v;;’s and then by unfolding over the small field. This
operation has been employed several times in the previous chapters and it invites us
to study the role of the extension field. So far, the analysis of the full system over F,
could be essentially boiled down to the one of the initial system over Fym under certain
assumptions. Here, however, the situation is less simple. For instance, it will not be
sufficient to analyze Modeling 16-F,» to understand the computation on Modeling 16
over F,. This may be due to the followmg simple fact: if we choose the normal basis
,3 = « to unfold the equations, we recover the first row of Hnom1

Our proofs will also make use of another related system. Its equations can be
obtained from Modeling 16-F,= by iterating the Frobenius map and by reducing modulo
the field equations of F, involving the variables from R and C; for j € {1..n} (see for
example the proof of Proposition 7.7 in Chapter 7 for a similar construction). In that
respect, it is essentially equivalent to Modeling 16.

Modeling 17. For j € {1..n}, let f/l,; € Fym denote the j-th column in ﬁpub. For any
¢ e {0..m — 1}, we consider the r polynomials obtained by applying the Frobenius map ¢
times on Modeling 16-F m (the [ notation for matrices and vectors is the same as in
the previous chapters) and by reducing modulo the appropriate field equations. They are
given by

T

N\ T
via (hj[ﬁ]> _fl_c, R(ﬂ[€]> . (9.11)

The main interest of Modeling 17 is theoretical. In particular, it would not be
suitable to solve it using naive Grobner basis algorithms because its equations have very
high degree in the v;; variables.

9.4 Degree Falls from Jacobians

We have tried to characterize the first degree fall polynomials in the affine bilinear
modeling. Our results heavily rely on the content recalled in Section 2.5.2.1 about the
connection between syzygies for homogeneous bilinear systems and kernels of Jacobians.
More precisely, we can exploit the product structure described in Section 2.5.2.2 to show
that these matrices have a specific shape. Using the above relationship, we can then
deduce the existence of syzygies in degree A + 2 for the bilinear parts and thus degree
fall polynomials of degree A + 1 for the affine equations.

Similarly to the MaxMinors system [Bar+20a] originally derived from degree fall
polynomials in the Ourivski-Johansson’s modeling [0J02] and that can also be computed
directly, the equations that we exhibit are minors of matrices of linear forms which are
public. The main difference with this former work is that they come from the kernels of
the two Jacobians which are naturally associated to Modeling 16 while only one of these
matrices was relevant in [Bar+20a].
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For the sake of simplicity, we give the results for the non-specialized version of our
systems. They can be easily adapted if we fix u; to 1 and if we choose a matrix R in
systematic form as presented above.

9.4.1 Jacobian with Respect to R

We start from the Jacobian matrices with respect to the unknowns which are the entries
of R. The situation for this block of variables is analogous to the one in [Bar+20a, §5.1].
As in their work, we observed that all degree falls over I, from these matrices were
obtained by projecting over F, degree fall polynomials whose coefficients are in Fgm.
This means that we can focus on Modeling 16-F,» rather than on Modeling 16 for this
part of the analysis.

We restrict ourselves to the bilinear components in Modeling 16-F,» and we consider
an arbitrary index j € {1..n}. Recall that for a matrix M, row(M ) stands for the row

vector formed by the concatenation of its rows. A direct application of Lemma 2.3 with

IR, AY HyonC; and Y Y BT yields

~ ~T ~ ~
JaJCrow(R) (I“OW (HnorijRﬂ )) = HpormCj ® B. (9.12)
The full system can also be viewed as the following matrix product

C
(10 @) | 1 | BB
Cy

In the same manner, we can obtain

C
Jac,ow(r) | TOW (I n® ﬁnorm) | RB
C,
ﬁnormcl
_ : ®B. (9.13)

A~

HHOI‘H’I CTL

Using Lemma 2.1, vectors in the kernel of such Jacobians correspond to syzygies for the
bilinear parts whose coefficients are polynomials in the C'; variables. They provide the
following degree fall equations for the affine system:

Lemma 9.1. In Modeling 16-F m, we find at least (;j:l) degree falls from degree A+ 2 to

A+ 1. The ones coming from the Jacobian of Equation (9.13) are given by the mazimal
minors of the matrix

~ ~T ~

Vhl Hnormcl
N% : . (9.14)

~ ~T A

th HTLOTan
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Among these minors and for j € {1..n}, we may find in particular those of the matriz
NO) = Nir(j-1).rjh s = [th HnOTij]-

These latter polynomials come from the Jacobian of Equation (9.12).

Even before giving the proof ‘of Lemma 9.1, it is easy to see from the definition of
Modeling 16-Fg= that all the N (/) matrices are not full-rank (a fortiori, V) if and only
if (V,C1,...,C,) are components of a solution to Modeling 16-Fm.

Proof. (Similar to in [Bar+20a, §5.1]). We do the proof for a single matrix NU). By
Equation (9.12), it is sufficient to look at the left kernel of HymmCj. We then compute
the kernel vectors v; of Lemma 2.2 for this matrix of linear forms, namely

S 0 ,...,(—J)‘+1’finonn(?j

J¢J

U PR WIS I =R S I 38
T\{5}.% # L}

J=jeed

Degree fall equations correspond to the multiplication by the linear parts. From the

~ ~T
present vector v 7, we obtain the degree A+ 1 polynomial (v;)V h; . Finally, it coincides

J by Laplace expansion along the first column. The
, %

reasoning is the same for IV if we replace Equation (9.12) by Equation (9.13). O

with the maximal minor ‘N @)

Bilinear structure. The degree fall polynomials of Lemma 9.1 have degree A + 1.
Perhaps more interestingly, Laplace expansion along the first column of N in Equation
(9.14) also shows that they are bilinear in the entries of V' (which belong to Fym) and in
the maximal minors of the matrix D with coefficients in F, defined by

C
D def .
C,
Similarly, the maximal minors of N) are bilinear in the entries of V and in the (’j\‘)
maximal minors of C;. Such a structure has already been encountered in this manuscript,

especially in SM-F,» (Modeling 14) which involves a block of linear variables over the
extension field Fy» and a block of minor variables over F,.

nr
A+1

independent) degree falls from degree A+ 2 to degree A + 1 which contain these variables'.

Unfolding over F,. In our experiments on Modeling 16, we found m( ) (linearly

'Section 9.4.2 will give another type of degree fall polynomials in the same degree. As the tri-degree
is different, it is still possible to distinguish these two sets of equations in Magma by considering several
weighted orders.
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Clearly, they should coincide with the unfolding over F, of the degree fall polynomials
described in Lemma 9.1 for Modeling 16-F,~. To project the equations, note that we
also need to express the entries of V over F,. This yields r?m variables v, and thus
r?m("}") bilinear monomials appearing in these polynomials (but only r*m(}) if we
restrict ourselves to one matrix C}).

9.4.2 Jacobian with Respect to the Cj’s

A particularity of Modeling 16 compared to the RD relevant systems is that the Jacobian
with respect to the other block of variables provides degree fall polynomials of low degree,
namely A 4 1. One cannot grasp them by studying Modeling 16-F,~ only.

Absence of early degree falls in Modeling 16-F,». First, let us explain why
we do not expect degree fall polynomials of small degree coming from this Jacobian
for Modeling 16-F,=. The set of bilinear components in this system can be written

as S def u?zlSj, where the polynomials in &§; are defined as the entries of the

matrix IA{normC'jR,@T. Since the RBT part does not depend on j, we have that
Jac,ow(c;) (tow(S;))) = Jaciow(c,) (tow(S1)). The whole Jacobian then reads

Jacow(c) (1ow(S)) = In ® Jac,ow(c,) (tow(S1)) -

Finally, to compute Jac,oy(c,) (row(S1)), we apply Lemma 2.3 once again this time with

XY Hoom A CLand Y % RB". We obtain

JaCI‘OW(Cl) (I‘OW(81>) = ﬁnorm ® BRT

This matrix is of size 7 x mA and its entries are linear forms in the R variables. However,
we cannot pursue by applying Lemma 2.2 since r < mA in general. We expect a trivial
left kernel for this matrix.

Additional degree falls for Modeling 16. We analyze the situation over F, by
studying Modeling 17 introduced in Section 9.3.2. From now on, we adopt the normal
basis B = a. As previously, we will reason in a similar way for all indexes j € {1..n}.
For j € {1..n} and ¢ € {0..m — 1}, let us consider Equation (9.11) and for u € {1..r}, let
us denote by g, ¢ ; the bilinear polynomial

sy ! <ﬁm > C,R (am>T _ (a[g+u_1]> C,R <a[€]>T‘
U, %

norm

T
—~[¢
We also keep track of the corresponding linear part L, ; = Vq[ﬁ]* hj[ ]> so that

the full equation reads g, ¢; — Ly ; = 0. We then group the equations of Modeling
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def

17 according to the value of v = u + ¢ — 1 mod m. We obtain the following relations,
a
where all £ indexes are modulo m and where H inv def .. € IE‘Z}nXT:
~—[r—1]
a

[L1vj Low—1j - Lrp—rt1j] = [9105 - Gro—rt1,]

;L;[E] (V[Z])T _ a[”]C’jR [(&[v])T : <a[v—r+1])T]

P
=&[”]CjR<H ) .

inv

-
Using Lemma 2.3 with A = al’l x e CjandY “I'r <H[U]> gives

inv

~Tv] o 3v]
Jacmw(cj) (917517]‘ - gﬁfv-,j) = a[ ] &® HianT.

Finally, the same proof technique used for Lemma 9.1 leads to

Lemma 9.2. For o e Fym a normal basis, let ﬁim € Fym" be the matriz

Q>

For any fizxed column hj in Hpy, € € {0.m — 1} and v € {0..m — 1}, there are ()\:1)
degree falls from degree A + 2 to A + 1 given by the mazimal minors of the matriz

The equations obtained in this way from all columns h; in H;, all indexes ¢ and
all moduli v form a system of nm? ( /\:1) polynomials of degree A + 1. They can also be

seen as bilinear in the entries of the Vs and in the maximal minors r7 of R. If we
come back to Modeling 16 over F, which is the relevant one for a potential attack, this
system corresponds to an extra set of nm? ( )\_7;1) polynomials of degree A + 1 which are
produced in degree A + 2 by the computation.

9.4.3 Solving a Degree Fall System

Instead of simply considering Modeling 16, our results provide another method by
focusing on a system of degree fall polynomials of degree A + 1. It might be the one
given by Lemma 9.1, Lemma 9.2 or a subset of such equations. As we have just seen,
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this approach would benefit from the compactness of these polynomials due to the
specific bilinear shape. Its analysis is left for future work, including the study of linear
dependencies and the possibility of using hybrid techniques.

In the case of RD, solving the system given by the MaxMinors polynomials has led to
a significant improvement over previous attacks based on Ourivski-Johansson. The same
will not necessarily hold for Loidreau’s. First, the ratio between equations and variables
in Lemma 9.1 or Lemma 9.2 seems less favorable than in [Bar+20b]. Second, our tests
suggest that the degree falls in degree A + 2 do not mark the end of the computation
when running F4 on Modeling 16 while it was often the case for RD [LP06; Bar+20a].
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Cryptanalysis of Regular Syndrome
Decoding

This chapter contains a joint work with Morten @ygarden [B?)23] on a new algebraic
attack on the Regular Syndrome Decoding problem (Problem 3.9).

We consider a folklore polynomial system containing the parity-check equations
plus additional ones expressing the particular error distribution. Based on a careful
theoretical analysis of this modeling, we show that the approach by solving this system
may outperform standard decoding techniques on some concrete parameter sets used in
PCGs. To the best of our knowledge, it is the first time that algebraic methods have
appeared to be relevant in the Hamming setting.
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10.1 Preliminaries

As we focus on applications to pseudorandom correlation generators, we will start by
giving more details on the parameters of these primitives. We will then introduce the
notion of witness degree that we use in our complexity analysis.

10.1.1 Relevant Parameters

In addition to regular errors, PCG constructions pick a structured code for better
efficiency. Naturally, its choice must still yield secure decoding instances. It was for
example proposed to use ¢-local codes in the Primal case, i.e., generator matrices G
with column weight equal to a small integer ¢ [App+17]. Note however it would not
be secure to reveal a parity-check matrix with constant locality in the Dual case, see
[BCGI18; BBMS22]. In this case, other families such as quasi-cyclic codes or MDPC
codes have been adopted.

All the corresponding variants of the Decoding Problem are conjectured to remain
hard. In particular, known solving techniques have not been able to exploit the underlying
structure. Since it is mostly aimed at modeling the regular distribution, our approach
should not change this landscape. In fact, the equations depending on the code that we
will consider are the same as in these previous attacks.

Table 10.1 contains typical parameters corresponding to [LWYY22, Table 1]. In their
work, these values are obtained from [BCGI18, Table 1] by increasing the weight ¢ and
keeping the same code parameters k and n. The security of these instances would be 128
relying on [BCGI18] but they are thought to be much harder according to [LWYY22].
Even though the latter analysis might be flawed and even if we may not beat a more
realistic complexity (ranging between 128 and the value of [LWYY22]), our goal will be
to demontrate the feasibility of an algebraic attack in this parameter regime.

Table 10.1: PCG parameters in the Primal case [BCGI18; LWYY22].

n| k t || Best Fy [LWYY22]|Best Foi2s [LWYY22]|Any field size [BCGI18|
2221647704788 147 156 128
2201327712467 143 155 128
2181153361312 139 153 128
2161 7391 | 667 135 151 128
2111°3482 | 338 132 150 128
2121 1589 | 172 131 155 128
2101 652 | 106 176 194 128
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10.1.2 Witness Degree

On our modeling, one can obviously apply a general-purpose Grobner basis algorithm.
We also suggest to use XL-Wiedemann.

To estimate the parameter D in Proposition 2.7 and thus obtain the corresponding
cost, we rely on the notion of witness degree. Its original definition was given in [BFSS13]
for boolean systems.

Definition 10.1 (Witness degree, Definition 2, [BFSS13]). Let F = {f1,... fm}
be an affine polynomial system over F, and let I = (F) be its associated ideal. For
d € N, we consider the F,-vector spaces

Iea ™ (peT: deg(p) < d},

J<d def {pe I:p= Zgifi, and deg(g;) < d —deg(f;) for 1 <i < m}
i=1

Note that J<4 © I<4. The witness degree dyiy of F is defined as the smallest integer dy
such that I<q, = J<g, and LM(I<4,) = LM(J).

As explained in [BFSS13], the witness degree is the smallest integer d for which a
row echelon form of the affine Macaulay matrix Mac<(F) yields a Grébner basis.

If the input system does not have a solution, this value can be upper bounded by the
degree of regularity of the homogenized ideal obtained by adding an extra homogenization
variable!. In other words, we have

Proposition 10.1 (Proposition 5, [BFSS13]). Let F = {f1,..., fm,2{—21,..., 20—
xn} be polynomial system in Fylzq,...,xy,] that admits no solutions, let F&) be the
homogenized system and let I®) be its associated ideal. Then dwit(F) < dyeg (I(z)).

Remark 10.1. This statement was shown in the binary case but the same proof works
over an arbitrary finite field.

Note that the requirement of F being non-consistent makes sense in [BFSS13] since
they propose BooleanSolve which is a hybrid algorithm. For instance, the majority of
calls to the system solver is made for equations without any solutions. Since we use
hybrid techniques in Section 10.3, we will also rely on Proposition 10.1. However, on
the plain systems, this result cannot be applied readily to bound dy;t. Instead, we will
adopt a more direct approach of inspecting affine Macaulay matrices in Section 10.2.2.

10.2 Algebraic Modeling

This section introduces the polynomial systems that we consider for the RSD problem.

We work over the polynomial ring A def F[e], where each error entry e; ; is treated as an

'More formally, we apply the map given in Equation (2.5).
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indeterminate to be solved for. Our equations are obtained from the n — k parity-checks
s = eH" to which we add constraints coming from the regular structure. Modeling 18
is used to solve RSD over an arbitrary (large) field IF, while Modeling 19 is specific to
the binary case.

Modeling 18 (Over a large field). For a given RSD instance (H,s) over Fy, q # 2,

we consider the system F = P U B, where

i) P is the set of the n — k linear polynomials given by the parity-check equations
s=eH';

i1) B is the set of quadratic polynomials that describe the regular form of the error
vector e, namely e; j€; 5, =0 for 1 <i<tand1l<j <j2 <N.

We also include the field equations eg’j —¢;; = 0 to be certain that the ideal is
zero-dimensional. However, they will not be useful for the computation due to their
high degree. Note that this should not be a problem since our system is already very
overdetermined in practice.

Modeling 18 only captures the fact that the Hamming weight in each block is at
most 1 because we have no information on the non-zero entry. Over Fy however, we
know that it is equal to 1. We will use this by adding linear equations expressing the

fact that the sum of the coordinates within one block is equal to this value.

Modeling 19 (Over Fy). For a given binary RSD instance (H,s), we consider the
system Fr, “poBu Or, U Ly,, where P and B are as in Modeling 18 and where

i) O, 1s the set of field equations 62273' —ej;=0forl<i<tandl <j<N;

it) Ly, is the set of t linear equations 1 — Z;VZI eij=0forl<i<t.

Coming back to the PCG application, these systems can be employed regardless of
the instantiation. Indeed, in the Primal case, one can trivially use the public data to
reconstruct the RSD instance given in the dual form. For both modelings, let us also
notice that the main contribution is the set P containing n — k = n(1 — k/n) parity-check
equations. In particular, we expect our approach to be mostly relevant on small code
rates R = k/n. This explains why we focused on Primal in our exposition. Finally, we
see that the number of solutions is the same as in the original RSD problem. This makes
it possible to apply XL since it is equal to 1 in this regime.

10.2.1 Hilbert Series

Hilbert series are known to be instrumental in obtaining the degree of regularity. Here, we

use them to estimate the witness degree. First, we will give the ones of the homogeneous

ideals T < (FMY and Iy, def <]:IB(‘Z)> associated to Modeling 18 and Modeling 19

respectively.
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Let us observe that these sequences cannot be analyzed as semi-regular systems.
Indeed, consider the equations f; def er,1e12 and fo def e12e1,3. Since e 1fo = 0 in
A/{f1), the polynomial fs is a non-trivial zero divisor in A/{f1). This type of cancellation
does not depend on the particular RSD instance but rather comes from the regular
structure of e. Thus, it still makes sense to compute Hilbert series that will be valid for
generic instances of the RSD problem.

10.2.1.1 Hilbert Series of Modeling 18

We focus on F = P u B, where P are the parity-check equations and where B describes
the regular structure of the error vector. The first step will be to compute the Hilbert
series Hg(z) by monomial counting, for S = A/{BM. Since S is not a polynomial
ring, we will not formally speak about (semi-)regular sequences over S. Yet, we still
want to capture the core idea of the remaining parity-check equations behaving nicely,
by introducing the following assumption for Modeling 18.

Assumption 12. Consider an instance F = P u B of Modeling 18 and let dye, be
the degree of regularity of I = (FM). Define the quotient ring S = A/{BMY and let
Ph) = {p(lh), . ,pg?k} denote the set of linear parity-check equations. We assume that
forl1 <i<n—k, gipi =0 in S/p1,...,pi—1) with deg (gipi) < dreg implies g; = 0 in

S/<p17 ] 7pi—1>-
Relying on this assumption, we can obtain the Hilbert series for I = (F (h)>.

Theorem 10.1. Under Assumption 12, the Hilbert series of the homogeneous ideal
I = (FM associated to Modeling 18 is given by

Hante) = [=2rt (1o 85)'| (10.1

where [.]+ means truncation after the first non-positive coefficient.
The proof of Theorem 10.1 easily follows from the following lemmata.

Lemma 10.1. Let S denote the quotient ring A/(BMY, where BM consists of the
quadratic parts of the structural equations from Modeling 18. We have

H(z) = (1+ Nljz)t. (10.2)

Proof. The quotient S can be seen as the set of polynomials whose monomials involve at
most one e; ; variable in each block 1 < < ¢. For a given block, admissible monomials
have only one variable but their degree can be arbitrary. Therefore, the Hilbert series
“for one block” will be 1 + N%;. Finally, a general d monomial is a product of such
monomials for distinct blocks and such that the sum of their degrees is equal to d. We
finally obtain Equation (10.2) from the standard argument [FS09b, Equation (14)] giving

the generating series of a Cartesian product of classes. O
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Lemma 10.2. Let I denote the homogeneous ideal associated to Modeling 18 by taking
the top degree parts. Under Assumption 12, we have

Hajn() = (1= 2" *s(2) ||

Proof. This may be seen as a particular case of [Bar04, §3.3.2]. We give the proof here
for the sake of completeness. To simplify notation, we write {f1,..., fr—xr} for the set
of homogeneous parity-check equations P, For 1 < j < n — k, we denote by I (7) the
ideal (BM), f1,..., f;>in A and I(0) = (B™). For 1 < j <n —k and up to the degree
of regularity of I, Assumption 12 states that we have the exact sequence of vector spaces
when d < dyeg:

0— (A/I(j = 1))g-1 = (A/I(j = 1))a = (A/I(j))a — 0.
This gives the following equality between Hilbert functions
HFA/[(j_l)(d —-1)— HfA/](j_l)(d) + HfA/](j)(d) = 0. (10.3)

Consider now the abstract sequence hgy; defined by hy ; = dim[gq(Sd) ifj=0o0rd=0
and the induction relation

haj = haj—1 — ha-1,j-1. (10.4)
Let G; denote the generating series for (hq;)a=0. From Equation (10.4) and by
multiplying by z we easily obtain G;(z) = (1 — 2)Gj—1(2). The generating series for

(ha)d=0 being Go(z) el Hs(z) we get G, x(2) = (1 — 2)"*Hg(z). As long as the
involved quantities are positive, Equation (10.3) and Equation (10.4) may be seen as
the same relation. Therefore, the final Hilbert series is

Han() = (1 - 2" *s(2) ||

10.2.1.2 Hilbert Series of Modeling 19

Modeling 19 contains extra structural equations, starting from the field equations in
Or,. A difficulty arises when adding the last set of equations L, since it yields another
type of cancellation. For 1 < ¢ <t and 1 < jg < N, we indeed have

N
€ijo <— > %’) = 0 mod {e},,{€ij€ijs}jr<jo} - (10.5)

J=1

In other words, any polynomial in E]g;) is a zero divisor in A/(B™" U QI(FZ)>. To keep the
same type of analysis as with Modeling 18, we may use Ly, to remove t variables. More
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formally, we define the graded ring homomorphism

ﬁ]Fg[e] —>F2[w] (106)
ejj— Tij, forI<i<tand1<j<N
N—-1
€j N —> Z x;j for 1 <@ <t.
j=1

We also set A" < (), 1< cam), B < £sm), o ¥ (ol) and 5 <
A')(B"u Q). The following lemma shows that the image of A under L is still a
polynomial ring and it describes the structure of S’.

Lemma 10.3. The image ofA 18 isomorphic to Fo[z1,...,2n_t]. Moreover, the ideal
(B'u Q') is generated by g% {x”x” 1<i<tandl<jl<N}.

Proof. The first statement is immediate from the definition of £. For the second one, we
note that G corresponds to the image of generators of B U QI(FZ) that do not contain

an element e; y. To see that the image of the rest of the generators of QI(F};) does not
add anything new, we get

N—1
N) = (Z w%) =0 mod G.
j=1

The cancellations of the remaining generators of B were already pointed out by
Equation (10.5). O

We can furthermore use Lemma 10.3 to count the number of monomials in S’. Indeed,
the possible monomials are squarefree and they contain only one variable per block due
to the shape of G. In particular, a degree d monomial defines a set of d blocks. Then,
each block contains N — 1 relevant variables instead of N since we reduce modulo L, .
This shows that there are (°)(N — 1)? degree d monomials in S’

The final Hilbert series will call for a similar hypothesis as with Modeling 18. Note
the strong similarity between Definition 2.13 and the following Assumption 13.

Assumption 13. Consider an instance Fr, of Modeling 19 and let d,cq be the degree
of regularity of Iy, = <]—'I§Z)>. Let L denote the ring morphism of Equation (10.6) and
let A L(A), B8Y L™y, @ Y L@l and s A)B U Q). For every
parity-check equation p;, write p; = E(pz(-h)). We assume that for 1 <i<n-—k, gip, =0
in '[P, ..., pi_q) with deg (9ip}) < dreg implies g; = 0 in S’ /{ph, ..., D}).

Theorem 10.2. Under Assumption 13, the Hilbert series of the homogeneous ideal
Ir, = <]:11§"];)> associated to Modeling 19 is given by

Hagn, (2) = | S5 (10.7)

where [.]+ means truncation after the first non-positive coefficient.
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The structure of the proof is the same as for Theorem 10.1. We rely on Lemma 10.4
and Lemma 10.5 below, where the notation are those recalled in Assumption 13.

Lemma 10.4. We have
He(z) = (1+ (N —1)2)".

Proof. From the set of generators G described in Lemma 10.3, we observe that the
admissible monomials of S’ involve at most one variable from each block, with degree at
most 1. From there, we proceed as in Lemma 10.1. O

Lemma 10.5. Let Ir, denote the homogeneous ideal associated to Modeling 19 by taking
the top degree parts. Under Assumption 13, we have

st (2) = [Hs(2)/(0+ 2]
Proof (sketch). By construction and if I’ = L(Ir, ), we clearly have H 4/1(2) = Har/p(2).
As in the proof of Lemma 10.2, we simplify notation by writing {fi,..., fn—} for the
set of homogeneous parity-check equations E(P(h)), and for 1 < j < n — k, we denote
by I'(j) the ideal (B', Q', f1,..., fjy in A" and I'(0) = (B, Q). Assumption 13 ensures
that the following sequence is exact for d < dyeg.

0 — (A/T'(j))ar 2 (AT (j = 1))a 5> (A'/T'(j))a — 0.

The rest of the proof proceeds in the same way as [BFSY05, Proposition 9], starting
from the equality between Hilbert functions

HF a0 (d — 1) = HF a1y (j—1)(d) + HF aryp¢5y(d) = 0. (10.8)

Similarly, we consider the sequence cq; defined by cq; = dimp,(S}) if j =0 or d =0
and the recurrent formula

CdJ' = Cd,j—l - cd—l,j' (109)
Let C; denote the generating series for (c¢q ;)a=0. Multiplying by z in Equation (10.9)
yields (1 + 2)C;(z) = Cj-1(2) and we have the border condition Co(z) = Ha//(0)(2) =
Hg/(z). This finally gives

10.2.2 Estimate for d;:

In this section, we derive an upper bound on the witness degree of Modeling 18 (resp.
Modeling 19). As explained at the end of Section 10.1, we cannot use Proposition 10.1
on systems which have a solution. In particular, our analysis assumes that the input
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modeling has a single one. Note that a polynomial system that includes field equations?
with unique solution (ay,...,a,) has reduced Grobner basis {x1 — ay,..., 2z, — an}.
Recalling the conditions in Definition 10.1 and if I = (F), we have LM (I<;) = LM([)
and dim(I<g) = dim(A<g) — 1. We can then say that dy;t(F) is the smallest degree
such that the rank of the associated affine Macaulay matrix is equal to the number of
columns minus one.

We will use this observation to provide an estimate of the witness degree. Note that
semi-regularity can be seen as the assumption that the homogeneous Macaulay matrices
have maximal rank. Here, we need the hypothesis that the affine Macaulay matrices
achieve maximal rank. Under this assumption, we use the Hilbert series derived above.
More precisely, we consider the generating functions in Equations (10.1) and (10.7)
that have been truncated to obtain these series. The coefficient in a term of degree
d < dyeg is positive and it coincides with the number of columns that cannot be reduced
in the homogeneous Macaulay matrix Macq(F"). When d > dreg, the coefficient is
non-positive and it measures the number of “excess” rows after full reduction of this
matrix which should in general provide degree falls from the degree d for the affine
system F. Finally, we arrive at the following estimate for the witness degree by summing
these coeflicients.

Estimate 2 (Witness degree). Let F be the polynomial system of Modeling 18 (resp.
Modeling 19) and let H denote the generating series of Equation (10.1) (resp. Equation
(10.7)). We estimate dyi(F) to be

d
duit(0.0) < min {d €Z=o: Y. [F] (H(2)) < 0} , (10.10)

7=0

where [27] (H(2)) denotes the coefficient of the monomial 27 in H.

10.3 Hybrid Approach

As is standard in algebraic cryptanalysis, the complexity of our attack mainly depends
on the value of dyeg Or dyi;. However, for most of the parameter sets given in Table 10.1,
these degrees seem too high for straightforward algebraic techniques to be competitive.
To decrease these degrees and possibly improve the overall complexity, we propose to
add new equations in the same e variables which hold with probability = € |0, 1[. The
idea is the same as in a standard hybrid approach and it has already been encountered
several times in Part III.

Due to the tiny noise rate, a natural method is to fix linear constraints of the form
ey j» = 0. Note that this is exactly what the Prange algorithm does by picking an
information set I and then assuming that e;f = 0. In our case, this allows to reduce the

2Field equations ensure that the ideal is radical and the result follows from the Nullstellensatz. In
practice, the reliance on field equations can typically be eased for sufficiently overdetermined systems.
We will thus assume that it also holds for Modeling 18.
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number of non-zero monomials in degree d > 1 (even though the number of equations at
hand also decreases) and thus we hope that the specialized system with these constraints
will be solved at a smaller degree. In the following, we present this technique for Modeling
18, noting that the case of Modeling 19 is analogous. More precisely, we will give two
structured ways to set variables to zero. In addition to being quite elementary, the
interest of these specializations is that we still control the behaviour of the resulting
system.

10.3.1 Error-Free Positions in All Blocks

A first strategy is to guess an equal number of noise-free coordinates in all portions
e;. A similar approach was followed in [HOSS18, B.3] to adapt ISDs to the regular
distribution. Each block in the RSD problem can be seen as a random vector of length
N and weight 1. The success probability of guessing u error-free positions is (Nu_l) / (]X )
By exploiting the regular structure, one may guess the same number of positions in each

block with probability

def (Nu_l) t: _ t
T (u) (N) (1 —u/N)". (10.11)

The improvement by using Equation (10.11) instead of the naive probability in Prange
(or even in more involved ISD variants) was not really apparent in [HOSS18] (“ISD is
always the most efficient attack and has roughly the same cost when considering SD
and RSD” [HOSSI18, p. 49]).

Still, we adopt the same technique on Modeling 18. In each block, we assume that
the top part of size u € {0..N} is error-free. This should hold with probability 7).
The main difference with [HOSS18, B.3| is that we will consider ut « k. Indeed, we
need to guess much fewer zero positions to decrease the solving degree of Modeling 18
while the Prange linear system “stays” in degree 1 and needs more equations. In case
of failure, we pick a permutation matrix P, which permutes the coordinates in each
block (so that the regular structure is preserved) and we try again on the RSD instance
(HP,',s) which has error e" = P,e". By fixing the e; ; variables to zero for 1 <i <t
and 1 < j < u, the number of possible non-zero monomials in degree d is now given by

t
the coefficient of 2 in (1 + (N —u)= )

1—2

To derive the Hilbert series of the specialized modeling, we need to adapt Assumption
12 to ensure that zeroizing unknowns does not introduce unexpected cancellations at
higher degree among the system of parity-check equations. Such an assumption is rather
natural since we end up in this case with a reduced RSD instance with block size N —u
obtained by shortening the initial (random) code. On that new assumption, the Hilbert
series of the hybrid system is

Hajnaina(2) = [(1= 2 (1 =)' (10.12)
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Hence, while both the number of equations and monomials of degree d > 1 are affected
by adding the zero constraints, they are still of a form that is captured by the series
studied in Section 10.2.

In practice, we in fact require a weaker hypothesis. This is because the optimal
choice of u is rather small for the parameters of Table 10.1. Heuristically, we are more
confident that the resulting equations behave as expected when the number of fixed
variables is reduced. Finally, we note that a similar statement for specialized systems
is also present in the standard hybrid approach for semi-regular systems, see [BFP10,
Hypothesis 3.3]. Starting from a semi-regular sequence (f1,..., fm), they assume that
all the specialized versions

{(fl(xl,...,xn_k,v),...,fm(xl,...,xn_k,v)) Yo e F’; and V0 < k < n}

are semi-regular.

10.3.2 Considering Less Blocks

A slightly more general approach is to guess u € {0..N} error-free coordinates in only

f € {0..t} blocks so that the success probability becomes mf = (1—u/N). We
recover the previous strategy with f = ¢. To derive the Hilbert series, we adopt the
following Assumption 14 (which encompasses Section 10.3.1 when f = t). For any
invertible matrix P, u € {0..N} and f € {0..t}, let P;} denote the map that applies P~
and then fixes the initial u variables to 0 in the last f blocks of the error.

Assumption 14. Let P be the set of parity-check equations from an instance of Modeling
18. For every permutation matrix P which stabilizes each block, for f € {0..t} and for

u € {0..N}, we assume that P o P;} satisfies Assumption 12 with ring A o P;} and

quotient ring S o P;;

On that hypothesis, we finally obtain

I t—f
z z
Hajrnybe,pu(z) = | (1= 2)"7" <1 + (N —u)— Z) <1 + N Z) . (10.13)

constraint no constraint +

10.3.3 Witness Degree for the Hybrid Approach

Similary to what we did in Section 10.2.2 for the plain system, we now derive an estimate
of the witness degree for the specialized polynomials. As the initial modeling has a
unique solution, the majority of guesses will be wrong, i.e., resulting in non-consistent
systems. We can in this case use Proposition 10.1 to upper bound dyit by the degree of
regularity of the homogenized ideal. All that remains is to evaluate this latter quantity.

For that purpose, we assume that the hybrid systems form semi-regular sequences
when homogenized. Based on this assumption, it is straightforward to adapt the Hilbert
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series given by Equation (10.12) and Equation (10.13) to these homogenized versions in
the following manner:

Ha/rhybi, fu(2)/(1 = 2), (10.14)

for i € {1,2}. Note that this adaptation is in line with the earlier literature [BFSS13,
Proposition 6] and that it has been accurate in our experiments (see ). Finally, the
degree of regularity is obtained in the usual way by computing the first non-positive
coefficient in the associated generating series.

10.3.4 Complexity with XL Wiedemann

The cost of the hybrid approach is computed as follows. For each couple (f,u), f € {0..t},
u € {0..N}, we proceed as explained in Section 10.3.3 to obtain an upper-bound on the
witness degree denoted by dyi; (f.,) and that we use as our estimate of the real witness
degree. To apply Equation (2.8), we also need the number of columns which is the
number of monomials of degree < dyi; (7, in the specialized system. It depends on both

f t—f
[y wand dyig (). For Hig puy(2) = (1 + (N — u)é) (1 + Né) , it is indeed
given by
(f ) dwit,(f,u) )
Mgt o= > 1 (Hspw () (10.15)
j=0

where we recall that [27] (H(z)) is the coefficient of the monomial 2/ in the series H.
Finally, we have to estimate the quantity n, which is the number of non-zero terms in
one row of the Macaulay matrix. This is directly related to the monomial content of
the initial parity-check equations. We can assume that the matrix H is in systematic
form, hence n, < k+ 1 = O(k). For the specialized system, we can actually choose to
fix the f bottom blocks of the error® to obtain the better factor Ny (fu) S k+1— fu.
This allows to possibly gain a few bits in the final complexity.

Proposition 10.2. Under Assumption 14 and the assumptions described in Section
10.3.3, the time complexity in F,-operations of the hybrid approach of Section 10.3.2 on
Modeling 18 is estimated by

. _ —f B (f.u) 2
O i (1—u/N) (b1 = fu) (MED, )

ue{0..N}

where Mg;j:l)t o is defined in Equation (10.15) and where dyit,(f,u) @S the index of the

first non-positive coefficient in the generating series given in Equation (10.14).

3There is no loss of generality: this can be seen as choosing a monomial ordering which favors the
upper variables and then fixing somehow small variables
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Remark 10.2. The cost of the hybrid approach on Modeling 19 is analogous and we refer
to [B023, B.2, Propostion 7].

Finally, let us mention that the specializations proposed in Sections 10.3.1 and 10.3.2
are possibly the most naive ways to fix variables in the system. Even though they seem
to lead to the best success probability as we take advantage of the distribution, other
approaches might allow to decrease the solving degree faster.

10.3.5 Discussion on the Assumptions

Our working hypotheses are of the same type as those generally encountered in algebraic
cryptanalysis. More specifically, in our systems, they concern the linear parts of the
parity-check equations. Thus, they only depend on the matrix H. Even though the
underlying code is often structured, the parity-check matrix obtained from the public
G has no reason to be special in a certain sense. Otherwise, such a property would
probably be exploited by common attacks or suggest that this instantiation is weaker.

In a very similar context, the well-known Arora-Ge system [AG11] to solve LWE is
generally assumed to be semi-regular [Alb+12; STA20]. In [ACFP14], some practical
experiments have been performed to confirm this hypothesis ([ACFP14, §7.1]). We also
note that they tried to prove (a weaker form of) it in some particular cases ([ACFP14,
A.2]). Their experiments verify that the solving degree of Arora-Ge coincides with that
of a random system of the same size.

Our experiments to test the assumptions made throughout Sections 10.2 and 10.3
can be found in Section 10.5.

10.4 Application to the Primal Setting in PCGs

This section gives the complexity of our hybrid technique on parameters sets used in the
Primal case. We consider binary instances and ones over a larger field.

We focus on the values proposed in [LWYY22, Table 1] that we recalled in Table
10.1 together with the weaker ones of [BCGI18, Table 1] where the weight ¢ is smaller.
When n/t is not an integer, we set N = |n/t| and we fix the last n — ¢/N coordinates to
zero. Note that the number of parity-check equations at hand is still n — k.

We have also tested our methods on the parameters of [Yan+20] and [WYKW21].
While most of them seem resistant to the attack, a notable exception is the one-time
parameter set ¢ = 261 — 1, n = 642048, k = 19870 and ¢ = 2508 from [WYKW21, Table
2]. The authors claim to achieve 128 bits of security but [LWYY22] would suggest that
this is too conservative. More precisely, the Python script provided in [LWYY22] gives
a 154 bit security. For our part, we estimate that solving plain Modeling 18 in degree 3
yields a 126 bit cost.
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10.4.1 Binary Case

In Tables 10.3 and 10.2, “Best” refers to the limiting attack according to the work of
[LWYY22]. This corresponds to an advanced ISD algorithm. In our case, we report the
couple (f,u) that leads to the optimal complexity and the associated estimate for the
witness degree deonj = dyit,(f,u)- This analysis was presented for Modeling 18, namely
Estimate 2 when f = «w = 0 and the content of Section 10.3.3 when we fix variables. We
let the reader adapt it to Modeling 19. Note that the sparsity factor n, can be chosen
as min (k + 1 — fu, k/2 + 1) over Fy. The constant from the Wiedemann algorithm is
taken equal to 3 as explained in Remark 2.1. Finally, for illustration, we give the plain
witness degree of Modeling 19 in Column “dconj plain”.

Table 10.2: Hybrid approach on Modeling 19 (higher weight).

n k t ||Best [LWYY22] | dconj plain|| (f,u) |dconj|XL hybrid

222164770(2735 104 2 (0,0) | 2 103
220132771(1419 99 3 (1159,2)| 2 98
218(15336] 760 95 3 (657,7) | 2 104
21617391 | 389 91 4 (373,10)| 2 108
21413482 | 198 86 6 (197,11)] 2 106
2121 1589 | 98 83 8 (88,13) | 2 103
2191 652 | 57 94 12 (54,9) | 2 101

Table 10.3: Hybrid approach on Modeling 19 (low weight).

n k t |Best [LWYY22]| dconj plain| (f,u) |deonj|XL hybrid

2221647704788 147 2 (0,0) | 2 103
2201327712467 143 3 (2340,4)] 2 125
2181153361312 139 4 (676,1) | 3 122
21617391 | 667 135 5 (604,7) | 2 139
2141 3482 | 338 132 7 (322,7) | 2 138
21211589 | 172 131 11 (154,7) | 2 135
2101 652 | 106 176 19 (104,4) | 3 145

10.4.2 Large Field Case

Following [LWY'Y22], we also consider the larger field Fyi2s. According to the authors,
the best attack in this case is the most naive one. Indeed, their observation is that
Prange and more involved ISDs perform equally. Note that this is reminiscent of the
result of Canto-Torres [Canl7] which states that all ISD variants converge to the same
cost when the field size tends to infinity. Our results for this setting are summarized in
Tables 10.4, 10.5 below, with the same notation as in Tables 10.3, 10.2.
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Table 10.4: Hybrid approach on Modeling 18 over Fqi2s (low weight).

n| k t ||Best [LWYY22] | deonj plain|| (f,u) |dconj|XL hybrid

222164770(2735 108 2 (0,0) | 2 104
2291327711419 107 3 (1246,3)| 2 102
218115336 760 105 3 (670,8) | 2 107
2161 7391 | 389 103 4 (374,11)] 2 111
2111 3482 [ 198 101 6 (197,12)| 2 110
2121 1589 | 98 100 8 (96,13) | 2 107
2101 652 | 57 111 14 (55,10) | 2 111

Table 10.5: Hybrid approach on Modeling 18 over Fqi2s (higher weight).

n k t ||Best [LWYY22] | deonj plain|| (f,u) |dconj|XL hybrid

2221647704788 156 3 (4237,1)| 2 110
2201327712467 155 3 (0,0) | 3 131
2181153361312 153 4 (995,2) | 3 133
2161 7391 | 667 151 6 (613,8) | 2 150
2141 3482 | 338 150 8 (324,8) | 2 150
212] 1589 | 172 155 12 (157,8) | 2 150
2191 652 | 106 194 24 (105,5) | 3 179

10.4.3 Comments on the Results

A first remark is that a high witness degree for the plain system can be circumvented by
the hybrid component of the attack which is analogous to Prange. Thus, we should not
expect a too big gap in the complexity compared to the previous techniques in general.

By comparing Table 10.3 with Table 10.2 and Table 10.4 with Table 10.5, we notice
that this difference is much reduced in the higher weight setting. We also observe that
our attack is extremely efficient compared to ISDs when we can solve at degree 2, 3
without fixing a lot of variables (see for instance the first three rows in Tables 10.2 and
10.5). This may suggest a weak zone of parameters which is not encompassed by former
methods.

Finally, the algebraic attack seems to compare better to known algorithms for larger
fields. As mentioned above, the main reason may be that the advantage of ISDs over
Prange worsens when the field size goes to infinity. In our case, even though the witness
degree for plain Modeling 18 is slightly higher than the one of Modeling 19, the difference
does not seem enough to expect a similar increase in the cost as we see in ISDs.
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10.5 Practical Experiments

In this section, we present experiments that we have run on randomly generated instances®

of the RSD problem in order to check the validity of our assumptions. All these tests
have been performed using the computer algebra system Magma V2.27-1.

10.5.1 Hilbert Series

We give the parameter sets as (¢, N, k, f,u),, where t, N and k describe the RSD
problem, where f, u are the parameters of the hybrid approach and where v is the
number of times that we have repeated the experiment. For an affine ideal I, we have
computed the Hilbert series of the ideal I generated by the top degree parts. We used
the built-in command HilbertSeries(:).

10.5.1.1 Experiments for Modeling 18

The systems we have tested for Modeling 18 are listed in Table 10.6 below, where we
also give the associated degree of regularity dyeg of I (") In all cases, the experimentally
found Hilbert series was equal to the series of Equation (10.13), meaning, in particular,
that Assumptions 12 and 14 have been true in all our experiments. For most of the
hybrid systems, we have also computed the Hilbert series of the homogenized ideals I(?)
and we give the associated degree of regularity dﬁgé. The Hilbert series in all of these
tests have been equal to (the truncation of) those predicted by Equation (10.14).

Table 10.6: Tested Hilbert series from Hybrid Modeling 18 systems over Fig;.

‘ System dreg dﬁé}; System dreg dl(ég System dreg dl(ég
(5,6,15,0,0)5 | 3 | - (5,6,20,0,0)5 | 4 | - (5,8,20,0,0)5 | 3 | -
(5,8,30,0,0)5 | 4 | - (7,7,30,0,0)5 | 4 | - (8,6,30,0,0)5 | 5 | -
(10,4,25,0,0)5| 6 | - |/ (12,7,50,3,2);| 5 | - | (7,8,30,2,3)10| 3 | 3
(7,8,30,6,3)10| 2 | 3 {/(10,7,40,5,2)10| 4 | 4 |(10,7,40,5,3)10| 3 | 4

10.5.1.2 Experiments for Modeling 19

Table 10.7 contains tests for the Hilbert series related to Modeling 19. The experimental
series of the plain cases f = u = 0 were conform with Theorem 10.2. While the majority
of hybrid cases we have tested were accurately described by our estimates (e.g., [BO23,
B.2, Equation (21)]), we have been able to find a few discrepancies with the theoretical
values. The systems marked by  both included a single case where the experimental
Hilbert series deviated slightly from our prediction in one of its terms. The system
marked by § was another type of outlier, where the quotient A/I") contained a few

4we have not tried on structured codes
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cubic elements in half of the tested cases. We note that for the system marked by i,
the corresponding generating series of Equation [B023, B.2, Equation (21)] is exactly
zero at term z2. Thus, the homogeneous Macaulay matrix in degree 2 will be a square
matrix over [y (after removing trivial syzygies) and the quotient A/I (h) will contain
cubic terms whenever this matrix fails to be of full rank. For the other tested cases, the
series have a negative coefficient at the term corresponding to the degree of regularity,
indicating that the homogeneous Macaulay matrices will be rectangular. We believe
that this difference explains the peculiar behaviour observed for case . Finally, we have
performed the same experiments as in Modeling 18 for the homogenized ideals and we
have obtained the same conclusive results regarding Equation (10.14).

Table 10.7: Tested Hilbert series from Hybrid Modeling 19 systems over Fa.

| System dreg | A\ System dyeg | A\ System  |dreg|d'ch
(10,6,30,0,0)10 | 3 | - | (10,6,30,3,3)10 | 2 (10,6,40,0,0)10 | 4 | -
(10,6,40,6,2)1, | 3 | - | (14,7,50,0,0)10 | 4 | - | (14,7,50,2,2)10 | 3 | 4
(14,7,50,10,2)10 | 2F | 3 | (15,6,70,10,3)],| 5 | - | (20,6,70,5,3)10 | 4 | 4
(20,6,70,10,3)10 | 3 | 3 || (15,6,60,2,1); | 5 | - [(20,20,150,0,0)1| 3 | -
(20,20,150,15,4)10| 2 | 3 [[(20,20,100,0,0)10| 2 | -

10.5.2 Witness Degree for the Plain System

We have also tested the witness degree of Modeling 18. To this end, we had to create
the affine Macaulay matrix in degree 2 or 3 by hands and then to compute its rank to
check if the system has a unique solution. The witness degree in all our tests was the
same as the value estimated by Equation (10.10) in Section 10.2.2. Details are given in
Table 10.8, where the parameters are listed as (¢, N, k).

Table 10.8: Witness degree for Modeling 18 systems over Fyg;.

‘System ‘dwit H System ‘dwitH System ‘dwit H System ‘dwit‘
(8,8,18)| 2 |/(4,12,21)| 2 |[(15,8,27)| 2 |(12,7,20)| 2
(7,5,16)| 3 | (8,4,13) | 3 || (4,8,20) | 3 | (8,5,18)| 3

10.6 Asymptotic Analysis

The purpose of this final section is to illustrate the concrete results of Section 10.4 with
more theoretical considerations.

For the sake of simplicity, we restrict ourselves to Modeling 19. Moreover, we will
focus on the degree of regularity rather than on the witness degree. Recall that we had
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introduced the latter to analyze the Wiedemann algorithm, which is likely to be the
best tool for linear algebra on the parameters we have discussed so far. However, there
exist other techniques that may perform asymptotically better than Wiedemann (see for
example [Le 14]). This justifies to study Grobner basis strategies based on dense linear
algebra and which require an estimate of dyeg.

In Section 10.6.1, we explore a possibly weak range of parameters where the RSD
problem is solved in degree 2. In Section 10.6.2, we go on to obtain an asymptotic
equivalent of the degree of regularity when the parameters grow to infinity.

10.6.1 Solving at Low Degree

From the generic complexity formulae given in Section 2.4, we see that having a constant
dreg is a sufficient condition for the Grobner basis algorithm to run in polynomial time.
Moreover, we noted in Section 10.4.3 that our techniques proved especially efficient in a
parameter range where the plain system is solved at a small degree.

Thus, we start by focusing on a zone where the degree of regularity of Modeling 19
should be equal to 2. This will be the case whenever the coefficient in front of 22 in the
generating series of Equation (10.7) is non-positive. This coefficient reads

d _
ko (Y L (V= 1)2() = (n— )H(N — 1), (10.16)
In the following, we view it as a function of the length n, the code rate R = k/n and the
error rate p = t/n and we will study its behaviour when n goes to infinity. First, let us
rewrite k9 as
np3n —2nRp*> + R?pn — 1 +3p — Rp — p?

2p ’
Note that if the code rate R dominates over p, the possibly greatest term in the numerator
of the fraction is either R?pn or —1. If the quantity R?pn tends to zero, then the value
of ko will be asymptotically negative since the main contribution in the numerator comes
from —1.

R =

Our goal now is to find such a parameter range where the Prange algorithm does
not seem to be polynomial. We consider the work factor of the standard adaptation
to the regular case by guessing k/t error-free coordinates per block, see [HOSS18, B.3

p. 55]. The success probability is easily seen to be m = ( — ﬁ—%)t = (1 — R)!, which
gives a complexity exponential in —tlog(1 — R). Assuming that R = o(1) when n goes to
infinity, the main term in the development of this exponent is proportional to tR = npR.
If for instance npR ~ n® with « € ]0, 1[, then Prange should be subexponential. On
the contrary, we can clearly find parameters for which R?pn tends to zero under this
condition.

To simplify the analysis even further, we consider particular functions R = ¢(n)
and p = 1(n) and we view k2 as a mere function of n. From discussions with Geoffroy
Couteau and upon inspection of the PCG parameters, we found it relevant to study two
types of regime:
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e noise rate p = n~% and code rate R = log (n)n~® for some a € )0, 1[ (Proposition
10.3),

e for ae]0,1[ and be ]0,a[, p=n"% and R = n~? (Proposition 10.4).

Proposition 10.3. When p = n=% and R = log(n)n™%, a € ]1/3,1/2[ and when the
length n s large enough, our approach is expected to be polynomial while the Prange
algorithm is subexponential.

The lower bound on a and the asymptotic constraint on n correspond to a zone
where Modeling 8 should be solved in degree 2.

Lemma 10.6. Let a € |0,1[. Under Assumption 13 which gives the Hilbert series of
Equation (10.7), the degree of regqularity of plain Modeling 19 for an RSD instance with
p=n"%and R =log(n)n~% is equal to 2 when a > 1/3 and when the length n tends to
infinity.

Proof of Lemma 10.6. In this regime, Equation (10.16) giving the coefficient in front of

22 in the Hilbert series reads

a _1)\2,,2—2a 1—a
o) =~ 4 Lm0 g (gt

We see that the term —% dominates when a + 1 > 2 — 2a, hence a > 1/3. In this case,
the value ko(n) will be negative when n is large enough. O

To prove Proposition 10.3 it remains to study the cost of the Prange decoder, which
gives the upper bound on a.

Proof of Proposition 10.3. We base ourselves on the exponent nRp equal to n'~2%log (n)
in this setting. When a < 1/2 < 1 — 2a > 0, the complexity of Prange should then be
subexponential. ]

The study of the second regime is analogous.

Proposition 10.4. Let a € |0,1[ and let b € ]I_Ta, min (a,1 — a)[. When p=n"" and
R = n~" and when the length n is large enough, our approach is expected to be polynomial
while the Prange algorithm is subexponential.

We follow the same proof strategy as for Proposition 10.3 by focusing on a zone
where the degree of regularity of Modeling 19 is asymptotically equal to 2.

Lemma 10.7. Let a € |0,1[ and let b € ]0,a[. Under Assumption 13 which gives the
Hilbert series of Equation (10.7), the degree of regularity of plain Modeling 19 for an
RSD instance with p = n~% and R = n~? is asymptotically equal to 2 when a + 2b > 1
and when the length n is large enough.
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Proof of Lemma 10.7. In this case, Equation (10.16) becomes

_ p2-2a n2—2b 9—a—b nlta 3n nl—a nl-b
Ro(n) = "= + 5= —n — T3 T T3 T
. . . 2-2b 1+a .
This time, the main term is either *—— or —”; . The second value dominates when
1+a>2—2b, that is, a + 2b > 1. O

Lemma 10.7 imposes b > 1;2“ while the restriction b < a came from the study of

concrete parameters. The extra condition b < 1 — a in Proposition 10.4 is due to the
complexity exponent of the Prange algorithm.

Proof of Proposition 10.4. This exponent now reads nRp = n'~®? so that the
algorithm should be subexponential when 1 —a—b>0<b<1—a. O

10.6.2 Equivalent of d,e at Infinity

A more accurate complexity estimate ultimately requires an asymptotic analysis of the
degree of regularity. For semi-regular systems, [Bar04, I1,§4] gives the full asymptotic
expansion in different parameter regimes. Related computations can also be found in
[ACFP14, A.1, Proposition 2] or [BFSS13, §3.2, Proposition 7], where they contented
themselves with an asymptotic equivalent.

For plain Modeling 19, we also restrict ourselves to the first term of the development.
In some particular cases, we have obtained

Proposition 10.5. Whenn goes to infinity, the degree of reqularity d,., of plain Modeling
19 behaves asymptotically as follows:

1. For constant code rate R and noise rate p = o(1), let dg “o_R- 2v/1—-R > 0.
We have
dreg ~ ORL.

2. For R =o0(1) and p = o(1) such that p = o(R), we have

2
dreg +1 ~ £t

3. Finally, for R = o(1) and p = o(1) such that p = AR is linear in R with A <1, we
have -
—A)°R

reg + 1 ~ U2 (10.17)

The main tool for the proof is the so-called saddle-point method. For a detailed
account of this technique in the context of Hilbert series, we refer to [Bar04, I11,§4]. Each
coefficient can be obtained as a Cauchy integral, i.e.,

1 1
(= e, (2) = 51§ Sarraarm, (),

2
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where gy, Is, (z) stands for the generating series in Equation (10.7). The saddle-point
method allows to study the asymptotic behaviour of this quantity for fixed d. Since we
are interested in the value of d such that the integral vanishes when n — 400, we will
cancel the main term in the resulting development in order to obtain the first term in
the asymptotic expansion of dyeg.

Proof. Using Equation (10.7), we readily obtain

def 1 1 (1+(N—1)z)
La(n) = 2 ) 2441 (14 z)nk

It is then standard to write the integrand as ¢™/(?) where here

dgf_d+1n
N n

f(z) (2) = (1= R)In(1 + 2) + pln(1 + (p~* — 1)2).
We study the behaviour of this integral when n grows. Using Cauchy’s integral theorem,
we can make the path of integration to meet the saddle points so that the integral
concentrates in the neighborhood of these saddle points when n tends to infinity. These
saddle points are solutions to the equation

d+1 z z

2f'(z) = - (1—R)1+Z+(1—p)m:0. (10.18)

By clearing denominators, Equation (10.18) may be rewritten as a quadratic equation
P(z) = paz® + p1z + po = 0 such that

™ (p-1)(d+1+(1-R-pn),

Y pRn—np* —d -1,
d
po e —p(d+1).

Then, the classical argument is that the polynomial P should have a double root, 7.e.
the saddle points coalesce (otherwise the integral is exponential, see for example [Bar04,
p. 94], [ACFP14, A.1.] for details). Writing that the discriminant p? — 4pgps is equal to
zero yields a new quadratic equation Ad? + Bd + C = 0, where

A 2p-1p,

B —4Rp*n — 4p°n + 2Rpn + 10np* — 4pn + 8p* — 8p + 2,

o R%p?n? + p*n? — 2Rp*n® — 4Rp*n — 4pn + 2Rpn + 10np® — 4np + (2p — 1)2.

Solving for d finally gives
B —Rpn — p*n+2np —2p+1+/0
B 1—2p

pn(+2v1—RyT—=p+2—p—R)
1-2p

d

-1+ : (10.19)
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where /3 % 2n+/Rp3 — Rp? — p3 + p2 = 2npy/1 — Ry/T — p. We want the smallest
positive root which is given by the minus case of +1/9, in the equation above. The end
of the proof then consists in studying Equation (10.19) in the different regimes:

e For constant code rate R and p = o(1), we obtain
VI —R\/1—p+2—p—R=(2-R)—2V/1—R+o(1),
hence dycg ~ dgt, where (53 2] (2—R)—2y/1—R>0.
e For R =o(1) and p = o(1) we have

—2\/@\/?:—20—5—7 (Rz)(

=—2+R+p+ & 0 By

— &+ o(p?))

Rp),

/'\ l\')\b

hence —2\/1 —RyI—-p+2—-—p—R = RT % - % + o(Rp). This gives us
dreg +1 ~ Tt ifr = O(R) and dreg +1 ~ RT( — M2t if p = AR is linear in R with
A<l

O]

10.6.3 Open Problems

Of course, one natural extension of this work would be to obtain the full development
of dreg. Another continuation would be to study the specialized systems. In theory,
their analysis is feasible as we still know the Hilbert series. However, it may be more
technical since we also have to find the best asymptotic trade-off between the cost of
fixing variables and the one of the solving step. Note that this last question is not
trivial even in the standard situation represented by quadratic semi-regular systems, see
[BFP10, §3.3], [Bet12, §4.2].

From this study, the hope would be to perform a broader comparison to known
attacks, for instance ISDs, Statistical Decoding, and potential variants tailored to the
regular distribution.



CICO Problem on the Anemoi
Permutation

In this chapter, we present results of a rather more experimental nature which allowed
to compute the parameters of the Anemoi permutation [Bou+23|. This function can be
used to build efficient ZK-friendly hash and compression functions. It was designed to
be well suited for several types of proof systems and it turns out to be more competitive
than the state-of-the-art in many of them.

We studied this primitive by considering two polynomial systems. The first one is
generic to the structure in rounds while the second one was inspired by the cryptanalysis
of Griffin [Gra+23]. The parameters were derived from a conjecture on the solving degree
of this first modeling. We also added experimental and theorerical data to compare both
systems.
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11.1 Preliminaries

11.1.1 Anemoi Permutation

In [Bou+23|, we introduced the Anemoi permutation and a new mode of operation,
Jive, in which it can be used. Instead of relying on a function of low degree or whose

187
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inverse is of low degree as in Rescue [Aly+20], we considered a permutation which is
CCZ-equivalent to an easily computable one. For a function F': Fg* — Fi*, let us denote
by I'r the graph

Tr Y {(@, F(m)): 2 e T} < (M) (11.1)

Definition 11.1 (CCZ-Equivalence [CCZ98]). Let I and G be two functions of Fy".
We say that they are CCZ-equivalent if there exists an affine permutation £ : (]1?2”)2 —
(ng)z such that I'p = L(T'g).

This definition encompasses Rescue’s idea since a permutation and its inverse are
known to be in the same CCZ-equivalence class [BCP06]. By considering z ~— x¢ for a
small d and its inverse, we thus notice that it does not preserve the degree. Concretely,
the hope will be to benefit from the same discrepancy between evaluation and verification
times but for more general CCZ-equivalent functions. Another nice property for the
analysis is that it will be enough to check the resistance against linear and differential
attacks for only one representative in an equivalence class, for instance the low degree
function we start with.

11.1.1.1 Description of the Sbox

Our proposal uses an SPN structure and we will first present the Sbox. We called it
the Flystel because it combines ideas from Feistel networks and from the butterfly
construction introduced in [PUB16].

More precisely, let Q, : F;, — [, and let Qs : F; — F, be two quadratic functions
and let £ : F;, — F, be a permutation. We will consider the following pair of functions
relying on @), Qs and E. The open Flystel is the permutation of FZ obtained using a
3-round Feistel network with @, E~! and Qs, as depicted in Figure 11.1. It is denoted
H, so that H(z,y) = (u,v) is evaluated as follows:

1oz —x—Q,(y), 3.z —x+Qs(y),

2. y—y—E ), 4. u<—x, vy .

The second function is V : (y,v) — (R, (y,v), Rs(y,v)), where R, : (y,v) — E(y —
v) + Q,(y) and where Rs : (y,v) — E(y —v) + Q5(v), see Figure 11.2. We call it the
closed Flystel over IE%.

The crux of our construction lies in

Proposition 11.1. For a given tuple (Q., E,Qs), the corresponding closed and open
Flystel are CCZ-equivalent.

Proof. Let (u,v) = H(z,y). We observe that v = y — E~1(z — Q,(y)), so that x =
E(y —v) + Q,(y). Similarly, we have that u = Q5(v) + E(y — v). Consider now the set
Ty = {((z,y),H(z,y)) : (z,y) € F2}. By definition, we have

Py = {((2,9) (u, )« (x,y) € Fg} = L ({((y,0), (z,u)) = (x,y) € Fg}),



11.1. Preliminaries 189

Figure 11.1: Open Flystel, H.
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5@ —

Figure 11.2: Closed Flystel, V.
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where £ the permutation of (IF‘Z)2 that satisfies £L7((x, ), (u,v)) = ((y,v), (z,u)). This
map is indeed linear. Using the equalities of above we can then write

L7 Ty) = {((y,v), (x, ) : (x,y) e F2}
= {((y,v), (BE(y —v) + Q4(y), Qs(v) + E(y —v))) : (y,v) e F2} =Ty,

We deduce that I'y = £(I'y), so the two functions are CCZ-equivalent. t

Corollary 11.1. Verifying that (u,v) = H(x,y) is equivalent to verifying that (z,u) =
V(y,v).

Concretely, we will encode the verification of a high degree open Flystel using the
polynomial representation of the low degree closed Flystel that is CCZ-equivalent to
it. Before coming to the presentation of the complete round function, we detail our
instantiations of @, Qs and E in even and odd characteristics. The map E is always
an exponentiation which is a permutation of F, while the polynomials @, and Qs have
been selected to avoid classical attacks.

Even characteristic. When ¢ = 2" for odd n, we take an exponent o = 2¢ 4+ 1 such
that 4 is coprime to n, a = 2! + 1 = 3 in practice, and we adopt F : 2 — 23. This
is indeed a permutation that can be seen as quadratic with respect to the algebraic
degree. Considerations related to linear and differential cryptanalysis led us to choose
Qy:z— g2 + g~ ! and Qs :  — g2, where g is a generator of the multiplicative
subgroup Fy.
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Odd characteristic. When ¢ is an odd prime, we pick an integer a coprime to ¢ — 1
and g an arbitrary generator of Fy. We still consider E : x — x® but this time the
choice of a depends on the cost of the algebraic techniques. In the same flavour as in
characteristic 2, we take Q. : x — gz? + ¢! and Qs :  — gz’

11.1.1.2 Full Round Function

In the general case, the input state is of size 2¢, £ € Z~ and the Sbox is applied locally.
For the moment, we limit ourselves to describing the situation when ¢ = 1 because this
is the only one for which we have been able to perform Groébner basis experiments for
sufficiently many rounds. For i € {0..n, — 1} with n, € N the number of rounds, we
consider the transformation

R; = H o M o AddConstants;, (11.2)

where AddConstants; corresponds to the addition of constants (¢;,d;) € Fg, where M
is the linear layer given by a 2 by 2 matrix over F, and where H is the open Flystel.

The Anemoi permutation finally reads

P=R, _q10---0Ry.

11.1.2 CICO Problem

The present chapter will discuss the security of Anemoi with respect to algebraic
techniques. More precisely, we studied the hardness of the following problem stated in
the case £ = 1.

Problem 11.1 (Constrained Input/Constrained Output (CICO) Problem).
Let P : Fg — Fg be a permutation. The CICO problem consists in finding a pair
(yim yout) € Fg such that P(anin> = (anout)-

It was introduced by the Keccak team in [Teall, §8.2.4] due to its relevance for
the security of sponge constructions. It is generally acknowledged that its difficulty
gives enough confidence in the permutation. To encourage the analysis of ZK hash
functions, the Ethereum Fundation proposed CICO challenges' for the permutations
underlying several of these primitives. The goal there was to obtain practical attacks on
round-reduced versions. Even though no preferred technique was mentioned, it turns
out that the weakest instances were broken using algebraic methods [BBLP22]. More
broadly, the study of such algorithms now appears as an essential ingredient to derive
the number of rounds in an AO proposal.

Thttps://www.zkhashbounties.info/.
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11.1.3 Standard Approaches

Several different techniques have already been proposed for the CICO problem. All of
them rely on a modeling of the constraints together with a polynomial description of
the primitive. In that respect, there is nothing new compared to the early attempts to
attack block ciphers.

Univariate solving. The point is to set an unknown x € I, such that the initial state
is (0,z) and to evaluate the permutation on this input. Solving Problem 11.1 is then
reduced to finding a root in F, of a univariate polynomial @ € Fy[z]. In [BBLP22], this
approach was shown to be successful on Feistel-MiMC and on Poseidon because the
degree grows slowly. Indeed, these proposals use a round function derived from z — ¢
and the degree of @ is expected to be d"". The authors of [BBLP22] are in fact able to
side-step a few rounds (1 for Feistel-MiMC and 2 for Poseidon) by using ad hoc tricks,
which was important for practical challenges.

The univariate strategy is however not feasible when the polynomial @) has a large
degree (typically, greater than ¢). This was observed in the case in Rescue (since the
scheme also uses the high degree map = +— /%) and more recently in Criffin [Gra+23).
We have not considered this method in our security analysis because the open Flystel is
also of high degree.

Intermediate variables. In contrast to the former technique, the idea is to introduce
equations and unknowns at each round to keep the degree low. It yields a multivariate
system with a number of equations and variables which is roughly a multiple of n,
and where the degree of the polynomials only depends on the round function. This is
essentially the historical approach of [CP02], applied to ZK-relevant ciphers in [BGL20;
BBLP22; Gra+23; Bou+23], among many others.

Trade-off. Finally, the attacker can choose an in-between strategy based on a modeling
with higher degree equations but fewer variables. This can be achieved by introducing
new unknowns only at specific rounds. A more astute method relying on the properties
of the cipher was proposed in [Gra+23, Partial intermediate variables, p. 24] and can
also be applied to Anemoi.

11.2 Considered Modelings

11.2.1 Naive Equations

Our first algebraic system corresponds to the second strategy described above by
introducing 2 equations and 2 variables at each round of the cipher. We denote the
input state by (zo,y0) and by (x;41,v:+1) the output of round R; for i € {0..n, — 1}.
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Fact 5. For any i € {0..n, — 1}, there exist two polynomials f; and g; such that

fi(@i, Yi, i1, Yig1)

=0
Tiv1, yie) = Ri(i, ) <
( i+1> Yit1) i(2, i) {gi(l’i,yi,wi-i-hyi—l-l) = 0.

Proof. These equations are obtained as follows. We start from the following equality
which holds for any i € {0..n, — 1}:

(i1, yir1) = Ri(wi,yi) = HM(@i + i, i + di) [1], M@ + ci, 55 + di)[2]).
By Corollary 11.1, this is equivalent to
(M(zi + ciyi + di)[1], wi1) = VIM(@i + ¢i, 93 + di)[2], yis1),

where V is the closed Flystel. Using the definition of this map yields

(M(zi + i,y + di)[2]) — yir1)™ + Qy(M(z + ¢iyyi + di)[2]) = M(zi + ¢ivys + di)[1],

(M(zi + ciyyi + di)[2] — yir1)" + Qs(Yir1) = @it

We can thus set

fi = (M(@i + ciyi + di)[2] = yi1)"™ + Qy (M (i + ci, i + di) [2]) — M(i + ci v + di) [1],
9i = M(@i + i, yi + di)[2] = yi1)" + Qs(Yiv1) — Titr-

[

Modeling 20. For i € {0..n, — 1}, let fi, gi € Fylzo,...,Zn,,Y0,--.,Yn,.] be the two
polynomials defined in Fact 5. Our first system to solve the CICO problem is

d
]:naive ;f {ang(b .. '7fnr_17gnr_1} Y {m()?xn'r}'

This modeling can be seen as containing 2n, equations and 2n, variables if we get
rid of the unknowns xg and z,,.. We will assume that this system is zero-dimensional
even if we do not add the field equations (they have very high degree). This behaviour
was always observed in our experiments.

In characteristic 2, both f; and g; are of degree 3. In odd characteristic, they are of
degree o = 3 but their difference is a polynomial of degree 2. We will keep this feature
in mind when analyzing the system. Another more general remark is that the shape of
these polynomials highly depends on the instantations of £, @, Qs, and M.

11.2.2 Griffin-like Equations

In odd characteristic, we were invited by a reviewer to study another system derived in
the same way as in [Gra+23, Partial intermediate variables, p. 24]. The inputs (xo, yo)
are still seen as variables but then the idea is to introduce only one equation p; and one
variable v; in the following rounds.
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We still denote by (x;,y;) the output of round ¢ — 1 and we consider (z},y}) the
partial output defined by

() < (M ) [1] + i, Mz, 1) (2] + ).
It is clear that (z,y.) are affine of degree 1 in (x;,y;) and that H(z},y!) = (zit1, Yi+1)-

We then set a new variable

d
vi &yl — i (11.3)

and we introduce the equation

f
pi " o (@~ By 7)) = 0. (11.4)
Note that we also have z;41 = 2} — Byy?? + Byfﬂ + 4.
Lemma 11.1. For any i € {0..n, — 1}, the polynomial p; belongs to Fy[xo, yo,vo, ..., vi].

Proof. Note first that for any ¢ € {0..n,.}, both x; and y; can be expressed as polynomials
in zg and yo. Recall also that (z},y.) can be written in terms of x; and y;, so that
pi € Fglxo,yo,vi]. In practice, we can avoid high degree monomials in zg,yo by also
including variables v; for j € {0..i — 1}. O

Modeling 21. We consider the system {po,...,pn.—1} in the polynomial ring
Fqlzo,yo,v0, - - . ,Un,—1], where v; is defined by Equation (11.3) and where p; is defined
by Equation (11.4). This set contains n, equations in n, + 2 variables. Our second
modeling to solve the CICO problem, denoted Fgrifin, is obtained from it by firing xo = 0
and by adding the equation in xo,yo, Vo, ..., Vn,—1 Which corresponds to z,, = 0.

A first apparent advantage of Fcyimn is that it contains half as many equations and
variables as the system Fiaive. Even though we cannot avoid a degree growth in the p;’s
through the rounds, the observation of the reviewer was that it only seems to be linear
from round ¢ such that v§* is not the term of maximal degree in p;. This was in fact the
initial motivation for studying Fariin. Indeed, in the absence of specific structure, such
a modeling usually contains polynomials whose degree increases exponentially with the
number of rounds.

11.3 Results in Characteristic 2

We first derive our estimate for the cost of solving Fpaive in even characteristic. Even
though the initial system is not a DRL Grébner basis, its computation appeared to be
extremely cheap (this stems from Fact 6 below). For this reason, we derived the number
of rounds only based on the FGLM algorithm.

Estimate 3. We estimate the total cost of solving Fpaive in even characteristic by the
one of the change-of-order step. Using Equation (2.2), the latter has complezity

O(n,9“"r),

where 2 < w < 3 s the linear algebra exponent.



194 Chapter 11. CICO Problem on the Anemoi Permutation

This cost corresponds to the one of the dense variant? of FGLM [FGLM93] on a
system of 2n, cubic equations for which the Bézout bound of Proposition 2.2 is tight.
This is what we observed in all our experiments.

We neglected the step to generate the DRL Grobner basis due to the following result.
Its proof can be seen as the result of computation since there are simply two polynomials
per round.

Fact 6. We consider the polynomial ring Fo[zo,vo, ..., Zn,, Yn,.| endowed with the DRL
ordering. For i€ {0..n, — 1}, let f;, g; denote the two cubic equations at round i (which
involve x;,y;, Ti+1 and y;+1). Then, the set of leading monomials in the reduced Grobner
basis of {fi,gi} is

{yfﬂ, xiy?ﬂ, :vg’, $iyi+1} . (11.5)

Moreover, the set of leading monomials in the reduced Grobner basis of {xo, fo,g0} is

{0, Y31, 45, yout, v} - (11.6)
All these individual Grobner bases are obtained in degree 5.

We observe that the leading monomials in two distinct sets defined by Equation (11.5)
for rounds i # j € {1..n, — 1} are always coprime to each other. They are also coprime to
those in Equation (11.6) and to x,, which corresponds to the second CICO constraint.
We can thus use Proposition 3.1 to show that only computation to obtain the final
Grobner basis is to generate the partial bases considered in Fact 6. The corresponding
complexity is essentially independent from the number of rounds.

11.4 Results in Odd Characteristic

The system Fpaive behaves differently in odd characteristic since the main step seems
to correspond to the Grobner basis computation. We derived the number of rounds
based on Conjecture 11.1, which gives a lower bound on the experimental solving degree
dexp(nr, @) for n, rounds when the exponent « is used.

Conjecture 11.1. The experimental solving degree degy(ny, ) of Fpaive s such that
dezp(Nr, @) = 20y + Kq, (11.7)

where kq s a constant depending only on «. We found k3 =1, ks =2, kv =4, k9 =7
and ko = 9 for* a > 11.

2There exist improved algorithms by exploiting the sparsity of the multiplication matrices [FGHR14;
FM17] or by viewing them as polynomial matrices [BNS22]. The latter requires assumptions on the
input system and it is not clear that we can apply it to our case.

3We would expect the value of ko to keep increasing with o but the calculations needed to estimate
it become too costly as a grows and thus we preferred to be conservative.
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Estimate 4. In odd characteristic, we adopt the lower bound

2n, + Ko + 21, \“
o[ ) "

where 2 < w < 3 is the linear algebra constant and where ko was derived from our
experiments.

Relying on Estimate 4 to choose the parameters a and n, can be seen as a bit cavalier
but it is common for AO primitives to use such lower bounds. We do not consider
the cost of FGLM because it appears to be negligible? compared to the complexity
in Equation (11.8). At the time of the submission, we conjectured a degree equal to
deg ((Fnaivey) = deg ((Farifiny) = (+2)™. This result suggests that the Bézout bound®
< 2" " for Fpaive is far from being sharp. Similarly to Jarvis in [BGL20, Appendix
A], we realized while writing this manuscript that it corresponds to a case of equality
for the multi-homogeneous Bézout bound:

Proposition 11.2 (Multi-homogeneous Bézout bound). Let (f1,..., fn) < K[z]
be a polynomial sequence in n variables and let X1, ..., Xy be a partition of the variable
set © such that #X; = s; for j € {1..k}. Forie {l.n} and j € {1..k}, let d; ; be the
degree of f; in the variable set X;. Then the number of solutions is bounded from above
by the coefficient of the monomial 27" ... 2" in

n
H (di712’1 + -+ di7nzk) . (11.9)
i=1
Remark 11.1. We recover Proposition 2.2 when k£ = 1 and d; 1 = d; for i € {1..n}.

Lemma 11.2. We have
deg ({Fraiey) < (a0 +2)".

Proof. Recall that the set of variables is {zo,...,Zn,.} U {y0,...,Yn,} and that the
equations for round R;, i € {0..n, — 1} were given by

fi = (M(zi + ci,yi + di)[2] — yir1)” + Qy (M (i + ¢iy ys + di)[2])
— Mz + ¢,y + di)[1],
gi = M(zi + ci,yi + di)[2] = yir1)™ + Qs(Wiv1) — Tit1-

As observed above, their difference is quadratic corresponding to the polynomial
d
hi Efi = gi = Qy(M(ai + ciyyi + di)[2]) = M(zi + ey + d)[1] = Qs(Wis1) + Tiga.

We now want to apply Proposition 7?7 to the pair {g;, h;} using the naive partition of
variables where the subsets X; are singletons. This boils down to looking at the partial

41t is still worth studying as further progress on the first step might render it limiting.
Sobtained from the generating set with n, polynomials of degree 2 and n, polynomials of degree a.
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degree in each variable. The point is that the degree patterns are not generic. In the
polynomial h;, the partial degree is 2 for x;,y; and y;11 but only 1 for x;,1. Similarly
in g; we easily obtain « for x;,y; and y;+1 but only 1 for x;4;. The polynomial P, _;
associated to the system {go, ho, ..., gn,—1, An,—1} by Equation (??) is thus equal to

d

'Pnr—l if (2y7’lr + wnr + 2ynr—1 + 2xnr_1>(ay7’br' + xn'r + aynr_l + awnr_l)Pnr_Q

d
if Qn,«flpmnf%
where P, _2 corresponds to the earliest rounds. It is easy to see that the coefficient of
H;”;O xjyj in P, _1 is equal to the one of z,, yp, in @pn,—1, €.g., a + 2, times the one of
H?;El xjy; in P,._2. We thus obtain (o + 2)"" by induction. The conclusion regarding
the degree follows from Proposition 2.2. O

Using Lemma 77 together with an agressive exponent of w = 2 in FGLM, a very
rough upper-bound for the cost of the change-of-order step is O(n?(a + 2)™). This
complexity is quite below the value given in Estimate 4.

Experiments. Table 11.1 provides an experimental comparison to Farifn for the
Grobner basis step.

Table 11.1: DRL Grobner basis for Fpaive and Farifin (0dd characteristic).

[a [ Ny “ dexp(Nr, &) Fnaive “ Total Time Fnaive (8) H « [ nT[ Degrees “ dexp (nr, &) FGriffin H Total Time Fqriffin (s)[
313 7 0.010 313 3,4,6 7 0.010
4 9 0.040 4 3,4,6,8 10 0.040
5 11 0.550 5 3,4,6,8,10 11 0.329
6 13 11.429 6 3,4,6,8,10,12 12 6.639
7 15 216.620 7| 3,4,6,8,10,12,14 15 163.870
8 17 14450.530 8 13,4,6,8,10,12,14,16 16 10575.610
513 8 0.040 513 5,5,6 11 0.049
4 10 2.599 4 5,5,6,8 15 0.879
5 12 226.330 5 5,5,6,8,10 19 19.129
6| 55,68,10,12 23 875.379
7|3 10 0.240 703 7,7,7 12 0.190
4 12 55.420 4 7,778 17 16.870
5 14 23042.180 5 7,7,7,8,10 22 3903.280

In spite of a clear advantage in terms of timings especially for a small number of

rounds when o = 3 and for large values of «, we have not considered this system to
derive Estimate 4 due to the high solving degree®. Note in particular that the general
expression for the Grobner basis complexity (e.g., Equation (2.7)) indicates that this
phenomenon should asymptotically prevail over a smaller number of variables (the initial
purpose of Fayifin). Another reason is that this second modeling seemed more difficult
to analyze. The shape of the equations is quite specific due to the way the system is
generated and we have not grasped a clear pattern from the mere Table 11.1.

6Concretely, we have added 2 extra rounds on top of Estimate 4 to ensure that Fgrimn exploited in
a more ingenious way will not jeopardize security.
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Independently from these experiments, a very rough reasoning based on the Macaulay
bound would suggest the same behaviour for the solving degrees of Fraive versus Fariffin-
This is because the degree of the equations increases with the number of rounds in
Farifin While it remains constant in Fpave. The experimental degrees of the p;’s are
provided in Column “Degrees” where they are listed as deg (po), . . . , deg (pp,.—1) for fixed
(a,ny). As initially claimed by the reviewer, our results suggest a linear increase.

From Table 11.1 and the following Table 11.2, we finally deduce the lower bound of
Conjecture 11.1. Even for high values of «, theoretical considerations led us to think
that the increase of the solving degree will be only by two after a few rounds. This
explains the multiplicative constant of 2 in the lower bound of Equation (11.7).

Table 11.2: Solving degree of Fpaive for higher values of a.

‘ o ‘dexp(nr, a) Fnaive when n, € {2, 3,4}‘
9 10, 13, 15
11 12, 15, 18

11.5 Further Comments
11.5.1 General Case / > 1

We write the wider state as a vector (X,Y) € ]Ffl X IFs. In this setting, the Sbox consists
in applying the open Flystel in parallel, i.e.,

S(X. Y)Y (H(X1 V), .. H(X, YY),

and the linear layer is of a different nature. The value of ¢ is typically ¢ € {1..8}, see
[Bou+23, Table 1].

At round i € {0..n, — 1}, the straightforward generalization of Fpaive contains
2¢ polynomials (fi1,..., fie,Gi1,-.-,0i¢) in 4€ variables x4, yuo for u € {i,i + 1}
and v € {1..£}. The degree of the relevant equations is the same as before, e.g.,
(a,...,a,2,...,2) in odd characteristic. Since this modeling is about ¢ times bigger
than the former one for the same number of rounds, we have not been able to perform a
large range of experiments. For instance, we have tested at most 3 rounds when ¢ = 2,
which is probably not enough to make conjectures.

Even Characteristic. When ¢ = 1, Fact 6 showed that the cost of the Grobner basis
computation on Fyave was mostly independent from n,. However, the same does not
necessarily hold when ¢ > 1. In this situation, the individual Grébner bases might be
obtained at a degree larger than 5. More crucially, there may exist an overlap between
the sets of leading terms in these bases so that the final one is not a simple gluing. The
complexity would then clearly increase with the number of rounds.
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Our experiments for £ = 2 and n, € {1..3} suggest the latter behaviour but we have
not been able to draw a more precise conclusion. For this reason and since this choice is
conservative, we have only considered FGLM in Estimate 3 even when ¢ > 1 to set the
concrete number of rounds.

Odd Characteristic. We have generalized Conjecture 11.1 and Estimate 4 to £ > 1
by replacing 2n, by 2¢n, everywhere, which is natural when considering the expression
of the Macaulay bound. We would proceed in the same way if the change-of-order step
were to be dominant because the Bézout bound is exponential in £. Note that the cost
of the algebraic attack of [BGL20, Appendix B]” on Rescue also exhibits this extra /
factor in the exponent.

11.5.2 Precisions on the Experiments

Our tests were performed using the Sage code available at [Vel22] on top of which we
have written additional Magma commands.

We have tried the DRL orders implicitly attached to the polynomial rings
Fylzo, Y0, - - -, Zn,, Yn, ] and Fylzo, ..., Tn,, Y0, .., Yn,] which seem to better capture the
shape of the systems. We have also focused on one speficic round and plugged the
associated leading terms, which was the starting point for Fact 6. More generally, we
have tested the incremental strategy by computing a Grobner basis for ¢ rounds and by
adding the polynomials of round 7 + 1 only when this first calculation was complete. This
can in fact be seen as a specific selection strategy in the naive Grébner basis algorithm.
We realized while writing this manuscript that this method had been formalized in
[AIbO8, §4.4.2] under the name of Grobner surfing. Even though it may offer a practical
improvement compared to the standard approach, it is difficult to translate this into
a better theoretical complexity. This is especially true since there is no known result
stating that a monomial order will be more efficient than another regardless of the
system.

As already observed in previous works, the Magma implementation of FGLM can be
the bottleneck even when this step seems to be cheaper than the one to obtain the first
Grobner basis. In most cases, the computation has not been completed but we could
still obtain the dimension of the quotient ideal using Magma’s verbosity.

"In this work, the main step is the FGLM algorithm.



Open Problems

We close our discussion with some research directions that appear natural from our
contributions. Before detailing these perspectives for the three main parts of this thesis,
note that the additional call for signature schemes recently launched by NIST® will be
for sure a fruitful source of cryptanalysis projects involving algebraic techniques.

Multivariate cryptography. In Chapters 4 and 5, we gave attacks on two schemes
which use an extension field. Apart from our work, the more high-profile breaks of
GeMSS and Rainbow have shown that this type of construction or more generally a too
large amount of added structure can clearly be detrimental to the security of multivariate
cryptosystems. As a result, the community now favours more simple proposals built upon
Unbalanced Oil and Vinegar (UOV) [KPG99] that are less structured than Rainbow.
The hope is to rely on an old scheme which seems rather resistant to cryptanalysis.

Known techniques on UOV can be understood as a mix of ideas coming from
combinatorial methods and from MQ algorithms. The application of rank attacks to
UOV-type schemes has been proposed very recently [Beu+23, §4.5|[F123]. Tt is natural to
expect improvements at this stage and it would be interesting to see if they can become
the limiting attack. The answer may depend on the UOV variant [KPG99; FIKT21;
Beu21b; FMPP22].

Rank-metric and MinRank-based schemes. Chapters 6 to 9 focused on the
cryptanalysis of the MinRank problem and of assumptions underlying rank-based
cryptography.

For MinRank, we introduced a hybrid technique that is compatible with known
approaches on this problem. However, we have not addressed the issue of obtaining an
asymptotic hierarchy between these different methods even in the random setting. This
is important from a theoretical perspective and also to derive parameters for emerging
proposals based on this assumption [Ara+23; Adj+23].

The same question naturally arises for rank-metric schemes. Independently, we can
imagine more immediate progress on the algorithmic side. For instance, Chapter 7
did not analyze the former combined modeling of [Bar+-20b] where all equations are
over [F,. Similarly, Chapter 8 on NHRD only studied the MaxMinors system. Finally,
the cryptographically-relevant zone for RSL where the number of syndromes is limited

Shttps://csre.nist.gov/projects/pqc-dig-sig/standardization /call-for- proposals.
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invites us to devise more efficient techniques. In this range, the algorithms that we have
proposed do not outperform the RD solver.

Other systems. The approach followed in Chapter 10 by isolating a structured part
in the system and by making an assumption on the rest of the equations is quite general
and it may be used (at least, as a first step) in many other contexts. An interesting
field of application is given by hard problems related to a secret permutation of {1..n}
such as the Permuted Equivalence Problem (PEP) and the Permuted Kernel Problem
(PKP) [Sha90]. They are at the core of the NIST proposals [Bal+23] and [Aar+23]
respectively. A bit before that, PKP was also used in [Beu+19]. The naive system
suggested in [Sael7] to solve PEP is of the same shape as the one we studied for RSD.
It combines structured polynomials modeling the secret permutation matrix together
with linear equations provided by the input instance. However, no analysis has been
performed. The goal would be to fill this gap as there should be a growing interest in
the potential of algebraic attacks. Indeed, this type of cryptography is still at an early
stage and parameters are far from being finalized.

The algebraic analysis of arithmetization-oriented primitives is another emerging
topic and our work of Chapter 11 barely scratches the surface. We only studied one
cipher and we restricted ourselves to the zero-dimensional strategy usually employed for
public-key schemes. Regarding the first point, it may be interesting to adopt a more
global approach no longer focused on one primitive especially because some existing
modelings only depend on the structure in rounds and not really on particular design
choices. Concerning the standard solving method, a first task would be to explain the
gap between the generic bounds and the concrete quantities that we have observed
(once again, this is not specific to Anemoi). Another route would be to find a suitable
monomial order for which the input system is already a Grobner basis. This is basically
what happened for MiMC [Alb+19]. We have obviously no proof that such an ordering
exists in general but this might be facilitated by the sparsity.
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