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Résumé

Dans cette Thèse de doctorat, nous étudions théoriquement la réponse électronique non linéaire des systèmes non centrosymétriques, telle que la réponse de Hall d'ordre supérieur dans les matériaux non magnétiques et les propriétés magnétoélectriques hors équilibre dans les aimants de basse symétrie. Nous avons appliqué des analyses de symétrie basées sur la théorie des invariants et effectué des simulations de transport quantique basées sur le formalisme cinétique quantique perturbatif pour explorer la nature de différents effets non conventionnels d'intérêt primordial en spintronique théorique et expérimentale et en matière condensée. Plus précisément, nous démontrons que l'effet Hall du second ordre dans les semi-métaux de Weyl est plus sensible à la géométrie des états quantiques qu'à leur topologie. De plus, le comportement du courant de Hall correspondant est lié à l'inclinaison des cônes de Weyl appartenant au système et au niveau de Fermi par rapport à l'énergie de Weyl. En outre, nous montrons l'émergence d'un effet Kerr magnéto-optique induit par un courant non nul dans des matériaux non magnétiques, preuve supplémentaire du lien entre l'aimantation orbitale hors équilibre et l'effet Hall du second ordre entraîné par le dipôle de la courbure de Berry. Nous sommes ensuite intéressés à la réponse magnétoélectrique des matériaux magnétiques de basse symétrie. En étudiant la réponse linéaire en champ électrique, mais d'ordre supérieur dans les composants de l'aimantation, nous concluons que de nouveaux termes encore non identifiés sont autorisés par les symétries réduites du cristal magnétique. Dans le cas des cristaux trigonaux, on découvre une pléthore d'effets Hall et de couples spin-orbite atypiques, mettant l'accent sur leur origine microscopique. Dans ce contexte, nous montrons que leur émergence et leur ampleur sont liées à l'interaction entre le remplissage de la bande et la distorsion trigonale de la surface de Fermi. Les réponses non linéaires des matériaux quantiques ouvrent des perspectives inédites en physique de la matière condensée, puisqu'elles nous invitent à explorer de nouveaux mécanismes pour sonder, entre autres, la structure de bande des matériaux non conventionnels.

Mots clés : Courbure de Berry, effet Hall non linéaire, matériaux quantiques, Spin-Orbit Torque, symétries

Abstract

In this doctoral Thesis, we investigate theoretically the nonlinear electronic response of non-centrosymmetric systems, such as the higher order Hall response in non-magnetic materials and the non-equilibrium magnetoelectric properties in low symmetry magnets. We have applied symmetry analyses based on the Invariant theory and performed quantum transport simulations based on the perturbative quantum kinetic formalism, exploring the nature of different unconventional effects of prime interest in theoretical and experimental spintronics and condensed matter. Specifically, we demonstrate that the second order Hall effect in Weyl semimetals is more sensitive to the geometry of the quantum states than their topology. Moreover, the behavior of the corresponding Hall current is connected to the inclination of the Weyl cones pertaining the system and the Fermi level with respect to the Weyl energy. Besides, we show the emergence of a non-vanishing current-induced magneto-optical Kerr effect in non-magnetic materials, as an additional evidence of the connection between non-equilibrium orbital magnetization and the second order Hall effect driven by the Berry curvature dipole. We then moved to the magnetoelectric response of low symmetry magnetic materials. Investigating the linear response in electric field, but higher order in magnetization components, we conclude that yet unidentified new terms are allowed by the reduced symmetries of the magnetic crystal. In the case of trigonal crystals, we discover a plethora of atypical Hall effects and spin-orbit torques, putting an emphasis on their microscopic origin. In this context, we show that their emergence and magnitude are related with the interplay between the band filling and the trigonal warping of the Fermi surface. The nonlinear responses of quantum materials open unprecedented perspectives in condensed matter physics, as they invite us to explore new mechanisms for probing, among others, the band structure of unconventional materials. Keywords: Berry curvature, nonlinear Hall effect, quantum materials, spin-orbit torque, symmetries

Résumé Etendu

a. Vue Générale de la Thése

Dans ce projet de thèse, nous nous concentrons sur l'obtention de réponses non conventionnelles d'ordre élevé en perturbation (électrique ou magnétique), et dérivées de contraintes de symétrie telles que l'inversion temporelle, l'inversion spatiale et les symétries cristallines de l'échantillon. Nous considérons également la réciprocité de Onsager dans les cas où elle est obligatoire. C'est pourquoi, afin d'identifier l'origine de la réponse, nous utilisons une analyse microscopique, qui permet également de trouver un moyen de la maximiser. Nous avons réalisé ces études à travers une analyse détaillée de modèles de liaisons fortes en développant des simulations numériques. nous analysons la variété des effets Hall associés à cette symétrie. Ici, l'un d'eux a la particularité d'être antisymétrique en aimantation et en champ magnétique appliqué, ce qui permet l'apparition d'un courant transversal même lorsque les champs électrique et magnétique sont alignés l'un avec l'autre. Nous appelons cette réponse l'effet Hall chiral. D'un point de vue microscopique, on pourrait attribuer ces observables à la distortion trigonale [trigonal warping] de la surface de Fermi, qui se produit pour une valeur d'énergie suffisamment élevée.

b. Résultats Principaux

Le contrôle des degrés de liberté de l'électron dans les applications technologiques est l'un des principaux sujets d'attention en Physique de la Matière Condensée. Dans le cas de la réponse linéaire, où la dynamique des électrons est contrôlée par une perturbation linéaire du champ électrique, l'effet Hall est l'un des phénomenes les plus riches et les plus emblématiques. Au premier ordre en champ électrique, l'effet Hall nécessite que le matériau soit magnétique, ce qui laisse de côté un large spectre de systèmes où la symétrie d'inversion temporelle est conservée. Ainsi, à des ordres élevés en la perturbation, il est possible de modifier une série de restrictions dans la réponse, ce qui garantit que le spectre des matériaux où l'effet Hall est observé est élargi. De cette manière, les effets Hall non linéaires fournissent également des informations sur la structure électronique du matériau considéré. L'un des principaux exemples se produit lorsque l'on considère un système non magnétique dont la symétrie d'inversion est brisée. Ici, l'effet Hall du premier ordre est interdit par symétrie, mais une nouvelle contribution du second ordre en champ électrique apparaît. Une illustration de cette différence est présentée dans la Figure 1. Dans ce contexte, alors que l'effet Hall du premier ordre en l'absence de champ magnétique extérieur dépend de la courbure de Berry, qui est une grandeur géométrique présentant les mêmes symétries qu'un champ magnétique dans l'espace réciproque, l'effet Hall du second ordre est proportionnel à la dérivée de la courbure de Berry, également appelée dipôle de Berry. De plus, alors que l'effet Hall linéaire s'accompagne d'un champ magnétique ou d'une aimantation interne dans le système, l'effet Hall de second ordre s'accompagne d'une aimantation hors équilibre qui rompt la symétrie d'inversion temporelle dans le processus. Il est à noter que bien que l'effet soit associé à une quantité géométrique qui ne dépend pas du désordre, la conductivité totale est proportionnelle au temps de collision entre les impuretés. A un ordre supérieur en champ électrique, une série d'effets peut se produire en fonction des symétries du système. Beaucoup d'entre eux, par exemple au troisième ordre en champ électrique, sont hors du champ d'application de la courbure de Berry et font partie des études que je suis en train de réaliser.

Dans le cadre de l'effet Hall du second ordre dû au dipôle de la courbure de Berry, un grand nombre de candidats ont été proposés au cours de la dernière décennie pour présenter de grandes amplitudes de conductivité. Parmi eux, l'un des plus importants est celui des semi-métaux de Weyl. La principale raison est que leurs bandes se touchent en des points "diaboliques" où leur courbure Berry tend vers l'infini. De plus, leurs bandes sont exceptionnellement dispersives. Les semi-métaux de Weyl sont considérés comme des matériaux topologiques car ils possèdent des états de bord protégés par une symétrie. De plus, ils peuvent manifester des états non topologiques qui sont dus à leur géométrie ; dans ce cas, ils sont généralement sensibles à l'inclinaison du cône de Weyl qui se forme autour du point de Weyl. S'il est vrai que l'influence de ces états sur la conductivité linéaire a été étudiée précédemment, rien n'est connu à ce jour quant à leur impact sur l'effet de second ordre. Dans ce contexte, il a été documenté dans la littérature que les calculs basés sur des modèles continus ne sont pas capables de décrire correctement ce qui se passe au niveau de la zone de Brillouin, montrant la nécessité d'approfondir cette question.

Dans un récent article publié dans Physical Review B [1], avec mon équipe nous avons démontré l'influence des états de surface sur l'effet Hall de second ordre induit par le dipôle de Berry (BCD). Pour cela, notre travail est divisé en 2 parties : d'une part, je me suis concentré sur l'application d'un modèle à 2 bandes qui imite les principales caractéristiques d'un semi-métal de Weyl, qui a une symétrie d'inversion temporelle et n'a pas de symétrie d'inversion spatiale. La courbure de Berry du modèle dans le plan des arcs de Fermi et leurs noeuds de Weyl correspondants sont représentés dans le Figure 2. Sur la base du modèle, nous avons d'abord calculé le dipôle de Berry pour les géométries de dalles dans les directions de courant pertinentes, en fonction des symétries de réflexion présentes, grâce à une méthode de discrétisation précédemment utilisée [2]. Les résultats numériques sont présentés à la Figure 3 pour une valeur fixe du potentiel chimique. Plus de détails sur l'analyse du système et les paramètres utilisés peuvent être trouvés dans le corps principal du document. De là, nous avons conclu que dans un système fini avec des cônes de Weyl légèrement inclinés (appelé régime de type I), il est capable d'avoir un dipôle qui évolue avec le nombre de couches, ce qui a également été précédemment démontré analytiquement [3].

Figure 2. ± Champ vectoriel de la courbure de Berry dans le plan des arcs de Fermi. Nous fixons les paramètres intrinsèques. Les monopôles de la courbure de Berry sont représentés par des points rouges et bleus, indiquant les sources (bleu) ou les puits (rouge) du flux de courbure de Berry. Dans le contexte des semi-métaux de Weyl, ils sont généralement étiquetés comme des points de Weyl et, dans ce cas, ils sont disposés dans un espace réciproque obéissant à une symétrie d'inversion du temps. D'autre part, lorsque l'inclinaison des cônes de Weyl est suffisamment grande (également connu sous le nom de régime de type II), la réponse du dipôle de Berry est amplifiée, conduisant à un effet Hall de second ordre en fonction du nombre de couches. Après une analyse de la densité d'états, dans chacune des limites concernées, nous avons conclu que l'augmentation de la réponse non linéaire correspondante est le conséquence du grand nombre d'états de surface qui ne sont pas liés à la topologie du système. Techniquement, cette augmentation est principalement liée à l'augmentation de la taille des poches de Fermi qui entourent les noeuds de Weyl dans cette frontière. D'autre part, les simulations réalistes réalisées par Dr. Armando Pezo, chercheur postdoctorant dans mon groupe de travail, représentent un ingrédient supplémentaire qui corrobore les prédictions faites grâce à la modélisation théorique. Ici, on observe également une dépendance au nombre de couches du dipôle de Berry pour l'un des systèmes construits à base du semi-métal Weyl type II WTe 2 . Le travail développé est une invitation à explorer d'autres systèmes similaires, avec des états de surface qui peuvent même être topologiquement triviaux, et où l'effet Hall non linéaire peut être amplifié.

Comme mentionné ci-dessus, par analogie avec l'effet Hall du premier ordre en champ électrique dans un système magnétique, l'effet Hall du second ordre en champ électrique doit être accompagné d'une aimantation qui brise la symétrie d'inversion du temps. Dans le cas de l'effet non linéaire induit par le dipôle de Berry, le candidat parfait est l'aimantation orbitale induite par le champ électrique. Cela vient du moment magnétique orbital, qui a les mêmes symétries que la courbure de Berry et qui caractérise la rotation propre du paquet d'ondes électroniques à l'intérieur de la cellule unitaire.

Dans ce travail, nous avons mis en évidence un effet Kerr non linéaire dans les systèmes symétriques et non magnétiques sans inversion, qui est un indicateur de l'effet Hall non linéaire induit par le dipôle de Berry. De plus, dans la limite de fréquence nulle, l'aimantation orbitale hors équilibre peut se décomposer en deux parties : une qui est proportionnelle au dipôle de Berry et une autre qui dépend d'un champ supplémentaire, avec les mêmes symétries que les termes détaillés ci-dessus. En particulier, nos calculs sur une bicouche de WTe 2 et sur la classe de matériaux Nb 2n+1 Si n Te 4n+2 montrent que la relation M Or b ≃ µD est valide près du gap ou de cônes inclinés de matériaux de Dirac.

L'angle de Kerr obtenu dans ce type de système constitue non seulement une signature de l'effet Hall du second ordre qui dépend du dipôle de Berry, mais il peut aussi être une preuve d'accumulation orbitale hors équilibre car en principe il ne nécessite pas d'interaction spin-orbite. D'une part, les effets calculés dans le travail sont similaires aux estimations faites sur des expériences qui détectent l'accumulation de spin dans W et Pt [4], et GaAs [5]. La différence entre l'accumulation de spin et l'accumulation orbital, qui est liée à l'effet Hall du second ordre, est illustrée dans le Figure 4. De plus, les résultats obtenus sont également comparables au cas documenté d'une monocouche de MoS 2 [6], mais sans contraintes. Les symétries du matériau peuvent en outre révéler une série d'effets qui, bien que linéaires en champ électrique, sont non linéaires en l'aimantation ou en champ magnétique. Ils sont capables d'induire des processus qui ne sont pas conventionnels et qui sont utiles non seulement pour comprendre la structure électronique du système, mais aussi comme méthodes efficaces applicables aux nanotechnologies. Parmi eux, l'un des plus prometteurs est la génération d'un couple spin-orbite qui peut induire le renversement d'aimantation en l'absence de champ magnétique externe. En supposant maintenant que nous nous intéressons à une réponse linéaire en champ électrique, mais à des ordres non linéaires en les composants de l'aimantation ou de champ magnétique, nos recherches suggèrent que des effets dépendant de la symétrie peuvent se produire. Dans ce contexte, les cristaux à symétrie trigonale sont particulièrement intéressants car sous certaines conditions la surface de Fermi se déforme. Ce phénomène est connu sous le nom de "warping" ou distorsion et a été identifié grâce à des modèles continus qui peuvent être appliqués à des matériaux topologiques tels que Bi 2 Te 3 [7].

Le travail est divisé en deux parties : D'une part, nous analysons la réponse hors équilibre de la densité de spin dans des cristaux ferromagnétiques trigonaux. Cet article, qui a été publié dans Physical Review B [8], montre qu'il existe une série de termes associés à la densité de spin qui peuvent être obtenus par l'analyse du groupe ponctuel du crystal et la méthode des invariants [START_REF] Lax | Symmetry Principles in Solid State and Molecular Physics[END_REF]. Ces champs participent au couple spin-orbite [Spin-Orbit Torque], qui est un élément crucial dans le développement des dispositifs de mémoire modernes. L'une des contributions les plus remarquables de l'expansion est le couple dit "3m", qui permet le renversement de l'aimantation du système en l'absence d'un champ magnétique externe pour l'assister. Le terme "3m" a déjà été vérifié dans le système CoPt/CuPt [START_REF] Liu | ªSymmetry-dependent field-free switching of perpendicular magnetizationº[END_REF], et il a également été prédit dans Fe 3 GeTe 2 [11]. De plus, nous avons pu conclure que les couples spin-orbite prédits ont leur origine dans la distorsion trigonale de la surface de Fermi. D'un point de vue pratique, ma participation à la recherche s'est concentrée sur la dérivation des termes d'ordre supérieur, en tenant compte de la symétrie du cristal, et à la confirmation de nos prédictions par le calcul explicite des coefficients, par la méthode de la fonction de Green, en utilisant un modèle à 2 bandes défini en 2 dimensions et qui respecte la symétrie du cristal . Le Hamiltonian microscopique du système contient un terme Rashba linéaire qui rompt la symétrie d'inversion dans le plan, et un autre terme qui représente une correction cubique du terme Rashba linéaire. C'est ce dernier qui est lié à la distorsion trigonale, qui nécessite un potentiel chimique suffisamment élevé pour se manifester, et qui est crucial pour l'émergence de couples spin-orbite non linéaires en aimantation. De plus, nous corroborons notre théorie avec des simulations numériques réalistes réalisées par le Dr. Armando Pezo, qui sont détaillées dans le corps de ce document. Dans le cas du modèle de liaisons fortes, nous présentons une illustration avec l'évolution de la surface de Fermi sur la Figure 5. C'est l'élément crucial pour comprendre la réponse du couple spin-orbite détaillée ci-dessus.

Dans le même contexte, en appliquant la même logique et organisation du travail que dans le cas du couple spin-orbite, nous avons pu montrer qu'un effet Hall impair en aimantation et en champ magnétique émerge dans ces cristaux ferromagnétiques, lorsque les champs électrique et magnétique sont colinéaires. En plus d'identifier que cette réponse est extrinsèque (ou en d'autres termes, cela dépend du désordre), nous pouvons en déduire que, comme dans le cas du couple de spin-orbite, l'effet est causé par des contributions cubiques au couplage spin-orbite et est dominant à un niveau d'énergie suffisamment élevé. A ce niveau, on observe à nouveau la distorsion trigonale de la surface de Fermi.

c. Conclusion et Perspectives

D'un point de vue général, il est important de souligner que l'exploration des effets d'ordre élevé en champ électrique et/ou magnétique est un outil qui ouvre non seulement des opportunités d'optimisation des composants électroniques actuels, Pour clore ce résumé, il convient de mentionner que notre principale perspective d'étude à court terme est l'effet Hall du troisième ordre dans le domaine électrique. Ici, l'accent est mis sur la compréhension de l'apparition d'une conductivité non nulle en fonction de la polarisabilité de la courbure de Berry [START_REF] Liu | ªBerry connection polarizability tensor and third-order Hall effectº[END_REF], dont le comportement n'est cependant pas lié à la présence de symétries d'inversion temporelles ou spatiales. Cet effet prend sa source au-delà de la courbure de Berry, en impliquant le tenseur métrique quantique. De plus, bien que certains travaux soient apparus à cet égard et que de nouvelles extensions de la théorie aient été proposées pour prendre en compte les matériaux magnétiques, une explication complète est nécessaire sur l'origine de cet effet, pour comprendre quelles sont ses principales limites et comment augmenter la réponse à une stimulation extérieure. La compréhension de cet effet élargira non seulement notre vision de certains matériaux où les effets de premier et de second ordre en le champ électrique sont interdits par symétrie, mais approfondira également notre compréhension de la structure de ces systèmes au-delá de la courbure de Berry. Ce scénario est potentiellement l'occasion de s'intéresser à des systèmes électroniques plus complexes (par exemple, des systèmes hautement corrélés) ou des isolants topologiques d'ordre élevé, pour ne citer que quelques exemples. 
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Preliminaries

Historically, the manipulation of the electron's degrees of freedom in condensed matter has been an active field of research, both theoretically and experimentally. In this context, the generation of transverse charge flows under external longitudinal perturbations pointed out by Edwin Hall [START_REF] Hall | ªOn a New Action of the Magnet on Electric Currentsº[END_REF][START_REF] Hall | ªXVIII. On the ªRotational Coefficientº in nickel and cobaltº[END_REF] is considered as a milestone finding due to the underlying mechanisms behind it. Since this discovery, the so-called Hall effect has opened the door to important repercussions in the development of new theories and applications in industry and the daily life [START_REF] Nagaosa | ªAnomalous Hall effectº[END_REF][START_REF] Ramsden | Hall-Effect Sensors: Theory and Application[END_REF][START_REF] Vanderbilt | Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators[END_REF]. With the raise of the quantum theory, the investigation of the Hall effect at the microscopic level led to the boosting on the generation of innovative electronic devices and modernizing their electric capabilities and functionalities [START_REF] Haldane | ªModel for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"º[END_REF][START_REF] Onoda | ªQuantized Anomalous Hall Effect in Two-Dimensional Ferromagnets: Quantum Hall Effect in Metalsº[END_REF][START_REF] Zhang | ªExperimental observation of the quantum Hall effect and Berry's phase in grapheneº[END_REF][START_REF] Kane | ªQuantum Spin Hall Effect in Grapheneº[END_REF][START_REF] Kane | ªZ 2 Topological Order and the Quantum Spin Hall Effectº[END_REF][START_REF] Bernevig | ªQuantum Spin Hall Effectº[END_REF][START_REF] Novoselov | ªRoom-Temperature Quantum Hall Effect in Grapheneº[END_REF][START_REF] Jungwirth | ªSpin Hall effect devicesº[END_REF][START_REF] Sinova | ªSpin Hall effectsº[END_REF].

When an external electric field ⃗

E is applied to a material, the electronic wavepacket acquires a positional shift that in the linear response regime is conducted by the Berry 1. State of the Art on Electronic Transport and Spintronics ± 1.1. Preliminaries curvature (BC) [START_REF] Thouless | ªQuantized Hall Conductance in a Two-Dimensional Periodic Potentialº[END_REF][START_REF] Berry | ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✾✽✴rs♣❛✳✶✾✽✹✳✵✵✷✸. URL: ❤tt♣s✿✴✴r♦②❛•s♦❝✐❡t②♣✉❜•✐s❤✐♥[END_REF]. Usually interpreted as a magnetic field in reciprocal space, the BC emerged naturally as a geometric quantity behind the anomalous Hall velocity imprinted on the electron. Moreover, in selected cases the flux of the BC in a closed loop takes a quantized value, in complete analogy to the geometrical phase related to the wavefunction when a particle moves around a magnetized cylinder. Such a peculiar behavior manifests itself in a wide class of systems called topological materials, including insulators and semimetals [START_REF] Hasan | ªColloquium: Topological insulatorsº[END_REF][START_REF] Armitage | ªWeyl and Dirac semimetals in three-dimensional solidsº[END_REF]. Irrespective of the topological nature of the material though, the properties of its non-equilibrium tensors are governed by the crystal symmetries. Besides, in the linear response regime, the response tensor also fulfils Onsager reciprocity. As a result, to the first order of the electric field, a Hall current only develops in the presence of time-reversal symmetry breaking, i.e., either in the presence of an external magnetic field or in materials with a net magnetic moment...or so it was thought until very recently.

Recent progress has revealed that the interplay between the geometry of the Bloch states and the symmetry properties of the crystal can lead to higher order effects that are notably different from the ones usually obtained in the linear regime [START_REF] Sodemann | ªQuantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materialsº[END_REF][START_REF] Liu | ªBerry connection polarizability tensor and third-order Hall effectº[END_REF]. A remarkable paradigm is the Hall effect. As stated above, it was believed for more than a century that anomalous Hall currents arise in materials with net magnetization, such as ferromagnets or ferrimagnets, and vanish in the absence of magnetization [START_REF] Nagaosa | ªAnomalous Hall effectº[END_REF]. Although the limitation of linear anomalous Hall effect to ferromagnets was challenged about twenty years ago with the emergence of the topological Hall effect in non-collinear antiferromagnets [START_REF] Shindou | ªOrbital Ferromagnetism and Anomalous Hall Effect in Antiferromagnets on the Distorted fcc Latticeº[END_REF][START_REF] Chen | ªAnomalous Hall Effect Arising from Noncollinear Antiferromagnetismº[END_REF], 2015 has greatly shook this conception with the experimental observation of linear anomalous Hall effect in compensated, coplanar antiferromagnets [START_REF] Nakatsuji | ªLarge anomalous Hall effect in a non-collinear antiferromagnet at room temperatureº[END_REF][START_REF] Ajaya K Nayak | ªLarge anomalous Hall effect driven by non-vanishing Berry curvature in non-collinear antiferromagnet Mn3Geº[END_REF] (see below), and most importantly for the present Thesis, with the realization that the anomalous Hall effect can emerge at the second order in the electric field in materials that do not display any magnetism but possess inversion symmetry breaking [START_REF] Sodemann | ªQuantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materialsº[END_REF][START_REF] Ma | ªObservation of the nonlinear Hall effect under time-reversal-symmetric conditionsº[END_REF][START_REF] Kang | ªNonlinear anomalous Hall effect in few-layer WTe 2 º[END_REF]. These two effects, linear and second order Hall effects, are sketched in Fig. 1.1. Therefore, higher order electronic response not only opens avenues for the exploitation of materials that do not accommodate linear response, but also appears are a powerful tool to probe the impact of the crystal symmetries on the geometry of the Bloch states.

In this Chapter, we attempt to provide a pedagogical introduction to quantum transport theory, highlighting the way crystal symmetries impact the response tensor at various orders in the external excitation. Let us begin by considering a system subjected to an external stimulus that is typically an electric field ⃗ E (and possibly, a magnetic field ⃗ B ). In addition, we can suppose that the system can display a magnetic ordering with magnetization ⃗ m. We also assume that the adiabatic limit holds, or in other words, that the evolution of the system is slow enough to be only deviated from its equilibrium state. The induced current ⃗ j follows a constitutive relation of the form

j a = σ (I ) ab ( ⃗ B , ⃗ m)E b + σ (I I ) abc ( ⃗ B , ⃗ m)E b E c + σ (I I I ) abcd ( ⃗ B , ⃗ m)E b E c E d + ..., (1.1) 
We will give more details below and in Chapter 2. 

Anomalous Hall Effect

Symmetry Considerations

Let us presume first that our sample is subjected to a linearly dependent perturbation in ⃗ E and ⃗ B . In that case, expanding Eq.(1.1) up to first order in ⃗ E we obtain

j a ≃ σ (0) ab E b + σ (1) abc E b B c + ..., (1.2) 
where σ is a tensor that has to be determined. Here, σ (0) ab is the conductivity in presence of the electric field solely and σ (1) ab is the conductivity when both ⃗ E and ⃗ B hold. Besides, subscripts with latin indexes indicate cartesian components. A priori, the Taylor expansion in Eq.(1.2) is valid as long as the electric and magnetic fields are small. It is clear that the second term in the right hand side of Eq.(1.2) corresponds to the ordinary Hall effect for a ̸ = b: The generation of a transverse in-plane current in the presence of an in-plane external electric field and an out-of plane magnetic field. On the other hand, the first term does not require an external magnetic field.

At this point, an essential ingredient of the analysis of the linear response regime in electric field is Onsager reciprocity [START_REF] Onsager | ªReciprocal Relations in Irreversible Processes. I.º In[END_REF], which is a direct consequence of the second law of thermodynamics. In his seminal work Onsager demonstrates that "The entire motion may be reversed by reversing the magnetic field together with the velocities of all the particles composing a dynamical system". Consider the average fluctuation of two dynamical variables α i and α j in a time interval τ as 1. State of the Art on Electronic Transport and Spintronics ± 1.2. Anomalous Hall Effect

A j i (τ) = lim t ′′ →∞ t =t ′′ t =t ′ α j (t )α i (t + τ)d t (1.3)
and a set of constitutive relations for their average flows ∂ t α av r = G r s ∂ α s S, where S = S(α 1 , ..., α n ). For a system in the presence of an external magnetic field ⃗ B , we have [START_REF] Onsager | ªReciprocal Relations in Irreversible Processes. II.º In[END_REF] 

A j i ( ⃗ B , τ) = A j i (-⃗ B , -t ) = A i j (-⃗ B , t ).
Then, applying the symmetry relations of A i j with the set of linear relations for an irreversible process

A j i ( ⃗ B , ∆t ) = A j i ( ⃗ B , 0) -k B ∆tG i j ( ⃗ B ), (1.4 
)

A i j (-⃗ B , ∆t ) = A i j (-⃗ B , 0) -k B ∆tG j i (-⃗ B ), (1.5) 
it can be deduced that [START_REF] Onsager | ªReciprocal Relations in Irreversible Processes. II.º In[END_REF]. Consequently, the conductivity coefficients σ ab such that j a = σ ab E b obey:

G i j ( ⃗ B ) = G j i (-⃗ B )
σ ab ( ⃗ m) = σ ba (-⃗ m). (1.6)
We combine Eq.(1.6) with the antisymmetric part of the total conductivity tensor

σ ab ( ⃗ m) = -σ ba ( ⃗ m), (1.7) 
from which

σ ab ( ⃗ m) = -σ ab (-⃗ m). (1.8)
Notice that Onsager reciprocity only holds at the linear response regime. As such, one can expect unforeseen behavior beyond this limit. In addition, the Hall effect is non-dissipative in the sense that the current related to Joule heating is parallel to the electric field. Then, the Joule heat for the Hall effect is ⃗ J H • ⃗ E = 0. Last but not least, the symmetries of the crystal also play a crucial role on the determination of the allowable responses. In this way, the outgoing current follows Neumann principle, i.e., it is invariant under a given symmetry operation A of a point group G (For more details about the symmetry analysis of linear response tensors, see [START_REF] Kleiner | ªSpace-Time Symmetry of Transport Coefficientsº[END_REF][START_REF] Kleiner | ªSpace-Time Symmetry Restrictions on Transport Coefficients. II. Two Theories Comparedº[END_REF][START_REF] Kleiner | ªSpace-Time Symmetry Restrictions on Transport Coefficients. III. Thermogalvanomagnetic Coefficientsº[END_REF][START_REF] Seemann | ªSymmetry-imposed shape of linear response tensorsº[END_REF][START_REF] Železný | ªSpin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnetsº[END_REF]). For σ (0) , for instance, we have

( ⃗ j ) ′ = A ⃗ j = ⃗ j .
(1.9)

Then (σ ⃗ E ) ′ = A σA -1 A ⃗ E A σA -1 ⃗ E = σ ⃗ E → A σA -1 = σ.
At the microscopic scale, early predicted in the work of Karplus and Luttinger [START_REF] Karplus | ªHall Effect in Ferromagneticsº[END_REF] and years later refined in terms of the Berry phase theory [START_REF] Berry | ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✾✽✴rs♣❛✳✶✾✽✹✳✵✵✷✸. URL: ❤tt♣s✿✴✴r♦②❛•s♦❝✐❡t②♣✉❜•✐s❤✐♥[END_REF][START_REF] Sundaram | ªWave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effectsº[END_REF], the anomalous Hall effect reveals the role of the material's band structure and the geometry of the 1. State of the Art on Electronic Transport and Spintronics ± 1.2. Anomalous Hall Effect electronic Bloch states on the transport properties. In simple words, the transverse current generated in the presence of the perturbative electric field is a consequence of an anomalous velocity term that is perpendicular to the electric field. As we mentioned earlier, this expression plays the role of a magnetic field in reciprocal space and is commonly known as the Berry curvature. This object is responsible of the Aharonov-Bohm effect in Quantum Mechanics, which at the same time is the first concrete evidence of the influence of topology in the physics of the wave-function [START_REF] Berry | ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✾✽✴rs♣❛✳✶✾✽✹✳✵✵✷✸. URL: ❤tt♣s✿✴✴r♦②❛•s♦❝✐❡t②♣✉❜•✐s❤✐♥[END_REF] (For a derivation of the Berry phase, see Appendix A). Importantly, the BC described is an intrinsic property of a given material that does not depend on any particular form of disorder. In contrast, there are other extrinsic terms based on similar Gauge independent quantities that are mediated by impurities such as side jump and skewscattering (See, for example, [START_REF] Nagaosa | ªAnomalous Hall effectº[END_REF][START_REF] König | ªGyrotropic Hall effect in Berrycurved materialsº[END_REF]). Nevertheless, these disorder considerations are out of the scope of this work.

Coming back to Eq.(1.2) and in absence of magnetic fields, we have j a ≃ σ ab E b . While applying inversion symmetry (x → -x) leaves the conductivity coefficients invariant, time reversal symmetry forbids any chance of Hall currents. Indeed, if we look for a current that is invariant under time reversal, hence -σ ab = σ ab . The Hall conductivity σ H is the antisymmetric part of the conductivity tensor, which leads to 2σ H = σ ab -σ ba = -σ ab + σ ab = 0. Consequently, we deduce that in any nonmagnetic material the anomalous Hall effect completely vanishes. This criteria also applies for any system where a combination between a crystal symmetry operation A and the time reversal symmetry operation restores time reversal effectively. For instance, the case of coplanar [START_REF] Shindou | ªOrbital Ferromagnetism and Anomalous Hall Effect in Antiferromagnets on the Distorted fcc Latticeº[END_REF] and non-coplanar antiferromagnets [START_REF] Chen | ªAnomalous Hall Effect Arising from Noncollinear Antiferromagnetismº[END_REF]. With the rapid innovation in quantum materials, a natural question is whether the symmetry restrictions presented here can be challenged at higher order in external impulses. Because of this reason, whereas in the next section we will introduce higher order responses in electric fields through basic symmetry considerations and the different materials under scrutiny, we will delve on the microscopic theory concerning those effects in Chapter 2.

Materials of Contemporary Interest

The anomalous Hall effect has been extensively explored in a wide variety of magnetic materials, and here we are going to exemplify a few interesting cases. In this context, the effort has been concentrated not only on the intrinsic part arising from the BC, but also on the extrinsic contributions coming from side jump and skewscattering processes. Whereas the former originates from the deflection of the average velocity when the electron interacts with the impurity and it is independent of the scattering time τ [START_REF] Berger | ªSide-Jump Mechanism for the Hall Effect of Ferromagnetsº[END_REF][START_REF] Nagaosa | ªAnomalous Hall effectº[END_REF], the latter arises on the interaction between the electrons and the impurity in the presence of spin-orbit coupling [START_REF] Berger | ªInfluence of spin-orbit interaction on the transport processes in ferromagnetic nickel alloys, in the presence of a degeneracy of the 3d bandº[END_REF].

Within the frame of ferromagnets, and besides of the well-known instances in magnetic semiconductors [START_REF] Manyala | ªLarge anomalous Hall effect in a silicon-based magnetic semiconductorº[END_REF] and Co, Fe, Ni based-materials, the latter explored 1. State of the Art on Electronic Transport and Spintronics ± 1.2. Anomalous Hall Effect experimentally to get an insight of its temperature dependence [START_REF] Ye | ªTemperature dependence of the intrinsic anomalous Hall effect in nickelº[END_REF], topological systems have gained strong attention of the community due to their peculiar band structure properties. In Weyl materials, for instance, where the electronic bands touch at "diabolic" points known as Weyl points, the anomalous Hall effect tends to be large because the BC diverges at these points, enhancing the overall linear response. One of the trending systems in this context is the Kagome semimetal Co 3 Sn 2 S 2 [START_REF] Liu | ªGiant anomalous Hall effect in a ferromagnetic kagome-lattice semimetalº[END_REF], where the intrinsic contribution has been argued as the main mechanism for the Hall conductivity, just as in the ferromagnetic Weyl semimetal (WSM) candidate PrAlGe [START_REF] Meng | ªLarge anomalous Hall effect in ferromagnetic Weyl semimetal candidate PrAlGeº[END_REF]. Nonetheless, experiments in the Van Der Waals material CrTe 2 [START_REF] Huang | ªColossal Anomalous Hall Effect in Ferromagnetic van der Waals CrTe2º[END_REF] display a skew scattering anomalous Hall effect that is one order of magnitude larger than the Berry contribution observed in Co 3 Sn 2 S 2 . Concerning the latter, it is expected that the direction of the magnetization [START_REF] Prasad Ghimire | ªCreating Weyl nodes and controlling their energy by magnetization rotationº[END_REF] and the Fermi level with respect to the Weyl point energy plays a substantial role, enhancing the anomalous Hall conductivity when they lie at the same energy. This has been demonstrated from theoretical predictions by tight-binding model calculations with out-of plane magnetization, keeping a few bands close to the Fermi level for simplicity [START_REF] Ozawa | ªTwo-Orbital Effective Model for Magnetic Weyl Semimetal in Kagome-Lattice Shanditeº[END_REF]. The calculation of the band structure and the anomalous Hall conductivity relying on the tight binding model is illustrated in Fig. 1.2. In the same context, an ongoing research demonstrates the strong tunability of the chemical potential in Co 3 Sn 2 S 2 by substituting Co by Fe or Ni [START_REF] Liu | Tuning the anomalous Nernst and Hall effects with shifting the chemical potential in Fe-dope and Ni-doped Co 3 Sn 2 S 2[END_REF]. To the best of our knowledge, the modulation of the anomalous Hall conductivity through the Fermi level has not been proved experimentally, but a signature of this property has been [START_REF] Ohno | ªMaximizing intrinsic anomalous Hall effect by controlling the Fermi level in simple Weyl semimetal filmsº[END_REF]. Surprisingly, the combined action of topology and disorder can contribute substantially to the Hall conductivity, even though there is no clear magnetic ordering in the sample. In this line, a giant anomalous Hall effect induced by skew scattering has been detected in the frustrated magnet KV 3 Sb 5 , having a Hall ratio of one order of magnitude larger than Fe [START_REF] Yang | unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5º[END_REF]. Inspired by the Haldane model, the quantum anomalous Hall effect has also been anticipated in Kagome magnets displaying flat bands [START_REF] Xu | ªIntrinsic Quantum Anomalous Hall Effect in the Kagome Lattice Cs 2 LiMn 3 F 12 º[END_REF], as in the milestone occurrence in twisted bilayer Graphene [START_REF] Tseng | ªAnomalous Hall effect at half filling in twisted bilayer grapheneº[END_REF].

Another ongoing compelling scenario pertains antiferromagnetic materials. In light of what we explained earlier, in certain types of antiferromagnets the magnetic ordering is such that an effective time reversal symmetry cannot be restored when it is combined with a lattice symmetry, giving rise to a Hall current. This was verified in certain classes of antiferromagnets with non-collinear structure [START_REF] Chen | ªAnomalous Hall Effect Arising from Noncollinear Antiferromagnetismº[END_REF][START_REF] Kubler | ªNon-collinear antiferromagnets and the anomalous Hall effectº[END_REF][START_REF] Bonbien | ªTopological Aspects of Antiferromagnetsº[END_REF], with remarkable instances including Mn 3 Sn [START_REF] Nakatsuji | ªLarge anomalous Hall effect in a non-collinear antiferromagnet at room temperatureº[END_REF], Mn 5 Si 3 [START_REF] Sürgers | ªAnomalous Hall effect in the noncollinear antiferromagnet Mn5Si3º[END_REF] and Mn 3 Ge [START_REF] Ajaya K Nayak | ªLarge anomalous Hall effect driven by non-vanishing Berry curvature in non-collinear antiferromagnet Mn3Geº[END_REF]. By ab-initio simulations and symmetry considerations, a complementary study of the anomalous Hall conductivity has been developed in the antiferromagnetic compounds Mn 3 X(X=Ge, Sn, Ga, Ir, Rh and Pt) [START_REF] Zhang | ªStrong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn 3 X (X = Ge, Sn, Ga, Ir, Rh, and Pt)º[END_REF]. Thin films of Mn 3 Sn represents a stimulating scenario, offering large Hall responses such as an anomalous Hall effect that is comparable to ferromagnetic materials [START_REF] Higo | ªLarge magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metalº[END_REF]. A picture with the results of the original experiment is depicted in Fig. 1 The anomalous Hall effect is not limited to non-collinear antiferromagnets. In fact, a spontaneous Hall effect has also been predicted and then verified experimentally in RuO 2 [START_REF] Smejkal | ªCrystal timereversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnetsº[END_REF][START_REF] Feng | ªAn anomalous Hall effect in altermagnetic ruthenium dioxideº[END_REF], a collinear antiferromagnet that is capable to break time reversal effectively by the interaction between the non-magnetic atoms, which are located in non-centrosymmetric positions. A sketch with the crystal structure and the anomalous Hall conductivity obtained from the experimental data are given in Fig. As a distinct paradigm, a large anomalous Hall conductivity can also be induced by the presence of a non-trivial magnetic texture in the system, as it has been inspected in the chiral antiferromagnet CoNb 3 S 6 [START_REF] Nirmal | ªLarge anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6º[END_REF] and in the half-Heusler antiferromagnet GdPtBi [START_REF] Suzuki | ªLarge anomalous Hall effect in a half-Heusler antiferromagnetº[END_REF]. Last but not least, exotic expressions of the anomalous Hall conductivity as a function of temperature have been reported in the centrosymmetric antiferromagnet EuAl 4 [START_REF] Shang | ªAnomalous Hall resistivity and possible topological Hall effect in the EuAl 4 antiferromagnetº[END_REF], in an identical fashion to what was documented for Fe 3 GeTe 2 [START_REF] Wang | ªAnisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe 3 GeTe 2 º[END_REF].

Linear response to an external electric field is not limited to the absence of applied magnetic fields or higher order magnetic contributions. In fact, the higher order magnetotransport can be amazingly enhanced from the right coaction between the applied fields and the internal magnetization configuration. In topological materials, the Hall field has been pointed out as a major factor in the giant magnetoresistance of the Dirac semimetal TiBiSSe [START_REF] Novak | ªLarge linear magnetoresistance in the Dirac semimetal TlBiSSeº[END_REF]. In order to explain this outcome and other experiments in Co 3 Sn 2 S 2 , it was claimed that the transport properties observed in presence of a magnetic field should a priori not only have a classical but also an anomalous origin [START_REF] Zhao | ªMagnetotransport induced by anomalous Hall effectº[END_REF]. When time reversal is broken and inversion is preserved the Dirac system becomes a WSM, and in this case the giant anomalous conductivity observed does not need to be related to the existence of Weyl nodes. A new experiment in the magnetic WSM EuCd 2 S 2 [START_REF] Cao | ªGiant nonlinear anomalous Hall effect induced by spin-dependent band structure evolutionº[END_REF] assures that the pronounce peaks in the nonlinear magnetotransport could be explained by the evolution of the band structure due to spin canting, which at the same time can be induced by an external magnetic field. The transport properties of the WSM in presence of a magnetic field can also be dictated by the presence of a large hole pocket, as it was recently checked experimentally in SrAgBi [START_REF] Hooda | ªMagnetotransport properties of the topological semimetal SrAgBiº[END_REF]. Transport measurements have also been developed in ZrTe 5 in order to 1. State of the Art on Electronic Transport and Spintronics ± 1.2. Anomalous Hall Effect understand the connection between the orientation of the applied magnetic field and the underlying Weyl physics [START_REF] Liang | ªAnomalous Hall effect in ZrTe5º[END_REF]. Beyond the appearance of Weyl points, the materials' topology could be encoded in curves in reciprocal space where the BC diverges. These systems are tagged as nodal line semimetals and have been disclosed experimentally by means of magnetotransport measurements in YbCdGe [START_REF] Laha | ªMagnetotransport properties of the correlated topological nodal-line semimetal YbCdGeº[END_REF] and CaCdSn [START_REF] Laha | ªMagnetotransport properties of the topological nodal-line semimetal CaCdSnº[END_REF].

Let us finally comment on the planar Hall effect that arises when the electric field, magnetic field and output current are coplanar. In fact, planar Hall effect is almost as old as anomalous Hall effect itself. It is rather weak and has been widely studied in transition metal alloys in the 70s [START_REF] Mcguire | ªAnisotropic magnetoresistance in ferromagnetic 3d alloysº[END_REF]. The planar Hall effect is usually associated with spin-orbit scattering and is a companion of anisotropic magnetoresistance. Interest in planar Hall effect (and anisotropic magnetoresistance) has been recently revived with the emergence of topological materials. In WSMs, theoretical works have connected the planar Hall effect with the chiral anomaly [START_REF] Nandy | ªChiral Anomaly as the Origin of the Planar Hall Effect in Weyl Semimetalsº[END_REF] (the pumping of Weyl fermions from one cone to another when both electric and magnetic fields are aligned). A schematics of the planar Hall effect and experimental results on GdPtBi [START_REF] Kumar | ªPlanar Hall effect in the Weyl semimetal GdPtBiº[END_REF] are presented in Fig. 1.5. As we will see in Chapter 5, trigonal crystals are able to display unconventional pla-1. State of the Art on Electronic Transport and Spintronics ± 1.3. Second Order Hall Effect nar Hall effect and other contributions that can be predicted by symmetry arguments. One of them, in which the electric and magnetic field are parallel between each other, has also been attributed to the chiral anomaly in magnetic WSMs [START_REF] Jiang | ªChirality-Dependent Hall Effect and Antisymmetric Magnetoresistance in a Magnetic Weyl Semimetalº[END_REF]. In this context, we will justify that a suitable microscopic source of higher order magnetotransport effects in trigonal crystals is the trigonal warping of the Fermi surface [7].

Second Order Hall Effect

Symmetries of the Conductivity Tensor

Second order Hall transport has emerged as a new avenue to explore a wide variety of non-magnetic materials. The charge current can be non-zero as soon as the system is not inversion symmetric. From the symmetry standpoint, we can understand this phenomenologically by looking at a second order current in a system that is time reversal symmetric:

j (2) a = σ (2) abc E b E c . (1.10)
Applying inversion symmetry on both sides of Eq.(1.10), we see that the left side changes sign while the right one does not, leading to the absence of second-order transport in materials with inversion symmetry. In fact, the inversion symmetry breaking must be accompanied by a mirror symmetry breaking. Next, if we apply time reversal, it is straightforward to understand that the conductivity tensor should change sign in order to obtain a non-vanishing current. For that reason, the system must induce a magnetization term out-of equilibrium that breaks time reversal in the process. This idea is sketched in Fig. 1.1. Then, Eq.(1.10) must be modified qualitatively to

j (2) a = σ ab ( ⃗ m( ⃗ E ))E b . (1.11)
Throughout the last decade, a plethora of explanations have been proposed as the microscopic origin of second order Hall transport based on Eq. (1.11). A pioneering step on this road is the definition of the Berry curvature dipole (BCD) in 2015 [START_REF] Sodemann | ªQuantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materialsº[END_REF], relying on semiclassical principles that we will discuss in Chapter 2. This perspective has been extended to study systems where particular forms of disorder are considered [START_REF] Nandy | ªSymmetry and quantum kinetics of the nonlinear Hall effectº[END_REF]. In 2016, Morimoto et al. [START_REF] Morimoto | ªSemiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetalsº[END_REF] deduced that the BCD is the leading order contribution to the second-harmonic generation in time reversal invariant materials for frequencies smaller than the band gap. In 2021, a Green function formalism was published, separating explicitly the contributions ascribed to extrinsic (side jump, skew-scattering) and intrinsic origins [START_REF] Du | ªQuantum theory of the nonlinear Hall effectº[END_REF]. One year later, a systematic study of nonlinear response tensors has been communicated, which has also helped to figure it out the genesis of second order Hall transport [START_REF] Oiwa | ªSystematic Analysis Method for Nonlinear Response Tensorsº[END_REF]. Based on this research, in 2022, the intrinsic contribution to the second order Hall effect has been studied in PT antiferromagnets [START_REF] Kirikoshi | ªMicroscopic mechanism for intrinsic nonlinear anomalous Hall conductivity in noncollinear antiferromagnetic metalsº[END_REF], i.e., antiferromagnetic systems that are invariant under the combination of inversion (parity) and time reversal symmetry. We will focus on the BCD contribution to the Hall transport in Chapter 2, with an application to Weyl semimetals in Chapter 3. In addition, we will study the connection between BCD and non-equilibrium orbital magnetization in Chapter4.

Materials Under Study

In view of Eq.(1.10) and the research developed in the context of the anomalous Hall effect, it has been necessary to construct a theory to estimate the second-order conductivity coefficients and apply these formulas to several material candidates and model systems, with the objective of tracking down the perfect conditions for experimental realizations. While in this section we give a few examples of the experimental and numerical studies on different materials and their features, in Chapter 2 we explain how the semiclassical theory gives rise to the second order conductivity coefficient and its limitations. Besides, we will also mention the extension to more complex (multiband) systems.

Taking note of these elements, several material candidates have been proposed as suitable options to obtain nonlinear Hall effect at the second order in electric field. The pioneering experiments were performed in bilayers and few layers of WTe 2 [START_REF] Kang | ªNonlinear anomalous Hall effect in few-layer WTe 2 º[END_REF][START_REF] Ma | ªObservation of the nonlinear Hall effect under time-reversal-symmetric conditionsº[END_REF]. The nonlinear Hall voltage from the experiment performed in bilayer WTe 2 [START_REF] Ma | ªObservation of the nonlinear Hall effect under time-reversal-symmetric conditionsº[END_REF] is shown in Fig. 1.6. Within the same frame, if an a.c. electric field is applied to generate the second order current, one can control its magnitude and direction with a direct current in WTe 2 [START_REF] Ye | ªControl over Berry Curvature Dipole with Electric Field in WTe 2 º[END_REF]. Then, new efficient platforms have been discovered through numerical simulations in Transition Metal Dichalcogenides [START_REF] Du | ªBand Signatures for Strong Nonlinear Hall Effect in Bilayer WTe 2 º[END_REF][START_REF] You | ªBerry curvature dipole current in the transition metal dichalcogenides familyº[END_REF][START_REF] He | ªGiant nonlinear Hall effect in twisted bilayer WTe 2 º[END_REF][START_REF] Singh | ªEngineering Weyl Phases and Nonlinear Hall Effects in T d -MoTe 2 º[END_REF][START_REF] Zhang | ªElectrically tuneable nonlinear anomalous Hall effect in two-dimensional transition-metal dichalcogenides WTe 2 and MoTe 2 º[END_REF][START_REF] Benjamin | ªHighly Tunable Nonlinear Hall Effects Induced by Spin-Orbit Couplings in Strained Polar Transition-Metal Dichalcogenidesº[END_REF], strained Graphene [START_REF] Battilomo | ªBerry Curvature Dipole in Strained Graphene: A Fermi Surface Warping Effectº[END_REF][START_REF] Pantaleón | ªTunable large Berry dipole in strained twisted bilayer grapheneº[END_REF][START_REF] Zhang | ªGiant nonlinear Hall effect in strained twisted bilayer grapheneº[END_REF], Dirac [START_REF] Satyam Samal | ªNonlinear transport without spinorbit coupling or warping in two-dimensional Dirac semimetalsº[END_REF] and Weyl semimetals [START_REF] Zeng | ªNonlinear transport in Weyl semimetals induced by Berry curvature dipoleº[END_REF][START_REF] Facio | ªStrongly Enhanced Berry Dipole at Topological Phase Transitions in BiTeIº[END_REF]. The investigation of new materials able to reach large values of nonlinear Hall effect (NLHE) has even reached non-centrosymmetric superconductors; giant nonlinear transport results have been published based on experiments in PbTaSe 2 . The measurements expose the probable role of vortex-antivortex pairs in the origin of such responses [START_REF] Itahashi | ªGiant second harmonic transport under time-reversal symmetry in a trigonal superconductorº[END_REF]. Although non-magnetic systems are the immediate options to seek for second-order currents, antiferromagnets can also exhibit such a behavior. Certain classes of antiferromagnetic materials, where time reversal is broken but can be effectively restored with a combination with a lattice translation symmetry, can also produce nonlinear transport. This fact has been suggested as a new mean to detect the Néel vector, for example, in CuMnSb [START_REF] Shao | ªNonlinear Anomalous Hall Effect for Néel Vector Detectionº[END_REF]. The corresponding BCD can be used to identify the antiferromagnetic ordering in this classes of antiferromagnets.

A key ingredient of the emergence on second-order NLHE is the engineering of inversion symmetry breaking in non-magnetic materials through mirror symmetry breaking. In a first stage, this can be identified with the space group of the crystal under study, and more specifically, by asking for a proper combination of mirror symmetries. Viewed in this way, material interfaces and heterostructures are the immediate options for this objective due to structural asymmetry. For instance, strong signatures of NLHE have been disclosed in bilayers of WTe 2 [START_REF] Du | ªBand Signatures for Strong Nonlinear Hall Effect in Bilayer WTe 2 º[END_REF], which are attributed to the interplay between the geometrical properties of the band structure and the inversion symmetry breaking produced by a gate voltage applied normal to the sample. From a microscopic perspective, the gate voltage is commonly encoded in a Rashba spin-orbit coupling term in our Hamiltonian system. In addition, the atomic structure of the system is also an essential factor that triggers inversion asymmetry in periodic crystals. Under such circumstances, for example, a polar structure is by far the simplest scenario where the NLHE can be detected both theoretically and experimentally. Indeed, researchers have been using the NLHE to uncover the polar ordering in ferroelectric materials such as LiOsO 3 [START_REF] Xiao | ªElectrical detection of ferroelectriclike metals through the nonlinear Hall effectº[END_REF], where the combination of a polar structure and electrically switchable electrical polarization establishes ferroelectric materials as remarkable prospects for optimizing the second order Hall effect. Moreover, the ferroelectricity can even promote a finite Hall current, for example, in Bi(110) monolayer [START_REF] Jin | ªEnhanced Berry Curvature Dipole and Persistent Spin Texture in the Bi(110) Monolayerº[END_REF].

Another alternative to architect second-order nonlinear transport is the application of strain. In 2D non-centrosymmetric materials with certain C n rotational symmetries, the implementation of strain immediately permits the BCD as long as the electric field is injected along the remaining mirror symmetry line. For example, experiments have been developed in monolayer MoS 2 under strain [6] in which this system is capable to create an orbital magnetization that can be detected even at room temperature. The intensity of the second-order transverse conductivity depends on the magnitude When the electric field is applied along the mirror symmetry line (green arrows), there are 3 options: (a) For a monolayer without strain, the BCD is forbidden due to the 3-fold rotation. In the case of uniaxial strain along x (b) or ŷ (c), the 3-fold rotation is subsequently broken and the distribution of the BC around the valleys K and K' (red and blue solid lines) produces a sizable BCD (orange arrows). Figure extracted and modified from [6].

Similar nonlinear effects have been studied in strained polar Transition Metal Dichalcogenides [START_REF] Benjamin | ªHighly Tunable Nonlinear Hall Effects Induced by Spin-Orbit Couplings in Strained Polar Transition-Metal Dichalcogenidesº[END_REF], where the NLHE is initially forbidden without strain. The assistance of the strain is particularly useful in materials with 3-fold rotation subjected to an in-plane electric field, emphasizing the role of the crystal deformation subjected to strong spin-orbit coupling. Disregarding the latter and lowering the crystal rotation to C 6 , for example in Graphene, non-zero Hall effects can be reached with the aid of hexagonal warping [START_REF] Battilomo | ªBerry Curvature Dipole in Strained Graphene: A Fermi Surface Warping Effectº[END_REF]. The elongation of the crystal is on top of that an everpresent effect in moiré systems -e,g. twisted bilayer Graphene, whereby a topological transition can be captured through the geometry of the quantum states [START_REF] Chakraborty | ªNonlinear anomalous Hall effects probe topological phase-transitions in twisted double bilayer grapheneº[END_REF][START_REF] Sinha | ªBerry curvature dipole senses topological transition in a moiré superlatticeº[END_REF]. 

. Symmetry Relations

With the same reasoning for the quadratic current, the third order response must follow an analogous pattern in the absence of magnetism:

j a = σ abcd E b E c E d .
(1.12)

In a system with time reversal symmetry the intrinsic third order vanishes, as in the case of the linear current, because the left side of Eq.(1.12) changes sign but the right one does not. Nevertheless, the extrinsic contribution is the leading order term of the transport. As we can see in Eq.(1.12), unlike the second order Hall effect in non-magnetic materials, inversion symmetry breaking is not the prerequisite of the third order Hall effect. As such, one does not expect the physical origin of the third order Hall effect to be simply related to the BC of the Bloch state, in contrast with its linear and second-order counterparts. Nonetheless, one of the popular (although quite recent) theories of third order Hall transport in non-magnetic centrosymmetric materials conjectures that the conductivity is driven by a quantity known as the Berry connection polarizability (BCP), which is at the same time a correction to the quantum geometric tensor [START_REF] Liu | ªBerry connection polarizability tensor and third-order Hall effectº[END_REF]. What makes third order Hall effect particularly interesting in our view is that it emerges in centrosymmetric, non-magnetic materials, i.e., in systems when neither linear nor second-order Hall exist. This opens exciting perspectives for the study of materials with very high crystal symmetries.

Investigations on Different Platforms

From an experimental standpoint, the third order current was experimentally verified in bulk Td -MoTe 2 [START_REF] Lai | ªThird-order nonlinear Hall effect induced by the Berry-connection polarizability tensorº[END_REF] and Td -TaIrTe 4 [START_REF] Wang | ªRoom-temperature third-order nonlinear Hall effect in Weyl semimetal TaIrTe4º[END_REF]. In fact, it has also been related with the orbital polarization in nanoflakes of WTe 2 [START_REF] Ye | ªOrbital polarization and third-order anomalous Hall effect in WTe 2 º[END_REF], showing the possible role of the angular momentum on third-order Hall transport. In addition, the third order Hall effect has been observed in multiterminal devices as a tool to investigate higher order quantum effects at the nanoscale level [START_REF] Wei | ªQuantum third-order nonlinear Hall effect of a four-terminal device with time-reversal symmetryº[END_REF].

It is interesting to observe that most experimental efforts (and theoretical predictions for that matter) focus on quantum materials, i.e., materials that display peculiarities in their band structures such as Weyl or Dirac nodes. In fact, the nonlinear effects we address in this Thesis do not necessarily require such behavior to be observable.

The benefits on investigating nonlinear effects are not limited to higher order responses in the electric field. Indeed, the charge transport is only one of the multiple roads where nonlinear responses can take place. In the next section, we summarize a variety nonlinear phenomena that can emanate from the flow of spin and/or angular momentum of the electron, and how their understanding can impact the magnetic properties of a vast selection of materials. 

. Spin and Orbital Currents

Spin-Orbitronics is devoted to study intrinsic degrees of freedom of the electron that are beyond its charge, namely, its angular momentum and spin properties, in order to be utilized for nanoelectronics. A central concept in this field is the spin (orbital) current, i.e., a pure, charge-neutral current of angular moment that carries information without carrying a charge. The efficient generation of spin (orbital) current via spin (orbital) Hall effect has been a major research focus over the past decade [START_REF] Tanaka | ªIntrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metalsº[END_REF][START_REF] Kontani | ªGiant Orbital Hall Effect in Transition Metals: Origin of Large Spin and Anomalous Hall Effectsº[END_REF][START_REF] Sinova | ªSpin Hall effectsº[END_REF][START_REF] Go | ªIntrinsic Spin and Orbital Hall Effects from Orbital Textureº[END_REF][START_REF] Bhowal | ªIntrinsic orbital moment and prediction of a large orbital Hall effect in two-dimensional transition metal dichalcogenidesº[END_REF].

Symmetry analysis suggests that the spin Hall effect could persist in almost any material with spin-orbit coupling and the orbital Hall effect should prevail in systems with the right atomic configuration; none of them is bound to a time reversal or inversion restriction. Moreover, Onsager reciprocity imposes that the injected current direction, the collected current direction and its spin (orbital) polarization form an orthogonal triad. Since Onsager reciprocity does not apply at the second order in electric field, the nonlinear spin (orbital) current at this level can have a polarization that is not orthogonal to the input and output current directions.

Even though the spin and orbital Hall effects are essentially ubiquitous phenomena in terms of symmetry requirements, initial investigations in 2D crystals pointed out that valley and spin currents can be produced at second order in electric field, which depends on the anisotropy of the Fermi pockets [START_REF] Yu | ªSwitching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields[END_REF]. Likewise, Araki in 2018 [START_REF] Araki | ªStrain-induced nonlinear spin Hall effect in topological Dirac semimetalº[END_REF] has asserted that the nonlinear spin Hall effect can even reach values comparable to that of the linear spin Hall effect when a topological Dirac semimetal is subjected to strain, highlighting the cooperation between the axial effective magnetic field created by strain and the momentum space topology.

Collinear antiferromagnets have also been tested theoretically as an efficient platform for second-order spin Hall effects: The origin of this phenomenon has been ascribed to a spin dependent band geometric quantity related to the antiferromagnetic ordering. This mechanism seems to not require any kind of spin-orbit coupling or spin-split band structure [START_REF] Hayami | ªNonlinear spin Hall effect in P T -symmetric collinear magnetsº[END_REF]. In addition, nonlinear orbital currents have been signalled as an instrument to identify topological transitions in non-magnetic centrosymmetric structures [START_REF] Davydova | ªSymmetry-allowed nonlinear orbital response across the topological phase transition in centrosymmetric materialsº[END_REF].

In the case that the injected and output current are parallel, the longitudinal spin or orbital current are zero at the first order in electric field in systems with time reversal symmetry. In other words, there is no way to create a longitudinal spin (orbital) current by simply applying an electric field to a non-magnetic metal. Here, and in a similar fashion as the second order Hall effect in time reversal invariant materials, a second order longitudinal current is permitted in materials with additional inversion symmetry breaking (For example, in samples with Rashba spin-orbit coupling [120, 1. State of the Art on Electronic Transport and Spintronics ± 1.5. Nonlinear Physics in Spin-Orbitronics

121]

). In this context, the assumption of the relaxation time approximation has also been reformulated up to the second order correction in the distribution function, with a particular application to identify nonlinear spin current in quantum wells with arbitrary Rashba and Dresselhaus coupling interactions [START_REF] Pan | ªNonlinear spin-current generation in quantum wells with arbitrary Rashba-Dresselhaus spin-orbit interactionsº[END_REF].

Besides their ability to convey angular momentum information, the spin and orbital Hall effects are instrumental for the electrical manipulation of the magnetization in non-magnetic/ferromagnetic bilayers via the so-called spin-orbit torque [START_REF] Sinova | ªSpin Hall effectsº[END_REF]. In the next subsection, we show that lowering the crystal symmetry of such a bilayer can lead to unconventional forms of spin-orbit torques by introducing nonlinear effects not only in electric field, but also in the magnetization direction.

Spin-Orbit Torques

In the course of this PhD, and keeping on sight our interest for nonlinear effects, we made a short detour through the field of spin-orbitronics, a field of research that exploits spin-orbit coupling for spin-charge interconversion and current-driven magnetization control. The workhorse of spin-orbitronics is, as discussed in the previous paragraph, the spin Hall effect and the interfacial Rashba effect. Both effects both give rise to the spin-orbit torques in non-magnetic/ferromagnetic bilayers [START_REF] Manchon | ªCurrent-induced spin-orbit torques in ferromagnetic and antiferromagnetic systemsº[END_REF], as sketched in Fig. 1.9(a) for instance. Until recently, most of the attention has been paid on the two the conventional components of the spin-orbit torque [START_REF] Manchon | ªTheory of nonequilibrium intrinsic spin torque in a single nanomagnetº[END_REF], called the field-like and the damping-like components. It turns out that these components, which are responsible for current-driven magnetization switching, are only the tip of the iceberg, i.e., the leading terms of the spin-orbit torque. It was realized recently that lowering the symmetry of the crystals composing the non-magnetic/ferromagnetic bilayers can lead to additional torque components of highest interest for applications such as magnetic memories.

Although linear in electric field and demanding inversion symmetry breaking, these torque components can be obtained by symmetry analysis of low symmetry crystals. In this frame, the re-evaluation of spin-orbit torques due to the symmetry of certain ferromagnets has been discussed earlier [START_REF] Amin | ªIntrinsic spin currents in ferromagnetsº[END_REF]. Later experiments verified the magnetization switching due to unexpected spin accumulations in FePt ferromagnets [START_REF] Seki | ªLarge spin anomalous Hall effect in L1 0 -FePt: Symmetry and magnetization switchingº[END_REF]. Further, low symmetry crystals captivated the attention due to numerous spin-orbit torques measured to achieve field-free switching, as illustrated in 1.9(b): Cr-based heterostructures [START_REF] Chuang | ªCr-induced Perpendicular Magnetic Anisotropy and Field-Free Spin-Orbit-Torque Switchingº[END_REF], WTe 2 [START_REF] Macneill | ªControl of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayersº[END_REF] and CoPt/CuPt bilayers [START_REF] Liu | ªSymmetry-dependent field-free switching of perpendicular magnetizationº[END_REF]. The latter exhibits what is known as the "3m" torque, a crystalline dependent term that enables field-free switching in these systems. This torque has also been predicted in Fe 3 GeTe 2 [11]. Besides, an unusual contribution has been identified in proximity to a magnetic interface [START_REF] Humphries | ªObservation of spin-orbit effects with spin rotation symmetryº[END_REF], where the spin-polarization produced is able to rotate about the magnetization. In the same spirit, the angular dependencies of the spin-orbit torques obtained in Pt/Co/MgO trilayers [START_REF] Hyung Keun Gweon | ªInfluence of MgO Sputtering Power and Post annealing on Strength and Angular Dependence of Spin-Orbit Torques in Pt/Co/MgO Trilayersº[END_REF] served as a complement to the previous work of Garello et al. [START_REF] Garello | ªSymmetry and magnitude of spin±orbit torques in ferromagnetic heterostructuresº[END_REF], and thus motivating the subsequent observation of a spin-orbit field arising on a planar Hall current [START_REF] Safranski | ªSpin±orbit torque driven by a planar Hall currentº[END_REF]. Finally, a recent article reveals higher order angular dependencies in W/CoTeB bilayer, paying specific attention to the fact that its magnitude is way larger than in the cases of Pt/Co or Ta/CoFeB [START_REF] Park | ªStrong higher-order angular dependence of spin-orbit torque in W/CoFeB bilayerº[END_REF]. In Chapter 5 we will discuss broadly the spin-orbit torques allowed by symmetry in trigonal crystals, and how one can complete the switching process of perpendicular magnet without the assistance of a magnetic field.

Invariant Theory in a Nutshell

Physical quantities related to periodic systems, such as the Hamiltonian, the charge or spin current tensor, follow Neumann principle and thus they must remain invariant under a set of symmetry operations fulfilled by the material. An efficient way to explore the new effects allowed at higher order in the external stimuli to determine the most general form of the nonlinear response tensor that obeys the symmetry operations of the system. Here we introduce the so-called Invariant Theory [START_REF] Lax | Symmetry Principles in Solid State and Molecular Physics[END_REF], a method that allows for expressing the expansion coefficients of the response tensor in terms of "invariant functions".

As an illustration, let us begin by considering a Hamiltonian H that describes (for example) a crystal subjected to certain symmetry operations that could be time reversal, inversion, mirror, rotations, etc, denoted as A i for i = 1...N . Then, if H properly describes the system, it must be invariant under the corresponding set of 1. State of the Art on Electronic Transport and Spintronics ± 1.6. Invariant Theory in a Nutshell

operations G := {A i } N i =1 .
In this case, since the Hamiltonian commutes with all the elements of G

[H , A i ] = 0 ∀i ∈ [1, N ], (1.13) 
then G is a group. Indeed, we just need to check that these elements fulfil the properties of a group. The existence of the identity is trivial and the associative property comes directly from standard Quantum Mechanics. Next,

[H , A i ] = 0 → H = A -1 i H A i = A i H A -1 i ∀i ∈ G , (1.14) thus [H , A -1 i ] = 0 and A -1
i is an element of the group. Finally, taking A 1 and A 2 in G , we have

(A 1 A 2 ) -1 H (A 1 A 2 ) = A -1 2 (A -1 1 H A 1 )A 2 , = A -1 2 H A 2 , = H . (1.15)
Having in mind that a group related to a given crystal contains elements that leave the Hamiltonian invariant, the next step is to find a way to represent them. In general, a group is completely determined by its multiplication table, showing us the way that the symmetry elements of the group are related between them. Going one step forward, each one of these operations can be characterized by a matrix, and the full set of elements in a given group is a matrix representation of the symmetry group under consideration. This is also called an algebra and is a set of matrices D(R) that follows the multiplication table of the group:

D(R)D(S) = λ(R, S)D(RS). (1.16)
where λ(R, S) are numerical factors compatible with the associativity of the elements of the group. For example, the case λ = 1 defines an ordinary group. As we expect at this point, there are an infinite set of matrices that are equivalent representations of the group. Explicitly, if X is any square matrix with the same dimension as D(R), then X D(R)X -1 respects the same algebra as D(R). This is also called an equivalent representation of the group, and a series of these transformations could lead to an irreducible representation of the group D j (R) for each j , being

D(R) = D 1 (R)⊗D 2 (R)⊗ D 3 (R)⊗.
.. written in a diagonal form and ⊗ referring to the direct sum. For practical applications, we require to elucidate how to represent a given group in terms of a set of basis functions. Let us take an arbitrary group G with symmetry operators E , A, B,C , etc., and a function ψ(⃗ x) on which the operators can act. The set of g functions E ψ(⃗ x), Aψ(⃗ x), B ψ(⃗ x), etc. are invariant under G thinking that any operation R ∈ G just rearrange the previous set of functions. Moreover, the space ρ of functions

φ = c 1 E ψ + c 2 Aψ + c 3 B ψ + ... (1.17)
1. State of the Art on Electronic Transport and Spintronics ± 1.6. Invariant Theory in a Nutshell is invariant under G , keeping in mind that Rφ ∈ ρ ∀R ∈ G . This set of functions may not be all independent between each other and thus they do not form a basis, but we can choose a smaller set of µ independent functions ψ µ , with µ ≤ g , such that

φ = µ c µ ψ µ . (1.18)
Again, if we use the invariance of ρ under G , one can prove that any element S ∈ G over a function ψ ν can be written as a linear combination of the functions ψ µ :

Sψ ν = ψ µ D µν (S), (1.19) 
being D µν (S) coefficients that are functions of S. In view of Eq.( 1. [START_REF] Onoda | ªQuantized Anomalous Hall Effect in Two-Dimensional Ferromagnets: Quantum Hall Effect in Metalsº[END_REF]), it can be stated that any set of functions ψ µ spanning a space ρ that is invariant under G constitutes a matrix representation of the group through D µν (S). Following the algebraic properties of the group, we just need to show that the operator RS can be represented by the matrix D(R)D(S). Applying the operator R to the left side of Eq.(1.19), we have

RSψ ν = (Rψ ν )D µν (S) = ψ λ D λµ (R)D µν (S) = ψ λ D λν (RS), (1.20) 
and then D λν (RS) = D λµ (R)D µν (S). In fact, if we want to fix that the basis functions are orthonormal (which assumes that the space gathering the functions are accompanied by a dot product), hence

D µν (S) = ψ µ Sψ ν . (1.21)
Basis functions are a representation of a subspace in a given symmetry group, and they are summarized in the different character tables that can be found in the literature. Nevertheless, it is important to understand where they come from, specially because they play a pivotal role on determining the general form of a response tensor up to a given order in external impulses. We want to illustrate what we learned in order to obtain basis functions for the different representations of the symmetry group C 3v , which indeed will be relevant for the discussion of the physics of trigonal crystals in Chapter 5. The aforementioned group only involves a 3 fold rotation C 3 and a mirror symmetry normal to ( x, ẑ) or ( ŷ, ẑ) σ v . As a first scenario, in regular cylindrical coordinates (r, θ, z) it is clear that r and z are invariant under C 3 and σ v . Consequently, any function ψ of the form f (r, z) can only be accounted for by a function f (r, z). Since Sψ = ψ we arrive at the identity representation that can be expressed as D µν (S) = δ µν .

Secondly, let us take a function of the form ψ = x 2 e -r . It is straightforward to notice that e -r is invariant under C 3 and σ v , so it can be excluded from the upcoming analysis. Under the operation R, we notice that the polynomials of degree 2 Rψ can 1. State of the Art on Electronic Transport and Spintronics ± 1.6. Invariant Theory in a Nutshell be expressed as combinations of ψ 1 = x 2 , ψ 2 = y 2 and ψ 3 = x y. Taking into account the matrix representation for C 3 and σ v normal to, say, x:

T (C 3 ) = 1 2 1 -3 3 -1 , (1.22) S(σ v ) = -1 0 0 1 , (1.23) 
and the transformations

⃗ x ′ = ⃗ xT and ⃗ x ′ = ⃗ xS, a three dimensional representation can be written in the form [(x ′ ) 2 , (y ′ ) 2 , 2x ′ y ′ ] = [x 2 , y 2 , 2x y][D(R)],
where

D[S] =   1 0 0 0 1 0 0 0 -1   , (1.24 
)

D[T ] = 1 4    1 3 2 3 3 1 -2 3 -3 3 -2    . (1.25)
Let us try to write a representation that can be expressed in a diagonal form. In its normalized version, we can take the mapping

[x, y] → [cos φ, sin φ], φ ∈ [0, 2π].
Then, x 2 → cos 2 φ and y 2 → sin 2 φ, which are not orthogonal in the sense of the dot product f (φ) g (φ) = 2π 0 f * (φ)g (φ)d φ. Within the same context, on the contrary, x 2 + y 2 → 1 and x 2y 2 → cos 2φ are. Moreover, x 2 + y 2 is invariant under T (C 3 ) and S(σ v ). Therefore, we can use the vectors 2x y → sin 2φ and x 2y 2 → cos 2φ to span a subspace that is orthogonal to x 2 + y 2 . Our full representation is given by

[(x ′ ) 2 + (y ′ ) 2 , 2x ′ y ′ , (x ′ ) 2 -(y ′ ) 2 ] = [x 2 + y 2 , 2x y, x 2 -y 2 ]D[R] (1.26)
with

D[S] =   1 0 0 0 -1 0 0 0 -1   , (1.27 
)

D[T ] = 1 2   1 0 0 0 -1 -3 0 3 -1   . (1.28)
The generators defined in Eqs. In the definition of a character table, the behavior of the basis function under different classes of symmetry operations are classified by their so-called "characters". For a given representation D(R), its character is defined as its trace:

χ(R) = µ D µµ (R).
(1.29)

Having in mind all these ingredients, we can read a character table by following a few rules. Here, each row indicates an irreducible representation of the group. Since the group can be divided in classes, each column of the table is related to a class and the characters assign a number for each representation in that class. For instance, in Table 5.1 for the C 3v point group, A 1 , A 2 and E are the irreducible representations of the group. E , C 3 and σ v are the classes in which the group is subdivided and they give us the different symmetry operations concerning the group. In addition, the number accompanied them symbolizes the number of elements in the class. Then, since the character of the identity representation is the trace of an unit matrix, we can read the dimension of the representation from the character table. For the sake of the invariance of a given physical quantity, the remaining terms that are relevant have characters that are 1 or -1.

Motivation and Scope of the Work

The fundamental symmetries observed in the distinct classes of quantum materials are imprinted on their electronic properties. As such, nonlinear effects provide new information about these features because they obey different symmetry constraints. Moreover, The emergent characteristics obtained through these quantities are not only applicable to offer new functionalities in nano-electronics, but they also expand our knowledge on the electronic structure of quantum materials. For all of these reasons, in this doctoral Thesis we aim to explore two categories of nonlinear effects: anomalous Hall and magnetotransport, which are currently relevant in electronic transport and spintronics, and that stem from higher order contributions in electric fields and magnetization (or magnetic fields).

Firstly, due to the ongoing interest on the second-order NLHE driven by the BCD, we investigate the corresponding conductivity coefficients in a lattice model that describes a WSM. It was expected that large values of BCD appear here because of the divergencies in the BC and the highly dispersive energy bands, but there was a lack of understanding about the contribution of Fermi arcs and other surfaces states to the BCD, and whether topology is a crucial factor to enhance the NLHE. In Chapter 3, we demonstrate how the surface states at the different faces of our system impact the BCD, putting a special emphasis on the interplay between the Weyl cone tilting and the band filling. The BCD components are strongly related to the mirror symmetries of the system, but as we will see in Chapter 3, it is possible to retrieve the contribution Secondly, in Chapter 4 we explain the generation of the second order non-equilibrium orbital magnetization in non-magnetic materials with non-centrosymmetric structure through the magneto-optical Kerr effect, showing that is proportional to a frequency dependent BCD. Since it only requires inversion symmetry breaking, this magnetooptical can be considered as a probe of the orbital accumulation, even in the absence of spin-orbit coupling. Finally, In Chapter 5 we study unconventional spin-orbit torques and anomalous Hall effects in trigonal crystals that can be predicted from the Invariant Theory. We demonstrate the emergence of these responses and their corresponding origin at the microscopic level, showing the relevance of cubic contributions to the spin-orbit coupling and a proper band filling.

A Pedagogical Introduction to

Electronic Transport Theory Summary Having in mind the repercussions of the theoretical studies to the discovery of new material platforms and innovative electro-optical effects for the ongoing and future nanoscience, in this chapter we introduce the electronic transport theory for the instances of first, second and third order in the electric field. We concentrate our treatment on semiclassical considerations combined with a simplified description of the disorder. For the sake of completeness, we also summarize the main results obtained from the equations of motion of the wave-packet center, and a multiband formalism arising on the Green function formula. We will carry on our arguments in the context of the generation of charge currents, but as we will see, this can be easily extended to other non-equilibrium properties such as the spin polarization, which has enormous implications in memory and logic devices.

As a first step, we will address linear response in electric field, and discuss how the inclusion of magnetic fields or an intrinsic magnetic ordering permits to unlock new physics related to the behavior of the electrons in the sample. Then, we address the nonlinear response regime keeping on sight our motivation to overcome the barriers imposed by the symmetry constraints of the linear regime. Then, throughout this report we will illustrate how this knowledge has been uncovered in the last 10 years, the way these effects can be enhanced and under which conditions they could take place. We present plethora of scenarios where a higher order effect in electric or magnetic field can offer unprecedented opportunities for the evolution of material science and nanotechnology. 

Linear Response in Electric Field

Semiclassical Formalism

Let us consider a periodic system subjected to an external electric field ⃗ E in the adiabatic limit. Here, the ground state of the system is slightly corrected, which can be explained from Bloch theory's point of view [START_REF] Blount | ªFormalisms of Band Theoryº[END_REF]. Then, the output current in periodic crystals can be readily computed from the so-called Bloch Hamiltonian H k , whose electronic eigenstates are Bloch states |u nk 〉 satisfying Schrodinger equation H k |u nk 〉 = ϵ nk |u nk 〉, where ϵ nk are the eigenergies of the system. In general, the Bloch Hamiltonian is described through its eigenenergies and eigenvectors as a function of the crystal momentum and the band index n. The velocity operator, in the absence of any external perturbation, reads

vk = ⃗ ∇ k H k . (2.1)
Subsequently, the electronic current in the material is the average value of the velocity operator after summing over all the energy bands:

⃗ j = - e ℏ B Z d D k (2π) D n 〈u nk | vk |u nk 〉 g nk (ϵ nk -µ), (2.2) 
where D is the dimension of our crystal (D = 2, 3), µ is the chemical potential, e > 0 is the magntiude of the electronic charge and g nk (ϵ nk -µ) is the Fermi distribution function. Throughout this manuscript we fix our calculations in the zero temperature limit, implying that the equilibrium distribution f nk (ϵ nk -µ) → -Θ(ϵ nk -µ), being Θ(x) the Heaviside step function. Within this assumption we neglect all possible effects arising from thermal fluctuations. Now let us suppose that an external electric field ⃗ E is applied to the sample. Since the Bloch eigenstates are slightly perturbed from their equilibrium value, an additional shift in the average current will be induced in Eq.(2.2). We can take into account this modification by applying time independent perturbation theory with respect to the equilibrium Bloch eigenstates, say, |u nk 〉.

Setting the perturbation as δH = e ⃗ E • x in the length gauge, where x is the position operator, the first order perturbation to the Bloch eigenstates under the presence of this electric field is

u (1) nk = m̸ =n 〈u mk | δH |u nk 〉 (ϵ nk -ϵ mk ) |u mk 〉 . (2.3)
Next, we need to evaluate the terms related to the position operator coming from the perturbative expansion coming from Eq.(2.2). That being said, we write the position operator as x = xi + xe , where xi ( xe ) is the intraband (interband) part of the position operator. Its matrix elements in the Bloch basis are [START_REF] Aversa | ªNonlinear optical susceptibilities of semiconductors: Results with a length-gauge analysisº[END_REF] 2. A Pedagogical Introduction to Electronic Transport Theory ± 2.1. Linear Response in Electric Field

〈u nk | xi |u mk 〉 = δ nm [ ⃗ A nn + i ⃗ ∇ k ], (2.4 
)

〈u nk | xe |u mk 〉 = (1 -δ nm ) ⃗ A nm , (2.5) 
where ⃗ A nm is called the Berry connection

⃗ A nm = i 〈u nk | ⃗ ∇ k |u mk 〉 . (2.6)
Setting the position operator in Eqs.(2.4-2.5), a fundamental ambiguity becomes visible for the intraband part [START_REF] Aversa | ªNonlinear optical susceptibilities of semiconductors: Results with a length-gauge analysisº[END_REF]. As we can see from Eq.(2.4), this is because of the ambivalence in the Berry connection for n = m. We can obtain a representation of Eq.(2.6) for n ̸ = m in the parallel transport Gauge with the identity:

H k |u nk 〉 = ϵ nk |u nk 〉 , ⃗ ∇H k |u nk 〉 + H k ⃗ ∇u nk = ⃗ ∇ϵ nk |u nk 〉 + ϵ nk ⃗ ∇u nk .
Applying 〈u mk | on both sides of the previous equation, we have

〈u mk | ⃗ ∇H k |u nk 〉 + ϵ mk u mk ⃗ ∇u nk = ⃗ ∇ϵ nk 〈u mk |u nk 〉 + ϵ nk u mk ⃗ ∇u nk
If n = m, we retrieve the identity for the velocity operator

〈u nk | vk |u nk 〉 = ⃗ ∇ k ϵ nk .
(2.7)

In contrast, for n ̸ = m, we obtain

u mk ⃗ ∇ k u nk = 〈u mk | vk |u nk 〉 ϵ nk -ϵ mk . (2.8)
This Gauge is effective in situations where we can avoid band degeneracies, being capable to capture the essential physics of the system [START_REF] Blount | ªFormalisms of Band Theoryº[END_REF]; If that is not possible, such as in more realistic scenarios, a different Gauge should be used (In general, the velocity Gauge is quite instrumental).

Regarding g nk , it is clear that it also deviates from the equilibrium as we apply the perturbation. The modification in the distribution can be taken into account by means of the Boltzmann equation, which we consider in the relaxation time approximation for simplicity. Here, the corrections to g nk follow the identity

τ∂ t g nk + τ ⃗ k • ⃗ ∇g nk = f nk -g nk , (2.9) 
where τ = ℏ 2Γ is the constant scattering time and Γ is a homogeneous disorder parameter related to random impurities. The electron experiences a force ⃗ k = -e ⃗ E ℏ . At the first order, we apply the ansatz 2. A Pedagogical Introduction to Electronic Transport Theory ± 2.1. Linear Response in Electric Field

g nk = f nk -f (1) nk (2.10)
and we assume that f (1) nk vanishes as ⃗ E . Therefore, we deduce that

f (1) nk = - eτ ⃗ E • ⃗ ∇ f nk ℏ . (2.11)
With all these ingredients, the current at linear order in ⃗ E is given by

⃗ j = - e ℏ B Z d D k (2π) D n {〈u nk | vk |u nk 〉} f (1) nk + u (1) nk vk |u nk 〉 + 〈u nk | vk u (1) nk f nk = ⃗ j I + ⃗ j I I .
(2.12)

Let us discuss about the two terms in Eq.(2.12) and the physics behind them. First, ⃗ j I is a current proportional to τ, thus diverging in the weak disorder limit. We can write ⃗ j I in the form

⃗ j I = e 2 τ ℏ B Z d D k (2π) D n 〈u nk | v |u nk 〉 [〈u nk | ⃗ E • v |u nk 〉]∂ ϵ nk f (ϵ nk -µ). (2.13)
The previous equation is considered as the extrisinc contribution to the current, being also a Fermi surface quantity. Besides, it is responsible for the longitudinal conductivity, which is a part of the total outgoing current that is parallel to the direction of the injected one, constituting a dissipative part of the current; nevertheless, and as we will check in Chapter 5, we can demonstrate that it can play a role in magnetotransport phenomena under certain symmetry constraints. An exemplary case for the latter is the planar Hall effect. Second, under the same assumptions about scattering time and disorder on ⃗ j I I , we have for the velocity along the a direction when the ⃗ E is along b:

〈u nk | vk u (1) nk a + u (1) nk vk |u nk 〉 a = eE b m̸ =n 〈u nk | vk |u mk 〉 a 〈u mk | x b |u nk 〉 + 〈u mk | vk |u nk 〉 a 〈u nk | x b |u mk 〉 ϵ nk -ϵ mk = eE b m̸ =n 〈u nk | vk |u mk 〉 a 〈u mk | i ∂ b |u nk 〉 + 〈u mk | vk |u nk 〉 a 〈u nk | i ∂ b |u mk 〉 ϵ nk -ϵ mk = i eE b m̸ =n 〈u nk | vk |u mk 〉 a 〈u mk | vk |u nk 〉 b -〈u mk | vk |u nk 〉 a 〈u nk | vk |u mk 〉 b (ϵ nk -ϵ mk ) 2 = eϵ abc E b [Ω nk ] c , (2.14) 
where ⃗ Ω nk is the electronic BC of band n [START_REF] Nagaosa | ªAnomalous Hall effectº[END_REF] 2. A Pedagogical Introduction to Electronic Transport Theory ± 2.1. Linear Response in Electric Field

⃗ Ω nk = i m̸ =n 〈u nk | vk |u mk 〉 × 〈u mk | vk |u nk 〉 (ϵ nk -ϵ mk ) 2 . (2.15)
Remarkably, in Eq.(2.15) only interband elements of the Berry connection participate because m ̸ = n. Then, we can directly choose the parallel transport Gauge. Therefore, the so-called anomalous Hall current, which is linear in the applied electric field, is given by

⃗ j I I = - e 2 ℏ B Z d D k (2π) D n ( ⃗ E × ⃗ Ω nk ) f (ϵ nk -µ). (2.16)
At this point, we should mention that the BC is a band structure quantity that emerges when the electric field perturbs the initial ground state(at least, when linear contributions in the electric field are taken into account. Let us maintain the question of higher order responses on hold for a moment). From a geometrical viewpoint, the BC leads to the non-commutativity of the position operator in periodic structures, which is at the heart of our ongoing knowledge of electronic transport theory [START_REF] Bérard | ªMonopole and Berry phase in momentum space in noncommutative quantum mechanicsº[END_REF].

The previous equation states that the anomalous Hall conductivity at the first order in electric field is a Fermi sea property, just requiring an integration below the Fermi surface. In addition, it is intrinsic because it produces a finite conductivity in the weak disorder limit. One can treat this term without considering any particular mechanism such as side-jump or skew scattering, by including a constant broadening term at the denominator of Eq.(2.15). From a microscopic perspective, let us mention a few symmetry properties about the behavior of the BC: the electronic BC is an axial vector in reciprocal space, and hence it is odd under time reversal symmetry T and even under inversion symmetry P :

P Ω nk P -1 = Ω n-k , (2.17) 
T

Ω nk T -1 = -Ω n-k . (2.18)
As we discussed in the previous section, the Hall current emerges if time reversal symmetry is effectively broken. Then, it is natural to associate some sort of equilibrium magnetization to the anomalous Hall effect. Although magnetization possesses both spin and orbital contributions, the part that is intimately connected to the anomalous Hall effect is the orbital magnetization, i.e., the magnetic moment associated with the rotational motion of the electron wave packet in the unit cell. The orbital magnetization is defined in the Bloch eigenbasis as [START_REF] Xiao | ªBerry Phase Correction to Electron Density of States in Solidsº[END_REF][START_REF] Thonhauser | ªTheory of Orbital Magnetization in Solidsº[END_REF] Notice that the Kubo identities for the orbital magnetic moment and the BC just differ by a factor proportional to the energy ∼ (ϵ nk -ϵ mk ) -1 . In systems with particlehole symmetry, or near the band gap in selected cases, the orbital moment can be explicitly connected to the BC [START_REF] Xiao | ªValley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transportº[END_REF]. In fact, both objects resemble a magnetic field or an angular velocity in reciprocal space.

⃗ m nk = - e 2ℏ 〈u nk | x × v |u nk 〉 = i e 2ℏ m̸ =n 〈u nk | vk |u mk 〉 × 〈u mk | vk |u nk 〉 ϵ nk -ϵ mk . ( 2 
For the sake of completeness, we point out that another, formally equivalent, approach to model Hall transport is the semiclassical transport theory that tracks the equation of motion of the center of mass of the electron wave packet. The theory was initialized by Sundaram and Niu in 1999 [START_REF] Sundaram | ªWave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effectsº[END_REF] and refined by Xiao and coworkers in 2005 [START_REF] Xiao | ªBerry Phase Correction to Electron Density of States in Solidsº[END_REF], involving a lagrangian formulation of the electron's motion. The equations of motion of the wavepacket center, neglecting non-abelian contributions and to the first order in electric field, can be written in the following form for a given band n

⃗ x n = D( ⃗ B , ⃗ Ω nk ) ℏ ⃗ v nk + e ⃗ E × ⃗ Ω nk + e ℏ (⃗ v nk • ⃗ Ω nk ) ⃗ B , D( ⃗ B , ⃗ Ω nk ) = 1 + e ⃗ B • ⃗ Ω nk ℏ -1 , (2.20) ⃗ k n = D( ⃗ B , ⃗ Ω nk ) ℏ -e ⃗ E - e ℏ ⃗ v nk × ⃗ B - e 2 ( ⃗ E • ⃗ B ) ⃗ Ω nk ℏ , (2.21) 
where ⃗

x n is the electron's velocity and ⃗ k n is the force experienced by the electron subjected to an external electric and/or magnetic field. An interesting element of this theory is the inclusion of the function D( ⃗ B , ⃗ Ω k ) that describes the modification of the density of states in the crystal, maintaining the validity of Liouville's theorem [START_REF] Xiao | ªBerry Phase Correction to Electron Density of States in Solidsº[END_REF]. Remarkably, this term vanishes when the magnetic field and the BC are orthogonal between them. The average current formula thus incorporates a scaling factor D -1 ( ⃗ B , ⃗ Ω k ), which turns out to be relevant for the studies of magnetotransport phenonema and unconventional responses in quantum materials:

⃗ j = - e ℏ n B Z d D k (2π) D D -1 ( ⃗ B , ⃗ Ω nk ) f nk ⃗ v nk . (2.22)
Let us now concentrate on the so-called orbital magnetization ⃗ M or b . In the grandcanonical ensemble we have

ϵ M = ϵ k -⃗ m k • ⃗ B -µ
for every n in the Bloch basis, and thus the average energy is 

E = d D k (2π) D 1 + e ⃗ B • ⃗ Ω k ℏ (ϵ 0 -⃗ m k • ⃗ B -µ). ( 2 
⃗ m = -lim ⃗ B →0 ∂E ∂ ⃗ B = -lim ⃗ B →0 d D k (2π) D e ⃗ Ω k ℏ (ϵ 0 -⃗ m k • ⃗ B -µ) -1 + e ⃗ B • ⃗ Ω k ℏ ⃗ m k = d D k (2π) D e ⃗ Ω k ℏ (µ -ϵ 0 ) + ⃗ m k . (2.24)
Subsequently, the previous equation can be easily extended to a system of n bands [START_REF] Xiao | ªBerry Phase Correction to Electron Density of States in Solidsº[END_REF][START_REF] Thonhauser | ªTheory of Orbital Magnetization in Solidsº[END_REF]]

⃗ m or b = n B Z d D k (2π) D e ⃗ Ω nk ℏ (µ -ϵ nk ) + ⃗ m nk f nk . (2.25)
From Eq.(2.25), the equilibrium orbital magnetization accompanies the anomalous Hall effect because the orbital magnetic moment and the BC share the same symmetry constraints. As we will also see in section 2.2 for the second order Hall effect, a currentinduced magnetization will also coexist with the Hall current as long as inversion symmetry is broken. In this way, the non-equilibrium orbital magnetization created (among others) by the electric field can be applied as a probe of the second-order Hall effect for a non-magnetic material without inversion symmetry.

Green Function Formalism

Whereas the semiclassical transport theory can explain several observables (including disorder effects) when the collision integral is computed appropriately, the Green function formalism contains the information about the extrinsic contributions through the self-energy Σ. Since it is written in terms of matrices and we do not deal with an explicit representation of the diagonal terms of the Berry connection, this representation is particularly suitable to multi-band problems, where band degeneracies are more likely to appear in the band structure. In the context of linear response theory, this approach is based on the Green function formalism [START_REF] Crépieux | ªTheory of the anomalous Hall effect from the Kubo formula and the Dirac equationº[END_REF]. A suitable way to get the identities is through the Keldysh technique, which we summarize here by starting with the Dyson equations in the presence of a uniform electric field [START_REF] Onoda | ªQuantum transport theory of anomalous electric, thermoelectric, and thermal Hall effects in ferromagnetsº[END_REF][START_REF] Onoda | ªTheory of Non-Equilibirum States Driven by Constant Electromagnetic Fields: Ð Non-Commutative Quantum Mechanics in the Keldysh Formalism к[END_REF]:

G R ⊗ (ϵ -H -Σ R ) = 1, (2.26) G R ⊗ (Σ < ⊗G A ) = G < , (2.27) 
where G R(A) are the retarded and advanced Green functions, ϵ is the transport energy, H is the Hamiltonian and Σ R(A) are the corresponding self-energies, which contain information about the disorder in our system. Here our objective is to find G < up to the first order in perturbation. Fixing the calculation in the Gauge invariant setup for 2. A Pedagogical Introduction to Electronic Transport Theory ± 2.1. Linear Response in Electric Field the coordinates (x, p), ⊗ is defined as the Moyal product between two operators A and B:

A ⊗ B(x, p) = A (x, p)e i ℏ 2 ( ← -- ∂ x µ --→ ∂ p µ - ← -- ∂ p µ --→ ∂ x µ -eF µν ← -- ∂ p µ --→ ∂ p ν ) B(x, p) (2.28)
through the convolution between the spatial and temporal variables of the problem. In Eq.(2.28), F µν is the Maxwell tensor and ← -∂ ( -→ ∂ ) indicates the derivative applied to A (B). For the case of a constant electric field, the Moyal product in the energymomentum space (ϵ, ⃗ p) takes the form [START_REF] Onoda | ªTheory of Non-Equilibirum States Driven by Constant Electromagnetic Fields: Ð Non-Commutative Quantum Mechanics in the Keldysh Formalism к[END_REF] A

(ϵ, p) ⊗ B(ϵ, p) = A (ϵ, p)e -i eE ℏ 2 ( ← - ∂ ϵ -→ ∂ p - ← - ∂ p - → ∂ ϵ ) B(ϵ, p), (2.29)
which at the linear order can be approximated to

A (ϵ, p) ⊗ B(ϵ, p) ≃ A (ϵ, p) 1 - i eE ℏ 2 ( ← - ∂ ϵ -→ ∂ p - ← - ∂ p - → ∂ ϵ ) B(ϵ, p). (2.30)
Besides, we expand the Green function in the form

G R(A) = G R(A) 0 +G R(A) E . (2.31) 
keeping terms proportional to ℏ. At zeroth order and setting Σ = Σ(ϵ), assuming that the scattering is governed by delta impurities, we have

G < 0 = G R 0 Σ < 0 G A 0 = (G A 0 -G R 0 ) f (ϵ), (2.32) G R 0 = (ϵ -H -Σ R 0 ) -1 , (2.33) 
Σ < 0 = (Σ A 0 -Σ R 0 ) f (ϵ), (2.34) 
where f (ϵ) is the equilibrium distribution function. At the first order and defining

∂ p H = ℏ -1 v0 , we deduce that G R E = - i eE ℏ 2 ∂ p (G R 0 )∂ ϵ (G R 0 ) -1 -∂ ϵ (G R 0 )∂ p (G R 0 ) -1 G R 0 = i eE 2 G R 0 [G R 0 , v0 ]G R 0 , (2.35 
)

G < E = G R E Σ < 0 G A 0 +G R 0 Σ < 0 G A E - i eE ℏ 2 G R 0 ← - ∂ ϵ -→ ∂ p - ← - ∂ p - → ∂ ϵ Σ < 0 G A 0 = G R E Σ < 0 G A 0 +G R 0 Σ < 0 G A E - i eE ℏ 2 (∂ ϵ G R 0 )Σ < 0 (∂ p G A 0 ) -(∂ p G R 0 )Σ < 0 (∂ ϵ G A 0 ) - i eE ℏ 2 G R 0 (∂ ϵ Σ < 0 )(∂ p G A 0 ) -(∂ p G R 0 )(∂ ϵ Σ < 0 )G A 0 . (2.36)
Taking into account that the current along the a direction is given by 2. A Pedagogical Introduction to Electronic Transport Theory ± 2.1. Linear Response in Electric Field

j a = - e 4πi ℏ d ϵ Tr va ,G < (2.37)
and in light of Eq.(2.36), the Fermi surface contribution to the the non-equilibrium current coming from G < (∼ ∂ ϵ f (ϵ)), up to first order in electric field applied into the b direction, is

G < E xt = - i eE ℏ 2 G R 0 (∂ ϵ Σ < 0 )(∂ p G A 0 ) -(∂ p G R 0 )(∂ ϵ Σ < 0 )G A 0 = - i eE 2 G R 0 v0 (G R 0 -G A 0 ) + (G A 0 -G R 0 ) v0 G A 0 ∂ ϵ f (ϵ), (2.38) 
hence the Fermi surface conductivity is

σ E xt ab = e 2 8πℏ d ϵ∂ ϵ f (ϵ) Tr va ,G R 0 vb (G R 0 -G A 0 ) + (G A 0 -G R 0 ) vb G A 0 = e 2 4πℏ d ϵ∂ ϵ f (ϵ) Tr va , Re(G R 0 vb (G R 0 -G A 0 )) = e 2 2πℏ d ϵ∂ ϵ f (ϵ) Re Tr vb G R 0 va (G R 0 -G A 0 ) (2.39) 
If we focus on the Fermi sea terms (∼ f (ϵ)), its G < part turns out to be

G < I nt = G R p Σ < 0 G A 0 +G R 0 Σ < 0 G A p - i eE ℏ 2 (∂ ϵ G R 0 )Σ < 0 (∂ p G A 0 ) -(∂ p G R 0 )Σ < 0 (∂ ϵ G A 0 ) = i eE ℏ 2 ∂ ϵ G R 0 -G R 0 v0 ∂ ϵ G R 0 -∂ ϵ G A 0 v0 G A 0 +G A 0 v0 ∂ ϵ G A 0 - i eE 2 G R 0 G R 0 v0 G A 0 +G R 0 v0 G A 0 G A 0 -G R 0 v0 G R 0 G A 0 -G R 0 G A 0 v0 G A 0 . (2.40)
Therefore, after discarding the resulting imaginary terms from Eq.(2.40), the corresponding conductivity is

σ I nt ab = e 2 2πℏ d ϵ f (ϵ) Re Tr vb G R 0 va ∂ ϵ G R 0 -vb ∂ ϵ G R 0 va G R 0 . ( 2 

.41)

During this work, we consider a symmetrized version of these formulas for the linear conductivities [START_REF] Bonbien | ªSymmetrized decomposition of the Kubo-Bastin formulaº[END_REF], which are given by 2. A Pedagogical Introduction to Electronic Transport Theory ± 2.2. Quadratic Response in Electric Field

σ E xt ab = e 2 4πℏ d ϵ∂ ϵ f (ϵ) Re[Tr vb (G R -G A ) va (G R -G A ) ],
(2.42)

σ I nt ab = e 2 2πℏ d ϵ Re[Tr vb (G R -G A ) va ∂ ϵ (G R +G A ) ]. (2.43)
Let us comment about the physics behind Eqs.(2.42-2.43). The first equation is the extrinsic contribution to the conductivity. In the relaxation time approximation combined with a weak disorder limit Γ, Eq.(2.42) can be written in the form of a Kubo identity by using Eq.(5.26) [START_REF] Bonbien | ªSymmetrized decomposition of the Kubo-Bastin formulaº[END_REF]. It converges to Eq.(2.13), which is inversely proportional to the homogeneous disorder Γ. Under the same assumptions about scattering time and disorder, the intrinsic contribution to the conductivity in Eq.(2.43) converges to the BC identity, which is insensitive to Γ.

Regarding the orbital magnetization, it has been demonstrated that the Green function formula is given by [START_REF] Zhu | ªTheory of orbital magnetization in disordered systemsº[END_REF] 

M z or b = -i eℏ d ϵ 2π Tr (H -µ)(G A B (ϵ, ⃗ p) -G R B (ϵ, ⃗ p)) f (ϵ), (2.44) 
where

G R(A) B = G R(A) 0 Σ R(A) B G R(A) 0 + i 2 G R(A) 0 vx ∂ p y G R(A) 0 -∂ p y G R(A) 0 vx G R(A) 0 (2.45) and Σ R(A) B
is the retarded (advanced) self-energy in the presence of a magnetic field.

Quadratic Response in Electric Field

Semiclassical Description

Inspired by Eq.(2.12), in principle the current in this situation must contain all possible contributions available when we expand the Bloch state and the distribution function in terms of the electric field. If we assume the relaxation time approximation, the total current is

⃗ j = - e ℏ B Z d D k (2π) D n u (0) nk vk u (0) nk f (2) nk + u (1) nk vk u (0) nk + u (0) nk vk u (1) nk f (1) nk - e ℏ B Z d D k (2π) D n u (1) nk vk u (1) nk + 〈u nk | vk u (2) nk + u (2) nk vk u (0) nk f (0) nk = ⃗ j I + ⃗ j I I + ⃗ j I I I , (2.46) 
where u (i ) nk and f (i ) nk are the i t h correction to the Bloch state and the Fermi distri- 

u (2) nk = m̸ =n p̸ =n 〈u mk | δ Ĥ u pk u pk δ Ĥ |u nk 〉 (ϵ nk -ϵ mk )(ϵ nk -ϵ pk ) - 〈u nk | δ Ĥ |u nk 〉 〈u mk | δ Ĥ |u nk 〉 (ϵ nk -ϵ mk ) 2 |u mk 〉 (2.47) f (2) nk = - eτ 2ℏ ⃗ E • ⃗ ∇ k f (1)
nk .

(2.48)

In the case of a crystal with time reversal symmetry and inversion symmetry breaking only the second term in Eq.(2.46) ⃗ j I I survives since ⃗ j I and ⃗ j I I I are odd under time reversal. This matches accordingly with the previous symmetry principles sketched in section 1.3, because the material must generate an object that breaks time reversal outof equilibrium. As discussed below, this is achieved by the onset of non-equilibrium (orbital) magnetization, also called the orbital Edelstein effect.

The expression for ⃗ j I I given by

⃗ j I I = - e ℏ B Z d D k (2π) D n u (1) nk vk |u nk 〉 + 〈u nk | vk u (1) nk f (1) nk (2.49) 
thus corresponds to the leading order contribution to the BCD if time reversal is preserved and inversion is absent. The explicit derivation of the expression was performed by I. Sodemann and L.Fu [START_REF] Sodemann | ªQuantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materialsº[END_REF], indicating that the leading order contribution to the Hall current is an extrinsic term driven by a higher order moment of the BC, which they tagged as the BCD. The idea has been even extended to higher orders in the electric field, where it has been proposed that the n t h BC multipole is the key mechanism for a Hall current proportional to E n in the low-frequency limit [146,[START_REF] Zhang | ªTheory of nonlinear response for charge and spin currentsº[END_REF] (We can see that the integration by parts reveals the multipole nature of the BC terms through its derivatives).

As we capture from the first and second order currents presented in Eqs.(2.12-2.46), the BC multipole is one of many terms that could appear in a proper expansion of the current, where other band geometric terms can emerge depending on the symmetries of the crystal. Explicitly, the expression in square parenthesis in Eq.(2.49) is the BC given by Eq.(2.15) and f (1) nk is given by Eq.(2.11) in the relaxation time approximation. Therefore, we can recast the current as j a = e 3 τ ℏ 2 ϵ ad c D bd , where D bd is the BCD

D bd = B Z d D k (2π) D n [ vnk ] b [Ω nk ] d ∂ ϵ nk f nk . (2.50)
The conductivity induced by the BCD is an extrinsic quantity since it depends on τ, but arises on the geometry of the quantum states that are related to the electronic band structure itself. Moreover, whereas the BCD is not constrained to Onsager's reciprocity (which only applies in linear response regime), it is subjected to the crystalline 2. A Pedagogical Introduction to Electronic Transport Theory ± 2.2. Quadratic Response in Electric Field symmetries of the sample. In this context, Nandy and Sodemann suggested a general rule for the BCD under the symmetry operations of a given space group. They also analyzed possible corrections to the nonlinear Hall tensor in presence of disorder that goes beyond the constant rate, something that is out of the scope of this work [START_REF] Nandy | ªSymmetry and quantum kinetics of the nonlinear Hall effectº[END_REF]. A few years later, intraband and interband BCDs have been taken into account as precursors of nonlinear optical effects in insulators [START_REF] Sait Okyay | ªSecond harmonic Hall responses of insulators as a probe of Berry curvature dipoleº[END_REF]. Bearing in mind Eq.(2.50), the NLHE driven by the BCD should be enhanced in systems with large BC or with highly dispersive energy bands. As we will explain in Chapter 3, this is expected to occur in WSMs. Nonlinear photocurrents and second-order NLHE have been predicted in WSMs by applying many-body quantum techniques [START_REF] Rostami | ªNonlinear anomalous photocurrents in Weyl semimetalsº[END_REF] and perturbation theory [START_REF] Gao | ªSecond-order nonlinear Hall effect in Weyl semimetalsº[END_REF], noticing the sensitivity of this Hall transport to intraband processes, the chemical potential and the tilting of the Weyl cones.

If we change the perspective to systems with PT symmetry (a combination of time reversal and inversion symmetry), second order effects has been proposed as techniques to identify properties of quantum materials. In addition to what was reported by D.Shao et al. [START_REF] Shao | ªNonlinear Anomalous Hall Effect for Néel Vector Detectionº[END_REF], if PT is preserved but time reversal is broken, the intrinsic second order anomalous Hall effect has been studied in certain classes of noncollinear antiferromagnets [START_REF] Kirikoshi | ªMicroscopic mechanism for intrinsic nonlinear anomalous Hall conductivity in noncollinear antiferromagnetic metalsº[END_REF]. These second order contributions have been derived by means of quantum kinetic theory [START_REF] Bhalla | ªResonant Second-Harmonic Generation as a Probe of Quantum Geometryº[END_REF]. In addition, the proper cooperation between the BC and skew-scattering is capable to produce second-order Hall responses in PTantiferromagnets [START_REF] Ma | ªAnomalous Skew-Scattering Nonlinear Hall Effect and Chiral Photocurrents in P T -Symmetric Antiferromagnetsº[END_REF]. Last but not least, it has been shown that nonlinear orbital responses can be used as a tool to identify topological transitions in centrosymmetric systems [START_REF] Davydova | ªSymmetry-allowed nonlinear orbital response across the topological phase transition in centrosymmetric materialsº[END_REF].

Green Function Formula

Recently, a full Green function theory of the second order Hall effect has been proposed [START_REF] Du | ªQuantum theory of the nonlinear Hall effectº[END_REF], pointing out the differences between extrinsic and intrinsic contributions. The complete formulas are [START_REF] Du | ªQuantum theory of the nonlinear Hall effectº[END_REF] χ I abc = -

e 3 4πℏ B Z d d k (2π) d d ϵ∂ ϵ f (ϵ) Im Tr va ∂ ϵ G R vb G R vc G A + b ↔ c, ( 2.51 
)

χ I I abc = - e 3 8πℏ B Z d d k (2π) d d ϵ∂ ϵ f (ϵ) Im Tr va ∂ ϵ G R ∂ b vc G A + b ↔ c, ( 2.52 
)

χ I I I abc = - e 3 8πℏ B Z d d k (2π) d d ϵ∂ ϵ f (ϵ) Im Tr va ∂ 2 ϵ G R ∂ b vc G R + 2 va ∂ ϵ (∂ ϵ G R vb G R ) vc G R + b ↔ c. (2.53)
In this context, the authors refined the symmetry analysis performed by Sodemann and Fu by detailing the allowed components in an extensive range of crystallographic point groups. This table is presented below [START_REF] Du | ªQuantum theory of the nonlinear Hall effectº[END_REF] for the relevant point group symmetries with nonzero terms. The conductivity tensor is defined as Here, the C n axis is along ẑ, the mirror plane σ v is normal to ŷ and the mirror plane σ h is assumed as the ( x, ŷ) plane.
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A Pedagogical Introduction to Electronic Transport Theory ± 2.Quadratic Response in Electric Field

The extrinsic terms obtained in this article could explain the frequency doubling observed in Bi 2 Se 3 [START_REF] He | ªQuantum frequency doubling in the topological insulator Bi2Se3º[END_REF]. Along the same line of disorder-induced nonlinear transport, skew-scattering has been stipulated as the origin of second order NLHE in graphene superlattices [START_REF] He | ªGraphene moiré superlattices with giant quantum nonlinearity of chiral Bloch electronsº[END_REF]. This has the potential to be responsible for high-frequency rectifiers in graphene multilayers and Transition Metal Dichalcogenides [START_REF] Isobe | ªHigh-frequency rectification via chiral Bloch electronsº[END_REF]. Second harmonic generation measurements along the out-of plane axis in Td-MoTe 2 and WTe 2 multilayer geometries display giant values of NLHE [START_REF] Tiwari | ªGiant c-axis nonlinear anomalous Hall effect in Td-MoTe2 and WTe2º[END_REF], which likewise has been attributed to extrinsic contributions coming from skew-scattering.

Current-Induced Magnetization

Based on qualitative symmetry arguments, one can postulate that the nonlinear current at the second order in electric field must be produced by a non-equilibrium magnetization that must be compatible with the inversion symmetry breaking. In other words, the second order Hall current could be interpreted as a two step-process: an anomalous Hall effect driven by a magnetization created by an electric field. An article published last year [START_REF] Oiwa | ªSystematic Analysis Method for Nonlinear Response Tensorsº[END_REF] explains that this statement can be verified from tightbinding modelling in SnTe. Therefore, the NLHE must be complemented with a current-induced orbital magnetization commonly tagged as the orbital Edelstein effect. In general, the Edelstein effect [START_REF] Ivchenko | ªNew photogalvanic effect in gyrotropic crystalsº[END_REF][START_REF] Edelstein | ªSpin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systemsº[END_REF][START_REF] Manchon | ªNew perspectives for Rashba spin±orbit couplingº[END_REF] depends linearly on the electric field , viz., ⃗ m = α ⃗ E [START_REF] Edelstein | ªSpin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systemsº[END_REF], whether coming from the orbital magnetic moment, intraatomic angular momentum or spin features. In the same way that the second-order Hall effect, it requires inversion symmetry breaking and follows from an identical rationale to what we deduce for the expression of the BCD: Expanding the Fermi distribution function up to first order in electric field, we conclude that the currentinduced coefficients α ab produced by an operator Ô related to spin or orbital momenta are [START_REF] Johansson | ªEdelstein effect in Weyl semimetalsº[END_REF][START_REF] Johansson | ªSpin and orbital Edelstein effects in a two-dimensional electron gas: Theory and application to SrTiO 3 interfacesº[END_REF][START_REF] Chirolli | ªColossal Orbital Edelstein Effect in Noncentrosymmetric Superconductorsº[END_REF] 

α ab = eτ ℏ n B Z d D k (2π) D 〈u nk | Ô |u nk 〉 〈u nk | vb |u nk 〉 ∂ ϵ nk f nk . ( 2 
α ab = i e 2 τϵ abc ℏ 2 m̸ =n,n B Z d D k (2π) D (µ -ϵ nk ) (ϵ nk -ϵ mk ) 2 + (ϵ nk -ϵ mk ) 2(ϵ nk -ϵ mk ) 2 ∂ ϵ nk f nk × {〈u nk | vb |u mk 〉 × 〈u mk | vc |u nk 〉} 〈u nk | vb |u nk 〉 = i e 2 τ 2ℏ 2 m̸ =n,n B Z d D k (2π) D 2µ -ϵ nk -ϵ mk (ϵ nk -ϵ mk ) 2 〈u nk | vb |u mk 〉 〈u mk | vc |u nk 〉 〈u nk | vb |u nk 〉 ∂ ϵ nk f nk .
(2.56)

A Pedagogical Introduction to Electronic Transport Theory ± 2.3. Cubic Response in Electric Field

An illustration about the similarities between BCD and the magnetoelectric effect is the generation of the BCD under strain in monolayer MoS 2 [6], as illustrated in Fig. 1.8, where the authors proved that the BCD can be considered as a magnetization induced by the electric field. In this case, we have

⃗ J = ⃗ m( ⃗ E ) × ⃗ E = ( ⃗ D • ⃗ E ) ẑ × ⃗ E [31]
, with ⃗ D the BCD created by an orbital magnetization ⃗ m or b and that can be linked to the BC closed to the energy gap.

Cubic Response in Electric Field

The third order Hall effect (TOHE) is the perfect scenario where our modern understanding of electronic transport is challenged. We include it in this work since it is a source of multiple ongoing prospects, inspired by second-order Hall effect, where the physical mechanisms that provide the current are still under debate and more investigation is needed. Whereas at first and second order in electric field, the leading contributions are related to the BC itself or the BCD, at the third order in the perturbation the absence of time reversal or inversion is not required anymore. Moreover, the current-induced magnetization at the first order in electric field requires inversion symmetry breaking and hence it is automatically absent in these materials. If we also consider that the Hall effect in this situation cannot be attributed to the Berry physics, the main points of ongoing discussion aim to elucidate the conditions for which the TOHE takes place and how it can be enhanced by external manipulation. Regarding the crystalline symmetries, the research has been restricted to 2D materials, where the TOHE vanishes in systems with C 3v , C 6v , D 3 , D 3h , D 3d , D 6 and D 6h .

An explanation for the third order conductivity has been presented by Liu et al. [START_REF] Liu | ªBerry connection polarizability tensor and third-order Hall effectº[END_REF], based on semiclassical considerations, claiming that it arises from a correction due to the quantum geometry tagged as the Berry connection polarizability (BCP). In this context, the semiclassical equations presented in Eq.(2.20-2.21) are not valid anymore since they are accurate up to first order in electric field. Up to second order in electric field, a semiclassical analysis of the motion of the electronic wave-packet shows that [START_REF] Liu | ªBerry connection polarizability tensor and third-order Hall effectº[END_REF] where

⃗ x = 1 ℏ vk + e ⃗ E × ⃗ Ω k , (2.57) 
⃗ k = 1 ℏ -e ⃗ E - e ℏ ⃗ x × ⃗ B . ( 2 
ϵ nk = ϵ nk - m̸ n ( ⃗ E • ⃗ A nmk )( ⃗ E • ⃗ A mnk ) ϵ nk -ϵ mk , (2.61) 
⃗ Ω (1) nk = ∂ k × A (1) nk .

(2.62) Expanding the distribution function in the relaxation time approximation, the third order conductivity reads (In the original paper, e = ℏ = 1):

Besides, ⃗ A nmk = i 〈u nk | ∂ k |u mk 〉 the interband Berry connection, A (1) nk,a = G nk,ab E b and G nk,ab is the BCP G nk,ab = 2 Re m̸ =n ( ⃗ E • ⃗ A nmk )( ⃗ E • ⃗ A mnk ) ϵ nk -ϵ mk . ( 2 
χ (I ) abcd = τ d D k (2π) D -∂ a ∂ b G nk,cd + ∂ a ∂ d G nk,bc -∂ b ∂ d G nk,ac f nk + τ 2 d D k (2π) D v nk,a v nk,b G nk,cd ∂ 2 ϵ nk f nk , (2.65 
) 

χ (I I ) abcd = -τ 3 d Dk (2π) 3 v nk,a ∂ b ∂ c ∂ d f nk . (2.66) such that j ∝ (χ (I ) abcd + χ (I I ) abcd )E b E c E d .
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Motivation

The emergence of nonlinear dissipationless currents in systems where the linear order vanishes, such as non-magnetic materials and antiferromagnets with effective time reversal symmetry, has drawn a great deal of attention over the last decade. In this chapter we focus on the second order NLHE driven by the intrinsic BCD, which constitutes one of the mechanisms of second order d.c. transport [START_REF] Du | ªQuantum theory of the nonlinear Hall effectº[END_REF]. As we briefly discussed in Chapter 2, the BCD is expected to reach large values in materials with large BC and highly dispersive energy bands and thus WSMs have been identified as promising sources of large BCD. This behavior has been verified in ab-initio numerical simulations [START_REF] Zhang | ªBerry curvature dipole in Weyl semimetal materials: An ab initio studyº[END_REF].

Non-magnetic WSMs such as TaAs or WTe 2 are particularly interesting platforms for the realization of NLHE because inversion symmetry is necessarily broken and BC diverges at the Weyl nodes. WSMs possess pairs of doubly degenerate linearly dispersive states, forming Weyl cones at Fermi level [START_REF] Wan | ªTopological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridatesº[END_REF]. According to the Nielsen-Ninomiya theorem [START_REF] Nielsen | ªThe Adler-Bell-Jackiw anomaly and Weyl fermions in a crystalº[END_REF], each pair of nodes carries BC monopoles of opposite chirality which are connected via Fermi arcs lying at opposite surfaces of the slab [START_REF] Armitage | ªWeyl and Dirac semimetals in three-dimensional solidsº[END_REF]. Type I WSMs such as Janus superlattices [START_REF] Meng | ªA type of robust superlattice type-I Weyl semimetal with four Weyl nodesº[END_REF] and monopnictide transition metal compounds [START_REF] Lv | ªExperimental Discovery of Weyl Semimetal TaAsº[END_REF][START_REF] Xu | ªDiscovery of a Weyl fermion semimetal and topological Fermi arcsº[END_REF][START_REF] Sun | ªTopological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbPº[END_REF] are characterized by point-like Fermi surface in the bulk and vanishing density of states. Looking at the band structure, the conical shape with apexes at the Weyl points is slightly tilted with respect to a given symmetry axis. Type II WSMs, such as MoTe 2 [START_REF] Deng | ªExperimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe 2 º[END_REF][START_REF] Tamai | ªFermi Arcs and Their Topological Character in the Candidate Type-II Weyl Semimetal MoTe 2 º[END_REF] and WTe 2 [START_REF] Bruno | ªObservation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe 2 º[END_REF][START_REF] Wu | ªObservation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2 º[END_REF] but also the magnetic candidate Co 3 Sn 2 S 2 [START_REF] Satya | ªZero-Field Nernst Effect in a Ferromagnetic Kagome-Lattice Weyl-Semimetal Co 3 Sn 2 S 2 º[END_REF][START_REF] Morali | ªFermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co 3 Sn 2 S 2 º[END_REF][START_REF] Li | ªSurface states in bulk single crystal of topological semimetal Co 3 Sn 2 S 2 toward water oxidationº[END_REF][START_REF] Wang | ªLarge intrinsic anomalous Hall effect in half-metallic ferromagnet Co 3 Sn 2 S 2 with magnetic Weyl fermionsº[END_REF][START_REF] Okamura | ªGiant magneto-optical responses in magnetic Weyl semimetal Co 3 Sn 2 S 2 º[END_REF][START_REF] Ikeda | ªCritical thickness for the emergence of Weyl features in Co 3 Sn 2 S 2 thin filmsº[END_REF], offer a slightly different paradigm as the Weyl cone spectrum is 3. Influence of the Surface States on the Nonlinear Hall Effect in Weyl Semimetals ± 3.1. Motivation strongly tilted in momentum space, breaking Lorentz invariance. As a result, the Weyl points arise at the boundary between electron and hole pockets. Notice that certain compounds can support type I as well as type II Weyl nodes [START_REF] Meng | ªTernary compound HfCuP: An excellent Weyl semimetal with the coexistence of type-I and type-II Weyl nodesº[END_REF][START_REF] Zhang | ªCoexistence of Type-I and Type-II Weyl Points in the Weyl-Semimetal OsC 2 º[END_REF].

A remarkable aspect of WSMs is the nature of their surface states. As mentioned above, alike topological insulators WSMs possess topologically protected surface states in the form of spin-momentum locked Fermi arcs that connect bulk Weyl nodes of opposite chirality. In type I WSMs, the Fermi arcs coexist with the projection of electron (or hole) pockets when the chemical potential lies away from the neutrality point. In type II WSMs, the Fermi arcs coexist with projected electron and hole pockets irrespective of the value of the chemical potential, as well as with trivial closed loops called "track states" [START_REF] Mccormick | ªMinimal models for topological Weyl semimetalsº[END_REF]. As a consequence, surface states of WSMs can be rich, resulting in enhanced Edelstein effect [START_REF] Johansson | ªEdelstein effect in Weyl semimetalsº[END_REF], and unconventional patterns in quantum oscillation experiments [START_REF] Potter | ªQuantum Oscillations from Surface Fermi-Arcs in Weyl and Dirac Semi-Metalsº[END_REF][START_REF] Bulmash | ªQuantum oscillations in Weyl and Dirac semimetal ultrathin filmsº[END_REF][START_REF] Wang | ªAnomalous Phase Shift of Quantum Oscillations in 3D Topological Semimetalsº[END_REF] (see also Ref. [START_REF] Philip | ªTransport evidence for Fermiarc-mediated chirality transfer in the Dirac semimetal Cd3As2º[END_REF]). Previous works pointed out that topological materials defined in slab geometries can exhibit interesting transport properties due to finite size effects and the behavior of surface states inside the samples. In this context, it has been shown that the anomalous Hall conductivity is highly influenced by surface states such as Fermi arcs in Weyl systems without time-reversal symmetry [START_REF] Breitkreiz | ªLarge Contribution of Fermi Arcs to the Conductivity of Topological Metalsº[END_REF], even in presence of disorder [START_REF] Lopez | ªMultiterminal conductance at the surface of a Weyl semimetalº[END_REF]. Additional studies have been performed in confined geometries to clarify, among others, the behavior of chiral magnetic effects [START_REF] Gorbar | ªChiral separation and chiral magnetic effects in a slab: The role of boundariesº[END_REF], the magnetoresistance [START_REF] Alekseev | ªMagnetoresistance of compensated semimetals in confined geometriesº[END_REF] and the quantum Hall effect in Dirac semimetals [START_REF] Schumann | ªObservation of the Quantum Hall Effect in Confined Films of the Three-Dimensional Dirac Semimetal Cd 3 As 2 º[END_REF]. The surface disorder has also been analyzed as a possible factor that can impact the linear conductivity in WSMs, particularly regarding to the geometry of the Fermi arcs [START_REF] Resta | ªHigh surface conductivity of Fermi-arc electrons in Weyl semimetalsº[END_REF], and hence it is also interesting to extend its proper impact on the NLHE. We leave this aspect for future studies.

Despite of all the research developed to show the impact of the surface states in linear response phenomena, their influence on the nonlinear conductivity coefficients is still unclear. In this Chapter we aim to understand how the surface states influence the NLHE driven by the BCD. To do so, we start by studying a minimal 2-band spinless model of a time reversal invariant WSM without inversion symmetry in a slab geometry, in such a way that bulk and surface states are treated on equal footing [START_REF] Mccormick | ªMinimal models for topological Weyl semimetalsº[END_REF]. This model exhibits four Weyl points: the minimum number of degeneracies due to timereversal symmetry. These four points are associated with local divergencies of the Berry curvature, as depicted on Fig. 3.1. After neglecting the vanishing components of the BCD tensor due to mirror symmetries in the 3D lattice, Zeng et al. [START_REF] Zeng | ªNonlinear transport in Weyl semimetals induced by Berry curvature dipoleº[END_REF] recently reported that NLHE requires Weyl cone tilting and an asymmetric Fermi surface when the nodes lie at the same energy. The NLHE is also influenced by the distance between nodes. In fact, this lattice model confirms that BCD could behave differently whether we retain this configuration or we compute in the continuum regime. Accordingly, our study gives further insight about the implications of the Fermi arc configurations on the BCD. Remarkably, it also complements a recent study that comprises a surface BCD due to the projection of Fermi arcs in type I WSMs [3]. In this Chapter we present our findings related to the impact of the surface states on the NLHE in WSMs, which has recently been published in Physical Review B [1]. Particularly, my work is focused on the minimal model that leads to the main conclusions of the article. The Density Functional Theory simulations were developed by Dr. Armando Pezo, postdoctoral fellow in my research group, and they served as a tool to validate our predictions in a more realistic scenario. In Section 3.2 we show the lattice model that we consider for our study and the methodology for the generation of the slab geometries. Second, in Section 3.3 we report our main results and an extense discussion of the physics involved in the problem. In Section 3.4 we show the realistic simulations, comparing these outcomes with the results obtained from the lattice model calculations. Finally, in Section 3.5, we deliver our main conclusions of the study, interesting perspectives of the idea developed and prospects about the engineering of second order Hall effect driven by the BCD. 

Lattice and Slab Model Hamiltonians

The minimal Hamiltonian under study is a 2-band spinless frame in the cubic lattice C = [-π, π] 3 that mimics the essential features of a time reversal invariant Weyl semimetal with non-centrosymmetric structure [START_REF] Mccormick | ªMinimal models for topological Weyl semimetalsº[END_REF]:

H B = γ(cos 2k z -cos k 0 )(cos k x -cos k 0 ) σ0 -m(1 -cos 2 k x -cos k y ) + 2t x (cos k z -cos k 0 ) σ1 -2t sin k y σ2 -2t cos k x σ3 , (3.1) 
with σi , i = 1...3 the 2 × 2 Pauli matrices and σ0 = ✶ 2×2 . Each node can be assigned to a topological charge of n = ±1. Currently, the BCD has also been investigated in WSMs with topological charges of n = ±2, ±3 [START_REF] Roy | ªNon-linear Hall effect in multi-Weyl semimetalsº[END_REF], claiming that the intensity of the BCD obtained is mainly due to the magnitude of the topological charge and the energy dispersion. For the next calculations arising on Eq.(3.1), the essential parameters are set to be k 0 = π 2 , m = 2, t x = 1 2 and t = 1. In this frame, the system exhibits four Weyl nodes at ⃗ k * = ± π 2 ( x + ẑ). In addition, with the previous set of system parameters the transition point between type I and type II regime is fixed at γ = 2. The evolution of the system from type I to type II reveals the emergence of closed surface states tagged as track states. They are not topological, but degenerated in energy with respect to the states forming the Fermi arcs.

The lattice Hamiltonian presented in Eq.(3.1) is constrained by the mirror symmetries

M ² x H B (k x , k y , k z )M x = H B (-k x , k y , k z ), (3.2) 
M ² z H B (k x , k y , k z )M z = H B (k x , k y , -k z ), (3.3) 
and thus only D zx and D xz are non-zero components of BCD. Then, the transverse current is along ŷ. The mirror symmetries presented above constrain the non-zero elements of the dipole tensor, as it was mentioned earlier, generating a second order Hall current that is orthogonal to the mirror planes. Hence they will also forbid direct information of the second-order conductivity coefficients from the plane of the Fermi arcs; nonetheless, the study of the other planes remaining gives valuable information about the surface states in the system, independently of their topological nature.

Keeping in mind our objective to describe the surface contribution to the nonlinear transport, let us begin with a slab construction method based on a previous work that implemented the same procedure for the study of spin-orbit torques [2]. This technique is particularly useful for the investigation of the transport properties arising on the out-of plane Berry curvature of a given plane; however, and since the Hamiltonian loses the periodicity in the direction of the slab, the BC is ill-defined in this direction. It is worth mentioning that up to now several attempts have been developed to explain the transport and magnetization properties driven by in-plane contributions of the BC and the orbital magnetic moment, especially in polar configurations [START_REF] Hara | ªCurrent-induced orbital magnetization in systems without inversion symmetryº[END_REF][START_REF] Kyoung-Whan | ªVertical transverse transport induced by hidden in-plane Berry curvature in two dimensionsº[END_REF].

The slab Hamiltonian for a slab geometry normal to the n direction is defined as follows: 

H n S =             H n 0 H n
H n 0             . (3.4)
For the block matrices in Eq. (3.4), H n 0 is the intralayer Hamiltonian that retains in-plane periodicity after the cut, while H n 1 and H n 2 are the nearest neighbor and second nearest neighbor interlayer Hamiltonian, respectively. For the cut along x, the block matrices are given by

H x 0 = -γ cos k 0 (cos 2k z -cos k 0 ) σ0 -m 1 2 -cos k y + 2t x (cos k z -cos k 0 ) σ1 -2t sin k y σ2 , (3.5) 
H x 1 = γ 2 (cos 2k z -cos k 0 ) σ0 -t σ3 , (3.6) 
H x 2 = m 4 σ1 . (3.7) 
A cut along ŷ leads to

H ŷ 0 = γ(cos 2k z -cos k 0 )(cos k x -cos k 0 ) σ0 -m sin 2 k x + 2t x (cos k z -cos k 0 ) σ1 -2t cos k x σ3 , (3.8) 
H ŷ 1 = m 2 σ1 + i t σ2 . (3.9)
Finally, a cut along ẑ gives 69 

H ẑ 0 = -γ cos k 0 (cos k x -cos k 0 ) σ0 -m(1 -cos 2 k x -cos k y ) -2t x cos k 0 σ1 -2t sin k y σ2 -2t cos k x σ3 , (3.10) 
H ẑ 1 = -t x σ1 , (3.11) 
H ẑ 2 = γ 2 (cos k x -cos k 0 ) σ0 . (3.12)
The band structures for slab geometries of 25 layers are presented in Fig. 3.2, when the original Hamiltonian is cut along x (a-d), ŷ (b-e) and ẑ (c-f ). We take the instances for a type I and a type II WSM by fixing the value of γ at γ = 1 (upper panels) and γ = 3 (lower panels). We plot the bands for the x ( ẑ) cut for k y = 0 and k z (k x ) ∈ [-π, π], while the ŷ cut is plotted in the path A 1 = (-π, 0, π) → Γ = (0, 0, 0) → A 2 = (π, 0, π). In this case, the cuts along x and ẑ reflects the exponentially localized states at the surface of each slab, whereas the central panels reveals more dispersive surface states in the plane of the Fermi arcs. Next, the layer resolution for the slab geometries defined above give us more details about the surface states' diversity and its impact on the second order Hall transport. To do so, and since the periodic part of the Bloch function can be written in terms of the complete layer basis as |u nk 〉 = L l =1 |ω l k 〉 〈ω l k |u nk 〉, one can extract the contribution of layer l by applying the projection operator

S l = |ω l k 〉 〈ω l k |, l ∈ [1, L] to an observable O . In this way, it is straightforward to see that O = L l =1 S l O and L l =1 S l = ✶ 2L×2L .
We use this description to separate the contribution of a given layer to the density of states of a slab with a fixed number of layers L,

D l k = - 1 π Im Tr S l G R k , (3.13) 
with the retarded Green's function defined as

G R k = lim η→0 + (ϵ + i η)✶ -H n S -1 . (3.14)
We start by confirming the Fermi arc recombination of the system and its surface states' evolution as a function of γ by computing the layer resolution density of states when the slab is normal to the plane of the Fermi arcs ( ŷ). This is performed for a slab geometry of 25 layers for the case µ = 0.2, illustrating the top (upper panels), middle (central panels) and bottom layers (lower panels), for different values of γ going from γ = 1 to γ = 3 (left to right panels). The outcomes are reported in Fig. 3.3. From the evolution of the density of states given by the top (l = 1) and bottom (l = 25) layers, it is clear that the Fermi arcs change direction from k z to k x , when the system goes through the transition between γ = 1 and γ = 3. Furthermore, as the value of γ increases trivial surface states and an enlargement of the Fermi pockets surrounding the Weyl nodes emerge at the Brillouin zone, joining the track states that appear with centers at (k x , k z ) = (0, ±π). Last but not least, the mismatch between the top and bottom surfaces is in agreement to what is reported in [START_REF] Mccormick | ªMinimal models for topological Weyl semimetalsº[END_REF], and we assign this behavior to the absence of mirror symmetry along ŷ in the original Hamiltonian given by Eq. (3.1).

In the next section of this chapter, we address the transport properties and discuss them by looking at the density of states projected on the relevant faces due to the mirror symmetries of the 2-band original Hamiltonian. We apply the same layer decomposition that leads to Eqs.(3.13-3.14), but now paying specific attention to the x and ẑ cut. In fact, the same procedure is applied later to resolve the BCD across the slabs in Fig. 3.6. In order to obtain the contribution of layer l to the response along, say, ŷ, one simply needs to perform the substitution vy → S l vy into Eq. (2.15) and then into Eq.(2.50). 

Influence of the

Model Calculations and Discussion

We support our conclusions on the BCD for the slabs based on an analysis of the density of states, which reveals the main differences regarding the tilting of the Weyl cones and the corresponding distribution of the surface states of the pertinent systems. We compute the corresponding BCDs by using Eq.(2.50) in Chapter 2. Our results are reported in Figs. 3.4. For an exemplary system of 25 layers and fixing the energy at µ = 0.2, we perform a surface resolution for selected layers l = 1, 7, 13, 19, 25, being l = 1 (l = 25) the bottom most (uppermost) surface, in the case of a slab geometry normal to x [Fig. 3.4 (a-c)] and when the growth direction is along ẑ [Fig. 3.4 (b-d)].

When the growth direction is normal to x, two situations occur depending on whether the system is in type I or type II regime: If the system is a type I WSM (γ = 1) as in Fig. 3.4 (a), the density of states projected in this direction displays degenerate Fermi arcs connected along k z . Indeed, this scenario shows two copies of the time reversal breaking case where two Weyl nodes are connected by one Fermi arc. On the other hand, if the tilting of the Weyl cones increases to the type II regime (γ = 3) in Fig. 3.4(c), large Fermi pockets' projections emerge in the system as a result of the reorientation of the Fermi arcs along the k x direction. Nonetheless, as the value of γ continuously increases, the enlargement of the Fermi pockets surrounding the nodes leads to a merging of two pockets in a trivial state, screening out the effect of the Fermi arc connection as we corroborated in Fig. 3.3. In contrast, a slab developed with normal along ẑ illustrates a complementary situation: On one side, when we take a type I WSM as in Fig. 3.4(b), the two Weyl nodes are disconnected since the Fermi arc connects points along k z rather than k x . In contrast, when we consider the type II regime as in Fig. 3.4(d) the density of states increases surrounding the center of the track state's projections, but its magnitude is in average notably smaller than in Fig. 3.4(c). The density of states in the type II regime depicted in Figs. 3.4 (c-d) is basically a result of a high contribution coming from trivial states (Fermi pockets, track states, etc) whose origin is the change in connectivity of the Weyl nodes going from k z to k x .

3. Influence of the Surface States on the Nonlinear Hall Effect in Weyl Semimetals ± 3.

Model Calculations and Discussion

In the following we present the second order conductivity normalized by the number of layers. For systems consisting of L = 20, 25, 40 layers and fixing µ = 0.2 we compute the BCDs D ( x) zx (D ( ẑ) xz ), when the growth direction is along x ( ẑ), as a function of the tilting parameter. We add our bulk calculations for the model as a reference, which matches qualitatively to previous reports on the same model [START_REF] Zeng | ªNonlinear transport in Weyl semimetals induced by Berry curvature dipoleº[END_REF]. Furthermore, we also compute the ratio between the BCD and the density of states for the same instances described earlier. A summary of our findings is given in Fig. 3.5. In the bulk system, which is depicted in black lines, the BCDs allowed by symmetry are evidently different. When the electric field is applied along ẑ and we compute the BC along x, the corresponding dipole D zx follows a Gaussian behavior in the γ range. It is very small at small γ since the tilting of the nodes is very small. Besides, it reaches a peak close to γ = 3 and decreases towards zero when we increase γ. This pattern can be assigned by the implicit symmetry on the tilting of the Weyl cones as we increase γ.

From Fig. 3.5 (a-b) is clear that for a type I WSM the ratio between the Berry curvature dipole in the bulk and in the slab is proportional to the number of layers, which was previously predicted from geometrical considerations [START_REF] Wawrzik | ªInfinite Berry Curvature of Weyl Fermi Arcsº[END_REF]. In contrast, for a type II WSM the BCD displays an enhancement of its magnitude depending on the slab under consideration: Whereas in Fig. 3.5(b) the profiles of the dipole in both slab and bulk converges reasonably well even for a small number of layers, they substantially differ when considering a slab normal to x as depicted in Fig. 3.5(a). The density of states plotted accordingly in Fig. 3.4 suggests that the difference between the BCD profiles rely on the number of states displayed on each surface. Whereas a type I WSM displays the projections of the Weyl nodes and Fermi arcs (if there is any) on each surface, the type II regime experiences a dramatic increase on the density of states due to the enlargement of the Fermi pockets surrounding the nodes and the emergence of trivial track states and other surface states. For these reasons, the increase on the BCD in a slab normal to x compared to a slab normal to ẑ can be attributed to the Fermi pocket's projections on the system. On the other hand, the track states' projections and other trivial states do not affect abruptly the behavior of the dipole in comparison with the bulk. This phenomenology leads to a thickness dependence on the NLHE depending on the slab chosen, when the WSM is in type II regime.

We support our argument by showing the ratio between the dipole and the density of states for each slab under consideration. If our slab is normal to x, this ratio decreases with the number of layers [Fig. 3.5(c)], corrobating that the increase on the BCD in type II WSM is accompanied by a magnification on the relative number of states at the surface rather than the bulk. In contrast, if the slab is normal to ẑ [Fig. 3.5(d)] the ratio becomes essentially a constant, revealing that the impact of the number of states in the second-oder transport is negligible in comparison with its x-cut sibling. The previous arguments show a thickness dependence on the NLHE driven by the BCD when the slab under consideration exhibits strong surface states. This behavior is induced by the transition between type I and type II regime in WSMs, which at the same time is the origin of the reconnection of Fermi arcs in this system. Further insight on the behavior of the NLHE can be extracted from a layer resolution on this system. Our results are reported in Fig. 3.6 for the slabs normal to x (black lines) and ẑ (red lines), taking into account the two exemplary cases γ = 1 (a) and γ = 3 (b) for a slab geometry of L = 25 layers. As we notice from Fig. 3.6(a), the slab geometries offer a strong difference on the NLHE at the edges, i.e, at the top l = 1 and bottom l = 25 layers, when the system is in the type I regime. In view of Fig. 3.4(a-b), we attribute this outcome to the presence (or absence) of degenerate Fermi arcs. On the other hand, for a type II WSM, the Berry dipole coefficient at the central layer (l = 13) is larger in the x-cut rather than the ẑ-cut. Moreover, the maximum magnitudes of the conductivity are reached at layers underneath the surfaces (l = 5 and l = 21) instead of the surfaces itself. It is worth mentioning that topologically trivial surface states should be sensitive to the presence of surface disorder. In contrast, topological surface states such as Fermi arcs should be weakly affected by it. We leave the development of this inquiry for future studies.

We have taken the transport calculations in our model away from the neutrality point, for a fixed value of the chemical potential at µ = 0.2. Hence, we might also wonder about the dipole profiles as a function of the energy, for a fixed value of the tilting parameter. In Fig. 3.7 we plot the BCD for different number of layers, when the system is in type I (a-b) or type II (c-d) for the x (a-c) and ẑ (b-d) cut. As we can verify from Figs.3.7 (a-b), the profiles follow qualitatively the tendency proposed by the reference calculation of the 3D configuration. Nevertheless, the difference is abrupt as we move to the type II regime in Fig. 3.7(c), which is not appearing in Fig. 3.7(d). Therefore, our model computations in the energy range holds in the same way as in the γ range. We will add realistic simulations in WTe 2 in the next pages that corroborate our predictions based on our model outcomes.

Finally, let us comment on the possible techniques adopted to detect the NLHE in experiments. Since the surface states enhance the conductivity in finite slab geometries when we cut along x and the system is in the type II regime, a large value of the conductivity is expected to be measured experimentally in this case, in comparison with the ẑ cut. As we can verify from Fig. 3.8 when we compute the dipole coefficient as a function of the thickness, for the exemplary case γ = 3 and µ = 0.2, the xcut reaches large values at small thicknesses, whereas the ẑ-cut profile converges monotonously to the bulk value and its maximum is smaller than the x-cut for the range of thicknesses explored. 

Influence of the

Realistic Simulations in WTe 2 Slabs

For the sake of completeness, I now present the results obtained from first principles calculations. These calculations were performed by Dr. Armando Pezo, postdoc in the team. Although I did not perform the calculations myself, I participated actively in the development of this aspect of the project and in the discussion of the data. Let us now consider a realistic system, WTe 2 in its orthorhombic phase, and compute the NLHE from first principles. WTe 2 is a well-known type II WSM [START_REF] Bruno | ªObservation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe 2 º[END_REF][START_REF] Wu | ªObservation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2 º[END_REF], in which NLHE has been originally reported [START_REF] Kang | ªNonlinear anomalous Hall effect in few-layer WTe 2 º[END_REF][START_REF] Ma | ªObservation of the nonlinear Hall effect under time-reversal-symmetric conditionsº[END_REF]. For the density functional theory simulations [START_REF] Hohenberg | ªInhomogeneous Electron Gasº[END_REF][START_REF] Kohn | ªSelf-Consistent Equations Including Exchange and Correlation Effectsº[END_REF], the Perdew-Burke-Ernzerhof [START_REF] Perdew | molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlationº[END_REF]exchange correlation functional was used. The geometry optimizations were performed using a plane-wave basis as implemented in the Vienna Ab-initio Simulation Package (VASP) [START_REF] Kresse | ªEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setº[END_REF][START_REF] Kresse | ªEfficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis setº[END_REF]. Besides, 400 eV for the plane-wave expansion cutoff was employed, with a force criterion of 5 µ eV Å -1 and a reciprocal space sampling containing 16×16×14 k-points within the Brillouin zone. The ionic potentials were described using the projector augmented-wave (PAW) method [START_REF] Kresse | ªFrom ultrasoft pseudopotentials to the projector augmented-wave methodº[END_REF], post-processing calculations were performed using WannierTools [START_REF] Wu | ªWannierTools: An open-source software package for novel topological materialsº[END_REF]. The band structure is sketched at Fig. 3.9 with the inset displaying the unit cell. The band crossings are located within the X-Γ path in momentum space, such that the Fermi level was set to zero near this region. With this consideration, the Weyl points were projected on selected surfaces, i.e., ẑ (corresponding to the (001) direction) and x (corresponding to the (100) direction). In the same way as we did it for the model calculations, the density of states was obtained in the middle (bulk) layer and the uppermost layer of slab geometries containing 25 layers. In Fig. 3.10 we illustrate the cuts along ẑ (a-b) and x (c-d). As we can see from Figs.3.10(a-b), the projected density of states is larger at the surface than the bulk, especially close to the Γ point. Furthermore, based on the findings given in Figs. 3.10(c-d), the opposite situation can be deduced in the slab with normal along x. In view of the lattice model calculations, we infer that the conductivity coefficients for the slab along ẑ should exhibit an enhancement due to the influence of the surface states, whereas the geometry normal to x should be less sensitive to the Fermi arc diversity in the sample. Knowing the projected density of states for each slab relevant to the problem, the BCD was computed within a grid of 500 × 500 in the Brillouin zone as a function of the energy, for three exemplary cases moving between L = 15 and L = 25 layers. The profile computed in the bulk (dashed lines) is included for the sake of comparison. In addition, these results are accompanied with their corresponding band structures in Fig. 3.11 as well. For a slab normal to ẑ direction [3.11(a-b)], we observe that the BCD strikingly depends on the slab thickness, reflecting the influence of the surface states. In fact, for an infinite thick slab the peaks presented below the Fermi level and associated with the surface states disappear. When the slab is normal to x [3.11(c-d)], the surface states cannot be clearly distinguished in the band structure, which, at the same time, is dominated by the bulk states. Regarding the dipole calculations in panel (d) of the figure mentioned above, it is interesting to notice that the BCD follows the same behavior as a function of the layer number, revealing its low sensitivity to the slab thickness. Moreover, for an infinitely thick slab the BCD preserves the overall 

Main Conclusions and Prospects

We demonstrate that in the context of non-magnetic WSMs the NLHE driven by the BCD is strongly impacted by its surface states, independently of their topological nature. Moreover, the WSM model analyzed here suggests that a key ingredient to enhance the value of the second-order conductivity coefficient is the relative number of states at the surface compared to the bulk, which is mainly produced by the enlargement of the trivial Fermi pockets surrounding the nodes in the slabs created. Besides, although they do not influence severely the NLHE, the emergence of track states are a signature of the transition between type I and type II regimes that exhibit profound differences in terms of Hall transport: Whereas in type I regime the BCDs allowed by symmetry scale with the number of layers, as predicted by [START_REF] Wawrzik | ªInfinite Berry Curvature of Weyl Fermi Arcsº[END_REF], the type II regime displays a stronger thickness dependence on the NLHE in the slab that possesses a large number of surface states. The thickness dependence on the NLHE in realistic materials is corroborated by computations in thin films of WTe 2 , establishing a remarkable feature that could be useful for experimental applications.

The knowledge established in this work opens interesting perspectives and raises new questions: First, one could ask about a suitable model or realistic system offering a BCD that lies in the plane of the Fermi arcs directly. If that would be the case, it would be interesting to create a slab geometry in the plane of the Fermi arcs and compute a layer resolution of the BCD across the different layers, comparing the contribution of the surface with respect to the bulk. We expect to observe similar results to the ones presented in this Chapter, namely, that the most relevant contributions would come from non-topological surfaces states. Nevertheless, we would be able to obtain a direct measurement on how the Fermi arcs impact the BCD. Second, since the BCD is extremely sensitive to the relative number of states at the surface, more than their topology, it is worth a new exploration of suitable candidates for larger values of NLHE. It is quite intriguing that the topological surface states do not dramatically affect the NLHE in WSMs, since the transition between type I and type II regime is a process that involves a tilting in the Weyl cones, whose apexes are indeed topological objects. Therefore, one valid question is how to artificially generate these surface states away from topological matter and whether one can control it. Is it possible to elaborate a mechanism to produce a large number of states in slab geometries?

If we look at the broader picture concerning second order Hall transport, plethora of topics are still unclear. In general, inversion symmetry breaking is accompanied by a ferroelectric polarization, opening a wide class of interesting materials with switchable NLHE. In addition, since inversion symmetry breaking can arise at the interface, one can envisage to design multilayers with optimal NLHE. This latter aspect is discussed in Chapter 1. When we look at topological materials, a Dirac material with inversion symmetry breaking and NLHE as the leading order response remains difficult, specially because they preserve PT symmetry in general. A proper example would be new antiferromagnets with non-symmorphic symmetries that indeed would be able to display topologically protected Dirac surface states, going one step forward from the 3. Influence of the Surface States on the Nonlinear Hall Effect in Weyl Semimetals ± 3.5. Main Conclusions and Prospects case of CuMnSb [START_REF] Shao | ªNonlinear Anomalous Hall Effect for Néel Vector Detectionº[END_REF]. Although it was already documented that topological materials with Dirac surface states show quantum frequency doubling [START_REF] He | ªQuantum frequency doubling in the topological insulator Bi2Se3º[END_REF], for instance, it has also been explained that this effect should arise from extrinsic mechanisms, thus inviting us to propose that a Dirac material with BCD could represent a striking novelty in the field. In the context of WSMs, our thought goes in the direction of nodal line materials and similar systems. Last but not least, the temperature dependence of the Hall coefficients is something worth to explore in order to identify new materials that could achieve NLHE at room temperature. The question has been addressed from the experimental standpoint by designing new measurements on the Dirac material BaMnSb 2 [START_REF] Min | ªStrong room-temperature bulk nonlinear Hall effect in a spin-valley locked Dirac materialº[END_REF] and MoTe 2 [START_REF] Ma | ªGrowth of bilayer MoTe2 single crystals with strong non-linear Hall effectº[END_REF] during this year, but a profound understanding of this avenue is still in progress.

Introduction

Modern spintronics is based on the interconversion between charge and spin currents, either achieved via conventional ferromagnetic polarizers [START_REF] Zutic | ªSpintronics: Fundamentals and applicationsº[END_REF] or mediated by spin-orbit coupling [START_REF] Sinova | ªSpin Hall effectsº[END_REF][START_REF] Manchon | ªCurrent-induced spin-orbit torques in ferromagnetic and antiferromagnetic systemsº[END_REF]. The latter mechanism is currently the center of attention of a research field called spin-orbitronics and that intends to harvest the spin-momentum locking present in materials with heavy elements, including 5d metals and topological materials. In recent years, it has been proposed that most of the flagship phenomena of spin-orbitronics, spin Hall effect [START_REF] Sinova | ªSpin Hall effectsº[END_REF] and Rashba-Edelstein effect [START_REF] Manchon | ªNew perspectives for Rashba spin±orbit couplingº[END_REF], also exist at the level of the orbital moment, although not necessitating any spin-orbit coupling [START_REF] Bernevig | ªOrbitronics : The Intrinsic Orbital Current in p -Doped Siliconº[END_REF][START_REF] Tanaka | ªIntrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metalsº[END_REF][START_REF] Go | ªToward surface orbitronics : giant orbital magnetism from the orbital Rashba effect at the surface of sp-metalsº[END_REF][START_REF] Jo | ªGigantic intrinsic orbital Hall effects in weakly spin-orbit coupled metalsº[END_REF]. This prediction opens wide perspectives for materials research and device development as entire families of metallic compounds made of light elements, often cheap and abundant, could in principle host interconversion phenomena between charge currents and orbital currents [START_REF] Jo | ªGigantic intrinsic orbital Hall effects in weakly spin-orbit coupled metalsº[END_REF][START_REF] Salemi | ªQuantitative comparison of electrically induced spin and orbital polarizations in heavy-metal/ 3d -metal bilayersº[END_REF][START_REF] Pezo | ªOrbital Hall effect in crystals: inter-atomic versus intra-atomic contributionsº[END_REF][START_REF] Salemi | ªFirst-principles theory of intrinsic spin and orbital Hall and Nernst effects in metallic monoatomic crystalsº[END_REF]. As a matter of fact, very recent experiments have demonstrated orbital phenomena of highest interest for microelectronics such as orbital torque [START_REF] Go | ªOrbital torque : Torque generation by orbital current injectionº[END_REF][START_REF] Ding | ªHarnessing Orbital-to-Spin Conversion of Interfacial Orbital Currents for Efficient Spin-Orbit Torquesº[END_REF] and orbital magnetoresistance in materials such as CuOx.

A central difficulty that has not been solved to date concerns the means to detect orbital currents and accumulations. Ideally, since the orbital accumulation of electrons produces a non-equilibrium orbital magnetization, it can be detected by converting this non-equilibrium orbital signal into a chemical potential using a proximate magnetic layer for instance. This technique is typically used to detect spin accumulation in magnetic bilayers [START_REF] Nakayama | ªSpin Hall Magnetoresistance Induced by a Nonequilibrium Proximity Effectº[END_REF] or in nonlocal geometries [START_REF] Valenzuela | ªDirect electronic measurement of the spin Hall effect[END_REF]. When it comes to detect the orbital accumulation though, a difficulty arises. Indeed, assuming that this proximate ferromagnet is made out of transition metals, its magnetization mostly comes from the spin angular momentum because of orbital quenching [START_REF] Blügel | Magnetism of Low-dimensional Systems : Theory[END_REF][START_REF] Hanke | ªRole of Berry phase theory for describing orbital magnetism : From magnetic heterostructures to topological orbital ferromagnetsº[END_REF]. Therefore, one needs to first convert the orbital signal into a spin signal, typically via spin-orbit coupling, as achieved in Ref. [START_REF] Ding | ªObservation of the Orbital Rashba-Edelstein Magnetoresistanceº[END_REF]. In other words, the electrical detection of non-equilibrium orbital magnetization using a bilayer configuration requires the coexistence of spin-orbit coupling and magnetism. As a result, it is virtually impossible to selectively probe the orbital accumulation using electrical means only.

A promising alternative would be to use magneto-optical methods to directly probe the orbital accumulation without relying on any magnetic material or non-locality. As it is well known, the magneto-optical Kerr effect (MOKE) is routinely used to describe the electronic properties of magnetic materials (See [START_REF] Yamaguchi | ªMagneto-optical Kerr effects in perovskite-type transition-metal oxides: La 1-x Sr x MnO 3 and La 1-x Sr x CoO 3 º[END_REF][START_REF] Carey | ªGiant low-temperature enhancement of magneto-optic Kerr effects in PtMnSbº[END_REF][START_REF] Antonov | ªElectronic structure and magneto-optical Kerr effect of Tm monochalcogenidesº[END_REF][START_REF] Samanta | ªCrystal Hall and crystal magneto-optical effect in thin films of SrRuO3º[END_REF][START_REF] Jiang | ªLarge magneto-optical effect and magnetic anisotropy energy in two-dimensional metallic ferromagnet Fe 3 GeTe 2 º[END_REF] for a few examples) and image magnetic domains [START_REF] Mccord | ªProgress in magnetic domain observation by advanced magnetooptical microscopyº[END_REF]. As a matter of fact, a large Kerr angle is highly desired to the fabrication of efficient optical memory devices. Within this frame, a large Kerr angle has been estimated in the family of compounds FeX (X= Co,Ni,Pd,Pt) [START_REF] Cebollada | ªEnhanced magneto-optical Kerr effect in spontaneously ordered FePt alloys: Quantitative agreement between theory and experimentº[END_REF][START_REF] Pieter | ªTheory of the magneto-optical Kerr effect in ferromagnetic compoundsº[END_REF] and MnBi [START_REF] Oppeneer | ªFirst-principles study of the giant magneto-optical Kerr effect in MnBi and related compoundsº[END_REF]. In topological materials such as WSMs, it has been proved the sensitivity of the Kerr angle to the location of the Weyl points [START_REF] Trépanier | ªMagnetooptical Kerr effect in Weyl semimetals with broken inversion and time-reversal symmetriesº[END_REF]. This can be interpreted as a signature of the chiral anomaly when a non-magnetic Weyl system is subjected to a magnetic field [START_REF] Parent | ªMagneto-optical Kerr effect and signature of the chiral anomaly in a Weyl semimetal in magnetic fieldº[END_REF]. Certain classes of antiferromagnets are also capable to break time reversal symmetry effectively, and thus they can exhibit linear MOKE. An example of this feature has been reported in the class of non-collinear antiferromagnets Mn 3 X (X=Rh, Ir, Pt), where a large Kerr angle has been detected and compared to bcc Fe [START_REF] Feng | ªLarge magneto-optical Kerr effect in noncollinear antiferromagnets Mn 3 X (X = Rh, Ir, Pt)º[END_REF]. Moreover, sizable polar and longitudinal Kerr angles have been discovered in measurements of Mn 3 Ge [START_REF] Wu | ªMagneto-optical Kerr effect in a non-collinear antiferromagnet Mn3Geº[END_REF] (See also [START_REF] Higo | ªLarge magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metalº[END_REF][START_REF] Wang | ªMagneto-optical Kerr effect and magnetoelasticity in a weakly ferromagnetic RuF 4 monolayerº[END_REF]). Numerical simulations further agree that a large polar Kerr angle does not require a non-collinear structure, for instance, in the paradigmatic instance of bilayer MnPSe 3 [238].

A precise interpretation of the MOKE spectrum remains difficult as it is highly sensitive to the hybridization of the electronic states, the distribution of magnetic and non-magnetic elements and on the spin-orbit coupling. Nonetheless, MOKE has been successfully used to detect the nonequilibrium spin accumulation in GaAs [5],
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Cu, Ag and Au [239,[START_REF] Víctor | ªMagneto-optical Kerr spectra of gold induced by spin accumulationº[END_REF], Pt and W thin films [4] and Bi 2 O 3 surface [START_REF] Puebla | ªDirect optical observation of spin accumulation at nonmagnetic metal/oxide interfaceº[END_REF]. In these experiments, the spin-orbit coupling enters in two steps: (i) it enables the creation of non-equilibrium spin accumulation and (ii) it couples the circularly polarized light to the non-equilibrium spin magnetization.

In the case of a light metal, i.e., in the absence of spin-orbit coupling, orbital magnetization can be generated by two means: either through orbital Hall effect [START_REF] Bernevig | ªOrbitronics : The Intrinsic Orbital Current in p -Doped Siliconº[END_REF][START_REF] Tanaka | ªIntrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metalsº[END_REF], leading to orbital accumulation at the surface, or through orbital Rashba-Edelstein effect when inversion symmetry is broken [START_REF] Go | ªToward surface orbitronics : giant orbital magnetism from the orbital Rashba effect at the surface of sp-metalsº[END_REF][START_REF] Yoda | ªOrbital Edelstein Effect as a Condensed-Matter Analog of Solenoidsº[END_REF]. We propose that magneto-optical Kerr effect can be used to probe this non-equilibrium orbital magnetization, even in the absence of spin-orbit coupling, via the nonlinear anomalous Hall effect [START_REF] Sodemann | ªQuantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materialsº[END_REF].

Before entering in further details, we emphasize that in ferromagnets the magnetooptical Kerr effect does not directly probe the magnetization itself, but it rather probes the anomalous Hall effect of magnetic materials. Indeed, as discussed in more details below, the Kerr angle is directly proportional to the anomalous Hall conductivity θ k + i φ k ∼ σ x y /σ xx . Since the anomalous Hall effect is itself proportional to the magnetization component perpendicular to the plane of the sample, the Kerr rotation provides a hallmark of this measurement magnetization. A similar process occurs in antiferromagnets with broken effective time reversal symmetry such as Mn 3 Sn for instance, that exhibits both anomalous Hall effect [START_REF] Nakatsuji | ªLarge anomalous Hall effect in a non-collinear antiferromagnet at room temperatureº[END_REF][START_REF] Ajaya K Nayak | ªLarge anomalous Hall effect driven by non-vanishing Berry curvature in non-collinear antiferromagnet Mn3Geº[END_REF] and magneto-optical Kerr effect [START_REF] Higo | ªLarge magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metalº[END_REF]. In non-magnetic materials, the anomalous Hall effect vanishes due to the absence of a net magnetization. Nonetheless, as discussed in this Thesis, as long as inversion symmetry is broken, an anomalous Hall effect can emerge at the second order in the electric field [START_REF] Sodemann | ªQuantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materialsº[END_REF][START_REF] Ma | ªObservation of the nonlinear Hall effect under time-reversal-symmetric conditionsº[END_REF][START_REF] Kang | ªNonlinear anomalous Hall effect in few-layer WTe 2 º[END_REF], where the leading order contribution is proportional to the BCD (See Chapter 2). As discussed below, this second order Hall effect is in fact a companion effect to the non-equilibrium orbital magnetization [6]. Indeed, both effects only require inversion symmetry breaking and can emerge in the absence of spin-orbit coupling. Therefore, the existence of the second order Hall effect is an indirect signature of non-equilibrium orbital magnetization. Moreover, non-equilibrium orbital magnetization can be probed by magneto-optical Kerr effect via the second order Hall effect, even in the absence of spin-orbit coupling. The difference between the non-equilibrium spin accumulation and the second order Hall effect accompanied by a non-equilibrium orbital magnetization in two dimensional materials is illustrated in Fig. 4 In a two dimensional material with spin-orbit coupling and under the presence of an external electric field, a non-equilibrium spin accumulation is generated due to a net flow of electrons with opposite spins, which can be detected through MOKE. (b) If the system is non-magnetic and non-centrosymmetric, and even in absence of spin-orbit coupling, a second order Hall effect is allowed by symmetry and its leading contribution is proportional to the BCD. Using magneto-optics one can probe that in fact the nonlinear Hall current is also proportional to the nonequilibrium orbital magnetization, which can serve as an evidence of non-equilibrium orbital accumulation in the material.

In this Chapter we analyze the current-driven magneto-optical Kerr effect in its polar configuration, considering two different platforms: A bilayer WTe 2 [START_REF] Du | ªBand Signatures for Strong Nonlinear Hall Effect in Bilayer WTe 2 º[END_REF] and the newly introduced family of compounds Nb 2n+1 Si n Te 4n+2 [START_REF] Zhao | ªBerry curvature dipole and nonlinear Hall effect in two-dimensional Nb 2n+1 Si n Te 4n+2 º[END_REF]. Besides, we aim at understanding the connection between non-equilibrium orbital magnetization and second-order Hall effect driven by the BCD in the aforementioned two dimensional systems. Since these two materials are extended in the (x, y) plane, the second-order anomalous Hall effect is driven by the BCD elements D xz and D y z , associated with an orbital magnetization perpendicular to the plane.

General Theory

Magneto-Optics

Without loss of generality, let us take into account the magneto-optical Kerr effect in its polar version [START_REF] Mccord | ªProgress in magnetic domain observation by advanced magnetooptical microscopyº[END_REF]. For this case, the electric permittivity tensor has the following form in two dimensions [START_REF] Pieter | ªTheory of the magneto-optical Kerr effect in ferromagnetic compoundsº[END_REF] 

ϵ = ϵ xx ϵ x y -ϵ x y ϵ xx , (4.1) 
using ϵ 0 = 1 to ease the notation. Under the application of a perpendicularly incident 4. Magnetooptical Probe of Non-Equilibrium Orbital Magnetism via the Second-Order Hall effect ± 4.2. General Theory

light ⃗ E ac = E 0 e i ( ⃗ k• ẑ-ωt )
with frequency ω and circular polarization, the Kerr rotation angle θ k and the ellipticity φ k can be approximated in terms of the longitudinal (σ xx ) and transverse (σ x y ) optical conductivity [START_REF] Pieter | ªTheory of the magneto-optical Kerr effect in ferromagnetic compoundsº[END_REF]:

θ k + i φ k = σ x y σ xx 1 + 4πi ω σ xx 1 2 . ( 4.2) 
The longitudinal conductivity in Eq.(4.2) can be accounted for through the Green function formula in Eq.(2.42) [START_REF] Bonbien | ªSymmetrized decomposition of the Kubo-Bastin formulaº[END_REF] with the substitution ϵ → ϵ+ℏω. On the other hand, the transverse optical conductivity can be defined as [START_REF] Yao | ªFirst Principles Calculation of Anomalous Hall Conductivity in Ferromagnetic bcc Feº[END_REF] 

σ x y = e 2 ℏ d 2 k (2π) 2 nm Ω (z) nmk ( f (0) nk -f (0) mk ), (4.3) 
where ⃗ Ω nk is the BC,

⃗ Ω nk (ω) = i m̸ =n 〈u nk | vk |u mk 〉 × 〈u mk | vk |u nk 〉 (ϵ nk -ϵ mk ) 2 -(ℏω + i Γ) 2 = m̸ =n ⃗ Ω nmk . (4.4) 
In the limit ℏω → 0 Eq.(4.4) converges to the BC presented in Chapter 2, which is given by Eq.(2.15) [START_REF] Nagaosa | ªAnomalous Hall effectº[END_REF]. From Eq.( 4.3) it is clear that if the system is time-reversal symmetric then σ x y → 0 and thus the magneto-optical Kerr effect completely vanishes at equilibrium. Notwithstanding, when time reversal is preserved and inversion symmetry is absent, a non-equilibrium magnetooptical Kerr effect is allowed by symmetry, revealing the underlying generation of a non-equilibrium magnetization in the process. Now, let us suppose that an additional d.c. electric field ⃗ E 0 is applied in the sample. As a matter of fact, the inclusion of an auxiliary d.c. electric field has been utilized recently to prove second-harmonic generation, rather than magneto-optical effects, in inversion symmetric Dirac and Weyl semimetals [START_REF] Kazuaki Takasan | ªCurrent-induced second harmonic generation in inversion-symmetric Dirac and Weyl semimetalsº[END_REF]. Following the rationale developed by Sodemann and Fu [START_REF] Sodemann | ªQuantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materialsº[END_REF] for the second order anomalous Hall effect and Yoda and Murakami [START_REF] Yoda | ªOrbital Edelstein Effect as a Condensed-Matter Analog of Solenoidsº[END_REF] for the non-equilibrium orbital magnetization, within the relaxation time approximation, we deduce that [START_REF] König | ªGyrotropic Hall effect in Berrycurved materialsº[END_REF] 

σ x y = e 3 τ ⃗ E 0 ℏ 2 d 2 k (2π) 2 nm Ω (z) nmk (∂ k f (0) nk -∂ k f (0) mk ). (4.5) 
Therefore, the combination of Eqs.(4.5) and (4.1) indicates that the non-equilibrium magneto-optical Kerr effect is proportional to an a.c. Berry curvature dipole [START_REF] Sodemann | ªQuantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materialsº[END_REF] [the integral in Eq.(4.5)], which in fact is the leading order contribution to the second order optical conductivity at small frequencies [START_REF] Morimoto | ªSemiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetalsº[END_REF]. As such, non-equilibrium magnetization, second-order Hall currents and non-equilibrium magneto-optical Kerr effects are companion phenomena in non-centrosymmetric non-magnetic materials and heterostructures. In the calculations below, we apply this theory on two instances defined in two dimensions. In addition, we complement the Kerr angle obtained with an analysis of the compatibility between the symmetries of the non-equilibrium orbital magnetization and the nonlinear Hall effect driven by the BCD.

Decomposition of the Non-Equilibrium Orbital Magnetization

As a complementary evidence of the connection between the non-equilibrium orbital magnetization and the second order Hall effect driven by the BCD, let us consider those quantities in the limit ω → 0. From Eqs.(2.19,2.25,2.11), the orbital Edelstein coefficients can be written as follows:

α i j (µ) = B Z d 2 k (2π) 2 n m j nk v i nk ∂ ϵ nk f nk = - B Z d 2 k (2π) 2 m̸ =n,n i (ϵ nk -ϵ mk ) 〈u nk | vk |u mk 〉 × 〈u mk | vk |u nk 〉 (ϵ nk -ϵ mk ) 2 i v j nk δ(ϵ nk -µ) = - B Z d 2 k (2π) 2 n ϵ nk [ ⃗ Ω nk ] i -[ ⃗ b nk ] i v j nk δ(ϵ nk -µ), = µD j i (µ) + B j i (µ), (4.6) 
where

⃗ b nk = i m̸ =n ϵ mk 〈u nk | vk |u mk 〉 × 〈u mk | vk |u nk 〉 (ϵ nk -ϵ mk ) 2 . ( 4.7) 
As we can see from Eq.(4.6), the non-equilibrium orbital magnetization can be divided in two contributions: A term linear in the chemical potential and proportional to the BCD, and a term that is nonlinear in µ arising from an effective magnetic field with the same symmetries as the BC and the orbital magnetic moment. Remarkably, this expression goes one step forward from previous studies relating BC and orbital magnetic moment in the vicinity of the gap [START_REF] Du | ªBand Signatures for Strong Nonlinear Hall Effect in Bilayer WTe 2 º[END_REF] and for two-band systems with particle hole symmetry [START_REF] Xiao | ªValley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transportº[END_REF]. In the next sections, we also analyze this decomposition for the electric-induced orbital magnetization in the instances of the minimal model of WTe 2 Bilayer and in the Nb 2n+1 Si n Te 4n+2 monolayer.

WTe 2 Bilayer

Definition of the Model System

In order to illustrate our theory, we start by computing θ k and φ k in the exemplary case of a model system describing a WTe 2 bilayer [START_REF] Du | ªBand Signatures for Strong Nonlinear Hall Effect in Bilayer WTe 2 º[END_REF]. From an experimental viewpoint, it has been observed that this material displays strong signatures of nonlinear Hall effect at the second order in electric field [START_REF] Ma | ªObservation of the nonlinear Hall effect under time-reversal-symmetric conditionsº[END_REF][START_REF] Kang | ªNonlinear anomalous Hall effect in few-layer WTe 2 º[END_REF]. The minimal model is composed of four tilted Dirac Hamiltonians in the form [START_REF] Du | ªBand Signatures for Strong Nonlinear Hall Effect in Bilayer WTe 2 º[END_REF] 4. Magnetooptical Probe of Non-Equilibrium Orbital Magnetism via the Second-Order Hall effect ± 4.3. WTe 2 Bilayer

H k =      H d 1 k P k 0 γ P ² k H d 1 k γ 0 0 γ H d 2 k P k γ 0 P ² k H d 2 k      , (4.8) 
where H d i k describes the tilted Dirac cone located at ⃗ K i (In the simulations below, we will consider that the Dirac cones are located at ⃗ K 1 = 0.1πÅ -1 x and ⃗ K 2 = 0.15πÅ -1 x)

H d i k = [E i + t i (k x + K i )] σ0 + v i [k y σ1 + η i (k x + K i ) σ2 ] + m i σ3 2 , (4.9) 
being σi , i = 1..3 and σ0 is the identity matrix in two dimensions. In addition,

P k = ν x k x -i ν y k y 0 0 -ν x k x -i ν y k y , ( 4.10) 
is a matrix that contains the spin-orbit coupling strength ν x (ν y ) along x ( ŷ), with γ an inter-layer coupling between the layers. We report the band structures of the model in In this context, the BC related to the Hamiltonian defined in Eq.(4.8) is highly concentrated around the Dirac cones [START_REF] Du | ªBand Signatures for Strong Nonlinear Hall Effect in Bilayer WTe 2 º[END_REF], thus we will perform our calculations in the rectangle C = [-π, π] × [-π, π] for simplicity. The BC and the non-equilibrium orbital moment are perpendicular to the (k x , k y ) plane and the system also has a mirror symmetry along k y , thus only D xz and α zx are non-zero. Therefore, when the electric field is applied along x and the BC is along ẑ, the resulting orbital magnetization is along ẑ and the Hall current flows along ŷ. From the symmetry perspective, we can interpret the second order Hall current along ŷ as the interplay between the nonequilibrium orbital magnetization along ẑ and the external electric field applied along x. In the following calculations, we study the validity of this assertion by inspecting Eq.(4.6). As a complement, we compute the Kerr angle in a polar configuration as an additional evidence of the intimate connection between non-equilibrium orbital magnetization and second-order Hall effect driven by the BCD.

K 1 = 0.1π Å -1 , K 2 = 0.15π Å -1 , v 1 = v 2 = 2 eVÅ, t 1 = t 2 = 1.5 eV Å, m 1 = m 2 = 0.1 eV, η 1 = -η 2 = -1, E 1 = 0.

Model Calculations

In order to verify numerically the relation between electric-induced orbital magnetization and second order Hall effect driven by the BCD through magneto-optics, we perform the calculations of the a.c. BCD, the longitudinal conductivity and the Kerr angle for the model system defined in Eq.(4.8). We fix the electric field at 45 • with respect to the x axis to retain a polar configuration. Our results are depicted in Fig. 4.3-4.4 as a function of the incoming light energy, for different values of ν x .

Firstly, as we can see from Figs. 4.3(a-b), whereas the real part of the BCD converges to a finite but nonzero value at ℏω → 0, the imaginary part of the BCD goes to zero at zero frequency. Secondly, Re(D) and Im(D) are concentrated at energies ℏω ≤ 250 meV, approximately, because the distribution of the BC is enhanced around the degeneracy points of the bands, as it can be seen in Fig. 4.2. Upon increasing the energy, the BC signal vanishes as well as the BCD. On the other hand, whereas the maximum values in the real and the imaginary parts of the BCD occur at ν x = 0, where the Dirac model exhibits two Dirac nodes around µ = 0, at ν x ̸ = 0 the (smaller) local peaks move instead to the left side of the light energy range as we turn on spin-orbit coupling. We have to remark that from the definitions in Eqs.(4.4,4.5), although Re(D) displays the same average magnitude as its d.c. counterpart [START_REF] Du | ªBand Signatures for Strong Nonlinear Hall Effect in Bilayer WTe 2 º[END_REF], its behavior and that of Im(D) are not precisely related to the peculiarities of the band structure (avoided band crossing and BC maxima). Indeed, we fixed the value of the chemical potential in the equilibrium distribution function at µ = 0, and in the conductivity formula only the BC depends on the frequency. In the case of the longitudinal conductivity in Fig. 4.3(c), we observe identical responses independently of the values of ν x , and all of them are increasing functions of the signal in terms of ℏω.

From the BCD coefficients and the longitudinal conductivity reported in Figs. 

ν y = 0, γ = 0.05 eV, K 1 = 0.1π Å -1 , K 2 = 0.15π Å -1 , v 1 = v 2 = 2 eVÅ, t 1 = t 2 = 1.5 eV Å, m 1 = m 2 = 0.1 eV, η 1 = -η 2 = -1, E 1 = 0.

Comparison With Experiments

In order to assess whether MOKE can be used in realistic experiments to probe the non-equilibrium orbital accumulation (and thus, non-equilibrium orbital magnetization and BCD), we now compare our results with experimental data obtained on different material platforms.. Our calculations show that WTe 2 exhibits an electrical MOKE efficiency of Θ W Te2 /E ≃ 10 -10 rad m V -1 , corresponding to a current MOKE efficiency of θ W Te2 / j ≃ 10 -11 -10 -12 rad cm 2 A -1 (we took σ W Te2 ≃ 10 5 -10 6 Ω -1 m -1 [START_REF] Kang | ªNonlinear anomalous Hall effect in few-layer WTe 2 º[END_REF]).

Let us start by comparing these values with the results obtained in the seminal work of Kato et al. [5]. In their pioneering experiment, the authors performed the MOKE detection of spin Hall-induced spin accumulation in n-GaAs. Based on their data, they obtained an electrical MOKE efficiency of θ G a As /E ≃ 2 × 10 -10 rad m V -1 , which is comparable to our numerical results for WTe 2 . This is rather surprising considering the very small spin-orbit coupling of GaAs. Although the present remark would require further investigation, we speculate that this unexpected value ± among the largest reported to date -, could perhaps be related to the non-equilibrium orbital accumulation. We now turn our attention to MoS 2 monolayer under stress, studied by Son et al. [6]. They obtained a current MOKE efficiency of θ MoS2 / j ≃ 9.1 × 10 -11 rad cm 2 A -1 , again comparable to our calculations for WTe 2 bilayer, although without strain.

We now complete the present analysis by considering non-equilibrium MOKE measurements in heavy metals, as achieved by Stamm et al. [4]. The authors found that for Pt, the current MOKE efficiency is θ P t / j ≃ 2 × 10 -15 rad cm 2 A -1 , whereas in W, θ W / j ≃ 6 × 10 -15 rad cm 2 A -1 . More recently, MOKE has been used to detect the non-equilibrium orbital magnetization in a Ti layer [START_REF] Choi | ªObservation of the orbital Hall effect in a light metal Tiº[END_REF], where the authors reported a current MOKE efficiency surprisingly similar to the case of heavy metals θ T i / j ≃ 10 -15 rad cm 2 A -1 . Strikingly, the non-equilibrium MOKE effect is much smaller in these materials, in spite of their very strong spin-orbit coupling. Similarly, the electrical MOKE efficiency is θ P t /E ≃ 10 -12 rad m V -1 , whereas in W, θ W /E ≃ 3 × 10 -13 rad m V -1 , which remains two orders of magnitude smaller than in semiconductors.

As a conclusion, it appears that the non-equilibrium MOKE effect is much larger in semiconductors than in metals, no matter the spin-orbit coupling strength, suggesting that this effect is remarkably suited to detect non-equilibrium orbital accumulation and the related BCD in these materials.

Magnetooptical Probe of Non-Equilibrium Orbital Magnetism via the

Second-Order Hall effect ± 4.3. WTe 2 Bilayer

Orbital Edelstein Coefficients Versus Berry Curvature Dipole in WTe 2

As an additional probe of the connection between non-equilibrium orbital magnetization and second order Hall effect driven by the BCD, in the d.c. limit ℏω → 0 we evaluate the decomposition of the orbital magnetization given by Eq.(4.6) in order to obtain an explicit relation between the non-equilibrium orbital magnetization (through its Edelstein coefficients) and the BCD. As we explain earlier, the model couples four tilted Dirac models where the on-site energy is defined as

h 0 = E i +t i (k x +K i ).
In the case of two bands, the constant function E i + t i K i is a rigid shift in the energy of each band and t i k x is an odd function in k x , thus we expect that the first term in Eq.(4.6) must dominate over B. Therefore, the non-equilibrium orbital magnetization of the minimal model described by Eq.(4.8) must follow a similar relation α zx ≃ µD zx .

Because of this reason, we compare the quantities α zx and µD zx of the model, for different values of ν x and as a function of the chemical potential. Our results are shown in Fig. 4.5.

As we can see from Fig. 4.5 and from the band structure adapted from [START_REF] Du | ªBand Signatures for Strong Nonlinear Hall Effect in Bilayer WTe 2 º[END_REF] in Fig. 4.2, when ν x = 0 [Fig. 4.5(a)] we have two tilted Dirac cones and α zx ≃ µD xz is in qualitative agreement with the calculations. As we increase ν x to the cases presented in Figs. 4.5(bc), the system exhibits band inversions and anticrossings, and B becomes more dominant. Then, at ν x = 0.4 eV Å a gap is open and the linear relation between α zx and D xz tends to be accurate again. It is clear that α ≃ µD is in good agreement with our calculations as long as we are in the vicinity of the gap or when ν x → 0, where we observe two tilted Dirac cones. 

. Model System

As another example, we apply the theory to the family of compounds Nb 2n+1 Si n Te 4n+2 modelled with a minimal tight-binding Hamiltonian. The Hamiltonian is given by

H k = H (0) k + H (soc) k
, where [242]

H (0) k = t 0 1 + e -i k x 1 + e i k x 0 ⊗ σ0 + δt 0 e -i k y (1 + e -i k x ) e i k y (1 + e i k x ) 0 ⊗ σ0 , (4.11) 
H (soc) k = t λ 1 sin k x 0 0 -2λ 1 sin k x ⊗ σ3 + + δt 2λ 3 sin k y i λ 2 e i k y (1 + e -i k x ) -i λ 2 e -i k y (1 + e i k x ) 2λ 3 sin k y ⊗ σ3 . (4.12)
being σi , i = 1..3 Pauli matrices and σ0 the identity in two dimensions. In the Hamiltonian defined by Eqs. (4.11-4.12), t and δt are intra and inter-chain hoppings, respectively. Besides, {λ i } 3 i =1 are Rashba parameters contributing when H (soc) k is active: Whereas λ 1 is related to intrachain processes, λ 2 and λ 3 are related to interchain processes. A scheme with the lattice structure of the system is reported in Figs.4.6. In addition, our calculation of the band structure of the model, which agrees qualitatively with [START_REF] Zhao | ªBerry curvature dipole and nonlinear Hall effect in two-dimensional Nb 2n+1 Si n Te 4n+2 º[END_REF], is presented in Fig. 4.7. 

Model Calculations and Discussion

For the MOKE response, we fix the value of the band filling at the peak of the d.c. BCD signal (see Chapter 2 for more details) when the electric field is applied along ŷ, finding that the maximum is reached at µ ≃ ±0.028 eV. Our result agrees qualitatively with [START_REF] Zhao | ªBerry curvature dipole and nonlinear Hall effect in two-dimensional Nb 2n+1 Si n Te 4n+2 º[END_REF] and our outcome is communicated in Fig. 4.8. In this case, considering the fact that the BC and the orbital moment are parallel to ẑ, the non-equilibrium orbital magnetization is along ẑ. Therefore, the setup for the second-order Hall current here is identical to WTe 2 presented earlier: On one side, the Hall current flows along x when the BCD D y z is generated by the out-of plane BC and an electric field that is applied along ŷ. From a symmetry perspective, the second order Hall current flowing along x should be related to an external electric field applied along ŷ and a non-equilibrium orbital magnetization along ẑ. With this in mind, let us first study the nonlinear MOKE effect in this system, showing the behavior of the BCD, the longitudinal conductivity and the Kerr angle as a function of the energy of the incoming light and interchain hopping. Our results are reported in Figs.4.9-4.10 for an electric field applied 45 • with respect to the x axis in order to retain the polar Following Fig. 4.9(a), we verify that at zero frequency the real part of the BCD is finite and the imaginary part of the BCD vanishes as expected. The coefficients also tend to zero as we increase the frequency, with peaks close to ℏω → 100 meV. Besides, the longitudinal conductivity is almost a constant for the region ℏω ≤ 300 meV [Fig. 4.9(b)]and then decreases slowly with the frequency. This signal has the same order of magnitude of the response reported in previous experiments on Nb 3 SiTe 6 [START_REF] Hu | ªEnhanced electron coherence in atomically thin Nb3SiTe6º[END_REF][START_REF] Ebad-Allah | ªSignatures of van Hove singularities in the anisotropic in-plane optical conductivity of the topological semimetal Nb 3 SiTe 6 º[END_REF]. Let us comment about the magnitude of the Kerr angle and contrast with the previous case on WTe 2 . From Fig. 4.9(c), we notice that the magnitude of the nonlinear As we can identify from Fig. 4.11 and following Eq.(4.6), although both functions α z y and µD y z have similar behavior their magnitude is notably different. Then, the non-equilibrium orbital magnetization has a sizable contribution arising on B(µ). This example points out the fact that α ≃ µD is not general, and its accuracy is only valid close to gapped and tilted Dirac and related systems.

Conclusions and Prospects

In conclusion, we investigate the nonlinear magneto-optical Kerr effect as a probe of non-equilibrium magnetization in non-magnetic materials without inversion symmetry, when the system is assisted with a d.c electric field. As a consequence, the Kerr rotation is proportional to an a.c. Berry curvature dipole. In the case of a minimal model of a bilayer WTe 2 , we infer that the Kerr angle reaches sizable values at small frequencies that can be controlled under the presence of a gate voltage. We suggest to apply this principle to other interesting platforms such as in ferroelectrics and time reversal invariant Weyl semimetals, in order to prove the induction of the magnetization and obtain a potential candidate for second order Hall effect. Besides, in the SSH model we infer that the Kerr angle is controlled by the interchain coupling that breaks inversion symmetry. The theory presented here can be extended to detect current-induced magnetization in the transverse and longitudinal configuration.

An interesting prospect points to explore whether the nonlinear Hall effect mediated by disorder mechanisms, such as side jump or skew-scattering, could be explained through the same processes but at the level of the spin or orbital angular momentum. In other words, one could wonder about the conditions where the second order Hall effects mediated by disorder can be related to the spin Edelstein effect and/or the orbital Edelstein effect mediated by the orbital angular momentum. These perspectives are not limited to second-order in electrical perturbation, and in fact one avenue concerns the theory for the emergence of the orbital polarization accompanying the third order Hall effect. This has been proposed recently in order to explain the signal in WTe 2 [START_REF] Ye | ªOrbital polarization and third-order anomalous Hall effect in WTe 2 º[END_REF], but this effects lacks a proper theoretical study. In the same way as in this research, we also expect a magneto-optical effect relating third-order transport and second-order magnetization, where the symmetry considerations are completely different. We consider to investigate this topic in future studies.

Spin-Orbit Torque for Field Free Switching in

C 3v crystals

Motivation

Electrical manipulation of the magnetization in single magnetic thin films using spin-orbit torques has become routinely available in the past decade [START_REF] Manchon | ªCurrent-induced spin-orbit torques in ferromagnetic and antiferromagnetic systemsº[END_REF]. In perpendicularly magnetized systems, the most suitable configuration for memory applications, achieving reversible current-driven switching necessitates the combination of spin-orbit torque with an external magnetic field [START_REF] Mihai Miron | ªCurrent-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer[END_REF][START_REF] Liu | ªSpin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effectº[END_REF]. As a matter of fact, whereas the spin-orbit torque tends to bring the magnetization in the plane, applying an additional external field along the current direction provides the necessary force that completes the reversal process in a deterministic manner. The need for this external field is considered as a hurdle for memory applications and several strategies have been proposed to circumvent this difficulty. Field-free current-driven switching has been realized using exchange bias from a neighboring antiferromagnet [START_REF] Oh | ªField-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures.º In[END_REF][START_REF] Fukami | ªMagnetization switching by spin-orbit torque in an antiferromagnet/ferromagnet bilayer systemº[END_REF], exchange coupling [START_REF] Lau | ªSpin-orbit torque switching without an external field using interlayer exchange couplingº[END_REF][START_REF] Wei | ªField-Free Spin±Orbit Torque Switching in Perpendicularly Magnetized Synthetic Antiferromagnetsº[END_REF] or anomalous Hall torque from a proximate ferromagnet [START_REF] Heon | ªSpin currents and spin-orbit torques in ferromagnetic trilayersº[END_REF][START_REF] Ryu | ªEfficient spin±orbit torque in magnetic trilayers using all three polarizations of a spin currentº[END_REF]. The latter takes advantage of an interfacial spin rotation of the incoming spin current [START_REF] Amin | ªInterface-Generated Spin Currentsº[END_REF], sometimes called spin swapping [START_REF] Lifshits | ªSwapping Spin Currents: Interchanging Spin and Flow Directionsº[END_REF][START_REF] Saidaoui | ªSpin-Swapping Transport and Torques in Ultrathin Magnetic Bilayersº[END_REF] (see also Refs. [START_REF] Luo | ªSpin-Orbit Torque in a Single Ferromagnetic Layer Induced by Surface Spin Rotationº[END_REF][START_REF] Ortiz Pauyac | ªSpin Hall and Spin Swapping Torques in Diffusive Ferromagnetsº[END_REF]). In addition, structural engineering has been successfully exploited to design lateral [START_REF] Yu | ªSwitching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields[END_REF][START_REF] Bose | ªObservation of Anomalous Spin Torque Generated by a Ferromagnetº[END_REF][START_REF] Cui | ªField-Free Spin-Orbit Torque Switching of Perpendicular Magnetization by the Rashba Interfaceº[END_REF][START_REF] Razavi | ªDeterministic spin-orbit torque switching by a light-metal insertionº[END_REF]264] and geometrical [START_REF] Safeer | ªSpin-orbit torque magnetization switching controlled by geometry[END_REF] symmetry breaking, tilted anisotropy [START_REF] You | ªSwitching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropyº[END_REF][START_REF] Liu | ªCurrent-induced magnetization switching in all-oxide heterostructuresº[END_REF][START_REF] Li | ªField-Free Deterministic Magnetization Switching with Ultralow Current Density in Epitaxial Au/Fe 4 N Bilayer Filmsº[END_REF] and longitudinal (compositional or structural) gradient [START_REF] Shu | ªField-Free Switching of Perpendicular Magnetization Induced by Longitudinal Spin-Orbit-Torque Gradientº[END_REF][START_REF] Chen | ªFree Field Electric Switching of Perpendicularly Magnetized Thin Film by Spin Current Gradientº[END_REF].

Whereas most of these works considered multilayers made out of polycrystalline materials, recent experiments demonstrated that low symmetry crystals are endowed with unconventional spin-orbit torques that can play the role of an external field, thereby completing the current-driven switching process. The impact of the crystalline symmetries on the spin-orbit torque is well-known since its initial observation in the non-centrosymmetric magnetic semiconductors (Ga,Mn)As [START_REF] Chernyshov | ªEvidence for reversible control of magnetization in a ferromagnetic material by means of spin±orbit magnetic fieldº[END_REF][START_REF] Endo | ªCurrent induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga,Mn)Asº[END_REF] and in the Heusler alloy MnNiSb [START_REF] Ciccarelli | ªRoom-temperature spin-orbit torque in NiMnSbº[END_REF], where the bulk inversion symmetry breaking promotes a so-called Dresselhaus-like spin-orbit torque. In fact, further lowering of the crystalline symmetries can lead to unusual torques that turn out to be instrumental to achieve field-free switching. For instance, WTe 2 has been shown to display a "perpendicular damping-like torque" [START_REF] Macneill | ªControl of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayersº[END_REF][START_REF] Macneill | ªThickness dependence of spin-orbit torques generated by WTe2º[END_REF] that enables field-free switching, an effect confirmed in several experiments [START_REF] Shi | ªAll-electric magnetization switching and Dzyaloshinskii±Moriya interaction in WTe2/ferromagnet heterostructuresº[END_REF][START_REF] Xie | ªField-free magnetization switching induced by the unconventional spin-orbit torque from WTe2º[END_REF][START_REF] Kao | ªDeterministic switching of a perpendicularly polarized magnet using unconventional spin ± orbit torques in WTe2º[END_REF]. This torque, also present in MoTe 2 [START_REF] Xue | ªUnconventional spin-orbit torque in transition metal dichalcogenide-ferromagnet bilayers from firstprinciples calculationsº[END_REF] and NbSe 2 [START_REF] Marcos | ªSpin-Orbit Torques in NbSe2/Permalloy Bilayersº[END_REF], is associated with a crystalline mirror symmetry breaking perpendicular to the interface plane. When a current is injected along this mirror, it may generate a nonequilibrium spin density contained in this mirror plane and normal to the interface. Antiferromagnets are also currently attracting attention from this standpoint. Indeed, the combination of crystalline and magnetic symmetries tend to produce spin currents with a polarization different from what is dictated by the conventional spin Hall effect [START_REF] Zelezný | ªSpin-Polarized Current in Noncollinear Antiferromagnetsº[END_REF][START_REF] Zhang | ªSpin Hall effect emerging from a noncollinear magnetic lattice without spin-orbit couplingº[END_REF], an effect sometimes called "magnetic" spin Hall effect [START_REF] Kimata | ªMagnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnetº[END_REF][START_REF] Srikrishna Ghosh | ªUnconventional Robust Spin-Transfer Torque in Noncollinear Antiferromagnetic Junctionsº[END_REF]. These spin currents can in turn exert "unconventional" torques on an adjacent ferromagnet, as observed in collinear (Mn 2 Au [START_REF] Chen | ªObservation of the antiferromagnetic spin Hall effectº[END_REF], RuO 2 [START_REF] Bose | ªTilted spin current generated by the collinear antiferromagnet ruthenium dioxideº[END_REF][START_REF] Bai | ªObservation of Spin Splitting Torque in a Collinear Antiferromagnet RuO 2º[END_REF]), and non-collinear antiferromagnets (Mn 3 GaN [287], Mn 3 Pt [START_REF] Bai | ªControl of spin-orbit torques through magnetic symmetry in differently oriented noncollinear antiferromagnetic Mn3Ptº[END_REF] and Mn 3 Sn [START_REF] Kondou | ªGiant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnetº[END_REF]).

Recently, Liu et al. [START_REF] Liu | ªSymmetry-dependent field-free switching of perpendicular magnetizationº[END_REF] studied the current-driven magnetization reversal in a crystalline CuPt/CoPt bilayer in the L1 1 phase grown along the (111) direction. They reported that field-free switching could be achieved when the current was applied along low-symmetry crystallographic directions. Intriguingly, the polarity of the magnetization reversal loop displayed a periodic pattern depending on the crystallographic direction along which the current was applied (See Fig. 5.1). This unusual behavior was interpreted as arising from an unconventional torque, tagged "3m" torque, which appears in crystals with C 3v point group [START_REF] Železný | ªSpin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnetsº[END_REF]. Nonetheless, no microscopic explanation was proposed to explain the emergence of the "3m" torque in this bilayer. Such an explanation is highly desired, especially with the acceleration of the research in two-dimensional van der Waals magnets [START_REF] Gong | ªTwo-dimensional magnetic crystals and emergent heterostructure devicesº[END_REF]. As a matter of fact, most of the van der Waals magnets possess a hexagonal or trigonal point group and are therefore entitled to display such a torque. For instance, the "3m" torque was identified in Fe 3 GeTe 2 monolayer [11,[START_REF] Zhang | ªGigantic Current Control of Coercive Field and Magnetic Memory Based on Nanometer-Thin Ferromagnetic van der Waals Fe3GeTe2º[END_REF] and is associated with an unconventional form of Dzyaloshinskii-Moriya interaction [START_REF] Laref | ªElusive Dzyaloshinskii-Moriya interaction in monolayer Fe3GeTe2º[END_REF]. Nonetheless, mere symmetry consideration is not sufficient and a microscopic description is needed. Indeed, recent first principles calculation in the Janus monolayer VSeTe demonstrated that although this material possesses 5. Unconventional Responses in Trigonal Crystals ± 5.1. Spin-Orbit Torque for Field Free Switching in C 3v crystals the C 3v symmetry, no "unconventional" torque can be obtained and only the usual field-like and damping-like torques are present [START_REF] Smaili | ªJanus monolayers of magnetic transition metal dichalcogenides as an all-in-one platform for spin-orbit torqueº[END_REF]. Therefore, understanding the physical origin of the "3m" torque in C 3v crystals and suggesting guidelines to enhance it is of crucial interest. In this Chapter, we intend to clarify the nature of the spin-orbit torque in crystals with C 3v point group, i.e., its vectorial form and its microscopic origin. In subsection 5.1.2 we first determine the general form of the spin-orbit torque up to the third order in magnetization using the Invariant Theory applied on the C 3v character table. We then consider a minimal model for a magnetic gas with C 3v symmetries. In this model, the spin texture is governed by the cooperation between linear (Rashba) and cubic spin-momentum locking terms. The Fermi surface is characterized by trigonal warping that appears close to the top of the band structure. We show that the unconventional "3m" torque is associated with the cubic spin-momentum locking when the Fermi surface displays strong trigonal warping. We therefore suggest that trigonal warping can be used as a good indicator for the search of "3m" torques in C 3v crystals and two-dimensional van der Waals magnets. In subsection 5.1.5 we compare our findings from the tight-binding calculations with the realistic case of CuPt/Co, confirming the strong interplay between cubic-Rashba coupling and the warping of the Fermi surface for the observation of such unconventional torques.

Symmetry Analysis

In this section we first indicate the main ingredients inherited from the representation theory [START_REF] Dresselhaus | Group Theory: Application to the Physics of Condensed Matter[END_REF][START_REF] Lax | Symmetry Principles in Solid State and Molecular Physics[END_REF], aiming to obtain a proper expansion for the unconventional spin-orbit torques in trigonal crystals. To do so, we first need to identify the point group symmetry for the system of interest. In the present case, it is the C 3v point group, which is characterized by three symmetry operations: The identity E , a three-fold rotation along ẑ and a mirror symmetry normal to ŷ. Moreover, it has three irreducible representations A 1 , A 2 and E that can be represented by matrices, which at the same time reveal the action of the symmetry operations mentioned earlier. Although a given symmetry operation can be defined by an infinite number of matrices, the trace of these matrices is unique for a given operation. Therefore, each irreducible representation can be identified by a unique set of traces called ºcharactersº. Table 5.1 gives the character table of the C 3v point group. The (equilibrium and nonequilibrium) properties of a given crystal are written as the combination of polar and axial vectors. For instance, in the case of the spin-orbit torque these vectors are the electric field (E x , E y ,E z ) (polar vector) and the magnetization (m x ,m y ,m z ) (axial vector). When applying the symmetry operations on these vectors, they transform according to the irreducible representations A 1 , A 2 and E so that one can define basis functions for each representation. In Table 5.1, we give the basis functions of the irreducible representation of the C 3v point group up to the third order in magnetization. Concretely, they transform in the following way, 

(E x , E y ) σ v --→ (E x , -E y ), (5.1) (E x , E y ) C 3 -→ (-1 2 E x -3 2 E y , 3 2 E x -1 2 E y ), ( 5 
σ v --→ (-m x , m y , -m z ), (5.3) 
(m x , m y , m z ) C 3 -→ (-1 2 m x -3 2 m y , 3 2 m x -1 2 m y , m z ).
(5.4)

E 2C 3 3σ v Linear Quadratic Cubic A 1 1 1 1 z x 2 + y 2 , z 2 z 3 , z(x 2 + y 2 ), x(x 2 -3y 2 ) m 2 x + m 2 y , m 2 z m y (3m 2 x -m 2 y ) A 2 1 1 -1 y(3x 2 -y 2 ) m z - m x (m 2 x -3m 2 y ) E 2 -1 0 (x, y) (x 2 -y 2 , x y), (xz, y z) (z(x 2 -y 2 ), x y z), (xz 2 , y z 2 ), (x(x 2 + y 2 ), y(x 2 + y 2 )) (m x , m y ) (m 2 x -m 2 y , m x m y ) (m z (m 2 x -m 2 y ), m x m y m z ), (m x m 2 z , m y m 2 z ) (m x m z , m y m z ) (m x (m 2 x + m 2 y ), m y (m 2 x + m 2 y ))
Table 5.1. ± Character table for the C 3v point group symmetry. We show the generating polynomials for each irreducible representation in both polar an axial versions.

Within this frame, we first determine the general form of the spin-orbit field from the invariant theory [START_REF] Dresselhaus | Group Theory: Application to the Physics of Condensed Matter[END_REF][START_REF] Lax | Symmetry Principles in Solid State and Molecular Physics[END_REF], which will be later compared to model and realistic calculations. The spin-orbit torque ⃗ τ arises on an effective field ⃗ h such that ⃗ τ = -γ ⃗ m × ⃗ h. Since the latter plays the role of a magnetic field it is an axial vector, which is crucial to develop a proper expansion of ⃗ h by applying the basis functions in Table 5.1. For example, ⃗ E is a polar vector that belongs to the A 1 representation since it is invariant under C 3 and σ v . Then, by looking at Table 5.1 we deduce that the only way to construct an axial vector is by taking basis functions in A 2 . Therefore, the only possible combinations in magnetization with ⃗ E that are invariant under the symmetries of the group are m z , m 3 z and m x (m 2 x -3m 2 y ). Conversely, ẑ × ⃗ E is an axial vector that belongs to A 2 , hence its allowed combinations with A 1 are 1, m z and m y (3m 2

xm 2 y ). The same reasoning should be applied to the basis functions in E . Accounting for all combinations involving polar vector components at the first order and axial vector components up to the third order in magnetization, the effective field invariant under the C 3v point group symmetry is 5. Unconventional Responses in Trigonal Crystals ± 5.1. Spin-Orbit Torque for Field Free Switching in C 3v crystals

h ∥ = h ∥ F L (1 + η F L m 2 z + δ F L m y (3m 2 x -m 2 y )) ẑ × ⃗ E + h ∥ DL ((1 + η DL m 2 z )m z + δ DL m x (m 2 x -3m 2 y )) ⃗ E + h ∥ 3m (1 + η 3m m 2 z )[(m x E x -m y E y ) x -(m y E x + m x E y ) ŷ] + h ∥ P H [((m 2 x -m 2 y )E y -2m x m y E x ) x + ((m 2 x -m 2 y )E x + 2m x m y E y ) ŷ] + h ∥ χ m z [((m 2 x -m 2 y )E x + 2m x m y E y ) x -((m 2 x -m 2 y )E y -2m x m y E x ) ŷ] + h z 3m m z (m y E x + m x E y ) x + (m x E x -m y E y ) ŷ (5.5)
and

h ⊥ = h z DL (1 + η z m 2 z ) ⃗ E • ⃗ m + h z F L m z ⃗ m • ( ẑ × ⃗ E ) + h z P H ((m 2 x -m 2 y )E y + 2m x m y E x ) + h z χ m z E x (m 2 x -m 2 y ) -2E y m x m y ẑ. (5.6)
Here, we describe in a first stage the variety of terms appearing in our expansion; the formulas are completely general and they do not rely on any specific mechanism. We will address this question in the next sections. In addition to the regular fieldlike (h F L ) and damping-like (h DL ) components, we recognize the "3m" one reported in Ref. [START_REF] Liu | ªSymmetry-dependent field-free switching of perpendicular magnetizationº[END_REF] for Pt-based heterostructures and in Ref. [11], the latter in F 3 GeTe 2 with D 3h symmetry. In fact, D 3h contains the same symmetry operations that C 3v plus a two-fold rotation around x. At higher orders in the magnetization, h ∥ F L and h ∥ DL are sensitive to planar (η α ) and trigonal (δ α ) anisotropies. Furthermore, the magnitudes of the field-like and damping-like components are different in-plane (h ∥ F L , h ∥ DL ) and out-of plane (h z F L , h z DL ). We also identify two additional components refered as inplane (h ∥ P H ) and out-of plane (h z P H ) planar Hall torque, and the chiral torques (h ∥ χ , h z χ ). The planar Hall torque terms have symmetries comparable to the planar Hall effect, in the sense that it is active when the magnetization lies in the (x,y) plane. Moreover, its magnitude depends on the relative angle between the electric field and the magnetization. The chiral torque necessitates to cant the magnetization away from the plane and it changes sign when reversing the magnetization (m z → -m z ).

To clarify the impact of the torque on the magnetization dynamics, we analyze its expression in two illustrative situations. When the magnetization lies out-of-plane ( ⃗ m = m z ẑ), which is typical of perpendicularly magnetized systems at rest [see Fig. 5.2(a)], the two torque components up to first order in magnetization read

τ ∥ = -γh ∥ F L ẑ × ( ẑ × ⃗ E ), (5.7 
)

τ ⊥ = -γh ∥ DL ẑ × ⃗ E (5.8)
We see that only the conventional field-like and damping-like torques are active in this configuration. One can also notice that the field-like torque is always along the Once the magnetization is in-plane, at φ = ϕ E + π 2 , where ϕ E is the in-plane angle of the electric field with respect to x and (θ, φ) are the polar and azimuthal angles of the magnetization unit vector, the torques ⃗ τ = -γ ⃗ m × ⃗ h = τ θ θ + τ φ φ in regular spherical coordinates are

τ θ /E = γ[h ∥ DL δ DL -h ∥ 3m ] sin 3ϕ E , (5.9) 
τ φ /E = γh z P H cos 3ϕ E .

(5.10)

In this configuration, the conventional field-like and damping-like torques are quenched, and the only active torques are the "3m" torque (h ∥ 3m ), identified in Ref. [START_REF] Liu | ªSymmetry-dependent field-free switching of perpendicular magnetizationº[END_REF], the trigonal anisotropy correction to the damping-like torque (h ∥ DL δ DL ), and the perpendicular planar Hall torque (h z P H ). Here, only τ θ induces the deterministic switching, which means that the "3m" torque and the trigonal anisotropy correction to the dampinglike torque are the active contributions in this process. Remarkably, in this frame the two other torques identified in Eqs. (5.7-5.8), i.e. the planar Hall torque (h ∥,z P H ) and the chiral torque (h ∥,z χ ), are only active when θ ̸ = 0, π/2 and should therefore impact the magnetization dynamics itself. Their influence could modify the current-driven auto-oscillation [START_REF] Liu | ªMagnetic Oscillations Driven by the Spin Hall Effect in 3-Terminal Magnetic Tunnel Junction Devicesº[END_REF][START_REF] Demidov | ªMagnetic nano-oscillator driven by pure spin current[END_REF], a phenomenon that we leave to future studies.

The impact of Fermi surface warping on the spin-orbit torque has been addressed [START_REF] Kurebayashi | ªTheory of current-driven dynamics of spin textures on the surface of a topological insulatorº[END_REF][START_REF] Imai | ªSpintronic properties of topological surface Dirac electrons with hexagonal warpingº[END_REF] investigated the influence of warping on the spin-transfer torque and spin-orbit torque, respectively, in magnetic domain walls and skyrmions to the first order of the magnetization gradient. The spin-orbit torque discussed presently is not addressed in these works. Zhou et al. [START_REF] Long Zhou | ªNonlinear antidamping spin-orbit torque originating from intraband transport on the warped surface of a topological insulatorº[END_REF] investigated the appearance of a damping-like torque that is nonlinear in electric field and directly induced by the warping. Li et al. [START_REF] Yu | ªIn-plane magnetization effect on current-induced spin-orbit torque in a ferromagnet/topological insulator bilayer with hexagonal warpingº[END_REF] investigated the impact of the hexagonal warping on the spinorbit torque, linear in electric field, and observed that the torque does not vanish when the magnetization lies in the plane. This is consistent with the analysis performed in the previous section, although a direct connection with the general form provided in Eqs. (5.5)-(5.6) remains difficult.

Transport Formalism and C 3v Model

In this section we present the tight-binding model and the transport formalism, in order to explain the physical origin of the unconventional spin-orbit torques and asses their different magnitudes. Besides, we will be able to contrast our tight-binding calculations with the symmetry predictions described earlier. We consider a tightbinding model defined in an hexagonal lattice with Hamiltonian

H 0 = ε k + ∆⃗ σ • ⃗ m + H R + H R3 , (5.11) 
with

H R = -i t R a u,s=± s⃗ σ • ( ẑ × ⃗ u)e i s ⃗ k•⃗ u = t R a η k • (⃗ σ × ẑ),
(5.12)

H R3 = -i t R3 u,s=± s⃗ σ • ẑe i s ⃗ k•⃗ u = t R3 λ k σ z . (5.13)
The sum is taken over the nearest neighbors (NN), i.e., ⃗ u = ⃗ a, ⃗ b,⃗ c, sketched on Fig. 5.3(a), and a is the lattice parameter. Explicitly,

ε k = -2t (cos ⃗ k • ⃗ a + cos ⃗ k • ⃗ b + cos ⃗ k •⃗ c), η k = 2(⃗ a sin ⃗ k • ⃗ a + ⃗ b sin ⃗ k • ⃗ b +⃗ c sin ⃗ k •⃗ c) and λ k = 2(sin ⃗ k • ⃗ a + sin ⃗ k • ⃗ b + sin ⃗ k •⃗ c), where ⃗ a = a( 3 x-ŷ) 2 , ⃗ b = - a( 3 x+ ŷ) 2
and ⃗ c = a ŷ. Here, H 0 represents the nearest neighbor hopping Hamiltonian between the atoms, plus and additional term that quantifies the ferromagnetic exchange in the system. In addition, H R is the Rashba spin-orbit coupling Hamiltonian that breaks inversion symmetry due to the out-of plane Rashba field, being a common element to explain the inversion asymmetry in the majority of heterostructures. Most importantly, H R3 is a cubic correction to the Rashba term. Let us fix the path for computing the band structure in the case of this Rashba system. The lattice structure of this model is shown in Fig. 5.3 (a). Following the definition of the model, we take the lattice vectors 5. Unconventional Responses in Trigonal Crystals ± 5.1. Spin-Orbit Torque for Field Free Switching in C 3v crystals inclusion of cubic spin-orbit coupling impacts the evolution of the Fermi surface in the band-filling range: at low chemical potential [5.3(c)], where the energy dispersion is quadratic, the Fermi surface remains spherical and the cubic spin-orbit coupling has almost no impact. Upon increasing the band filling [5.3(d-e)], the Fermi surface experiences hexagonal warping and the cubic spin-orbit coupling modifies the energy contours. In this context, the Fermi surface acquires Fermi pockets away from the Γ point progressively and at high band filling the system manifests trigonal warping.

In the next sections we will discuss how the combined action of the cubic spin-orbit coupling and a proper band filling allow the appearance of unconventional responses in charge transport and spin-orbit torques due to the modification of the Fermi surface.

In the sections below, we complement the calculations performed based on the tightbinding Hamiltonian presented here with realistic simulations in CuPt/Co developed by Dr. Armando Pezo, aiming to confirm our theoretical findings and put them in a more realistic viewpoint. Our paper is published in Physical Review B [8].

We compute the effective fields based on the symmetryzed decomposition of Kubo-Bastin formula [START_REF] Bonbien | ªSymmetrized decomposition of the Kubo-Bastin formulaº[END_REF], where the intrinsic and extrinsic contributions are explicitly given by ( σi

) I nt = - eℏ 4π f (ϵ)d ϵ Re Tr v(G R-A ) σi (∂ ϵ G R+A ) , (5.24) 
( σi ) E xt = - eℏ 8π ∂ ϵ f (ϵ)d ϵ Re Tr v(G R-A ) σi (G R-A ) , (5.25) 
where a momentum-space integration is implicit. Notice that Eqs.(5.24-5.25) are equivalent to Eqs.(2.42-2.43) for the charge transport, but here we obtain an electricinduced spin density rather than a current. The effective field and the spin-orbit torque read

⃗ h = ∆V -1 M -1 s (⃗ σ) and ⃗ τ = ⃗ h × ⃗ m.
Here, V is the volume of the unit cell and M s is the saturation magnetization of the ferromagnet. In order to improve its time efficiency for numerical calculations, we develop an analogue identity of Eq.(5.24)in the Bloch basis. Integrating by parts the argument of the integral in Eq.(5.24) and using the following identities for the Green functions

G R(A) = n |u nk 〉 〈u nk | ϵ -ϵ nk ± i Γ , ( 5.26) 
we infer that 

Tr v(G R-A ) σi (∂ ϵ G R+A ) = n 〈u nk | v(G R-A ) σi (∂ ϵ G R+A ) |u nk 〉 , 5 
〈u nk | v |u mk 〉 〈u mk | (G R -G A ) u pk u pk σi u qk u qk (∂ ϵ G R+A ) |u nk 〉 = - n,m,p,q δ mp δ nq 〈u nk | v |u mk 〉 u pk σi u qk × 1 ϵ -ϵ mk + i Γ - 1 ϵ -ϵ mk -i Γ 1 (ϵ -ϵ nk + i Γ) 2 + 1 (ϵ -ϵ nk -i Γ) 2 = - m̸ =n 〈u nk | v |u mk 〉 〈u mk | σi |u nk 〉 1 ϵ -ϵ mk + i Γ - 1 ϵ -ϵ mk -i Γ 1 (ϵ -ϵ nk + i Γ) 2 + 1 (ϵ -ϵ nk -i Γ) 2 = - m̸ =n 〈u nk | v |u mk 〉 〈u mk | σi |u nk 〉 g ′ (ϵ) (5.27)
Then, for f ′ (ϵ) → -δ(ϵ -µ) and integrating by parts, we deduce that

h I nt i = eℏ 4π Re m̸ =n 〈u nk | v |u mk 〉 〈u mk | σi |u nk 〉 f (ϵ)g ′ (ϵ)d ϵ , = - eℏ 4π Re m̸ =n 〈u nk | v |u mk 〉 〈u mk | σi |u nk 〉 f ′ (ϵ)g (ϵ)d ϵ , = eℏ 4π Re m̸ =n 〈u nk | v |u mk 〉 〈u mk | σi |u nk 〉 g (µ) , (5.28) 
where

g (ϵ) = I (ϵ mk -i Γ, ϵ nk -i Γ) + I (ϵ mk -i Γ, ϵ nk + i Γ) -I (ϵ mk + i Γ, ϵ nk -i Γ) -I (ϵ mk + i Γ, ϵ nk + i Γ). (5.29) 
In this context, for two numbers a, b ∈ C we define

I (a, b) = d ϵ (ϵ -a)(ϵ -b) 2 ,
(5.30) 

I (a, b) = 1 a -b 2 1 ϵ -a - ϵ (ϵ -b) 2 + 2b -a (ϵ -b) 2 d ϵ , = 1 
a -b 2 1 ϵ -a - (ϵ -b) (ϵ -b) 2 + b -a (ϵ -b) 2 d ϵ , = 1 a -b 2 1 ϵ -a - 1 (ϵ -b) + b -a (ϵ -b) 2 d ϵ , = 1 (a -b) 2 ln (ϵ -a) -ln (ϵ -b) + a -b ϵ -b . ( 5 

Numerical Results and Discussion

Let us suppose that the electric field is applied along x and the magnetization of the ferromagnet rotates in the (x, y) plane. In this scenario, our symmetry analysis from Eqs.(5.5-5.6) yields to Free Switching in C 3v crystals From Fig. 5.4 (a) it is clear that a 3-fold dependence can be assigned to h x and h y , which can be attributed to the trigonal anisotropy terms δ DL and δ F L , respectively. Moreover, in the same low-band filling regime we can see that h z is dominated by the conventional intrinsic contribution due to the damping-like term h z DL . Conversely, at high band filling [Fig. 5.4(b)] the h ∥ 3m contribution takes place as it can be checked by looking at h y depicted in blue lines. Regarding the extrinsic contributions, it is evident that h x and h y are not trivial because of the planar and field like terms at low band filling [Fig. 5.4(c)], while on the contrary h z P H becomes relevant at high band filling [Fig. 5.4(d)]. For all these reasons, we deduce that our model calculations matches with our symmetry predictions; however, we will notice in the section of realistic simulations that indeed the higher-order expansion has certain limitations that the will discuss below.

h ∥ E = [h ∥ DL δ DL cos 3φ + h ∥ 3m cos φ -h ∥ P H sin 2φ] x + [h ∥ F L (1 + δ F L sin 3φ) -h ∥ 3m sin φ + h ∥ P H cos 2φ] ŷ, (5.32) h ⊥ E = [h z DL cos φ + h z P H sin 2φ] ẑ. ( 5 
Having checked the angular dependence of the effective fields, we fit our results with the predictions developed from the invariant theory to get a magnitude of each expression as a function of the band filling and the cubic spin-orbit coupling. We communicate our results in Fig. 5.5. 

First Principles Case Study: CuPt(111)/Co

For the sake of completeness, we present below the first principle calculations performed by Dr. Armando Pezo on CuPt(111)/Co bilayer. Although I did not perform the calculations myself, I actively participated to the discussion of these calculations. As explained above, this material has been recently experimentally demonstrated to host a sizable º3mº torque [START_REF] Liu | ªSymmetry-dependent field-free switching of perpendicular magnetizationº[END_REF]. Here, a CuPt/Co slab geometry containing 12 layers has been considered, such that the L1 1 phase is made up of stacking elemental fcc layers along the [START_REF] Wei | ªQuantum third-order nonlinear Hall effect of a four-terminal device with time-reversal symmetryº[END_REF] direction. The band structure and spin textures were determined by employing fully relativistic density functional theory. The spin-orbit coupling was described within a fully relativistic pseudo-potential formulation and used the generalized gradient approximation (GGA) for the exchange-correlation functional.

The calculations are converged for a 400 Ry plane-wave cut-off for the real-space grid with a 13×13×1 k-points sampling of the Brillouin zone. The conjugate gradient algorithm was used to minimize the atomic forces below 0.01 eVÅ -1 . The momentumresolved spin texture at the Fermi level is reported in Fig. 5.6 and displays a very clear hexagonal symmetry, suggesting an effectively large cubic spin-orbit coupling interaction. Analogous to the model analysis, the components of the effective fields for this material are computed when the magnetization rotates in the (x,y) plane. The intrinsic The realistic simulations illustrated in Fig. 5.7 have a good agreement with our symmetry prognosis in (5.32-5.33). The intrinsic spin-orbit torque is composed of the damping-like torque (h z ) and the º3mº torque (h x ,h y ), with h ∥ 3m /h z DL ∼ 0.67, indicating that the º3mº torque is about the same order of magnitude as the dampinglike torque. The extrinsic torque is one order of magnitude larger and is composed of the field-like torque and the planar Hall torque. The possible discrepancies between our numerical predictions and our symmetry analysis in Eqs. (5.32-5.33) can be explained by the neglect of higher-order terms in the character table expansion and the large values of cubic spin-orbit coupling. Nevertheless, we can extract h ∥ P H /h ∥ F L ∼ 1 and h z P H /h ∥ P H ∼ 0.4, meaning that the planar Hall torque is as large as the fieldlike torque and anisotropic, hence it must impact the magnetization switching and dynamics. We emphasize that the relative magnitude of the intrinsic to extrinsic torques is not meaningful since the extrinsic torque is inversely proportional to the disorder broadening Γ, which is taken as a (small) free parameter in our model.

The presence of these unconventional torques is particularly interesting for applications as they not only enable field-free switching but also impact the current-driven auto-oscillations. Our minimal model suggests that C 3v crystals could host such torques. Nonetheless, we emphasize that this is not a sufficient condition. As a matter of fact, in a previous study, the computations of the spin-orbit torque in vanadiumbased Janus transition metal dichalcogenides VSeTe do not display such torque, in spite of the similar crystal symmetries [START_REF] Smaili | ªJanus monolayers of magnetic transition metal dichalcogenides as an all-in-one platform for spin-orbit torqueº[END_REF]. This absence was attributed to the fact that in this material, the electronic transport here is mostly driven by states at Γpoint and therefore the crystal symmetries are not imprinted on the Bloch states. In contrast, in the L1 1 CuPt the Fermi surface shows a very strong warping, indicating that the Bloch states have a strong symmetry character and enabling the onset of the "3m" torque as well as other unconventional torques. Since the indicator to the presence of this torque is the trigonal warping of the Fermi surface, many other materials could display such effects: For example, Bi-based topological insulators (Bi,Sb) 2 /(Se,Te) 3 [START_REF] Y L Chen | ªExperimental realization of a threedimensional topological insulator, Bi2Te3.º[END_REF][START_REF] Hsieh | ªA tunable topological insulator in the spin helical Dirac transport regimeº[END_REF][START_REF] Zhanybek Alpichshev | ªSTM imaging of electronic waves on the surface of Bi2Te3: Topologically protected surface states and hexagonal warping effectsº[END_REF], and Bi 4 Te 3 [START_REF] Chagas | ªMultiple strong topological gaps and hexagonal warping in Bi 4 Te 3 º[END_REF], but also possibly in the recently grown LaAlO 3 /EuTiO 3 /SrTiO 3 all-oxide heterostructure [START_REF] Chen | ªFerromagnetic Quasi-Two-Dimensional Electron Gas with Trigonal Crystal Field Splittingº[END_REF].

We conclude the first part of this Chapter by emphasizing that other unconventional torques are yet to be found in low-symmetry crystals that could lead to original currentdriven dynamics, as already reported in WTe 2 /Py [START_REF] Macneill | ªControl of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayersº[END_REF][START_REF] Shi | ªAll-electric magnetization switching and Dzyaloshinskii±Moriya interaction in WTe2/ferromagnet heterostructuresº[END_REF][START_REF] Xie | ªField-free magnetization switching induced by the unconventional spin-orbit torque from WTe2º[END_REF] and Fe 3 GeTe 2 [11,[START_REF] Zhang | ªGigantic Current Control of Coercive Field and Magnetic Memory Based on Nanometer-Thin Ferromagnetic van der Waals Fe3GeTe2º[END_REF]. In this context, one needs to keep in mind that the general form of the spin-orbit field used in this work is obtained via a low-order expansion of the character table that is formally valid only when the spin-orbit coupling is smaller than the exchange. In materials where the spin-orbit coupling and the exchange are of the same order of magnitude, much more complex torques are expected.

Chiral Hall Effect

As we emphasize in the introduction of this manuscript, the Hall effect necessitates the presence of an effective magnetic field to occur. The usual setup for its realization is an external magnetic field or a magnetization perpendicular to the applied electric field, something that is commonly allowed by Neumann principle and Onsager reciprocity. Nevertheless, the symmetry analysis could also suggest innovative arrangements that defy the regular and anomalous Hall effect. Inspired on Juretschke's early predictions about the conductivity coefficients in Antimony, introducing an identical technique about 50 years ago [START_REF] Juretschke | ªSymmetry of galvanomagnetic effects in antimonyº[END_REF], in this work we write the full conductivity tensor and reveal the microscopic origin of the unconventional responses in trigonal magnetic crystals. In this frame, new experiments in CuPt/CoPt heterostructures performed by Prof. Jingsheng Chen and his team, in the National University of Singapur (NUS), demonstrate that a Hall effect is guaranteed by symmetry, when the external magnetic field and the electric field are applied collinearly. Exceptionally, although antisymmetric in both ⃗ B and ⃗ m, this Hall effect is symmetric when both ⃗ B and ⃗ m change sign, in a similar manner to what was reported in the magnetic Weyl semimetal Co 3 Sn 2 S 2 [START_REF] Jiang | ªChirality-Dependent Hall Effect and Antisymmetric Magnetoresistance in a Magnetic Weyl Semimetalº[END_REF]. Accordingly, we entitle this contribution as the chiral Hall effect (CHE). Regarding its microscopic origin, whereas Co 3 Sn 2 S 2 is centrosymmetric and it has been claimed a connection between CHE observed here and the tilting of the Weyl nodes, in our case we can show that its origin is (again) related to the trigonal warping of the Fermi surface. Applying the same symmetry considerations through the Invariant Theory, tight binding model calculations and realistic simulations in the system, we elucidate the elementary role of cubic Rashba spin-orbit interaction and a proper band filling to observe the CHE. This Chapter's section is organized as follows: In subsection 5.2.1 we present the expression for the conductivity tensor, identifying the CHE as one of the terms in our expansion. Then, in subsection 5.2.2 we implement model calculations to verify the microscopic origin of the CHE and its angular dependence with respect to the electric field and magnetic field angles. In subsection 5.2.3 I discuss the realistic calculations performed by Dr. Armando Pezo to corroborate our theory in a more realistic scenario. Finally, I discuss our findings about the CHE and its further implications. This work is expected to be published in Physical Review Letters.

Symmetry Analysis

Firstly, we apply the Invariant Theory to find the transverse current in a system subjected to an in-plane electric field ⃗ E = E x x + E y ŷ and an in-plane magnetic field ⃗ B = B x x + ⃗ B y ŷ (The magnetic field ⃗ B and the magnetization ⃗ m play the same role in our expansion, because they are both axial vectors). In order to mimic the features of 2-D perpendicularly magnetized heterostructures, such as the CuPt/CoPt mentioned before, we also take into account an out-of plane magnetization m z . Besides, we perform symmetry calculations taking into account a mirror symmetry along x rather than ŷ to compare directly with the experiment. Then, applying the symmetry analysis up to first order in electric field and third order in magnetic components, the in-plane polar current is given by Then, the Hall current is obtained after projecting into the transverse direction ẑ × Ê and imposing Onsager reciprocity. If we parametrize the electric and magnetic fields in the form ⃗ E = E (cos φ I x + sin φ I ŷ) and ⃗ B = B (cos φ B x + sin φ B ŷ), where φ I (φ B ) is the angle between the electric (magnetic field) with respect to the x axis, we deduce that the magnitude of the Hall current is

⃗ J = m z ẑ × ⃗ E + (E x B
J H = ⃗ J • ( ẑ × Ê ),
= σ H cos θ + σ ⊥ H cos 3 θ + σ ∥ H sin 3 θ sin 3φ B + σ P H sin 2 θ sin 2φ B -2φ I + σ χ sin θ cos θ cos φ B + 2φ I , (5.35) being θ the angle between the magnetization or the magnetic field with respect to ẑ. Let us comment about the physics pertaining each term in Eq.(5.2.2). From left to right, we first observe the regular anomalous Hall effect σ H arising on the Berry curvature. In fact, the regular Hall effect must exhibit the same symmetry. Second, σ ⊥ H is an out-of plane correction to σ H that appears when the magnetization has an out-of plane component along ẑ. In contrast, the in-plane correction to σ H , i.e. σ ∥ H is different from zero whenever the applied magnetic field or the magnetization display an in-plane component, and it also follows a 3-fold rotation as a function of the magnetic angle. The fourth term is the planar Hall effect that is non zero as soon as θ ̸ = 0, π. Besides, this response is also non zero if φ B -φ I ̸ = 0, π/2. In other words, the planar Hall effect requires the electric and magnetic fields neither aligned nor perperdicular to each other. Last but not least, we obtain the so-called "chiral Hall effect" in the trigonal crystal: It needs both in-plane and out-of plane magnetic components, which in this case are represented by (B x , B y , m z ). Moreover, it is non zero even though φ B -φ I = 0, π/2. We reckon this expression as the most symmetry dependent term in the trigonal crystal, allowing multiple configurations between the external fields that are forbidden for the other contributions. Setting φ I = φ B for both fields parallel between each other, Eq.( 5 

Model Calculations

Regarding the transport in this system, the expression for the linear conductivity in Eq.(5.35) contains a few subtleties that we mean to clarify. When the electric field is applied in a given angle φ I with respect to, say, x, the intrinsic Berry curvature identity

σ x y = e 2
ℏ n B Z d 2 k 4π 2 Ω z nk f nk (5.37) is only capable to give us information about the terms that are independent of φ I , because the corresponding current is only proportional to ẑ × ⃗ E . To put it in the language of the Invariant Theory, it just retains terms belonging to the A 2 representation. Then, the usual conductivity coefficient is the source of the well-known intrinsic anomalous Hall effect σ H and its anisotropic corrections (in or out-of plane) σ ⊥ H and σ ∥ H , respectively. Accordingly, the only explanation for the planar Hall effect and the CHE is an extrinsic mechanism collecting the transverse current upon the injection of ⃗ E . Defining the injected (parallel) and transverse (perpendicular) projections of the velocity operator as where a k-dependent integration is implicit. We verify the existence of the extrinsic terms predicted by symmetry considerations using the tight binding model defined in subsection 5.1.3, with an appropriate adaptation of the mirror symmetry along x rather than ŷ. Our results for the case φ I = 0 • and φ I = φ M = φ B are depicted in Figs. 5.8 and 5.9, respectively. As we notice from Fig. 5.8(a), at low band filling the conductivity is dominated by the Planar Hall effect, describing a 2-fold oscillation that is slightly deviated by σ χ when φ I = 0 • and possibly other terms that are not included in our expansion. On the other hand, at high band filling [Fig. 5.8(b)] the conductivity is dominated by σ χ , with a clear 1-fold oscillation that matches our symmetry considerations. Besides, we identify that whereas σ P H does not require cubic spin-orbit to appear, σ χ does. On the other hand, when the electric and magnetic field rotate together, i.e, φ I = φ B , at low band filling [Fig. 5.9 (a)] the conductivity gives us an angular dependence that cannot be accounted for in our symmetry analysis. We attribute this fact to higher order terms in the expansion since its magnitude is very small and cannot be explained by the planar Hall effect. Most importantly, at high band filling [Fig. 5.9 (b)] we find a 3-fold oscillation if t R3 ̸ = 0, revealing that a signature for the CHE is the trigonal warping of the Fermi surface in these systems.

In order to corroborate our prediction in a realistic scenario, we describe the results obtained from DFT simulations in the next subsection. 

Realistic Simulations

In this subsection the existence of the CHE in a realistic scenario is demonstrated. The realistic simulations were performed by Dr. Armando Pezo, and we include it here for the sake of completeness. In complete analogy to the case of the spin-orbit torque, a slab system of CuPt/Co grown along the L1 1 direction composed of 12 layers is considered, within the frame of a fully relativistic density functional theory. The SOC is described with a fully relativistic pseudo-potential formulation, using the generalized gradient approximation (GGA) for the exchange correlation functional. The calculations are converged for a 400 Ry plane-wave cut-off for the real-space grid with a 13×13×1 k-point sampling for the Brillouin zone. In addition, the conjugate gradient algorithm was applied to minimize the atomic forces below 0.01 eV/Å. The extrinsic contribution to the Hall conductivity is computed by taking Eq.(5.40) for same instances taken into account for the model calculations. First, when the electric field is along x and θ = 10 • , the results are reported as a function of the magnetization angle in Fig. 5.10. Here the conductivity coefficient follows a combination between a two-fold and a one-fold oscillation, which is expected to be an interplay between the Planar Hall effect and the projection of the CHE in the direction of the electric field fixed before. This profile matches reasonably with the symmetry analysis shown by Eq.(5.35). 

Conclusions and Prospects

In this chapter we deduce that the trigonal warping of the Fermi surface can be used as a fingerprint of the CHE and several unconventional spin-orbit torques in crystals with C 3v symmetry point group. For the former case, it is important to notice that the CHE permits a transverse current when the electric and magnetic fields injected are aligned between them in the presence of an out-of plane magnetization. The corresponding current is antisymmetric in both the applied magnetic field and the magnetization. In the latter instance, maybe the most important torque detected throughout this analysis is the h 3m torque component, which is able to produce deterministic field-free switching. The effective field found here is very important to improve the efficiency in realistic systems that can be designed for new memory devices.

In the case of the symmetry dependent Hall effect identified here, its extrinsic nature coincides to what is expected from the semiclassical formalism. Nevertheless, during this work we did not make any particular assumption about the scattering mechanism governing this contribution. Then, one could wonder how side-jump or skew scattering mechanisms arising from spin-orbit coupled impurities might influence the chiral Hall effect. From the semiclassical viewpoint, these additional ingredients should be accounted for in the distribution function through the Boltzmann equation and in the wave-function itself. In the Green function formalism, this should be included as an initial assumption for the self-energy, before solving the Dyson equations written in Keldysh formalism, for example. Traditionally, the anomalous transport and dampinglike torques (i.e., torque that are even in magnetization) are either associated with BC or with skew and side-jump scattering. An interesting research direction would be to consider how impurity scattering and BC can cooperate to bring about new features that cannot be described from the mechanisms presented earlier.

As far as the spin-orbit fields are concerned, the impact of the unconventional torque components on the magnetization undoubtedly deserves further analysis. For instance, the chiral Hall torques obtained from symmetry analysis could bring interesting new features such as original current-frequency tuning or unexpected forms of oscillations. Of course, a better understand of the conditions under which these new fields appear in experiments, and possibly dominate over the conventional torque components, is necessary.

A natural question that arises is whether there is a unique dependence of the responses depicted on the warping of the Fermi surface. In the light of a previous work in the magnetic WSM Co 3 Sn 2 S 2 [START_REF] Jiang | ªChirality-Dependent Hall Effect and Antisymmetric Magnetoresistance in a Magnetic Weyl Semimetalº[END_REF], this does not seem to be the case as this material exhibits CHE and possesses inversion symmetry (it belongs to the D 3d symmetry point group). The challenge is to verify whether this effect can be attributed to the physics of the Weyl points in this system or to a different mechanism that can be tracked down to the Fermi surface or the electronic band structure. This system cannot accommodate the spin-orbit torques, unless we are able to design a slab, but it is still unclear if the unusual torques predicted in this work can also be only attributed to the warping of the Fermi surface. It seems that is not the case since VSeTe 2 belongs to C 3v and the "3m" torque is absent [START_REF] Smaili | ªJanus monolayers of magnetic transition metal dichalcogenides as an all-in-one platform for spin-orbit torqueº[END_REF]. Despite of the relative match between our symmetry analysis, model and realistic calculations, it is straightforward to observe that it will occur if the cubic Rashba term is much smaller than the magnetic exchange. How large is the range of validity of the approximation also needs to be further explored. Assuming that this relation holds, materials with C nv , n ̸ = 3 symmetry point group are fascinating platforms that could be addressed with the same reasoning, in order to investigate new sources of spin-orbit torques that arise on the crystalline symmetries of the samples. In this sense, the emerging contributions would be strongly dependent on the n-fold rotation of the crystal under consideration.

General Conclusion Summary

In conclusion, in this doctoral Thesis we present a theoretical investigation of nonlinear transport phenomena in quantum materials and heterostructures. Here, we must emphasize the growing importance of higher-order effects in electronic transport and spin-orbitronics for the elaboration of novel electronic devices. From the symmetry perspective, we show that nonlinear effects at higher orders in electric field can even appear in non-magnetic materials with the additional absence of certain symmetries of the system. One of the most remarkable cases in this context is the second order Hall effect, where a Hall current emerges as the leading order contribution to the transport as long as inversion symmetry is broken. At the third order in electric field, which is an ongoing topic of our research, the current could appear even in the presence of time reversal and inversion symmetries. We are developing further exploration to understand their nature at the minimal and lattice level, in order to extend it properly for realistic calculations.

The analysis of higher order responses also uncover several properties of quantum materials encoded in the quantum geometry. In non-magnetic materials this cannot be detected in linear response regime through the Berry curvature. Firstly, in the case of time reversal invariant Weyl semimetals, we demonstrate how the surface states impact the nonlinear Hall effect driven by the Berry curvature dipole [1]. We observe a strong thickness dependence of the conductivity coefficients in the type II regime, where the Weyl cones are strongly tilted, determined by the slab geometry under consideration. The enhancement of the nonlinear response in one of the slabs adopted is attributed to an increase of the relative number of states at the surface rather than the bulk, and the topological surfaces states exhibit a smaller impact than the trivial states on the transport. This behavior can be followed in experiments by studying the Berry curvature dipole as a function of the thickness of the slab. For all these reasons, we encourage the readers to explore the nonlinear Hall signal driven by the Berry curvature dipole in other material interfaces and heterostructures that are not necessarily topological.

Secondly, we investigate the electric-induced magneto-optical Kerr effect as a probe of the second order Hall effect in non-magnetic materials. Here, we demonstrate that the Kerr angle can reach values of the order of nanoradians, even in absence of spin-orbit coupling. The values of the MOKE efficiency obtained are comparable with previous experiments. In addition, we analyze the relation between the nonequilibrium orbital magnetization and the BCD in selected systems, finding that the ratio between both quantities is proportional to the Fermi energy in the vicinity of Dirac cones and the gap of topological insulators. In view of this work, we thus conclude that the nonlinear MOKE response not only constitutes an evidence of the second order Hall effect, but it could serve as a hallmark of the non-equilibrium orbital accumulation in light metals.

Finally and as we commented earlier, the possible emergence of a given response is determined by the symmetries of the crystal. In this frame, and since higher order responses are not limited to electric components, we study the spin-orbit torque's family in trigonal crystals by means of the Invariant Theory [8]. Here, a wide variety of new torques induced by a linear electric field are predicted up to third order in magnetization components, going beyond the regular field-like and damping-like contributions. Particularly, one of them is able to promote the field-free switching of the perpendicular magnetization in trigonal ferromagnets, which can be used in the fabrication of more efficients magnetic memory devices. The fact that a given response is allowed by symmetry is not sufficient to be observed it, and for this instance we deduce that the new torques are a consequence of the interplay between the cubic spin-orbit coupling and a proper band filling, resulting in the trigonal warping of the Fermi surface. A similar work was performed to explain the origin of an unconventional Hall effect (tagged as the chiral Hall effect) in the same systems, where the external electric and magnetic field are aligned collinearly. Here we conclude that the chiral Hall effect is allowed by symmetry and its microscopic origin relies on the cubic spin-orbit coupling of the system. Therefore, the chiral Hall effect dominates at high band filling when the trigonal warping of the Fermi surface is sizable. 

A. Berry Phase Theory in Quantum Mechanics

As it was stated by M.Berry [START_REF] Berry | ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✾✽✴rs♣❛✳✶✾✽✹✳✵✵✷✸. URL: ❤tt♣s✿✴✴r♦②❛•s♦❝✐❡t②♣✉❜•✐s❤✐♥[END_REF], in this appendix we explain the emergence of a non-trivial phase in the wave function. If we take a parameter dependent hamiltonian H (λ(t )) and its eigenstates |Ψ(λ(t ))〉, an additional geometrical phase factor is acquired as a consequence of the adiabatic evolution of the system between t = 0 and t = T . If the Hamiltonian is time independent, then its eigenstates satisfy the time independent Schrodinger equation:

Ĥ ψ n = E n ψ n . (A1)
On the other hand, if the Hamiltonian is time dependent, but varies slowly in time, it remains in the same state up to two phase factors that depend on the energy and the geometry: 

ψ = ψ e i

Figure 1 .

 1 Figure 1. ± Esquisse des effets Hall linéaires (a) et (b) du second ordre (J H ) en réponse à un courant de charge injecté (J c ). (a) L'effet Hall linéaire émerge en présence d'un champ magnétique (B) ou d'une aimantation (M) perpendiculaire au plan. (b) L'effet Hall du second ordre apparaît dans les matériaux avec rupture de symétrie d'inversion et s'accompagne d'une aimantation orbitale (M o ) hors équilibre (c'est-à-dire linéaire en E) perpendiculaire au plan.

Figure 3 .

 3 Figure 3. ± Considérant le cas µ = 0.2, nous reportons en (a) le BCD d'une dalle avec un vecteur normal aligné avec x, pour différents nombres de couches et en fonction du paramètre d'inclinaison. Nous montrons la situation similaire pour une géométrie de dalle normale à ẑ (b), en prenant dans les deux cas le profil du coefficient dipolaire en lignes noires comme référence.

Figure 4 .

 4 Figure 4. ± (a) Dans un matériau bidimensionnel avec couplage spin-orbite et en présence d'un champ électrique externe, une accumulation de spin hors équilibre est générée en raison d'un flux net d'électrons de spins opposés, qui peut être détecté par MOKE. (b) Si le système est non-magnétique et non-centrosymétrique, et même en l'absence de couplage spin-orbite, un effet Hall du second ordre est autorisé par symétrie et sa contribution principale est proportionnelle au dipôle de la courbure de Berry. En utilisant la magnéto-optique, on peut montrer que le courant Hall non linéaire est également proportionnel à l'aimantation orbitale hors équilibre.

Figure 5 .

 5 Figure 5. ± Evolution des surfaces de Fermi avec le remplissage de bande (inférieur en (a) et supérieur en (b)), pour les cas sans (lignes noires) et avec (lignes rouges) couplage spin-orbite cubique lorsque l'aimantation est hors plan.
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 111 Figure 1.1. ± Sketch of the (a) linear and (b) second order Hall effects (J H ) as a response to an injected charge current (J c ). (a) Linear Hall effect emerges in the presence of either magnetic field (B) or magnetization (M) perpendicular to the plane. (b) Second order Hall effect emerges in materials with inversion symmetry breaking and is accompanied by non-equilibrium (i.e., linear in E) orbital magnetization (M o ) perpendicular to the plane.
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 12 Figure 1.2. ± (a) Band structure of the tight binding Hamiltonian representing effectively the Co 3 Sn 2 S 2 system. (b) Anomalous Hall conductivity for the tight binding Hamiltonian, exhibiting a peak in the signal at the energy of the Weyl points.Figure extracted and modified from [56].
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 1 Figure 1.3. ± (a) Temperature dependence of the longitudinal and the Hall resistivity, for a film of Mn 3 Sn with 40nm. (b) Field dependence of the Hall resistivity, for two films of Mn 3 Sn with different thickness, when the magnetic field is applied perpendicular to the surface. Figure extracted and modified from [66].
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 14 Figure 1.4. ± (a) Crystalline structure of RuO 2 . (b) Temperature dependence of the anomalous Hall conductivity of RuO 2 synthesized on two distinct substrates. Panels (a) and (b) extracted and modified from [67] and [68], respectively.
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 15 Figure 1.5. ± Illustration of the regular and planar Hall effect measurements in the upper panels (a) and (b), respectively. Whereas θ denotes the angle of the magnetic field with respect to the out-of plane axis, φ lies always in the plane. On the other hand, the lower panels of (a) and (b) are the Hall measurements of both configurations, for a temperature T = 2K and a magnetic field B = 9T . Figure extracted and modified from [82].
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 1 Figure 1.6. ± (a) Optical image of the experimental setup, with the electrodes labelled with numbers. The crystalline directions are denoted by a and b. (b) Measure of the nonlinear Hall and longitudinal voltages V 2ω if an a.c. current flows parallel to a at ω ∼ 177 Hz, or in other words, between electrodes 7 and 8.Figure extracted and modified from [36].

  Figure 1.6. ± (a) Optical image of the experimental setup, with the electrodes labelled with numbers. The crystalline directions are denoted by a and b. (b) Measure of the nonlinear Hall and longitudinal voltages V 2ω if an a.c. current flows parallel to a at ω ∼ 177 Hz, or in other words, between electrodes 7 and 8.Figure extracted and modified from [36].
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 1 State of the Art on Electronic Transport and Spintronics ± 1.3. Second Order Hall Effect of the applied strain and the orientation of the external electric field. A sketch of the generation of the second order Hall effect and a plot with the main experimental results are given by Figs.1.7-1.8.
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 17 Figure 1.7. ± Nonlinear Hall effect in Transition Metal Dichalcogenide monolayers under strain.When the electric field is applied along the mirror symmetry line (green arrows), there are 3 options: (a) For a monolayer without strain, the BCD is forbidden due to the 3-fold rotation. In the case of uniaxial strain along x (b) or ŷ (c), the 3-fold rotation is subsequently broken and the distribution of the BC around the valleys K and K' (red and blue solid lines) produces a sizable BCD (orange arrows). Figure extracted and modified from[6].
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 1181 Figure 1.8. ± BCD and normalized (valley) magnetization with respect to the total Hall current (M/J). (a) D and M/J measured for 5 different devices. Devices A and B (C and D) are strained along x ( ŷ) when the electric field is injected along x.In device E, the strain is along x when the electric field is applied along ŷ. (b) Calculated D and M /J when the strain is applied along x (red circles) and ŷ (blue circles). Figure extracted and modified from[6].

1 .

 1 State of the Art on Electronic Transport and Spintronics ± 1.5. Nonlinear Physics in Spin

1 .

 1 Figure 1.9. ± Let us consider, without loss of generality, the field-free switching scheme throughout the Spin Hall effect in one of its common forms. (a) Injecting a current in a normal metal along x creates an out-of plane spin current that is polarized along ŷ. Then, the torque exerted on the magnetization at the top layer ∼ m × ( m × ŷ) is not apt to perform the switching process, so an external magnetic field is mandatory. (b) In contrast, if the polarization of the spin current is along ẑ, the corresponding torque ∼ m × ( m × ẑ) allows the deterministic switching.Figure extracted and modified from [125].

  (1.27-1.28) are a direct sum of the identity representation related to x 2 + y 2 and a 2x2 representation identical to [x, y]. In conclusion, [2x y, x 2y 2 ] transforms in the same way that [x, y], hence creating an identical representation. A representation of a group that is written in the form of Eq.(1.[START_REF] Thouless | ªQuantized Hall Conductance in a Two-Dimensional Periodic Potentialº[END_REF]-1.28) is 1. State of the Art on Electronic Transport and Spintronics ± 1.7. Motivation and Scope of the Work tagged as irreducible.
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 1 State of the Art on Electronic Transport and Spintronics ± 1.7. Motivation and Scope of the Work of the topological states' projections even though the BCD in the plane of the Fermi arcs can be forbidden by symmetry.

  2. A Pedagogical Introduction to Electronic Transport Theory ± 2.1. Linear Response in Electric Field
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 3 Influence of the Surface States on the Nonlinear Hall Effect in Weyl Semimetals ± 3.1. Motivation

Figure 3 .

 3 Figure 3.1. ± BC vector field (Ω x , Ω z ) of the Hamiltonian presented in Eq.(3.1), in the plane of the Fermi arcs with k y = 0. We set the intrinsic parametersk 0 = π 2 , m = 2, t x = 1 2 , γ = 1 and t = 1.The BC is not sensitive to the value of γ[START_REF] Mccormick | ªMinimal models for topological Weyl semimetalsº[END_REF], and then one specific value is enough to illustrate this vector field. The monopoles of BC are depicted by red and blue points, indicating sources (blue) or sinks (red) of BC flux. In the context of WSMs they are commonly tagged as Weyl points, and in this case they are arranged in reciprocal space obeying time reversal symmetry.
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 3 Influence of the Surface States on the Nonlinear Hall Effect in Weyl Semimetals ± 3.2. Lattice and Slab Model Hamiltonians

Figure 3 . 2 .

 32 Figure 3.2. ± Band structure for slab configurations with 25 layers in type I (upper panels, γ = 1) and type II (lower panels, γ = 3) regime, when the slab is normal to x (a-d), ŷ (b-e) and ẑ (c-f). We denote the surface states with red lines.
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 3 Influence of the Surface States on the Nonlinear Hall Effect in Weyl Semimetals ± 3.2. Lattice and Slab Model Hamiltonians

Figure 3 . 3 .

 33 Figure3.3. ± Density of states for a slab system with L = 25 layers, when the growth direction is along ŷ. We take the same parameters as in Fig.3.1 and µ = 0.2, exemplifying the top (upper panels), central (central panels) and bottom layers (lower panels) for the system described above. We show the transition between type I and type II by varying the tilting parameter γ, labeling the instances γ = 1, 2, 2.5, 3 with indexes (a-d), respectively. Finally, the Fermi arcs and the center of the track states are indicated with red and blue arrows, respectively.
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 3 Influence of the Surface States on the Nonlinear Hall Effect in Weyl Semimetals ± 3.3. Model Calculations and Discussion

Figure 3 . 9 .

 39 Figure 3.9. ± Bulk band structure for the type II WSM obtained from first principle calculations, where the inset displays the unit cell.

3 .

 3 Influence of the Surface States on the Nonlinear Hall Effect in Weyl Semimetals ± 3.4. Realistic Simulations in WTe 2 Slabs

Figure 3 .

 3 Figure 3.10. ± Density of states at the Fermi level projected on the bulk (a,c) and top surfaces (b,d) for a slab geometry of 25 layers. Upper panels are related to a slab normal to ẑ and lower panels to a slab normal to x.
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 3 Influence of the Surface States on the Nonlinear Hall Effect in Weyl Semimetals ± 3.4. Realistic Simulations in WTe 2 Slabs structure. The results presented here corroborate our predictions developed through the model analysis and confirms a thickness dependence related to the surface states on the NLHE in realistic materials.
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 33 Figure 3.11. ± Band structure for a system of 25 layers (a-c) and BCD calculations in the energy range and for different thicknesses in terms of their number of layers (b-d), when the slab is normal to ẑ (upper panels) and x (lower panels). The color bar in (a-c) represents the projections on the bottom (-1) and top (+1) layers.
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 4 Magnetooptical Probe of Non-Equilibrium Orbital Magnetism via the Second-Order Hall effect ± 4.1. Introduction
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 4 Magnetooptical Probe of Non-Equilibrium Orbital Magnetism via the Second-Order Hall effect ± 4.2. General Theory

Figure 4 .

 4 Figure 4.1. ± (a)In a two dimensional material with spin-orbit coupling and under the presence of an external electric field, a non-equilibrium spin accumulation is generated due to a net flow of electrons with opposite spins, which can be detected through MOKE. (b) If the system is non-magnetic and non-centrosymmetric, and even in absence of spin-orbit coupling, a second order Hall effect is allowed by symmetry and its leading contribution is proportional to the BCD. Using magneto-optics one can probe that in fact the nonlinear Hall current is also proportional to the nonequilibrium orbital magnetization, which can serve as an evidence of non-equilibrium orbital accumulation in the material.
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 4 2 for different values of ν x .
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 42 Figure 4.2. ± Band structures and Berry curvature distributions of the model system defined by Eq.(4.8) for k y = 0, with the representative values ν y = 0, γ = 0.05 eV,K 1 = 0.1π Å -1 , K 2 = 0.15π Å -1 , v 1 = v 2 = 2 eVÅ, t 1 = t 2 = 1.5 eV Å, m 1 = m 2 = 0.1 eV, η 1 = -η 2 = -1, E 1 = 0.02 eV, E 2 = -0.08 eV. The cases considered here are (a) ν x = 0, (b) ν x = 0.1 eV Å, (c) ν x = 0.15 eV Åand (d) ν x = 0.4 eV Å. Figure extracted and modified from [90].

  Figure 4.2. ± Band structures and Berry curvature distributions of the model system defined by Eq.(4.8) for k y = 0, with the representative values ν y = 0, γ = 0.05 eV,K 1 = 0.1π Å -1 , K 2 = 0.15π Å -1 , v 1 = v 2 = 2 eVÅ, t 1 = t 2 = 1.5 eV Å, m 1 = m 2 = 0.1 eV, η 1 = -η 2 = -1, E 1 = 0.02 eV, E 2 = -0.08 eV. The cases considered here are (a) ν x = 0, (b) ν x = 0.1 eV Å, (c) ν x = 0.15 eV Åand (d) ν x = 0.4 eV Å. Figure extracted and modified from [90].

  4.3, we can compute the Kerr angle and ellipticity for the same range of frequencies. Our results are displayed in Fig.4.4.
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 4 Figure 4.3. ± Real (a) and imaginary (b) part of the a.c. BCD as a function of the light energy, for different values of ν x and taking µ = 0. (c) Corresponding longitudinal conductivity for the cases indicated in panels (a) and (b). For this simulation, we consider the representative values ν y = 0, γ = 0.05 eV, K 1= 0.1π Å -1 , K 2 = 0.15π Å -1 , v 1 = v 2 = 2 eVÅ, t 1 = t 2 = 1.5 eV Å, m 1 = m 2 = 0.1 eV, η 1 = -η 2 = -1, E 1 = 0.02 eV, E 2 = -0.08 eV.In addition, we suppose an homogeneous disorder Γ = 0.01 eV.

  Figure 4.3. ± Real (a) and imaginary (b) part of the a.c. BCD as a function of the light energy, for different values of ν x and taking µ = 0. (c) Corresponding longitudinal conductivity for the cases indicated in panels (a) and (b). For this simulation, we consider the representative values ν y = 0, γ = 0.05 eV, K 1= 0.1π Å -1 , K 2 = 0.15π Å -1 , v 1 = v 2 = 2 eVÅ, t 1 = t 2 = 1.5 eV Å, m 1 = m 2 = 0.1 eV, η 1 = -η 2 = -1, E 1 = 0.02 eV, E 2 = -0.08 eV.In addition, we suppose an homogeneous disorder Γ = 0.01 eV.

Figure 4 .

 4 Figure 4.4. ± Kerr rotation (a) and ellipticity (b) for the model Hamiltonian in Eq. (4.8), for different values of ν x when µ = 0. We take the same microscopic parameters that in Fig.4.3.
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 444 Magnetooptical Probe of Non-Equilibrium Orbital Magnetism via the Second-Order Hall effect ± 4.4. Nb 2n+1 Si n Te 4n+2 Monolayer Nb 2n+1 Si n Te 4n+2 Monolayer 4.4.1

Figure 4 .

 4 Figure 4.6. ± (a) Lattice structure of the model consisting on zigzag chains. The primitive cell has two sites A and B, and the hoppings t and t ′ = δt are intrachain and interchain, respectively. (b) denotes the three hoppings related to spin-orbit coupling.Figure modifed from [242].

  Figure 4.6. ± (a) Lattice structure of the model consisting on zigzag chains. The primitive cell has two sites A and B, and the hoppings t and t ′ = δt are intrachain and interchain, respectively. (b) denotes the three hoppings related to spin-orbit coupling.Figure modifed from [242].

4 .

 4 Figure 4.7. ± Band structure of the model in Eqs.(4.11-4.12), computed with the microscopic parameters t = -0.2 eV, t ′ = δt = 0.16 eV, λ 1 = 1 and λ 2 = λ 3 = 0.1.

Figure 4 .

 4 Figure 4.8. ± d.c. BCD for the model system defined by Eqs.(4.11-4.12), taking the microscopic parameters as t = -0.2 eV, t ′ = δt = -0.16 eV, λ 1 = 1 and λ 2 = λ 3 = 0.1.

4 .

 4 Magnetooptical Probe of Non-Equilibrium Orbital Magnetism via the Second-Order Hall effect ± 4.4. Nb 2n+1 Si n Te 4n+2 Monolayer configuration.

Figure 4 . 9 .

 49 Figure 4.9. ± For the model system defined by Eqs.(4.11-4.12), taking the microscopic parameters as t = -0.2 eV, t ′ = δt = -0.16 eV, λ 1 = 1, λ 2 = λ 3 = 0.1, µ = 0.028 eV and Γ = 0.01 eV. (a) Real (solid blue line) and imaginary (solid red line) part of the a.c. BCD as a function of the energy of the incoming light ℏω. (b) Longitudinal conductivity of the system. (c) Kerr angle (solid blue line) and ellipticity (solid red line) of the model.

Figure 4 .

 4 Figure 4.10. ± For the model system defined by Eqs.(4.11-4.12), taking the microscopic parameters as t = -0.2 eV, t ′ = δt = -0.16 eV, λ 1 = 1, λ 2 = λ 3 = 0.1, µ = -0.028 eV, ℏω = 100 meV and Γ = 0.01 eV: (a) Real (solid blue line) and imaginary (solid red line) part of the a.c. BCD as a function of the interchain parameter δ. (b) Longitudinal conductivity of the system. (c) Kerr angle (solid blue line) and ellipticity (solid red line) of the model.
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 43 Orbital Edelstein Coefficients Versus Berry Curvature Dipole in Nb 2n+1 Si n Te 4n+2As it was illustrated for the case of WTe 2 bilayer in section 4.3.4, in the following we perform a similar analysis to the non-equilibrium orbital magnetization, comparing it with the BCD function in the d.c. limit. Our findings are presented in Fig.4.11.

Figure 4 .

 4 Figure 4.11. ± Orbital Edelstein coefficient α z y and the function for the model system defined by Eqs.(4.11-4.12), taking the microscopic parameters as t = -0.2 eV, t ′ = δt = -0.16 eV, λ 1 = 1, λ 2 = λ 3 = 0.1 and µ = -0.028 eV.

5 .

 5 Unconventional Responses in Trigonal Crystals ± 5.1. Spin-Orbit Torque for Field Free Switching in C 3v crystals

Figure 5 .

 5 Figure 5.1. ± (a) Setup of the experiment in CuPt/CoPt heterostructure for the transport measurement. The red arrow denotes the magnetization M and the grey arrow symbolizes the current I flowing along x. Here, the x and y axis are the same as in (b). (b) The definition of the current direction in terms of θ I . The current is applied along the Hall bar, with an azimuthal angle of θ I with respect to the [110] direction. (c) Anomalous Hall effect of the bilayer for θ I = 0 • . (d) Current angle dependence of the spin-orbit torque induced magnetization switching. The solid line is a cosine fit to the data. (e) Current-induced magnetization switching for Hall bars with different θ I . The dashed (solid) arrows indicate clockwise (anti-clockwise) switching polarity. The loops were manually shifted for better visualization. The pulse width is 30 µs. Illustration extracted and modified from [10].

5 .

 5 Unconventional Responses in Trigonal Crystals ± 5.1. Spin-Orbit Torque for Field Free Switching in C 3v crystals electric field, ∼ ⃗ m × ( ẑ × ⃗ E ), whereas the damping-like torque is perpendicular to it ∼ ⃗ m × [( ẑ × ⃗ E ) × ⃗ m]. These two torques are the ones that destabilize the magnetization from its rest position and tend to bring it in the plane, normal to the applied electric field [see Fig. 5.2(b)].

Figure 5 . 2 .

 52 Figure 5.2. ± Instances for the spin-orbit torque, when the magnetization is perpendicular to the plane (a) and in the case where the applied electric field and the magnetization differ by 90 • .

. 33 )

 33 We contrast Eqs.(5.32-5.33) with the profiles obtained for the angular dependence of the effective field components by means of Eqs.(5.24-5.25). We plot these outcomes in Fig.5.4 for the instances with low (a-c) and high (b-d) band filling, fixing the cubic spin-orbit coupling at t R3 = 0.05t .

Figure 5 . 4 .

 54 Figure 5.4. ± Angular dependence of the effective field components h x (black lines), h y (blue lines) and h z (red lines), when the magnetization rotates in the (x,y) plane. We indicate a scaling factor of a given component whenever is necessary. The system's parameters are given by t = 1, t R = 0.1t , t R3 = 0.05t , ∆ = 0.5t and the homogeneous disorder Γ = 0.1t . The intrinsic (a,b) and extrinsic (c,d) contributions are plotted for µ = -5t (left panels) and µ = 2t (right panels).

5 .

 5 Unconventional Responses in Trigonal Crystals ± 5.1. Spin-Orbit Torque for Field

Figure 5 . 5 .

 55 Figure 5.5. ± Effective field's components extracted from fitting the numerical results with Eqs.(5.32) and (5.33). The panels show (a) h ∥ 3m , (c) h ∥ DL δ DL (solid lines) and h ∥ F L δ F L (dotted lines), (d) h ∥ P H (solid lines) and h z P H (dotted lines), (e) h z DL and (f) h ∥ F L , for different values of cubic spin-orbit coupling t R3 (black, blue and red lines stand for t R3 = 0, 0.05, 0.075, respectively). completeness, panel (b) reports h ∥ 3m as a function of t R3 for different values of µ (black, blue and red lines symbolizes the instances µ = -5t , t , 2t , accordingly). Taking note of Figs.5.5(a-b), we deduce that h ∥ 3m requires cubic spin-orbit coupling and increase with the band filling, confirming its sensitivity to the trigonal warping of the Fermi surface. Unlike h ∥ 3m , h ∥ α δ α (α = DL, F L) follows a parabolic behavior in the energy range and reaches a maximum close to the neutrality point µ = 0 [Fig.5.5(c)]. Exceptionally, the Planar contributions characterized in Fig.5.5(d) exhibit different behaviors as a function of t R3 and µ: h ∥ P H does not require t R3 and follows a similar tendency to h z DL and h ∥ F L [Figs.5.5(e-f)], while on the contrary h z P H increases with the band filling and requires t R3 ̸ = 0. The salient features of the different torque components for C 3v systems are summarized in Table 5.2.

Figure 5 . 6 .

 56 Figure 5.6. ± Spin texture in momentum space close to Fermi level for a selected band of CuPt(111)/Co slab computed from first principles. A strong hexagonal symmetry is obtained, suggesting the presence of a large cubic spin-orbit coupling interaction.

5 .

 5 Unconventional Responses in Trigonal Crystals ± 5.1. Spin-Orbit Torque for Field Free Switching in C 3v crystals and extrinsic profiles are available in Fig.5.7. The calculations were developed by taking Γ = 0.025 eV in the zero-temperature limit.

Figure 5 . 7 . 5 .

 575 Figure 5.7. ± Angular dependence of the intrinsic (top) and extrinsic (bottom) spinorbit field components when the magnetization is rotated in the (x, y) plane. The black, blue and red curves represent the x, y and z components of the effective fields, correspondingly.

  v∥ = ( Ê • v) = vx cos φ E + vy sin φ E , (5.38) v⊥ = ( ẑ × Ê ) • v = -vx sin φ E + vy cos φ E ,(5.39)the extrinsic contribution to the Hall conductivity, recasting Eq.(2.42), isσ E xt H = e 2 4πℏ d ϵ∂ ϵ f (ϵ) Re[Tr v∥ (G R -G A ) v⊥ (G R -G A ) ],(5.40)

Figure 5 . 8 .

 58 Figure 5.8. ± Extrinsic contribution to the Hall conductivity as a function of the magnetization angle φ M , when φ I = 0 • . We compute this term for the case t = 1, t R = 0.1t and ∆ = 0.5t , fixing θ = 10 • and Γ = 0.1t .

Figure 5 . 9 .

 59 Figure 5.9. ± Extrinsic contribution to the Hall conductivity as a function of the magnetization angle φ M , when φ I = φ M . We compute this term for the case t = 1, t R = 0.1t and ∆ = 0.5t , fixing θ = 10 • and Γ = 0.1t .

Figure 5 .

 5 Figure 5.10. ± CHE for the realistic simulation as a function of the magnetization angle, when φ I = 0 • (black line). Dotted red line shows the symmetry prediction.
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 146 Cheng-Ping Zhang, Xue-Jian Gao, Ying-Ming Xie, et al. ªHigher-order nonlinear anomalous Hall effects induced by Berry curvature multipolesº. In: Phys. Rev. B 107 (11 Mar. 2023), p. 115142. DOI: ✶✵✳✶✶✵✸✴P❤②s|❡✈❇✳✶✵✼✳✶✶✺✶✹✷. URL: ❤tt♣s✿✴✴•✐♥❦✳❛♣s✳♦r❣✴❞♦✐✴✶✵✳✶✶✵✸✴P❤②s|❡✈❇✳✶✵✼✳✶✶✺✶✹✷ (cit. on p. 57).
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  . Unconventional Responses in Trigonal Crystals ± 5.1. Spin-Orbit Torque for Field Free Switching in C 3v crystals

	=	n,m,p,q

  .31) 5. Unconventional Responses in Trigonal Crystals ± 5.1. Spin-Orbit Torque for Field Free Switching in C 3v crystals

Table 5 .

 5 5. Unconventional Responses in Trigonal Crystals ± 5.1. Spin-Orbit Torque for Field Free Switching in C 3v crystals 2. ± Summary of the minimal model analysis.

	Component	Physical origin	Source
	h ∥ F L , h z F L , h ∥ P H h z P H , h z 3m h ∥ DL , h z DL δ F L , δ DL	Extrinsic Extrinsic Intrinsic Intrinsic	Linear Rashba Linear + cubic Rashba Linear Rashba Linear + cubic Rashba
	h ∥ 3m , h ∥ χ , h z χ	Intrinsic	Linear + cubic Rashba

  x -E y B y ) x -(E x B y + E y B x ) ŷ + m 2 2E x B x B y x + E x (B 2 x -B 2 y ) + 2E y B x B y ŷ . (5.34) 

		z ⃗ E
	+ m 3 z ẑ × ⃗ E + m 2 z E x B x -E y B y x -E x B y + E y B x ŷ + B x (B 2 x -3B 2 y ) ⃗ E + B y (3B 2 y -B 2 E ) x )( ẑ × ⃗ + E x B x (B 2 x -3B 2 y ) + E y B y (3B 2 x -B 2 y ) x -E x B y (3B 2 x -B 2 y ) -E y B x (B 2 x -3B 2 y ) ŷ
	+	E x B x (B 2 x -3B 2 y ) -E y B y (3B 2 x -B 2 y ) x + E x B y (3B 2 x -B 2 y ) + E y B x (B 2 x -3B 2 y ) ŷ
	+ m z E y (B 2 x -B 2 y ) -

  .2.2) becomes 5. Unconventional Responses in Trigonal Crystals ± 5.2. Chiral Hall Effect J H = σ H cos θ + σ ⊥ H cos 3 θ + σ ∥ H sin 3 θ sin 3φ B + σ χ sin θ cos θ cos 3φ B . (5.36)

  For the additional geometrical phase γ n (t ), if we replace Eq.(A2) into the time dependent Schrodinger equationĤ ψ n = i ℏTaking the inner product of Eq.(A5) with ψ n and the orthogonality relation ψ n ψ m = δ nm ,

			d ψ n d t	,	(A4)
	we have					
	Ĥ ψ ∂ ψ n ∂t	-	i ℏ	E n ψ n + i ψ n	d γ n d t	e i θ n e i γ n
	whence					
	∂ ψ n ∂t	+ i ψ n	d γ n d t	= 0.	(A5)
	ψ n	∂ψ n ∂t	+ i	d γ n d t	= 0.	(A6)

θ n (t ) e i γ n (t ) , (A2) where θ n (t ) is a dynamical phase given by

θ n (t ) = -1 ℏ T 0 E n (t ′ )d t ′ . (A3) n e i θ n (t ) e i γ n (t ) = E n ψ n e i θ n (t ) e i γ n (t ) = i ℏ ∂ ∂t ψ n e i θ n (t ) e i γ n (t ) = i ℏ

Using the parameter dependence of the Hamiltonian, we find that

Compte tenu de l'intérêt croissant pour les matériaux topologiques, qui sont capables de présenter de forts effets Hall dus aux divergences dans la courbure de Berry, nous nous concentrons dans le Chapitre 3 sur l'influence des états de surface des métaux de Weyl sur l'effet Hall non linéaire du second ordre en le champ électrique. Ici, on peut en déduire que la réponse dans le régime de type II peut être stimulée par des états de surface qui ne sont pas topologiques, entraînant une dépendance non triviale de l'effet Hall en fonction de l'épaisseur du système.Ensuite, au Chapitre 4, nous montrons nos résultats sur l'effet Kerr magnéto-optique (MOKE) dans les systèmes non magnétiques sans symétrie d'inversion. Ce travail montre que, contrairement au régime linéaire, la rotation de Kerr est générée à l'aide d'un champ électrique continu, qui à son tour produit une aimantation orbitale hors équilibre. Nous illustrons ce processus dans le cas où la configuration de mesure est polaire, mais il peut être étendu au scénario longitudinal et transversal. Dans les expériences, cet effet peut être utile pour détecter l'apparition d'une aimantation orbitale hors équilibre, qui à son tour indiquerait l'apparition de l'effet Hall du second ordre en le champ électrique.Enfin, au Chapitre 5, nous dérivons par l'analyse de symétries une série de réponses hors équilibre autorisées dans les systèmes magnétiques à symétrie trigonale. D'une part, nous nous intéressons à un effet de couple de spin-orbite en présence d'une perturbation linéaire du champ électrique, un effet prometteur pour la réalisation de dispositifs de mémoire. En nous fondant sur la théorie des invariants, nous obtenons plusieurs corrections qui apparaissent lors de l'expansion jusqu'au troisième ordre en magnétisation. En particulier, l'un de ces termes de correction est susceptible d'induire le renversement de l'aimantation en l'absence de champ magnétique extérieur. D'autre part, en corrigeant au même ordre les composantes magnétiques,
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Now we can compute the band structure by following the path Γ-M-K-Γ, such that the symmetry points are Γ = (0, 0, 0), M= ( 1 2 , 0, 0) and K= ( 1

Then, the curves for each segment are given by Second, the extrinsic Hall conductivity is calculated by using Eq.(5.40), now with the constrain that the electric and in-plane magnetization angles rotates in the (x,y) in the same rate, when the inclination of the out-of plane magnetization is θ = 10 • . Our findings are summarized by Fig. 5.11. Here a 3-fold oscillation appears clearly, putting in evidence the manifestation of the CHE in these samples. Although a small mismatch exists between the numerical calculation and the 3-fold rotation predicted by the Invariant Theory, the difference can be explained by noticing that the expansion in electric and magnetization components is a perturbative approach, which typically relies on the fact that the cubic-spin orbit coupling is much smaller than the magnetic exchange. If the Fermi level is larger enough for this case, and thus the trigonal warping is strong, then it is natural to observe a deviation from what we introduce through symmetry considerations. 
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and finally

We can also express the Berry phase in terms of the Berry connection:

The Berry connection is related to the overlapping of eigenstates between two near points in the parameter space λ, δλ [START_REF] Litvinov | Magnetism in Topological Insulators[END_REF]:

Notice that the Berry phase defined in Eq.(A10) is Gauge dependent. Then, if we perform a Gauge transformation of the form

where f (λ) is an scalar function, the Berry phase must be unchanged. Thus, for a cyclic adiabatic evolution of f (λ), [START_REF] Bernevig With Taylor | Topological insulators and topological superconductors[END_REF] f (λ(T ))f (λ(0)) = 2πm, m ∈ Z (A11) holds. By using Stokes' theorem, Eq.(A9) becomes a flux integral of the Berry curvature ⃗ Ω = ⃗ ∇ × A :