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Thesis summary

Résumé en français

La transmission culturelle du succès reproducteur (TCSR) est un processus lors

duquel les individus ont un nombre d’enfants positivement corrélé à celui de leurs

parents. Ce phénomène a des effets sur la diversité génétique des populations, al-

lant même jusqu’à accrôıtre dans certains cas la fréquence de certaines maladies

génétiques dans les populations concernées (Austerlitz and Heyer, 1998). Dans

un premier temps, cette thèse examine en détails, à partir de la littérature, les

causes et conséquences de ce phénomène. Les différents contextes dans lesquels

peut apparâıtre la TCSR sont explorés, chez l’humain ainsi que dans d’autres

espèces. Ces réflexions aboutissent à des arguments invitant à considérer comme

une force évolutive à part entière la transmission du succès reproducteur d’origine

non-génétique, une forme générale de la TCSR. Dans un second temps, la thèse

présente un article de recherche (Guez et al., 2022), utilisant une modélisation de la

TCSR fondée sur une extension du modèle de Wright-Fisher (Sibert et al., 2002),

pour simuler l’évolution de populations d’individus diplöıdes avec recombinaison.

Ces simulations ont permis de disséquer le phénomène, séparant les effets dus à

l’accroissement de la variance du succès reproducteur de ceux produits par la trans-

mission du succès reproducteur elle-même. Différents effets sont explorés en détails,

notamment les impacts sur des statistiques classiques de génétique des populations,

comme le D de Tajima et les fréquences alléliques, ainsi que sur des mesures moins

communes telles que les indices de déséquilibre des arbres de coalescence. Enfin,

les effets de la TCSR sur l’inférence d’une expansion démographique sont analysés,

révélant une sous-estimation du facteur de croissance d’une population lorsque la

TCSR n’est pas prise en compte. Ce dernier résultat suggère une potentielle sous-

estimation de l’expansion néolithique, si les populations concernées ont été sujettes

à la TCSR. Dans une troisième partie, des méthodes fondées sur l’apprentissage
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automatique sont construites dans le but d’inférer correctement la TCSR conjointe-

ment à la démographie de la population. Ces méthodes reposent sur deux approches

entrainées et testées sur des données génomiques simulées : l’inférence bayésienne

par approximation (ABC) utilisant des statistiques résumées, et les réseaux de neu-

rones convolutifs (CNN) entrainés directement à partir des données génomiques

brutes. Les inférences réalisées par différentes versions de ces deux méthodes sont

comparées, montrant que la méthode la plus performante combine les deux ap-

proches. Ceci révèle la possibilité de distinguer la TCSR de certains processus

démographiques dans des données génomiques et d’inférer assez précisément les

deux. Des recherches futures pourront explorer la distinction de la TCSR d’autres

processus, comme la sélection naturelle et la structure génétique, afin d’appliquer

efficacement ces méthodes à des données génomiques réelles humaines ou d’autres

espèces.
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English summary

Cultural Transmission of Reproductive Success (CTRS) is a process in which indi-

viduals’ progeny size is positively correlated with their parents’ progeny size. This

phenomenon impacts genetics, sometimes even increasing genetic disease risks in

the populations where it occurs (Austerlitz and Heyer, 1998). First, this thesis ex-

amines the literature in detail, to reveal the potential causes and consequences of

this phenomenon. The different contexts in which CTRS can appear are explored,

in humans and other species. These aspects lead us to consider nongenetic TRS,

a general form of CTRS, as a full-fledged evolutionary force. In a second chapter,

the thesis presents a research paper (Guez et al., 2022), using a modeling of CTRS

based on an extension of the Wright-Fisher model (Sibert et al., 2002), to simu-

late the evolution of diploid populations with recombination. These simulations

allowed us to dissect the phenomenon, disentangling the effects due to the increased

variance of reproductive success from those produced by the transmission of the

reproductive success itself. Various effects are explored in detail, including impacts

on classical population genetics statistics, such as Tajima’s D and allelic frequen-

cies, as well as on less common statistics such as coalescent tree imbalance indices.

Finally, the effects of CTRS on demographic expansion inference are analyzed, re-

vealing an underestimation of the growth factor when CTRS is not considered. This

last result suggests a potential underestimation of the Neolithic expansion, if the

populations concerned were subject to CTRS. In a third chapter, machine learning

methods are designed to correctly infer CTRS jointly with population demography.

These methods are based on two approaches trained and tested on simulated ge-

nomic data: approximate Bayesian inference (ABC) using summary statistics, and

convolutional neural networks (CNN) trained directly on raw genomic data. The

inferences made by different versions of these two methods are compared, showing

that the best-performing method combines both approaches. This reveals the possi-

bility of distinguishing CTRS from demographic processes using genomic data and

inferring both accurately. Future research should explore the distinction of CTRS

from other processes, such as natural selection and genetic structure, in order to

effectively apply these inference methods to human or other species real genomic

data.
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Introduction

0.1 Population genetics

0.1.1 Introduction

Population genetics studies the evolution of genetic diversity within populations over

generations. Its central object is the gene, an entity carried by the individuals of the

population and inherited from their parents. Several versions of a gene may exist,

called alleles. From one generation to the next, the proportions of the different

alleles fluctuate in the population, under the effect of major evolutionary forces

that we will describe here.

The first evolutionary force impacting allele frequencies in a population is mu-

tations (1d). It corresponds to the random change from one allele to another,

making heredity less faithful. Thus, in a population where all individuals carry the

same allele, a new child may carry a novel allele due to a mutation. This allele can

then increase in frequency or disappear, depending on the number of descendants

that this first carrier will have. In population genetics, the frequency of mutations

apparition in a population is called mutation rate. Mutations increase genetic

diversity by creating new alleles in the population.

A second evolutionary force is genetic drift (1a). It corresponds to the stochas-

tic effects on the fluctuation of alleles. More precisely, from one generation to the

next, some individuals reproduce more than others due to random events. As a

result, the alleles carried by these individuals increase in frequency in the next

generation, while the alleles carried by individuals reproducing less than average

decrease in frequency. From one generation to the next, random fluctuations in

allele frequencies are observed due to drift. At a certain point, an allele can reach a

state called fixation: it has invaded the population and is present in all individuals,

11



12 INTRODUCTION

and all other alleles have disappeared. Genetic drift depends on two main parame-

ters: the duration of evolution and the size of the population. The longer the time

considered, the more prominent the effects of drift. The larger the population, the

smaller the drift. For a theoretical population of infinite size, drift does not exist.

Drift tends to reduce genetic diversity by leading to the random fixation of alleles.

A third significant force in evolution is natural selection (1b). It occurs when

individuals have different probabilities of reproducing, depending on the alleles they

carry. This probability is called fitness. Alleles raising individual fitness are likely

to increase in frequency over generations. However, genetic drift makes this process

non-deterministic: in a case of two alleles with equal frequency when selection starts,

the beneficial allele may disappear rapidly by chance, but this is more likely to hap-

pen to the less beneficial allele. Due to this interaction with drift, natural selection

will have less effect on a small population since it is under strong drift. The effects of

selection also depend on its strength, which is modeled in population genetics by the

selection coefficient, often noted s. This strength of selection corresponds to the

size of the advantage in fitness brought by the beneficial allele. Individuals carrying

this allele will be 1+ s times more likely to reproduce than individuals carrying the

unfavorable allele. For example, for s being 0.1, individuals carrying the beneficial

allele will have a probability to reproduce 10% higher than individuals carrying the

other allele. Natural selection tends to reduce genetic diversity by fixing the most

favorable alleles.

A fourth evolutionary force is recombination (1c). It concerns the evolution

of combinations of alleles within the population. Let us consider two genes in the

population, each with two alleles: A and a, B and b. When individuals carry either

AB or ab, new combinations can appear only with recombination, allowing the

birth of Ab and aB individuals. The frequency at which this happens is called the

recombination rate. Recombination increases genetic diversity in a way because

it allows novel combinations of alleles to appear. However, it does not change allelic

frequencies.

A fifth evolutionary force is migration (1e). To take it into account, we must

consider at least two populations. Migration occurs if alleles pass from one popula-

tion to the other, through reproduction between members of the two populations.

Thus, a new allele may appear in a population, not by mutation, but because it

comes from another population. We can define a migration rate from a popula-

tion to another, corresponding to the proportion of alleles migrating from population

1 to population 2. Migration rates can be asymmetrical: for example, more alleles
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Figure 1: Schematic view of the impacts of the major evolutionary forces
on genetic diversity. Figure from Adeyemo et al. (2021)



14 INTRODUCTION

can migrate from 1 to 2 than the opposite. For a given population, migration tends

to increase diversity, since it can bring in foreign alleles not previously present in

the population.

This two-populations, two-alleles, two-genes model is deliberately simplistic. It

allows us to analyze theoretically the main statistical principles underlying popu-

lation genetics. For example, 10% of the population may have an adenine (A) at

a given position, while the rest of the population has a cytosine (C). Within this

population, these positions in the genome where multiple alleles exist concomitantly

are called Single Nucleotide Polymorphisms, or SNPs. In theory, mutations

can affect any base pair in an individual’s genome, making it different at that po-

sition from its parent. The frequencies and combinations of SNPs change in the

population over generations due to the five evolutionary forces described above.

0.1.2 Modeling population genetics

To model the history of a population of constant size, we can create a first generation

g ofN individuals (N being the population size). We then produce theN individuals

of the next generation, g+1. The parents of each individual in g+1 can be chosen

randomly among the individuals of g. The individuals of g are then erased (i.e.,

non-overlapping generations). We can repeat this process for 5N generations, at

which point we have 95% chance of having reached a common ancestor for the

whole population. This modeling can work but has a major disadvantage. Only

one of the individuals of generation g is the ancestor of all the individuals of the

last generation. This means that all calculations made to build the descendants of

the other individuals of g are useless, since they have no descendants in the last

generation. In other words, since these individuals have no impact on the genetics

of the present population, modeling them implies useless calculations.

Coalescent theory allows overcoming this problem (Kingman, 1982). This

theory models the genetic history of a population not from the past to the present

like the previous model (forward-in-time model, Fig. 2a), but starting from the

present and going back to the common ancestor (backward-in-time model, Fig.

2c). From a computational point of view, the advantage of this method lies in

the fact that we only compute the ancestors of the individuals present in the last

generation (i.e., ancestors that had an impact on present-day population genetics).

Moreover, we can focus on reconstructing the history of a sample of individuals

taken from the population. By focusing only on the sampled individuals, we do not
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Figure 2: Ineffectiveness of forward-in-time modeling. Figure from Grünwald
and Goss (2011). (a) Forward-in-time modeling of a population of N = 10 haploid
individuals. Individuals that died without children are in grey, others are in blue.
(b-c) Individuals present or having descendants in the last generation are in red. All
other individuals are not useful to explain the genetic diversity in the last generation.

needlessly calculate the past of many present individuals we would not sample, nor

past individuals that do not have alive descendants.

Backward-in-time modeling relies on the hypotheses of a panmictic population

(i.e., individuals mate randomly) and non-overlapping generations. We start with

the n individuals sampled in the present-day generation. We are then interested in

the probability that two of these n individuals have the same parent in the previous

generation. If this happens, both individuals’ lineages will be merged in the previous

generation: this is called a coalescent event. Statistically, there is a 1/N chance that

a coalescent event will happen in the previous generation, and a 1 − (1/N) chance

that it will not. In order to have at most one coalescent event in each generation,

we assume that n is very small compared to N . We then want to evaluate the

coalescence time, i.e., the number of generations until n lineages become n − 1

lineages. We will note this coalescence time Tn. It is a random variable that follows

a geometric distribution since it corresponds to the number of attempts (i.e., the

number of generations) before reaching the first success (i.e., a coalescence event).

Assuming the generation time is very small compared to Tn - this stems from the

assumptions n << N andN is very big - we can switch to an exponential distribution

(i.e., a continuous version of the geometric distribution). We know the expectation

of this law: 2N/n(n− 1), as well as its variance: 4N2/(n2(n− 1)2).

We use this method to go back from n individuals to their common ancestor,

by computing the expectation of Tn, Tn−1, ..., T2 successively. The smaller k is, the
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larger E[Tk] will be, with E[T2] = N . Therefore, in the case of a constant-size

population, coalescence events happen mostly near the present and become rarer as

we go back in time. The total time of n lineages until the coalescence of the last two

lineages (Time to Most Recent Common Ancestor, TMRCA) is
∑n

i=2 Ti, which is

2N(1− 1/n). We can schematize these coalescent events with a binary tree, called

coalescence tree. In this tree, the leaves correspond to present-day individuals

and each internal node to a past individual. The root will be the ancestor of all

present individuals (the Most Recent Common Ancestor, MRCA). The branch

lengths correspond to the coalescence times. In a population of constant size, the

branches are thus increasingly long as one goes up in the tree.

We can simulate the mutation process by randomly placing them on the tree

branches. A long branch will have more mutations than a short branch. Therefore,

there is a link between coalescence time, branch length, and number of mutations:

a long coalescence time corresponds to long branches and the accumulation of many

mutations. We will use in this thesis the infinite sites model (Kimura, 1968),

commonly used in population genetics: by assuming an infinite number of sites,

we can remove the possibility that multiple mutations fall on the same site, which

would complicate the mathematical derivations and rarely happens in humans.

It is also possible to model changes in population size by changing N over time.

There is a population expansion if N is small in the older past and increases in the

more recent past. In the opposite case, it is a demographic contraction. After an

expansion, the coalescence times will get longer due to the increase of N . This is

quite intuitive: the population being larger, it takes much longer to trace back the

ancestor of two individuals, which therefore are particularly distant genetically from

each other (i.e., a large number of mutations separate them). On the contrary, in

the case of a contraction, the coalescence rate will increase, the individuals being

more related. Therefore, knowing the coalescent tree of a sample with its branch

lengths (i.e., coalescence times) makes it possible to have insight on the population’s

demography over time.

This initial coalescent model is the simplest. It only considers genetic drift, and

only changes in population size are possible. Several extensions were subsequently

developed, including natural selection, recombination, and migrations. As for nat-

ural selection, the difficulty lies in that an individual probability of reproducing

depends on his parents. This dependence on past history makes backward models

more challenging to develop. However, mathematical work has been done to allow

the inclusion of natural selection in coalescent models (Kaplan et al., 1988, 1989;
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Hudson and Kaplan, 1995; Nordborg et al., 1996; Nordborg, 1997).

It is also possible to include recombination in the coalescent model. In this case,

there will be more than one tree, but rather a sequence of trees. Each tree will

represent the history of a genomic region between two recombination points. Two

adjacent trees differ only by one recombination event in the past, so they have only

one difference. This difference can concern the trees’ topology (the branching struc-

ture) or the branch lengths. By taking advantage of the similarities between nearby

trees, it is possible to store the trees without repeating redundant information. An

example of this format is the Ancestral Recombination Graph (ARG, Rasmussen

et al., 2014) or the tree sequence (ts, Kelleher et al., 2016).

0.1.3 Inferring the past from the genome

Several processes can impact the genetic diversity of a population. For example,

population size changes affect coalescent trees’ branch lengths (see above). Con-

versely, we can investigate past demographic changes by sampling genomes from

the population. Other processes can be detected, such as natural selection (Booker

et al., 2017) or migration (Palamara and Pe’er, 2013). Classically, we attempt to

reconstruct past events by computing specific measures on a sample of genomes.

These measures are called summary statistics. Some of them are particularly well-

known and used often, and here we explain the principles behind the ones used in

this thesis.

Genetic diversity in the most simple case of neutral evolution depends on pop-

ulation size (N) and the mutation rate (µ). These two parameters are included

within the θ parameter, which represent the total genetic diversity in a population,

with θ = 2Nµ. Several methods for estimating θ from genomic data were designed.

Watterson’s estimator of θ is defined as: θ̂k = k∑n−1
i=1 1/i

, with k the number of SNPs

in a sample n of genomes (Watterson, 1975). With θ̂k, the more SNPs there are, the

higher the genetic diversity. Another estimator of θ is based on the computation

of the mean number of pairwise differences within the sample (π) (Tajima, 1983).

The following formula can be used: θ̂π = n
n−1

∑k
i=1 2pi(1 − pi), with pi the allele

frequency of mutation i. In the case of neutral evolution (only drift is at work, and

the population size is constant), these two estimators of θ are equivalent. However,

when the model deviates from the neutral model, they will differ. The measure

called Tajima’s D relies on this difference (Tajima, 1989). This summary statistic

evaluates the distance from neutrality by calculating the difference between the av-
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erage pairwise differences in the sample (θ̂π) and the scaled number of SNPs (θ̂k),

divided by the standard deviation of this difference. When Tajima’s D is negative,

θ̂k is lower than θ̂π, which happens when there is an excess of rare mutations. This

excess appears in the case of positive natural selection or when the population has

expanded. When Tajima’s D is positive, there is a deficit of rare alleles, as in the

case of a contraction of the population size or of balancing selection.

A more exhaustive measure of allelic frequencies is also commonly used: the site

frequency spectrum (SFS) (Fig. 3). Mutations are grouped into rarity classes, and

the frequencies of each class are computed. The first class counts the mutations

present only in one haploid individual in the sample (also called singletons). This

class strongly impacts Tajima’s D. The next class counts the mutations present

in two haploid individuals in the sample (doubletons). The last class, of the most

common mutations, counts those present in all but one individual in the sample.

The difference between this class and the singletons can be noticed only if we know

which is the ancestral allele and which is the derived one, generally by using an

outgroup (i.e., the allele present in the outgroup can be considered as ancestral). In

that case, the SFS is “unfolded” and has n−1 classes, with n the sample size. When

the ancestral allele is not known, we use the folded SFS, which has n/2 classes. The

SFS allows a subtler analysis than Tajima’s D, and its relation with the shape of the

coalescent tree is often straightforward. For example, a tree with very long terminal

branches, as in the case of expansion, will have an excess of rare mutations (and a

negative Tajima’s D).
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Figure 3: Site Frequency Spectrum under several models. Wright-Fisher
is a model where individuals mate randomly and generations are not overlapping.
Sweep is the process where a mutation becomes fixed due to selection. Growth
is a population size expansion. Structure is when several subpopulations, with
differences in allelic frequencies, coexist within a population. Figure from momi2
tutorial (https://radcamp.github.io/AF-Biota/07 momi2 API.html).

Some summary statistics are computed directly on coalescent trees’ topology.

In that case, we need to reconstruct the tree from the sampled genomic data, and

several algorithms exist for this reconstruction (cf Methods section in Chapter 3).

Imbalance indices measure the asymmetry of the tree, while balance indices measure

its symmetry (Fig. 4). The more symmetrical the tree, the lower its imbalance

indices and the higher its balance indices. There is a large variety of (im)balance

indices, such as Sackin (Sackin, 1972), Colless (Colless, 1982), B1 (Shao and Sokal,

1990), B2 (Shao and Sokal, 1990), and Fusco (Fusco and Cronk, 1995). We will

detail these indices in Chapters 2 and 3. Another summary statistic computed on

trees’ topology is the number of polytomies (Fig. 4). It corresponds to the number

of non-binary nodes in the tree (e.g., tree 7 has a non-binary node located at the root

in Fig. 4). It is equal to 0 in the classical coalescent, which assumes that the sample

size is very small compared to the population size, and hence impossible that more

than two lineages coalesce at the exact same time. In other types of models, such

as in a forward model, it is possible to have non-binary nodes, and counting them

can provide some information on the population history. However, it is essential

to differentiate between two types of non-binary nodes. The first contains the real

non-binary nodes, which come from multiple simultaneous coalescence events in an

ancestor (due, for example, to a very high fitness of the ancestor). The second one

https://radcamp.github.io/AF-Biota/07_momi2_API.html
https://radcamp.github.io/AF-Biota/07_momi2_API.html
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contains multiple coalescence events due to the process of tree reconstruction from

the genomic data. Indeed, if there are no mutations on a branch of the real historical

tree, the inferred tree might merge the nodes at both ends of the branch, resulting

in a triple coalescence.

Figure 4: All 33 possible coalescent trees of 6 samples. First row (1-6) shows
all possible binary coalescent trees of 6 samples, from the less imbalanced (1) to the
most imbalanced (6). (The ranking is true for some imbalance indices but not for all
of them. Some adjacent trees are considered equally imbalanced according to some
indices.) Unlike binary trees 1-6, the trees 7-33 contain polytomies. The numbers
of interior nodes (including the root) for trees 1-6, 7-18, 19-28, 29-32, and 33 are
5, 4, 3, 2, and 1, respectively. Number of polytomies is computed by counting the
non-binary nodes. Figure and description from Shao and Sokal (1990).

0.1.4 Cultural Transmission of Reproductive Success

This thesis concerns a process that is little studied in population genetics, com-

pared to the five evolutionary forces discussed above: the Cultural Transmission
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of Reproductive Success (CTRS). This process occurs when the number of chil-

dren of an individual correlates with the number of siblings for nongenetic reasons

(Austerlitz and Heyer, 1998). Thus, individuals from large families will themselves

tend to have more children than average (Fig. 5). In the case of natural selection,

the fitness transmission from parents to children is conveyed through the vertical

transmission of fitness-increasing alleles. In contrast, with CTRS, this transmission

occurs through other means.

Figure 5: Cultural Transmission of Reproductive Success (CTRS). Indi-
viduals from the red (resp. green) lineage inherit culturally a propensity to have
more (resp. less) children than average.

In human populations, CTRS can occur for three different reasons: (i) the cul-

tural influence of parents on children on reproductive behavior, (ii) cooperation

between siblings that increases their fitness, and (iii) the vertical transmission of

resources correlated with fitness. These resources can be material, social (e.g., the

transmission of social rank), or cultural (such as hunting techniques). The cultural

transmission of the propensity to leave one’s birthplace can also lead to a form of

CTRS. Indeed, lineages whose descendants tend to leave the population will appear

less fertile, as they will contribute less to the genetics of their population (Gagnon

and Heyer, 2001; Gagnon et al., 2006).

Parent-child correlations in the number of siblings were measured in several

human populations. In particular, these correlations exceed 0.2 among Mormons

(Wise and Condie, 1975), Hutterites (Pluzhnikov et al., 2007), in the United States

(Murphy, 1999) and in several European countries (Pearson et al., 1899; Bresard,

1950; Murphy and Wang, 2001).

However, although the existence of correlations has been established, it is still

to be determined to which extent they are genetic (and therefore indicative of a

process of natural selection) and/or cultural (and therefore a process of CTRS). In
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the case of a genetic transmission, we face the so-called Fisher’s paradox (Hughes

and Burleson, 2000): since selection reduces the genetic variance in the popula-

tion until none is left, why do we still find parent-children correlations in progeny

size nowadays? An inheritance as faithful as genetic inheritance, combined with

such strong correlations, should reduce diversity rather quickly and leave only the

fitness-enhancing allele in the population. Once the favorable allele has invaded the

population, correlations would be null. In the case of a cultural transmission, this

erosion of variance is less likely to occur, since this transmission is not very faithful

from one generation to the next. The absence of Fisher’s paradox in a cultural

transmission is thus an argument for its proponents (Heyer et al., 2012). However,

different explanations have been given to explain the persistence of correlations in

the case of genetic transmission of reproductive success. For example, the corre-

lations can be caused by the transmission of very multigenic traits, for which the

mutation rate is high because mutations can appear in a large part of the genome.

The fidelity of inheritance is therefore reduced, and the erosion of variance is absent

or less rapid. We will discuss other answers to Fisher’s paradox in Chapter 1.

The transmission of reproductive success has several effects on the genome, in-

cluding a decrease in genetic diversity. This is true regardless of the transmission

origin, genetic (natural selection) or cultural (CTRS). However, depending on the

origin of TRS, some effects will be different. The first difference appears in the

presence of recombination. In this case, the effects of natural selection will be re-

stricted to the region of the locus under selection. The CTRS, on the other hand,

will affect the whole genome, since CTRS is not carried by a particular gene but by

a cultural trait. In the case of multigenic selection, however, many genomic regions

may also be affected. Yet, multigenic selection differs in its effects from CTRS. One

of the differences is the neutral regions of the genome concerning multigenic selec-

tion, whereas CTRS impacts the entire genome. We will discuss other differences

between CTRS and multigenic selection in Chapter 1.

The effects of CTRS on the genome are multiple. Genetic diversity is reduced,

which might increase the propensity of genetic diseases in the population. This

has been shown in the Saguenay-Lac-Saint-Jean region of Quebec, where a fairly

strong CTRS has occurred for 12 generations. Several genetic diseases occur in high

frequency in this population, such as some forms of Cytochrome C oxidase deficiency

and Spastic ataxia that are non-existent or sporadic in other human populations

(Austerlitz and Heyer, 1998). The topology of coalescent trees is also impacted by

CTRS, with a stronger imbalance than the neutral case. The imbalance is a measure
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of tree skewness for which several indices exist (see section 0.1.3). Moreover, branch

lengths are also impacted, with a non-homogeneous reduction of the branches: the

oldest branches are more reduced than the recent branches. We will discuss the

effects of CTRS on population genetics in more detail in Chapters 1 and 2.

CTRS is not solely occurring in humans. It has been detected in several animal

species, such as hyenas (Engh et al., 2000; Ilany et al., 2021), cetaceans (Frere

et al., 2010; Whitehead et al., 2017), and monkeys (Kawai, 1958; Whiten et al.,

1999; Leca et al., 2007; Hobaiter et al., 2014; Robbins et al., 2016). Furthermore,

although we use the term cultural TRS here, it would be more accurate to speak of

nongenetic TRS, to explicitly include any vertical transmission of fitness that is not

carried by genes. This generalization allows the inclusion of processes such as TRS

produced by any parental effect (e.g., a parent who is more robust than average

for nongenetic reasons may have more children than average, who will also be more

robust than average, due the good parental care the parent can provide, and so

on.) Similarly, ecological inheritance can lead to nongenetic TRS: a parent born

in a favorable environment will have more children than average and may transmit

this fitness-correlated environment to his descendants. In sum, nongenetic TRS is a

broad phenomenon that encompasses different mechanisms and affects many species.

Whatever the mechanism of fitness transmission, as long as it is not genetic, we are

dealing with nongenetic TRS with all the effects on the genome mentioned above.

This diversity of nongenetic TRS encourages further investigation of this process’s

effects and the development of methods to detect it from the genome. We will

discuss the generalization of CTRS in Chapter 1.
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0.2 Inference methods

To infer past events within a population, we can compute different summary statis-

tics (see section 0.1.3, and others not mentioned there, such as F statistics or link-

age disequilibrium). However, several events may have the same effect on a given

summary statistic. For example, the number of SNPs decreases in the case of a bot-

tleneck, as well as in the case of natural selection. Similarly, Tajima’s D becomes

negative in the case of an expansion as well as in the case of natural selection. The

difficulty often lies in distinguishing between several processes with similar effects.

In this thesis, one of the objectives will be to distinguish between CTRS and de-

mographic events. Chapter 2 will show how they can be confused, by measuring

the bias in demographic inference when CTRS occurred in the population. Chapter

3 will develop methods to remove this bias and achieve a correct joint inference of

CTRS and demography. The main principles of the inference methods that we will

use in Chapter 3 are introduced in this section. The more technical details will be

detailed in the Methods section of Chapter 3.

An inference method can address two type of tasks: classification or regres-

sion. The first task aims at dividing data into two or more classes. For example,

it would classify images in the cat or dog category. In population genetics, we may

want to distinguish populations that have undergone a recent period of natural se-

lection on a given gene from those that have not. The second task, regression, seeks

to find from the data the value of a parameter or several parameters whose prior

is continuous. For example, we could infer the age of a tree by knowing its diam-

eter and height. In population genetics, we may want to infer from genomic data

the intensity of natural selection and the type and the intensity of a demographic

event. We will therefore have two parameters to infer: the selection coefficient s,

and the growth factor g. If we infer s = 0 and g = 10, there was no selection and

a demographic growth where the population size was multiplied by 10. If we infer

s = 0.1 and g = 0.1, there is a selection coefficient of 0.1 and the population size

was divided by 10 (a contraction).

In this thesis, we will use two main categories of inference methods to solve

regression tasks. The first approach relies on the combination of several summary

statistics, and the second is based on machine learning directly applied to raw ge-

nomic data. This section will describe both approaches, using the above s and g

parameters inference as an example.
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0.2.1 Combining several summary statistics

We have seen that several processes can affect the same summary statistic similarly.

In order to tell these processes apart, we can combine several summary statistics.

For example, we can observe a low genetic diversity, due to contraction, natural se-

lection, or a combination of both. By observing a negative Tajima’s D, we can rule

out the hypothesis of a decrease in diversity due to contraction alone. Of course, the

reality is generally more complex, and combining more than two summary statistics

is often necessary. In order to make this inference by combination, several meth-

ods are possible, such as Approximate Bayesian Computation (ABC), neural

networks applied to summary statistics. In this thesis, we will use ABC and detail

this method here.

Approximate Bayesian Computation (Beaumont et al., 2002; Csilléry et al., 2010,

2012), as its name indicates, is a Bayesian inference method. To perform a

Bayesian inference (Fig. 6), we need two elements. The first is a likelihood func-

tion: it defines the probability of observing data knowing the parameters of a model.

For example, the likelihood function would say: “there is a 1% chance of observing

this genomic data, given that the parameters are s = 0.1 and g = 2”. The full

likelihood function will state the probability of each possible SNPs combination in

the sample, given each possible parameter’s combination of values. The second nec-

essary element for Bayesian inference is the prior: it is the distribution of the belief

we have about the parameters to be inferred, before any inference. For example,

let us say we know that the demographic event was an expansion, and we know it

was not more than tenfold. We also know that the selection coefficient is not above

0.2. In that case, the prior of g could be a uniform distribution with parameters

]1, 10], and the prior of s could be a uniform distribution with parameters [0, 0.2]. It

will then suffice to apply Bayes’ formula: posterior = (prior× likelihood)/evidence

(the evidence is used here to normalize the posterior to 1, and corresponds to the

marginal likelihood, i.e., the probability that the data are observable). The poste-

rior would be the parameters joint probability distribution after inference, and the

most probable values can be used as point estimates of the parameters.

In practice, it is possible, although not always easy, to have a sensible prior.

However, the likelihood function is often far too complex to be computed entirely.

Therefore, applying this exact Bayesian framework to our population genetics ques-

tions is impossible. To overcome this problem, we will use ABC, which allows us

to perform Bayesian inference without knowing the exact likelihood function. The
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Figure 6: Schematic view of Bayesian inference. Figure from Ankit Rathi’s
website.

idea is to approximate the likelihood function with computer simulations (Fig. 7).

To do this, we will randomly draw the parameters in the prior distribution, in or-

der to simulate the genetic data. Many simulations are performed, until the set of

parameters-data pairs obtained gives us an approximation of the likelihood function.

The distribution of the observed data in simulations for a given pair of parameters

will correspond to the probability of these data given the parameters. Using our

prior and this approximation of the likelihood function, we can then compute the

probability of the parameters knowing the data, which will be our posterior.

Different algorithms exist for ABC (one of them is described in Fig. 7), but all

rely on an approximation of the likelihood function through simulations. However,

the problem lies in correctly approximating the likelihood function when a large

number of possible genetic data exist for a sample of n individuals. A good approx-

imation of the likelihood function requires estimating the probability of observing

each possible data set, for each given parameter combination. This would require

many simulations to cover all combinations of data and parameters. Therefore, we

use summary statistics to reduce the dimensionality of the data and approxi-

mate the likelihood function with fewer simulations. Once the data are summarized,

we can look for the likelihood function of observing a given combination of summary

statistics, knowing the model parameters.

In Chapter 3, we will use a version of ABC called ABC random forest (Pudlo

et al., 2016; Raynal et al., 2019). This method approximates the likelihood function

https://ankitrathi.com/markdown/bayesian-statistics-for-data-science/
https://ankitrathi.com/markdown/bayesian-statistics-for-data-science/
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Figure 7: Approximate Bayesian Computation. This basic example uses the
rejection algorithm. Figure from Sunn̊aker et al. (2013)

by using decision trees. The details will be presented in the Methods section of

Chapter 3. It is only necessary to remember that, as for any ABC method, we

will simulate a large number of genetic data by randomly drawing the parameters

in a prior. Then, we will compute summary statistics and train the algorithm to

find the probability of observing the summary statistics knowing the parameters

(the approximate likelihood function). This algorithm will build the likelihood ap-

proximation by observing the parameters and the associated summary statistics of

a training dataset. It will then be possible to find the posterior from another set,

called the test set. For each genetic data of the test set, we can compute the sum-

mary statistics and infer the parameters, by choosing for example the most probable

parameters given the observed summary statistics as our inference (i.e., the mode

of the probability distribution). Finally, the inferred parameters can be compared
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to the true parameters used for the simulations, in order to evaluate the inference

accuracy.

0.2.2 Deep learning on raw genomic data

This second method will infer directly from raw genomic data without using sum-

mary statistics. Deep learning is particularly adapted to this task because it can

find information by itself within complex data. We will use a complex convolutional

neural network, called SPIDNA and designed by Sanchez et al. (2021). We will

detail its architecture in the Methods section of Chapter 3, and more details can be

found in the original paper. Here we will introduce the basic principles of neural

networks, and address the general issue of their applications in population genetics.

What are neural networks?

Neural networks (McCulloch and Pitts, 1943) are a class of data analysis methods

often used for inference. We will use them to infer the parameters of a population

genetics model from genomic data. A neural network can address the two inference

tasks described above: classification or regression. Neural networks are, in fact,

mere functions applied one after the other, sometimes in complex sequences, in order

to analyze data. These sequences of functions are constructed through a learning

process. This means these functions contain variable parts that will be modified

during a training phase until they are optimal. When these function sequences are

correctly optimized, they can extract the desired information from the input data.

A neural network always has one or more input values, which correspond to the data

to be analyzed, and one or more output values, which correspond to the information

extracted from these input data. Between the input and the output is this sequence

of functions to optimize. The type and organization of these internal functions are

what we call the neural network architecture.

The variable parts of the internal functions network are optimized during a train-

ing phase. During this phase, the network will “observe” input data with their as-

sociated output. The variable parts of the functions will be modified little by little

during this phase. The objective is that at the end of this phase, when the network

is given the input data, it responds with output values as close as possible to the

true values (i.e., we want to minimize the difference between the network outputs

values and the true values). We evaluate the quality of the network optimization by
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presenting it with new input data, which it will never have seen during the training

and for which we know the true output values. The difference between the output

values of the network and the true output values will be the basis for evaluating

the quality of the network optimization. Sometimes, the network may give excellent

results on the data it has already seen (training set) and wrong results on the data

not used for training (test set). In this case, we say that there is overfitting. This

means that the variable parts of the network have been over-optimized, to the point

that the correct input-output relationship is only achieved on the data already seen.

One of the major challenges is reaching good results on the test set, thus achieving

a form of generalization. We will now explore different types of neural network

architectures, from the simplest to more complex forms.

The perceptron

The perceptron (Fig. 8) is the simplest type of neural network: it corresponds to

a single neuron. It is composed of five parts.

1. The input vector x⃗, containing the data we want to analyze. This vector can

be of any length between 1 and ∞. It is the object to analyse, for example an

encoded image or genomic data from a sample of individuals.

2. The weights w⃗. Each value of the input vector x⃗ is associated with a weight

in w⃗. The weights are real numbers that can evolve during the training phase.

These weights correspond to the variable part of the functions introduced in

the previous section. An optimizable value with no association to any input

can be added. This bias b allows a greater learning capacity.

3. A weighted sum function, which adds the input values weighted by their asso-

ciated weights:
∑n

i=0wi × xi + b, with n being the length of the vectors w⃗ and

x⃗.

4. The activation function. Several types of activation functions exist. One of

the simplest is the Heaviside step function: it is defined on IR and has only two

output values, 0 or 1. The Heaviside function outputs 0 for any value lower

than 0, and 1 for any value higher than 0. Therefore, it is only used in the

case of a classification task. In this case, we will need this step to transform

the continuous value of the weighted sum (part 3) into a binary value. By

associating 0 to the cat category and 1 to the dog category, it is possible to
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use the activation function to transform the weighted sum of part three into

a cat or dog classification. In the case of a regression, the Heaviside function

is absent. We can take the result of the weighted sum (part 3) directly as

the output value of the network: the perceptron will then be equivalent to a

linear regression. Otherwise, we can replace the Heaviside function by a

non-binary and non-linear output function, like the sigmoid (IR →]0, 1[). In

the latter case, we will have a sigmoid neuron, a slightly modified version of

the classical perceptron.

5. The final part is the output vector y⃗. In a classification task, this is the

output of the activation function. In a linear regression, it is the output of the

weighted sum function.

Figure 8: Diagram of a perceptron. The weight w0 corresponds to the bias b in
the text. Figure modified from the deepai website.

It remains now to optimize the weights, so that the expected output values

correspond as closely as possible to the observed output values. For this, several

algorithms exist. Their role is to define how to modify the weights little by little to

reach optimization. We will briefly describe one of these algorithms, called gradient

descent (Fig. 9). It is an iterative method that minimizes the distance between

the expected and observed outputs on the training set. This distance is represented

by the loss function, L(w) (also called the cost function). Several loss functions

exist, the most common being the Mean Squared Error (MSE) of the differences

between the observed (i.e., the true) and predicted outputs (also called L2 norm),

according to this formula: 1
n

∑n
i=1 (yi − ŷi)

2, with yi the observed outputs and ŷi

the predicted outputs. We will have reached optimization by finding the values of

the weights for which L(w) is the lowest for the training dataset. In other words,

https://deepai.org/machine-learning-glossary-and-terms/perceptron
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we look for the minimum of the loss function L(w). To find it, we need to know

the gradient of L(w) and move in the opposite direction, in order to move toward

its lowest point. In practice, we initialize w⃗ randomly; then we modify it at each

iteration j according to the following formula:

wj+1 = wj − γ ×∇(L(wj))

Two parameters impact the magnitude of the change in w⃗ at each iteration: (1)

γ, the learning rate, which can be fixed or evolve in a predetermined way during the

iterations, and (2) the loss function gradient, which varies during the optimization

process, depending on the values of w⃗. We repeat the operation until we reach

a gradient of 0 (or until a predefined number of iterations has been done). It is

possible that the minimum found is only a local minimum and that a lower global

minimum exists, meaning the optimization of w⃗ could be better. Finding the global

minimum is one of the challenges of gradient descent and of neural networks that

use this optimization method to modify their weights.

Figure 9: Diagram of gradient descent. w∗ is the optimal value that the gradient
descent algorithm tries to find. Figure modified from Saugat Bhattarai’s website.

Multilayer perceptron

The limitation of the perceptron is its inability to analyze non-linearly separable

data (Minsky and Papert, 1969). The multilayer perceptron (MLP), also called

https://saugatbhattarai.com.np/what-is-gradient-descent-in-machine-learning/
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fully connected network, allows to tackle nonlinear problems, which is the case of

most problems in practice. Simply put, the MLP links several perceptrons together.

More precisely, the MLP architecture includes at least three layers of neurons

(Fig. 10): the input layer, the hidden layer and the output layer. There can be more

than one hidden layer, but we will keep a simple example with only one hidden layer.

One of the particularities of the MLP is that it is fully connected. This means that

all input layer neurons connect to all hidden layer neurons, and all hidden layer

neurons connect to all output layer neurons. Each of these connections corresponds

to a weight w, which can evolve during the training phase, as for the perceptron.

There will be more weights than for the perceptron, and they will be organized in

more layers.

Each neuron of a hidden layer will have for value the result of a weighted sum

function of the previous layer, followed by a nonlinear activation function. For the

first hidden layer, the formula would be: a⃗1 = σ(W 1x⃗ + b⃗1), with a⃗1, the output

values of the neurons of the first hidden layer; σ, an activation function such as

the sigmoid; W 1, the matrix of weights linking the neurons of the input layer to

the first hidden layer; x⃗, the input values; b⃗1, the bias vector. The other L layers

use this formula: a⃗ l = σ(W lz⃗ l−1 + b⃗ l), with l the current layer, and z⃗ the output

vector of a layer. The optimized values are all the weights W = {W 1,W 2, ...,WL}
and all the biases b⃗ = {b1, b2, ..., bL}. More recently, it has become common to use

the ReLU (Rectified Linear Unit) function instead of the sigmoid as an activation

function. This function allows to train more easily deep networks (i.e., with many

hidden layers) and is defined as follows: ReLU(x) = max(0, x).

The MLP training is performed using the gradient descent method presented for

the perceptron. First, the weights of the network are randomly initialized. Then, as

for the perceptron, the gradient of the loss function is computed with respect to the

weights to understand how a slight modification of the weights affects the loss. In

the case of a complex network like the MLP, the loss gradient is computed for each

input data for all weights using a method called backpropagation (Rumelhart

et al., 1986). This method computes recursively the gradient in each layer with

respect to the previous layers using the chain rule. More than the loss gradient

for a single data point is required: the total gradient is computed for all the data.

This gradient will allow a modification of the weights in the right direction with the

formula: Wj+1 = Wj −γ×∇(L(Wj)). At each iteration j, the weights are modified,

hence reducing the loss and approaching the optimal values.
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Figure 10: Diagram representing a multilayer perceptron (MLP). A data
point x⃗ passes through a series of hidden layers defined by their weights W l and
bias b l. Each output z l of an hidden layer passes through an activation function
σ. Last layer outputs the prediction of the network ⃗̂y. Figure and description from
Sanchez (2022).

In practice, we often use a version of the gradient descent called stochastic

gradient descent. This choice is motivated by a limitation of gradient descent:

the gradient must be computed for the whole data set at each iteration. For a

relatively long gradient to compute in a complex network, the total computation

time for each iteration will be too long to handle. Stochastic gradient descent

tackles this issue by dividing the training dataset into parts called mini-batches.

At each iteration, the gradient is computed on one mini-batch only, and the weights

are modified accordingly. At the next iteration, we use another mini-batch, until

the network has seen at least once all the data.

In theory, any function can be approximated with a sufficiently complex MLP.

However, the larger and deeper the MLP, the more difficult and time-consuming it

is to optimize the weights. In some cases, computers will not have the necessary

computational capacity. For this purpose, other types of networks have been de-

veloped later, such as Convolutional Neural Networks (CNN), which we will

briefly describe in the next section.
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Convolutional Neural Networks

Unlike an MLP, the hidden layers of a CNN (Lecun et al., 1998) can be of several

types. The convolution is the major type of layer, and gives its name to the CNN.

As input, each convolution layer takes a matrix C, the previous layer’s output. The

convolution layer applies a filter A on sub-matrices B of this input matrix C (Fig.

11). A filter, also called mask or kernel, is a weight matrix of the same dimension

as the sub-matrices B. Applying a filter consists in computing the weighted average

of the product of the weights with the values of the same index in the sub-matrix

B (in other words the weighted average of the Hadamard product of the matrices

A and B). This filter slides on matrix C, outputting one result per sub-matrix B.

The matrix of the results will be the layer’s output. We define the filter’s moving

steps over matrix C by two stride parameters, one that defines the displacement of

the filter in the direction of the rows and the other in the direction of the columns.

The weights to be optimized are those carried by the different cells of the filter.

Therefore, there will be much fewer weights to optimize than in an MLP, which is

fully connected, and the computation time will be faster. In practice, each layer

comprises several filters, each independently optimized. Each filter can capture

different information in the data.

Figure 11: Diagram of a convolution filter in two dimensions. The filter A
(in red) is applied over a matrix C (in blue), resulting in the green matrix. Each
element of the green matrix is computed by performing the weighted average of the
Hadamard product between the mask and the corresponding window over the blue
input matrix C. s1 and s2 denote the strides of the filter in the two dimensions.
Figure and description adapted from Sanchez (2022).
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Deep learning in population genetics

There are two ways to use deep learning (DL) for inference in population genetics:

applying the neural network to summary statistics or applying it directly to raw

genomic data. In this thesis, we have opted for the second strategy for DL, and will

compare its learning capacity to that of ABC random forest (ABCrf) on summary

statistics. As for ABCrf, we will perform the training and testing phases on separate

sets of simulated data. We will use the same data for ABC and DL to make the

comparison as fair as possible.

The genomic input data are formatted as SNP matrices. These matrices have in

rows the different individuals and in columns the loci. The cells of the matrix can

contain a 0 or a 1, with each cell representing the allele state for the given individual

at the given locus (0 representing the ancestral allele). The matrix is associated with

a position vector containing the absolute or relative positions in the genome of each

SNP (Fig. 12).

Figure 12: Converting genomic data to a SNP matrix. Here, recent alleles (in
orange) are encoded by ones and ancestral alleles (in red) by zeros. The SNP matrix
has a relative position vector that encodes the distance of each SNP to its right
neighbour. An absolute position vector can also be used. Figure and description
adapted from Sanchez (2022).

Since the rows of the SNP matrix correspond to the individuals, one should be

able to swap rows without changing the matrix information. However, a CNN is

naturally sensitive to spatial information, and might want to look for patterns in

the order of the rows. Several solutions exist to inform the network of the rows’

exchangeability. The first solution would be to train the network to understand

the absence of information in the order of the rows, which can be helped with

data augmentation (e.g., deliberately permuting the rows). However, this induces a

loss of computational resources because the network must learn the exchangeability

of the rows in addition to its task. Several studies have explored an alternative

solution: ordering individuals according to a specific criterion (Flagel et al., 2019;

Torada et al., 2019). However, Chan et al. (2018) chose to make the neural network
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exchangeable by design by adding invariant operations (Zaheer et al., 2017). Sanchez

et al. (2021) used a similar technique, based on Lucas et al. (2018)’s work. They

applied it to SPIDNA, the network architecture we will use here. The Methods

section in Chapter 3 will describe SPIDNA’s architecture in more details.
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0.3 Thesis objectives

This thesis investigates the topic of nongenetic TRS on several axes, all intercon-

nected.

0.3.1 Chapter 1: A review of TRS

TRS is a complex phenomenon in its causes and consequences. It belongs to dif-

ferent bodies of literature: sociology, anthropology, demography, medical genetics,

population genetics, and evolutionary biology. The first chapter reviews the topic of

TRS from the perspectives of different disciplines in order to answer several major

questions. The first part of this chapter deals with the evidences of TRS in human

populations and analyzes the modalities of this process. The second part addresses

the different mechanisms leading to TRS in humans and touches on the problematic

question of the origins of TRS: are they genetic or cultural? The third part will

explore the different effects of TRS on population genetics and review the literature

on the inference of nongenetic TRS. The fourth part generalizes nongenetic TRS

beyond humans. It was indeed described in other animals and it might even affect

all living organisms, raising the question of its importance as an independent force

in evolutionary theory. This first chapter thus provides an understanding of the im-

portance of nongenetic TRS by considering its presence not only in humans but in

other species as well, while addressing the complexity of its origins and consequences.

This chapter will be the starting point for a review paper manuscript.

0.3.2 Chapter 2: CTRS effects on population genetics

The second chapter is an article accepted in the journal Genetics. Its objective is to

study the different impacts of CTRS on genetics using simulations and coalescent

tree analyses. It shows that the impact of CTRS on population genetics is complex

and composed of different subparts. We study the temporal dimension of CTRS to

reveal its effects over time, as well as its interactions with demographic processes.

Furthermore, we show that allelic frequencies are impacted by CTRS yielding a bias

in demographic inference. This chapter thus raises the question of the accuracy of

demographic inference in species that have undergone a CTRS process.
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0.3.3 Chapter 3: Joint inference of CTRS and demography

The third chapter aims at correcting this bias in demographic inference under CTRS.

To do so, we develop and compare several inference methods based on ABC random

forest and deep learning. By training the algorithms on simulated data from pop-

ulations with both demographic and CTRS histories, we can learn to distinguish

the two. The goal is to infer demographic history and CTRS intensity successfully.

Furthermore, by comparing ABC random forest algorithms using different summary

statistics, we can gain insight into which ones matter most in distinguishing the two

processes, thus providing a better understanding of their interactions. This chapter

is a research paper manuscript that we aim to submit ultimately.

0.3.4 Chapter 4: CTRS and other processes

This chapter analyses preliminary results concerning the comparison of CTRS with

other processes (monogenic positive selection and migration). Several coalescent

tree topology statistics that are impacted under CTRS are examined under selec-

tion, CTRS, or a combination of both, using computer simulations. The results

are presented across time to compare the dynamics of their evolution under such

processes, as well as across the genome to reveal differences in genomic patterns.

Imbalance is also measured on inferred coalescent trees (using relate, Speidel et al.,

2019) across chromosome 22 in two real populations genomic data (Sardinians and

Yakut, HGDP, Bergström et al., 2020), in order to compare them. Effects of migra-

tion on CTRS detection are also explored, using a realistic multipopulation model

(Gravel et al., 2011) to which we added CTRS.



Chapter 1

A review of TRS

Introduction

In 1899, Pearson et al. published a paper entitled “On the Inheritance of Fertility

in Mankin”, where they formally proved the existence of a progeny size inheritance

using the British Peerage genealogical data. Fisher (1930) extended this analysis

a few decades later and computed from the same dataset a heritability of progeny

size of around 40%. Scientific interest dwelled on this question for the next cen-

tury, with a number of studies evaluating the extent of this inheritance in several

human populations around the World. They showed that most populations display

a positive although relatively weak correlation in progeny size between parents and

children (up to 0.2), with rare cases of null or negative correlations (Murphy, 1999).

These positive correlations will be called here “transmission of reproductive suc-

cess” (TRS). The first part of this review will gather evidence of TRS in human

populations from various studies, and examine the processes affecting it.

One of the main questions regarding TRS has been the so-called Fisher’s Paradox

(Kirk et al., 2001; Rodgers and Doughty, 2000): according to Fisher’s fundamental

theorem of natural selection, such an inheritance should rapidly yield an erosion

of the variability in fertility in the population, to the point where selection stops

and the correlation between parents and children fitness disappears. The positive

correlations in progeny size between parents and children measured in many human

populations have thus puzzled scientists for decades, with various hypotheses pro-

posed as an answer. Another point of debate concerns the causes of TRS (Rodgers

and Doughty, 2000; Beaujouan and Solaz, 2019; Bernardi, 2016) in those popula-

39
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tions: are they due to cultural or genetic factors? This question is related to Fisher’s

Paradox. In fact, in the case of cultural TRS, the paradox is less of an issue due to

the substantial variance in cultural practices appearing at each generation. On the

other hand, in a genetic TRS, the genetic mutation rate in Humans seems too low

to bring enough variability to counteract the erosion of variance. This review will

thus discuss in detail both possible causes of TRS in light of studies from various

fields.

Geneticists’ interest in this question has long been related to this matter of

genetic causes of TRS. However, Nei and Murata (1966) approached this topic’s

relation to genetics from another angle and demonstrated theoretically the effects of

TRS on genetic diversity, showing its decrease due to a smaller effective size. It is

worth noting that its impact on genetics will have distinct properties depending on

its cause: when the transmission from parents to children is conveyed by genetics, the

process can be assimilated to natural selection, with recombination constraining the

effects to the locus under selection and its genomic region. On the other hand, when

TRS is nongenetic (e.g., cultural) and thus unrelated to any locus in particular, the

effects will span the entire genome, yielding low diversity in all loci and increasing

risks of genetic diseases in the population (Austerlitz and Heyer, 1998). This specific

impact of cultural TRS has thus been used to detect such a process from numerous

human populations genomic data (Blum et al., 2006; Heyer et al., 2015). This impact

on the whole genome has another consequence: it can be a confounding factor for

demography inference based on genetic data. We will in the second part review the

literature about the impact of TRS on population genetics and compare it to other

processes.

It is possible to generalize the notion of nongenetic transmission of reproductive

success to other species than humans. Indeed, since several animal species have

a culture, they can transmit fertility by this means, for example, by social rank

transmission. Other pathways of nongenetic inheritance, such as ecological inheri-

tance, could also lead to nongenetic TRS. The third part of this review focuses on

a generalization of nongenetic TRS by exploring different mechanisms and species

involved.

This topic is of utmost importance for three main reasons. First, fertility trans-

mission is a central part of the evolutionary process in any species. Second, under-

standing better this process will help detecting it in genomic data, which matters

not only for understanding populations’ cultural aspects, but also to improve the in-

ference of other processes (e.g., selection or demographic history). Last, nongenetic
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TRS challenges the modern synthesis (Huxley, 1942) which only includes natural

selection, and calls for an extended synthesis.

1.1 Evidence of TRS in humans

Several studies have evaluated the impact of sibship size on progeny size. In many

populations, positive correlations were found between the two values (Murphy, 1999;

Duncan et al., 1965; Jennings and Leslie, 2013). These correlations exceed 0.1 in

several populations: in the United Kingdom (Berent, 1953; Murphy, 1999), in the

United States (Ben-Porath, 1975; Johnson and Stokes, 1976), and several continen-

tal European countries (Murphy and Wang, 2001; Reher et al., 2008; Kolk, 2014;

Rotering, 2017; Beaujouan and Solaz, 2019). Correlations exceeding 0.2 have some-

times been estimated, such as among Mormons (Wise and Condie, 1975), Hutterites

(Pluzhnikov et al., 2007), in the USA (Murphy, 1999), and several European coun-

tries (Pearson et al., 1899; Bresard, 1950; Murphy and Wang, 2001). Other studies

showed that childbearing timing is also transmitted, with, for example, a parent-

child correlation in age at first birth or age at marriage, these traits being often

correlated with total reproductive success (Manlove, 1997; Barber, 2001; Steenhof

and Liefbroer, 2008; van Poppel et al., 2008; Monden and Smits, 2009; Jennings

et al., 2012; Stanfors and Scott, 2013). However, there are sometimes correlations in

the total number of children, without correlations in age at first birth (Reher et al.,

2008). In some cases, correlations with the reproductive success of other family

members have been shown, such as with grandparents (Kolk, 2014; Danziger and

Neuman, 1989) or mothers-in-law (Rotering, 2017).

On the other hand, some studies have found null or very weak correlations (Lang-

ford and Wilson, 1985; Bocquet-Appel and Jakobi, 1993; Gagnon and Heyer, 2001;

Cazes, 2009; Dahlberg, 2013), sometimes even negative ones (Wise and Condie, 1975;

Cools and Kaldager Hart, 2017). However, null correlations in reproductive success

are not contradictory with positive correlations in the number of effective offspring

(i.e., the number of offspring that remain in the population and have at least one

child in it). The Quebec founder population is a good example of this, with very low

correlations in progeny size (males: 0.01, females: 0.05), but stronger correlations

in effective progeny size (males: 0.11, females: 0.12) (Gagnon and Heyer, 2001).

This discrepancy occurs because of differential migration, with a transmission of

the propensity to remain in the original population. Fairly strong correlations in

effective progeny size (0.34) were measured in the 18th century in the population of
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Saguenay Lac Saint Jean in Quebec (Austerlitz and Heyer, 1998). However, studies

focus generally on the correlation in complete progeny size (Murphy, 2012), whereas

concerning the impact of TRS on the genetic diversity of the population of interest,

it is the correlation in effective progeny size that matters (Gagnon et al., 2006). It

would be interesting to estimate more often the correlation in effective progeny size,

as it can be stronger than the correlation in complete progeny size.

Several factors impact parent-child correlations in progeny size. The period stud-

ied has an effect, with low correlations in pre-transitional populations (Desjardins

et al., 1991; Gagnon and Heyer, 2001) and stronger correlations after the demo-

graphic transition (Murphy, 1999; Murphy and Wang, 2001; Reher et al., 2008;

Bras et al., 2013). This increase is thought to be caused by the increased control

of fertility, allowing individuals to reach their ideal number of children (Bongaarts,

2001) and mimic parental progeny size all the more (Murphy, 2013; Beaujouan and

Solaz, 2019). Results in developing countries support this hypothesis, showing lower

correlations than in developed countries’ populations, which could be explained by

their weaker birth control (Murphy, 2012). However, other studies find a decrease

in correlations within a population over time (Rotering, 2017; Beaujouan and Solaz,

2019). This decrease can result from a reduction in parental influence on children

and an increased emphasis on individual achievement at the expense of traditional

observance (Buhr et al., 2018; Beaujouan and Solaz, 2019). Increased social mobility

(Glass et al., 1986; Goody, 1973), mass education (Breen, 2010), and declining ad-

herence to religious traditions (Lehrer and Chiswick, 1993) participate in the weak-

ening of the link between parental and child progeny size (Beaujouan and Solaz,

2019). The disappearance of large progeny sizes in modern times can also explain

the decrease in correlations over time (Rotering, 2017; Beaujouan and Solaz, 2019).

Finally, the growth or decay of intergenerational correlations after the demographic

transition may depend on the populations considered and the causes of TRS.

Parental and offspring gender may also have an impact, with a tendency for

stronger transmission through mothers than fathers (Wise and Condie, 1975; Mur-

phy, 1999; Murphy and Knudsen, 2002; Beaujouan and Solaz, 2019). This difference

could be due to the greater proximity of the woman to the parental family sphere

(Goldscheider et al., 2015), as well as to the prevalence of the woman over the cou-

ple’s fertility decisions. This prevalence would fade in the modern period (Bauer and

Kneip, 2013). When TRS is produced by a patrilineal transmission of resources, we

can expect a stronger correlation with father’s progeny size than mother’s progeny

size (such as in Darlu, 2019). Social class may also play a role: in the Caribbean,
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stronger correlations have been measured for socially privileged individuals with

more opportunities to achieve their ideal number of children (Jennings and Leslie,

2013). This pattern may be reversed, with high social classes in France showing

less pronounced TRS (Desplanques, 1985; Deville, 1979). The strength of TRS can

also depend on progeny size, with a more substantial effect of parental progeny size

on children’s progeny size when it is far from the mean, suggesting a TRS driven

by extreme progeny sizes (Breton et al., 2005; Breton and Prioux, 2009; Boehnke

et al., 2007; Booth and Kee, 2009; Beaujouan and Solaz, 2019). Family rank may

also have an effect, with correlations twice as high between the progeny sizes of el-

ders and their parents compared to other siblings (Johnson and Stokes, 1976; Reher

et al., 2008). However, other studies do not find this effect (Murphy and Knudsen,

2002). Individuals’ satisfaction with their childhood can also increase the correla-

tions (0.175 vs. 0.022, Johnson and Stokes, 1976), as can proximity to the parents’

lifestyle (assessed by the number of years of education, 0.218 vs. 0.118, Johnson and

Stokes, 1976) (see also McAllister et al., 1974). These different processes can add up,

with correlations of 0.419 for elders with the same lifestyle as parents (Johnson and

Stokes, 1976). Finally, when both parents have the same sibship size, the correla-

tions can be stronger than those measured for all families (0.274 vs. 0.139, Murphy,

1999). In fact, Deville (1979) demonstrated the existence of this assortative mating

by sibship size in a French population.

The consequences of TRS are multiple. From a demographic perspective, it

allows for the maintenance of higher fertility compared to the case without trans-

mission (Murphy and Knudsen, 2002). According to Collins and Page (2019), the

United Nations predictions for global demographic change are underestimated be-

cause they do not consider TRS, which gives, over time, a more significant presence

to the most fertile families. From a genetic point of view, TRS can reduce the popu-

lation’s genetic diversity, increasing inbreeding and the frequency of genetic diseases

(Austerlitz and Heyer, 1998). We will discuss the effects of TRS in more detail in

section 3 of this review.

In summary, TRS occurs in many populations with correlations that are very

often positive, although sometimes relatively weak. In many populations, this ten-

dency seems to strengthen during the modern period. This increase encourages

investigation of the causes and consequences of this phenomenon. Furthermore,

even when correlations are weak, the effects on population demographics and ge-

netics can be substantial. The causes of TRS has long been debated, and we will

address this issue in the next section.
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1.2 Causes of TRS in humans

The measured intergenerational correlations in progeny size can have genetic or non-

genetic causes. This question has long been debated in the literature. When the

first measurements of correlations were made at the beginning of the 20th century,

the prevailing interpretation was that of a genetic origin, a discipline that was then

emerging. Later, after the Second World War, sociological and cultural interpreta-

tions were dominant. This change might stem from fear of eugenics and its harmful

consequences in the post-war atmosphere (Murphy, 2013). The development of new

methods in genetics, such as sequencing and association studies, subsequently gave

new arguments to the proponents of the genetic causes of fertility correlations. This

review will present both interpretations, with their supporting evidence. It will be-

come clear that the answer is not clear-cut and that it is likely that both genetic and

nongenetic components are at work in TRS. However, we will see that the answer

may also depend on the population’s characteristics (e.g., in a culturally uniform

population, genetics will be primarily responsible for TRS, Pluzhnikov et al., 2007).

1.2.1 Nongenetic causes of TRS

Three different types of nongenetic TRS have been described (Heyer et al., 2012):

(i) parental cultural influence on offspring (Johnson and Stokes, 1976; Anderton

et al., 1987; Barber, 2001; de Valk, 2013; Kolk, 2014), (ii) cooperation between

siblings allowing children in large sibships to raise more children (Heyer et al., 2012;

Lawson and Mace, 2011; Murphy, 2013), (iii) transmission of resources that promote

fertility or the desire to have children. These resources may be material (Sorokowski

et al., 2013), social (e.g., the transmission of social rank or polygyny, Heyer et al.,

2012), or cultural (such as hunting techniques, Borgerhoff Mulder et al., 2009). The

transmission of the propensity to leave the birthplace may have a similar effect as

a nongenetic TRS as some lineages in the population will appear less fertile across

time because of their tendency to emigrate (Gagnon and Heyer, 2001; Gagnon et al.,

2006).

Nongenetic transmission from parents to children is often less faithful than ge-

netic transmission, for which the mutation rate in humans is very low (1.45× 10−8

per base pair per generation, Narasimhan et al., 2017). Moreover, cultural trans-

mission is not only vertical (from parent to child): It can also be oblique (from one

generation to the next between non-relatives) or horizontal (from one individual to
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the other in the same generation) (Cavalli-Sforza and Feldman, 1981). This diver-

sity of modes in cultural transmission reduces the influence of vertical transmission.

Moreover, the notion of rebellion exists in cultural transmission: a child can pur-

posely refuse to follow the parental culture. This lack of fidelity in the nongenetic

TRS allows it to escape Fisher’s paradox that we mentioned in the introduction

(Heyer et al., 2012). A significant amount of cultural variability is brought into each

generation, preventing the“fixation” of cultural traits associated with higher fertil-

ity. Thus, variance remains stable in the population and maintains intergenerational

correlations in progeny sizes over time. This conservation of variance is also true

for the nongenetic TRS mediated by resource transmission, which we expect to be

less faithful than genetic transmission. We will detail the three types of nongenetic

TRS, gathering evidence and examples from the literature for each.

Cultural influence of parents on children

The cultural influence of parents on children has often been proposed to explain

intergenerational progeny size correlations, a process referred to as “socialization”

or “social learning” (Duncan et al., 1965; Anderton et al., 1987; Axinn et al., 1994;

Bernardi, 2003, 2013; Bernardi and Klärner, 2014). This socialization of reproduc-

tive success can be direct via the child’s exposure to parental preferences or to a

family environment that they will want to replicate once grown-up. It can also be in-

direct, with the transmission of behaviors indirectly related to fertility. For example,

intergenerational transmission of divorce (Lyngstad and Jalovaara, 2010) can lead to

transmission of reproductive success, as divorce decreases individual’s expected num-

ber of children (Jansen et al., 2009; Beaujouan, 2010; Beaujouan and Solaz, 2019).

Positive correlations between ideal number of children and sibship size have been

found in several studies, sometimes exceeding 0.3, revealing a parental transmission

of preferences (Rodgers and Doughty, 2000; Heiland et al., 2008; Régnier-Loilier and

Depledge, 2006; Buhr et al., 2018; de Valk, 2013). However, some authors suggest

that fertility preferences are molded partly by genetic factors, which would thus be

one of the sources of these correlation (Rodgers and Doughty, 2000; Rodgers et al.,

2001).

The opposite effect is also likely, such as a rejection of parental culture yielding

a desired progeny size that differs from parental preferences (Creanza et al., 2017).

The population would then display negative progeny size correlations between par-

ents and children. This trait will furthermore have oscillatory dynamics over gen-
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erations: people with large progeny size would have children with small progeny

size, but grandchildren with large progeny size. Cavalli-Sforza and Feldman (1981)

analyze this type of cultural transmission and give the example of clothing fashion

which could have such oscillatory dynamics.

Indeed, some studies measured negative correlations between the family sizes of

parents and children (Wise and Condie, 1975; Levine, 1982). Cools and Kaldager Hart

(2017) show from Norwegian administrative records that being raised in a large fam-

ily may reduce female fertility while it increases male fertility. The interpretation

relies on the distinct roles of girls and boys in the household: the girl has experienced

the consequences of having many children because she helps out at home more than

a boy; thus, her own fertility can be negatively affected by parental fertility (Gager

et al., 1999; Evertsson, 2006; Conley, 2005; Cools and Kaldager Hart, 2017). Westoff

et al. (1961) and Hendershot (1969) suggest that the daughter’s response to parental

fertility depends on her childhood experience: a pleasant experience may increase

the mother-daughter correlation. Parental influence on child fertility may also de-

pend on the strength of the parent-child bond (Mönkediek et al., 2017; Fasang and

Raab, 2014). This influence also differs in strength across family sizes: for example,

de Valk (2013) shows that children have preferences that are more distant from their

parents in a large family. These last two results are consistent with a nongenetic

TRS, as genetic transmission should not depend on the parent-child bond nor on

progeny size.

However, it is essential to note that the negative fertility correlations cited above

can sometimes be interpreted without resorting to the notion of parental culture re-

jection. In a population where the amount of resources correlates with fertility,

individuals with more resources than average will have more children than average.

By sharing resources, children will end up less fertile than average compared to

single children who will not compete for resources (Easterlin, 1980). This process

is similar to Falconer’s experiments, who selected mice for large progeny size and

found an unexpected effect: progeny size decreased instead of increasing (Falconer,

1965). This is because juveniles belonging to large sibships have to share maternal

care and milk and are therefore smaller and ultimately less fertile. These mecha-

nisms can yield cyclic patterns with alternating high and low fertility in the same

lineage (Kirkpatrick and Lande, 1989), akin to the oscillatory dynamics that can

occur in cultural transmission with a rejection of the parental culture. However, in

human populations, the increase of a person’s resources during his/her life course

(e.g., enlargement of a flock) could mitigate or counteract this oscillatory effect and
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maintain positive correlations.

Beyond the transmission of preferences, cultural transmission of practices that

increase child survival could result in cultural TRS. For example, a transmission

of breastfeeding practices, such as more prolonged breastfeeding, which increases

survival, could lead to child mortality rate transmission. This would increase the

mother-daughter correlation of the number of children surviving to reproductive age

(Murphy, 2013; van Dijk and Mandemakers, 2018).

Siblings cooperation

This hypothesis is based on the fact that individuals other than parents participate

in human child survival, a phenomenon called allocare (Hrdy, 2009; Kokko et al.,

2002). Often, relatives play this role, such as aunts and uncles (Clutton-Brock, 2002;

Hill and Hurtado, 2009). According to Hamilton’s rule (Inclusive Fitness Theory),

this cooperation of siblings has an evolutionary source, as the individual who favors

the survival of his/her relatives maximizes the transmission of the alleles shared

with them (Hamilton, 1964; Grafen, 1984; Sear, 2018). Because of this cooperation,

the number of parental siblings correlates with the amount of support received and

thus with children’s survival. Siblings will be more numerous and may help each

other all the more as adults and so on. Many authors consider this mechanism to be

the source of the progeny size correlations measured between parents and children

(Turke, 1989; Tymicki, 2004; Newson et al., 2007; Lawson and Mace, 2011; Heyer

et al., 2012; Murphy, 2013). According to Newson et al. (2005, 2007), the primary

cause of fertility decline in the modern period would come from lower presence

and support from siblings compared to the pre-industrial period. However, in rural

Gambia, Sear (2006) find no effect of maternal older sisters on a woman’s fertility

and the presence of maternal older brothers decreases her fertility.

This hypothesis of kinship cooperation as a source of fertility is especially empha-

sized in hunter-gatherer populations, where cooperation and child survival can be

directly linked (Turke, 1989). This hypothesis explains the correlations of progeny

size between parents and children in some hunter-gatherer populations (Hill and Hur-

tado, 1996; Draper and Hames, 2000; Blum et al., 2006). This process is less appli-

cable to food producers, where siblings may instead compete for resources inherited

from their parents (Easterlin, 1980). Competition between siblings in inheritance is

unlikely among hunter-gatherers due to their low intergenerational transmission of

wealth (Borgerhoff Mulder et al., 2009; Lawson and Mace, 2011). However, some
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argue that this process of siblings-enhanced fertility also exists in food producers,

where psychological or financial support from relatives may encourage reproductive

decisions (Mathews and Sear, 2013; Rotering and Bras, 2015; Schaffnit and Sear,

2017b,a) or improve offspring health (Kana’Iaupuni et al., 2005).

Transmission of resources

The transmission of resources correlated with fertility can produce nongenetic TRS.

Different types of inheritable resources could increase fertility: (1) material re-

sources, (2) social resources, and (3) cultural resources. The strength of this type of

transmission depends on two things: the fidelity of resources transmission and the

correlation between resources and fitness.

Material resources Material resources are quite faithfully transmitted in several

populations. In an analysis of 21 populations, Borgerhoff Mulder et al. (2009) show

that among different types of resources, material resources are the best transmit-

ted from one generation to the next (e.g., livestock transmission among the Datoga

(herders) or land transmission among the Krummhörn (farmers)). This study also

shows that farmers and herders have a more robust transmission of material re-

sources than hunter-gatherer and horticultural societies. The correlation between

resources and fertility is also quite common. Some studies show a correlation be-

tween material wealth and reproductive success in several traditional indigenous so-

cieties and preindustrial Western populations (Sorokowski et al., 2013). In modern-

day Western societies, some studies show a positive effect of both net worth and

income on men reproductive success (Nettle and Pollet, 2008; Stulp et al., 2016).

For women, income has a negative effect on reproductive success (Nettle and Pollet,

2008; Stulp et al., 2016), while net worth has a positive effect (Stulp et al., 2016).

Negative correlations between resources and fertility would also lead to nongenetic

TRS.

However, both conditions must be met in the same population to give rise to

nongenetic TRS: an accurate transmission of resources and a correlation between

resources and fertility. In the Dogon of Mali, a correlation between wealth and

male fertility exists (Strassmann, 1997), but no correlation in reproductive success

between parents and children (Cazes, 2009). This could be explained by an imperfect

transmission of resources from fathers to sons in this population. Another hypothesis

is that children of the wealthiest individuals compete for parental resources and end
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up with fewer resources than the average (i.e., wealth dilution). As discussed above,

this phenomenon could even lead to negative correlations in progeny size between

parents and children (Easterlin, 1980).

Social resources Several social resources can yield fertility transmission, such as

social status, polygyny, and social network transmission. Many studies hypothe-

sised or proved TRS through socioeconomic intergenerational continuity (Bengtson,

1975; Anderton et al., 1987; Kahn and Anderson, 1992; Pouta et al., 2005; van Pop-

pel et al., 2008; van Bavel and Kok, 2009; Jennings and Leslie, 2013). Social status

positively correlates with fertility due to several factors. The higher stress expe-

rienced by individuals with a lower social rank can affect their fertility (Sapolsky,

2004; Lynch et al., 2014). More generally, health correlates with social status (Bollen

et al., 2001; Reyes-Garcia et al., 2008). This correlation remains true even in coun-

tries with a well-developed healthcare system (Marmot, 2006). Among the Maori,

Murray-McIntosh et al. (1998) suggest that matrilineal transmission of rank could

explain low mtDNA diversity, with higher-ranking offspring having a higher survival

rate in this society (Heyer et al., 2012). Socioeconomic status may also negatively

correlate with fertility, which would also yield transmission of reproductive success,

with high-status individuals transmitting their status and the associated lower fertil-

ity. However, socioeconomic status alone often cannot fully explain the correlations

found. Indeed, studies controlling for socioeconomic categories nevertheless found

an effect of parental influence on children’s reproductive success (Murphy and Knud-

sen, 2002; Murphy and Wang, 2001; Kolk, 2014, 2015; Buhr et al., 2018; Beaujouan

and Solaz, 2019).

The transmission of polygyny from father to son may yield TRS, as polygyny

may increase male fertility (Strassmann, 1997). Neel (1970) shows that polygyny

is transmitted from father to son among the Yanomami and yields a decrease in

Y chromosome diversity. The level of polygyny of a given individual being often

correlated with his wealth (Timæus and Reynar, 1998), vertical transmission of

wealth can lead to polygyny transmission and thus TRS. In some cases, polygyny

is linked to the age of the man and not to his lineage, as in rural Senegal, where

older men have more wives than younger men (Garenne and Van de Walle, 1989). In

contrast, female fertility is often lower in the case of polygyny (Pison, 1986; Pebley

and Mbugua, 1989), because of lower frequency of intercourse per wife or lower

fertility of the man due to his higher age (Lardoux and van de Walle, 2003).

The transmission of a social network from parent to children may also lead
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to intergenerational correlations in fertility when the social network promotes sur-

vival and fertility. Social network transmission is shown by Borgerhoff Mulder

et al. (2009), who reveal more robust transmission for hunter-gatherers, interme-

diate transmission for horticulturists, and relatively weak transmission for farmers

and herders. These results make sense, given the increased importance of the social

network in the fickle environment of hunter-gatherers. However, studies that em-

pirically demonstrate the impact of social relationships on fertility are few. Page

et al. (2017), however, show in hunter-gatherers (BaYaka and Agta) that mothers

who are more central in the network of social interactions produce more offspring

that survive. In Agta, however, social centrality increases the risk of disease. There

would then be a trade-off between cooperation and disease transmission.

Cultural resources Vertical transmission of cultural resources can also cause

TRS when these resources increase fertility. This happens in the case of the trans-

mission of knowledge necessary for survival, such as the vertical transmission of

knowledge of edible and medicinal plants in the village of Cuyin Manzano in Patag-

onia (Lozada et al., 2006). However, the low variability of this knowledge among

village members revealed by the authors indicates low chances of TRS through this

channel. Among Tsimane forager-farmers, same-sex parents contribute the most to

skill transmission (Schniter et al., 2022). Hewlett and Cavalli-Sforza (1986) study 50

skills among the Aka and show that 81% of these traits are vertically transmitted.

They also demonstrate the presence of significant variability within the population

regarding these skills, which could therefore lead to TRS. Transmission of religion

(Philipov and Berghammer, 2007; Baudin, 2015) or of educational attainment (Cle-

land and Rodriguez, 1988; Bollen et al., 2001), when correlated with fertility, are

other factors yielding TRS through cultural resources transmission.

1.2.2 Genetic TRS

Several authors have interpreted the measured intergenerational correlations of progeny

size as having a genetic cause. However, Fisher’s paradox appears as an issue when

considering this hypothesis: after some generations, beneficial alleles reach fixation,

and no variance remains, yielding an absence of correlation. Thus, it is surprising

that those intergenerational correlations can still be measured in many past and

present-day populations. Studies have proposed various answers to this issue : (1)

many of the traits involved in fertility are polygenic, and the total mutation rate is
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thus higher than for a single locus trait, bringing a continuous flow of new variance

in the trait (Houle et al., 1996), (2) when the environment changes, a new variance in

phenotype created by the interaction of genetics and environment can be brought in

the population (Lewontin, 1974; Kirk et al., 2001; Collins and Page, 2019), (3) some

of the involved traits can be under balancing selection which maintains variance in

the population, (4) some traits can be under selection since recent times due to the

significant changes in human lifestyle in the post-industrial era (Kirk et al., 2001),

thus variance might not be exhausted nowadays, (5) as genes are, in fact, part of

regulatory networks, some can be negatively correlated with each other, yielding a

situation of trade-off where no gene can have ideal expression levels (i.e., antagonis-

tic pleiotropy hypothesis, Williams, 1957; Barker and Thomas, 1987; Pettay et al.,

2005). As we can see, several hypotheses can resolve Fisher’s paradox. The real is-

sue would be to find the leading causes of the conserved variance in each population

and for each trait of interest. Despite all of these answers, Fisher’s paradox could be

partly true, as heritability of fitness trait is smaller than other traits such as height

(0.36 vs 0.8, Kirk et al., 2001). This lower heritability of fitness traits could be

due to their smaller variance resulting from natural selection. We will now review

the various types of genetic TRS before addressing recent results from association

studies.

Types of genetic TRS

Genetic factors can impact fertility in humans through reproductive behavior (Miller

et al., 1999; Kohler et al., 1999; Rodgers et al., 2001; Kirk et al., 2001; Miller et al.,

2010), physiological fecundity (such as age of menopause, Kirk et al., 2001), and

attributes that contribute to the probability of mating, mainly through sexual mat-

ing (e.g., health or appearance, Kolk, 2014). All these factors can be the origin of

the measured correlations in progeny size between parents and children, and we will

review each of them.

Studies supporting the behavioral genetic origin of TRS base their assumption

on different results. Age at first attempt to give birth is heritable (0.35 correla-

tion for men, 0.52 for women, Rodgers et al., 2001, – Danish population). US

kinship sample dataset revealed a more substantial heritability of the number of de-

sired children compared to the realized progeny size (Rodgers and Doughty, 2000).

The authors used these results to support a behavioral genetic origin of TRS. How-

ever, although those results support the transmission of behavior underlying TRS,
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the genetic origin of these behaviors is not proven as it could be culture-mediated.

Other studies show more directly the effects of genetics on reproductive behavior,

with, for example, a correlation between carried dopamine receptor alleles and age

at first intercourse (correlated often with fertility) (Miller et al., 1999; Day et al.,

2016). Genetic variants in dopamine transporters influence the propensity for un-

protected intercourse, dopamine receptors, and the monoamine oxidase gene (Daw

and Guo, 2011). However, these results have been criticized because of difficulties

in replicability, publication bias, and too small sample sizes (Duncan and Keller,

2011).

Several studies have also examined genetics’ direct or indirect impact on phys-

iological fertility. For example, age at menopause is inherited genetically and cor-

related with progeny size (broad heritability: 0.45, measured on Australian Twin

Registry, Kirk et al., 2001). In the same study, age at menarche has a substantial

heritability (0.5) but no correlation with progeny size. However, Borgerhoff Mulder

(1989) found a correlation between age at menarche and progeny size in Kipsigis.

There might be a difference in this trait between different populations, with a prob-

able distinction between pre-industrial and non-industrial populations on the one

hand and post-industrial populations on the other (Kirk et al., 2001). Indeed, since

the age of reproduction is delayed in the latter populations, age at menarche will

not affect the total number of children. In the Hutterites, authors interpreted the

measured TRS as being of genetic origin due to the cultural uniformity of the pop-

ulation, which is subject to strict social rules, with the prohibition of contraception

and uniform access to resources, preventing cultural variability in reproductive suc-

cess (Pluzhnikov et al., 2007). Using a pedigree-based maximum likelihood method

in this population, Kosova et al. (2010) were able to more formally demonstrate the

genetic origin of TRS in Hutterites and compute the genetic heritability of fitness

components, which was higher in males than females. A similar method used on

a Finnish pre-industrial population showed a heritability of 0.31 for fecundity for

females and only 0.02 for males (Pettay et al., 2005). Kosova et al. (2010) inter-

preted this difference as follows: Hutterites have access to a modern health care

system, which reduces infant mortality and makes couple fertility less dependent

on the woman. In the Finnish pre-industrial population, the woman is the key to

couple fertility; thus, her fertility-associated traits are under natural selection.

Other heritable traits that correlate more indirectly with fitness could yield ge-

netically driven TRS (physiologically or through sexual selection): height (Sear,

2010), birth weight, sickle cell anemia (Cavalli-Sforza and Bodmer, 1976), blood



1.2. CAUSES OF TRS IN HUMANS 53

type (Mengoli et al., 2015), health and appearance (Kolk, 2014). The example of

height is particularly complex. Height is genetically heritable (heritability of 0.8,

Kirk et al., 2001; Yang et al., 2010) and correlates with reproductive success in

some populations via increased physiological fertility or sexual selection. These ef-

fects of size on fitness depend on the population and sex considered. For example,

in developing countries, female size is sometimes positively correlated with fertility

(Sear et al., 2004; Pollet and Nettle, 2008), sometimes negatively (Kirchengast, 2000;

Devi et al., 1985). A review of 42 developing countries shows a positive correlation

between maternal height and child survival (Monden and Smits, 2009). In these

countries, male height only weakly correlates with reproductive success (Pawlowski

et al., 2000; Sear, 2006) In general, the impact of height on physiological fertility

is more common in women, whereas it affects male reproductive success through

sexual selection (Sorokowski et al., 2013). In post-industrial societies with low in-

fant mortality, it is sexual selection that causes the impact of height on fitness in

men (Stulp et al., 2013). Thus, height is an example of a complex, multigenic trait

correlated with fitness in some populations, either physiologically or through sexual

selection.

GWAS studies

GWAS studies are another way to address the question of the genetic origin of TRS.

In Hutterites, Kosova et al. (2012) show 41 SNPs correlated with male fertility,

consistent with studies showing robust male-mediated genetic transmission in this

population (Kosova et al., 2010). Barban et al. (2016) found 12 loci associated with

the age at first reproduction or the number of children. These loci are in linkage

disequilibrium with different candidate genes that could be driving the effect on

reproduction, such as transcription factors activating RBM5 (the Rmb5 mutant in

mice shows a lack of sperm at ejaculation) and LAMP2 (a gene on the X chromo-

some involved in the mechanism of sperm penetration into the egg). Some of the

discovered loci have already been shown to be associated with intermediate repro-

ductive traits such as age at menarche and age at menopause. Several studies find

SNPs associated with sperm quality (Kosova et al., 2012; Barban et al., 2016). A

more recent study finds 371 independent loci in European individuals associated

with age at first sex (N=387,338) and age at first birth (N=542,901), with a similar

genetic basis for both behaviors (Mills et al., 2021). This study also shows that

the heritability of age at first birth in women gradually changed over time: starting

at 9% (95% confidence interval = 4–14%) heritability for women born in 1940, up



54 CHAPTER 1. A REVIEW OF TRS

to 22% (95% confidence interval = 19–25%) for women born in 1965. It would be

interesting to replicate this kind of study in non-European populations.

1.3 TRS impacts on the genome and inference

Regardless of its causes, TRS affects the genome during evolution. These effects have

allowed several studies to infer the intensity of genetic (Chen and Slatkin, 2013; Kim

et al., 2017) or nongenetic TRS (Blum et al., 2006; Heyer et al., 2015) from genomic

data. We will focus mainly on the effects of nongenetic TRS, since genetic TRS

(natural selection) has already been treated extensively. First, we will discuss in

details the effects of nongenetic TRS on genome evolution. Second, we will compare

nongenetic TRS to other population genetic processes, such as natural selection,

population size changes, and migration. This comparison is critical because a similar

effect on the genome produced by nongenetic TRS and another process cannot be

used to tell them apart. Third, we will review the studies already carried out on the

inference of nongenetic TRS and propose future research directions.

1.3.1 Nongenetic TRS impacts on the genome

Nongenetic TRS produces different effects on demography and population genetics.

The variance of progeny size increases and its distribution is altered (Sibert et al.,

2002). Genetic diversity is reduced (Austerlitz and Heyer, 1998), and allelic fre-

quencies are altered compared to the neutral case (Sibert et al., 2002; Guez et al.,

2022). The topology of coalescent trees is distorted with increased imbalance and

more polytomies (Sibert et al., 2002; Brandenburg et al., 2012; Guez et al., 2022).

We will now discuss each of these effects separately.

Demographic effects

Nongenetic TRS produces correlations between parental and offspring progeny sizes.

Studies often used these correlations to measure TRS on genealogical data (Auster-

litz and Heyer, 1998; Murphy, 1999). Modeling of nongenetic TRS showed that it

increases the variance of progeny size: the distribution includes more individuals

without children or with large progeny size (Guez et al., 2022). When additional

variance is introduced into the model, nongenetic TRS will have even more effects



1.3. TRS IMPACTS ON THE GENOME AND INFERENCE 55

Parent-children correlations 
in progeny size

Non-genetic TRSGenetic TRS

Social learning 
from parents

Siblings' 
cooperation

Resources 
transmission

Putative 
reproductive 

behavior genes

Physiological 
fecundity genes

Sexual selection

Coalescent trees' 
topology distortion

Increased variance 
in progeny size

Increased number 
of polytomies

Coalescent trees 
imbalance

Large-families 
lineages invading

Reduction in effective 
population size

Non-homogeneous 
branch lengths reduction

Complex effects on 
SFS and Tajima's D

Figure 1.1: Summary of causes and consequences of TRS.
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on genetic diversity (Brandenburg et al., 2012). This is probably because the largest

progeny sizes produced in that case are greater in their size, proportionally to the

total population size, compared with the largest progeny sizes generated under the

model with no additional variance. Hence, alleles of large families may invade more

rapidly the population under this high-variance model. Consequently, to explain the

high frequencies of genetic diseases in the Saguenay-Lac-Saint-Jean population, it

was necessary to add variance in progeny size on top of nongenetic TRS (Austerlitz

and Heyer, 1998). Although the effects on genetics are increased in this model of

high variance, the parent-children progeny size correlations are somewhat smaller,

because the added variance reduces the correlations. This result indicates that a

simple measure of correlations in a population, as has been done in the literature,

does not provide a complete picture of the nongenetic TRS phenomenon. Therefore,

it is necessary to consider correlation and variance to characterize the intensity of

the effects of nongenetic TRS in a natural population. However, these results rely

on a specific model of nongenetic TRS (an extension of the Wright Fisher model,

Sibert et al., 2002), other modeling of the process could yield different results.

Effects on genetics

Genetic diversity decreases under nongenetic TRS: the effective population size is

smaller than the census size, which corresponds to a reduced TMRCA. This hap-

pens for two reasons: increased variance in progeny size, and fertility transmission

that accelerates allele fixation (the alleles of fertile individuals invade the popula-

tion quickly because of fertility transmission). Modeling experiments show that the

first component has a larger share in the diversity decrease than the second (Guez

et al., 2022). In natural populations, the decrease in diversity can be considerable,

with a 20-fold decrease in the effective population size of Saguenay-Lac-Saint-Jean,

despite exponential population growth (Mourali-Chebil and Heyer, 2006). This im-

pact of nongenetic TRS could explain the low genetic diversity in the human species

compared to other great apes despite our higher census size (Gagneux et al., 1999;

Kaessmann et al., 2001; Blum et al., 2006). The smaller effective size leads to an

underestimate of the recombination rate since this rate must be higher under TRS

to achieve the same number of recombination events as in a neutral case (Austerlitz

and Heyer, 2000). This rationale also applies to the mutation rate, which could

also be underestimated. Another consequence of this smaller effective size is the

accelerated erasure of ancient processes’ signals from the genome. For example, rare

alleles generated by an ancient expansion disappear more rapidly under nongenetic
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TRS, yielding a bias in expansion parameters inference (Guez et al., 2022).

Tajima’s D follows a complex pattern. When TRS begins, the effective size

reduction yields an increased Tajima’s D. Conversely, when it ends, there is a

decrease in Tajima’s D due to the increase in effective size. If the nongenetic TRS

lasts for a number of generations of the order of the census size, Tajima’s D reaches

a plateau in negative values (i.e., if no other process is at work). This negative

plateau at equilibrium has two causes: (i) the distortion of the topology of coalescent

trees (imbalance and number of polytomies both increasing) (Guez et al., 2022), (ii)

branch lengths are reduced by nongenetic TRS in a non-uniform way, with a stronger

impact on branches close to the root, which increases the relative proportion of rare

alleles (Sibert et al., 2002). This second effect is interpreted by Sibert et al. (2002)

as similar to a constant expansion of the population under nongenetic TRS (despite

a stable effective size). Indeed, the fertile lineages in the population are constantly

growing, with a regular extinction of the less fertile lineages, which impacts branch

lengths similarly to an expansion. At equilibrium, allele frequencies follow a U shape:

an excess of rare and common alleles. The excess of rare alleles is explained by

the two reasons mentioned (distortion of coalescent tree topology and non-uniform

reduction of branch sizes). In contrast, the excess of common alleles is only caused

by topology distortion.

As stated above, the effect on the topology of coalescent trees is twofold: in-

creased imbalance and increased number of polytomies. Imbalance is a property

that was first studied on phylogenetic trees (Sackin, 1972; Colless, 1982; Shao and

Sokal, 1990), and its application to coalescent trees is more recent (Sibert et al.,

2002). Several indices have been constructed to measure this topological property.

They are generally classified into two types: balance indices, that increase when

the tree is more balanced, and imbalance indices, whose value increases when the

tree is unbalanced. These indices are affected by the nongenetic TRS, with some

indices being strongly modified (such as B1 (Shao and Sokal, 1990) and Colless’

index (Colless, 1982)) and others less so (B2, Shao and Sokal, 1990). Their power to

detect nongenetic TRS is, therefore, different. Furthermore, some of these indices

are affected by demographic events, such as changes in population size, while others

are not (Guez et al., 2022). Several indices, such as B1 and Colless, are calculated

by averaging the indices for each node. Thus, they give more weight to recent events

since there are more coalescences at the bottom of the tree (Agapow and Purvis,

2002; Blum et al., 2006). To study particular periods, focusing on the indices of

specific nodes would be interesting.



58 CHAPTER 1. A REVIEW OF TRS

Nongenetic TRS also leads to the occurence of polytomies in coalescent trees

(Guez et al., 2022). Polytomies can appear for several other reasons, such as se-

lection, skewed variance, or bottlenecks (Durrett and Schweinsberg, 2005; Eldon

and Wakeley, 2006; Neher and Hallatschek, 2013; Irwin et al., 2016; Menardo et al.,

2021). Nongenetic TRS produces polytomies for two reasons: (i) the bottleneck of ef-

fective population size, and (ii) the effect of transmission, resulting in a proliferation

of individuals descended from a single ancestor. (Guez et al., 2022, supplementaty

material).

Theoretically, the nongenetic TRS impacts described here (e.g., on diversity,

allelic frequencies, and tree topology) should allow inference of this process from ge-

nomic data. However, each of these signals may be produced by other phenomena,

making disentanglement difficult. Furthermore, the different processes may interact,

with simultaneous processes not summing the effects of the separate processes. The

following section will discuss the relationships between nongenetic TRS and ma-

jor population genetic processes (selection, population size change, and structure),

comparing their effects on the genome and studying their potential interactions.

1.3.2 Nongenetic TRS and other processes

Nongenetic TRS and selection

In terms of effects, natural selection is quite similar to nongenetic TRS. Like non-

genetic TRS, selection reduces genetic diversity, yields negative Tajima’s D (Tajima,

1989), and an excess of rare (Braverman et al., 1995) and common alleles (Fay and

Wu, 2000). The topology of coalescent trees is also affected, with an increase in im-

balance (Fay and Wu, 2000; Li and Wiehe, 2013) and number of polytomies (Durrett

and Schweinsberg, 2005; Neher and Hallatschek, 2013). However, a few differences

between nongenetic and genetic TRS can be identified.

The first difference lies in the quality of these two types of transmission. Because

genetic transmission is remarkably faithful, the variance of the trait under selection

erodes as it approaches fixation of the beneficial allele (Fisher, 1930). For this rea-

son, it is somewhat problematic to explain parent-child correlations in progeny size

by selection because we expect the variance of fertility traits to erode, leading to

the rapid disappearance of correlations (i.e., Fisher’s paradox mentioned in intro-

duction). Cultural transmission is much less accurate. One reason is that cultural

traits are not only transmitted vertically (from parents to children), unlike genetic
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transmission: horizontal or oblique transmissions also exist (Cavalli-Sforza and Feld-

man, 1981). The horizontal contagion of fertility has indeed been shown (Lois and

Arránz Becker, 2014). Moreover, many other parameters can influence a child’s ob-

servance of parental culture, such as level of satisfaction with childhood or position

in the sibship (Johnson and Stokes, 1976). Thus, under nongenetic TRS, variance

of the progeny size can remain constant, as well as parent-child correlations. Several

studies modeled nongenetic CTRS in such a way variance in progeny size remains

stable over time (Sibert et al., 2002; Brandenburg et al., 2012; Guez et al., 2022).

Heyer et al. (2012) use this assumption of cultural variance stability to efficiently

resolve Fisher’s paradox (as explained in the beginning of section 2). Finally, non-

genetic TRS has a Lamarckian property (i.e., transmission of acquired traits): an

individual acquiring during his life a preference for a large number of children, in

contrast to his parents, will pass on this preference to his children.

A second difference between the two processes is the impact of recombination

on hitchhiking. In the case of selection, hitchhiking occurs only for SNPs close to

the locus under selection (Smith and Haigh, 1974). Correlations with SNPs further

away are broken by recombination events that occur over generations between the

locus under selection and the neutral sites. Thus, the signal is strongest near the

locus under selection and decreases with distance from it. The length of the region

carrying the signal depends on the recombination rate and the duration under selec-

tion. In the case of fixation, this duration depends on the selection coefficient: the

higher the coefficient, the shorter the selection and the longer the region carrying

the selection signal (Kim and Stephan, 2002; Stephan, 2019). In human population

data, even very recent selection events have signals spanning only a few megabases

(Tishkoff et al., 2007; Tanaka and Nakayama, 2017). In contrast, under nongenetic

TRS, hitchhiking affects all SNPs in the genome equally since no gene is responsible

for the accrued reproductive success. Under nongenetic TRS, if there is a corre-

lation between a neutral SNP and reproductive success (e.g., because the carriers

of this SNP are part of culturally fertile families), recombination will not break it.

Therefore, the nongenetic TRS signal should theoretically be similar throughout

the genome, in contrast to selection, a difference that could help disentangle the two

(Austerlitz and Heyer, 2000; Brandenburg et al., 2012; Guez et al., 2022).

However, multigenic selection can also produce effects in multiple locations in

the genome, such as nongenetic TRS. In particular, background selection could

affect substantial parts of the genome (Pouyet et al., 2018). Nevertheless, several

differences can be noted: (i) there remain parts in the genome that are considered
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Genetic TRS Nongenetic TRS

Transmission Faithful Unfaithful

Fixation Common Uncommon

Impacted genomic

region (ρ > 0)

Selected

locus region
Genome wide

Coalescent trees along

the genome (ρ > 0)
Can be different Tend to look alike

In multi-pop Lower diversity Higher diversity

Competition Between loci -

Table 1.1: Hypothetical differences in impacts on genetics between genetic
and nongenetic TRS. ρ is the recombination rate.

neutral to selection (Pouyet et al., 2018), which is not possible for nongenetic TRS,

(ii) all coalescent trees in the genome will be influenced by the same nongenetic

TRS history and will thus resemble, whereas the trees for each gene under selection

may have a different history with a shape that depends on its selection coefficient

and the temporality of selection (Barghi et al., 2020; Hayward and Sella, 2022),

(iii) populations that exchange migrants have a higher probability to select for the

same alleles under multigenetic selection, compared to nongenetic TRS that will

randomly select for different alleles in each population, (iv) when several genes

are under selection and in linkage disequilibrium, they may be in competition, a

phenomenon unique to multigenetic selection (Barton, 1995).

However, a population combining nongenetic TRS and selection may achieve a

similar competition phenomenon between the two processes, if the families carrying

the beneficial allele are not the most culturally fertile. This can lead to the conserva-

tion of deleterious alleles carried by the most culturally fertile families. Furthermore,

when selection and nongenetic TRS are combined, the length of the genome carry-

ing the selection signal is increased with larger shared haplotypes (Austerlitz and

Heyer, 2000). Since the length of shared haplotypes under selection is a proxy for

estimating event age, nongenetic TRS could bias this estimate. We can conclude

that cultural and genetic TRS, although leading to similar effects, can be distin-

guished through genome-wide studies. However, the distinction seems more delicate

in genetic compartments without recombination, such as Y or mitochondrial DNA.

Based on the tendency of selection to reduce the variance of the favorable trait in

contrast to nongenetic TRS, which retains the variance of the phenotype, a way may
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exist to distinguish their signals even without recombination.

Nongenetic TRS and population size changes

Unlike selection, changes in population size have this in common with nongenetic

TRS: they affect the entire genome. Thus, Tajima’s π or Tajima’s D cannot be used

to disentangle them, since both processes affect these statistics in the whole genome

(Guez et al., 2022). However, no formal comparison has yet been made regarding

the distribution of these indices in the genome under nongenetic TRS or population

size changes. One clear difference between these two processes is that nongenetic

TRS produces a coalescent trees imbalance, which is not the case under population

size changes. This is valid provided the use of a suitable imbalance index. Indeed,

the index described in Brandenburg et al. (2012) to characterize nongenetic TRS is

not affected by population size changes, whereas more traditional indices such as

B1 and Sackin are (Guez et al., 2022). This is because Brandenburg et al. (2012)’s

index is independent of coalescence rates in the tree, which is not the case for all

(im)balance indices.

Nongenetic TRS and changes in population size can occur in the same popula-

tion, successively or at the same time (as in the Saguenay Lac Saint Jean popula-

tion, where the population was under nongenetic TRS while growing exponentially,

Austerlitz and Heyer, 1998). A simulation study demonstrated the impact of non-

genetic TRS on demographic inference from genetic data: the magnitude of an

ancient expansion may be underestimated if the population has undergone a period

of nongenetic TRS (Guez et al., 2022). Depending on the case, the age of the expan-

sion will then be under or overestimated. These results warn of the consequences of

not taking nongenetic TRS into account and suggest an underestimate of the extent

of the Neolithic expansion (Guez et al., 2022). Further study of the combination

of different demographic and nongenetic TRS scenarios would provide a better un-

derstanding of their interactions. Furthermore, the development of inference tools

that take into account nongenetic TRS, using for example coalescent tree imbalance,

would allow correcting possible biases in the inferred human demography.

Nongenetic TRS and structure

Few studies investigated the impact of migration on the imbalance of coalescent

trees. Blum et al. (2006) studied the impact of three migration models on imbal-
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ance: a two-island model with migration, a model of populations merging, and a

model of range expansion. Only the first model seems to show a tendency towards

tree imbalance, with imbalance being more pronounced when the two populations

differ significantly in size (factor 100). The type of sampling in the different subpop-

ulations also affects imbalance. These results show the importance of considering

structure when inferring the nongenetic TRS. It would therefore make sense to add

structure detection statistics such as Fst, in addition to imbalance, to distinguish

the two processes. However, no study has investigated the impact of nongenetic

TRS on genetic structure indices so far. Finally, the sampling method should be

considered when analyzing the nongenetic TRS, since it seems to strengthen the

effect of structure on imbalance.

1.3.3 Detection studies

Nongenetic TRS as a hypothesis for low diversity

Nongenetic TRS has been used in some studies as a hypothesis to explain low

diversity rates. For example, Neel (1970) explains the reduced diversity of the

Y chromosome in the Yanomami with polygyny transmission from father to son.

The preponderance of a specific mtDNA haplotype in the Maori was explained by

Murray-McIntosh et al. (1998) with rank transmission. However, in these studies,

nongenetic TRS is only a hypothesis to explain the low variance in genetic data, as

genetic diversity is affected by many other processes, such as bottlenecks.

Studies inferring nongenetic TRS from genetic data

Some studies go beyond a simple measure of diversity to hypothesize nongenetic

TRS and seek to infer its intensity. Austerlitz and Heyer (1998) make such an

inference based on the frequencies of genetic diseases in the Saguenay Lac Saint

Jean population, using a parameterizable branching model to simulate nongenetic

TRS. The inferred value corresponds to the intensity of nongenetic TRS measured

on the genealogical data. Another study co-infers the growth rate of an allele and

its age, based on its frequency and haplotype length. When an allele shows faster

growth than the population, they assume there is TRS. This method confirms the

expectations in the Saguenay Lac Saint Jean population and reveals the possibility of

nongenetic TRS in Vlax Romas, although other hypotheses are possible (Austerlitz
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et al., 2003).

Some studies use an imbalance index to infer nongenetic TRS, such as Blum et al.

(2006) and Heyer et al. (2015). Blum et al. (2006) focus on mitochondrial DNA to

infer nongenetic TRS in the matrilines. By measuring coalescent tree imbalance

in ten hunter-gatherer populations and 27 food producer populations, they show

a trend toward more substantial imbalance in hunter-gatherers. The nongenetic

TRS could explain the difference between these population types: hunter-gatherers

rely significantly on cooperative kin networks, and individuals who receive much

help from their many siblings could, in turn, have a larger than average progeny

size. This also explains parent-child correlations in progeny size among the Ache of

Paraguay (Hill and Hurtado, 1996) and the !Kung of Botswana (Draper and Hames,

2000).

Heyer et al. (2015) showed that in Central Asia, patrilineal populations are more

likely to have imbalance in Y-chromosome trees compared to cognatic populations.

Some of these patrilineal populations do not show mtDNA imbalance, despite Y-

chromosome tree imbalance. A specific father-son correlation in progeny size could

explain these results. This could happen for example in the case of a father-children

wealth transmission, or the transmission of an extended social network that gives

more strength in coalitions for war or for cooperative breeding. This hypothesis

of cultural transmission of fertility only through the patriline is consistent with the

explanations given for the high frequency of two Y-DNA haplogroups: Genghis Khan

(Zerjal et al., 2003) and Han (Xue et al., 2005). However, Lansing et al. (2008) found

no evidence of such transmission in Indonesian societies, probably due to differences

in social structure or wealth transmission patterns (Heyer et al., 2015).

Both Blum et al. (2006) and Heyer et al. (2015) use imbalance to detect non-

genetic TRS. However, while it is true that nongenetic TRS strongly impacts im-

balance, it can also be impacted by selection and by migration to a lesser extent,

as discussed. In particular, the primary way to distinguish nongenetic TRS from

selection relies on recombination that allows loci far from the site under selection

to escape the sweep. This process does not occur in non-recombining genetic com-

partments like mtDNA or Y-DNA. Thus, it is difficult to rule out selection as an

explanation for the high imbalance indices measured in these two studies (Blum

et al., 2006). For example, Brandenburg et al. (2012) consider that the differences

between hunter-gatherers and food producers shown by Blum et al. (2006) could be

due to natural selection related to feeding mode (Kivisild et al., 2006). Distinguish-

ing between the two processes will require reliance on whole nuclear genome data,
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where a large number of recombination events will isolate regions under selection

while providing more detection power (Guez et al., 2022).

Inferring nongenetic TRS on the whole genome

To infer nongenetic TRS using imbalance indices, one must first reconstruct coales-

cent trees from the genetic data. The quality of the tree reconstruction can impact

the accuracy of the inference. (Blum et al., 2006) showed that the UPGMA re-

construction method added a bias, making the trees more imbalanced than neutral

trees, unlike PHYML, which does not produce this bias. This type of analysis should

therefore be pursued for modern tools that reconstruct trees on the whole genome,

such as ARGweaver (Rasmussen et al., 2014), tsinfer (Kelleher et al., 2019), or re-

late (Speidel et al., 2019) to see how well the reconstructed topology matches the

actual topology. Furthermore, even if these tools reconstruct unbiased tree topology

in terms of imbalance, their behavior under nongenetic TRS remains to be verified.

Nongenetic TRS impacts several imbalance indices (such as B1, B2, Colless, and

Sackin, Shao and Sokal, 1990) (Guez et al., 2022). Moreover, since they do not

correlate perfectly, each of these indices could provide information on nongenetic

TRS from coalescent trees. It should be possible to infer nongenetic TRS on whole

genome data using methods such as Approximate Bayesian Computation (ABC).

This method allows combining imbalance indices with other summary statistics such

as SFS (for examples of combinations of statistics for ABC inference, see Sheehan

and Song, 2016; Boitard et al., 2016; Jay et al., 2019). Alternatively, training neural

networks to detect nongenetic TRS directly on simulated genetic data is possible (see

Sanchez et al., 2021). This would avoid the potentially biased tree reconstruction

step but may require more training simulations.

1.4 Beyond human

1.4.1 Animal culture

This review address nongenetic TRS, focusing on the human species. However, ani-

mals other than humans possess culture or proto-culture transmitted between indi-

viduals (Avital and Jablonka, 2000; Galef Jr., 1998), such as chimpanzees (Whiten

et al., 2001; Luncz and Boesch, 2014), dolphins (Krützen et al., 2005), birds (Aplin
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et al., 2015), fishes (Helfman and Schultz, 1984; Laland and Hoppitt, 2003), or even

insects (Danchin et al., 2018). For this cultural transmission to yield nongenetic

TRS, three conditions must be fulfilled: (i) the trait must vary in the population,

(ii) some variants of the trait must give a reproductive advantage to the individual

carrying them, and (iii) the trait must be transmitted vertically (Bonduriansky and

Day, 2018). For example, a study showed in bottlenose dolphins the emergence of

the use of sponges to scour the seafloor, a behavioral trait culturally transmitted

from mother to daughter (Krützen et al., 2005). However, if this tool does not pro-

vide a reproductive advantage (condition ii), there will be no cultural TRS and, thus,

none of the impacts on genetics described in the previous section. However, even

without this condition, culture may have other effects on genetics, such as speciation

through cultural reproductive isolation (Whitehead, 2017; Whiten, 2017).

In non-human primates, vertical transmission of social rank often leads to cul-

tural TRS, as rank increases access to resources, protection from aggression, and

fertility (Holekamp and Smale, 1990; Sapolsky, 2005). Many primates show a ma-

ternal transmission of rank: several species of macaques (Kawai, 1958; Bernstein,

1969; Estrada et al., 1978; Silk et al., 1981), several species of baboons (Cheney,

1977; Hausfater, 1975; Samuels et al., 1987), vervets (Horrocks and Hunte, 1983)

and cercopithecus (Donabedian and Cords, 2021). Maternal rank also affects gene

expression (Tung et al., 2012), the epigenetic profile of the placenta (Massart et al.,

2017), and the sex ratio at birth (Simpson and Simpson, 1982), although a meta-

analysis challenged this last result (Brown and Silk, 2002). This reveals the com-

plexity of the links between culture and genetics in non-human primates. Studies

have further shown in several primates that various traditions (e.g., regarding tool

use) were culturally inherited: in chimpanzees (Whiten et al., 1999; Hobaiter et al.,

2014), orangutans (van Schaik et al., 2003), gorillas (Robbins et al., 2016), spider

monkeys (Santorelli et al., 2011) and Japanese macaques (Leca et al., 2007). A

study showed that one of the cultural variants might be more effective than another

(Gruber et al., 2009), paving the way for a potential cultural TRS in these species

(Whiten, 2017).

Primates are not the only species with cultural TRS. In bottlenose dolphins, Frere

et al. (2010) showed that female fitness depends on both genetics (h2 = 0.162) and

social transmission (h2 = 0.44), revealing a nongenetic TRS process in this species.

One of the hypotheses proposed by the authors to explain this social transmission,

is that females with calves tend to associate together (Möller and Harcourt, 2008),

for mutual benefits such as heightened vigilance against predators. It would be
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interesting to study the loss of genetic diversity due to TRS in this species. Other

cetaceans show a decrease in mtDNA diversity under cultural TRS (killer whale,

sperm whale, and two pilot whale species) compared to other cetaceans with similar

population sizes and latitudes (Whitehead et al., 2017). These four species having

matrilineality in common, the authors conclude that the reduction in diversity is

due to cultural TRS, after ruling out the hypotheses of bottleneck or selection.

Sometimes, however, it remains difficult to decide whether the reduction in diversity

is due to selection or cultural TRS, such as in cheetahs (Kelly, 2001). Another

carnivore species show cultural TRS undoubtedly. Spotted hyenas vertically inherit

social rank, which correlates with fitness (Engh et al., 2000; Ilany et al., 2021). Other

social animals could be subject to cultural TRS, such as elephants (Goldenberg

et al., 2016) and feral horses (Cameron et al., 2009), but this requires ensuring that

all three conditions are met. The simultaneous presence of the three conditions of

cultural TRS is not always demonstrated and remains an interesting albeit complex

field of study.

1.4.2 Nongenetic inheritance

Cultural inheritance is only one type of nongenetic inheritance. Other forms of

nongenetic inheritance have been described, such as parental effects (often called

maternal effects), ecological inheritance, structural inheritance, and epigenetic in-

heritance (Danchin et al., 2011; Bonduriansky and Day, 2018). When TRS occurs

via these inheritances, one can expect that it affects the genome, as described in

section III, through a decrease in genetic diversity and an imbalance in coalescent

trees. TRS will only occur if the three conditions mentioned in the previous section

are met (i.e., variability of the trait in the population, correlation of the trait with

fitness, and vertical transmission).

For example, ecological inheritance (Odling-Smee, 1988; Danchin et al., 2011)

could be a source of nongenetic TRS. Individuals born in a favorable environment

will have more offspring and will transmit their birth environment and associated

fitness to their children, generating a process of nongenetic TRS. This is especially

true for plants whose seeds disperse little (Danchin et al., 2011). Dispersal from the

maternal environment corresponds in some ways to genetic mutations, or to distance

from the parental culture in the case of CTRS, all three of which are random changes

in the inherited trait altering the fidelity of transmission. Niche construction can be

a way for parents to improve their own and their children’s fitness by altering the
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environment to suit them, such as the classic example of beavers (Naiman et al.,

1988; Danchin et al., 2011).

Another example is the vertical transmission of microbiome, which exists in

a large number of species (Funkhouser and Bordenstein, 2013), such as sponges

(Schmitt et al., 2012), insects (Greer et al., 2020), and mammals (Moeller et al.,

2018). Since the microbiome directly affects host fitness (Suzuki, 2017), it could

lead to a form of nongenetic TRS. However, the transmission of microbiome is a

complex case for several reasons. First, although the maternal microbiome has the

advantage of first colonization, different parameters throughout life will impact in-

dividual microbiomes (Aleman and Valenzano, 2019; de Jonge et al., 2022). Second,

the diversity of the microbiome can be affected by host genes, as has been shown in

humans (Spor et al., 2011). Thus, there would be some genetic transmission of the

microbiome through these genes. Finally, the microbiome has its own metagenome,

which some consider the second genome of the individual (Grice and Segre, 2012).

Significant research is needed to understand the impact of vertical transmission of

the microbiome on the evolution of different species (Davenport et al., 2017). How-

ever, it is certain that the mechanisms involved are complex and do not solely follow

classical genetic transmission.

Examples of nongenetic transmission are increasingly numerous and involve all

types of species: vertebrates, insects, and plants (Bonduriansky and Day, 2018). We

can therefore expect nongenetic TRS in a large number of species, which would have

an impact on their genomes. Therefore, understanding the evolutionary histories of

populations requires taking into account nongenetic TRS, for example, by exploring

the imbalance of coalescent trees.

1.4.3 Cell populations and nongenetic TRS

It is possible to go even further and study the impacts of nongenetic TRS on cell

populations. Several species of unicellular eukaryotes show nongenetic inheritance

(Bonduriansky and Day, 2018). For example, the amoeboid protist Difflugia corona

vertically transmits its test structure during cell division (i.e., structural inheri-

tance). This transmission was proven by pulling out some “teeth” in the parent

cell and finding the same pattern in the daughter cells (Jennings, 1937). Several

other unicellulars show structural inheritance: Paramecium aurelia (Beisson and

Sonneborn, 1965; Beisson, 2008), Trypanosoma brucei (Moreira-Leite et al., 2001),

Cyclotella meneghiniana (Shirokawa and Shimada, 2016). In all these cases of struc-



68 CHAPTER 1. A REVIEW OF TRS

tural inheritance, a nongenetic TRS will appear if some variants have better fitness

than others.

Furthermore, to what extent populations of cells within a multicellular organism

might be subject to nongenetic inheritance is questionable. In a tumor, for example,

the cells closest to the blood vessels have an advantage in access to oxygen and

nutrients (Helmlinger et al., 1997). Thus, without angiogenesis, a tumor cannot

grow beyond a few millimeters in diameter (Pluda, 1997; Alfarouk et al., 2013).

Therefore, the cells closest to the vessel might have better fitness than the others.

The parent cell transmits its position to the daughter cell and thus its distance to

the vessel, as well as the associated fitness (i.e., a type of ecosystem inheritance):

this would yield a nongenetic TRS. This effect has been compared to a riparian zone

in ecology, e.g., a river crossing the desert: vegetation density is high near the river

where xeric stress is low and reduces as one moves away from it (Schade et al., 2002;

Alfarouk et al., 2013). The reality is, of course, more complex with the selection

process giving the cells farthest from the blood vessel a genotype adapted to the

lack of nutrients (just as plant species are adapted to their distance from the river).

Nevertheless, by the time the mutations that allow cells to grow far from the vessel

appear, a situation of nongenetic TRS could be at work. In addition, tumor cells

will not have the same sensitivity to chemotherapy, with cells farther away from

the vessel less affected by the drug it releases (Alfarouk et al., 2013). This could

create another fitness differential that may be independent of genetics. In general,

exploring the impact of nongenetic TRS within populations of cells in multicellular

organisms seems interesting.

However, in all cases of clonal reproduction, the effects of nongenetic TRS could

strongly resemble those of selection. Indeed, as detailed in section 3, one of the

significant differences between the effects of nongenetic TRS and selection appears

in the presence of recombination. Recombination breaks the correlations between

SNPs and leaves a signal only in the region of the locus under selection. On the con-

trary, the nongenetic TRS signal extends to the whole genome because no gene drives

the selection. Therefore, distinguishing selection from nongenetic TRS in clonally

replicating cell populations seems challenging. Despite this detection difficulty, the

impact of nongenetic TRS can be prominent in these clonal populations, for exam-

ple, by reducing genetic diversity. Moreover, an interaction between selection and

nongenetic TRS would be possible, with the slowed diffusion of an advantageous

mutation appearing in an environmentally disadvantaged lineage or, conversely, the

rapid expansion of a deleterious mutation appearing in an environmentally advan-
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taged line (similar to the high rate of genetic diseases discovered in Quebec and

caused by CTRS, Austerlitz and Heyer, 1998).

1.4.4 Epidemiology

The same idea could be applied to epidemiology. Indeed, a faster reproduction of

the pathogen is expected in a dense host population (Altizer et al., 2006; Bailes

et al., 2020; Vanden Broecke et al., 2019). In the case of a host population with

geographically variable density, the ”fertility” of the pathogen will also be vari-

able across areas, with fertility transmission. Fertile lineages will give rise to fertile

lineages simply by their geographic correlation. This could partly explain the poly-

tomies frequently observed in viral populations, in addition to positive selection and

bottlenecks (Irwin et al., 2016).

1.4.5 A novel evolutionary force?

In this section, we have reviewed different mechanisms that can give rise to non-

genetic TRS and presented the diversity of species involved. Furthermore, we have

highlighted in section III how unique the impacts of nongenetic TRS are, and we de-

scribed the possible interactions between this process and other evolutionary forces,

notably natural selection. Therefore, it should be possible to consider nongenetic

TRS as an evolutionary force in its own right because of its impact on the evo-

lutionary history of species. Alternatively, it is also possible, and perhaps more

parsimonious, to extend natural selection to any type of selection, whether genet-

ically driven or not. This extension would require a mathematical development to

generalize selection, which the Price equation could provide (Helanterä and Uller,

2010; Bonduriansky and Day, 2018; Helanterä and Uller, 2020).

However, giving such prominence to the nongenetic TRS in the framework of

modern evolutionary theory may meet some resistance for two reasons. First, be-

cause Modern Synthesis (MS) classically views natural selection as the only source

of adaptation, as stated by Charlesworth et al. (2017): “allele frequency change

caused by natural selection is the only credible process underlying the evolution of

adaptive organismal traits.” Laland et al. (2015), in contrast, assert that “the bur-

den of creativity in evolution (i.e., the generation of adaptation) does not rest on

selection alone.” Second, Modern Synthesis excludes any transmission of acquired

traits (otherwise known as Larmarckism), a feature of nongenetic TRS (Bonduri-
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ansky and Day, 2018). Indeed, an individual carrying a beneficial allele but giving

birth by chance to a below-average number of children, will still pass on his statisti-

cally fitness-enhancing allele to his offspring. On the contrary, in the case of fertility

transmitted via wealth, an individual who lost his lineage’s wealth will transmit

this low fertility status to his descendants. This Lamarckian property of nongenetic

TRS pushes it away from Modern Synthesis framework, which exclusively relies on

Darwinist foundations concerning adaptation.

These questions concerning the inclusion of nongenetic TRS in the framework

of modern evolutionary theory are part of a broader debate concerning a possible

extension of this theory. Indeed, a recent movement within evolutionary biology

research seeks to extend the current framework by adding evolutionary mechanisms

whose importance was discovered later and are now considered fundamental. Propo-

nents of this Extended Evolutionary Synthesis (EES) consider that the predictions

of Modern Synthesis are sometimes wrong because they do not take into account

several processes. These processes include nongenetic inheritance, such as cultural or

epigenetic inheritance (Youngson and Whitelaw, 2008; Laland et al., 2015; Danchin

et al., 2019). Developmental aspects, related to the concept of phenotypic plasticity

and the underlying systems biology, are also advanced as missing from the Modern

Synthesis and included in the EES (Laland et al., 2015).

EES has been the center of broad debate in the scientific community (Laland

et al., 2014). Recently, this debate was analyzed through the prism of the history

and philosophy of science (Fábregas-Tejeda and Vergara-Silva, 2018; Lewens, 2019).

Lewens distinguishes three entangled sets of arguments against the EES: (i) an em-

pirical argument, (ii) a historical argument, and (iii) a conceptual argument. The

first argument challenges the empirical importance of the processes that EES pro-

ponents want to add to the current theory. For example, Charlesworth et al. (2017)

stated: “it remains to be determined how frequently such processes occur in nature.”

The second argument disputes EES proponents’ historical depiction of Modern Syn-

thesis. In fact, some detractors of EES define MS as a flexible foundation, open to

subsequent development, a depiction that takes down the need for any theoretical

revolution (Laland et al., 2014). Finally, the third argument questions what makes

a process worthy of being considered a fundamental force in evolution, while also

challenging the very need to classify processes as truly fundamental versus so-called

minor processes.

The nongenetic TRS could be an excellent example of a process calling for an

extended synthesis, bringing valuable answers to the previously cited arguments.
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Concerning the empirical argument, we have presented several evidence of cultural

TRS in humans and other animal species. From a historical point of view, the

progeny size correlations measured in humans have been interpreted solely as coming

from genetic transmission (Fisher, 1930), illustrating the historical propensity of

Modern Synthesis to conceptualize any transmission of fertility as being conveyed

by genetics. Thus, there is at least a heuristic value in considering nongenetic

TRS, to allow for a more comprehensive range of hypotheses, based on a broader

theoretical framework (Lewens, 2019). In addition, we cited work showing that

not taking nongenetic TRS into account distorted ancient processes inference from

genomic data (Guez et al., 2022). This could be a good criterion for categorizing

truly fundamental processes in evolution: a process that alters the inference of

a population’s evolutionary history when not accounted for would be a so-called

fundamental process. Whatever one’s opinion about EES, the importance of the

nongenetic TRS for understanding evolution is not in doubt, either in the framework

of an extended synthesis or in the continuity of Modern Synthesis.

Discussion

In this review, we have tried to bring together several pieces of literature that are

quite distant at first sight: human demography and anthropology, which has studied

the intergenerational correlations of progeny size in the human species by looking for

sociological causes; quantitative genetics, which explores the genetic causes of these

correlations; population genetics, which seeks to characterize the impact of these

correlations on the genome; and evolutionary biology in the broad sense, which

aims to define the main evolutionary mechanisms. We have tried to show that these

different fields intersect concerning the question of nongenetic TRS.

We started this review by describing a widespread anthropological phenomenon:

intergenerational correlations in progeny size. These correlations have been mea-

sured in a number of past and present-day human populations and are often positive,

ranging between 0 and 0.2. Several trends emerge when studying these correlations,

such as their increase after the demographic transition in some countries, or weaker

correlations in developing countries than in developed countries. These results may

be explained by higher birth control after the demographic transition in developed

countries, which makes it easier for individuals to reach their ideal number of chil-

dren and thus better reproduce the parental progeny size.
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Then, we analyzed the two possible causes of this transmission of reproductive

success, genetic or cultural, detailing how each could lead to TRS. Fisher’s paradox,

which expects an erosion of variance in the case of selection and thus a rapid dis-

appearance of the phenomenon, is an argument put forward by the supporters of a

cultural cause for TRS. Indeed, since culture is inherited with little fidelity, variance

can be conserved for a long time, maintaining the TRS process without fixing the

trait associated with the greatest fitness (the large progeny size). We gathered here

the various responses to this paradox that proponents of genetically mediated TRS

can offer. However, it seems likely that opposing the two causes is not the right angle

of analysis. Both are probably at work at different levels depending on populations

and time.

We then reported the effects of nongenetic TRS on population genetics. These

effects are temporally complex, with a decrease in effective population size when the

process starts, which yields a signal of demographic contraction in the population

(high Tajima’s D). When the process stops, a signal of population expansion appears

due to the increase in effective population. When nongenetic TRS lasts long enough,

the population reaches an equilibrium state of low diversity (due to the increase in

variance of family sizes as well as the transmission process that accelerates allele

fixation). At the same time, Tajima’s D remains negative, and the SFS is U-

shaped due to a distortion of coalescent trees’ topology (imbalance and high number

of polytomies), as well as a non-uniform reduction of branch lengths. We finally

reviewed studies which tried to infer TRS, and tackled the challenging question of

disentangling nongenetic TRS from other processes such as demographic changes

and selection.

In the last part of this review, we explored the presence of nongenetic TRS in

other species. Indeed, several studies have revealed the regular presence of non-

genetic inheritance in a broad spectrum of species and via different processes, such

as ecology inheritance and parental effects. Nongenetic TRS has a different mech-

anism than natural selection, and its impacts on the genome are specific. These

particularities advocate for considering it as an evolutionary force in its own right,

or to extend the notion of selection to nongenetic inheritance mechanisms. We have

discussed this idea, exploring it in light of existing debates about potential exten-

sions of the theory of evolution, such as the Extended Evolutionary Synthesis that

some authors promote.

Future research should explore different avenues concerning the topics addressed.

First, despite the accumulated experimental evidence for the presence of TRS cul-
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tures in humans, systematic studies still need to be done. Indeed, meta-analyses

bring together studies carried out by different authors, according to different method-

ologies, in different countries and at different times. These discrepancies make

comparison between studies difficult. Thanks to governmental registers, the pro-

fusion of genealogical data simplifies the computations of parent-child correlations

in progeny size, throughout the World, over the last century. Such studies across

space and time would help better interpret the correlations worldwide, and under-

stand to what extent a cultural or genetic transmission causes them, leading to a

better understanding of selection pressures in modern human populations.

Another critical research angle concerns the effects of nongenetic TRS on the

genome. We have cited different results, all based on simulations of nongenetic

TRS. As these results may depend on the model used to simulate the process, other

models should be explored. For example, the model of Sibert et al. (2002), which has

been used several times for the study of cultural TRS, computes the probability of

reproduction of an individual based on his number of siblings. This model allows the

simulation of two types of cultural TRS: parental cultural influence on the number of

children and the transmission of resources correlated with fitness. However, for the

second case, one might want an explicit model of resource transmission from parents

to children, with a parameter of resource transmission fidelity, and a probability of

reproduction depending on the amount of resources. Complexifying the model in

this way would allow to approximate reality better. Beyond model exploration,

studying the effects of TRS directly on real data is also essential. However, to do

so, one must have both the genealogy of the natural populations to compute the

parent-child correlations of progeny size, as well as the genome of the individuals.

The Quebec population, for which such data are available (Anderson-Trocmé et al.,

2022), seems to be an ideal field for such a study. It will then be necessary to

separate the effects of nongenetic TRS from genetic TRS and demography.

The generalization of nongenetic TRS to species other than humans is an area

that has been too little explored so far. Assessing the strength of parent-child

correlations of progeny size in natural populations of different species is of significant

interest, while being relatively simple to achieve given the close scientific follow-up

already available for some populations. In particular, the question of progeny size

in animals would benefit from being studied in the broader context of animal social

networks, a field that is recently receiving increasing interest (Puga-Gonzalez et al.,

2019; Brask et al., 2021). Beyond multicellular species, studying nongenetic TRS

between cells could be of major interest. This would potentially provide a better
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understanding of the evolution of bacterial or cancer cell populations. Experimental

evolution on yeasts would help study nongenetic TRS in a realistic yet controlled

context. For example, in a medium containing a nutrient gradient, a cell inherits

its parent’s position together with its fertility. However, the effects of varying cell

density in the medium and the emergence of favorable mutations will have to be

distinguished from those of nongenetic TRS.

Finally, a fundamental line of research consists in placing nongenetic TRS in the

general framework of evolutionary theory, with or without the help of new frame-

works such as the Extended Evolutionary Synthesis developed by authors like Laland

et al. (2015). Mathematical modeling would help define the different types of TRS

and their dissimilarities, a work already started with the help of Price’s equation.

In addition, research in philosophy of science is needed to understand the extent

to which such processes challenge central paradigms in evolutionary biology. We

have sketched some ideas on this subject in this review. More than an evolution of

scientific paradigms, it is perhaps an evolution of heuristic habits when formulating

hypotheses that remains necessary. Indeed, in evolutionary biology, we continue to

focus on genetic evolution alone. However, the picture remains incomplete without

considering interactions between genetic and nongenetic components.
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Abstract

Cultural transmission of reproductive success (CTRS) has been observed in many human pop-

ulations as well as other animals. CTRS consists of a positive correlation of nongenetic origin

between the progeny size of parents and children. This correlation can result from various factors,

such as the social influence of parents on their children, the increase of children’s survival through

allocare from uncles and aunts, or the transmission of resources. Here, we study the evolution of

genomic diversity over time under CTRS. CTRS has a threefold impact on population genetics: (1)

the effective population size decreases when CTRS starts, mimicking a population contraction, and

increases back to its original value when CTRS stops; (2) coalescent tree topologies are distorted

under CTRS, with higher imbalance and a higher number of polytomies; and (3) branch lengths

are reduced nonhomogeneously, with a higher impact on older branches. Under long-lasting CTRS,

the effective population size stabilizes but the distortion of tree topology and the nonhomogeneous

branch length reduction remain, yielding U-shaped site frequency spectra (SFS) under a constant

population size. We show that this yields a bias in SFS-based demographic inference. Considering

that CTRS was detected in numerous human and animal populations worldwide, one should be cau-

tious because inferring population past histories from genomic data can be biased by this cultural

process.
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Introduction

In recent years, numerous studies have investigated the interactions between human

culture and genetics. In some cases, cultural changes yield genetic adaptations. This

was the case, for example, for lactase persistence that likely evolved independently

in different human populations in Eurasia and Africa, due to the emergence of pas-

toralism (Swallow, 2003; Bersaglieri et al., 2004; Tishkoff et al., 2007; Gerbault et al.,

2011; Segurel et al., 2020). Nevertheless, cultural processes can affect human ge-

netic evolution without involving natural selection (Heyer et al., 2012): (i) polygamy

(including polyandry and polygyny), (ii) descent rules (patrilineal, matrilineal, or

cognatic), and (iii) cultural transmission of reproductive success (CTRS).

CTRS is a positive correlation in the number of children between parents and

children resulting from nongenetic causes. In that case, individuals with many

siblings tend to have more children than average. This transmission can result from

multiple non-genetic causes: the social influence of parents on their children (Barber,

2001; de Valk, 2013; Kolk, 2014), the increase in child survival when uncles and aunts

are present (allocare) (Heyer et al., 2012; Lawson and Mace, 2011; Murphy, 2013)

or the transmission of resources from parents to children. Such resources can be

material resources (Sorokowski et al., 2013), social resources (e.g., transmission of

rank or of polygyny; Heyer et al., 2012), or cultural resources (such as hunting skills;

Borgerhoff Mulder et al., 2009). Furthermore, transmission of migration propensity

across generations can have an effect similar to CTRS, with some lineages growing

less than others due to their larger tendency to leave the population (Gagnon and

Heyer, 2001; Gagnon et al., 2006).

CTRS yields a decrease in effective population size and genetic diversity, and

may increase the frequency of severe genetic disorders (Austerlitz and Heyer, 1998).

The time to the most recent common ancestor is reduced, yet in a nonhomogeneous

way as the tree branches closer to the root are more strongly shortened (Sibert

et al., 2002). While these patterns can result from other evolutionary processes (e.g.

bottlenecks, expansions), a more specific effect of CTRS is its impact on the topology

of coalescent trees: CTRS yields imbalanced trees as it increases the proportion of

lineages corresponding to large families (Sibert et al., 2002). This specific property

has been used in particular for inferring the transmission of reproductive success on

Y chromosome and mitochondrial DNA (Blum et al., 2006; Heyer et al., 2015). Since

natural selection also implies a transmission of reproductive success, it is difficult to

assess whether the imbalanced trees of nonrecombining uniparental markers result
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from natural selection or CTRS. Therefore, it is important to study the impact of

CTRS on the nuclear genome. Recombination should indeed restrict the effects of

natural selection to the genomic regions around selected loci (Li and Wiehe, 2013).

Conversely, CTRS will yield an imbalance signal across the whole genome because

in that case reproductive success is not linked to any locus in particular.

Studying the impact of CTRS on genomic diversity is particularly relevant, as

it is a rather common phenomenon. Several demographic studies have shown a

parents-children correlation in the number of children ranging generally between 0.1

and 0.25 (e.g., Murphy, 1999; Murphy and Wang, 2001; Gagnon and Heyer, 2001;

Pluzhnikov et al., 2007). There has been an extensive debate about whether these

correlations result from cultural (Potter and Kantner, 1955; Duncan et al., 1965) or

genetic (Kohler et al., 1999; Rodgers et al., 2001; Mills and Tropf, 2015) transmission,

the second case corresponding to natural selection. The correlations may, in fact,

often be caused by both genetic and cultural transmission, along with interactions

between genetics and the environment (Murphy, 2013), making the disentangling of

those processes particularly difficult, especially as they can vary across populations

and time. For instance, contemporary populations tend to have a stronger inter-

generational correlation than populations that predate the demographic transition

(Murphy, 1999; Murphy and Wang, 2001). Furthermore, this phenomenon is not

limited to humans and has been described in various species such as hyenas (Engh

et al., 2000), Japanese macaques (Kawai, 1958), whales (Whitehead, 1998), dolphins

(Frere et al., 2010), and cheetahs (Kelly, 2001).

Another reason for studying the impact of CTRS on genomic diversity lies in

its putative ability to impact summary statistics commonly used to infer other pro-

cesses. For instance, Site Frequency Spectra (SFS), which might be impacted by

CTRS, are widely used for demographic inferences, either alone (e.g. δaδi (Gutenkunst

et al., 2009), Fastsimcoal (Excoffier et al., 2013), Stairway Plot (Liu and Fu, 2020),

ABC-DL (Mondal et al., 2019)) or jointly with other summary statistics (e.g., Shee-

han and Song, 2016; Boitard et al., 2016; Jay et al., 2019; Terhorst et al., 2017).

These inference tools could thus be biased when applied to populations that have

been affected by CTRS during part of their history. Understanding the interactions

between CTRS and demographic changes is therefore relevant not only for infer-

ring CTRS itself but also for improving demographic inferences, which is of broad

interest (Beichman et al., 2018).

This article pursues three objectives. First, we aim to improve our understand-

ing of the impact of CTRS on nuclear genomes using simulations. Brandenburg
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et al. (2012) performed a simulation study that investigated the impact of CTRS

on small sequences, ignoring intragenic recombination. Here, we study its impact

on large recombining sequence data, adding numerous summary statistics not previ-

ously explored in CTRS scenarios. The summary statistics we assess are mainly of

two kinds: (i) population genomic statistics, such as genetic diversity, Tajima’s D

and SFS, and (ii) various tree topology indices, such as tree imbalance indices and

number of polytomies. In addition, we investigate the interaction of demographic

changes and CTRS, as we expect human populations to undergo both types of pro-

cesses. In particular, we look into the effect of an expansion occurring before and

during CTRS, an interaction that has not yet been explored. Second, we investigate

the impact of CTRS duration and the persistence of ancient CTRS signals in the

genome by measuring the evolution of the summary statistics over time (before, dur-

ing, and after CTRS). In particular, this allows us to assess the impact of very short

periods of CTRS on population genetics. Although long-lasting CTRS is not theo-

retically excluded, available anthropological evidence only indicates the presence of

CTRS over short periods. For example, pedigrees from the Saguenay-Lac-Saint-Jean

population show CTRS for 12 generations (Austerlitz and Heyer, 1998). For CTRS

induced by variance in fertility among lineages within a population, the persistence

of CTRS requires that individuals can trace back their lineage affiliation for several

generations (in central Asia, Chaix et al. (2004) estimated this number of genera-

tions to be 7-10 depending on the population). Finally, we assess whether CTRS

impacts demographic inference. For various CTRS scenarios, we compare the true

and estimated instantaneous growth factor and timing of expansion.

2.1 Methods

2.1.1 Model

We implemented the CTRS model designed by Sibert et al. (2002) and Branden-

burg et al. (2012) using the forward-in-time simulation framework SLiM (Haller and

Messer, 2019). Individuals are diploid and monogamous, generations are nonoverlap-

ping, and the population has a fixed number of individuals N with a 1:1 sex-ratio.

At each generation, couples are formed uniformly at random before reproduction

and never separated. One parental couple is randomly drawn from the population

for each newborn child. This process is repeated until N offspring are produced.
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The probability pi for a given couple i of being drawn for reproduction is given by:

pi =
γi(b)× sαi∑Nc

j=1 γj(b)× sαj
,

where si is the average sibship size of the two members of couple i, α is the parameter

controlling the intensity of CTRS and b is the parameter controlling the variance

in reproductive success. We denote Nc as the number of couples (Nc = N/2). The

higher α is, the stronger the CTRS (α = 0 means no CTRS, α = 2 means a very

strong CTRS). γi(b) is a random gamma distributed variable drawn independently

for each couple i, with shape parameter b and mean 1. Here, we considered only

two cases: b → ∞ (low variance in reproductive success, resulting in a Poisson-

like distribution for the progeny size in the absence of CTRS, as limb→∞ γ(b) = 1)

or b = 1 (high variance, resulting in a geometric-like distribution, as γ(1) is an

exponential of mean 1 distribution). Some results are shown for both values of b,

but we focused mainly on the b = 1 case, as Austerlitz and Heyer (1998) found

that the geometric-like model was more consistent with demographic data than

the Poisson-like model and better explained the occurrence of genetic diseases in

Saguenay-Lac-Saint-Jean.

For the demographic parameters, we compared two scenarios of constant popula-

tion sizes (200 and 5000 individuals) and explored a scenario of sudden demographic

expansion by a fivefold factor (200 to 1000 individuals). This expansion occurred

300 generations before the present.

2.1.2 Simulations

Unless specified otherwise, the simulations correspond to 200 replicates per scenario,

a population size of 1000 individuals and a sample size of 30 individuals. Genomes

were made of one chromosome of 107 bp in length, with a recombination rate and

mutation rate of 10−8 per bp, which are commonly used parameters in human pop-

ulation modeling. We used the geometric-like model (b = 1) since Austerlitz and

Heyer (1998) showed it was more realistic than the Poisson-like model (b = ∞) in the

population of Saguenay-Lac-Saint-Jean where CTRS is documented from pedigree

datasets. Coalescent trees are built in two steps: (1) forward-in-time simulations

using our model implemented in SLiM (Haller and Messer, 2019) starting before the

beginning of CTRS, resulting in trees that did not fully coalesce when the CTRS

period is short, (2) a backward neutral coalescent process in order to complete the
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trees from the first step (i.e., to reach the most recent common ancestors through-

out the genome). This step uses the tskit package functionality called recapitation

(Kelleher et al., 2016, 2019).

To assess the impact of CTRS on reproduction, we measured three demographic

parameters : (1) the correlation between progeny sizes of all individuals and their

parents’ progeny sizes as a function of α, the strength of CTRS; (2) the variance of

progeny size, and (3) the distribution of progeny sizes in the population for α = 0,

1 and 2.

To investigate the effect of CTRS across time, we measured the genomic sum-

mary statistics on batches of individuals sampled through time for the following

scenario: 2000 generations of CTRS, followed by 2000 generations with no CTRS.

Every 50 generations, individuals were sampled for analysis. Following any cultural

change (starting or stopping CTRS), we sampled more frequently to capture rapid

fluctuations of summary statistics (at generations 2, 5, 10, 15, and 20 postchange).

2.1.3 Summary statistics

To assess the effects of CTRS on the genome, we explored the following diversity

summary statistics as a function of time using the tskit package (Kelleher et al.,

2016, 2019): (1) the number of trees per chromosome, which is the number of

recombination breakpoints plus 1, (2) the number of pairwise differences among

the sampled chromosomes, (3) the average number of pairwise differences per tree,

and (4) the number of SNPs in the chromosomes, (5) the average number of SNPs

per tree, (6) Tajima’s D, (7) the unfolded site frequency spectrum (SFS). For the

SFS, we computed a transformed version (Lapierre et al., 2017) that consists of

multiplying singletons by 1, doubletons by 2, and n-tons by n. We then divided all

bins by θ, which is estimated by taking the average of all bins so that the expected

transformed SFS for the neutral case is a flat line with a value of 1.

We computed the theoretical effective size Nexp according to the equation Nexp =

4N/(2 + s2), where s2 is the variance in progeny size (Wright, 1938; Wang et al.,

2016). This formula computes the effective size as a function of the census population

size N and the variance in progeny size only. We compared Nexp to the observed

effective size Nobs which was computed as follows: Nobs = θ/(4µL), with the average

number of pairwise differences, θ̂π, as an estimator of θ, L the genome length and µ

the mutation rate per base pair.
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We also computed various topology indices, to assess the effect of CTRS on the

topology of coalescent trees, with the help of the tskit package (Kelleher et al., 2016,

2019). Balance and imbalance indices: (1) Ib, the Brandenburg imbalance index

(Brandenburg et al., 2012; Blum et al., 2006); (2) I∗s , a normalized Sackin imbalance

index (Sackin, 1972; Shao and Sokal, 1990); (3) I∗ce and I∗ca, two modified versions

of the Colless imbalance index (Colless, 1982), ; (4) the B1 balance index (Shao and

Sokal, 1990); (5) the B2 balance index (Shao and Sokal, 1990; Bienvenu et al., 2021).

Other topology indices: (1) the number of polytomies (nodes that have more than

two direct children); (2) the number of interior nodes (all nodes excluding leaves

and root). To compare different indices, we also used their standardized versions

using their mean and standard deviation at generations preceding CTRS.

Ib, I
∗
s , I

∗
ca and I∗ce measure the imbalance of trees, meaning that those indices take

higher values for more imbalanced trees. Ib was computed using the script provided

by Brandenburg et al. (2012). For one tree, Ib is the average of Ib,node computed for

each node in the tree according to the formula:

Ib,node =
B −ms,l

D −ms,l

, with ms,l = 2Bs,l,coal −D,

where s is the number of direct subnodes under the considered node and l the number

of leaves descending from it. For each direct subnode under the considered node,

leaves are counted and the maximum value is denoted B. D is the maximum value

that B can possibly take (i.e., in the most imbalanced configuration) and is equal

to l − s+ 1. Thus, B
D

is the level of imbalance at this specific node. The correction

factor ms,l enforces the expectation of Ib to be 0.5 for a standard population without

CTRS. This parameter is evaluated based on simulations: Bs,l,coal is the average B

value of 1000 simulated random Kingman’s (1982) incomplete coalescent trees with

l leaves that were stopped when s parent nodes remained.

The Sackin imbalance index Is is computed by counting for each leaf the number

of nodes to reach the root and summing up all values. The Colless imbalance index

Ic is computed by counting for each node (except for the root in our case) the

difference in the number of leaves between its two children and summing up all

values. However, this can be done only for binary trees. To handle polytomies,

we designed two modified versions of the Colless imbalance index, Ice and Ica. For

Ice, the two children chosen for calculating the difference are those with the highest

and lowest number of leaves (e, as for extreme number of leaves). Ica is computed

by taking the average of differences for all pairs of children among all children of
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a given node (a, as for average). Since the Sackin and Colless indices minimum

and maximum values depend on the number of nodes (Shao and Sokal, 1990) which

varies across trees when permitting polytomies, we computed a corrected version of

the Sackin (I∗s ) and Colless (I∗ce and I∗ca) indices which divides the index of each tree

by the number of its interior nodes.

B1 and B2 are balance indices; we thus expect their value to be lower when

trees are imbalanced. The B1 balance index is computed by counting for each node

the maximum path length to its leaves and taking the inverse of this value before

summing up all of the values (one value per interior node). The B2 balance index is

based on pk the probabilities to reach the leaf k assuming a random walk starting

from the root and choosing a random direction at each node. B2 is equal to the

Shannon entropy of the pk; a uniform distribution (an entropy of 1) corresponds to

a balanced tree (Shao and Sokal, 1990; Bienvenu et al., 2021).

Because of recombination, one chromosome corresponds to a sequence of coales-

cent trees. Summary statistics can be computed for each of the trees, with close

trees having similar values. To consider the various histories represented by each of

those trees, we explored not only the average summary statistics but also the shape

of their distributions across the genome. The summary statistics were computed

separately on each tree along the genome using the tskit package.

We also assessed the effect of sample size (number of individuals sampled) and

of number of genomic regions on the power of detecting CTRS, using a Wilcoxon

test with the significance threshold set to 0.01. For this assessment, we simulated

3000 independent genomic regions of 1 Mb for two populations of 1000 individuals:

one that went through a CTRS process of strength α = 1 during 20 generations

before present, and one with α = 0 (no CTRS). We then sampled 5, 10, 30, 60,

90 and 120 diploid individuals from each of the two sets of 3000 simulated regions

and the four summary statistics (Ib, number of polytomies, B1, and Tajima’s D)

on all of them (2 scenarios × 3000 regions × 6 sample sizes × 4 summary statistics

computations). For each sample size, we sampled 3, 4, 5,. . . , 100 regions from the

two sets of 3000 simulated regions, before using a Wilcoxon test to compare the four

summary statistics values between the two populations (α = 0 and α = 1). For each

combination of sample size and number of sampled replicates (6×98 combinations),

the sampling among replicates and the Wilcoxon test were repeated 1000 times,

with the proportion of p values lower than or equal to 0.01 equaling the power of

the test.
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2.1.4 Assessing demography inference bias

To assess the bias in SFS-based demography inference, we used the software δaδi

with a one-event model (Gutenkunst et al., 2009). Two scenarios were studied: (1)

a sudden fivefold expansion in population size that occurred 280 generations be-

fore a short period of CTRS (20 generations); and (2) a sudden fivefold expansion

in population size that occurred during CTRS, after the first 1200 generations of

a 1500-generations period of CTRS (Figure 2.1). We chose a fivefold sudden ex-

pansion as a simple illustration of a demographic event, which has the advantage

of mimicking the past Neolithic expansion in human population history. From 30

diploid individuals sampled 300 generations after the demographic event, we inferred

two parameters: the growth factor (expected value of 5) of the population and the

number of generations since the event (expected value of 300 generations). The

strength of CTRS was set to α = 1. We compared the quality of inference in both

scenarios to equivalent demographic scenarios without CTRS (α = 0).

300 gen. 300 gen.

CTRS
Nb of gen. since expansion Nb of gen. under CTRS

20 gen. 1500 gen.

Scenario 1 Scenario 2

Figure 2.1: The two studied scenarios for SFS computation and δaδi inference.
In both scenarios, the expansion event occurs 300 generations before SFS computation and δaδi
inference. Scenario 1: 20 generations of CTRS before the present. Scenario 2: 1500 generations of
CTRS before present.

We inferred the parameters of 200 replicates for each of the four scenarios (sce-

narios 1 and 2 with α = 0 or 1). Because the δaδi optimization algorithm depends

on the initialization of the model parameters, we repeated the inference three times

for each replicate with different initialization values. We set the boundaries for the

inferred growth factor at [0.01; 100] and for the inferred growth time at [0; 5] (time

is expressed in 2N generations in δaδi, where N is the population size before the

event). When the results were too close to the boundaries (> 99 or < 1/99 for the

growth factor, > 4.9 or < 0.1 for the time since the event), the results were discarded.

For each replicate, the remaining results among the three trials were kept, and their



84 CHAPTER 2. CTRS EFFECTS ON POPULATION GENETICS

median was considered as the inferred parameter for this replicate. To convert time

into generations, we multiplied the inferred time value of each replicate r by 2N̂r;

where N̂r denotes the ancestral population size estimated for replicate r, using a θ̂r

estimate computed by δaδi.

We removed outliers among replicates (i.e., values that were higher than Q3 +

1.5 × IQR and lower than Q1 − 1.5 × IQR, with Q3 being the third quartile, Q1

being the first quartile and IQR being the interquartile range). We then computed

the mean squared relative error (MSRE) and relative bias.

2.2 Results and discussion

2.2.1 Impact of CTRS on reproductive patterns

To assess the impact of CTRS on reproductive patterns, we simulated various

strengths of CTRS (defined by α) for two models of variance in reproductive success

(low variance with b = ∞ and high variance with b = 1). We computed the Pearson

correlation coefficient between parents and children CorP,C and the variance and dis-

tribution of progeny size. As expected, CorP,C increases with α. However, this effect

is weaker for smaller population sizes. This is due to an increased effect of stochas-

tic processes in small populations, counteracting the impact of parents on children’s

progeny size (Figure 2.2A). The slope of the relationship between CorP,C and α is

also lower for the b = 1 model than for the b = ∞ model (Figure 2.2A). Indeed,

the higher variance in progeny size in the b = 1 model decreases the correlations,

compared to the b = ∞ model.

Higher values of α yield more extreme progeny sizes (Figure 2.2B-C, purple

compared to orange and green) and a higher variance (Supp. Fig. S1). This variance

reaches a plateau after a few generations (Supp. Fig. S1). At this plateau, the exact

progeny size distribution differs depending on the model: compared to the b = ∞
model, the b = 1 model yields a higher proportion of couples with no offspring and

a lower proportion of couples with medium-sized families (1 to 3 children) (Figure

2.2B versus 2.2C).
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Figure 2.2: Impact of CTRS on two population reproduction variables.
A. Correlation between parents and children progeny size as a function of α, for four scenarios.
In brackets: correlation between CorP,C and α for each scenario. Lines are drawn using locally
weighted regression with the 95% confidence interval using the function loess of the R package
ggplot2.
B. Distribution of progeny sizes for α = 0 (green), 1 (orange) and 2 (purple), population size =
1000. The b = ∞ model is used (low variance of reproductive success).
C. Distribution of progeny sizes for α = 0 (green), 1 (orange) and 2 (purple), population size =
1000. The b = 1 model is used (low variance of reproductive success).

2.2.2 Impact of CTRS on the genome

Effective population size

We then assessed the impact of CTRS on population genomic parameters. When

CTRS begins, genomic diversity, measured either as the number of SNPs (Supp. Fig. S2A)

or as the number of pairwise differences (Fig. 2.3A), declines and eventually reaches a

plateau, showing a decrease in effective population size of 40% for the b = ∞ model

and of 75% for the for the b = 1 model (for α = 1, at the plateau), demonstrating

a stronger effect of CTRS under the second model (Fig. 2.3B).

Because of this decrease in effective population size, the number of coalescent

trees across the genome is lower due to fewer recombination events, and the TMRCA

is smaller (Supp. Fig. S2B-C). For all these parameters, the plateau is lower for α =

2, since it yields lower effective population sizes than α = 1. Moreover, the higher

α is, the faster the plateau is reached. This happens because genetic drift, which

is stronger when α is high, swiftly erases past diversity. As soon as CTRS stops,

diversity starts to increase slowly (Figure 2.3A), taking more time to recover than
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Figure 2.3: Factors of effective population size decrease under CTRS.
A: Average number of pairwise differences across time for three levels of CTRS: α = 0, α = 1
and α = 2. In all cases, the b = 1 model of variance in progeny size is used. The blue rectangle
corresponds to the period when populations are under CTRS. Generations are counted from the
beginning of CTRS.
B: Expected effective population size given the observed offspring variance (Nexp) and observed
effective population size measured using the number of pairwise differences at the plateau in Panel
A as an estimator of θ (Nobs), for α = 0 and α = 1 and both models of variance in progeny size
(b = ∞ and b = 1). The dotted line represents the census N value, which is 1000 individuals.

it took to decrease. Indeed, as the effective population size becomes larger, drift

becomes weaker and the impact of past events lasts longer (i.e., diversity is close to

equilibrium after 10Ne generations).

This decrease in effective population size results both from the increase in the

variance of progeny size due to CTRS and the transmission of progeny size itself,

which amplifies allele fixations by helping alleles carried by large lineages to spread

faster in the population. To assess the respective impact of these two factors on

effective population size, we compared Nexp (the expected effective population size

when taking into account the variance in progeny size only), to Nobs which is im-

pacted by both components (Fig. 2.3B). We show that while a substantial decrease

in effective population size is caused by the increased variance in progeny size, most

of this decrease is due to the transmission component (around 70% of the decrease

in the b = ∞ model and 65% of the decrease in the b = 1 model, for α = 1).
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Tajima’s D

Tajima’s D follows a more complex pattern than does genetic diversity. This pattern

can be decomposed into four steps (Figure 2.4A): (1) as soon as CTRS begins, it

increases rapidly towards a peak in positive values then (2) it decreases toward a

plateau in negative values, (3) when CTRS stops, it rapidly decreases again toward

more negative values, and (4) it slowly recovers to pre-CTRS levels. The first peak

(1) results from a sudden decrease in effective population size when CTRS starts, as

explained above, yielding a demographic contraction-like signal with positive values

of D. Once this contraction signal is erased (i.e., the effective population size is still

lower but there is no “memory” of the ancient effective population size due to an

MRCA born after the change), D reaches a negative plateau at equilibrium; (2):

the population is composed of many related individuals coming from large family

lineages and few individuals from small family lineages, the latter yielding an excess

of rare alleles. The nonhomogeneous reduction of coalescent times, stronger for the

branches closer to the root (Sibert et al., 2002), also contributes to this excess of rare

alleles. When CTRS stops, the decrease toward more negative values (3) is due to

the increase in effective population size (expansion-like event). This negative peak

is followed by a slow recovery (4) until the expansion signal is completely erased.

These steps are not followed at the same pace along the genome: some coalescent

trees will enter the equilibrium stage, while others retain a strong signal of the

effective population size contraction, transiently yielding a bimodal distribution of

D across the genome (Supp. Fig. S3B and C for α = 2, Figure S3D for α = 1).

Thus, understanding the effect of CTRS on Tajima’s D requires accounting for

three processes: changes in effective population size, an increased variance in related-

ness among individuals as compared to a neutral population and a non homogeneous

reduction in branch lengths. Timing is then an important factor: the relationship

between α and Tajima’s D changes over time after the beginning of CTRS, and the

impact of CTRS on genetic diversity and D persists long after CTRS has stopped.

The interaction between demographic events and CTRS is also important, since

both can happen in the same period of human history. When a fivefold expansion

occurs during the equilibrium stage, Tajima’s D decreases as expected, but the ex-

tent of this decrease depends on α: the stronger α is, the weaker the decrease will be,

showing the nonadditivity of the two processes regarding D (Figure 2.4B, generation

1200). The recovery from the effect of this fivefold expansion also depends on α:

when α = 1, Tajima’s D recovers faster than with no CTRS (α = 0) (Figure 2.4B,
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Figure 2.4: Tajima’s D through time under various CTRS and demographic condi-
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A-B. The blue rectangle corresponds to the period when populations are under CTRS. Generations
are counted from the beginning of CTRS. In all cases, the b = 1 model of variance in progeny size
is used.
A. Tajima’s D across generations for three values of α (0, 1 and 2), with a constant population
size of 1000 individuals.
B. Tajima’s D across generations for three values of α (0, 1 and 2). A fivefold expansion event
occurs at generation 1200 (200 individuals to 1000 individuals - gray vertical line).

generations 1200 to 1500). This is due to the smaller population effective size when

α = 1, which quickly erases past signals. Thus, we expect populations under CTRS

to lose the genetic signals of past demographic events faster.

Coalescent tree topology

It is likely that neither diversity indices nor Tajima’s D would be sufficient alone

to infer CTRS in population genetics data, since demographic events also impact

these statistics. In contrast, the shape of coalescent trees has been shown to display a

CTRS-specific signal, with trees being more imbalanced only when CTRS is present,

irrespective of the variation in total population size. Brandenburg et al.’s (2012)

imbalance index Ib (Figure 2.5A) grows rapidly when CTRS starts and decreases

as soon as it stops, recovering in a few dozens of generations, unlike Tajima’s D

(Figure 2.4A), which did not fully recover after 2N = 2000 generations. The number

of polytomies follows a pattern similar across time as Ib (Supp. Fig. S4). However,

this increased number of polytomies can stem from the contraction in effective size
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yielded by CTRS (4-fold decrease when α = 1 and b = 1), as coalescent rates are

higher for smaller population sizes, increasing the probabilities of polytomies. To

assess this hypothesis, we compared the number of polytomies after 500 generations

of CTRS (α = 1 and b = 1) to the number of polytomies after a 4-fold contraction

500 generations before the present, without CTRS. The results show that the 4-fold

contraction indeed yields a higher number of polytomies than the neutral case, but

a lower number of polytomies compared to the scenario of CTRS (Supp. Fig. S5A).

Thus, the increased number of polytomies under CTRS is caused not only by the

contraction of the effective size, but also by the transmission property of CTRS.

The same comparison for Ib shows that none of the imbalance under CTRS is due

to the contraction of effective size, as the mean imbalance after contraction is equal

to the mean imbalance of the neutral case, with a higher variance due to the smaller

population size (Supp. Fig. S5B).

The distribution of Ib across the genome was bell-shaped and unimodal for all

tested strengths of CTRS (α = 0, 1 and 2), with a shift toward high values when

α increased (Supp. Fig. S6). This is because CTRS is not conveyed by any locus

in particular, unlike natural selection, for which we could expect in some cases a

multimodal distribution due to imbalanced trees in the region under selection and

balanced trees elsewhere in the genome. Unlike the distribution of Tajima’s D

(Supp. Fig. S3), the distribution of Ib does not evolve during the process of CTRS,

as shown when comparing the distributions after 20 and 500 generations of CTRS

(Supp. Fig. S6). In fact, Ib is only impacted by the imbalance property of coalescent

trees and thus only displays its effects, which are constant through time after the

first few generations, contrary to Tajima’s D, which is affected by imbalance and

by changes in effective size as well, with the latter’s effects depending strongly on

time.

Short-lasting CTRS

We have thus far simulated cases of long-lasting CTRS, in order to investigate the

values of the different statistics at the equilibrium state under CTRS (Figure 2.4).

However, as the CTRS duration could be much shorter in reality, we also investigated

cases where CTRS lasted for only a few generations. This situation was simulated

for both low (b = ∞) and high variance in progeny-size (b = 1). We show that two

or three generations of CTRS are sufficient to have an impact on genetic statistics

(Supp. Fig. S7). Tajima’s D displays an effect under medium (α = 1) and high
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levels of CTRS (α = 2), for both models of variance in progeny-size (b = ∞ and

b = 1). Conversely, Ib seems affected under medium levels of CTRS only in the case

of high variance in progeny size. Note that these realistic short periods of CTRS

lead to an increase in Tajima’s D toward positive values due to the effective size

contraction, as explained above. Finally, we show that after such a short period of

CTRS, a few generations without CTRS are not sufficient to erase the effects on the

genome (Supp. Fig. S7).
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CTRS detection

Some indices seem to be more effective for CTRS detection than others (Figure

2.5B). When α = 1, of all tree (im)balance indices, B1 and I∗s are the most affected,

with a shift of 3 to 4 standard deviations, while this shift is only between 1 and 2

standard deviations for other (im)balance indices such as Ib, Is, B2. I
∗
ca and I∗ce, the

two Colless indices handling polytomies, display a similar pattern with a shift of 2

standard deviations (Supp. Fig. S8). However, I∗ce seems slightly more affected by
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CTRS, due probably to its algorithm focusing on children with an extreme number of

leaves (see Methods). The number of interior nodes and the number of polytomies

are affected by CTRS more than all other measured indices, with a shift of 8 to

9 standard deviations (Figure 2.5B). Interestingly, each of these indices seems to

contain specific information about tree topology, as the correlations between their

absolute values range between 0.99 and -0.17, although they all are correlated to α

(Supp. Fig. S9). Thus, a method combining various indices (e.g., using approximate

Bayesian computation) might be able to detect CTRS from population genomic

data more accurately than a method using a single index. Furthermore, not all

indices are robust to demographic events, as shown in Figure 2.5C: only Ib and

B2 seem unchanged when an expansion occurs during CTRS (vertical gray line at

generation 150), with a small change for I∗ce and wider changes for other indices. The

remaining indices are all affected by the demographic event, although they still show

tree imbalance of samples collected after the event (except for Is, which reaches 0

soon after the event).

As with many evolutionary processes, the ability to detect CTRS also depends

on the number of sampled individuals and loci. We assessed the effect of these two

parameters on our ability to discriminate two scenarios using a Wilcoxon rank test:

one of 20 generations of CTRS (strength α = 1) before present and one without

CTRS (α = 0). We show that for all four studied summary statistics (i.e., Ib, B2,

Number of polytomies and Tajima’s D), power increases with both the number of

sampled individuals and the number of sampled loci (Supp. Fig. 3.5). The number

of polytomies and Tajima’s D are the most effective indices, with the first index

reaching a power above 0.95 (at Type I error = 0.01) for 60 genomic regions of 1

Mb and 10 sampled individuals, and the second reaching this power for 100 genomic

regions of 1 Mb and 10 sampled individuals. However, as shown previously, both

indices are also impacted by changes in census population size and cannot thus

be used alone for CTRS inference. Conversely, Ib and B2 are independent from

changes in population size, but display a much lower power of detection compared

to the two previous indices. Ib needs 30 individuals and 100 genomic regions of

1 Mb in order to reach a power of 0.95, while B2 needs 90 individuals and 100

genomic regions of 1 Mb to reach this power of detection. For CTRS detection,

the number of individuals seems to have a stronger impact on power of detection

than the number of genomic regions, with a power above 0.9 reached with Ib for 100

individuals and 10 independent regions of 1 Mb, compared to a power of 0.15 with

10 individuals and 100 independent regions of 1 Mb, possibly due to the need to have

a minimum number of sampled individuals in order to assess topological properties
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of the population coalescent trees. As stated above, we expect a combination of

multiple indices using methods such as ABC to be even more effective for CTRS

estimation from genomic data, compared to single indices. Additionally, using the

distribution of indices along the genome might provide more information about past

CTRS compared to the use of mere averages.

In conclusion, the evolution of Tajima’s D and imbalance measures over time

highlights the complexity and the timing of CTRS impacts on population genetics.

When CTRS starts or stops, sudden changes in effective population size occur.

During the process, CTRS affects coalescent tree topology (imbalance and number of

polytomies) and branch lengths with a nonhomogeneous reduction (young branches

less impacted than old branches). Imbalance is due to the transmission process,

which yields asymmetrical genealogies. The higher number of polytomies stems

from the higher coalescence rate. The nonhomogeneous branch length reduction

is similar to what occurs during an expansion. Although the effective population

size remains stable during CTRS, a pseudoexpansion occurs, due to the expansion of

large family lineages, which is compensated by the extinction of small family lineages

(Sibert et al., 2002). All of these mechanisms affect the genomic signal commonly

used for population genetic inferences, and the next section will illustrate, based on

simulations of an instantaneous expansion, how demographic inference is impacted

both before and after CTRS equilibrium.

2.2.3 Impact of CTRS on demographic inference

In this section, we investigate the impact of CTRS on demographic inference before

and after CTRS equilibrium. In the first case, the genomic signal of expansion

is affected by the distortion in tree topology (i.e., imbalance and higher number

of polytomies) and by the recent change in effective population size, while in the

second case only changes in tree topology remain. We explored the “Before CTRS

equilibrium” scenario by inferring demography 20 generations after the beginning of

CTRS, and the “At equilibrium” scenario by inferring demography 1500 generations

after the beginning of CTRS. The fivefold expansion event to be inferred occurs in

both scenarios 300 generations before the inference (more details in Methods).

Before CTRS equilibrium, we measured a strong bias in the demography inferred

by δaδi. When α = 1, the inferred growth factor has a median of 3 instead of 5

(relative bias = -0.37, MSRE = 0.18, compared to 0 and 0.04, respectively, for α = 0)

(Figure 2.6C). δaδi inferences are based solely on the SFS. After 20 generations of
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Figure 2.6: SFS and δaδi inference of expansion parameters at two stages of CTRS.
A and E: SFS for α = 0 and 1 with no demographic event.
B and F: SFS for α = 0 and 1 after a 5-fold expansion 300 generations ago.
C and G: inferred growth factor for α = 0 and 1, after a 5-fold expansion 300 generations ago.
D and H: inferred number of generations since expansion for α = 0 and 1, after a 5-fold expansion
300 generations ago.
A-D: Scenario “Before CTRS equilibrium” (20 generations of CTRS before present).
E-F: Scenario “At CTRS equilibrium” (1500 generations of CTRS before present).
MSRE, relative bias and percentage of rejected replicates displayed above each boxplot. In all
cases, the b = 1 model of variance in progeny size is used.
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CTRS and without any change in census population size, SFS shows a marked

deficit of rare alleles due to the contraction of effective population size caused by

the initiation of CTRS, and an excess of common alleles due to this contraction

combined with the presence of many related individuals coming from large family

lineages (Figure 2.6A). Conversely, in a scenario of 20 generations of CTRS following

an event of expansion, the SFS for α = 1 is expectedly a mix between the expansion-

only pattern (α = 0) and the CTRS pattern for α = 1 (Figure 2.6B). In this case,

the SFS displays a smaller excess of rare alleles compared to the expansion-only

pattern. Since the excess of rare alleles is the main signal of expansions, a smaller

expansion is inferred. The contraction of the effective population size due to the

initiation of CTRS reduces the excess of rare alleles caused by the expansion event,

yielding an inference of a smaller growth factor. Time since the demographic event

is also inferred less accurately after a period of 20 generations of CTRS (for α = 0:

relative bias = -0.17, MSRE = 0.06; for α = 1: relative bias = 0.22, MSRE = 0.21).

At CTRS equilibrium, for α = 1, a median growth factor of 3.8 is inferred instead

of 5 (relative bias = -0.18, MSRE = 0.16, compared to -0.01 and 0.04, respectively,

for α = 0) (Figure 2.6G). The SFS at CTRS equilibrium with no demographic event

is U-shaped (Figure 2.6E). Tree imbalance and the higher number yield the excess

of rare and common alleles, while nonhomogeneous reduction of branch lengths

contributes to the excess of rare alleles. When a demographic expansion occurs

at CTRS equilibrium, the SFS displays a tilted U-shape, with less excess of rare

alleles in comparison to the expansion-only scenario (Figure 2.6F). This is due to

the smaller effective population size during the generations where CTRS occurs,

which induces an accelerated loss of part of the rare alleles created by the fivefold

expansion event. Since rare alleles are the main traces of this past expansion event, a

smaller expansion is inferred. The inferred time since the demographic event when

the population experienced 1500 generations of CTRS was strongly biased, with

a median inference of 50 generations since the demographic event instead of 300

(α = 0: relative bias = -0.15, MSRE = 0.05; α = 1: relative bias = -0.74, MSRE =

0.6) (Figure 2.6H).

We thus showed that after a period of CTRS, whether short (20 generations) or

long (1500 generations), past growth factors of expansion events are underestimated

with an SFS-based inference method, due to a lack of rare alleles compared to the

neutral case scenario. The time since the expansion event can be largely underesti-

mated if it happened after a long period of CTRS and slightly overestimated after

a short period of CTRS.
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2.3 Conclusions

Many studies evaluating CTRS strength in human populations rely on the com-

putation of correlations between parents and children progeny size from pedigree

datasets (Murphy, 1999). However, we show here that this measure cannot by itself

account for the magnitude of CTRS effects on population genetics. Indeed, under

the high variance in progeny size model (b = 1), correlations are lower than un-

der the low variance model (b = ∞), while the impacts on population genetics are

increased. Thus, a more precise evaluation of CTRS from pedigree data would re-

quire considering the distributions of parents and child progeny sizes in addition to

the correlation values. Furthermore, the higher correlations under the low variance

model (b = ∞) could explain the higher correlations observed in populations that

exhibited a demographic transition (Murphy, 1999; Jennings et al., 2012; Jennings

and Leslie, 2013). Indeed, a main characteristic of this transition is a decrease in

progeny size variance. Finally, we observe that CTRS has a stronger impact on

effective size than the variance introduced in the model. This result is supported

by measurements in the Saguenay-Lac-Saint-Jean population for similar levels of

progeny size correlation (Heyer et al., 2012).

CTRS impacts genomic diversity in two ways: (i) when CTRS begins or ends,

populations undergo a decrease (resp. increase) in effective size that impacts several

population genetic statistics such as Tajima’s D and SFS. This lower effective size

stems from the increased variance in progeny size under CTRS and from the trans-

mission component itself. We could show that the latter accounts for most part of

the decrease in effective population size under CTRS. (ii) During the CTRS pro-

cess and shortly after the process stops, coalescent tree topologies (i.e., tree shape

properties that are not related to branch length) are distorted, which also impacts

Tajima’s D and SFS. When CTRS lasts long enough, the effect of the change in ef-

fective size disappears while tree topology distortion persists, inducing lower genetic

diversity and a U-shaped SFS. These two processes start together but have different

dynamics, yielding a complex effect on population genetics over time.

We showed that the distortion in coalescent tree topology affects two topological

properties: (1) trees are more imbalanced, which can be shown with balance and

imbalance indices, and (2) the number of polytomies increases. In theory, both of

these effects could happen independently, as binary trees can be imbalanced and

polytomies do not necessarily induce imbalance. However, under CTRS, we show

that trees undergo a complex change in their topology, with an interplay between
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these two properties of imbalance and polytomies. These two effects increase the

proportions of rare and common alleles, while a nonhomogeneous reduction in branch

lengths (Sibert et al., 2002) increases only the proportion of rare alleles, yielding a

U-shaped SFS. Further studies could evaluate the relative impacts and possible

interactions between these processes.

The impact of CTRS on SFS explains why the SFS-based demographic infer-

ence performed by δaδi was biased for populations undergoing CTRS. After a few

generations of CTRS, the growth factors of past expansion events are underesti-

mated. This result implies that past expansions, such as the Neolithic ones, might

be underestimated in populations experiencing CTRS, at least when inferred based

on SFS. After many generations under CTRS, the timing of expansion is strongly

underestimated as well. Furthermore, due to the decrease in effective population

size induced by CTRS, past expansion signals were lost more rapidly, as compared

to scenarios without CTRS. Similarly, the signal of other past events, such as bottle-

necks, selection or migration, is expected to be erased more rapidly in the presence

of CTRS. We established that CTRS impacts an SFS-based inference method and

expect other approaches to be affected given that CTRS distorts coalescent trees,

which are directly or indirectly at the core of any inference method. CTRS is thus

one more process among others that can affect demographic inference (e.g., purify-

ing and background selection (Johri et al., 2021; Pouyet et al., 2018), biased gene

conversion (Pouyet et al., 2018), population structure (Mazet et al., 2016), selec-

tion, gene conversion, and biased sampling in microbial populations (Lapierre et al.,

2016)).

To disentangle the effects of demographic events from CTRS, imbalance indices

that are unaffected by variations in the census population size can be used. We

showed that the power of detection of CTRS from genomic data is less impacted

by the number of independent regions than by the number of sequenced individu-

als that should be high enough, a condition easily achieved with modern datasets.

However, these indices are computed from coalescent trees which first need to be

reconstructed from genomic data (e.g., using tools such as ARGweaver (Rasmussen

et al., 2014), tsinfer (Kelleher et al., 2019), or relate (Speidel et al., 2019)). This

tree reconstruction step might not be able to infer a perfectly accurate topology,

yielding potential biases in the estimated (im)balance indices. Moreover, in addi-

tion to the expected imprecision of the reconstruction of neutral trees, the behavior

of these tools under CTRS remains to be checked. Another possibility would be

to build and train deep learning networks directly on raw genomic data without
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reconstructing coalescent trees, as in Sanchez et al. (2021), which would prevent the

introduction of biases due to tree reconstruction, but might require a larger amount

of simulated data for training. To generate this large dataset, it would be useful to

develop a backward coalescent model of CTRS, as forward-in-time simulations are

particularly time-consuming.

To conclude, one should note that the impacts of CTRS on the genome studied

here should happen in the case of selection as well: effective population size and

coalescent trees topology should be affected, yielding qualitatively similar patterns

in Tajima’s D, SFS and other statistical indices throughout time. However, due

to the process of recombination, all these effects would be restricted to the region

linked to the locus under selection. Conversely, CTRS impacts the whole genome

because it is not caused by any genetic locus in particular. CTRS would thus quali-

tatively resemble an extreme case of multiloci selection, where all loci in the genome

would be under selection pressure. Because of this impact on the whole genome, the

bias produced by CTRS in demographic inference are non-trivial to escape from,

whereas bias caused by selection on a few locus can be avoided by inferring de-

mography from neutral regions. Furthermore, CTRS and multiloci selection might

be particularly prone to blur each other due to their similarity, and we expect the

distinction between the two processes in real genomic data to be a challenging issue.

Finally, we should address the question of the similarity between CTRS and

natural selection: in both cases, some individuals have more offspring than others

and transmit this higher fertility to their descendants. However, in the case of CTRS,

fertility is culturally transmitted, whereas for selection, it is genetically transmitted.

The question is to what extent these processes affect the genome differently. Without

recombination, one might expect qualitatively similar effects of the two processes on

the genome: lower diversity and similar patterns for Tajima’s D over time. Moreover,

tree topology is also expected to be distorted with an increase in imbalance (Fay and

Wu, 2000; Li, 2011; Li and Wiehe, 2013) and number of polytomies (Durrett and

Schweinsberg, 2005; Neher and Hallatschek, 2013) under selection. The resemblance

of the two processes is confirmed by a similar U-shaped signature in SFS: selection

also yields an excess of rare (Braverman et al., 1995) and common alleles (Fay and

Wu, 2000).

However, a fairly clear difference exists between the CTRS model (based on the

α parameter) used here and the commonly used model of positive selection (based

on the selection coefficient s, Wright, 1932). Under this model of selection, the

beneficial allele can go to fixation, and selection stops at that point. However, in
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the case of CTRS, the model is constructed in such a way that the transmission of

reproductive success may continue indefinitely. The CTRS model would more closely

resemble a positive selection model with a high mutation rate, preventing fixation.

This difference between the two models makes sense relative to reality: cultural

transmission can be expected to be quite inaccurate in real life compared to genetic

transmission. This argument of “high mutation rate” in cultural transmission has

been used to resolve the so-called Fisher’s paradox (Pettay et al., 2005): how can

correlations between parents’ and children’s progeny size remain positive over time

given the expected erosion of variance in the fertility phenotype? The answer would

be that these correlations stem from a CTRS and not a genetic TRS. Thus, the

unfaithful cultural transmission of fertility would explain why variance is maintained,

with the “high mutation rate” preventing the “fixation” of high-fertility cultural

traits (Heyer et al., 2012). This difference in fixation between the two models might

yield distinctive dynamics in population genetics statistics. To further compare

CTRS and selection models, an analytical reconciliation that would link α to the

selection coefficient would be pertinent.

A second difference between CTRS and selection appears when recombination

is considered. In this case, the selection signal is restricted over time to the locus

under selection, as recombination events accumulate, with a remaining local effect

on nearby loci due to hitchhiking (Smith and Haigh, 1974). The length of the region

impacted by hitchhiking depends on the recombination rate, as well as on the time

under which selection has been acting. When fixation occurrs, this time is equivalent

to the time to fixation, which is inversely proportional to the selection coefficient

s (Kim and Stephan, 2002; Stephan, 2019). In human populations, even selection

events that started rather recently have been shown to give rise to a signal restricted

to only a few megabases. For example, in the case of the selection for lactase

persistence in Africa (event dated to ∼7000 years ago), the selection signal decreases

very rapidly over the 3 Mb sequenced (Tishkoff et al., 2007). An even more recent

selection event, such as the one on the 3p12.1 chromosomal region in Mongolians,

associated with energy metabolism and reproductive traits, dated to approximately

50 generations ago (∼1500 years), is almost undetectable outside the 4 Mb region

around the locus under selection (Nakayama et al., 2017). Conversely, in the case

of CTRS, the effects are uniform over the whole genome since the transmission of

fertility is not conveyed by genetics: we showed in this paper the shift of the whole

distribution of tree imbalances in the genome toward higher values. We expect the

distribution of indices across the genome to be quite different in the case of selection,

which would help distinguish between the two processes.
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We can go farther and compare polygenic selection to CTRS, because of their

propensity to affect simultaneously distant loci in the genome. In particular, back-

ground selection, which has this ability to affect large parts of the genome (Pouyet

et al., 2018), could strongly resemble CTRS in its effects. Because of their potential

similarity, distinguishing highly polygenic selection from CTRS might be trouble-

some. However, it seems unlikely that even highly polygenic selection would have an

effect identical to CTRS for several reasons. First, the neutral parts of the genome

are under the effect of CTRS but not under that of polygenic selection (e.g., Pouyet

et al. (2018) identified a set of SNPs that are mostly unaffected by background

selection). Second, in a polygenic selection, selective pressure may have different

parameters depending on the gene: the temporality may differ (selective pressure

does not start at the same time on each gene) as well as intensity (different selection

coefficients for each gene), yielding different coalescent trees across the genome (each

gene tree telling its own history). In fact, theoretical analyses showed different tem-

poral dynamics in polygenic adaptation, with large effect alleles contributing first,

followed by small/intermediate-effect alleles (Barghi et al., 2020; Hayward and Sella,

2022). This process has been shown to be responsible for maize domestication, with

a central transcription factor (teosinte branched 1 ) driving adaptation (Studer et al.,

2011), although most of the network controlled by this gene displays a selection sig-

nal as well (Wang et al., 1999; Studer et al., 2017; Barghi et al., 2020). Conversely,

CTRS will tend to create trees that look similar across the genome, since they are

all affected uniformly by the same cultural history (a single α parameter for the

whole genome). Third, populations exchanging migrants will tend to have the same

alleles selected by multigenetic selection, whereas nongenetic TRS will select for dif-

ferent alleles in each population (alleles randomly carried by large family lineages).

Fourth, under polygenic selection, genes can undergo a complex effect, combining

not only the effects of their selection pressure, but also the effects of nearby genes

due to hitchhiking (Barton, 1995). This competing effect would not happen under

CTRS only, adding another difference between the effects of CTRS and of highly

polygenic selection. Ultimately, these three listed differences might help distinguish

the two processes in real data.

Furthermore, one may ask what happens when CTRS and selection are com-

bined, which might be the case in a number of populations. Competition between

selection and CTRS might arise in the case of a culturally fertile lineage carrying a

disadvantageous allele. In fact, Austerlitz and Heyer (1998) have shown that CTRS

can increase the propensity of a population to maintain genetic diseases. This in-

crease in genetics disease can also stem from the reduction in diversity created by
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CTRS, under which conditions, selection is less effective. Studying coalescent tree

shapes under the combined effects of selection and CTRS is also interesting: will

trees be even more imbalanced compared to CTRS alone, or is imbalance already

saturated by CTRS? It is also possible that the sum of the two processes will result

in more balanced trees due to the aforementioned competition between them. The

study of the combination of these two processes is crucial to be able to distinguish

them in real populations, where both are likely to happen, in order to find their

respective impact on genetic diversity and tree topologies.

Finally, the analysis of CTRS provided here might be valid for any transmission

of reproductive success (TRS) that is not genetic. For example, ecological inheri-

tance (Odling-Smee, 1988; Danchin et al., 2011), where an individual passes on its

environment to its offspring, could yield a similar process provided that: (1) the

population is settled in diverse environments, (2) the fitness varies with the environ-

ment, and (3) there is a vertical transmission of the environment (Bonduriansky and

Day, 2018). These conditions might be achieved in plants whose seeds disperse little

(Danchin et al., 2011). Therefore, although the literature has focused on cultural

TRS until now (Blum et al., 2006; Heyer et al., 2012, 2015), one could generalize

this evolutionary process and call it nongenetic TRS.

2.4 Data availability

The SLiM code used to generate the simulated data and the Python code for sum-

mary statistics computing and δaδi inference can be found at https://github.

com/jeremyguez/CTRS.
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2.8 Supplementary material
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Figure S1: Variance of progeny size as a function of time for α = 0, 1, and 2.
The blue rectangle corresponds to the period when populations are under CTRS.
Generations are counted from the beginning of CTRS.
A. b = ∞ model (low variance of progeny size).
B. b = 1 model (high variance of progeny size).
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Figure S2: Number of SNPs (A), number of trees (log 10 scale) (B), and TMRCA
(log 10 scale) (C) across generations. In all cases, the b = 1 model of variance in
progeny size is used.
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Figure S3: Distribution of Tajima’s D across the genome (from A to E: 10, 20, 50,
500, 1500 generations since the starting of CTRS. F: 500 generations without CTRS,
after a period of 2000 generations of CTRS. The b = 1 model of variance in progeny
size is used.)
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Figure S4: Number of polytomies (A) and number of nodes (B) throughout gener-
ations. The b = 1 model of variance in progeny size is used.
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Figure S6: Ib distributions across the genome for α = 0, 1 and 2, after 20 (A) and
500 (B) generations of CTRS. The b = 1 model of variance in progeny size is used.
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Figure S7: Number of pairwises differences, Tajima’s D, number of polytomies and
Ib under 10 generations of CTRS followed by 10 generations without CTRS. Both
b = 1 and b = ∞ models of variance in progeny size are used.
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Chapter 3

Joint inference of TRS and

demography

Some of the analyses presented here are the result of a collaboration with Ferdinand Petit and

Arnaud Quelin during their masters internship.

Introduction

A variety of processes can impact the genetic diversity of a population. For example,

after a bottleneck (i.e., a reduction in population size followed by an expansion),

one would expect to find lower genetic diversity in the population than before this

event. This process has for example led to the current low genetic diversity in

human populations outside of Africa compared to African populations (Yu et al.,

2002). Past evolutionary events can thus be retrieved from population genomes

by analyzing specific patterns. Recently, the increasing availability of high-quality

genomic data allows to infer past histories at higher resolution. It becomes possible

to reconstruct different types of past events from current population genetic data,

such as changes in population sizes (Gattepaille et al., 2013), migrations (Peña-

Malavera et al., 2014), or natural selection on specific genomic regions (Bank et al.,

2014). Statistics computed on the genomes of a sample of individuals, often called

summary statistics, allow the reconstruction of these past events with various degrees

of certainty. Some statistics are well-known and commonly used, such as the mean

number of pairwise differences (π), Tajima’s D, the site frequency spectrum (SFS),

109
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the fixation index (Fst), linkage disequilibrium (LD), and shared identity by state

(IBS) tracts.

However, many processes affect the same statistics simultaneously, making their

disentanglement difficult. For example, a decrease in genetic diversity can stem

from a bottleneck, but also from natural selection. Another example is Tajima’s D,

initially invented to detect selection: a negative D can result from positive selection

(Tajima, 1989), but also from a population expansion. Therefore, distinguishing

selection from expansion can be complex, and the former can impact the latter’s

inference (Schrider et al., 2016). Various recent studies seek to disentangle pro-

cesses with similar effects on genetics (Williamson et al., 2005; Sackman et al., 2019;

DeWitt et al., 2021).

Our objective in this study is to distinguish between two such interacting pro-

cesses. The first, changes in population size over time, is a commonly studied and

inferred process (Beichman et al., 2018). It includes expansions, contractions, and

any temporal succession of these two types of events. The second process, the

nongenetic transmission of reproductive success (nongenetic TRS), is less widely

studied. This process occurs when individuals’ progeny size correlates with their

number of siblings for nongenetic reasons (Austerlitz and Heyer, 1998; Sibert et al.,

2002). In humans, there may be cultural reasons for this process, such as parental

influence on the progeny size of their own children. In this case, we will call this

process cultural transmission of reproductive success (CTRS). This process affects

many human populations, with an increasing tendency in modern times (Murphy,

1999), due to birth control that allows for better reproduction of parental prefer-

ences (Bongaarts, 2001; Murphy, 2013; Beaujouan and Solaz, 2019). Several animal

species also experience nongenetic TRS, such as monkeys (Santorelli et al., 2011;

Hobaiter et al., 2014; Robbins et al., 2016), cetaceans (Frere et al., 2010; White-

head et al., 2017), and hyenas (Engh et al., 2000; Ilany et al., 2021). Furthermore,

it is possible that this process affects species of all types, even outside the animal

kingdom (Bonduriansky and Day, 2018) (Chapter 1).

These two processes, population size changes and nongenetic TRS, have in com-

mon that they affect the population genetic diversity, Tajima’s D, and allelic fre-

quencies (Sibert et al., 2002; Guez et al., 2022). Moreover, both processes impact the

whole genome, unlike selection whose effects are restricted to the region of the locus

under selection due to recombination (Smith and Haigh, 1974; Austerlitz and Heyer,

2000; Guez et al., 2022). Therefore, it will be challenging to distinghuish between

demographic and nongenetic TRS when they affect the same population. This is
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the case in the Saguenay-Lac-Saint-Jean region of Quebec, whose population has

undergone simultaneously a recent strong expansion and a cultural transmission of

reproductive success (Austerlitz and Heyer, 1998). In particular, dadi (Gutenkunst

et al., 2009), a software tool that relies on allelic frequencies to infer demography,

is biased by the presence of nongenetic TRS (Guez et al., 2022). The fact that

inference of demographic processes is affected by the presence of nongenetic TRS is

problematic, given the large number of studies that focus on demographic inference

without considering nongenetic TRS. The decrease in genetic diversity generated by

nongenetic TRS might also erase the imprints of other phenomena. Our main objec-

tive here is to explore different methods to correctly infer the demographic history

of a population that underwent nongenetic TRS, while allowing the inference of the

intensity of the nongenetic TRS itself.

The first approach belongs to a family of methods that combine multiple sum-

mary statistics for inference and are often used to disentangle two processes in pop-

ulation genetics. This family includes approximate Bayesian computation (ABC)

approaches (Beaumont et al., 2002; Csilléry et al., 2010; Blum and François, 2010;

Csilléry et al., 2012; Pudlo et al., 2016; Raynal et al., 2019), or neural networks

(McCulloch and Pitts, 1943; Lecun et al., 1998). These methods will process dif-

ferent summary statistics obtained from a simulated training dataset, and learn

their association to the targeted parameters (such as population sizes at different

timesteps). Various recent studies used this type of method in population genet-

ics. Sheehan and Song (2016) used deep neural networks with a large combination

of summary statistics including SFS, LD and IBS to tell apart demography from

selection. Jay et al. (2019) used ABC (including adjustments provided by shallow

neural networks) on a large number of summary statistics to infer complex demo-

graphic scenarios while jointly estimating the genotyping error rate. Mondal et al.

(2019) applied ABC to statistics automatically computed by a deep neural network

processing joint SFS to infer the history of Eurasian populations and introgressions

from archaic populations.

For this approach, on top of the classical summary statistics we described, in-

formation on coalescent tree imbalance can be helpful for efficiently distinguishing

demography and nongenetic TRS (Shao and Sokal, 1990; Sibert et al., 2002; Blum

et al., 2006; Brandenburg et al., 2012; Guez et al., 2022). Indeed, this measure

focuses on tree topology and does not consider branch length, which is affected by

demography. Therefore, some imbalance indices are unaffected or minimally affected

by demographic processes and can detect nongenetic TRS (Blum et al., 2006; Guez
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et al., 2022). However, in order to use these measures, it is necessary to have access

to the coalescent trees of the population of interest. This requires inferring the trees

from the genetic data, a process that can add biases. Moreover, because of recombi-

nation, the human genome is a sequence of many coalescent trees, each tracing the

history of a small genome region. Therefore, inferring trees on the whole genome can

be very computationally intensive. We will use here two recent software packages

that allow for fast, efficient, and parallelizable inference of coalescent tree sequences

along the human genome: relate (Speidel et al., 2019) and tsinfer (Kelleher et al.,

2016).

Deep learning on raw genomic data is an alternative method for inferring past

processes. It consists in building a neural network that takes as input the genomes

of the different sampled individuals. The network can be trained so that it outputs

the targeted evolutionary parameters. This method is also based on simulations

to build training, validation, and test datasets. However, unlike ABC, there is no

choice of summary statistics: all computations are done automatically within the

neural network. This has the advantage of requiring little knowledge of the system

studied, but has the disadvantage of the so-called black box : even when the learning

process works, the internal algorithm of the network is not easy to analyze. Recent

developments in deep learning allow us to use complex and innovative architectures,

often developed for other engineering domains, and apply them for population ge-

netic inference. An excellent example is the convolutional neural network (CNN),

a type of network that detects shift-invariant patterns in data, initially invented

in the field of image recognition (Lecun et al., 1998). However, applying CNNs to

genetic data requires resolving several issues, such as ordering the input individuals,

as CNNs are sensitive to spatial information. Some recent studies built and ap-

plied deep learning methods for inferring population genetics parameters from raw

genomic data (Flagel et al., 2019; Chan et al., 2018; Torada et al., 2019; Sanchez

et al., 2021).

In this paper, we will use two of the methods presented above: (1) ABC ran-

dom forest using summary statistics including classical diversity measures as well

as tree imbalance measures, and (2) deep learning on raw genomic data based on a

permutation-invariant CNN. We will infer the intensity of the nongenetic TRS and

the demographic history. Comparing these two methods will allow us to investigate

to what extent the summary statistics used for ABC contain all the information nec-

essary for the inference. Indeed, when deep learning gives a better inference than

ABC, it reveals that other summary statistics could be added for improving ABC
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inference. Additionally, by comparing various ABC methods with different combina-

tions of summary statistics, we will be able to understand which of them are critical

to separate the two studied processes. This should allow a better understanding of

the impacts of these processes on population genetics.

The objective of this article is threefold. First, we aim at building a tool that

infers demography accurately, even in the case of nongenetic TRS. Our previous

research has shown that an SFS-based inference tool such as dadi gives biased de-

mographic inferences when the population also underwent nongenetic TRS (Guez

et al., 2022). Thus, we will use dadi’s inference as a reference point. The second axis,

carried out in conjunction with the first, aims to infer the intensity of nongenetic

TRS, without being biased by population size fluctuations. Previous studies have

taken a discriminative approach, distinguishing between populations with and with-

out TRS, rather than estimating the intensity coefficient. Moreover, these studies

have focused on mtDNA (Blum et al., 2006) or Y chromosome (Heyer et al., 2015)

which can be particularly affected by natural selection in comparison with auto-

somes where recombination prevent hitchhiking on the whole chromosome. Thus,

our goal here is to develop a whole genome method that would allow a more precise

inference of the intensity of past nongenetic TRS by focusing on neutral regions of

the genome. The third objective will be the study of the respective importance of

the different summary statistics for ABC inference. This analysis will yield a better

understanding of the intersecting impacts of demographic changes and nongenetic

TRS on population genetics.

3.1 Methods

3.1.1 Simulations

We simulated 2000 scenarios of 20 replicates each. These scenarios simulate the

history of a population of N diploid individuals, with a chromosome length of 2×106

bp, a mutation rate of 1.45× 10−8 per bp per generation (Narasimhan et al., 2017),

and a recombination rate of 10−8 per bp. For each scenario, we randomly drew

four parameters: three demographic parameters and one parameter controlling the

intensity of nongenetic TRS. The scenarios only differed from each other for these

four parameters. The 20 replicates of a scenario have the same parameters but are

simulated independently. They can be considered as independent genomic regions
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from the same population (Sanchez et al., 2021). The three demographic parameters

are the population sizes at three fixed timesteps during the history of the population.

The population size changes suddenly at the end of each timestep. N1 is the ancestral

population size up to 700 generations before present. N2 is the population size

between 700 and 300 generations before present. N3 is the modern population size

between 300 generations before present and the present. These three population

size parameters were randomly drawn in a uniform distribution [2000, 12000]. The

nongenetic TRS occurred only over the last 20 generations before present. We

used a modification of the Wright-Fisher model to simulate this process (Sibert

et al., 2002; Brandenburg et al., 2012; Guez et al., 2022). For each of these last 20

generations, we created N3 individuals by choosing for each one a parent couple at

random in the previous generation. Each couple had a probability pi of being drawn

such as pi =
γi×sαi∑Nc

j=1 γj×sαj
, with Nc = N/2 (the number of couples), α controlling the

intensity of nongenetic TRS, and γ a random gamma-distributed variable drawn

independently for each couple i, with shape parameter 1 and mean 1. This γ will

increase the variance in progeny-size compared to a Wright-Fisher model, and yield

a geometric-like distribution of progeny size. It has been shown in one human

population undergoing nongenetic TRS that this model with γ is more realistic

than the Wright-Fisher model (Austerlitz and Heyer, 1998). For each scenario, α

was drawn randomly in a uniform distribution [0, 2].

As in Guez et al. (2022), simulations were performed forward-in-time with SLiM

(Haller and Messer, 2019) for the 20 generations of nongenetic TRS (the last 20

generations before the present). Each replicate corresponded to a sequence of co-

alescent trees, generally without root (i.e., common ancestor). We then completed

these coalescent tree sequences backward using the msprime python package (Kelle-

her et al., 2016; Baumdicker et al., 2021) for the period without nongenetic TRS

(from 20 generations before present until a common ancestor is reached). A number

n of diploid individuals were sampled in this population, yielding a tree with 2n

leaves. Mutations were then randomly applied to these coalescent trees and saved

into VCFs containing the SNPs of the 2n genomes.

3.1.2 Tree reconstruction

In order to compute topology indices on the coalescence trees, we could not use

the exact simulated trees. Indeed, we do not have access to these trees in real

populations and they need to be inferred from observed genomic data instead. We
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thus decided to apply the same tree inference process to simulated data in order

to integrate potential reconstruction uncertainty and biases into the calculation

of topology indices. We applied and compared two independent coalescent tree

reconstruction tools: tsinfer (Kelleher et al., 2019) (version 0.2.3) and relate (Speidel

et al., 2019) (version 1.1.9). These programs take genomic data as input (e.g., in

VCF format) and provide coalescent tree sequences as output. We will use these

inferred tree sequences for the computation of topology indices. For both tools,

default parameters were used.

3.1.3 Summary statistics

We computed several summary statistics for the ABC analysis. They can be divided

into two main categories: genetic diversity indices and coalescent tree (im)balance

indices. The first category contains indices that can be computed directly on the

genome: number of pairwise differences (π), Tajima’s D, and the unfolded SFS. We

used the tskit package (Kelleher et al., 2016) for computing the indices. The second

category contains several (im)balance indices: the Fusco index (Fusco and Cronk,

1995), the B1 index (Shao and Sokal, 1990), and the B2 index (Shao and Sokal,

1990). The Fusco index is an imbalance index (i.e., the higher its value, the more

imbalanced the tree). It is the average of all fi values, with fi calculated for each

node i of the tree having more than four leaves as follows: (Mn − m)/(Mt − m).

Mn is the largest number of observed leaves under the subnodes of i. Mt is the

maximum possible number of leaves that Mn can reach (i.e., ti + si − 1, with ti the

number of leaves under node i, and si the number of subnodes of i). m is the ratio

between the number of leaves under node i and the number of subnodes of i. B1

and B2 are balance indices (i.e., the higher their value, the more balanced is the

tree). B1 index is computed by summing all the bi values in the tree (one value per

interior node). The bi are computed for each node i by counting the maximum path

length to its leaves and taking the inverse of this value. B2 index is equal to the

Shannon entropy of the values pk, with pk computed for each leave. pk is equal to

the probability of reaching the leaf k when following a random walk starting from

the root and choosing a random sub-node at each node. A uniform distribution

of the pk values (an entropy of 1) corresponds to a balanced tree (Shao and Sokal,

1990; Bienvenu et al., 2021).
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3.1.4 ABC random forest

ABC allows performing a Bayesian inference without knowing the likelihood function

by relying on simulations reduced into summary statistics (see section 0.1.3). Here

we consider 40,000 total simulations, consisting in 2000 scenarios of 20 replicates.

The 20 replicates are considered as 20 independent 2 Mb regions in the genome of

the same population, since all replicates have the same values for the four randomly

drawn parameters (three demographic parameters and the parameter controlling

the nongenetic TRS intensity, α). Each scenario represents a population. Instead

of associating each scenario to a vector of s × 20 values (s being the number of

summary statistics), we computed the first four moments of the distribution (i.e.,

mean, variance, skewness and kurtosis) of each summary statistic among the 20

replicates and associated each scenario to s× 4 values. Using the moments instead

of the 20 values may ease the generalization to data with a larger number of genomic

regions available.

We used a particular ABC algorithm: ABC random forest for parameter infer-

ence (Raynal et al., 2019). This method was developed based on the random forest

method (Breiman, 2001). A random forest is composed of B decision trees (we used

B = 500). A decision tree is binary and built from the root to the leaves in an

iterative way until the stopping rule is satisfied. At each node, the observations of

the training dataset are divided into two sets, following a rule applied to summary

statistic S. Observations for which S > s are put in a sub-node and those for which

S <= s are placed in the other sub-node. s is chosen specifically to minimize a

L2-loss criterion. Building a tree can be done in practise with several summary

statistics (we used the third of all summary statistics), sampled randomly for each

node. Nodes are split using this process until only five observations are left in the

subnode, turning it into a leaf (i.e., a terminal node). Once the tree is built, it

is possible to infer the value of the parameter of a new observation by taking the

average of the parameters of the leaf in which it falls. The random forest aggregates

several decision trees built from a random subset of the data (here, we rather used

all the data points in the training set since their number was not too high). The

prediction for a given observation is equal to the average of the predictions made

by all trees. The ABC random forest has the advantage of being little impacted by

strongly correlated summary statistics, nor by irrelevant summary statistics (Raynal

et al., 2019). However it requires building one forest per parameter, hence yielding

independent posteriors rather than a joint distribution.
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We performed ABC random forest training and inference using the abcrf package

(Raynal et al., 2019), with default hyperparameters. We also used the information

provided on variable importance by this package.

3.1.5 Deep learning

The second inference method used is deep learning on raw genomic data (see section

0.2.2). For each replicate, we build the corresponding SNP matrix. This matrix

contains n rows corresponding to n haplotypes and k columns corresponding to

k SNPs. Each SNP equals 0 or 1 depending on the presence or absence of the

mutation at this position for this haplotype. To this matrix is added a vector which

contains the position of each SNP. These matrices will be the input data of the

neural network. The chosen architecture requires the input data to be of the same

dimension, hence only the first 400 SNPs in the 2 Mb are kept to create the matrix.

When a replicate has less than 400 SNPs, the scenario containing this replicate is

discarded. The matrices are thus of dimension n × 400. The output vector of the

network contains four values, which are the network inference for this SNP matrix.

Figure 3.1: SPIDNA architecture (from Sanchez et al., 2021)

The neural network used is based on SPIDNA (Sanchez et al., 2021) (Fig. 3.1),

that we modified to predict α and N1−3 instead of 21 population sizes through

time. It consists of a first convolution applied to the SNPs as well as a convolution

applied to the positions. The results of these two convolutions are concatenated.

They are then passed through a series of seven so-called SPIDNA blocks. These

blocks are identical and consist of: B1, a convolution layer; B2, a row average of the
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B1 results; B3, a column average of the B2 results. The results of B1 and B2 are

concatenated (B4), then maxpooled (B5). A fully connected layer is applied to B3

(B6). The prediction vector is updated at each block by summing the value at the

previous block and B6 (C1). The last of the blocks gives C2, which is the predicted

parameter vector. The row average performed in each SPIDNA block (B2) allows

reaching an invariance in the order of the haplotypes, although the fully connected

or convolution layers are not invariant.

3.1.6 Comparing inference methods

We compared several inference methods, which can be divided into three categories:

(i) different ABC random forests which differ by the summary statistics used, (ii)

deep learning on raw genomic data with SPIDNA, (iii) an ABC random forest using

as input summary statistics and inferences made by SPIDNA (as in Sanchez et al.,

2021). In the following paragraphs, we detail these three categories.

For the ABC random forest, we used different combinations of summary statis-

tics. For diversity statistics, the following combinations were tested: (1) the mean

number of pairwise differences (π), (2) Tajima’s D, (3) the full unfolded Site Fre-

quency Spectrum (SFS), (4) the combination of 1, 2 and 3. For imbalance statistics,

we tested: (5) the Fusco imbalance index (IF ) on trees reconstructed with tsinfer,

(6) the Fusco imbalance index on trees reconstructed with relate, (7) the combina-

tion of 5 and 6, (8) B2 index on tsinfer and B2 index on relate trees, (9) B1 index

on tsinfer and B1 index on relate trees, (10) the combination of 7, 8 and 9. We also

combined the diversity and imbalance statistics (4 and 10). For all these statistics,

we calculated the first four moments on the values of the 20 replicates. By default,

these four moments are used as separate statistics for the ABC random forest. Fur-

thermore, we could compare the quality of inference using the first moment only (as

in Sanchez et al., 2021), to the one based on the first four moments.

For deep learning, we performed one inference per replicate. We compared two

methods to integrate the 20 predictions per scenario. The first method is to take the

average of the 20 predictions and consider it the inference for the scenario, corre-

sponding to averaging the results of 20 independent genomic regions of 2 Mb in one

population genomic data. The second method uses an ABC random forest trained

to combine the 20 values optimally (using default hyperparameters). For the four

parameters, the first four moments of the distribution of the 20 inference values are

computed, and this vector of length 4 × 4 is used as the summary statistics vector
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for the ABC. This method stems from Jiang et al. (2017)’s work concerning the au-

tomatic learning of optimal summary statistic for ABC using deep neural networks,

which have already been applied to population genetics inference by Sanchez et al.

(2021).

Finally, a third group of methods combines the summary statistics with SPIDNA’s

predicted values using ABC random forest. We used as summary statistic vector

the concatenation of the 4 parameters × 4 moments of SPIDNA inference and the 4

moments of chosen summary statistics. We explored three combinations. The first

one combines the diversity statistics (π, Tajima’s D and SFS) with SPIDNA’s in-

ference. The second combines the imbalance indices with SPIDNA’s inference. The

third combination (ABCall+DL) uses all the summary statistics mentioned (“all”)

with the SPIDNA inference results (“DL”).

For all methods, the training dataset is the same, as well as the test dataset.

We simulated 2000 scenarios, 1400 attributed to training and 600 to validation and

test (the same dataset was used for both, since no hyperparameter optimization

was performed). Some scenarios were removed because they contained at least one

replicate with less than 400 SNPs. After this, the training dataset consisted of 1366

scenarios of 20 replicates, and the test dataset of 585 scenarios of 20 replicates. We

computed three measures on the test dataset to evaluate a method: the correlation

between the true and inferred parameters, the Mean Squared Error (MSE), and the

bias. These evaluations are performed for all methods. We also explored the impact

of the number of sampled haplotypes for different methods: we sampled 5, 10, 20,

40, or 80 (default case) diploid individuals to compute the summary statistics for

ABC, and to build the SNP matrices for deep learning. For each of these sample

sizes, we used 5, 10, 15, or 20 (default case) replicates. This allows for an evaluation

of the importance of the sample size and the number of genomic regions for the

different inference methods.

3.1.7 Dadi inference

We used the dadi software (Gutenkunst et al., 2009) to have a benchmark for in-

ferring demographic parameters. Dadi takes the SFS as input and infers from it

the demographic history using the diffusion approximation model. Dadi requires a

model as input in order to infer the parameters. We used the three epoch model,

which allows inferring the population sizes at three timesteps and the duration of

the two most recent timesteps (the first one going back to the common ancestor).
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We fed the true time parameters values to the model, so it only has to infer the pop-

ulation size parameters. This method allowed the comparison with the previously

mentioned methods, which only infer the three population sizes, with the timesteps

fixed. We evaluated the correlation between the true and inferred parameters, the

MSE, and the bias.

3.2 Results

3.2.1 Diversity summary statistics

We first applied ABC random forest (ABCrf) using as a summary statistic only the

average mean number of pairwise differences (π) across the 20 replicates. In that

case, only the inference of the oldest population size (N1) was possible (cor = 0.91,

MSE = 0.18) (Fig. 3.2B, Supp. Fig. S1B). The other two inferred population sizes

(N2 and N3) and α (i.e., the intensity of the nongenetic TRS) have null or close to

null correlations with their true values (Fig. 3.2A, 3.2C-D). This is because N1 is

the parameter with the highest impact on genetic diversity, since it is the population

size that has been maintained for the longest time. On the other hand, when we

used the first four moments of π, the inference of α became possible (cor = 0.72,

MSE = 0.57), with an improved inference of N1 (cor = 0.98, MSE = 0.05) (Supp.

Fig. S2B, S3B). Therefore, the distribution of π in the genome seems influenced by

α independently from population size changes.

When ABCrf uses the average Tajima’s D as the only summary statistic, α had

a higher correlation (cor = 0.63, MSE = 0.74) than N1−3. These results can be

improved by using the first 4 moments of Tajima’s D distribution (e.g., for α: cor =

0.86, MSE = 0.28) (Supp. Fig. S2). A more accurate inference of all 4 parameters

was observed when using the full unfolded SFS, each bin considered as a summary

statistic (with the first moment: α: cor = 0.9, MSE = 0.2; N1: cor = 0.78, MSE

= 0.44; N2: cor = 0.58, MSE = 0.83; N3: cor = 0.71, MSE = 0.59) (Fig. 3.2, with

better results with all four moments in Supp. Fig. S2). These results are much

better than dadi’s, which also relies on the first moment of the SFS (N1: cor = 0.69,

MSE = 0.62; N2: cor = 0.16, MSE = 1.68; N3: cor = 0.31, MSE = 1.38) (Fig. 3.2).

Moreover, dadi showed a strong bias for the three timesteps, which does not appear

with ABCrf using the SFS (Supp. Fig. S4, S5).

Combining all diversity summary statistics (π, Tajima’s D and SFS), we ob-
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Figure 3.2: Comparison of inference methods accuracy using correlations.
The correlations were computed between inferred and true values on the test set. Only the first
moment (mean) of the 20 replicates was used for training and inference. The sample size was of
80 diploid individuals. Error bars correspond to the 95% confidence interval of the correlations,
computed with the test.cor R function in the stats package. The dashed line corresponds to the
highest correlation reached for each parameter.
In orange: dadi inference. In light green: ABCrf using various diversity statistics. In green: ABCrf
using various imbalance statistics. In dark green: ABCrf combining all diversity and imbalance
indices. In blue: deep learning using SPIDNA. In purple: ABCrf combining summary statistics
and SPIDNA results.
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tained a better inference than with each statistic independently (with the first four

moments: α: cor = 0.92, MSE = 0.15; N1: cor = 0.99, MSE = 0.02; N2: cor = 0.69,

MSE = 0.62; N3: cor = 0.77, MSE = 0.47) (Supp. Fig. S2). The SFS provides

information on α, N1 and N2, while π is crucial for the inference of N3 (Supp. Fig.

S2, Fig. 3.2).

3.2.2 (Im)balance summary statistics

Using the average of the Fusco index (IF ) on the trees inferred by tsinfer or relate,

we have information only on α, with a slightly but significantly higher correlation

for relate compared to tsinfer (Fig. 3.2, cor IF tsinfer = 0.9438, cor IF relate =

0.9516, one-sided Hittner’s test p-value < 0.001). Using the four moments, we also

obtained information on N3 (Supp. Fig. S2D). Thus, the modern population size

affects the imbalance distribution in the genome, without affecting its average. This

probably stems from the increase of imbalance variance in smaller populations due

to stronger drift (Guez et al., 2022). By combining the indices computed on the

tsinfer and relate trees, the inference of α is further improved (cor IF tsinfer and

relate = 0.9589, one-sided Hittner’s test p-value with IF relate < 0.001). Therefore,

each tree inference software provides complementary relevant information about

the topology. By using other topology indices, such as B1 and B2, we reached a

higher correlation on N1 (Supp. Fig. S6B, Supp. Fig. S7B). For B1, this might

be because it is impacted by demography (Guez et al. 2022). Combining all the

imbalance statistics helped achieve a better inference for the four parameters than

the imbalance statistics taken independently (Supp. Fig. S6, Supp. Fig. S7).

Moreover, by combining all the diversity and imbalance statistics, we attained an

overall better inference than any other statistics combination (with the first four

moments: α: cor = 0.97, MSE = 0.06; N1: cor = 0.99, MSE = 0.02; N2: cor = 0.69,

MSE = 0.61; N3: cor = 0.84, MSE = 0.33) (Supp. Fig. S2).

3.2.3 Deep learning

Our deep learning on raw genomic data approach performed worse than ABCrf. In

particular, N2 (cor = 0.19, MSE = 1.62) is not well inferred (Fig. 3.2C). Results

can be improved by applying an ABCrf on the average of the 20 deep learning

predictions, and even further improved by applying an ABCrf on the first four

moments of the deep learning predictions (N2: cor = 0.32, MSE = 1.35) (Supp.
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Fig. S2C). These results are still well below those from the ABCrf using the four

first moments of all summary statistics. However, using an ABCrf that combined

the four first moments of the summary statistics with the four first moments of

the predictions made by deep learning (ABCall+DL), we obtained slightly improved

results compared to ABCrf on summary statistics only (α: cor = 0.97, MSE = 0.06;

N1: cor = 0.99, MSE = 0.01; N2: cor = 0.71, MSE = 0.58; N3: cor = 0.85, MSE

= 0.3; p-value < 0.001 for all parameters) (Supp. Fig. S2). This improvement

shows that despite performing worse than ABCrf on summary statistics, SPIDNA

still recovered from the raw genomic data some information that was not contained

in any of the summary statistics.

3.2.4 Important variables

We analyzed the variables that are the most important for inference based on the

best-performing ABCrf (i.e., ABCrf using all summary statistics and the deep learn-

ing features obtained with SPIDNA, denoted ABCall+DL) (Fig. 3.3). The scores

show that the most important variables for inferring α are the imbalance indices,

with the average of IF on tsinfer and the average of IF on relate in first and sec-

ond place respectively. This suggests that IF is less influenced by population size

changes than the other summary statistics used. This confirms previous results

which showed that an index derived from IF (index from Brandenburg et al., 2012)

was not influenced by demography (Guez et al., 2022). Interestingly, the number of

singletons (SFS1) and the number of the alleles at highest frequency (SFS159) can

also be used for inference, consistent with simulation results showing a U-shaped

SFS under nongenetic TRS (Guez et al. 2022). This type of SFS is indeed impos-

sible to reach theoretically with population size changes only (under the Kingman

coalescent, Freund et al., 2022). Therefore, this U-shape is helpful in distinguishing

nongenetic TRS from population size changes. We note that the inference performed

by deep learning for α is not used among the important variables, confirming that

SPIDNA must have difficulties constructing topological features.

To infer the ancient population size (N1), the most important statistic is the

inference performed by deep learning (Fig. 3.3). In second and third place come

the mean and variance of π. For inferring the intermediate population size (N2),

the most important summary statistics are the means of the number of rare alleles

(SFS6, SFS7, SFS8 and SFS9). Interestingly, the α predicted by deep learning, now

considered as an input feature for ABC, can help to infer N2. For inferring the most
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Figure 3.3: Variable importance for best-performing ABCrf inference
(ABCall+DL). Only the ten most important variables are shown.

recent population size (N3), the most important statistic is the inference made by

deep learning. This is followed by the mean of B2, the mean number of singletons,

and the inference of α by deep learning. The importance of this last statistic in

inferring N2 and N3, suggests that ABCrf can distinguish the impacts of recent

population sizes from those of α by observing the deep learning prediction of α.

3.2.5 Application example

We then focused on the inference of a specific scenario: a bottleneck with an old

population size of 10,000, an intermediate population size of 3,000, and a modern

size of 10,000. We set the nongenetic TRS over the last 20 generations to α = 1,
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Figure 3.4: Inference on a simulated bottleneck example with TRS inten-
sity of α = 1. Parameters inferred by dadi (green), ABCπ (orange), and ABCall+DL

(purple). Sample size = 80 diploid individuals. 50 independent identical scenarios
were simulated, each consisting in 20 replicates of 2 Mb. Inference was performed on
each scenario, each yielding one data point for the boxplots computing. The dashed
line is the true value to be inferred.

corresponding to a strong but previously observed level of progeny size correlation

between parents and children (correlation approximately equal to 0.25, close to

levels found in Pearson et al., 1899; Bresard, 1950; Wise and Condie, 1975; Murphy,

1999; Murphy and Wang, 2001; Pluzhnikov et al., 2007). Three inference models

are compared: dadi, ABCπ (using the four moments of π), ABCall+DL (using the

four moments of all summary statistics and the four moments of deep learning

predictions). The previous sections showed the latter model to perform best on

average across all scenarios.
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The results show that α is fairly well recovered by ABCall+DL, while ABCπ

shows a negative bias (Fig. 3.4A). For the demographic inference, dadi finds a

median population size close to 8,300 for the three timesteps (N1, N2 and N3) (Fig.

3.4B-D). Dadi seems strongly influenced by the most ancient population size and

does not detect the recent bottleneck. ABCπ estimates correctly that N1 is around

10,000, but that both N2 and N3 are around 7,000 (medians): it thus detects the

contraction but not the most recent expansion (Fig. 3.4B-D). Finally, ABCall+DL

detects the bottleneck, estimating N1 to be close to 10,000, N2 close to 4,000, and

N3 close to 7,000 (medians) (Fig. 3.4B-D). N3 remains the most poorly inferred

parameter, probably because the nongenetic TRS occurs on this last timestep, or

because the very recent demographic events are generally difficult to infer.

3.2.6 Effects of sample size and number of genomic regions

We then studied the impact of the number of genomic regions and sample size on

inference accuracy using ABCall+DL. For each sample size (5, 10, 20, 40, and 80

individuals), the first four moments of the summary statistics are computed on 5, 10,

15, or 20 genomic regions of 2 Mb. When using 20 genomic regions, the sample size

improves the inference of α, with correlations increasing from 0.89 (sample size = 5)

to 0.97 (sample size = 80) (Fig. 3.5A). The number of genomic regions has almost no

effect on the inference of α (0.96 vs. 0.97 when using 5 or 20 regions for 80 samples)

(Fig. 3.5A). The correlation for N3 is around 0.99, whatever the sample size or the

number of genomic regions (Fig. 3.5B). For N2, the effect of sample size is less clear,

with the best inferences for a sample between 20 and 80. The number of genomic

regions has a positive effect, but correlations reached a plateau at 15 regions (Fig.

3.5C). For N3, the sample size has a very strong impact: with 20 genomic regions,

correlations rise from 0.51 (sample size = 5) to 0.86 (sample size = 80). However,

the difference between the sample size of 40 and 80 is small, indicating a plateau

in improvement. Thus, sampling more than 80 individuals should not improve the

inference by a large margin (Fig. 3.5D). The number of regions impacts the inference

of N3 (0.76 for 5 genomic regions vs. 0.86 for 20 genomic regions, when sample size

= 80), however a plateau seems to be quickly reached (at 10 regions) for sample

sizes higher that 20 (Fig. 3.5D).



3.3. DISCUSSION 127

Samples 5 10 20 40 80

−0.25

0.00

0.25

0.50

0.75

1.00

5 10 15 20
Regions

C
or

re
la

tio
n

Correlation − TRS intensity (alpha)A

−0.25

0.00

0.25

0.50

0.75

1.00

5 10 15 20
Regions

C
or

re
la

tio
n

Correlation − Most anc. pop size (N1)B

−0.25

0.00

0.25

0.50

0.75

1.00

5 10 15 20
Regions

C
or

re
la

tio
n

Correlation − Anc. pop size (N2)C

−0.25

0.00

0.25

0.50

0.75

1.00

5 10 15 20
Regions

C
or

re
la

tio
n

Correlation − Mod. pop size (N3)D

Figure 3.5: Impacts of sample size and number of genomic regions on
inference correlations for the four parameters. The best-performing ABC
was used here (i.e., ABCall+DL).

3.3 Discussion

This paper explored different methods to jointly infer nongenetic TRS intensity

and demographic parameters. The main result is the design of an efficient tool

for this inference. We have seen that a bottleneck was indeed well inferred by the

best-performing ABCrf, unlike dadi which inferred a constant size. We compared in

detail different inference models. The results show that ABCrf based on handcrafted

summary statistics gives better results than the SPIDNA deep neural network ap-

plied to raw genomic data. However, an ABCrf combining summary statistics and

automatically-learned deep learning features led to slightly better results than ABCrf

using summary statistics only, and was the best-performing model. By performing
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several ABCrf with different combinations of summary statistics, we were able to

reveal the importance of each summary statistic for the inference of each parameter.

This analysis was completed by examining the importance of the variables that were

used by the best-performing ABCrf model. Finally, we explored the impact of the

sample size and the number of regions used on inference accuracy. We have shown

that the sample size strongly impacts the inference, while the number of regions

has a weaker impact. However, the importance of having a large sample size varies

depending on the inferred parameter. In this section, we will discuss some of the

results.

Results showed that the mean of π is sufficient to correctly infer the oldest size

(N1). Using the four first moments of π, one can additionally infer the intensity

of nongenetic TRS (α). This indicates that the distribution of π in the genome is

impacted by TRS independently of demographic changes, enough to tell them apart.

Often, using the distribution of a summary statistic over the different replicates

(as in Jay et al., 2019) added information compared to the simple average (as in

Sanchez et al., 2021). Another interesting result is that the unfolded SFS contains

less information than π for inferring N1, although many diversity summary statistics

can be derived from an SFS. Some ABC studies have used only SFS as summary

statistics (e.g., Mondal et al., 2019), but our results show that π can ease information

extraction and increase inference accuracy. In general, it seems useful to perform

several ABCrf with different combinations of summary statistics to understand how

the simulation parameters impact these different indices.

By applying this method to the imbalance indices, we understood their respective

importance. First, any single imbalance index gives a better inference of α than all

the diversity indices combined. Moreover, the diversity indices (π, Tajima’s D, and

SFS) were insufficient to achieve the best possible inference: the addition of imbal-

ance indices substantially improved the inference for three out of four parameters.

This indicates that the imbalance indices improve demographic inference, although

not impacted by population size changes, because they help disentangle nongenetic

TRS from demography. Furthermore, these results show that tsinfer and relate are

able to extract from genomic data information absent in the diversity indices used.

By comparing the inferences made with IF computed on tsinfer only and IF

computed on relate only, we could show that the latter gives a better inference of

α than the former. This could be evidence that relate is better at retrieving the

imbalance property than tsinfer. We also observed that combining these two IF

gives a better inference than each index taken alone. This shows that the informa-
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tion retrieved by the two software does not overlap completely, and that each finds

information that the other does not. This result can be generalized to other types

of inferences requiring a reconstruction of the tree topology, such as selection which

can be inferred from tree imbalance (Li and Wiehe, 2013; Yang et al., 2018; Dilber

and Terhorst, 2022). Combining multiple tree reconstruction software to extract

maximum information from genomic data would be helpful in that case.

We showed that ABCrf using diversity indices only (π, Tajima’s D, and SFS)

gave better results than deep learning with SPIDNA. This can stem from several

reasons. First, the amount of training data needed to train SPIDNA is probably

much more extensive than what is needed for ABC. Indeed, ABC methods take

as an input already computed summary statistics, while deep neural networks are

heavily parameterized models and are known to require large training sets (Good-

fellow et al., 2016). Second, this SPIDNA architecture only uses the first 400 SNPs

of each 2 Mb replicate. Therefore, when the 2 Mb contains more than 400 SNPs,

deep learning will have less information than ABC since the latter has access to

the entire 2 Mb. Third, the SPIDNA architecture has horizontal 1× 3 convolution

filters (i.e., matching the SNP matrix rows, which is the SNPs dimension). Thus,

it might recognize more easily patterns in the SNPs dimension than in the individ-

uals’ dimension (i.e., the SNP matrix columns), a specialization that corresponds

to the population size inference task it was developed for by Sanchez et al. (2021).

Such an architecture might struggle to reconstruct imbalance indices efficiently since

they require a comparison between individuals. We could use square convolution

filters (e.g., 3× 3) to correct this issue, but we would loose SPIDNA’s permutation-

invariant property. Another possibility would be to use the mixed attention version

of SPIDNA, which uses an attention mechanism rather than a simple average in

the dimension of the individuals. This architecture is more efficient than SPIDNA

on a demographic inference task (Sanchez, 2022). This version of SPIDNA might

be particularly efficient for topology information extraction, due to its hubs-based

architecture allowing it to compute features on subgroups of individuals from the

sample.

On the other hand, results show that SPIDNA retrieved information not present

in the summary statistics, as the ABC is improved when SPIDNA predictions are

given in addition to the summary statistics. Therefore, the information present in

other summary statistics, such as LD and IBS, should be explored (Jay et al., 2019;

Sanchez et al., 2021). It seems that comparison with the ABC is a helpful way to

investigate the interpretability of neural networks, an issue of central interest in the
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field of deep learning (Murdoch et al., 2019). With the multiple comparisons made,

we slowly begin to open the black box of our network and understand the type of

information it extracts from raw genomic data.

We have investigated only the co-inference of two processes, nongenetic TRS

and changes in population size. Applying the inference tool developed here to real

genomic data may require including other processes in the model. For example,

selection impacts the summary statistics of diversity (Braverman et al., 1995; Fay

and Wu, 2000) and imbalance (Li, 2011; Li and Wiehe, 2013) used in this study. A

solution would be to apply our inference tool only to neutral genome regions (Gazave

et al., 2014). However, background selection and biased gene conversion affect more

than 95% of the genome and can impact inference (Pouyet et al., 2018). Therefore,

with a conservative filter, only around 150 Mb would remain to co-infer nongenetic

TRS and demographic history. Our results showed that it is possible to focus on

this part of the genome since ten independent regions of 2 Mb already give a good

inference. Using only neutral regions would avoid including positive and background

selection, or gene conversion in our model.

Finally, migration processes and sampling effects affect the whole genome and

impact diversity and imbalance summary statistics (Wakeley and Aliacar, 2001;

Przeworski, 2002; Blum et al., 2006). Therefore, their impacts on inference should

be tested, and they might have to be included in the method before its application

to real data. Another possibility would be to first analyze the sample structure

and retain only individuals of relatively homogeneous ancestry (as done by Gazave

et al., 2014). However, it is possible that the structure analysis itself is biased by the

presence of nongenetic TRS. A third way to disentangle structure from nongenetic

TRS would be to first study populations for which genealogical records, which con-

tain the TRS information, are available on top of genomic data. Such extensive

genealogical records and genomic data exist for the Quebec population (Anderson-

Trocmé et al., 2022), where nongenetic TRS has been occurring in the last twelve

generations (Austerlitz and Heyer, 1998).

In summary, we showed here that we can theoretically disentangle nongenetic

TRS from population size changes, using machine learning in genomic data. Subse-

quent developments would further improve the inference methods, better understand

the key summary statistics needed for this task, and add other processes that could

be confused with nongenetic TRS, such as selection and migration.
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Figure S1: Comparison of inference methods accuracy using MSE.
MSE were computed between inferred and true values on the test set. Only the first moment
(mean) of the 20 replicates was used for training and inference. The sample size was of 80 diploid
individuals. The dashed line corresponds to the lowest MSE reached for each parameter.
In orange: dadi inference. In light green: ABCrf using various diversity statistics. In green: ABCrf
using various imbalance statistics. In dark green: ABCrf combining all diversity and imbalance
indices. In blue: deep learning using SPIDNA. In purple: ABCrf combining summary statistics
and SPIDNA results.
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Figure S2: Comparison of inference methods accuracy using correlations.
The correlations were computed between inferred and true values on the test set. The first four
moments (mean, variance, skewness, kurtosis) of the 20 replicates were used for training and
inference. The sample size was of 80 diploid individuals. Error bars correspond to the 95%
confidence interval of the correlations, computed with the test.cor R function in the stats package.
The dashed line corresponds to the highest correlation reached for each parameter.
In orange: dadi inference. In light green: ABCrf using various diversity statistics. In green: ABCrf
using various imbalance statistics. In dark green: ABCrf combining all diversity and imbalance
indices. In blue: deep learning using SPIDNA. In purple: ABCrf combining summary statistics
and SPIDNA results.
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Figure S3: Comparison of inference methods accuracy using MSE.
MSE were computed between inferred and true values on the test set. The first four moments
(mean, variance, skewness, kurtosis) of the 20 replicates were used for training and inference. The
sample size was of 80 diploid individuals. The dashed line corresponds to the lowest MSE reached
for each parameter.
In orange: dadi inference. In light green: ABCrf using various diversity statistics. In green: ABCrf
using various imbalance statistics. In dark green: ABCrf combining all diversity and imbalance
indices. In blue: deep learning using SPIDNA. In purple: ABCrf combining summary statistics
and SPIDNA results.
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Figure S4: Comparison of inference methods accuracy using bias computation.
Biases were computed between inferred and true values on the test set. Only the first moment
(mean) of the 20 replicates was used for training and inference. The sample size was of 80 diploid
individuals.
In orange: dadi inference. In light green: ABCrf using various diversity statistics. In green: ABCrf
using various imbalance statistics. In dark green: ABCrf combining all diversity and imbalance
indices. In blue: deep learning using SPIDNA. In purple: ABCrf combining summary statistics
and SPIDNA results.
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Figure S5: Comparison of inference methods accuracy using bias computation.
Biases were computed between inferred and true values on the test set. The first four moments
(mean, variance, skewness, kurtosis) of the 20 replicates were used for training and inference. The
sample size was of 80 diploid individuals.
In orange: dadi inference. In light green: ABCrf using various diversity statistics. In green: ABCrf
using various imbalance statistics. In dark green: ABCrf combining all diversity and imbalance
indices. In blue: deep learning using SPIDNA. In purple: ABCrf combining summary statistics
and SPIDNA results.
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Figure S6: Comparison of inference methods accuracy using correlations.
Correlations were computed between inferred and true values on the test set. Only the first moment
(mean) of the 20 replicates was used for training and inference. The sample size was of 80 diploid
individuals. Error bars correspond to the 95% confidence interval of the correlations, computed
with the test.cor R function in the stats package. The dashed line corresponds to the highest
correlation reached for each parameter.
In light green: ABCrf using various diversity statistics. In green: ABCrf using various imbalance
statistics. In dark green: ABCrf combining all diversity and imbalance indices.
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Figure S7: Comparison of inference methods accuracy using correlations.
Correlations were computed between inferred and true values on the test set. The first four
moments (mean, variance, skewness, kurtosis) of the 20 replicates were used for training and
inference. The sample size was of 80 diploid individuals. Error bars correspond to the 95%
confidence interval of the correlations, computed with the test.cor R function in the stats package.
The dashed line corresponds to the highest correlation reached for each parameter.
In light green: ABCrf using various diversity statistics. In green: ABCrf using various imbalance
statistics. In dark green: ABCrf combining all diversity and imbalance indices.
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Chapter 4

Nongenetic TRS and other

processes

Some of the preliminary analyses presented here are the result of a collaboration with Arnaud

Quelin during his masters internship.

4.1 Nongenetic TRS and natural selection

One of the major remaining issues in the study of nongenetic TRS is its compar-

ison with natural selection (i.e., genetic TRS). At first glance, one might want to

compare them and assume that this difference in the transmission mechanism is

only anecdotal. However, in Chapters 1 and 2, we listed four potentially essential

differences between these two processes, based on the literature. To demonstrate

these differences, however, it would be appropriate to explore each of them through

simulations, which we have done for two of these differences.

The first difference between genetic and nongenetic TRS concerns the fidelity

of transmission. Genetic transmission being very faithful, only a limited amount of

variance is introduced by mutation at each generation. Consequently, the favorable

alleles will, in general, reach fixation rapidly. In contrast, in nongenetic TRS, and in

particular cultural TRS, transmission is rather unfaithful. As a result, there will be

no rapid fixation of the cultural trait that promotes a high reproductive rate, since

the offspring can quickly move away from the parental trait (e.g., rebellion towards

parental culture). This difference is described accurately in the models representing
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these two processes. Indeed, the Sibert et al. (2002) model of nongenetic TRS,

that we used in this thesis, is constructed in a way that removes the possibility

of fixation: an individual’s probability of reproduction is above average if his/her

number of siblings is also above average. In contrast, in the classical selection model

with alleles associated with different selection coefficients (Wright, 1932), the allele

with the highest coefficient is likely to invade the population.

Therefore, the dynamics of summary statistics over time are expected to differ

between the two models. In the selection model, the proportion of alleles evolves

during the process; hence, the type of selection changes from selection of a rare allele

to selection of a common allele. In the case of nongenetic TRS, the distribution

of progeny sizes remains indefinitely unchanged once the equilibrium distribution is

reached (i.e., after a few generations, see Chapter 2). Thus, we can expect coalescent

tree shapes to differ: in selection, the tree is affected by a process that changes over

time, while in nongenetic TRS, the tree is affected by a stable process (provided

that nongenetic TRS occurs for a sufficiently long period of time).

We thus compared the dynamics of several summary statistics over time (B2, IF ,

number of polytomies, and π) by simulating these two models without recombina-

tion (Fig. 4.1). We observed an effect on all summary statistics under both models

(nongenetic TRS alone versus selection alone), as well as under their combination

(nongenetic TRS and selection simultaneously). These effects follow the same gen-

eral trends: B2 and π decrease, while IF and number of polytomies increase. These

results demonstrate that selection also impacts the topology indices (IF and B2

imbalance indices and the number of polytomies), confirming previous studies that

used imbalance-related indices for selection inference (Li, 2011; Li and Wiehe, 2013;

Yang et al., 2018).

Although both phenomena impact all summary statistics in the same direction,

the dynamics are different. The effects last during all the time nongenetic TRS is

occurring, because fixation is impossible in this case as said above, which maintains

the process. Conversely, the effects are transient in case of selection, due to the

fixation of the favorable allele, and all summary statistics return to neutral levels, but

with different dynamics. B2 and IF return to neutral levels around 20 generations

after the most extreme value was reached. The number of polytomies has almost

decreased to neutral levels after 250 generations since the peak. π is slowly increasing

back (the slope is weakly positive after the lowest point reached), but is still far from

neutral levels after 300 generations.
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Figure 4.1: Summary statistics across time in four scenarios without re-
combination. Green: nongenetic TRS is absent (α = 0) and selection is absent
(s = 0). Orange: nongenetic TRS is present (α = 1) and selection is absent (s = 0).
Purple: nongenetic TRS is absent (α = 0) and selection is present (s = 0.5).
Magenta: nongenetic TRS is present (α = 1) and selection is present (s = 0.5).
Selection and nongenetic TRS start at generation 0. Nongenetic TRS stops at gen-
eration 250. π is used for measuring diversity (panel D).

Those differences in dynamics between the summary statistics can be explained

as follows. Imbalance indices are known to be mostly impacted by the recent events

(Blum et al., 2006), so they show a signal during and shortly after the selection

process. Once fixation is reached, imbalance indices return rapidly to their original

levels. π, on the other hand, is impacted by the tree imbalance, but also by its height

(i.e., the TMRCA). This is why, although the tree is not imbalanced anymore, its

TMRCA remains at a low value for a long time (i.e., due to the contraction of



142 CHAPTER 4. NONGENETIC TRS AND OTHER PROCESSES

effective size generated by selection). Finally, the number of polytomies increases

under selection for two reasons: the contraction of effective size, and the imbalance

of the tree which concentrates many coalescence events on one side of the tree,

yielding polytomies. When trees are not imbalanced anymore the latter mechanism

is eliminated, but the first still remains, as it is linked to the height of the tree (like

π). This is the reason why the number of polytomies returns to its original levels

faster than π, but slower than imbalance indices.

It is interesting to notice also that, besides the differences in dynamics between

the two processes, they affect the imbalance indices differently in terms of values at

the most extreme point. Indeed, the impact of the nongenetic TRS is relatively weak

on B2 (4% decrease compared to the neutral case) compared to IF (7% increase),

while both indices change similarly under the selection model (B2 : 11% decrease,

IF : 11% increase). This result shows a qualitative difference in tree topology under

the two models, which may stem from the evolution of the selection process across

time (due to changes in the beneficial allele frequencies), whereas nongenetic TRS

is a constant process because it does not allow fixation.

Nevertheless, this difference between the two processes on the propensity to reach

fixation may not be so systematic. Here we have assumed, based on reality, that

nongenetic TRS differs from genetic TRS in the level of fidelity of transmission.

However, with a very high rate of genetic mutation, fixation will not happen, even

in the case of genetic TRS, especially in cases of highly polygenic selection. On the

other hand, in the case of a very faithful transmission of membership to given social

group with different fertility levels, we would have a phenomenon of invasion of the

most fertile group (i.e., if the population size is fixed). Therefore, this difference

between the two processes is not fundamental but related to an extrinsic, although

realistic, difference in the mutation rate.

The second difference between the two processes goes beyond the simple mu-

tation rate. However, it only exists in the presence of recombination, unlike the

previous difference. Indeed, recombination will break the link between the locus

under selection and the rest of the genome. The effects will therefore be restricted

to the region of the locus under selection. In the case of nongenetic TRS, the whole

genome will be impacted in the same way, since it does not depend on any particular

locus.

We therefore briefly explored different summary statistics along a chromosome

in a case of selection on a single locus in the center of a chromosome, without
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nongenetic TRS occurring (Fig. 4.2). For the four summary statistics explored (π,

B2, number of polytomies, and Ib), the strongest effects are restricted to the center

of the chromosome, with a progressive decrease of the effects as one moves away from

the locus under selection (the V-shaped pattern at generation 30). At generation

90, the number of polytomies and π are evolving towards the values before selection,

while preserving the V-shaped pattern. At this generation, the imbalance indices

show a surprising pattern (W-shaped for B2 in Fig. 4.2A, inverted W-shape for

Ib in Fig. 4.2B). This pattern reveals a faster return to the neutral situation for

the regions farthest and closest to the locus under selection, and slower for the

regions at medium distance. This probably stems from an increased reduction of

local effective population size near the locus, causing imprints of past selection to be

very quickly erased (i.e., the TMRCA is shorter or roughly equal to the time since

the selection event). Taking into account this W-shaped pattern on the imbalance

indices could therefore allow to better locate and date the selection events. However,

further analysis is necessary to understand why this W-shape does not appear for

the number of polytomies. This could stem from a difference its the dynamics

compared to imbalance indices, corresponding to their slower decrease seen in Fig.

4.1C. According to this explanation, we can expect this W-shape to appear later on

in the number of polytomies across the genome, which should easily be verified.

We also analyzed the summary statistics across a chromosome, in a simulated

population simultaneously under selection (a locus at the center of the chromosome)

and nongenetic TRS (Supp. Fig. S1). We find the V-shape at generation 30 for B2,

π, and the number of polytomies, as in Fig. 4.2. However, this shape does not appear

for Ib, which has rather uniform values along the genome. This is probably because

B2 is less impacted than Ib by nongenetic TRS, as seen above (Fig. 4.2), maintaining

selection imprints in B2 across the chromosome. Hence, B2 appears to be better

than Ib in distinguishing loci under selection in a population under strong nongenetic

TRS. At generation 90, we find the W-shape for B2 and Ib, but less marked than for

the population without nongenetic TRS (Fig. 4.2). In conclusion, under nongenetic

TRS, the locus under selection remain detectable using the imbalance statistics

across the genome, but are attenuated compared to the case without nongenetic

TRS.

With the results from Fig. 4.2 and Supp. Fig. S1, we could confirm that

imbalance indices are unequally impacted in a genome under monogenic selection,

unlike nongenetic TRS which affects all loci identically. Hence, in the case of re-

combination, one should be able to distinguish between the two processes through
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Figure 4.2: Summary statistics across time along the genome with one
locus under selection in the center.Nongenetic TRS is absent (α = 0), selection
coefficient s = 0.2, population size N = 1000, and recombination rate ρ = 10−8.
Selection starts at generation 10. π is used for measuring diversity (panel D).

imbalance statistics patterns along the genome. However, it would be necessary

to explore the case of multigenic selection as well, which could be harder to disen-

tangle from nongenetic TRS. Measuring various indices across the genome in real

population genomic data would be another step towards understanding both pro-

cesses impacts. We performed preliminary analyses (Fig. 4.3) on a small data set

(chromosome 22 from Sardinians and Yakut, data from HGDP, Bergström et al.,

2020). They show that relate-inferred Ib may vary a lot across the genome and that

strong differences between the two studied populations appear. These results are

compatible with the joint impact of various processes. Disentangling selection from

nongenetic TRS effects in these real genomes patterns remains to be tackled.

4.2 Nongenetic TRS and structure

Population structure is another process that can be confused with nongenetic TRS.

Indeed, it has been shown that it produces U-shaped SFS (Wakeley and Aliacar,
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Ib across Chromosome 22 from Sardinians

Ib across Chromosome 22 from Yakut

Figure 4.3: Imbalance index Ib computed on relate-inferred trees across
whole chromosome 22 in Sardinians and Yakut. Data from HGDP (Bergström
et al., 2020). Coalescent trees were inferred using relate (Speidel et al., 2019) and
Ib index (Brandenburg et al., 2012) was computed on all trees. Trees were grouped
in one hundred bins of equal length (in base pairs), and Ib weighted averages were
computed for each bin. The weights corresponded to the number of base pairs each
tree spans.

2001) as well as an imbalance of coalescence trees (Blum et al., 2006), two valuable

pieces of information to infer nongenetic TRS. A first approach to disentangle the

impact of population structure from that of nongenetic TRS would be to perform a

test on the absence of structure before inferring nongenetic TRS from the genomic

data. However, the impacts of nongenetic TRS on structure tests have yet to be

analyzed. Another approach would consist in including migration parameters in the

model used for generating the simulated training dataset of the machine learning

algorithms. More generally, it is necessary to explore in depth the behavior of the

different imbalance indices under structured population models with migration, in

order to distinguish them from the patterns created by nongenetic TRS or multigenic

selection.

In addition to the impact of selection and structure on imbalance indices, their

impacts on the reconstruction of coalescent trees by tsinfer and relate has not been

explored and could further add biases to the imbalance indices estimations. We

observed the tree imbalance in a multipopulation model with three populations

exchanging migrants, under population size changes and nongenetic TRS. We used

the demographic parameters (i.e., population sizes and migration rates across time)
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that were previously inferred by Gravel et al. (2011) from real genomic data, with

each population corresponding to a continent (Africa, Asia, and Europe). We found

that the tsinfer-inferred trees have different Ib levels depending on the continent,

regardless of the strength of nongenetic TRS (Supp. Fig. S2). Since population size

changes do not impact Ib (Guez et al., 2022), this could stem from the structure

itself, which differs among the continents, or from the interaction between population

structure and tsinfer tree reconstruction. The impacts of structure may also explain

part of the differences observed in Ib across the genome in Yakut versus Sardinians

(Fig. 4.3). Beyond topology indices, the impacts of the interactions of population

size changes, structure, selection, and nongenetic TRS on allelic frequencies and

other classical summary statistics deserve further investigation.
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Figure S1: Summary statistics across time along the genome with one locus
under selection in the center. Nongenetic TRS is present (α = 1), selection
coefficient s = 0.2, population size N = 1000, and recombination rate ρ = 10−8.
Selection starts at generation 10 and nongenetic TRS starts at generation 0. π is
used for measuring diversity (panel D).
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Figure S2: Ib measured on three demographic models with varying α. The
models were designed according to Gravel et al. (2011) for each continent. The
neutral model (in gray) does not contain any population size changes nor migration.



Conclusion and perspectives

We have shown in this thesis that nongenetic TRS is a widespread phenomenon

with diverse origins (Chapter 1), that it has an impact on population genetics and

demographic inference (Chapter 2), that it can be inferred from genomic data using

machine learning (Chapter 3), and that it can be disentangled from natural selection

(Chapter 4). Here we will summarize these main findings. Then, we will discuss

various perspectives.

Main findings

In the first chapter, we showed from the literature that TRS is widespread in human

populations. Its causal mechanisms can be complex and might integrate genetic

and cultural components. Cultural TRS is also present in animals, especially in

species with a strong social structure (Ilany et al., 2021; Donabedian and Cords,

2021). This evidence in animals opens perspectives in ethology (Krützen et al.,

2005; Sapolsky, 2005; Hobaiter et al., 2014), genetics (Whitehead et al., 2017), and

conservation biology (Kelly, 2001). Finally, we have generalized cultural TRS to any

TRS of nongenetic origin, which makes it theoretically applicable to species outside

the animal kingdom. Even at the cellular level, a nongenetic transmission of cell

survival and mitosis rate could give rise to such a process (e.g., the transmission of

the distance to a blood vessel from tumor cells to their daughters, a distance that

impacts nutrient levels (Alfarouk et al., 2013), and hence, can be correlated with cell

survival and mitosis rate). This generalization of the nongenetic TRS process and

its diverse impacts on the genome led us to discuss the addition of this evolutionary

force to the general framework of evolutionary theory.

In the second chapter, we explored in detail the impacts of nongenetic TRS on

genomic diversity over time. We showed that this process produces several stages
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during evolution. These stages are due to three effects of nongenetic TRS: reduction

of effective size, non-homogeneous reduction of branch lengths, and changes in the

topology of coalescent trees (imbalance and higher number of polytomies). We

also showed that nongenetic TRS produces a U-shaped SFS, as observed also for

some cases of selection (Braverman et al., 1995; Fay and Wu, 2000) and migration

(Wakeley and Aliacar, 2001). Because of these effects, nongenetic TRS induces a bias

in demographic inference from genomic data, which we showed using the inference

software dadi (Gutenkunst et al., 2009). This study of CTRS reveal the importance

of studying this process for its own effects, as well as for disentangling it from other

evolutionary processes.

In the third chapter, we studied the possibility of inferring nongenetic TRS from

genomic data. We showed that machine learning models could be trained to jointly

infer the intensity of nongenetic TRS as well as the demographic history of the

population. This joint inference avoids obtaining a biased demographic inference,

as it is the case for inference tools not considering nongenetic TRS, such as dadi

(Gutenkunst et al., 2009). We have also compared several machine learning methods:

ABC random forest using summary statistics (abcrf R package from Raynal et al.,

2019), neural networks trained directly on raw genomic data (using SPIDNA from

Sanchez et al., 2021), or a combination of both. Combining the two methods being

the most efficient, we concluded that some summary statistics not present in our

ABC approach contain helpful information to co-infer the two processes.

In the fourth chapter, we compared the effects of two processes (natural selec-

tion and migration) to those of nongenetic TRS. We described simulation results

exploring the two main differences between selection and nongenetic TRS. The first

difference lies in the possibility of fixation in the case of natural selection, which is

not possible for the nongenetic TRS model that we studied in this thesis (from Sibert

et al., 2002). This yields disparities in the dynamics of the summary statistics across

time, as well as in the most extreme values reached by the imbalance indices. The

second difference stems from the fact that natural selection effects are linked to the

locus under selection, contrary to nongenetic TRS effects. We thus explored sum-

mary statistics along the genome under selection, showing V-shaped and W-shaped

patterns that confirmed this specificity of natural selection. We also explored the

impacts of migrations on the detection of nongenetic TRS, using a multipopulation

model (from Gravel et al., 2011). We showed that in Europe and Asia the detec-

tion of nongenetic TRS using imbalance indices might indeed be challenging due

population structure, and we discussed potential solutions.
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Perspectives

One of the contributions of this thesis was to apprehend the importance of nongenetic

TRS through two main aspects. First, through a bibliographical review, we showed

its commonness and the diversity of its occurrence modes in humans and other

species (Chapter 1). Second, we demonstrated the magnitude and variety of its

impacts on genetics (Chapter 2). Combining these two aspects led us to consider

nongenetic TRS as a full-fledged evolutionary force. However, research in different

areas is still needed to develop this generalization. Mainly, we will focus here on (i)

nongenetic TRS modeling developments, and (ii) applications to real data.

i. Modeling nongenetic TRS

Our results of the impacts of nongenetic TRS on genetics (Chapter 2) are all based

on an extension of the Wright-Fisher model (Sibert et al., 2002). This can be

considered a serious limitation. Indeed, some impacts on genetics may depend on

the use of this particular model, and may need to be more generalized. This problem

related to population genetics modeling also concerns other processes such as drift

or selection. Nevertheless, it specifically affects nongenetic TRS due to the absence

of a competing model. Indeed, for modeling neutral evolution with random genetic

drift, for example, one can compare the Wright-Fisher model (Wright, 1931) with

the Moran model (Moran, 1958) to evaluate the impact of model assumptions (as

well as their generalization in the Cannings model, Cannings 1974, 1975). In natural

selection, a large number of models can also be compared (for example selection in

gene-networks models, such as in Wagner 1994, 1996; Siegal and Bergman 2002,

selection on polygenic traits, such as in Lande 1980; Latta 1998; Le Corre and

Kremer 2003, and selection with epistasis such as in Hansen and Wagner 2001;

Jiang and Reif 2015). Therefore, developing new models would be a step forward in

understanding nongenetic TRS.

For example, in the model we used in Chapter 2, an individual’s probability of re-

producing is directly proportional to his/her number of siblings (Sibert et al., 2002).

This model is supposed to fit any case of nongenetic TRS. However, one might want

to model some subtypes of nongenetic TRS more realistically, such as TRS medi-

ated by the vertical transmission of a resource correlated with reproductive success.

This model would assign a resource value ξ to each individual, which is correlated

to the resource value of his/her parents. The probability of reproduction pi of an
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individual i, would then be proportional to his/her resource quantity, according to:

pi =
ξτi∑N
j=1 ξ

τ
j

. This model would have two parameters to control the TRS, contrary

to Sibert et al.’s model which only uses α. The first parameter, τ , would control

the impact of resources on fertility (similar to α controlling the impact of sibship

size on fertility in Sibert et al.’s model). The second parameter, an error parame-

ter β, would control the transmission of resources from parents to children, which

can be more or less faithful (i.e., resembling a mutation rate: high β yielding lower

correlations between parents and children resources). It remains to be studied to

what extent this new model would bring different results compared to Sibert et al.’s

model. One difference would be related to fixation, as this model would allow it

contrary to Sibert et al.’s model, provided that β is low. However, unlike a selection

model, the effects would span the entire genome and not be linked to any locus

in particular. Furthermore, in a variation of this new model, the parental resource

value ξ could be shared among siblings instead of being transmitted entirely, in order

to model material resources transmission.

Another important point regarding the modeling of nongenetic TRS concerns its

possible unification with a genetic TRS model. A model that allows to treat all types

of TRS jointly would be more parsimonious and has already been investigated. One

avenue that has been particularly explored to unify the different forms of TRS is

the Price equation (Price, 1970). This equation defines the change in a trait average

from one generation to the next in a population, as a function of the covariance

of that trait with fitness and the fitness-weighted fidelity of transmission. Several

studies have used this equation as a basis for nongenetic inheritance (Gardner, 2020;

Baravalle and Luque, 2021), or to unify genetic and nongenetic inheritance (Otto

et al., 1995; Bonduriansky and Day, 2009; Day and Bonduriansky, 2011; Aguilar and

Akçay, 2018). However, this has not yet been applied to the nongenetic transmission

of reproductive success, which would be an exciting topic of research.

ii. Using real data

Beyond these theoretical modeling issues, studying real data is an important path-

way for understanding and generalizing nongenetic TRS. We have seen in Chapter

1 that many human and animal populations show the presence of nongenetic TRS,

for example based on estimations of parent-child correlations in progeny size. When

genealogical and genomic data are concurrently available, it becomes possible to

distinguish the different evolutionary processes more efficiently. For example, by
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knowing the intensity of nongenetic TRS in a population thanks to demographic

data, it is possible to explore the genome in its different types of regions (coding

and non-coding regions, neutral or under selection regions), in order to understand

the effects of nongenetic TRS and its interactions with selection. This is feasible with

data from Quebec where cultural TRS has occurred over 12 generations (Austerlitz

and Heyer, 1998), and from where a large amount of genomic and genealogical data

are publicly available (Anderson-Trocmé et al., 2022).

It should be possible to have, as for Quebec, anonymized demographic data for

other regions of the world. For example, in France, the law requires to declare births

since 1803. Social security systems, for example, oblige citizens to declare the birth

of their children in many countries, and statistical institutes already gather and use

family-related data (such as in Beaujouan and Solaz, 2019). These demographic

data would allow for a more precise analysis of progeny size correlations with a

finer geographic granularity, as well as an estimation of the evolution of correlations

over time. However, these data are only available for some countries where birth

registrations are systematic. In some countries, such as China or Indonesia, despite

laws requiring this practice, the rate of birth registrations is low and can vary greatly

from one region to another (Li et al., 2010; Prasetyo and Hamudy, 2016; Duff et al.,

2016).

In wild animal populations, pedigree data would also provide a better under-

standing of nongenetic TRS. Pedigree data are relatively easier to obtain for some

species, such as small birds or large mammals, compared to other groups (Pember-

ton, 2008). However, next-generation sequencing techniques make constructing or

correcting these databases easier, and will help expand their use to other species

(Petty et al., 2021). Using pedigree and genetic data jointly in wild populations will

allow dissecting the evolutionary processes involved. For example, using genetic and

pedigree data, Chen et al. (2019) could reveal the different evolutionary processes

occurring in a Florida Scrub-Jays population. Regarding TRS in particular, analysis

of pedigree data is of great value. For example, Kelly (2001) analyzed 63 cheetah

matrilines, and demonstrated that five of these matrilines yielded 45% of the cheetah

population, leading to an effective population size of 15% of the census population.

In another example, Thompson et al. (2017) revealed increased aggression between

related individuals in a wild mongoose population based on pedigree data. This

harmful discrimination against kin could lead to negative correlations in progeny

size between parents and offspring. Indeed, offspring with many siblings would then

receive more aggression, which could reduce their reproductive success (similar to
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the negative correlations due to sharing maternal resources among offspring, see

Chapter 1). Hence, pedigree data need to be collected from many different species

to better understand the links between genetics, evolution, and social behavior.

Regarding the generalization of nongenetic TRS to unicellulars, it is possible to

leverage experimental evolution (Kawecki et al., 2012; Barrick and Lenski, 2013).

Experimental evolution has already led to a better understanding of many evolu-

tionary processes, such as selection, mutation rate, and their interactions (Raynes

and Sniegowski, 2014; Tenaillon et al., 2016). Thus, implementing nongenetic TRS

experiments may lead to a better understanding of the process. For example, it is

possible to reproduce nongenetic TRS by letting yeast grow on a nutrient gradient,

yielding a reproduction differential in the population. Particular attention should

be paid to the methodology of the experiment. For example, in order to reproduce

the nongenetic TRS correctly, the transmission of the advantage from parents to

children must be unfaithful, so that it is maintained over time without reaching

fixation (see Chapters 2 and 4). In this case, fixation of the favorable trait would

result in yeast development only in the nutritive part of the medium. It is therefore

necessary to create an imperfect transmission of the position, for example with a

semi-liquid medium that allows a movement of the cells. To follow the genealogy

of the cells, it would be possible to use barcoding methods specifically developed

for yeast (Nguyen Ba et al., 2022). It will then be possible to have access to real

coalescent trees on which the different summary statistics studied in this thesis can

be computed (Chapter 2). The real trees can also be compared to the inferred trees

to identify the possible biases in tree reconstruction. Finally, this type of experi-

ments would be an effective field for testing the inference tools we have developed

in Chapter 3.

In summary, research avenues encompass both theoretical and practical aspects.

On one hand, mathematical models of TRS can be developed to reinforce and expand

the findings of Chapter 2. On the other hand, these models can be applied to real

data to advance the inference methods outlined in Chapter 3.
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au XXe siècle. Annales de démographie historique. 138:119–141.

Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG, Knight R. 2017. The

human microbiome in evolution. BMC Biology. 15:127.

Daw J, Guo G. 2011. The influence of three genes on whether adolescents use con-

traception, USA 1994–2002. Population Studies. 65:253–271.



BIBLIOGRAPHY 163

Day FR, Helgason H, Chasman DI, Rose LM, Loh PR, Scott RA, Helgason A,

Kong A, Masson G, Magnusson OT et al . 2016. Physical and neurobehavioral

determinants of reproductive onset and success. Nature Genetics. 48:617–623.

Day T, Bonduriansky R. 2011. A unified approach to the evolutionary consequences

of genetic and nongenetic inheritance. The American Naturalist. 178:E18–36.

de Jonge N, Carlsen B, Christensen MH, Pertoldi C, Nielsen JL. 2022. The Gut

Microbiome of 54 Mammalian Species. Frontiers in Microbiology. 13:886252.

de Valk HA. 2013. Intergenerational discrepancies in fertility preferences among

immigrant and Dutch families. The History of the Family. 18:209–225.

Desjardins B, Bideau A, Heyer E, Brunet G. 1991. Intervals between marriage and

first birth in mothers and daughters. Journal of Biosocial Science. 23:49–54.
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