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Introduction

The original purpose of cryptography was to guarantee the secrecy of messages by
encrypting them before the transmission. Since then, the field had to go beyond this
initial goal due to its large-scale use and the development of computers in the second
part of the 20th century. At that time, a revolution was also the invention of public-key
cryptography in 1976 [DH76]. It allowed parties to securely communicate without
meeting to agree on a common secret. As such asymmetric algorithms typically rely on
hardness assumptions about computational problems, this also strengthened the role of
mathematics and theoretical computer science in the discipline.

The paradigm to argue security is that an attacker that breaks the scheme can be
used as a subroutine to solve the intractable mathematical problem. It is thus important
that there does not exist any efficient solver. Another constraint is that the assumption
should contain enough expressivity for the intended application. This explains why
arbitrary hard problems are in general not relevant. Hopefully, some coming from
number theory were also shown to meet our second condition. The two most prominent
ones are by far Integer Factorization and the Discrete Logarithm problem, for which all
the best known algorithms are exponential or subexponential. A majority of public-key
schemes are based upon these assumptions or closely related ones.

However, in 1994, Peter Shor introduced a polynomial time quantum algorithm
[Sho94] for these problems. Assuming that it can be implemented, this implies that
all current asymmetric mechanisms will be insecure in a model where the attacker
has quantum capabilities. This lead to rethink cryptography with new alternative
assumptions believed to resist quantum computers. To encourage efforts in that
direction, the National Institute of Standards and Technology (NIST) initiated in
2017 a competition to select the most promising candidates. Clearly, a prerequisite for
such proposals remains their resistance to classical algorithms. Our work will focus on
this setting and we will not consider quantum adversaries.

Algebraic Cryptanalysis
The idea of recovering the cryptographic secret by solving a multivariate polynomial
system over a finite field goes back way beyond the boom in post-quantum schemes.
It was for example used in the analysis of symmetric ciphers [CP02; CM03] and also
on the elliptic curve version of the Discrete Logarithm problem [Sem04]. It is however
clear that the approach has taken new scope in this recent context. Indeed, it has been
shown to affect code-based, lattice-based and multivariate proposals, which constitute
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the majority of the NIST submissions.
This general method takes the name of algebraic cryptanalysis. It requires both a

polynomial modeling of the cryptographic application and a study of solving algorithms
applied to these equations. These techniques are traditionally analyzed thanks to the
notions of ideals and Gröbner bases. A recurrent challenge is that generic bounds given
by computer algebra do not take into account the specificities in the input system. They
are due to algebraic properties of the scheme or of the hard problem under scrutiny but
also more directly to the shape of the equations.

MinRank Problem
Most of our contributions concern the analysis of MinRank [BFS99] and related variants.
This hardness assumption states that it is computationally difficult to find a non-zero
low rank linear combination between (full-rank) public matrices.

It was brought in cryptography by [Cou01b] to design a zero-knowledge authentication
protocol. At about the same time, one also noted its strong connection with the security
of code-based schemes in the rank metric. More precisely, the generic decoding problem
for this metric – the Rank Decoding (RD) problem – can be expressed as a MinRank
instance with a structure coming from an extension field. On the contrary, in the area
of multivariate cryptography where it is the most popular, MinRank is not part of the
security reduction. There, it only serves as a cryptanalytic tool to retrieve the private
key. For a given scheme, it is thus important to select the right instance or to find
possibly easier ones. Addressing this second question was in particular the crux in the
devastating attacks of [Beu21a; TPD21].

Given its recentness compared to code-based and lattice-based assumptions, the
cryptanalysis of MinRank is not established yet. For example, we do not have a complete
picture of hardness for random instances in function of the parameters. In fact, since
MinRank appears almost exclusively in a structured form, it is not even clear that such
a result would be of any help. What is certain is that the nature of the problem paves
the way for both algebraic and combinatorial techniques, regardless of this structure.

Several polynomial modelings have already been proposed for MinRank. The
analysis of the oldest ones has been shown to be nicely connected to the theory of
determinantal ideals [FSS10]. This relation remains to be understood for more recent
systems which lead to cryptanalysis breakthroughs, especially Support-Minors (SM)
[Bar+20b]. Independently, the extra structure in variants calls for a new analysis of
these generic modelings. It also leaves room for finding more relevant ones tailored to
these versions.

Structured Systems
We also studied other systems that are no longer related to MinRank but which still
admit particular features. In cryptography, the main solving technique boils down to
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computing a Gröbner basis in some graded order using an F4/F5-type of algorithm
[Fau99; Fau02], whose complexity is exponential in the maximal degree of a polynomial
appearing in this calculation. The challenge for the cryptanalyst is then to derive a tight
bound on this parameter based on the algebraic properties of the equations.

This has already been achieved in contexts where this structure is not apparent.
For example, polynomial systems arising from the direct attack on (variants) of Hidden
Field Equations (HFE) [Pat96] seem to have the same shape as random quadratic ones.
However, it was quickly noticed that the degree reached by the solver on these equations
is lower than the one on the latter [JF03]. It is now well-known that this parameter
is controlled by the rank of the MinRank problem which underlies the scheme [DH11;
DK12; DY13].

In the worst case scenario, such properties cannot be exploited or even uncovered.
In this situation, cryptographers do not hesitate to base their analysis uniquely on
experiments. Concretely, this means picking numerical parameter values and run the
solver on the resulting small-scale systems to see a general trend. The other extreme
would be to use the specific structure in order to speed-up the computation, for instance
by tweaking the general-purpose Gröbner basis algorithm. This undoubtedly requires a
much deeper understanding of the system.

Contributions
The content of this manuscript is dedicated to the cryptanalysis of several types of
primitives and it falls almost exclusively within the scope of algebraic cryptanalysis.
Some of our works encompass all the aspects of such an attack, from deriving the
modeling to the cost estimate, while some others are restricted to the latter step. We
have attempted to exploit potential features in the input equations as far as possible.

Analysis of existing systems. Even when we proposed a new polynomial modeling,
this came from a study of the previous choices to understand why they were not
necessarily the most suitable. Thus, we first describe our contributions regarding the
analysis step.

• In [Bae+22], we demonstrated that the Support-Minors modeling could indeed
be applied to the MinRank problem introduced by [TPD21]. Tao et. al were not
able to estimate this solver due to the big-field structure. In addition and more
generally, we addressed the question of memory complexity when using SM.

• The results in [Bar+23] on the RD problem were also obtained from a preliminary
analysis of SM. In this structured context, our experiments showed that the
modeling does not behave as suggested in [Bar+20b] due to some algebraic relations.
We provided conjectures for the number of such cancellations and we managed
to explain a good part of them. It turns out that we also recover the MaxMinors
(MM) equations of [Bar+20a] when we run Gröbner bases on SM.
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• In [BBBG23], we focused on the Non Homogenous Rank Decoding (NHRD)
problem. This is a variant of RD where the error has a specific form. This shape
was used in [Agu+20] to boost the original RD solver by setting unknowns to zero
in both MM and SM. However, this method also causes a loss in the number of
equations which was not considered in their estimates. We have tried to understand
this drop in the case of MM to obtain a more accurate cost formula.

• The bilinear equations studied in [BL23] had been introduced by Loidreau at
WCC 20221 but our work is the first attempt to analyze them. We showed that
there exist degree fall polynomials coming from the kernel of structured Jacobians,
which allowed to partially explain the early steps of the Gröbner algorithm. Even
if this content does not lead to an attack, it should give a better grasp of the
indistinguishability assumption which underlies Loidreau’s cryptosystem.

• The systems encountered in [Bou+23] are standard in the context of algebraic
cryptanalysis on arithmetization-oriented ciphers but they differ a great deal from
our other applications. This type of attacks is also rather new and each symmetric
design has its particularities. We managed to complement our experimental study
with a partial interpretation of the observed behaviour.

Starting from a new modeling.

• The work of [BTV21] corresponds to a full algebraic attack on a new multivariate
encryption scheme [RLT21]. The authors had already proposed an ad hoc MinRank
instance relevant to key-recovery. Sadly, in contrast to rank attacks on HFE, the
link between its solutions and the final (equivalent) key was unclear. Our first step
was thus to identify solutions which are suitable for an attack. By exploiting their
specific shape, we gave a polynomial strategy based on a dedicated modeling.

• The analysis in [Bar+23] also lead us to introduce another system for the RD
problem. Our arguments suggest that it may lead to better complexities than the
former SM method of [Bar+20b].

• The Rank Support Learning (RSL) problem is variant of RD with N ě 1 decoding
instances where the coordinates in all the errors belong to the same subspace of
Fqm . In [BB21], we gave a new SM-type modeling tailored to RSL. Its analysis
was in fact the starting point of [Bar+23] and the same proof techniques are used
in both papers.

• Our cryptanalysis of the Regular Syndrome Decoding (RSD) problem [BØ23] can
also be seen as building upon a new algebraic system since it is not explicitly
mentioned in the literature. Our main contribution was to study its specific features.
There, the structural part comes from quadratic polynomials which model the
regular distribution. We have been able to fully understand these equations. This

1https://www.wcc2022.uni-rostock.de/home.
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analysis already provides a rather precise picture of the full modeling because the
rest of the polynomials are not structured and may be treated as random at least
in a first stage.

Hybrid techniques. In some of our works [BB21; Bar+23; BØ23], we also proposed
a hybrid approach by fixing unknowns in the initial system. The general goal is to obtain
a better cost in parameter zones where the plain algebraic attack does not perform
extremely well. Contrary to the folklore method where these variables are randomly
selected, we took care to choose structured specializations for which the resulting system
still keeps a similar shape. This is important because it may give better results while
allowing us to rely on the initial analysis. This also places the approach as a natural
interpolation between the original solver and combinatorial techniques which are often
better understood. Finally, we contributed to improving these latter algorithms in the
context of NHRD [BBBG23] and we have managed to apply them to the Loidreau
scheme [BL23].

Impact for Cryptographic Proposals
Multivariate cryptography. By building upon the almost-break of [TPD21], we
obtained the best known attack on variants of HFE. In particular, we managed to break
the parameters of pHFEv- [ØSV21] which were resistant to [TPD21]. Concerning the
Sidon cryptosystem, the scheme can in theory be repaired by picking another type of
Sidon space. However, such a new construction has not been found so far.

Rank-based cryptography. Our work has contributed to strengthen the analysis of
cryptosystems relying on the rank metric. This was especially needed in the context of
the NIST call since algebraic methods had been much less studied than combinatorial
techniques. In the case of RD, [Bar+23] now represents the state-of-the-art. To the best
of our knowledge and even though it is not competitive when the number N of instances
is rather small, our approach on RSL [BB21] is still the only attack of algebraic nature
tailored to this problem.

Regular Syndrome Decoding. On some parameters used in pseudorandom cor-
relation generators [BCGI18], our approach has been shown to outperform standard
techniques such as ISDs and Statistical Decoding. This was especially true with the help
of the hybrid component.

Selecting parameters. The analysis of [BBBG23] and [Bou+23] are part of design
papers and they allowed to instantiate our proposals. As is often the case for this type
of ciphers, algebraic attacks were the limiting ones for Anemoi.

xi





Organisation du Manuscrit

Ce document est divisé en quatre grandes parties. La première contient des notions
préliminaires tandis que les trois autres sont dédiées à nos contributions, classées de
manière thématique. Au sein de chaque partie, nous avons tenté d’adopter un ordre
logique entre les chapitres, sauf dans la Partie IV où cela nous a semblé difficile.

Partie I Elle se compose de trois chapitres.

• Dans le Chapitre 1, nous donnons des éléments de cryptographie asymétrique et
de cryptanalyse. Nous formalisons aussi le cadre de la cryptanalyse algébrique
dans lequel s’inscrivent la quasi-totalité de nos travaux.

• L’étude de complexité pour ce type d’attaques amène à analyser des algorithmes
de résolution de systèmes d’équations multivariées sur un corps fini. Le Chapitre
2 introduit la théorie des idéaux polynomiaux et des bases de Gröbner qui sont
sous-jacents à ces méthodes. Il donne aussi un aperçu des principales techniques
utilisées en cryptanalyse algébrique.

• Le Chapitre 3 revient en détail sur les problèmes difficiles desquels sont issues
les modélisations rencontrées dans cette thèse. Lorsque cela est pertinent, nous
présentons aussi les constructions cryptographiques basées sur les hypothèses de
sécurité associées.

Partie II Cette partie est consacrée à nos résultats de cryptanalyse sur des schémas
multivariés qui font intervenir une extension de corps Fqn .

• Nous étudions la trappe Hidden Field Equations (HFE) et ses variantes dans le
Chapitre 4. Nous améliorons une attaque récente basée sur une instance MinRank
particulière en employant la modélisation Support-Minors, que nous arrivons à
analyser dans ce contexte.

• Le Chapitre 5 donne une attaque polynomiale sur un nouveau mécanisme de
chiffrement reposant sur des sous-espaces particuliers de Fqn appelés espaces de
Sidon. Là encore, nous considérons un problème MinRank spécifique. Nous
proposons un système algébrique dédié pour le résoudre et nous montrons que cela
permet de casser le schéma.

xiii



Partie III Elle contient nos attaques contre la plupart des hypothèses de difficulté
considérées en cryptographie en métrique rang. C’est la plus fournie de ce manuscrit.

• Mon travail de thèse le plus ancien s’est intéressé au problème Rank Support
Learning. Il est décrit dans le Chapitre 6. Nous y introduisons la première
approche purement algébrique contre ce problème. Nous donnons aussi une
méthode combinatoire issue d’un article ultérieur dont l’idée de départ est similaire.

• Le Chapitre 7 revient sur le problème plus fondamental du décodage générique.
Nous utilisons les mêmes techniques de preuve que dans le chapitre précédent afin
de corriger l’analyse de complexité des solveurs algébriques existants. Ces outils
nous permettent aussi d’estimer le coût de résolution d’une nouvelle modélisation
que nous proposons. Enfin, nous présentons une approche hybride structurée
s’appliquant aux systèmes algébriques utilisés contre le problème de décodage. Elle
a l’avantage de se généraliser à n’importe quelle attaque connue contre MinRank.

• Dans le Chapitre 8, nous nous focalisons sur une variante où le vecteur de bruit a
une forme particulière. La difficulté de ce problème est utilisée dans RQC et dans
une nouvelle amélioration de ce cryptosystème. En tenant compte de la structure
de l’erreur, nous analysons la modélisation algébrique MaxMinors et nous adaptons
l’approche combinatoire standard dans ce cadre précis.

• Le Chapitre 9 s’intéresse à un distingueur pour le schéma de Loidreau basé sur
des équations bilinéaires. Nous proposons une meilleure technique de résolution
s’inspirant des attaques combinatoires contre le décodage générique et nous mettons
en évidence des chutes de degré dues à la structure qui apparaissent dans les
premières étape de l’algorithme de base de Gröbner appliqué au système.

Partie IV Elle réunit nos deux travaux qui ne sont pas reliés au problème MinRank
sous-jacent aux parties II et III.

• Le Chapitre 10 étudie une autre forme d’erreur spécifique dite régulière dans le
cas du décodage en métrique de Hamming. Alors que le problème initial est
plutôt sujet à des méthodes combinatoires, cette structure supplémentaire permet
l’application de techniques algébriques. Notre approche se base sur un système
relativement élémentaire pour lequel nous conjecturons une série de Hilbert et
dans lequel nous proposons de fixer des variables en accord avec la structure. Nous
montrons qu’elle peut être compétitive vis-à-vis des attaques connues dans des
zones de paramètres utilisées par les générateurs de pseudo-aléa corrélé (PCG).

• Un nouveau type de cryptographie symétrique utilisé dans les preuves zero-
knowledge s’avère vulnérable aux méthodes algébriques. La permutation Anemoi
a été récemment proposée afin de gagner en efficacité dans plusieurs systèmes de
preuve. Dans le Chapitre 11, nous étudions sa résistance contre deux modélisations
afin de déterminer ses paramètres.
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Notation

Generic Notation

Symbol Meaning
Integers

N, Z, Zą0 Natural numbers, integers, positive integers
ta..bu The set of integers between a and b
#I The cardinality of a set I
`

a
b

˘

,
`

a
b

˘

q
Binomial coefficient, Gaussian binomial coefficient

Vectors
v Bold lowercase letters denote row vectors
vT Transpose of the vector v
vi, vI The i-th component of v and the vector pviqiPI for I Ă t1..`u

Matrices
M Bold capital letters denote matrices
MT Transpose of the matrix M
M i,j The entry in row i and column j
M I,˚ The submatrix obtained by considering row indexes in I
M˚,J The submatrix obtained by considering column indexes in J
In The identity matrix of size n
rkpMq The rank of the matrix M
|M |, |N˚,J |, |P I,˚| Determinant of the square matrix M (or of square submatrices N˚,J , P I,˚)
M bN Kronecker product between two matrices M and N
“

M N
‰

,
„

M
N



Concatenation between two matrices M and N (with appropriate sizes)

Algebraic structures
R, R An arbitrary ring
K, K A field and its algebraic closure
Fq For a prime power q, the field with q elements
Fqn Degree n extension of Fq
xr`s For ` P N and x P Fqn , the image xq` of x under the `-th iterate of the Frobenius map

xvii



Polynomials and Ideals
The notation x “ px1, . . . , xnq stands for a vector of variables and we let Krxs denote
the ring of multivariate polynomials in the variables x with coefficients in K. The
polynomial system (resp. sequence) containing the polynomials fi P Krxs for 1 ď i ď m

will be denoted by F def
“ tf1, . . . , fmu (resp. pf1, . . . , fmq). The ideal generated by this

system is defined by

xFy def“ xf1, . . . , fmy
def
“

#

m
ÿ

i“1
gifi : pg1, . . . , gmq P Krxsm

+

.

Finally, the letter I may denote an arbitrary polynomial ideal.

Linear Codes
A linear code C of length n and dimension k over Fq is an Fq-linear subspace of Fnq
of dimension k. We say that it has parameters rn, ksq. A generator matrix for C is a
full-rank matrix G P Fkˆnq whose rowspace is equal to C, i.e., C “

 

mG, m P Fkq
(

. The
dual CK of C is defined by

CK def
“

!

h P Fnq : @c P C, chT “ 0
)

.

It is an rn, n ´ ksq linear code and we call parity-check matrix for C any full-rank
generator matrixH P Fpn´kqˆnq of CK. Finally, the puncturing and shortening operations
are classical ways to construct new linear codes from existing ones. For I Ă t1..nu, the
puncturing PIpCq Ă Fn´#I

q of C at I is the rn´#I, k1 ď ksq-code defined by

PIpCq
def
“

 

ct1..nuzI : c P C
(

. (1)

Similarly, the shortening at the same positions is

SIpCq
def
“

 

ct1..nuzI : c P C and cI “ 0I
(

. (2)

We have SIpCKq “ PIpCqK and SIpCqK “ PIpCKq, so that this shortening operation is in
some sense dual to puncturing.

Asymptotic Notation
We consider the standard Bachmann–Landau notation for two functions f, g : NÑ R:

fpnq
def
“ O pgpnqq ô DM ą 0, @n P N, fpnq ďM |gpnq| ,

fpnq
def
“ Ω pgpnqq ô Dm ą 0, @n P N, fpnq ě m |gpnq| ,

fpnq
def
“ opgpnqq ô lim

nÑ`8

fpnq

gpnq
“ 0.

Also, we will write f „nÑ`8 g if pf ´ gqpnq “ opgpnqq and fpnq “ rO pgpnqq if there
exists some constant c ą 0 such that fpnq “ O pgpnq |log gpnq|cq.

xviii



PartIPreliminaries





Chapter1Relevant Concepts in Cryptology

This first preliminary chapter introduces some notions in cryptology in order to put our
work into this broader domain.

Cryptology traditionally encompasses the areas of cryptography and cryptanalysis.
Historically, the goal of cryptography was to devise mechanisms to guarantee the
secrecy of communications. Due to emerging applications which do not require to
transmit data, the motivation is now more general but a similar security concern
remains. Cryptanalysis gathers all the methods which aim at discovering flaws in such
cryptographic constructions.

Contents
1.1 Public-Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Security and Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Algebraic Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Post-Quantum Cryptography . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Public-Key Cryptography
At the core of the development of cryptography is the initial belief that two people had
to agree on a secret way of encrypting and decrypting messages in order to communicate.
Nowadays, the field of symmetric cryptography is the closest one to this original idea
since the parties need to share a common string, the secret key, in such mechanisms.
The most iconic scheme of this type is undoubtedly the Advanced Encryption Standard
or AES [DR02], which has been widely used since its standardization.

However, symmetric cryptography does not answer the question of distributing these
secret keys. History as well as the growing number of interactions through insecure
channels in everyday life applications have shown that this issue had to be addressed in
a secure but also efficient way. Luckily, in 1976, at about the same time as the early
stages of the Internet, the pioneering work of Diffie and Hellman [DH76] circumvented
this problem by finding an alternative to the secret-key paradigm to build cryptography.
Their new approach gave rise to what we call public-key or asymmetric cryptography. It
relies on the existence of trapdoor one-way functions, i.e., functions which are easy to
evaluate but whose inversion is far more complicated without the knowledge of a secret

3



4 Chapter 1. Relevant Concepts in Cryptology

quantity, a trapdoor. Since they are a special case of general one-way functions, whose
existence would imply P ‰ NP, this abstract construction is related to one of the most
famous open conjectures in theoretical computer science.

Diffie and Hellman have not been able to find a concrete example to approximate
such ideal functions. Shortly after, in 1978, Rivest, Shamir and Adleman suggested
to use the exponentiation modulo the product N of two large prime numbers p and q.
It lead to the RSA cryptosystem [RSA78] which can be seen as the first realization of
public-key cryptography. Several other candidate trapdoor functions have been proposed
since then, still tied to problems mostly from number theory which are assumed to
be intractable. This is not the first time that mathematics had come to the rescue
of cryptology. The introduction of a mathematical formalism in this area since the
19th century actually explains why the field became a science well before the birth
of asymmetric cryptography. Relying on algebraic structures not initially tailored to
computer science is also a reason why public-key algorithms are computationally less
efficient than secret-key solutions. This justifies the use of hybrid encryption to combine
the advantages of both types of cryptography.

A common feature in asymmetric schemes is a Keygen algorithm to produce a pair
of keys psk, pkq. The secret key sk is kept by only one party while the public key pk can
be freely distributed. The way these keys are used depends on the intended application.

Encryption schemes. The most basic purpose of asymmetric cryptography is to
ensure confidential communication. This can be achieved thanks to public-key encryption
(PKE). Let us assume that Alice wants to securely transmit a message m to Bob. First,
Keygen provides a private key sk to the latter as well as a public key pk which is known
to any user. Alice can thus apply the encryption algorithm Encrypt with input pk to
obtain the ciphertext c “ Encppk,mq. Only the owner of the secret key sk, namely Bob,
can finally Decrypt to recover m “ Decpsk, cq.

While this seems reasonably satisfactory, this solution does not guarantee that the
message m was really sent by Alice. To ensure the authenticity of communication, one
can use digital signatures.

Digital signatures. In addition to Keygen, a digital signature scheme consists of
two algorithms pSign,Verifyq. As in a PKE, the Keygen procedure generates a keypair
psk1, pk1q but this time sk1 is sent to Alice. To show that she is legitimate, Alice then
builds a signature σ “ Signpsk1,mq that she typically appends to her message. An
arbitrary signature rσ is publicly verifiable using pk1 by computing Verifyppk1, rσ,mq.
This boolean value indicates whether rσ is a valid signature for m or not.

Since a signature is tied to a given plaintext, such a mechanism also ensures integrity.
This means that the message cannot be corrupted during the communication.

Advanced functionalities. Due the development of technology and computer-based
communication, cryptography needs to answer new challenges which arise from these
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applications. Most of the time, they require cryptographic constructions with more
advanced functionalities.

In this context, a PKE and or a digital signature can still serve as the fundation
provided it has specific properties. The whole scheme is then obtained by adding external
algorithms. Interestingly enough, number-theoretic assumptions have proven helpful
to find such building blocks. For example, the RSA cryptosystem is multiplicatively
homomorphic and the Paillier scheme [Pai99] enjoys a similar property but for addition.
The latter is based on the Decisional Composite Residuosity Assumption (DCRA), which
becomes easy if one knowns how to efficiently factor large numbers. In the same fashion,
Identity-Based-Encryption (IBE) and group signatures are generalizations of PKE and
digital signatures whose early constructions [BF01; BBS04] heavily rely on bilinear maps
on appropriate groups.

However, some other applications have required brand new building blocks. For
instance, secure two-party computation (2PC) was introduced along with the notion
of garbled circuit [Yao86]. Since the goal is not restricted to secure communication
anymore, it is quite understandable that PKE and signatures were no longer sufficient.
Still, note that mathematics remain extremely present. Very often, they help to realize
a partial step towards the final functionality. To continue the example above, garbled
circuits rely on oblivious transfer (OT), whose initial construction [Rab05] is based on
the RSA assumption.

1.2 Security and Cryptanalysis
Attempts to find weaknesses in cryptographic mechanisms are traditionally referred to
as attacks. Due to Kerchkoffs’s principle [Ker83], such techniques are able to exploit a
public specification of the scheme. A consequence is that a cryptosystem which resists
several years of analysis by the community may be more trusted than a proposal that
no one has examined.

To study these attacks, modern cryptography has introduced a more precise
framework which goes beyond the intuitive meaning of security. Roughly speaking,
it consists in formalizing the capabilities of the adversary Eve (the model) and what
we allow her to achieve (the security notion). A security notion aims at making more
precise a security goal for a scheme in order to have a proof that this scheme indeed
meets this requirement. By construction, the security of asymmetric primitives is related
to mathematical problems which are believed to be difficult in the considered model of
computation. In this context, a security proof (or reduction) strengthens this connection
by showing that an adversary which can efficiently attack the targeted notion can be
used to solve efficiently the associated problem.

In fact, hardness assumptions remain the focus of cryptanalysis even when such a
reduction is missing. A security level which measures concrete security is often obtained
from the computational cost of the best known attacks. Finally, a break traditionally
refers to an attack whose complexity is below this security level.
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1.3 Algebraic Cryptanalysis
Algebraic cryptanalysis can be defined as the very general family of attacks which are
based on solving a system of multivariate equations. Even if it is difficult to give the
precise date of the first algebraic attack, the broad idea can already be traced back to
the work of Shannon [Sha49]. The general structure is in two steps:

1. Modeling. First, we set up a multivariate system which describes the scheme
from the knowledge of its specification. The requirement is that solving this system
should allow to recover the secret (message, private key, . . . ). The variables are
the secret itself or they can be related to it in a less direct way. In this second
case, additional steps might be needed to recover this secret.

2. System solving. As cryptosystems mainly operate on discrete data, there will be
no ambiguity in the definition of “solving” in our context: the set of solutions is a
finite list of vectors. Similarly to other types of cryptanalytic attacks, an algebraic
attack is said to be practical if we can efficiently recover these solutions. However,
to some extent, modern cryptography also considers non-practical ones1. In this
situation, the work of the cryptanalyst is to estimate a theoretical cost.

Both steps are equally important but they also go hand in hand. The first step is the
closest one to the initial cryptographic design and it sometimes calls for creativity. A
presumably good modeling should contain as much information as possible about the
scheme because this information may help for the solving process. Concretely, we would
like to find “simple” equations or as many equations as possible. However, we cannot
make a definitive statement on the quality of a modeling without studying efficient
algorithms for solving it. In particular, analyzing them may be challenging. Very often,
this is because we apply generic techniques to systems with specific features.

Regardless of its feasibility, the minimal condition to mount an algebraic attack is
that the cryptographic algorithm can be expressed into a set of multivariate equations.
For this reason, algebraic cryptanalysis is sufficiently general to be applied to both
symmetric and asymmetric schemes.

1.4 Post-Quantum Cryptography
While a large part of cryptography, starting from most of the symmetric primitives, does
not seem too strongly affected by the added capabilities of quantum computers, the
same does not hold for public-key cryptosystems. There is nothing really wrong with the
initial paradigm itself but sadly the essential building block which is used to instantiate it
is now defective. Indeed, both the Discrete Logarithm problem and Integer Factorization
are particular instances of the so-called Hidden Subgroup problem for finite abelian
groups, which can be solved in polynomial time by Shor’s algorithm [Sho94]. In response,

1For instance to derive security levels and parameters.
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the keysize in current public-key mechanisms would have to be increased exponentially,
leading to truly uncompetitive schemes. In contrast, it is generally acknowledged that
doubling this keysize for most of the symmetric primitives should be sufficient to hedge
against Grover’s algorithm [Gro96].

Hopefully, this very fact also implies that building quantum-safe public-key
cryptography should not be too hard, at least in theory. It is just a matter of replacing
the flawed building block by a quantum-resistant one. In particular, the community has
already started to consider new hardness assumptions for which quantum computers do
not seem to help. Each of these difficult problems is associated to a branch of what we
call post-quantum cryptography. Interestingly enough, research in some of these branches
is prior to Shor’s algorithm. The most important ones2 are:

• Code-based cryptography, relying on the hardness of decoding random linear
codes and other closely related assumptions,

• Hash-based cryptography, relying on the security of a given hash function,

• Isogeny-based cryptography, relying on difficult problems defined in terms of
isogenies between elliptic curves,

• Lattice-based cryptography, relying on the hardness of finding short vectors
in Euclidean lattices and other closely related assumptions,

• Multivariate cryptography, where most schemes are based on the difficulty of
solving random multivariate quadratic systems.

Even though the underlying assumptions are believed to be quantumly intractable, they
already provide extra material to classical cryptanalysts and in particular to algebraic
cryptanalysts. Indeed, some of them still involve a sufficient amount of structure for
such techniques to apply. This structure is often vital to build the cryptographic
trapdoor. Sometimes, more artificially, it is also a way to enhance the efficiency of a
given cryptographic construction. In Chapter 3, we will go back to some of these hard
problems through the lens of algebraic cryptanalysis.

Post-quantum standardization effort. To fully migrate to post-quantum cryptog-
raphy, we need to duplicate all the work performed for number-theoretic cryptography
by building efficient schemes based on new assumptions and later combine them into
procotols in order to reach more advanced functionalities. It turns out that these hard
problems also allowed to solve new cryptographic challenges. The most obvious example
so far is undoubtedly Fully Homomorphic Encryption (FHE) [Gen09], which has long
been regarded as the holy grail of cryptography [Mic10]. Indeed, all FHE proposals or
at least those used in commercial solutions are lattice-based.

The large-scale deployment of post-quantum cryptography also calls for standards.
To this end, the American National Institute of Standards and Technology (NIST)

2Presented in alphabetical order to avoid any unnecessary debate.
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launched in 2017 a process – often referred to as the NIST PQC competition (or project)
– to standardize post-quantum PKE and digital signatures. The initial call for proposals
gathered 82 submissions, most of them belonging to one of the abovementioned branches.
They have been analyzed in-depth by the entire cryptographic community and the
selection has been narrowed down through a series of 3 rounds. The outcome of the
Third Round was announced in July 2022: four candidates have been selected for
standardization and four additional algorithms have continued in a Fourth Round for
further study [Ala+22]. Among them, it should be noted that SIKE [Jao+17] was
subject to severe cryptanalysis since then [CD23; Mai+23; Rob23] and is now considered
as broken.

Table 1.1: Third Round outcome: ready for standardization.

Public-Key Encryption/KEMs Digital Signatures
CRYSTALS-Kyber CRYSTALS-Dilithium

Falcon
SPHINCS`

Table 1.2: Third Round outcome: Fourth Round candidates.

Public-Key Encryption/KEMs Digital Signatures
BIKE

Classic McEliece
HQC

SIKE (broken)

Most of the content of this thesis is closely related to the NIST PQC project. First, the
whole process has been a clear boost for the post-quantum branches which are arguably
the most vulnerable to algebraic cryptanalysis, namely multivariate cryptography and
code-based cryptography relying on the rank metric. More directly, a part of my PhD
work applies to some of the NIST candidates, for instance the rank-based schemes
ROLLO [Ara+19c] and RQC [Agu+20] and the multivariate-based GeMSS [Cas+20]
and Rainbow [Din+20].

This selection process should not be considered complete. At the end of the Third
Round, NIST also asked for additional proposals for signature schemes. The main
justification was a lack of diversity among the candidates retained after the Third Round.
In particular, NIST was no longer interested in solutions based on structured lattices.
Another motivation was to have schemes with short signatures and fast verification.
These features are indispensable for some applications and they seemed to lack in the
algorithms kept after the Third Round.



Chapter2Solving Polynomial Systems

The purpose of this chapter is to present the main notions relevant to the System Solving
step of an algebraic attack, from the underlying theory to the description of the solving
algorithms and their complexity analysis.

Contents
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2.5 Systems in Applications . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.1 Affine Polynomials . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.2 Bilinear Equations . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 Ideals and Varieties
The first algebraic object which may come in mind to formalize system solving is the one
of algebraic variety. The variety of a system F “ tf1, . . . , fmu in n variables over a field
K can be defined as the subset of Kn on which all the fi’s vanish simultaneously. This
object is in fact associated to the ideal I “ xf1, . . . , fmy Ă Krxs since it does not depend
on a generating set and we will denote it by VpIq or VpxFyq. To restrict ourselves to
solutions belonging to a subfield L Ă K, another convenient definition is

VLpIq
def
“ tz P Ln : fipzq “ 0 for all 1 ď i ď mu “ tz P Ln : @f P I, fpzq “ 0u .

9
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Note that we recover VpIq “ VKpIq. More specifically, we will be interested in VKpIq when
K is the finite field Fq. If IFq stands for the ideal generated by F Ytxqi ´ xi : 1 ď i ď nu,
we obtain V

`

IFq
˘

“ VFqpIq.
Coming back to the general case, one can go in the opposite direction from an

arbitrary set a points W Ă Kn by defining

IpWq def“ tf P Krxs : @z PW, fpzq “ 0u . (2.1)

This choice of notation is hardly arbitrary since any such subset of Krxs is trivially a
polynomial ideal, that we call the ideal of W.

Radical ideals. This subset is far from being the unique ideal whose elements vanish
on W. Informally, it can be seen as the biggest one of this kind: if for some ` P Zą0
the polynomial f ` belongs to IpWq, it easily follows that f P IpWq. This motivates the
following definition.

Definition 2.1 (Radical ideal). An ideal I Ă Krxs is said to be radical if for any
f P Krxs, the existence of ` P Zą0 such that f ` P I implies f P I.

The ideal introduced in Equation (2.1) is indeed radical according to Definition 2.1.
In the general case, the radical

?
I corresponds to the smallest radical ideal containing

I. More explicitly,
?
I “

!

f P Krxs : D` P Zą0, f
` P I

)

.

The famous (strong) Nullstellensatz [CLO15, 4, §2, Theorem 6] states that if I is an
ideal over an algebraically closed field K, then IpVpIqq “

?
I.

Zero-dimensional ideals. Another relevant notion for our applications is that of
zero-dimensional ideals, i.e., such that the associated variety is finite. Our interest in
this definition is due to the fact that any ideal of the form IFq as we have just described
is both radical and of dimension 0. For the sake of simplicity, we do not expand on the
concept of Krull dimension and we only give the following property of 0-dimensional
ideals.

Proposition 2.1 (Degree of a zero-dimensional ideal). Let I Ă Krxs be a 0-
dimensional ideal, i.e., such that #VpIq ă `8. Then, the quotient Krxs{I is a K-vector
space of finite dimension. This dimension is called the degree of I, denoted degpIq.

Similarly to the degree of a polynomial in the univariate case, this notion is closely
related to the number of solutions to an ideal. More precisely, it counts the number of
solutions in K with multiplicities, so that degpIq ď #VpIq and the equality holds when
I is radical. We finish by giving a classical bound on the degree when the number of
equations is the same as the number of variables.
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Proposition 2.2 (Bézout bound). Let I “ xf1, . . . , fny Ă Krxs be a zero-dimensional
ideal and let d1, . . . , dn be the degrees of f1, . . . , fn respectively. We have

degpIq ď
n
ź

i“1
di.

In practice, an ideal I as in our theoretical exposition will be given by a fixed set
of generators. However, as such, these polynomials might not really help to obtain the
properties of I we want. In that respect, Gröbner bases that we now introduce turn out
to be more useful.

2.2 Gröbner Bases
A first and rather standard way to present Gröbner bases is to view them as a
generalization of the row echelon form for linear systems. In this section, we give
their definition as well as some elementary facts. We also provide some background on
homogeneous ideals.

2.2.1 Monomial Orderings
To carry on the analogy with linear systems, note that the row echelon form (even
reduced) is not unique because there are several ways to associate a matrix to a given
linear system in n variables. For instance, there are n! different orders on the columns
which correspond to n! distinct orders on the unknowns. Similarly, a Gröbner basis
will be defined at least implicitly with respect to a monomial ordering. A monomial in
Krxs refers to any product of the form xα1

1 . . . xαnn , pα1, . . . , αnq P Nn, and the notion
of monomial ordering has to go beyond simply ordering variables because we now deal
with higher degree polynomials.

Definition 2.2 (Monomial ordering). A monomial ordering ă of Krxs is a relation
on the setM of monomials of Krxs such that:

• the ordering ă is total onM;

• if µ1 ă µ2 and ν PM, then µ1ν ă µ2ν;

• ă is a well-ordering, i.e., every nonempty subset of M has a smallest element
under ă.

In the following, we will mostly focus on the so-called Lexicographical (LEX) and
Degree Reverse Lexicographical (DRL) orderings.

Definition 2.3 (Lexicographical ordering). Given α “ pα1, . . . , αnq P Nn and
β “ pβ1, . . . , βnq P Nn, we define:

• xα1
1 . . . xαnn ălex x

β1
1 . . . xβnn if the leftmost non-zero entry α´ β is negative.
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On variables, we obtain xn ălex ¨ ¨ ¨ ălex x1. On higher degree monomials, LEX is
still quite intuitive as it corresponds to the usual way of arranging words in alphabetical
order. To compare two monomials, one has to look at the largest variables first and
then keep in mind that a given variable dominates any monomial which involves smaller
variables.

Example 2.1. In Krx1, x2, x3s we have x2
1x

2
2x

12
3 ălex x3

1x
2
2x3 because p2, 2, 12q ´

p3, 2, 1q “ p´1, 0, 11q and x7
3 ălex x

5
2x3 because p0, 0, 7q ´ p0, 5, 1q “ p0,´5, 7q.

As above, we can obtain n! analogous orders by sorting the initial variables in a
different way. Perhaps more crucially, the LEX order is an elimination ordering: if G is
a LEX-Gröbner basis of I Ă Krxs, the set G XKrxv`1, . . . , xns is a LEX-Gröbner basis
of the ideal I XKrxv`1, . . . , xns for any 0 ď v ď n´ 1. As we will see below, this feature
makes it well-suited to solve polynomial systems.

Contrary to LEX, the Degree Reverse Lexicographical ordering is a graded ordering.
This means that monomials are sorted by total degree first, the total degree of xα1

1 . . . xαnn
being defined as

degpxα1
1 . . . xαnn q

def
“

řn
i“1 αi.

In case of a tie on this degree, variables involved come into play according to the following
rule. We keep the same notation as in Definition 2.3.

Definition 2.4 (Degree Reverse Lexicographical ordering). If degpxα1
1 . . . xαnn q “

degpxβ1
1 . . . xβnn q, x

α1
1 . . . xαnn ădrl x

β1
1 . . . xβnn if and only if the rightmost non-zero entry

in α´ β is positive.

This second ordering is less intuitive. Among monomials of a given degree D, the
largest monomial is xD1 , then come those in x1 and x2 only, then involving x1, x2 and x3,
etc. Between two monomials in the same variables x1, . . . , xj , the smallest one contains
the largest power of xj .

Example 2.2. In Krx1, x2, x3s we have x3
1x

5
2x

2
3 ădrl x

2
1x

9
2x3 because p3, 5, 2q´p2, 9, 1q “

p1,´4, 1q. The graded LEX ordering would sort these monomials in reverse order.

In practice, DRL is of interest because it seems to give faster computation time
compared to other orders. However, we can always imagine the possibility of a more
appropriate choice which benefits from the structure of the input system. The main
issue is that it is unknown how to discover such an ordering in general.

2.2.2 Gröbner Bases: Definitions and Basic Properties
This section gives the definition of a Gröbner basis for an ideal I with respect to a
monomial order ă as well as some elementary properties. Even if this notion does not
depend the generating set, we will often talk about Gröbner bases of any polynomial
system F which generates I.
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For a polynomial f “
ř

µPM aµµ P Krxs, we denote the leading monomial by
LMăpfq, i.e., maxă tµ PM, aµ ‰ 0u, the leading coefficient by LCăpfq

def
“ aLMăpfq

and the leading term by LTăpfq
def
“ LCăpfqLMăpfq. For an ideal I or more generally

for a set S, we define the monomial ideal

LMăpIq
def
“ xtLMăpfq, f P Iuy .

Dickson’s lemma [CLO15, 2, §4, Theorem 5] states that such an ideal is finitely generated
by monomials.

Definition 2.5 (Gröbner basis). Let ă be a monomial ordering and let I Ă Krxs be
an ideal. A Gröbner basis for I with respect to ă is any subset G “ tg1, . . . , gku Ă I
such that

LMăpIq “ xLMăpg1q, . . . ,LMăpgkqy .

A first consequence of Definition 2.5 is that G is actually a generating set for I, hence
the name basis. Furthermore, it is easy to see that such a Gröbner basis is not unique.
Any set of polynomials obtained by adding other elements of I is a larger Gröbner basis
and we can also disrupt the non-leading monomials of the polynomials in G to obtain
another Gröbner basis G1 such that #G1 “ #G. This apparent issue is solved by the
following definition.

Definition 2.6 (Reduced Gröbner basis). A Gröbner basis G for an ideal I is said
to be reduced if for every polynomial g P G we have LCpgq “ 1 and µ R LMpGztguq.

Indeed, for a given monomial ordering, any ideal has a unique reduced Gröbner basis.

Normal forms. The introduction of Gröbner bases by Buchberger [Buc65] was
motivated by the study of the Ideal Membership problem. Given a set of polynomials
th1, . . . , hmu and f P Krxs, the goal is to decide whether f P I “ xh1, . . . , hmy. In the
univariate case n “ 1, the ring Krxs is principal so that any ideal I is generated by one
element. To solve the problem, a convenient generator is the gcd g of all polynomials
in I because we simply have to check whether f is divisible by g. This g is easily seen
to be the only element in the reduced Gröbner basis of I. In the general case as well,
Gröbner bases allow to solve the Ideal Membership problem by computing normal forms.
The normal form of a polynomial f with respect to an ideal I extends the notion of
remainder which makes sense when n “ 1.

Proposition 2.3 (Normal form, Proposition 1 p. 83, [CLO15]). Given an ideal
I Ă Krxs, a polynomial f P Krxs and a monomial ordering ă, there exists a unique
decomposition f “ ρ` g such that g P I and such that no monomials present in ρ belong
to the ideal LMăpIq. The polynomial ρ is called the Normal Form of f with respect to I
and denoted by NF I,ăpfq or simply f modă I.
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Proof. To prove uniqueness, we consider two decompositions f “ ρ1`g1 and f “ ρ2`g2
such that g1 ‰ g2 belong to I and such that ρ1 ‰ ρ2 do not have any monomials in
LMăpIq. An ideal being stable by addition, the polynomial ρ1 ´ ρ2 “ g2 ´ g1 belongs to
I and, a fortiori, LMăpρ1 ´ ρ2q P LMăpIq. By assumption on ρ1 and ρ2, this implies
ρ1 ´ ρ2 “ 0 and g1 “ g2. To prove existence, we rely on the following Algorithm 1.
Algorithm 1: Normal form.
Input: A monomial ordering ă, a Gröbner basis G for an ideal I with respect to

ă and a polynomial f P Krxs.
Output: A polynomial ρ P Krxs such that f ´ ρ P I and such that no

monomials present in ρ belong to the ideal LMăpIq.
ρÐ f
while D monomial t in ρ and g P G such that LMăpgq | t do

ρÐ ρ´ t
LMăpgq

g

end
return ρ

This algorithm terminates as there is no infinitely decreasing sequence of monomials
with respect to ă (this is a consequence of Dickson’s lemma). Its correctness is trivial in
regard to the condition in the while loop.

Due to its reduction step, Algorithm 1 can be viewed as a multivariate extension of
the Euclidean division for univariate polynomials. Note also that it strongly relies on
the knowledge of a Gröbner basis for I. This shows that Gröbner bases are a crucial tool
for efficient computation in Krxs{I, which may have broader applications than testing
Ideal Membership.

Algorithm 1 can be generalized. For that purpose, we need to order polynomials
and thus consider polynomial sequences. For a sequence S “ ps1, . . . , s`q such that
ts1, . . . , s`u is not necessarily a Gröbner basis, there still exists a reduction algorithm.
Its output on a polynomial f is a polynomial usually called the reduction of f modulo
S, that we denote by ρ def“ NFS,ăpfq or ρ

def
“ f modă S. Even if we do not make this

algorithm explicit, see [CLO15, Theorem 3 p. 64], two remarks are in order. The first
one is that this ρ coincides with the result of Algorithm 1 when ts1, . . . , s`u is a Gröbner
basis. If πpSq stands for an arbitrary permutation of the input sequence, the second one
is that NFS,ăpfq and NF πpSq,ăpfq are in general different.

Buchberger’s algorithm [Buc76]. From now on, we fix an arbitrary order ă and
our notations become implicit with respect to it. For such an ordering, the work of
Buchberger already provides a Gröbner basis algorithm. It is based on the following
definition, whose motivation is to generate new leading terms by cancellation.

Definition 2.7 (S-polynomial). Let f, g be nonzero polynomials in Krxs and let
µ “ lcmpLMpfq,LMpgqq. The S-polynomial of the polynomial pair tf, gu with respect
to ă is defined as

Spf, gq
def
“

µ

LMpfqf ´
µ

LMpgqg.
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By construction, the S-polynomial Spf, gq is a polynomial combination between f
and g. Given a Gröbner basis G “ tg1, . . . , g`u, this already explains that the result
of Algorithm 1 on Spgi, gjq for any 1 ď i ă j ď ` will be zero. For an arbitrary set of
polynomials, the converse is also true.

Theorem 2.1 (Buchberger’s first criterion, Theorem 6 p. 86, [CLO15]). Let
I “ xGy Ă Krxs be an ideal. The set G “ tg1, . . . , g`u is a Gröbner basis if and only if
for all 1 ď i ă j ď `, the S-polynomial Spgi, gjq reduces to 0 modulo G.

From there, Buchberger’s algorithm proceeds incrementally starting from the set G
given by the input polynomial sequence. It consists in (a) selecting one pair of elements in
G and compute the S-polynomial (b) reducing it modulo the current basis (c) adding the
remainder to G if it is not zero, and overall repeating steps (a)(b)(c) until the conclusion
of Theorem 2.1 is satisfied. A full description can be found in [CLO15, Theorem 2 p.
91].

2.2.3 Solving with Gröbner Bases
Even though other types of algorithms also exist1, we will be mostly interested in solving
strategies based, at least implicitly, on computing Gröbner bases.

In this context, let us come back to the role played by the LEX ordering. From its
elimination property given in Section 2.2.1, we can obtain the following result.

Proposition 2.4. The LEX-Gröbner basis of a 0-dimensional ideal I is of the form
Glex “ Ynj“1Gj, where

Gj
def
“

 

gj,1pxj , . . . , xnq, . . . , gj,sj pxj , . . . , xnq
(

Ă Krxj , . . . , xns,

such that sj ě 1 for 1 ď j ď n´ 1 and sn “ 1. In particular, we have

Gn “ tgn,snpxnqu
def
“ tgnpxnqu .

The shape of the Gröbner basis in Proposition 2.4 is already enough for our purposes.
Indeed, we can proceed by back substitution starting from a fixed root of gnpxnq and
then solving a sequence of univariate polynomials. Under certain assumptions, it is even
enough to solve only one univariate equation.

Proposition 2.5 (Shape position, [GM87]). A 0-dimensional ideal I is said to
satisfy the Shape Lemma (or is in Shape position) if the LEX-Gröbner basis of I is of
the form

tx1 ´ g1pxnq, . . . , xn´1 ´ gn´1pxnq, gnpxnqu,

where deg pgnq “ degpIq and deg pgiq ă degpIq for 1 ď i ď n´ 1.
1For instance exhaustive search.
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Even if we will not need such a result, this proposition turns out to be generic for
radical ideals after a linear change of coordinates. More importantly for us, Proposition
2.4 and Proposition 2.5 show that solving the system is almost straightforward once the
LEX-Gröbner basis Glex is known.

Unfortunately, obtaining it directly is in general slower than with another monomial
ordering. On the contrary, as already mentioned, computing DRL-Gröbner bases is
faster from a practical perspective. This explains that the standard approach produces
Glex by means of another algorithm taking Gdrl as input.

Change of ordering. To move between two Gröbner bases for 0-dimensional systems,
one usually employs FGLM [FGLM93]. This procedure can be understood as a linear
algebra algorithm in Krxs{I, where the knowledge of the first Gröbner basis allows for
efficient computation. Its complexity will be estimated by

OpndegpIqωq, (2.2)

where n is the number of variables and where 2 ď ω ď 3 is a linear algebra exponent.
As degpIq ď #VpIq, this cost is polynomial in the number of solutions.

2.2.4 Homogeneous Ideals
Homogeneous polynomials correspond to polynomials whose all monomials have the same
total degree. For d P N, let us denote by Rd

def
“ Krxsd the vector space of homogeneous

polynomials of degree d in R “ Krxs. Since a classical basis is the set of all degree d
monomials, elementary combinatorics give dimK pRdq “

`

n`d´1
d

˘

. A homogeneous ideal
is generated by homogeneous polynomials. Such an ideal I can be expressed as the
direct sum

I “
à

dPN
Id,

where Id
def
“ I XRd is finite-dimensional. The quotient ring R{I can then be written as

R{I “
À

dPNRd{Id.
To capture the combinatorial structure of such a quotient, we will adopt the following

definitions.

Definition 2.8 (Hilbert function and Hilbert series). Let I Ă R be a homogeneous
ideal. The Hilbert function HFR{I of the quotient ring R{I is defined by

HFR{I : N ÝÑ N
d ÞÝÑ dimKpRd{Idq,

and the Hilbert series HR{I is the formal series defined by

HR{Ipzq
def
“

8
ÿ

d“0
HFR{Ipdqzd.
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The case of 0-dimensional ideals is of particular interest. For such ideals, the quotient
R{I is a finite-dimensional vector space. Therefore, the Hilbert series is a polynomial
whose evaluation at 1 gives

HR{Ip1q “
8
ÿ

d“0
dimKpRd{Idq “ dimKpR{Iq “ deg pIq.

Finally, the degree of this polynomial is one less than the following integer which deserves
definition.

Definition 2.9 (Degree of regularity). Let I Ă R be a 0-dimensional homogeneous
ideal. The degree of regularity of I, denoted dregpIq, is the smallest integer d P N such
that Id “ Rd.

2.3 Generic Sequences
This section introduces regular and semi-regular sequences. We believe that presenting
these objects prior to describing solving algorithms may help the reader to better
understand their complexity analysis. A first reason is that such systems do not have
particular algebraic properties, which explains that their Hilbert series are known. Since
regularity is a generic property for polynomial equations (see Theorem 2.3 below),
another more pragmatic one is that we hope to encompass most practical applications.

Genericity. In algebraic geometry, a property is said to be generic in an irreducible
algebraic variety X if it holds on a non-empty Zariski open subset of X. In our case,
this variety is given by a family of polynomial sequences which is also a vector space of
finite dimension. In the following, we consider the vector space Em,n,d of homogeneous
sequences pf1, . . . , fmq in Krxs such that deg pfiq “ di for 1 ď i ď m.

2.3.1 Regular Sequences
The notion of regularity aims at describing the relationship between the dimension of
an ideal and the number of its generators. We caution the reader that it should not be
confused with the one of degree of regularity (Definition 2.9).

Definition 2.10 (Regular sequence). A homogeneous sequence pf1, . . . , fmq in R is
regular if for all 1 ď i ď m, the polynomial fi does not divide 0 in the quotient ring
R{xf1, . . . , fi´1y.

In other words, the sequence pf1, . . . , fmq is regular if and only if all algebraic relations
between the fi’s are a consequence of those of the form fifj ´ fjfi “ 0. In the general
case, such relations are called syzygies and these particular ones are referred to as trivial.

Definition 2.11 (Syzygy). Let F “ pf1, . . . , fmq be a polynomial sequence in R (affine
or homogeneous). A syzygy for F is a vector psiq1ďiďm P Rm such that

řm
i“1 sifi “ 0.
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Its degree is defined as max1ďiďm pdegpfiq ` degpsiqq. Finally, the set of all syzygies of
F is an R-module denoted by SyzpFq.

We will come back to this definition in more depth when discussing the complexity
of computing Gröbner bases. Prior to that, we note that the very simple form of SyzpFq
in the regular case allows to obtain an explicit formula for the Hilbert series as initially
announced.

Theorem 2.2 (Exercise p. 137, [Frö98]). Let F “ pf1, . . . , fmq be a homogeneous
regular sequence in Em,n,d. We have

HR{xFypzq “
śm
i“1p1´ zdiq
p1´ zqn . (2.3)

Conversely, any sequence in Em,n,d whose Hilbert series is as in Equation (2.3) is regular.

In the particular case m “ n, we obtain the polynomial

HR{xFypzq “
n
ź

i“1

´

1` ¨ ¨ ¨ ` zdi´1
¯

.

This implies that an ideal I generated by a regular sequence with as many equations as
variables is zero-dimensional with degree of regularity

dregpIq “
n
ÿ

i“1
pdi ´ 1q ` 1. (2.4)

This quantity is often referred to as the Macaulay bound [Laz83; Mac02]. Moreover,
the degree of I is easily seen to be equal to degpIq “

śn
i“1 di, which corresponds to the

upper bound in Proposition 2.2.

Finally, as mentioned above, “almost all” sequences in Em,n,d are regular when n ě m.

Theorem 2.3. When n ě m, the set of regular sequences is a non-empty Zariski open
subset of Em,n,d.

Proof. See [Par10]. Note that the nonemptiness is trivial since the set of regular sequences
in Em,n,d already contains pxd1

1 , . . . , x
dm
m q.

2.3.2 Semi-Regular Sequences
Sadly, Definition 2.10 is not relevant for systems such that m ą n which abound in
our applications. This is because the polynomial fi will always be a zero divisor in
R{xf1, . . . , fi´1y for n ă i ď m. With this in mind, the notion of regularity has been
extended to this overdefined case m ą n by Bardet in her thesis.



2.3. Generic Sequences 19

Definition 2.12 (Semi-regular sequence, [Bar04]). Let F “ pf1, . . . , fmq be a
homogeneous sequence such that the ideal I “ xFy is 0-dimensional with degree of
regularity dreg. It is said to be semi-regular if I ‰ R and if for any 1 ď i ď m, the equality
gifi “ 0 in R{xf1, . . . , fi´1y with deg pgifiq ă dreg implies gi “ 0 in R{xf1, . . . , fi´1y.

Over F2, the Frobenius map x ÞÑ x2 is the identity. This fact is taken into account
in the following definition, for boolean systems.

Definition 2.13 (Semi-regular sequence over F2, [Bar04]). Let S denote the
quotient ring F2rxs{xx

2
1, . . . , x

2
ny. A homogeneous sequence F “ pf1, . . . , fmq with degree

of regularity dreg is semi-regular over F2 if I ‰ S and if for 1 ď i ď m, the equality
gifi “ 0 in S{xf1, . . . , fi´1y with deg pgifiq ă dreg implies gi “ 0 in S{xf1, . . . , fiy.

It should not be so surprising that one knows the Hilbert series of a semi-regular
sequence. First, this is a polynomial of degree at most dreg. Moreover, the syzygies
in degree ă dreg which are captured by the definitions are of the same nature as for
regular systems. In that respect, the proofs of Theorem 2.4 and Theorem 2.5 below are
extremely similar to the one of Theorem 2.2.

Theorem 2.4 (Proposition 3.2.5 p. 58, [Bar04]). Let F “ pf1, . . . , fmq be a
semi-regular sequence in Em,n,d and let Sm,n,dpzq

def
“

śm
i“1p1´zdi q
p1´zqn . We have

HR{xFypzq “ rSm,n,dpzqs` ,

with
”

ř

jě0 ajz
j
ı` def

“
ř

jě0 cjz
j, where cj “ aj if ai ą 0 for 0 ď i ď j and cj “ 0

otherwise (truncation after the first-non positive coefficient).

Theorem 2.5 (Corollary 3.3.8 p. 68, [Bar04]). Let F “ pf1, . . . , fmq be a boolean
semi-regular sequence in Em,n,d and let Tm,n,dpzq

def
“

p1`zqn
śm
i“1p1`zdi q

. We have

HR{xFypzq “ rTm,n,dpzqs` .

In these theorems, we reserve the term “Hilbert series” for the polynomial HR{xFy
and we will refer to Sm,n,d (resp. Tm,n,d) as the generating series of the ideal xFy. Finally,
note that there is no analogue of Theorem 2.3 regarding the genericity of semi-regular
sequences. Such a result relies on the famous Fröberg conjecture [Frö85], which has only
been proven in some specific cases (see [Bar04, Theorem 1.6.4 p. 22]).

Over a finite field, the Zariski topology is discrete and the set of semi-regular sequences
in Em,n,d is obviously finite. To obtain a rough estimate for the probability of being
semi-regular, we can divide its cardinality by #Em,n,d (keeping in mind that this number
is possibly zero and for sure not computable in practice).
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2.4 Solving Techniques
While Buchberger’s method [Buc76] is already a Gröbner basis algorithm, it is difficult
to analyze. This is due both to the dependency on the monomial order and the fact that
polynomial pairs are chosen at random to compute S-polynomials. However, relying on
a graded ordering seems to give a somewhat natural choice2 by selecting pairs of smaller
degree first. It also allows to continue the analogy with linear algebra.

2.4.1 Macaulay Matrix, Lazard’s Theorem
This link will be more concrete thanks to the notion of Macaulay matrix, which can be
understood as a direct generalization of the matrix of a linear system.

Definition 2.14 (Macaulay matrix, [Mac94]). The Macaulay matrix in degree d of
a sequence F “ pf1, . . . , fmq such that degpfiq “ di with respect to a graded monomial
order ă, denoted3 MacďdpFq, is the coefficient matrix of pµi,jfjqi, 1ďjďm where µi,j is
any monomial of degree ď d´ degpfiq and whose columns are indexed by all monomials
of degree ď d sorted in decreasing order with respect to ă.

Since the order on the rows is less important, we will mostly talk about Macaulay
matrices of systems rather than of sequences. A crucial remark is that row operations
onMacďdpFq readily correspond to polynomial combinations between the fi’s, hence
operations in the ideal generated by F . In particular, one can grasp polynomial reduction
in terms of Gaussian elimination.

If F is homogeneous generating an ideal I, we may restrict ourselves to the submatrix
ofMacďdpFq given by the rows corresponding to monomials µi,j of exact degree d´
degpfiq and then remove the rightmost columns labelled by degree ă d monomials since
they will be all-zero. Let us denote byMacdpFq the final result. This time, performing
Gaussian elimination yields a basis for Id. Moreover, as we have considered columns in
decreasing order, the associated leading terms give LTpIdq.

Theorem 2.6 (Lazard’s theorem, [Laz83]). Let F “ pf1, . . . , fmq be a homogeneous
sequence such that degpfiq “ di. There exists a degree D for which the polynomials
corresponding to the rows in the row-echelon form of MacdpFq for d “ min pdiqmi“1 to
d “ D are a Gröbner basis, with respect to ă, of the ideal generated by F .

Following [CG21, Definition 6], the least possible degree D in Theorem 2.6 will be
referred to as the solving degree of F . From our discussion, it is easy to see that it is
an invariant of the ideal. Indeed, when the ideal is homogeneous, it coincides with the
maximal degree of a polynomial in the reduced Gröbner basis (see for example [CG21,
Remark 7]).

2Sometimes called normal strategy.
3The monomial ordering ă will be implicit in the notation.
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The case of an affine system F can reduce to the homogeneous one. For instance, we
may consider the homogenized system F pzq “ tf pzq1 , . . . , f

pzq
m u obtained by introducing

an extra variable z and then applying the map

Krxs ÝÑ Krx, zs

fpx1, . . . , xnq ÞÝÑ f pzqpx1, . . . , xn, zq
def
“

ˆ

1
z

˙deg pfq
f
´x1
z
, . . . ,

xn
z

¯

. (2.5)

Theorem 2.6 states that Gaussian elimination onMacdpF pzqq up to the solving degree
of F pzq gives a Gröbner basis. To come back to the initial system, we may specialize the
corresponding polynomials by

Krx, zs ÝÑ Krxs

f pzqpx1, . . . , xn, zq ÞÝÑ fpx1, . . . , xnq
def
“ f pzqpx1, . . . , xn, 1q.

General complexity bound. We can now deduce an upper bound on the cost of
computing a Gröbner basis following Lazard’s approach.

Proposition 2.6 (Proposition 1, [BFS15]). Let F “ tf1, . . . , fmu Ă Krxs be a
homogeneous system in n variables with solving degree D. The number of K-operations
to compute a Gröbner basis for F is upper bounded by

O
ˆ

mD

ˆ

n`D ´ 1
D

˙ω˙

, (2.6)

where 2 ď ω ď 3 is the linear algebra exponent.

Proof. The complexity is clearly dominated by that of Gaussian elimination on the
Macaulay matrixMacDpFq, which has ď m

`

n`D´1
D

˘

rows and
`

n`D´1
D

˘

columns. Note
that Storjohann’s algorithm [Sto00] allows to compute the row echelon form of an
M ˆN matrix of rank r in OpMNrω´2q operations. The result follows since the rank
ofMacDpFq is upper bounded by

`

n`D´1
D

˘

.

Corollary 2.1. The number of K-operations to compute a Gröbner basis for an affine
system F containing m equations in n variables such that F pzq has solving degree Dz

can be upper bounded by

O
ˆ

mDz

ˆ

n`Dz

Dz

˙ω˙

, (2.7)

where 2 ď ω ď 3 is the linear algebra exponent.

Obtaining the solving degree. In Lazard’s approach, the operating degree D must
be given as input to the algorithm. Another remark is that the costs in Equation (2.6)
and Equation (2.7) are exponential in the solving degree. These two observations make
it crucial to estimate this value in order to understand the complexity of computing a
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Gröbner basis. For a homogeneous 0-dimensional ideal I, this reduces to studying the
dimensions of the vector spaces Id. In favorable cases, they can simply be read-off if we
know the Hilbert series. More systematically, we may consider the associated Macaulay
matrices. For an affine system F , it is not even clear that the solving degree of F pzq and
the cost given in Corollary 2.1 will be a good approximation of the original Gröbner
basis complexity.

2.4.2 Generic Algorithms
This subsection presents the main solving algorithms which are generally considered in
algebraic cryptanalysis. At a very theoretical level, they can be obtained by combining
ideas from Buchberger’s and Lazard’s methods. In particular, we may express all these
techniques in terms of Macaulay matrices. Finally, we will refer to them as generic
because they do not exploit particular features of the input system.

Faugère’s algorithms. Faugère’s F4 [Fau99] and F5 [Fau02] represent the state-of-
the-art in terms of Gröbner basis computation. In fact, they are used in a much broader
set of applications than the field of cryptology. Since describing these algorithms in
depth is outside the scope of this exposition, we simply stress the most important ideas.

Instead of considering polynomial pairs one at a time as in Buchberger’s original
approach, the F4 algorithm picks several pairs simultaneously. This is usually done
according to the normal strategy, by selecting all pairs for which the degree of the
S-polynomial is minimal. Once these critical pairs have been chosen, a pre-processing
phase builds a matrix containing the reductions by the current basis. Then, one performs
row-reduction as in Lazard’s method. Even though they are in general as wide as in
Lazard’s, matrices in F4 are usually much smaller regarding the number of rows. Another
advantage is that the set of critical pairs can be updated using Buchberger’s criterion
(Theorem 2.1). This allows to avoid redundant computation and more importantly to
ensure termination without requiring an input solving degree. From a cryptanalytic
perspective, understanding how F4 works is relevant since it is the default algorithm
implemented in the Magma computer algebra system [BCP97]. This software has been
adopted by a large part of the community and it is also the one used in most of our
experiments.

The rationale of F5 is to avoid reductions to zero in a much more systematic way
than in F4. They correspond to row operations on the Macaulay matrix yielding zero
linear combinations. Coming back to the polynomial representation, these reductions are
associated to algebraic relations in the original system. More precisely, the F5 criterion
predicts the ones which are triggered by trivial syzygies. In the (semi)-regular case, this
means that all unnecessary computation can be avoided. To implement this criterion,
F5 introduced the notion of signature. This algorithm later gave rise to a wide class of
Gröbner basis techniques relying on the same concept. We refer to [EF17] for a detailed
outline of this research area.
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XL family. The XL algorithm [CKPS00] was introduced for cryptanalytic purposes.
Its popularity among cryptographers lies in its simplicitly. Indeed, it was originally
described in terms of linearization even without mentioning Gröbner bases.

The idea is to use Gaussian elimination on a Macaulay matrix in order to generate a
univariate equation. This formulation shows that an implicit LEX-like order has to be
chosen and that the operations in XL are actually performed within Lazard’s method.
A comparison with F5 was later made in [Ars+04], showing that XL offers no advantage.
Indeed, the degree DXL reached by the latter is never smaller than that of Gröbner basis
algorithms and the XL matrices can be huge in comparison to F5. This second point
must not sound surprising as very little care is taken in removing reductions to zero.

In more recent papers, XL corresponds to a somewhat different algorithm. When the
system has a unique solution, it stands for a solver based on computing vectors in the
right kernel of a Macaulay matrix. If this matrix sparse enough, the hope is to benefit
from the use of the Wiedemann algorithm [Wie86] or its further improvements [Cop94;
Tho02]. Indeed, a row-echelon form is no longer required. In fact, the original paper
by Courtois et al. does not even mention sparse linear algebra. We may often refer to
this strategy as the “XL-Wiedemann approach”. Note that it has been implemented
and studied in [CCNY12]. In a very favorable setting where the degree is known, the
complexity is a follows. This bound implicitly assumes that the matrix is close to being
square of size the number of columns or that the cost of obtaining a full-rank square
submatrix is negligible compared to the XL complexity.

Proposition 2.7. Let D be such that the Macaulay matrixMacďDpFq has a non-trivial
right kernel, let nµ its row weight and let MďD the number of columns. The cost of the
XL-Wiedemann approach by finding a solution to the linear systemMacďDpFqvT “ 0
is given by

O
`

nµM
2
ďD

˘

. (2.8)

Remark 2.1. We will often choose a hidden constant equal to 3 for the Block-Wiedemann
algorithm, see for example [BBD08, Proposition 3 p. 219].

2.4.3 Towards Specific Strategies
Particular properties of the input polynomials – among others, the presence of algebraic
structure or symmetries – must be taken into account in the analysis of generic solvers.
Indeed, they directly impact the ranks of the Macaulay matrices, the degree of regularity,
and more generally the Hilbert series of the ideal. A partial knowledge of these objects
is sometimes sufficient to derive a first cost estimate. In some cases, specific features
can be further exploited to devise enhanced algorithms.

Removing reductions to zero. A more complete understanding of the syzygy
module may help to avoid redundant computation by incorporating dedicated criteria in
the Gröbner basis algorithm. Even though including them might be cumbersome and
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even if the asymptotic complexity is not better, this represents a noticeable improvement
in terms of running time and required memory in practice.

In this spirit, [FSS11] and [GNS23] proposed tweaked versions of F5 tailored to
bilinear and determinantal systems respectively. We will come back to bilinear sequences
in Section 2.5.2. Prior to these works, note that the idea of discarding unnecessary
reductions using extra knowledge on the system had already been suggested by Traverso
[Tra96]. However, his algorithm requires a Hilbert series, which is rarely available.

Hybrid techniques. On a given polynomial system, hybrid methods usually consist in
(a) choosing a subset of variables, (b) fixing them to some value, (c) solving the specialized
equations with less unknowns, and overall repeating (a)(b)(c) for all specializations until
a solution is found. These algorithms may be viewed as a way to benefit from a small
field size or as an interpolation between exhaustive search and Gröbner basis solvers
when the initial parameter range is not favorable.

The hybrid approach has been studied by [BFP10; BFP12] in the case of semi-regular
sequences. Their analysis calls for an assumption on the semi-regularity of the systems
obtained after specialization. In a structured context, the effect of fixing unknowns will
actually depend on the way these variables are chosen. This type of situation will be
recurrent in this thesis.

2.5 Systems in Applications
Systems encountered in the cryptographic context may exhibit some characteristics
which are not the ones of generic sequences. As already mentioned, these particularities
play an essential role in the study of solving algorithms and they can make it tricky.
In fact, the absence of features is also difficult to quantify. For instance, Theorem 2.2
(resp. Theorem 2.4) shows that proving regularity (resp. semi-regularity) is as hard as
obtaining the Hilbert series of the system.

We now briefly review two standard traits – affine polynomials in Section 2.5.1 and
bilinear structure in Section 2.5.2 – which are often present in our applications. However,
note that the considered modeling may have a much more specific shape.

2.5.1 Affine Polynomials
In Corollary 2.1, we obtained a first upper bound on the complexity of computing
Gröbner bases for affine sequences. In fact, in this context, we can define a solving
degree without relying on the homogenized system. In [DS13], this term is introduced
vaguely as the highest degree of a polynomial involved in the solving algorithm.

Definition 2.15 (Solving degree, Definition 6, [CG21]). Let F be a polynomial
system in Krxs. The solving degree of F with respect to a graded order ă is the least
degree d such that the rowspace ofMacďdpFq contains a Gröbner basis of F .
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This notion is no longer an invariant of the ideal since it highly depends on a
generating set. For instance, let us consider a radical ideal I whose variety contains
a single element pa1, . . . , anq P sKn. On the one hand, it is well-known that the set
G “ tx1´a1, . . . , xn´anu is a reduced Gröbner basis of I for any term order. Its solving
degree in the sense of Definition 2.15 is thus equal to 1 for any graded order. On the
other hand, the solving degree of another set of generators can be much larger. This
example thus shows that contrary to the homogeneous case, the highest degree of a
polynomial in the reduced Gröbner basis can be strictly less than the solving degree.

2.5.1.1 First Fall Degree
A more fine-grained analysis of the solving degree calls for the notion of degree fall. For
that purpose, we need to consider the homogeneous sequence F phq “ pf phq1 , . . . , f

phq
m q such

that f phqi is the homogeneous part of highest degree in fi. Let us assume that there exists
a degree d syzygy ptiq1ďiďm for F phq in the sense of Definition 2.11, where ptiq1ďiďm is a
vector of homogeneous polynomials. In the polynomial p “

řm
j“1 tifi, we notice that the

homogeneous parts of degree d cancel out and thus deg ppq ă d. Moreover, if there does
not exist any syzygy psiq1ďiďm for F such that sphqi “ ti for 1 ď i ď m, this polynomial
does not reduce to zero.

Definition 2.16 (Degree fall polynomial, first fall degree). Let F be an affine
sequence. A degree fall polynomial for F corresponds to any polynomial p as described
above. The first fall degree, denoted dff , is defined as the smallest integer d such that a
syzygy in degree d for F phq yields a degree fall polynomial for F .

Upper bounds on the first fall degree are much easier to obtain than on the solving
degree since it suffices to find non-trivial syzygies for F phq. However, the relationship
between the two can be complex.

The situation is favorable when the sequence F phq is semi-regular. Indeed, the first
degree fall polynomials occur at the degree of regularity and the rest of the computation
deals with polynomials of smaller degree. The complexity of solving the homogeneous
sequence is then used to estimate the overall cost.

Proposition 2.8 (Proposition 6, [BFSY05]). Let F be an affine sequence such that
F phq is semi-regular with degree of regularity dreg. The number of operations in K to
compute a Gröbner basis of F with respect to a graded ordering can be upper bounded by

O
ˆ

mdreg

ˆ

n` dreg ´ 1
dreg

˙ω˙

, (2.9)

where 2 ď ω ď 3 is the linear algebra exponent.

In the general case, the gap between first fall degree and solving degree might be
large. For instance, [DS13] provides systems with a low dff but a high solving degree.
Even if these examples may sound pathological, computer algebra [BMT21] and algebraic
cryptanalysis offer many others where the two degrees do not coincide. Also, and perhaps
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paradoxically, this first fall degree is often adopted by cryptanalysts as an approximation
of the solving degree.

One has to be cautious in relying on such an assumption. On the one hand, an
estimation only based on the first fall degree will clearly underestimate the real cost if
dff turns out to be smaller than the solving degree. On the other hand, there is also a
chance that the first fall polynomials leak some information related to the secret. In
such a case, the first fall degree fall remains the key parameter in the attack complexity.

2.5.1.2 Exploiting Degree Falls
More broadly than the cryptographic setting, it is well-known that Gröbner basis
techniques using the normal strategy can benefit from degree fall equations4. For
instance, in the case of F4, critical pairs constructed with these lower degree polynomials
will be treated first. They may in turn yield new degree falls in the subsequent steps.
This sort of domino effect often explains the early termination of the algorithm. In fact,
this is also what motivates the above cryptanalytic assumption.

Another advantage comes from their definition. Indeed, degree falls for a sequence F
can be pre-computed if syzygies of F phq are known. Adding these equations to the system
before computing a Gröbner basis will actually help to side-step the early stages of the
algorithm5. An alternative is to consider them as a new polynomial system especially
when they have a specific shape. Of course, it is only relevant if this second system is
easier to solve than the original one. This type of situation will arise several times in
this manuscript.

2.5.2 Bilinear Equations
In virtue of their surprisingly high proportion in cryptographic applications, bilinear
systems also deserve a dedicated section. A bilinear sequence in two blocks of variables
x “ px1, . . . , xnxq and y “ py1, . . . , ynyq is a quadratic sequence such that the degree
2 part in each equation only contains monomials of the form xiyj . For the sake of
simplicity, results in this section will be given for homogeneous bilinear polynomials. In
the case of an affine bilinear system F , we let the reader apply them to F phq and derive
statements on the degree fall polynomials for F as explained above.

2.5.2.1 Jacobian Matrices and Syzygies
The study of Jacobian matrices is at the core of the analysis of bilinear sequences.
In general, these matrices are defined for arbitrary vector-valued functions in several
variables.

Definition 2.17 (Jacobian matrix with respect to x). For a sequence F “

pf1, . . . , fmq Ă Krx,ysm, the Jacobian with respect to x is the mˆ nx matrix denoted
4In the context of XL, these polynomials were referred to as mutants.
5We note that the definition of solving degree in [CG23] is based on Macaulay matrices with degree

falls added (see the discussion before Definition 1.1 there).
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by JacxpFq whose entry in row i and column j is the partial derivative Bfi
Bxj

. We define
JacypFq analogously.

If F is homogenous bilinear, the matrix JacxpFq (resp. JacypFq) contains linear
forms in the y variables (resp. x variables). Lemma 2.1 shows the crucial connection
between the left kernel of this matrix and the syzygy module of F .

Lemma 2.1 (Consequence of Equation (1), [FSS11]; Proposition 1, [Ver+19]).
Let F “ pf1, . . . , fmq Ă Krx,ys be a homogeneous bilinear sequence and let H “

ph1, . . . , hmq Ă Krysm be a polynomial sequence. We have
řm
i“1 hifi “ 0 if and only if

H viewed as a vector belongs to the left kernel of JacxpFq.

To find kernel vectors, one usually employs the following result. Applied to Jacobian
matrices, it yields generic syzygies for bilinear systems.

Lemma 2.2 (Lemma 3.1, [FSS11]). Let M P Krysmˆt be a matrix of linear forms
such that t ă m. For any subset J “ tj1 ă j2 ă ¨ ¨ ¨ ă jt`1u Ă t1..mu of size t` 1, let
us consider the row vector of maximal minors of M defined by

vJ
def
“ p. . . , 0

loomoon

jRJ

, . . . , p´1q``1|M |Jzj`,˚
looooooooomooooooooon

j“j`

, . . . q.

Then, we have vJM “ 0.

Corollary 2.2. Let F “ pf1, . . . , fmq Ă Krx,ys be a homogeneous bilinear sequence
such that |x| “ nx and |y| “ ny. Let us assume that nx ă m. Then, there exist degree
nx`2 syzygies from vectors in the left kernel of JacxpFq. A similar result can be obtained
with the other Jacobian provided that ny ă m.

Most of the time, see [FSS11, Conjecture 4.1], these vectors vJ generate the left kernel.
Based on this observation, [FSS11] define the notion of bi-regular bilinear sequence.
Roughly speaking, the syzygy module comes down to the relations given in Corollary 2.2.
As already mentioned, the authors also devise a dedicated version of F5 which removes
all reductions to zero for such systems.

More generally, for an affine sequence of nx ` ny polynomials which is 0-dimensional,
the authors show that the maximal degree D reached by the Gröbner basis for a graded
order is upper bounded by

D ď min pnx ` 1, ny ` 1q. (2.10)

2.5.2.2 Bilinear Systems Obtained from Matrix Products
Even if they do not yield bi-regular sequences, a special type of systems relevant to
our purposes will contain equations which are the coefficients in a matrix equality
AXY “ 0pˆn, where A P Kpˆm is a matrix of scalars, where X P Krxsmˆr contains
the variables of the block x “ pxi,jq1ďiďm,1ďjďr and where the entries of Y P Krysrˆn
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are linear forms in the y variables. The following Lemma 2.3 gives the shape of the
Jacobian with respect to x in this case. For an m ˆ n matrix M , we denote by
rowpMq

def
“

`

M t1u,˚ . . . M tmu,˚

˘

the row vector formed by the concatenation of the
rows of M and similarly colpMq

def
“ rowpMTq.

Lemma 2.3 (Lemma 1 in [Bar+20a]). The Jacobian matrix of the system AXY “

0pˆn with respect to the x variables is given by

JacrowpXq prowpAXY qq “ Ab Y T P Frysnpˆmr

JaccolpXq pcolpAXY qq “ Y T bA P Frysnpˆmr.

2.5.2.3 Strategies in Practice
When the system is not generic, we cannot always exploit the expression of the Jacobians.
A more systematic approach is to investigate specific Macaulay matrices adapted to the
bilinear structure. Let us denote by Krx,yspA,Bq

def
“ KrxsA b FrysB the vector space of

bi-homogeneous polynomials of bi-degree pA,Bq in Krx,ys.

Definition 2.18 (Macaulay matrix indexed by bi-degree). Let F “ pf1, . . . , fmq
be a homogeneous bilinear sequence. The Macaulay matrix in bi-degree pA,Bq is the
matrixMacpA,BqpFq whose rows correspond to the polynomials µfj for all monomials
µ P Frx,yspA´1,B´1q and 1 ď j ď m and whose columns correspond to all monomials in
Frx,yspA,Bq.

Remark 2.2. Definition 2.18 can be easily generalized to the bi-homogeneous setting.

Let I be the bi-homogeneous ideal generated by F and let IpA,Bq
def
“ I XKrx,yspA,Bq.

The dimension of this vector space is exactly the rank ofMacpA,BqpFq. In the case when
I is also 0-dimensional, let d be the smallest integer such that IpA,Bq “ Krx,yspA,Bq for all
pairs pA,Bq with A`B “ d. Note that we may also have IpA1,B1q “ Krx,yspA1,B1q at some
bi-degree pA1, B1q such that A1 `B1 ă d. In particular, one can imagine XL strategies
which target a particular matrixMacpA,BqpFq instead of anotherMacpA1,B1qpFq even
when A`B “ A1 `B1. This type of method based on Definition 2.18 has already been
adopted in [PS20; Beu21a].

Finally, let us come back to the hybrid approach. There, we might be tempted
to specialize variables in only one of the blocks. Due to Equation (2.10), we should
probably focus on the smallest one. In the extreme case when this set of unknowns is
tiny, we can even consider to fix it completely and then simply solve linear equations.



Chapter3Post-Quantum Assumptions and
Algebraic Cryptanalysis

This chapter gives an overview of the difficult mathematical problems that we will study
in the second half of this thesis. In parallel, it describes some cryptosystems based on
the associated hardness assumptions.
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3.1 MinRank
Most of our contributions are closely or remotely related to the MinRank problem. Very
often, we will encounter it in a structured setting. First, of course, we need to define the
assumption in its most general form.

29
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3.1.1 Formulation
The MinRank problem was introduced in [BFS99], where it is proven to be NP-complete.
A bit later, Courtois suggested to use it in cryptography [Cou01b].

Problem 3.1 (MinRank problem). Given an integer d P N, K ` 1 matrices
M0, . . . ,MK P Fnrˆncq and L a finite extension of Fq, find field elements x1 . . . , xK P L
such that

rk
˜

M0 `
K
ÿ

i“1
xiM i

¸

ď d.

Remark 3.1. Problem 3.2 will be called homogeneous ifM0 “ 0nrˆnc and affine otherwise.

Note that we only provide the search version. In fact, most applications focus on
instances with a solution. Finally, even though the standard statement is L “ Fq, we
need to adopt the more general one given in Problem 3.1. The reason will become
apparent in the upcoming sections.

From the very start, in the restricted case L “ Fq, Courtois noted the strong
connection between MinRank and the following problem from coding theory.

Problem 3.2 (Decoding problem). Given C an Fq-linear code of dimension k and
length n, a metric wt over Fnq , an integer d P N and a vector y P Fnq , find a codeword
c P C and a vector e such that wtpeq ď d and y “ c` e.

In the setting when the matrices are square and diagonal, [Cou01a, §23.2.2] trivially
shows that MinRank is equivalent to Problem 3.2 in the Hamming metric, denoted wtH .
Roughly speaking, the diagonals of the M i’s for 1 ď i ď K generate the linear code C
and the diagonal of M0 corresponds to the vector y.

A link with MinRank can still be drawn in general but one needs to change both the
code and the metric. In this case, the code is obtained from all the entries of the M i’s.

Definition 3.1 (Matrix code). A matrix code is an rnr ¨ nc,Ksq-linear code whose
codewords will be viewed as matrices of size nr ˆ nc over Fq.

The relevant distance more tailored to Problem 3.1 is called the rank metric. The
rank weight of M P Fnrˆncq is defined as wtpMq

def
“ rk pMq and the Decoding problem

for a matrix code Cmat Ă Fnrˆncq with basis M1, . . . ,MK , target weight d and noisy
codeword Y asks to find px1, . . . , xKq P FKq such that

rk
´

Y ´
řK
j“1 xiM i

¯

ď d.

The key here is that pM0 “ ´Y ;M1, . . . ,MKq and d P N is not anything more than
an affine MinRank instance with K ` 1 matrices in Fnrˆncq , rank d and whose solutions
are searched in Fq. Going in the reverse direction from an affine MinRank problem is
analogous. Thus, MinRank and Problem 3.2 in the rank metric are equivalent.
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The average number of solutions to a random instance of Problem 3.2 is usually
measured in terms of the Gilbert-Varshamow distance dGV,wtpq, n, kq. We will define it
as a uniqueness bound. Roughly speaking, it is the largest integer d such that

#tx P Fnq : wtpxq ď du ď qn´k. (3.1)

In this case of the Hamming metric, Equation (3.1) becomes

d
ÿ

j“0

ˆ

n

j

˙

pq ´ 1qj ď qn´k. (3.2)

3.1.2 Use in Cryptography
In addition to its NP-hardness, the exponential cost of solving algorithms [Cou01a, §24]
was another motivation for introducing MinRank in the cryptographic context.

The first proposal is the Courtois’ zero-knowledge authentication protocol [Cou01b],
which can be turned into a signature scheme by using the Fiat-Shamir transform [FS87].
The drawback of this construction is that it is quite intricate and inefficient, mostly
due its soundness error of 2

3 . This explains why MinRank-based cryptography had not
really progressed in the next two decades. Hopefully, recent paradigms allowed to change
this landscape. By reducing the soundness error, they helped to devise significantly
more competitive schemes. For instance, MR-DSS [BESV22] is an evolution of Courtois’
which combines the notion of σ-protocol with helper [Beu20] together with cut-and-choose
techniques [KKW18]. Things are now moving very rapidly. Indeed, [BESV22] has already
been superseded by other contestants [ARV23; Fen22] based on the MPC-in-the-Head
approach [IKOS07]. All these constructions enjoy security reductions from the hardness
of MinRank. This means that solving average instances of Problem 3.1 is the only way
to attack them.

Cryptography relying on the random MinRank assumption already calls for
characterizing genericity. On this aspect, we prefer to refer to [FSS10] for more formalism.
For random instances, one may use the Gilbert-Varshamow distance to estimate the
number of solutions over Fq. From Equation (3.1) and the number of rank ď d matrices
in Fnrˆncq , this bound corresponds to the largest integer d such that

d
ÿ

j“0

˜

j´1
ź

i“0
pqnc ´ qiq

¸

ˆ

nr
j

˙

q

ď qnrnc´K . (3.3)

By approximating the left-hand side of Equation (3.3), one can recover the more standard
condition

K ď pnr ´ dqpnc ´ dq. (3.4)

On the one hand, when this inequality is strict, a generic affine MinRank problem will
not have a solution (even in ĎFqq. On the other hand, cryptographic instances always
have one: in this regime, it is expected to be unique. Finally, intuition from coding
theory suggests that MinRank should be the hardest when K is large. This may also
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be seen, to some extent, on the attack costs given in Section 3.1.3. In fact, as long as
K ă pn1r ´ dqpn1c ´ dq for n1r ď nr and n1c ď nc, we can imagine to solve a MinRank
instance with submatrices in Fn

1
rˆn

1
c

q and still obtain the solution we want. The result is
that MR-DSS and [ARV23] chose parameters such that K “ pnr ´ dqpnc ´ dq ´ 2.

3.1.3 Cryptanalysis
We now present the main solving strategies for the MinRank problem. Their cost will
be given on an affine MinRank instance M0, . . . ,MK P Fnrˆncq without any specific
features and with a unique solution M “M0 `

řK
i“1 xiM i of rank ď d.

3.1.3.1 Kernel Search
A first approach, sometimes called combinatorial, only uses linear algebra techniques.
An exhaustive list of attacks in this framework can be found in [Cou01a, §24]. We here
focus on Goubin’s kernel search (also called kernel attack) [GC00]. In fact, Courtois
notes that it is more powerful than any other algorithm mentioned in [Cou01a, §24]. To
describe it, let us assume without loss of generality that nr ě nc. Let us also recall that
the entries of M are linear in the unknowns xi for 1 ď i ď K.

The kernel attack repeatedly tests the consistency of linear systems in these xi’s until
one of them has a solution. Each of these systems is obtained by performing a guess on
a vector in the (right) kernel of M . Since any vector vj P Fncq such that MvT

j “ 0nrˆ1
yields nr linear equations in the xi’s, we require at least rKnr

s linearly independent ones
in order to test consistency. In fact, we even need K linearly independent equations
among the nrrKnr s ě K collected ones by picking this minimum number of vectors1.
Since a random non-zero vector lies in ker pMq with probability q´d, we expect to test
about qdr K

nr
s linear systems before finding a consistent one. The attack complexity in Fq

operations is thus given by
Opqdr K

nr
sKωq, (3.5)

where 2 ď ω ď 3 is the linear algebra constant.
Echoing the above remark, note that this cost is an increasing function of K. More

crucially, it highly depends on q. Aside from hybrid techniques, this value will have
much less impact on algebraic attacks.

3.1.3.2 Early Algebraic Algorithms
Algebraic approaches mainly differ in the choice of the polynomial equations. The first
two MinRank modelings were the so-called Kipnis-Shamir and Minors systems. In our
exposition, we will assume that the nc ´ d leftmost columns of M are in the linear span
of the rightmost d ones.

1Note that the latter issue as well as the linear independence of the vj ’s when guessing these vectors
is never formally discussed in [GC00; Cou01a]. Still, this should happen with at least constant probability
so that their analysis is not really affected.
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Kipnis-Shamir modeling. This method was proposed in [KS99]. It consists in
introducing extra variables which correspond to a systematic basis of ker pMq. Note
that this vector space is of dimension at least nc ´ d. From our assumption on M , one
is left with solving the following equations.

Modeling 1 (Kipnis-Shamir [KS99]). The Kipnis-Shamir modeling is the affine
bilinear system in the unknowns xi P Fq and K P Fdˆpnc´dqq whose polynomials are the
entries of the matrix

´

M0 `
řK
i“1 xiM i

¯

„

Inc´d
K



.

Remark 3.2. We may refer to the xi’s as the linear variables. The coefficients of K will
be called kernel variables.

The original approach on Modeling 1 was relinearization, see [KS99, §5.2]. As
mentioned in the last sentence of Section 2.5.2.3, another one is to fix all the kernel
variables to obtain a linear system. This actually gives the kernel attack.

Applying Gröbner bases was later suggested by [FLP08]. They observe that Kipnis-
Shamir does not behave as a regular system regarding both the solving degree (conjectured
to be « d ` 2) and the size of the variety. On the one hand, they manage to upper
bound the number of solutions with a Bézout bound argument [FLP08, Theorem 2].
Their result directly exploits the multi-homogeneous structure. Indeed, each equation
has the stronger property that it involves only one column in K. On the other hand,
this feature is not used to estimate the solving degree.

This issue was partially tackled in [FSS10]. The authors make the assumption that
the system behaves as a bi-regular one. In turn, they obtain the desired upper bound
from the analysis of generic bilinear sequences [FSS11]. Nonetheless, their estimate is
not sharp: Kipnis-Shamir equations seem to be solved faster in practice than bi-regular
ones2. Since the polynomials are multi-homogeneous in addition to being bilinear, this
should not sound so surprising.

The latter property actually translates into a specific shape for the Jacobian matrices
which is the one described in Section 2.5.2.2. Based on the work of [FSS11] that we
recalled in Section 2.5.2.1, the authors of [Ver+19] exhibit generic degree falls from
degree d` 2 to d` 1 for the Kipnis-Shamir system. This partly explains the behaviour
conjectured in [FLP08].

Minors modeling. The Minors approach can be considered as folklore but it seems
to appear later than Kipnis-Shamir in the literature. It is based on the fact that solving
the problem is equivalent to solving the system of all pd` 1q ˆ pd` 1q minors of M .

Modeling 2 (Minors). The Minors modeling on an affine MinRank instance
M0, . . . ,MK P Fnrˆncq with target rank d is the system in the linear variables xi whose
equations are given by all pd` 1q ˆ pd` 1q minors of M , i.e.,

t|MA,B| : A Ă t1..nru, #A “ d` 1 and B Ă t1..ncu, #B “ d` 1u .
2This observation is already made in the conclusion of [FSS11].
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The first occurrence of this modeling is [Cou01c, §8], where it is used to solve the
MinRank problem of [KS99]. Later, it is proven in [FLP08] that the Minors equations
are included in the ideal generated by Kipnis-Shamir. As a consequence, [FLP08] did
not study Modeling 2 on its own.

A more in-depth analysis based on the theory of determinantal ideals is performed in
[FSS10; FSS13]. In the regime where nr “ nc “ n and when there is equality in Equation
(3.4), [FSS10] show that the Minors approach may outperform the Kipnis-Shamir one.
In fact, the authors use it to break the parameter set C from Courtois’ scheme [Cou01b]
which seemed to resist the Kipnis-Shamir method. Since K ą pn´ dq2 in this case, some
linear variables are fixed before applying Modeling 2.

3.1.3.3 Support-Minors

The Support-Minors modeling was introduced in [Bar+20b]. We chose to separate it
from the rest of the algebraic attacks due to its relevance in our contributions.

The starting point, quite reminiscent of Kipnis-Shamir, is to factor the secret rank d
matrix as

M “M0 `
řK
i“1 xiM i

def
“ DC, (3.6)

where D P Lnrˆd and C P Kdˆnc are unknown. Then, for 1 ď j ď nr, let rj
def
“ M tju,˚

be the j-th row of M and let

Cj
def
“

„

rj
C



. (3.7)

Note that the rank of Cj is at most d. Thus, one can derive equations as in the Minors
modeling. More precisely, by setting all the pd` 1q ˆ pd` 1q minors of this matrix to
zero and by repeating the process for 1 ď j ď nr, we obtain:

Modeling 3 (Naive Support-Minors). The Naive Support-Minors modeling to solve
an affine MinRank instance M0, . . . ,MK P Fnrˆncq with target rank d is the system in
the linear variables xi and in the entries of C with equations

t|pCjq˚,J | : 1 ď j ď nr and J Ă t1..ncu, #J “ d` 1u ,

where Cj is defined in Equation (3.7).

By construction, Modeling 3 has a lot in common with both Kipnis-Shamir and
the Minors modeling. Actually, it has been shown in [BB22] that the Kipnis-Shamir
equations are included in Modeling 3 and that the associated ideals are the same. This
paper also grasps the degree falls of [Ver+19] in terms of the Support-Minors equations.
At first sight, all these results seem to indicate that Modeling 3 is not really better than
Kipnis-Shamir. In particular, they do not explain the evident success of this approach
compared to previous works.
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Minor variables. The main advantage of [Bar+20b] is on the practical side. In fact,
the authors do not focus on plain Modeling 3. Instead, they consider a more compact
system obtained from it by a change of variables.

Let 1 ď j ď nr and let J Ă t1..ncu be a subset of d` 1 columns in Cj . By Laplace
expansion along the first row, [Bar+20b] indeed note that the maximal minor |pCjq˚,J | is
bilinear in the coefficients of prjqJ and in a second block given by some maximal minors
of C. Recalling that the entries of rj are linear in the xi’s, this gives a bilinear equation
in xi for 1 ď i ď K and

ˇ

ˇC˚,Jzt`u
ˇ

ˇ for ` P J . In turn, setting cT “ |C˚,T | for any subset
T Ă t1..ncu of size d as new unknowns in Modeling 3 in place of the coefficients of C
yields the following Modeling 4. This set of equations is the genuine Support-Minors
system.

Modeling 4 (Support-Minors (SM)). The Support-Minors modeling to solve an
affine MinRank instance M0, . . . ,MK P Fnrˆncq with target rank d is the Naive Support-
Minors modeling 3 whose equations are viewed as bilinear in the linear variables xi
and in the so-called minor variables cT “ |C˚,T |, where T Ă t1..ncu, #T “ d. For
J Ă t1..ncu, #J “ d`1 and 1 ď j ď nr, we will denote by Qj,J the polynomial |pCjq˚,J |.

Remark 3.3. The change of unknowns cT “ |C˚,T | can be understood in terms of Plücker
coordinates, see [BV88, p.6].

We now describe the solving approach adopted in [Bar+20b]. Since the system is
bilinear, they apply the specific type of XL technique sketched at the end of Section
2.5.2.3. Note that it will succeed as long as the initial MinRank problem has ď 1 solution.

Multiplying by linear variables. The particularity of their algorithm is that it
simply constructs Macaulay matrices of the formMacpb,1qpQq for b ě 1, where Q stands
for the SM polynomials. In other words, equations are only multiplied by the xi’s.

By an inclusion-exclusion argument, [Bar+20b] deduce the least degree b for which
the linear systemMacpb,1qpQqvT “ 0 has a non-trivial solution. Note also that the row
weight of the Macaulay matrix does not depend on b. This is because multiplying an
equation by variables does not change the number of monomials. The base case b “ 1 is
tackled in Lemma 3.1.

Lemma 3.1. Each SM polynomial contains at most pK`1qpd`1q monomials. Moreover,
for J Ă t1..ncu, #J “ d` 1 and 1 ď j ď nr, the ones present in Qj,J “ |pCjq˚,J | only
depend on J .

Proof. Let J “ tj1 ă ¨ ¨ ¨ ă jd`1u and 1 ď j ď nr. By Laplace expansion along the first
row of pCjq˚,J , the monomials in Qj,J belong to the set

 

xicJzju : 1 ď u ď d` 1 and 1 ď i ď K
(

Y
 

cJzju : 1 ď u ď d` 1
(

.

The latter contains pK ` 1qpd` 1q elements which are independent from j.
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The increased sparsity ofMacpb,1qpQq for large b justifies the use of the Wiedemann
algorithm. The corresponding complexity can be obtained from Proposition 2.7.

The restriction to bi-degree pb, 1q matrices was initially motivated by the great
imbalance between the two blocks of unknowns in practice. Indeed, we observe that
Macpb,1qpQq is generally much smaller than any otherMacpu,vqpQq such that u`v “ b`1.
The multiplication by cT variables is also more complicated to analyze. In fact, it call
for understanding the role of Plücker relations (see for example [Jac96, Equation (3.4.10)
p. 110]). In our notation, for any subsets J “ tj1 ă ¨ ¨ ¨ ă jd`1u Ă t1..ncu, #J “ d` 1
and U Ă t1..ncu, #U “ d´ 1, they correspond to the degree 2 cancellations

d`1
ÿ

`“1
p´1q`cUYtj`ucJztj`u “ 0.

3.2 Multivariate Cryptography
In Part II, we will study specific MinRank instances arising from multivariate schemes.
The first occurrence of Problem 3.1 in this field dates back to the historical attack on
Hidden Field Equations (HFE) [KS99]. At about the same time as [Cou01b], Courtois
noticed that it naturally appears in the analysis [Cou01c, §8].

3.2.1 Introduction
Even without mentioning MinRank, multivariate cryptography (MPKC) can already be
seen as the post-quantum branch which is the most prone to algebraic cryptanalysis.
Indeed, it is directly built upon the difficulty of solving random quadratic equations.

To formalize the corresponding hardness assumption, we adopt the following
terminology. For a sequence pp1, . . . , pmq Ă Fqrxs, we consider the polynomial map

P : Fnq ÝÑ Fmq
a ÞÝÑ pp1paq, . . . , pmpaqq .

It is said to be quadratic if the input polynomials have total degree at most 2.

Problem 3.3 (MQ problem). Given a quadratic map P : Fnq Ñ Fmq and a target
t P Fmq , find a preimage of t, i.e., a vector s P Fnq such that Ppsq “ t.

Problem 3.3 is known to be NP-hard. On average, in practice, it is also believed
to be exponentially hard as long as m „ n. A consequence is that there already exist
constructions whose security is only based on MQ [SSH11b; Che+18; Beu20].

However, the classical approach to MPKC requires another type of assumption. The
idea is to use a quadratic map F : Fnq Ñ Fmq with a special structure that makes it
easily invertible. This map is called the central map and it plays the role of a trapdoor.
The public key is then defined as the composition P def

“ T ˝ F ˝ S, where S : Fnq Ñ Fnq
and T : Fmq Ñ Fmq are randomly generated affine maps of maximal rank. To rely on MQ,
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the crux is now that P should be indistinguishable from a random quadratic system.
However, since the central map F is often ad hoc, very little attention has been given to
formalize such an assumption and more generally to provable security for trapdoor-based
MPKC [SSH11a].

This standard way of building multivariate cryptography is often referred to as the
butterfly construction. It can be used in both encryption mechanisms and signature
schemes.

Encryption. The ciphertext c def
“ Ppmq P Fmq corresponds to the evaluation of the

public key P at the message m P Fnq . Note that we must have m ě n for decryption to
be injective. The decryption process consists in inverting each secret key component. In
other words, we compute S´1 `F´1 `T ´1pcq

˘˘

to recover the plaintext.

Signature. We do no longer need m ě n. In fact, the lack of this constraint
may explain why the panorama is more promising for signature algorithms than it
is for encryption schemes. To sign a message m P Fmq when m ă n, we apply the
abovementioned decryption algorithm to a vector pm, rq P Fnq , where r P Fn´mq is
randomly generated. If this vector does not have an inverse by P, we sample another
r1 P Fn´mq and we start again with pm, r1q. Verifying a signature rσ is straightforward.
We simply compare the m leftmost components of Pprσq to the original message.

While the complexity of encryption (resp. verification) only depends on the degree
of the public equations3, the cost of decryption (resp. signing) is related to the structure
of F . This gives another constraint on the choice of this map in addition to the security
requirement.

3.2.2 Big-Field Schemes
The historical method was to consider a trapdoor which admits a simple description
over an extension field. The general structure is F def

“ φ ˝ F ˝ φ´1, where F P FqnrXs
is of degree D and where φ : Fqn Ñ Fnq is an Fq-linear isomorphism. Since we want
a quadratic system, the polynomial F only involves monomials of the form Xqi`qj for
i, j P N. The rationale is that inversion reduces to univariate solving.

This big-field approach was pioneered by Matsumoto and Imai with the C*
cryptosystem [MI88]. The scheme was later broken by Patarin [Pat95], who proposed a
generalization called Hidden Field Equations (HFE) [Pat96]. In fact, most of the recent
constructions can be obtained from these two proposals by applying modifiers, such as
[CS19; CYS15] from C* and [Pet+15; DCPS17; Cas+20] from HFE.

Finally, we want to mention the Sidon cryptosystem [RLT21] that we will study in
Chapter 5. It cannot be viewed as a big-field scheme per se since it does not a have
butterfly shape. Still, as we will see, it heavily relies on an extension field.

3This actually justifies the choice of quadratic polynomials.
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3.2.2.1 Central Map and Cryptanalysis
The C* cryptosystem was defined with a polynomial F pXq “ Xqα`1 for some integer
α P N such that gcdpqα`1, qn´1q “ 1. This is in fact a monomial which can be inverted
via simple exponentiation. To avoid the attack of [Pat95], HFE considers a more general
one of the form

Definition 3.2 (HFE polynomial).

F pXq “
ÿ

i,jPN
qi`qjďD

αi,jX
qi`qj `

ÿ

kPN
qkďD

βkX
qk ` γ, (3.8)

where αi,j , βk and γ are random elements in Fqn .

Inversion now requires to factor degree ď D polynomials over Fqn using, for example,
Berlekamp’s algorithm [Ber70]. To speed-up this step, it thus seems legitimate to choose
the value of D as small as possible. However, this would cause a serious problem for
security. The key notion here is the rank of the central map, which corresponds to the
rank of F when seen as a quadratic form in pX0, . . . , Xqn´1

q. This is because attack
complexities increase with this value. Finally, note that it is bounded by logqpDq in the
case of HFE.

The direct attack is a message attack which applies to any MPKC. Rank attacks are
more specific. While they are not limited to big-field schemes, we will only study them
in that context.

Direct attack. This method consists in inverting the public system as if it was a
random MQ instance. For that purpose, all known solving algorithms can be employed.
In particular, using Gröbner bases lead to break the first HFE challenge of Patarin
[JF03]. There, it was observed that the solving degree of P differs significantly from the
one of a regular sequence. Note that this already contradicts our handwaving assumption
on the security of F . Perhaps surprisingly, this degree seems to depend on D but not
on n. For some parameters, [JF03, §4, Table 2] even provides an upper bound. Their
argument actually relies on the rank of the central map, even if implicitly.

Rank attacks. These are attacks on the secret key which more directly exploit the low
rank of the central map. Indeed, they model key-recovery as an instance of Problem 3.1
whose rank is equal to the one of F . The initial C* attack [Pat95] falls into this category.
Since then, similar methods have been used on other schemes such as HFE [Pet+15;
VS17] or PFLASH/EFLASH [CS17]. The cryptanalysis works of [DS05; Beu21a; Beu22]
on Rainbow [Din+20] show that this approach is in fact not restricted to big-field
constructions.

Beyond these two techniques, differential attacks can also affect MPKC. A good
example of this is given by the cryptanalysis of SFLASH [DFS07; DFSS07]. However,
we seem to have good confidence that HFE-based proposals resist this type of methods
[Smi10].
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Coming back to parameters, one thus wants a low degree D for efficiency but a bound
logqpDq which is not too small for security. This is a first reason why HFE instantiations
stick to q “ 2 in general. Concretely, Patarin’s initial challenge achieving 80 bit security
was q “ 2, m “ n “ 80 and D “ 96. This would yield a ciphertext or signature size of
80 bits.

3.2.2.2 Rank Attacks

In contrast to the schemes presented in Section 3.1, MinRank only appears in the
cryptanalysis. Even though attacks relying on it may involve other steps, solving
Problem 3.1 will often be the dominant cost. Finally, the underlying instance will be
structured due to the use of an extension field.

Since rank attacks are a particular type of key-recovery attacks, let us start the
following definition.

Definition 3.3 (Equivalent keys). For an asymmetric scheme, two secret keys sk1
and sk2 are equivalent if there is a public key pk such that psk1, pkq and psk2, pkq are
two valid keypairs. For a butterfly MPKC, this corresponds to two tuples pT1,F1,S1q
and pT2,F2,S2q such that F1 and F2 are valid central maps satisfying

T1 ˝ F1 ˝ S1 “ T2 ˝ F2 ˝ S2.

In the case of HFE and its variants, the structure of such a set of keys is well-known
[WP11, Theorem 4.13]. Concretely, in the attacks that we will describe, any non-zero
solution to the MinRank problem will yield several equivalent keys. In the subsequent
steps, the cardinality of this keyset will give degrees of freedom to the attacker for fixing
variables. Due to construction, the Sidon cryptosystem is also affected by a rank attack.
However, in this case, the relationship between the set of MinRank solutions and the
set of equivalent keys was unknown. It will in fact be instrumental in our approach
[BTV21].

The rest of this section presents the early rank attacks on HFE. We will only focus
on the MinRank step.

Historical attack [KS99]. As already mentioned, the first attempt can be attributed
to Kipnis and Shamir. Let us assume that q is odd and let F “ rfi,js

n´1
i,j“0 P Fnˆnqn

be the matrix of the quadratic form in X “ pX0, . . . , Xqn´1
q associated to the HFE

polynomial of Equation (3.2) by F pXq def“ XFXT. Recall that this matrix has rank at
most d def

“ rlogqpDqs. To put it very briefly, the attack of [KS99] targets a multiple of
the form WFW T, where W P Fnˆnqn is a secret invertible matrix, as a solution to a
homogeneous MinRank instance with rank d, matrices in Fnˆnqn and scalars xi P Fqn .

Revisiting Kipnis-Shamir’s approach [BFP13]. Instead of relying on univariate
maps over the extension field as in the original paper, [BFP13] gives a new description
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of the attack of [KS99] by using matrix-vector products. For our purposes, it will be
more convenient to focus on this reinterpretation.

Let β def
“ pβ1, . . . , βnq be a basis of Fqn when viewed as an Fq-vector space and let

M P Fnˆnqn be the associated Moore matrix defined by M def
“ rβq

j

i`1s
n´1
i,j“0. We consider

the following Fq-linear isomorphism φ between Fqn and Fnq attached to the basis β:

φ : x ÞÑ px, . . . , xq
n´1
qM´1.

Its inverse is φ´1 : v ÞÑ pvMq1. Also, for 0 ď k ď n ´ 1, let F ˚k P Fnˆnqn be the
matrix representing the polynomial F qk . The coefficient in position pi, jq is equal to
f q

k

i´k,j´k, which means that this matrix can be obtained from F by shifting its entries k
times to the northwest4 and raising them to the power qk. Finally, for 1 ď i ď n, let
Σi P Fnˆnq denote the symmetric matrix representing the quadratic polynomial fi P F ,
i.e., fipxq

def
“ xΣix

T. Since F “ φ ˝ F ˝ φ´1, we have for any vector v P Fnq

pvΣ1v
T, . . . ,vΣnv

Tq “ pvMF ˚0MTvT, . . . ,vMF ˚n´1MTvTq.

Let us come back to the public polynomials. In the same way as above, let P i P Fnˆnq

represent pi for 1 ď i ď n. Let also S P Fnˆnq and T P Fnˆnq invertible matrices
associated to the linear maps S and T respectively. It is shown in [BFP13] that

pP 1, . . . ,P nqT
´1M “ pSMF ˚0MTST, . . . ,SMF ˚n´1MTSTq. (3.9)

From this equation, as both M and S are invertible, one eventually obtains a MinRank
problem.

Problem 3.4 (Theorem 2, [BFP13]). Recovering one column of V def
“ T´1M P

Fnˆnqn amounts to solving the homogeneous instance of Problem 3.1 with target rank
d “ rlogqpDqs, matrices M i

def
“ P i P Fnˆnq and unknowns xi P Fqn for 1 ď i ď n.

3.2.2.3 Modifiers

Modifiers refer to generic techniques which aim at strengthening the security of a
multivariate scheme by making both the direct attack and rank attacks less efficient.
This section focuses on the minus and vinegar modifiers, which are the most relevant
ones for HFE.

• Minus. Its consists in dropping 1 ď a ď n ´ 1 polynomials from the public
key, for example p1, . . . , pa. This amounts to considering P´ “ τa ˝ P, where
τa : Fmq Ñ Fm´aq is the projection on the last n´ a coordinates. Since the system
now contains less equations than variables, this tweak can only yield signature
schemes.

4Indexes i´ k and j ´ k are taken modulo n.
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• Vinegar. We introduce v ě 1 extra unknowns yv
def
“ py1, . . . , yvq and we consider

the modified central polynomial

F pX,yvq “
ÿ

i,jPN
qi`qjďD

αi,jX
qi`qj `

ÿ

iPN
qiďD

βipyvqX
qi ` γpyvq, (3.10)

where this time αi,j P Fqn , the βi’s are linear maps Fvq Ñ Fqn and γ is a quadratic
map Fvq Ñ Fqn . The new central map is F “ φ ˝ F ˝ ψ : Fn`vq Ñ Fnq , where

ψ : Fnq ˆ Fvq ÝÑ Fqn ˆ Fvq
px, yq ÞÝÑ pφ´1pxq, yq.

To sign a message m P Fqn , we compute the preimage m “ T ´1pmq and we lift it
to Fqn by applying φ. Then, we pick random vinegar variables y P Fvq to construct
a genuine HFE polynomial FypXq

def
“ F pX,yq. Finally, we proceed as in the

standard scheme by inverting a univariate equation. If it does not have a solution,
we select new vinegar values y1 and we start again with the HFE polynomial Fy1 .

Using those two modifiers in combination gives the so-called HFEv- signature scheme.
Its security with respect to the direct attack was analyzed in [DH11; DK12; DY13].
All these works aim at obtaining a tight upper bound on the solving degree of the
public system. Similarly, HFEv- better resists rank attacks compared to the original
construction:

• a HFE polynomial F pX,yq with partial degree D in X and v vinegars corresponds
to a rank d` v matrix when viewed as a quadratic form in pX,yq;

• with a minuses, an attacker can only consider linear combinations between n´ a
fixed matrices in Problem 3.4, for example P a`1, . . . ,P n. The vector space
generated by these elements will not necessarily contain rank d matrices anymore.

In short, relying on [KS99; BFP13], the natural MinRank problem to attack HFEv- with
a minuses and v vinegars has target rank d` a` v instead of d. With this in mind, the
GeMSS proposal [Cas+20] which is based on this trapdoor had been submitted to NIST
with good confidence in its security. Another similar construction was Gui [Pet+15] but
it failed to reach the Second Round.

Rank attack on HFEv- by Tao et al. The confidence in HFE variants has been
significantly affected by a recent attack [TPD21]. The breakthrough in this work was to
consider another MinRank problem on HFEv- with rank simply equal to d. Since it is
independent from the effect of the modifiers, solving this instance lead to a much smaller
complexity compared to previous attacks based on Problem 3.4. Overall, [TPD21]
strongly broke the GeMSS parameters and it contributed to the disqualification of the
scheme after the Third Round.
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In reaction to this attack, [ØSV21] proposed to apply another modifier called
Projection. This tweak was originally introduced for another scheme [CYS15]. The point
of this approach is that it is more efficient than increasing the degree D of the central
polynomial to obtain the same security against [TPD21]. In turn, the authors provided
parameters which are immune to this former attack.

For the sake of clarity, details on both the attack of [TPD21] and Projection are
deferred to Chapter 4.

3.3 Rank-Based Cryptography
Code-based cryptography is undoubtedly the second area of post-quantum cryptography
where algebraic cryptanalysis was shown to be very effective. It also yields structured
MinRank versions, especially in the rank metric setting. This way of building
cryptosystems started at about the same time as number-theoretic cryptography when
McEliece proposed the first public-key encryption scheme based on error-correcting codes
in 1978 [McE78].

3.3.1 Introduction
The Decoding problem is the main underlying assumption for code-based cryptography.
Recalling the notation of Problem 3.2, we may often express it in terms of a full-rank
generator matrix G P Fkˆnq for the linear code C. This problem also has a dual version,
where H P Fpn´kqˆnq corresponds to a parity-check matrix.

Problem 3.5 (Syndrome Decoding problem). Given a full-rank matrix H P

Fpn´kqˆnq , a metric wt over Fnq , an integer d P N and s P Fn´kq , find a vector e P Fnq such
that wtpeq ď d and eHT “ s.

Regardless of the metric, Problem 3.2 and Problem 3.5 are equivalent. The Generic
version of these assumptions corresponds to a code C which is random among all codes
of parameters rn, ksq. We will refer to it as DP when wt is the Hamming metric. There,
too, it is known to be NP-hard [BMT78].

McEliece’s scheme. As for the MQ problem, it is possible to devise cryptosystems
which are only based on DP [Ale03]. However, the security of the iconic proposal [McE78]
calls for another type of hard problem. This is because it is trapdoor-based, the trapdoor
being given by a family of codes with an efficient decoding algorithm. To still rely on
Generic DP, the crux is that codes in this family should admit generator matrices G
which are indistinguishable from random matrices. At a very high level, this assumption
can be compared to the one we described when defining butterfly MPKC. In code-based
cryptography, the major difference is that it is formalized. As a result, the McEliece
scheme has a security proof.
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Its construction is as follows. Let Fgood be a suitable family of codes as we discussed.
For the code in this family with parity-check matrix H , let Adecode,H denote an efficient
decoding algorithm. Finally, let d P N smaller than the error correction capacity.

McEliece’s scheme (sketch).

KGenp1λq Encppk,mq Decpsk,yq
H Ð$Fgood eÐ$ tx P Fnq , wtHpxq ď du e1Ð$Adecode,HpyH

T
q

sk Ð Adecode,H y ÐmG` e I,GI,˚ P GLkpFqq
pk Ð G P Fkˆnq , GHT

“ 0 return y return py ´ e1qIG´1
I,˚

return psk, pkq

McEliece’s original proposal for Fgood was the family of binary Goppa codes, which
admit efficient decoding. Following his work, many attempts were made by simply
substituting these codes with another family, for example Generalized Reed–Solomon
(GRS) codes, Reed-Muller codes or Geometric codes (which can be seen as a higher
genus version of GRS codes). However, a lot of them were shown to be insecure due to
their too strong algebraic structure. So far, binary Goppa codes as well as MDPC codes
[MTSB13] are the few remaining ones which have not been ruled out by cryptanalysis.
In fact, the latter do not have any algebraic structure since they are a generalization
of LDPC codes. LDPC codes are characterized by a sparse parity-check matrix with
constant row weight. In MDPC, this weight is of the order of rOp

?
nq. This increase is

crucial as it permits to avoid attacks based on finding low weight codewords in the dual
while still allowing acceptable error correction performance. Quasi-cyclic MDPC codes
are used in the BIKE NIST submission [Ara+17a].

Finally, it is quite natural to wonder if algebraic techniques can affect McEliece’s
instantiations relying on algebraic codes. This is indeed the case and until very recently,
as shown by a series of works [FOPT10; Fau+11; BMT23; CMT23].

Using the rank metric. Even though we defined it in the context of MinRank, the
rank metric was introduced much earlier. It dates back to the work of Gabidulin, who
relied on it to build a McEliece-type PKE [GPT91]. Since then, this new approach
to code-based cryptography has been shown to be extremely fruitful to design various
types of primitives. Interestingly enough, the NIST PQC project has also provided new
momentum. We usually refer to this area as rank metric code-based cryptography or
rank-based cryptography.

3.3.2 Rank Decoding
However, the terminology hides a fundamental aspect regarding the hardness assumption.
If this type of cryptography were relying on generic instances of Problem 3.2 in the rank
metric, a better name would have been MinRank-based cryptography. In fact, rank-based
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schemes do not use random matrix codes. They focus on standard linear codes but over
an extension field Fqm5.

To see why these codes give specific matrix codes, let us start with some notation.
Let β “ pβ1, . . . , βmq be a fixed basis of the Fq-vector space Fqm and let pε1, . . . , εmq be
the canonical basis of Fmq . We now have an Fq-linear isomorphism

Lβ : Fqm ÝÑ Fmq
βi ÞÝÑ εi.

For a vector x “ px1, . . . , xnq P Fnqm , we consider6 Matpxq “ pXijqi,j P Fmˆnq the matrix
obtained by applying Lβ coordinatewise. Note the relation x “ βMatpxq. The point
now is that an Fqm-linear code C of length n and dimension k is isomorphic to a matrix
code of parameters rm ¨ n, kmsq. Indeed, if pg1, . . . , gkq P pFnqmqk is an Fqm-basis of C,
the set of matrices

`

Matpβigjq
˘

1ďiďm, 1ďjďk generates a matrix code Cmat over Fq of the
desired parameters.

Similarly, we can define a notion of distance for vectors in Fnqm from the underlying
rank metric on Fmˆnq and the abovementioned isomorphism:

|x| def“ wtpMat pxqq “ rk pMat pxqq.

Remark 3.4. We often use the letter r instead of d for the weight in this context.
An important remark is that we can read it on the vectorial representation in Fnqm

as the dimension of the following Fq-vector space.

Definition 3.4 (Support of a word in Fnqm). The support of a vector x P Fnqm is the
Fq-subspace of Fqm defined by Supppxq def“ xx1, . . . , xnyFq .

Lemma 3.2. We have |x| “ dimFqpSupppxqq.

We are now ready to state the relevant assumption for rank-based cryptography.
It simply corresponds to Problem 3.2 in the rank metric restricted to matrix codes
isomorphic to Fqm-linear codes. This problem can also be viewed as another structured
version of MinRank.

Problem 3.6 (Rank Decoding (RD) problem). Given a full-rank matrix G P Fkˆnqm ,
an integer r P N and y P Fnqm, find a vector e P Fnqm such that |e| ď r and y ´ e “mG
for some m P Fkqm.

Remark 3.5. We will sometimes call the triple py, C, rq a problem instance, where C is the
Fqm-linear code generated by G. More precisely, we may refer to it as an RD instance
of parameters pm,n, k, rq.

5We need to change the notation compared to Section 3.2.2 since the degree is not always correlated
with the length n.

6This notation is implicit with respect to β as the discussion does not depend on the choice of basis.



3.3. Rank-Based Cryptography 45

Due to Fqm-linearity, Problem 3.6 is not a priori NP-hard contrary to both MinRank
and Generic DP. Still, there exists a randomized reduction to the latter due to Gaborit
and Zémor [GZ16]. Its interest remains theoretical since it holds for m ą n2 while the
cryptographically relevant zone is m of the order of n. In particular, several years of
cryptanalysis efforts may sound as a better security argument.

Finally, once again, we may derive a Gilbert-Varshamov distance dGV,||pqm, n, kq. It
is no surprise that the condition is simply Equation (3.3) with r “ d, nr “ m, nc “ n
and K “ km:

r
ÿ

j“0

˜

j´1
ź

i“0
pqn ´ qiq

¸

ˆ

m

j

˙

q

ď qmpn´kq. (3.11)

3.3.3 Pre-NIST Constructions
There are at least two reasons for using the Rank Decoding problem in place of MinRank
to build a rank-based version of McEliece. The first one is that all known families of
matrix codes with efficient decoding algorithm come from Fqm-linear codes. The second
one is for efficiency. Indeed, the latter have a more compact description than random
matrix codes. The systematic generator matrix of an rn, ksqm-code can be stored in
memory by using kpn ´ kq log2pq

mq “ mkpn ´ kq log2pqq bits, which is m times less
than the mkpmn´ kmq log2pqq “ m2kpn´ kq log2pqq ones needed to represent a generic
matrix code of parameters rm ¨n, k ¨msq. This m factor explains why rank-based schemes
can achieve smaller key sizes compared to their Hamming metric counterparts.

The GPT cryptosystem [GPT91] and early variants relied on Gabidulin codes [Gab85],
which are the rank metric analogue of Reed-Solomon codes.

Definition 3.5 (Gabidulin code). Let pk, n,mq P N3 such that k ď n ď m and
let g “ pg1, . . . , gnq P Fnqm whose coordinates are linearly independent over Fq. The
Gabidulin code Ggpn, k,mq is the code of parameters rn, ksqm defined by

Ggpn, k,mq
def
“

 

P pgq : degqpP q ă k
(

,

where P ranges through the set of q-polynomials, degqp.q is the q-degree and P pgq def“
pP pg1q, . . . , P pgnqq.

A code as in Definition 3.5 is known to have minimum distance n´ k ` 1. Moreover,
it benefits from an efficient decoder that can correct up to

X

n´k
2
\

errors.

Here as well, their strong algebraic structure lead to devastating attacks [Ove05].
Later, another breakthrough came from the introduction of LRPC codes [Ara+19a]. An
LPRC code with row weight d can be defined from a parity-check matrix whose entries
belong to a subspace of Fqm of dimension d. Such a code admits an efficient decoding
algorithm by exploiting codewords of low rank weight in the dual very much as MDPC
decoding takes advantage of dual vectors of small Hamming weight. This structure
allowed to devise rank-based analogues of the MDPC scheme [Ara+19a; Ara+17b;
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Ara+17c] which further lead to the NIST candidate ROLLO [Ara+19c]. Another rank-
metric contestant but with a radically different construction was RQC [Agu+20]. As its
name suggests, it is the rank-metric equivalent of the HQC cryptosystem [Agu+21].

Ideal codes. To reduce the keysize even more, ROLLO and RQC actually consider
Fqm-linear codes with larger automorphism groups.

Let P P FqrXs denote a polynomial of degree n. The linear map

ψP : u “ pu0, . . . , un´1q ÞÑ upXq “
řn´1
i“0 uiX

i

is a vector space isomorphism between Fnqm and FqmrXs{xP y. As the latter is also
a ring, we define a product over Fnqm by transport of structure via u ¨P v

def
“

ψ´1
P pupXqvpXq mod P q. Since

u ¨P v “ ψ´1
P

˜

n´1
ÿ

i“0
uiX

i ˆ vpXq mod P
¸

“

n´1
ÿ

i“0
uiψ

´1
P

`

XivpXq mod P
˘

,

the multiplication by v P Fnqm corresponds the product on the right by

Definition 3.6 (Ideal matrix). Let P P FqrXs a polynomial of degree n and let
v P Fnqm . The ideal matrix generated by v and P is

IMP pvq
def
“

»

—

—

—

–

v

ψ´1
P pXψP pvq mod P q

...
ψ´1
P

`

Xn´1ψP pvq mod P
˘

fi

ffi

ffi

ffi

fl

P Fnˆnqm .

In the following, the notation will be implicit with respect to P .

In short, we have u ¨ v “ uIMpvq “ vIMpuq “ v ¨ u.

The codes used in these submissions are called ideal codes. Roughly speaking, their
generator matrices are block matrices with blocks as in Definition (3.6). The motivation
is exactly the same as relying on module lattices or quasi-cyclic codes since they have a
more compact description.

Loidreau’s scheme [Loi17]. At PQCrypto 2017, Loidreau proposed a new McEliece-
type scheme relying on Gabidulin codes. It uses a different kind of masking compared
to GPT and its descendants in order to counteract Overbeck’s attack. The idea is to
right multiply the generator matrix which reveals the structure by an invertible matrix
whose entries lie in a small Fq-subspace of Fqm of dimension λ.
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Security. The security of all these primitives is based on the intractability of Problem
3.6. In fact, using an ideal structure requires a version where the code C is an ideal code.
So far, there are no known attacks which exploit this extra feature.

As ROLLO is a McEliece-type scheme, its security is also related to distinguishing
LRPC codes from random ones. In the ideal case, this problem was shown to be
significantly easier when P “ Xn´1 since this polynomial can be factored over the small
field Fq as Xn ´ 1 “ pX ´ 1q

řn´1
j“0 X

j [HT15]. However, when P is irreducible or when
there is no such structure, it is believed to be difficult. Even though there is no reduction
to Problem 3.6, all solving approaches boil down to using techniques from RD attacks.
Similarly, Loidreau’s cryptosystem is based on the difficulty of distinguishing the hidden
Gabidulin code from a random one. The hardness of this problem highly depends on
the value of λ. First, we recover the broken GPT proposal when λ “ 1. When λ =
2 and when the code rate is greater than 1{2, Coggia and Couvreur have proposed a
distinguisher that can be turned into a polynomial-time attack [CC20]. However, in the
general case, an higher value of λ seems to resist structural attacks. The intuition is
that when this parameter grows, the problem becomes closer to the indistinguishability
assumption for LRPC codes of the same weight (which is slightly better understood as
we have just seen).

Finally, a nice aspect of RQC is that there is no structural masking. In other words,
the Rank Decoding problem is the only hardness assumption.

3.3.4 Cryptanalysis
In this section, we outline the main techniques to solve Problem 3.6. In fact, all MinRank
algorithms described in Section 3.1.3 can already be applied. However, as such, they do
not exploit the Fqm-linear structure.

Section 3.3.4.1 presents combinatorial attacks, which can be seen as an RD version of
Goubin’s kernel search. In Section 3.3.4.2 and Section 3.3.4.3, we will describe algebraic
modelings which are tailored to the Rank Decoding problem. In all cases, our exposition
implicitly assumes that the input instance has a unique solution.

3.3.4.1 Combinatorial Methods

The core idea in combinatorial attacks is to perform a guess on a subspace F Ă Fqm of
dimension w ě r which contains the support of e P Fnqm and then to use this information
to solve a linear system derived from the parity-check equations. The main requirement
is that the dimension of F cannot be too large compared to r for this system to be
overdefined. In that respect, such techniques can also be grasped as a rank-based
adaptation of Prange’s algorithm [Pra62].

In these algorithms, the final complexity is dominated by the inverse of the probability
of a correct guess. In the case of RD, the crux is that the probability can be greatly
increased thanks to Fqm-linearity. This value has been improved in a series of papers
[CS96; OJ02; GRS16; AGHT18].
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The point of [AGHT18] is to relax the original condition Supppeq Ă F . Instead, they
guess a subspace F which contains an arbitrary multiple α Supppeq, α P F˚qm . The cost
of their attack in Fq-operations is

O
´

pn´ kq3m3qrr
pk`1qm

n
s´m

¯

. (3.12)

3.3.4.2 Ourivski-Johanson Modeling

The seminal work of [OJ02] can be considered as the first algebraic attack on the Rank
Decoding problem. However, at that time, the complexity derived from the initial anaysis
did not seem to improve upon that of combinatorial techniques.

Statement of the modeling. The starting point is to reduce Problem 3.6 to the
one of finding a weight r codeword in the code Cy

def
“ C ‘ xyyFqm , where C is generated

by the rows of G. Indeed, as long as the RD instance has a unique solution, all these
vectors are expected to be of the form λe, λ P F˚qm . For the purposes of notation, let us
still denote by e any of these non-zero scalar multiples and let Hy P F

pn´k´1qˆn
qm be the

systematic parity-check matrix for Cy. We thus obtain

eHT
y “ 0. (3.13)

Then, by using the weight constraint, [OJ02] rewrite Equation (3.13) as a bilinear
system7. In fact, they do it in the same way as in the Support-Minors approach. Even
though the latter applies to generic MinRank, it is worth mentioning now that it was
initially motivated by applications to rank-based cryptography.

As in Equation (3.6), the low rank matrix representation Matpeq P Fmˆnq is expressed
as a product SC, where S and C are full-rank matrices of unknowns in Fmˆrq and Frˆnq

respectively. The columns of S are a basis of the space Lβ pSupppeqq Ă Fmq while the
i-th column of C contains the coordinates of ei in this basis for 1 ď i ď n.

Modeling 5 (Ourivski-Johansson (OJ )). Let C be the underlying rn, ksqm-code of
an RD instance with target weight r and noisy codeword y P Fnqm . Let Cy

def
“ C ‘ xyyFqm

and let Hy
def
“

`

´RT In´k´1
˘

be a systematic parity-check matrix for this linear code.
The Ourivski-Johansson modeling is the system in the unknowns S P Fmˆrq and C P Frˆnq

whose equations are the entries of the row vector

pβ1, . . . , βmqSCH
T
y .

The authors eventually fix S˚,1 “ ε1 in Modeling 5 since the target is an arbitrary
non-zero scalar multiple of the initial error. The resulting system contains n ´ k ´ 1
affine bilinear equations over Fqm in pr ´ 1qm` rn variables over Fq.

7Simply presented as “quadratic” in [OJ02].
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3.3.4.3 MaxMinors Modeling
Unfortunately, until very recently, there had been little progress in algebraic attacks since
the work of [OJ02]. We can still mention the RD modeling of [GRS16] which exploits
Fqm-linearity by using q-polynomials. This situation has just changed, mostly because
rank-based NIST candidates required a more thorough study of algebraic techniques.
For instance, new attacks [Bar+20a; Bar+20b] have shown that these methods could
outperform combinatorial approaches in the parameter range which was critical for the
submissions. This was in fact the main argument not to select these schemes to advance
further on in the process.

A key ingredient of these recent works is the following Modeling 6. In [Bar+20a],
its equations were initially found as degree fall polynomials for the Ourivski-Johansson
system. The proof exploits the shape of Modeling 5 together with the content recalled
in Sections 2.5.2.1 and 2.5.2.2. More simply, we can also check that these polynomials
vanish on the RD solutions.

Modeling 6 (MaxMinors). Keeping the notation of Modeling 5, the MaxMi-
nors modeling is the system in the variables from C, denoted PFqm , defined by
tPJuJĂt1..n´k´1u, #J“r, where

PJ
def
“

ˇ

ˇ

ˇ
CpHT

y q˚,J

ˇ

ˇ

ˇ
. (3.14)

Modeling 6 contains
`

n´k´1
r

˘

affine equations over Fqm . Since they are computed
as r ˆ r minors of a matrix whose coefficients are linear in the entries of C, they have
degree r in these unknowns.

Unfolding over Fq. A recurring feature in Modelings 5 and 6 is that the coefficients
of the polynomials belong to Fqm while the variables are searched in Fq. If I stands for
the ideal generated by PFqm , we are thus more interested by the ideal IFq with basis
PFqm Y tC

q
i,j ´Ci,ju as defined in Section 2.1. This ideal being radical, it contains

PFrob
def
“ tf q

` mod tCq
i,j ´Ci,ju : f P PFqm and 0 ď ` ď m´ 1u Ă FqmrCi,js. (3.15)

Remark 3.6. The set of field equations is a Gröbner basis so we really compute normal
forms here.

In practice, we may prefer to work with coefficients over Fq. For that purpose, we
generalize the usual trace operator of the extension field Fqm to f P FqmrCi,js by

Trpfq def“ f ` f q ` ¨ ¨ ¨ ` f q
m´1

“

m´1
ÿ

`“0
f r`s. (3.16)

Let now β1 “ pβ11, . . . , β1mq be an Fq-basis of the extension field8. It is easy to see that
the following system

PFq
def
“ tTrpβ1`fq mod tCq

i,j ´Ci,ju : f P PFqm and 1 ď ` ď mu (3.17)
8A convenient choice in the analysis will be the dual basis β˚ of the basis β considered above.
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can be obtained from Fqm-linear combinations between polynomials in PFrob. Finally,
for any α P Fqm and any monomial µ P FqmrCi,js, let us observe that

Trpαµq mod tCq
i,j ´Ci,ju “ Trpαqµ mod tCq

i,j ´Ci,ju.

This shows that PFq Ă FqrCi,js and that the monomial content is the same in both PFq
and PFqm (since PFqm only contains squarefree monomials). The crucial advantage of
PFq is that the solutions now boil down to the ones we want.

Modeling 7 (MaxMinors over Fq (MM-Fq)). Let β1 “ pβ11, . . . , β1mq be an arbitrary
Fq-basis of Fqm. The MaxMinors modeling over Fq is the system given in Equation
(3.17), where PFqm is Modeling 6. For 1 ď ` ď m and J Ă t1..n´ k ´ 1u, #J “ r, we
set

P`,J
def
“ Trpβ1`PJq mod tCq

i,j ´Ci,ju.

Using Modeling 7. As already mentioned, the MaxMinors modeling was instrumental
in both [Bar+20a] and [Bar+20b]. The initial approach of [Bar+20a] was to combine it
with the former bilinear Modeling 5 unfolded over Fq. This can be understood as the
generic way to take advantage of degree fall polynomials in a Gröbner basis algorithm.
The subsequent paper [Bar+20b] makes a much better use of these equations. Some
elements of their work have been presented when describing the Support-Minors modeling.
For instance, it was noticed in [Bar+20a; Bar+20b] that the MaxMinors polynomials
are linear in the minor variables cT “ |C|˚,T of C. This is consequence of

Lemma 3.3 (Cauchy-Binet formula). Let R denote an arbitrary ring, let A P Rrˆn
and let B P Rnˆr. We have

|AB| “
ÿ

JĂt1..nu, #J“r
|A˚,J ||BJ,˚|.

Another contribution of [Bar+20b] was to fix variables by considering an identity
block Ir for the r leftmost columns of C. First, the resulting system still has solutions
with constant probability. Second, and more importantly, this new specialization offers
a significant benefit: we can simply solve for the cT ’s and then recover the individual
entries of C from ct1..ruztiuYtju “ Ci,j .

In this way, solving RD was performed by inverting the linear system in the minor
variables given by Modeling 7. In particular, if the weight r is below the Gilbert-
Varshamov bound and if m

`

n´k´1
r

˘

ě
`

n
r

˘

´ 1 (overdetermined case), it was considered
that this approach succeeds under a heuristic on the rank of the system.

Assumption 1 (Heuristic 1, [Bar+20b]). When m
`

n´k´1
r

˘

ě
`

n
r

˘

´ 1, with very
high probability, the rank of Modeling 7 is equal to

`

n
r

˘

´ 1.

Otherwise, in the underdetermined case, [Bar+20b] propose two different strategies:

• The first one is a form of hybrid approach by adding random linear constraints on
the cT variables.
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• The second one is to combine Modeling 7 with the Support-Minors modeling
applied to the underlying MinRank instance.

These two approaches will be examined in much more detail in Chapter 7.

3.3.5 Modern Schemes and New Assumptions
In addition to the cryptosystems presented in Section 3.3.3, rank-based cryptography
has been in the spotlight thanks to many other works. Moveover, among them, the IBE
scheme of [GHPT17] and the Durandal signature scheme [Ara+19b] show that it should
not be limited to PKEs and KEMs. They may even suggest that the rank metric is
more suitable for some applications than the Hamming metric.

3.3.5.1 Rank Support Learning

Designing more versatile rank-based primitives has required the introduction of new
assumptions. In particular, both [GHPT17] and [Ara+19b] rely on the so-called Rank
Support Learning (RSL) problem.

Problem 3.7 (Rank Support Learning (RSL) problem). Given a full-rank matrix
H P Fpn´kqˆnqm and a matrix EHT P FNˆpn´kqqm , where the coefficients of E P FNˆnqm lie in
a subspace V Ă Fqm of dimension r, find V.

Remark 3.7. In other words, a problem instance corresponds to N instances of RD whose
errors pei

def
“ Ei,˚q1ďiďN have the same support V Ă Fqm . Thus, RSL trivially reduces

to RD.

Problem 3.7 was defined in [GHPT17] but its straightforward adaptation to the
Hamming metric had already been used for cryptographic purposes [KKS97; KKS05].
This latter version can be solved in polynomial time when N ě r [GHPT17, §4.2]. On
Rank Support Learning, a polynomial algorithm of the same nature only exists whenever
N ě nr [GHPT17, §4.2]. A bit later, the IBE of [GHPT17] was broken with different
techniques [DT18]. The authors proposed an algebraic attack on RSL which applies
when N ą kr. In this regime, the complexity was expected to be subexponential. In
spite of this, we still have more flexibility in the number of errors than in the Hamming
case.

Durandal signature scheme. More recently, the RSL problem was used to build a
rank-metric signature scheme [Ara+19b]. Relying on this assumption allowed to adapt
the Schnorr-Lyubashevsky framework [Sch91; Lyu09] to the code-based setting, which
had not been possible so far in the Hamming metric. To avoid the attack of [DT18], the
original parameters were chosen such that N “ kpr´ 2q or N “ kpr´ 1q. In fact, at the
time of [BB21], they were already obsolete due to [Bar+20a; Bar+20b].
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3.3.5.2 Improving Existing Schemes
These recent attacks have for sure affected the confidence of the cryptographic community
in the associated schemes, a fortiori those submitted to NIST. On the positive side, one
can also view them as a way to better understand the complexity of solving RD. Besides,
NIST kept encouraging further research on rank metric cryptography9 [Moo+20].

Subsequent works aimed at mitigating the impact of such attacks in order to maintain
attractive parameters for ROLLO and RQC.

In the initial ones, the weight of the error was of the order of Op
?
nq. This seemed to

correspond to a vulnerable zone in regard to algebraic techniques. Thus, it was proposed
in [Agu+22] to pick a larger weight. Concretely, they increase the weight of the error
to decode from r “ Op

?
nq to a value closer to the Gilbert-Varshamov distance. At

this point, from computation on concrete parameters, algebraic attacks were believed
to be relatively less efficient than combinatorial techniques. However, so far, there is
no theoretical result underlying such an assumption. The idea of [Agu+22] was also
employed in [Ara+22]. In these works, note that the benefit of using it comes at the
price of relying on RSL rather than on RD.

To limit the effect of cryptanalysis, the RQC submitters considered non-homogeneous
errors [Agu+20]. Regarding security, this slight variation in the noise distribution
lead them to formalize a structured version of RD called the Non-Homogeneous Rank
Decoding (NHRD) problem.

Problem 3.8 (Non-Homogeneous Rank Decoding (NHRD) problem). Given
a full-rank matrix H P Fpn`n1qˆp2n`n1q

qm , integers pw1, w2q P N2 and s P Fn`n1
qm , find a

vector e “ pe1, e2, e3q P F2n`n1
qm , e1 P Fnqm , e2 P Fn1

qm , e3 P Fnqm, such that eHT “ s,
|pe1, e3q| ď w1, |e2| ď w1 ` w2 and Supppe1, e3q Ă Supppe2q.

Remark 3.8. We recover the Rank Decoding problem when w2 “ 0.
RQC is restricted to a setting where n1 “ n. In Chapter 8, we will motivate and

study the general version due to a new proposal [BBBG23] which relies on it.

3.4 Regular Syndrome Decoding
In addition to MinRank and some variants, we studied a structured version of Problem
3.2 in the Hamming metric.

Problem 3.9 (Regular Syndrome Decoding (RSD) problem). Let pt, k,Nq P N3

and n def
“ tN . Given a full-rank matrix H P Fpn´kqˆnq and a vector s P Fnq , find a vector

e
def
“ pe1, . . . , etq which is the concatenation of t random blocks ei P FNq with wtHpeiq “ 1

and such that s “ eHT.
9“Despite the development of algebraic attacks, NIST believes rank-based cryptography should

continue to be researched. The rank metric cryptosystems offer a nice alternative to traditional hamming
metric codes with comparable bandwidth.”
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As we can see, its specificity lies in the error distribution. In the following, the
corresponding vector e will be referred to as regular.

Problem 3.9 was proposed by Augot, Finiasz and Sendrier [AFS05] as the underlying
assumption for the Fast Syndrome-Based hash function. It is also present in subsequent
work [FGS07; BLPS11; MDCE11]. Much later, this problem was used in Fiat-Shamir
code-based signatures relying on the MPC-in-the-Head paradigm [FJR22; CCJ23]. In
[FJR22], the original zero-knowledge proof for Problem 3.2 is adapted to Problem 3.9
in order to reach better size-performance trade-offs10. In [CCJ23], the MPC protocol
is radically different since it is tailored to the regular distribution. Last but not least,
another field of application is in secure computation. The introduction of RSD in
this context was pioneered by [HOSS18]. As of now, we especially encounter it in
Pseudorandom Correlation Generators (PCGs) [BCGI18; Boy+19b; Boy+19a; Yan+20;
WYKW21]. Since our work targets the parameter setting adopted by these primitives,
we will spend a bit more time to describe them.

3.4.1 Pseudorandom Correlation Generators
Pseudorandom correlation generators refer to cryptographic constructions which allow
parties to locally generate long sources of correlated randomness from the knowledge of
short correlated seeds. As it is often straightforward to securely compute the desired
functionality from such long vectors, obtaining them efficiently is the cornerstone. In
PCGs, this efficiency lies in the short interactive phase which only serves as producing
the seeds.

At the core of these schemes is a pseudorandom generator (PRG) based on the
Decoding Problem11. The pseudorandomness of the ouput is ensured by the hardness
assumption while its linear nature allows to preserve the target correlation. This PRG
is either pm, eq ÞÑ mG ` e (Primal) or e ÞÑ eHT (Dual), where the sparse vector e
comes from a function secret sharing scheme [BGI15]. The point of using Problem 3.9
in place of Problem 3.2 is simply for better performance. Indeed, it is less costly to
securely share a regular vector e than a random one of the same weight.

These primitives all adopt a very particular setting. First and foremost, the noise rate
t{n is extremely low compared to the one usually considered in code-based cryptography.
Second, the field size q can be large, typically q ě 256. The rest of the parameters
depends on the instantiation. In the Primal case, since the PRG input contains an
arbitrary vectorm P Fkq , one selects a very small code rate k{n to maximize the expansion
factor. The Dual case e ÞÑ eHT does not exhibit the same constraint since the seed is
just the compact description of a sparse vector. By fixing the weight and increasing n,
one can get an output size mostly independent of the seed size. In this situation, the
code rate is constant.

10The scheme of [FJR22] considers a generalization where the error is made of d ě 1 blocks with
constant weight (RSD corresponds to d “ t).

11PCG proposals often use the Learning Parity with Noise (LPN) terminology.
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3.4.2 Previous Cryptanalysis
The work of Chapter 10 will focus on the specific parameter range that we have just
described. In this case, the mapping e ÞÑ eHT P Fn´kq is expected to be injective
regardless of the regular constraint12. This means that an algorithm to solve the
Decoding problem will always output the regular solution when applied to Problem 3.9.
Thus, in our regime, RSD should be easier than Problem 3.2.

We will now present the main attacks which are relevant to this setting. For a more
detailed exposition, we refer to [HOSS18; CCJ23].

• Since we restrict ourselves to a highly injective map, we will not expand on neither
Generalised Birthday Attacks [Wag02; CJ04; Kir11] nor Linearization Attacks
[BM97; Saa07] which are mostly tailored to multiple solutions. Note however that
these techniques can be enhanced using the regular distribution [CCJ23].

• The most important class of algorithms on the plain Decoding problem is arguably
Information Set Decoding (ISD). This refers to a series of improvements [Ste89;
FS09a; BLP11; MMT11; BJMM12; MO15] upon the work of Prange [Pra62] that
we briefly mentioned in Section 3.3.4.1. The basic idea is to guess k error-free
positions and then solve a linear system. In these improvements, one has to make
a further assumption of the weight distribution of the error vector. Thus, taking
advantage of the regular noise is not necessarily immediate.

• A last type of approach is Statistical Decoding [Jab01]. Recently, the 2.0 version
of [CDMT22] showed that this technique can outperform ISDs in the standard
code-based crypto setting when the code rate is sufficiently small.

In light of these attacks, Boyle et al. proposed parameters to instantiate Problem
3.2 in PCGs [BCGI18, §5.1]. Later constructions also use them in a black box manner
[Yan+20; WYKW21]. What is important is that these parameters are kept the same
for RSD while it is precisely the zone where we could expect better solving algorithms.
On their values, the authors note that the limiting attack is either Prange, ISDs or
Statistical Decoding. Another remark is that advanced ISDs do not perform extremely
well due to the tiny noise regime [CS16].

More recently, [LWYY22] studied the same parameter range but in a slightly more
general context (larger fields or integer rings, various noise distributions). There, the
authors claim that the estimates of [BCGI18] are too conservative over large fields
regarding the ISD cost. Roughly speaking, the advantage of ISDs compared to Prange
quickly deteriorates when q increases [Can17]. In addition, they argue that the complexity
of Statistical Decoding is much higher than presented in [BCGI18]. In particular, this
is no longer the best attack even by taking into account the algorithm of [CDMT22].
As this improvement is still quite new, a further analysis in this specific regime and/or
tailored to the regular shape remains to be made.

12In the binary case, this will happen as long as 2k ě
`

n
d

˘

.



3.5. ZK-Friendly Symmetric Primitives 55

3.5 ZK-Friendly Symmetric Primitives
We finally introduce a specific type of symmetric designs which are vulnerable to algebraic
techniques. They belong to a larger branch of symmetric cryptography which is motivated
by emerging applications in FHE, MPC and ZK proofs based on hash functions. In
contrast to the traditional symmetric-key setting which operates over F2 and which
turns out to be inefficient in this context, they work over a large finite field Fq (where q
is a prime of cryptographic size or 2e with e ě 64).

3.5.1 General Approach
Hash functions used in ZK should be such that it is easy to prove the knowledge of a
preimage. Note that the existence of several different proof systems may call for more
particular requirements.

In symmetric cryptography, a standard technique to build a hash function is to start
by constructing a permutation. The rough security goal is that it should behave as a
randomly sampled one. As a first approximation, we may consider such a pseudorandom
permutation P as being a keyless block cipher. Its general form is iterative, namely

P
def
“ Rnr ˝Rnr´1 ˝ ¨ ¨ ¨ ˝R0,

where the Ri’s correspond to cryptographically weak but simple transformations and
where nr P N is the number of rounds. Security is guaranteed by a careful selection of
these transformations (called round functions) and by a large enough value of nr once this
choice has been made. A very frequent construction is that of Substitution-Permutation
Network (SPN) ciphers. There, the round function is the composition of a linear layer,
an Sbox, and an addition of constants (possibly in a different order).

The reason why classical block ciphers are not suited in this arithmetization-oriented
(AO) context is because the efficiency requirement is different. Indeed, we do not
necessarily need a permutation P which is easy to compute and invert but simply a
one with fast verification. More precisely, given a pair px,yq P Fmq ˆ Fmq , it should be
efficient to check that P pxq “ y. Another reason is due to the performance metric.
This time, in contrast to binary instructions, the relevant operations are the addition
and the multiplication over a large field. A first design concern was thus to minimize
the amount of Fq-products, which explains why the initial attempts relied on a round
function R : Fmq Ñ Fmq with a low degree model. More precisely, there should exist a
polynomial map P : F2m

q Ñ Fmq with low multiplicative complexity such that y “ Rpxq
if and only if Ppx,yq “ 0. In particular, MiMC and its variants [Alb+16] as well as
Poseidon [Gra+21; GKS23] have adopted the simplest Sbox x ÞÑ xd where d P Zą0
is the smallest degree for which this map is a permutation. A more subtle approach
initiated by Jarvis [AD18] and employed later in the Rescue family [Aly+20; SAD20]
was to consider a permutation whose inverse is of low degree.
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3.5.2 Algebraic Techniques on Block Ciphers
The first application of algebraic cryptanalysis to symmetric schemes largely predates
the advances in AO constructions. It dates back at least to [CP02] where it was used
on the AES. Given a message/ciphertext pair, the authors model key-recovery as a
quadratic system whose unknowns come from the key and from intermediate variables
introduced at each round. Even though the original complexity claim was later shown to
be incorrect [Ars+04; CL05], this attempt contributed to popularize algebraic methods
in block cipher cryptanalysis.

Note that early works in that direction already contain findings which are worth
mentioning before studying AO ciphers. The first one that highly differs from the
public-key setting is that the cost of computing an arbitrary Gröbner basis should not
be taken as an indicator of the overall complexity. For instance, [BPW06a] showed that
the AES modeling proposed in [MR02] is a Gröbner basis for a “degree-then-LEX” order
while the scheme still resists algebraic methods. The same proof technique was used in
[BPW06b] to construct the block ciphers Flurry and Curry. The goal there was to give
proposals immune to classical techniques (e.g., linear and differential attacks) but for
which the standard modeling by introducing intermediate state variables is already a
Gröbner basis. These works rely on the following well-known result.

Proposition 3.1 (Buchberger’s second criterion, Prop. 4 p. 106, [CLO15]).
Let G Ă Krxs be a finite set and let f, g P G whose leading monomials are coprime.
Then, the S-polynomial Spf, gq reduces to 0 modulo G.

In the strategy described in Section 2.2.3, this means that the change-of-order step
becomes the dominant part. Luckily for the AES, it appeared to be the bottleneck.
Indeed, its cost in the case of [BPW06a] was argued to be higher than the one of
exhaustive key search.

The crucial difference for AO primitives is that algebraic attacks typically become the
limiting ones. In some cases, this is due to the low degree representation that we have
just mentioned. A more likely and general reason is that classical techniques devised for
the field F2 do not translate well to the large field setting (they are at least less well
understood). Regarding the Gröbner basis step, it was proven that it can be neglected
in MiMC [Alb+19] using the same argument as above. On an arbitrary cipher, its cost is
often derived assuming (semi-)regularity or from an experimental bound on the solving
degree. Here as well, the complexity of FGLM can be dominant and it boils down to
estimating the degree of the ideal. In this context, some systems were observed to reach
the Bézout bound (Proposition 2.2) but others also had less solutions. Such a particular
behaviour in Jarvis was observed and analyzed by Faugère and Perret based on the
underyling multi-homogeneous structure [BGL20, Appendix A].
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Chapter4Analyzing Support-Minors on HFE
Variants

The content of this chapter is a joint work with John Baena, Daniel Cabarcas, Ray
Perlner, Daniel Smith-Tone and Javier Verbel [Bae+22]. It has been published at
CRYPTO 2022.

We give a rank attack on HFEv- which consists in solving the MinRank instance
of Tao et al. by applying Support-Minors. As noted in [TPD21], the unmodified
XL algorithm introduced by [Bar+20b] would fail in this context due to the big-field
structure. Thus, we decided to adopt a more standard Gröbner basis approach that
we managed to estimate precisely. This analysis was missing in [TPD21] and it even
allowed us to improve upon their conjectures.

The second part of [Bae+22] is more general. We study the memory complexity of
attacks based on the Support-Minors modeling. Our results apply in particular to the
rectangular MinRank attack on Rainbow [Beu21a], where this issue had been a major
point of discussion1. Even if I actively participated in the writing, most of the ideas
were due to Ray Perlner and Daniel Smith-Tone. For this reason, the corresponding
content does not appear in this manuscript. We refer to the eprint version [Bae+21].
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4.1 Preliminaries
We start by providing more specific background in order to better understand our
contributions. Section 4.1.1 introduces the MinRank problem of [TPD21] which is
the basis for our work. Section 4.1.2 presents the Projection modifier. HFEv- with
Projection, pHFEv- for short, was proposed in [ØSV21] as being immune to [TPD21].
Its parameters are now obsolete due to our attack.

4.1.1 Considered MinRank Problem
As discussed at the end of Section 3.2.2.3, the main component of [TPD21] is a new
MinRank instance to attack HFE variants. What was crucial at that time is that the
rank d “

P

logq pDq
T

does not depend on the modifiers.
To describe their approach, we assume that q is an odd prime power2 and we keep

the notation that we used for Problem 3.4. In particular, let β def
“ pβ1, . . . , βnq be a basis

of the vector space Fqn over Fq and let M def
“ rβq

j

i`1s
n´1
i,j“0. Since we deal with vinegar

variables, we consider the augmented matrix

ĂM
def
“

„

M 0
0 Iv



P Fpn`vqˆpn`vqqn . (4.1)

Let us recall that the solutions to Problem 3.4 allowed to recover the coefficients of a
matrix depending only on the outer map T , namely V “ T´1M in Equation (3.9). In
[TPD21], the rank d matrix is related to the inner map S : Fn`vq Ñ Fn`vq . More precisely,
the authors aim at obtaining the matrix

U
def
“ ĂM

´1
S´1 P Fpn`vqˆpn`vqqn , (4.2)

where S P Fpn`vqˆpn`vqq is an invertible matrix representing S. For that purpose, they
solve the following MinRank instance.

Problem 4.1 (Theorem 2, [TPD21]). Let P 1, . . . ,P n´a P Fpn`vqˆpn`vqq denote the
symmetric matrices associated to the HFEv- public polynomials and let pε1, . . . , εn`vq be
the canonical basis of Fn`vq . For 1 ď i ď n` v, let

M i
def
“ εiP ˚

def
“

»

—

–

εiP 1
...

εiP n´a

fi

ffi

fl

P Fpn´aqˆpn`vqq . (4.3)

Then, the first row u
def
“ pu1, . . . , un`vq of the matrix U defined in Equation (4.2) is

a non-zero solution to the homogeneous MinRank problem described by the M i’s with
target rank d “

P

logq pDq
T

.
2The results can be extended to the even characteristic, see for instance [Bae+21, Appendix A].
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As in the original MinRank problem proposed by Kipnis and Shamir [KS99], we are
interested in solutions over Fqn while the public matrices are over Fq. In particular, the
following observation of [TPD21] was already present in previous literature on big-field
MPKC [KS99; JDH07; BFP13; VS17].

Fact 1. Let v P Fn`vqn be a non-zero solution to Problem 4.1. Then, for any λ P F˚qn,
the vector λv “ pλv1, . . . , λvn`vq is another non-zero solution. Moreover, for any
0 ď j ď n´ 1, the same goes for the vector vrjs def“ pv

rjs
1 , . . . , v

rjs
n`vq.

This result should also be confronted with more rigorous ones on equivalent keys,
e.g., [WP11]. First, we do not expect spurious solutions. Second, any non-zero solution
u1 as in Fact 1 is the first row of a matrix U 1 leading to an equivalent map S 1. For the
rest of the key-recovery, we refer to [TPD21, Algorithm 1] and [TPD21, Algorithm 2].

Before we go on, we want to mention a similarity between [TPD21] and the rectangular
MinRank attack on Rainbow [Beu21a]. Even if we did not describe the latter, one thing
in common in these two works is that any matrix M i from the MinRank instance
contains data from all the public polynomials (see for instance Equation (4.3)). This is
in contrast to earlier attacks where each matrix was associated to only one equation (e.g.,
M i “ P i in Problem 3.4). Rectangular MinRank problems of the same type have also
been considered in the cryptanalysis of UOV [Beu+23, §4.5] and variants of it [FI23].

4.1.2 Projection Modifier
The Projection modifier was introduced in order to repair the SFLASH signature scheme
after the break of [DFSS07], which lead to the design of PFLASH [CYS15]. In reaction
to [TPD21], the authors of [ØSV21] also applied this modifier to HFEv-. In this context,
Projection consists in replacing the map S : Fn`vq Ñ Fn`vq by S “ L˝S1 : Fn`v´pq Ñ Fn`vq ,
where S1 : Fn`v´pq Ñ Fn`v´pq is invertible and L : Fn`v´pq Ñ Fn`vq is full-rank represented
by a matrix

„

Λ 0
0 Iv



P Fpn`v´pqˆpn`vqq .

The point now is that the rank of the matrix is bounded by d ` p instead of d (cf.
[ØSV21, Proposition 2]) and this upper bound is believed to be tight ([ØSV21, Table
1]). In contrast to previous modifiers, this means that Problem 4.1 with Projection
admits a higher target rank. This very fact allowed [ØSV21] to find secure parameters
for their new pHFEv- scheme by starting from weak HFEv- parameters. Even though
the complexity of inverting pHFEv- is qp times more than the one of inverting HFEv-
for the same degree D, it is also faster than solving a HFE polynomial of degree qpD.
Projection is thus interesting in that it is more efficient than simply increasing the degree
of the central map to obtain the same security.

The current GeMSS parameters as well as those of pHFEv- are given in Table 4.1.
In [ØSV21], a secure pHFEv- parameter set was constructed from a GeMSS one by
choosing the least value of p such that the attack of [TPD21] is just above the security
level.
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Table 4.1: GeMSS and pHFEv- parameter sets.

Scheme q n v D a p from [ØSV21]

GeMSS128 2 174 12 513 12 0
BlueGeMSS128 2 175 14 129 13 1
RedGeMSS128 2 177 15 17 15 4

GeMSS192 2 265 20 513 22 5
BlueGeMSS192 2 265 23 129 22 7
RedGeMSS192 2 266 25 17 23 10

GeMSS256 2 354 33 513 30 10
BlueGeMSS256 2 358 32 129 34 11
RedGeMSS256 2 358 35 17 34 14

4.2 Applying Support-Minors
The first approach to solve Problem 4.1 retained in [TPD21] was to use the Minors
modeling (Modeling 2). Even if Support-Minors (SM) was already known at that time,
the authors considered that the large solution set from Fact 1 seemed to make the XL
technique of [Bar+20b] based on multiplying by linear variables inapplicable. For this
reason, they decided to run a standard Gröbner basis algorithm that also multiplies by
minor variables. The complexity formula for this method [TPD21, p. 15] assumes that
the solving degree of SM is equal to 3 and it only relies on experiments.

In our work, we proceed according to their second strategy. However, we manage to
grasp the early steps of the Gröbner basis computation. Our analysis turns out to be
sufficient – in the range of parameters of interest – to derive a less conjectural estimate.

• In Section 4.2.1, we consider a specialized SM system – Modeling 8 – by fixing two
variables. This modeling still admits solutions due to the properties of Problem
4.1 and that of the SM polynomials.

• In Section 4.2.2, we show that both the specialization and an advantageous
parameter range trigger degree 1 equations which are obtained as linear
combinations between the initial affine bilinear polynomials.

• By substitution in Modeling 8, these degree 1 polynomials allow to derive a
quadratic system – Modeling 9 – in only n´ 1 variables. In Section 4.2.3, we solve
it using Gröbner bases.
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4.2.1 Our Specialization
We set Z def

“
řn`v
j“1 uiM i for a candidate rank d matrix3 and we consider its transpose

ZT. As in [Bar+20b; Beu21a; TPD21], we restrict ourselves to a subset of Support-
Minors equations obtained from a submatrix in Fqruspn`vqˆn

1 . Up to relabelling of the
linear variables, we also fix un`v “ 1. This specialization is exactly the same as in
[BFP13, Theorem 7] and [TPD21], among many others. From Fact 1, we thus expect a
variety of the form tru, rur1s, . . . , rurn´1s

u, where pruqn`v “ 1. By [TPD21, Proposition 5 &
Algorithm 1], recall that there exists an invertible matrix U 1 P Fpn`vqˆpn`vqqn representing
an equivalent map such that

U 1t1..nu,˚ “

»

—

–

ru
...

rurn´1s

fi

ffi

fl

P Fnˆpn`vqqn . (4.4)

Finally, since we can choose an arbitrary submatrix ZT
˚,J of ZT with #J “ n1, we can

make sure that this submatrix is full-rank on its first d columns. Therefore, we fix the
minor variable ct1...du to 1.

Modeling 8. Let Z be a target rank d matrix of the form Z
def
“

řn`v
j“1 uiM i. We

consider the SM equations obtained from n1 ď n´ a columns in ZT with coefficients in
Fq and solutions in Fqn, in which we fix un`v “ 1 and ct1...du “ 1.

This gives an affine bilinear system with pn`vq
`

n1

d`1
˘

equations. There are pn`vq
`

n1

d

˘

monomials and in particular pn` v ´ 1qp
`

n1

d

˘

´ 1q quadratic ones of the form uicT for
1 ď i ă n` v and T ‰ t1..du.

We can clearly pick a number of columns n1 ď n´ a that yields a sub-system with
more equations than monomials. This will be the case when pn` vq

`

n1

d`1
˘

ě pn` vq
`

n1

d

˘

,
i.e., n1 ě 2d` 1. This is indeed achievable on GeMSS because the value of n´ a is much
higher than 2d ` 1 in practice. Also, for these parameters, we do not go beyond the
MinRank uniqueness bound given by Equation (3.4) page 31 even when n1 “ 2d` 1.

4.2.2 Linear Degree Fall Polynomials
From now on we assume that the number of columns is n1 ě 2d` 1. If the corresponding
Modeling 8 were to have a unique solution, the XL approach of [Bar+20b] would succeed
in degree b “ 1. Here however, it is not clear how to apply this technique. Indeed, the
linear system given by the Macaulay matrix has a large kernel. More precisely, since we
expect Modeling 8 to have n solutions which correspond to n linearly independent vectors
tv,vr1s, . . . ,vrn´1su such that the first n` v´ 1 components of v are pruq1, . . . , pruqn`v´1,
this kernel should have dimension ě n. Moreover, for large enough n, this bound was
tight in our experiments. Thus, we adopt the following Assumption 2 in the rest of the
analysis.

3This notation is the one of [TPD21, Theorem 2].
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Assumption 2. Let n1 ě 2d` 1. We assume that the number of linearly independent
equations in Modeling 8 is equal to

NQ
def
“ pn` vq

`

n1

d

˘

´ n.

Linear polynomials. Based on this assumption, we prove that there is a set L of
degree 1 polynomials obtained from linear combinations between the initial equations.
In other words, there are degree falls from degree 2 to degree 1 in the Support-Minors
system Q.

Lemma 4.1. Under Assumption 2, one can generate NL such linearly independent
polynomials, where

NL ě
`

n1

d

˘

` v ´ 1.

Proof. By Assumption 2, the system of Modeling 8 contains NQ “ pn ` vq
`

n1

d

˘

´ n
linearly independent equations. Note that one has

NQ ě pn` v ´ 1q
´

`

n1

d

˘

´ 1
¯

.

This means that the number of linearly independent affine bilinear equations is greater
than the number of bilinear monomials. In particular, there are non-trivial linear
combinations between the bilinear parts of the equations that are zero. In turn, by
performing linear algebra operations on Modeling 8, we obtain at least

´

pn` vq
`

n1

d

˘

´ n
¯

loooooooooomoooooooooon

NQ

´pn` v ´ 1q
´

`

n1

d

˘

´ 1
¯

looooooooooooomooooooooooooon

#bilinear monomials

“
`

n1

d

˘

` v ´ 1

linearly independent affine degree 1 polynomials.

Eliminating variables. We use the system L to simplify unknowns. For instance,
we choose to eliminate first and foremost all the ncT

def
“

`

n1

d

˘

´ 1 minor variables by
considering an order such that cT ą un`v´1 ą ¨ ¨ ¨ ą u1 ą un`v “ 1. Let Macď1pLq
denote the Macaulay matrix whose columns are sorted accordingly. Lemma 4.2 shows
that we have a good control on the shape of its row echelon form and that Lemma 4.1 is
actually an equality.

Lemma 4.2. Under Assumption 2, the reduced row echelon form ofMacď1pLq reads

L
def
“

„

IncT ˚

0 K



P FNLˆpncT`n`vq
q , (4.5)

where K P FpNL´ncT qˆpn`vq
q is row reduced. Moreover, we have NL “ ncT ` v.
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Proof. We denote by L the echelon form ofMacď1pLq, namely

L
def
“

„

N ˚

0 K



,where N P FncTˆncTq and K P FpNL´ncT qˆpn`vq
q .

Let us assume that this matrix is not systematic on its first ncT rows, i.e., N ‰ IncT .
On that hypothesis, there is a set of v0 ě NL ´ ncT ` 1 ě v ` 1 linearly independent
vectors in the row space of L which have zero in their leftmost ncT entries. This yields
v0 linearly independent vectors h1, . . . ,hv0 P Fn`vq orthogonal to ru P Fn`vqn . In fact, since
these vectors are over Fq, they are orthogonal to rurjs for any 0 ď j ď n´ 1. Thus, the
matrix

U 1t1..nu,˚ “

»

—

–

ru
...

rurn´1s

fi

ffi

fl

P Fnˆpn`vqqn

is not full-rank. This is a contradiction since U 1 is invertible.
For the second part of the proof, the number of rows NL ´ ncT in K is at least v by

Lemma 4.1. In addition, since the vector ru is a solution to the MinRank problem, there
exists w P FncTqn corresponding to the minor variables such that

Macď1pLqpw, pruqn`v´1, . . . , pruq1, 1qT “ 0.

By the same argument, as the matrix Macď1pLq has its entries in Fq, we obtain n
vectors in the right kernel:

@0 ď j ď n´ 1, Macď1pLqpwrjs, pruqrjsn`v´1, . . . , pruq
rjs
1 , 1qT “ 0.

As we recover U 1t1..nu,t1..n`v´1u, these vectors are linearly independent. This shows that
the rank of K is at most pn` v ´ nq “ v, hence NL ´ ncT “ v.

From Lemma 4.2, it is then possible to express all the minor variables as well as v
linear variables in terms of the remaining nu

def
“ n ´ 1 linear variables. Moreover, by

reordering the linear variables if necessary, we may further assume that the remaining
ones are u1, . . . , un´1. In this case, the matrix corresponding to the homogeneous degree
1 parts (by dropping the last column of L) is of the form

Lleft def“ L˚,t1..ncT`v`nuu “

„

IncT 0 Y

0 Iv W



P FNLˆpncT`v`nuq
q , (4.6)

where Y P FncTˆnuq and W P Fvˆnuq .

4.2.3 Solving a Quadratic System
The end of Section 4.2.2 shows that by substituting L in Modeling 8, the bilinear parts
reduce to quadratic parts in only nu “ n´ 1 linear variables.
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Modeling 9 (Quadratic System). We consider the affine quadratic system in nu “
n´ 1 linear variables u1, . . . , un´1 obtained by plugging the linear polynomials of L into
the equations from Modeling 8.

The final stage of our approach is to solve Modeling 9 using Gröbner bases. Before
starting, note that this system is extremely overdetermined since we have NQ ´NL “

pn ` v ´ 1q
´

`

n1

d

˘

´ 1
¯

“ pnu ` vqncT ě nuncT quadratic equations in nu variables. In
particular, this should already correspond to a weak zone for MQ when ncT is not
too small. Our precise analysis actually considers two situations in line with this first
observation.

Case ncT ě nu. Modeling 9 is even more overdetermined. In Proposition 4.1, we
prove that the Gröbner basis computation actually terminates in degree 2. We rely on
Assumption 2 and on the following Assumption 3 about the echelon form Lleft from
Equation (4.6).

Assumption 3. The matrix Y P FncTˆnuq in Equation (4.6) is full rank.

Note that this assumption should hold with high probability if Y behaves as a
random matrix. However, since this matrix actually comes from the scheme, we have
also performed simulations to verify Assumptions 2 and 3. According to the results we
obtained for different sets of parameters pq, n, v,D, aq, it seems that if n1 is chosen such
that n1 ě 2d` 1 and ncT ě nu, then these assumptions are satisfied almost 100% of the
times. The reader might find helpful to experimentally explore these assumptions using
the SageMath notebook [BV21].

Proposition 4.1. Under Assumptions 2 and 3 and if ncT ě nu, a Gröbner basis for
Modeling 9 can be obtained by Gaussian elimination on the initial equations.

Proof. By Assumption 2 and the first part of Lemma 4.2, the number of affine quadratic
equations which remain after the linear algebra step in Modeling 8 and that we can
expect in Modeling 9 is equal to NQ ´NL “ pn` v ´ 1q

´

`

n1

d

˘

´ 1
¯

“ pnu ` vqncT . As
we cannot construct extra degree falls between them, this implies that the linear span of
these equations contains an equation with leading monomial uicT for any T, #T “ d,
T ‰ t1..du and any 1 ď i ď nu ` v. Recall from Equation (4.6) the matrix

Lleft “

„

IncT 0 Y

0 Iv W



P FNLˆpncT`v`nuq
q ,

where nu “ n´ 1, Y P FncTˆnuq and W P Fvˆnuq . We also denote by c the row vector of
length ncT whose components are the minor variables and pu1, . . . , un`v´1q

def
“ pu`,u´q,

where u` is of length nu (remaining linear variables) and u´ is of length v (removed
linear variables). Then, there is a vector of constants α P FncTq such that

cT “ ´Y uT
` ´ α

T. (4.7)
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Since Y is full rank by Assumption 3, the linear system in the u` variables given by
Equation (4.7) can be inverted when ncT ě nu. Thus, all

`

nu`1
2

˘

quadratic leading
monomials will be found in the span of Modeling 9.

Case ncT ă nu. In this situation, we do no longer control the value of the solving degree.
Still, we can argue that it is quite low for a significant range of parameters due to the
high number of equations. This discussion is essentially for the sake of completeness
because we can ensure that ncT ě nu with the parameters of GeMSS.

We keep the notation from the proof of Proposition 4.1. Recall that the linear
system of Equation (4.7) expresses the cT variables in terms of the remaining nu “ n´ 1
linear variables u1, . . . , un´1 and that it is full rank by Assumption 3. When ncT ă nu,
there exists a set pγiq

ncT
i“1 of linear variables which can be written in function of these

minor variables. Let us denote the nu´ncT remaining ones by pδjqj , so that
`nu´ncT`1

2
˘

quadratic monomials δiδj are missing in degree 2. Now, Modeling 9 initially contains
ě nuncT equations, which is generally much more than

`

nu`1
2

˘

´
`nu´ncT`1

2
˘

“ nuncT `
1
2pnu ´ n

2
cT
´ 1q

the possible number of leading monomials of the form γiγj or γiδj . In such a case, for
each of these monomials µ, we hope to construct an equation fµ “ µ ` `µ such that
deg p`µq “ 1. Let us finally explain why the missing quadratic monomials δiδj might be
found in degree 3. For the sake of clarity, we do the reasoning for δ2

1 . For 1 ď i ď cT , let
µi,1

def
“ γiδ1 and let µi,2

def
“ γiδ2. Then, the S-polynomial

Spfµi,1 , fµi,2q “ δ2`µi,1 ´ δ1`µi,2

is a polynomial of degree 2 which is found in degree 3 during the Gröbner basis
computation. Finally, we can expect it to contain δ2

1 for at least one index 1 ď i ď cT if
we treat the `µ’s as random linear forms.

4.3 Complexity of Solving MinRank
In this section, we estimate the running time of our attack on GeMSS. As we have just
seen, the total cost comes down to two major steps, first generating Modeling 9 from
Modeling 8 and then solving Modeling 9 via Gröbner bases. These steps are analyzed
in Section 4.3.1 and Section 4.3.2 respectively. In Section 4.3.3, we also discuss the
corresponding memory complexity.

Before we begin, note that the content of Section 4.2 also applies to pHFEv- with
rank equal to d1 def“ d ` p. We simply have to replace the condition n1 ě 2d ` 1 by
n1 ě 2d1`1 in the discussion at the end of Section 4.2.1. Moreover, this minimal value of
n1 already ensures ncT ě nu for all the GeMSS and pHFEv- parameters (see Table 4.1).
By Proposition 4.1, this means that Modeling 9 will be solved at degree 2. Independently,
some of our estimates will assume that v “ opnq.
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4.3.1 Kernel of Macaulay Matrix
The first step of the attack aims at obtaining the linear system L described in Section
4.2.2. In fact, it can be recovered from the right kernel of the first (affine) Macaulay
matrix for Modeling 8. Note that such a kernel is also computed in standard XL. Here,
we simply use it for different purposes.

A first method to obtain it is to rely on a row echelon form. The corresponding
complexity in Fq-operations is

O

˜

pn` vq

ˆ

2d` 1
d

˙ˆ

pn` vq

ˆ

2d` 1
d

˙˙ω´1
¸

, (4.8)

where 2 ď ω ď 3 is the constant of linear algebra. By setting nu “ n ´ 1 and
ncT “

`2d`1
d

˘

´ 1, this is a O
`

nωcT n
ω
u

˘

.
An alternative one is to apply Coppersmith’s Block-Wiedemann algorithm (BW).

Since our assumptions implied a dimension n for the kernel, we hope to find a basis of it
with good probability by running BW roughly n times. Recalling that the weight of a
SM equation is at most pn` vqpd` 1q (see Lemma 3.1), we get

O

˜

nˆ pn` vqpd` 1q
ˆ

pn` vq

ˆ

2d` 1
d

˙˙2
¸

“ O
`

dn2
cT
n4
u

˘

. (4.9)

4.3.2 Gröbner Bases on Quadratic System
We have already discussed at the beginning of Section 4.3 that GeMSS and pHFEv- can
yield instances of Modeling 9 which are solved in degree 2. The cost of the Gröbner
basis step is thus the one of row reducing the affine Macaulay matrix at this degree. The
number of columns is the number of initial monomials which is equal to 1` nu `

`

nu`1
2

˘

and there are more equations than monomials. The total complexity in Fq-operations is
then

O

˜

ncT pn` v ´ 1q
ˆ

1` nu `
ˆ

nu ` 1
2

˙˙ω´1
¸

“ O
`

ncT n
2ω´1
u

˘

, (4.10)

where 2 ď ω ď 3 is the exponent in the complexity of matrix multiplication. Note that
the first step is expected to be more costly since nu ď ncT .

4.3.3 Memory Demand
This section contains details about the memory costs which are naturally associated to
the attack. We restrict ourselves to Modeling 8 since the system given by Modeling 9 is
significantly smaller. In Sections 4.3.3.1 and 4.3.3.2, we study the space complexity of
the main step by describing two ways to store the Macaulay matrixMacpQq when used
within the BW algorithm. We choose q “ 2 as in concrete parameters, which means
that one element in Fq occupies one bit in memory. Finally, Section 4.3.3.3 provides a
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comparison between these two approaches in the case of GeMSS and it also gives the
space complexity of Strassen’s algorithm.

Note that the analysis presented here is quite different from the one performed in
the other part of [Bae+22]. There, we focus on the memory access costs which can be a
bottleneck when applying BW to very large Macaulay matrices arising from SM-based
attacks. In contrast to [Bar+20b; Beu21a] where they might be an issue, these costs
should not be concerning to attack HFEv-. Indeed, we only deal with the bi-degree p1, 1q
Macaulay matrix which is very small in comparison. This can also be seen, to some
extent, from the data given in Table 4.2. Even if these numbers do not tell about memory
management and even if we did not describe state-of-the-art BW implementations (e.g,
[CCNY12]), such small values should give enough confidence in the feasibility of our
attack.

4.3.3.1 Naive Organization

This approach uses the sparsity of the matrixMacpQq in the most standard way. Recall
from Lemma 3.1 that every SM equation contains at most pn ` vqpd ` 1q nonzero
monomials. Thus, one way to store a single row of MacpQq is to keep track of the
indexes corresponding to nonzero positions. Hence we must store at most pn` vqpd` 1q
column indexes per row. Since the Macaulay matrix has pn`vq

`2d`1
d

˘

columns and since
we usually drop several rows to get a square matrix, the space complexity is given by

`2d`1
d

˘

pd` 1qpn` vq2 log2

´

`2d`1
d

˘

pn` vq
¯

“ O
`

dn2
uncT log2pncT q

˘

. (4.11)

4.3.3.2 Optimized Organization

A very simple way to improve upon the naive approach is to take advantage of the
structure of Macaulay matrix. This was pioneered by Niederhagen [Nie12, §4.5.3] in the
case of generic matrices. We adapt his techniques to the Macaulay matrixMacpQq by
noting that we can also use the SM structure.

Remark 4.1. This part of the paper was mostly Javier’s contribution.

Before instantiating the GeMSS case, we describe the approach on an arbitrary
MinRank problem with K matrices in Fnrˆnc2 , target rank d and unknown vector
x. The core idea is to divide the Macaulay matrix into

`

nc
d`1

˘

blocks SJ labelled by
J Ă t1..ncu, #J “ d` 1 such that SJ contains the equations Qj,J for 1 ď j ď nr. We
have seen in Lemma 3.1 that all these equations have the same monomials, so that the
set of columns potentially allocating nonzero entries are the same for each row in the
block. This is the key fact to get a more efficient storage. Our approach then splits the
storage of the matrix into four arrays V1, V2, V3, and V4:

V1 This is a 2-dimensional array of size nr ˆ pKncq which stores the coefficients of
the linear forms which are the entries of M P F2rxs

nrˆnc . The entry in position
pi, jq in V1 corresponds the coefficient of xpj mod Kq`1 in M i,rpj´1q{Ks`1.
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V2 This stores the indexes of the nonzero values of the Macaulay matrix for each block
SJ , J “ tj1, . . . , jd`1u. As seen in Lemma 3.1, the possibly nonzero coefficients
of Qj,J only depend on J since they correspond to the monomials uicJzj` , 1 ď
i ď K, 1 ď ` ď d ` 1. Thus, we implement V2 as an array of length

`

nc
d`1

˘

such
that each coordinate is enumerated by a set J and stores the Kpd` 1q potential
nonzero indexes. This requires

ˆ

nc
d` 1

˙

Kpd` 1q log2

ˆˆ

nc
d

˙

K

˙

(4.12)

bits of memory.

V3 This indicates the columns of V1 from which the nonzero coefficients of a given SM
equation should be taken. These column indexes are the same for all the equations
in one block SJ since they correspond to the elements of J . This data can be
stored as an array of size

`

nc
d`1

˘

, where each coordinate contains a bit string of
length Kpd` 1q log2 pKncq bits of memory. So far, the only information missing
to be able to read the nonzero coefficients of a given SM equation is the index of
the row of V1 from which they must be read. This is stored in V4.

V4 Since we usually drop several rows of the initial Macaulay matrix to end up with
a square matrix, we have to keep track of the row of M from which a given SM
equation comes from. Therefore, V4 stores the indexes of the corresponding row
in M for the K

`

nc
d

˘

equations chosen to construct this square Macaulay matrix.
This requires

`

nc
d

˘

K log2pnrq bits of memory.

Now we explain how the allocations of the vectors V1, . . . , V4 fully store the Macaulay
matrix. Basically, for a given row of the Macaulay matrix, we show how to get the
coordinates and values of the potential nonzero entries by just accessing the memory
allocated in V1, V2, V3, and V4. For the sake of clarity, let us assume that the coordinates
of the vector V4 are enumerated by elements of the set

"

pa, bq : 0 ď a ď

ˆ

nc
d` 1

˙

and 1 ď b ď nr

*

.

Then, for a given row pa0, b0q we know:

1. The indexes of the coordinates containing the potential nonzero positions by
reading the bits in V2ra0s.

2. The values corresponding to the indexes in V2ra0s are obtained by reading in V1rb0s
the coordinates indicated by V3ra0s.

In our attack, we apply this approach to Modeling 8 with K “ n` v, nr “ n` v and
nc “ 2d` 1. In this case, one notices that the dominant cost is provided by Equation
(4.12), which reads

`2d`1
d`1

˘

pn` vqpd` 1q log2

´

`2d`1
d

˘

pn` vq
¯

“ O pdnuncT log2pncT qq , (4.13)

where nu “ n´ 1 ď ncT “
`2d`1

d

˘

´ 1.
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4.3.3.3 Sum-up

Table 4.2 presents the space complexity of the first step of our attack. Keep in mind
that the two approaches of Section 4.3.3.1 and Section 4.3.3.2 were tailored to Block-
Wiedemann (BW) and that the memory demand for this algorithm should not be much
more than the one to fully store the Macaulay matrix. It can even be significantly
lower if rows are generated on-demand, but this would increase the time complexity.
In contrast, the space complexity of Strassen’s algorithm is dominated by the memory
demand to store a square dense matrix of size

`2d`1
d

˘

pn` vq, see Column “Strassen”.

Table 4.2: Memory (log2p#bytesq) needed to store the Macaulay matrixMacpQq to be
used in BW or Strassen’s algorithm.

Scheme BW Standard BW Optimized Strassen

GeMSS128 38.665 34.553 48.935
BlueGeMSS128 34.332 30.258 41.263
RedGeMSS128 27.645 23.729 29.873

GeMSS192 39.930 35.213 50.166
BlueGeMSS192 35.586 30.917 42.478
RedGeMSS192 28.897 24.410 31.073

GeMSS256 40.836 35.686 51.049
BlueGeMSS256 36.488 31.389 43.353
RedGeMSS256 29.800 24.905 31.940

As we can see in Table 4.2, the Optimized organization requires only a few GigaBytes
of shared memory to execute BW on any of the proposed parameters for GeMSS,
whereas the Standard one requires up to a few TeraBytes. To perform the same step
with Strassen’s algorithm, one would need up to more than two Petabytes. To sum up,
the amount of memory required by BW is small enough to be allocated even in a shared
memory device, especially if one uses the Optimized storing.

4.4 Applications
We now evaluate the effect of the attack on the security of GeMSS and pHFEv-.

Application to the GeMSS scheme. In Table 4.3, we give the time complexity
on the actual GeMSS parameters. We use Equation (4.8) or Equation (4.9) for the
linear algebra step on Modeling 8 (Step 1) and Equation (4.10) for the Gröbner basis
computation on Modeling 9 (Step 2). We use ω “ 2.81 and a conservative constant of
7 for the concrete complexity of Strassen’s algorithm [Vol69], while a constant of 3 for
the concrete complexity of BW [Kal95, Theorem 7]. One can check that for the specific
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parameters proposed by the GeMSS team, the value n1 “ 2d`1 is high enough to ensure
to solve Modeling 9 in degree 2, i.e., nu ď ncT .

Table 4.3: Complexity of our attack (log2p#gatesq) versus known attacks from [TPD21]
for the GeMSS parameters.

Scheme Minors SM Step 1 Step 2
n1[TPD21] [TPD21] (Strassen/BW) (Strassen)

GeMSS128 139 118 76/72 54 21
BlueGeMSS128 119 99 65/65 51 17
RedGeMSS128 86 72 49/53 45 11

GeMSS192 154 120 78/75 57 21
BlueGeMSS192 132 101 67/67 53 17
RedGeMSS192 95 75 51/55 48 11

GeMSS256 166 121 79/77 59 21
BlueGeMSS256 141 103 68/69 55 17
RedGeMSS256 101 76 52/57 50 11

The nature of our approach, although in theory similar to the one of [TPD21], allows
us to reduce significantly the complexity of the Support-Minors attack performed by
Tao et al. This is important since this improvement makes it completely infeasible to
repair GeMSS by simply increasing the size of its parameters without turning it into an
impractical scheme.

Our dominant cost is the initial linear algebra step on the SM equations, whereas in
[TPD21] an attacker needs to multiply these equations by linear and/or minor variables
to solve the system in expected degree 3. This explains why we obtain a much smaller
cost than the one presented in the third column “SM [TPD21]”. Another noticeable
difference between [TPD21] and our work is that their estimate is purely conjectural.

Application to pHFEv-. The behaviour of our attack on pHFEv- is presented in
Table 4.4. We keep the same choices and formulae as in GeMSS to compute the
complexities. In [ØSV21], recall that the value of p was chosen such that the attack
of [TPD21] based on the Minors modeling is just above the security level. We adopt
the parameters of [ØSV21, Table 2] obtained with ω2 “ 2.81. On these parameters,
one notices that our attack always succeeds in solving Modeling 9 at degree 2 with
n1 “ 2d1 ` 1 “ 2pd` pq ` 1. As before, for those parameters, the values of d1 are indeed
high enough to guarantee nu ď ncT .

The results from Table 4.4 also suggest that applying Projection to HFEv- will not
be sufficient to repair the scheme as we have significantly broken the parameters given
in [ØSV21]. To meet the new security levels, the value of p should be increased by a
consequential amount, making the scheme inefficient. For example, to achieve security
level 128 with the former GeMSS128 parameters, one should take p “ 14, increasing the
signing time by a factor q14, which is considerable.
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Table 4.4: Complexity of our attack (log2p#gatesq) versus known attacks from [TPD21]
for pHFEv-. The pHFEv- parameter set for level x consists of pq, n, v,D, a, pq, where
pq, n, v,D, aq is taken from GeMSSx and p ě 0 is the smallest value such that the cost
of the Minors attack of [TPD21] is just above x.

Scheme p
Minors Step 1 Step 2

n1[TPD21; ØSV21] (Strassen/BW) (Strassen)

GeMSS128 0 139 76/72 54 21
BlueGeMSS128 1 128 71/69 53 19
RedGeMSS128 4 128 71/69 53 19

GeMSS192 5 201 105/95 67 31
BlueGeMSS192 7 201 105/95 67 31
RedGeMSS192 10 205 105/95 67 31

GeMSS256 10 256 134/117 79 41
BlueGeMSS256 11 256 129/113 77 39
RedGeMSS256 14 263 129/113 77 39

4.5 Practical Experiments
We have performed experiments in Magma-2.23-8 to explore the feasibility of the attack
on GeMSS. We only present the results for the first step to generate L because its cost
dominates the total complexity. In fact, the second step was also much cheaper from a
practical perspective. For these tests, we selected a “ v « n{10, a small prime q ą 2
and d “

P

logq pDq
T

ě 3. We chose the number of columns n1 to be the smallest integer
such that ncT ě nu, i.e.

`

n1

d

˘

ě n, so that Modeling 9 is solved in degree 2.
Fig. 4.1 summarizes our results. In the graph, the theoretical value is the logarithm

in base two of the time complexity given in Equation (4.8) with nu “ n´1, ncT “
`

n1

d

˘

´1,
ω “ 2.81 and a hidden constant from the Strassen’s algorithm taken equal to 7. The
experimental complexity is measured in terms of clock cycles of the CPU given by
the Magma command ClockCyclespq. The matrix reduction was done via the Magma
command GroebnerBasispQ, 2q, which is equivalent to ReducepQq in this context4, yet
more efficient.

Our goal here is to discuss how feasible an attack on GeMSS is. For example, the
level I parameter set RedGeMSS128 is pq, n, v,D, aq “ p2, 177, 15, 17, 15q, so that d “ 5.
According to our estimates, its complexity is upper bounded by 249 as shown in Table
4.3. For this value of d, we have been able to run experiments up to n “ 160, which is
quite close to the goal of 177. Fig. 4.1 also shows that the estimated complexity is a
good upper bound for the computation’s complexity. Note that the jump in the d “ 4
curves corresponds to a change in the value of n1. Indeed, one can solve Modeling 9 at

4The two procedures are equivalent because the system is bilinear, hence quadratic, and Gröbner
bases are automatically reduced in Magma.
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Figure 4.1: Experimental vs Theoretical value of the complexity of Step 1.

degree 2 with n1 “ 2d ` 1 “ 9 as long as n ď 126, and otherwise one has to consider
n1 ą 2d` 1, for instance n1 “ 2d` 2 for the rest of the data points in these curves.

A final note is that we also estimate the cost of Block-Wiedemann for this main
step. Therefore, it could be interesting to use the XL implementation of Niederhagen
provided in http://www.polycephaly.org/projects/xl/ in order to compute kernel vectors
ofMacpQq.

http://www.polycephaly.org/projects/xl/


Chapter5A Polynomial Attack on the Sidon
Cryptosystem

In this chapter, we introduce the Sidon cryptosystem [RLT21] and we give our polynomial
attack on the scheme. This work was published in [BTV21] with Jean-Pierre Tillich and
Javier Verbel.

The proposal of [RLT21] is based on the theory of Sidon spaces, which correspond to
Fq-subspaces of Fqn with a multiplicative property. The core idea of the design already
makes it vulnerable to a MinRank attack over Fqn with target rank 1. Even though
such a small rank might already be a sign of weakness, the authors remarked that the
underlying instance had many solutions and that an arbitrary one will not necessarily
lead to an attack.

We show that this particular feature is triggered by the explicit construction of a
Sidon space used to instantiate the scheme. In this case, we highlight solutions over a
subfield and from which we can efficiently recover an equivalent key.
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5.1 The Sidon Cryptosystem
This sections presents the building blocks of the Sidon cryptosystem without giving the
particular instantiation of [RLT21]. Of course, we need to define Sidon spaces.

5.1.1 Sidon Spaces
Sidon spaces were introduced in [BSZ15] while proving a theorem from pure mathematics.
Explicit constructions tailored to network coding were later given in [RRT17].

For q a prime power and integers n and k, let Gqpn, kq be the set of all Fq-subspaces of
Fqn of dimension k. Sidon spaces of dimension k correspond to the elements of Gqpn, kq
which satisfy the following condition.

Definition 5.1. A subspace V P Gqpn, kq is called a Sidon space if for all non-zero
a, b, c, d P V, if ab “ cd, then taFq, bFqu “ tcFq, dFqu.

Definition 5.1 is equivalent to the fact that any product of two non-zero elements in V
has unique factorization up to a constant factor in Fq. In other words, Sidon spaces are the
multiplicative counterpart of Sidon sets ta1, a2, . . . u Ă N from additive number theory,
for which all sums ai ` aj , i ď j, are distinct. Even before discussing constructions, a
rather natural question is whether there exist Sidon spaces of arbitrary dimension. A first
upper bound on k is given by [BSZ15, Theorem 18] and [RRT17, Proposition 3], where
it is proven that for a Sidon space V P Gqpn, kq, the space V2 def

“ spanFqtuv : u, v P Vu is
of dimension dimFq pV2q ě 2k. Since V2 Ă Fqn , this implies that k ď n{2. In particular,
Sidon spaces for which this bound is an equality are referred to as min-span.

A crucial property for the applications of [RRT17] was the existence of an efficient
factoring algorithm. Given a Sidon space V and a product π “ ab between non-
zero elements a, b P V, this refers to any efficient method which recovers a pair
pλa, λ´1bq, λ P F˚q .

5.1.2 Description of the Scheme
The proposal of [RLT21] calls for Sidon spaces which meet the same constraint. Indeed,
it is a trapdoor-based scheme whose public key is an arbitrary description of such a
space V while the private key is a factoring algorithm. More precisely, let us now present
the standard PKE algorithms.

Keygen(1λ):

• Pick V P Gqpn, kq a random Sidon space with an efficient factoring algorithm A.
Pick ν def

“ pν1, . . . , νkq a random basis of V and β def
“ pβ1, . . . , βnq a random basis

of the extension field Fqn .
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• Represent the matrix Mpνq
def
“ νTν P Fkˆkqn over the basis β by

Mpνq “ νTν
def
“

n
ÿ

i“1
βiM

piq, (5.1)

where M piq P Fkˆkq for 1 ď i ď n.

• Output sk def
“ pβ,A,νq as secret key and pk def

“ pM p1q, . . . ,M pnqq as public key.

The message space corresponds to the equivalence class of pairs of elements ta, bu in the
Sidon space V, two pairs ta, bu and tc, du being equivalent if their product ab “ cd is
the same. If one views an element a of V as a vector a P Fkq , i.e., a “

řk
i“1 aiνi, then

the equivalence class associated to ta, bu corresponds to all pairs tc,du such that either
aTb “ cTd or aTb “ dTc. The reason why the message space is defined in this way will
become a bit more apparent from the decryption procedure described below.

Encrypt(pk “ pM piqqni“1, ta, bu):

• The ciphertext associated to (the equivalence class of) ta, bu is

c “ pciq
n
i“1

def
“ paM piqbTqni“1 P Fnq .

Note that this definition is compatible with the way the plaintext is defined: the
ciphertext does not depend on the particular pair ta, bu chosen in the equivalence
class of the message. An interesting property of the Sidon cryptosystem is that it
is homomorphic under the addition on half of the plaintext. That is, for two given
plaintexts ta1, bu and ta2, bu, we have

Encppk, ta1, buq `Encppk, ta2, buq “ Encppk, ta1 ` a2, buq.

To decrypt, Bob starts by interpreting the ciphertext c as a product of two elements in
V from the knowledge of β. He can then recover its factors by applying Algorithm A.

Decrypt(sk “ pβ,A,νq, c):

• Compute
n
ÿ

i“1
βici “

n
ÿ

i“1
βi

´

aM piqbT
¯

“ aMpνqbT

“ aνTνbT “

˜

k
ÿ

i“1
aiνi

¸˜

k
ÿ

i“1
biνi

¸

“ ab P V.

• Use Algorithm A on ab to recover ta, bu up to a multiplicative factor in Fq.

• Finally, retrieve ta, bu (up to a multiplicative factor) by representing ta, bu over
the basis ν. Such an ta, bu defines the message in a unique way.
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5.1.3 MinRank Problem
Our mere description of Keygen already gives a rather obvious MinRank instance.

Problem 5.1. LetM1, . . . ,Mn P Fkˆkq denote the public key of the Sidon cryptosystem.
Then, the vector β “ pβ1, . . . , βnq from the secret key is a solution over Fqn to the
homogeneous MinRank problem with target rank 1 defined by the M i’s for 1 ď i ď n.

This readily brings us to the following questions.

(1) Is Problem 5.1 difficult ?

(2) Can we recover an equivalent key from any solution to it ?

In HFE, MinRank was the bootleneck. On the contrary, retrieving a secret key from
an arbitrary solution could be performed in polynomial time. The situation here will
be quite different. For the first point, this already stems from the fact that we look for
rank 1 matrices, which is unusual. For the second point, the variety of Problem 5.1 may
actually depend a lot on the choice of a Sidon space. It turns out that the one adopted
in [RLT21] yields a very large solution set.

5.2 Weakness of the Scheme
In this section, we present their construction and we study Problem 5.1 in this particular
case. Our attack based on this analysis will be described in Sections 5.3 and 5.4.

5.2.1 Choice of the Sidon Space
The scheme considers a min-span Sidon space, i.e., n “ 2k, which is defined in terms
the subfield Fqk Ă Fqn . It is chosen according to the following Construction 1. There,
we denote by Wq´1

def
“ tuq´1 : u P Fqku and Wq´1

def
“ FqkzWq´1.

Construction 1 (Construction 15, [RRT17]). For q ě 3 a prime power and k P N˚,
let n “ 2k and let γ P F˚qn be a root of an irreducible polynomial x2 ` bx ` c over Fqk
such that c PWq´1

1. Then, the subspace V “ tu`uqγ : u P Fqku Ă Fqn is a Sidon space
of dimension k.

What justifies its use in [RLT21] is an efficient factoring procedure. The following
Algorithm 2 relies on the knowledge of an element γ such that p1, γq is a basis of Fqn

1Such a polynomial is known to exist by [RRT17, Corollary 14].
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over Fqk . For x P Fqn , the notation r1spxq and rγspxq stand for the components of x in
this basis.
Algorithm 2: Factoring algorithm for V as in Construction 1.
Input: A product π “ π1π2, where π1 “ u` uqγ and π2 “ v ` vqγ P V, the

element γ P F˚qn such that γ2 ` bγ ` c “ 0 from Construction 1.
Output: tπ1Fq, π2Fqu.
Decompose π in the basis p1, γq:
q0 Ð r1spπq ; /* q0 “ uv ´ cpuvqq */
q1 Ð rγspπq ; /* q1 “ uvq ` uqv ´ bpuvqq */
AÐ T´1pq0q ; /* where T : x ÞÑ x´ cxq, A “ uv */
B Ð q1 ` bA

q ; /* B “ uvq ` uqv */
Compute the roots α, β of A`Bx`Aqx2, namely pα, βq “ p´1{uq´1,´1{vq´1q
From α and β, recover tuFq, vFqu uniquely and therefore tπ1Fq, π2Fqu.

Finally, since such a primitive element is actually sufficient to devise the algorithm,
one can assume a secret key of the form pβ, γ,νq instead of pβ,A,νq.

From now on, let V be a min-span Sidon space with random basis ν as in Construction
1 as well as the matrices M piq P Fkˆkq associated to a random basis β. In the following,
we study Problem 5.1 with this specific instantiation. For that purpose, we consider the
matrix code of parameters rk2, nsqn endowed with the rank metric defined by

Cmat
def
“

A

M p1q, . . . ,M pnq
E

Fqn
. (5.2)

5.2.2 General Comments
The solutions to Problem 5.1 correspond to all codewords of weight 1 in Cmat. Moreover,
as the generatorsM piq are symmetric, all the elements in this code are symmetric. Thus,
rank 1 matrices in Cmat will be of the form xTy P Fkˆkqn for x collinear with y.

In this section, we will outline general properties of these codewords which are not
specific to Construction 1 and which even do not depend on the notion of Sidon space.

Linearity over Fqn. Since we are primarily interested in νTν P Cmat, we may want
to focus on

ZFqn
def
“

!

x P Fkqn : xTx P Cmat

)

. (5.3)

This set is clearly non-trivial as it contains ν. Also, there is still one degree of freedom
coming from the Fqn-linearity of Cmat. For instance, since ν1 ‰ 0 in ν, the set

ZFqn ,s
def
“

 

x P ZFqn : x1 “ s
(

is also non-trivial for s P F˚qn .
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Stability under Frobenius. As already observed on Problem 4.1 in Chapter 4 (see
Fact 1), applying the Frobenius morphism on a given solution provides another solution
to the same instance. More interesting to us is that the subset ZFqn is also stable under
this operation.

Notation 1. For a matrix M over Fqn and p P N, we use the same notation as for
vectors by considering M rps the matrix obtained by applying the Frobenius map x ÞÑ xq

p times on each entry.

Lemma 5.1. Let Cmat be the code defined in Equation (5.2) and let ZFqn the set defined
in Equation (5.3). If ω P ZFqn , then ωrps P ZFqn for any p P N. More generally, if
M P Cmat, then M rps P Cmat for any p P N.

Proof. Let ω P Fkqn such that ω P ZFqn . By definition, there exists η “ pη1, . . . , ηnq P Fnqn
such that

Mpωq “
n
ÿ

`“1
η`M

p`q.

Writing this for the entry in row i and column j for 1 ď i, j ď k gives

ωiωj “
n
ÿ

`“1
η`M

p`q
i,j .

Then, by iterating the Frobenius map p times on this equation for p P N and by noting
that M p`q P Fkˆkq , one obtains

ω
rps
i ω

rps
j “

n
ÿ

`“1
η
rps
` M

p`q
i,j .

This implies that the matrix

Mpωrpsq “
n
ÿ

`“1
η
rps
` M

p`q

belongs to Cmat for any p P N. The proof of the second statement is similar.

So far, we have not used the fact that V is a Sidon space. More generally, all these
results apply to a random subspace W Ă Fqn of dimension k generated by ω. In this
case, theM piq’s are still obtained from the decomposition ofMpωq in an arbitrary basis
of Fqn . Also, we keep the same definition for Cmat, ZFqn and ZFqn ,s. For such a space,
the only solutions to Problem 5.1 that we observe in practice are given by Lemma 5.1.

Experimental observation 1. Let W be a random element in Gqpn, kq together with
a basis ω and let s P F˚qn. One has

#ZFqn ,s “ n.

Moreover, if s P F˚q , then there exists u P Fkqn with u1 “ s such that

ZFqn ,s “
!

u,ur1s, . . . ,urn´1s
)

.
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5.2.3 Rank-One Matrices in a Subfield Subcode
The authors of the scheme had already noticed that the solution set to Problem 5.1 was
unexpectedly large. However, they did not examine it in further details.

In the case of Construction 1, we show that the variety cannot be boiled down to
the features exhibited in Section 5.2.2. This is because there exist specific solutions over
the subfield Fqk , i.e., weight 1 codewords in the Fqk -linear code

Dmat
def
“ Cmat X Fkˆk

qk
.

Remark 5.1. One can view Dmat as a subfield subcode.
Let us start with the content of our experiments.

Experimental observation 2. Let V P Gqpn, kq a random Sidon space as in
Construction 1. For s P F˚

qk
, we observed that

#ZF
qk
,s “ kpqk ´ 1q.

Moreover, if t P F˚
qk
, t R xsyFq , we observed that

#
!

x P ZF
qk
,s : x2 “ t

)

“ k.

To go beyond this observation, we will try to grasp some elements in ZF
qk
. For

1 ď i ď k, let ui P Fqk such that
νi “ ui ` u

q
iγ. (5.4)

Note that u def
“ pu1, . . . , ukq is necessarily a basis of Fqk over Fq. Finally, let Mpuq

def
“

uTu P Fkˆk
qk

.

Proposition 5.1. Let V P Gqpn, kq a random Sidon space as in Construction 1 with
basis ν and let u the basis of Fqk over Fq associated to ν by Equation (5.4). Let Cmat
the Fqn-linear code generated by the matrices in pk and let Dmat “ Cmat X Fkˆk

qk
. Then,

the matrix Mpuq belongs to Dmat. More generally, the same is true for Mpurjsq for any
integer j P N.

Proof. We only do the proof for Mpuq “ Mpur0sq since the rest easily follows from
Lemma 5.1. By expressing the entries of Mpνq P Fkˆkqn in the basis p1, γq, there exists a
unique pair of matrices pA,Bq P Fkˆk

qk
ˆ Fkˆk

qk
such that Mpνq “ A` γB. As we also

have Mpνq “
řn
i“1 βiM

piq where M piq P Fkˆkq , it is in fact explicitly given by
$

’

’

’

’

&

’

’

’

’

%

A “
n
ÿ

i“1
δiM

piq

B “

n
ÿ

i“1
ηiM

piq,

(5.5)
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where βi
def
“ δi` γηi, δi, ηi P Fqk is the decomposition of βi in p1, γq for 1 ď i ď n. This

definition shows that both A and B belong to Dmat. Also, recall from Construction
1 that the primitive element γ is a root of the polynomial x2 ` bx ` c over Fqk . For
1 ď i, j ď k, one thus obtains

νiνj “ pui ` u
q
iγqpuj ` u

q
jγq

“ puiuj ´ cpuiujq
qq ` γpuiu

q
j ` u

q
iuj ´ bpuiujq

qq. (5.6)

By (5.6), another expression for A is then A “Mpuq´ cMpur1sq. By (5.5), this matrix
also belongs to Dmat. More generally, using Lemma 5.1, the same is true for the matrices

Ar1s “Mpur1sq ´ cqMpur2sq

Ar2s “Mpur2sq ´ cq
2
Mpur3sq

...

Ark´1s “Mpurk´1sq ´ cq
k´1
Mpurksq “Mpurk´1sq ´ cq

k´1
Mpuq.

Then, by performing linear combinations over Fqk , one gets

A`
k´1
ÿ

i“1
c1`q`¨¨¨`qi´1

Aris “ p1´ c1`q`¨¨¨`qk´1
qMpuq “ p1´ c

qk´1
q´1 qMpuq.

Note finally that c
qk´1
q´1 ‰ 1 since c P Wq´1 in the construction. The matrix Mpuq is

thus a linear combination between the Aris’s over Fqk , which proves Mpuq P Dmat.

In fact, it is easy to find other rank 1 matrices in Dmat. First, Equation (5.6) shows
that the matrix B P Fkˆkq defined in Equation (5.5) satisfies Bi,j “ uiu

q
j`u

q
iuj´bpuiujq

q

for 1 ď i, j ď k, hence

B “ uTur1s `
´

ur1s
¯T
u´ b

´

ur1s
¯T
ur1s

“ uTur1s `
´

ur1s
¯T
u´ bMpur1sq. (5.7)

Second, this matrix also belongs to Dmat by (5.5). Now, let λ P Fqk and consider

Mpu` λur1sq “
´

u` λur1s
¯T ´

u` λur1s
¯

“ uTu` λ2
´

ur1s
¯T
ur1s ` λ

"

uTur1s `
´

ur1s
¯T
u

*

“Mpuq ` λ2Mpur1sq ` λB ` λbMpur1sq (by (5.7)).

The last equality implies that the matrix Mpu` λur1sq belongs to Dmat. Since it is of
rank 1, we have just proven the following generalization of Proposition 5.1.
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Proposition 5.2. Let ZF
qk
“

!

x P Fk
qk

: xTx P Dmat

)

and let u the basis of Fqk over
Fq associated to ν by Equation (5.4). One has

!

λurjs ` µurj`1s : pλ, µq P F2
qk and 0 ď j ď k ´ 1

)

Ă ZF
qk
.

Assumption 4. We assume that the inclusion from Proposition 5.2 is an equality.

Assumption 4 implies that we have been able to characterize all the elements in
ZF

qk
. It is in particular supported by our Experimental observation 2. Based on this

assumption, we will now describe our (equivalent) key-recovery attack which consists in
1. finding enough vectors in ZF

qk
(Section 5.3) 2. derive an equivalent key from these

elements (Section 5.4).

5.3 MinRank over Fqk
In this section, our goal is to determine vectors in the set

ZF
qk
“

!

x P Fkqk : xTx P Dmat

)

.

Rather than relying on the generic techniques recalled in [RLT21, §4], we found that
it was more favorable to consider a dedicated algebraic modeling largely inspired by
[DT18, §5.4]. This system is presented in Section 5.3.1. In Section 5.3.2, we show that
it can be solved efficiently.

5.3.1 Parity-Check Modeling
The approach of [DT18, §5.4] simply exploits a parity-check matrix of Dmat when viewed
as a linear code of length k2. More explicitly, we use the linear isomorphism

vec : Fkˆk
qk

Ñ Fk
2

qk

M ÞÑm

such that mpi´1qk`j “M i,j for 1 ď i, j ď k and we define

vecpDmatq
def
“ tvecpMq : M P Dmatu .

Let also

X
def
“ xTx “

»

—

—

—

–

x2
1 x1x2 ¨ ¨ ¨ x1xk

x2x1 x2
2 ¨ ¨ ¨ x2xk

...
... . . . ...

xkx1 xkx2 ¨ ¨ ¨ x2
k

fi

ffi

ffi

ffi

fl

(5.8)

the matrix in the unknowns xi used to model solutions x P ZF
qk
. For an arbitrary parity-

check matrix H P Fpk
2´2kqˆk2

qk
, we consider the system containing k2 ´ 2k quadratic

equations given by
HvecpXqT “ 0. (5.9)
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Lemma 5.2. The sequence of Equation (5.9) contains at most k2 ´ 2k ´
`

k
2
˘

linearly
independent quadratic polynomials over Fqk .

Proof. Let pε1, . . . , εk2q be the canonical basis of Fk2

qk
. Due to the symmetry of the

M piq’s, the vector

σi,j
def
“ εpi´1qk`j ´ εpj´1qk`i

belongs to the dual code vecpDmatq
K for any 1 ď i ă j ď k. This means that there exists

a parity-check matrix of the form

H 1 def“

„

U
Hσ



, (5.10)

where the rows of Hσ P F
pk2qˆk

2

qk
are the σi,j ’s and where U P Fpk

2´2k´pk2qqˆk
2

qk
. Finally,

since the equations coming fromHσvecpXqT “ 0 all give the zero polynomial, the useful
part of the system reduces to

UvecpXqT “ 0.

This set of equations is of cardinality k2 ´ 2k ´
`

k
2
˘

equations.

Modeling 10 (Parity-check modeling over Fqk). Let X be the matrix of unknowns

defined in Equation (5.8) and let H 1 “

„

U
Hσ



P Fpk
2´2kqˆk2

qk
be a parity-check matrix

for the code vecpDmatq as defined in Equation (5.10), where Dmat “ Cmat X Fkˆk
qk

. We
consider the system F over Fqk whose polynomials are the entries of the column vector
UvecpXqT.

It is readily verified that the solutions to Modeling 10 are in one-to-one correspondence
with the elements of ZF

qk
. Experimentally, these solutions were also all of the form

described in Proposition 5.2.

Fixing 2 variables. If one wants to find an element in ZF
qk

in practice, two unknowns
can be fixed in Modeling 10 to reduce the number of solutions (the dimension of the
ideal xFy is at least 2). The corresponding variety over Fqk has size ě k still by using
Proposition 5.2, and Assumption 4 states that it is an equality (the system is a fortiori
zero-dimensional). Since fixing more variables would result in a system with no solutions
with high probability, we focus on this specialized version.

Modeling 11 (Recovering an element in ZF
qk
). Let ps, tq P F2

qk
such that t R xsyFq .

We consider the sequence Fspec which is obtained by fixing xk´1 “ s and xk “ t in
Modeling 10.
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5.3.2 Solving the Specialized System
On Fspec, we adopt the standard approach for zero-dimensional systems that was recalled
in Section 2.2.3. First, note that the cost of FGLM can be considered polynomial in the
parameters since we expect k distinct solutions by Proposition 5.2 and Assumption 4.
Thus, we focus on the initial Gröbner basis step for which we will also prove a polynomial
complexity. More precisely, we will show that – under the following Assumption 5 and
Assumption 6 – the system Fspec can always be solved in degree 3 regardless of the value
of k.

Coming back to Modeling 10, a first remark is that we can permute the coordinates
of the row-vector vecpXq and the columns of U accordingly so that the

`

k`1
2
˘

leftmost
entries of vecpXq correspond to all distinct monomials xixj for 1 ď i ď j ď k. This is
equivalent to choosing a grevlex ordering on the variables to label the columns of U .
Furthermore, by adding rows of Hσ to rows of U in H, we can assume that the last
`

k
2
˘

columns of the matrix U are identically zero. Finally, we will rely on

Assumption 5. We assume that the submatrix V def
“ U

˚,t1..
`

k´1
2
˘

u
P Fpp

k´1
2 q´1qˆpk´1

2 q
qk

is full-rank.

On that hypothesis, we can construct
`

k´1
2
˘

´ 1 equations in the span of Modeling
10 with distinct leading monomials of the form xixj , 1 ď i ď j ď k ´ 2. Moreover, as
we fix xk´1 and xk to obtain Fspec, these monomials remain the same in Modeling 11.
Let us denote by Gspec the corresponding set of quadratic polynomials whose leading
terms are all different. Since the total number of degree 2 monomials in x1, . . . , xk´2 is
equal to

`

k´1
2
˘

, this means that all of them appear except one.
The rest of the discussion will prove that the Gröbner basis is either already computed

or close to be computed if the set Gspec is known. We make the further assumption that

Assumption 6. The algebraic system Fspec has exactly k distinct solutions which do
not belong to a common hyperplane of Fk´2

qk
.

This hypothesis was investigated through experiments and it is natural when
considering Proposition 5.2 together with Observation 2 (which suggests that the inclusion
of Proposition 5.2 is an equality). Indeed, the shape of the variety we get from these
results suggests that Assumption 6 should typically hold.

Under these assumptions, let us finally explain why the Gröbner basis computation
terminates in degree ď 3. There are two cases to consider.
Case 1. The missing leading monomial in Gspec is of the form xixj for distinct indexes i ‰
j. Given arbitrary polynomials g, h P Gspec, Buchberger’s second criterion (Proposition
3.1) shows that the only case when Spg, hq were not reduced to 0 would be when the
leading monomials of g and h have a common factor. In this situation, this S-polynomial
is of degree at most 3 and since
(i) all cubic monomials appear as multiples of leading monomials in Gspec,
(ii) all quadratic monomials appear as leading monomials except xixj ,
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it will reduce to a polynomial of the form f “ µxixj ` Lpxq for some scalar µ and
L P Fqkrxs of degree 1. It is impossible that µ “ 0 and L ‰ 0 since this would imply
that all k solutions to Fspec lie in the affine hyperplane Lpxq “ 0, which contradicts
Assumption 6. If µ ‰ 0, then it is clear by performing the same reasoning that all
S-polynomials Spf, giq, gi P Gspec would reduce to 0 (since they would this time reduce
to affine forms which are necessarily 0 by the previous reasoning). By Theorem 2.1, we
are thus left with a Gröbner basis.
Case 2. The missing leading monomial is of the form x2

i . The difference with the
previous case is that all degree 3 monomials appear as multiples of leading monomials
in Gspec except x3

i . In such a case, an S-polynomial Spg, hq will reduce to a polynomial
of the form f “ λx3

i ` µx
2
i ` Lpxq, where L is again an affine form and λ, µ P Fqk . It

is readily seen that we cannot have λ “ µ “ 0 without that L “ 0 itself (this would
contradict Assumption 6 in the same way as before). From this, it is readily seen that all
S-polynomials Spf, giq, gi P Gspec reduce to 0 and that we have a Gröbner basis again.

In both situations, this means that one needs to go up to degree 3 in the worst case
to compute the Gröbner basis for Fspec. The final complexity is then dominated by
that of performing Gaussian elimination at degree 3 on a matrix of size A ˆ B with
A ď B

def
“

`

k´2`3
3

˘

, namely

O
ˆˆ

k ` 1
3

˙ω˙

field operations. The cost of solving the system is thus in O
`

k3ω˘, which is clearly
polynomial in the dimension of the Sidon space.

5.4 Finding an Equivalent Key
Retrieving elements in ZF

qk
can thus be performed in an efficient way. All that remains

is to explain how this allows us to recover an equivalent key. Note that this second issue
was not addressed in [RLT21]. There, they only evaluated the complexity of obtaining
arbitrary solutions to Problem 5.1.

In our context, such equivalent keys will correspond to particular Sidon spaces.

Fact 2. A Sidon space V 1 P Gqpn, kq with basis ν 1 P Fkqn such that the matrix Mpν 1q is
a solution to Problem 5.1 can be used as an equivalent key provided one has access to an
efficient factoring algorithm A1.

Proof. Assume that ν 1 is a basis of a Sidon space V 1 such that the matrix Mpν 1q is a
linear combination between the M piq’s. From the knowledge of ν 1, one can construct
Mpν 1q and then solve the linear system in the β1i’s given by Mpν 1q “

řn
i“1 β

1
iM

piq.
Finally, the quantity

řn
i“1 β

1
ici is a product of elements in V 1 which can be factored using

Algorithm A1.

We now show that we can efficiently find a Sidon space V 1 obtained by Construction
1 that meets the criteria of Fact 2 from a set of k ` 1 elements t1, . . . , tk`1 in ZF

qk
by

applying the following procedure:
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1. Using these vectors, we recover some t def“ pt1, ¨ ¨ ¨ , tkq “ λurjs, λ P Fqk , 0 ď j ď
k ´ 1, where u “ pu1, ¨ ¨ ¨ , ukq is defined by Equation (5.4) from the secret basis ν
of the genuine Sidon space V.

2. From the knowledge of t, we deduce the aforementioned Sidon space as

V 1 def“
@

t1 ` γ
1tq1, ¨ ¨ ¨ , tk ` γ

1tqk
D

Fq ,

where γ1 P Fqn is generated like γ in Keygen, namely as a root of an irreducible
polynomial x2` ex` f over Fqk such that f PWq´1. Note that this γ1 is sufficient
to devise Algorithm 2 to factor in V 1.

These two steps are described in more depth in Sections 5.4.1 and 5.4.2 below.

5.4.1 Targeting the λurjs Vector
Assuming that the inclusion in Proposition 5.2 is an equality, one obtains that the set
ZF

qk
is equal to the union of vector spaces

ZF
qk
“

k
ď

i“1
Wi, where Wi

def
“

A

uri´1s,uris
E

F
qk

.

Let us notice that the components Wi satisfy the peculiar property that

Wi XW r1s
i “

A

uris
E

F
qk

, (5.11)

where for a set S of vectors, Sr1s stands for the set txr1s : x P Su.
In other words, Equation (5.11) states that we can recover one of the uris’s up to

multiplication by an element of Fqk if we are able to produce one of those Wi’s. This
can be achieved thanks to the pigeonhole principle: two among the solutions ti for
1 ď i ď k ` 1 will fall into a same vector space Wj0 . These considerations lead to the
following Algorithm 3 for recovering one of those uris’s (up to a multiplicative constant):
Algorithm 3: Extracting the relevant vector.
Input: A set of k ` 1 non-collinear vectors t1, . . . , tk`1 in ZF

qk
.

Output: A set S containing at least one element collinear with one of the uris’s.
for i “ 1 to k do

for j “ i to k ` 1 do
V Ð xti, tjyF

qk

if dimV X V r1s “ 1 then
S Ð S Y txu ; /* where x generates V X V r1s */

end
end

end
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This algorithm is deterministic of complexity Opk2q. Note that we do not necessarily
need k ` 1 non-collinear vectors t1, . . . , tk`1 in ZF

qk
. Indeed, Θp

?
kq are sufficient by

using the birthday paradox if we content ourselves with a probabilistic version of success
probability Ωp1q.

5.4.2 Deducing V 1

How a Sidon space V 1 with the right properties can be obtained from t collinear with
some uris is explained by the following proposition.

Proposition 5.3. Let γ1 P Fqn be a root of an irreducible polynomial x2 ` ex` f over
Fqk such that f P Wq´1. Then, the Fq-linear space V 1 generated by the ordered basis
ν 1

def
“ t` γ1tr1s is a Sidon space such that Mpν 1q belongs to the linear span of the M i’s.

Proof. Without loss of generality, let us assume that t “ λu for some λ P Fqk . We then
have

Mpν 1q “ Mpt` γ1tr1sq

“ tTt` γ1
2
´

tr1s
¯T
tr1s ` γ1tTtr1s ` γ1

´

tr1s
¯T
t

“ λ2uTu` λ2qγ1
2
´

ur1s
¯T
ur1s ` λ1`qγ1

"

uTur1s `
´

ur1s
¯T
u

*

(using the definition of t)

“ λ2Mpuq ` λ2qγ1
2
Mpur1sq ` λ1`qγ1

"

pu` ur1sqTpu` ur1sq ´ uTu´
´

ur1s
¯T
ur1s

*

“ λ2Mpuq ` λ2qγ1
2
Mpur1sq ` λ1`qγ1

!

Mpu` ur1sq ´Mpuq ´Mpur1sq
)

P

A

M p1q, ¨ ¨ ¨ ,M pnq
E

Fqn
(by Proposition 5.2).

More concretely, we will thus

1. find an element γ1 satisfying the same constraints as γ, i.e., γ1 is a root of an
irreducible polynomial x2 ` ex` f over Fqk such that f PWq´1;

2. obtain V 1 as the Fq-vector space generated by

ν 1
def
“ pt1 ` γ

1tq1, . . . , tk ` γ
1tqkq.

The overall cost boils down to finding γ1 P Fqn in Step 1., which can be performed
in the same way as in Keygen. There, [RLT21] propose a random procedure whose
success probability can be estimated using [RRT17, Lemma 13]. Heuristically, it works
in constant expected time.
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Chapter6Rank Support Learning Problem

This chapter presents two attacks on the Rank Support Learning problem.
The first one is an algebraic approach which I published with Magali Bardet [BB21].

The main application at that time was the Durandal signature scheme. On a large zone
of parameters relevant to this proposal, our work ourperforms the RD algorithms of
[Bar+20b]. Interestingly, our proof technique also helped us to gain understanding on
these previous methods. This will be a key ingredient in Chapter 7 where we describe
[Bar+23].

The second one is a combinatorial approach due to Philippe Gaborit included in our
joint work [BBBG23]. Even if it is slightly less efficient than [Bar+20b; BB21] when the
number of syndromes is reduced, it allows to widen the parameter range for which a
polynomial time algorithm exists on Problem 3.7.
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6.1 Preliminaries
Section 6.1.1 details the current designs which rely on the hardness of RSL. The Durandal
signature scheme [Ara+19b] was essentially the unique non-broken one when we published
[BB21]. Since then, encryption mechanisms also based on Problem 3.7 have emerged
[Agu+22; BBBG23; Ara+22]. In Section 6.1.2, we follow [GHPT17] by rewriting the
problem in terms of low weight codeword search in a particular Fq-linear code. This
content will be used in both [BB21] and [BBBG23].

91
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6.1.1 Cryptographic Applications
Let us recall that the Rank Support Learning problem was introduced for cryptographic
purposes in order to build an IBE [GHPT17]. Even if this proposal was later shown
to be insecure [DT18], this already illustrates the versatility of the assumption. In
particular, RSL also allowed to devise a signature scheme [Ara+19b], which is known to
be a challenging task in code-based cryptography.

6.1.1.1 Durandal Signature Scheme
We will first explain how Problem 3.7 appears within Durandal. We had briefly presented
the scheme in Section 3.3.5.1. In this context, RSL can be viewed as the analogue of the
Short Integer Solution (SIS) problem [Ajt96] used in Lyubashevsky’s signature [Lyu09].

Durandal is based on an ideal structure. In [Ara+19b], the secret key sk consists
of two matrices pE,E1q P F`ˆ2k

qm ˆ F`
1ˆ2k
qm whose entries lie in a subspace V Ă Fqm of

small dimension r. The public key pk contains a random ideal double circulant matrix
H P F2kˆk

qm as well as T T
1
def
“ HET

1 P Fkˆ`qm and T T
2
def
“ HET

2 P Fkˆ`
1

qm . Clearly, the

pair
ˆ

H,T
def
“

„

T 1
T 2

˙

is an instance of Problem 3.7 with parameters pm, 2k, k, rq and

` ` `1 syndromes. However, a more relevant one to cryptanalysis is pH,T 1q, where
T 1 P Fp```

1qkˆk
qm is publicly obtained from T by taking the ideal shifts of all the rows. In

this way, key-recovery reduces to solving a structured instance with N “ kp`` `1q.
In addition to RSL, the scheme relies on the hardness of the ad hoc PSSI` problem

[Ara+19b, Problem 5]. A recent attack by Aragon et al. [ADG23] has drastically
reduced the security of this second assumption and it contributed to break all existing
parameters. Thus, deriving new ones will require to take both [BB21] and [ADG23]
into account. However, since the cryptanalysis of PSSI` is less mature and since the
progress of [ADG23] was spectacular, one can expect that PSSI` attacks will be the
limiting ones.

6.1.1.2 PKE/KEMs with Multiple Syndromes
More recently, [Agu+22] pioneered a new approach to improve the efficiency of RD-based
cryptosystems. It was originally applied to ROLLO. A bit later, [BBBG23] and [Ara+22]
revisited the same idea on RQC and Loidreau’s [Loi17] respectively. As a result, all
these works obtained unstructured rank-based schemes with more competitive sizes than
those of similar Hamming-based or lattice-based proposals [Alb+20; Alk+20].

What matters here is that this leads to consider RSL in the security reduction. Indeed,
the ciphertext now contains N syndromes psiq1ďiďN associated to errors with the same
support V of dimension r. Roughly speaking, the rationale is that the underlying decoder
performs better when receiving several correlated syndromes instead of just one.

• In the case of an LDPC code with row weight d, the DFR decreases. Indeed, the
standard one is close to qrd´pn´kq´1 while [Agu+22] devise an algorithm for multiple
syndromes with DFR approximately equal to qrd´pn´kqN [Agu+22, Proposition 2].
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• In [Ara+22], the higher number of syndromes allows to improve the decoding
capability. This stems from the fact that a horizontally interleaved Gabidulin code
of order N can decode up to t N

N`1pn´ kqu errors if one accepts a non-zero DFR
[SJB11, Equations (43),(44)].

As already mentioned in Section 3.3.5.2, the objective was to choose a higher rank r to
limit the impact of algebraic attacks. What is also interesting is that the value of N is
much smaller than in Durandal. In [Agu+22], the border condition rd “ n´ k ` op1q
is replaced by pn´ kqN “ rd` op1q (see the discussion after [Agu+22, Lemma 1]). In
[Ara+22], the DFR formula inherited from [SJB11, Equation (44)] applies when the
input weight is ě N and, a fortiori, when N ď t N

N`1pn´ kqu.

6.1.2 Rephrasing the Problem
Rather than elaborating on [GHPT17, §4.2] and [DT18] which are tailored to a large
number of errors, we will describe the content of [GHPT17] that is used in our work.

Note that RSL with N “ 1 is simply Problem 3.6. In this situation, it was relevant
to consider the Fqm-linear code Cy “ C ‘ xyyFqm “ C ‘ xeyFqm . To tackle the general
case, the issue with this method is that xe1, . . . , eNyFqm will quickly cover the full space
Fnqm . Thus, the authors of [GHPT17] attacked another code containing all these errors
but which is simply Fq-linear. If T Ă Fn´kqm stands for the Fq-linear space generated by
the syndromes, a public description of this code is given by

Notation 2.
Caug

def
“

!

x P Fnqm : xHT P T
)

. (6.1)

The crux is that it contains both the code C and

E def
“ xe1, . . . , eNyFq . (6.2)

This last observation shows that Caug typically contains about qN codewords of
weight ď r. The approach of [GHPT17] consisted in finding one of such vectors. If the
weight is exactly r, its support will reveal V. If the weight is smaller, it is a subspace
but which yields enough information.

Since one can also view Caug as a matrix code of parameters rm ¨ n,ď km`N sq, the
above task can be rephrased as the one of solving a homogeneous MinRank problem with
km`N matrices in Fmˆnq and target rank ď r. Even though the code is not Fqm-linear,
this instance has a lot of structure. Indeed, Caug still admits a compact description over
the extension field by Equation (6.1).

6.2 Restricting the Number of Solutions
The MinRank and RD algorithms that we have presented so far aimed at solving instances
with essentially one solution. Since RSL can be seen as an in-between, we hope to be
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able to use similar techniques. However, even if there is only one vector space V, the
number of weight ď r codewords in Caug is exponential in N .

Thus, we will try to attack a related problem with roughly one solution. Of course,
it should still allow to recover the initial support. Since what really matters is in fact
a subspace, we may look for vectors of weight w strictly smaller than r. To reduce
the number of such codewords even further, we may also work in a shortened code in
the sense of Equation (2). Indeed, for such a code SIpCaugq, weight ď r vectors should
belong to SIpEq. We study the weight distribution of this latter code in Proposition 6.1.

Proposition 6.1. Let E be the code defined by Equation (6.2) viewed as a matrix code,
let I Ă t1..nu, #I “ a and let SIpEq Ă Fmˆpn´aqq be the shortening at these positions
(by considering columns with indexes in t1..nuzIq. We assume that its dimension is
N´ar. For w ď r, let XSIpEq,w be the random variable counting the number of codewords
of weight w in SIpEq, where the randomness comes from the choice of a support V of
dimension r and of the errors ei with this support. The expectation and the variance of
XSIpEq,w are respectively given by

E
“

XSIpEq,w
‰

“
Sw,r,n´a,q
qrn´N

,

Var
“

XSIpEq,w
‰

“ Sw,r,n´a,q ˆ pq ´ 1q ˆ
˜

1
qrn´N

´

ˆ

1
qrn´N

˙2
¸

,

where Sw,r,n´a,q
def
“ #tM P Frˆpn´aqq , rkpMq “ wu. When q is a constant, this gives

E
“

XSIpEq,w
‰

“ Θpqwpn´a`r´wq´rn`N q “ ΘpqN´ar´pr´wqpn´a´wqq
Var

“

XSIpEq,w
‰

“ ΘpqN´ar`1´pr´wqpn´a´wqq “ ΘpqN´ar´pr´wqpn´a´wqq.

Proof. For β P Fmqm a fixed basis of Fqm over Fq and SV P Fmˆrq a full-rank matrix
such that βSV is a basis of V, let us remark that each element e P Fn´aqm in SIpEq can
be written as e “ βSVC for some C P Frˆpn´aqq . We consider the matrix code D of
parameters rr ¨ pn´ aq, N ´ arsq generated by these C matrices. Since XSIpEq,w “ XD,w

for any w ď r, the rest of the proof will focus on this latter code. For C P Frˆpn´aqq , let
us denote by 1CPD the random variable equal to 1 if C P D and 0 otherwise, so that
XD,w “

ř

wtpCq“w 1CPD. By linearity of expectation, one obtains

ErXD,ws “
ÿ

wtpCq“w

Er1CPCs “
ÿ

wtpCq“w

PrrC P Ds.

The probability that C P D is the one to satisfy rpn´aq´pN´arq “ rn´N independent
parity-check equations, hence PrrC P Ds “ 1

qrn´N
. The result follows by summing over

all the codewords of weight w. For the variance, we start by computing the quantity

E
“

X2
D,w

‰

“
ÿ

wtpC1q“w

ÿ

wtpC2q“w

Er1C1PD1C2PDs.



6.3. An Algebraic Approach 95

We have Er1C1PD1C2PDs “ PrrC1 P D,C2 P Ds by definition. The code D being Fq-
linear, the events C1 P D and C2 P D are not independent when C2 P xC1yFq . In this
case, one has

PrrC1 P D,C2 P D | C2 P xC1yFq s “ PrrC1 P Ds “
1

qrn´N
.

Therefore

E
“

X2
D,w

‰

“
ÿ

wtpC1q“w

ÿ

C2PxC1yFq
wtpC2q“w

1
qrn´N

`
ÿ

wtpC1q“w

ÿ

C2RxC1yFq
wtpC2q“w

ˆ

1
qrn1´N 1

˙2

“ Sw,r,n´a,qpq ´ 1q 1
qrn´N

` Sw,r,n´a,q pSw,r,n´a,q ´ pq ´ 1qq
ˆ

1
qrn´N

˙2

“ ErXD,ws
2
` Sw,r,n´a,q ˆ pq ´ 1q ˆ

˜

1
qrn´N

´

ˆ

1
qrn´N

˙2
¸

.

In other words, our method is a reduction to a smaller RSL instance. Recall that our
goal is to attack one with a number of solutions which is essentially constant. This can
be done by choosing parameters according to Proposition 6.1 or more simply to Equation
(3.4) applied to SIpEq since we mostly care about its minimum distance. More precisely,
for a fixed weight w P t1..ru, we will pick the code corresponding to the maximal value
of a ě 0 such that

N ´ ar ą pr ´ wqpn´ a´ wq ô aw ă N ´ pr ´ wqpn´ wq.

To consider more cases in the optimization, we may also select slightly less syndromes
and attack codes of the form SIpE 1q, where E 1

def
“ xe11, . . . , e

1
syFq Ă E is generated by the

associated errors which is a subset of te1, . . . , eNu. Since this number of syndromes
intervenes in our total amount of unknowns, there will be situations for which this
addition makes sense.

6.3 An Algebraic Approach
In [BB21], we introduced a polynomial system to solve the subproblem. To simplify the
notation, let us present it applied to the original RSL instance.

6.3.1 RSL-Minors Modeling
The point is to exploit the compact description of Caug given in Equation (6.1). By
definition, a codeword e P Caug is such that eHT P T , i.e., eHT “

řN
i“1 λisi for

coefficients λi P Fq, 1 ď i ď N . Since we target one of weight ď r, we can also write it
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as in the MaxMinors case in the form e “ βSVC, where β is a basis of Fqm over Fq,
SV P Fmˆrq and C P Frˆnq . This yields the equation

N
ÿ

i“1
λisi “ βSVCH

T.

From there, the rest follows as in Support-Minors by noting that the vector
řN
i“1 λisi is

a linear combination over Fqm between the rows of CHT. This means that the matrix

∆ def
“

„

řN
i“1 λisi
CHT



“

„

řN
i“1 λiyi
C



HT P Fpr`1qˆpn´kq
qm

has rank at most r. As in previous MinRank modelings, we can then adopt the system
of all its pr ` 1q ˆ pr ` 1q minors. In addition, computing them by Laplace expansion
along the first row and by applying the Cauchy-Binet formula (Lemma 3.3) naturally
leads to consider minor variables cT “ |C˚,T |.

Modeling 12 (RSL-Minors). The RSL-Minors modeling is the system in the λi
variables and in the cT variables, defined by t∆JuJĂt1..n´ku, #J“r`1, where

∆J
def
“ |∆˚,J | “

ˇ

ˇ

ˇ

ˇ

ˇ

„

řN
i“1 λisi
CHT



˚,J

ˇ

ˇ

ˇ

ˇ

ˇ

.

In the following, we will denote it by U .

A bit more explicitly, we obtain

Lemma 6.1. For an ordered subset T Ă t1..nu and t P T , let Pospt, T q denote the
position of t in T . Let J Ă t1..n´ ku such that #J “ r ` 1. We have

∆J “

N
ÿ

i“1
λi

ÿ

TĂt1..nu,#T“r
cT

ÿ

tRT

yi,tp´1q1`Pospt,TYttuq
ˇ

ˇHJ,TYttu

ˇ

ˇ . (6.3)

In other words, Modeling 12 is a bilinear system with
`

n´k
r`1

˘

equations and N
`

n
r

˘

monomials λicT for 1 ď i ď N and T Ă t1..nu, #T “ r.
Once again, the coefficients of the equations are over Fqm while the unknowns λi

and cT are searched in Fq. Thus, we can proceed as in the MaxMinors case to obtain
Modeling 13 containing m

`

n´k
r`1

˘

equations.

Modeling 13 (RSL-Minors-Fq). Let β1 “ pβ11, . . . , β1mq be an arbitrary Fq-basis of
Fqm. Let Tr be the trace operation as in Equation (3.16) defined for polynomials in
FqmrcT ,λs. The RSL-Minors modeling over Fq is the system in the λi variables and in
the cT variables, defined by t∆`,Ju1ď`ďm, JĂt1..n´ku, #J“r`1, where

∆`,J
def
“ Trpβ1`∆Jq mod tcqT ´ cT , λ

q
i ´ λiu.

In the following, we will denote it by UFq .
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To solve this system, we use the same approach as in [Bar+20b] by multiplying the
polynomials by all linear variables λi for 1 ď i ď N . More precisely, we aim at recovering
the low weight codeword from a vector in the right kernel of the Macaulay matrix
Macpb,1qpUFqq at the relevant bi-degree. Since the subproblem is chosen to have roughly
one solution, this corresponds to the least value such that the number of independent
rows is greater than the number of columns minus one. Over F2 or more generally when
q ď b, this estimation has to take into account the field equations λqi ´ λi “ 0. Indeed,
reduced modulo these polynomials, a homogeneous equation in bi-degree pb, 1q may
become affine and possibly involve monomials of degree pb1, 1q for any 1 ď b1 ď b. In
this case, it will be favorable to consider the matrixMacďpb,1qpUFqq which contains all
equations up to this bi-degree.

Remark 6.1. For two codes SIpE 1q and SIpEq with E 1 Ă E as presented above, the
algebraic system for the same weight w should be solved at a lower degree on SIpEq than
on SIpE 1q. We may prefer to consider SIpE 1q only when these degrees are equal. Indeed,
since the code dimension is also the number of linear variables, the size of the Macaulay
matrix will be smaller.

6.3.2 Analysis over the Extension Field
As in [Bar+20b], the complexity analysis calls for understanding the rank of the Macaulay
matrices. However, for Modeling 13, we cannot obtain an exact formula regardless of
the parameters. The situation is different with Modeling 12. There, indeed, the rank
is always given by the number of independent rows. In particular, we can provide the
precise value of rk

`

Macpb,1qpUq
˘

for any b ě 1.
Let us start with the b “ 1 case. Under the following elementary assumption on the

matrix of syndromes, Theorem 6.1 shows that there are no linear relations in the initial
system.

Assumption 7. Let S def
“

“

sT
1 . . . sT

N

‰

P Fqm pn´kqˆN . We assume that the matrix
St1..n´k´ru,˚ has rank n´ k ´ r.

Theorem 6.1. Under Assumption 7, the equations of Modeling 12 are linearly
independent over Fqm.

Proof. The proof will consist in row reducing the Macaulay matrix for a particular term
order. More precisely, we consider the grevlex monomial ordering on the variables λi
and cT such that

ctt1ă¨¨¨ătru ă ctt11ă¨¨¨ăt1ru if and only if ti “ t1i for all 1 ď i ă j and tj ă t1j ,

cT ă λN ă λN´1 ă ¨ ¨ ¨ ă λ1 @T Ă t1..nu, #T “ r.

This means that λicT ă λjcT 1 if and only if cT ă cT 1 or cT “ cT 1 and λi ă λj . Using
the systematic form of H, we can sort the monomials in any equation as
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Lemma 6.2. For an ordered subset T Ă t1..nu and t P T , let Pospt, T q denote the
position of t in T . For any subset J Ă t1..n´ ku such that #J “ r ` 1, we have

∆J “
ÿ

jPJ

N
ÿ

i“1
p´1q1`Pospj,Jqsi,jλicpJztjuq`k ` (smaller terms),

where the smallest monomials λicT are the ones with T X t1..ku ‰ H while the largest
ones satisfy T Ă J ` k Ă tk ` 1..nu.

Now, let I “ tj2 ă ¨ ¨ ¨ ă jr`1u Ă t1..n ´ ku, #I “ r and let UI
def
“ t∆t`uYI : 1 ď

` ă j2u. By Lemma 6.2, the Macaulay matrix reads

Macă
p1,1qpUIq “

»

—

–

. . . λ1cI`k . . . λNcI`k . . .

∆t1uYI 0 s1,1 . . . sN,1 . . .

∆tj1uYI 0 s1,j1 sN,j1 . . .

∆tj2´1uYI 0 s1,j2´1 sN,j2´1 . . .

fi

ffi

fl

“
“

0 St1..j2´1u,˚ . . .
‰

.

Then, using Assumption 7 and up to a permutation of the syndromes, there exists an
invertible lower-triangular matrix L P Fpn´k´rqˆpn´k´rqqm and an upper-triangular matrix
U P Fpn´k´rqˆNqm with ones on the main diagonal such that LSt1..n´k´ru,˚ “ U . Noting
that j2 ď n´ k ´ r ` 1, we obtain Lt1..j2´1u,t1..j2´1uMacă

p1,1qpUIq “
“

0 U t1..j2´1u,˚ . . .
‰

,
i.e.,

Lt1..j2´1u,t1..j2´1uMacă
p1,1qpUIq “

»

—

–

. . . λ1cI`k . . . λj2´1cI`k . . .

0 1 . . . u1,j2´1 . . .

0 0 . . . uj1,j2´1 . . .
0 0 0 1 . . .

fi

ffi

fl

.˚

Any row in this echelon form corresponds to an equation with leading term 1 ¨ λj1cI`k
for any 1 ď j1 ă j2. Overall, we obtain distinct leading monomials by repeating the
same operation on all subsystems UI for I “ tj2 ă ¨ ¨ ¨ ă jr`1u Ă t1..n ´ ku, #I “ r.
This shows linear independence.

From the proof of Theorem 6.1, we will also retain

Corollary 6.1. Under Assumption 7, the linear span of Modeling 12 admits a basis of
polynomials with distinct leading monomials, namely

!

Ą∆J

)

JĂt1..n´ku, #J“r`1
such that

LM
´

Ą∆J

¯

“ λj1rpJztj1uq`k, j1
def
“ minpJq.

At higher bi-degree, the shape of the system triggers combinatorial syzygies of the
same nature as in [Bar+20b, Proposition 6]. However, we are in a better situation.
Indeed, what is remarkable is that Assumption 7 used to control the b “ 1 case still
allows us to obtain linearly independent equations once we get rid of these relations. In
the following Theorem 6.2, we reuse the basis

!

Ą∆J

)

JĂt1..n´ku, #J“r`1
of Corollary 6.1.
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Theorem 6.2. Under Assumption 7 and for any b ě 1, a basis of the rowspace of
Macpb,1qpUq is given by the polynomials

Bb
def
“

$

&

%

ź

minpJqďjďN
λ
αj
j
Ą∆J :

N
ÿ

j“1
αj “ b´ 1 and J Ă t1..n´ ku, #J “ r ` 1

,

.

-

. (6.4)

This space is of dimension

Nb
def
“

n´k´r`1
ÿ

d“2

ˆ

n´ k ´ d

r ´ 1

˙ d´1
ÿ

j“1

ˆ

N ´ j ` 1` b´ 2
b´ 1

˙

. (6.5)

Proof. Taking b “ 1 is Theorem 6.1. Thus, we start from a complete proof of the b “ 2
case. As the leading monomial of Ą∆J is λminpJqcJztminpJquq`k, the relations between
the polynomials can only come from the pairs

´

λj Č∆tiuYI , λi Č∆tjuYI

¯

for all subsets
I Ă t1..n ´ ku of size r and all indexes 1 ď i ă j ă minpIq. If we sort the rows of
Macp2,1qpUq in decreasing order with respect to the ordering ! defined by

λiĄ∆J ! λi1Ą∆J 1 if and only if pJ ălex J
1q or pJ “ J 1 and i ą i1q,

where J “ tj1 ă ¨ ¨ ¨ ă jr`1u ălex J
1 if and only if jt “ j1t @t ą l and jl ă j1l,

then it is clear that when we compute a row echelon form without row pivoting, the only
rows that can reduce to zero are the rows corresponding to the polynomials λi Č∆tjuYI with
I Ă t1..n´ ku, #I “ r and 1 ď i ă j ă minpIq. There are

řn´k´r`1
j2“1

`

j2´1
2
˘`

n´k´j2
r´1

˘

“
`

n´k
r`2

˘

such rows. The complementary set is
!

λjĄ∆J : J Ă t1..n´ ku, #J “ r ` 1 and minpJq ď j ď N
)

and this is exactly B2 from Equation (6.4). These equations are already linearly
independent because their leading monomials are distinct. To finish the proof, we now
construct

`

n´k
r`2

˘

independent relations which involve elements outside of B2.

Lemma 6.3. For any subset K Ă t1..n´ ku, #K “ r ` 2, we have
ˇ

ˇ

ˇ

ˇ

ˇ

„

∆
řN
i“1 λisi



˚,K

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0. (6.6)

Each of these
`

n´k
r`2

˘

equations is a relation between the λj∆J ’s (hence the λjĄ∆J ’s).
Under Assumption 7, all these relations are linearly independent.

Proof. By definition of Modeling 12, the first and the last row of each matrix as in
Equation (6.6) are the same. We thus obtain

`

n´k
r`2

˘

minors equal to zero. Then, by
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Laplace expansion along the last row, the minor corresponding to K def
“ tk1 ă k2 ă

¨ ¨ ¨ ă kr`2u is also equal to

N
ÿ

i“1
λi

r`2
ÿ

u“1
p´1qr`usi,ku∆Kztkuu “

r`2
ÿ

u“1

˜

p´1qw`u
N
ÿ

i“1
λisi,ku

¸

∆Kztkuu. (6.7)

Let now p∆JqJĂt1..n´ku,#J“r`1 be the sequence associated to U by sorting the
polynomials with respect to the lex ordering on the J ’s. Combining Equation
(6.6) and Equation (6.7) gives the syzygy GK such that pGKqJ = 0 if J Ć K and
pGKqJ “ p´1qr`Pospu,Kq

řN
i“1 si,uλi if KzJ “ tuu. In particular, the leftmost non-zero

coefficient corresponds to J “ K1
def
“ Kztk1u and it is equal to

p´1qr`1
N
ÿ

i“1
si,k1λi “ p´1qw`1 `s1,k1 . . . sN,k1

˘ `

λ1 . . . λN
˘T
.

This leading position is the same for all syzygies GtjuYK1 such that 1 ď j ă k1. Finally,
let L P Fpn´k´rqˆpn´k´rqqm as in the proof of Theorem 6.1 and which exists thanks to
Assumption 7. We obtain k1 syzygies from the rows of

Lt1..k1u,t1..k1u

»

—

–

Gt1uYK1

...
Gtk1uYK1

fi

ffi

fl

.

Since the coefficients in position K1 are equal to the components of

p´1qr`1

»

—

–

1 . . . u1,k1 . . .
. . . ... . . .

0 1 . . .

fi

ffi

fl

»

—

–

λ1
...
λN

fi

ffi

fl

,

it is clear that these syzygies are linearly independent and so are the GtjuYK1 ’s, for
1 ď j ď k1. The same eventually holds for the full set tGKuKĂt1..n´ku,#K“r`2.

In the general case, note that the polynomials in

Bb
def
“

$

&

%

ź

minpJqďjďN
λ
αj
j
Ą∆J :

N
ÿ

j“1
αj “ b´ 1 and J Ă t1..n´ ku, #J “ r ` 1

,

.

-

have distinct leading monomials since

LMpλαj1j1
¨ ¨ ¨λαNN

Č∆tj1uYIq “ λ
αj1
j1
¨ ¨ ¨λαNN LMp Č∆tj1uYIq “ λ

αj1`1
j1

¨ ¨ ¨λαNN cI`k.

On the contrary, the polynomials λα1
1 ¨ ¨ ¨λαNN

Č∆tj1uYI such that j1 ă minpIq,
řN
i“1 αi “

b ´ 1 and
řj1´1
i“1 αi ‰ 0 reduce to zero because they are divisible by some λiĄ∆J with
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i ă minpJq and the latter reduces to zero. This means that Bb indeed gives a basis.
Finally, its cardinality is

n´k´r`1
ÿ

j2“2

ˆ

n´ k ´ j2
r ´ 1

˙ j2´1
ÿ

j1“1

ˆ

N ´ j1 ` 1` b´ 2
b´ 1

˙

,

which is the right-hand side of Equation (6.5).

Assumption 7 has been used in all our proofs. A nice observation is that it actually
holds in the Durandal case.

Lemma 6.4. Let m a prime number and let n P N such that k “ n{2 is prime. Let
l P N and let S def

“
“

sT
1 . . . sT

lk

‰

P Fqmkˆlk whose columns are the ideal shifts modulo an
irreducible polynomial P P FqrXs of l initial syndromes σT

1 , . . . ,σ
T
l . Then, there exists

an invertible matrix U P Fkˆkqm such that

US “
“

Ik ˚
‰

.

Proof. As S is publicly constructed, we can assume that sT
1 , . . . , s

T
k are the ideal shifts

of one unique vector σT. In this case, the leftmost block of size k ˆ k in S is equal
to the ideal matrix IMpσqT. We also have σ ‰ 0 with overwhelming probability
because the double circulant ideal matrix H is generated as random in the scheme.
Since P is irreducible over Fq and as both m and k are prime, [Ara+19c, Lemma 1]
shows that there exists a vector u P Fkqm such that σu “ 1 mod P . This implies that
IMpσqIMpuq “ Ik and we deduce Lemma 6.4 with U def

“ IMpuqT.

6.3.3 Coming Back to the Small Field
Similarly to the MaxMinors system over Fq (Modeling 7), we had difficulty proving
results of independence for Modeling 13. Once again, this should not sound surprising
because at some point the value of rk

`

Macpb,1qpUqq
˘

will no longer be obtained by a
reasoning on the rows. Thus, we assumed that this rank was equal to m times the one
ofMacpb,1qpUq as long as the latter is smaller than the number of columns and b ă q.
As already mentioned, the second condition is due to the field equations.

Analyzing their contribution remains an open problem. Before studying Modeling
13, an easier task is to consider Modeling 12 reduced modulo these polynomials. We
focused on q “ 2 and we proposed the following conjecture.

Conjecture 6.1. In Modeling 12 reduced modulo the field equations, the number of
linearly independent polynomials at bi-degree pb, 1q when b ď r ` 1 is conjectured to be

NF2
b

def
“

b
ÿ

d“1

n´k
ÿ

j“1

ˆ

j ´ 1
d´ 1

˙ˆ

n´ k ´ j

r ´ d` 1

˙ˆ

N ´ j

b´ d

˙

“

b
ÿ

d“1
p´1qd`1

ˆ

n´ k

r ` d

˙ˆ

N

b´ d

˙

. (6.8)
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For any subset J “ tj1 ă . . . jr`1u Ă t1..n ´ ku, multiplying Ą∆J by all squarefree
monomials

ś

j1ăjďN
λ
αj
j with

ř

j αj “ b´ 1 produces distinct leading monomials which
are still squarefree since

LM
˜

ź

j1ăjďN

λ
αj
j ˆĄ∆J

¸

“ λj1
ź

j1ăjďN

λ
αj
j ˆ cJztj1u`k.

This already gives a lower bound on NF2
b . However, if we do the product by squarefree

monomials λj1
ś

j1ăjďN
λ
α1j
j with

ř

j α
1
j “ b´ 2, the leading monomial before reduction

is divisible by λ2
j1 and we do not grasp the one after reduction. Still, we have found

experimentally that

• the leading monomial of λj1 ¨ ¨ ¨λjb´1
Ą∆J after reduction is λj1 ¨ ¨ ¨λjbcJztjbu,

• for 1 ď d ď b´ 1 and id ă ¨ ¨ ¨ ă ib´1 such that jd´1 ă id ă jd the polynomials

λj1 ¨ ¨ ¨λjd´1λid . . . λib´1
Ą∆J

reduce to zero.

Conjecture 6.1 follows from these observations since the complementary set has size

b
ÿ

d“1

n´k
ÿ

jd“1

ˆ

jd ´ 1
d´ 1

˙

loooomoooon

number of sets
tj1ă¨¨¨ăjd´1u
in t1..jd´1u

ˆ

n´ k ´ jd
r ` 1´ d

˙

looooooomooooooon

number of sets
tjd`1ă¨¨¨ăjr`1u
in tjd`1..n´ku

ˆ

N ´ jd
b´ d

˙

loooomoooon

number of sets
tidă¨¨¨ăib´1u
in tjd`1..Nu

.

We finish this section by giving the total complexity of our approach. As in Chapter
4, one can use dense or sparse linear algebra techniques to retrieve the kernel vector.
Provided that the operating bi-degree pb, 1q is known, the cost of the latter can be obtained
from Proposition 2.7. From now on, we will always assume that H˚,tk`1..nu “ In´k. In
this case, Lemma 6.1 shows that we can take nµ “ N

`

k`1`r
r

˘

. Moreover, the number of
columns corresponds to the number of monomials, i.e., Mb

def
“

`

n
r

˘`

N`b´1
b

˘

when b ă q.

Proposition 6.2. For b P Zą0, let Nb as defined in Equation (6.5) and let Mb “
`

n
r

˘`

N`b´1
b

˘

. Under Assumption 7 and the hypothesis on the unfolded system stated at the
beginning of this section, Modeling 13 can be solved in bi-degree pb, 1q, b ă q whenever
mNb ěMb ´ 1. In this case, the global cost in Fq-operations is

O
´

min
´

NbM
ω´1
b , N

`

k`1`r
r

˘

M2
b

¯¯

, (6.9)

where ω is the linear algebra constant.

Over q “ 2, recall that we consider the full affine Macaulay matrix. The relevant
number of columns is thus MF2

ďb
def
“

`

n
r

˘
řb
b1“1

`

N
b1

˘

.
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Proposition 6.3. For b P Zą0, let NF2
b as defined in Equation (6.8), let NF2

ďb
def
“

řb
j“1N

F2
j and let MF2

ďb “
`

n
r

˘
řb
b1“1

`

N
b1

˘

. Based on Conjecture 6.1 and the hypothesis on
the unfolded system stated at the beginning of this section, Modeling 13 can be solved in
bi-degree pb, 1q when q “ 2 whenever mNF2

ďb ěMF2
ďb ´ 1. In this case, the global cost in

Fq-operations is

O
ˆ

min
ˆ

NF2
ďb

´

MF2
ďb

¯ω´1
, N

`

k`1`r
r

˘

´

MF2
ďb

¯2
˙˙

, (6.10)

where ω is the linear algebra constant.

Hybrid techniques can also be applied to Modeling 13. A first one is pretty similar to
the strategy adopted by [Bar+20b] on the MaxMinors system (e.g, the first method in
the underdetermined case given at the very end of Section 3.3.4.3). A second one which
does not exploit the structure as strongly as this first method is to perform an exhaustive
search on some λi variables. For the sake of simplicity, we keep this paragraph short
and we refer to Chapter 7 for a more detailed description.

6.3.4 Application to Durandal
We now estimate the complexity of our (hybrid) attack on some parameters. First, note
that we do not outperform [Bar+20b] on the original Durandal values which had already
been broken by this prior work. However, they correspond to overdetermined RD cases
and it is likely that future parameters will be chosen outside of this weak range.

To perform a broader comparison, we have constructed alternative parameters
pm,n, k, r,Nq which are immune to [Bar+20b] by taking into account the constraints
from the Durandal scheme mentioned in [Ara+19b, §6.1]. The empirical ways to avoid
the attack of [Bar+20b] seemed to increase the pair pn, kq compared to m or to increase
the weight r. Our proposed values attempt to explore these two options. Contrary to
[BB21, Table 2], there is no longer mention of the cost of the best attack on PSSI`
because it has been significantly improved in [ADG23]. Note simply that [ADG23] would
break the instantiation d “ r, `1 “ 1 given in [BB21] since the best attack on PSSI`
at the time of [Ara+19b] was close to the security target1. In other words, one must
view this section as a mere comparison between attacks on the RSL problem and not as
a cryptanalysis of Durandal. We compare ourselves with the RD attack of [Bar+20b]
in Table 6.1 while combinatorial RSL techniques including the one of Section 6.4 are
irrelevant in this regime.

In Table 6.1, Column “RD” gives the cost of the hybrid approach on Modeling 7 in
the underdetermined case. The remaining columns correspond to our method. The three
leftmost ones are associated to the strategy by targeting an error of maximal weight
r and by shortening as much as possible. The rightmost columns concern the attack
by looking for a word of weight w ă r and by shortening on a possibly non-maximal

1More precisely, the cost was a bit above 192 in a scenario where the adversary has access to 264

signatures.
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number a ě 0 of columns. Thus, we give the pair pw, aq leading to the best complexity.
In both cases, we also indicate the degree b to solve by linearization and the optimal
quantities for the hybrid approach. A starred cost value is obtained with the Wiedemann
algorithm, otherwise the Strassen algorithm is used. Finally, we write the value of the
best strategy in bold text when it improves upon the RD attack.

Table 6.1: Comparison with the RD solver of [Bar+20b] on parameters akin to the ones
used in Durandal.

pm,n, k, rq, N RD w “ r b pαC , αλq w ă r b Value of w a pαC , αλq

p277, 358, 179, 7q
N “ kpr ´ 3q 130 173 2 (0,0) 174˚ 3 6 60 (0,0)
N “ kpr ´ 2q 130 147 1 (0,0) 126 1 5 37 (0,2)
N “ kpr ´ 1q 130 145 1 (0,0) 125 1 5 19 (0,1)
p281, 242, 121, 8q
N “ kpr ´ 2q 159 170 2 (0,0) 170˚ 3 7 70 (0,0)
N “ kpr ´ 1q 159 144 1 (0,0) 128 1 5 27 (2,3)
p293, 254, 127, 8q
N “ kpr ´ 2q 152 172 2 (0,0) 172˚ 3 7 73 (0,0)
N “ kpr ´ 1q 152 145 1 (0,0) 125 1 5 28 (1,4)
p307, 274, 137, 9q
N “ kpr ´ 2q 251 187 2 (0,0) 187˚ 3 8 86 (0,0)
N “ kpr ´ 1q 251 159 1 (0,0) 165˚ 2 8 103 (0,0)

We notice that our complexity is always below the one of the best RD attack of
[Bar+20b] when N “ pk´ 1qr and it is very often the case for a slightly smaller number
of syndromes. We want to stress that this general improvement is not associated to a
precise value of N from which our attack will always be superior but it is particularly
obvious when the system can be solved in bi-degree p1, 1q. Note also that it is significant
on the set of parameters with r “ 9, which suggests that our attack will probably be
more efficient for larger parameter values as well.

6.4 A Combinatorial Approach
In [BBBG23], the smaller RSL instance is solved with combinatorial techniques. There,
we focused on subproblems obtained by shortening as much as possible. This is mostly
because the number N of syndromes in our proposal was not sufficient to target a weight
ă r codeword.

Let a def
“

X

N
r

\

and let H be the matrix of Problem 3.7 still assumed to be in
systematic form on its last n´ k positions. Let ĂH P Fpn´kqˆpn´aqqm be a matrix obtained
from it by deleting a columns outside of these positions. The discussion of Section 6.2
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shows that the linear system in the unknowns re P Fn´aqm and λi P Fq given by

reĂH
T
“

N
ÿ

i“1
λisi

should have roughly one solution corresponding to a word of support V.
To solve it with the weight constraint, we proceed as in Section 3.3.4.1 by guessing

a larger subspace F of dimension r1 ě r. However, we cannot use more advanced
techniques tailored to RD since our problem is not Fqm-linear. For instance, we can
neither assume that 1 P V as in [GRS16] nor target an F containing a scalar multiple
αV, α P F˚qm as in [AGHT18]. The basic success probability is thus

`

r1
r

˘

q
`

m
r

˘

q

« q´rpm´r1q. (6.11)

Then, expressing the coordinates of re in a basis of F yields a linear system over Fqm
with n ´ k equations and r1pn ´ aq ` N unknowns searched in Fq. As is standard
in combinatorial attacks, the system projected over Fq is assumed to contain linearly
independent equations. Finally, we pick the maximum r1 to obtain an overdefined
system, namely r1

def
“ min

´Y

mpn´kq´N
n´a

]

,m
¯

(as a value above m would not make sense).
From Equation (6.11), it is then clear that the attack is polynomial if and only if this
largest possible value is equal to m, i.e., F is the full space Fqm and the naive linear
system is already overdefined. By recalling that a “

X

N
r

\

, this is equivalent to

mpn´ kq ´N

n´ a
ě mô mpa´ kq ě N ô

Z

N

r

^

´
N

m
ě k. (6.12)

It readily implies N
r ´

N
m ě k, hence N ě kr m

m´r . However, the converse is not true as
N ě kr m

m´r does not always imply Equation (6.12). A sufficient condition for it to hold
is N

r ´ 1´ N
m ě k, hence N ě pk ` 1qr m

m´r .

Lemma 6.5. The proposed combinatorial technique on an RSL instance with parameters
pm,n, k, r,Nq such that N ě pk ` 1qr m

m´r is expected to take polynomial time.

Note that this condition for a polynomial complexity is more easily met than the
former bound N ą nr given in [GHPT17] for most of the cryptographic parameters. In
the general case, we obtain

Proposition 6.4. The complexity in Fq-operations to solve an RSL instance with
parameters pm,n, k, r,Nq is given by

rO
ˆ

q
r
´

m´
Y

mpn´kq´N
n´a

]¯˙

,

where a def
“

X

N
r

\

.





Chapter7Rank Decoding Problem, MinRank
and Hybrid Techniques

In this chapter, we apply the same proof technique as on Rank Support Learning to
obtain more insight on algebraic methods for the RD problem. This lead to the paper
[Bar+23].

Our work shows that the estimates of [Bar+20b] regarding the attack by combining
the MaxMinors modeling and the Support-Minors modeling to solve underdetermined
RD are too optimistic. Indeed, we exhibit linear dependencies between these equations
and we introduce another system over Fqm . Finally, we propose an algebraic attack
based on this new modeling as an alternative to the former approach of [Bar+20b]. This
system has the advantage of being more compact but also easier to analyze.

Another contribution was to generalize the hybrid technique of [Bar+20b, §4.3] on
MaxMinors to SM-like systems which still contain a block of minor variables. More
precisely, we provide a generic reduction to a smaller MinRank/RD problem which can
be used in combination with purely combinatorial techniques. In the context of generic
MinRank instances over a small field, it significantly improves the complexity of the
former SM approach.
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7.6 Application to the RSL Modeling . . . . . . . . . . . . . . . . . . . 129

7.1 Solving RD in the Underdetermined Case
On a Rank Decoding instance with parameters pm,n, k, rq such that m

`

n´k´1
r

˘

ě
`

n
r

˘

´1
and under Assumption 1, recall that the MaxMinors modeling over Fq (Modeling 7)
can be solved by direct linearization. Since the initial ROLLO and RQC values were
chosen in this range, this explains why the corresponding attack by [Bar+20b] strongly
affected these schemes. In the underdetermined case, i.e., m

`

n´k´1
r

˘

ă
`

n
r

˘

, we had
briefly mentioned right below Assumption 1 the two solving strategies considered in
[Bar+20b]. The contributions of this chapter will call for a broader exposition.

7.1.1 Hybrid Approach on MaxMinors
The idea of [Bar+20b, §4.3] was to decrease the number of minor variables cT in Modeling
7 but in a structured way. More precisely, they fix a ě 0 columns in the matrix C in
order to obtain only

`

n´a
r

˘

such unknowns. This is particularly obvious if these columns
are set to zero because we only need to keep the

`

n´a
r

˘

minors cT “ |C|˚,T such that the
set T does not meet these columns. In the general case, the number of variables will drop
by the same amount if we assume that C is in systematic form on its first r columns as
presented in Section 3.3.4.3 and if we fix columns in the n´ r rightmost positions. We
will not elaborate more here and we refer to Section 7.4 for a more detailed explanation
and a generalization of this technique.

Under an analogue of Assumption 1 on the specialized system, the new condition
for linearization is now m

`

n´k´1
r

˘

ě
`

n´a
r

˘

´ 1. By picking the mininum number a0 of
columns for which it holds, the global complexity in Fq-operations is

O

˜

qa0rm

ˆ

n´ k ´ 1
r

˙ˆ

n´ a0
r

˙ω´1
¸

, (7.1)

where ω is the linear algebra constant.

7.1.2 Adding Support-Minors Equations
In addition to Modeling 7, the other method considers the Support-Minors modeling
(Modeling 4). This is possible by viewing the RD instance as an inhomogeneous MinRank
problem in Fmˆnq with K “ km and with target rank r. The crux is that the blocks of
minor variables in both modelings are identical since we put into equation the same low
rank matrix. In spite of having a bigger system, another advantage of combining these
equations is that we can exploit the sparsity of the SM Macaulay matrix.

A bit more precisely, the authors of [Bar+20b] perform the XL-Wiedemann approach
that we have already encountered several times on a set of bi-degree pb, 1q polynomials
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obtained by multiplying the MaxMinors equations by degree b monomials in the
linear unknowns and the Support-Minors equations by degree b ´ 1 monomials in
the same variables. This technique requires to grasp the rank of the Macaulay matrix
Macpb,1qpPFq YQq, where PFq is Modeling 7 and Q is Modeling 4.

As long as this value is smaller than the number of columns, it is implicitly assumed
in [Bar+20b] that

rk
`

Macpb,1qpPFq YQq
˘

“ rk
`

Macpb,1qpPFqq
˘

` rk
`

Macpb,1qpQq
˘

. (7.2)

In other words, in this case, the MaxMinors and the Support-Minors systems are
supposed to behave independently at higher degree. Still under Assumption 1, note
that we trivially have rkpPFqq “ dimxPFqyFq

`

K`b´1
b

˘

“ m
`

n´k´1
r

˘`

K`b´1
b

˘

since the
system PFq is simply linear in the minor variables. For the other term in Equation (7.2),
[Bar+20b] keep the same analysis used for non-structured MinRank problems.

7.2 Support-Minors Modeling over Fqm
The starting point was to observe that Equation (7.2) did not hold in my practical
experiments. This lead me to study the Support-Minors modeling in light of the
Fqm-linear structure and to propose another set of equations for the RD problem.

This system is obtained from a slight variation of the argument of [Bar+20b] to
generate Support-Minors. We no longer consider the matrix version of

y ` xG “ ps1, . . . , srqC

and we argue more directly that the vector y ` xG belongs to the row space of C. We

then adopt the equations given by the maximal minors of the matrix
„

xG` y
C



. These

polynomials still have an SM-like shape. Indeed, by performing Laplace expansion along
the first row, we notice that each of them is affine bilinear in the entries xi of x for
1 ď i ď k and in the maximal minors cT of C for T Ă t1..nu, #T “ r. Note that the
coefficients as well as these former variables are in the extension field.

Modeling 14 (Support-Minors over Fqm (SM-Fqm)). The Support-Minors modeling
over Fqm to solve an RD instance with noisy codeword y, generator matrix G, and target
rank r is the system in the unknowns xi (still referred to as linear variables) and in the
maximal minors cT of C, with equations

#

QI “

ˇ

ˇ

ˇ

ˇ

ˇ

„

xG` y
C



˚,I

ˇ

ˇ

ˇ

ˇ

ˇ

: I Ă t1..nu, #I “ r ` 1
+

.

This modeling presents the advantage of being much more compact than the original
Support-Minors system: the number of linear variables is divided by m and the number
of equations is also divided by m. This was in fact my initial motivation to introduce
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these equations since I wanted to be able to run practical tests in Magma for higher
parameter values.

Independently, we see that the structure of Modeling 14 is similar to the one of
Modeling 12 for the RSL problem in the sense that these are bilinear equations which are
maximal minors of only one matrix. This is in contrast with the former Support-Minors
modeling where there were as many Cj matrices as the initial number of rows in the
MinRank problem. In the same way as in Chapter 6, it will make it easier to understand
the algebraic relations in our system than in general SM.

7.2.1 Analysis over the Extension Field
We now focus on the polynomials of Modeling 14 when multiplied by linear variables
xi, i P t1..ku. This part is organized as Section 6.3.2 from the previous chapter by
starting with the b “ 1 case and then by studying equations at higher bi-degree pb, 1q.
What will be remarkable is the relationship with the MaxMinors modeling over Fqm
(Modeling 6). Thus, let us first separate the polynomials from both systems into different
sets by defining for nonnegative integers s and i P t1..ku:

Qs
def
“ tQI : I Ă t1..nu, #I “ r ` 1 and #pI X t1..k ` 1uq “ su,

Qěs
def
“ tQI : I Ă t1..nu, #I “ r ` 1 and #pI X t1..k ` 1uq ě su,

P def
“ PFqm ,

xiP
def
“ txiP : P P Pu.

Contrary to the RSL case where we relied on an assumption (Assumption 7), our results
hold regardless of the RD instance. More precisely, we will only need

Fact 3. The input instance is equivalent to an RD problem where the underlying code
C has a generator matrix G in systematic form, i.e. G “

“

Ik ˚
‰

, where y “
`

0k 1 ˚
˘

and where the extended code C ` xyy has a parity-check matrix Hy in systematic form,

i.e., Hy “
“

˚ In´k´1
‰

. Then, H def
“

„

Hy

h



is a parity-check matrix for C for a vector

h “
`

˚ 1 0n´k´1
˘

lying in the dual CK. We have yhT “ 1.

Proof. Up to a permutation of the coordinates, we can assume that G is in systematic
form G “

“

Ik ˚
‰

, and up to the addition of an element in C that y “ p0k ˚q. As
y contains an error of weight r, it is non-zero, so that up to a permutation of the
coordinates of the code and up to the multiplication by a constant in Fqm , we assume
that y has the given shape y “

`

0k 1 ˚
˘

. Now, if ĂGy
def
“

“

Ik`1 A
‰

is a generator matrix
of Cy in systematic form, then Hy

def
“

“

´AT In´k´1
‰

is suitable. By considering an h
linearly independent from the rows ofHy and such that yhT ‰ 0, any linear combination
between h and the rows of Hy still satisfies the same properties. Therefore, we may
assume that h “

`

˚ 0n´k´1
˘

, and moreover we have yhT “ hk`1 ‰ 0. Thus, the vector
h´1
k`1h is indeed of the form

`

˚ 1 0n´k´1
˘

.
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Lemma 7.1. Let Hy be the matrix of Fact 3. For any subset T Ă t1..n´ k ´ 1u, we
have

|pHyqT,T`k`1| “ 1,
|pHyqT,I | “ 0 if I X tk ` 2..nu Ę T ` k ` 1.

Proof. This immediately follows from the fact that Hy is in systematic form in its last
n´ k ´ 1 columns.

In affine bi-degree p1, 1q, the following Propositions 7.1, 7.2 and 7.3 will show that

Q0 Ă xQ1,Qě2yFq ,
C

P,
ď

1ďiďk
xiP,Qě2

G

Fq

“ xQ1,Qě2yFq ,

and that P Y
Ť

1ďiďk xiP YQě2 is a basis of the latter space. These results can be seen
as the analogue of Theorem 6.1 for Modeling 12. To state them, we will consider the
same grevlex ordering as used in its proof, i.e., such that cT ă xk ă ¨ ¨ ¨ ă x1 and where
the cT ’s are ordered with a reverse lexicographical order according to T .

Proposition 7.1. The polynomials in Q0 can be obtained as linear combinations between
the polynomials in Qě1. More precisely, for any subset T Ă t1..n´ k ´ 1u, #T “ r ` 1,
we have

QT`k`1 “ ´
ÿ

QIPQě1

|pHyqT,I |QI . (7.3)

Proof. We first observe that any polynomial Q in Q0 is of the form QT`k`1 for some
T Ă t1..n´ k ´ 1u, #T “ r ` 1. Using the Cauchy-Binet formula gives∣∣∣∣∣

„

xG` y
C



pHT
y q˚,T

∣∣∣∣∣ “ ÿ

IĂt1..nu
#I“r`1

|pHyqT,I |QI ,

and this minor is equal to zero as pxG` yqHT
y “ 0. Finally, we apply Lemma 7.1 to

argue that |pHyqT,T`k`1| “ 1 and that |pHyqT,I | “ 0 for I Ă tk ` 2..nu, I ‰ T ` k ` 1.
We obtain Equation (7.3) since the non-zero terms in the sum correspond to Q appearing
with coefficient 1 and to the QI ’s in Qě1.

Proposition 7.2. For any subset I Ă t1..nu, #I “ r ` 1 such that QI P Qě2 and
i1

def
“ minpIq, the leading term of QI is

LTpQIq “ xi1cIzti1u.

Moveover, for any subset J Ă t1..n´ k ´ 1u, #J “ r, we have

LTpPJq “ cJ`k`1.

Finally, the variable cJ`k`1 only appears as the leading term of PJ and it is not present
in any of the polynomials in Qě2 Y PztPJu.
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Proof. The statement on the MaxMinors polynomials PJ is already known so let us
focus on the QI ’s. By definition of Qě2, a subset I such that QI P Qě2 satisfies
i1 “ minpIq ď k. Computing by Laplace expansion along the first row then gives

QI “

∣∣∣∣∣
„

xG` y
C



˚,I

∣∣∣∣∣ “ ÿ

iuPI

p´1q1`u pxG˚,iu ` yiuq cIztiuu.

If G and y are as in Fact 3 and for any iu P I´ “ I X t1..ku (and at least i1 P I´ by
assumption), we obtain xG˚,iu `yiu “ xiu . Then, for u P t1..r` 1u, let Iu

def
“ Iztiuu, so

that I1 ą I2 ą ¨ ¨ ¨ ą Ir`1 according to the reverse lexicographical ordering. The ordered
terms in QI are thus

QI “ xi1cI1 ´xG˚,i2cI2 ` ¨ ¨ ¨ ` p´1qrxG˚,ir`1cIr`1
looooooooooooooooooooooooomooooooooooooooooooooooooon

smaller terms of degree 2

´yi2cI2 ` ¨ ¨ ¨ ` p´1qryir`1cIr`1
looooooooooooooooooomooooooooooooooooooon

smaller terms of degree 1

.

This shows in particular that LTpQIq “ xi1cI1 . For the last point, we observe that ti1 ă
i2u Ă t1..k` 1u still by definition of Qě2. This implies that for any iu P I, the set Iztiuu
is not included in tk ` 2..nu, and finally that the variables tcJ`k`1uJĂt1..n´k´1u, #J“r
do not appear in QI .

Corollary 7.1. The polynomials in P YQě2 are linearly independent.

Proposition 7.3. For any subset J Ă t1..n ´ k ´ 1u, #J “ r and for any i P t1..ku,
we have

PJ “ Qtk`1uYpJ`k`1q `
ÿ

QIPQě2

p´1qr
∣∣∣HJYtn´ku,I

∣∣∣QI , (7.4)

xiPJ “ QtiuYpJ`k`1q `
ÿ

QIPQě2, iPI

p´1q1`Pospi,Iq
∣∣∣pHyqJ,Iztiu

∣∣∣QI , (7.5)

where Pospiu, Iq “ u for I “ ti1, . . . , ir`1u such that i1 ă ¨ ¨ ¨ ă ir`1.

Proof. Let us consider the minor
∣∣∣∣∣
„

xG` y
C



pHTq˚,JYtn´ku

∣∣∣∣∣. On the one hand, the

Cauchy-Binet formula gives∣∣∣∣∣
„

xG` y
C



pHTq˚,JYtn´ku

∣∣∣∣∣ “ ÿ

IĂt1..nu,#I“r`1

∣∣∣HJYtn´ku,I

∣∣∣QI . (7.6)

On the other hand, we use the particular shapes of H, y and h given in Fact 3:

H “

„

Hy

h



,

y “
`

0k 1 ˚
˘

,

h “
`

˚ 1 0n´k´1
˘

,
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to obtain
„

xG` y
C



HT “

„

yHT

CHT



“

„

yHT
y yhT

CHT
y Ch

T



“

„

0n´k´1 1
CHT

y ChT



.

This minor is thus also equal to∣∣∣∣∣
„

xG` y
C



HT
˚,JYtn´ku

∣∣∣∣∣ “
∣∣∣∣∣
„

0 1
CHT

y Ch
T



˚,JYtn´ku

∣∣∣∣∣ “ p´1qr
∣∣∣CpHT

y q˚,J

∣∣∣ “ p´1qrPJ .

Then, we use

∣∣∣HJYtn´ku,I

∣∣∣ “
#

0 if I X tk ` 2..nu Ć J ` k ` 1,
p´1qr if I “ tk ` 1u Y pJ ` k ` 1q,

to remove zero terms in Equation 7.6. We finally get

PJ “ Qtk`1uYpJ`k`1q
loooooooomoooooooon

PQ1

`p´1qr
ÿ

QIPQě2

∣∣∣HJYtn´ku,I

∣∣∣QI .
Let us now prove the second equation. For i1 P t1..ku, we denote by gi1

def
“ Gti1u,˚ the i1-

th row of the generator matrixG. We then consider the matrixH i1 P F
pn´k´1qˆn
qm defined

by HT
i1 “

“

HT
y ε

T
i1

‰

, where εi1 is the i1-th canonical basis vector in Fnq . This is a parity-
check matrix for the Fqm-linear code Ci1 generated by

 

y, g1, . . . , gi1´1, gi1`1, . . . , gk
(

.
Since gi1ε

T
i1 “ 1, we have

„

xG` y
C



HT
i1 “

„

xi1gi1H
T
i1

CHT
i1



“

„

0 xi1
CHT

y Cε
T
i1



.

For any J Ă t1..n´ k ´ 1u, #J “ r, we then compute∣∣∣∣∣
„

xG` y
C



pHT
i1q˚,JYtn´ku

∣∣∣∣∣ “
∣∣∣∣∣
„

0 xi1
CHT

y Ch
T
i1



˚,JYtn´ku

∣∣∣∣∣
“

ÿ

IĂt1..nu,#I“r`1

∣∣∣pH i1qJYtn´ku,I

∣∣∣QI “p´1qrxi1
∣∣∣CpHT

y q˚,J

∣∣∣ “ p´1qrxi1PJ .

By Laplace expansion along the last row, we have
∣∣∣pH i1qJYtn´ku,I

∣∣∣ “ 0 if i1 R I and∣∣∣pH i1qJYtn´ku,I

∣∣∣ “ p´1qr`1`Pospi1,Iq
∣∣∣pHyqJ,Izti1u

∣∣∣ if i1 P I, where Pospi1, Iq denotes the
position of i1 in the ordered set I. From that, we can deduce:

xi1PJ “
ÿ

IĂt1..nu,#I“r`1,i1PI
p´1q1`Pospi1,Iq

∣∣∣pHyqJ,Izti1u

∣∣∣QI
“ Qti1uYpJ`k`1q `

ÿ

QIPQě2,i1PI

p´1q1`Pospi1,Iq
∣∣∣pHyqJ,Izti1u

∣∣∣QI .
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Corollary 7.2. The polynomials in Q1 generate the same Fqm-vector space as the set
of equations P Y

Ťk
i“1 xiP taken modulo the polynomials in Qě2.

The difference with Modeling 12 is that all equations are not linearly independent
and that we observe degree falls. More precisely, there are

`

n´k´1
r

˘

degree falls from
bi-degree p1, 1q to bi-degree p0, 1q that give the PJ polynomials. If we then eliminate cT
variables using those linear equations, we get new reductions to zero which correspond
to the xiPJ ’s.

Concretely, our discussion shows that the relevant system to start with is Qě2. Note
that it does not contain the variables cJ`k`1 for J Ă t1..n ´ k ´ 1u, #J “ r. The
following Theorem 7.1 provides a basis in bi-degree pb, 1q which is of the same nature as
the one we found for Modeling 12, see Theorem 6.2.

Theorem 7.1. For any b ě 1, the Fqm-vector space generated by the polynomials in
Qě2 augmented in bi-degree pb, 1q by multiplying by monomials of degree b´ 1 in the xi
variables has basis

Bb
def
“

$

&

%

¨

˝

ź

minpIqďjďk
x
αj
j

˛

‚QI : QI P Qě2 and
ÿ

minpIqďjďk
αj “ b´ 1

,

.

-

. (7.7)

This space is of dimension

N
Fqm
b

def
“

k
ÿ

i“1

ˆ

n´ i

r

˙ˆ

k ` b´ 1´ i
b´ 1

˙

´

ˆ

n´ k ´ 1
r

˙ˆ

k ` b´ 1
b

˙

. (7.8)

Proof. The set Bb defined by Equation (7.7) clearly contains linearly independent
polynomials since the leading terms are all different. More precisely,

LTpxi1αi1 . . . xkαkQIq “ xi1
αi1`1 . . . xk

αkcIzti1u.

Its cardinality is the number of sets I and pαi1 , . . . , αkq with sum equal to b´ 1, hence

k
ÿ

i1“1

k`1
ÿ

i2“i1`1

ˆ

n´ i2
r ´ 1

˙ˆ

k ´ i1 ` 1` b´ 2
b´ 1

˙

.

This gives Equation (7.8) by considering the identities
řk`1
i2“i1`1

`

n´i2
r´1

˘

“
`

n´i1
r

˘

´
`

n´k´1
r

˘

and
řk
i1“1

`

k´i1`1`b´2
b´1

˘

“
`

k`b´1
b

˘

.
It remains to see that Bb generates the desired vector space. As in the proof of

Theorem 6.2, it will be sufficient to show that the polynomials xjQI for QI P Qě2, j P
t1..minpIq ´ 1u reduce to zero modulo B2. On the one hand, the number of such
polynomials is equal to the number of subsets K “ tk1 ă k2 ă ¨ ¨ ¨ ă kr`2u Ă t1..nu such
that k3 ď k ` 1. On the other hand, we can construct the same number of independent
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syzygies between the polynomials at bi-degree p2, 1q. Note that for any such K, we have
the relation ∣∣∣∣∣∣∣

»

–

xG` y
xG` y
C

fi

fl

˚,K

∣∣∣∣∣∣∣ “ 0.

By Laplace expansion along the first row, we also obtain

0 “ xk1Qtk2,...,kr`2u ´

r`2
ÿ

u“2
p´1qu

˜

k
ÿ

j“1
xjGj,ku ` yku

¸

QKztkuu.

Since |K X t1..k ` 1u| ě 3, these cancellations are syzygies between the relevant QI ,
i.e., those such that |I X t1..k ` 1u| ě 2. It remains to show that they are linearly
independent. For that purpose, we keep the proof structure as the one of Lemma 6.3 and
we order the QI ’s according to a grevlex order on the subsets I’s. The syzygy associated
to K is given by

GK def
“

¨

˚

˚

˝

0
loomoon

IĆK

, p´1q1`u
k
ÿ

j“1
xjGj,ku ` yku

loooooooooooooooomoooooooooooooooon

KzI“tkuu

˛

‹

‹

‚

IĂt1..nu, #I“r`1

.

The largest subset I such that the coefficient in front of QI in GK is non-zero is
I “ K1

def
“ Kztk1u and this coefficient is equal to xk1 . The syzygies which have the same

leading position QK1 as GK are the GK1Ytju’s for j P t1..k1 ´ 1u. Finally, the highest
degree part in the coefficient in front of QK1 in GK1Ytju is xj , which shows that all these
syzygies are linearly independent.

Since Theorem 7.1 holds regardless of the value of b, this means that the dimension
N

Fqm
b will always be smaller than or equal to the number of monomials

M
Fqm
b

def
“

ˆ

k ` b´ 1
b

˙ˆˆ

n

r

˙

´

ˆ

n´ k ´ 1
r

˙˙

.

Alternatively, by a simple computation, we can prove that @b P Zą0, N
Fqm
b ăM

Fqm
b ´ 1.

A consequence is that the XL strategy cannot succeed on Qě2. The deeper reason is
because we have not taken into account the fact that the cT variables are searched in Fq
(the overall system is not zero-dimensional)

7.2.2 Coming Back to the Small Field
To obtain more equations, a natural idea is to unfold the system. However, in our case,
the linear variables xj belong to the extension field. Thus, we start by expressing them
in the basis β as xj

def
“

řm
i“1 βixi,j , which yields m times more unknowns xi,j ’s over

Fq. Finally, for ease of exposition, we adopt the dual basis β1 “ β˚ in the unfolding
procedure.
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Modeling 15 (Support-Minors over Fq (SM-Fq)). Let β be an arbitrary Fq-basis of
Fqm and let β˚ “ pβ‹1 , . . . , β‹mq be the dual basis. Let Tr be the trace operation defined in
Section 3.3.4.3. The Support-Minors modeling over Fq is the system in the xi,j variables
xj “

řm
i“1 βixi,j and in the cT variables, defined by tRi,Iu1ďiďm, IĂt1..nu, #I“r`1, where

Ri,I
def
“ Trpβ‹iQIq mod tcqT ´ cT , x

q
i,j ´ xi,ju.

For the first time in this manuscript, we can control the rank of an unfolded system.
This is in contrast with what we observed on both Modelings 7 and 13.

Proposition 7.4. For any subset I Ă t1..nu, #I “ r ` 1, i1
def
“ minpIq, such that

QI P Qě2 and for any i P t1..mu, we have

LTpRi,Iq “ xi,i1cIzti1u.

Proof. This directly follows from Proposition 7.2 showing that LTpQIq “ xi1cIzti1u and
from our new definition of linear variables yielding xi1cIzti1u “

řm
i“1 βixi,i1cIzti1u.

Corollary 7.3. Unfolding Qě2 gives linearly independent polynomials over Fq.

Finally, we show that Modelings 14 and 15 really deserve their names by proving
that Ri,I “ Qi,I for all 1 ď i ď m and all I Ă t1..nu, #I “ r ` 1, where
tQi,Iu1ďiďm, IĂt1..nu, #I“r`1 is the genuine Support-Minors system of [Bar+20b] applied
to the underlying MinRank problem. Let us recall its definition below. We
consider the matrix code Cmat isomorphic to C with basis tM i,ju1ďiďm, 1ďjďk

def
“

tMatpβiGj,˚qu1ďiďm, 1ďjďk together with the matrix M0
def
“ Matpyq. As we have

already seen, solving RD with weight r is equivalent to solving the inhomogeneous
MinRank instance with target rank r, K “ km and matrices

pM0;M1,1, . . . ,Mm,kq P Fmˆnq . (7.9)

Notation 3. For x “ px1, . . . , xnq P Fnqm, we denote by Trpxq the vector pTrpxiqq1ďiďn
where the trace is applied componentwise. For a matrix A, we denote by TrpAq the
matrix whose entry in row i and column j is equal to TrpAi,jq.

From the linearity of the trace over Fq and with these notation, we obtain

@i P t1..mu, Trpβ‹i xq “ Matpxqi,˚, (7.10)
@C P Faˆbq , @M P Fbˆcqm , TrpCMq “ C TrpMq. (7.11)

Using Equation (7.10) and for i P t1..mu, the i-th row of the MinRank solution associated
to the low rank vector y ` xG is equal to

ri
def
“ Tr pβ‹i py ` xGqq . (7.12)
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Proposition 7.5. Let tQi,Iu1ďiďm, IĂt1..nu, #I“r`1 be the Support-Minors modeling of
[Bar+20b] applied to the inhomogeneous MinRank problem with rank r, K “ km and
with matrices given by Equation (7.9). Let tRi,Iu1ďiďm, IĂt1..nu, #I“r`1 be Modeling 14.
For any i P t1..mu and any I Ă t1..nu, #I “ r ` 1, we have

Ri,I “ Qi,I .

Proof. Let Iq be the ideal generated by the field equations tcqT ´ cT , x
q
i,j ´ xi,ju. We

use the linearity of the determinant according to the first row and the properties of Tr
to obtain

Ri,I “ Tr pβ‹iQIq mod Iq “ Tr
˜∣∣∣∣∣

„

β‹i py ` xGq
C



˚,I

∣∣∣∣∣
¸

mod Iq

“

∣∣∣∣∣
„

Tr pβ‹i py ` xGqq
C



˚,I

∣∣∣∣∣ “
∣∣∣∣∣
„

ri
C



˚,I

∣∣∣∣∣ “ Qi,I .

The second last equality follows from Equation (7.12).

7.3 New Combined Approach
This section presents another algebraic method for the RD problem based on Modeling
14. We will add to this system the MaxMinors equations unfolded over Fq (Modeling 7)
as we have just observed that the mere PJ polynomials over the extension field were
not enough to obtain a zero-dimensional ideal. Also, we will not unfold the equations
of SM-Fqm over Fq to avoid dealing with a system with m times more linear unknowns.
This increased compactness makes that even if our modeling were to be solved at higher
degree than the former SM-Fq, it may still perform better from a complexity point
of view. Note finally that the analysis of this second system at arbitrary bi-degree
pb, 1q, b ě 2 remains an open problem.

In other words, we consider the set T def
“

!

ĂQI : QI P Qě2

)

, where ĂQI is the normal
form of QI modulo the Pi,J polynomials1. We may also refer to it as the SM-F`qm system.
Its elements do not involve any cT variable which is a leading term in Modeling 7. As
before, we construct and study the Macaulay matrixMacpb,1qpT q. Note that the sparsity
of the initial equations QI ’s is destroyed by the reduction step. Thus, we will only try to
apply dense linear algebra techniques. In this matrix, the relevant number of columns is
equal to

M
Fq
b “

`

k`b´1
b

˘

´

`

n
r

˘

´m
`

n´k´1
r

˘

¯

. (7.13)

Proposition 7.6 contains our estimate for the dimension of its rowspace when the number
of rows is smaller than MFq

b . It is based on Assumption 1 and on a counting argument
for the number of syzygies when we add the Pi,J equations (Conjecture 7.1 below).

1Since they are linear, a Gröbner basis of them is simply an echelon form.
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Proposition 7.6. The rowspace ofMacpb,1qpT q has generic dimension

N
Fq
b

def
“ N

Fqm
b ´N

Fq
b,syz

when NFq
b ăM

Fq
b , where NFqm

b is defined in Equation (7.8),

N
Fq
b,syz

def
“ pm´ 1q

b
ÿ

i“1
p´1qi`1

ˆ

k ` b´ i´ 1
b´ i

˙ˆ

n´ k ´ 1
r ` i

˙

, (7.14)

and where MFq
b is defined in Equation (7.13).

The NFq
b,syz term is the expected number of linearly independent syzygies due to the

Pi,J ’s. However, similarly to what we have seen in Modeling 13, we cannot obtain an
exact value. This is because there is now a solving degree above which any attempt for a
general estimate will fail. Our starting point are the following cancellations in bi-degree
p1, 1q:

Proposition 7.7. For any subset T Ă t1..n´ k ´ 1u, #T “ r ` 1 and any i P t1..mu,
we have the relation with coefficients in Fq:

Trpβ‹i q ČQT`k`1 `
ÿ

IĂt1..nu
#I“r`1

IXtk`1..nuĹT`k`1

Trpβ‹i |pHyqT,I |qĂQI “ 0. (7.15)

Proof. For a square matrix M over Fqm and for ` P N, we consider the matrix M r`s

obtained by iterating the Frobenius map ` times on the coefficients (see for instance
Notation 1 in Chapter 5). Note that we have

∣∣∣M r`s
∣∣∣ “ |M | r`s. Given a MaxMinors

equation PJ , J Ă t1..n´ k ´ 1u, #J “ r, we denote by P r`sJ the linear polynomial in
the cT ’s obtained by applying ` times the Frobenius map and then by reducing modulo
tcqT ´ cT u. Since Pi,J “ Trpβ‹i PJq “

řm´1
`“0 pβ

‹
i q
r`sP

r`s
J and P r`sJ “

řm
i“1 β

r`s
i Pi,J , we have

xPi,J : 1 ď i ď myFqm “ xP
r`s
J : 0 ď ` ď m´ 1yFqm . (7.16)

For ` P t0..m´ 1u and T Ă t1..n´ k ´ 1u, #T “ r ` 1, let

Γ`,T
def
“

∣∣∣∣∣
„

xG` y
C



pHy
r`sqT˚,T

∣∣∣∣∣ .
By Laplace expansion along the first row, this minor is a linear combination with
coefficients in Fqmrxs between maximal minors of CpHy

r`sqT˚,T , more precisely the
PJ
r`s’s such that J Ă T . By Equation (7.16), the normal form of Γ`,T modulo the

unfolded MaxMinors polynomials is then equal to 0. Also, the Cauchy-Binet formula
shows that Γ`,T is the linear combination between QI equations given by

ČQT`k`1 `
ÿ

IĂt1..nu,#I“r`1,
IXtk`1..nuĹT`k`1

∣∣∣pHy
r`sqT,I

∣∣∣ ĂQI .
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To conclude the proof, we use the fact that the set of previous equations for fixed T and
for all ` P t0..m´ 1u generate the same vector space over Fqm as the one containing

Trpβ‹i q ČQT`k`1 `
ÿ

IĂt1..nu
#I“r`1

IXtk`1..nuĹT`k`1

Trpβ‹i |pHyqT,I |qĂQI

for all i P t1..mu.

This proposition gives m
`

n´k´1
r`1

˘

syzygies at bi-degree p1, 1q which include the ones
from Proposition 7.1 (the ` “ 0 case in the proof). However, it does not tell about the
independance of such relations. In bi-degree p2, 1q, they are multiplied by all linear
variables to generate new ones and this time we are certain that they are not independent.
This is due to the identities ∣∣∣∣∣∣∣

»

–

xG` y
xG` y
C

fi

fl pH r`s
y q

T
˚,T2

∣∣∣∣∣∣∣ “ 0,

for any ` P t1..m´1u and any subset T2 Ă t1..n´k´1u, #T2 “ r`2. We obtain in this
way pm´ 1q

`

n´k´1
r`2

˘

relations in degree b “ 2 between the syzygies of Proposition 7.7. If
we assume that the whole syzygy module boils down to such cancellations, then a similar
inclusion-exclusion argument as the one used to derive [Bar+20b, Heuristic 2] leads to
the following Conjecture 7.1. We verified it experimentally on small underdetermined
RD instances for b “ 2, b “ 3 and b “ 4.

Conjecture 7.1. For b ě 1, the number of independent syzygies is expected to be

N
Fq
b,syz “ pm´ 1q

b
ÿ

i“1
p´1qi`1

ˆ

k ` b´ i´ 1
b´ i

˙ˆ

n´ k ´ 1
r ` i

˙

,

provided that it is ăM
Fq
b .

We conclude this section with the total cost of our method. Note that it is always
possible, whenever the ratio between equations and monomials is much larger than 1,
to drop excess polynomials by taking punctured codes much in the same way as in
[Bar+20b, §4.2]. Finally, we can also use the hybrid approach on the block of minor
variables sketched in Section 7.1.1 to improve the solving degree. We will come back to
it in the next section.

Corollary 7.4. Under Assumption 1 and Conjecture 7.1 which yield Proposition 7.6,
one can solve RD by applying dense linear algebra on the Macaulay matrixMacpb,1qpT q
whenever

N
Fq
b ěM

Fq
b ´ 1.
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In this case, the global complexity in Fq-operations is

O
´

m2N
Fq
b pM

Fq
b q

ω´1¯
, (7.17)

where ω is the linear algebra constant and where the m2 factor accounts for expressing
each Fqm-operation involved in terms of Fq-operations.

7.4 Hybrid Technique on Minor Variables
In [Bar+23], we systematized the hybrid approach of Section 7.1.1 to any bilinear
modeling involving a block of minors variables. Our method applies to the system of
Section 7.3 for RD but also more generally to the Support-Minors modeling of the
MinRank problem. This is in fact a reduction to a smaller instance which does not
depend so much on the input system.

In the matrix C which yields the minor variables, the idea is still to set a columns
to zero. Note that in the case of RD, this amounts to fixing a zero positions in the error
vector e. More precisely, we base ourselves on the following considerations.

1. If by chance these a positions are zero in the genuine RD solution and if they
belong to an information set of the code, it is possible to reduce the problem with
parameters pm,n, k, rq to a smaller one with parameters pm,n´ a, k ´ a, rq;

2. The condition in 1. is met with probability 1
qar for a random instance;

3. It is possible to change the input problem into another one satisfying this constraint
either by exhaustive search among all qar possible transformations or by using a
rerandomizing trick that will succeed with probability Opq´arq.

Our method for RD is quite reminiscent of [GRS16, §5.2], where rerandomization is
implicit (see the proof of Proposition 3 there). As we will see, this technique is also valid
for generic MinRank.

In Section 7.4.1, we give a general presentation of the rerandomizing trick. In Section
and, we apply it to RD and MinRank respectively. Finally, we provide a probabilistic
description of our approach in Section.

7.4.1 Rerandomizing Trick
There is no reason a priori why a positions of the RD solution e nor a columns of the
low rank matrix M “M0 `

řK
i“1M i would be equal to 0. To create such zeroes, we

propose to multiply on the right by a square matrix P over Fq which is invertible so
that the rank is preserved. Let us start with the RD case. If we make the following
assumption on the input instance,

Assumption 8. We assume that the first r positions of the solution e are independent
over Fq.
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then we can restrict ourselves to the qar matrices in

RM def
“

$

&

%

PA “

»

–

Ir 0rˆpn´a´rq ´A
0pn´a´rqˆr In´a´r 0pn´a´rqˆa

0aˆr 0aˆpn´a´rq Ia

fi

fl : A P Frˆaq

,

.

-

.

The point of multiplying by an element of RM is that it leaves the pn´ aq columns in
the first two blocks unchanged but it adds to the last a positions of e or to the last a
columns of M all possible linear combinations between the first r ones. Assumption 8
states that the product by one of these elements will yield an instance with the zero
positions we want.

Finally, the knowledge of these coordinates allows to reduce the dimension of the
underlying matrix code. This is easier to explain for RD because we will simply work in
the code CA

def
“ tcPA : c P Cu shortened at J def

“ tn´ a` 1..nu. Let us also denote the
complementary subset by J̌ def

“ t1..n´ au.

7.4.2 Application to RD
In the Rank Decoding case, when pePAqJ “ 0, we can reduce to the following smaller
instance under a mild condition on the code shortened at J .

Proposition 7.8. Let C1 def“ SJpCq be the code C shortened at J . If this code is of
maximal dimension k´a, then by Gaussian elimination on a generator matrix G P Fkˆnqm

of C, we can obtain a generator matrix of C in systematic form on the columns in J , i.e.,

DG “

«

J̌ J

G1 0pk´aqˆa
B Ia

ff

P Fkˆnqm ,

where D P Fkˆkqm is invertible and where G1 is a generator matrix for C1. If we further
assume that eJ “ 0 and if we let y1 def“ yJ̌ ´ yJB P Fn´aqm , then py1, C1, rq is a valid RD
instance with parameters pm,n´ a, k ´ a, rq from which we can deduce a solution to the
initial problem.

Proof. The first point is just standard linear algebra. For the second point, let pc, e “
y ´ cq P Fnqm ˆ Fnqm be the solution to the original instance and let

px1, x2q “ xD´1 P Fk´aqm ˆ Faqm , where c “ xG.

Observe now that

eJ “ yJ ´ cJ

“ yJ ´ pxGqJ
“ yJ ´

``

x1, x2
˘

DG
˘

J

“ yJ ´ x
2.
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If we assume that eJ “ 0, we obtain yJ “ x2. Finally,

eJ̌ “ yJ̌ ´ cJ̌ “ yJ̌ ´ x
1G1 ´ x2B

“ yJ̌ ´ yJB
looooomooooon

y1

´ x1G1
loomoon

“c1PC1
,

hence y1 ´ c1 is of rank weight r and the desired result.

Proposition 7.8 will be used as follows. Recall that we solve the RD instance py, C, rq
with parameters pm,n, k, rq by considering the qar RD instances py1, C1, rq of parameters
pm,n ´ a, k ´ a, rq obtained from all PA P RM by computing a generator matrix
GA

def
“ GA of CA “ tcPA : c P Cu and then by putting it in (partial) systematic form

on the columns in J by Gaussian elimination to get

G2
def
“

„

J̌ J

G1 0pk´aqˆa
B Ia



. (7.18)

Under Assumption 8, one of these instances has a solution. By solving it, Proposition
7.8 eventually shows that we can recover the solution to the original problem.

It remains to check under which condition the matrix GA admits a partial systematic
form for any A P Frˆaq as required to obtain Equation (7.18). In other words, we have
to examine when SJpCAq is of dimension k ´ a for any such matrix A. There are two
cases to consider:

Case a ` r ď k. In this situation, the relevant property holds under a very mild
condition on the code C.

Lemma 7.2. Provided that there exists a systematic set for C that contains t1..ru Y J ,
the code SJpCAq is of dimension exactly k ´ a for all matrices A P Frˆaq .

Proof. By reordering the positions, we may assume that the systematic set is t1..ku,
that J “ tr ` 1..r ` au and that

PA “

»

–

Ir ´A 0rˆpn´a´rq
0aˆr Ia 0aˆpn´a´rq

0pn´a´rqˆr 0pn´a´rqˆa In´a´r

fi

fl .

By hypothesis, we can also choose a generator matrix of C as

G “
“

Ik R
‰

.

A generator matrix for CA is then given by

GPA “

»

–

Ir ´A 0rˆpn´a´rq R1
0aˆr Ia 0aˆpk´a´rq R2

0pk´a´rqˆr 0pk´a´rqˆa Ik´a´r R3

fi

fl ,

which shows that this code is still systematic in its first k positions and finally that
SJpCAq has dimension k ´ a.
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Case a` r ą k. This time, the Fqm-linear code D of parameters ra` r, ks generated
by the matrix G˚,t1..ruYJ P F

kˆpa`rq
qm cannot be the full code. Here, it will be helpful to

notice that SJpCAq has dimension k ´ a if and only if the matrix G˚,J ´G˚,t1..ruA is of
rank a. To verify whether or not this property holds, we use

Lemma 7.3. The existence of a matrix A P Frˆaq such that G˚,J ´G˚,t1..ruA is rank
defective is equivalent to the existence of a word of weight ď a in the dual of D whose
support is spanned by the last a coordinates.

Proof. Let us assume that the matrix A P Frˆaq satisfies rk
`

G˚,J ´G˚,t1..ruA
˘

ă a.
This means that there exists a vector λA P Faqm such that

´G˚,t1..ruAλ
T
A `G˚,Jλ

T
A “ G˚,t1..ruYJ

„

´AλT
A

λT
A



loooomoooon

def
“ vT

A

“ 0.

In particular, the vector vA P Fa`rqm belongs to DK, its weight is ď a (as the entries of
A belong to Fq) and its support is spanned by the a last coordinates. The converse
statement is similar by constructing an inverse of the map A ÞÑ vA.

Under the assumption that D behaves as a random code of parameters ra` r, ks, we
can finally estimate the number of vectors as in Lemma 7.3.

Lemma 7.4. The probability that there exists a non zero vector of weight ď a whose
support is spanned by the last a coordinates in the dual of a random Fqm-linear code of
parameters ra` r, ks is upper-bounded by Θ

`

qpm`rqa´mk
˘

when q goes to infinity.

Proof. This probability is upper-bounded by the simpler probability that there exists
a non zero codeword of weight ď a. Let X denote the number of such codewords. We
use the fact that PrrX ‰ 0s ď ErXs and that the expected number ErXs of non-zero
vectors of weight ď a in such a code is given by

ErXs “ Bm,a`r,a ´ 1
qmk

,

where Bm,a`r,a is the size of a ball of radius a in Fa`rqm in the rank metric. Finally, by [Loi14,
Proposition 1], the size of such a ball is of the form Θ

´

qpm`a`rqa´a
2
¯

“ Θ
`

qpm`rqa
˘

for
any nonnegative integer a ď m when q goes to infinity.

7.4.3 Application to Generic MinRank
The reduction that we have just sketched for the RD problem also applies to MinRank.
This time, the relevant assumption is

Assumption 9. We assume the first d columns of the low rank matrix M are linearly
independent.
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Under Assumption 9, we will restrict ourselves to the elements of

RMMR
def
“

$

&

%

PA “

»

–

Id 0dˆpnc´a´dq ´A
0pnc´a´dqˆd Inc´a´d 0pnc´a´dqˆa

0aˆd 0aˆpnc´a´dq Ia

fi

fl : A P Fdˆaq

,

.

-

.

To explain the form taken by the reduced RD problems we got in Subsection 7.4.2, recall
that it was convenient to put the generator matrix of the transformed code CA “ CPA

in systematic form. We start by introducing a similar formalism for Problem 3.1 from
which we will derive analogous results (Proposition 7.9).

In the MinRank case, it will be worthwhile to view a matrix as the vector formed by
the concatenation of its rows. To present the relevant systematic form that we will use,
we bring in the invertible linear map

ϕ : Fnrˆncq Ñ Fnrncq (7.19)
A ÞÑ pAi,jqiPt1..nru,jPt1..ncu,

where the image of ϕpAq is formed by the entries of A in column-major order. We can
now define

Definition 7.1. LetM1, . . . ,MK be matrices in Fnrˆncq and let L be the linear code of
length nrnc generated by the vectors ϕpM iq for i P t1..Ku. We consider the generator
matrix

L
def
“ LpM1, . . . ,MKq

def
“

»

—

–

ϕpM1q
...

ϕpMKq

fi

ffi

fl

P FKˆnrncq .

As noted in [BESV22, §4.4], any elementary row operation on L corresponds to
linear transformations of the variables xi, i.e., we can always replace the initial MinRank
instance by an equivalent one with L in echelon form. A stronger constraint is

Definition 7.2. We say that a MinRank instance pM0;M1, . . . ,MKq is in systematic
form if its associated generator matrix LpM1, . . . ,MKq is. We denote by S the set of
all systematic positions.

Remark 7.1. It is not always possible to put a MinRank instance in systematic form, as
a permutation of the columns does not always preserve the rank of the nr ˆ nc matrix
associated to the row (this permutation must have a block structure so that it also acts
as a permutation on the columns of the matrix). However, [BESV22] note that a random
instance will be in systematic form with high probability.

Let us set J def
“ tnc ´ a ` 1..ncu, J̌

def
“ t1..ncu, and let I be the elements in

t1..nrncu that correspond to the columns indexed by the positions in J , that is I def
“

YjPJtpj ´ 1qnr ` 1..jnru.
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Proposition 7.9. Let pM0;M1, . . . ,MKq P Fnrˆncq be an inhomogeneous MinRank
problem with rank d. Assume that the number a of fixed columns is such that anr ď K
and that the solution x satisfies M˚,J “ 0nrˆa, or equivalently ϕpM0qI `xL˚,I “ 0anr .
Let L1 def“ SIpLq be the code L shortened at I. If we assume that L1 is of dimension
K ´ anr, then the solution x can be deduced from the solution to a smaller MinRank
instance pM 1

0;M 1
1 . . . ,M

1
K´anrq in Fnrˆpnc´aqq with target rank still equal to d.

More precisely, by Gaussian elimination on L, we can obtain a generator matrix of
L in systematic form on the columns in I, i.e., after permuting columns to bring these
positions to the last anr ones:

DL “

„

L1 0pK´anrqˆanr
B Ianr



,

where D P FKˆKq is invertible and where the matrix L1 P FpK´anrqˆnrpnc´aqq generates
L1. Finally, for every i P t1..K ´ anru, we define M 1

i to be the nr ˆ pnc ´ aq matrix
corresponding to the i-th row of L1, and2 M 1

0
def
“ ϕ´1pϕpM0qǏ ´ ϕpM0qIBq, where

Ǐ
def
“ t1..nrncuzI. Then pM 1

0;M 1
1, . . . ,M

1
K´anrq P Fnrˆpnc´aqq is a MinRank instance

with target rank d whose arbitrary solution x1 gives a solution x “ Dpx1 x2q to the
initial problem with x2 “ ´ϕpM0qI .

Proof. To simplify the exposition, we assume that the positions in t1..nrncu have
been permuted, so that the last anr positions belong to I. By hypothesis, we have

DL˚,I “

„

0
Ianr



, so that if xD´1 “ px1 x2q with x1 of size K ´ anr, the hypothesis

ϕpM0qI ` xL˚,I “ 0 is equivalent to x2 ` ϕpM0qI “ 0. As MJ “ 0, the matrix M J̌
is of rank d. It is given by

ϕpM J̌q “ ϕpMqǏ “ x
1L1 ` x2B ` ϕpM0qǏ

“ x1L1 ´ ϕpM0qIB ` ϕpM0qǏ ,

sayM J̌ “M
1
0 `

K´anr
ÿ

i“1
x1iM

1
i.

This is indeed the smaller MinRank problem described in the proposition.

Finally, we give a simple case where the shortened code has maximal dimension when
we do the product by all elements PA P RMMR. Lemma 7.5 requires pd` aqnr ď K
and it is the MinRank counterpart of Lemma 7.2.

Lemma 7.5. Let us assume the MinRank instance pM0;M1, . . . ,MKq is in systematic
form on a set of positions S that contains t1..dnru Y I and let L be the matrix code
generated by pM1, . . . ,MKq. For any A P Fdˆaq , the shortening of LPA at I has
dimension K ´ anr.

2We abusively use the same name ϕ : Fnrˆnc
q Ñ Fnrnc

q and Fnrˆpnc´aq
q Ñ Fnrpnc´aq

q .
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Proof. For i P t1..Ku, the matrix MA
i

def
“ M iPA is identical to M i on the columns

with indexes in J̌ and the other ones are such that pMA
i q˚,J “ pM iq˚,J ´ pM iq˚,t1..duA.

We may reorder the indices in t1..nrncu so that the systematic positions are the first
K ones and such that I “ tdnr ` 1..pd` aqnru. If the input instance is in systematic
form, then for u P t1..nru, v P t1..ncu, i “ pv ´ 1qnr ` u P t1..nrncu, the submatrix
pM iq˚,t1..d`au has at most only one nonzero entry equal to 1 in position pu, vq if v ď d`a
and it is all zero otherwise. This means that

pM iq˚,t1..du “ 0nrˆd, hence MA
i “M i if i ě dnr ` 1,

and that if i P t1..dnru,

pMA
i q˚,J “

»

–

0
´Av,˚

0

fi

fl ,

where the non-zero row is the u-th row. This eventually shows that the generator matrix

LA “

»

—

—

–

positions in I

Idnr

´coefficients
depending

on A

¯

0 Lt1..dnru,tpd`aqnr`1..nrncu

0 Ianr 0 Ltdnr`1..pd`aqnru,tpd`aqnr`1..nrncu

0 0 IK´pd`aqnr Ltpd`aqnr`1..Ku,tpd`aqnr`1..nrncu

fi

ffi

ffi

fl

for LPA is full rank on the columns in I and thus that the shortening at these positions
has dimension K ´ anr.

7.4.4 Probabilistic Version
The deterministic approach presented in the previous sections does not work if the initial
conditions on the solution M to the MinRank problem or on the solution e to the RD
problem are not met, i.e., the first d columns of M are not linearly independent nor the
first r entries in e are not linearly independent over Fq.

We propose to fix this by considering instead a randomized algorithm, which consists
in multiplying the instance on the right by a random invertible matrix P over Fq (no
longer in RM nor in RMMR), which produces a new problem instance which satisfies
the right assumptions with constant probability and on which we can apply the former
technique. Let us detail the case of MinRank. Once we have solved the new instance,
we recover the solution to the original one simply by multiplying on the right by P´1.
The plain idea might even be improved slightly by multiplying on the right each time by
a new P and by directly including the bet on the a columns equal to 0 (in other words,
we directly consider the smaller instance with parameters pnr, nc ´ a,K ´ anr, dq). This
has a probability of Ω

`

q´ad
˘

to happen.
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7.5 Application to MinRank and to RD Instances
This section provides the bit complexity of our hybrid approach. In Section 7.5.1, we
apply it to the SM solver on random MinRank problems. In Section 7.5.2, we present
its results on the new RD modeling. In both cases, we compare ourselves to previous
attacks.

7.5.1 Support-Minors on Generic MinRank
First, we obtain smaller complexities than the ones corresponding to the specialization of
[Bar+20b] by fixing linear variables. This is because we exploit the MinRank structure
and not only the bilinearity in the SM system. More interestingly, our technique offers a
trade-off between combinatorial attacks (e.g., Goubin’s kernel search) and pure algebraic
methods. Indeed, the bet that we make can be seen as guessing a ě 0 vectors in the
right kernel of the low rank matrix similarly to Section 3.1.3.1. The difference here is
that we consider less vectors since we do not need to solve in degree 1.

Table 7.1 summarizes our results on the MR-DSS parameters [BESV22], where λ is
the security level. Column “Kernel paq” is the cost of kernel search given in Equation
(3.5) with a def

“ rKnr
s. Column “Hybrid Kernel paq [BESV22]” is the optimized kernel

attack of [BESV22]3 which consists in guessing a ď rKnr
s vectors instead of the maximum

number and then in solving the resulting MinRank problem using standard kernel search.
Its improvement upon Goubin’s complexity is by a polynomial factor in Equation (3.5).
Finally, regarding our attack, we report the triplet pb, a, ncolsq which leads to the best
cost: the number of guessed columns is a, the number of columns in the reduced MinRank
problem is ncols ď nc ´ a, and b is the degree at which we solve via SM. Our values
were obtained with ω “ 2 as in [BESV22] and with a hidden constant of 7 in Strassen’s
algorithm.

Table 7.1: Comparison to kernel search variants on the parameters of [BESV22].

pq, nr, nc,K, dq λ Kernel paq Hybrid Kernel (a) [BESV22] Hybrid SM pb, a, ncolsq

p16, 16, 16, 142, 4q 128 166 (9) 158 (8) 161 (5, 6, nc ´ a)
p16, 19, 19, 167, 6q 192 238 (9) 231 (8) 231 (7, 6, nc ´ a)
p16, 22, 22, 254, 6q 256 311 (12) 303 (11) 297 (1, 11, nc ´ a)

Note that the parameters proposed in [BESV22] already take into account our attack.
It is likely that it will also be the case in MinRank-based signatures submitted to NIST,
including [ARV23].

7.5.2 Combined Approach on Rank Decoding
A motivation for introducing SM-F`qm to solve the RD problem was also to have a
system that we can better analyze than the combination between MM-Fq and SM-Fq

3This attack is given in a revision of the paper which is subsequent to our work.
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considered in [Bar+20b]. In particular, we start by correcting the underestimated values
of [Bar+20b, Table 3] regarding the complexity of this former modeling, on ROLLO-I.
In Table 7.2, they correspond to the struck out numbers. There, we give the binary
logarithm of our attack cost and we keep track of the optimum values of a and b.
We compare ourselves to the combinatorial attack of [AGHT18] (“comb”) and to the
hybrid MaxMinors attack (“MM-Fq”). In contrast to [Bar+20b, Table 3] where all these
numbers where obtained with ω “ 2.81, we adopt the optimistic choice ω “ 2.

Table 7.2: Comparison between known attacks on the new ROLLO-I parameters
in [Bar+20b] and [Agu+20] after the 2021-04-21 update. The “*”-symbol indicates
that the best attack is on the code of parameters pm, 2k ´

X

k
d

\

, k ´
X

k
d

\

, dq used for key
recovery, where d refers to the row weight of the LRPC code. Otherwise, it corresponds
to solving an RD problem with parameters pm, 2k, k, rq.

Instance q k m r d MM-Fq a p SM-F`qm b a comb
new2ROLLO-I-128 2 83 73 7 8 205 18 0 180 202 2 13 212
new2ROLLO-I-192 2 97 89 8 8 226* 17 0 197* 223* 1 14 282*
new2ROLLO-I-256 2 113 103 9 9 371* 30 1 283* 366* 1 27 375*
ROLLO-I-128-spe 2 83 67 7 8 212 19 0 214 2 15 196
ROLLO-I-192-spe 2 97 79 8 8 242* 19 0 241* 2 15 251*
ROLLO-I-256-spe 2 113 97 9 9 380* 31 0 376* 2 27 353*

Figure 7.1 and Figure 7.2 contain a broader comparison between the same RD
attacks for pm,n, kq “ p31, 33, 15q and for a weight r between 2 and 10 which is the rank
Gilbert-Varshamov distance when q “ 2.

Figure 7.1 represents the case q “ 2. In this setting, we can see that algebraic attacks
seem to become less efficient than the combinatorial ones for large r. This confirms the
observation made in Section 3.3.5.2 and which lead the designers of [Agu+22; Ara+22]
to increase the rank of the error. Note also that in [Agu+22], choosing d of the same
order as r increases the rank of the moderate weight codewords in the masked LRPC
code and thus it may allow to gain confidence in the indistinguishability assumption.

Figure 7.2 represents the case q “ 28, where the combinatorial attack becomes much
slower. The complexity of the hybrid technique on MM-Fq and SM-F`qm also worsens
but by a lesser amount since the cost contains a part which is independent from q,
for instance

`

n´a
r

˘ω in MaxMinors. Independently, we notice that the approach based
on SM-F`qm starts being interesting compared to MM-Fq for small values of r when q
increases. Since the hybrid component of the complexity is polynomial in q and since
it is more in important in MM-Fq than in SM-F`qm (we can solve the latter at a larger
b by fixing less columns), the dependency in q is clear. The condition on r might be
explained by the fact that SM-F`qm yields bigger Macaulay matrices than MM-Fq due to
the extra block of linear variables. These sizes may have even more impact when r is
larger since the block of minor variables also becomes larger.

Finally, we plot in Figure 7.3 the optimal values of a for the hybrid approach on
MM-Fq and SM-F`qm for q “ 2 and q “ 28.
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Figure 7.1: Binary logarithms of the complexities of MM-Fq, SM-F`qm and of the
combinatorial attack on RD instances with fixed pq,m, n, kq “ p2, 31, 33, 15q as a function
of the rank r. The rank Gilbert-Varshamov distance is 10.
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Figure 7.2: Same comparison as in Figure 7.1 but with q “ 28.

2 3 4 5 6 7 8 9 100

500

1,000

1,500

Target rank r

C

MM complex.
SM+ complex.
Comb. complex.

7.6 Application to the RSL Modeling
As announced at the end of Section 6.3.3 in the previous chapter, we finally come back
to the hybrid approach on Modeling 13. Once again, we will multiply on the right by
an invertible matrix P P Fnˆnq of the desired shape to force zero positions in the target
codeword e. Let us recall that the number of syndromes is N . For any i P t1..Nu, we
observe that

eiH
T “ eiPP

´1HT “ eiP pHpP
´1qTqT “ si. (7.20)
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Figure 7.3: Optimal value of a in the hybrid approach on MM-Fq and SM-F`qm for the
parameters of Figure 7.1 and Figure 7.2.
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Concretely, we use Equation (7.20) by keeping the same syndromes si for i P t1..Nu
but by considering the Fqm-linear code with parity-check matrix HpP´1qT and which
is simply CP . As in the RD case of above, we then shorten this code at the position
J
def
“ tn´a`1..nu. Of course, we will need the same assumption regarding the dimension

of SJpCP q for the analysis but there is nothing new compared to Section 7.4.2 in that
respect. Contrary to what we have seen for MinRank and RD, note that this approach
has no effect on the linear variables λi from Modeling 13.
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This chapter contains our results on the Non-Homogeneous Rank Decoding problem
(NHRD, Problem 8.2). This work was initially motivated by its use in the Rank Quasi-
Cyclic (RQC) cryptosystem [Agu+20] to mitigate the impact of the algebraic attacks of
[Bar+20a; Bar+20b]. More importantly, it also helped to select the parameters of our
new proposal [BBBG23], a more compact version of RQC.

First, we re-evaluate the complexity of the MaxMinors attack. We follow the
specialization adopted by the RQC submitters [Agu+20, §6.2.2] and we correct their
initial analysis by studying algebraic relations which occur in the system after fixing
variables. Second, we propose a simple adaptation of combinatorial techniques to the
non-homogeneous structure. There, the main technical point was the computation of
the underlying success probability.
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8.1 Preliminaries
We start by describing the basic RQC scheme submitted to NIST and by explaining the
relevance of using non-homogeneous errors in this context. We then introduce our new
RQC variant. Finally, we give details on the preliminary analysis of NHRD made in
[Agu+20, §6.2.2].
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8.1.1 RQC Cryptosystem
For positive integers m, n and w, let

SnwpFqmq “ tx P Fnqm : |x| “ wu,

Snw,1pFqmq “ tx P Fnqm : |x| “ w and 1 P Supppxqu,

and for a vector g P Snn pFqmq with necessarily n ď m and k ď n, let Ggpn, k,mq be the
Gabidulin code of dimension k generated by g (see Definition 3.5). Recall that such a
code can correct up to tn´k2 u errors in an efficient manner. In particular, let Gg.Decodep.q
denote a polynomial time decoding algorithm.

This section presents the PKE version of the scheme as it was before the update of
[Agu+20]. In its name, the letters “QC” refer to the ideal structure. More precisely,
quasi-cyclic codes have been replaced by ideal codes between the First and the Second
Round due to the folding attack [HT15].

Setup(1λ): Generates and outputs param “ pn, k, δ, w,w1, P q, where pn, k, δ, w,w1q P
N4 and where P P FqrXs is an irreducible polynomial of degree n.

Keygen(param): Samples h P Fnqm , g P Snn pFqmq and px,yq P S2n
w,1pFqmq, computes

G P Fkˆnqm a generator matrix of the Gabidulin code Ggpn, k,mq, sets pk “

pg,h, s “ x` h ¨ y mod P q and sk “ px,yq, returns ppk, skq.

Encryptppk,m, θq: Uses randomness θ to generate pr1, e, r2q P S3n
w1pFqmq, sets u “

r1 ` h ¨ r2 mod P and r “mG` s ¨ r2 ` e mod P , returns c “ pu,vq.

Decryptpsk, cq: Returns Gg.Decodepv ´ u ¨ y mod P q.

A first remark is that the code Ggpn, k,mq is publicly known. Therefore, as already
mentioned, the security is not related to masking a Gabidulin code. It turns out that
the unique hardness assumption to prove IND-CPA is the difficulty of the ideal version
of RD. More concretely, one can hope to attack two types of instances:

“

x y
‰ “

In IMphq
‰T
“ s, |px,yq| “ w. (8.1)

“

r1 e r2
‰

„

In 0 IMphq
0 In IMpsq

T
“

“

u v ´mG
‰

, |pr1, e, r2q| “ w1. (8.2)

On the one hand, Equation (8.1) corresponds to an RD problem with parameters
pm, 2n, n,wq whose solutions lead to key-recovery. On the other hand, solving the
instance of parameters pm, 3n, n,w1q given by Equation (8.2) allows to retrieve the
message.
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8.1.2 Non-Homogeneous Rank Decoding Problem
In RQC, the fact that these two instances do not come from masking a secret code is
precisely why it was possible to replace the RD assumption by a more structured one.
More precisely, [Agu+20] introduce the following problem:

Problem 8.1 ([Agu+20]). Given a full-rank matrix H P F2nˆ3n
qm , integers pw1, w2q P

N2 and s P F2n
qm, find a vector e “ pe1, e2, e3q P F3n

qm, e1 P Fnqm , e2 P Fnqm , e3 P Fnqm,
such that eHT “ s, |pe1, e3q| ď w1, |e2| ď w1 ` w2 and Supppe1, e3q Ă Supppe2q.

Concretely, instead of sampling a random pr1, e, r2q P S3n
w1pFqmq, the new variant

[Agu+20] picks a random pr1, e, r2q P F3n
qm such that |pr1, r2q| “ w1 , |e| “ w1 `w2 and

Supppr1, r2q Ă Supppeq, where w2 P N is an additional parameter. In this way, Equation
(8.2) becomes an instance of Problem 8.1 where the error e has maximum weight. The
rationale for using such an assumption was to have more flexibility when choosing the
parameters. On the one hand, RD with parameters pm, 3n, n,w1q reduces to Problem
8.1 with w2 “ 0 [Agu+20, Proposition 2.1.1]. On the other hand, a non-homogeneous
vector of weight pw1, w2q is both easier to decode and to store in practice than a random
vector of weight w1 ` w2 in F3n

qm .
Problem 8.2 introduced in Section 3.3.5.2 and recalled below is a generalization of

Problem 8.1 where the blocks e1, e2 and e3 do not have the same size. From now on,
we will focus on this second version.

Problem 8.2 (Non-Homogeneous Rank Decoding (NHRD) problem). Given
a full-rank matrix H P Fpn`n1qˆp2n`n1q

qm , integers pw1, w2q P N2 and s P Fn`n1
qm , find a

vector e “ pe1, e2, e3q P F2n`n1
qm , e1 P Fnqm , e2 P Fn1

qm , e3 P Fnqm, such that eHT “ s,
|pe1, e3q| ď w1, |e2| ď w1 ` w2 and Supppe1, e3q Ă Supppe2q.

Remark 8.1. In the following, an instance of Problem 8.2 will be referred to as a NHRD
instance of parameters pm,n, n1, w1, w2q.

8.1.3 Making RQC More Efficient
While NIST appreciated the absence of secret code in RQC, they pointed out slightly
poorer performances compared to ROLLO [Ala+19, §3.16]. The need of greater efficiency
was also increased by the recent algebraic attacks [Bar+20a; Bar+20b] since they lead
to choose higher parameters.

In [BBBG23], we proposed a new version of the scheme with sizes reduced of the order
of 50%. Moreover, similarly to [Agu+22], we managed to obtain a competitive variant
without ideal structure. In this work, I was the sole contributor to the cryptanalysis of
NHRD but I have not taken part in the design of the construction. Still, let us start by
presenting the additions to [Agu+20] which explain why it can achieve such performance
gains. First, we adopt the error distribution of Problem 8.2, namely pr1, e, r2q such
that |pr1, r2q| “ w1 , |e| “ w1 ` w2 and Supppr1, r2q Ă Supppeq. The difference with
Problem 8.1 is that we might consider e P Fn1

qm with n1 ‰ n if it is relevant.
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Multiple syndromes. As pioneered in [Agu+22], several syndromes are packed in
one ciphertext. For n1, n2 P N, let us denote by Foldp.q the linear map

v “ pv1, . . . ,vn1q P F
n1n2
qm , vi P Fn2

qm ÞÑ
“

vT
1 . . .v

T
n1

‰

P Fn2ˆn1
qm .

Its inverse is denoted by Unfoldp.q. Let us also extend the dot product modulo P between
vectors in Fn2

qm to the one by M P Fn2ˆn1
qm :

v ¨M
def
“

“

pv ¨MT
˚,1q

T . . . pv ¨MT
˚,n1q

T‰ .

The idea now is to consider n2 non-homogeneous error vectors prpjq1 , epjq, r
pjq
2 q for j P

t1..n2u which have the same support. Here, the ideal structure requires to choose the
three blocks rpjq1 , epjq and rpjq2 of the same size n1. These errors are then grouped as
the matrix

“

R1 E R2
‰

P Fn2ˆ3n1
qm defined by

@j P t1..n2u, pR1qj,˚
def
“ r

pjq
1 , pEqj,˚

def
“ epjq and pR2qj,˚

def
“ r

pjq
2 .

For a message m P Fkqm of the same length as before, we pick h P Fn2
qm and we keep the

definition s “ x` h ¨ y P Fn2
qm , where px,yq P S

2n2
w,1 pFqmq. The new ciphertext is pU ,V q

with U “ R1 ` h ¨R2 P Fn2ˆn1
qm and V “ FoldpmGq ` s ¨R2 ` E P Fn2ˆn1

qm . Finally,
decryption works as in the original scheme by decoding the vector UnfoldpV ´ y ¨Uq in
the Gabidulin code generated by G P Fkˆnqm . The crux is that this vector has the same
weight as the n2 individual errors because their supports have been taken equal.

This trick allows to significantly decrease the public key size. In the original scheme,
recall that both public key and ciphertext could be seen as vectors whose length is a
constant multiple of the code length n. This time, the ciphertext pU ,V q P Fn2ˆn1

qm ˆ

Fn2ˆn1
qm can be stored as a vector of length 2n1n2 (where n1n2 plays the same role

as n) but the quantities h and s which appear in pk have length n2 instead of n1n2.
This represents a reduction by a factor of the order of n1 compared to the size of the
ciphertext.

Similarly to [Agu+22] where it was introduced, this technique comes at the price
of relying on the RSL problem. More precisely, we require an ideal version with non-
homogeneous errors, referred to as NHIRSL in [BBBG23, p. 9].

Changing the public code. Another contribution was to replace the public Gabidulin
code by another one which can correct more errors under certain conditions. Its definition
is as follows.

Definition 8.1 (Augmented Gabidulin code). Let pk, n, n1,mq P N4 such that
k ď n1 ă m ă n. Let g “ pg1, . . . , gn1q P Sn

1

n1 pFqmq and let g P Fnqm which is equal
to g padded with n ´ n1 extra zeroes on the right. The Augmented Gabidulin code
G`g pn, n1, k,mq is the code of parameters rn, ksqm defined by

G`g pn, n
1, k,mq

def
“

 

P pgq : degqpP q ă k
(

,



8.1. Preliminaries 135

where P ranges through the set of q-polynomials, degqp.q is the q-degree and P pgq def“
pP pg1q, . . . , P pgn1q, 0, . . . , 0q.

The motivation is to go beyond the correction capacity tn
1´k
2 u of a Gabidulin code of

parameters rn1, ksqm for some noise patterns. Indeed, for any ε P t1..min pn´ n1, n1 ´ kqu,
a code as in Definition 8.1 can decode in a deterministic way errors of weight ď tn

1´k`ε
2 u

whose last n´ n1 coordinates span a vector space of dimension ě ε. In the general case,
this gives an algorithm with non-zero DFR by making a bet on the dimension on this
subspace [BBBG23, Proposition 2].

Removing ideal matrices. The gain in performance provided by these modifications
has led us to propose a non-structured version which remains very efficient. Roughly
speaking, the secret key now contains matrices pX,Y q and the dot products h ¨R2,
s ¨R2 are replaced by a standard matrix products R2H and R2S respectively, where H
is a random matrix and where S “X `HY . Since we still want to keep n2 syndromes
and to decode in a code of length n1n2, the number of columns in S and thus X, Y
must be n1. However, there is no constraint on the number of rows apart from the fact
that it is the same as the width of R1 and R2. Concretely, the latter will be an integer
denoted by n (be careful that the code length is n1n2 here) which has no relationship
with neither n1 nor n2. This flexibility justifies the use of Problem 8.2 with n ‰ n1 and
it explains why our non-ideal variant can achieve competitive sizes.

8.1.4 Algebraic Analysis of NHRD
Already at the time of [Agu+20], the introduction of NHRD lead the RQC submitters
to analyze the new modelings of [Bar+20b] in this structured context. In particular,
they remarked that the shape of the error could be exploited to decrease the number of
minor variables.

To see this, let us consider a non-homogeneous vector e “ pe1, e2, e3q where e1, e3 P
Fnqm , e2 P Fn1

qm , |pe1, e3q| ď w1, |e2| ď w1 ` w2 and Supppe1, e3q Ă Supppe2q. In
[Agu+20, §6.2.2], the row support of Matpeq P Fmˆp2n`n1q

q is written as

C “

„

C1 C2 C3
0 C 12 0



P Fpw1`w2qˆp2n`n1q
q ,

where C1, C3 P Fw1ˆn
q , C2 P Fw1ˆn1

q and C 12 P Fw2ˆn1
q . The point now is that all the

minors |C|˚,T , #T “ w1 ` w2 such that T X tn ` 1..n ` n1u ď w2 ´ 1 vanish. As a
consequence, [Agu+20, §6.2.2] suggest to fix the corresponding unknowns to zero in the
MaxMinors and Support-Minors systems. This set of variables is given by

ζ
def
“ tcT : #T “ w1 ` w2 and #pT X tn` 1..n` n1uq ď w2 ´ 1u (8.3)

and it is of cardinality

M
def
“ #ζ “

w2´1
ÿ

i“0

ˆ

n1
i

˙ˆ

2n
w1 ` w2 ´ i

˙

. (8.4)
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While the resulting modeling is clearly easier to solve since there are less variables,
we noticed that there were linear dependencies in the specialized system that had not
been taken into account in [Agu+20, §6.2.2].

8.2 Understanding MaxMinors on NHRD
In this section, we explain why we find less linearly indepedendent equations in the
MaxMinors modeling when the abovementioned minor variables are fixed to zero. We
then give a more realistic complexity formula for the MaxMinors attack.

As in the plain case, our analysis is on the system over Fqm before projecting the
equations. There, this system was referred to as the MaxMinors system over Fqm ,
MM-Fqm or even Modeling 6. For the sake of simplicity, we will keep the same names
in this structured setting. The final cost estimate will be deduced in the same way as
in RD by assuming that there are no extra relations in the projected equations. Since
NHRD does not rely more heavily on the extension field than RD, we believe that such
an hypothesis is not significantly stronger than our assumption in the latter situation –
Assumption 1 – stating that the equations of the projected MaxMinors modeling (e.g.,
MM-Fq or Modeling 7) were as linearly independent as possible. Still, as there are less
unknowns in the present case, the cancellation of few correlated coefficients (which is
likely to happen over Fq for small q) may have more impact.

8.2.1 Effect of Fixing Variables
We now study the behaviour of the equations over Fqm under the relevant specialization.
First, let us recall the following result that we have already used in Chapter 7.

Lemma 8.1 (Proposition 2, [Bar+20b]). With the notation of the MaxMinors
modeling over Fqm (Modeling 6), we have

PJ “ cJ`n`1 `
ÿ

T´Ăt1..n`1u,T`ĂpJ`n`1q
T“T´YT`, #T“w1`w2, T´‰H

cT |Hy|J,T . (8.5)

Similarly, we will sort the minor variables cT with reverse lexicographical order
according to T . The leading term of PJ is then equal to cJ`n`1.

To analyze the system, Equation (8.3) lead us to separate the initial MaxMinors
equations into several subsets in function of the presence or the absence of elements of ζ
in such polynomials. More precisely, we consider the partition P “ Plost\Prest\Pindep,
where

Plost
def
“ tPJ : #J “ w1 ` w2 and #pJ X t1..pn1 ´ 1quq ď w2 ´ 2u ,

Prest
def
“ tPJ : #J “ w1 ` w2 and #pJ X t1..pn1 ´ 1quq “ w2 ´ 1u ,

Pindep
def
“ tPJ : #J “ w1 ` w2 and #pJ X t1..pn1 ´ 1quq ě w2u .
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Using Lemma 8.1, it is easy to grasp the shape of the equations from Plost and Pindep
after specialization.

Lemma 8.2. By fixing the minor variables from ζ to zero in Modeling 6,

1. The equations in Plost all become the zero polynomial.

2. The equations in Pindep keep the same leading terms so that they remain linearly
independent. They generate a space of dimension

#Pindep “
řw1`w2
i“w2

`

n1´1
j

˘`

n
w1`w2´j

˘

.

Proof. For the first item, let us consider J Ă t1..n` n1 ´ 1u, #J “ w1 ` w2 such that
PJ P Plost. By definition of Plost, the intersection of J ` n` 1 with tn` 2..n` n1u is of
size ď w2´ 2. Thus, any subset T “ T´Y T` Ă t1..2n`n1u such that T´ Ă t1..n` 1u
and T` Ă J ` n` 1 satisfies #pT X tn` 1..n` n1uq ď w2 ´ 1 (because T´ might also
contain n` 1). By Equation (8.3), this means that cT P ζ. The conclusion follows from
the expression of PJ given in Equation (8.5).

For the second item, recall that the leading monomials in Modeling 6 are initially
all different and that the one of PJ is equal to cJ`n`1. When PJ P Pindep, this variable
does not belong to ζ since #pJ ` n` 1X tn` 2..n` n1uq “ #pJ X t1..n1 ´ 1uq ě w2.
Therefore, the leading terms are unchanged in Pindep and the equations are still linearly
independent. The last statement on the dimension is obvious.

Contrary to the ones in Pindep, the equations in Prest have their leading monomials
included in ζ. Thus, in these polynomials, the leading term is affected by fixing variables.
More precisely, using Lemma 8.1, an equation PJ P Prest becomes

ĂPJ
def
“

ř

T´Ăt1..n`1u, T`ĂpJ`n`1q
T“T´YT`, n`1PT´, #pT`Xtn`2..n`n1uq“w2´1

cT |Hy|J,T

“
ř

T´Ăt1..n`1u, T`ĂpJ`n`1q
T“T´YT`, n`1PT´, T`Xtn`2..n`n1u“pJXt1..pn1´1quq`n`1

cT |Hy|J,T . (8.6)

From now on, to simplify the notation, we still denote the specialized system by
Prest “ tĂPJuJ . We study it in Proposition 8.1.

Proposition 8.1. The equations from the specialized system Prest are independent from
from the set of polynomials Pindep. They generate an Fqm-vector space of dimension
`

n1´1
w2´1

˘`

n´1
w1

˘

and they contain at most
`

n1´1
w2´1

˘`2n
w1

˘

variables.

The first statement of Proposition 8.1 is clear. Using Equation (8.6), the leading
monomial of ĂPJ P Prest is a cT variable such that n ` 1 P T while the one of any
PJ 1 P Pindep is cJ 1`n`1 which is necessarily greater. Thus, what is left to prove in
Proposition 8.1 is that Prest spans a space of dimension

`

n1´1
w2´1

˘`

n´1
w1

˘

and that the
number of variables is

`

n1´1
w2´1

˘`2n
w1

˘

. For this we rely on the following results.
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Lemma 8.3. For any subset A Ă tn` 2..n` n1u such that #A “ w2 ´ 1, let

Prest,A
def
“ tPJ : PJ P Prest and J X t1..n1 ´ 1u “ A´ pn` 1qu . (8.7)

The polynomials in Prest,A have their monomials included in a set µA of size
`2n
w1

˘

.
Moreover, for any A ‰ A1, the sets µA and µA1 are disjoint.

Lemma 8.4. For any subset A Ă tn` 2..n` n1u such that #A “ w2 ´ 1, let Prest,A as
defined in Equation (8.7). We have

dimFqm xPrest,Ay ě
`

n´1
w1

˘

. (8.8)

Conjecture 8.1. For any subset A Ă tn` 2..n` n1u such that #A “ w2 ´ 1, we will
assume that Equation (8.8) is an equality.

Before giving more details on the proofs, let us remark that Proposition 8.1 indeed
follows. First, Lemma 8.3 shows that we have the direct sum of Fqm-vector spaces

xPresty “
à

AĂtn`2..n`n1u, #A“w2´1
xPrest,Ay (8.9)

and that the total number of monomials is at most
`2n
w1

˘

ˆ#tA : A Ă tn` 2..n` n1u and #A “ w2 ´ 1u “
`2n
w1

˘`

n1´1
w2´1

˘

.

Then, the dimension xPresty is obtained from the direct sum of Equation (8.9) and from
that of the xPrest,Ay’s provided by Conjecture 8.1.

Proof of Lemma 8.3. Equation (8.6) shows that we can take

µA
def
“

 

cT : T Ă t1..2n`n1u, #T “ w1`w2 and n`1 P T and TXtn`2..n`n1u “ A
(

.

This set is of size
`2n
w1

˘

and it satisfies µA X µ1A “ H when A ‰ A1.

Proof of Lemma 8.4. Using Equation (8.6) once again, it is readily verified that the set
of leading monomials of all equations in Prest,A is

τA
def
“

 

ctn`1uYAYU : U Ă tpn` n1 ` 2q..p2n` n1qu, #U “ w1
(

.

Since the equation PJU with JU ` n` 1 “ AY tn` n1 ` 1u Y U has leading monomial
ctn`1uYAYU P τA, this shows that dimFqm xPrest,Ay ě #τA “

`

n´1
w1

˘

.

Before moving on to the next section, we give a sketch of reasoning for Conjecture
8.1. Note that a greater dimension than claimed in this conjecture for xPrest,Ay would
be in the attacker’s favour.
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Argument for Conjecture 8.1. We implicitly use a randomness assumption on the entries
of the PJ ’s in Fqm that we will not formalize any further. More precisely, we want to argue
that there is no element in xPrest,Ay whose leading term does not belong to τA. Let us
consider VJ

def
“

!

v
pJq
1 ă ¨ ¨ ¨ ă v

pJq
w1`1

)

such that PJ P Prest,A with J`n`1 def
“ AYVJ . The

variables from PJ which belong to τA are the c
tn`1uYAYVJ ztv

pJq
j u

’s such that 1 ď j ď w1`1.
To kill its leading monomial, we have to add an equation with the same one, namely
some P 1J with J 1 ‰ J, J 1 ` n` 1 “ AY VJ 1 and such that V

Jztv
pJq
1 u

“ V
J 1ztv

pJ1q
1 u

“ B for
some subset B of size w1 ` w2 ´ 1. In this case, one can check that the only monomial
from τA present in both PJ and PJ 1 is ctn`1uYAYB. This means that PJ`λJ 1PJ 1 contains
at least 2w1 monomials from τA. Similarly, by using a third subset J2, we can kill
at most one extra monomial in PJ and in the worst case one in PJ 1 as well. This
implies that a linear combination of the form PJ ` λJ 1PJ 1 ` λJ2PJ2 will contain at
least 2pw1 ´ 1q ` pw1 ` 1´ 2q “ 3pw1 ´ 1q monomials from τA, the lower bound being
reached if and only if those monomials in PJ and P 1J are killed at the same time by
λJ2PJ2 . This is extremely unlikely if the coefficients of the MaxMinors equations are
random in Fqm . Thus, we may assume instead that PJ ` λJ 1PJ 1 ` λJ2PJ2 contains at
least pw1´ 1q`w1`pw1` 1´ 1q “ 3w1´ 1 monomials in τA. Relying on the same type
of assumption, one can proceed by induction on the numbers of terms to show that a
non-zero linear combination in xPrest,Ay always has a monomial in τA.

8.2.2 Solving the Projected System
Since we keep the same method as in the non-structured case, we need to consider
equations unfolded over the small field. More precisely, we will project the specialized
systems Pindep and (a basis of) Prest over Fq. As already mentioned, we do not expect
extra relations apart from those triggered by a too small number of monomials.

Assumption 10. Let Pindep,Fq (resp. Prest,Fq) be the system over Fq obtained by
projecting Pindep (resp. a basis of Prest), let NFq

def
“ dimFq

@

Pindep,Fq
D

, let νFq
def
“

dimFq
@

Prest,Fq
D

and let M as defined in Equation (8.4). We assume that

NFq “ min
´

m
řw1`w2
i“w2

`

n1´1
i

˘`

n
w1`w2´i

˘

,
`2n`n1
w1`w2

˘

´M ´ 1
¯

and

νFq “ mdimFqm xPresty “ m
`

n1´1
w2´1

˘`

n´1
w1

˘

,

provided that the latter is ď
`

n1´1
w2´1

˘`2n
w1

˘

.

Remark 8.2. We chose not to give an estimation of νFq when m
`

n1´1
w2´1

˘`

n´1
w1

˘

ą
`

n1´1
w2´1

˘`2n
w1

˘

.
For cryptographic parameters, we always had m

`

n´1
w1

˘

!
`2n
w1

˘

. Interestingly enough, our
Magma experiments were inconclusive in the other scenario.
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Since the system Prest,Fq is very underdetermined, one can imagine to use its equations
to substitute νFq variables in the system Pindep,Fq to get a new system P 1indep,Fq . As we
do no longer control the leading terms in the projected modelings, we make an additional
assumption.

Assumption 11. Let P 1indep,Fq the system constructed from Prest,Fq and Pindep,Fq as
described above. We assume that

dimFqxP 1indep,Fqy “ min
´

dimFq
@

Pindep,Fq
D

,
`2n`n1
w1`w2

˘

´M ´ νFq ´ 1
¯

.

Theorem 8.1 (Under Assumptions 10 and 11). Let Pindep,Fq and Prest,Fq denote
the projections of Pindep and a basis of Prest respectively. We consider P 1indep,Fq the
linear system obtained from Pindep,Fq by plugging νFq equations from the echelon form of
Prest,Fq to substitute variables. When NFq ě

`2n`n1
w1`w2

˘

´M ´ νFq ´ 1, we can solve the
NHRD instance of parameters pm,n, n1, w1, w2q by inverting P 1indep,Fq . The complexity
in Fq-operations is

O
ˆ

NFq

´

`2n`n1
w1`w2

˘

´M ´ νFq

¯ω´1
˙

,

where ω is a linear algebra constant.

When the condition of Theorem 8.1 does not hold, we propose a similar hybrid
approach as in the RD case. In fact, like it was done in [Agu+20, p. 6.2.2], we can
take advantage of the particular structure of C by fixing columns containing only w1
non-zero coordinates in Equation (8.1.4). Indeed, this leads to a smaller exponential
factor of qaw1 in the final cost compared to the naive qapw1`w2q.

Corollary 8.1 (Under Assumptions 10 and 11). Let a P N be the smallest integer
such that

NFq ě
`2n`n1´a
w1`w2

˘

´Ma ´ νFq ´ 1, (8.10)

where Ma
def
“

řω2´1
i“0

`

n1
i

˘` 2n´a
ω1`ω2´i

˘

. The complexity in Fq operations of the hybrid
approach on P 1indep,Fq by fixing a ě 0 columns in t1..nu Y tn` n1 ` 1..2n` n1u is

O
ˆ

qaw1NFq

´

`2n`n1´a
w1`w2

˘

´Ma ´ νFq

¯ω´1
˙

,

where ω is a linear algebra constant.

Remark 8.3. In Theorem 8.1 and Corollary 8.1, it is possible to remove Assumption 11
if we simply attempt to invert the system Pindep,Fq . Since we consider less equations,
this will require a slightly stronger constraint on the parameters.

Finally, note that we have not tried to analyze Support-Minors (Modeling 4) in
this particular case. From a practical perspective, finding non-homogeneous error
patterns with rather small parameters to perform experiments but which do not lead
to degenerated systems was more difficult than for RD. In addition, the new results
presented in Chapter 7 were not known at that time.
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8.3 New Combinatorial Attack on NHRD
We also proposed a combinatorial approach which exploits the specific shape of the
error support. Recall that we are interested in noises of the form e “ pe1, e2, e3q P

F2n`n1
qm , e1, e3 P Fnqm and e2 P Fn1

qm , such that S1
def
“ Supppe1, e3q is of dimension w1,

S2
def
“ Supppe2q is of dimension w1 ` w2 and S1 Ă S2.
The only change in our algorithm compared to the plain RD setting lies in the guessing

step. For instance, we still make use of the parity-check equations from the augmented
code Cy

def
“ C‘xyyFqm with full-rank parity-check matrixHy P F

pn`n1´1qˆp2n`n1q
qm . Since

the support of the entire vector e is S2, applying the naive technique by forgetting the
structure would consist in picking a candidate subspace V of dimension r ě w1 ` w2
containing S2. To take advantage of the error pattern, our idea instead is to guess a V
of dimension r ě w1 such that S1 Ă V and a tiny chunk Z of dimension ρ P t1..m´ ru
such that V and Z are linearly independent and S2 Ă V ‘ Z. The motivation is to
increase the success probability even if it may cause a higher number of variables in the
linear system.

The rest of the approach is the same as in RD. Concretely, in the system
pe1, e2, e3qH

T
y “ 0, we express the coordinates of pe1, e3q in a fixed basis of V by

introducing 2nr unknowns over Fq and those of e2 in a fixed basis of V ‘ Z by adding
n1pr ` ρq extra variables. Then, we project the equations over Fq. Finally, as long as

mpn` n1 ´ 1q ě 2nr ` n1pr ` ρq, (8.11)

we can check the consistency of our guess by inverting the resulting linear system.
For values of r, ρ such that Equation (8.11) holds, we give an estimate of the success

probability in Section 8.3.1. We then deduce the cost of our technique in Sections 8.3.2
and 8.3.3.

8.3.1 Probability of a Correct Guess
Let us recall that S1 “ Supppe1, e3q and S2 “ Supppe2q are such that S1 Ă S2.
We consider Π def

“ PrV,Z rS1 Ă V, S2 Ă V ‘ Zs, where the randomness is taken over
randomly sampled Fq-subspaces V, Z Ă Fqm which are in direct sum.

Lemma 8.5. We have

Π “ Pr
V,Z
rS1 Ă V, S2{S1 Ă pV ‘ Z ` S1q{S1s

“ Pr
V
rS1 Ă V s Pr

V,Z
rS2{S1 Ă pV ‘ Z ` S1q{S1 | S1 Ă V s .

Proof. We prove the first equality since the second one is just the definition of conditional
probability. Let π denote the projection Fqm Ñ Fqm{S1 and let us consider the events
A

def
“ “S1 Ă V, S2 Ă V ‘ Z” and B def

“ “S1 Ă V, S2{S1 Ă pV ‘ Z ` S1q{S1”. We show
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A “ B by double-inclusion. By applying the projection map we already obtain A Ă B.
If we take the inverse image we get B Ă π´1pBq, where

π´1pBq
def
“ “S1 Ă V and π´1pπpS2qq Ă π´1pπpV ‘ Z ` S1qq”. (8.12)

Observe now that the event “π´1pπpS2qq Ă π´1pπpV ‘Z`S1qq” is more explicitly equal
to

“S2 ` ker pπq “ S2 ` S1 “ S2

Ă V ‘ Z ` S1 ` ker pπq “ V ‘ Z ` S1 ` S1 “ V ‘ Z ` S1.”

Hence π´1pBq “ “S1 Ă V, S2 Ă V ‘ Z ` S1” “ “S1 Ă V, S2 Ă V ‘ Z” “ A.

In Π, the first factor PrV rS1 Ă V s is easy to deal with so we will focus on the second
one. We denote it by Πcond

def
“ PrV,Z rS2{S1 Ă pV ‘ Z ` S1q{S1 | S1 Ă V s. Note that

we have the decomposition into disjoint events

tS2{S1 Ă pV ‘ Z ` S1q{S1 | S1 Ă V u “ tS2{S1 Ă pV ‘ Zq{S1u

“

w2
ž

`“0

"

dimFqpS2{S1 X V {S1q “ `,
S2{S1

S2{S1 X V {S1
Ă
pV ‘ Zq{S1

V {S1

*

“

w2
ž

`“0
tA` XBu ,

where A`
def
“ “ dimFqpS2{S1 X V {S1q “ `” and B

def
“ “ S2{S1

S2{S1XV {S1
Ă

pV‘Zq{S1
V {S1

”. For

` P t0..w2u, let p`
def
“ Pr rA` XBs, let s`

def
“ Pr rA`s and let t`

def
“ Pr rB | A`s so that

p` “ s`t` and Πcond “
řw2
`“0 p`. To compute the first factor s`, we rely on

Lemma 8.6 (Lemma 9.3.2 p. 269, [BCN89]). Let F be an Fq-linear space of
dimension n.

1. If X is a j-dimensional subspace of F , then there are qij
`

n´j
i

˘

q
i-dimensional

subspaces Y such that X X Y “ 0.

2. If X is a j-dimensional subspace of F , then there are qpi´`qpj´`q
`

n´j
i´`

˘

q

`

j
`

˘

q
i-

dimensional subspaces Y such that X X Y has dimension `.

More precisely, we use item 2. with F “ Fqm{S1, fixed X “ S2{S1 Ă Fqm{S1 of
dimension j “ w2 and random Y “ V {S1 Ă Fqm{S1 of dimension i “ r´w1. We obtain

s` “ qpr´w1´`qpw2´`q

`

m´w1´w2
r´w1´`

˘

q

`

w2
`

˘

q
`

m´w1
r´w1

˘

q

. (8.13)

For the second factor t`, note that condionned on dimFqpS2{S1XV {S1q “ ` the probability
that S2{S1

S2{S1XV {S1
Ă
pV‘Zq{S1
V {S1

is the probability that a random subspace of dimension ρ
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contains a fixed subspace of dimension w2 ´ ` in the ambient space Fqm{S1
V {S1

» Fqm{V .
From there we obtain

t` “

`

ρ
w2´`

˘

q
`

m´r
w2´`

˘

q

. (8.14)

Finally, by combining Equation (8.13) and Equation (8.14),

p` “ qpr´w1´`qpw2´`q

`

m´w1´w2
r´w1´`

˘

q

`

w2
`

˘

q
`

m´w1
r´w1

˘

q

`

ρ
w2´`

˘

q
`

m´r
w2´`

˘

q

. (8.15)

Recall that we were interested in the sum Πcond “
řw2
`“0 p`. We show in Lemma 8.7

that we can approximate it by its first term.

Lemma 8.7. Let Πcond “
řw2
`“0 p`, where p` is defined in Equation (8.15). We have

p0 ă Πcond ă pq ` 3qp0.

Proof. We only need to prove the upper bound on Πcond. For ` P t0..w2´1u, we consider
the ratio ∆`

def
“ p``1{p`. Using the identity

`

a`1
b`1

˘

q
“

1´qa´b`1

1´qb`1

`

a`1
b

˘

q
, we compute

explicitly

∆` “ qpr´w1´`´1qpw2´`´1q´pr´w1´`qpw2´`q

ˆ
1´ qr´w1´`

1´ qm´r´w2```1 ˆ
1´ qw2´`

1´ q``1 ˆ
1´ qw2´`

1´ qρ´w2```1 ˆ
1´ qm´r´w2```1

1´ qw2´`

“ q´pr´w1´`q´pw2´`´1q ˆ
p1´ qr´w1´`qp1´ qw2´`q

p1´ q``1qp1´ qρ´w2```1q
.

Since p1´ qr´w1´`qp1´ qw2´`q ă qr´w1´` ˆ qw2´`, we then obtain

∆` ď q´pr´w1´`q´pw2´`´1q ˆ
qr´w1´` ˆ qw2´`

p1´ q``1qp1´ qρ´w2```1q
“

q

p1´ q``1qp1´ qρ´w2```1q

ď
q

pq``1 ´ 1q2 ď q1´2`.

This gives p``1 ď q1´2`p` and then by induction p` ď q2`´`2p0 for any ` P t0..w2 ´ 1u.
By plugging this bound in the formula for Πcond, this finally yields

Πcond ă p1` q ` 1qp0 ` p0
ÿ

jě3
q2j´j2

ă p1` q ` 1qp0 ` p0
ÿ

jě3
q´j “

`

2` q ` q´2{pq ´ 1q
˘

p0 ă pq ` 3qp0.

Estimate 1. We estimate the probability Π by p0 PrV rS1 Ă V s, where p0 is Equation
(8.15) for ` “ 0 and where PrV rS1 Ă V s is the probability that a randomly sampled
r-dimensional subspace of Fqm contains S1.
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8.3.2 Complexity of the Approach
As in the case of standard combinatorial attacks on RD, the expression of the total cost
is straightforward from the knowledge of the success probability. In fact, similarly to
[AGHT18], we can take advantage of Fqm-linearity by considering a greater one of the
form

Pr
V,Z

“

Dα P F˚qm , αS1 Ă V, αS2 Ă V ‘ Z
‰

«
qm ´ 1
q ´ 1 Π. (8.16)

Theorem 8.2. As long as Equation (8.11) holds, the complexity of our algorithm in
Fq-operations can be estimated by

rO
´

qpw1`w2qpm´rq´w2ρ´m
¯

. (8.17)

Proof. The polynomial factor coming from solving the final linear system is included in
the rO notation. For the success probability, we use Equation (8.16) which gives a q´m
factor together with Estimate 1. Recall that

p0 “ qpr´w1qw2

`

m´w1´w2
r´w1

˘

q
`

m´w1
r´w1

˘

q

`

ρ
w2

˘

q
`

m´r
w2

˘

q

.

Using
`

a
b

˘

q
“ Θpqbpa´bqq when max pa, bq Ñ `8 gives

p0 “ Θ
´

qpr´w1qw2 ˆ q´pr´w1qw2 ˆ q´w2pm´r´ρq
¯

“ Θpq´w2pm´r´ρqq.

The other term PrV rS1 Ă V s “
`

r
w1

˘

q
{
`

m
w1

˘

q
is the classical one that is encountered

in combinatorial attacks on RD. We obtain Θ
`

q´w1pm´rq
˘

and the conclusion easily
follows.

The best cost obtained with such a strategy can be found by optimizing Equation
(8.17) over values of pr, ρq which yield an overdefined linear system. For this computation,
we focus on the exponent of q and we neglect polynomial factors.

8.3.3 Optimization Problem
The problem of finding the minimum exponent subject to our constraints can be seen as
a very small Integer Linear Program (ILP). More precisely, for pr, ρq P N2, we want to
maximize the quantity

pw1 ` w2qr ` w2ρ

under the constraints
$

’

’

’

’

&

’

’

’

’

%

p2n` n1qr ` n1ρ ď mpn` n1 ´ 1q,
w1 ď r,

w2 ď ρ,

r ` ρ ď m´ 1.
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To derive the parameters of [BBBG23], we have performed a simple exhaustive search
over the finite set of possible pairs pr, ρq.

What would be more interesting from a theoretical perspective is to find a closed
form expression for the optimum provided it exists. We have addressed this question in
the case of the basic RQC scheme, where n1 “ n. The relevant ILP becomes

$

’

’

’

’

&

’

’

’

’

%

3nr ` nρ ď p2n´ 1qm,
w1 ď r,

w2 ď ρ,

r ` ρ ď m´ 1.

The first inequality is equivalent to 3r ` ρ ď 2m´m{n. Since we restrict ourselves to
integer values for pr, ρq and since n ă m ă 2n in concrete parameters, we have replaced
this constraint by 3r ` ρ ď 2m´ 2. A classical method to solve ILP is to remove the
requirement that r and ρ are integers and to consider the associated relaxed Linear
Program (LP). If we further assume that 1 ` w1{w2 ă 3, an elementary geometrical
argument shows that the LP solution is at the intersection of the lines r` ρ “ m´ 1 and
3r ` ρ “ 2m´ 2, i.e., r “ pm´ 1q{2 and ρ “ pm´ 1q{2. Since m is always odd1, this
corresponds to an integer solution and thus it is also the optimal solution to the ILP.

The impact on the security on RQC is as follows:

Fact 4. When n ă m ă 2n, w1 ą w2 and 1` w1{w2 ă 3, our approach improves the
cost of the best known combinatorial attack on the scheme.

Proof. The best attack on NHRD which does not exploit the structure corresponds
to ρ “ 0 in our strategy and thus we already outperform this technique. Since the
security of RQC also reduces to this second problem [Agu+20, Theorem 5.1], let us now
compare ourselves to the best combinatorial attack on an RD instance of parameters
pm, 2n, n,w1q. Using [AGHT18], its complexity is rOpqw1pm´r1q´mq, where

r1
def
“

Y

mpn´1q
2n

]

“ pm´ 1q{2´
P

m´n
2n

T

“ m´3
2 .

The same cost exponent can also be obtained with our method by performing the free
guess S2 Ă V ‘Z “ Fqm . We can include it in the previous ILP if we replace r`ρ ď m´1
by r ` ρ ď m. As long as 1` w1{w2 ă 3, the optimal solution to the new relaxed LP is
such that r ` ρ “ m and 3r ` ρ “ 2m´ 2, i.e., r “ pm´ 2q{2 and ρ “ pm` 2q{2. This
time this is not an integer solution and the ILP solution may be obtained by rounding
its entries to the nearest integer. In order not to violate the constraint r ` ρ “ m,
possible roundings are pr, ρq “

`

m´1
2 , m`1

2
˘

and pr, ρq “
`

m´3
2 , m`3

2
˘

. Note now that
`

m´1
2 , m`1

2
˘

violates 3r ` ρ “ 2m´ 2 while pr, ρq “
`

m´3
2 , m`3

2
˘

corresponds to the pair

1In practice, it is chosen to be a prime greater than 2.



146 Chapter 8. Rank Decoding Problem with Non-Homogeneous Errors

pr1, ρ1
def
“ r ´ r1q. The relevant comparison is thus between pr1, r ´ r1q and the former

`

m´1
2 , m´1

2
˘

. For this we consider the difference

δ
def
“

ˆ

m´ 1
2 pw1 ` w2q `

m´ 1
2 w2

˙

´

ˆ

m´ 3
2 pw1 ` w2q `

m` 3
2 w2

˙

“ pw1 ` w2q ´ 2w2 “ w1 ´ w2.

The expression of δ shows that our approach offers a better exponential factor compared
to the one of solving pm, 2n, n,w1q-RD when w1 ą w2 but not when w1 ď w2. This
improvement is by a modest factor of qw1´w2 .

We finally provide a simple example of the situation in Figures 8.1 and 8.2 below,
where w1 ą w2 and w2 ą w1 respectively. When w1 ą w2, the red point pr1,m ´ r1q
is strictly below the blue line with slope ´p1` w1{w2q which passes through the blue
point ppm ´ 1q{2, pm ´ 1q{2q, and in this case our approach is an improvement. The
condition 1`w1{w2 ă 3 reflects the fact that this blue line is always sandwiched between
x` y “ m´ 1 and 3x` y “ 2m´ 2. We have not considered the case 1` w1{w2 ě 3
(i.e., w1 ě 2w2) since it does not seem relevant from an efficiency standpoint and as it
does not correspond to any concrete parameters.
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Figure 8.1: Parameter set m “ 29, n ă m ă 2n, w1 “ 5, w2 “ 3.
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Figure 8.2: Parameter set m “ 29, n ă m ă 2n, w1 “ 3, w2 “ 5.
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Chapter9Assumption Underlying Loidreau’s
Scheme

The last chapter of this part is a joint work with Pierre Loidreau published at PQCrypto
2023 [BL23] about the cryptanalysis of schemes using distorted Gabidulin codes [Loi17;
Ara+22]. It heavily relies on the constrained linear system that Loidreau introduced in
an extended abstract presented at WCC 2022 and for which he proposed an enumeration
approach. It was also observed that its equations can be rewritten as a bilinear modeling.

My contribution was to replace the initial solving method by a more efficient one
which is directly borrowed from combinatorial attacks on RD. I have also tried to analyze
algebraic techniques on Loidreau’s bilinear polynomials. It turns out that the system
shares similarities with the Ourivski-Johansson modeling [OJ02] and we can exhibit
degree falls in a rather similar way as in [Bar+20a].
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9.1 Preliminaries
This section gives some background on the scheme as presented at WCC 2022 and on the
system that was proposed to distinguish the underlying Gabidulin code from a random
one.

9.1.1 Loidreau’s Cryptosystem
For integers n ď m and k ď n, we consider a Gabidulin code Gg

def
“ Ggpn, k,mq as in the

previous chapter defined from a vector g P Fnqm whose coefficients are linearly independent
over Fq. We still denote by Gg.Decodep.q a polynomial time decoding algorithm that can
decode errors of weight up to tn´k2 u and we let GLnpFqmq be the group of non-singular
matrices of size n with entries in Fqm .

The scheme will also require an extra parameter λ P N involved in the masking. Its
value is taken such that λ ă tpn´kq{2u for correctness but there are also extra constraints
due to previous cryptanalysis. When λ “ 2 and when the code rate k{n is ě 1{2, Coggia
and Couvreur gave a distinguisher which can be turned into an efficient attack [CC20].
Their distinguisher actually works for arbitrary λ as long as k{n ě 1´ 1{λ and there
still exists an attack which is polynomial if λ “ 3 [Gha22] and a priori exponential if
λ ą 3 [Gha22; LP21]. The cost of latter should remain threatening as [LP21] advised to
choose values of λ ě 3 such that k{n ă 1´ 1{λ.

Keygen(1ν):

• Pick a random element g P Fnqm whose support has dimension n and construct
Ggpn, k,mq the Gabidulin code of dimension k associated to g.

• Select G P Fkˆnqm an arbitrary full-rank generator matrix for this code. A standard
method is to start from the matrix whose rows are the vectors grjs for j P t0..k´1u
and then to multiply on the left by a random matrix in GLkpFqmq.

• Pick V a random Fq-subspace of Fqm of dimension λ (by sampling λ random
elements in Fqm which are linearly independent) and sample P a random invertible
matrix of size n whose entries belong to V.

• Set pk def
“ Gpub

def
“ GP´1 and sk def

“ pG,P q.

Encrypt(pk, m P Fkqm):

• Sample e P Fnqm a random vector of weight |e| ď tpn´ kq{2λu.

• The ciphertext is c def“ mGpub ` e.
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Decrypt(sk “ pG,P q, c):

• Decode the noisy codeword cP using the algorithm Gg.Decodep.q. Correctness
follows from the fact that the weight of eP is upper bounded by

|e|ˆ λ ď tpn´ kq{2λˆ λu “ tpn´ kq{2u.

9.1.2 Security
Let Cpub be the Fqm-linear code of parameters rn, ks generated by the public matrix
Gpub. Even though no security proof is given, it is easy to see that IND-CPA is related
to the difficulty of solving the following two problems:

• Distinguish the code Cpub from a random Fqm-linear code with the same parameters.

• Solve a generic RD instance of parameters pm,n, k, t def“ tpn´ kq{p2λquq.

In this chapter, we will address the hardness of the first one.

9.1.3 A Constrained Linear System
We now describe the equations introduced by Loidreau in order to build a distinguisher.
More precisely, its solutions allow to devise a polynomial time decryption algorithm for
the public code Cpub (see Proposition 9.2).

Let r def“ n´k. In the following, we overline with a hat data that are publicly known.
For instance, let pHpub P Frˆnqm an arbitrary parity-check matrix for Cpub and for α P Fqm
a normal element, let pHnorm P Frˆmqm be the matrix whose entry in row i and column j is
equal to αri`j´2s for any i P t1..ru and j P t1..mu. Note that pα

def
“

`

α, αr1s, . . . , αrm´1s˘

is a basis of Fqm over Fq. Since the dual of a Gabidulin code is again a Gabidulin code,
there exists a vector h P Fnqm whose coefficients are linearly independent over Fq such
that a parity-check matrix for Gg is

H def
“

»

—

–

hr0s

...
hrr´1s

fi

ffi

fl

P Frˆnqm . (9.1)

Then, it is easy to see that there exists a unique matrix S P GLrpFqmq such that

S pHpub “ HPT. (9.2)

This is because HPTGT
pub “ HPTpP Tq´1GT “ HGT “ 0 and thus HPT is a parity-

check matrix for Cpub. Equation (9.2) then follows since any parity-check matrix, a
fortiori, pHpub, is obtained by change of basis. Another straightforward proposition is
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Proposition 9.1. Let H P Frˆnqm be a parity-check matrix for Gg as in Equation (9.1).
There exists a matrix M P Fmˆnq of rank n such that

H “ pHnormM . (9.3)

Proof. Let h “ hr0s “ ph1, . . . , hnq denote the first row of H. We consider the matrix
M P Fmˆnq whose i-th column corresponds to the vector of length m over Fq formed by
the coordinates of hi in the basis pα, for i P t1..nu. We have H “ pHnormM simply by
construction. Finally, as h1, . . . , hn are linearly independent over Fq by definition of a
Gabidulin code, the matrix M is necessarily of full rank.

By combining Equation (9.2) and Equation (9.3) from Proposition 9.1, we obtain
S pHpub “ pHnorm

`

MP T˘. It will be relevant to view this equality as a linear system in
the entries of S and T def

“ MP T under the constraint that the coefficients of T belong
to a small Fq-subspace of dimension λ. The following proposition indeed shows that any
solution meeting this condition leads to a polynomial-time decryption algorithm.

Proposition 9.2. Let r “ n ´ k and let pHpub be a parity-check matrix for Cpub. Let
α P Fqm be a normal element and let pHnorm P Frˆmqm be the matrix whose entry in row i

and column j is equal to αri`j´2s for i P t1..ru and j P t1..mu. From the knowledge of
any non-singular matrix V P Frˆrqm and W PWmˆn of rank n such that

V pHpub “ pHnormW (9.4)

and where W is an Fq-vector subspace of Fqm of dimension ď λ, it is possible to decrypt
any ciphertext in polynomial time.

Proof. We consider an arbitrary ciphertext c “ mGpub ` e P Fnqm such that |e| ď
tpn´ kq{2λu and also V P GLrpFqmq, W PWmˆn as in the statement of the proposition.
By definition of c we have pHpubc

T “ pHpube
T and thus

V pHpube
T “ pHnorm WeT

loomoon

def
“ pe1qT

.

Since the vector space W is of dimension ď λ, the error e1 has weight |e1| ď λ |e| ď
tpn´ kq{2u. We can therefore use an efficient decoder of the public Gabidulin code with
parity-check matrix pHnorm P Frˆnqm to recover this vector. Finally, the map e ÞÑ eW T is
injective as W has rank n ď m. This allows to retrieve e and the vector m P Fkqm such
that mGpub “ c´ e in a unique way.

To conclude this section, note that a naive approach would be to enumerate all
solutions pV,Wq to Equation (9.4) and to test if they satisfy the constraint, i.e., the W
matrix has its entries in a small dimensional Fq-vector subspace of Fqm . This is clearly
infeasible because the solution set without the imposed condition is an Fqm-vector space
of dimension at least r2 ` pm´ rqn.
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9.2 Combinatorial Approach
To exploit the constraint added to Equation (9.4), the idea adopted at WCC 2022 was to
enumerate candidate bases µ P Fλqm for the secret vector space W. Any such candidate
was then completed into a basis of Fqm in which one could express the coefficients of the
matrices V and W . In such a way, Equation (9.4) can be rewritten as a linear system
over Fq. Since each entry in W is assumed to belong to the Fq-vector space spanned by
µ, only λˆmn unknowns over Fq are introduced for this matrix instead of the naive
m ˆ mn. Finally, as one typically has rmn " λmn ` mr2, this initial guess can be
tested by solving the resulting linear equations over Fq to check if they have a non-zero
solution. As is usual for this type of approach, the total cost contains two factors:

• an exponential one coming from enumerating the bases;

• a polynomial one which corresponds to the linear system solving over Fq.

9.2.1 Proposed Algorithm
We can cheaply gain in the exponential factor by employing the general technique already
used in combinatorial attacks on RD [OJ02; GRS16; AGHT18]. Indeed, it is sufficient
to know (a basis for) a γ-dimensional vector space U , γ ě λ, which contains V to apply
the same algorithm provided that γ is not too large. The advantage is that it is always
easier to find such a U than to guess a basis of V directly, the extreme case being γ “ m
for which we succeed with probability 1. Here, we even note that a vector space U which
contains an arbitrary multiple xV for x P F˚qm instead of simply V is enough for our
purposes. This is because any pair pxV , xW q is a solution to the constrained linear
system. The following Proposition 9.3 gives the precise upper bound on γ for our attack
to succeed.

Proposition 9.3. Assume that γ ě λ P N is such that

rn ě γn` r2. (9.5)

If ν P Fγqm is a basis for a vector space U which contains a multiple xV for x P F˚qm , the
linear system over Fq derived from Equation (9.4) by writing the coefficients of the secret
matrix W in the basis ν is expected to have a solution space of dimension 1. If ν does
not correspond to such a basis, this linear system will not have a non-zero solution with
overwhelming probability.

From this proposition, we can then use the same algorithm as sketched at the
beginning of Section 9.2 with γ instead of λ provided that γ ď rp1´ r{nq.

9.2.2 Estimated Cost
The exponential factor is now given by the inverse of the probability that a fixed subspace
U of dimension γ contains a subspace of the form xV for some x P F˚qm . According to
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[AGHT18, §III.B.], this factor can be estimated by Θpqλpm´γq´mq “ Θpqpλ´1qm´λγq. We
make the standard assumption that the optimum complexity corresponds to the highest
success probability regardless of the polynomial factors. This means that we consider
the largest possible value for γ, i.e., γ def

“ trp1´ r{nqu.
It is still worth discussing the complexity of solving the linear system over Fq. This

is especially relevant because it is bigger (by a polynomial factor) than the ones from
the former combinatorial attacks on RD.

• On the matrix of size rnmˆ pγn` r2qm over Fq which is associated to it, a first
approach is to apply Gaussian elimination. The corresponding cost in Fq-operations
can be estimated by Oppγn ` r2qmqωq, where 2 ď ω ď 3 is the linear algebra
constant.

• However, checking that a linear system is consistent does not require to compute
a row echelon form. Instead, we can make use of the Wiedemann algorithm
which may offer an advantage since the input matrix is sparse. Note indeed
that the equations have about mpr ` γq non-zero coefficients while they contain
mpr2 ` γnq " mpr ` γq unknowns. The standard estimate for this algorithm (i.e.,
Equation (2.8) with D “ 1) would then give a complexity of

O
`

m3pr ` γqpγn` r2q2
˘

. (9.6)

The final estimate at WCC 2022 was in fact a lower bound on the overall cost by replacing
Equation (9.6) by the smaller value m3r5 (without any constant in front of it). We
follow exactly the same method so that the difference will only lie in the exponential
factor. Recalling that r “ n´ k and by introducing the code rate R def

“ k{n, our lower
bound reads

m3pn´ kq5qpλ´1qm´λtnp1´RqRu. (9.7)

9.2.3 Applications
We instantiate Equation (9.7) with the parameters of the WCC 2022 paper and the ones
of LowMS [Ara+22]. We believe that the comparison is fair since the latter have been
obtained from the content presented at WCC 2022. In Table 9.1, Column “Lower bound”
contains the value of the binary logarithm of the cost of Equation (9.7). Our results
always improve the complexity of the structural attack simply because we have a better
exponent. If this complexity becomes smaller than the cost of the best RD attack, this
might lead to re-evaluate parameters in [Loi17] and [Ara+22].

9.3 A Bilinear System
Our second contribution was to partially analyze algebraic methods on the bilinear
system that had been introduced by Loidreau (Modeling 16). It turns out that the
original enumeration strategy corresponds to fixing the smallest block of variables as
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Table 9.1: Cost estimate on the parameters of [Loi17] and [Ara+22].

pm,n, k, λq Security Source Lower bound Former
p128, 128, 20, 3q 128 WCC 2022 263 311
p128, 128, 44, 3q 128 WCC 2022 225 308
p59, 50, 25, 3q 128 LowMS 123 158
p67, 66, 33, 4q 128 LowMS 180 244
p83, 74, 37, 3q 192 LowMS 157 211
p79, 78, 39, 4q 192 LowMS 206 282

described in Section 2.5.2.3 when mentioning techniques tailored to the bilinear structure.
The same approach was also followed in [OJ02, §3.2. Strategy 2].

This section presents the input equations and it provides early comments. We refer
to Section 9.4 for a more detailed analysis.

9.3.1 Statement of the Modeling
Let pβ denote an arbitrary basis of Fqm over Fq. For an element a P Fqm , we consider
~a P Fmq the m-dimensional vector of its coordinates over pβ, so that pβ~aT “ a. For µ P Fqm ,
we also defineMµ P Fmˆmq the matrix of multiplication by µ in the basis pβ. This matrix
is such that

@a, b P Fqm , b “ µaô ~b “ ~aMT
µ .

Note that this choice of notation is implicit with respect to the basis. The claimed
bilinear system is as follows.

Modeling 16. Let pHpub “ pphijq
r,n
i“1,j“1 and let pHnorm “ pα

ri`u´2sqr,mi“1,u“1. We consider
the bilinear equations over Fq in the non-zero unknowns ~viu, b

p`q
ij and linearly independent

vectors ~µ` P Fmq which are given by
"

@i P t1..ru
@j P t1..nu ,

r
ÿ

u“1
M

phuj
~viu

T
“

m
ÿ

u“1

λ
ÿ

`“1
b
p`q
ujMαri`u´2s ~µ`

T. (9.8)

Modeling 16 contains mrn affine equations over Fq. The linear parts involve mr2

variables ~viu while the bilinear parts involve λmn`λm variables bp`quj and ~µ` respectively.
Proposition 9.4 states that its solutions are actually equivalent to the ones of the linear
equations (9.4) with the relevant constraints added.

Proposition 9.4. Let rV “ pvijq P Frˆrqm and let ĂW “ pwijq PWmˆn which satisfy the
constrained linear equations (9.4), where W is a λ-dimensional subspace of Fqm that
contains the entries of ĂW . We consider a basis pµ1, . . . , µλq P Fλqm and we denote by

wij
def
“

λ
ÿ

`“1
b
p`q
ij µ` (9.9)



156 Chapter 9. Assumption Underlying Loidreau’s Scheme

the unique decomposition of wij in this basis. Then, the values ~viu, b
p`q
ij and ~µ` correspond

to a solution to Modeling 16. Conversely, any solution ~viu, b
p`q
ij , ~µ` to Modeling 16 yields

a pair of matrices rV “ pvijq and ĂW “ pwijq where wij is defined by Equation (9.9)
for which Equation (9.4) holds and such that coefficients of ĂW lie in a λ-dimensional
subspace.

If pV ,W q stands for the genuine pair of matrices which is implicit from the description
of the scheme, we have already seen that any p rV ,ĂW q “ pxV , xW q, x P F˚qm allows us
to decrypt. Concretely, to reduce the number of solutions to Modeling 16, we will thus:

• fix µ1 to 1 and choose a basis pβ whose first element is also equal to 1;

• target a basis in systematic form, i.e.,

p1, µ2, . . . , µλq
T def
“

»

–

01ˆpm´λq
Iλ

R1

fi

fl
pβ

T
, (9.10)

where R1 P Fpλ´1qˆpm´λq
q . We cannot always guarantee to have a solution in this

way but the success probability is constant.

Similar specializations have already been used in previous works, see for instance [CS96,
§3.4] or [OJ02, §3.1.].

9.3.2 Particular Features
Our goal will be to understand the early steps of the generic Gröbner basis algorithm on
Modeling 16. We start by describing the specificities in the equations that we have used
in the analysis.

An obvious one is the bilinear shape. More precisely, we recover the matrix product
structure as presented in Section 2.5.2.2. By that we mean equations which can be
viewed as the entries of a matrix M “ AXY , where A is a matrix of scalars and where
X and Y are matrices of unknown coefficients. Using the notation from Modeling 16,
we can indeed write each column wj “ pw1,j , . . . , wm,jq P Fmqm of the unknown matrix
W as wT

j “ Cjpµ1, . . . , µλq
T “ CjRpβ

T
, where Cj

def
“ pb

p`q
i,j q

m,λ
i“1,`“1 and where the rows

of R P Fλˆmq are the vectors ~µ` for ` P t1..λu. We then consider the system

Modeling 16-Fqm. For j P t1..nu, let xhj P Frqm denote the j-th column in pHpub. There
are r bilinear equations in the entries of rV , R and Cj from the equality

rVxhj
T
“ pHnormCjRpβ

T
.

By considering all columns, we obtain an affine bilinear system containing rn equations
over Fqm in r2 unknowns vij over Fqm and λmn` λm unknowns over Fq.
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Note that the former Modeling 16 captures exactly the same information as the
system over Fq obtained from Modeling 16-Fqm by taking as variables the coefficients
of the vectors ~viu instead of the vij ’s and then by unfolding over the small field. This
operation has been employed several times in the previous chapters and it invites us
to study the role of the extension field. So far, the analysis of the full system over Fq
could be essentially boiled down to the one of the initial system over Fqm under certain
assumptions. Here, however, the situation is less simple. For instance, it will not be
sufficient to analyze Modeling 16-Fqm to understand the computation on Modeling 16
over Fq. This may be due to the following simple fact: if we choose the normal basis
pβ “ pα to unfold the equations, we recover the first row of pHnorm.

Our proofs will also make use of another related system. Its equations can be
obtained from Modeling 16-Fqm by iterating the Frobenius map and by reducing modulo
the field equations of Fq involving the variables from R and Cj for j P t1..nu (see for
example the proof of Proposition 7.7 in Chapter 7 for a similar construction). In that
respect, it is essentially equivalent to Modeling 16.

Modeling 17. For j P t1..nu, let xhj P Frqm denote the j-th column in pHpub. For any
` P t0..m´ 1u, we consider the r polynomials obtained by applying the Frobenius map `
times on Modeling 16-Fqm (the r`s notation for matrices and vectors is the same as in
the previous chapters) and by reducing modulo the appropriate field equations. They are
given by

V r`s
ˆ

z

hj
r`s

˙T
“ pHr`s

normCjR
´

pβ
r`s
¯T

. (9.11)

The main interest of Modeling 17 is theoretical. In particular, it would not be
suitable to solve it using naive Gröbner basis algorithms because its equations have very
high degree in the vij variables.

9.4 Degree Falls from Jacobians
We have tried to characterize the first degree fall polynomials in the affine bilinear
modeling. Our results heavily rely on the content recalled in Section 2.5.2.1 about the
connection between syzygies for homogeneous bilinear systems and kernels of Jacobians.
More precisely, we can exploit the product structure described in Section 2.5.2.2 to show
that these matrices have a specific shape. Using the above relationship, we can then
deduce the existence of syzygies in degree λ` 2 for the bilinear parts and thus degree
fall polynomials of degree λ` 1 for the affine equations.

Similarly to the MaxMinors system [Bar+20a] originally derived from degree fall
polynomials in the Ourivski-Johansson’s modeling [OJ02] and that can also be computed
directly, the equations that we exhibit are minors of matrices of linear forms which are
public. The main difference with this former work is that they come from the kernels of
the two Jacobians which are naturally associated to Modeling 16 while only one of these
matrices was relevant in [Bar+20a].
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For the sake of simplicity, we give the results for the non-specialized version of our
systems. They can be easily adapted if we fix µ1 to 1 and if we choose a matrix R in
systematic form as presented above.

9.4.1 Jacobian with Respect to R
We start from the Jacobian matrices with respect to the unknowns which are the entries
of R. The situation for this block of variables is analogous to the one in [Bar+20a, §5.1].
As in their work, we observed that all degree falls over Fq from these matrices were
obtained by projecting over Fq degree fall polynomials whose coefficients are in Fqm .
This means that we can focus on Modeling 16-Fqm rather than on Modeling 16 for this
part of the analysis.

We restrict ourselves to the bilinear components in Modeling 16-Fqm and we consider
an arbitrary index j P t1..nu. Recall that for a matrix M , rowpMq stands for the row
vector formed by the concatenation of its rows. A direct application of Lemma 2.3 with
X

def
“ R, A def

“ pHnormCj and Y
def
“ pβ

T
yields

JacrowpRq
´

row
´

pHnormCjRpβ
T¯¯

“ pHnormCj b pβ. (9.12)

The full system can also be viewed as the following matrix product

´

In b pHnorm

¯

»

—

–

C1
...
Cn

fi

ffi

fl

Rpβ
T
.

In the same manner, we can obtain

JacrowpRq

¨

˚

˝

row

¨

˚

˝

´

In b pHnorm

¯

»

—

–

C1
...
Cn

fi

ffi

fl

Rpβ
T

˛

‹

‚

˛

‹

‚

“

»

—

–

pHnormC1
...

pHnormCn

fi

ffi

fl

b pβ. (9.13)

Using Lemma 2.1, vectors in the kernel of such Jacobians correspond to syzygies for the
bilinear parts whose coefficients are polynomials in the Cj variables. They provide the
following degree fall equations for the affine system:

Lemma 9.1. In Modeling 16-Fqm , we find at least
`

nr
λ`1

˘

degree falls from degree λ`2 to
λ` 1. The ones coming from the Jacobian of Equation (9.13) are given by the maximal
minors of the matrix

N
def
“

»

—

—

–

rV xh1
T

pHnormC1
...

rV xhn
T

pHnormCn

fi

ffi

ffi

fl

. (9.14)
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Among these minors and for j P t1..nu, we may find in particular those of the matrix

N pjq def“ N t1`rpj´1q..rju,˚ “
”

rVxhj
T

pHnormCj

ı

.

These latter polynomials come from the Jacobian of Equation (9.12).

Even before giving the proof of Lemma 9.1, it is easy to see from the definition of
Modeling 16-Fqm that all the N pjq matrices are not full-rank (a fortiori, N) if and only
if p rV ,C1, . . . ,Cnq are components of a solution to Modeling 16-Fqm .

Proof. (Similar to in [Bar+20a, §5.1]). We do the proof for a single matrix N pjq. By
Equation (9.12), it is sufficient to look at the left kernel of pHnormCj . We then compute
the kernel vectors vJ of Lemma 2.2 for this matrix of linear forms, namely

vJ
def
“

¨

˚

˚

˚

˝

0
loomoon

jRJ

, . . . , p´1q``1
ˇ

ˇ

ˇ

pHnormCj

ˇ

ˇ

ˇ

Jztju,˚
looooooooooooooomooooooooooooooon

j“j`PJ

, . . .

˛

‹

‹

‹

‚

, #J “ λ` 1, J Ă t1..ru.

Degree fall equations correspond to the multiplication by the linear parts. From the
present vector vJ , we obtain the degree λ`1 polynomial pvJq rVxhj

T
. Finally, it coincides

with the maximal minor
ˇ

ˇ

ˇ
N pjq

ˇ

ˇ

ˇ

J,˚
by Laplace expansion along the first column. The

reasoning is the same for N if we replace Equation (9.12) by Equation (9.13).

Bilinear structure. The degree fall polynomials of Lemma 9.1 have degree λ ` 1.
Perhaps more interestingly, Laplace expansion along the first column of N in Equation
(9.14) also shows that they are bilinear in the entries of rV (which belong to Fqm) and in
the maximal minors of the matrix D with coefficients in Fq defined by

D
def
“

»

—

–

C1
...
Cn

fi

ffi

fl

.

Similarly, the maximal minors of N pjq are bilinear in the entries of rV and in the
`

m
λ

˘

maximal minors of Cj . Such a structure has already been encountered in this manuscript,
especially in SM-Fqm (Modeling 14) which involves a block of linear variables over the
extension field Fqm and a block of minor variables over Fq.

Unfolding over Fq. In our experiments on Modeling 16, we found m
`

nr
λ`1

˘

(linearly
independent) degree falls from degree λ`2 to degree λ`1 which contain these variables1.

1Section 9.4.2 will give another type of degree fall polynomials in the same degree. As the tri-degree
is different, it is still possible to distinguish these two sets of equations in Magma by considering several
weighted orders.
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Clearly, they should coincide with the unfolding over Fq of the degree fall polynomials
described in Lemma 9.1 for Modeling 16-Fqm . To project the equations, note that we
also need to express the entries of rV over Fq. This yields r2m variables ~viu and thus
r2m

`

mn
λ

˘

bilinear monomials appearing in these polynomials (but only r2m
`

m
λ

˘

if we
restrict ourselves to one matrix Cj).

9.4.2 Jacobian with Respect to the Cj’s
A particularity of Modeling 16 compared to the RD relevant systems is that the Jacobian
with respect to the other block of variables provides degree fall polynomials of low degree,
namely λ` 1. One cannot grasp them by studying Modeling 16-Fqm only.

Absence of early degree falls in Modeling 16-Fqm. First, let us explain why
we do not expect degree fall polynomials of small degree coming from this Jacobian
for Modeling 16-Fqm . The set of bilinear components in this system can be written
as S def

“ Ynj“1Sj , where the polynomials in Sj are defined as the entries of the
matrix pHnormCjRpβ

T
. Since the Rpβ

T
part does not depend on j, we have that

JacrowpCjq prowpSjqq “ JacrowpC1q prowpS1qq. The whole Jacobian then reads

JacrowpCq prowpSqq “ In b JacrowpC1q prowpS1qq .

Finally, to compute JacrowpC1q prowpS1qq, we apply Lemma 2.3 once again this time with
X

def
“ xHnorm, A

def
“ C1 and Y def

“ Rpβ
T
. We obtain

JacrowpC1q prowpS1qq “ pHnorm b pβRT.

This matrix is of size rˆmλ and its entries are linear forms in the R variables. However,
we cannot pursue by applying Lemma 2.2 since r ă mλ in general. We expect a trivial
left kernel for this matrix.

Additional degree falls for Modeling 16. We analyze the situation over Fq by
studying Modeling 17 introduced in Section 9.3.2. From now on, we adopt the normal
basis pβ “ pα. As previously, we will reason in a similar way for all indexes j P t1..nu.
For j P t1..nu and ` P t0..m´ 1u, let us consider Equation (9.11) and for u P t1..ru, let
us denote by gu,`,j the bilinear polynomial

gu,`,j
def
“

ˆ

xH
r`s

norm

˙

u,˚

CjR
´

pαr`s
¯T
“

´

pαr``u´1s
¯

CjR
´

pαr`s
¯T

.

We also keep track of the corresponding linear part Lu,`,j
def
“ V

r`s
u,˚

ˆ

xhj
r`s
˙T

so that

the full equation reads gu,`,j ´ Lu,`,j “ 0. We then group the equations of Modeling
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17 according to the value of v def
“ u` `´ 1 mod m. We obtain the following relations,

where all ` indexes are modulo m and where xH inv
def
“

»

–

pα
. . .

pα´rr´1s

fi

fl P Fmˆrqm :

“

L1,v,j L2,v´1,j . . . Lr,v´r`1,j
‰

“
“

g1,v,j . . . gr,v´r`1,j
‰

xhj
r`s

´

V r`s
¯T
“ pαrvsCjR

„

´

pαrvs
¯T ...

´

pαrv´r`1s
¯T



“ pαrvsCjR

ˆ

xH
rvs

inv

˙T
.

Using Lemma 2.3 with A def
“ pαrvs, X def

“ Cj and Y
def
“ R

ˆ

xH
rvs

inv

˙T
gives

JacrowpCjq
`

g1,`1,j . . . gr,`r,j
˘

“ pαrvs bxH
rvs

invR
T.

Finally, the same proof technique used for Lemma 9.1 leads to

Lemma 9.2. For pα P Fmqm a normal basis, let xH inv P Fmˆrqm be the matrix

xH inv
def
“

»

–

pα
. . .

pα´rr´1s

fi

fl .

For any fixed column hj in Hpub, ` P t0..m ´ 1u and v P t0..m ´ 1u, there are
`

r
λ`1

˘

degree falls from degree λ` 2 to λ` 1 given by the maximal minors of the matrix

N pj,`,vq
def
“

»

—

–

xhj
r`s

´

V r`s
¯T

R

ˆ

xH
rvs

inv

˙T

fi

ffi

fl

.

The equations obtained in this way from all columns hj in Hpub, all indexes ` and
all moduli v form a system of nm2` r

λ`1
˘

polynomials of degree λ` 1. They can also be
seen as bilinear in the entries of the V r`s’s and in the maximal minors rT of R. If we
come back to Modeling 16 over Fq which is the relevant one for a potential attack, this
system corresponds to an extra set of nm2` r

λ`1
˘

polynomials of degree λ` 1 which are
produced in degree λ` 2 by the computation.

9.4.3 Solving a Degree Fall System
Instead of simply considering Modeling 16, our results provide another method by
focusing on a system of degree fall polynomials of degree λ ` 1. It might be the one
given by Lemma 9.1, Lemma 9.2 or a subset of such equations. As we have just seen,
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this approach would benefit from the compactness of these polynomials due to the
specific bilinear shape. Its analysis is left for future work, including the study of linear
dependencies and the possibility of using hybrid techniques.

In the case of RD, solving the system given by the MaxMinors polynomials has led to
a significant improvement over previous attacks based on Ourivski-Johansson. The same
will not necessarily hold for Loidreau’s. First, the ratio between equations and variables
in Lemma 9.1 or Lemma 9.2 seems less favorable than in [Bar+20b]. Second, our tests
suggest that the degree falls in degree λ` 2 do not mark the end of the computation
when running F4 on Modeling 16 while it was often the case for RD [LP06; Bar+20a].
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Chapter10Cryptanalysis of Regular Syndrome
Decoding

This chapter contains a joint work with Morten Øygarden [BØ23] on a new algebraic
attack on the Regular Syndrome Decoding problem (Problem 3.9).

We consider a folklore polynomial system containing the parity-check equations
plus additional ones expressing the particular error distribution. Based on a careful
theoretical analysis of this modeling, we show that the approach by solving this system
may outperform standard decoding techniques on some concrete parameter sets used in
PCGs. To the best of our knowledge, it is the first time that algebraic methods have
appeared to be relevant in the Hamming setting.
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10.1 Preliminaries
As we focus on applications to pseudorandom correlation generators, we will start by
giving more details on the parameters of these primitives. We will then introduce the
notion of witness degree that we use in our complexity analysis.

10.1.1 Relevant Parameters
In addition to regular errors, PCG constructions pick a structured code for better
efficiency. Naturally, its choice must still yield secure decoding instances. It was for
example proposed to use `-local codes in the Primal case, i.e., generator matrices G
with column weight equal to a small integer ` [App+17]. Note however it would not
be secure to reveal a parity-check matrix with constant locality in the Dual case, see
[BCGI18; BBMS22]. In this case, other families such as quasi-cyclic codes or MDPC
codes have been adopted.

All the corresponding variants of the Decoding Problem are conjectured to remain
hard. In particular, known solving techniques have not been able to exploit the underlying
structure. Since it is mostly aimed at modeling the regular distribution, our approach
should not change this landscape. In fact, the equations depending on the code that we
will consider are the same as in these previous attacks.

Table 10.1 contains typical parameters corresponding to [LWYY22, Table 1]. In their
work, these values are obtained from [BCGI18, Table 1] by increasing the weight t and
keeping the same code parameters k and n. The security of these instances would be 128
relying on [BCGI18] but they are thought to be much harder according to [LWYY22].
Even though the latter analysis might be flawed and even if we may not beat a more
realistic complexity (ranging between 128 and the value of [LWYY22]), our goal will be
to demontrate the feasibility of an algebraic attack in this parameter regime.

Table 10.1: PCG parameters in the Primal case [BCGI18; LWYY22].

n k t Best F2 [LWYY22] Best F2128 [LWYY22] Any field size [BCGI18]
222 64770 4788 147 156 128
220 32771 2467 143 155 128
218 15336 1312 139 153 128
216 7391 667 135 151 128
214 3482 338 132 150 128
212 1589 172 131 155 128
210 652 106 176 194 128
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10.1.2 Witness Degree
On our modeling, one can obviously apply a general-purpose Gröbner basis algorithm.
We also suggest to use XL-Wiedemann.

To estimate the parameter D in Proposition 2.7 and thus obtain the corresponding
cost, we rely on the notion of witness degree. Its original definition was given in [BFSS13]
for boolean systems.

Definition 10.1 (Witness degree, Definition 2, [BFSS13]). Let F “ tf1, . . . fmu
be an affine polynomial system over Fq and let I “ xFy be its associated ideal. For
d P N, we consider the Fq-vector spaces

Iďd
def
“ tp P I : degppq ď du ,

Jďd
def
“

#

p P I : p “
m
ÿ

i“1
gifi, and degpgiq ď d´ degpfiq for 1 ď i ď m

+

.

Note that Jďd Ă Iďd. The witness degree dwit of F is defined as the smallest integer d0
such that Iďd0 “ Jďd0 and LMpIďd0q “ LMpIq.

As explained in [BFSS13], the witness degree is the smallest integer d for which a
row echelon form of the affine Macaulay matrixMacďdpFq yields a Gröbner basis.

If the input system does not have a solution, this value can be upper bounded by the
degree of regularity of the homogenized ideal obtained by adding an extra homogenization
variable1. In other words, we have

Proposition 10.1 (Proposition 5, [BFSS13]). Let F “ tf1, . . . , fm, x
q
1´x1, . . . , x

q
n´

xnu be polynomial system in Fqrx1, . . . , xns that admits no solutions, let F pzq be the
homogenized system and let Ipzq be its associated ideal. Then dwitpFq ď dreg

`

Ipzq
˘

.

Remark 10.1. This statement was shown in the binary case but the same proof works
over an arbitrary finite field.

Note that the requirement of F being non-consistent makes sense in [BFSS13] since
they propose BooleanSolve which is a hybrid algorithm. For instance, the majority of
calls to the system solver is made for equations without any solutions. Since we use
hybrid techniques in Section 10.3, we will also rely on Proposition 10.1. However, on
the plain systems, this result cannot be applied readily to bound dwit. Instead, we will
adopt a more direct approach of inspecting affine Macaulay matrices in Section 10.2.2.

10.2 Algebraic Modeling
This section introduces the polynomial systems that we consider for the RSD problem.
We work over the polynomial ring A def

“ Fres, where each error entry ei,j is treated as an
1More formally, we apply the map given in Equation (2.5).
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indeterminate to be solved for. Our equations are obtained from the n´ k parity-checks
s “ eHT to which we add constraints coming from the regular structure. Modeling 18
is used to solve RSD over an arbitrary (large) field Fq while Modeling 19 is specific to
the binary case.

Modeling 18 (Over a large field). For a given RSD instance pH, sq over Fq, q ‰ 2,
we consider the system F def

“ P Y B, where

i) P is the set of the n ´ k linear polynomials given by the parity-check equations
s “ eHT;

ii) B is the set of quadratic polynomials that describe the regular form of the error
vector e, namely ei,j1ei,j2 “ 0 for 1 ď i ď t and 1 ď j1 ă j2 ď N .

We also include the field equations eqi,j ´ ei,j “ 0 to be certain that the ideal is
zero-dimensional. However, they will not be useful for the computation due to their
high degree. Note that this should not be a problem since our system is already very
overdetermined in practice.

Modeling 18 only captures the fact that the Hamming weight in each block is at
most 1 because we have no information on the non-zero entry. Over F2 however, we
know that it is equal to 1. We will use this by adding linear equations expressing the
fact that the sum of the coordinates within one block is equal to this value.

Modeling 19 (Over F2). For a given binary RSD instance pH, sq, we consider the
system FF2

def
“ P Y B YQF2 Y LF2, where P and B are as in Modeling 18 and where

i) QF2 is the set of field equations e2
i,j ´ ei,j “ 0 for 1 ď i ď t and 1 ď j ď N ;

ii) LF2 is the set of t linear equations 1´
řN
j“1 ei,j “ 0 for 1 ď i ď t.

Coming back to the PCG application, these systems can be employed regardless of
the instantiation. Indeed, in the Primal case, one can trivially use the public data to
reconstruct the RSD instance given in the dual form. For both modelings, let us also
notice that the main contribution is the set P containing n´k “ np1´k{nq parity-check
equations. In particular, we expect our approach to be mostly relevant on small code
rates R “ k{n. This explains why we focused on Primal in our exposition. Finally, we
see that the number of solutions is the same as in the original RSD problem. This makes
it possible to apply XL since it is equal to 1 in this regime.

10.2.1 Hilbert Series
Hilbert series are known to be instrumental in obtaining the degree of regularity. Here, we
use them to estimate the witness degree. First, we will give the ones of the homogeneous
ideals I def

“ xF phqy and IF2
def
“ xF phqF2

y associated to Modeling 18 and Modeling 19
respectively.
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Let us observe that these sequences cannot be analyzed as semi-regular systems.
Indeed, consider the equations f1

def
“ e1,1e1,2 and f2

def
“ e1,2e1,3. Since e1,1f2 “ 0 in

A{xf1y, the polynomial f2 is a non-trivial zero divisor in A{xf1y. This type of cancellation
does not depend on the particular RSD instance but rather comes from the regular
structure of e. Thus, it still makes sense to compute Hilbert series that will be valid for
generic instances of the RSD problem.

10.2.1.1 Hilbert Series of Modeling 18
We focus on F “ P Y B, where P are the parity-check equations and where B describes
the regular structure of the error vector. The first step will be to compute the Hilbert
series HSpzq by monomial counting, for S def

“ A{xBphqy. Since S is not a polynomial
ring, we will not formally speak about (semi-)regular sequences over S. Yet, we still
want to capture the core idea of the remaining parity-check equations behaving nicely,
by introducing the following assumption for Modeling 18.

Assumption 12. Consider an instance F “ P Y B of Modeling 18 and let dreg be
the degree of regularity of I “ xF phqy. Define the quotient ring S “ A{xBphqy and let
Pphq “ tpphq1 , . . . , p

phq
n´ku denote the set of linear parity-check equations. We assume that

for 1 ď i ď n ´ k, gipi “ 0 in S{xp1, . . . , pi´1y with deg pgipiq ă dreg implies gi “ 0 in
S{xp1, . . . , pi´1y.

Relying on this assumption, we can obtain the Hilbert series for I “ xF phqy.

Theorem 10.1. Under Assumption 12, the Hilbert series of the homogeneous ideal
I “ xF phqy associated to Modeling 18 is given by

HA{Ipzq “
„

p1´ zqn´k
´

1`N z
1´z

¯t


`

, (10.1)

where r.s` means truncation after the first non-positive coefficient.

The proof of Theorem 10.1 easily follows from the following lemmata.

Lemma 10.1. Let S denote the quotient ring A{xBphqy, where Bphq consists of the
quadratic parts of the structural equations from Modeling 18. We have

HSpzq “
´

1`N z
1´z

¯t
. (10.2)

Proof. The quotient S can be seen as the set of polynomials whose monomials involve at
most one ei,j variable in each block 1 ď i ď t. For a given block, admissible monomials
have only one variable but their degree can be arbitrary. Therefore, the Hilbert series
“for one block” will be 1 `N z

1´z . Finally, a general d monomial is a product of such
monomials for distinct blocks and such that the sum of their degrees is equal to d. We
finally obtain Equation (10.2) from the standard argument [FS09b, Equation (14)] giving
the generating series of a Cartesian product of classes.
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Lemma 10.2. Let I denote the homogeneous ideal associated to Modeling 18 by taking
the top degree parts. Under Assumption 12, we have

HA{Ipzq “
”

p1´ zqn´kHSpzq
ı

`
.

Proof. This may be seen as a particular case of [Bar04, §3.3.2]. We give the proof here
for the sake of completeness. To simplify notation, we write tf1, . . . , fn´ku for the set
of homogeneous parity-check equations Pphq. For 1 ď j ď n´ k, we denote by Ipjq the
ideal xBphq, f1, . . . , fjy in A and Ip0q “ xBphqy. For 1 ď j ď n´ k and up to the degree
of regularity of I, Assumption 12 states that we have the exact sequence of vector spaces
when d ă dreg:

0 Ñ pA{Ipj ´ 1qqd´1 Ñ pA{Ipj ´ 1qqd Ñ pA{Ipjqqd Ñ 0.

This gives the following equality between Hilbert functions

HFA{Ipj´1qpd´ 1q ´HFA{Ipj´1qpdq `HFA{Ipjqpdq “ 0. (10.3)

Consider now the abstract sequence hd,j defined by hd,j “ dimFqpSdq if j “ 0 or d “ 0
and the induction relation

hd,j “ hd,j´1 ´ hd´1,j´1. (10.4)

Let Gj denote the generating series for phd,jqdě0. From Equation (10.4) and by
multiplying by z we easily obtain Gjpzq “ p1 ´ zqGj´1pzq. The generating series for
phd,0qdě0 being G0pzq

def
“ HSpzq we get Gn´kpzq “ p1 ´ zqn´kHSpzq. As long as the

involved quantities are positive, Equation (10.3) and Equation (10.4) may be seen as
the same relation. Therefore, the final Hilbert series is

HA{Ipzq “
”

p1´ zqn´kHSpzq
ı

`
.

10.2.1.2 Hilbert Series of Modeling 19

Modeling 19 contains extra structural equations, starting from the field equations in
QF2 . A difficulty arises when adding the last set of equations LF2 since it yields another
type of cancellation. For 1 ď i ď t and 1 ď j0 ď N , we indeed have

ei,j0

˜

´

N
ÿ

j“1
ei,j

¸

“ 0 mod
 

e2
i,j0 , tei,j1ei,j2uj1ăj2

(

. (10.5)

In other words, any polynomial in LphqF2
is a zero divisor in A{xBphq YQphqF2

y. To keep the
same type of analysis as with Modeling 18, we may use LF2 to remove t variables. More
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formally, we define the graded ring homomorphism

L : F2res ÝÑ F2rxs (10.6)
ei,j ÞÝÑ xi,j , for 1 ď i ď t and 1 ď j ă N

ei,N ÞÝÑ
N´1
ÿ

j“1
xi,j for 1 ď i ď t.

We also set A1 def“ L pAq, I 1 def“ LpIphqq, B1 def“ LpBphqq, Q1 def“ LpQphqF2
q and S1

def
“

A1{xB1 Y Q1y. The following lemma shows that the image of A under L is still a
polynomial ring and it describes the structure of S1.

Lemma 10.3. The image of A is isomorphic to F2rx1, . . . , xn´ts. Moreover, the ideal
xB1 YQ1y is generated by G def

“ txi,jxi,l : 1 ď i ď t and 1 ď j, l ă Nu.

Proof. The first statement is immediate from the definition of L. For the second one, we
note that G corresponds to the image of generators of Bphq YQphqF2

that do not contain
an element ei,N . To see that the image of the rest of the generators of QphqF2

does not
add anything new, we get

Lpe2
i,N q “

˜

N´1
ÿ

j“1
x2
i,j

¸

“ 0 mod G.

The cancellations of the remaining generators of Bphq were already pointed out by
Equation (10.5).

We can furthermore use Lemma 10.3 to count the number of monomials in S1. Indeed,
the possible monomials are squarefree and they contain only one variable per block due
to the shape of G. In particular, a degree d monomial defines a set of d blocks. Then,
each block contains N ´ 1 relevant variables instead of N since we reduce modulo LF2 .
This shows that there are

`

t
d

˘

pN ´ 1qd degree d monomials in S1.
The final Hilbert series will call for a similar hypothesis as with Modeling 18. Note

the strong similarity between Definition 2.13 and the following Assumption 13.

Assumption 13. Consider an instance FF2 of Modeling 19 and let dreg be the degree
of regularity of IF2 “ xF

phq
F2
y. Let L denote the ring morphism of Equation (10.6) and

let A1 def“ L pAq, B1 def“ LpBphqq, Q1 def“ LpQphqF2
q and S1

def
“ A1{xB1 Y Q1y. For every

parity-check equation pi, write p1i “ Lpp
phq
i q. We assume that for 1 ď i ď n´ k, gip1i “ 0

in S1{xp11, . . . , p1i´1y with deg pgip1iq ă dreg implies gi “ 0 in S1{xp11, . . . , p1iy.

Theorem 10.2. Under Assumption 13, the Hilbert series of the homogeneous ideal
IF2 “ xF

phq
F2
y associated to Modeling 19 is given by

HA{IF2
pzq “

”

p1`pN´1qzqt
p1`zqn´k

ı

`
, (10.7)

where r.s` means truncation after the first non-positive coefficient.



172 Chapter 10. Cryptanalysis of Regular Syndrome Decoding

The structure of the proof is the same as for Theorem 10.1. We rely on Lemma 10.4
and Lemma 10.5 below, where the notation are those recalled in Assumption 13.

Lemma 10.4. We have
HS1pzq “ p1` pN ´ 1qzqt .

Proof. From the set of generators G described in Lemma 10.3, we observe that the
admissible monomials of S1 involve at most one variable from each block, with degree at
most 1. From there, we proceed as in Lemma 10.1.

Lemma 10.5. Let IF2 denote the homogeneous ideal associated to Modeling 19 by taking
the top degree parts. Under Assumption 13, we have

HA{IF2
pzq “

”

HS1pzq{p1` zqn´k
ı

`
.

Proof (sketch). By construction and if I 1 def“ LpIF2q, we clearly have HA{Ipzq “ HA1{I 1pzq.
As in the proof of Lemma 10.2, we simplify notation by writing tf1, . . . , fn´ku for the
set of homogeneous parity-check equations LpPphqq, and for 1 ď j ď n´ k, we denote
by I 1pjq the ideal xB1,Q1, f1, . . . , fjy in A1 and I 1p0q “ xB1,Q1y. Assumption 13 ensures
that the following sequence is exact for d ă dreg.

0 Ñ pA1{I 1pjqqd´1
ˆfj
ÝÝÑ pA1{I 1pj ´ 1qqd

π
ÝÑ pA1{I 1pjqqd Ñ 0.

The rest of the proof proceeds in the same way as [BFSY05, Proposition 9], starting
from the equality between Hilbert functions

HFA1{I 1pjqpd´ 1q ´HFA1{I 1pj´1qpdq `HFA1{I 1pjqpdq “ 0. (10.8)

Similarly, we consider the sequence cd,j defined by cd,j “ dimF2pS
1
dq if j “ 0 or d “ 0

and the recurrent formula
cd,j “ cd,j´1 ´ cd´1,j . (10.9)

Let Cj denote the generating series for pcd,jqdě0. Multiplying by z in Equation (10.9)
yields p1` zqCjpzq “ Cj´1pzq and we have the border condition C0pzq “ HA1{I 1p0qpzq “
HS1pzq. This finally gives

HA{Ipzq “ HA1{I 1pzq “
„

HS1pzq
p1` zqn´k



`

.

10.2.2 Estimate for dwit
In this section, we derive an upper bound on the witness degree of Modeling 18 (resp.
Modeling 19). As explained at the end of Section 10.1, we cannot use Proposition 10.1
on systems which have a solution. In particular, our analysis assumes that the input
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modeling has a single one. Note that a polynomial system that includes field equations2
with unique solution pa1, . . . , anq has reduced Gröbner basis tx1 ´ a1, . . . , xn ´ anu.
Recalling the conditions in Definition 10.1 and if I “ xFy, we have LMpIď1q “ LMpIq
and dimpIďdq “ dimpAďdq ´ 1. We can then say that dwitpFq is the smallest degree
such that the rank of the associated affine Macaulay matrix is equal to the number of
columns minus one.

We will use this observation to provide an estimate of the witness degree. Note that
semi-regularity can be seen as the assumption that the homogeneous Macaulay matrices
have maximal rank. Here, we need the hypothesis that the affine Macaulay matrices
achieve maximal rank. Under this assumption, we use the Hilbert series derived above.
More precisely, we consider the generating functions in Equations (10.1) and (10.7)
that have been truncated to obtain these series. The coefficient in a term of degree
d ă dreg is positive and it coincides with the number of columns that cannot be reduced
in the homogeneous Macaulay matrix MacdpF phqq. When d ě dreg, the coefficient is
non-positive and it measures the number of “excess” rows after full reduction of this
matrix which should in general provide degree falls from the degree d for the affine
system F . Finally, we arrive at the following estimate for the witness degree by summing
these coefficients.

Estimate 2 (Witness degree). Let F be the polynomial system of Modeling 18 (resp.
Modeling 19) and let H denote the generating series of Equation (10.1) (resp. Equation
(10.7)). We estimate dwitpFq to be

dwit,p0,0q
def
“ min

#

d P Zą0 :
d
ÿ

j“0
rzjs pHpzqq ď 0

+

, (10.10)

where rzjs pHpzqq denotes the coefficient of the monomial zj in H.

10.3 Hybrid Approach
As is standard in algebraic cryptanalysis, the complexity of our attack mainly depends
on the value of dreg or dwit. However, for most of the parameter sets given in Table 10.1,
these degrees seem too high for straightforward algebraic techniques to be competitive.
To decrease these degrees and possibly improve the overall complexity, we propose to
add new equations in the same e variables which hold with probability π P s0, 1r. The
idea is the same as in a standard hybrid approach and it has already been encountered
several times in Part III.

Due to the tiny noise rate, a natural method is to fix linear constraints of the form
ei1,j1 “ 0. Note that this is exactly what the Prange algorithm does by picking an
information set I and then assuming that eI “ 0. In our case, this allows to reduce the

2Field equations ensure that the ideal is radical and the result follows from the Nullstellensatz. In
practice, the reliance on field equations can typically be eased for sufficiently overdetermined systems.
We will thus assume that it also holds for Modeling 18.
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number of non-zero monomials in degree d ě 1 (even though the number of equations at
hand also decreases) and thus we hope that the specialized system with these constraints
will be solved at a smaller degree. In the following, we present this technique for Modeling
18, noting that the case of Modeling 19 is analogous. More precisely, we will give two
structured ways to set variables to zero. In addition to being quite elementary, the
interest of these specializations is that we still control the behaviour of the resulting
system.

10.3.1 Error-Free Positions in All Blocks
A first strategy is to guess an equal number of noise-free coordinates in all portions
ei. A similar approach was followed in [HOSS18, B.3] to adapt ISDs to the regular
distribution. Each block in the RSD problem can be seen as a random vector of length
N and weight 1. The success probability of guessing u error-free positions is

`

N´1
u

˘

{
`

N
u

˘

.
By exploiting the regular structure, one may guess the same number of positions in each
block with probability

πpuq
def
“

˜

`

N´1
u

˘

`

N
u

˘

¸t

“ p1´ u{Nqt. (10.11)

The improvement by using Equation (10.11) instead of the naive probability in Prange
(or even in more involved ISD variants) was not really apparent in [HOSS18] (“ISD is
always the most efficient attack and has roughly the same cost when considering SD
and RSD” [HOSS18, p. 49]).

Still, we adopt the same technique on Modeling 18. In each block, we assume that
the top part of size u P t0..Nu is error-free. This should hold with probability πpuq.
The main difference with [HOSS18, B.3] is that we will consider ut ! k. Indeed, we
need to guess much fewer zero positions to decrease the solving degree of Modeling 18
while the Prange linear system “stays” in degree 1 and needs more equations. In case
of failure, we pick a permutation matrix P σ which permutes the coordinates in each
block (so that the regular structure is preserved) and we try again on the RSD instance
pHP´1

σ , sq which has error εT = P σe
T. By fixing the ei,j variables to zero for 1 ď i ď t

and 1 ď j ď u, the number of possible non-zero monomials in degree d is now given by
the coefficient of zd in

´

1` pN ´ uq z
1´z

¯t
.

To derive the Hilbert series of the specialized modeling, we need to adapt Assumption
12 to ensure that zeroizing unknowns does not introduce unexpected cancellations at
higher degree among the system of parity-check equations. Such an assumption is rather
natural since we end up in this case with a reduced RSD instance with block size N ´ u
obtained by shortening the initial (random) code. On that new assumption, the Hilbert
series of the hybrid system is

HA{I,hyb1,upzq “

„

p1´ zqn´k
´

1` pN ´ uq z
1´z

¯t


`

. (10.12)
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Hence, while both the number of equations and monomials of degree d ě 1 are affected
by adding the zero constraints, they are still of a form that is captured by the series
studied in Section 10.2.

In practice, we in fact require a weaker hypothesis. This is because the optimal
choice of u is rather small for the parameters of Table 10.1. Heuristically, we are more
confident that the resulting equations behave as expected when the number of fixed
variables is reduced. Finally, we note that a similar statement for specialized systems
is also present in the standard hybrid approach for semi-regular systems, see [BFP10,
Hypothesis 3.3]. Starting from a semi-regular sequence pf1, . . . , fmq, they assume that
all the specialized versions

!

pf1px1, . . . , xn´k,vq, . . . , fmpx1, . . . , xn´k,vqq : @v P Fkq and @0 ď k ď n
)

are semi-regular.

10.3.2 Considering Less Blocks
A slightly more general approach is to guess u P t0..Nu error-free coordinates in only
f P t0..tu blocks so that the success probability becomes πpf,uq

def
“ p1´ u{Nqf . We

recover the previous strategy with f “ t. To derive the Hilbert series, we adopt the
following Assumption 14 (which encompasses Section 10.3.1 when f “ t). For any
invertible matrix P , u P t0..Nu and f P t0..tu, let P´1

u,f denote the map that applies P´1

and then fixes the initial u variables to 0 in the last f blocks of the error.

Assumption 14. Let P be the set of parity-check equations from an instance of Modeling
18. For every permutation matrix P which stabilizes each block, for f P t0..tu and for
u P t0..Nu, we assume that Pphq ˝P´1

u,f satisfies Assumption 12 with ring A ˝P´1
u,f and

quotient ring S ˝P´1
u,f .

On that hypothesis, we finally obtain

HA{I,hyb2,f,upzq “

»

—

—

—

–

p1´ zqn´k
ˆ

1` pN ´ uq z

1´ z

˙f

looooooooooooomooooooooooooon

constraint

ˆ

1`N z

1´ z

˙t´f

loooooooooomoooooooooon

no constraint

fi

ffi

ffi

ffi

fl

`

. (10.13)

10.3.3 Witness Degree for the Hybrid Approach
Similary to what we did in Section 10.2.2 for the plain system, we now derive an estimate
of the witness degree for the specialized polynomials. As the initial modeling has a
unique solution, the majority of guesses will be wrong, i.e., resulting in non-consistent
systems. We can in this case use Proposition 10.1 to upper bound dwit by the degree of
regularity of the homogenized ideal. All that remains is to evaluate this latter quantity.

For that purpose, we assume that the hybrid systems form semi-regular sequences
when homogenized. Based on this assumption, it is straightforward to adapt the Hilbert
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series given by Equation (10.12) and Equation (10.13) to these homogenized versions in
the following manner:

HA{I,hybi,f,upzq{p1´ zq, (10.14)

for i P t1, 2u. Note that this adaptation is in line with the earlier literature [BFSS13,
Proposition 6] and that it has been accurate in our experiments (see ). Finally, the
degree of regularity is obtained in the usual way by computing the first non-positive
coefficient in the associated generating series.

10.3.4 Complexity with XL Wiedemann
The cost of the hybrid approach is computed as follows. For each couple pf, uq, f P t0..tu,
u P t0..Nu, we proceed as explained in Section 10.3.3 to obtain an upper-bound on the
witness degree denoted by dwit,pf,uq and that we use as our estimate of the real witness
degree. To apply Equation (2.8), we also need the number of columns which is the
number of monomials of degree ď dwit,pf,uq in the specialized system. It depends on both

f, u and dwit,pf,uq. For HpS,f,uqpzq “
´

1` pN ´ uq z
1´z

¯f ´

1`N z
1´z

¯t´f
, it is indeed

given by

M
pf,uq
ďdwit,pf,uq

“

dwit,pf,uq
ÿ

j“0
rzjs

`

HpS,f,uqpzq
˘

, (10.15)

where we recall that rzjs pHpzqq is the coefficient of the monomial zj in the series H.
Finally, we have to estimate the quantity nµ which is the number of non-zero terms in
one row of the Macaulay matrix. This is directly related to the monomial content of
the initial parity-check equations. We can assume that the matrix H is in systematic
form, hence nµ ď k ` 1 “ Opkq. For the specialized system, we can actually choose to
fix the f bottom blocks of the error3 to obtain the better factor nµ,pf,uq ď k ` 1´ fu.
This allows to possibly gain a few bits in the final complexity.

Proposition 10.2. Under Assumption 14 and the assumptions described in Section
10.3.3, the time complexity in Fq-operations of the hybrid approach of Section 10.3.2 on
Modeling 18 is estimated by

O

¨

˚

˝

min
fPt0..tu
uPt0..Nu

p1´ u{Nq´f pk ` 1´ fuq
´

M
pf,uq
ďdwit,pf,uq

¯2

˛

‹

‚

,

where M pf,uq
ďdwit,pf,uq

is defined in Equation (10.15) and where dwit,pf,uq is the index of the
first non-positive coefficient in the generating series given in Equation (10.14).

3There is no loss of generality: this can be seen as choosing a monomial ordering which favors the
upper variables and then fixing somehow small variables
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Remark 10.2. The cost of the hybrid approach on Modeling 19 is analogous and we refer
to [BØ23, B.2, Propostion 7].

Finally, let us mention that the specializations proposed in Sections 10.3.1 and 10.3.2
are possibly the most naive ways to fix variables in the system. Even though they seem
to lead to the best success probability as we take advantage of the distribution, other
approaches might allow to decrease the solving degree faster.

10.3.5 Discussion on the Assumptions
Our working hypotheses are of the same type as those generally encountered in algebraic
cryptanalysis. More specifically, in our systems, they concern the linear parts of the
parity-check equations. Thus, they only depend on the matrix H. Even though the
underlying code is often structured, the parity-check matrix obtained from the public
G has no reason to be special in a certain sense. Otherwise, such a property would
probably be exploited by common attacks or suggest that this instantiation is weaker.

In a very similar context, the well-known Arora-Ge system [AG11] to solve LWE is
generally assumed to be semi-regular [Alb+12; STA20]. In [ACFP14], some practical
experiments have been performed to confirm this hypothesis ([ACFP14, §7.1]). We also
note that they tried to prove (a weaker form of) it in some particular cases ([ACFP14,
A.2]). Their experiments verify that the solving degree of Arora-Ge coincides with that
of a random system of the same size.

Our experiments to test the assumptions made throughout Sections 10.2 and 10.3
can be found in Section 10.5.

10.4 Application to the Primal Setting in PCGs
This section gives the complexity of our hybrid technique on parameters sets used in the
Primal case. We consider binary instances and ones over a larger field.

We focus on the values proposed in [LWYY22, Table 1] that we recalled in Table
10.1 together with the weaker ones of [BCGI18, Table 1] where the weight t is smaller.
When n{t is not an integer, we set N “ tn{tu and we fix the last n´ tN coordinates to
zero. Note that the number of parity-check equations at hand is still n´ k.

We have also tested our methods on the parameters of [Yan+20] and [WYKW21].
While most of them seem resistant to the attack, a notable exception is the one-time
parameter set q “ 261 ´ 1, n “ 642048, k “ 19870 and t “ 2508 from [WYKW21, Table
2]. The authors claim to achieve 128 bits of security but [LWYY22] would suggest that
this is too conservative. More precisely, the Python script provided in [LWYY22] gives
a 154 bit security. For our part, we estimate that solving plain Modeling 18 in degree 3
yields a 126 bit cost.
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10.4.1 Binary Case
In Tables 10.3 and 10.2, “Best” refers to the limiting attack according to the work of
[LWYY22]. This corresponds to an advanced ISD algorithm. In our case, we report the
couple pf, uq that leads to the optimal complexity and the associated estimate for the
witness degree dconj “ dwit,pf,uq. This analysis was presented for Modeling 18, namely
Estimate 2 when f “ u “ 0 and the content of Section 10.3.3 when we fix variables. We
let the reader adapt it to Modeling 19. Note that the sparsity factor nµ can be chosen
as min pk ` 1´ fu, k{2` 1q over F2. The constant from the Wiedemann algorithm is
taken equal to 3 as explained in Remark 2.1. Finally, for illustration, we give the plain
witness degree of Modeling 19 in Column “dconj plain”.

Table 10.2: Hybrid approach on Modeling 19 (higher weight).

n k t Best [LWYY22] dconj plain pf, uq dconj XL hybrid
222 64770 2735 104 2 p0, 0q 2 103
220 32771 1419 99 3 p1159, 2q 2 98
218 15336 760 95 3 p657, 7q 2 104
216 7391 389 91 4 p373, 10q 2 108
214 3482 198 86 6 p197, 11q 2 106
212 1589 98 83 8 p88, 13q 2 103
210 652 57 94 12 p54, 9q 2 101

Table 10.3: Hybrid approach on Modeling 19 (low weight).

n k t Best [LWYY22] dconj plain pf, uq dconj XL hybrid
222 64770 4788 147 2 p0, 0q 2 103
220 32771 2467 143 3 p2340, 4q 2 125
218 15336 1312 139 4 p676, 1q 3 122
216 7391 667 135 5 p604, 7q 2 139
214 3482 338 132 7 p322, 7q 2 138
212 1589 172 131 11 p154, 7q 2 135
210 652 106 176 19 p104, 4q 3 145

10.4.2 Large Field Case
Following [LWYY22], we also consider the larger field F2128 . According to the authors,
the best attack in this case is the most naive one. Indeed, their observation is that
Prange and more involved ISDs perform equally. Note that this is reminiscent of the
result of Canto-Torres [Can17] which states that all ISD variants converge to the same
cost when the field size tends to infinity. Our results for this setting are summarized in
Tables 10.4, 10.5 below, with the same notation as in Tables 10.3, 10.2.
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Table 10.4: Hybrid approach on Modeling 18 over F2128 (low weight).

n k t Best [LWYY22] dconj plain pf, uq dconj XL hybrid
222 64770 2735 108 2 p0, 0q 2 104
220 32771 1419 107 3 p1246, 3q 2 102
218 15336 760 105 3 p670, 8q 2 107
216 7391 389 103 4 p374, 11q 2 111
214 3482 198 101 6 p197, 12q 2 110
212 1589 98 100 8 p96, 13q 2 107
210 652 57 111 14 p55, 10q 2 111
Table 10.5: Hybrid approach on Modeling 18 over F2128 (higher weight).

n k t Best [LWYY22] dconj plain pf, uq dconj XL hybrid
222 64770 4788 156 3 p4237, 1q 2 110
220 32771 2467 155 3 p0, 0q 3 131
218 15336 1312 153 4 p995, 2q 3 133
216 7391 667 151 6 p613, 8q 2 150
214 3482 338 150 8 p324, 8q 2 150
212 1589 172 155 12 p157, 8q 2 150
210 652 106 194 24 p105, 5q 3 179

10.4.3 Comments on the Results

A first remark is that a high witness degree for the plain system can be circumvented by
the hybrid component of the attack which is analogous to Prange. Thus, we should not
expect a too big gap in the complexity compared to the previous techniques in general.

By comparing Table 10.3 with Table 10.2 and Table 10.4 with Table 10.5, we notice
that this difference is much reduced in the higher weight setting. We also observe that
our attack is extremely efficient compared to ISDs when we can solve at degree 2, 3
without fixing a lot of variables (see for instance the first three rows in Tables 10.2 and
10.5). This may suggest a weak zone of parameters which is not encompassed by former
methods.

Finally, the algebraic attack seems to compare better to known algorithms for larger
fields. As mentioned above, the main reason may be that the advantage of ISDs over
Prange worsens when the field size goes to infinity. In our case, even though the witness
degree for plain Modeling 18 is slightly higher than the one of Modeling 19, the difference
does not seem enough to expect a similar increase in the cost as we see in ISDs.
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10.5 Practical Experiments
In this section, we present experiments that we have run on randomly generated instances4
of the RSD problem in order to check the validity of our assumptions. All these tests
have been performed using the computer algebra system Magma V2.27-1.

10.5.1 Hilbert Series
We give the parameter sets as pt,N, k, f, uqν , where t, N and k describe the RSD
problem, where f, u are the parameters of the hybrid approach and where ν is the
number of times that we have repeated the experiment. For an affine ideal I, we have
computed the Hilbert series of the ideal Iphq generated by the top degree parts. We used
the built-in command HilbertSeries(¨).

10.5.1.1 Experiments for Modeling 18
The systems we have tested for Modeling 18 are listed in Table 10.6 below, where we
also give the associated degree of regularity dreg of Iphq. In all cases, the experimentally
found Hilbert series was equal to the series of Equation (10.13), meaning, in particular,
that Assumptions 12 and 14 have been true in all our experiments. For most of the
hybrid systems, we have also computed the Hilbert series of the homogenized ideals Ipzq

and we give the associated degree of regularity dpzqreg. The Hilbert series in all of these
tests have been equal to (the truncation of) those predicted by Equation (10.14).

Table 10.6: Tested Hilbert series from Hybrid Modeling 18 systems over F101.

System dreg d
pzq
reg System dreg d

pzq
reg System dreg d

pzq
reg

p5, 6, 15, 0, 0q5 3 - p5, 6, 20, 0, 0q5 4 - p5, 8, 20, 0, 0q5 3 -
p5, 8, 30, 0, 0q5 4 - p7, 7, 30, 0, 0q5 4 - p8, 6, 30, 0, 0q5 5 -
p10, 4, 25, 0, 0q5 6 - p12, 7, 50, 3, 2q1 5 - p7, 8, 30, 2, 3q10 3 3
p7, 8, 30, 6, 3q10 2 3 p10, 7, 40, 5, 2q10 4 4 p10, 7, 40, 5, 3q10 3 4

10.5.1.2 Experiments for Modeling 19
Table 10.7 contains tests for the Hilbert series related to Modeling 19. The experimental
series of the plain cases f “ u “ 0 were conform with Theorem 10.2. While the majority
of hybrid cases we have tested were accurately described by our estimates (e.g., [BØ23,
B.2, Equation (21)]), we have been able to find a few discrepancies with the theoretical
values. The systems marked by : both included a single case where the experimental
Hilbert series deviated slightly from our prediction in one of its terms. The system
marked by ; was another type of outlier, where the quotient A{Iphq contained a few

4we have not tried on structured codes
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cubic elements in half of the tested cases. We note that for the system marked by ;,
the corresponding generating series of Equation [BØ23, B.2, Equation (21)] is exactly
zero at term z2. Thus, the homogeneous Macaulay matrix in degree 2 will be a square
matrix over F2 (after removing trivial syzygies) and the quotient A{Iphq will contain
cubic terms whenever this matrix fails to be of full rank. For the other tested cases, the
series have a negative coefficient at the term corresponding to the degree of regularity,
indicating that the homogeneous Macaulay matrices will be rectangular. We believe
that this difference explains the peculiar behaviour observed for case ;. Finally, we have
performed the same experiments as in Modeling 18 for the homogenized ideals and we
have obtained the same conclusive results regarding Equation (10.14).

Table 10.7: Tested Hilbert series from Hybrid Modeling 19 systems over F2.

System dreg d
pzq
reg System dreg d

pzq
reg System dreg d

pzq
reg

p10, 6, 30, 0, 0q10 3 - p10, 6, 30, 3, 3q10 2 2 p10, 6, 40, 0, 0q10 4 -
p10, 6, 40, 6, 2q:10 3 - p14, 7, 50, 0, 0q10 4 - p14, 7, 50, 2, 2q10 3 4
p14, 7, 50, 10, 2q10 2; 3 p15, 6, 70, 10, 3q:10 5 - p20, 6, 70, 5, 3q10 4 4
p20, 6, 70, 10, 3q10 3 3 p15, 6, 60, 2, 1q1 5 - p20, 20, 150, 0, 0q1 3 -
p20, 20, 150, 15, 4q10 2 3 p20, 20, 100, 0, 0q10 2 -

10.5.2 Witness Degree for the Plain System
We have also tested the witness degree of Modeling 18. To this end, we had to create
the affine Macaulay matrix in degree 2 or 3 by hands and then to compute its rank to
check if the system has a unique solution. The witness degree in all our tests was the
same as the value estimated by Equation (10.10) in Section 10.2.2. Details are given in
Table 10.8, where the parameters are listed as pt,N, kq.

Table 10.8: Witness degree for Modeling 18 systems over F101.

System dwit System dwit System dwit System dwit

p8, 8, 18q 2 p4, 12, 21q 2 p15, 8, 27q 2 p12, 7, 20q 2
p7, 5, 16q 3 p8, 4, 13q 3 p4, 8, 20q 3 p8, 5, 18q 3

10.6 Asymptotic Analysis
The purpose of this final section is to illustrate the concrete results of Section 10.4 with
more theoretical considerations.

For the sake of simplicity, we restrict ourselves to Modeling 19. Moreover, we will
focus on the degree of regularity rather than on the witness degree. Recall that we had
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introduced the latter to analyze the Wiedemann algorithm, which is likely to be the
best tool for linear algebra on the parameters we have discussed so far. However, there
exist other techniques that may perform asymptotically better than Wiedemann (see for
example [Le 14]). This justifies to study Gröbner basis strategies based on dense linear
algebra and which require an estimate of dreg.

In Section 10.6.1, we explore a possibly weak range of parameters where the RSD
problem is solved in degree 2. In Section 10.6.2, we go on to obtain an asymptotic
equivalent of the degree of regularity when the parameters grow to infinity.

10.6.1 Solving at Low Degree
From the generic complexity formulae given in Section 2.4, we see that having a constant
dreg is a sufficient condition for the Gröbner basis algorithm to run in polynomial time.
Moreover, we noted in Section 10.4.3 that our techniques proved especially efficient in a
parameter range where the plain system is solved at a small degree.

Thus, we start by focusing on a zone where the degree of regularity of Modeling 19
should be equal to 2. This will be the case whenever the coefficient in front of z2 in the
generating series of Equation (10.7) is non-positive. This coefficient reads

κ2
def
“

`

n´k`1
2

˘

` pN ´ 1q2
`

t
2
˘

´ pn´ kqtpN ´ 1q. (10.16)

In the following, we view it as a function of the length n, the code rate R “ k{n and the
error rate ρ “ t{n and we will study its behaviour when n goes to infinity. First, let us
rewrite κ2 as

κ2 “ n
ρ3n´ 2nRρ2 `R2ρn´ 1` 3ρ´Rρ´ ρ2

2ρ .

Note that if the code rate R dominates over ρ, the possibly greatest term in the numerator
of the fraction is either R2ρn or ´1. If the quantity R2ρn tends to zero, then the value
of κ2 will be asymptotically negative since the main contribution in the numerator comes
from ´1.

Our goal now is to find such a parameter range where the Prange algorithm does
not seem to be polynomial. We consider the work factor of the standard adaptation
to the regular case by guessing k{t error-free coordinates per block, see [HOSS18, B.3
p. 55]. The success probability is easily seen to be π “

´

1´ k{t
n{t

¯t
“ p1 ´ Rqt, which

gives a complexity exponential in ´tlogp1´Rq. Assuming that R “ op1q when n goes to
infinity, the main term in the development of this exponent is proportional to tR “ nρR.
If for instance nρR „ nα with α P s0, 1r, then Prange should be subexponential. On
the contrary, we can clearly find parameters for which R2ρn tends to zero under this
condition.

To simplify the analysis even further, we consider particular functions R “ φpnq
and ρ “ ψpnq and we view κ2 as a mere function of n. From discussions with Geoffroy
Couteau and upon inspection of the PCG parameters, we found it relevant to study two
types of regime:
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• noise rate ρ “ n´a and code rate R “ log pnqn´a for some a P s0, 1r (Proposition
10.3),

• for a P s0, 1r and b P s0, ar, ρ “ n´a and R “ n´b (Proposition 10.4).

Proposition 10.3. When ρ “ n´a and R “ log pnqn´a, a P s1{3, 1{2r and when the
length n is large enough, our approach is expected to be polynomial while the Prange
algorithm is subexponential.

The lower bound on a and the asymptotic constraint on n correspond to a zone
where Modeling 8 should be solved in degree 2.

Lemma 10.6. Let a P s0, 1r. Under Assumption 13 which gives the Hilbert series of
Equation (10.7), the degree of regularity of plain Modeling 19 for an RSD instance with
ρ “ n´a and R “ log pnqn´a is equal to 2 when a ą 1{3 and when the length n tends to
infinity.

Proof of Lemma 10.6. In this regime, Equation (10.16) giving the coefficient in front of
z2 in the Hilbert series reads

κ2pnq “ ´
na`1

2 `
plogpnq´1q2n2´2a

2 ` 3n
2 ´

plogpnq`1qn1´a

2 .

We see that the term ´n1`a

2 dominates when a` 1 ą 2´ 2a, hence a ą 1{3. In this case,
the value κ2pnq will be negative when n is large enough.

To prove Proposition 10.3 it remains to study the cost of the Prange decoder, which
gives the upper bound on a.

Proof of Proposition 10.3. We base ourselves on the exponent nRρ equal to n1´2a log pnq
in this setting. When a ă 1{2 ô 1´ 2a ą 0, the complexity of Prange should then be
subexponential.

The study of the second regime is analogous.

Proposition 10.4. Let a P s0, 1r and let b P
‰1´a

2 ,min pa, 1´ aq
“

. When ρ “ n´a and
R “ n´b and when the length n is large enough, our approach is expected to be polynomial
while the Prange algorithm is subexponential.

We follow the same proof strategy as for Proposition 10.3 by focusing on a zone
where the degree of regularity of Modeling 19 is asymptotically equal to 2.

Lemma 10.7. Let a P s0, 1r and let b P s0, ar. Under Assumption 13 which gives the
Hilbert series of Equation (10.7), the degree of regularity of plain Modeling 19 for an
RSD instance with ρ “ n´a and R “ n´b is asymptotically equal to 2 when a` 2b ą 1
and when the length n is large enough.
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Proof of Lemma 10.7. In this case, Equation (10.16) becomes

κ2pnq “
n2´2a

2 ` n2´2b

2 ´ n2´a´b ´ n1`a

2 ` 3n
2 ´

n1´a

2 ´ n1´b

2 .

This time, the main term is either n2´2b

2 or ´n1`a

2 . The second value dominates when
1` a ą 2´ 2b, that is, a` 2b ą 1.

Lemma 10.7 imposes b ą 1´a
2 while the restriction b ă a came from the study of

concrete parameters. The extra condition b ă 1´ a in Proposition 10.4 is due to the
complexity exponent of the Prange algorithm.

Proof of Proposition 10.4. This exponent now reads nRρ “ n1´a´b, so that the
algorithm should be subexponential when 1´ a´ b ą 0 ô b ă 1´ a.

10.6.2 Equivalent of dreg at Infinity
A more accurate complexity estimate ultimately requires an asymptotic analysis of the
degree of regularity. For semi-regular systems, [Bar04, II,§4] gives the full asymptotic
expansion in different parameter regimes. Related computations can also be found in
[ACFP14, A.1, Proposition 2] or [BFSS13, §3.2, Proposition 7], where they contented
themselves with an asymptotic equivalent.

For plain Modeling 19, we also restrict ourselves to the first term of the development.
In some particular cases, we have obtained

Proposition 10.5. When n goes to infinity, the degree of regularity dreg of plain Modeling
19 behaves asymptotically as follows:

1. For constant code rate R and noise rate ρ “ op1q, let δR
def
“ 2´R´ 2

?
1´R ą 0.

We have
dreg „ δRt.

2. For R “ op1q and ρ “ op1q such that ρ “ opRq, we have

dreg ` 1 „ R2

4 t.

3. Finally, for R “ op1q and ρ “ op1q such that ρ “ λR is linear in R with λ ă 1, we
have

dreg ` 1 „ p1´λq2R2

4 t. (10.17)

The main tool for the proof is the so-called saddle-point method. For a detailed
account of this technique in the context of Hilbert series, we refer to [Bar04, II,§4]. Each
coefficient can be obtained as a Cauchy integral, i.e.,

rzdsHA{IF2
pzq “

1
2iπ

¿ 1
zd`1 gA{IF2

pzqdz,
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where gA{IF2
pzq stands for the generating series in Equation (10.7). The saddle-point

method allows to study the asymptotic behaviour of this quantity for fixed d. Since we
are interested in the value of d such that the integral vanishes when nÑ `8, we will
cancel the main term in the resulting development in order to obtain the first term in
the asymptotic expansion of dreg.

Proof. Using Equation (10.7), we readily obtain

Idpnq
def
“

1
2iπ

ż 1
zd`1

p1` pN ´ 1qzqt

p1` zqn´k dz.

It is then standard to write the integrand as enfpzq, where here

fpzq
def
“ ´

d` 1
n

lnpzq ´ p1´Rq lnp1` zq ` ρlnp1` pρ´1 ´ 1qzq.

We study the behaviour of this integral when n grows. Using Cauchy’s integral theorem,
we can make the path of integration to meet the saddle points so that the integral
concentrates in the neighborhood of these saddle points when n tends to infinity. These
saddle points are solutions to the equation

zf 1pzq “ ´
d` 1
n

´ p1´Rq z

1` z ` p1´ ρq
z

1` pρ´1 ´ 1qz “ 0. (10.18)

By clearing denominators, Equation (10.18) may be rewritten as a quadratic equation
P pzq “ p2z

2 ` p1z ` p0 “ 0 such that

p2
def
“ pρ´ 1q pd` 1` p1´R´ ρqnq ,

p1
def
“ ρRn´ nρ2 ´ d´ 1,

p0
def
“ ´ρpd` 1q.

Then, the classical argument is that the polynomial P should have a double root, i.e.
the saddle points coalesce (otherwise the integral is exponential, see for example [Bar04,
p. 94], [ACFP14, A.1.] for details). Writing that the discriminant p2

1 ´ 4p0p2 is equal to
zero yields a new quadratic equation Ad2 `Bd` C “ 0, where

A
def
“ p2ρ´ 1q2,

B
def
“ ´4Rρ2n´ 4ρ3n` 2Rρn` 10nρ2 ´ 4ρn` 8ρ2 ´ 8ρ` 2,

C
def
“ R2ρ2n2 ` ρ4n2 ´ 2Rρ3n2 ´ 4Rρ2n´ 4ρ3n` 2Rρn` 10nρ2 ´ 4nρ` p2ρ´ 1q2.

Solving for d finally gives

d “
´Rρn´ ρ2n` 2nρ´ 2ρ` 1˘

?
δ

1´ 2ρ

“ ´1`
ρn

`

˘2
?

1´R
?

1´ ρ` 2´ ρ´R
˘

1´ 2ρ , (10.19)
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where
?
δ
def
“ 2n

a

Rρ3 ´Rρ2 ´ ρ3 ` ρ2 “ 2nρ
?

1´R
?

1´ ρ. We want the smallest
positive root which is given by the minus case of ˘

?
δ, in the equation above. The end

of the proof then consists in studying Equation (10.19) in the different regimes:

• For constant code rate R and ρ “ op1q, we obtain

´2
?

1´R
a

1´ ρ` 2´ ρ´R “ p2´Rq ´ 2
?

1´R` op1q,

hence dreg „ δRt, where δR
def
“ p2´Rq ´ 2

?
1´R ą 0.

• For R “ op1q and ρ “ op1q we have

´2
?

1´R
a

1´ ρ “ ´2
´

1´ R
2 ´

R2

8 ` opR
2q
¯´

1´ ρ
2 ´

ρ2

8 ` opρ
2q
¯

“ ´2`R` ρ` R2

4 `
ρ2

4 ´
Rρ
2 ` opRρq,

hence ´2
?

1´R
?

1´ ρ ` 2 ´ ρ ´ R “ R2

4 `
ρ2

4 ´
Rρ
2 ` opRρq. This gives us

dreg` 1 „ R2

4 t if r “ opRq and dreg` 1 „ R2

4 p1´ λq
2t if ρ “ λR is linear in R with

λ ă 1.

10.6.3 Open Problems
Of course, one natural extension of this work would be to obtain the full development
of dreg. Another continuation would be to study the specialized systems. In theory,
their analysis is feasible as we still know the Hilbert series. However, it may be more
technical since we also have to find the best asymptotic trade-off between the cost of
fixing variables and the one of the solving step. Note that this last question is not
trivial even in the standard situation represented by quadratic semi-regular systems, see
[BFP10, §3.3], [Bet12, §4.2].

From this study, the hope would be to perform a broader comparison to known
attacks, for instance ISDs, Statistical Decoding, and potential variants tailored to the
regular distribution.



Chapter11CICO Problem on the Anemoi
Permutation

In this chapter, we present results of a rather more experimental nature which allowed
to compute the parameters of the Anemoi permutation [Bou+23]. This function can be
used to build efficient ZK-friendly hash and compression functions. It was designed to
be well suited for several types of proof systems and it turns out to be more competitive
than the state-of-the-art in many of them.

We studied this primitive by considering two polynomial systems. The first one is
generic to the structure in rounds while the second one was inspired by the cryptanalysis
of Griffin [Gra+23]. The parameters were derived from a conjecture on the solving degree
of this first modeling. We also added experimental and theorerical data to compare both
systems.
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11.1 Preliminaries
11.1.1 Anemoi Permutation
In [Bou+23], we introduced the Anemoi permutation and a new mode of operation,
Jive, in which it can be used. Instead of relying on a function of low degree or whose
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inverse is of low degree as in Rescue [Aly+20], we considered a permutation which is
CCZ-equivalent to an easily computable one. For a function F : Fmq Ñ Fmq , let us denote
by ΓF the graph

ΓF
def
“

 

px, F pxqq : x P Fmq
(

Ă pFmq q2. (11.1)

Definition 11.1 (CCZ-Equivalence [CCZ98]). Let F and G be two functions of Fmq .
We say that they are CCZ-equivalent if there exists an affine permutation L : pFmq q2 Ñ
pFmq q2 such that ΓF “ LpΓGq.

This definition encompasses Rescue’s idea since a permutation and its inverse are
known to be in the same CCZ-equivalence class [BCP06]. By considering x ÞÑ xd for a
small d and its inverse, we thus notice that it does not preserve the degree. Concretely,
the hope will be to benefit from the same discrepancy between evaluation and verification
times but for more general CCZ-equivalent functions. Another nice property for the
analysis is that it will be enough to check the resistance against linear and differential
attacks for only one representative in an equivalence class, for instance the low degree
function we start with.

11.1.1.1 Description of the Sbox
Our proposal uses an SPN structure and we will first present the Sbox. We called it
the Flystel because it combines ideas from Feistel networks and from the butterfly
construction introduced in [PUB16].

More precisely, let Qγ : Fq Ñ Fq and let Qδ : Fq Ñ Fq be two quadratic functions
and let E : Fq Ñ Fq be a permutation. We will consider the following pair of functions
relying on Qγ , Qδ and E. The open Flystel is the permutation of F2

q obtained using a
3-round Feistel network with Qγ , E´1, and Qδ, as depicted in Figure 11.1. It is denoted
H, so that Hpx, yq “ pu, vq is evaluated as follows:

1. xÐ x´Qγpyq,

2. y Ð y ´ E´1pxq,

3. xÐ x`Qδpyq,

4. uÐ x, v Ð y .

The second function is V : py, vq ÞÑ pRγpy, vq, Rδpy, vqq, where Rγ : py, vq ÞÑ Epy ´
vq `Qγpyq and where Rδ : py, vq ÞÑ Epy ´ vq `Qδpvq, see Figure 11.2. We call it the
closed Flystel over F2

q .
The crux of our construction lies in

Proposition 11.1. For a given tuple pQγ , E,Qδq, the corresponding closed and open
Flystel are CCZ-equivalent.

Proof. Let pu, vq “ Hpx, yq. We observe that v “ y ´ E´1px ´ Qγpyqq, so that x “
Epy ´ vq `Qγpyq. Similarly, we have that u “ Qδpvq `Epy ´ vq. Consider now the set
ΓH “

 

ppx, yq,Hpx, yqq : px, yq P F2
q

(

. By definition, we have

ΓH “
 

ppx, yq, pu, vqq : px, yq P F2
q

(

“ L
` 

ppy, vq, px, uqq : px, yq P F2
q

(˘

,
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Figure 11.1: Open Flystel, H.
x y

a

a

‘

u v

Qγ

E´1

Qδ

Figure 11.2: Closed Flystel, V.
y v

a

‘ ‘

y ´ v

x u

Qγ E Qδ

where L the permutation of pF2
qq

2 that satisfies L´1ppx, yq, pu, vqq “ ppy, vq, px, uqq. This
map is indeed linear. Using the equalities of above we can then write

L´1pΓHq “
 

ppy, vq, px, uqq : px, yq P F2
q

(

“
 

ppy, vq, pEpy ´ vq `Qγpyq, Qδpvq ` Epy ´ vqqq : py, vq P F2
q

(

“ ΓV .

We deduce that ΓH “ LpΓVq, so the two functions are CCZ-equivalent.

Corollary 11.1. Verifying that pu, vq “ Hpx, yq is equivalent to verifying that px, uq “
Vpy, vq.

Concretely, we will encode the verification of a high degree open Flystel using the
polynomial representation of the low degree closed Flystel that is CCZ-equivalent to
it. Before coming to the presentation of the complete round function, we detail our
instantiations of Qγ , Qδ and E in even and odd characteristics. The map E is always
an exponentiation which is a permutation of Fq while the polynomials Qγ and Qδ have
been selected to avoid classical attacks.

Even characteristic. When q “ 2n for odd n, we take an exponent α “ 2i ` 1 such
that i is coprime to n, α “ 21 ` 1 “ 3 in practice, and we adopt E : x ÞÑ x3. This
is indeed a permutation that can be seen as quadratic with respect to the algebraic
degree. Considerations related to linear and differential cryptanalysis led us to choose
Qγ : x ÞÑ gx3 ` g´1 and Qδ : x ÞÑ gx3, where g is a generator of the multiplicative
subgroup F˚q .
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Odd characteristic. When q is an odd prime, we pick an integer α coprime to q ´ 1
and g an arbitrary generator of F˚q . We still consider E : x ÞÑ xα but this time the
choice of α depends on the cost of the algebraic techniques. In the same flavour as in
characteristic 2, we take Qγ : x ÞÑ gx2 ` g´1 and Qδ : x ÞÑ gx2.

11.1.1.2 Full Round Function

In the general case, the input state is of size 2`, ` P Zą0 and the Sbox is applied locally.
For the moment, we limit ourselves to describing the situation when ` “ 1 because this
is the only one for which we have been able to perform Gröbner basis experiments for
sufficiently many rounds. For i P t0..nr ´ 1u with nr P N the number of rounds, we
consider the transformation

Ri “ H ˝M ˝AddConstantsi, (11.2)

where AddConstantsi corresponds to the addition of constants pci, diq P F2
q , whereM

is the linear layer given by a 2 by 2 matrix over Fq and where H is the open Flystel.
The Anemoi permutation finally reads

P “ Rnr´1 ˝ ¨ ¨ ¨ ˝R0.

11.1.2 CICO Problem
The present chapter will discuss the security of Anemoi with respect to algebraic
techniques. More precisely, we studied the hardness of the following problem stated in
the case ` “ 1.

Problem 11.1 (Constrained Input/Constrained Output (CICO) Problem).
Let P : F2

q Ñ F2
q be a permutation. The CICO problem consists in finding a pair

pyin, youtq P F2
q such that P p0, yinq “ p0, youtq.

It was introduced by the Keccak team in [Tea11, §8.2.4] due to its relevance for
the security of sponge constructions. It is generally acknowledged that its difficulty
gives enough confidence in the permutation. To encourage the analysis of ZK hash
functions, the Ethereum Fundation proposed CICO challenges1 for the permutations
underlying several of these primitives. The goal there was to obtain practical attacks on
round-reduced versions. Even though no preferred technique was mentioned, it turns
out that the weakest instances were broken using algebraic methods [BBLP22]. More
broadly, the study of such algorithms now appears as an essential ingredient to derive
the number of rounds in an AO proposal.

1https://www.zkhashbounties.info/.

https://www.zkhashbounties.info/


11.2. Considered Modelings 191

11.1.3 Standard Approaches
Several different techniques have already been proposed for the CICO problem. All of
them rely on a modeling of the constraints together with a polynomial description of
the primitive. In that respect, there is nothing new compared to the early attempts to
attack block ciphers.

Univariate solving. The point is to set an unknown x P Fq such that the initial state
is p0, xq and to evaluate the permutation on this input. Solving Problem 11.1 is then
reduced to finding a root in Fq of a univariate polynomial Q P Fqrxs. In [BBLP22], this
approach was shown to be successful on Feistel-MiMC and on Poseidon because the
degree grows slowly. Indeed, these proposals use a round function derived from x ÞÑ xd

and the degree of Q is expected to be dnr . The authors of [BBLP22] are in fact able to
side-step a few rounds (1 for Feistel-MiMC and 2 for Poseidon) by using ad hoc tricks,
which was important for practical challenges.

The univariate strategy is however not feasible when the polynomial Q has a large
degree (typically, greater than q). This was observed in the case in Rescue (since the
scheme also uses the high degree map x ÞÑ x1{d) and more recently in Griffin [Gra+23].
We have not considered this method in our security analysis because the open Flystel is
also of high degree.

Intermediate variables. In contrast to the former technique, the idea is to introduce
equations and unknowns at each round to keep the degree low. It yields a multivariate
system with a number of equations and variables which is roughly a multiple of nr
and where the degree of the polynomials only depends on the round function. This is
essentially the historical approach of [CP02], applied to ZK-relevant ciphers in [BGL20;
BBLP22; Gra+23; Bou+23], among many others.

Trade-off. Finally, the attacker can choose an in-between strategy based on a modeling
with higher degree equations but fewer variables. This can be achieved by introducing
new unknowns only at specific rounds. A more astute method relying on the properties
of the cipher was proposed in [Gra+23, Partial intermediate variables, p. 24] and can
also be applied to Anemoi.

11.2 Considered Modelings
11.2.1 Naive Equations
Our first algebraic system corresponds to the second strategy described above by
introducing 2 equations and 2 variables at each round of the cipher. We denote the
input state by px0, y0q and by pxi`1, yi`1q the output of round Ri for i P t0..nr ´ 1u.
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Fact 5. For any i P t0..nr ´ 1u, there exist two polynomials fi and gi such that

pxi`1, yi`1q “ Ripxi, yiq ô

"

fipxi, yi, xi`1, yi`1q “ 0
gipxi, yi, xi`1, yi`1q “ 0.

Proof. These equations are obtained as follows. We start from the following equality
which holds for any i P t0..nr ´ 1u:

pxi`1, yi`1q “ Ripxi, yiq “ HpMpxi ` ci, yi ` diqr1s,Mpxi ` ci, yi ` diqr2sq.

By Corollary 11.1, this is equivalent to

pMpxi ` ci, yi ` diqr1s, xi`1q “ VpMpxi ` ci, yi ` diqr2s, yi`1q,

where V is the closed Flystel. Using the definition of this map yields

pMpxi ` ci, yi ` diqr2s ´ yi`1q
α
`QγpMpxi ` ci, yi ` diqr2sq “Mpxi ` ci, yi ` diqr1s,

pMpxi ` ci, yi ` diqr2s ´ yi`1q
α
`Qδpyi`1q “ xi`1.

We can thus set

fi “ pMpxi ` ci, yi ` diqr2s ´ yi`1q
α
`QγpMpxi ` ci, yi ` diqr2sq ´Mpxi ` ci, yi ` diqr1s,

gi “ pMpxi ` ci, yi ` diqr2s ´ yi`1q
α
`Qδpyi`1q ´ xi`1.

Modeling 20. For i P t0..nr ´ 1u, let fi, gi P Fqrx0, . . . , xnr , y0, . . . , ynr s be the two
polynomials defined in Fact 5. Our first system to solve the CICO problem is

Fnaive
def
“ tf0, g0, . . . , fnr´1, gnr´1u Y tx0, xnru.

This modeling can be seen as containing 2nr equations and 2nr variables if we get
rid of the unknowns x0 and xnr . We will assume that this system is zero-dimensional
even if we do not add the field equations (they have very high degree). This behaviour
was always observed in our experiments.

In characteristic 2, both fi and gi are of degree 3. In odd characteristic, they are of
degree α ě 3 but their difference is a polynomial of degree 2. We will keep this feature
in mind when analyzing the system. Another more general remark is that the shape of
these polynomials highly depends on the instantations of E, Qγ , Qδ, andM.

11.2.2 Griffin-like Equations
In odd characteristic, we were invited by a reviewer to study another system derived in
the same way as in [Gra+23, Partial intermediate variables, p. 24]. The inputs px0, y0q
are still seen as variables but then the idea is to introduce only one equation pi and one
variable vi in the following rounds.
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We still denote by pxi, yiq the output of round i ´ 1 and we consider px1i, y1iq the
partial output defined by

px1i, y
1
iq
def
“ pMpxi, yiqr1s ` ci,Mpxi, yiqr2s ` diq.

It is clear that px1i, y1iq are affine of degree 1 in pxi, yiq and that Hpx1i, y1iq “ pxi`1, yi`1q.
We then set a new variable

vi
def
“ y1i ´ yi`1 (11.3)

and we introduce the equation

pi
def
“ vαi ´ px

1
i ´ pβy

12
i ` γqq “ 0. (11.4)

Note that we also have xi`1 “ x1i ´ βγy
12
i ` βy

2
i`1 ` δ.

Lemma 11.1. For any i P t0..nr´ 1u, the polynomial pi belongs to Fqrx0, y0, v0, . . . , vis.

Proof. Note first that for any i P t0..nru, both xi and yi can be expressed as polynomials
in x0 and y0. Recall also that px1i, y1iq can be written in terms of xi and yi, so that
pi P Fqrx0, y0, vis. In practice, we can avoid high degree monomials in x0, y0 by also
including variables vj for j P t0..i´ 1u.

Modeling 21. We consider the system tp0, . . . , pnr´1u in the polynomial ring
Fqrx0, y0, v0, . . . , vnr´1s, where vi is defined by Equation (11.3) and where pi is defined
by Equation (11.4). This set contains nr equations in nr ` 2 variables. Our second
modeling to solve the CICO problem, denoted FGriffin, is obtained from it by fixing x0 “ 0
and by adding the equation in x0, y0, v0, . . . , vnr´1 which corresponds to xnr “ 0.

A first apparent advantage of FGriffin is that it contains half as many equations and
variables as the system Fnaive. Even though we cannot avoid a degree growth in the pi’s
through the rounds, the observation of the reviewer was that it only seems to be linear
from round i such that vαi is not the term of maximal degree in pi. This was in fact the
initial motivation for studying FGriffin. Indeed, in the absence of specific structure, such
a modeling usually contains polynomials whose degree increases exponentially with the
number of rounds.

11.3 Results in Characteristic 2
We first derive our estimate for the cost of solving Fnaive in even characteristic. Even
though the initial system is not a DRL Gröbner basis, its computation appeared to be
extremely cheap (this stems from Fact 6 below). For this reason, we derived the number
of rounds only based on the FGLM algorithm.

Estimate 3. We estimate the total cost of solving Fnaive in even characteristic by the
one of the change-of-order step. Using Equation (2.2), the latter has complexity

Opnr9ωnrq,

where 2 ď ω ď 3 is the linear algebra exponent.
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This cost corresponds to the one of the dense variant2 of FGLM [FGLM93] on a
system of 2nr cubic equations for which the Bézout bound of Proposition 2.2 is tight.
This is what we observed in all our experiments.

We neglected the step to generate the DRL Gröbner basis due to the following result.
Its proof can be seen as the result of computation since there are simply two polynomials
per round.

Fact 6. We consider the polynomial ring Fqrx0, y0, . . . , xnr , ynr s endowed with the DRL
ordering. For i P t0..nr ´ 1u, let fi, gi denote the two cubic equations at round i (which
involve xi, yi, xi`1 and yi`1). Then, the set of leading monomials in the reduced Gröbner
basis of tfi, giu is

 

y5
i`1, xiy

3
i`1, x

3
i , xiyi`1

(

. (11.5)

Moreover, the set of leading monomials in the reduced Gröbner basis of tx0, f0, g0u is
 

x0, y
2
0y1, y

3
0, y0y

3
1, y

5
1
(

. (11.6)

All these individual Gröbner bases are obtained in degree 5.

We observe that the leading monomials in two distinct sets defined by Equation (11.5)
for rounds i ‰ j P t1..nr´1u are always coprime to each other. They are also coprime to
those in Equation (11.6) and to xnr which corresponds to the second CICO constraint.
We can thus use Proposition 3.1 to show that only computation to obtain the final
Gröbner basis is to generate the partial bases considered in Fact 6. The corresponding
complexity is essentially independent from the number of rounds.

11.4 Results in Odd Characteristic
The system Fnaive behaves differently in odd characteristic since the main step seems
to correspond to the Gröbner basis computation. We derived the number of rounds
based on Conjecture 11.1, which gives a lower bound on the experimental solving degree
dexppnr, αq for nr rounds when the exponent α is used.

Conjecture 11.1. The experimental solving degree dexppnr, αq of Fnaive is such that

dexppnr, αq ě 2nr ` κα, (11.7)

where κα is a constant depending only on α. We found κ3 “ 1, κ5 “ 2, κ7 “ 4, κ9 “ 7
and κα “ 9 for3 α ě 11.

2There exist improved algorithms by exploiting the sparsity of the multiplication matrices [FGHR14;
FM17] or by viewing them as polynomial matrices [BNS22]. The latter requires assumptions on the
input system and it is not clear that we can apply it to our case.

3We would expect the value of κα to keep increasing with α but the calculations needed to estimate
it become too costly as α grows and thus we preferred to be conservative.
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Estimate 4. In odd characteristic, we adopt the lower bound

O
ˆˆ

2nr ` κα ` 2nr
2nr

˙ω˙

, (11.8)

where 2 ď ω ď 3 is the linear algebra constant and where κα was derived from our
experiments.

Relying on Estimate 4 to choose the parameters α and nr can be seen as a bit cavalier
but it is common for AO primitives to use such lower bounds. We do not consider
the cost of FGLM because it appears to be negligible4 compared to the complexity
in Equation (11.8). At the time of the submission, we conjectured a degree equal to
deg pxFnaiveyq “ deg pxFGriffinyq “ pα`2qnr . This result suggests that the Bézout bound5
ď 2nrαnr for Fnaive is far from being sharp. Similarly to Jarvis in [BGL20, Appendix
A], we realized while writing this manuscript that it corresponds to a case of equality
for the multi-homogeneous Bézout bound:

Proposition 11.2 (Multi-homogeneous Bézout bound). Let pf1, . . . , fnq Ă Krxs
be a polynomial sequence in n variables and let X1, . . . , Xk be a partition of the variable
set x such that #Xj “ sj for j P t1..ku. For i P t1..nu and j P t1..ku, let di,j be the
degree of fi in the variable set Xj. Then the number of solutions is bounded from above
by the coefficient of the monomial zs1

1 . . . zskk in

n
ź

i“1
pdi,1z1 ` ¨ ¨ ¨ ` di,nzkq . (11.9)

Remark 11.1. We recover Proposition 2.2 when k “ 1 and di,1 “ di for i P t1..nu.

Lemma 11.2. We have
deg pxFnaiveyq ď pα` 2qnr .

Proof. Recall that the set of variables is tx0, . . . , xnru Y ty0, . . . , ynru and that the
equations for round Ri, i P t0..nr ´ 1u were given by

fi “ pMpxi ` ci, yi ` diqr2s ´ yi`1q
α
`QγpMpxi ` ci, yi ` diqr2sq

´Mpxi ` ci, yi ` diqr1s,
gi “ pMpxi ` ci, yi ` diqr2s ´ yi`1q

α
`Qδpyi`1q ´ xi`1.

As observed above, their difference is quadratic corresponding to the polynomial

hi
def
“ fi ´ gi “ QγpMpxi ` ci, yi ` diqr2sq ´Mpxi ` ci, yi ` diqr1s ´Qδpyi`1q ` xi`1.

We now want to apply Proposition ?? to the pair tgi, hiu using the naive partition of
variables where the subsets Xj are singletons. This boils down to looking at the partial

4It is still worth studying as further progress on the first step might render it limiting.
5obtained from the generating set with nr polynomials of degree 2 and nr polynomials of degree α.
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degree in each variable. The point is that the degree patterns are not generic. In the
polynomial hi, the partial degree is 2 for xi, yi and yi`1 but only 1 for xi`1. Similarly
in gi we easily obtain α for xi, yi and yi`1 but only 1 for xi`1. The polynomial Pnr´1
associated to the system tg0, h0, . . . , gnr´1, hnr´1u by Equation (??) is thus equal to

Pnr´1
def
“ p2ynr ` xnr ` 2ynr´1 ` 2xnr´1qpαynr ` xnr ` αynr´1 ` αxnr´1qPnr´2
def
“ Qnr´1Pnr´2,

where Pnr´2 corresponds to the earliest rounds. It is easy to see that the coefficient of
śnr
j“0 xjyj in Pnr´1 is equal to the one of xnrynr in Qnr´1, e.g., α` 2, times the one of

śnr´1
j“0 xjyj in Pnr´2. We thus obtain pα` 2qnr by induction. The conclusion regarding

the degree follows from Proposition 2.2.

Using Lemma ?? together with an agressive exponent of ω “ 2 in FGLM, a very
rough upper-bound for the cost of the change-of-order step is Opn2

rpα ` 2qnrq. This
complexity is quite below the value given in Estimate 4.

Experiments. Table 11.1 provides an experimental comparison to FGriffin for the
Gröbner basis step.

Table 11.1: DRL Gröbner basis for Fnaive and FGriffin (odd characteristic).

α nr dexppnr, αq Fnaive Total Time Fnaive (s)
3 3 7 0.010

4 9 0.040
5 11 0.550
6 13 11.429
7 15 216.620
8 17 14450.530

5 3 8 0.040
4 10 2.599
5 12 226.330

7 3 10 0.240
4 12 55.420
5 14 23042.180

α nr Degrees dexppnr, αq FGriffin Total Time FGriffin (s)
3 3 3,4,6 7 0.010

4 3,4,6,8 10 0.040
5 3,4,6,8,10 11 0.329
6 3,4,6,8,10,12 12 6.639
7 3,4,6,8,10,12,14 15 163.870
8 3,4,6,8,10,12,14,16 16 10575.610

5 3 5,5,6 11 0.049
4 5,5,6,8 15 0.879
5 5,5,6,8,10 19 19.129
6 5,5,6,8,10,12 23 875.379

7 3 7,7,7 12 0.190
4 7,7,7,8 17 16.870
5 7,7,7,8,10 22 3903.280

In spite of a clear advantage in terms of timings especially for a small number of
rounds when α “ 3 and for large values of α, we have not considered this system to
derive Estimate 4 due to the high solving degree6. Note in particular that the general
expression for the Gröbner basis complexity (e.g., Equation (2.7)) indicates that this
phenomenon should asymptotically prevail over a smaller number of variables (the initial
purpose of FGriffin). Another reason is that this second modeling seemed more difficult
to analyze. The shape of the equations is quite specific due to the way the system is
generated and we have not grasped a clear pattern from the mere Table 11.1.

6Concretely, we have added 2 extra rounds on top of Estimate 4 to ensure that FGriffin exploited in
a more ingenious way will not jeopardize security.
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Independently from these experiments, a very rough reasoning based on the Macaulay
bound would suggest the same behaviour for the solving degrees of Fnaive versus FGriffin.
This is because the degree of the equations increases with the number of rounds in
FGriffin while it remains constant in Fnaive. The experimental degrees of the pi’s are
provided in Column “Degrees” where they are listed as deg pp0q, . . . ,deg ppnr´1q for fixed
pα, nrq. As initially claimed by the reviewer, our results suggest a linear increase.

From Table 11.1 and the following Table 11.2, we finally deduce the lower bound of
Conjecture 11.1. Even for high values of α, theoretical considerations led us to think
that the increase of the solving degree will be only by two after a few rounds. This
explains the multiplicative constant of 2 in the lower bound of Equation (11.7).

Table 11.2: Solving degree of Fnaive for higher values of α.

α dexppnr, αq Fnaive when nr P t2, 3, 4u
9 10, 13, 15
11 12, 15, 18

11.5 Further Comments
11.5.1 General Case ` ą 1
We write the wider state as a vector pX,Y q P F`q ˆ F`q. In this setting, the Sbox consists
in applying the open Flystel in parallel, i.e.,

SpX,Y q
def
“ pHpX1, Y1q, . . . ,HpX`, Y`qq ,

and the linear layer is of a different nature. The value of ` is typically ` P t1..8u, see
[Bou+23, Table 1].

At round i P t0..nr ´ 1u, the straightforward generalization of Fnaive contains
2` polynomials pfi,1, . . . , fi,`, gi,1, . . . , gi,`q in 4` variables xu,v, yu,v for u P ti, i ` 1u
and v P t1..`u. The degree of the relevant equations is the same as before, e.g.,
pα, . . . , α, 2, . . . , 2q in odd characteristic. Since this modeling is about ` times bigger
than the former one for the same number of rounds, we have not been able to perform a
large range of experiments. For instance, we have tested at most 3 rounds when ` “ 2,
which is probably not enough to make conjectures.

Even Characteristic. When ` “ 1, Fact 6 showed that the cost of the Gröbner basis
computation on Fnaive was mostly independent from nr. However, the same does not
necessarily hold when ` ą 1. In this situation, the individual Gröbner bases might be
obtained at a degree larger than 5. More crucially, there may exist an overlap between
the sets of leading terms in these bases so that the final one is not a simple gluing. The
complexity would then clearly increase with the number of rounds.
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Our experiments for ` “ 2 and nr P t1..3u suggest the latter behaviour but we have
not been able to draw a more precise conclusion. For this reason and since this choice is
conservative, we have only considered FGLM in Estimate 3 even when ` ą 1 to set the
concrete number of rounds.

Odd Characteristic. We have generalized Conjecture 11.1 and Estimate 4 to ` ą 1
by replacing 2nr by 2`nr everywhere, which is natural when considering the expression
of the Macaulay bound. We would proceed in the same way if the change-of-order step
were to be dominant because the Bézout bound is exponential in `. Note that the cost
of the algebraic attack of [BGL20, Appendix B]7 on Rescue also exhibits this extra `
factor in the exponent.

11.5.2 Precisions on the Experiments
Our tests were performed using the Sage code available at [Vel22] on top of which we
have written additional Magma commands.

We have tried the DRL orders implicitly attached to the polynomial rings
Fqrx0, y0, . . . , xnr , ynr s and Fqrx0, . . . , xnr , y0, . . . , ynr s which seem to better capture the
shape of the systems. We have also focused on one speficic round and plugged the
associated leading terms, which was the starting point for Fact 6. More generally, we
have tested the incremental strategy by computing a Gröbner basis for i rounds and by
adding the polynomials of round i`1 only when this first calculation was complete. This
can in fact be seen as a specific selection strategy in the naive Gröbner basis algorithm.
We realized while writing this manuscript that this method had been formalized in
[Alb08, §4.4.2] under the name of Gröbner surfing. Even though it may offer a practical
improvement compared to the standard approach, it is difficult to translate this into
a better theoretical complexity. This is especially true since there is no known result
stating that a monomial order will be more efficient than another regardless of the
system.

As already observed in previous works, the Magma implementation of FGLM can be
the bottleneck even when this step seems to be cheaper than the one to obtain the first
Gröbner basis. In most cases, the computation has not been completed but we could
still obtain the dimension of the quotient ideal using Magma’s verbosity.

7In this work, the main step is the FGLM algorithm.



Open Problems

We close our discussion with some research directions that appear natural from our
contributions. Before detailing these perspectives for the three main parts of this thesis,
note that the additional call for signature schemes recently launched by NIST8 will be
for sure a fruitful source of cryptanalysis projects involving algebraic techniques.

Multivariate cryptography. In Chapters 4 and 5, we gave attacks on two schemes
which use an extension field. Apart from our work, the more high-profile breaks of
GeMSS and Rainbow have shown that this type of construction or more generally a too
large amount of added structure can clearly be detrimental to the security of multivariate
cryptosystems. As a result, the community now favours more simple proposals built upon
Unbalanced Oil and Vinegar (UOV) [KPG99] that are less structured than Rainbow.
The hope is to rely on an old scheme which seems rather resistant to cryptanalysis.

Known techniques on UOV can be understood as a mix of ideas coming from
combinatorial methods and from MQ algorithms. The application of rank attacks to
UOV-type schemes has been proposed very recently [Beu+23, §4.5][FI23]. It is natural to
expect improvements at this stage and it would be interesting to see if they can become
the limiting attack. The answer may depend on the UOV variant [KPG99; FIKT21;
Beu21b; FMPP22].

Rank-metric and MinRank-based schemes. Chapters 6 to 9 focused on the
cryptanalysis of the MinRank problem and of assumptions underlying rank-based
cryptography.

For MinRank, we introduced a hybrid technique that is compatible with known
approaches on this problem. However, we have not addressed the issue of obtaining an
asymptotic hierarchy between these different methods even in the random setting. This
is important from a theoretical perspective and also to derive parameters for emerging
proposals based on this assumption [Ara+23; Adj+23].

The same question naturally arises for rank-metric schemes. Independently, we can
imagine more immediate progress on the algorithmic side. For instance, Chapter 7
did not analyze the former combined modeling of [Bar+20b] where all equations are
over Fq. Similarly, Chapter 8 on NHRD only studied the MaxMinors system. Finally,
the cryptographically-relevant zone for RSL where the number of syndromes is limited

8https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals.
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invites us to devise more efficient techniques. In this range, the algorithms that we have
proposed do not outperform the RD solver.

Other systems. The approach followed in Chapter 10 by isolating a structured part
in the system and by making an assumption on the rest of the equations is quite general
and it may be used (at least, as a first step) in many other contexts. An interesting
field of application is given by hard problems related to a secret permutation of t1..nu
such as the Permuted Equivalence Problem (PEP) and the Permuted Kernel Problem
(PKP) [Sha90]. They are at the core of the NIST proposals [Bal+23] and [Aar+23]
respectively. A bit before that, PKP was also used in [Beu+19]. The naive system
suggested in [Sae17] to solve PEP is of the same shape as the one we studied for RSD.
It combines structured polynomials modeling the secret permutation matrix together
with linear equations provided by the input instance. However, no analysis has been
performed. The goal would be to fill this gap as there should be a growing interest in
the potential of algebraic attacks. Indeed, this type of cryptography is still at an early
stage and parameters are far from being finalized.

The algebraic analysis of arithmetization-oriented primitives is another emerging
topic and our work of Chapter 11 barely scratches the surface. We only studied one
cipher and we restricted ourselves to the zero-dimensional strategy usually employed for
public-key schemes. Regarding the first point, it may be interesting to adopt a more
global approach no longer focused on one primitive especially because some existing
modelings only depend on the structure in rounds and not really on particular design
choices. Concerning the standard solving method, a first task would be to explain the
gap between the generic bounds and the concrete quantities that we have observed
(once again, this is not specific to Anemoi). Another route would be to find a suitable
monomial order for which the input system is already a Gröbner basis. This is basically
what happened for MiMC [Alb+19]. We have obviously no proof that such an ordering
exists in general but this might be facilitated by the sparsity.
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