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Résumé

Pour

Márcio Ferreira Martins 

Structure d’un front de combustion propagé en co-courant dans un lit fixe de schiste 
bitumineux broyé 

La propagation d’un front de combustion au sein d’un milieu poreux réactif met en 

œuvre des mécanismes thermiques, chimiques et de transfert, avec de forts 

couplages. Afin de caractériser la structure thermique et chimique du front, un 

dispositif expérimental finement instrumenté permettant la réalisation d’expériences 

de combustion co-courant 1D a été mis au point, puis validé avec un milieu poreux 

modèle : un mélange carbone/sable. Ce réacteur à lit fixe vertical est alimenté en air 

descendant ; un dispositif original permet de prélever des microéchantillons de gaz 

au sein même du front. 

La combustion du schiste bitumineux de Timahdit au Maroc broyé à 500-1000 μm et 

additionné de sable est réalisée avec une vitesse d’air (de Darcy à 20°C) de 0.024 m s-

1. Le front se propage à 6.13x10-5 m s-1 et sa température de pic est de 1100 °C.

Un bilan matière est établi sur la base d’une caractérisation chimique et physique 

détaillée du milieu, de son résidu solide après combustion et des produits gazeux. La 

matière organique est convertie pour ¼ en carbone fixe – dont l’oxydation fournit 

l’énergie qui propage le front - ¼ en gaz de pyrolyse et ½ en huile. 

Un modèle numérique à deux températures développé par l’IMFT a été validé. Les 

approches à la fois expérimentale et numérique permettent in fine d’évaluer

l’épaisseur des différentes zones de réaction : devolatilisation du schiste, oxydation 

du résidu carboné et décarbonatation de CaCO3.

Une étude de variation des paramètres principaux - vitesse d’air et taille des 

particules - est finalement proposée. 
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Abstract

by

Márcio Ferreira Martins

The structure of a combustion front propagating in a fixed bed of crushed oil shale: 
co-current configuration 

The propagation of a combustion front in reactive porous medium involves thermal, 

chemical and fluid flow mechanisms, with strong couplings. In order to describe the 

thermal and chemical structure of the combustion front, a new experimental device, 

finely instrumented, allowing to carry out 1D experiments in co-current combustion 

was designed and developed. To validate the combustion cell, a porous medium 

model - a mix of charcoal/sand was used. This fixed bed down flow reactor is 

equipped with an original system that allows micro sampling gas within the 

combustion front.

For the experiments with the oil shale from Timahdit in Morocco, it was crushed and 

sieved into particle size at 500-1000 μm and mixed with sand. The combustion was 

carried out at air velocity of 0.024 m s-1 at STP. The front propagates at 6.13x10-5 m 

s-1 and its temperature peak is 1100 °C.

A mass balance was made based on a detailed chemical and physical 

characterization of the medium, its solid residue after combustion and flue gas. The 

organic matter is converted into ¼ of fixed carbon – which the oxidation reactions 

provide the energy to propagate the front - ¼ into pyrolysis gas and ½ into oil. 

A two temperature numerical model developed by IMFT was validated. Combining, 

experimental and numerical approach made it possible in fine to evaluate the 

thickness of the different reaction zones: oil shale devolatilization, fixed carbon 

oxidation and CaCO3 decarbonation.

A parametric study varying the air velocity and particle size is finally proposed. 
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Introduction and
objectives

The propagation of a combustion front can be found in many cases in nature and 

industry. In both the propagation is initiated by some heat source. After ignited a 

combustion front is propagated to adjacent elements of neighbors. In certain aspects 

the propagation of a combustion front can be very useful. The advantages are some 

industrial applications as in-situ combustion or gasification, municipal solid waste 

(MSW) incinerations and biomass combustion in fixed bed. The propagation of a 

combustion front also has the negative side - fires in bulk materials, coal deposits 

and waste dumps. 

The domains of petroleum, waste treatment and fire safety have stimulated 

considerable research. Previous studies approve the combustion front propagation as 

a complex procedure depending on chemical, thermal and physical processes. Due to 

this complexity, challenges still persist for investigation of combustion propagation 

both from numerical and from experimental perspective. In the following, some of 

these challenges will be summarized and the aims will be formulated for this thesis. 

Heat transfer in reactive porous medium is a complex problem, caused by the 

interactions between the gas phase and solid phase, and between particles. The 

problem is further aggravated by the transportation of chemical species directly 

dependent on the porous medium composition, in which the combustion front is 

propagated. For a bed constituted by coal, the coal undergoes several 

transformations in different zones: heating, drying, pyrolyzing and burning, leaving 

ash. The chemical constitution of the bed becomes more complex when organic 

matter is associated with mineral matrix. This association adds disadvantages and 

advantages:

- Disadvantages, the interferences in the overall energy balance: it is commonly 

found in the mineral matter compounds such as carbonates, which at a high 
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temperature release CO2 in a strong endothermic reaction; the CO2 released is 

found mixed in the flue gas. 

-  Advantages, it is known that after the combustion process the geometric 

stability of a particle bed undergoes a drastic shrinkage. For a bed constituted 

of charcoal particle, during the combustion process, the overall diameter of 

the bed decreases causing problems in relationship between the air flow rate 

imposed and its corresponding velocity on a cross section of the bed. Thus, 

when the organic matter is associated with the mineral matrix, the particle 

bed can preserve its geometric stability during the combustion process.

Two good examples of solid combustibles that gather both, geometric stability and 

complex reaction mechanism are bituminous sands and oil shales. For that reason, 

oil shale was chosen as porous medium in this work.

In addition, another challenge is presented: “How can one determine the thickness of 

the reaction zones?” Today, the contributions about this subject are mainly in the 

field of biomass combustion, MSW incineration and fire hazard. Thus, some 

propositions are made with the help of numerical models [Fatehi&Kaviany1994, 

Zhou2005 and Rein2006]. By contrast, the literature about oil shale combustion is 

very limited yet. Particularly in co-current situation which is useful in in-situ process 

for recovering hydrocarbons from oil shale. 

Another interesting question remains a challenge: what is actually oxidizing during 

the propagation of a combustion front: the solid residue after devolatilization only or 

also part of the volatile matter? Some authors established that different regimes of 

combustion can be observed, and depending on the regime the volatile matter can be 

completely, partially or not oxidized. These regimes are commonly demonstrated 

using experimental setup in counter-current combustion configurations. 

To obtain a better understanding of the dynamic behavior of co-current combustion 

front propagation in porous medium, the following aims were determined for this 

thesis:

- The development of a complete experimental device; 

- The development of a new and original micro-sampling system to evaluate 

chemical structure of a combustion front: thickness of devolatilization zone, of 

the solid residue oxidation zone and of the mineral matrix decarbonation zone; 
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- To operate repeatable experiments in a controlled situation; 

- To provide detailed physical, chemical and thermochemical characterization 

of the porous medium; 

- To establish what is actually oxidizing during the process of reactive medium 

combustion;

- To establish overall mass balances of the combustion process; 

- To answer the question: are the carbonates constituting the oil shale 

decarbonated at the passage of the front? There is indeed an important 

environmental issue in this question because the carbonation decomposition 

rate is directly linked with the CO2 emissions;

- To validate a 1D numerical model that simulates the combustion front 

propagation. This tool was developed with two laboratories: Institut de 

Mécanique des Fluides de Toulouse (IMFT) and Laboratoire de Combustion et 

de Détonique (LCD) in cooperative group works during the thesis; 

The present work is divided into five parts.

In the first chapter is presented the oil shale and its characteristics. After that, 

some processes and technologies involving reactive porous medium combustion are 

presented. Then, a literature review of the main phenomena that take place during 

the propagation of a combustion front, and also a literature review of the most 

remarkable experimental works are made. Finally, is introduced a global vision of the 

numerical models used to investigate the propagation of a combustion front in a 

porous medium. 

The second chapter describes the experimental device developed to perform co-

current combustion in a fixed bed. It is also described a new and original micro-

sampling system to evaluate chemical structure of a combustion front. Various other 

experimental devices used during this thesis and their experimental protocols are 

presented as well. 

The third chapter is dedicated to perform a detailed characterization of the oil 

shale: physical, chemical and thermal properties. Then, is made a fine analysis of the 

devolatilization gases. 
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The fourth chapter presents the results obtained using the experimental device 

developed. This chapter is subdivided into two main parts: 

-  The first one presents the results from the experimental device filled with a 

“simple” medium used to calibrate the cell: mix charcoal/sand. A mass balance 

of the combustion process is described and validated.

-  The second part concerns the combustion of a mix of oil shale/sand. There, a 

reference case is exhaustively studied. It is described a general observation 

during and after combustion. The analyses of the solid residue after 

combustion and the flue gas are shown; some comments about the shale oil 

recovery are made. The mass balance validated previously with the “simple” 

medium is used to propose a mass balance of the oil shale combustion process. 

Finally, is presented the physical aspects of the propagation of a combustion 

front. In this section is proposed a study and evaluation of reactions zone 

thickness, based on the micro-sampling system developed specifically for this 

purpose.

In the last chapter, a 1D two temperatures numerical model developed by 

IMFT/LCD is confronted with the experiments made in order to evaluate how far the 

combustion of oil shale can be described, and to gain information about the front 

structure. Firstly, a mathematical formulation and a solution method are presented. 

The model is completed using the physical, chemical and heat transfer properties 

determined experimentally. The case presented in the chapter IV is simulated. 

Eventually, is proposed a parametric study varying air velocity and particle size. 
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Chapter I

Literature

In first chapter is presented the oil shale and its characteristics. After that, some 

processes and technologies involving reactive porous medium combustion are 

presented. Then, a literature review of the main phenomena that take place during 

the propagation of a combustion front, and also a literature review of the most 

remarkable experimental works are made. Finally, is introduced a global vision of the 

numerical models used to investigate the propagation of a combustion front in a 

porous medium. 

I.1 Oil shale 

I.1.1 Definition 

Oil shale is a sedimentary rock, Figure (I.1), containing a relatively large amount of 

organic matter (10 to 65%) called kerogen, from which a significant amount of liquid 

fuel and combustible gas can be extracted by pyrolysis/ combustion.

Figure (I.1) - Mined oil shale material 
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Historically, the oil shale has been mined as illustrated in Figure (I.2), by (Hamilton 

2005). To extract any useable hydrocarbons from the shale, the rock must be 

crushed and then heated. 

Figure (I.2) - Left: the 1947 photo of a Bureau of Mines experiment in Rifle, Colorado. 
Right: Queensland oil shale mine. 

I.1.2 Deposits

Oil-shale deposits can be found in many parts of the world. They range in age from 

Cambrian to Tertiary and were deposited in a variety of depositional environments, 

including fresh-water to highly saline lakes, epicontinental marine basins and 

subtidal shelves, and in limnic and coastal swamps, commonly in association with 

deposits of coal. The deposits may occur as minor accumulations or giant deposits 

that occupy thousands of square kilometers and reach thicknesses of 700 m or more. 

In order to illustrate, Figure (I.3) by (Dyni 2005, 9) and Figure (I.4) by (Dyni 2005, 23) 

present the typical lithologic columns for two types of oil shales, respectively Brazil 

and Morocco. 

In Figure (I.3), the oil shale occurs in two beds separated by barren shale and 

limestone. The upper and lower oil-shale beds are 6.5 and 3.2 m thick, respectively.

Figure (I.4) shows the stratigraphic section of Timahdit deposit in Morocco. This 

deposit is located about 250 km southeast of Rabat; it underlies an area about 70 

km long and 4 to10 km wide within a northeast-trending syncline. This deposit 

consists of several layers (C, T, Y, X, M and S) and each one is subdivided into many 

sub-zones containing a different amount of organic matter (15 to 20%). The thick-

ness of the oil shale layer ranges from 80 to 170 m. According (Bekri 1996) the 

highest amount of oil can be obtained by the sub-zone Y. 
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Figure (I.3) - Typical lithologic column of the Iratí oil shale at São Mateus do Sul, 
Brazil. by Petrobras 
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Figure (I.4) -Generalized stratigraphic section of the Timahdit oil-shale deposit in El 
Koubbat syncline, Morocco. 
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I.1.3 Composition and characteristics

The oil shale has two main compounds: organic matter and mineral matter.

Organic matter in oil shale includes the remains of algae, spores, pollen, plant 

cuticle and corky fragments of herbaceous and woody plants, and other cellular 

remains of lacustrine, marine, and land plants. These materials are composed 

essentially of carbon, hydrogen, oxygen, nitrogen, and sulfur. In some kind of oil 

shales, the organic matter is unstructured and it is best described as amorphous 

(bituminite). Most of the organic matter in oil shale is insoluble in ordinary organic 

solvents. The organic matter of oil shale (which is the source of liquid and gaseous 

hydrocarbons) typically has a higher hydrogen and lower oxygen content than lignite 

and bituminous coal (Dyni 2005). 

In terms of mineral content, oil shales usually contain much larger amounts of 

inert mineral matter (60–90 %) (Dyni 2005). The mineral matter of some oil shales is 

composed of carbonates including calcite, dolomite, and siderite. In other kinds of oil 

shales, silicates including quartz, feldspar, and clay minerals are dominant and 

carbonates are a minor component. The general composition of oil shales is given in 

Figure (I.5) by (Altun, et al. 2006). 

Figure (I.5) -General composition of oil shale. 

A deposit of oil shale having economic potential is generally one that is at or near 

enough to the surface to be developed by open-pit or conventional underground 
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mining, or by in-situ methods. Commercial grades of oil shale, as determined by 

their yield of shale oil, range from about 100 to 200 liters per metric ton (l/t) of rock. 

Total resources of a selected group of oil shale deposits in 33 countries are estimated 

at 409 billion tons of in-situ shale oil, which is equivalent to 2.8 trillion U.S. barrels 

of shale oil (Dyni 2005).

The gross heating value of oil shales on a dry-weight basis ranges from about 500 to 

4000 kcal/kg of rock. The high-grade kukersite oil shale of Estonia, which fuels 

several electric power plants, has a heating value of about 2000 to 2200 kcal/kg. By 

comparison, the heating value of lignitic coal ranges from 3500 to 4600 kcal kg-1 on 

a dry, mineral-free basis (Dyni 2005). 

Table (I.1) by (Altun, et al. 2006) presents some characteristics of several well-known 

oil shale deposits in world.

Table (I.1) -Properties of some important oil shale deposits. 

These deposits are characterized by their age, the organic carbon wt. % of organic 

matter, and oil yield which the conversion to oil is based on organic carbon 

percentage. The atomic ratio H/C (hydrogen to carbon) of kerogen as a way to 

evaluate the quality of organic matter in source rocks. The organic matter in oil shale 

has been studied extensively and the composition of kerogen in oil shale is found to 

vary significantly from deposit to deposit. The fraction of kerogen converted into oil 

with increasing temperature depends upon the hydrogen content or organic matter; 
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oil yield increases with increasing hydrogen content. Because the density of the 

organic matter is significantly less than minerals in shale, oil shale density can be 

used to estimate oil yield by including a conversion factor for the transformation of 

kerogen to oil. This relationship is used to calculate oil shale reserves.

I.2 Processes and technologies used in porous medium combustion 

Combustion is one of the oldest technologies of mankind. It has been used for more 

than a million years for different purposes. To avoid a imminent fuel crisis due to the 

increasing demand and depleting fossil fuel reserves, the performance of existing 

combustion systems needs to further improve and also to reduce the emissions levels 

to meet the international emission norms. 

The literature about porous medium subject distinguishes two types of problems. 

The first one considers only combustion of the gas phase inside an inert solid porous 

medium. In second type, the solid phase reacts with the gas phase; chemical 

reactions such as pyrolysis of the solid and further oxidation of the residual carbon 

occur, accompanied by changes in physical structure of the solid phase. The media 

are called non-inert porous medium. This latter case corresponds to the combustion 

process considered in this work. 

Oil shale must be heated to temperatures between 400 and 500°C to convert the 

embedded sediments to kerogen oil and combustible gases. This can be achieved by 

mining the shale and heating it in surface retorts, or by contacting and heating the 

oil shale in-place (in-situ).

I.2.1 Surface retort process 

Figure (I.6) presents one of the most successful vertical retorts found in world. An 

11m vertical shaft Gas Combustion Retort (GCR) achieves high retorting and thermal 

efficiencies and requires no cooling water. A variation called Petrosix is operating in 

Brazil [(Johnson, Crawford and Bunger 2004) and (Lisbôa, Rombaldo and Rodrigues 

2006)].

The main process steps in production of shale oil are: 

- Crushed shale moves continuously downward by gravity; 
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- Recycled gases enter the bottom and are heated by retorted shale. Air is 

injected and mixes with the rising hot re-cycle gases; 

- Combustion of gases and residual carbon from the spent shale heats the raw 

shale above the combustion zone to retorting temperature;

- Oil vapors and gases cooled by the incoming shale leave the top of the retort 

as a mist. 

Figure (I.6) - General scheme for a Gas Combustion Retort of the type used by 
Petrobras in its Petrosix oil shale production process. 

Petrobras uses a conventional production process in which the shale is mined, 

crushed to typically 1.2 to 7.5 cm and fed into a surface gas combustion retort for 

pyrolysis and processing, Figure (I.7) (Lisbôa, Rombaldo and Rodrigues 2006). 
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Figure (I.7) - Oil shale plant: the mine site, the solids preparation plant and the 
retorting unit. 

I.2.2 In-Situ Process 

In-situ processes can be technically feasible in deeper and richer deposits where the 

rock has natural permeability or where permeability can be created by fracturing. 

Among the most promising in-situ processes are: True in-situ processes, Modified in-

situ (MIS) and other “Modified True in-situ” process.

The True in-situ processes involve no mining, Figure (I.8) (Johnson, Crawford and 

Bunger 2004, 47). The rock is fractured, air is injected, then the oil shale is ignited to 

heat the formation, and shale oil moves through fractures to production wells. 

Difficulties in controlling the combustion front and the flow of oil can limit oil 

recovery, leaving areas unheated and some oil unrecovered. 

The MIS process may involve mining. An underground cavern is excavated and an 

explosive charge detonated to fill the cavern with broken shale rubble. The rock is 

heated by igniting the top of the target deposit and recovering fluids from ahead of or 

beneath the heated zone. Modified in-situ processes improve performances by 

heating more the oil shale, improving the flow of gases and liquids through the rock 

formation, and increasing volumes and quality of the oil produced. 
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Figure (I.8) - True In-Situ Process schematic. 

I.2.3 Other smoldering combustion processes 

Beyond the processes to recover unconventional fuels described before, there are 

other processes where a combustion front is propagated in a reactive porous medium, 

i.e. the smoldering combustion processes. Smoldering combustion is described as an 

exothermic superficial heterogeneous-reaction that can propagate in interior of 

porous fuels, and is a self-sustaining reaction in which the heat released by surface 

oxidation causes pyrolysis of the unaffected fuel adjacent to the reaction zone, which 

in turn yields a rigid char, which that subsequently undergoes surface oxidation 

(Ohlemiller 1985). 

Smoldering of coal seams, coal waste or storage piles are recognized to cause 

environmental and economical problems of global extent. In addition, such kind of 

coal fires represents one of the most challenging hazards for worldwide coal 

industries, Figure (I.9) (Countryman and McDaniel 2004). 
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Figure (I.9) - Fire erupts from the coal face. Blair Athol coal mine at Clermont, New 
South Wales, Australia. 

Municipal solid waste (MSW) incineration and biomass combustion are process that 

also involving the combustion front in a reactive medium, Figure (I.10) (Winderickx 

s.d., 1), Figure (I.11) (CanREN 2001, 1) respectively.

In incinerator process, the waste is left by the garbage trucks in waste bunker of the 

incineration plant. By shifting and tumbling tiles the waste moves slowly down and 

burns. The combustion chamber is fed with air from the waste bunker. This stinking 

air cannot escape from the incineration plant and contains also oxygen (O2) for the 

degasification and the combustion process. The temperature is around 950 °C and 

the retention time of the waste in furnace is 45 minutes to 1 hour. 

The fundamental investigation of combustion characteristics of waste materials and 

their mixtures in a fixed bed is the key to understanding the combustion parameters 

as the ignition and burning rates in combustion performance.
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Figure (I.10) - Grate incinerator for domestic waste burning. 

Figure (I.11) - Schematic of biomass combustion process. 

The propagation of a combustion front in a reactive porous medium has a plurality of 

application and each one with its particular challenge. However, the investigation of 

each one of this phenomena show us some common aspects of the propagation of 

combustion front.
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I.3 Combustion front propagation 

As seen previously, the propagation of a combustion front occurs in a variety of 

situations and for different purposes, such as waste incineration, in-situ combustion 

or burning of solid fuels for other industrial applications. Description of the 

combustion front propagation in a reactive porous medium remains a challenge to 

science in terms of physicochemistry, and heat/mass transfer.

According to (Hobbs, Radulovic and Smoot 1993), the first great research effort in 

combustion front propagation dates from 1977 and 1979. Since then, familiar 

environmental problems and the search for alternative energy sources have 

motivated greater research on the subject. These efforts have focused on determining 

which parameters influence the progress and structure of a combustion front. To this 

effect, some authors have developed numerical models and experimental devices.

The present work focuses on the propagation of a combustion front in a reactive 

porous medium, (Hobbs, Radulovic and Smoot 1993) and (Fatehi and Kaviany 1994). 

In this type of problem, the solid phase reacts with the gas phase; chemical reactions 

occur, such as pyrolysis of the solid and further oxidation of the residual carbon, 

accompanied by extreme changes in physical structure of the solid phase. (Hallett 

2005) proposed a scheme to illustrate these simultaneous complex processes, Figure 

(I.12).

Figure (I.12) - Coupled phenomena of heat and mass transfer, flow and chemical 
reaction in a reactive porous medium. 
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In all the applications mentioned above it is possible to distinguish three global zones, 

Figure (I.13).

Figure (I.13) - Reactions zones 

The each zone is characterized by one important step in process of conversion of the 

fuel. The processes inse three zones are commented below:

a) Drying zone: solid fuel is introduced into the reactor. As a result of heat transfer 

from the parts of the reactor, drying of the solid fuel occurs.

b) Pyrolysis Zone: at temperatures above 250 °C, the solid fuel starts pyrolyzing. The 

large molecules break down into medium size molecules and carbon (char).

c) Oxidation Zone: a burning (oxidation) zone is formed at the level where oxygen (air) 

is introduced. Reactions with oxygen are highly exothermic and result in a sharp rise 

of the temperature up to 1200 - 1500 °C.

Specifically for the oil shale, (Debenest 2003) proposed four main zones from since 

the entry to exit of the bed, Figure (I.14): 

1. The entry zone, where the fuel is almost consumed, and where the temperature is 

insufficient to maintain any chemical reaction. The air that flow through this zone is 

preheated by the bed and carries heat in reaction zone.

2. The pyrolysis zone, downstream the reaction front, where the temperature reached 

a sufficient value to crack organic matter from the grains. This cracking produces 
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gaseous species (light hydrocarbons). The pyrolysis process is 

endothermic.

3. The reactions zone, where the temperature is high and where oxygen carried by 

the fluid meets the carbon residue left by pyrolysis. The oxidation reaction is 

exothermic, consumes oxygen and produces gaseous species (CO and CO2). 

4. The last zone, where the porous medium has not received heat and where the flow 

moves and involving gaseous species, which traverse it without interact with the 

solid matrix. 

Those zones were created by the reactions. The mechanism of oil shale combustion 

has not been studied in detail in literature. Most of the previous works are focused 

on the combustion of carbon, char, coke, devolatilized coal and coal particles. 

However, the oil shale combustion is complicated by several reactions, which include 

both organic and inorganic types.

Figure (I.14) - Reaction zones in crushed oil shale bed 

Among the various solid fuels, coal, MSW and other biomass, the oil shale present an 

intermediate difficulty level. From the chemical point of view, oil shales are more 

complex than coal, but simpler than MSW. The oil shale contains organic 

compounds, which are not well characterized, and devolatilization reactions coexist 

with oxidation reactions during heating. On the other hand, the presence of a 

significant fraction of inert matter in rock induces a major simplification - the bed 
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geometrical structure is only marginally affected by the smoldering process, unlike 

for example the coal, which contains a small portion of non heat-degradable material, 

and undergoes a drastic shrinkage. 

(Debenest 2003) proposed three reactions to represent oil shale decomposition in a 

fixed bed. As seen previously, the chemical composition of oil shale is very complex, 

often misunderstood, variable depending on their origin. The chemical processes 

involved include many stages and different species.

volatileCheatogen s)(ker r. 1

heatCOOC s 22)( r. 2

2)(3 COCaOheatCaCO s r. 3

The kerogen is converted into fixed carbon and volatile gases. Fixed carbon is then 

oxidized into CO2, and calcite into CO2.

I.3.1 Co-current and counter-current configurations 

The propagation of a combustion front can occur in two elementary combustion 

situations:

Counter-current combustion (or opposed combustion), where ignition front 

and feed of primary air occur on opposite sides of the fuel batch, Figure (I.15-a). 

The counter-current air supply is normally found in fixed-bed combustion 

processes. The typical application of counter-current combustion is the 

incineration of MSW [(Ryu, et al. 2006), (Yang, Ryu, et al. 2005a), (Yang, Ryu, et

al. 2005b) and (Khor, et al. 2007)].

In second case, Figure (I.15-b), co-current combustion (or forward 

combustion), both combustion front and feeding of primary air, take place on 

the same side of the combustion cell [ (Wang, Chao and Kong 2003), (Thunman 

and Leckner 2003) and (Bar-Ilan, Rein, et al. 2004)].

This last case is investigated in this work. The best example of co-current 

combustion can be found in-situ combustion for oil recovery [(Castanier and 

Brigham 2003) and (Akkutlu and Yortsos 2003)].
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Figure (I.15) - Arrangements: (a) counter-current, (b) co-current. 

I.3.2 Reactions zones thickness 

As seen in previous topic, the front contains three elementary zones that can be 

distinguished, and the investigation about its chemical structure have been 

investigated by [(Bousaid 1987), (Fatehi and Kaviany 1994), (Yang, Yamauchi, et al.

2003) and (Rein, et al. 2006)] using a numerical model.

(Fatehi and Kaviany 1994) cite: “the front thickness was defined as the length of the 

medium across which the reaction rate was equal or greater than 1/10 of its 

maximum value”. The thickness of the front increases linearly with air pore velocity.

(Yang, Yamauchi, et al. 2003) inir work on MSW and wood chips combustion, defined 

the reaction zone thickness as the physical distance in flame front where the bed 

temperature rises from 30 °C to the peak value. They found that this thickness is 

almost an inversely linear function of the moisture level. The reaction zone thickness 

ranges from 20 to 50 mm for wood chips and MSW. 

For drying zone and devolatilization, (Yang, Ryu, et al. 2005b) demonstrated the 

moisture evaporation rate distribution inside the bed as a function of time for the 

particle diameter between 10 and 35 mm. For the 10 mm particle size, evaporation 

zone lies about 50 mm below the bed top and the zone extends 70 mm downward. 

The devolatilization zone moves away from the bed top as the combustion proceeds 

and reaches a maximum 40 mm below the bed top line. 
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(Rein, et al. 2006) studied the front structure of forward smolder and opposed 

smolder in polyurethane foam. For the forward smolder, the pyrolysis front arrives 

first to the virgin foam and is then followed by the oxidation front.

As far as the structure of the combustion front in an oil shale crushed bed is 

concerned, only one little literature is available. 

(Bousaid 1987) in his work about in situ combustion, says that the front thickness 

dependent on pressure and temperature.  The front thickness increases as the 

reaction temperature increases. 

(Debenest, Mourzenko and Thovert 2005a) during an experiment, a reaction front 

propagates upwards. They could follow visually the front progress, with a glowing 

layer about 3 times the particle diameter. 

I.3.3 Smoldering combustion and flaming 

Another challenge remaining is to establish what is actually oxidizing during the 

propagation of a combustion front: the solid residue after devolatilization only or also 

part of the volatile matter?

Smoldering is a slow, low-temperature, flameless form of combustion, sustained by 

the heat evolved when oxygen directly attacks the surface of a condensed-phase fuel. 

The propagation of a combustion front can also involve phenomena related to the 

ignition of a homogeneous gas phase reaction that is induced by a heterogeneous 

surface reaction (smolder) that acts both as the source of gaseous fuel (pyrolyzate, 

CO, etc.) and the source of heat to initiate the homogeneous reaction, this situation 

is called flaming. Thus, an important event can occur and affect the form of the 

combustion front, the transition from smoldering to flaming. The transition is more 

likely to occur when the heat released by the reactions (heterogeneous reaction and 

homogeneous gas phase reaction) is larger than the heat losses to the surrounding 

environment (Bar-Ilan, Putzeys, et al. 2005). This author presents an experiment 

where the smolder propagation and the transition to flaming are assisted by reducing 

heat losses to the surroundings and increasing the oxygen concentration. 

(Ohlemiller 1985) reported that the char oxidation is the principal heat source in 

most self-sustained smolder propagation processes; the potential for smoldering 

combustion thus exists with any material that forms a significant amount of char 

during thermal decomposition. He presented experimental characteristics of smolder 
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propagation from seven different references. The smolder velocity for vegetable fiber 

board in natural convection was 0.25 cm min 1; for rolled paper, also in natural 

convection, it varied from 0.3 to 0.5 cm min 1. Cigarettes of tobacco shreds 0.8 cm 

diameter in intermittent natural convection and forced draw (30 cm s 1) presented a 

smolder front velocity of 0.27 cm min 1. Ohlemiller also reported that depending on 

the material, the transition from smolder to flaming in bed occurred at airflow 

velocities above about 0.9 to 1.7 m s 1. For these materials, flaming did not develop 

when the mean particle size was less than 1 mm.

The configuration in which transition from smoldering to flaming is more likely to 

occur is in forward combustion. Thus, the oxidizer reaches the reaction zone after 

passing through the hot char left behind by the propagating smolder reaction, and 

the transition to flaming may occur by vigorous oxidation of this char; the transition 

has strong links with the highly exothermic char and residue (secondary char) 

oxidation reactions [(Bar-Ilan, Putzeys, et al. 2005) and (Rein, et al. 2006)].

I.3.4 Pore-scale problems 

When the medium is examined in small scale, questions in relation to the different 

phases present in medium can appear: 

(i)  One of them is if the temperatures of the gas phase and solid phase within porous 

are locally the same, i.e. the gas and solid are in local thermal equilibrium. When this 

condition occurs, a single temperature can be used to describe a heat transfer 

process in a multiphase system [ (Whitaker 1991) and (Quintard and Whitaker 

1995)]. Thermal non-equilibrium implies that there is a temperature of difference 

between the phases [(Quintard and Whitaker 1993) and (Batsale, Gobbe and 

Quintard 1996)]. This is believed to be one of the major causes of the discrepancy 

between model predictions and experimental results. 

(ii) Concerning the chemical processes in porous medium combustion, (Oliveira and 

Kaviany 2001) reported that these processes have different phenomenological length 

and time scales resulting in different transport and reaction regimes, and leading to 

thermal and chemical non-equilibria. In Figure (I.16) by (Oliveira and Kaviany 2001) 

are described three situations: smoldering combustion, solid and condensed-phase 

combustion synthesis and gasless combustion synthesis.
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Figure (I.16) - Distribution and transport of reactants in chemical nonequilibrium 
processes.

- Figure (I.16-c) presents the case in which the fuel is provided from the 

pyrolysis of the solid, as in solid combustion or smoldering. In this case, called 

homogeneous reaction with transport controlled fuel supply, the rate of pyrolysis 

may control the reaction. The reaction could also occur inside the solid phase 

(not depicted) and controlled by the transport of oxidizer or products.

- Another case, Figure (I.16-d), is called homogeneous reaction with transport 

controlled oxidant and fuel supply. Here both the reactants come from the solid 

particles (of different materials), with the reaction occurring in gas phase. The 

reactants mixing may be controlled by the rates of generation or by mass 

transfer.

- Finally, the case called homogeneous and heterogeneous reaction with 

transport controlled oxidant supply or product removal, Figure (I.16-e). In this 

case, the reaction occurring inside one of the reactant particles. The reactants 

mixing are controlled by the transport in pore space (by diffusion or capillarity) 

and within reactant B particle (by diffusion). The product may be in solid phase, 
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growing around the reactant B particle, or in liquid phase, later nucleating and 

growing as a solid phase.

There are some cases where a mix these situation occur. To better control the 

geometry of the medium and the processes occurring there, a fundamental 

understanding of the interaction among the various processes and scales is needed. 

In traditional combustion applications such as a flame, the peak temperature inside 

a combustion zone is directly related to the energy content of the unburned air/fuel 

mixture. The theoretical maximum temperature is predicted by the chemical 

equilibrium of an adiabatic process and is thus called the adiabatic equilibrium 

temperature. However, in some configurations, heat is transferred from the hot 

combustion products to preheat the unburned air/fuel mixture, which produces 

peak temperatures that can exceed by far the adiabatic equilibrium temperature, 

thus the term “Superadiabatic” combustion [(Babkin, et al. 1983) and (Aldushin 

1993)]. Superadiabatic temperatures have been observed earlier in a combustion 

zone propagating in a packed bed of solid fuel (Pinjala, Chen and Luss 1988). This 

temperature augmentation is due to the large interstitial surface area of the porous 

media which allows for highly effective heat transfer between the filtrated gas and the 

reticulated solid (Howell, Hall and Ellzey 1996).

I.3.5 Heat and mass transfer in porous medium 

(Hobbs, Radulovic and Smoot 1993) made a brief description of qualitative physical 

and chemical processes that occur during the fixed-bed combustion.

The description of the heat and mass transfer interaction between gas and solid 

phase, and between particles themselves are decrypted in Figure (I.17), as follows: 

1. Conduction through solid particles; 

2. Conduction between the solid particles in contact; 

3. Radiation between the solid particles; 

4. Convection from the solid particles to the fluid; 

5. Radiation from the solid particles to the fluid; 

6. Conduction through fluids; 

7. Radiation through fluids; 
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8. Fluid mixing; 

9. Conduction from the solid particle to the wall of the reactor; 

10. Radiation from the solid particle to the wall of the reactor; 

11. Convection from the solid particle to the wall of the reactor; 

12. Radiation from fluid to the wall of the reactor; 

Figure (I.17) - Iterations intra and inter phases, adapted from (Hobbs, Radulovic and 
Smoot 1993). 

I.3.6 Flow in porous medium 

This process is coupled with heat and mass transfer. From the point of view of 

physical problem, the process is of great interest and it has a large number of 

practical applications in many fields of science. Most often mentioned is the relation 

to the oil industry where the flow of oil, gas and water in reservoirs are of great 

technological importance. 

In relation to flowing, porous medium consists of a matrix with a large amount of 

microscopic pores and throats which are typically narrow tubes where fluid can pass 

through. The description of flow in porous media is extremely difficult because of the 

complexity of the medium. There are two important quantities describing the 
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properties of a porous medium: the porosity  and the permeability . The porosity of 

a porous medium is defined as pore volume/ matrix volume, Figure (I.18). Where the 

pore volume denotes the total volume of the pore space in matrix and the matrix 

volume is the total volume of the matrix including the pore space. Thus, 0  1. 

Often the porosity can be chosen as constant for the whole medium.

The permeability  describes the ability of the fluid to flow through the porous 

medium and depending on the geometry of the medium. For porous media composed 

of granules that are not spherical, the average granule diameter, dp, can be taken as: 

dp = 6 Ap/ Vp (I.1)

where Ap and Vp are the surface area and the volume of the granule, respectively. 

The fluid flow through a porous medium can be described by the phenomenological 

Darcy equation, eq.  . Then the velocity “U” of the fluid trough the medium is given by 

Darcy's equation: 

gPkU (I.2)

where “μ” is the fluid viscosity, P is the pressure gradient across the matrix, “g”

denotes the acceleration due to the gravitational forces and “ ” is the density of the 

fluid.

Figure (I.18) - Porous medium representation 
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To investigate the combustion front propagation in its various situations, several 

experimental devices were developed. The next topic will present some of them, to 

highlight the possibilities of such experiment and the difficulties encountered. 

I.4 Review of the experimental works in a fixed bed 

Only a handful of experimental works on co-current combustion have been carried 

out until now. (Wang, Chao et Kong 2003) presented an experimental study of 

smoldering combustion in horizontally forced forward condition. Two cases are 

considered: one is adiabatic smoldering, where no heat is lost to the environment, 

and the other one is non-adiabatic smoldering combustion, where convective heat 

losses to the environment through the walls of the cell are taken into account. For 

the adiabatic case, it was shown that the smoldering propagation rate and the 

smoldering temperature both increase with the flow rate of air. Results from the non-

adiabatic analysis showed a similar trend. 

The experiments in co-current and counter-current combustion were studied by 

(Thunman and Leckner 2003). The work is focused on differences between the co-

current and the counter-current arrangements. Thus, were investigated the effect of 

time to ignition, total time of conversion, position of the different phases of the 

conversion (drying, devolatilization and char combustion) in time and along the 

height of the bed. 

(Vantelon, et al. 2005) made an experimental study on the forward combustion of a 

bed of tires and refractory briquettes. The author found that the combustion process 

is influenced by the airflow rate through the reactor. An oxygen limit combustion 

reaction moves from a rate-limited regime to a heat transfer-limited regime. The rate-

limited regime is characterized by high production of residual oil and low propagation 

velocities. The heat transfer-limited regime reduces the production of oil, but it 

results in a much faster conversion of the fuel. Two other different regimes are also 

observed as a function of the mass fraction of tires. 

- For mass fractions of tires less than 70 %, the final tire conversion rate and 

temperature are proportional to the mass fraction of tires. In this regime the 

volumetric energy density dominates the combustion process.

- For a mass fraction of tires greater than 70 %, the conversion rate is 

independent of the amount of fuel and it is initially much slower than for lower 
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fuel concentrations. These two regimes could be described in a qualitative 

manner by a simple energy balance. 

With regard to the case of counter-current combustion, several experimental devices 

have been developed for the investigation of combustion front propagation and 

structure. Although this configuration will not be studied here, its results may be 

interesting for the present work.

The effects of various solid fuel properties and operating conditions on the ignition 

and burning rates have been reported in literature for different authors. 

(Gort, Valk et Brem 1995) studied the influence of the superficial air velocity and 

moisture content on three fuels: coke, wood and shredded municipal waste. The 

experiments were carried out in a laboratory grate furnace. He suggested three 

reaction regimes: 

(i) partial gasification where, after oxygen depletion, there is still some solid 

material left, which might be partially consumed by gasification by H2O and 

CO2;

(ii) complete gasification where air flow rate is high enough to convert all 

ignited material, but there is not enough oxygen available for complete 

combustion of unburnt gases; 

(iii) combustion regime where initially some CO is observed, but this is oxidized 

quickly. Concentrations fluctuate strongly. The reaction layer is thin. 

(Shin and Choi 2000) proposed a similar concept on the counter-current propagation 

of a combustion front. The combustion of solid fuel in a fixed bed was investigated 

using one-dimensional experiments. The effects of air supply rate, fuel particle size, 

and the calorific value are discussed. Two modes of combustion in bed can be 

distinguished, based on the availability of oxygen. They proposed a schematic, Figure 

(I.19), to show how the combustion depends on the air supply rate. 
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Figure (I.19) - Effect of air supply rate on the combustion of a bed 

- oxygen-limited combustion: At low rates of air supply, the oxygen is 

completely consumed by the char and the reacting volatile material. In this 

case, the reaction rate of the fuel is determined by the oxygen supply rate.

- reaction-limited combustion: If the air supply is increased, combustion is 

further enhanced, but the limit of the combustion rate of the bed material 

causes an increased oxygen concentration at the exit. In this case, the reaction 

rate cannot increase further owing to the limit of the reaction rate and the 

increased convective cooling by the air. 

(Saastamoinen, et al. 2000) studied the effect of the air flow rate, moisture, particle 

size, density, and wood properties on the ignition front velocity, and the maximum 

temperature in bed, and interpreted by a quasisteady- state modeling. 

[(Thunman et Leckner 2005), (Yang, Ryu, et al. 2005a) and (Ryu, et al. 2006)] 

identified two distinct periods using the measurements of temperature, gas 

composition and mass loss histories: ignition propagation period and char oxidation 

period. During the ignition propagation period, the mass of the bed decreases with a 

constant slope. Then, the mass loss slows down as the char oxidation period

commences.

[(Yang, Yamauchi, et al. 2003), (Yang, Sharifi and Swithenbank 2004), (Yang, Ryu, et

al. 2005a), (Yang, Ryu, et al. 2005b) and (Ryu, et al. 2006)] investigated the effect of 

air flow rate, moisture and fuel devolatilization rate on the ignition rate and other 

parameters for combustion modeling of simulated wastes and biomass. 
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(Liang, et al. 2008) reported another important aspect concerning the heterogeneity 

of the composition of the solid particles. For the sample extracted in different parts of 

corn straw, the concentration of CO and NO are clearly different. According to the 

author, corn straw combustion occurred in two stages: ignition front propagation 

and char oxidation. Both stages were identified by [(Thunman et Leckner 2005), 

(Zhou, et al. 2005) and (Ryu, et al. 2006)] previously mentioned. 

All work cited previously use a vertical cylinder with internal diameter between 15 

cm and 24.4 cm and a height of chamber between 30 cm and 150 cm, and all 

surround with a thickness of insulating materials. The temperature measurements 

are carried out using thermocouples placed at the axis and at different heights. The 

mass of the bed is sometimes measured using a weighing scale. The flue gases are 

analyzed commonly at the cell exit. 

The French Standards Association (AFNOR) published the standard NF M03-049, 

which deals with characterization of solid combustibles in a fixed bed in counter-

current flow. The norm is based on the measurement of front velocity, combustion 

rate, pressure drop and temperature. According to the norm, the reactor should 

preferably have a cylindrical shape with a diameter of not less than 25 cm, in order 

to avoid excessive influence of the wall on the results. 

I.5 Review of the oil shale characterization using thermal analysis 

This section is dedicated to oil shale characterization methods using the most 

common thermal analysis method: ThermalGravimetric Analysis (TGA) and 

Differential Scanning Calorimetriy (DSC). Today, a lot of works about it are available 

[(Ziyad, Garnier and Halim 1986), (Chanaa, Lallemant and Mokhlisse 1994), (Kök et 

Pamir 1995), (Kok and Pamir 1998), (Kok, Sztatisz and Pokol 1999), (Jaber and 

Probert 1999), (Williams and Ahmad 1999), (Kök and Pamir 2000), (Bruan, et al.

2001), (Saoiabi, Doukkali, et al. 2001a), (Saoiabi, Doukkali, et al. 2001b), (Sadiki, et

al. 2003), (Sonibare, Ehinola and Egashira 2005), (Kök, Guner and Bagci 2008)]. 

These methods are commonly used to determine the global composition of oil shale 

and kinetics of oil shale degradation reactions, as well the influence of heating rate 

on the pyrolysis and oil yield in oil shale samples. 

(Taulbee, et al. 1982) investigated oil shale samples in a thermogravimetric analyzer 

in relation to heating rate in range of 4.0–55 K min 1. Higher heating rate resulted in 

oil being evolved at higher average temperatures; hence a smaller fraction of the oil is 
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found in liquid phase. Oil in liquid phase is subjected to two competing processes: 

vaporization, which leads to oil production, and coking, which leads to a 

carbonaceous residue. 

(Nazzal 2002) studied oil shale samples in a thermogravimetric analyzer also in 

relation to heating rate. The oil shale was crushed to a grain size of 1.32–3.33 mm 

and dried at 105 °C. He reported that the oil yield was increased as the heating rate 

was increased from 2 to 10 K min 1. Increasing the heating rate up to 30 K min 1

caused a slightly reduction in oil yield. Increasing the heating rate from 2 to 30 K 

min 1 also caused a slight increase in evolved gas. This indicates that heating rate 

played a small role in gas evolution under both pyrolysis atmospheres (oil pyrolyzed 

under nitrogen and nitrogen/steam). 

(Barkia, Belkbir and Jayaweera 2004) studied the influence the heating rates using 

four values ranging from 5 to 40 K min–1. Thermal decomposition started at 200 °C 

and reached a maximum rate at around 420 °C for the slowest heating rate, moving 

to higher temperatures with increasing heating rate. The total organic matter (low-

and high-volatile hydrocarbons plus residual carbon) in oil shale for each heating 

rate was determined after heating all samples in nitrogen flowing atmosphere to 

500 °C and keeping for 1h at this temperature. Air was then introduced to obtain 

quantity of organic carbon remaining in shale. The activation energies were also 

determined using the Coats-Redfern method. Results show a change in reaction 

mechanism at around 350 °C. Below this temperature, the activation energy was 

41.3 kJ mol-1 for the decomposition of Timahdit, and 40.5 kJ mol-1 for Tarfaya shale. 

Above this temperature the respective values are 64.3 and 61.3 kJ mol-1. Still 

concerning the determination of kinetics parameters, (Barkia, Belkbir et Jayaweera 

2006) carried out experiments using the residual carbons (fixed carbon) from 

kerogen extracted from two Moroccan oil shales (from Timahdit and Tarfaya), where 

the samples were oxidized in air. The oxidations were studied by isothermal 

thermogravimetry. Several kinetic models for mechanisms of the reactions were 

tested to fit the experimental data. Oxidation of the fixed carbon derived from 

Timahdit oil shale followed a two-third order reaction with activation energy of 58.5 

kJ mol–1, whilst that from Tarfaya oil shale was a half order reaction with activation 

energy of 64.1 kJ mol–1.

 (Kök and Pamir 2000) reported that the thermogravimetric analysis of oil shale 

samples has been extensively used as a means of determining the characteristics of 

devolatilization and the related kinetic parameters. Thermal methods providing 
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information about net results of mass loss and calculation of kinetic parameters are 

based on simplifying assumptions. In another paper, (Kok and Pamir 1998), they 

used differential scanning calorimeter (DSC) to determine the combustion kinetics of 

three oil shale samples by ASTM and Roger & Morris methods. On DSC curves two 

reaction regions were observed on oil shale sample studied. In DSC experiments 

higher heating rates resulted in higher reaction temperatures and higher heat of 

reactions. Distinguishing peaks shifted to higher temperatures with an increase in 

heating rate. Activation energies were 18.5-48.8 kJ mol-1 for Rogers & Morris method. 

(Cinar, Castanier and Kovscek 2008) developed an iso-conversional methods of crude 

oil reaction kinetic analysis, to provide a model-free procedure to find activation 

energy as function of conversion. The method developed was applied to in-situ 

combustion kinetics. They observed two reactions during combustion of oil in porous 

media: low temperature oxidation (LTO), where are produced of little or no carbon 

oxides and high temperature oxidation (HTO), where the reactions are heterogeneous 

and include reactions of oxygen with fuel producing carbon oxides and water. The 

activation energy for both LTO and HTO were determined. These both reactions were 

also observed the some previous work [(Barkia, Belkbir and Jayaweera 2004), (Barkia, 

Belkbir et Jayaweera 2006), (Kok and Pamir 1998), (Kok, Sztatisz and Pokol 1999) 

and (Kök, Guner and Bagci 2008)]. 

I.6 Numerical models background 

On the other hand of the experimental devices, one can find a numerous works 

dedicated to the numerical study of the combustion process, in both co-current and 

counter-current situations.

I.6.1 Numerical models 

The numerical models can be divided in macroscale and microscale models.

Macroscale models

Models at macroscale [(Ohlemiller 1985), (Kiehne, Wilson and Matthews 1990), 

(Moallemi, Zhang and Kumar 1993), (Fatehi and Kaviany 1994), (Akkutlu and 

Yortsos 2003), (Oliveira and Kaviany 2001), (Biyikoglu and Sivrioglu 2004 ), (Yang, 

Sharifi and Swithenbank 2004), (Zhou, et al. 2005), (Ryu, et al. 2006), (Rein, et al.

2006)] enable numerical simulations at the Darcy-scale, i.e. a description as a 
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continuous medium of the effective properties (conductivity, heat capacity) and 

averages variables (temperature, concentrations). The various effective parameters 

involved, when applicable, are by no means trivial, and their validity is an open 

question in many cases. 

The classical approach is the principle of local volume average temperature, 

described by (Whitaker 1977) and (Kaviany 1995). Considering the case of isotropic 

porous medium, where the radiation effects, the viscous dissipation and the work 

accomplished by changes on the pressure field are neglected, the energy 

conservation equations to solid (s) and fluid (f) phases are given by: 
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Cp is the specific heat; K is the thermal conductivity; q is the heat generation term 

per unit volume. 

Based on local volume averaging, (Whitaker 1977) and (Kaviany 1995) the eq. (I.3) 

and (I.4) can be written as: 
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where  is the porosity and <Ts,f> represents the local volume averaged temperature 

to solid and fluid, respectively. 

Assuming that there is a perfect contact between solid and fluid phases, one can 

make the hypothesis of local thermal equilibrium between the phases: 

T T Tf s= = (I.7)

Adding the eq. (I.5) and (I.6) and using the eq. (I.7) gives: 

effeffpp q+)T.(KT.)C(
t
T)C( =feff V (I.8)
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where:

fseff = )C()C()-(1)C( ppp (I.9)

fse K+K)-(1=K ff (I.10)

fseff qq)-(1q  (I.11)

are respectively, the overall thermal capacity (effective) per unit volume, the overall 

thermal conductivity (effective) and global heat generation per unit volume of the 

medium.

To simplify the analysis other assumptions were proposed by (Schult, et al. 1995): 

a)  radiation heat transfer is modeled by a diffusion approximation; 

b)  the solid phase is stationary and non deforming; 

c)  Fick's law describes the diffusion of oxidizer through the gas with the 

quantity D g (gas diffusivity) constant; 

d)  the flow resistance through the porous sample is small enough that 

pressure is essentially constant; 

e)  the sample is sufficiently long that end effects are negligible and do not 

influence the transport of heat or oxidizer; 

f)  the activation energy of the reaction involved during combustion is large; 

Under certain circumstances, the local average temperature assumption appears 

to be too restrictive and fails to be valid. This leads to macroscopic models which are 

referred to as non-equilibrium (Quintard and Whitaker 1993) and (Batsale, Gobbe 

and Quintard 1996). It is possible to develop separate transport equations for each 

phase writing a monodimensional system equation including: 

- two equations for energy (one for solid and another for fluid); 

- an equation for the conversion rate of fuel; 

- two equations for the mass conservation (oxidant and fuel); 

- an equation governing the gas flow; 
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- a few other thermodynamic equations.

Microscale models

To answer some questions, by examining the details of the processes, some 

numerical simulation tools based on a microscopic scale were developed by [(Lu and 

Yortsos 2005), (Oliveira and Kaviany 2001), (Debenest, Mourzenko and Thovert 

2005a) and (Debenest, Mourzenko et Thovert 2005b)]. Here, the local equations are 

solved in a detailed discretized image of the microstructure and make it possible the 

investigation of situations that cannot be properly described by macroscale models. 

The scheme in Figure (I.20) is a zoom on a microstructure and summarizes the 

different mechanisms considered by (Debenest 2003).

The gas flow path between grains of the bed carries all chemical species and heat. 

The heat is also conducted in solid phase. The combustion is supposed to be a 

heterogeneous reaction on the surface of grains and pyrolysis does not happen in 

this reaction area. The fixed carbon content in grains is supposed to sell out 

upstream of the reaction front, as well the oxygen concentration downstream of the 

front.

Figure (I.20) - Close-up of the bed microstructure, and illustration of the 
mechanisms included in microscopic formulation of the problem. 
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I.6.2 Simple analytical solutions 

Using a one-dimensional single-temperature model, approximate analytical 

expressions can be obtained for determination of the front propagation velocity and 

the maximum temperature at the combustion front [(Schult, et al. 1995), (Aldushin, 

Rumanov and Matkowsky 1999), (Debenest 2003)]. This analytical solution is based 

on a series of hypotheses proposed by (Schult, et al. 1995).

The concentration of oxygen is characterized by values upstream and downstream 

from the front, in]2[O and out]2[O , and the same for the fixed carbon concentration 

in[C] and out[C] . Considering the stationarity hypothesis one can say that the 

differences between the oxygen concentrations out]2[O-in]2[O and carbon 

concentrations out[C]-in[C] are constants, and linked to its stoichiometry. This 

relationship can be written as follows: 

out[C]-in[C])1(out]2[O-in]2[O fUv (I.12)

Where v  is the interstitial gas velocity, and fU  is combustion front velocity given by: 

vfU
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1 (I.13)

Assuming a frame of reference anchored to the reaction front, the energy equation 

can be written as: 
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where, is the effective conduction coefficient, Hs is a heat source located at the 

reference (reaction front) and function of 
FX  Dirac's delta. 

By linking the heat source with the front velocity gives: 

ChvChfUsH out]2[O-in]2[Oout[C]-in[C])1( (I.15)

where, Ch  is the enthalpy reaction for 22 COOC .
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The adiabatic temperature can be obtained by the relationship between the heat 

production by the oxidation reaction and global volumetric heat capacity. 
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The stationary solution of the eq.  is said to be piecewise constant, where the 

constant is an exponential function as x .

where,
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It is important to note that the value of  is not a function of the energy release rate, 

but only of the heat capacities of the solid and gas and its concentrations.

Three types of travelling combustion front structures were identified in previous work 

[(Rabinovich et Gurevich 1984 ), (Aldushin 1990 ), (Aldushin 1993) and (Schult, et al.

1995)]. (Aldushin, Rumanov and Matkowsky 1999) presented a scheme to illustrate 

the three combustion structures, Figure (I.21). 
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Figure (I.21) - Forward front of combustion:  < 1, reaction leading structure; >1,
reaction trailing structure; and  = 1, wave with maximal energy accumulation. 

The first one, if  < 1, where the combustion zone precedes the heat transfer zone, in 

which the solid gives up heat to the incoming cold fresh gas, to carry it into thermal 

equilibrium with the solid. Since the processes in two zones are independent, each 

progress with its own velocity. In this type of structure the reaction zone progress 

faster and therefore ahead of the heat transfer zone; this type of structure is called 

reaction leading structure. The second called reaction trailing structure, if  > 1, the 

heat transfer zone precedes the reaction zone. Experimental observations, of both 

cases, presented superadiabatic effect. The case  = 1 separates the two structures 

and corresponds to a combustion temperature Tb which is infinite, i.e. solutions in 

form of travelling combustion front are no longer possible - travelling combustion 

front analysis breaks down. However, this situation corresponds to conditions where 

the superadiabatic effect manifests itself most strongly.
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I.7 Synthesis 

To perform a careful study on literature about the propagation of combustion front in 

co-current flow, it was necessary investigate the combustion in a counter-current 

configuration and also some works inrmal analysis. This showed that numerous 

challenges, as presented in introduction, still need research.

Concerning the experiments

There are: 

- In majority of reactors with a little diameter implicated in an important heat 

losses;

- In all of them solid particles with unstable geometry, such as biomass, MSW, 

foam, etc ; 

Concerning the models

- Choices in formulation of eq. have to be made; 

- Determination of macroscopic parameters not trivial; 

- Need development; 

The literature about the combustion front propagation in a fixed bed of the oil shale 

is very limited. Thus, the opportunity to develop new devices and numerical model 

applied to study oil shale combustion are open.
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Chapter II

Experimental devices and methods

In this thesis two principal devices were used: a combustion cell and a horizontal 

tubular reactor. The combustion cell, which was especially developed for this thesis 

is presented first with its experimental protocol.  The horizontal tubular reactor was 

used to perform accurate thermochemical characterization of the oil shale. Other 

devices supports were used to complete the characterization in terms: 

- Thermogravimetric;

- Elemental;

- Ultimate;

- Of physical analysis; 

The gas analyzers used are also described in this chapter. It will also be presented 

the experimental methods of samples preparation. 

II.1 Combustion cell

An experimental device was developed to enable 1D co-current experiments; see 

Figure (II.1). It consists of a vertical cylindrical combustion chamber of 91 mm 

internal diameter and a height of 300 mm. The diameter was chosen to be wide 

enough to limit heat losses through the walls, but narrow enough to avoidthe 

preparation of large sample quantities, and also to facilitate treatment of flue gas. It 

is made of a 2 mm-thick stainless steel material, surrounded by two types of 

insulating material: a 3 mm thick layer of wool (Superwool 607 blanket, Thermal 

Ceramics, k = 0.28 Wm-1K-1 at 982 °C) and a 50 mm thick layer of refractory fiber 

bloc (Kaowool HS 45 Board, Thermal Ceramics, k = 0.21 Wm-1K-1 at 1000 °C). 
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A grate is located at the bottom of the chamber and consist of a stainless-steel mesh. 

It is supported by an inner ring, which in turn is supported by the lower cone of the 

reactor. At the bottom of the cell is placed a copper tube to start cooling the flue gas 

before contact with the flexible silicone tube connected to reservoirs to condense and 

collect liquid oil. The air entry is designed to supply uninterrupted airflow in a 

symmetrical way; see Figure (II.2). Gas analyzers can be momentarily connected at 

the exit of the condensers to analyze. 

The pressure at the top of the reactor and the total mass of the particle bed are 

continuously recorded.

The reactor is finely instrumented. A group of six in-line thermocouples 0.96 mm in 

diameter (T1, T2, T3, T10, T11, T12) are located at Z = 0, 45 , 90 and 180, 225 and 

270 mm  (from top to bottom of the reactor), making it possible to measure the 

temperature along the axis of the cell at different heights. A crown of six 

thermocouples, identical to the ones previously mentioned, makes it possible to 

measure the temperature over a horizontal cross section (at approximate middle 

height, Z = 135 mm) 11 mm away from the walls: this will reveal whether the 

combustion front progresses or not as a horizontal surface. 
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Figure (II.1) - Cell of combustion in porous medium, with micro-sampling system. 

Figure (II.2) - Horizontal cut on the level of the air entry. (B) Horizontal cross-section 
at middle height of the cell (details:  micro sampling system and crown 

thermocouple).
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II.1.1 Ignition of the combustion 

To start the combustion with a view to achieving a plane front, a sophisticated 

ignition device is used, called Cone Calorimeter. On the ignition time, the radiant 

conical heater temperature is adjusted to 845 °C to impose a heat flux of 45 to 50 kW 

m-2 over the top surface of the oil shale; see Figure (II.3). This radiative flux is 

generated by a metal surface called a cone heater, heated at high temperature (in our 

case); it has previously been calibrated using a water-cooled fluxmeter. The radiative 

flux crosses a quartz porthole that ensures the sealing of the closure, as shown in 

Figure (II.4). The time of irradiation was 220 s, controlled by opening/closing the 

insulator shield.

Because of the mechanical and thermal constraints on the top of the cell (steel 

flange), it was necessary to increase the distance between the cone and the surface of 

the sample, 25 mm in standard (ISO 5660) to 70 mm, resulting in a non-uniform 

radiative heat flux at the sample surface illustrated in Figure (II.5). 

Figure (II.3) - Original schematic diagram of the cone calorimeter. 
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Figure (II.4) - Photograph at the time of irradiation of the oil shale surface. 

Figure (II.5) - Radiative heat flux profile at the oil shale bed surface. 
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II.1.2 Micro-sampling system 

A new and original device was developed and set up to improve the physicochemical 

investigation of the structure of the front. This micro-sampling device is shown in 

Figure (II.1) and Figure (II.2). Its originality lies in its ability to micro sample gas at a 

fixed point inside the chamber before, during and after the passage of the 

combustion front.

A peristaltic pump sucks the gas out of the reactor through a 1.6 mm internal tube. 

The flow rate is fixed at 2.0 ml min-1 at 20 °C, corresponding approximately to 

isokinetic sampling inside the bed, Figure (II.6), in order to minimize the 

perturbation of the front. The sampled gas is driven to an automatic septum. The 

dead volume of the sampling tube (1.6 mm internal diameter, 166 mm long) and of 

the septum was 0.8 ml. Syringes of 0.25 ml (250 μl) with valves are used to sample 

gas inside the dead volume. A sample is taken every 30 s; during that period, the 

front progresses by 1.25 mm approximately, which gives an optimistic evaluation of 

the spatial resolution of the system. The components CO and CO2 are analyzed a 

posteriori by gas chromatography, Figure (II.7). Unfortunately, the gas 

chromatograph setup available did not enable quantifying O2.

Figure (II.6) - (w = v) Isokinetic case; (w > v) Sampletaking velocity is too low; (w < v) 
Sampletaking velocity is too high. 
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Figure (II.7) - Micro-sampling apparatus: Peristaltic pump, syringe with valve. 

II.1.4 Oil shale samples 

The fuel used in the experiments were the Timahdit oil shales deposits, located in the 

mountains of the Middle Atlas (Morocco), spread over an area of 1000 km2,

[Saoiabi2001]. A consignment of 400 kg of oil shale blocks shown in Figure (II.10-a)   

was delivered. 

The oil shale blocks pass through crushing and then through grinding operations to 

reduce the size. In the crushing stage the rocks are reduced to about 0.5 to 2 cm, 

after grinding to obtain particles equal or inferior 2 mm Figure (II.8).
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Figure (II.8) - Rock grinding device used to reduce the size particle. 

The particles are then sieved into four particles size ranges: 

- < 315 μm; 

- 315-500 μm; 

- 500-1000 μm; 

- >1000 μm. 

The particle size range distributions are shown in Figure (II.9). 

Figure (II.9) - Particle diameters distribution after grinding and sieving. 

In order to avoid the deterioration of the reactor wall, the oil shale samples were 

added with sand are carefully mixed before the experiments, Figure (II.10-c). The 

sand particle size ranges were also 315- 500 μm, 500-1000 μm and 1- 2 mm. 
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Figure (II.10) - (a) Oil shale block 10 cm, (b) crushed oil shale (500-1000 μm) and (c) 
mix oil shale/sand, respectively. 

II.1.5 Charcoal samples 

The combustion cell was validated using a mix of charcoal and sand. The initial 

material for charcoal preparation consisted of maritime pine wood chips. The 

charcoal samples were prepared by CIRAD laboratory. The pyrolysis was carried out 

in an externally heated pyrolysis screw reactor, with a residence time of one hour at 

750 °C. The flow rate of char production was 15 kg h-1.

The sample was prepared by pyrolyzing wood chips, grinding the chips, and then 

selecting the particle size in the range 500-1000 μm. To obtain a homogeneous mix 

of charcoal particles with sand, it was necessary to prepare a kind of mortar by 

wetting the mix of charcoal and sand, before intensively mixing the mortar, then 

placing it into the combustion cell before drying it overnight. It was confirmed that 

after drying, the charcoal particles - collected from the dry mortar – contained more 

than 91.6 % of carbon. The mass proportion of carbon was 3.6 %, corresponding to 

experiments done later with the mix of oil shale and sand. This was obtained by 

introducing 2256 g of sand and 84.3 g of charcoal (dry base) in the cell. 

II.1.6 Procedures before and after an experiment 

Procedure of mixing oil shale and sand 

After the sieving steps described previously, the range elected (500-1000 μm) is 

mixed with sand.  In the sample mixture the proportion of sand was 25 % and oil 

shale 75 %. The mixture was agitated until the sample obtains a uniform color, 

Figure (II.10-c). 
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Filling the cell 

The cell was filled with small quantities of mixture and some strokes were given 

using a plastic hammer, in order to arrange the particles in the cell (this procedure is 

repeated until the cell is full and obtains a stable volume of the particle bed).

Centering the cell below the cone heater 

Once the cell was filled, the quartz window was placed and fixed to ensure the 

sealing. After that, the cell was centered in relation to the cone heater center line, 

Figure (II.5).

Measures before start out 

These were the quantities measured: 

- Pressure at the top of the bed; 

- Mass of the bed. 

Measures after the experiment 

These were the quantities measured: 

- Pressure at the top of the bed; 

- Final mass of the bed; 

- Bed shrinkage; 

- Color of the bed; 

- Mass of oil recovered. 

II.2 The horizontal tube furnace 

The reactor, illustrated in Figure (II.11), consists of a quartz cylinder with 70 mm 

internal diameter and 1210 mm length, Figure (II.12). The section heated by the 

furnace has 620 mm length. The sample is put inside a 45 mm diameter mobile 

spoon (made in steel) and set at the end of a quartz handle of 850 mm length. A 

thermocouple is located inside the sample. A manometer is placed at the inlet to 

measure the pressure inside the reactor. 

The heating rate of the sample can be controlled inserting more or less rapidly the 

quartz handle. Figure (II.12) and Figure (II.13) presents the photograph of its 

respective parts.
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Figure (II.11) - Scheme of horizontal tube furnace. 

Figure (II.12) - Horizontal tube furnace. 

Figure (II.13) - Spoon inside the quartz tube. 
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Experimental protocol

Before beginning the experiment, the tests of sealing and atmosphere control were 

carried out. To ensure that the assembly is sealed and the atmosphere is controlled, 

nitrogen was first injected inside the reactor at 6 l min-1 at STP. The reactor exit was 

linked to a gas analyzer to ensure that there is no oxygen inside the reactor.

a) Measurement of volatile matter and fixed carbon amounts 

At the beginning of the experiment, the furnace temperature was adjusted (550 °C or 

900 °C); a layer of oil shale sample (approximately 1 mm) was placed inside the 

spoon. The spoon was placed in the extremity of the quartz tube (zone not heated) to 

avoid starting the oil shale degradation. 

The atmosphere was chosen according to the type of trial – N2 for pyrolysis and air 

for oxidation. After that, the spoon was introduced into quartz tube and the heating 

rate undergone by the sample was estimated from the temperature measurement, 

Figure (II.14). The solid residue was then collected and weighed accurately. 

Figure (II.14) - Furnace configuration for pyrolysis and oxidation trials to determine 
oil shale composition. 

b) Analysis of volatile-matter

Initially, the furnace temperature was adjusted at 550 °C; a layer of oil shale sample 

(approximately 1 mm) was placed inside the spoon. Then the spoon was placed in the 

extremity of the quartz tube (zone not heated) to avoid starting the oil shale 

degradation. Under inert atmosphere, N2 (3 l min-1 at STP), the spoon was introduced 

into quartz tube; the pyrolysis gas was collected in a gas sampling bag. The time 

during the bag-filling operation was fixed to 5 minutes (a period adequate to 

complete the pyrolysis process). After that, the gas was analyzed. Figure (II.15) 

illustrate the furnace configuration used.
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Figure (II.15) - Pyrolysis and filling the sampling bag. 

II.3 Laboratory apparatus 

II.3.1 The gas analyzers 

During the experiments (b) described previously, the gas samples were sent and 

distributed toward five types of analyzers, Figure (II.16): 

Figure (II.16) - Rack mount gas analyzers. 
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- a Total hydrocarbon analyzer (two Flame Ionization Detectors - FID, COSMA 

Graphite 655) quantifying CH4 and Non-Methane Hydrocarbon (NMHC) ; 

- a NDIR technology analyzer (SERVOMEX) capable of measuring CO, CO2,

SO2, NO and NOx;

- a Paramagnetic O2 analyzer (SERVOMEX); 

- a Thermal Conductivity Detector (TCD) measuring H2;

- a Micro GC Agilent 3000 capable of measuring compounds from C1 to C12

and permanent gases (H2, O2, N2, CO, CO2);

II.3.2 Gas chromatography for analysis of micro-samples 

The gases collected from micro-sampling device were analyzed using a GC-6890N 

equipped with a thermal conductivity detector (TCD) and GS-Carbon PLOT capillary 

column (30 m × 0.32 mm ID, 3.0 m, Agilent Tec.). Parameters for analyzing the 

compounds by GC-TCD are listed in Table (II.1).

Table (II.1) - Parameters for analyzes of micro-samples. 

GC - 6890

INJECTOR
Mode Split
Gas He
Heater (°C) 180
Split ratio 150:1

COLUMNS
Mode Const. flow
Flow (ml/min) at 35°C 1,8
Average velocity (cm/s) 30

OVEN
°C/min Next °C Hold min. Run time

35 4
60 150 1

6,92

TCD DETECTOR
Heater (°C) 150
Reference flow (ml/min) 15
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Two species were chosen to be separated:

CO, which represents one gas formed only by oil shale devolatilization and 

char oxidation; 

CO2 that is formed during oil shale devolatilization, by char oxidation and 

also by decarbonation.

Figure (II.17) shows the calibration curves for both CO and CO2. Unfortunately, O2

could not be separated from N2 and analyzed.

Figure (II.17) - Calibration curves. 

Figure (II.18) shows an example of signal for CO and CO2 with its respective retention 

times.

Figure (II.18) - A typical chromatogram of flue gas analysis. 
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II.3.3 TGA and DSC Instruments 

TG and DSC experiments were carried out. The oil shale sample was sieved to 

obtaining particles between 500-1000 μm diameters. The sample mass were between 

30 to 60 mg. 

 The thermogravimetric measurements were conducted on a SETARAM TGA 

92 instrument. The analyses were performed using both nitrogen and oxygen 

atmosphere, in the temperature range 25-900 °C, and at the two heating rates 

of 3 K min-1 and 10 K min-1.

 The DSC experiments were carried out using a SETARAM TG-DSC 111 

Instruments. Scans were performed from 30 to 800 °C at three different heating 

rates: 3, 10 and 20 K min-1. The analyses were performed using both nitrogen 

and oxygen atmosphere. 

Table of experiments 

Table (II.2) presents the experiments parameters made during this thesis. Each one 

of the experiments was numerated to facilitate the identification in the text.

Table (II.2) - presents the experiments parameters made during this thesis. Each one 

of the experiments was numerated to facilitate the identification in the text. 

Sand (%) Air velocity (m/s) N° Particle diameter
1
2
3
4
5
6

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Oil shale 
experiments

50 500-1000 μm

65 500-1000 μm
0.042

500-1000 μm

500-1000 μm

1000-2000 μm

500-1000 μm

Charcoal 
experiments

95 0.024

0.062

0.024

0.042

25

500-1000 μm

96,4 0.024 500-1000 μm

315-500 μm
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The charcoal experiments were firstly made to validate the combustion cell. The 

reference experiment for the oil shale combustion is indicated in bold characters; it 

was repeated seven times. The other experiments with oil shale were made for the 

parametric study presented at the end of the document.
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Chapter III

Detailed characterization 

This chapter is dedicated to perform a detailed characterization of the oil shale: 

physical, chemical and thermal properties. Then, a fine analysis of the 

devolatilization gases is made.

III.1 Physical characterization 

The oil shale was received as hard dark grey blocks, typically 10 to 20 cm long and 

10 to 20 cm wide, and several centimeters thick. The real density is 2257 kg m-3 from

He pycnometer measurement. Mercury intrusion tests indicated a value of 2244 kg 

m-3, while measuring a cubic block and weighing it gave 2214 kg m-3. The value of 

2214 kg m-3 was adopted in this work. The blocks do not have a particular smell and 

do not dirty the fingers when manipulated.

The particle size range 500-1000 m was obtained after grinding. This range was 

retained for the analysis and experiments reported here. 

From the mass of the oil shale bed in the reactor, the apparent density of a bed was 

calculated at 1172 kg m-3. The inter-particle porosity of a bed is then 47.0 %. 

In order to avoid the deterioration of the reactor wall, a mixture of oil shale and sand 

75/25 wt. was used in the experiments. The sand particle size range was also 500-

1000 μm; it was checked that the Loss On Ignition (LOI) of the sand heated at 1000 

°C was negligible: 0.26 %. The apparent density of the packed bed mixture OS/sand 

was 1168 kg m-3. The porosity of the bed was consequently 47.2 % (the real density 

of sand was 2447 kg m-3).
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III.2 ThermoGravimetric Analysis (TGA) and Differential Scanning Calorimetry 

analysis (DSC) 

A variety of reactions brought about by the application of heat. For example, 

(Rajeshwar, Nottenburg, & Dubow, 1979 ) reported that the presence of a wide 

variety of minerals in the oil shale matrix significantly complicates thermal behavior. 

In general, the following reactions can be identified: 

(a) evolution of water and gases;

(b) conversion of kerogen to bitumen; 

(c) alteration of bitumen; 

(d) dissociation of bitumen from oils, gases and other compounds; 

(e) vaporization of oils; 

(f) burn-off of fixed carbon; 

(g) decomposition of organic residues and inorganic minerals. 

The TGA experiments were carried out using samples of approximately 30 mg, with a 

heating rate of 3 K min-1 up to 900 °C. The decomposition of the oil shale sample 

under both, inert atmosphere and air, are presented in Figure (III.1). 

Under atmosphere (N2) several stages can be observed: 

a) Water evaporation, occurring at temperatures between 50 and 150 °C; 

b) Kerogen decomposition into volatile matter - including condensable oil - and 

into solid fixed carbon in the temperature range 150 - 550 °C; 

c) Thermal decomposition of carbonates, which can be assumed to be 

essentially limestone (CaCO3), into quick-lime (CaO) and carbon dioxide 

(CO2), in the temperature range 550- 770 °C. 
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Figure (III.1) - TGA of oil shale under air and under nitrogen - heating at 3Kmin-1.

During TGA under air, the same sequence is observed, but the mass loss between 

150- 550 °C additionally includes the oxidation of fixed carbon. There is no clear 

separation between the two stages of pyrolysis and decarbonation along the test. For 

this reason, it was not possible to determine with any accuracy the amount of 

organic matter: in the same way as mass difference between the dry oil shale and oil 

shale after oxidation. The difference between the two mass curves after pyrolysis 

(around T= 550 °C) gives the amount of 4.8 % for fixed carbon. It is worth noting that 

the difference between the two curves decreases along the decarbonation process. 

This means that for the experiments under N2, the amount of fixed carbon decreases 

during decarbonation, and even after completion of decarbonation. It is difficult to 

give a physical explanation to this observation. The total mass loss of the oil shale 

sample heated to 900 °C under air is 36.7 %.

Figure (III.2) shows the first derivative curve as a function of temperature, giving the 

Differential Thermogravimetry (DTG) of oil shale under air at the heating rate of 3 K 

min-1.

There exist two peaks at 310 °C and 420 °C corresponding to the devolatilization of 

oil shale and the oxidation of fixed carbon respectively, and one peak around 770 °C 

corresponding to decarbonation. When the heating rate is increased to 10 K min-1, a 

peak appears at 60 °C. This phenomenon was also clearly observed during all 

experiments in the combustion cell (cf. IV.2.2.A), where can be seen a plateau in 

temperature at precisely 60 °C for all thermocouples. It was attributed to an 
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endothermic phase change that was not identified, but probably not drying of the oil 

shale.

The results from DSC tests are reported in Figure (III.3). The experiment under air 

shows two exothermic reactions, which occurs in the interval of 250- 550 °C.  The 

first peak at 291 °C is due to the oxidation of part only of the volatile matter (Kok and 

Pamir, 1998) and the second at 411 °C is the oxidation of the carbonaceous residue 

(fixed carbon). Indeed, these two peaks do not appear when the DSC is performed 

under N2. The origin of the second peak was confirmed by performing a similar 

analysis with a sample of oil shale previously pyrolyzed under inert atmosphere: only 

the second peak appears. For the two exothermic reactions which occur in an 

interval of 250 – 550 °C – that cannot be clearly separated - the reaction heat is + 

3700 kJ kg-1 oil shale. 

Around 770 °C, under both air and nitrogen atmosphere the endothermic peak of 

decarbonation appears. The measured endothermic reaction heat was – 589 kJ kg-1

oil shale. 

Figure (III.2) - DTG curves of oil shale under air - heating at 3 and 10K min-1.
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Figure (III.3) - TGA/ DSC of oil shale under air and under nitrogen – heating at 3 K 
min-1.

III.3 Determination of the Arrhenius parameters 

Arrhenius parameters for char oxidation reaction

Char oxidation has been studied extensively, the mechanisms by which these 

oxidation reactions occur remain poorly understood. For the purposes of this thesis, 

it was adopted the notation of [(Schult, et al. 1995), (Akkutlu and Yortsos 2003) and 

(Lapene, et al. 2007)] considering simple one-step reaction model on the form: 

2)1(2)]1(
2

[ COfrCOfrOfrfrC r.4

where the term fr is the [CO2]/[CO] oxidation reaction molar ratio. 

To determine the Arrhenius parameters for fixed carbon oxidation it was used the 

results from DSC experiment of oil shale. 

The DSC or quantitative differential thermal analysis is the most commonly used 

technique for analyzing kinetic parameter. In this experiment, not only the heat of 

reaction but also the reaction kinetics can be evaluated. The Kissinger method 

[(Kissinger 1957), (Kök and Pamir 2000) and  (Kowhakul, et al. 2006)] with a variable 

heating rate, which depend on the peak maximum in the DSC were employed. The 

activation energy (E) can be calculated from the results. 
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Kissinger suggests a method, which relates the logarithm of ( 2/ PT ) with the inverse 

of the peak temperature, Figure (III.4), through the following expression: 

E

Rk

PRT

E

PT
0ln

22
ln (III.1)

simplifying eq. (III.1) gives: 

12

2
ln C

pRT

EpT
(III.2)

Where  is heating rate, E is the activation energy, C1 is a constant linear coefficient 

and R is the gas constant (8.314 Jmol-1K-1).

Thus, activation energy and pre-exponential factor were calculated using the 

following equations:
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Using this method the determined activation energy and pre-exponential factor were 

E= 52.4 kJ mol-1 and A= 0.0546x104 min-1.

Finally the kinetics model determined was: 

RT
dt
d 52400

4 exp100.0546 (III.5)
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Figure (III.4) - Kissinger plot for oil shale samples at 3, 10 and 20 Kmin-1.

(Kok 2001) in his work about oil shale combustion on DSC experiments, reported 

that on DSC combustion curves of oil shale samples, two reaction regions were 

observed – the same for the present work – the “shoulder” on the high temperature 

side of the reaction region was attributed to the possible swelling of the sample, 

resulting in an impermeable mass that reduced the oxygen accessibility, causing a 

decrease in the reaction rate. 

Arrhenius parameters for calcite decarbonation reaction

A differential method for sample at a single heating rate was employed. This method 

has been employed to calculate Arrhenius parameters of decarbonation reaction from 

TG/DTG experiments [(Dollimore, Tong et Alexander 1996), (Samtani, Dollimore and 

Alexander 2002) and (Yang, et al. 2000 )]. 

To obtain the kinetic parameters, a combination of equations is used which include 

the following: 

)(fk
dt
d

(III.6)

RT
EAk lnln (III.7)

where,  is the fraction reacted, d /dt the rate of the reaction and f( ) the 

mathematical expression in , table “f( )”.
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Combining eqs. (III.6) and (III.7) gives: 

RT
EAdtd

n ln
)1(

ln (III.8)

The differential form of gives:

fi

t

ww
dtdw

dt
d /

(III.9)

The function dwt/dt can be obtained directly from the (DTG) plot, and the rate of the 

reaction can be calculated using Eq. (III.9). This value of d /dt obtained from Eq. 

(III.9) is substituted into Eq. (III.8) and finally a plot of ln[(d /dt)/f( )] versus 1/T is 

constructed.

Table (III.1) - The mathematical models for the reaction mechanisms.

From the eq. (III.8) and plotting ln[(d /dt)/ƒ( )] vs. 1/T, one can obtain the activation 

energy E and the pre-exponential factor A from the slope and the intercept of the 

regression line respectively. The linear regression plot for this sample is illustrated in 

Figure (III.5).

It was found by [(Samtani, Dollimore and Alexander 2002)] that calcite supposedly 

decompose via a zero order mechanism, indicating f( )= 1, see Table (III.1). The 

activation energy and pre-exponential factor were E= 135.1 kJ mol–1 and A= 2.68x104

min-1 which is in good agreement with the results obtained by [(Maciejewski 2000) 
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and (Samtani, Dollimore and Alexander 2002)] reported E= 180 kJ mol 1 and 175.05 

kJ mol–1 respectively.

Finally the kinetics model determined was: 

RT
dt
d 135100

4 exp1068.2 (III.10)

Figure (III.5) - The Arrhenius plot for calcite decomposition at 3 K min-1, (sample 

31.66 mg) using an f( )-value of 1 which corresponds to a zero order mechanism. 

III.4 Chemical characterization 

The oil shale was analyzed by standard elemental analysis (CHONS) using a DIONEX 

ICS 3000 analyzer. Table (III.2) shows the compound amounts. It may be noticed 

that the quantified oxygen amount corresponds with the organic matter only, 

because the analyzer does not detect the oxygen contained by mineral matters that is 

released as CO2 due to the decarbonation of carbonates. 

Table (III.2) - CHNSO analysis of oil shale 

C H N S O
15,9 1,5 0,24 1,5 10,5
1,8 0,1 0 0,68 1,1

Oil shale (wt.%)
Oil shale residue (wt.%)
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The standard proximate analysis of oil shale is shown in Table (III.3). The

devolatilization of oil shale yields 2.5 % moisture and 26.9 % volatile matter, while 

6.9 % of fixed carbon is produced. 

Table (III.3) - Standard proximate analysis of oil shale. 

It is clear that the results of proximate analysis depend on the conditions used in the 

procedure. In particular, the heating rate may affect the results. Since the values 

obtained from this analysis will be instrumental in establishing a mass balance of 

the combustion process, detailed proximate analyses were carried out using the 

horizontal tube furnace (cf. II.2.a). This apparatus enables the heating rate to be 

controlled and guarantees an efficient removal of volatile matter from around the 

particles. When repeating the trials, the repeatability for a mass loss determination 

was indeed very good: better than 0.4 %. 

In this section, the oil shale is seen as a mix of inert materials, carbonates, organic 

matter and water, as illustrated in Table (III.4).

From the observation of the thermogravimetric curves, it was decided to operate tests 

at two temperatures:

(i) at 550 °C, in order to obtain:

first, the thermal decomposition (or devolatilization) of the oil shale by 

operating under N2;

secondly, the oxidation of the fixed carbon, shifting the atmosphere to air. 

At this temperature the decarbonation of the carbonates is not achieved. 

(ii) at 900 °C, in order to obtain the same reactions as in the case of 550 °C testing, 

but with the occurrence of decarbonation during the thermal decomposition under 

N2.

The oil shale decomposition at 550 °C under inert and oxidizing atmospheres 

makes it possible to determine the amounts of volatile matter and fixed carbon 

respectively. As illustrated in Table 3a, the amount of volatile matter plus water 

Ash (wt%) Volatile (wt%) Fixed carbon (wt%) Moisture
63,7 26,9 6,9 2,5

Oil shale
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was a+a’ = 17.2 %, from which the volatile matter amount is calculated at 14.7 

% since the amount of water was 2.5 %. The amount of fixed carbon was b-a-

a’= 4.7 %. This value is very similar to that determined using TGA (4.8 %). The 

value obtained during proximate analysis is higher, at 6.9 %. This can be 

attributed to the fact that during the test, the volatile matter was maintained in 

contact with the sample inside the test crucible, causing the repolymerization 

of some volatile matter into solid pyrolytic carbon; this value will not be 

retained.

At 900 °C, along with the thermal degradation of organic matter, the 

decarbonation process occurs. The difference d–c-c’ gives the amount of fixed 

carbon, determined at 1.2 %. It is worth noting that this value is different from 

that found at 550 °C. This result remains difficult to explain, but confirms the 

observation made during TG experiments: heating the pyrolyzed oil shale to 

high temperature (900 °C) under inert atmosphere leads to a progressive 

decrease in the amount of fixed carbon.

Table (III.4) - Detailed proximate analyses. (-) solids; (....) gas. 

Water
Fixed carbon

Water
Fixed carbon

CaO CaO

oi
l s

ha
le

 (1
00

%
 w

t.)

Inert matter 

Organic matter 

(a) At 550°C - without decarbonation

Carbonates 

V.M.

CO2

Carbonates 

V.M.

(b) At 900°C - with decarbonation

Inert matter Inert matter Inert matter

Organic matter 

oi
l s

ha
le

 (1
00

%
 w

t.)

After 
pyrolysis

After 
oxidation

After 
pyrolysis

After 
oxidation

Inert matter Inert matter

CaCO3 CaCO3

a
b

c d

a'

c'



Chapter III – Detailed characterization 69 

Subtracting d – b it is possible to determine the amount of CO2 produced by 

decarbonation: about 15.9 %. Carbonates can be assumed to be essentially 

limestone. Considering the decomposition of limestone (CaCO3) into quick-lime (CaO) 

and carbon dioxide (CO2) according to the reaction (1), one can determine the 

amount of CaCO3 at 34.6 %. 

(g)CO.(s)CaO.(s)CaCO 24405603 r.5

This value is similar to the thermogravimetry analysis result, which gave 36.7 %. 

According to (Williams and Ahmad 1999), the heating rate has an influence on the 

product yield in the range between 5 to 40 K min-1. As will be shown later, the oil 

shale undergoes heating rates in the range 70 to 90 K min-1 along combustion inside 

the combustion cell. Therefore, using the horizontal tube furnace, the effect of 

heating rate on the mass loss was investigated. The tests presented above were 

carried out at a heating rate of 170 K min-1. Two additional tests were carried out at 

heating rates of 50 and 900 K min-1 under N2. Again, two final temperatures were 

used: 550 and 900 °C. Table (III.5) summarizes the results obtained in the range 50 

to 900 K min-1: the heating rate does not affect the mass loss due to pyrolysis 

(results at 550 °C) and to pyrolysis plus decarbonation (results at 900 °C). 

Consequently, the amount of fixed carbon was not affected by the heating rate. 

Table (III.5) - Mass loss of oil shale after heating at 550 °C and 900 °C under N2, in 
the horizontal tube furnace following three heating rates. 

Table (III.6) presents a summary of the main results achieved in this work with some 

comparison with the literature for Timahdit oil shale. The results are similar to those 

of other authors regarding the composition of oil shale. The values adopted here 

were: kerogen 21.9 %, CaCO3 34.6 % and Inert matter 43.5 %. 

Furnace temperature  
(°C) 50 170 900

550 16,5% 17,2% -
900 36,7% 37,1% 35,9%

Heating rate (K/min)
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Table (III.6) - Summary of composition results of oil shale. 

Analysis of the devolatilization gases 

In specific experiments using the horizontal tube furnace (cf. II.2.b), the composition 

of the permanent gases (non-condensable fraction of volatile matter) was established. 

The species CO, CO2 and H2 were analyzed using a gas chromatographer. A two FID 

detectors analyzer were used to quantify methane and total non-methanic 

hydrocarbons (NMHC, in equivalent CH4), while SO2 was quantified using a NDIR 

analyzer. The results were expressed first in g/g oil shale, then in g/g of organic 

matter, as shown in Figure (III.6). Concerning NMHC, a molar mass of 16 g mol-1 was 

assumed for this species (expressed in equivalent mole of carbon). In figure, the mass 

fractions of fixed carbon in oil shale and in the organic matter - as determined 

previously - were added. A fraction of oil was also added infigure to recover a total of 

100 % organic matter; this amount is 53 % of the organic matter. 

A quarter of organic matter is found as fixed carbon; only one quarter of the organic 

matter is converted into gases, and approximately half of the organic matter is found 

as oil, including some water. NMHC represents approximately 10 % of the organic 

matter initial mass. CO2 and SO2 each represent approximately 5 %. The species CO 

represents only 1 % of initial organic matter mass, and H2 is present in negligible 

quantities. These results will be used further to establish a mass balance of the front 

propagation process. 
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Figure (III.6) - Pyrolysis gas. 

III.5 Heat transfer properties 

Three heat transfer properties were determined: thermal conductivity, heat capacity 

and heat transfer coefficient between gas and solid. 

III.5.1 Thermal conductivity and heat capacity 

These properties were determined for oil shale and sand using the hot disk method, 

which can be used to analyze material with a thermal conductivity between 0.005 

and 500 Wm-1K-1 and covering a temperature range of -255 °C to 700 °C. These were 

the samples: 

- oil shale blocks 25 mm x 40 mm x 50 mm: the blocks were machined to 

obtain a regular shape, Figure (III.7). 
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Figure (III.7) - Machined oil shale piece. 

- The crushed oil shale was sieved to obtain the following particles diameters: 

315-500 μm, 500-1000 μm and 1000- 2000 μm; 

- sand with particles diameters between 500-1000 μm. 

During the measurement, the hot disk sensor was sandwiched between two pieces 

parts for the crushed oil shale and sand, Figure (III.8), and between two oil shale 

blocks.

Figure (III.8) - Hot disk apparatus. 

Table (III.7) presents the results. At a given temperature, crushed oil shale 

conductivity increases with increasing particle size. The sand conductivity at 200 °C 

is about 1.6 times the oil shale conductivity (500-1000 μm). The oil shale blocks 

present the opposite behavior: the thermal conductivity decreases when increasing 

the temperature.
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Table (III.7) - Heat transfer properties for crushed oil shale, sand and oil shale block. 

III.5.2 Heat transfer coefficient ( s,g)

Solving the heat balance eq. (III.11) and (III.12) for the gas and solid, requires the 

description of the heat exchange between the two phases: s,g.

-    Gas phase energy balance 

(III.11)

-   Solid phase energy balance 

(III.12)

where the subscript s and g are respectively solid phase and gas phase. 

In the literature, s,g can be calculated using: 

31Pr60Re112 /,.
pd
g

s,g
(III.13)

where g is the gas conductivity, dp average particle size, Re is the Reynold number 

and Pr is the Prandtl number. 

Nevertheless, it is known that such a calculation can lead to large errors. s,g was 

evaluated from specific experiment and fitting a numerical model to the results. The 

medium was heated to 45 °C overnight. An air flow of 16.5 l min-1 at STP ambient 
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temperature was then forced through the medium, while the bet temperature was 

measured.

The mathematical model is based in the eq. (III.11) and (III.12). The following 

assumptions were used: 

1) The inlet fluid temperature is uniform. The particles and fluid temperatures 

in the porous medium vary only along the flow direction and with time, so the 

system can be analyzed with a one-dimensional transient analysis; 

2) The porous medium is isotropic and has a uniform porosity; 

3) The fluid flow is incompressible and its thermophysical properties vary with 

temperature;

4) the air in the porous channel is a continuum. 

Noting that the heat transfer coefficient can be expressed using: 

31Pr60Re112 /,.
pd
g

factorAs,g (III.14)

Afactor  is the adjust factor used to fit the model.

The equations were solved using a numerical modeling developed and presented in 

detailed in chapter V.

Figure (III.9) shows the temperature evolution in the bed for the thermocouple placed 

at Z = 170 mm in the reactor. Using the value Afactor= 55 a good agreement between 

the experimentally measured temperature and the computed temperature is 

obtained. It is interesting to note that the rate between s,g from literature and s,g 

determined from experiment is a high as 55. This value will be used as an input data 

in the numerical modeling developed and described in chapter V. 
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Figure (III.9) - temperature evolution at Z = 170 mm inside a bed of particles 
preheated at 45 °C. 
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Chapter IV

Experimental results and discussion 

The fourth chapter presents the results obtained using the experimental device 

developed. This chapter is divided into two main parts: 

- The first one presents the results from the experimental device filled with a 

“simple” medium used to calibrate the cell: charcoal/sand mix. A mass balance 

of the combustion process is described and validated.

- The second part concerns the combustion of an oil shale/sand mix. There, a 

reference case is exhaustively studied. It is described a general observation 

during and after combustion. The analyses of the solid residue after 

combustion and the flue gas are shown; some comments about the shale oil 

recovery are made. The mass balance validated previously with the “simple” 

medium is used to propose a mass balance of the oil shale combustion process. 

Finally is presented the physical aspects of the propagation of a combustion 

front. In this section is proposed a study and evaluation of reactions zone 

thickness, based on the micro-sampling system developed specifically for this 

purpose.

IV.1 Combustion of model porous medium: Charcoal in sand 

Oil shale is a complex reactive medium; its combustion involves drying, 

devolatilization, fixed carbon oxidation and carbonates decarbonation. Therefore, it 

was decided firstly to validate the combustion cell using as “simple” a model porous 

medium as possible. To simulate the fixed carbon, charcoal particles were used and 
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mixed with sand. After combustion, the axial shrinkage of the bed was 16 %, which 

is not negligible.

A mass of 2340g of mix 3.6/96.4 wt. charcoal/sand was introduced in the cell. The 

experiments were run with an air flow rate of 9.5 l min-1. This corresponds to a flow 

rate of 1461 l min-1 for 1m2 of section, and to a Darcy velocity of 0.024 m s-1 at 

20.0 °C, or 0.108 m s-1 at 1000 °C. 

IV.1.1 Thermochemical aspects 

IV.1.1.A Chemical characterization of Charcoal  

The char particles size is smaller than 10 mm. The granulometry and properties of 

the charcoal samples are given in Table (IV.1), by (Tagutchou, 2007). The particles 

were then ground to 500-1000 μm.

Table (IV.1) - Granulometry and morphological properties of charcoal particles. 

Proximate and elemental analyses of the sample are given in Table (IV.2). The 

charcoal contains approximately 92 % of carbon. The residual volatile matter of the 

prepared char was approximately 5.0 %. 

Table (IV.2) - Proximate and ultimate analyses of the charcoal from maritime pine. 

Values
Size 2.5 < dp < 12.5mm
Thickness 0.5 < e < 7mm

0.75
1600 kg m-2

400 kg m-2

87.11 m2 g-1

45.81 m2 g-1

Specific surface area 25.51 m2 m-3

observationsProperties

Apparent density
BET surface area
Micropore surface area Measured by mercure 

intrusion method

Measured
Measured
Measured
Measured
Measured
BET analysis

Granulometry

porosity
Solidy phase density

Moisture VM Ash FC C H O N S
1,6 5,5 1,3 91,6 92 1,4 5,1 0,3 0,1

Proximate analysis (%wt.)  Ultimate analysis (%wt.)
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IV.1.1.B Exit gas analysis 

During the experiments with the cell of combustion, the composition of the flue gas 

at the cell exit was established. The species O2, CO, CO2, SO2 and NO were analyzed 

using a NDIR analyzer, Figure (IV-1).

Figure (IV-1) - Flue gas composition at the cell of combustion exit. 

The fixed carbon is converted into CO and CO2. According to the analysis of the solid 

residue, no more carbon was present (less than 0.05 % in the mix solid residue + 

sand). In this case, all the fixed carbon was oxidized. Approximately 1.3% of O2

remains in the exit gas. The gas species SO2 and NO from volatile matter are present 

in negligible quantities. These results will be used further to establish a mass 

balance of the front propagation process. 

IV.1.2 Physical aspects 

IV.1.2.A Temperature of the bed 

Figure (IV-2-a) shows the temperature evolution at several locations inside the bed 

for two experiments in the same conditions. For thermocouple T1, a peak close to 

610 °C was observed. For the other thermocouples placed along the axis (T2, T3, T10, 

T11, T12), temperature peaks were observed near to 1050 °C. 

On the horizontal cross section at mid-point of the height of the bed (T4 to T9), one 

can see that the temperature peak has fallen to 930 °C: the temperature difference 

compared to the axis of the bed is about 120 °C. This reveals significant heat losses 

through the walls. 
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The peak temperature is reached at the same time for all thermocouples of the crown, 

indicating that the front propagated as a horizontal surface. Moreover, the peak time 

for all thermocouples of the crown is midway between T3 and T10 peak time. This 

indicates that the front was a plane surface. 

Figure (IV-2) - (a) Temperature evolution of the thermocouples placed along the axis 
and placed a horizontal cross section. (b) Mass and pressure evolution in the bed. 

IV.1.2.B Pressure evolution at the top of the bed 

Figure (IV-2-b) shows the temporal evolutions of the pressure at the top of the 

particle bed for two experiments. The pressure increased almost linearly along the 

experiment, and decreased slightly at the end. An explanation might be that the 

permeability of the bed decreases as the charcoal particles are oxidized, leading to 

the rearrangement of the particles inside the bed. Another explanation might be that 
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the average temperature level inside the bed increases with time, increasing the gas 

velocity and viscosity. 

IV.1.2.C Front propagation velocity 

The velocity of the front was determined from the data of passage at each 

thermocouple on the axis of the cell. A quadratic polynomial function giving the 

position of the combustion front versus time was fitted to the experimental points, as 

illustrated in Figure (IV-3-a). The r2 was better than 0.995.  The time derivative of 

this function is the velocity of the combustion front, as shown in Figure (IV-3-b). As 

indicated by the plots, the velocity of the front increased from 3.21 mm min-1 at the 

beginning of the experiment to 4.84 mm min-1 by the end. 

Figure (IV-3) - (a) Curve fitting with its 1st derivative at time. (b) Combustion front 
velocity.

As a synthesis of these validation tests, its can be concluded that the cell enables to 

follow the front progress. The shape of the front was a plane surface propagating 
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horizontally. Flue gas analysis was possible and repeatable. Regarding the pressure 

at the top of the bed and the bed mass was successful.

IV.1.2.D Instantaneous mass balance 

An instantaneous mass balance of the combustion process was established. One can 

expect two types of results from an instantaneous mass balance: 

(i) To check that a mass balance of carbon species is closed; 

(ii) To determine the respective proportions of CO and of CO2 resulting from 

carbon oxidation. 

The mass balance established here consists in calculating the composition of the flue 

gas out of the cell. Detailed of the calculation are given in Appendix A. The calculated 

values will be compared with the values measured experimentally. It was assumed 

that there was no volatile matter in the charcoal (measurements show less than 

5.0 %). The flue gas contains: 

- the N2 flow of the inlet air flow; 

- the O2 flow of the inlet airflow that was not oxidized; 

- CO2 and CO resulting from the oxidation of the charcoal, following the 

reaction (r.4) presented in chapter III (III.3). 

During the experiment, and at time t = 1914 s, the front was located at Z= 90 mm 

(thermocouple 3), gases were sampled and analyzed. The front velocity was 3.89 mm 

min-1. From this:

Table (IV.3) - Mass balances results. 

molar (%) Experiments Mass balance
N2 76,50 76,66
CO 6,61 6,10
CO2 15,60 15,68
O2 1,29 1,56
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Results

Fixing the fr coefficient at 0.28, the fractions of CO and CO2 calculated from the mass 

balance are in very good agreement with the experimentally measured fractions. It 

can be concluded that the front propagation is sustained by the oxidation of all the 

fixed carbon. Moreover, 28 % of this carbon is finally retrieved as CO, while the rest 

is converted to CO2.

IV.2 Combustion of oil shale 

A mass of 2127 g of mix 75/25 wt. oil shale/sand was introduced in the cell. The 

experiments were run with an air flow rate of 9.5 l min-1 at STP; this corresponds to 

a flow rate of 1461 l min-1 at STP for 1 m2 of section, and to a Darcy velocity of 0.024 

m s-1 at 20 °C, or 0.108 m s-1 at 1000 °C. 

IV.2.1 Products of the combustion 

After combustion, the solid residue was recovered and the flue gases were analyzed.

IV.2.1.A Observation and analysis of the solid residue 

Solid residue 

The solid residue (of oil shale + sand) homogeneously occupies all the volume of the 

cell; its apparent density was 956.9 kg m-3. No liquid oil deposited at the surface of 

the grains or impregnating the grains was observed. The particles were not sticky 

and were odorless, while the flue gases had a very strong smell. 

Detailed analysis of the solid residue mix was carried out.

The LOI under air at 550 °C was found at 0.622 %, corresponding to the 

residual fixed carbon amount. 

At 1000 °C the LOI - including residual fixed carbon oxidation and 

decarbonation of the residual carbonates - was 3.5 %. The mass loss of CO2

was then 2.879 %, which is equivalent to a residual amount of CaCO3 of 

6.543 %. 

A synthesis of these results is presented in Figure (IV-4).  On the left-hand side, the 

composition of only oil shale is re-stated. The two vertical bars at the centre establish 
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a link between the masses of components in 100 g of oil shale/sand mix before 

combustion, which lead to 74.5 g of solid residue after combustion. On the right-

hand side, the composition of only the oil shale residue is given, i.e. excluding sand. 

It can be calculated that the front, at its passage:

- dries the oil shale integrally, which was expected as a trivial result; 

- devolatilizes the organic fraction integrally; 

- oxidizes 88.2 % of the fixed carbon that is formed (4.7 % of the initial oil 

shale);

- decarbonates 83.2 % of the initially present carbonates (34.66 % of oil 

shale).

The final mass loss of the oil shale was 33.0 %. The oil shale residue after 

combustion contained 0.84 % of fixed carbon, 8.82 % of CaCO3, 24.4 % of CaO and 

65.82 % of inert. 

Ultimate analyses were then performed on the solid residue. The amount of C was 

1.8 %, which is compatible (taking measurement errors into account) with the value 

of 0.84 % determined previously. H was found at 0.1 % and O at 1.1 %, confirming 

that devolatilization was completed. Less than 0.05 % N and 0.68 % S were found. 

The O content is 1.1 %. Again the O contained by the residual CaCO3 is not taken 

into account by the measurement. 
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IV.2.1.B Observation and analysis of the flue gas 

The smoke was transparent until the front reached Z=180mm; it then started to 

change of color to a dense white, and condensation of water appeared inside the 

tubes. A few minutes after that, the smoke became yellow and at the same time, the 

first oil drops fell down inside the container. 

Figure (IV-5) illustrates the transformations of oil shale and the reaction with air to 

form the flue gas, indicating the origin of each species. It also reports the results 

from analysis of the dry flue gas. 

The amount of oxygen is small: 0.59 % when air (20.86 % O2) was supplied. This 

indicates that the front consumes almost all of the oxygen, and is therefore limited in 

velocity by oxygen supply. This can be considered as an important result from this 

work.

The amount of methane is 0.99 %, that of NMHC of 3.14 % (equivalent C) and that of 

CO 7.44 %.  From this, and assuming that the NMHC has the same LCV as methane, 

the lower calorific value of the flue gas can be estimated at 54 kJ mol-1.

IV.2.1.C Liquid oil produced  

At the end of the experiment, liquid oil was recovered in the reservoir; see Figure 

(IV-6).

The oil tended to be separated into different phases. Clear water was observed at the 

bottom, while a second black phase was floating; a third very viscous phase lay at 

the bottom. The analysis of oil is complex and was not undertaken. 

After separation from clear water, the mass of oil was 160 g. In other words 52 % of 

the mass of organic matter initially present in oil shale is recovered as oil. It is 

interesting to note that this value corresponds with the amount of formed oil 

deduced from characterization of devolatilization, 53 %; see chapter (III.4). 

Nevertheless, this correspondence should not be considered as ordinary, since the oil 

formed in the combustion cell at pyrolysis can be cracked downstream into 

permanent gas or oxidized. 
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Figure (IV-5) - Description of the conversion of oil shale and air to produce the flue 
gas. On a dark color the components of oil shale solid residue. 

Figure (IV-6) - Shale oil recovery during experiments. 
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IV.2.1.D Instantaneous mass balance of the process 

One can expect two types of results from an instantaneous mass balance: 

(i) Several clues can be found in investigation of what is actually oxidized – 

part of the fixed carbon and potentially part of volatile matter – during the front 

propagation.

(ii) It should be possible to determine the respective proportions of CO and of 

CO2 resulting from carbon oxidation. 

The mass balance established here consists in calculating the composition of the flue 

gas out of the cell. The calculated values will be compared with the values measured 

experimentally. As illustrated in Figure (IV-5), the flue gas contains: 

the N2 flow of the inlet air flow; 

the O2 flow of the inlet airflow that was not oxidized; 

H2O resulting from the drying of oil shale; 

CO2 and CO resulting from: 

- direct production of the devolatilization; 

- the oxidation of part of the fixed carbon, following the reaction (r.4). 

CO2 resulting from the decarbonation of carbonates; 

Volatile matter. 

We assume here that there is no oxidation of volatile matter and of oil. During the 

experiment, and at time t = 2079 s, the front was located at Z= 90 mm (thermocouple 

3), and gases were samples and analyzed. The front velocity was 3.68 mm min-1.

From this:

The flow rates of volatile matters, of oil, and of formed fixed carbon were 

calculated using the partitioning established in the analysis of the 

devolatilization gas; 

A fraction of 88.2 % of the fixed carbon – as determined previously - was 

allowed to react with oxygen from the air supply; 

 Carbonates were allowed to decarbonate by 83% corresponding with the 

value determined in the section IV.2.1.A. 
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The molar composition of the flue gas was calculated, and is reported in Table (IV.4).

Table (IV.4) - Composition of the flue gas (vol. %) as determined from analysis and as 
calculated from the mass balance. 

Results

Fixing the fr coefficient at 0.565, the fractions of CO and CO2 calculated from the 

mass balance are in very good agreement with the experimentally measured fractions. 

It can be concluded that the front propagation is sustained by the oxidation of the 

fixed carbon only, i.e. that no volatile matter are oxidized. Moreover, this indicates 

that 56.5 % of this carbon is finally found as CO, while the rest is converted to CO2.

Considering the amounts of CO2 that are formed, it can be established from this 

mass balance that CO2 from decarbonation of carbonates represents 69 % of the 

total CO2 emissions, i.e. including CO2 from FC oxidation. 

If one considers the mass balance of oxygen species, the balance predicts 6.66 % 

residual O2 in the flue gas, while 0.59 % is found experimentally. This would suggest 

that some O2 has been consumed by another reaction not considered here. This 

reaction might be the one identified during DSC experiments, where a first 

exothermic peak was observed before the char oxidation peak. The improvement of 

the mass balance of oxygen species remains a perspective of this work.

Focussing on both the amounts of CH4 and NMHC, the values calculated from the 

mass balance are closed to the experimental values. This indicates that these species, 

once formed during the devolatilization, are driven out of the cell without significant 

transformation, which confirms the conclusion that only fixed carbon is oxidized. 

An energy balance can be established, based on: 

- the LCV of the oil shale – measured at 6.0 MJ kg-1;

O2 0,59 6,66
CO 7,44 7,44
CO2 19,12 19,18
CH4 0,99 0,88

NMHC 3,14 3,70
N2 - 60,72

From Mass 
balance

From 
Experiments
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- the energy contained in the flue gas;

- the energy consumed by fixed carbon oxidation; 

The oxidation of fixed carbon into CO and CO2 consumes 10 % of the energy 

contained by the oil shale, while the fixed carbon left in the oil shale residue 

represents only 2.3 %. The flue gas calorific value energy represents 17 % of the oil 

shale energy.

IV.2.2 Physical aspects 

IV.2.2.A Temperature of the bed 

The values obtained at different locations inside the bed are reported in Figure (IV-7-

a).  The model developed further indicated that thermal equilibrium was achieved by 

following the measurement of the temperature that was the same for the solid phase 

and for the gas phase. 

For thermocouple T1, close to the bed surface, a peak at about 750 °C was observed. 

After ignition at the surface, a combustion front started to self-propagate downward 

in co-current through the bed. For the other thermocouples placed along the axis (T2, 

T3, T10, T11, T12), peaks at a temperature near 1100 °C were observed. This 

temperature is comparable to that obtained during the calibration tests made with a 

charcoal/sand mix, where the amount of fixed carbon was similar. 

On the horizontal cross section at mid-height of the bed and 11 mm away from the 

wall (crown thermocouples, T4 to T9), one can see that the peak temperature was 

about 180 °C lower than at the axis. This reveals that a pure 1D situation was not 

achieved, which can be attributed to significant heat loss at the walls of the cell. A 

global heat balance was established to estimate the heat loss over all the combustion 

process. The details of the calculation are given in Appendix B. It was found that 

approximately 42 % of the heat released by the combustion of the fixed carbon of oil 

shale was lost. Despite the quite large diameter of the fuel bed (91 mm) and the 

thickness of the insulation material around it, the heat losses were not negligible. 

This observation indicates that in experiments from the literature where the 

combustion front is observed in non-insulated transparent smaller-diameter reactor 

tubes, the heat losses were probably much higher, and significantly affected the front 

structure and propagation. 
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Figure (IV-7) - (a) Temperature evolution of the thermocouples placed along the axis 
(T1, T2, T3, T10, T11 and T12) and placed a horizontal cross section (crown). (b) 

Mass and pressure evolution in the bed. (c) Derivative of the mass evolution in the 
bed.
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The heating rate inside the bed at the arrival of the front was between 60 and 90 K 

min-1. This is much higher than the operating hate in a standard TG experiment, but 

it is within the range operational range of the horizontal tube furnace that was used 

to determine the amount of fixed carbon: 50 to 900 K min-1.

Figure (IV-7-a) also shows a very clear phenomenon observed during the experiments. 

The temperatures at different positions of the bed all stabilized at a very constant 

temperature of 60 °C until the combustion front approached. This can be compared 

with the observation of a DTG peak at the same temperature of 60 °C during the test 

at 10 K min-1. It is probable that this peak is due to the endothermic phase change 

that was not identified, but probably not due to drying of the oil shale. 

Observing the dispersion of results during repeatability tests brought some insight 

into the probable mechanisms involved. In the case of oil shale/sand tests, the 

difference between the peak times at a given location, Figure (IV-8), might be 

explained by the complex flow developed in the cell, caused by the conversion of solid 

kerogen into liquid oil and then into gas, (Hansom and Lee 2005 ), generating 

overpressures in the bed. This clogging results in disturbance of fluid flow across the 

porous medium. One can verify this by observing Figure (IV-2) for charcoal/sand 

tests: for the “simple” medium, the temperature peak time results are coincident 

when the test is repeated. 

Figure (IV-8) - Axial temperature peak for five trials. 
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Figure (IV-9) shows axial temperature profiles along the reactor axis at different 

times.

This was obtained by plotting - at the peak time for each thermocouple - the 

temperature values for all thermocouples. Extrapolation curves around each 

thermocouple were obtained from the temperature values before and after the peak 

time, and using the front velocity to calculate the position of the thermocouple 

relative to the Temperature Peak Point (TPP) at each time. The temperature decrease 

downstream of the TPP (right hand side of TPP) keeps quite a constant shape at 

different times, while the hot zone upstream of the front becomes getting larger as 

the front progresses. 

Figure (IV-9) - Axial temperature profiles along the axis of the cell at different times. 

From the temperature profile at a given time (4119 s for instance), a first geometrical 

description of the front structure can be established, as follows: 

If one assumes that drying becomes very fast and is completed rapidly when 

the temperature reaches 150 °C, the drying zone can be localized downstream 

of the TPP, starting 18 mm from the TPP as illustrated in Figure (IV-10).

Devolatilization can be assumed to progress significantly as the temperature 

reaches 250 °C, and to be very fast at 550 °C. Consequently, the 

devolatilization zone can be localized between 7 mm and 13 mm downstream 

the TPP; its thickness is as small as 6 mm.

For fixed carbon oxidation to occur, the temperature must be higher than 

550 °C, and oxygen must be present. Air is fed from upstream of the 



Chapter IV – Experimental results and discussion 93 

combustion front (small Z), and several percentage of O2 are still present at the 

exit of the cell. The zone where the two criteria are satisfied ranges from very 

small Z to Z = 7 mm. Nevertheless, at small Z, there is probably no more fixed 

carbon present. It is not possible at this stage to localize where the oxidation 

has the highest rate, although this is probably around the TPP. 

Figure (IV-10) - Front structure evaluated from temperature profile. 

Decarbonation of carbonates operates at a significant rate for temperatures 

above approximately 900 °C and as long as carbonates are present. The 

decarbonation zone is thus possibly located along 34 mm upstream of the TPP, 

and also downstream, along 4 mm. 

IV.2.2.B The combustion front 

Direct observation of the front 

In an experiment, the combustion process was quenched with N2, freezing the 

combustion front at mid-height of the cell. After impregnating the porous medium 

with a resin and making vertical cuts. It was possible from this experiment to 

visualize a clear difference in the color of the medium before and after passage of the 

front; Figure (IV-11) shows the photograph. The thickness of the transition zone is 3-

6 times the average particle size. Nevertheless, it remains difficult to interpret this 

image in terms of thickness of the reaction zones. 
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Figure (IV-11) - Photography of combustion front. 

Chemical structure 

The chemical thickness of the front was also investigated using the micro-sampling 

system. Figure (IV-12) summarizes the results obtained in term of the composition of 

the gas at different locations inside the front. It was particularly difficult to sample 

the 8 syringes over the appropriate period of time, i.e. when the front is passing at 

the sampling point inside the cell. Indeed, the front was not a plane surface and not 

horizontal as described later. In order to put together the results from different 

experiments, the experimental values are represented with space as the X scale, and 

relative to the TPP. As can be seen in Figure (IV-12) the results are quite scattered. 

Nevertheless, the average value of the CO2 fraction downstream of the front (left hand 

side) is around 20 %, corresponding to the value obtained sampling the flue gas at 

the exit of the cell (19 %). 

- As far as CO is concerned, its origin is fixed carbon oxidation only. The 

amount of CO released by devolatilization is negligible when compared with CO 

formed by fixed carbon oxidation. From the observation of the curve, it can be 

established that the oxidation is essentially concentrated in the zone up to 

10mm downstream of the TPP. This is in good agreement with the first 

description proposed before. It is now possible to locate the upstream limit of 

the oxidation zone at the TPP: in all probability there is no more fixed carbon 

upstream of this point. 
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- CO2 originates from the oxidation of fixed carbon but also from the 

decarbonation of calcite, in significant proportion, Figure (IV-12). The plot 

indicates that CO2 is formed in a zone slightly larger than the zone for CO 

formation: the decarbonation zone spreads from 5mm upstream of the TPP, 

where the temperature is as high as 1100 °C. The fact that CO2 is not released 

upstream of this point indicates that carbonates are not present anymore, i.e. 

the decarbonation has been completed. As far as the downstream limit of this 

zone is concerned, it seems not to extend further than 10 mm downstream of 

the TPP. 

Figure (IV-12) - Results from different experiments with micro-sampling. 

Shape of the front 

Significant time duration separates the passage of the front (temperature signals) at 

the different thermocouples of the horizontal crown: the combustion front is thus not 

horizontal but inclined. From the propagation front velocity, and from the time 

separating the first peak and the last peak of the thermocouples crown, the slope of 

the front was evaluated at 4°, varying between 1° and 7° during repeatability tests. 

The fact that the front was not a horizontal surface may result from a non-uniform 

radiative heat flux during ignition. This explanation, however, cannot stand because 

as shown further, the front remains a horizontal surface during the combustion of a 

charcoal/sand mix. Therefore, a complex situation involving gas/oil condensations 
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and re-evaporation is probably responsible for the front inclination in the case of oil 

shale. Instabilities due to the ignition process or heat loss through the walls may also 

explain the front inclination. 

Moreover, looking at the results in Figure (IV-7-a), it is clear that the front reached 

the first thermocouple of the crown earlier than it probably reached the axis of the 

cell at the same Z, i.e. probably at the midway between the time for T3 peak and the 

time for T10 peak. This result indicates that the front was not a plane surface, but a 

curved surface with the top at the axis of the cell. Consequently, the front probably 

has the shape illustrated in Figure (IV-13), where three location ( ) were plotted of 

the temperature peak at the time when the front passes at the axis of the cell at Z= 

135 mm. One explanation might be that the front progress is controlled by O2 supply,

as demonstrated later. The mass flow rate of O2 close to the cold walls is probably 

higher than at the axis because: 

- the density of O2 is higher, about 16 %, due to the lower temperature; 

- the viscosity is smaller, about 10 %, also due to the lower temperature,

- the arrangement of particles in contact with the walls is not as dense as in 
the  rest of the cell. 

This might explain the more rapid progress of the front at the walls of the 

combustion cell. 

Figure (IV-13) - Shape of the front. 
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IV.2.2.C Pressure drop of the particle bed 

As illustrated in Figure (IV-7-b), the pressure at the top of the bed first progressively 

increases from 500 Pa to 1500 Pa. After that, one can observe a rapid increase to 

1800 Pa and a rapid decrease at the end of the test. The progressive increase might 

be explained by two phenomena: 

(i) the temperature increase of the medium, as was confirmed from the 

experiments with charcoal/sand;

(ii) the progressive formation of an oil bank pushed by the combustion front or 

the clogging of the medium by oil deposits and porosity decrease. By the end of 

the test, the oil is evacuated at the bottom of the cell, explaining the rapid 

decrease in the pressure. Indeed, a flow of liquid oil at the bottom of the cell 

was observed starting at t = 3490 s, i.e. some time before the rapid pressure 

increase.

IV.2.2.D Mass loss of the particle bed 

The evolution of the fuel bed mass is reported in Figure (IV-7-b). It is shown here that 

when liquid oil arrives at the bottom of the cell, it is evacuated to a container and not 

weighed with the rest of the cell. It is clear that the mass loss rate (slope of the curve) 

was not constant along the process. After 4900 s, the mass stopped decreasing. 

The derivative of fuel bed mass gives a better reading. It was calculated using the 

recorded mass data and by smoothing the curve with a time step of 15 s; the results 

are shown in Figure (IV-7-c). Looking carefully at the results, one can distinguish 

three domains along the process: 

(i) A starting domain, up to 1750 s during which the mass loss rate 

increases. This is attributed to the fact that the front at the very beginning is not hot 

enough to cause calcite decarbonation; 

(ii) A more or less stable propagation domain, from t= 1750 s to t= 3800 s. 

Along this domain, the mass loss rate increases by only 14 %; 

(iii) A perturbed domain after 3800 s, in which the mass loss rate rapidly 

increases and then rapidly decreases. 
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It is interesting to note that these three domains can also be observed – with time 

synchronization – on the bed top pressure curve. This would corroborate the 

explanation of the oil bank evacuation by the end of the process, explaining both the 

pressure drop loss and the high mass loss rate. 

The stop of the front is not exactly sudden:  it takes approximately 500 s for the 

mass loss rate to fall down to 0. 

IV.2.2.E Velocity of the front 

The velocity of the front calculated from the times of TPP at the different 

thermocouples on the axis is reported in Figure (IV-14) for all experiments. The 

results for the reference experiment are highlighted using a bold line. 

Figure (IV-14) - Repeatability trials of the combustion cell. 

The front propagation velocity is 3.1 mm min-1 at the beginning of the experiment, 

and increases to 4.0 mm min-1 at the end. For the charcoal/sand tests, the 

propagation front velocity at the beginning was about 3.21 mm min-1 and at the end 

it increased to 4.84 mm min-1. These values are comparable with oil shale/sand 

experimental results; this result is consistent with the fact that the front propagation 

is controlled by stoichiometry of fixed carbon oxidation, and that the mass fraction of 

fixed carbon was comparable for the two media. These values are characteristic of 

the smoldering propagation velocity. The repeatability tests for oil shale/sand 

combustion show that the increase in the velocity of the front is always observed, 
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although some differences can be seen from one test to another. A probable 

explanation for the velocity evolution is a progressive change in the molar CO/CO2

ratio produced by fixed carbon oxidation, which means a decrease in CO2 production 

in favor of CO production. This enables the oxidation of a greater number of carbons 

with a given amount of O2.

IV.2.2.F The physical state of oil 

It is difficult to establish under what physical state – gas or liquid, adsorbed or not 

on the solid oil shale particles – the oil is transported through the porous medium 

downstream of the front. Eq. (IV.1) should be valid if there is no accumulation of 

matter (here, oil) inside the bed. The apparent density of the oil shale/sand mix was 

measured before ( i) and after ( p) the passage of the front, and Uf was calculated and 

plotted in Figure (IV-15). Uf calculated from the position of the TPP was also plotted 

in Figure (IV-15) as the actual front velocity. 

dt
dm

pifU (IV.1)

Figure (IV-15) - Two approaches to evaluate the front velocity. 
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The figure indicates that the front velocity as calculated from eq. (IV.1) is first lower 

than the actual velocity: this indicates that accumulation of oil occurs during this 

phase of the propagation process. Later on, as the front progresses, accumulation of 

oil is no longer possible; the oil is driven out from the cell by the end of the 

experiment, when the velocity deduced from eq. (IV.1) becomes higher than the 

actual velocity. A specific experiment was made to obtain information about the 

physical state of oil adsorbed in the porous medium. This experiment was stopped as 

the front reached the mid-height of the cell by switching the air feed to N2. No liquid 

oil was observed; the oil is probably adsorbed at the surface of the solid particles. 

Nevertheless, this result does not eliminate the possibility that when the front 

progresses further in the cell, the liquid oil can be present. 

IV.3 Combustion cell development and complementary results 

The combustion cell body was developed prioritizing two aspects:

(i) Looking for materials that accept the high temperatures reached during the 

experiments;

(ii) Looking for materials with the best insulating properties. The material 

which surrounds the packaged bed is determinant for the experiment: a too 

conductive material may cause the deformation of the flame front. 

During this thesis, before obtaining the final reactor made of stainless steel, it was 

tested two other types of material: Mullite and Kaowool. 

Figure (IV-16) - Photograph of the mullite reactor after the first experiment. 
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In the first trial was used a tube reactor made of mullite material, which has a quite 

small thermal conductivity (3.5 Wm-1K-1 at 1200 °C), but a low thermal shock 

resistance: reactor fissured in three parts, after passage of the front; see Figure 

(IV-16).

After, three other reactors were made using directly an insulating material: Kaowool 

HS 45 Board, Thermal Ceramics, with a very small thermal conductivity: 0.21 W m-1 

K-1 at 1000 °C. Nevertheless, water and oil impregnated the internal surface of the 

reactor, and it was observed a progressive deterioration of the cell along the tests, 

Figure (IV-17). 

Facing these difficulties, the final reactor was made of stainless steel, as shown in 

chapter II. 

Figure (IV-17) - Photography of the reactor wall, after passage of the front. 

The tests performed with the different cells enabled to vary three parameters: 

1. Oil shale mass fraction, in the range 35 to 100% (first row in Figure (IV-18)); 

2. Air velocity,  in the range 0.024 to 0.061 m s-1 (second row in Figure (IV-18)); 

3. Average particle size, in the range 400 to 1500 μm (third row in Figure (IV-18)). 

The results are synthesized in Figure (IV-18), where the first column gives the peak 

temperature, the second the front velocity, and the last column gives the CO and CO2

molar fraction in the flue gas. The test performed with the mullite and ceramic 

reactors caused a number of problems and were not repeated as in the case of tests 
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with the final cell. These results should be considered more as trends than as 

accurate values.

Symbols: ( ) Stainless stell, ( ) Mullite, ( ) Ceramic, ( ) CO2, (- - -) CO

Figure (IV-18) – Peak temperature, front velocity and fraction of CO and CO2 in the 

flue gas obtained experimentally varying the oil shale fraction, air velocity and 

particle size.

Performing the combustion of pure oil shale particle (without sand), the peak 

temperature was 1110 to 1160 °C, see first row in Figure (IV-18). Varying the oil 

shale fraction in the bed, it was seem that the CO and CO2 molar fraction at the cell 

exit changes only a little; see Figure (IV-18).
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When the air velocity was varied in the range 0.024 to 0.061 m s-1, it was observed 

that the front velocity is proportional to the entry air velocity; see Figure (IV.19), 

confirming a regime of oxygen-limited combustion. 

Finally, when was varied the average particle size in the range 400 to 1500 μm, no 

effect of this parameter was observed on the temperature level in the reactor and on 

the front velocity. 
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Chapter V

1D numerical model 

A complete mathematical model was developed by the “Institut de Mécanique des 

Fluides de Toulouse” (IMFT) team [ (Lapene, Martins, et al. 2007), (Lapene, Debenest, 

et al. 2008)]. Briefly, to solve the heat transfer and the mass transfer equations 

simultaneously in the reactive porous medium, a homogeneous description at the 

Darcy-scale was used. Thermal local-nonequilibrium transport was allowed by the 

model, and treated with a two temperature model: one for the gas phase and another 

one for the solid phase. The chemical reactions considered are oxidation of fixed 

carbon and decarbonation reaction. 

V.1 Mathematical Formulation 

V.1.1 Nomenclature 

m Mass

t Time, s

A Frequency factor, s-1

R Perfect gas constant, J.K-1.mol-1

x Position in x-axis, m

P Pressure, kg.s-2.m-1

K Porous media permeability, m2

Q Heat reaction rate, J.s-1.m-3

M Molar mass, kg.mol-1

k0 Reaction rate, s-1

Ea Activation Energy, J

T Temperature, K



Chapter V – 1D numerical model 105 

v Velocity, m.s-1

R Reaction rate, kg.s-1.m-3

Cp Mass heat capacity, J.kg-1.K-1

Sspec Specific surface, m-1

dp Average particle diameter, m 

Pe Peclet number 

D Dispersion coefficients m.s-1

h Thermal loss through walls, J.s-1.m-3.K-1

Y Mass fraction 

Greek Symbols

Volume fraction 

viscosity, kg.s-1.m-1

exchange coefficient, J.s-1.m-3.K-1

density, kg.m-3

thermal conductivity, J.m-1.s-1.K-1

COCO2  ratio

 Radiative heat flux, J.m-1.s-2

Indices, exponents

* effective

s solid

k constituent k 

g gas

k {N2, O2, CO, CO2, CaCO3, Fuel}

T thermal 

C Chemical 

amb Ambient

rad Radiation
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V.1.2 Simplifying hypotheses 

Three hypotheses are proposed in the present model: 

1. The problem is monodimensional: 

This hypothesis allows making a numerically efficient code, taking into account the 

couplings between heat and mass transport and the mechanisms of the chemical 

reactions, and especially allowing a first approach of the numerical problem.  From 

this hypothesis it can be deduced: 

x

2. The porosity is constant in time and space: 

This hypothesis is justified by the choice of the porous medium material. From this 

hypothesis it can be deduced: 

0
ttxx
sgsg

3. Perfect gas law: 

This hypothesis is often considered and can be used because the pressure in the 

porous medium is around the atmospheric pressure. From this one it can be 

deduced:

rTP g , where 
M
Rr

Using these hypotheses and referring to the local-nonequilibrium model, it can be 

written a simplified system of conservation equations. 

V.1.3 Conservation equations 

In this thesis, it was modeled mass and heat transport in reactive porous medium 

using a homogeneous description at the Darcy-scale. Local non equilibrium 

transport of heat was treated with a two field temperature model, one for the gas 

phase and one for the solid phase.

It was assumed that the two phases of the medium were: 

Solid phase: Oil shale fixed carbon, CaCO3, Inert matter and sand; 
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Fluid phase: gases N2, O2, CO, CO2;

The organic matter converted into oil was not considered. 

Considering all the approximations, it was written the various balance equations as 

described below. The first is the mass conservation equation 

1. Mass 

- Continuity of the gas phase 

(V.1)

- Species transport 

 (V.2)

2. Darcy equation – Neglecting gravity 

(V.3)

3. Energy equations: 

- Gas phase energy balance 

)()(,

*)()(

gTambThgQsTgTgs

x
gT

gxx
gT

gvgPCt
gT

gPCg (V.4)

- Solid phase energy balance 

)sTambh(TgQ)gTs(Tg,sx
sT*

sxt
sT

s)C(s P (V.5)

4. Perfect gas law (PGL): 

 (V.6)

The pressure equation is obtained by combining eqs. (V.5) and (V.6): 



Chapter V – 1D numerical model 108 

(V.7)

Thus, the equation PLG can be reformulated as:

 (V.8)

V.1.4 Initial and boundary conditions 

Restricting our attention to one dimensional solution, the initial and boundary 

conditions at the inlet and outlet of the reactor were formulated as follows: 

For (eq. 4.2): 

- Initial condition:  

At t=0 and x , amb
kk YY (V.9)

- Boundary conditions: 

If 1CPe  then, 

amb
kLxkxk YYY 0

(V.10)

If 1CPe  and 0g then,

amb
kxk YY 0  at x=L, 

Dankwerts' conditions 

(V.11)

If 1CPe  and 0g then,

at x=0, Dankwerts' 

conditions

and amb
kLxk YY

(V.12)

with,

amb
kY

2N
Y in ambient air (V.13)
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2OY in ambient air 

For (eq. 4.3): 

- Initial condition: 

At t=0 and x , 0gv (V.14)

- Boundary conditions: 

*
0 exg
vv

Lx

g

gLxg x
PKv

(V.15)

where, *
ev  is the entry velocity directly linked to entry airflow that is equal ev .

For (eq. 4.4):

- Initial condition:  

At t=0 and x ,

amb
gg TT (V.16)

- Boundary conditions: 

If 1TPe  then,

amb
gLxgxg
TTT

0

(V.17)

If 1TPe  and 0g then,

amb
gxg
TT

0
 and 

at x=L, Dankwerts' 

conditions

(V.18)
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If 1TPe  and 0g then,

at x=0, Dankwerts' 

conditions and at 

amb
gLxg
TT

(V.19)

where, amb
gT is the ambient gas temperature.  

For (eq. 4.5):

- Initial condition:  

At t=0 and x , amb
ss TT (V.20)

- Boundary conditions: 

Si t<tig then, 

rad
x

s
s x
T

0

* (V.21)

0
Lx

s
x
T

else,

0
0 Lx

s

x

s
x
T

x
T

 (V.22)

where, tig is the duration of the time ignition. 

For (eq. 4.7): 

- Initial condition:  

At t=0 and x , amb
g PP (V.23)

- Boundary conditions: 
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0000
2

0

)(
xgx

gg
x

g

g

gg

x

g

g

ggg

x

g

g

gg Rv
xt

M
RT
P

t
T

RT

PM
t
P

RT
M

amb
Lxg
PP

(V.24)

For (eq. 4.6): 

- Initial condition:  

At t=0 and x , amb
g (V.25)

- Boundary conditions: 

RT

MP

xg

gxg
xg

0

0
0

RT

MP

Lxg

gLxg
Lxg

(V.26)

where, amb is the air density at ambient temperature. 

The system equation was solved to find the following unknown variables dependent 

on the time “t” and space “x”: g , gP , gv , kY , gT and sT .

The physical variables calculated were: g , s , gR , *
kD , kgR , , k , g , gCp , sCp ,

*
g , *

s , gs, , sg , , gQ , sQ , R and .gM  Some of these variables are implicitly 

dependent on unknown variables. 

V.1.5 Empirical Data 

Several physical variables were determined by empirical laws [hanbook]. 

Dynamic viscosity of the gas mix: 
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 (V.27)

Heat capacity of the gases : 

(V.28)

(V.29)

 (V.30)

(V.31)

Thermal conductivity of the gases: 

(V.32)

 (V.33)

 (V.34)

 (V.35)

Heat transfer coefficient: 

3/16,0
1.12*

3/1Pr6,0Re1.12,

g

gPCpdgvg

pd
g

gfactorA

pd
g

factorAgs

(V.36)

The global variables are calculated by the mixing laws:
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 (V.37)

 (V.38)

(V.39)

Where Ai, j is a factor taking into account in the calculation of g, nbgaz is the 

number of gaseous species, Xi is the molar fraction for the species i. Thus, the 

expressions of the macroscopic coefficient are: 

 (V.40)

 (V.41)

V.1.6 Numerical integration 

A standard sequential non-iterative operator splitting scheme was used to solve the 

resulting non-linear problem. Firstly is solved the mass and energy transports term, 

thanks to a transport operator which uses a full sequential approach and finite 

volume schemes – Appendix C (Lapene 2006). Finally, the chemistry operator, which 

is reduced to a stiff ODE system, is solved by the LSODES FORTRAN library, which 

uses backward differentiation formulas by Gear. 

V.2 Determination of the model parameters 

V.2.1 Parameters determined experimentally 

In this section we briefly recall the main parameters determined before and used in 

the numerical code. 

Physical properties: 

1. apparent density of the packed bed, 1168 kg m-3;

2. bed porosity, 0.472 %;

3. real density adopted 2214 kg m-3;
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Chemical properties: 

4. reaction heat of decarbonation reaction - 589 kJ kg-1 of oil shale

5. kinetics:

Adecarb=2.68x104 m-1, Edecarb=135.1x103 kJ mol-1;

Aoxy=0.055x104 m-1, Eoxy=52.4x103 kJ mol-1;

6. oil shale composition: CF= 4.7 %; VM= 17.2 %; CaCO3= 34.6 %; IM= 43.5 %; 

7. reaction heat of char oxidation + 19470 kJ kg-1 corresponding with fr= 0.565.

Heat transfer properties: 

8. Oil shale conductivity: s W m-1K-1;

9. Heat transfer coefficient 544.0,gs kW m-2K.

V.2.2 Parameters fitting 

A number of parameters in the model were adjusted through a procedure of fitting 

the model to the experimental results. This was carried on when it was considered 

that the value determined directly was uncertain, and that their adjustments lead to 

better model results. 

In the case of kinetics parameters, the activation energy value is saved and the pre-

exponential is adjusted: 

a. Decarbonation rate parameter, Adecarb:

As seen previously (IV.2.1.A), after the passage of the combustion front, it can be 

calculated that the front has decarbonated 83 % of the initially present carbonates 

inside the whole cell.

Thus the pre-exponential factor was adjusted to leave around 20 % of the carbonate 

in the bed. Figure (V.1) shows the result of the model which a value Adecarb=

0.25*2.68x104 min-1, while the value determined from TG experiment was 2.68x104

min-1. The original value was multiplied by a factor of 0.25 to retrieve to 

decarbonation rate in the reactor. 
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Figure (V.1) – CaCO3 profile in the bed

b. Char oxidation rate parameter, Aoxy:

The pre-exponential factor of the char oxidation was adjusted by fitting the model 

temperature peak to the experimental value. The value of 550 min-1 determined from 

TG experiment was turned to 30.555 min-1 in the model, Figure (V.2). 

In the case of thermal properties, the coefficients were adjusted by fitting the model 

predicted temperature field at a given time (t= 3492 s) with the experimental 

temperature profile. These were the parameters adjusted: 

c. Heat transfer coefficient between gas and solid.

In chapter III (III.5.2) the heat transfer coefficient was evaluated from specific 

experiment and fitting a numerical model.  Afactor value was adjusted to 55 in the 

model.

d. Heat loss through the walls coefficient:

In the energy equation there is a coefficient, Qw, which takes into account the heat 

loss through the walls. Figure (V.2) shows the temperature obtained from the model 

under adiabatic combustion – i.e. excluding heat loss through the walls. This 

temperature plateau is characteristic of the reaction leading combustion front 

structure as discussed in chapter (I.6.2). 
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Figure (V.2) - Forward combustion front:  reaction leading structure 

The experimental temperature field also reported in figure is very different from the 

adiabatic model prediction; this is due to heat losses. By adjusting the value of h to

195 the model predicted temperature field fits the experimental temperature field

satisfactorily. It can be calculated that with this value of h, the global heat loss for 

the overall combustion process is about 40 % of the energy released by fixed carbon 

oxidation. This percentage is in good agreement with the value of 50 % calculated 

through a heat balance of the experiment, as detailed in Appendix D. 

Based on the equations presented in chapter I (I.6.2) and the char oxidation 

stoichiometry presented in chapter IV (cf. IV.2.1.D) it was calculated the  (the ratio 

of the specific heats of the gas and solid, and to the ratio of the initial concentrations 

of the solid fuel and the gaseous oxidizer), the adiabatic temperature and combustion 

temperature.

The  was about 0.39. This confirms that the reaction leading structure 

(Aldushin, Rumanov and Matkowsky 1999). 

In the reaction leading structure, (Pinjala, Chen and Luss 1988) observed a 

pronounced superadiabatic effect in his experimental work. The adiabatic 

combustion temperature was calculated in the case of the mix 75/25 wt. oil 

shale/sand; see Appendix E. It was taken into account that carbon oxidizes 

into CO and CO2 and that decarbonation occurs. The value obtained was 265 
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°C. The temperature level observed during experiments was about 1100 °C: the 

combustion is largely superadiabatic.

Also in Figure (V.2), can be observed that the combustion temperature 

plateau computed under adiabatic conditions was 1200 °C, which is in very 

good agreement with 1190 °C calculated using the analytical method (Tplateau). 

The difference between experimental temperature level and the adiabatic 

temperature was 100 °C: heat losses are responsible for this peak temperature 

decrease, which is not so high regarding the value of 50 % losses.

V.3 Results from the numerical model 

Once these parameters were fitted, the modeling was run and the results interpreted 

into detailed to gain information about the front structure. Table (V.1) presents the 

input data used. 

Numerical parameters Description Unit

300 Number of nodes -

dt = 5x10-3 Time step -

dx = 1x10-3 Space step m

texp = 5200 Time of experiment s

Physical parameters 

tig = 378 Ignition time duration s

0.30 Reactor length m

Patm=1.013x105 Atmospheric pressure Pa

Tamb=293.15 Ambient temperature K

Vin = 0.0243 Entry velocity m s-1

Sspec =2321.26 Specific surface m-1

47.0 Bed porosity -

dp = 750 Average particle diameter μm

s = 2214 Solid density Kg m-3

Heat transfer properties 

s Solid conductivity 
W  m-

1K-1

664.5+T0.585Cps Heat capacity of solid 
J kg-1K-

1
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p

3/16.0
g

, d
)PrRe1.12(

55gs
Heat transfer coefficient 

between solid and gas 

W m-2K-

1

Chemical parameters 

Calcite mass fraction Kg/kg

Fixed carbon mass fraction Kg/kg

Inert matter mass fraction Kg/kg

fr = 0.565 
Ratio of the products of 

combustion: CO/CO2
-

19470
Reaction heat for char 

oxidation
kJ kg-1

589
Reaction heat for 

decarbonation process 
kJ kg-1

22 )1()]1(
2

[ COfrCOfrOfrfrC
Fixed carbon oxidation 

reaction
-

)(2)()(3 44.056.0 gss COCaOCaCO Decarbonation reaction -

Table (V.1) - Values of parameters used in the model for oil shale combustion. 

V.3.1 Temperature of the bed 

Concerning the temporal evolution of temperature, the Figure (V.3) shows the 

temperature for two thermocouples T1 and T2. A difference between the temperature 

peaks (numerical and experimental) is about 100 °C and a delay between the peak 

times were observed. This indicates that the description used for ignition process 

does not represent the real physical problem. However, the model was sufficient to 

start the reactions. After ignition at the surface, a combustion front starts to 

propagate through the bed. For the other thermocouples (T3, T10, T11 and T12), 

peaks at a temperature near 1100 °C were observed with no significant time delay. 

The combustion process was in an established regime. The temperature plateau at 

60 °C observed during the experiments, Figure (IV.7-a), is not described by the model 

since there is no reaction included to take it into account; the implementation of a 

reaction into the model remains a possible improvement. 

Figure (V.4) shows axial temperature profiles along the reactor axis at different times. 

As observed in the experimental result, the temperature decreases downstream the 

front, while the hot zone upstream the front becomes getting larger as the front 
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progresses. This confirms that the reaction zone propagates more rapidly than the 

heat exchange zone, as discussed previously. The temperature level is almost the 

same once combustion process is well established, between Z= 90 mm until 300 mm. 

Figure (V.3) – Temperature evolution: (—) experimental, (– – –) numerical. 

Figure (V.4) -Temperature profile in the bed. 
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V.3.2 Combustion front velocity 

The numerical and experimental front velocities are shown in Figure (V.5). The model 

predicts a constant front velocity while experiments indicated an increasing value. 

Figure (V.5) -Front velocity: (—) experimental, (– – –) numerical. 

V.3.3 Combustion front structure 

A detailed geometrical description of the front structure can be established, from the 

results of the model at a given time – 4119 s for instance. In Figure (V.6), it was 

plotted three types of results in relation to TPP: 

Temperature profile in the bed; 

Fixed carbon and CaCO3 normalized density profile;

Molar fraction of CO and CO2.

It must be remembered that the numerical model does not describe drying and 

devolatilization reactions. 

The fixed carbon combustion zone is identified as the zone where the density of fixed 

carbon changes. It was found between Z = -1 mm and Z = 11 mm; the thickness was 

about 12 mm. This is in good agreement with the experimental result (cf. IV.2.2.B) 

where was established that the oxidation is made in the zone 10 mm downstream the 

TPP.
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The decarbonation zone - corresponding with changes in CaCO3 - is located 

essentially along 4 mm upstream of the TPP, and also downstream, along 7 mm. The 

thickness was about 11 mm. This result shows that the decarbonation model used is 

in agreement with the experimental results that established a thickness about of 15 

mm.

At the bottom of the figure, the model predicted CO and CO2 molar fractions were 

plotted together with the experimental results from micro-sampling system. The shift 

between the curves at high Z is due to the fact that in the model, volatile matters are 

not taken into account and should not be considered. This figure shows a very 

satisfactory agreement. 

As a synthesis of the results from the model, it can be concluded that: 

With a ratio of the specific heats of the gas and solid equal to 0.39, the 

reaction leading structure was established; 

The reaction zone propagates more rapidly than the heat exchange zone; 

The heat losses represents about 50 % of the fixed carbon oxidation; these 

losses have a little impact on the front peak temperature; 

A two temperature model was used; however the difference between the two 

phases (solid and fluid) temperature was less than 3 °C, indicating a thermal 

local equilibrium; 

The thickness of the fixed carbon oxidation was about 10 mm; 

The thickness of the decarbonation zone was about 11 mm 
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Figure (V.6) – Model computed: (—) normalized Fixed carbon density profile, (– – –) 
CaCO3 density profile, (…) CO2 molar fraction, (  · ) CO molar fraction. Experimental 

measures: (•) CO2 and (+) CO molar fraction. 
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V.4 Parametric study 

This topic was dedicated to the observation of the behavior of the numerical model 

when a parameter is changed. The experimental and numerical confrontation was 

made allowing the identification of strength and weakness of the model.

The following parameters were used to investigate the influence on combustion 

process:

Air velocity varied in the range 0.024 to 0.062 m s-1;

Particle diameter varied in the range 407 to 1500 μm; 

The reference experiment was made with an air velocity of 0.042 m s-1, a particle size 

of 750 μm and a 75 % of oil shale in the bed. It was taken a higher velocity to having 

a lower experiment time. 

V.4.1 Influence of airflow 

Figure (V.8) illustrates the influence of air velocity. Numerical and experimental 

results have the same trend. The model indicates that increasing the air velocity from 

0.024 to 0.062 m s-1 results in an increase of 130 °C in the temperature peak.

The experiments indicated a smaller increase. Concerning the combustion front 

velocity, it was observed that both numerical and experimental results are 

proportional to the airflow of injection. This was the expected result since the front 

propagation is controlled by air supply. 

A particular case must be mentioned. The experiments with air velocity at 0.062 m s-

1 were run several times. However, the front struggled propagating only once. Figure 

(V.7) shows the temperatures recording obtained during this experiment. It shows a 

non stable propagation. It is possible that 0.062 m s-1 is the upper limit for air 

velocity for a stable propagation of a combustion front. 
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Figure (V.7) -Temperature evolution for air velocity at 0.062 m s-1.

V.4.2 Influence of particle diameter (dp)

Figure (V.9) shows that increasing the average particle diameters from 407 to 1500 

m, the temperature peak in the reactor is quite constant. Both experiments and the 

model lead to this result. The same trend was observed for combustion front velocity.

(Sensöz, Angın and Yorgun 2000) performed the experiments at a high heating rate 

at 40 K min-1 in the “Heinze retort”; his results indicated that there was no 

significant effect of the particle size in the range 224 to 850 m on the conversion 

and oil yield.

In the numerical model the particle diameter is taken into account only in the 

calculation of heat transfer coefficient between phase solid and fluid. This coefficient 

can be calculated at 29.8, 29.9 and 30.1 kW m2 K-1 for particle diameters of 400, 750 

and 1500 m respectively. For the three average particles diameter, this parameter 

has indeed a negligible influence on gs,  value. 
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Figure (V.8) - Air velocity versus temperature and front velocity. 

Figure (V.9) - Average particle diameter versus temperature and front velocity. 

In summary, the numerical tool reproduces in general correctly trends of 

experimental results for the oil shale combustion. First of all, it was in put into the 

model some physical, chemical and thermal properties determined in this work. The 

model shows a good answer in relation to the real physical problem, however, it was 

necessary adjust the pre-exponential factors for both reactions taken into account in 

the model. The simulation of the case described in chapter IV showed a good 

agreement with the experimental results, particularly the confirmation of the 
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propagation structure: reaction leading structure. It was also possible to confirm the 

thickness of the decarbonation and fixed carbon oxidation zone.

Finally, about the parametric study, some points must be highlighted: 

the front propagation is controlled by air supply; 

the air velocity of 0.062 m s-1 as a possible upper limit of propagation; 

the particle size variation there is no significant effect in the combustion 
propagation.
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Conclusions and 
perspectives

In the last part of the thesis, the main developments and results are summarized. 

Possible directions for further research are given.

The aims of this work were formulated in order to obtain a better understanding of 

the dynamic behavior of co-current combustion front propagation in reactive porous 

medium.

Regarding the chemical characterization of oil shale, a detailed proximate analysis 

established with a horizontal tube furnace made it possible to determine a global 

composition of oil shale: volatile matter 17.2 %, fixed carbon 4.7 %, carbonate 34.6 

% and inert matter 43.5 %. Still concerning this experiment, two points must be 

highlighted: firstly the fixed carbon amount was not affected by the heating rate; 

secondly, at a high temperature and under nitrogen atmosphere, the fixed carbon 

disappears progressively, which remains an unexplained phenomenon. Analyzing the 

devolatilization gases, it was determined that, the organic matter is converted:  ¼ 

into fixed carbon, ¼ into pyrolysis gas (which the composition was detailed) and ½ 

into shale oil.

From detailed analysis of the oil shale, of the solid residue after passage of the front 

and of the flue gas, it was established that:

- The front devolatilizes integrally the oil shale; 

- The front oxidizes 88.2 % of the fixed carbon that is formed during 
devolatilization;

- The front decarbonates 83.2 % of the calcite. 
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A new and original experimental device was designed, developed and operated with 

success.

Calibration tests with the “simple” medium charcoal/sand showed a plane and 

horizontal combustion front. A mass balance of the species O2 (from air) and CO and 

CO2 produced by oxidation of charcoal was closed satisfactorily. The combustion of 

oil shale showed a much more complicated situation. 

- The combustion front had a curved and inclined surface. The front progresses 

faster close to the walls than the reactor axis; explanations in terms of O2

supply and gas viscosity were proposed; 

- The mass balance of the carbon species was closed satisfactorily, but the 

balance of oxygen was not correct. For these experiments, the oil shale had to 

be mixed with sand to lower the peak temperature. The air feeding velocity was 

0.0243 m s-1 at STP. 

Concerning the question of what is oxidized in the front, it seems that the non 

condensable volatile matter - as characterized in previous tests – are almost 

integrally retrieved at the exit of the cell. Therefore, it appears that only fixed carbon 

oxidation occurs. Nevertheless, two observations make this conclusion uncertain: the 

O2 mass balance was not closed, and the oxidation of a fraction of oil shale, observed 

during DSC experiments (before the oxidation of fixed carbon), was not taken into 

account in the mass balance. Moreover, 56.5 % of the fixed carbon is finally retrieved 

as CO, while the rest is converted into CO2. Considering the CO2 formed, it was 

established that the CO2 from decarbonation of carbonates represents 69 % of the 

total CO2 emissions, including CO2 from fixed carbon oxidation. 

From the temperature fields established by measurements, only rough estimates of 

the thickness of the different zones in the front could be established. However, using 

the micro-sampling system, precisions were gained on these aspects: 

- it can be established that the oxidation is essentially concentrated in the zone 

from the temperature peak point (TPP) toward 10 mm downstream of the TPP;

-  the decarbonation zone spreads from 5mm upstream of the TPP to 10 mm 

downstream.

It was shown that accumulation of oil occurs on the bottom of the bed during the 

propagation process. Later on, as the front progresses, this oil is driven out from the 
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cell by the end of the experiment. For that raison is thought that liquid oil is never 

formed inside the medium and pushed by the front during the propagation process. 

This observation may be due to the short length of the cell used in this work. 

Concerning the energy balance, the fixed carbon oxidation into CO and CO2

consumes 10 % of the energy contained by the oil shale, while the fixed carbon left in 

the oil shale residue represents only 2.3 %. The flue gas energy represents 17 % of 

the oil shale energy. Despite the quite large diameter and the good thermal 

insulation, heat losses through the walls remain high, about 40 % as determined 

from a global heat balance of the cell. 

Developing the numerical model and interpreting the results made possible 

numerous achievements. A mathematical formulation with 1D geometry and two 

phases - the solid phase and the gas phase - was adopted. Previous observations 

indeed indicated that liquid oil is probably never formed inside the medium. 

The determination of most of the properties required by the model was achieved from 

specific experiments including: 

- Structural properties: density, porosity; 

- Thermal properties: thermal conductivity and heat transfer coefficient; 

- Reactions heat and kinetic parameters of reactions; 

- Oil shale composition: fixed carbon, volatile matter, carbonates and inert 
matter amounts. 

Nevertheless, it was necessary to adjust some of the properties for the model to fit 

the experimentally determined temperature fields and decarbonation profile in bed. 

This was the case for the pre-exponential factor of fixed carbon oxidation and 

decarbonation reactions, heat exchange coefficient s,g, and the heat loss coefficient.

The temperature field corresponds to the reaction leading structure. In this situation, 

the reaction zone propagates more rapidly than the heat exchange zone. 

The model retrieved that 50 % of the heat released by fixed carbon oxidation was lost 

through the walls. A calculation without heat losses indicated that the temperature 

peak would be until 1200 °C instead of 1100 °C without heat losses. 
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In the modeled configuration, the thermal equilibrium occurred, making a two 

temperature approach unnecessary. 

Concerning the chemical structure of the front, it was finally stated that: 

- the fixed carbon oxidation zone has about 12mm of thickness. This is quite 

similar to the experimental results from micro-sampling system. 

- the decarbonation zone is located essentially along 4mm upstream of the TPP, 

and also downstream, along 7 mm, demonstrating a good agreement with the 

experimental results from micro-sampling system. 

The parametric study finally indicated that the model predicts satisfactorily the 

response of the front when changed the air velocity. This study confirmed that the 

front propagation was controlled by O2 supply, as established from the previous 

mass balance. It was demonstrated that the variation in the particle size between 

400 and 1500 μm does not affect the front propagation.

In this PhD thesis the structure of the combustion front propagating in a reactive 

porous medium was proposed using a fine experimental device and a numerical tool. 

New implications for future works are opened. The main perspectives of this study 

are:

With micro-sampling system: 

- To quantify the oxygen contained in the micro-samples of the flue gas. This 

will allow a more accuracy in the evaluation of the fixed carbon oxidation 

zone;

- To quantify the hydrocarbons contained in the micro-samples of the flue gas. 

This will allow the evaluation of the devolatilization zone.

With the combustion cell:

- To carry out the combustion of crushed oil shale without sand;

- To carry out the combustion of pyrolyzed oil shale. Thus, it will be easier the 

improvement of the mass balance of oxygen;
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- To determine the limit values – higher and lower for the main parameters that 

affect the front propagation: air velocity, mass fraction of oil shale in the bed 

and oxygen molar fraction. 

With the numerical model: 

- The improvement of oil shale combustion mechanisms, including the reaction 

responsible for originating a temperature plateau at 60°C observed during the 

experiments.
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Appendix A 
Charcoal combustion (Mass balance of carbon) 

Description Nomenclature value unit 
data:    
Reactor diameter 0.091 m 
Section  S 0.0065 m2

Reactor height HR 0.28 m 
Reactor Volume  VR 0.00182 m3

Front velocity Uf 6,33E-05 m s-1

Bed apparent density (before-comb.) bed_0 1284,9 kg m-3

Bed apparent density (post-comb.) bedf _ 1238,7
Charcoal mass fraction in the bed 100  -  
composition:    
FC mass fraction FCX 3.6 % mass 

% of FC oxidized by the front oxyCF 100 % 
Flow rates:
Ambient temperature ambT 273.15 K 

Inlet air flow rate AIRqm 9.50 l min-1

Inlet molar air flow rate 
)4.2260/(AIRqm AIRqmol 0.00707 molair s-1

Inlet molar flow rate - N2

100/)93.20100(AIRqm 2N
qmol 0.00559 molN2 s-1

Inlet molar flow rate - O2

100/93.20AIRqm 2O
qmol 0.00148 molO2 s-1

CO et CO2 in the smoke  from: 22 )1()]1(
2

[ COfrCOfrOfrfrC

Mass flowrate of oxidized fixed carbon oxqmFC 0,0000191 kgC s-1

OXCFOSbedf CFXXSU _0

Molar flowrate of oxidized fixed 
carbon oxqmolFC 0,00159 molC s-1

012.0/oxqmFC    
Molar Fraction of C oxidized into CO: fr 0.28 mole/mole 
Molar flow rate of CO

frqmolFCox COqmol 0,00044 molCO s-1

Molar flow rate of CO2 2COqmol 0,00114 molCO2 s-1
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)1( frqmolFCox
Molar flow rate - (O2 consumed) 

)1(
2

frfrqmolFCox
consOqmol
2

0,00137 molO2 s-1
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Appendix B

Oil shale combustion (Mass balance of carbon) 

Description Nomenclature value unit 
data:    
Reactor diameter 0.091 m
Section  S 0.0065 m2

Reactor height HR 0.28 m
Reactor Volume  VR 0.00182 m3

Front velocity Uf 6.13x10-5 m s-1

Bed apparent density (before-comb.) bed_0 1168.0 kg m-3

Bed apparent density (post-comb.) bedf _ 956.9

Oil shale mass fraction in the bed OSX 75.0  -

Oil shale composition:

Moisture OHX 2 2.50 % mass 
Repartition of organic matter:   

% of oil shale converted into NMHC NMHCX 1.93 % mass 

% of oil shale converted into oil oilX 10.28 % mass 
% of oil shale converted into CO of 
devolatilization COX 0.20 % mass 
% of oil shale converted into CO2 of 
devolatilization 2COX 0.98 % mass 
% of oil shale converted into CH4 of 
devolatilization 4CHX 0.37 % mass 
% of oil shale converted into SO2 of 
devolatilization 2SOX 0.93 % mass 

FC mass fraction in the oil shale FCX 4.70 % mass 

% of FC oxidized by the front oxyCF 88.20 %

CaCO3 mass fraction in the oil shale 3CaCOX 34.60 % mass 
   

CaCO3  mass lost
decarbCaCO3 42.30

% of 
CaCO3

Flow rates:
Ambient temperature ambT 273.15 K
Inlet air flow rate AIRqm 9.50 l min-1
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Inlet molar air flow rate 
)4.2260/(AIRqm AIRqmol 0.00707 mol air s-1

Inlet molar flow rate - N2

100/)93.20100(AIRqm 2N
qmol 0.00559 mol N2 s-1

Inlet molar flow rate - O2

100/93.20AIRqm 2O
qmol 0.00148 mol O2 s-1

CO et CO2 in the smoke  from: 22 )1()]1(
2

[ COfrCOfrOfrfrC

Mass flowrate of oxidized fixed carbon oxqmFC 0.0000145 kgC  s-1

OXCFOSbedf CFXXSU _0

Molar flowrate of oxidized fixed 
carbon oxqmolFC 0.00121 molC s-1

012.0/oxqmFC
Molar Fraction of C oxidized into CO: fr 0.565 mole/mole
Molar flow rate of CO

frqmolFCox COqmol 0.00068 molCO s-1

Molar flow rate of CO2

)1( frqmolFCox 2COqmol 0.00053 molCO2  s-1

Molar flow rate - (O2 consumed) 

)1(
2

frfrqmolFCox consOqmol
2 0.00087

molO2 cons
s-1

      
Pyrolysis gases   
Molar flow rate of CO from 
devolatilization

028.0_0
CO

OSbedf
XXSU

pyrCOqmol 2.50x10-6 mol s-1

Molar flow rate of CO2 from 
devolatilization

044.0
2

_0
CO

OSbedf

X
XSU

pyrCOqmol
2 7.78 x10-5 mol s-1

Molar flow rate of CH4 from 
devolatilization

016.0
4

_0
CH

OSbedf

X
XSU

pyrCHqmol
4 8.08 x10-5 mol s-1

Molar flow rate of SO2 from 
devolatilization

064.0
2

_0
SO

OSbedf

X
XSU

pyrSOqmol
2 5.08 x10-5 mol s-1

Molar flow rate of NMHC from 
devolatilization

016.0_0
NMHC

OSbedf
XXSU pyrNMHCqmol

4.22 x10-4 mol s-1

   
Drying and decarbonation 

Mass flow rate of H2O from drying dryingOHqmol
2 0.00049 molH2O s-1



Appendix B 144 

014.0
2

_0
OH

OSbedf

X
XSU

Molar flow rate of CO2 from 
decarbonation

044.0
3

_0 3

decarb

CaCOOSbedf
CaCOXXSU

decarbCOqmol
2 0.001162 molCO2 s-1

    
Oxygen consumed    
Molar flow rate of O2 from smoke 

consOO qmolqmol
22 smokeOqmol

2 0.00061 molO2 s-1

    



145

Appendix C 

Extracted from (Lapene 2006, P. 46-48) : 
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Appendix D 

Energy balance over an experiment 

The total heat loss of the combustion cell can be estimated as the sum: 

- of the heat lost at the external walls of the cell; 

- and the heat necessary to heat the cell from the initial room temperature to 
its final average temperature. 

The loss at the external walls was calculated following: 

tTTShQ ambpwall )(

where:

- the heat transfer coefficient by natural convection h was estimated t0 15 Wm-2

K-1 ; 

- the external surface of the cell S was estimated at 0.251 m2;

- the temperature of the external surface Tp was measured at 60°C; 

- the ambient temperature Tamb was 18°C; 

- the time t was estimated at half the duration of an experiment, or 2500 s, 
since the external surface at a given level of the cell is hot only when the front 
has passed through. 

The energy to heat the combustion cell from the room temperature Tamb to the 

average final temperature Tp can be expressed: 

)( ambpcell TTCpmQ

where:

- m is the mass of the cell, 5.0 kg; 
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- Cp is the specific heat of the insulation material, estimated at 1386 J.kg-1.K-1

The total heat loss is then Qtot = Qwall+Qcell  =  291+396 = 687 kJ 

The fixed carbon in the cell was oxidized following: 

22 )1()]1(
2

[ COfrCOfrOfrfrC

The calorific value for this reaction is Hox = 19470 kJ kg-1 for fr = 0.565. 

The total mass of fixed carbon oxidized was mFC-ox = 84.2 g. 

The energy released by the combustion of the fixed carbon was: 

Qox = mFC-ox . Hox = 1640 kJ 

The fraction of lost energy was then 

Frlost = Qtot/Qox = 0.42 
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Appendix E 
Adiabatic combustion temperature 

Adiabatic combustion temperature 
1g crude OS (g) 100 g Char + inert (g) (mol) 1mole of C
CF 4,7 CF 3,53 CF 3,53 4,05 4,05 0,34 1
carbonates 34,6 carbonates 25,95 carbonates 25,95 29,79 29,79 0,30 0,88
H2O 2,5 H2O 1,88 H2O 0 0,00
MV 14,7 MV 11,03 MV 0 0,00
inert 43,5 inert 32,63 inert 32,63 37,46 1,96

tot 100,00 87,1 100,00 100,00
Air stoechiometric

fr = 0,565 on (1) /off (0) 1
C (1-fr/2) (O2 +3,8 N2) CO CO2 N2 CaCO3 CO2 CaO
1 0,72 0,57 0,44 2,73 0,88 0,88 0,88

INERT INERT

1,96 1,96
Conservation of enthalpy
The total enthalpy of reactants is equal the total enthalpy of products:

indices
r: reactants
p: products
amb: ambient
ad: adiabatic

assuming that: i)the heat capacities are constant (but they still depend on the species type k); ii)the temperature of reactant, Tr = Tamb; iii)Tp=Tad:

Tad = Tamb + Hreact / (  np Cp )

Enthalpy of combustion
dH produit -1139 J/mol C N2 CO2 CO INERT = CaO
dH réactifs -1066,15 J/mol C 30,75 45,75 30,45 49,80

Heat = dH product - dH reactant = 72624 J/mol C  np Cp 302,72 J/mol

Theoretic
Tad = 538 K

265 °C

Molar heat capacity (J. mol-1.K-1  at 600K)

66,16 0,66

0,75 (g) OS 0,75 (g) pyrolized OS

Sand 25 Sand 25 28,70 (M=100)
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