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Résumé 
 

Au fil du temps, la vie a évolué pour produire des organismes remarquablement complexes. Pour faire                

face à cette complexité, les organismes ont développé une pléthore de mécanismes régulateurs. Par              

exemple, pour chaque ARN messager (ARNm) codant une protéine, des régions non traduites (UTR;              

untranslated regions en anglais) potentiellement régulatrices sont aussi présentes. De plus, les organismes             

supérieurs transcrivent des milliers d'ARN longs non codants (ARNlnc), accroissant ainsi la capacité             

régulatrice de leurs cellules. Cependant, la plupart des ARNlnc sont-ils fonctionnels? Le cas échéant, par               

quels mécanismes peuvent-ils agir? Le rôle d’échafaudage des ARNlnc, formant des ribonucléoprotéines            

et rapprochant ainsi physiquement les protéines est un concept émergent. Toutefois, la prévalence de ce               

mécanisme reste encore à déterminer. 

De plus, au lieu d'ajouter de nouveaux composants pour augmenter la complexité, les cellules peuvent               

réutiliser certaines protéines pour exécuter plusieurs fonctions distinctes. C'est le cas des protéines             

moonlighting​. Ces protéines exercent souvent des fonctions distinctes dans des environnements différents            

et peuvent donc être régulées par un changement de localisation cellulaire. Par la formation de complexes                

protéiques en cours de traduction, les régions 3' non traduites (3’UTRs) peuvent réguler la localisation               

cellulaire et la fonction de la protéine synthétisée à partir des transcrits auxquels elles appartiennent.               

Néanmoins, la fréquence ce mécanisme et son rôle dans la régulation des diverses fonctions des protéines                

moonlighting​ reste à aborder. 

Cette thèse a pour objectif de découvrir et comprendre systématiquement deux mécanismes de régulation              

méconnus impliquant la partie non codante du transcriptome humain. Concrètement, l'assemblage de            

complexes protéiques promus par les ARNlnc et les 3'UTRs est étudié avec des données d’interactions               

protéines-protéines et protéines-ARN prédites et expérimentales, à grande échelle. Ceci a permis ​(i) de              

prédire le rôle de plusieurs centaines d'ARNlnc comme molécules d'échafaudage pour plus de la moitié               

des complexes protéiques connus, ainsi que ​(ii) d’inférer plus d’un millier de complexes 3'UTR-protéines,              

dont des cas permettant d’expliquer la localisation cellulaire de protéines ​moonlighting​. Ces résultats             

obtenus à l’échelle du protéome et du transcriptome indiquent qu'une proportion élevée d'ARNlnc et de               

3'UTRs pourrait réguler la fonction des protéines en augmentant ainsi la complexité du vivant. 



 

 

Abstract 
 

Over time, life has evolved to produce remarkably complex organisms. To cope with this complexity,               

organisms have evolved a plethora of regulatory mechanisms. For instance, for every messenger RNA              

(mRNA) encoding a protein, regulatory untranslated regions (UTRs) are also present. Additionally, higher             

organisms transcribe thousands of long non-coding RNAs (lncRNAs), presumably expanding the           

regulatory capacity of their cells. However, it is questionable whether most lncRNAs are functional, and               

even though many lncRNAs interact with other cellular components, is yet unclear through which              

mechanisms they may act. An emerging concept is that lncRNAs can serve as protein scaffolds, forming                

ribonucleoproteins and bringing proteins in proximity, but the prevalence of this mechanism is yet to be                

determined. 

Besides adding new components to increase complexity, cells can reuse proteins to perform several              

unrelated functions. Such is the case of the moonlighting proteins. These proteins are often found to                

perform distinct functions under different environments, and may thus be regulated by a change of               

cellular localisation. Interestingly, through the formation of protein-complexes during translation, 3’UTRs           

have been found to regulate the cellular localisation and function of the protein synthesized from their                

transcript. Yet, if this mechanism is common, and if used to regulate the several functions of                

moonlighting proteins, remains to be addressed. 

This thesis aims to systematically discover and provide insights into two ill-known regulatory             

mechanisms involving the non-coding portion of the human transcriptome. Concretely, the assembly of             

protein complexes promoted by lncRNAs and 3’UTRs is investigated using computationally predicted, as             

well as experimentally determined, large-scale datasets of protein-protein and protein-RNA interactions.           

This enabled to ​(i) predict hundreds of lncRNAs as possible scaffolding molecules for more than half of                 

the known protein complexes, as well as ​(ii) infer more than a thousand distinct 3’UTR-protein               

complexes, including cases likely to regulate the cellular localisation of moonlighting proteins. These             

large-scale results indicate that a high proportion of lncRNAs and 3’UTRs may be employed in regulating                

protein function, potentially playing a role both as regulators and as components of complexity.  
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Preface 
 

Having a background in biology, I have always been amazed by how life – cells, organs, organisms,                 

populations – is able to attain a level of complexity and functionality that may well be unmatched by                  

anything else known to humankind. This high complexity, though, renders the study of life – if not                 

impossible – impractical. I believe, however, that even the most complex problems can be simplified,               

modeled, and eventually, understood. 

In this thesis, I report several innovative, largely computational, research projects which attempt to              

investigate recently found cellular mechanisms whose very prevalence and importance to the complexity             

of cells has yet to be assessed. The first project (Results, section 2.1) describes an approach to identify                  

hundreds of long non-coding RNAs (lncRNAs) predicted to function as scaffolding molecules for             

proteins. The second project (Results, section 2.3) builds up on similar ideas, proposing the              

co-translational formation of thousands of protein complexes promoted by interactions with 3’            

untranslated regions (3’UTRs). Both works are highly exploratory – to be considered as a first overview                

on the potential pervasiveness of these mechanisms – as well as extensive, taking advantage of large-scale                

datasets of protein-protein and protein-RNA interactions. Indeed, my work is very much ingrained in the               

study of molecular interactions and cellular function on a genome-wide scale, in the context of the                

regulation of complex systems. 

In addition, this thesis describes work on an update of a biological database containing predictions of                

moonlighting proteins (Results, section 2.2) – proteins that perform several unrelated functions – a prime               

example of cellular complexity. These proteins are used here to study the regulation of multifunctionality               

by 3’UTRs. Furthermore, I include a manuscript currently in preparation by my colleagues, regarding the               

regulation of functionally-related messenger RNAs (mRNAs) by proteins (RNA regulon theory), for            

which I contributed (Results, section 2.4). Lastly, I add a list of publications involving my scientific                

contributions prior to this thesis​ ​(Appendix V). 

I will first introduce the reader to the several topics approached by this thesis, with a focus in providing an                    

up-to-date overview of the recent findings and state-of-the-art methods in these fields.  
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1. Introduction 
 

1.1. Protein-protein and protein-RNA interactions 

Biological systems have functions that none of their constituent parts have alone. Cellular functions are               

performed through interactions between molecules. Thus, the study of macromolecular interactions – such             

as interactions between nucleic acids, proteins and lipids – is crucial to understand the genetics and                

evolution of life. Of the possible interactions between macromolecules, protein-protein interactions are            

one of the most studied, with decades of research producing high-quality interaction maps for several               

species. Trailing behind, experimental methods to detect protein-RNA interactions may now be reaching             

their golden-age, but have not yet been sufficiently used to provide a complete network of interactions.                

Computational approaches to predict protein-RNA interactions have been growing in parallel with            

experimental ones and are now applicable to genome-wide studies. The data provided by experimental              

and computational methods can be used to construct interaction networks representing all the interactions              

of an organism, i.e. an interactome, that can include proteins as well as RNAs. This chapter provides the                  

methodological framework in which my work was carried out, as well as the state of the art of the                   

methods and the data available. 

1.1.1. Protein-protein interactions 

Proteins have been studied for several decades by structural biologists, molecular biologists, cellular             

biologists, biochemists and biophysicists, together creating an abundance of knowledge on their many             

properties and biological functions  (De Las Rivas and Fontanillo, 2010) . Most proteins perform their              

biological functions by interacting with other proteins. As a consequence, the ability of proteins to interact                

and act in concert with one another is perhaps one of the most studied features of proteins. Determining                  

all the protein-protein interactions occurring within an organism would aid our understanding of biology              

as an integrated system  (Cusick  et al. , 2005) .  

 

 

1 
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Types of protein interactions 

Protein-protein interactions (PPIs), physical contacts between proteins occurring in a cell, are very diverse              

and can be distinguished by their type of interaction, such as homo‐ versus hetero‐oligomeric, obligate               

versus non-obligate and stable versus transient interactions: 

● homo‐ versus hetero‐oligomeric : interactions can exist between identical or homologous protein           

units (i.e. homo-oligomers), or between different proteins (i.e. hetero-oligomers). For          

homo-oligomers, the interaction can involve the same surface for the two monomers (isologous),             

or different surfaces (heterologous), which can lead to infinite aggregation  (Nooren and Thornton,             

2003) . 

● obligate versus non-obligate : an interaction is obligate if the components do not have a stable               

structure on their own  in vivo . Most hetero-oligomeric complexes involve non-obligate           

interactions between components that can exist independently (e.g. antibody-antigen,         

receptor-ligand and enzyme-inhibitor)  (Nooren and Thornton, 2003) . 

● stable versus transient : stable interactions are held for a long time, and are often found in                

permanent complexes (such as obligate complexes), where the proteins are called ‘subunits’. On             

the other hand, transient interactions are reversible and may occur only briefly, these are generally               

dependent on the immediate cellular context and regulate the dynamics of biological networks             

(e.g. interactions of a signalling cascade)  (Perkins  et al. , 2010) .  

Domain-domain interactions and domain-motif interactions 

Across species, more than 600 modular protein domains are known to mediate PPIs, recognizing exposed               

sites on their binding partners  (Xia  et al. , 2008) . Common protein-binding domains are the PDZ domain,                

the LIM domain and the SH2 and SH3 domains  (Amos-Binks  et al. , 2011) . Variations of such domains                 

can be grouped into families. For example, the SH3 domain family includes more than 250 members                

encoded by the human genome  (Pawson and Nash, 2003) .  

Modular protein-binding domains can interact through:  i) homo- or heterotypic domain-domain           

interactions,  ii) short peptide sequence motifs (Figure 1.1). Moreover, the same domain may perform              

binding through different mechanisms. For example, PDZ domains can mediate specific PDZ-PDZ            

domain interactions, but usually recognize C terminal short peptide motifs  (Pawson and Nash, 2003) . 
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In addition, other parts of the protein surface are found to mediate interactions (particularly transient               

interactions), such as intrinsically disordered regions and short linear motifs (SLiMs, also known as linear               

motifs (LMs)). SLiMs are conserved stretches of around 2 to 8 residues, often occurring within an                

intrinsically disordered region of a protein, and many are able to interact with globular domains of other                 

proteins, albeit with lower affinity than domain-domain interactions  (Perkins  et al. , 2010; Akiva  et al. ,               

2012; Davey  et al. , 2012) . Ongoing efforts to determine interactions mediated by SLiMs in eukaryotes               

can be found on the Eukaryotic Linear Motif (ELM) resource  (Dinkel  et al. , 2016) . 

 

Figure 1.1 |  Examples of protein-binding domains interacting with specific peptide           
motifs (Peptide) or with other homologous domains (Domain/Domain). Figure adapted          
from  (Pawson and Nash, 2003) . 

Specificity of protein-protein interactions 

The cellular environment is known to be crowded with macromolecules  (Ellis, 2001) , and in this context,                

a protein could have many potential binding partners. However, to perform a certain function at a given                 

time, the physical contacts between molecules should be specific. In practice, many proteins interact with               

a specific partner (e.g. enzyme-inhibitors), while others are multispecific, having multiple partners often             

competing for the same binding interface  (Nooren and Thornton, 2003) . The specificity can be provided               

by complementarity in shape and chemistry, but many other factors play a role, such as, i) the presence                  

and co-localisation of the proteins in space and time, i.e. their co-expression and co-localisation in the                

same compartment,  ii) the current state of the proteins, such as the attachment to a cofactor (e.g. heme                  

group, Mg 2+  ions) or the post-translational modifications of a protein (e.g. phosphorylation, acetylation)             
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which can activate, deactivate, change the conformation of the protein or even cover or uncover binding                

sites  (Nooren and Thornton, 2003; De Las Rivas and Fontanillo, 2010; Akiva  et al. , 2012) . 

1.1.2. Methods to identify protein-protein interactions 

Protein-protein interactions can be determined experimentally at large scale via two types of approaches,              

those leading to binary interactions and those termed ‘co-complex’. Approaches leading to binary             

interactions measure direct interactions between pairs of proteins, whereas co-complex approaches detect            

interactions among groups of proteins. Importantly, both types of approaches are complementary in             

respect to the type of interactors they detect, and both are highly scalable and have been applied to                  

thousands of proteins, identifying tens of thousands of interactions in model organisms  (Brückner  et al. ,               

2009; De Las Rivas and Fontanillo, 2010; Rao  et al. , 2014; Rolland  et al. , 2014) . The most used method                   

for each type of approach is presented here. Several other methods to determine protein-protein              

interactions exist but are used to a lesser extent and are not covered here. These include, not exhaustively,                  

BioID  (Roux, Kim and Burke, 2013) , FRET  (Margineanu  et al. , 2016) , BRET  (Dimri, Basu and De,                

2016)  and BiFC  (Miller  et al. , 2015; Snider  et al. , 2015) . 

Yeast two-hybrid (Y2H) method  

Methods to identify binary protein-protein interactions measure direct physical interactions between pairs            

of proteins, the most common method used being the yeast two-hybrid (Y2H) (Fields and Song, 1989).                

This method, along with BiFC, FRET and others, is a protein complementation assay, in which a                

molecular complex is formed when inactive fragments of a reporter protein are assembled due to a                

bait-prey interaction  (Morell, Ventura and Avilés, 2009) . Particularly, Y2H is carried out by screening the               

interactions of a protein of interest against potential partners, in a pairwise fashion (Figure 1.2a)  (Cusick                

et al. , 2005) . Two domains are required for the transcription of a reporter gene in a Y2H assay:  i) a DNA                     

binding domain (BD) fused to the protein of interest (bait protein), and  ii) an activation domain (AD),                 

responsible for activating the transcription of DNA, fused to the potential interacting protein (prey              

protein). Through the fused BD domain, the bait protein binds the upstream activator sequence (UAS) of                

the promoter of the reporter gene. Only the interaction between the bait and prey proteins can reconstitute                 

a functional transcription factor, which leads to the recruitment of RNA polymerase II and transcription of                

the reporter gene, whose expression would thus indicate that a physical interaction between prey and bait                

has occurred  (Brückner  et al. , 2009) . Detection of the reporter expression can be detected through the                
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measurement of an enzymatic activity or a fluorescence in the cell  (Rao  et al. , 2014) . To reduce                 

non-specific interactions, studies often assay several reporter genes in parallel  (Brückner  et al. , 2009) .  

It is generally considered that PPIs identified through Y2H represent biophysically possible interactions,             

without accounting for spatiotemporal information. Even though Y2H is performed  in vivo,  it is              

traditionally performed in the nucleus of yeast cells, and thus not taking into account the context in which                  

the interaction exists naturally. Indeed, due to limitations of using yeast cells, some interactions may be                

systematically missed, such as those involving membrane proteins or involving post-translational           

modifications not occurring in yeast cells  (Koegl and Uetz, 2007; Stynen  et al. , 2012) . However, several                

Y2H systems were introduced to tackle some of these issues, such as the MAPPIT system used for                 

mammalian cells  (Tavernier  et al. , 2002) , and the SCINEX-P system, which screens interactions between              

extracellular proteins  (Urech, Lichtlen and Barberis, 2003) . Indeed, the state-of-the-art of Y2H-based            

methods allows for almost the entire proteome to be amenable to Y2H assays  (Brückner  et al. , 2009) .  

Y2H methods present several advantages compared to other methods. Even though transient interactions             

are challenging to identify, due to their timescale, Y2H is sensitive to such interactions  (Perkins  et al. ,                 

2010) . More generally, the benefits of Y2H are its low cost and high scalability. Indeed, Y2H can be used                   

to screen a bait against a set of preys in a protein matrix, such as proteome-wide sets of full length open                     

reading frames (ORFs)  (Stelzl  et al. , 2005; Brückner  et al. , 2009) .  

Affinity purification coupled to mass spectrometry (AP/MS) 

Co-complex approaches to detect PPIs measure physical interactions among groups of proteins by tagging              

a bait protein with a molecular marker, and “fishing out” the group of proteins (prey proteins) that attach                  

to it, followed by a purification and mass spectrometry (MS) analysis (Figure 1.2b). The most common                

co-complex method is the affinity purification coupled to mass spectrometry (AP/MS) or variations of this               

method, but other methods such as co-immunoprecipitation (Co-IP) are also widely used  (Rao  et al. ,               

2014) . In AP/MS, the bait protein is fused with a two-part tag recognising IgG immunoglobulin and                

calmodulin. The bait is produced in physiological conditions, thus allowing the retrieval of  in vivo               

complexes. Subsequently, these complexes are purified and the prey proteins are identified by MS              

(Dunham, Mullin and Gingras, 2012) .  

An advantage of AP/MS is that interactions that occur in the native cellular environment are identified.                

Moreover, if proteins are expressed in their normal cell conditions, identification of post-translational             

modifications may be detected  (Cusick  et al. , 2005) . However, a disadvantage is that purification of               
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complexes can lead to the loss of real interactions, or even the gain of spurious interactions  (Rao  et al. ,                   

2014) . In addition, due to their nature, co-complex methods measure direct but also indirect interactions               

between proteins, i.e. detect proteins that are in complex with the bait protein, but not necessarily                

interacting directly with the bait protein. Due to this, several models have been used to represent and                 

further analyse interactions produced by co-complex methods, including the spoke model, which            

considers only bait-prey interactions, and the matrix model, which takes into account both bait-prey and               

prey-prey interactions  (De Las Rivas and Fontanillo, 2010; Zhang  et al. , 2015) .  

 

Figure 1.2  |  Basic principles of common methods to detect protein-protein           
interactions .  a ) Yeast two-hybrid assay (Y2H);  b) Affinity purification followed by mass            
spectrometry (AP/MS). Figure adapted from  (Grünenfelder and Winzeler, 2002) . 

Resources of protein-protein interactions 

Although  in silico prediction methods exist (reviewed in  (Rao  et al. , 2014) ), their use maybe less useful                 

for some species – such as yeast and human – for which experimental PPI knowledge covers most                 

interacting proteins  (De Las Rivas and Fontanillo, 2010; Vidal, Cusick and Barabasi, 2011; Rolland  et al. ,                

2014) . Indeed, in yeast, more than 6,000 ORFs have been cloned and the interactions detected involve                

more than 70% of the proteome  (Uetz  et al. , 2000; Ito  et al. , 2001) . Likewise, a reference map of more                    

than 14,000 high quality PPIs, including most of the proteome, has been generated for human  (Rolland  et                 

al. , 2014) , even though this number is still far from the 130,000 binary interactions estimated for the                 

human interactome  (Venkatesan  et al. , 2009) .  
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Millions of PPIs are stored among several databases, such as BioGRID  (Chatr-Aryamontri  et al. , 2017) ,               

IntAct  (Orchard  et al. , 2014) and APID  (Alonso-López  et al. , 2016) , and these can be retrieved                

systematically using the ConsensusPathDB  (Kamburov  et al. , 2013) or the PSICQUIC web service             

(del-Toro  et al. , 2013) . In an attempt to improve data quality and curation of PPIs, the IMEx  (Orchard  et                   

al. , 2012) and HUPO  (Omenn, 2014) international consortiums are involved with defining standards for              

describing molecular interactions, including specific formats and controlled vocabulary (e.g. PSI-MI) to            

describe PPIs and the methods used  (Hermjakob  et al. , 2004) . 

1.1.3. Protein-RNA interactions 

Regardless of their type or functionality, RNA molecules interact with proteins even while being              

transcribed, and continue to do so during all stages of their life  (Stefl, Skrisovska and Allain, 2005) . Like                  

protein-protein interactions, protein-RNA interactions play an important role in many essential biological            

systems  (Jones  et al. , 2001) . RNA-binding proteins (RBPs) recognize and bind RNA of any class (e.g.                

non-coding RNA, messenger RNAs (mRNAs)), either transiently or as part of a ribonucleoprotein (RNP)              

complex, affecting their processing, splicing, localisation, as well as their fate and function  (Stefl,              

Skrisovska and Allain, 2005) . For example, pre-mRNAs usually form RNP complexes with proteins             

called ‘heterogeneous nuclear ribonucleoproteins’ (HNRNPs), which play a role in their splicing, nuclear             

export, translation and stability  (Chaudhury, Chander and Howe, 2010) . Likewise, microRNA (miRNA)            

processing as well as its function is largely dependent on several RBPs such as the Dicer and the                  

Argonaute proteins  (Bartel, 2018) . Nonetheless, knowledge of the full set of proteins that interact with an                

individual RNA during its lifetime still remains elusive. 

RNA-binding protein interaction modes 

The structural details of protein-RNA interactions have been described through X-ray crystallography and             

nuclear magnetic resonance analysis, such as the structure of the PAZ domain of Argonaute proteins               

binding several RNA oligonucleotides  (Jones  et al. , 2001; Carlomagno, 2014; Flores, Walshe and Ataide,              

2014) . For a protein-RNA interaction to occur, both the sequence and the structure of the RNA, i.e. the                  

actual shape of the RNA, are important  (Stefl, Skrisovska and Allain, 2005) . Indeed, RBPs may use                

RNA-binding domains (RBDs) that bind sequence and/or structural motifs of the RNA, the most abundant               

being the zinc-finger motif, the RNA-recognition motif (RRM), the double-stranded RNA-binding motif            

(dsRBM) and the K homology (KH) motif  (Jones  et al. , 2001; Ray  et al. , 2013; Hentze  et al. , 2018) . Most                    

RBDs recognize stretches of 3 to 8 nucleotides that often allow a high degree of sequence variation in                  
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them and are found in the majority of mRNAs  (Lambert  et al. , 2014; Mitchell and Parker, 2014) . These                  

short motifs can occur multiple times in the same sequence and act synergistically or even cooperatively                

(Hennig and Sattler, 2015) . 

Interestingly, recent studies have found that protein-RNA interactions can also be mediated by             

unconventional RNA binding mechanisms and that this phenomenon may be common  (Helder  et al. ,              

2016; Hentze  et al. , 2018) . Studies performing the RNA interactome capture method have found hundreds               

of novel RBPs, expanding the repertoire of RBPs to more than 2000 in human  (Gerstberger, Hafner and                 

Tuschl, 2014; Beckmann  et al. , 2015; Hentze  et al. , 2018) . The RNA interactome capture method               

involves the crosslinking of RBPs to polyadenylated (poly(A)) RNAs  in vivo , followed by the RNA               

capture and subsequent identification of interacting proteins by MS  (Castello  et al. , 2013) . A recent               

variant of the RNA interactome capture technique, named chemistry-assisted RNA interactome capture            

(CARIC), allows capturing RBPs bound to not only to poly(A) RNAs but also non-poly(A) RNAs (e.g.                

pre-mRNA, many long non-coding RNAs)  (Huang  et al. , 2018) . Surprisingly, a large proportion of the               

novel RBP identified do not contain any known RBD (Figure 1.3)  (Beckmann, Castello and Medenbach,               

2016) . Up to now, it is not fully understood how these unconventional protein-RNA interactions are               

formed, but intrinsically disordered regions were found enriched among the RBP binding regions and may               

be responsible for such interactions  (Calabretta and Richard, 2015; Castello  et al. , 2016) . Importantly, the               

discovery of the extent of unconventional RNA binding has raised important questions about the              

specificity and biological functions of such interactions. Recently, it was found that as many as 472 of                 

such unconventional RBPs had been previously linked to virus-related processes, even if their             

RNA-binding potential had not yet been discovered  (Garcia-Moreno, Järvelin and Castello, 2018) . 
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Figure 1.3 | Distribution of RNA-binding domains (RBDs) in RNA-binding proteins           
(RBPs).  RBPs discovered by RNA interactome capture show to contain  i) canonical            
RBDs such as the RRM, DEAD/DEAH box and KH domains,  ii) other canonical and              
non-canonical RBDs (other RBD),  iii) no known RBDs. There is a high proportion of              
RBPs without known RBDs. Figure adapted from  (Beckmann, Castello and Medenbach,           
2016) . 

Specificity of protein-RNA interactions 

Generally, an RNA can be bound by multiple proteins  (Chu  et al. , 2015) and proteins can bind multiple                  

RNAs, in some cases even thousands of RNAs, such as the subunits of the PRC2 protein complex and                  

proteins involved in RNA processing  (Milek, Wyler and Landthaler, 2012; Kretz and Meister, 2014; Van               

Nostrand  et al. , 2016) . However,  in vivo studies have shown that specific RBPs may only bind a small                  

fraction (e.g. 15%) of its described potential motifs  (Taliaferro  et al. , 2016; Van Nostrand  et al. , 2016) .                 

About half of all RBPs may associate with RNA sites seemingly devoid of specific sequence or structural                 

motifs. Indeed, some RBPs may bind RNA in a non-selective way to fulfill their functions, e.g. transfer                 

RNA (tRNA) charger, mRNA export factor, RNA degradation  (Jankowsky and Harris, 2015) .  

Assessing the target specificity of RBPs can be very challenging. This can be true even for RBPs with                  

well-described domains, such as the PUF domains that, albeit having a well defined repetitive structure,               

are able to bind RNAs in many different ways  (Koh  et al. , 2009) . Nevertheless, recent efforts have                 

characterised the affinity and specificity of certain unconventional RBPs. These were done performing  in              

vitro methods such as the RNAcompete and RNA Bind-n-Seq, in which pertinent RBP sequence motifs               
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can be determined by analysing the regions binding to sets of 1x10 8 or more different synthesized                

oligonucleotides  (Jankowsky and Harris, 2015; Ray  et al. , 2017) . Recently, RNA Bind-n-Seq has been              

systematically applied to 78 human RBPs containing RRM, KH and other RBDs and the results               

demonstrate the importance of contextual features for RNA recognition, such as the flanking sequences of               

linear RNA motifs and the secondary structure of the RNA  (Dominguez  et al. , 2018) . 

Interestingly, beyond the idea that RBPs target RNAs, it is now thought that some RNAs may actually                 

target RBPs themselves (Figure 1.4)  (Hentze  et al. , 2018) . This is corroborated by studies that found                

chromatin-modifying complexes and transcription factors being recruited, organised or inhibited by           

certain RNAs  (Cech and Steitz, 2014) . 

 

Figure 1.4 | Reciprocity between RNA and RNA-binding protein (RBP) interactions.           
a) RBPs can interact with RNAs in order to regulate RNA metabolism and function.  b)               
RNAs can interact with RBPs, affecting their function and fate. Figure adapted from             
(Hentze  et al. , 2018) . 

1.1.4. Methods to identify protein-RNA interactions 

Protein-centric methods to detect protein-RNA interactions  

Early methods to study protein-RNA interactions include the  in vitro electrophoretic mobility shift assays              

(EMSA)  (Hellman and Fried, 2007) , the ‘systematic evolution of ligands by the exponential enrichment’              

(SELEX) system  (Tuerk and Gold, 1990) and the  in vivo yeast three-hybrid system  (Martin, 2012) . A                

more recent  in vivo ,  but low-throughput, method is the RNA immunoprecipitation (RIP), which is              

performed by precipitating the RBP under physiological conditions, thus preserving native complexes            

(Figure 1.5a). However, by itself, this method is unable to detect the RBP’s binding site location  (Barra                 

and Leucci, 2017) . Yet, along with the widespread of next generation sequencing technologies, RIP has               
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been coupled with high-throughput sequencing (RIP-seq), enabling the identification of the RNA            

fragments bound by the RBP and allowing the transcriptome-wide discovery of protein-RNA interactions             

(Zhao  et al. , 2010) . 

Over the past decade, accompanying the recognition of the importance of protein-RNA interactions in              

many biological aspects, novel high-throughput methods to detect protein-RNA interactions have been            

developed  (McHugh  et al. , 2014) . Most of these methods are based on cross-linking and              

immunoprecipitation (CLIP)  (Ule  et al. , 2003) , followed by sequencing (CLIP-seq)  (Wang  et al. , 2009) .              

Using CLIP, protein-RNA interactions in intact cells are crosslinked by ultraviolet (UV) irradiation,             

subsequently, protein-RNA complexes comprising the protein of interest are isolated by           

immunoprecipitation and the attached RNA fragments are sequenced (Figure 1.5a). Importantly, whereas            

RIP-based methods also find indirect protein-RNA interactions, the crosslinking step in CLIP allows to              

detect exclusively direct interactions, thus reducing possible artifacts  (Barra and Leucci, 2017) .  

Besides CLIP-seq, many other variants of CLIP-based approaches have been developed, with            

improvements at the level of the protein capture, background noise, precise binding-site detection and              

other features. These include the ‘high-throughput sequencing of RNA isolated by UV crosslinking and              

immunoprecipitation’ (HITS-CLIP)  (Darnell, 2010) , the ‘photoactivatable-ribonucleoside enhanced       

CLIP’ (PAR-CLIP)  (Danan, Manickavel and Hafner, 2016) , the ‘individual-nucleotide resolution CLIP’           

(iCLIP)  (Konig  et al. , 2011) , the ‘UV-C crosslinking and immunoprecipitation platform infrared-CLIP’            

(irCLIP)  (Zarnegar  et al. , 2016) and the ‘enhanced CLIP’ (eCLIP)  (Van Nostrand  et al. , 2016) methods.                

Several other variants exist and recent reviews comparing the different methodologies can be found on               

(Lee and Ule, 2018; Wheeler, Van Nostrand and Yeo, 2018) . CLIP-based methods have been applied to a                 

repertoire of RBPs. Notably, eCLIP has been applied to more than a hundred RBPs in two different cell                  

lines, detecting tens of thousands of protein-RNA interactions  (Van Nostrand  et al. , 2016) .  

RNA-centric methods to detect protein-RNA interactions  

Apart from the protein-centric methods described above, which allow to determine all the targets of an                

RBP, another set of protein-RNA interaction detection methods are RNA-centric. These allow the             

identification of all the proteins bound to an RNA of interest, normally through a pull-down of the RNA                  

via complementary biotinylated oligonucleotides  (Cirillo, Livi,  et al. , 2014; Barra and Leucci, 2017) .             

RNA-centric methods include the ‘chromatin isolation by RNA purification’ (ChIRP), the ‘capture            

hybridization analysis of RNA targets’ (CHART), as well as the ‘RNA antisense purification’ (RAP)              

(Figure 1.5b). RAP was initially developed to detect RNA-DNA interactions  (Engreitz, Lander and             
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Guttman, 2015) , but it is modifiable to detect RNA-protein interactions, identifying the associated             

proteins through MS  (McHugh  et al. , 2015) . Despite being able to address research questions that the                

protein-centric methods cannot address, such as discovering the specificity and function of a certain              

RNAs, RNA-centric methods have yet to be applied for large sets of RNAs. 

 

Figure 1.5 | Principles of methods to detect protein-RNA interactions. a)           
Protein-centric methods,  b) RNA-centric methods. Figure adapted from  (Barra and          
Leucci, 2017) . 

Resources of experimental protein-RNA interactions  

Several public databases store collections of RNA interactions, including protein-RNA, DNA-RNA or            

RNA-RNA interactions, from many of the different experimental methods available. Among the dozen             

databases containing protein-RNA interactions (reviewed in  (Yi, Zhao, Huang,  et al. , 2017) ), some of the               

most up-to-date include RAID  (Yi, Zhao, Li,  et al. , 2017) , NPInter  (Hao  et al. , 2016) , CLIPdb / POSTAR                  

(Hu  et al. , 2017) and the continuously updated AURA database, focused on untranslated regions (UTRs)               

of mRNAs  (Dassi  et al. , 2014) . However, despite the development and large-scale use of several               

experimental methods to detect protein-RNA interactions, the establishment of a comprehensive and high             

quality protein-RNA network is lagging behind available protein interaction networks. In fact, several             

biases have been ascribed to several CLIP approaches, namely biases produced by UV crosslinking, such               

as pyrimidines being more photoactivatable than purines  (Wheeler, Van Nostrand and Yeo, 2018) , as well               
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as biases related to RNase over-digestion  (Kishore  et al. , 2011) and biases due to transcript abundance                

(Krakau, Richard and Marsico, 2017) . These have led to the development of bioinformatic tools that               

re-analyse and attempt to control for some of the biases associated to iCLIP and eCLIP  (Krakau, Richard                 

and Marsico, 2017) . Moreover, only a fraction of the results from eCLIP replicate experiments overlap               

(Van Nostrand  et al. , 2016) , although it is unclear if this due to a methodological limitation or a biological                   

effect, as protein-RNA interactions may be highly transient and their interaction space very large. Also for                

RNA-centric methods, the results from different experiments may not agree, as observed for the XIST               

RNA, where only one common protein interactor was found among more than 600 proteins detected in                

five independent studies  (Cirillo  et al. , 2016) .  

Experimental protein-RNA interaction detection methods are likely to continue to evolve and produce             

more comprehensive sets of interactions in the next years, but current datasets are still insufficient for a                 

global analysis of all the protein-RNA interactions in a cell. 

Computational methods to identify protein-RNA interactions 

Computational methods have been used to predict protein-RNA interactions, in an attempt to tackle              

experimental biases and coverage issues. Available computational methods are generally based on the             

structure and/or sequence properties of RNAs and proteins  (Cirillo, Agostini and Tartaglia, 2013) . These              

include RPI-Pred  (Suresh  et al. , 2015) , RPI-Bind  (Luo  et al. , 2017) , RNABindR  (El-Manzalawy  et al. ,               

2016) , omiXcore  (Armaos, Cirillo and Gaetano Tartaglia, 2017) and catRAPID  (Bellucci  et al. , 2011) .              

The catRAPID method is based on physico-chemical properties of interacting nucleotides and amino             

acids, derived from X-ray crystallography data, as well as RNA and protein secondary structures, and has                

shown particularly effective in predicting protein-RNA interactions  (Barra and Leucci, 2017) . Moreover,            

the catRAPID omics expansion of method stands out due to its ability to predict protein-RNA interactions                

proteome- and transcriptome-wide  (Agostini  et al. , 2013; Cirillo, Marchese,  et al. , 2014) . However, it is               

limited to RNAs shorter than 1200 nucleotides and proteins with no more than 750 amino acids. More                 

recently, Global Score was developed in order to predict long non-coding RNA interactions with proteins,               

without length restrictions, albeit not applicable to large-scale predictions  (Cirillo  et al. , 2016) . 

1.1.5. The interactome and functional components 

The complete repertoire of molecular interactions in a cell or an organism is called an interactome                

(Sanchez  et al. , 1999) . Since the whole is greater than the sum of its parts, interactome networks are                  

useful to understand complex biological systems, which may underlie most genotype to phenotype             
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relationships  (Hartwell  et al. , 1999; Vidal, Cusick and Barabasi, 2011) . Importantly, interactomes can be              

represented as graphs, a mathematical object, and are thus amenable to many analysis stemming from               

graph theory  (Pavlopoulos  et al. , 2011) . In that way, many biological insights can be derived from                

interactomes, such as,  i) determining a protein or an RNA’s function through its partner’s functions               

( guilty-by-association principle),  ii) identifying drug targets and designing effective strategies to treat            

disease,  iii) detecting macromolecular complexes and functional modules  (Hartwell  et al. , 1999; Sharan,             

Ulitsky and Shamir, 2007; Pavlopoulos  et al. , 2011; Ma and Gao, 2012; Ge, Li and Wang, 2016; Huttlin  et                   

al. , 2017) . Indeed, functional network modules, protein communities and protein complexes have been             

comprehensively identified through network analysis (Figure 1.6)  (Brun  et al. , 2003; Brun, Herrmann and              

Guénoche, 2004; Emmanuelle Becker  et al. , 2012; Didier, Brun and Baudot, 2015; Huttlin  et al. , 2015,                

2017) . Together with biological pathway resources such as KEGG  (Kanehisa  et al. , 2017) and Reactome               

(Fabregat  et al. , 2018) , as well as datasets of protein complexes such as CORUM  (Ruepp  et al. , 2009) and                   

Hu.MAP  (Drew  et al. , 2017) , associations between groups of proteins sharing the same function or acting                

together in the same biological process are now well described.  

 

Figure 1.6  | Representation of a protein interactome and functional network           
modules . Interactomes such as those derived from complete maps of protein-protein           
interaction networks can be represented as graphs. Using graph theory approaches, such            
as analysing the community structure of a network, groups of interacting proteins,            
possibly involved in the same biological process, can be identified. Figure source:            
courtesy of Dr. Anaïs Baudot. 

Even though the term ‘interactome’ is often synonymous with interactomes created with protein-protein             

interactions, in 1999, Bernard Jacq and collaborators coined this term to include “the complete repertoire               

of interactions potentially encoded by [a] genome”  (Sanchez  et al. , 1999) . Indeed, interactomes can              
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include many types of molecular interactions such as protein-protein, protein-RNA interactions,           

RNA-RNA interactions, metabolic interactions and protein-DNA associations (gene-regulatory networks)         

(Vidal, Cusick and Barabasi, 2011; Gong  et al. , 2018) . Approaches that combine several types of               

molecular interactions exist, as a way to integrate different types of data, such as DNA methylation and                 

gene expression, and to improve functional module detection, for example using multiplex biological             

networks  (Didier, Brun and Baudot, 2015; Ma  et al. , 2017) . Moreover, even though protein-RNA              

interaction networks are far from complete, two recent approaches that combine protein-protein and             

protein-RNA interactomes were developed, in order to predict RNA function  (Junge  et al. , 2017; Cheng               

and Leung, 2018) . Methods that combine networks or interactomes of different types of data in order to                 

understand complex systems are promising, but yet uncommon.  
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1.2. Long non-coding RNAs and the protein scaffolding function 

Non-coding RNAs (ncRNAs) are increasingly regarded as key players in regulation and their prevalence              

is correlated with organismal complexity. Research into one of the most common types of ncRNAs, the                

long non-coding RNAs (lncRNAs), is continuously expanding and novel unexpected functions of            

lncRNAs are regularly discovered. Indeed, lncRNAs have the potential to perform functions by             

interacting with DNA, other RNAs and proteins, or even through combinations of these. However, their               

identification, prevalence and biological importance is often debated. Recent work has put into question              

whether part of these transcripts can actually code for small peptides, and whether most lncRNAs are just                 

a by-product of bi-directional transcription. On the other hand, the first studies to assess lncRNA               

functionality at a large-scale are now in place and a growing body of work finds lncRNAs to be associated                   

to disease and various biological mechanisms. This chapter describes lncRNAs and the current views on               

their biological importance, going through the latest findings in this blooming topic, focusing on their               

potential as protein scaffolding molecules. 

1.2.1. Definition, characteristics and prevalence of lncRNAs 

Definition and features of lncRNAs 

In the past decade, advances in the depth and quality of the transcriptome sequencing methods have                

revealed that 60% of the human genome is transcribed, even though only about 2% of the genome                 

encodes proteins  (Djebali  et al. , 2012) . A large part of this newly found transcriptional landscape is                

accounted for lncRNAs.  

LncRNAs are defined as RNA molecules with low protein coding potential and larger than 200               

nucleotides, a cutoff chosen to distinguish these RNAs from other smaller non-coding RNAs with well               

established functions (e.g. transfer RNAs, miRNAs, small nuclear RNAs)  (Ulitsky, 2016) . Molecularly,            

lncRNAs resemble mRNAs and share many common biogenesis steps (Figure 1.7), such as transcription              

by RNA polymerase II, 5’-capping, splicing and polyadenylation, although exceptions exist  (Quinn and             

Chang, 2016) . Unique features of lncRNAs are their lack of robustly translated open reading frames               

(ORFs), as well as low expression levels and low sequence conservation when compared to mRNAs               

(Quinn and Chang, 2016; Ulitsky, 2016) .  
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Importantly, lncRNA genes are often expressed in a tissue-specific manner and their expression has been               

found to be regulated. Indeed, analysis of the expression of lncRNA genes in different cell lines found                 

that 29% of the lncRNAs were expressed specifically in a single cell type, whereas only 10% of them                  

were expressed in all cell types  (Djebali  et al. , 2012) . Moreover, several studies have shown that lncRNAs                 

are differentially expressed during differentiation, development and disease  (Sheik Mohamed  et al. , 2010;             

Clark and Blackshaw, 2014; Yuan  et al. , 2017) . 

Categories of lncRNAs 

LncRNAs are often categorised by their position relative to protein-coding genes or other genomic              

features. These include:  i) sense-overlapping lncRNAs, in respect to protein-coding genes, and further             

subdivided into intronic- or exonic-overlapping,  ii)  antisense lncRNAs, if transcribed in the opposite             

direction of a protein-coding gene,  iii)  intergenic lncRNAs, not overlapping with any protein-coding gene,              

known as long intergenic non-coding RNAs (lincRNAs) (Figure 1.7)  (Derrien  et al. , 2012; Laurent,              

Wahlestedt and Kapranov, 2014) . 

 

Figure 1.7  | Categories and features of long non-coding RNAs (lncRNAs) . Figure            
adapted from  (Fang and Fullwood, 2016) . 

Depending on their biogenesis origins, lncRNAs can come from the processing of other transcripts. For               

instance, lncRNAs can be originated from the splicing of introns of protein-coding genes (intronic              

RNAs). Moreover, lncRNAs can also be originated from the transcription of DNA elements such as               

promoters (i.e. promoter-associated long RNAs) and enhancers (i.e. enhancer RNAs), as a result of the               

bi-directional transcription of DNA elements  (Laurent, Wahlestedt and Kapranov, 2014) . Moreover, due            
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to their function, size or other specific features, lncRNAs can be further grouped into other categories,                

such as the competing endogenous RNAs (ceRNAs), which contain miRNA recognition elements, and the              

very stable circular RNAs (circRNAs), which are produced from pre-mRNA back-splicing circularization            

(Kartha and Subramanian, 2014; Chen, 2016) . 

Prevalence of lncRNAs 

LncRNAs are found in every branch of life, but their prevalence seems to be correlated with organismal                 

complexity, being more frequent in higher organisms such as primates  (Mattick, Taft and Faulkner, 2010) .               

Indeed, a connection between lncRNAs in the nervous system and the evolution of the brain in higher                 

vertebrates has been proposed  (Clark and Blackshaw, 2014) .  

The exact prevalence of lncRNAs in human is debatable but thought to be high, with tens of thousands of                   

lncRNAs consistently detected through next-generation and third generation sequencing  (Iyer  et al. , 2015;             

Hon  et al. , 2017; Uszczynska-Ratajczak  et al. , 2018) . Conservative and curated resources, such as              

GENCODE  (Harrow  et al. , 2012) , provide around 15,000 human lncRNA genes producing 28,000             

different transcripts. However, datasets that integrate lncRNA genes identified from several sources, such             

as NONCODE  (Fang  et al. , 2018) , include up to 97,000 lncRNA genes producing 172,216 transcripts.               

Novel lncRNAs are identified in every new study, but a large proportion of them are yet poorly annotated                  

and different lncRNA datasets only mildly overlap  (Uszczynska-Ratajczak  et al. , 2018) . Moreover,            

several ribosome profiling studies proposed that many lncRNAs may in fact have some coding potential               

(Ruiz-Orera  et al. , 2014; Mackowiak  et al. , 2015; Olexiouk, Van Criekinge and Menschaert, 2018) , in               

some cases encoding functional peptides  (Nelson  et al. , 2016) . However, the amount of lncRNAs being               

translated into peptides is an open question, with several studies suggesting these events may be rare and                 

indeed exceptional  (Verheggen  et al. , 2017; Uszczynska-Ratajczak  et al. , 2018) . 

1.2.2. Biological functions of LncRNAs 

Prevalence of functional lncRNAs 

LncRNAs, just as other RNA molecules, have been shown to functionally bind DNA, protein as well as                 

other RNAs. However, the importance and role of most lncRNAs, if any, remains elusive. Indeed, less                

than 1% of the identified lncRNAs have been experimentally characterised or associated to disease              

(Uszczynska-Ratajczak  et al. , 2018) . It is thought that many - or even most - lncRNAs are simply the                  

by-products of the bi-directional transcription of promoters and enhancers, and thus deprived of any              
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function as an independent molecule  (Kopp and Mendell, 2018) . Large-scale attempts to discover             

functional human lncRNA loci have found 499 loci affecting cell growth, among 16,401 loci tested  (Liu                

et al. , 2017) . However, it would have to be tested if these lncRNAs function independently of the DNA                  

sequence from which they are transcribed  (Kopp and Mendell, 2018) . Regardless, the functions of at least                

156 lncRNA molecules are catalogued in lncRNAdb and other compilations, and these are continuously              

growing  (Quek  et al. , 2015; Marchese, Raimondi and Huarte, 2017) . Moreover, several approaches have              

predicted the function of lncRNA through their genomic proximity and co-expression with protein-coding             

genes, as well as through their protein, DNA and RNA interactions  (Park  et al. , 2014; Li  et al. , 2015;                   

Gawronski  et al. , 2018) .  

Known lncRNA functions 

Most of the lncRNA functions seem to involve some form of regulation, and they do so through many                  

different mechanisms (Figure 1.8). Among other functions, lncRNAs have been shown to:  i) regulate gene               

expression in  cis  and in  trans  ii) regulate mRNA processing and stability,  iii) act as protein or RNA (e.g.                   

miRNA) decoys, also known as ‘sponges’,  iv) regulate protein activity, as well as  v) act as scaffolds for                  

high-order complexes  (Geisler and Coller, 2013; Marchese, Raimondi and Huarte, 2017; Ransohoff, Wei             

and Khavari, 2018) . 

In many cases, only one or a few example lncRNAs have been found to be involved in each function or                    

mechanism, and it is unclear if these are one-time exceptions or if other examples are yet to be found.                   

However, a recurrent function of lncRNAs is their regulation of gene expression (both activation and               

repression) through the formation of complexes with chromatin-associated proteins, such as the            

relationship between the polycomb repressive complex 2 (PRC2) protein complex and the HOTAIR             

lncRNA, as well as several other lncRNAs  (Khalil  et al. , 2009; Spitale, Tsai and Chang, 2011;                

Hendrickson  et al. , 2016) . Moreover, several lncRNAs were found to regulate gene expression through              

many other mechanisms such as RNA-DNA triplex formation, binding of RNA polymerase II or its               

cofactors, as well as through transcription factor binding  (Geisler and Coller, 2013; Li, Syed and               

Sugiyama, 2016) .  
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Figure 1.8  | Overview of lncRNA functions . LncRNAs can: (A) recruit chromatin            
remodelling complexes that affect chromatin organization and thus gene expression; (B)           
act as ‘sponges’ or decoys by binding one or several complementary miRNAs; (C)             
scaffold several proteins that act together in the same biological pathway; (D) activate             
transcription by guiding transcription factors to their promoters; (E) suppress          
transcription by sequestering transcription factors. By associating with mRNAs, lncRNAs          
can (F) inhibit translation; (G) modulate splicing; (H) regulate mRNA degradation.           
Figure adapted from  (Salehi  et al. , 2017) . 

Notably, certain lncRNAs are highly expressed and have strong impacts in the cell, such as the NORAD                 

lncRNA, an exceptionally well conserved lncRNA, capable of sequestering virtually all the PUMILIO             

proteins upon expression stimulation triggered by DNA damage, leading to the maintenance of genomic              

stability in the cell  (Lee  et al. , 2016) . Recently, NORAD was also found to interact with RBMX and be                   

essential in assembling a protein complex dubbed NORAD-activated ribonucleoprotein complex 1           

(NARC1), involving RBMX and other DNA replication and repair proteins  (Munschauer  et al. , 2018) . 

Other well studied lncRNAs include the XIST (X-inactive specific transcript) lncRNA, a main player in               

the X chromosome inactivation  (Briggs and Reijo Pera, 2014) , and the MALAT1, responsible for the               

formation of nuclear speckles and associated to several diseases  (Zhang, Hamblin and Yin, 2017) . Both               

interact with several proteins and may be considered scaffolding molecules, a mechanism which will be               

described further.  
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1.2.3. LncRNA scaffolding of protein complexes  

Molecules acting as protein scaffolds 

To perform a cellular function, the components of a complex or a pathway need to be physically close to                   

each other, whether transiently or permanently. In a cell crowded with macromolecules, one way to gather                

the required components is to employ molecular scaffolds that piece together components in a selective               

way  (Good, Zalatan and Lim, 2011; Spitale, Tsai and Chang, 2011) . Proteins are often used as scaffolds                 

for other proteins, especially in signalling pathways, in this way increasing the interaction efficiency              

between the partner molecules, as well as regulating them allosterically  (Shaw and Filbert, 2009; Good,               

Zalatan and Lim, 2011; Garbett and Bretscher, 2014) .  

RNA molecules have been engineered to act as protein scaffolds  in vivo in order to co-localize enzymes.                 

These have shown to be more efficient when compared to DNA or protein scaffolders  (Delebecque, Silver                

and Lindner, 2012; Sachdeva  et al. , 2014) . Moreover, at least theoretically, the use of RNA scaffolds                

should also present several advantages when employed by living organisms;  i) due to their size, RNA                

molecules could potentially bind 5 to 20 proteins per 100 nucleotides, whereas a protein with 100 amino                 

acids would only bind one or two proteins simultaneously;  ii) unlike proteins, RNAs can act immediately                

during transcription;  iii) RNA molecules, particularly lncRNAs, are able to evolve and adapt faster in               

order to interact with other molecules  (Chujo, Yamazaki and Hirose, 2015) .  

Known lncRNAs acting as protein scaffolds 

A dozen lncRNAs may function as protein scaffolds in human, including the LINP1  (Zhang  et al. , 2016) ,                 

the GUARDIN (Hu  et al., 2018), the SAMMSON  (Leucci  et al. , 2016) and the TERC (Telomerase RNA                 

component) lncRNAs  (Zhang, Kim and Feigon, 2011; Cech and Steitz, 2014) . The TERC is part of the                 

telomerase ribonucleoprotein, which maintains the terminal portions of eukaryotic chromosomes. Besides           

providing the template for telomeric DNA synthesis, TERC scaffolds the protein assembly required for              

this process, using several independent structural domains to recruit and bind several proteins             

simultaneously (Figure 1.9)  (Egan and Collins, 2010) .  

Importantly, the described cases of lncRNAs acting as protein scaffolds were found through serendipity              

and no approach to identify them at a large-scale has been undertaken. It is possible that many yet                  

uncharacterized lncRNAs act as protein scaffolds but do so in specific cell-types and stress conditions. 
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Figure 1.9  | Telomerase RNA component (TERC) as an example of an lncRNA             
scaffolding proteins . The highly structured TERC lncRNA interacts with several          
proteins simultaneously, including TERT, Dyskerin and NHP2. Figure adapted from          
(Kirwan and Dokal, 2009) . 

Granule-forming lncRNAs 

Several RNAs were found to transiently assemble groups of proteins, such as the XIST lncRNA  (Chu  et                 

al. , 2015; Cirillo  et al. , 2016) and the NEAT1 (Nuclear Paraspeckle Assembly Transcript 1), a lncRNA                

responsible for the formation of stress-dependent nuclear granules named paraspeckles  (Clemson  et al. ,             

2009; Fox  et al. , 2018) . Indeed, cellular granules such as Cajal bodies, nuclear speckles, paraspeckles and                

processing bodies (P-bodies) all involve protein and RNA components and their specific interactions             

(Helder  et al. , 2016)  and these RNAs may be considered as having a protein scaffolding function.  

The paraspeckle formation by the 23-kb NEAT1 lncRNA is one of the best studied examples of RNA                 

granule formation. Out of the more than 40 different proteins found to compose these nuclear granules,                

several were found to be absolutely required, such as NONO and SFPQ, whereas other proteins were not                 

found to be essential to the granule formation, but may instead regulate the granules  (Fox  et al. , 2018) .                  

While their role remains to be fully understood, paraspeckles are thought to sequester proteins as well as                 

mRNAs through binding to inverted Alu-sequences in their 3’ untranslated regions (3’UTRs). Indeed,             

paraspeckles were found to post-transcriptionally regulate circadian genes as a consequence of their             

circadian expression and mRNA sequestration  (Torres  et al. , 2016, 2017) . Furthermore, paraspeckles have             
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been associated to female reproduction, nervous system diseases and several types of cancer  (Nishimoto              

et al. , 2013; Nakagawa  et al. , 2014; Fox  et al. , 2018) .  

Since the proteins identified in RNA granules often bear intrinsically disordered low-complexity regions             

which could be responsible for their aggregation into granules  (Kato  et al. , 2012; Protter  et al. , 2018) , it is                   

yet unclear how many RBPs bind the RNAs directly and how many proteins are gathered through other                 

mechanisms. Further work into the formation and dynamics of RNA granules should elucidate the              

importance of granule-forming RNAs and their potential scaffolding function.  
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1.3. Roles of 3’-untranslated regions (3’UTRs) in regulation 

Found in virtually all the messenger RNAs of bacteria, archaea and eukaryotes, 3’UTRs are well               

characterised as important sequences that influence mRNA’s fate and thus protein synthesis. New             

alternative 3’UTR isoforms are continuously discovered for most genes through 3'-end sequencing, and             

the usage of the 3’UTR isoforms can be specific for some cell types and development stages. Together                 

with findings of novel 3’UTR functions, particularly through their ability to promote the formation of               

co-translational protein complexes, this suggests that 3’UTRs may be more important for the regulation of               

biological complexity than previously known. In this chapter, the formation of 3’UTR isoforms and their               

biological functions are overviewed, with a focus on the recent discovery of a 3’UTR function that                

involves the formation of protein complexes during protein translation that impacts protein cellular             

localisation and function. 

1.3.1. 3’UTR biogenesis and alternative polyadenylation (APA) 

3’UTR biogenesis 

Typically, pre-mRNAs undergo transcription, splicing, cleavage, polyadenylation and other RNA          

processing events leading to the maturation of the mRNAs. Mature mRNAs, ready for translation, are               

composed of a coding sequence (CDS), 5′ and 3′ untranslated regions (UTRs), as well as a 5’ cap and a 3’                     

poly(A) tail on each end, respectively. 3’UTRs are thus the region between the stop codon and the start of                   

the poly(A) tail of an mRNA.  (Matoulkova  et al. , 2012) . 

The pre-mRNA 3’-end processing is a crucial multi-step process consisting in  i) the cleavage at a                

polyadenylation site (PA site), often formed of “CA” dinucleotides;  ii)  the attachment of a poly(A) tail, in                 

human usually comprising 50 to 250 adenines, essential for the protection of the transcript against               

exonucleases and the export of the mRNA to the cytoplasm  (Matoulkova  et al. , 2012) . The 3’-end                

processing requires several protein complexes, together comprising more than 80 proteins, usually            

recruited by the nascent RNA during transcription through the polyadenylation signal (PAS), although             

other flanking sequences are also important, and alternative 3’-end processing mechanisms exist            

(Proudfoot, 2011; Gruber  et al. , 2014) . The PAS, often a “AAUAAA” hexamer, is a highly conserved                

signal for cleavage, normally localised 10-30 nucleotides upstream of the actual 3’-end cleavage site.  

After intron splicing, human 3’UTRs have a median length of around 700 nucleotides. Alternative              

splicing in 3’UTRs (and 5’UTRs) can lead to mRNAs encoding the same protein but with a different UTR                  
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sequence  (Mignone and Pesole, 2018) . The 3ʹ splice site of the last intron and the PAS set the terminal                   

exon boundaries  (Herzel  et al. , 2017) . A coupling between polyadenylation and splicing on terminal              

exons exists, potentially as competing processes  (Movassat  et al. , 2016; Herzel  et al. , 2017) . Indeed, a                

recent study applying long-read sequencing to nascent RNAs in yeast further suggests that the crosstalk               

between splicing and 3ʹ end processing occurs co-transcriptionally  (Herzel, Straube and Neugebauer,            

2018) . 

Alternative polyadenylation (APA) 

A gene can be cleaved in multiple PA sites and thus produce more than one transcript from a single gene,                    

analogous to alternative splicing. This mechanism is called alternative cleavage and polyadenylation (or             

simply alternative polyadenylation, APA)  (Di Giammartino, Nishida and Manley, 2011) . PA sites can be              

found within 3’-terminal introns and exons, affecting the pre-mRNA splicing and forming mRNAs with              

alternative 3′-terminal exons. In some cases, APA can lead to the formation of different protein isoforms                

(Di Giammartino, Nishida and Manley, 2011) . For example, intronic polyadenylation can lead to             

truncated protein production with functional consequences  (Lee  et al. , 2018; Singh  et al. , 2018) . Besides               

producing alternative protein isoforms, APA frequently leads to the presence of transcripts with variable              

3'UTR lengths (Figure 1.10)  (Matoulkova  et al. , 2012) . Indeed, it is thought that up to 79% of the human                   

genes may express alternative 3’UTRs through APA  (Lianoglou  et al. , 2013; Mayr, 2017) .  

Even though APA in 3’UTRs would lead to the same protein isoform, the lengths of 3’UTRs seem to be                   

under selective pressure. In fact, similar to the prevalence of long non-coding RNAs, 3’UTR length has                

greatly expanded throughout metazoan evolution and is correlated with organism complexity  (Chen  et al. ,              

2012; Mayr, 2017) . 3’UTR length is inversely correlated with mRNA stability and gene expression, i.e.               

short 3’UTRs are more stable and lead to higher protein synthesis, possibly because short 3’UTRs are less                 

likely to be affected by mechanisms that regulate or degrade long 3’UTRs, such as miRNA targeting                

(Matoulkova  et al. , 2012) .  

Given the diverse functions of 3’UTRs (see below), each mRNA-3’UTR isoform can behave differently.              

Indeed, many genes undergoing APA have evolved ways to regulate the prevalence of each isoform in                

different cell types and developmental stages, and APA can be thought as one of the tools that organisms                  

have to achieve tissue-specificity  (Ulitsky  et al. , 2012; Lianoglou  et al. , 2013) . Many factors, such as the                 

3’-end processing machinery, the splicing machinery and RBPs such as HuR (also known as ELAVL1)               

can influence APA  (Dutertre  et al. , 2014; Herzel, Straube and Neugebauer, 2018) . In fact, APA can be                 

affected by several physiological conditions such as developmental-stage, cell growth, circadian rhythm            
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and disease, further evidencing its regulatory importance  (Di Giammartino, Nishida and Manley, 2011;             

Torres  et al. , 2018) .  

 

Figure 1.10  | Possible outcomes of alternative polyadenylation (APA) . APA at tandem            
3’UTR sites leads to transcripts with the same CDS sequence but different 3’UTRs. APA              
events in other locations can lead truncated transcript isoforms. Figure from  (Gruber  et             
al. , 2014) . 

1.3.2. Biological functions of 3’UTRs 

Besides being the site for transcript cleavage and polyadenylation, 3’UTRs have been found to be               

involved in several regulatory processes. 5’UTRs, the untranslated region on the 5’ end of mRNAs,               

contain sequences responsible for translation initiation. 3’UTRs are usually longer than 5’UTRs and the              

sequence constraints in 3’UTRs are generally more relaxed, thus more available for the evolution of               

regulatory elements  (Barrett, Fletcher and Wilton, 2012) .  

The importance of 3’UTRs in higher organisms is corroborated by the fact that 3’UTRs contain many                

stretches of sequence that are as conserved as protein-coding regions, often containing binding sites for               

miRNAs but also RBPs. Indeed, a phylogenetic study has found more than 3000 hyper conserved               

elements in vertebrate 3’UTRs and shown that these are often targeted by RBPs, supporting the               

importance of RBP-3’UTR interactions  (Dassi  et al. , 2013) . Moreover, both sequence and structural             

features have shown to be important for RBP binding of 3’UTRs. 
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A well known function of 3’UTRs is their ability to regulate their mRNA’s translation through several                

mechanisms. 3’UTRs often contain miRNAs binding sites (i.e. RNA-RNA interactions by nucleotide            

complementarity), which either induce translational repression or mRNA decay, both occurring through            

multistep processes involving the recruitment of several protein complexes  (Matoulkova  et al. , 2012;             

Iwakawa and Tomari, 2015) . Indeed, of all the mRNA regions, 3’UTRs are by far the preferential target of                  

miRNAs and it is common for a 3’UTR to contain dozens of miRNA binding sites. Alike the use of                   

certain miRNAs in a tissue-specific or developmental stage-specific manner, alternative 3’UTRs are also             

usually expressed (e.g. through APA) in a tissue and developmental stage-dependent manner  (Barrett,             

Fletcher and Wilton, 2012) . In fact, miRNAs have been shown to affect the evolution of 3’UTRs, for                 

instance, by promoting the expression of tissue-specific 3’UTR isoforms that lack certain miRNA binding              

sites  (Stark  et al. , 2005) .  

Besides 3’UTR regulation mediated by other RNAs such as the miRNAs, 3’UTRs have been found to                

affect mRNAs, and thus cellular protein levels, through several other mechanisms that involve the binding               

of RBPs and the formation of protein complexes  (Szostak and Gebauer, 2013) . Indeed, 3’UTRs regulate:               

i) the export of mRNAs to the cytoplasm, through binding of the PABP protein (poly(A) binding protein),                 

ii) the targeting of mRNAs to specific subcellular compartments, where they will undergo localised              

translation, a mechanism that often occurs in response to extracellular cues and is especially relevant in                

highly polarised cells such as neurons  (Andreassi and Riccio, 2009) ,  iii) mRNA stabilisation through              

adenylate-uridylate-rich elements (AU-rich elements, AREs; repetitive stretches of ‘AUUUA’ nucleotide          

sequences) which are bound by ARE-binding proteins that promote mRNA decay  (Matoulkova  et al. ,              

2012; Szostak and Gebauer, 2013) . 

Moreover, 3’UTRs play a role in translation by interacting with the translation machinery in complex               

ways, such as forming mRNA pseudo-circularization. Since many RBPs also interfere with the             

translational process, such as the closed-loop formation and ribosome recruitment, 3’UTRs could            

determine many other features of translation by associating with RBPs  (Szostak and Gebauer, 2013) .              

Interestingly, it was found that under certain conditions, a protein complex that normally behaves as a                

translation repressor can become a translation activator, by changing its composition or post-translational             

modifications  (Szostak and Gebauer, 2013) . This is exemplified by the 4EHP protein, which changes its               

behaviour upon hypoxia  (Uniacke  et al. , 2012) . 
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1.3.3. Formation of co-translational 3’UTR-protein complexes 

In 2015, Berkovits and Mayr  (Berkovits and Mayr, 2015) have shown that 3’UTRs can also regulate                

protein localisation independently of the mRNA localisation, through the formation of protein complexes             

mediated by the 3’UTR. This has been thoroughly demonstrated for the cell-surface CD47 protein, an               

ubiquitously expressed protein involved in several processes such as apoptosis, adhesion and            

phagocytosis (Figure 1.11). The CD47 gene produces two 3’UTR isoforms through APA, a short 3’UTR               

and a long 3’UTR, both producing proteins with the same amino acid sequence. However, whereas the                

CD47 protein translated from the short 3’UTR is retained in the endoplasmic reticulum (ER), the protein                

translated from the long 3’UTR localises to the cell-surface. This occurs because the long 3’UTR, but not                 

the short 3’UTR, is bound by the HuR RBP during translation. Subsequently, the SET protein is recruited                 

to the site of translation and binds the nascent peptide chain of the CD47. Through additional interaction                 

with the RAC1 protein, the CD47 protein – newly translated from the long 3’UTR isoform – is                 

translocated to the cell-surface  (Berkovits and Mayr, 2015) . This mechanism was termed as             

3′UTR-dependent protein localisation (UDPL), and evidences the ability of 3’UTRs to function as a              

scaffold for several proteins. Importantly, other genes encoding for plasma membrane proteins such as the               

CD44, Integrin ɑ1 and BAFF-R genes, also had their cell-surface localisation affected by their 3’UTRs,               

suggesting this mechanism could be more widespread  (Berkovits and Mayr, 2015; Mayr, 2017) .  

 

Figure 1.11  | Model of the 3’UTR-dependent protein localization (UDPL)          
mechanism . Figure adapted from  (Berkovits and Mayr, 2015) . 
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Clues of the importance of the UDPL process comes from its regulation by other proteins such as the                  

HNRNPC RBP, whose 3’UTR binding sites were found to be correlated with HuR binding sites,               

indicating HNRNPC as a potential upstream regulator of UDPL  (Gruber  et al. , 2016) . Moreover, other               

cases of 3’UTRs recruiting proteins co-translationally have also been described, such as the             

co-translational signal recognition particle (SRP) recruitment by 3’UTRs  (Chartron, Hunt and Frydman,            

2016) . Furthermore, studies in  Schizosaccharomyces pombe  and  Saccharomyces cerevisiae show that           

cotranslational formation of protein-protein interactions may be a widespread phenomenon  (Duncan and            

Mata, 2011; Shiber  et al. , 2018) . However, whether the UDPL mechanism is a prevalent mechanism in                

the cell is yet unknown. 

Mechanisms such as the UDPL, in which a 3’UTR facilitates the formation of protein complexes leading                

to a change in the protein function, could be envisaged as a way for an organism to diversify its proteome                    

function, without recourse to amino acid changes  (Mayr, 2016) . Interestingly, depending on the cell type               

and cellular conditions, each alternative 3’UTR isoform could have its own RBP composition, and since               

an RBP can interact with several other proteins, each 3’UTR could be processed differently and serve a                 

different function. Therefore, it can be thought that, besides affecting the cellular localisation of proteins,               

the 3’UTR formation of protein complexes could serve to regulate other processes. Indeed, it has been                

proposed that alternative 3’UTRs could play a role in mediating the multifunctionality of proteins  (Mayr,               

2017) .  
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1.4. Moonlighting proteins and multifunctionality 

Constructing a complex organism does not require a large number of genes. Rather, organism complexity               

is provided by the ensemble of all available functions and their regulation. Mechanisms such as               

alternative splicing and RNA editing of transcripts contribute to protein diversity and can increase the               

number of functions a certain gene can provide. However, using the same exact synthesised protein for                

several biological functions, allows cells to make more using less resources. Moonlighting proteins are a               

subset of multifunctional proteins that perform multiple unrelated functions. The multiple functions of             

moonlighting proteins can add another dimension to cellular complexity and provide a way to coordinate               

several cellular activities. However, the full prevalence of moonlighting proteins is yet unknown, as these               

have been found by serendipity in most cases. Large-scale bioinformatic approaches were employed to              

predict moonlighting proteins and analyse them as a group, discovering features such as a frequent               

association to disease and higher interaction propensity, thus giving insights into their cellular importance.              

The several functions of moonlighting proteins can be regulated in space and time in many different ways,                 

such as by changing their cellular location, yet, the exact mechanisms used in this type of regulation are                  

still unknown. This chapter describes the definition and prevalence of moonlighting proteins, as well as               

the manners in which this interesting set of proteins is found to be regulated. 

1.4.1. Moonlighting proteins: definition, function and prevalence 

Definitions of moonlighting  

Before the structure of DNA was identified, it was thought that each gene would encode a single protein,                  

and that each protein would have a single function  (Copley, 2012) . However, it is now known that a single                   

gene can encode different proteins (e.g. through alternative splicing or APA). Likewise, with the              

discovery of moonlighting proteins, it is now known that a single protein can serve multiple unrelated                

functions, using the same polypeptide sequence  (Piatigorsky and Wistow, 1989) . The term ‘moonlighting             

proteins’ was coined by Constance Jeffrey in 1999  (Jeffery, 1999) , in analogy to moonlighting in the                

sense of holding a second job in addition to a regular one. Under a strict definition, moonlighting proteins                  

perform multiple functions “without partitioning these functions into different protein domains”  (Huberts            

and van der Klei, 2010) . Moreover, this moonlighting protein definition excludes cases “where the two               

functions are the result of gene fusions, families of homologous proteins, splice variants, or promiscuous               

enzyme activities”  (Jeffery, 2009) . However, less stringent definitions of moonlighting proteins have been             
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used, sometimes adopting terms such as ‘multitask proteins’ and ‘extreme multifunctional proteins’,            

focusing on the fact that the proteins are indeed involved in diverse unrelated functions, regardless of their                 

evolutionary history or domain organisation  (Chapple and Brun, 2015; Franco-Serrano  et al. , 2018) . In              

this view, moonlighting functions may be performed by any region of the protein surface, often involving                

regions other than the one responsible for the canonical function  (Copley, 2012) .  

Importantly, regardless of the exact definition used, protein moonlighting should not be confused with              

protein multifunctionality. While moonlighting proteins are a subset of multifunctional proteins,           

multifunctionality can arrive from performing the same action under different contexts, such as acting in               

distinct pathways or cell lines. For instance, proteins involved in signalling or transcription (e.g. a               

transcription factor) may have pleiotropic functions because they regulate a large number of processes,              

but this is not considered moonlighting since their mode of action is the same. In addition, protein                 

moonlighting should be clearly distinguished from gene multifunctionality, which also includes genes that             

encode distinct protein isoforms that have different functions from each other  (van de Peppel and               

Holstege, 2005) . 

One of the first proteins discovered to be a moonlighting protein, even before this term was coined, was                  

the mammalian P8 protein  (Henderson and Martin, 2014) . A first study demonstrated the ability of P8 to                 

bind single-stranded DNA  (Tsai and Green, 1973) . A few years later, another study discovered that P8                

was the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis  (Perucho,           

Salas and Salas, 1977) . Notably, this protein continues to be an archetypical example of protein               

moonlighting, as more recent work on GAPDH continues to find novel moonlighting functions for this               

protein, including cell signaling, tRNA export and intracellular membrane trafficking in eukaryotes,            

among other functions  (Sirover, 2011; Tristan  et al. , 2011) . 

In the 1980s, Piatigorsky & Wistow described other examples of moonlighting proteins, by reporting that               

the duck ε-crystallin, a structural protein in the eye of vertebrates, was identical and indeed the same as                  

the lactate dehydrogenase B4 protein, a highly conserved glycolytic enzyme  (Wistow and Piatigorsky,             

1987) . Later, the authors shown that in other vertebrate species crystallin proteins turned out to perform                

other functions, such as the turtle τ-crystallin identified also as the glycolytic enzyme α-enolase, and the                

Schistosoma mansoni  α-crystallin identified as the egg antigen p40  (Piatigorsky and Wistow, 1989) .  

The recruitment of ancient enzymes to function as a crystallins represent interesting examples in which               

the same moonlighting function is provided by different proteins in distinct lineages of species  (Copley,               
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2012) . Conversely, other moonlighting proteins, including GAPDH in bacteria, seem to hold a propensity              

to gain novel distinct functions in different lineages  (Copley, 2012) . 

Prevalence and functions of moonlighting proteins  

Since the original discoveries of moonlighting proteins, a few hundred other cases have been found               

throughout the evolutionary tree, from prokaryotes to eukaryotes, as well as in viruses  (Jeffery, 2018) .               

Overall, moonlighting enzymes perform a large variety of additional functions, for example acting as              

enzymes, cytokines, protein and RNA chaperones, transcription and translation factors, DNA stabilisers,            

components of the cytoskeleton, proteasome subunits, receptors and transmembrane channels, among           

many other functions  (Jeffery, 2014; Wang and Jeffery, 2016; Lu and Hunter, 2018) . However, about               

two-thirds of the known moonlighting proteins have an enzymatic function as one of their functions. In                

fact, many of these moonlighting enzymes are highly conserved ancient enzymes, many involved in the               

sugar metabolism. For example, 7 out of 10 and 7 out of 8 proteins of the glycolytic pathway and the                    

tricarboxylic acid (TCA) cycle, respectively, are known to moonlight  (Huberts and van der Klei, 2010) .               

However, the fact that most moonlighting proteins are found to be enzymes may be due to the way                  

moonlighting proteins were discovered, since protein functions have often been detected through enzyme             

activity assays, and proteins of the glycolysis and TCA cycle pathways are some of the best characterized                 

proteins. 

Many moonlighting proteins play a central role in many diseases, such as cancer, autoimmune disease,               

heart disease, obesity and diabetes  (Jeffery, 2018) . Moreover, it has been suggested that disease              

comorbidities (i.e. several diseases co-occurring in a same individual) with different phenotypes, could be              

caused by proteins involved in several processes, such as moonlighting proteins  (Zanzoni, Chapple and              

Brun, 2015) . Indeed, moonlighting proteins could also cause unforeseen drug side-effects due to             

interferences with several unexpected biological processes. Comprehensive knowledge of moonlighting          

proteins would thus aid the development of treatments, in order to avoid targeting a function that is not                  

involved in the disease  (Jeffery, 2018) . Moreover, moonlighting proteins can also confound genome and              

protein annotations, which often use sequence homology to attribute function to newly found sequences              

(Jeffery, 2014) .  

32 

https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20f3780d23a366;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20f3780d23a366;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20feb08bb24a5c;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20f601b8e16502;;;;;&cid=f20f994acabef9e;;;;;&cid=f20ff52d506f228;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f207539ef0b7b0d;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20feb08bb24a5c;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20f7cff3336122;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20f7cff3336122;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20feb08bb24a5c;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20f601b8e16502;;;;;


 

1.4.2. Resources and detection of moonlighting and multifunctional proteins 

Resources and experimental approaches to detect moonlighting proteins 

Moonlighting functions can be revealed experimentally when mutation or deletion studies result in             

unexpected phenotypes. However, unequivocal identification of moonlighting proteins requires several          

mutational studies, in order to show that some mutations affect both functions of the protein, while others                 

affect only one of the functions  (Gancedo, Flores and Gancedo, 2016) . Nevertheless, such analysis would               

only work if the two functions use different parts of the protein. Finally, providing evidence that the                 

several functions are indeed completely unrelated, and not due to pleiotropic effects, can be difficult. 

In a recent study, Espinosa-Cantú  et al. attempted to experimentally address the prevalence of enzymes               

with moonlighting functions in  Saccharomyces cerevisiae . They did this by evaluating if the enzyme gene               

deletion phenotypes are caused solely by the loss of catalytic activity, or if the phenotypes (e.g. cell                 

growth) are due to a yet unknown moonlighting function independent of the catalytic activity              

(Espinosa-Cantú  et al. , 2018) . For this, 11 enzymes associated to amino acid biosynthesis were chosen,               

since their known function could be readily confirmed. This study shown that 4 out of 11 tested enzymes                  

may have moonlighting functions, thus suggesting that moonlighting proteins may be highly prevalent, at              

least in this set of enzymes. Moreover, the number of moonlighting proteins identified here may even be                 

an underestimate, since this experimental approach, performed under constant conditions, is unable to             

find cases of moonlighting proteins that only display alternative functions when present in different              

contexts (see below, Introduction 1.4.3). 

Over the years, hundreds of moonlighting proteins have been identified experimentally. Two public             

databases contain multi-species collections of moonlighting proteins described in the literature. These are             

the MoonProt database  (Chen  et al. , 2018) , containing more than 350 proteins pertaining to the strict                

definition of moonlighting proteins (as described above), and the MultitaskProtDB  (Franco-Serrano  et al. ,             

2018) , a database containing more than 650 proteins, not necessarily sticking to the strict definition of                

moonlighting proteins. 

Computational approaches to detect moonlighting and multifunctional proteins 

Even though the number of experimentally determined moonlighting proteins is increasing, their full             

prevalence is unknown. Indeed, the discovery of moonlighting functions has been largely serendipitous,             

by discovering that two proteins known to serve distinct functions are in fact the very same protein                 
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(Copley, 2012) . Consequently, the number of known multifunctional proteins is probably underestimated.            

A few large-scale computational methods to predict moonlighting proteins have been developed and             

predicted hundreds to thousands of such proteins. These used indicators and approaches such as sequence               

similarity  (Khan  et al. , 2012) , text mining  (Khan, Bhuiyan and Kihara, 2017) , and machine learning               

classifiers using these and other features, such as gene expression and structural disorder  (Khan and               

Kihara, 2016) . However, these methods may have shortcomings. For example, moonlighting may not be              

readily identified through sequence analysis, since multifunctionality may blur the results of sequence             

similarity searches  (Chapple  et al. , 2015) . Moreover, gene expression analysis are unable to find              

moonlighting proteins whose function differs upon their cellular export, such as the human RHAMM              

protein (also known as HMMR)  (Maxwell, McCarthy and Turley, 2008) . 

In 2015, Chapple  et al. 2015 developed an innovative approach which for the first time combined                

protein-protein interaction network analysis and Gene Ontology (GO) functional annotations, to predict            

“extreme multifunctional” (EMF) proteins at a proteome scale  (Chapple  et al. , 2015) . Since             

multifunctional proteins interact with different sets of proteins to perform their different cellular             

functions, the usage of the PPI network topology for their identification is pertinent  (Becker  et al. , 2012) .                 

In addition, Chapple  et al. 2015 used novel methods to determine functions that are highly dissimilar to                 

each other, a hallmark of protein moonlighting. The 430 human EMF proteins predicted were defined as                

proteins “whose multiple functions are very dissimilar to one another”  (Chapple and Brun, 2015) , thus               

related to moonlighting proteins, but not constricted by the strict definition of moonlighting proteins              

which is also concerned by the evolutionary history of the protein. Notably, Chapple  et al. 2015 shown                 

that EMF proteins possess characteristics that set them apart from other proteins. Within a protein               

interactome, a typical EMF protein is more likely to have a high number of protein partners and to be                   

central to the network. Moreover, EMF proteins were found more likely to be expressed ubiquitously,               

suggesting that they can perform alternative functions in different tissues  (Chapple  et al. , 2015) .              

Furthermore, EMF proteins were shown to contain more short linear motifs (SLiMs), which may be               

responsible for transient interactions with other molecules  (Perkins  et al. , 2010) . Indeed, EMF proteins              

were found to be enriched in SLiMs that are regulated by pre- and post-translational switch mechanisms,                

collected from the  Switch.ELM resource  (Van Roey  et al. , 2013) . This finding suggested such SLiMs               

could provide the ability for moonlighting proteins to switch between functions. 
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1.4.3. Regulation of moonlighting protein multifunctionality 

It has been proposed that moonlighting proteins can coordinate several cellular activities, serving as              

switches between pathways and helping to respond to changes in the cellular environment  (Jeffery, 1999,               

2015) . Therefore, regulation of the multiple protein activities, in space and time, is likely to be important                 

for the homeostasis of biological systems. Some moonlighting proteins perform its multiple functions             

simultaneously, and each of these functions may be independently regulated, while other moonlighting             

proteins alternate between functions due to certain triggers. In many cases, the switch in function involves                

the binding of another molecule, such as another protein  (Jeffery, 1999, 2018) . The switch of the                

moonlighting protein’s functions can be triggered or regulated by several distinct factors, sometimes in              

combination to each other  (Jeffery, 1999, 2018) . These include:  

● Post-translational modifications (PTMs): these involve dozens of different modifications and          

molecular additions to the amino acid chains of a protein, some of the most common being                

phosphorylation, acetylation and glycosylation. PTMs are generally used to regulate protein           

function, by affecting several properties of the protein, such as their activity state (on/off),              

structural conformation, cellular localisation and interaction partners  (Beltrao  et al. , 2013) . 

● Oligomeric state : several known moonlighting proteins were found to function differently           

depending on their oligomeric states. For example, the glyceraldehyde-3-phosphate         

dehydrogenase acts as a glycolytic enzyme as a tetramer, but functions as a nuclear uracil-DNA               

glycosylase when in a monomeric form  (Meyer-Siegler  et al. , 1991) . 

● Cellular concentration of other molecules : the function of moonlighting proteins can be switched             

by the concentration of substrate, ligand or cofactor available. For instance, the human aconitase,              

an enzyme of the TCA cycle, changes function according to the cellular iron concentration. When               

cellular iron concentration is low, the aconitase loses its interaction with a Fe-S cluster, changes               

its conformation and is able to bind iron responsive elements (IREs) in the mRNAs of iron                

metabolism genes, thus modulating their translation  (Volz, 2008) .  

● Cell type or tissue expression : a moonlighting protein can perform distinct functions when             

expressed in different cell types or tissues, where they encounter a different cellular environment              

(e.g. tissue-specific proteins, different molecular concentrations). A prime example of this are the             

proteins moonlighting as crystallins. These act as structural proteins in the eye lens of vertebrates               
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when highly-expressed in this tissue, but act either as a glycolytic enzyme (e.g. lactate              

dehydrogenase B4 protein in ducks and α-enolase in turtles) or a egg antigen (in  Schistosoma               

mansoni)  when present at lower-levels in non-lens tissues  (Wistow and Piatigorsky, 1988) . 

● Cellular localisation : the presence of a moonlighting protein in different subcellular (e.g.            

cytoplasm, nucleus) or extracellular locations (e.g. secreted, extracellular matrix) can also be            

responsible for a change in function  (Yoon, Ryu and Baek, 2018) . For example, the  Escherichia               

coli PutA protein acts a dehydrogenase when in the plasma membrane, but binds DNA when               

present in the bacteria’s cytoplasm, regulating the  put operon  (Ostrovsky de Spicer and Maloy,              

1993) . Another example is the human RHAMM protein, which acts as a centrosomal or              

mitotic-spindle protein in the cytoplasm of normal cells, but at the plasma membrane of tumour               

cells, binds hyaluronan (hyaluronic acid), which triggers CD44 activation and the regulation of             

signaling cascades  (Maxwell, McCarthy and Turley, 2008) . 

It has been proposed that “finding a protein in an unexpected location provides a clue that a moonlighting                  

function may exist”  (Copley, 2012) . Indeed, nuclear or cytoplasmic moonlighting proteins are often used              

as secreted molecules involved in signalling  (Jeffery, 1999; Yoon, Ryu and Baek, 2018) . For example, the                

phosphoglucose isomerase participates in glycolysis in the cytosol, but it can also be secreted as               

neuroleukin and act as a nerve growth factor, as well as a cytokine involved in B cell maturation  (Bonini                   

et al. , 2003) . Notably, the system or mechanism by which most cytoplasmic moonlighting proteins are               

secreted is not known  (Kainulainen and Korhonen, 2014; Jeffery, 2018) . Moreover, several ‘housekeeping             

proteins’ such as intracellular chaperones and enzymes in glycolysis and citric acid cycle pathways also               

function as cell surface receptors or secreted molecules  (Kainulainen and Korhonen, 2014; Amblee and              

Jeffery, 2015; Jeffery, 2018; Yoon, Ryu and Baek, 2018) . Interestingly, in 2015, Amblee & Jeffery               

performed an analysis on 30 distinct prokaryotic and eukaryotic moonlighting proteins, thought to have              

different functions intracellularly and on the cell surface  (Amblee and Jeffery, 2015) . They found that               

none of these proteins contained any signal or motif for cell surface targeting, such as an N-terminal                 

signal peptide or a LPXTG motif, suggesting that their cellular localisation may be regulated by a yet                 

unknown mechanism  (Amblee and Jeffery, 2015) .  

Overall, even though several triggers and regulatory mechanisms for the switch between functions of              

moonlighting proteins have been found, such as the ones described in this section, for many moonlighting                

proteins, it remains to be determined what triggers and regulates their switch of functions.  
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2. Results 
 

2.1. Protein complex scaffolding predicted as a prevalent function of          

long non-coding RNAs 

The biological function of most long non-coding RNAs (lncRNAs), if any, is yet unknown. A few                

lncRNAs, such as the TERC, NEAT1 and XIST, show the ability to gather several protein components,                

i.e. to act as protein scaffolds (Introduction, section 1.2.3). Protein scaffolding has since been included as                

one of the dozen potential functions or mechanisms of action attributed to lncRNAs. However, it remains                

to be demonstrated whether this mechanism is common in the cell, since prior to this work this                 

mechanism has not been investigated systematically. 

Several studies have attempted to systematically assess the functionality of lncRNAs. The first             

experimental study of large-scale functionality of lncRNAs was the study by Liu  et al.  (Liu  et al. , 2017) .                  

In this study CRISPR interference was applied in human cell lines to repress the expression of more than                  

16,000 lncRNA loci while measuring a single phenotype, cell growth, which was found affected by 499                

lncRNA loci  (Liu  et al. , 2017) . Other large-scale works studying function of lncRNAs are largely based                

on the analysis of lncRNA co-expression with protein-coding genes  (Park  et al. , 2014; Jiang  et al. , 2015) .                 

However, in all of these studies, the mechanism of action of the lncRNAs is not elucidated. Moreover, it is                   

not clear whether the function of the lncRNA loci can be attributed to the a function of the lncRNA                   

molecule itself, independently of their transcription event.  

Predicting lncRNA function through their interactions with proteins provides a way to determine their              

function as a molecule. However, research through such approaches has been hampered by the fact that                

experimental datasets of protein-RNA interactions are not yet applicable to genome-wide approaches            

(Introduction, section 1.1.4), and focus mostly on mRNAs, rather than lncRNAs. Several computational             

methods to predict protein-RNA interactions exist, but most are unsuitable for large-scale analysis, due to               

large computation times. The catRAPID  omics software was developed by Gian Gaetano Tartaglia’s             

group, in order to predict genome-wide protein-RNA interactions within a reasonable time frame             

(Agostini  et al. , 2013) . 
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In our work, we propose the first computational approach to systematically study the potential function of                

lncRNAs as protein scaffolding molecules. As a first step, we generated the largest protein-RNA              

interaction network ever made (more than 6 millions interactions) using catRAPID  omics . Subsequently,             

we used an original computational and statistical approach that integrates and analyses protein-lncRNA             

interaction predictions and protein complexes. This enabled us to  (i) identify 847 human lncRNAs (~5%               

of the transcriptome used) as possible scaffolding molecules for known protein complexes,  (ii) predict              

that half of the human protein complexes may be scaffolded by lncRNAs and  (iii) propose that the                 

mechanism of action of several lncRNAs known to be associated to disease involves the scaffolding of                

specific protein complexes. This work thus predicts that protein scaffolding is a prevalent function of               

lncRNAs and provides a dataset of thousands of lncRNA-protein-complex combinations involved in this             

mechanism, publicly available to the community. Moreover, this study suggests that a substantial             

proportion of lncRNA transcripts play a role in the cell, in a large variety of biological processes. 
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ABSTRACT

The human transcriptome contains thousands of
long non-coding RNAs (lncRNAs). Characterizing
their function is a current challenge. An emerging
concept is that lncRNAs serve as protein scaffolds,
forming ribonucleoproteins and bringing proteins in
proximity. However, only few scaffolding lncRNAs
have been characterized and the prevalence of this
function is unknown. Here, we propose the first com-
putational approach aimed at predicting scaffolding
lncRNAs at large scale. We predicted the largest hu-
man lncRNA–protein interaction network to date us-
ing the catRAPID omics algorithm. In combination
with tissue expression and statistical approaches,
we identified 847 lncRNAs (∼5% of the long non-
coding transcriptome) predicted to scaffold half of
the known protein complexes and network modules.
Lastly, we show that the association of certain lncR-
NAs to disease may involve their scaffolding abil-
ity. Overall, our results suggest for the first time that
RNA-mediated scaffolding of protein complexes and
modules may be a common mechanism in human
cells.

INTRODUCTION

More than 60% of the human genome is transcribed into
tens of thousands of RNAs with low coding potential (1).
Long non-coding RNAs (lncRNAs) are a subset of those
transcripts longer than 200 nt, transcribed by RNA poly-
merase II, often capped, spliced and polyadenylated (2).
The possible function of most of the > 26 000 GENCODE
annotated lncRNAs is yet to be addressed (3), and many are

thought to be transcription errors or noise. However, thou-
sands of lncRNAs have been found to be differentially ex-
pressed in distinct cell types, with dozens shown to be impli-
cated in transcription regulation (4), stress responses (5) and
disease (6). Indeed, lncRNAs are versatile molecules able to
perform numerous tasks in the cell through binding of pro-
teins, DNA or other RNA molecules (2).

All cellular functions are performed by interactions be-
tween molecules, such as interaction between proteins and
RNAs. These interactions can be stable, leading to ribonu-
cleoprotein (RNP) complexes such as the ribosome, the
spliceosome or the telomerase complex, or transient such as
those involved in transport and degradation of nuclear tran-
scripts. Similarly, components of complexes or pathways
need to be physically close to each other (either transiently
or permanently) in order to perform their function. One
way to achieve this, while attaining selectivity in a crowded
cell, is to employ platform or scaffold molecules that piece
together components of a complex or a pathway (7). Al-
though proteins can and do serve as scaffolds for other pro-
teins (8), the use of RNA scaffolds would present several
advantages, since ‘one protein comprising 100 amino acids
can capture only one or two proteins, whereas one RNA
molecule comprising 100 nt can capture around 5–20 pro-
teins’, simultaneously (9). Moreover, lncRNAs can act im-
mediately after transcription, while protein scaffolds require
at least the step of translation before being functional (2).

Several ncRNAs have been found to function as scaf-
folds for RNP complexes such as TERC (Telomerase RNA
Component), SRP (Signal Recognition Particle RNA) and
LINP1 (LncRNA In Nonhomologous End Joining Path-
way 1) (2,10,11) or found to transiently assemble groups
of proteins as in the case of XIST (X-inactive specific
transcript) and both the granule-forming NEAT1 (Nu-
clear Paraspeckle Assembly Transcript 1) and MALAT1
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(Metastasis Associated Lung Adenocarcinoma Transcript
1) (5,12). Although known scaffolding lncRNAs carry out
important cellular functions, only a few dozen cases have
been uncovered so far (7), many while studying the protein
complexes rather than the lncRNAs. We therefore hypoth-
esize that other yet uncharacterized lncRNAs may act as
scaffolds.

Recently, with the development of RNA interactome cap-
ture methodologies, the repertoire of RNA-binding pro-
teins (RBPs) has greatly expanded (13), leading to the
discovery of hundreds of novel RNA-interacting proteins,
many of which contain no known RNA-binding domain
(RBD). In addition, studies using high-throughput meth-
ods to detect RNAs bound by RBPs including iCLIP,
PAR-CLIP and recently eCLIP (14), demonstrate that most
RBPs bind thousands of different RNA molecules depend-
ing on the cell line. However, these investigations have been
limited to a set of ∼140 RBPs containing known RBDs
(14,15) and do not cover the full extent of the protein–
RNA interaction space. Furthermore, only one fraction of
the RNAs targeted by the RBPs are found in common
by independent replicate experiments, suggesting that the
interaction maps of the studied RBPs are far from com-
plete (14). Computational prediction of protein–RNA in-
teractions can therefore help fill the gap in our knowledge
of protein–RNA interactions and be applied to large-scale
analyses.

In this paper, we study for the first time the prevalence
of protein complex scaffolding as a function of lncRNAs.
By exploiting a computed protein–RNA interaction net-
work, we developed and applied an original large-scale ap-
proach to identify candidate lncRNAs possibly acting as
scaffolding molecules for protein complexes and network
functional modules. We discovered hundreds of scaffolding
lncRNA candidates, suggesting that RNA scaffolding is a
prevalent and widespread mechanism in the cell. In addi-
tion, we found that more than half of the protein complexes
and network modules in the cell may be scaffolded by lncR-
NAs, reinforcing the widespread nature of their action.

MATERIALS AND METHODS

LncRNA–protein interaction predictions

The catRAPID omics protein–RNA interaction predictor
(16) was used to predict interactions between the human
long non-coding RNA transcriptome (Ensembl v82) and
the human canonical proteome, leading to ∼243 million
predictions. Predictions with interaction propensity score
≥50 were kept for further analyses (∼30.8 million interac-
tions). See Supplementary Material for details.

Tissue expression filtering

To create a set of high confidence protein–RNA interaction
predictions, we restricted the analysis to pairs of lncRNA–
proteins that are likely to be found together in at least one
tissue. Human tissue expression data from the GTEx v6.0
project (17) was used. We downloaded RPKM (Reads Per
Kilobase of transcript per Million mapped reads) informa-
tion from 8555 samples across 53 tissues, already mapped
to human transcripts (GENCODE v19). RPKM values of

samples coming from the same tissue were averaged af-
ter a step of removing outlier values (below or above 1.5-
times the interquartile range). Protein expression was de-
rived from their coding mRNA expression, by selecting
the highest RPKM value among the protein’s mRNAs for
each tissue. Only protein–RNA interactions where both the
RNA and the protein have a minimum RPKM value of 1.58
in at least one of the 53 tissues, were retained. This cutoff
was determined as the optimal expression cutoff (maximiz-
ing the sum of specificity and sensitivity) in a ROC curve
experiment between the pre-filtering lncRNA–protein inter-
action prediction dataset (∼243 million interaction predic-
tions) and a set of 2438 experimentally detected CLIP in-
teractions taken from StarBase v2.0 (18) with at least 100
mapped reads (area under the ROC = 0.71). The expression
metric used (‘paired expression’) was calculated for each
protein–RNA pair as the lowest RPKM expression between
the protein and RNA for each tissue, to which the maximum
RPKM value among tissues for that protein–RNA pair is
then withdrawn, i.e.

E (Protein, RNA) = max
t ∈ tissues

(min (Et (Protein) , Et (RNA)))

where E(Protein, RNA) denotes the ‘paired expression’ for
each protein–RNA pair and Et denotes the RPKM expres-
sion in tissue t (RPKM values were log10-transformed).

Protein complex and network module datasets

We collected protein complex information from the (i) Bio-
Plex publication (19) Supplementary Table S3, which in-
cludes 354 complexes; (ii) list of conserved protein com-
plexes from Wan et al. (20), Supplementary Table S4, which
includes 981 complexes; (iii) list of non-redundant CORUM
(21) complexes from Havugimana et al. (22), Supplemen-
tary Table S3, which includes 324 complexes, referred to
as ‘non-redundant CORUM complexes’. Protein network
modules were extracted from a human interactome as de-
scribed in (23). See Supplementary Material for details.

LncRNA–protein complex enrichment analysis

Using the set of predicted interactions between lncRNA
and proteins filtered by (i) interaction propensity and (ii)
minimum RPKM expression, we performed the following
enrichment analysis: for each lncRNA and protein group,
we assessed the enrichment of the lncRNA’s interacting-
proteins among the proteins in the group using a hyper-
geometric test (one-tailed test; FDR = 5%, multiple test
corrected with the Benjamini–Hochberg procedure; Figure
1B), using as background the set of proteins in complexes
or modules retaining at least one interaction after interac-
tion filters. We considered only enrichments where: (i) the
lncRNA is interacting with at least two proteins of the pro-
tein group and (ii) all the proteins in the complex or the
module are expressed in a same tissue as the lncRNA with
at least 1.58 RPKM. To exclude lncRNAs with high back-
ground levels of enrichments, we built a null hypothesis dis-
tribution by performing 10 000 hypergeometric tests for
each lncRNA, each time randomly shuffling the proteins
labels between the protein groups. We excluded lncRNAs
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Figure 1. Data production and analysis workflows. (A) Predictions of protein-lncRNA interactions (PRI) using catRAPID omics for the human proteome
and long non-coding transcriptome. Interactions are further filtered by co-presence in the same GTEx tissue. The produced PRI network contains 6.02
million interactions. (B) Protein groups and lncRNAs are tested for enrichment in lncRNA protein’s targets among groups of proteins. After noise filtering,
a final list of scaffolding lncRNA candidates is produced. (C) Principle of the enrichment in lncRNA protein’s targets among groups of proteins. Colors
of nodes correspond to the ones used on the lncRNA association to protein groups box on (B).

with (i) enrichments not significant in respect to the null hy-
pothesis (empirical P-value > 0.01); (ii) an enrichment ratio
lower than 2-fold.

RESULTS

A predicted human interaction network between the non-
coding transcriptome and the proteome

Aiming to extensively identify lncRNA molecules interact-
ing with protein complexes and potentially acting as pro-
tein scaffolds, we first computed the protein–RNA interac-
tion potential between most of the human proteome and
the long non-coding transcriptome (79% and 81%, respec-
tively; Supplementary Material) using the catRAPID omics
algorithm (16) (Figure 1A). The catRAPID algorithm is
a protein–RNA interaction predictor based on the physic-
ochemical features of the molecules that has been exten-

sively used and tested on lncRNAs with good performances
(16,24,25). With this method we produced 243 million pre-
dicted interactions, of which 30.8 million display high in-
teraction propensity scores (catRAPID score ≥ 50). Since
many lncRNAs have only been found to be expressed at very
low levels and often in a tissue-specific manner (26), we only
retained 6.02 million protein–lncRNA interactions between
molecules co-present in at least one out of the 53 human tis-
sues from the GTEx RNA-seq dataset (17) (see Materials
and Methods). Globally, the 6.02 million predicted inter-
actions occur between 12629 proteins and 2799 lncRNAs
(Figure 2), i.e. between 80% of the tested proteins and 18%
of our initial set of lncRNAs. Individual proteins are pre-
dicted to interact with up to 2.5% of the lncRNAs on av-
erage (Supplementary Figure S1). When considering only
RBPs (Supplementary Material), we predict them to inter-
act with 4.14% of the lncRNAs on average, in the same
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Figure 2. A global lncRNA–protein interaction network. Predicted
protein-lncRNA interaction network composed by more than 6 millions
interactions (grey circle) between 12629 proteins (pink circle) and 2799
lncRNAs (blue circle). The size of the network is compared to the human
binary protein-protein interaction network (see Supplementary Methods).
All circles are proportional to their components.

range as eCLIP results on 82 RBPs (14), which interact
with 7.98% of the lncRNAs from the same dataset. On the
lncRNA side, their median number of protein interactions
is 1267 (Supplementary Figure S1), a higher number than
suggested by current RNA pull-down studies that report be-
tween 126 and 852 interacting proteins per lncRNA (27,28).

As evident in recent high-throughput screenings, the
complexity of biological systems challenges interpretation
of experimental results due to the specific interactions oc-
curring in different contexts (12,14). Yet our predictions,
based on molecular physicochemical properties, represent
a set of possible interactions between co-expressed proteins
and RNA, independent of the cellular sub-localization and
the cellular states. Our predictions therefore cover a larger
spectrum of conditions in which protein–RNA interactions
may occur, compared to the ones assessed in specific in vivo
studies. This allows us to detect, for example, lncRNAs act-
ing exclusively upon DNA damage and other stress condi-
tions, or interactions restricted to a few cell types. Despite
all this, 9414 of our predicted interactions are found in the
relatively small set of eCLIP experiments, a highly signif-
icant overlap considering the 82 proteins and 7381 tran-
scripts present in both eCLIP and catRAPID datasets (P-
value < 2.2e-271, OR = 1.85, two-tailed Fisher’s exact test),
therefore increasing our confidence in the predicted net-
work.

Overall, to the best of our knowledge, we have predicted
the largest human lncRNA–protein interaction network to
date.

Interactions between lncRNAs and protein complexes or net-
work modules

To assess our capacity to computationally predict lncRNA
interactions with protein complexes, we studied the possible
association between a recently discovered evolutionarily-
conserved and muscle-restricted lncRNA, lnc-405 (29), and
the Pur�–Pur�–YBX1 protein complex, implicated in gene
regulation of muscle cells (30). The catRAPID omics algo-
rithm predicts the interaction of human lnc-405 with Pur�,
Pur� and YBX1 with moderate to high scores (38.56, 44.05,
67.84, respectively).

To determine if catRAPID correctly predicted the inter-
actions of the lncRNA to the protein complex in a cellular
context, we performed endogenous lnc-405 RNA pull-down
from nuclear extracts of C2C12 mouse myotubes followed
by a mass spectrometry (MS) analysis. Murine cells were
used since lnc-405 is highly conserved in mouse and very
abundant in differentiated C2C12 cells, allowing the easy
production of the large amounts of nuclear extracts which
are required for the pull-down. Efficient enrichment of lnc-
405 was detected in both odd and even RNA pull-down
samples, while no recovery was observed with lacZ control
(Supplementary Figure S2A).

Notably, MS analysis applied on the odd, even and lacZ
(control) samples allowed the identification of 19 lnc-405
interactors, including two components of the Pur�-Pur�-
YBX1 complex (Supplementary Table S1; Supplementary
Material). RIP assays performed in mouse and human my-
otubes, using an antibody against Pur�, allowed to validate
the specificity of the interaction with lnc-405 and to con-
firm the evolutionary conservation of such interaction (Sup-
plementary Figure S2B and C). Moreover, a GSEA exper-
iment shows that the top interactors of lnc-405 predicted
by catRAPID are enriched in proteins identified in the MS
experiment (Figure 3, P-value = 0.017). These results re-
markably show that catRAPID is able to correctly predict
interactions between lncRNAs and proteins (whether in a
complex or not), in line with good catRAPID performances
observed for other ncRNAs and reported in previous arti-
cles (24,25,31).

We thus proceeded with the exploration of our
catRAPID predicted lncRNA–protein interaction net-
work, aiming to test the hypothesis that lncRNAs
frequently scaffold known protein complexes through
protein–RNA interaction. For this, we investigated three
public datasets of human macromolecular complexes.
Briefly, we used the (i) non-redundant dataset of 326
CORUM complexes (21) collected by Havugimana et al.
(22) (hereafter referred to as ‘non-redundant CORUM’),
(ii) a set of 981 metazoan-conserved complexes produced
by Wan et al. (20) through biochemical fractionation with
quantitative MS (hereafter referred to as ‘Wan 2015’),
as well as (iii) the BioPlex dataset (19) of 354 complexes
detected through affinity purification, MS experiments and
interaction network analysis. Moreover, the human cell
contains groups of functionally-related proteins that in-
teract more transiently but may nevertheless be assembled
or gathered together by lncRNA scaffolds to participate
in metabolic or signaling pathways. For these reasons, we
also used a dataset of 874 functional modules identified
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Figure 3. Experimentally-determined lnc-405-interacting proteins are en-
riched as top catRAPID predictions. Gene Set Enrichment Analysis
(GSEA) (69) of catRAPID predictions between lnc-405 lncRNA and 1459
human RBPs (Supplementary Material), using the RBPs identified as in-
teractors in the MS experiment as a gene set. Note that only RBPs with
catRAPID predictions (within size restrictions) were considered. P-value
= 0.017 (10 000 simulations), normalized enrichment score = 1.59).

in the human interactome using OCG, an algorithm that
decomposes a network into overlapping modules, based on
modularity optimization (32). These modules (hereafter
referred to as ‘Network modules’) are groups of highly
interacting proteins, which tend to be involved in the same
cellular processes, metabolic or signalling pathways (33)
(Supplementary Table S2).

Using these datasets of protein groups and our protein-
lncRNA interaction predictions, we identified lncRNAs
that may scaffold complexes or modules by assessing first,
for each lncRNA, the enrichment of the lncRNA’s interact-
ing proteins among those proteins composing each com-
plex or network module (hypergeometric test, Benjamini-
Hochberg corrected FDR 5%) (Figure 1B). Second, be-
cause some lncRNAs are predicted to bind a large number
of proteins, we estimated the number of protein groups we
would expect to find enriched by chance for each lncRNA,
as a control, by shuffling the protein labels between pro-
tein groups (10 000 times). Only lncRNAs predicted to bind
significantly more (empirical P-value < 0.01), and at least
twice as many, protein groups than expected by chance were
considered candidates for scaffolding function.

After filtering using the randomised control, we obtained
a total of 27 090 statistically significant enrichments be-
tween 1517 protein groups and 847 distinct lncRNA tran-
scripts, encoded by 820 lncRNA genes (Supplementary Ta-
ble S3). These 847 lncRNAs, ∼5% of our 15 230 tested
transcripts, are hereafter referred to as ‘scaffolding lncRNA
candidates’ and constitute a set of lncRNAs predicted to

be involved in a scaffolding function (Supplementary Table
S4). Remarkably, we also predict that ∼56% of the known
protein complexes and 66% of the network modules are
scaffolded by at least one lncRNA (Supplementary Table
S3). These results suggest that lncRNAs scaffolding com-
plexes and modules are highly prevalent. Moreover, as the
set of predicted complexes and modules found to be scaf-
folded by lncRNAs are involved in most cellular biological
processes (Supplementary Figure S3), the scaffolding func-
tion of lncRNAs appears therefore to be a general feature
and not restricted to specific cellular processes.

Although current experimental protein-lncRNA inter-
action datasets are largely incomplete and limited to 148
RBPs (14,15,18), we find that 832 out of 6186 lncRNA–
protein-group interactions including at least one of the 148
RBPs contain one or more known experimental interac-
tions (Supplementary Table S4). Importantly, as a control,
when restricting our scaffolding lncRNA candidate detec-
tion method to protein–RNA interactions involving only
RNA-binding proteins (1459 RBPs; Supplementary Mate-
rial), instead of the whole proteome, we identify 788 scaf-
folding lncRNA candidates among which 572 (72.5%) were
also found by our proteome-wide approach. This highly sig-
nificant overlap (P-value < 2.2e–16, OR = 158, Fisher’s ex-
act test; Supplementary Figure S4) reinforces the confidence
of our predictions.

Overall, our large-scale approach predicted tens of thou-
sands of lncRNA–protein-group interactions between hun-
dreds of lncRNAs and protein groups, many of which con-
taining experimentally determined interactions, suggesting
an abundant presence of lncRNA scaffolds.

Global analysis of scaffolded complexes and modules

In order to analyse the patterns of predicted interactions
between lncRNAs and protein groups, we represent them
as a clustered matrix (Figure 4). Clusters of protein groups
with similar enrichment profiles often share proteins, while
clusters of lncRNAs with similar enrichment profiles are
largely composed of transcript isoforms from the same
or paralog genes. While some protein groups and lncR-
NAs interact specifically, others––protein groups as well as
lncRNAs––do so more promiscuously, and this occurs for
each of the four protein group datasets used. Indeed, we ob-
serve that some lncRNAs are predicted to interact with 1
to 98 protein groups, according to the dataset, i.e. at most
54 (16.7% of total) non-redundant CORUM complexes, 35
(9.9%) in BioPlex, 98 (10.0%) in Wan 2015, 68 (7.8%) in
network modules (Figure 4; Supplementary Figure S5A).
Likewise, protein complexes are predicted to interact with
1 to 401 lncRNAs i.e. at most 401 lncRNAs (2.6% of total
tested) in non-redundant CORUM, 17 (0.1%) in BioPlex,
248 (1.6%) in Wan 2015, 115 (0.7%) in network modules
(Figure 4; Supplementary Figure S5B).

Interestingly, some of our predictions corroborate and
further extend the current knowledge of protein–RNA
complexes. For instance, the polycomb repressive complex
2 (PRC2 complex), previously found associated with lncR-
NAs (4), is predicted to be scaffolded by 101 different lncR-
NAs in our analysis. Indeed, the PRC2 complex and some of
its constituent proteins have previously been found to bind
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Figure 4. Interactions between lncRNAs and protein groups. Boolean ma-
trix representing enrichment between lncRNAs and protein groups on (A)
non-redundant CORUM, (B) Wan 2015, (C) BioPlex and (D) Network
modules. Blue color represents significant enrichments, white color rep-
resents non-significant enrichments. Only lncRNAs/protein groups with
at least one significant enrichment are displayed. Matrix was clustered by
hierarchical clustering with euclidean distance, dendrograms are not dis-
played due to the very high number of rows and columns. The PRC2 com-
plex, as well as examples of promiscuous and specific enrichments are high-
lighted.

hundreds of lncRNAs, presumably as a part of its targeted
gene repression mechanism or its regulation by decoy lncR-
NAs (4,34).

Overall, we find that some lncRNA candidates may act
as general scaffolds for several protein groups, while others
are specific to one or a few protein groups. Likewise, some
protein groups are predicted to interact with many different
lncRNAs, perhaps reflecting their function, exemplified by
the PRC2 complex.

Scaffolding lncRNA candidates display functional features

To determine if our scaffolding lncRNA candidates are
likely to be functional, we gathered several orthogonal
datasets of lncRNAs displaying functional features. To-
gether these include lncRNAs (i) displaying a metabolism
profile characteristic of functional transcripts (35), (ii) over-
lapping eQTLs (36); (iii) that alter cell-growth when sub-
jected to inactivation by CRISPRi (37); (iv) involved in dis-
ease (38,39), as well as lncRNAs (v) conserved in tetrapods
(40) or (vi) possessing structurally conserved elements (41).
Strikingly, even though these functional lncRNAs have
been found to act not only through protein-binding but also
RNA- and DNA-binding, many were successfully identified
by our protein–RNA interaction-based approach (Figure

5A). Indeed, we observe a significant (P-value < 0.05, one-
tailed Fisher’s exact test) and often strong overlap (OR >
2) between our scaffolding lncRNA candidate dataset and
every functional or conserved lncRNA dataset analysed ex-
cept therian-conserved lncRNAs. This latter result suggests
that most human scaffolding lncRNAs may have appeared
later in evolution or may be highly species-specific.

Additionally, when considering the different sets of scaf-
folding lncRNA candidates identified using our four dif-
ferent protein group datasets separately, they are all found
significantly enriched in functional or conserved lncRNAs
from all tested orthogonal datasets (P-value < 0.05, OR
from 1.73 to 1.96, one-tailed Fisher’s exact test; Supplemen-
tary Figure S6A). Different pertinent lncRNA candidates
can therefore be detected from each protein group dataset,
consistent with the relatively low overlap observed between
lncRNAs candidates found from each dataset (Supplemen-
tary Figure S6B).

In agreement with our findings, we observe that muta-
tions in exons of scaffolding long non-coding intergenic
RNA (lincRNAs) candidates have a higher predicted con-
sequence on fitness than mutations in other lincRNAs, by
measuring their fitCons scores (Figure 5B; Supplementary
Material), a metric that takes into account sequence poly-
morphisms in human and sequence divergence in primates
(42).

Altogether, these results suggest that our candidates gen-
erally possess the features of functional transcripts, there-
fore lending further weight to our predictions.

LncRNA-associated disease mechanisms could involve
lncRNA scaffolding function

Hundreds of lncRNA genes have been associated with sev-
eral human diseases and conditions including cancer, dia-
betes and neurodegenerative diseases. As most of these as-
sociations were identified through the analysis of lncRNA
differential expression in disease states (38,39), knowledge
on the molecular role of these lncRNAs in disease is lack-
ing.

We have found 30 scaffolding lncRNA candidate genes
associated with disease in lnc2cancer (38) and LncRNADis-
ease (39) databases (Figure 5A; Supplementary Material).
We then assessed whether these lncRNA-disease associa-
tions could occur through the predicted protein group scaf-
folding functions of the lncRNAs. For this, we mapped pro-
teins involved in disease from the OMIM database (43)
to protein groups and found that 15 out of 30 scaffolding
lncRNA candidate genes associated with disease are pos-
sibly interacting with a protein group that includes at least
one protein associated with the same or similar disease (Fig-
ure 6; Supplementary Table S5).

In several cases (e.g. lncRNA genes SNHG1, SOX2-
CT and RP11–356I2.4), lncRNAs and diseases are linked
through different protein complexes, and involving different
proteins, which provides further evidence of the association.

For instance, the SNHG15 lncRNA gene has been asso-
ciated to Hereditary Haemorrhagic Telangiectasia (HHT)
(44), a disease known to be caused by mutations in genes
that modulate the TGF-� superfamily (45). Here, we find
that two of its transcripts possibly interact with a com-
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Figure 5. Scaffolding lncRNA candidates display functional features. (A) Overlap between scaffolding lncRNA candidate gene (820 genes, 847 transcripts)
and the following groups of functional or conserved lncRNA genes characterized in other studies: Hon2017 (36): lncRNAs displaying four features of func-
tionality; Liu2016 (37): lncRNAs affecting cell growth according to CRISPRi experiments; Lnc2cancer (38): lncRNAs involved in cancer; LncRNADB
(70): compendium of known functional lncRNAs; LncRNADisease (39): lncRNAs involved in human diseases; Mukherjee2017 (35): lncRNAs with a
metabolic profile characteristic of functional transcripts; Necsulea2014 (40): lncRNAs conserved in therians; Smith2013 (41): lncRNAs containing at least
one exonic conserved structural element (see Supplementary Material). Enrichment was tested with one-tailed Fisher’s exact tests, background included
all genes (12233 lncRNA genes, 15230 transcripts) analysed in this study. All P-values for the ‘Yes’ category are significant (P-value < 0.05), except for
Necsulea2014. (B) Proportion of sequence covered with fitCons score above the threshold (x-axis), for different gene features (3′UTR, 5′UTR), lincRNA
exons on scaffolding lincRNAs candidates and all other lincRNAs accessed in this study. Error bars: standard deviation of 100 subsampling experiments
(with replacement) of 50 genes per category. ‘Scaffolding lincRNAs’ have a higher proportion of sequence covered above the threshold than ‘Other lincR-
NAs’ (one-tailed Kolmogorov–Smirnov test P-value = 0.008). As observed in other studies (35,42), lincRNA fitCons scores are lower than UTR regions
of protein-coding genes.

plex containing 11 components and regulators of the TGF-
� pathway out of 23 proteins (ENST00000585030, non-
redundant CORUM complex 81), and with a module
composed of signalling proteins and transcription factors
(ENST00000578968, network module 686, Supplementary
Table S5). Notably, whereas these SNHG15-interacting
protein groups are largely composed of different sets of pro-
teins, both contain the SMAD4 protein, a TGF-� pathway
component mutated in HHT (46). Overall, further credibil-
ity is given to an involvement of SNHG15 in this disease
through its predicted scaffolding function.

Moreover, the MEG3 lncRNA gene has been linked
to colorectal cancer (47), and has been shown to
bind chromatin-remodeling complexes (4). Interest-
ingly, we detected a short MEG3 lncRNA isoform
(ENST00000524131, 721 nucleotides) possibly interacting
with a complex containing DNA polymerase epsilon
subunits as well as chromatin-remodeling proteins (Wan
2015 complex 79), including POLE1, also associated to
colorectal cancer.

Finally, the SNHG1 gene is associated to hepatocellular
carcinoma (HCC) (48) and non-small cell lung cancer (49).
Here we find one of its transcripts (ENST00000539975) in-
teracting with 18 different protein groups associated with
one or both of those diseases. Moreover, the interaction
of SNHG1 lncRNA with 6 of those protein groups is cor-
roborated by experimental interactions (14,15,18) through
five distinct RBPs. Several pathway components of the

TNF�/NF-�B signaling pathway have been associated with
both lung cancer and HCC, as well as other cancers
(50,51). The SNHG1 lncRNA is predicted to interact with
the TNF�/NF-�B signaling complex (non-redundant CO-
RUM complex 10) through PAPOLA (poly(A) polymerase
�) and CHUK (inhibitor of nuclear factor �-B kinase sub-
unit �). Notably, the lncRNA interaction with the pro-
tein complex is further corroborated by two experimen-
tal interactions with two RBPs of the complex, DDX3X
and AKAP8L (Supplementary Table S5). Additionally, the
SNHG1 lncRNA has been associated with HCC through
suppression of miR-195 (52), a microRNA known to tar-
get the TNF�/NF-�B pathway by repressing the CHUK
protein, and thus suppressing HCC (53) (Figure 7). Given
our predictions, we can thus propose that beyond its known
effect through miR-195, SNHG1 may regulate elements of
the TNF�/NF-�B pathway and therefore directly affect
HCC through its possible protein group scaffolding func-
tion.

Globally, we propose that the association of 15 lncRNA
genes to 22 diseases is due to protein-lncRNA interaction-
based mechanisms, notably through the scaffolding of pro-
tein complexes and modules by lncRNAs.

DISCUSSION

The current scarcity of experimentally determined
lncRNA–protein interaction data hinders the inves-
tigation of lncRNA function at large-scale. We thus
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Figure 6. Disease-associated lncRNA network. Network representation of disease-associated lncRNAs (hexagonal nodes in yellow) potentially scaffolding
protein groups (square colored nodes) containing at least one protein known to be involved in the same disease. Colors correspond to different diseases.
Node size reflects the number of proteins in the group. Edges represent lncRNA–protein-group interactions. Edge width reflects the number of proteins
interacting with the lncRNA. LncRNA transcripts were mapped to genes. Some disease names have been abbreviated for simplicity.

computationally predicted a comprehensive lncRNA–
protein interaction network in order to better cover the
lncRNA–protein interaction space. For this, we used
catRAPID, a protein–RNA interaction predictor based on
the physicochemical features of the molecules, which can
be used large-scale and has been initially validated on a
large collection of protein associations with lncRNA (24).
Indeed, catRAPID performed well against the NPInter
database (area under the receiver operating characteristic
(ROC) of 0.88), as well as on the non-nucleic-acid-binding

database (area under the ROC curve of 0.92) (31). In addi-
tion, we showed herein that catRAPID predictions provide
relevant information about lncRNA–protein-complex
interactions by experimentally validating that part of the
Pur�-Pur�-YBX1 complex –– predicted here to interact
with the lnc-405 lncRNA –– effectively binds the lncRNA
in vivo.

Noticeably, as the catRAPID predicted interaction net-
work contains the set of biophysically possible interactions
between co-expressed molecules, which may differ from in-
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Figure 7. SNHG1 lncRNA gene association to hepatocellular carcinoma
through interaction with the TNF�/NF-�B signaling complex. Red nodes
represent protein components of the TNF�/NF-�B signaling complex
(non-redundant CORUM complex 10). Pink edges correspond to the iden-
tified protein-protein interactions between those proteins, downloaded
from IntAct (71) on 22 May 2017. Interactions predicted in this study are
represented by green dashed edges, experimentally determined ones (see
Supplementary Material) by blue dashed edges. Negative regulatory inter-
actions are shown in red and are taken from (53) and (52). ViennaRNA
web services were used to predict the secondary structure of SNHG1 and
miR-195 (72).

teractions occurring in particular biological contexts, exper-
imentally assessing the quality of the predicted interactions
in our network is a desirable goal. However, issues relative
to the fraction of interactions to be tested, the sensitivity of
the chosen experimental assay, the fraction of interactions
identifiable by the chosen assay, and its precision have to
be solved beforehand as proposed in the case of the assess-
ment of large-scale binary protein interactomes (54). More-
over, validating the predicted protein complex scaffolding
function of lncRNAs is yet another challenge that should
involve a wealth of experimental work –– e.g., knocking-
down of the lncRNA, determination of the localization of

the predicted associated complex, its effect on the cell, as
well as analysis of binding sites involved in the binding of
each protein by the lncRNA (55) –– which is beyond the
scope of our analysis. Overall, these reasons justify our in-
tegration of several orthologous functional datasets to val-
idate our interaction predictions and the possibility of the
lncRNA to be indeed functional in the cell.

A growing body of evidence suggests that a significant
fraction of lncRNAs has a function (36,37). Large-scale ef-
forts to determine or predict lncRNA function have used
their metabolic properties (35,36), sequence or structural
conservation (40,41), differential expression in disease (56),
lncRNA and protein-coding gene co-expression profiles
(57), variant analysis (58), as well as combinations thereof
(59). Methods to understand the function of individual
lncRNAs through direct interaction with proteins have been
exploited to a lesser extent, and are generally restricted to
the limited number of known RBPs assessed to date. Hence,
there is a clear need for novel large-scale methods to investi-
gate the functions of ncRNAs acting through protein–RNA
interactions, such as their ability to scaffold protein groups.

Although protein–RNA interactions are usually per-
ceived as a protein-centric mechanism, they are now also
envisioned as a RNA-centric question, where the interac-
tions are driven by the RNA (13). However, even for RNA-
centric experiments where the RNA is precipitated and its
interacting proteins are identified with MS, each experiment
seems to underestimate the number of proteins interacting
with lncRNAs. This was observed for the XIST lncRNA,
where five independent studies found >600 proteins in total
associated with XIST, of which only one is in common be-
tween the five studies (12). Hence, we used a method based
on proteome-wide and transcriptome-wide interaction pre-
dictions combined with tissue-expression information, and
predict the presence of millions of protein–RNA interac-
tions in human cells.

As our knowledge of proteins with RNA-binding capa-
bilities is still incomplete (13), we produced proteome-wide
protein–RNA interaction predictions to explore the action
of lncRNAs at a wider level, going beyond the current
knowledge. Indeed, using the catRAPID algorithm, we find
that many proteins not yet identified as RBPs have a high
propensity to interact with several lncRNAs, as RBPs do.
However, with increasingly stringent interaction-propensity
cutoffs, we observe a significant increase in the proportion
of proteins that are annotated as RBPs (e.g. Spearman’s
rank correlation coefficient = 0.985, P-value < 2.2e–16, for
proteins with at least five interaction partners; Supplemen-
tary Figure S7), even though many RBPs display milder
binding propensities (e.g. we retain only 79.3% of RBPs
with at least 10 interactions above score = 100; 6.6% for
score = 200). As RBPs are predicted to interact with lncR-
NAs with different interaction propensities, we selected an
interaction-propensity score cutoff (≥50) that would ensure
that we capture biological information, as applied in previ-
ous studies (60), while allowing for a large number of pos-
sible interactions to be detected.

Due to computational constraints, we have restricted our
analysis to lncRNAs of up to 1200 nucleotides, thus exclud-
ing well characterized moderately long or very long scaf-
folding molecules such as MALAT1, NEAT1 and XIST,
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that are known to bind dozens to hundreds of proteins
(61,62). In addition, lncRNA identification studies have
found from tens- to hundreds-of-thousands of novel lncR-
NAs (63) that are shown to vary according to the method-
ology used and experimental conditions. This suggests the
identification of human lncRNAs is far from complete,
but also that lncRNA identification methods are not yet
convergent (64). In our study, we therefore restricted our
analysis to lncRNAs from the curated dataset of GEN-
CODE, widely considered as the human gene annotation
reference standard. However, this also means that several re-
cently found lncRNA scaffolds such as the LUNAR-1 (65),
linc-RAM (66) and PARTICLE (67) lncRNAs are not yet
present in the GENCODE dataset.

Importantly, we identified for the first time 847 lncR-
NAs, accounting for ∼5% of the human long non-coding
transcriptome, that potentially act as RNA scaffolding
molecules for a total of 1517 protein complexes or mod-
ules, roughly half of the human protein complexes known
to date. As for protein–RNA interactions, knowledge of
the human protein complexome is not yet comprehensive.
Therefore, we used several datasets of protein complexes
to better cover the protein complex space. Indeed, these
datasets are largely non-redundant, with 0 to 12.4% of com-
plexes sharing > = 50% of their constituent proteins with
another complex of the same dataset (Supplementary Table
S6). In addition, the three datasets are largely complemen-
tary, with at the most 20.4% of complexes sharing ≥50% of
their proteins between datasets (Supplementary Table S7),
and none of the complexes being entirely shared between
datasets. A slightly higher inter-dataset overlap (26.2%) is
found for network modules, mostly due to the higher mod-
ule size compared to the protein complexes. As expected,
we found that each protein group dataset used allows iden-
tifying a different set of scaffolding lncRNA candidates and
the majority of the candidates (57%) are detected exclusively
with one dataset of protein groups (Supplementary Figure
S6B). Overall, this reveals the necessity of considering sev-
eral datasets for a global analysis of human cellular com-
plexes, as performed in this study.

Notably, our study indicates that RNA scaffolding may
be an important regulatory mechanism, not limited to the
few well-known cases. We indeed greatly expand the cur-
rent knowledge on RNA-mediated scaffolding, by propos-
ing that scaffolding occurs with a high prevalence and for
most cellular processes. Even though major cellular func-
tions such as telomere repair, signal peptide recognition and
translation are known to closely involve RNA components,
usual methods to identify cellular macromolecular com-
plexes routinely use an RNA nuclease step before protein
purification (2), thereby hindering the possible detection
of RNA components in protein complexes. It is therefore
likely that many ribonucleoprotein (RNP) complexes have
previously been overlooked. These can possibly be retraced
with a computational approach, as suggested by our results.
Moreover, cellular functions are not only performed via sta-
ble macromolecular complexes, but also through stepwise
reactions performed by molecules whose temporal and spa-
tial proximity may be mediated by other molecules, as exem-
plified by the MAYA lncRNA, which links two pathways re-
lated to cancer metastasis through protein interaction (68).

Such situations are also taken into account by our analy-
ses when investigating interaction enrichment of lncRNAs
to functional network modules. Indeed, our data revealed
hundreds of modules which may be organized by RNA scaf-
folding.

Several lncRNAs have been shown to bind protein com-
plexes by interacting with a single protein of the complex.
Examples include HOTAIR, MEG3 and Linc-RAM which
have been shown to regulate gene expression through their
binding to only one component of chromatin-remodeling
complexes (PRC2 (4), LSD1 (10), and MyoD–Baf60c–Brg1
complexes (66)). As our enrichment-based approach only
allows identification of lncRNAs that bind at least two pro-
teins of the same complex or module, single-protein-binding
lncRNAs are beyond the scope of our approach. However,
we report a short isoform of the MEG3 gene predicted to
interact with several proteins of a chromatin-remodeling-
related complex, suggesting that here again, some func-
tional protein–RNA interactions may have been missed by
experimental approaches, therefore emphasizing the power
of predictive computational analyses.

Overall, our findings suggest the widespread prevalence
of scaffolding function for lncRNAs. By proposing that
lncRNAs perform such a scaffolding function for a large
fraction of protein complexes and functional modules, we
further characterize their function and open new questions
regarding the importance and essential nature of RNA-
mediated scaffolding in the cell.
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72. Lorenz,R., Bernhart,S.H., Höner Zu Siederdissen,C., Tafer,H.,
Flamm,C., Stadler,P.F. and Hofacker,I.L. (2011) ViennaRNA
Package 2.0. Algorithms Mol. Biol. AMB, 6, 26.



 

2.2. MoonDB 2.0: an updated database of extreme multifunctional and          

moonlighting proteins 

Moonlighting proteins are a subset of multifunctional proteins that are able to perform several unrelated               

functions. Even though a few hundred cases of moonlighting proteins have been described, these were               

found mostly through serendipity, since clear procedures to identify secondary moonlighting functions are             

inexistent. Thus, the full prevalence of moonlighting proteins in a species is yet unknown. Moreover, the                

set of known moonlighting proteins may be biased to include the most extensively studied proteins, as                

well as for proteins with functions that are easily characterised (e.g. enzymatic activity, DNA-binding).              

Yet, identifying moonlighting proteins is important because these proteins could play relevant regulatory             

roles in both normal and pathological cells  (Jeffery, 2018) . In addition, drug-design needs to be aware of                 

the potential moonlighting functions of a protein chosen as drug target, in order to avoid unexpected                

side-effects due to possible interferences with an undisclosed function. Indeed, it has been suggested that               

moonlighting proteins are often associated to more than one disease, possibly explaining disease             

comorbidity patterns  (Zanzoni, Chapple and Brun, 2015) . Paramountly, methods dedicated to the            

discovery of moonlighting proteins large-scale are needed. 

The MoonGO method to identify extreme multifunctional proteins at a proteome-scale was developed by              

Christine Brun’s group in 2015  (Chapple  et al. , 2015) . This method employed for the first time a                 

combination of protein-protein interaction networks and functional annotations to identify human           

‘extreme multifunctional’ (EMF) proteins, defined as proteins whose multiple functions are very            

dissimilar to one another. While related to moonlighting proteins, whose definition may be too strict               

(Introduction, section 1.4.1), the term ‘extreme multifunctional’ proteins is used to englobe all proteins              

that have very dissimilar functions, regardless of their domain organisation or evolutionary history             

(Chapple and Brun, 2015) . 

Given that moonlighting proteins interact with different sets of proteins to perform their different              

functions, PPI networks can be used to identify these proteins. Indeed, the MoonGO pipeline (Figure 2.1)                

takes this into account. First, a PPI network is partitioned into groups of overlapping clusters, which often                 

represent functionally related proteins (Introduction, section 1.1.5), using the OCG algorithm  (E. Becker             

et al. , 2012) . In this way, proteins that belong to one or more clusters can be retrieved. Second, network                   

clusters are annotated according to the Gene Ontology (GO) annotations (Biological Processes) of their              

constituent proteins using a majority rule. Finally, EMF protein candidates are identified at the              
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intersection of clusters involved in unrelated biological processes according to PrOnto GO term             

association probabilities (Figure 2.1). PrOnto is an original tool developed with the specific purpose of               

identifying pairs of GO terms that are dissimilar to each other, and is based on the probabilities of finding                   

a pair of GO terms annotated to the same protein or to interacting proteins  (Chapple, Herrmann and Brun,                  

2015) . Overall, this multi-level approach ensures that the EMF proteins identified are not only connected               

to several groups of functionally-related proteins, but also annotated with functions that are highly              

dissimilar to each other. The initial application of the MoonGO pipeline to identify human EMF proteins                

retrieved 430 proteins that were deposited into MoonDB, a database of extreme multifunctional and              

moonlighting proteins, contain also a curated set of known human moonlighting proteins  (Chapple  et al. ,               

2015) . This set of proteins is much larger than other collections of experimental human moonlighting               

proteins. Moreover, the production of an extensive set of EMF proteins allowed to analyse for the first                 

time these proteins as a group, evidencing a feature signature particular to these proteins, such as a high                  

presence of SLiMs and ubiquitous tissue expression (Introduction, section 1.4.2)  (Chapple  et al. , 2015) . 

 

Figure 2.1  | The MoonGO pipeline used for the identification of EMF proteins.             
Figure from  (Chapple  et al. , 2015) . 
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By exploiting PPI networks and GO term annotations, the ability of the MoonGO pipeline to determine                

EMF proteins depends on data that is constantly being generated and updated. To be relevant to the                 

community, a database needs to be continuously up-to-date. Therefore, in this thesis I employed the               

MoonGO pipeline to produce novel EMF protein candidates using the latest protein-protein interaction             

and GO term annotations, leading to the development of MoonDB 2.0. Besides, MoonDB 2.0 now               

includes EMF protein predictions for other model organisms such as mouse, worm, fly and yeast, as well                 

as more manually curated moonlighting protein entries. The interface of MoonDB 2.0 was fully              

modernised and this database is now cross-referenced by the UniProtKB database, thus magnifying the              

exposure of the database to the general scientific community.  

As there are many open questions regarding moonlighting proteins, such as the regulation of their               

multiple functions, a systematically-detected dataset of extreme multifunctional proteins is of great value             

for large-scale analysis. In this thesis, this set of proteins is used to analyse the role of 3’UTRs in                   

regulating protein multifunctionality (Results, section 2.3). 

 

Ribeiro, DM , Briere G, Bely, B, Spinelli, L and Brun, C (2018) MoonDB 2.0: an updated database 

of extreme multifunctional and moonlighting proteins.  Nucleic Acids Research  (under minor 

revisions). 

MoonDB database available on:  http://moondb.hb.univ-amu.fr/  

Supplementary material is available on the  Appendix II 
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ABSTRACT 

MoonDB 2.0 ( http://moondb.hb.univ-amu.fr/ ) is a database of predicted and manually curated extreme            

multifunctional (EMF) and moonlighting proteins, i.e. proteins that perform multiple unrelated functions.            

We have previously shown that such proteins can be predicted through the analysis of their molecular                

interaction subnetworks, their functional annotations and their association to distinct groups of proteins             

that are involved in unrelated functions. In MoonDB 2.0, we updated the set of human EMF proteins (238                  

proteins), using the latest functional annotations and protein-protein interaction networks. Furthermore, for            

the first time, we applied our method to four additional model organisms - mouse, fly, worm and yeast -                   

and identified 54 novel EMF proteins in these species. In addition to novel predictions, this update                

contains 63 human and yeast proteins that were manually curated from literature, including descriptions              

of moonlighting functions and associated references. Importantly, MoonDB’s interface was fully           

redesigned and improved, and its entries are now cross-referenced in the UniProt Knowledgebase             
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(UniProtKB). MoonDB will be updated once a year with the novel EMF candidates calculated from the                

latest available protein interactions and functional annotations. 

INTRODUCTION 

Moonlighting, multitask and extreme multifunctional proteins are proteins that perform multiple unrelated            

biological functions, regardless of their domain organisation and their evolutionary history (1-3). A             

canonical example of a moonlighting protein is the human aconitase, an enzyme of the tricarboxylic acid                

cycle (TCA cycle) that also functions as a translational regulator, upon a conformational change (4).               

Extreme multifunctional and moonlighting proteins are present throughout the evolutionary tree, and their             

unrelated functions may be performed in different tissues or cellular locations, sometimes associated             

(either as a cause or a consequence) to a change in their interaction partners, conformation or oligomeric                 

states (5). These proteins are often in the intersection - and may coordinate - several pathways or                 

responses to different stimuli (6). Despite their importance, the moonlighting functions of proteins have              

usually been identified by serendipity, since clear procedures to identify secondary functions have not              

been proposed. As a consequence, the prevalence of moonlighting proteins in proteomes was unknown.              

This prompted us to provide in 2015, MoonGO, a computational pipeline to identify extreme              

multifunctional (EMF) proteins on a large scale (2). EMF proteins were identified by exploiting the               

topology of protein-protein interaction networks and protein GO term annotations, without any  a priori              

knowledge of moonlighting. The first version of MoonDB (2) contained the EMF proteins predicted by               

MoonGO, complemented with a careful manual curation of literature of moonlighting or EMF proteins.              

Here, we present MoonDB 2.0, an update that, besides improving predictions and manual curation for               

human, also includes predicted and curated entries for four other model organisms - mouse, fly, worm and                 

yeast. Our main focus is to provide users with an extensive set of predicted and curated EMF and                  

moonlighting proteins, describing their functions comprehensively. 
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MATERIALS AND METHODS 

Prediction of extreme multifunctional proteins 

The method used to predict extreme multifunctional (EMF) proteins was first described in Chapple et al.                

(2). Briefly, we perform a large-scale search for EMF proteins by  i) identifying functionally-dissimilar pairs               

of Biological Process Gene Ontology (GO) terms with PrOnto (7) that uses two metrics of GO  functional                 

dissimilarity  based on the frequency of co-occurrence of GO term pairs in protein annotations;  ii)               

clustering the protein interactome into overlapping clusters of proteins using the OCG algorithm (8);  iii)               

annotating each cluster with functions (Biological Process GO terms) based on the annotations of its               

constituent proteins;  iv)  identifying proteins that belong to at least two clusters and are annotated to                

dissimilar functions (after having inherited the annotations of their clusters in addition to their own), hereby                

labeled as EMF proteins. We used protein-protein interaction data gathered on December 2017 from the               

PSICQUIC webservice (9), processed as described in Chapple et al. 2015 (2). We only include               

experimentally identified binary protein-protein interactions, by considering only interactions from certain           

experimental methods (Supplementary Table S2). GO term annotations and ontologies were collected            

from the Gene Ontology Consortium (10) on December 2017. 

Criteria for manual curation 

We provide a list of  bona fide moonlighting and extreme multifunctional proteins manually curated from               

literature over the years. Each entry was confirmed independently by at least two members of our team.                 

Specifically, we confirm that the several functions are indeed distinct to each other and not a by-product of                  

the same function under different circumstances (e.g. regulation of two distinct pathways through the              

same mechanism, such as phosphorylation). In each case, publications describing the different functions             

of a protein are provided. When available, the conditions that may be related to the change in function are                   

also described (e.g. cellular localisation, oligomerization). 

Database architecture and web interface 
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MoonDB 2.0 has been developed using the SQLAlchemy (v1.2.0) Python (v2.7.6) library for data storage.               

The web interface is mainly written in PHP (v7.1.14) and JQuery (v3.2.1) and is powered by the Drupal                  

(v8.4) Content Management System (CMS). The database was deployed with Docker (v17.09.0-ce) to             

ensure stability. We gathered information on protein domains, publications and diseases from UniProtKB             

(11) in January 2018. 

DATABASE CONTENT AND WEB INTERFACE 

A new dataset of extreme multifunctional proteins 

In MoonDB 2.0 we have predicted 292 extreme multifunctional (EMF) proteins in human, and - for the first                  

time - also in mouse, fly, worm and yeast model species (Supplementary Table S1). These have been                 

created  de novo using the latest protein-protein interaction networks and GO term annotations. The              

power to predict EMF proteins is dependent on the underlying coverage and quality of the protein                

interactomes and GO term annotations used (Supplementary Table S1). The new human EMF protein              

dataset and the one in the previous MoonDB version overlap significantly (Supplementary Figure S1).              

Interestingly, the analysis of the EMF signature on the new set of EMF proteins (as performed in Chapple                  

et al  (Chapple et al., 2015) ), shows that the new set of EMF proteins produces a similar signature in terms                    

of network properties, tissue expression, as well as domain, structural disorder and Eukaryotic linear motif               

(ELM) presence, among other features (Supplementary Figure S2). Notably, as observed in other studies              

(2,12,13), moonlighting and EMF proteins are often associated to disease, a feature also observed for the                

set of human EMF proteins when considering disease-associations from OMIM (P = 2.2x10 -7 , odds ratio =                

2.10; one-tailed Fisher's Exact test).  

Besides EMF predictions, in this update we also manually curated 15 yeast moonlighting proteins,              

describing their unrelated functions, specifying which conditions may influence moonlighting (e.g. cellular            

localisation) and referencing relevant publications. Similarly, we added functional descriptions for 47            

human moonlighting proteins. All these proteins constitute the ‘Reference Set’. 

57 

https://www.wizdom.ai/cite-in-google-docs/v2?cid=f20f7a39e47c812;;;;;


 

A new user-friendly interface and additional content 

To provide our visitors with a clear, fast and easy-to-use database, we completely redesigned MoonDB’s               

web interface and added new functionalities. It is now possible to search a MoonDB entry by gene name,                  

UniProtKB identifier (ID) or UniProtKB accession (AC). Moreover, the ‘Browse’ page (Figure 1), which              

displays all protein entries in MoonDB, can now be filtered through any column, thus allowing searches by                 

species, full name of the protein and its presence in the ‘Reference Set’. These filters can also be used in                    

combination with each other to make more advanced queries. 

 

Figure 1. MoonDB 2.0 browse page.  The browse page displays the entries of all MoonDB 2.0 proteins                 

and can be searched interactively. For example, the figure displays results with the “Species” and               
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“Reference Set” filters active. The ‘MoonDB ID’ can be clicked to access each individual MoonDB 2.0                

protein entry. 

Importantly, MoonDB specifies which pairs of dissimilar (i.e. unrelated) functions led us to propose each               

predicted EMF and curated protein as moonlighting/extreme-multifunctional (Figure 2, under “MoonDB           

Dissimilar Functions”). Furthermore, we provide the set of GO terms associated to the protein (Figure 2,                

under “Network Module GO Annotations”), determined by its participation in network clusters with             

annotated functions ( guilt-by-association principle), and the GO terms directly annotating the protein. This             

information is pertinent in the context of multifunctionality, since EMF proteins associate with several              

groups of proteins to perform alternative functions. In addition, since the ability to perform unrelated               

functions may be correlated with the presence of a protein in unrelated subcellular locations, in MoonDB                

2.0 we identified pairs of unrelated cellular component GO terms associated to each protein with PrOnto                

(7) (Figure 2, under “Protein GO Annotations”). Lastly, to fully describe moonlighting and extreme              

multifunctional proteins, we further cross-link functional data with other orthogonal information such as the              

protein association to disease, protein domains and publications associated to the protein. 
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Figure 2. Example of a MoonDB’s protein entry.  Protein entries provide extensive functional             

information such as the dissimilar function annotations and GO term annotations from network modules,              

as well as publications, diseases and domains associated  with  the protein. 
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DISCUSSION AND CONCLUSION 

The MoonDB 2.0 database is accessible at  http://moondb.hb.univ-amu.fr/ and now contains data for             

human, mouse, fly, worm and yeast. MoonDB 2.0 stands out compared to the two other current                

databases of moonlighting proteins MoonProt (14) and Multitask-II (12) because MoonDB 2.0 combines             

curated and predicted proteins. We consider our dataset to be more comprehensive as well as highly                

complementary to other available databases. Whereas other databases are dependent on the available             

literature, and thus limited to providing information which is already known, our dataset of predictions               

goes beyond current propositions of moonlighting and provides novel candidates. EMF prediction is             

large-scale and detection does not require  a priori knowledge besides protein interactions and GO term               

annotations. 

Importantly, as protein interactomes and GO term annotations of model organisms will continue to grow               

towards completion in the following years, MoonDB will be updated every year with EMF predictions               

made from the latest interactomes and GO term annotations. Both power and reliability will progressively               

increase with future releases. This will be particularly important in the cases of mouse, which possesses                

high-quality GO term annotations (average of ~19 GO terms per protein), but an incomplete protein               

interactome (<15% of the proteome covered), as well as in fly, whose interactome is better covered                

(>40% proteome), but GO term annotations are available for less than half of the interactome.               

Consequently, only few EMF proteins in mouse and fly were detected with our method. However, 5 out of                  

14 mouse EMF proteins are orthologs of human EMF proteins, suggesting that even when data is limited,                 

the EMF proteins predicted are reliable. Indeed, the ability for genes to be multifunctional is conserved                

across orthologs of different organisms (15) and some orthologous proteins are known to have              

moonlighting functions in different organisms (16). Notably, orthologs were also found between human             

and worm (UBE2I/ubc-9 and SUMO1; 2 out of 6 MoonDB 2.0 worm entries) and even between the distant                  

human and yeast species (SKP1 gene), although our method does not use ortholog relationships for EMF                

prediction. Together, these findings further underline the quality of our predictions and designates             
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MoonDB 2.0 as a valuable data repository for one interested in studying the extreme multifunctionality               

and moonlighting of proteins, possibly across species.  

We believe that MoonDB is of interest not only to bioinformaticians working on multifunctionality, but also                

to any biologist who may profit from knowing whether their protein of study is likely to perform unexpected                  

functions aside from the ones generally known. Due to the high frequency of EMF proteins involved in                 

multiple diseases, often in comorbidity (13), the extensive functional information provided in MoonDB 2.0              

is of interest to help designing therapies that are aware of the several functions of the protein.  Importantly,                  

MoonDB 2.0 is now cross-referenced in the UniProt Knowledgebase (UniProtKB) (11). We consider that              

this greatly magnifies the exposure of our database to the general scientific community, as UniProtKB is                

the reference database for protein-related data and widely used by biologists, biochemists,            

bioinformaticians and others.  

AVAILABILITY 

MoonDB 2.0 is freely available at  http://moondb.hb.univ-amu.fr/ . Files containing EMF protein lists for             

each species, as well as the protein-protein interaction networks used in this study are freely available for                 

download in MoonDB 2.0, and can be used in accordance with the GNU Public License and the license of                   

primary data sources. 
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2.3. Prediction of human 3′UTR-protein complex assembly reveals a         

role in the regulation of protein multifunctionality 

3’UTRs are known to influence protein synthesis and the fate of mRNAs. Berkovits & Mayr, in 2015,                 

found that 3’UTRs can also post-translationally affect the function of the protein encoded by the mRNA                

molecule they belong to  (Berkovits and Mayr, 2015) . Particularly, 3’UTRs were shown to promote the               

formation of co-translational protein complexes that interact with the newly synthesised protein,            

eventually altering its subcellular localisation, in a mechanism dubbed 3′UTR–dependent protein           

localisation (UDPL). This mechanism has been demonstrated to translocate the CD47 protein to the              

plasma membrane, but its full prevalence is unknown.  

Moonlighting proteins are able to perform several unrelated functions, often promoted by a change of               

environment such as a change of cellular localisation  (Jeffery, 2018) . Interestingly, many moonlighting             

proteins are known to have alternative functions when localised in the plasma membrane, but most of                

them are translocated to the plasma membrane through yet unknown mechanisms  (Amblee and Jeffery,              

2015) . Christine Brun’s group has previously made efforts to categorise human EMF proteins, describing              

several distinguishing features of these proteins, including a higher number of protein interactions,             

expression in a wide number of tissues and a significant involvement in disease  (Chapple  et al. , 2015) . 

In this thesis, I used the up-to-date set of human EMF proteins from MoonDB 2.0, described in the                  

previous section (Results, section 2.2), and found that these proteins often have more isoforms and longer                

3’UTRs than other proteins, thus expanding the feature signature of moonlighting proteins. Moreover, I              

confirmed that these proteins are more often associated to the plasma membrane, even though most lack                

N-terminal signals normally associated to plasma membrane translocation. Based on these findings, I             

study whether a mechanism such as the UDPL could explain the multifunctionality of EMF proteins,               

particularly through a change in cellular localisation. For this, we predicted the formation of              

3’UTR-protein complexes by the 3’UTRs of EMF proteins, based on the largest available experimental              

datasets of protein-protein and protein-3’UTR interactions. This approach rendered us with more than a              

thousand possible complexes involving EMF proteins, including complexes potentially associated with           

mechanisms alike the UDPL. Indeed, this study proposes new ways in which EMF protein localisation,               

and thus its cellular function, may be affected. Furthermore, our study predicts that 3’UTR-protein              

complex formation occurs frequently, indicating that 3’UTR-protein complex formation may be a            
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common phenomenon in human cells and may play other roles beyond cellular localisation (Discussion,              

section 3.2.2).  

Further analysis of the results presented here will confirm whether the 3’UTR-protein complexes             

predicted could represent cases of regulation through differential RBP binding of alternative 3’UTRs, as              

in the case of CD47 and UDPL. For this, the RBP binding to the various 3’UTR isoforms (when present)                   

of the mRNAs of EMF proteins will be evaluated, using up-to-date datasets of RBP-3’UTR interactions.  

Furthermore, in this study I have predicted that, in general, 3’UTR-protein complexes occur more often               

than expected by chance. Future work in this project will involve the experimental validation of several                

predicted 3’UTR-protein complexes potentially involved in the translocation of EMF proteins to the             

plasma membrane. Indeed, to fully understand the likelihood of 3’UTR-protein complex formation and             

the accuracy of our predictions, several complexes should be experimentally validated. Experimental            

methods that label proteins during translation and follow the newly synthesised protein cellular             

localisation may be used to validate such complexes  (Iwasaki and Ingolia, 2017) . These methods include               

fluorescence-activated cell sorting-based assays using amino acid puromycylation (SUnSET method) or           

fluorescent tags (e.g. FUNCAT method)  (Schmidt  et al. , 2009; Dieterich  et al. , 2010) . By combining these                

techniques with  in situ proximity ligation (PLA) assays, it is possible to monitor the translation of a                 

specific target protein  (tom Dieck  et al. , 2015) . Such methods have subcellular resolution and can be used                 

to assess the cell surface localisation of proteins. Moreover, these methods could validate the 3’UTR               

regulation of cellular localisation by comparing the localisation of proteins synthesised from mRNAs             

differing only in their 3’UTRs. Other proteins involved in the process could further be identified through                

mass spectrometry. In addition, an alternative way for mRNAs to regulate the cellular localisation of the                

protein they encode is to employ local translation of the protein  (Glock, Heumüller and Schuman, 2017) .                

Interestingly, methods that measure protein synthesis localisation have found translation to occur in the              

nucleus  (David  et al. , 2012) , and 3’UTR isoform alternative usage has been found to affect mRNA                

translation in axons and dendrites of neuronal cells  (Glock, Heumüller and Schuman, 2017) . 

Finally, we plan to expand the computational search of 3’UTR-protein complexes to the whole human               

proteome, with the aim of ascertaining the general prevalence of these complexes in the cell, outside the                 

context of multifunctionality. 
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Abstract 

Moonlighting proteins are a subset of multifunctional proteins that perform multiple unrelated functions.             

The several functions of moonlighting proteins can be regulated in space and time in diverse ways, such                 

as by a change in cellular localisation. Indeed, many moonlighting proteins perform different functions              

when localised to the plasma membrane, but most are translocated by unknown mechanisms. Recently, a               

mechanism termed 3′ UTR–dependent protein localisation (UDPL) demonstrated the ability of alternative            

3’UTRs in regulating the cellular localisation of newly synthesised proteins through the co-translational             

formation of 3’UTR-protein complexes. This mechanism has been demonstrated to translocate the CD47             

protein to the plasma membrane, but its full prevalence is unknown. Here, we set out to decipher the                  

extent of 3'UTR-protein complex formation in human proteins and evaluate their role in regulating cellular               

localisation and multifunctionality. For this, we used 238 computationally identified ‘extreme           

multifunctional’ (EMF) proteins, moonlighting protein candidates, and revealed that mRNAs encoding           

these proteins have a high number of alternative 3’UTR isoforms. Using large-scale protein-protein and              

RBP-3’UTR interaction networks, we comprehensively predicted all the 3'UTR-protein complexes          

involving EMF proteins plausible to be formed. We identified 1557 possible 3'UTR-protein complexes             

formed by several hundred distinct protein components, involving 140 EMF proteins, indicating that             

3’UTR-protein complex formation is a common phenomenon in human cells. Notably, these complexes             

include 42 EMF proteins (out of 140), including the Alpha-enolase, which have been found in the plasma                 

membrane but lack N-terminal translocation signals, hinting that the UDPL mechanism may be widely              

employed in moonlighting protein translocation to the plasma membrane.  

Introduction 

Constructing a complex organism does not require a large number of genes. Rather, organism complexity               

is provided by the ensemble of all available functions and their regulation. Protein multifunctionality, like               

alternative splicing, allows cells to make more with less. Moonlighting proteins are a subset of               
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multifunctional proteins that perform multiple unrelated functions (Piatigorsky and Wistow, 1989; Jeffery,            

1999). A well-studied example of a moonlighting protein is the human aconitase, an enzyme of the                

tricarboxylic acid cycle (TCA cycle) that also functions as a translation regulator, upon a iron-dependent               

conformational change (Volz, 2008).  

Regardless of their importance, the moonlighting functions of proteins have usually been identified by              

serendipity, since clear procedures to identify secondary functions are inexistent (Copley, 2012). Recently,             

we have made available in MoonDB 2.0 (http://moondb.hb.univ-amu.fr/; Ribeiro, Briere, Bely, Spinelli &             

Brun, in revision) a set of 238 human moonlighting protein candidates – termed “extreme multifunctional”               

(EMF) proteins – that were computationally identified through a large-scale approach that analyses             

protein-interaction networks and protein annotations that we previously proposed (Chapple et al., 2015).             

Previously, we have demonstrated that this group of proteins is characterized by specific features,              

constituting a signature of extreme multifunctionality (Chapple et al., 2015). For example, within a protein               

interactome, a typical EMF protein is likely to have a high number of protein partners and to be central to                    

the network. Moreover, EMF proteins contain more short linear motifs (SLiMs) than other proteins              

(Chapple et al., 2015). These short conserved sequences are mostly located in structurally disordered              

regions and can mediate transient interactions and be used as molecular switches between functions              

(Perkins et al., 2010). In addition, EMF proteins are more likely to be involved in multiple diseases                 

(Zanzoni, Chapple and Brun, 2015) and to be expressed ubiquitously, suggesting that they can perform               

alternative functions in different tissues (Chapple et al., 2015). 

The manner in which the distinct functions of moonlighting proteins can be performed and are regulated                

are largely unknown. However, in some cases the multiple functions of moonlighting proteins have been               

found to be performed in different tissues or cellular locations, sometimes associated to a change in their                 

interaction partners, conformation or oligomeric states (Jeffery, 2014). Indeed, the presence of a             

moonlighting protein in different cellular compartments (e.g. nucleus, cytoplasm, plasma membrane) has            

been found in many cases to be responsible for a change in function (Ostrovsky de Spicer and Maloy,                  

1993; Jeffery, 2018). Several intracellular chaperones, enzymes in glycolysis and citric acid (TCA) cycle              

pathways, as well as other ‘housekeeping’ proteins, have been found to function as cell surface receptors                

(Amblee and Jeffery, 2015; Jeffery, 2018). For instance, the Hyaluronan-mediated motility receptor            

(HMMR/RHAMM) protein acts intracellularly as a mitotic-spindle or centrosomal protein (Maxwell et al.,             

2003; Joukov et al., 2006) in normal cells, whereas extracellularly, RHAMM is a hyaluronan-binding              

protein and partners with the CD44 cell-surface protein, controlling signalling through RAS proteins             

(Maxwell, McCarthy and Turley, 2008) in tumour cells. Interestingly, the RHAMM protein lacks a              

membrane spanning domain or other export signals such as a N-terminal signal peptide, in contrast to                

many other cell-surface receptors (Simpson, Mateos and Pepperkok, 2007). Notably, out of 30 different              
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multi-species moonlighting proteins having different functions intracellularly and on the cell surface, none             

contained any signal or motif for cell surface targeting, such as an N-terminal signal peptide or a LPXTG                  

motif. This suggests their cellular localisation may be regulated by a yet unknown mechanism (Amblee               

and Jeffery, 2015). 

In a breakthrough work, Berkovitz & Mayr described in 2015 (Berkovits and Mayr, 2015) a novel plasma                 

membrane translocation mechanism, termed UTR-dependent protein localisation (UDPL). This         

mechanism involves the interaction between 3’ untranslated regions (UTR) and RNA-binding proteins            

(RBPs) during translation, facilitating the formation of protein complexes that interact with the nascent              

peptide chain (Berkovits and Mayr, 2015; Mayr, 2016, 2017). In this manner, 3'UTRs were shown to affect                 

the function of its cognate proteins, without recourse to amino acid changes. The relationship between               

alternative 3'UTRs, subcellular localisation and protein complex formation has been demonstrated in            

detail for CD47, a cell-surface protein involved in a range of cellular processes, including apoptosis,               

adhesion, migration and phagocytosis (Soto-Pantoja, Kaur and Roberts, 2015). Due to the UDPL             

mechanism, whereas the CD47 protein translated from a short 3'UTR-mRNA is retained in the              

endoplasmic reticulum, the protein translated from the long 3'UTR-mRNA localises to the plasma             

membrane. This is achieved through the recruitment by the long 3'UTR-mRNA of specific protein partners               

(SET protein and RAC1), necessary for addressing the CD47 protein to the plasma membrane. The               

formation of this complex is mediated by the HuR RBP (also known as ELAVL1), by recognising a binding                  

site on the long 3'-UTR that is absent from the short one (Berkovits and Mayr, 2015).  

It is thought that the UDPL mechanism has the potential to be a widespread trafficking mechanism for                 

membrane proteins (Berkovits and Mayr, 2015). Moreover, it has been proposed that through this              

mechanism alternative 3’UTRs could play a role in mediating the multifunctionality of proteins (Mayr,              

2017). However, so far, this mechanism has only been proposed for a few other cell-surface proteins                

(CD44, ITGA1 and TNFRSF13C) and there is a need to interrogate its full prevalence and determine                

whether the formation of 3'UTR-protein complexes is a major contributor to the diversification of protein               

function. 

In this study, we set out to reveal the extent of 3'UTR-protein complex formation in human proteins and                  

determine its role in cellular localisation and multifunctionality by investigating EMF proteins (moonlighting             

protein candidates). We first determined that mRNAs encoding EMF proteins have longer and more              

3’UTR isoforms, and that EMF proteins are present in more cellular locations (including the plasma               

membrane) than other groups of proteins, therefore confirming that EMF proteins represent a pertinent              

model system to study UDL. We then predict all 3'UTR-protein complexes plausible to be formed with the                 

238 EMF proteins, using large-scale protein-protein and RBP-3’UTR interaction networks. With this            

approach, we identified more than a thousand possible 3'UTR-protein complexes on more than 140 EMF               
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proteins, indicating that formation of 3’UTR-protein complexes may be a common phenomenon.            

Moreover, among the 140 EMF proteins, we identify 42 that have been found in the plasma membrane                 

but lack N-terminal translocation signals. Several of these proteins are predicted to participate to              

3’UTR-protein complexes with proteins involved in protein transport, suggesting the UDPL mechanism or             

similar mechanisms may be widely employed in moonlighting protein translocation to the plasma             

membrane. 

Experimental Procedures 

Protein-protein interaction network, EMF proteins and protein groups 

Predicted human extreme multifunctional (EMF) proteins (238 proteins) and a human protein-protein            

interaction (PPI) network (14046 proteins, 92348 interactions) were downloaded from MoonDB 2.0            

(http://moondb.hb.univ-amu.fr/; Ribeiro, Briere, Bely, Spinelli & Brun, in revision) on January 2018            

(Chapple et al., 2015). The human PPI network was constructed by interactions retrieved from the               

PSICQUIC web service on January 2018, as described in (Chapple et al., 2015). This PPI network does                 

not contain interactions between the same protein (‘self interactions’). Network modules from the PPI              

network were extracted using OCG (Becker et al., 2012), a clustering algorithm that allows proteins to                

belong to more than one cluster. EMF, ‘multi-clustered’ and ‘mono-clustered’ protein groups were then              

identified as described in (Chapple et al., 2015)EMF proteins (238 proteins) are proteins that belong to                

two or more network modules whose GO term annotations (Biological Processes) contain at least two               

terms that are dissimilar to each other according to PrOnto (Chapple, Herrmann and Brun, 2015). Control                

groups are formed by ‘mono-clustered’ proteins that belong to only one network module (10468 proteins)               

and ‘multi-clustered’ proteins that belong to more than one network module annotated to similar functions,               

therefore, not EMF proteins (3340 proteins). Analysis involving the ‘proteome’ protein group used a              

human proteome (20349 proteins) retrieved from UniProt (‘reviewed’ proteins only) on June 2018 (UniProt              

Consortium, 2018). 

Datasets of 3’UTRs and polyadenylation sites 

Ensembl v90 spliced 3'UTR sequences for all human transcripts were downloaded from the Ensembl              

BioMart service (Kinsella et al., 2011). The maximum 3’UTR length was calculated for each protein in the                 

human proteome (UniprotKB AC) by selecting the longest 3’UTR among all transcripts encoding for a               

certain protein. Genome-wide polyadenylation sites for human were downloaded from APADB v2 (Müller             

et al., 2014) as well as PolyASite version r1.0 (Gruber et al., 2016), on December 2017. APADB                 

polyadenylation sites per kb were calculated for proteins produced from transcripts with 3’UTRs longer              

than 1000 nt, taking into account the length of the longest 3’UTR. For PolyASite, polyadenylation sites on                 
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terminal-exon “TE” category were considered. Gene names and Ensembl transcript IDs were converted to              

UniprotKB AC using the Uniprot ID mapping tool (UniProt Consortium, 2018).  

RBP-3’UTR interaction network 

Interactions between RBPs and 3’UTRs were retrieved from the Atlas of UTR Regulatory Activity (AURA)               

v2.4.3 database (AURAlight dataset) on January 2018 (Dassi et al., 2014). The AURA database contains               

interactions between 3’UTRs and RBPs collected and mapped from various experiments, including            

several types of cross-linking and immunoprecipitation (CLIP) methods. Gene and coding-transcript           

identifiers were mapped to reviewed UniprotKB ACs using UniProt ID cross-referencing files            

(HUMAN_9606_idmapping.dat) (UniProt Consortium, 2018). Only interactions involving proteins present         

in the PPI network were used. In total, 469266 interactions between 201 RBPs and the 3’UTRs of 11494                  

proteins were used. 

Prediction of 3’UTR-protein complexes 

3’UTR-protein complexes were predicted with in-house Python v2.7 scripts using protein-protein and            

RBP-3’UTR interaction networks described above. RBP-3’UTR interactions were converted to          

RBP-’nascent’ protein interactions through the correspondence between the 3’UTR’s mRNA and the            

protein encoded by the mRNA, using UniProt ID cross-referencing files (HUMAN_9606_idmapping.dat)           

(UniProt Consortium, 2018). Each 3’UTR-protein complex includes: (i) an interaction between the RBP             

and the nascent protein (based on the RBP-3’UTR interaction dataset), (ii) an interaction between the               

intermediate protein (i.e. the protein which interact with both the RBP and the nascent protein) and the                 

nascent protein, (iii) an interaction between the intermediate protein and the RBP. We only considered the                

presence of one intermediate protein, and complexes formed without any intermediate protein were not              

examined (i.e., RBP interacting directly with the nascent protein). Since the PPI network used does not                

contain self interactions, the intermediate protein must be different to the nascent and the RBP.               

3’UTR-protein complexes were detected for EMF, multi-clustered and mono-clustered groups of nascent            

proteins. Only proteins with (i) protein-protein interactions, (ii) 3’UTR-RBP interactions and (iii) presence             

in at least one HPA tissue (see below) were liable to be assessed for 3’UTR-protein complexes as                 

‘nascent’ proteins. Overall, these included 7373 nascent proteins, as well as 173, 2078 and 5122 proteins                

on the EMF, multi-clustered and mono-clustered protein groups, respectively. Overall, 8260 and 157             

proteins formed the intermediate and RBP background sets, respectively. 3’UTR-protein complexes were            

further filtered according to protein tissue presence, as described below. 

Protein tissue presence filter 
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Tissue protein presence from Human Protein Atlas (HPA) version 18 (Jan-2018) (Uhlén et al., 2015) was                

used to filter 3’UTR-protein complexes. This dataset contains data on 58 normal tissues. Information on               

cell type associated to tissue names was not used in this study. Gene names and Ensembl Gene IDs                  

were converted to 13044 reviewed UniprotKB AC using the Uniprot ID mapping tool (UniProt Consortium,               

2018). Proteins with reliability score (level of reliability of the protein expression pattern) indicated as               

‘uncertain’ and proteins with presence level ‘not detected’ were excluded. We only considered             

3’UTR-protein complexes where all proteins of the complex are present in at least one of the 58 tissues. 

Proteins localised in plasma membrane  

Plasma membrane proteins were retrieved from two datasets: (i) UniProt (UniProt Consortium, 2018),             

querying reviewed Homo sapiens proteins with the GO term ‘plasma membrane’ (GO:0005886) (4602             

proteins) and (ii) plasma membrane proteins experimentally detected by HPA version 18 (Uhlén et al.,               

2015), querying for the subcellular locations “plasma membrane” and “cell junctions” (1734 genes             

mapped to 1776 UniProtKB ACs using the UniProt ID mapping tool). Note that both datasets include                

proteins that are integral to the plasma membrane (e.g. membrane receptors) as well as peripheral               

membrane proteins that may attach to integral membrane proteins or penetrate the peripheral regions of               

the membrane (e.g. receptor-interacting proteins). Information on the presence or absence of signal             

peptide and transmembrane domains was obtained from UniProt on June 2018 (UniProt Consortium,             

2018). The set of 7373 nascent proteins liable to form 3’UTR-protein complexes (i.e. having              

protein-protein and protein-RNA interactions, as well as present in HPA), even though not enriched in               

plasma membrane proteins, contain a higher proportion of proteins localised in plasma membrane without              

a signal peptide or transmembrane domains than the proteome (51.0% using UniProt data; 835 out of                

1636 plasma membrane proteins). Thus, to avoid potential biases, statistical comparisons were done             

against this set of proteins instead of the proteome in plasma membrane-related analysis. 

Results 

3’UTRs of mRNAs encoding extreme multifunctional proteins are longer and more diverse 

The usage of alternative 3’UTRs has been found to regulate tissue-specific expression and subcellular              

localisation of proteins (Lianoglou et al., 2013; Berkovits and Mayr, 2015). Correspondingly, the several              

functions of moonlighting proteins have been found to be regulated by their tissue-specific expression and               

subcellular localisation, hinting that 3’UTRs could play a role in moonlighting protein regulation (Jeffery,              

2014). Thus, we first set out to determine if moonlighting proteins often display alternative 3’UTRs. For                

this, we used the MoonDB 2.0 database that contains extreme multifunctional (EMF) proteins,             

moonlighting protein candidates, identified from protein-protein interaction (PPI) networks and Gene           
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Ontology (GO) annotations (see Experimental Procedures) (Chapple et al., 2015). We recently updated             

this database, which now contains 238 human EMF proteins (Ribeiro, Briere, Bely, Spinelli & Brun, in                

revision).  

Here, using 3’UTR models from the Ensembl database (see Experimental Procedures), we have found              

that mRNAs encoding EMF proteins have significantly longer 3' untranslated regions (3'UTRs) compared             

to the mRNAs of (i) all human proteins (‘proteome’), (ii) proteins in the interactome that belong to several                  

OCG protein clusters but are not considered EMF proteins due to lack of dissimilar GO terms                

(‘multi-clustered’; 3340 proteins), (iii) proteins in the interactome that belong to only one OCG protein               

cluster (‘mono-clustered’; 10468) (Figure 1a). Moreover, using polyadenylation sites from APADB and            

PolyASite databases (Müller et al., 2014), we found that mRNAs encoding EMF proteins bear a higher                

number of alternative polyadenylation (APA) sites in 3’UTRs than mRNAs encoding the other sets of               

proteins (Supplementary Material Figure S1). This trend is still observed when accounting for the              

previously observed differences in 3’UTR length between the protein groups, by calculating the number of               

APA sites per kb of 3’UTR (Figure 1b). 

Consistent with the previous findings, when counting transcript models with distinct 3’UTRs using             

Ensembl annotations (Kinsella et al., 2011), EMF proteins have significantly more 3'UTR isoforms than              

the proteome, as well as multi-clustered or mono-clustered proteins (Mann Whitney U, two-sided FDR <               

5%, after applying the Benjamini-Hochberg procedure; Supplementary Material Figure S2). 

Figure 1. 3’UTR-related features of EMF proteins.  (a) Comparison of maximum 3’UTR lengths.  (b) Number of                
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polyadenylation (polyA) sites per kb of 3’UTR. Only transcripts with 3’UTRs longer than 1000 nt were considered.                 
‘EMF’ represents the MoonDB 2.0 moonlighting protein candidates. ‘Mono-clustered’ represents the proteins in the              
interactome that belong to only one protein cluster. ‘Multi-clustered’ proteins in the interactome that belong to several                 
protein clusters but are not considered EMF proteins. Mann-Whitney U tests were performed to test for statistical                 
significance. The Benjamini-Hochberg procedure was applied for multiple test correction. Significance: ‘*’ indicates a              
FDR < 0.05; ‘**’ indicates a FDR < 0.01; ‘***’ indicates a FDR < 0.001. 

The prevalence of transcript isoforms with distinct 3’UTR have been found to differ between cell types and                 

developmental stages, suggesting that the production of transcripts differing in 3’UTRs helps to achieve              

tissue- or developmental- specificity (Ulitsky et al., 2012; Lianoglou et al., 2013). EMF proteins have both                

longer 3’UTRs and more alternative 3’UTR isoforms, potentially produced by APA events. Together, these              

results suggest that mRNAs encoding EMF proteins are more likely to be regulated by their 3'UTRs than                 

other protein groups. 

EMF proteins are present in more cellular locations, including the plasma membrane 

Moonlighting proteins have been found to perform different functions when localised in different cellular              

compartments, such as the bacterial PutA and the Alpha-enolase (ENO1 gene) proteins (Ostrovsky de              

Spicer and Maloy, 1993; Díaz-Ramos et al., 2012). Using ‘Cellular Component’ (CC) GO term annotations               

of EMF proteins, we found that EMF proteins are associated to significantly more CC GO terms than                 

other groups of proteins (Figure 2a). Indeed, on average a EMF protein is associated to 7.8 CC GO                  

terms, whereas the proteome average is 4.0 CC GO terms. 

Next, given the fact that many moonlighting proteins have been found to perform moonlighting functions               

when associated to the plasma membrane, as in the case of the RHAMM receptor, we researched if EMF                  

proteins are often associated to the plasma membrane (Maxwell, McCarthy and Turley, 2008; Amblee and               

Jeffery, 2015). Indeed, using proteome-wide GO term annotations to plasma membrane (GO:0005886),            

we found that 65 out of 238 (27.3%) EMF proteins have been found in the plasma membrane,                 

significantly more than expected when compared to the human protein interactome (14046 proteins, see              

Experimental Procedures) (two-sided Fisher's Exact Test, P = 1.22 × 10-2; Figure 2b). This enrichment               

was not found for ‘Multi-clustered’ or ‘Mono-clustered’ proteins (two-sided Fisher's Exact Test, P = 0.59               

and P = 0.2, respectively). These results suggest that the functions of EMF proteins are prone to be                  

affected by the cellular localisation of the protein, particularly an association to the plasma membrane.              
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Figure 2. Cellular localisation of EMF proteins.  (a) Comparison of number of Cellular component (CC) GO term                 
annotations between protein groups.  (b) Venn diagram of EMF proteins annotated as being localised in plasma                
membrane, using UniProt GO term annotations, compared to all the proteins in the protein interactome with the same                  
annotation. Mann-Whitney U tests were performed to test for statistical significance. The Benjamini-Hochberg             
procedure was applied for multiple test correction. Significance: ‘*’ indicates a FDR < 0.05; ‘**’ indicates a FDR <                   
0.01; ‘***’ indicates a FDR < 0.001. 

Together with longer and more variable 3’UTRs, the EMF protein association with plasma membrane and               

other cellular locations lead us to propose the EMF proteins as a pertinent model to study the UDPL                  

mechanism, in which 3’UTRs affect the cell-surface localisation of their cognate proteins. 

3’UTR-protein complex prediction on EMF proteins 

The UDPL mechanism involves the recruitment of RNA-binding proteins (RBPs) to the site of translation               

by 3'UTRs, which may in turn promote the co-translational formation of protein complexes that interact               

with the nascent peptide chain (Berkovits and Mayr, 2015; Mayr, 2016, 2017). 

Conceptually, the co-translational 3’UTR-protein complex formation may involve the following          

components: (i) an mRNA with a 3'UTR; (ii) the cognate protein being translated (hereby known as                

‘nascent’ protein); (iii) an RBP able to bind the 3'UTR; (iv) one or more other proteins (hereby called                  

‘intermediate’ proteins), that interact with the RBP and the nascent protein. Such protein complexes may               

thus alter the cellular location, function or in some way regulate the nascent protein. 

To investigate the potential occurrence of the UDPL mechanism at a large-scale, we predicted the               

formation 3’UTR-protein complexes on the EMF proteins (as nascent proteins). For this, we used              
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large-scale experimental datasets of RBP-3’UTR interactions (AURA database (Dassi et al., 2014)) and             

protein-protein interactions (MoonDB 2.0; Ribeiro, Briere, Bely, Spinelli & Brun, in revision; see             

Experimental Methods) and identified sets of co-interacting 3’UTRs, RBPs, nascent and intermediate            

proteins (Figure 3). To simplify our approach, we only considered the presence of one intermediate               

protein. Moreover, we only analysed 3’UTR-protein complexes where the RBP, nascent, intermediate            

proteins are co-present in at least one of the 58 Human Protein Atlas (HPA) normal tissues (Uhlén et al.,                   

2015). Note that the RBP and intermediate proteins are not limited to proteins known to be involved in the                   

UDPL mechanism, but try to cover the whole realm of possibilities. 

 

Figure 3. Workflow for the prediction 3’UTR-protein complexes. First, experimental RNA-binding protein (RBP)             
interactions with 3’-untranslated regions (UTR) of mRNA genes are retrieved from AURA v2 database (Dassi et al.,                 
2014), as well as a large-scale protein-protein interaction network from MoonDB 2.0 (Ribeiro, Briere, Bely, Spinelli &                 
Brun, in revision; see Experimental Methods). Second, 3’UTR complexes are predicted by finding cases in which the                 
3’UTR of a ‘nascent’ protein (protein under synthesis) interacts with an RBP, which in turn interacts with another                  
protein (‘intermediate’) that closes the loop by interacting with the nascent protein. Finally, only 3’UTR complexes                
where the nascent, RBP and intermediate proteins are present in at least one same tissue were kept (Human Protein                   
Atlas (HPA) (Uhlén et al., 2015), 58 normal tissues). 

Using our original approach, we predicted thousands of 3’UTR-protein complexes for 238 EMF proteins.              
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Notably, we found that 140 EMF proteins (58.8% of the total) may form at least one 3’UTR-protein                 

complex (Table 1, Figure 4). A total of 1557 distinct complexes comprising EMF proteins are predicted to                 

be formed, using a combination of 92 RBPs and 460 interacting intermediate proteins. As a comparison,                

1133 (33.9%) and 1372 (13.1%) multi-clustered and mono-clustered nascent proteins form complexes,            

respectively, a much lower percentage than for EMF proteins.  

Table 1. 3’UTR-protein complex prediction on EMF, multi-clustered and mono-clustered protein groups.            
Percentages under the nascent column are relative to the initial number of proteins in the dataset. 

Protein group Nascents RBPs Intermediates Complex combinations 

EMF 140 (58.8%) 92 460 1557 

Multi-clustered 1133 (33.9%) 106 739 5990 

Mono-clustered 1372 (13.1%) 101 439 3572 

 

The observed cases of the UDPL mechanism involved the HuR RBP binding to 3’UTRs (Berkovits and                

Mayr, 2015). Here, we predicted that 26 EMF nascent proteins form 31 distinct 3’UTR-protein complexes               

mediated by the HuR RBP in combination with 8 intermediates (Figure 4). One of these complexes                

involves the Sorting nexin-1 (SNX1 gene) EMF nascent protein and the Syntenin-1 (SDCBP gene)              

intermediate protein. Sorting nexin-1 is a membrane-interacting protein involved in intracellular trafficking,            

including endosome-to-plasma membrane transport for cargo protein recycling (Zhong et al., 2002), and             

based on MoonDB 2.0, associated also to nucleobase metabolism. Interestingly, the intermediate protein             

of this complex, Syntenin-1, is also a EMF protein and is found in various cellular locations such as                  

nucleus, cytoplasm, plasma membrane and adherens junction. Syntenin-1 contains two PDZ domains            

(protein-interacting domains) and one of the several functions of Syntenin-1 is the trafficking of proteins,               

such as transmembrane proteins, to the plasma membrane (Fernández-Larrea et al., 1999; Philley,             

Kannan and Dasgupta, 2016). In addition, the intermediate Syntenin-1 and the RBP HuR form complexes               

with 8 other nascent proteins, including the membrane-related Calmodulin-1 (CALM1), Programmed cell            

death 6-interacting protein (PDCD6IP) and Abl interactor 2 (ABI2) proteins (Figure 4).  
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Figure 4. Network representation of EMF protein 3’UTR-protein complexes.  The 1557 EMF protein             
3’UTR-protein predicted complexes are represented as follows. Each green node represents a EMF nascent protein               
associated to at least one complex (i.e. the 140 EMF proteins in a complex). Each edge represents the 1557 distinct                    
3’UTR-protein complex predictions (a combination of RBP and intermediate interacting with the nascent). Pink nodes               
refer to complexes that include the HuR RBP (31 colored nodes).  ‘V-shaped’ nodes denote complexes which contain                 
Syntenin-1 as an intermediate protein (15 nodes, 9 of them in combination with HuR). The nodes of other complexes                   
are dark grey. 

The PRKCA-binding protein (PICK1), like Syntenin-1, is another protein containing PDZ domains and             

responsible for organising the subcellular localisation of several membrane proteins (Torres et al., 2001;              

Hirbec et al., 2002). Here we find that the PICK1 participates (as an intermediate protein) in                

3’UTR-protein complexes with 7 nascent EMF proteins in 13 complex combinations. Interestingly, one of              

the nascent EMF proteins in complex with PICK1 is the receptor tyrosine-protein kinase erbB-2 protein               

(ERBB2 gene), and these two proteins are known to interact through PICK1’s PDZ domain              

(Jaulin-Bastard et al., 2001). Indeed, PDZ domains are associated to protein complex assembly and it               

has been found that PDZ domains affect the localisation and function of their associated proteins (Hung                

and Sheng, 2001). Proteins containing PDZ domains may thus be associated to the UDPL mechanism or                

similar mechanisms. In total, we find 6 PDZ domain-containing proteins predicted to act as intermediate               

proteins of 3’UTR-protein complexes, including the Syntenin-1, PICK1, Tyrosine-protein phosphatase          

non-receptor type 3 (PTPN3) and the ‘PDZ and LIM domain protein 7’ (PDLIM7). Both PICK1 and                
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Syntenin-1 proteins are part of the top 20 intermediates (out of 460) participating in a higher number of                  

predicted 3’UTR-protein complexes (Supplementary Material Table S1). This list of intermediates includes            

several other non-PDZ transport-related proteins such as the ‘LIM and SH3 domain protein 1’ (LASP1)               

and the Zinc finger protein RFP (TRIM27). 

Similarly, when analysing the 20 most commonly found RBPs participating in 3’UTR-protein complexes             

(Supplementary Material Table S2), we identified the Heterogeneous nuclear ribonucleoproteins C1/C2           

(HNRNPC), an RBP involved in 3'-UTR binding, participating in 52 complexes. Interestingly, this protein              

has been previously associated to the UDPL mechanism, found to be correlated with HuR RBP targets                

and affecting the CD47 cell-surface localisation, possibly by competing with HuR binding sites (Gruber et               

al., 2016). The list of RBPs includes several other heterogeneous nuclear ribonucleoproteins known to              

bind 3’UTRs, as well as HuR and several RNA splicing factors (Supplementary Material Table S2). 

Given the large size of the protein-protein and 3’UTR-RBP interaction networks (see Experimental             

Procedures) used in this study, the co-interaction between three components can occur by chance,              

without indicating any inherent functionality. To estimate the rate of 3’UTR-protein complex formation by              

chance, we predicted complexes while shuffling all proteins in the protein-protein interaction network 1000              

times. We found that the number of 3’UTR-protein complexes attributed to chance is lower than the one                 

observed with the real interaction network (Supplementary Material Table S3). The fact that we predict               

more 3’UTR-protein complexes than expected suggests these may indeed be used and selected for in               

human cells. 

Overall, these results suggest that the formation of 3’UTR-protein complexes could be a common              

mechanism employed by EMF and other proteins, not exclusive to the HuR RBP and the SET protein, but                  

potentially using a wide range of different RBPs and intermediate proteins.  

EMF protein 3’UTR-protein complex formation could explain plasma membrane localisation 

Given the high prevalence of EMF proteins with predicted 3’UTR-protein complexes, and the EMF protein               

enrichment in plasma membrane proteins, we decided to explore the relationship between 3’UTR-protein             

complex formation with unconventional plasma membrane translocation, as observed with the CD47            

protein use of the UDPL mechanism (Berkovits and Mayr, 2015). 

We first confirmed that the 140 EMF proteins predicted to constitute at least one 3’UTR-protein complex                

are still highly annotated with a plasma membrane GO term. Indeed, 47 out of the 140 (33.6%) EMF                  

proteins in complexes have been associated to the plasma membrane, a significant enrichment when              

compared to the human protein interactome (two-sided Fisher's Exact Test, P = 3.19 × 10-4). Put                

differently, 47 out of 65 (72.3%) plasma membrane EMF proteins form 3’UTR-protein complexes, whereas              
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only 140 of a total of 238 (58.8%) EMF proteins form complexes. 

N-terminal signal sequences such as the signal peptide or transmembrane domains are common features              

known to be critical in translocating proteins to the membrane (von Heijne, 2006; Zimmermann et al.,                

2011), although alternative mechanisms exist, such as the case of the interleukin 1β, the ‘High mobility                

group protein B1’ (HMCG1) protein and others (Nickel and Seedorf, 2008). The lack of plasma membrane                

translocation signals has been observed for dozens of moonlighting proteins, including the human             

Alpha-enolase (Amblee and Jeffery, 2015). Notably, we found that 42 out of 47 (89.3%) EMF proteins in                 

complex and associated to the plasma membrane are not annotated as having a signal peptide or                

transmembrane domains. Finding 42 proteins satisfying this criteria is significantly more than expected by              

chance (two-sided Fisher's Exact Test, P = 1.28 × 10-9; Table 2). Moreover, this is a much higher                  

proportion than the generality of the plasma-membrane associated proteome, where in 4602 proteins             

associated to the plasma membrane, 1443 of them (31.4%) have no signal peptide or transmembrane               

domain (see Experimental Procedures). The proportion is also higher than the one found for              

multi-clustered or mono-clustered proteins (79.4% and 61.7%). In addition, we confirmed these results             

using an independent set of plasma membrane proteins from the HPA database instead of UniProt GO                

term annotations (Supplementary Material Table S4) (Uhlén et al., 2015). 

Table 2. Numbers of nascent proteins in 3’UTR-protein complexes localised in the plasma membrane and               

without conventional translocation signals.  Percentages denote the proteins retained compared to the previous             

column. Where indicated, Fisher’s exact tests were performed to test for statistical significance using as background                

the set of 7373 nascent proteins liable to be assessed for 3’UTR-protein complexes (see Experimental Procedures).                

The Benjamini-Hochberg procedure was applied for multiple test correction.  Significance: ‘*’ indicates a FDR < 0.05;                

‘**’ indicates a FDR < 0.01; ‘***’ indicates a FDR < 0.001. 

Protein group Nascents in complex of which, localised in 
plasma membrane 

of which, contain no signal peptide 
or transmembrane domain 

EMF 140 (58.8%) 47 (33.6%) 42 (89.3%) *** 

Multi-clustered 1133 (33.9%) 218 (19.2%) 173 (79.4%) *** 

Mono-clustered 1372 (13.1%) 238 (17.4%) 147 (61.7%) N.S. 

 

Importantly, the set of 42 EMF proteins includes the Alpha-enolase (ENO1 gene), a well-known              

moonlighting protein, which functions as a receptor and activator of plasminogen on the cell surface, but                

is translocated by a yet unknown mechanism (Díaz-Ramos et al., 2012). We found that Alpha-enolase               

forms 3’UTR-protein complexes with the Actin and Desmin proteins, two components of the intermediate              

filaments in the cellular cytoskeleton. Interestingly, an association between vesicular trafficking and            

intermediate filaments including Desmin has been proposed (Jones et al., 2017). Moreover, intermediate             
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filaments have also shown an association with plasma membrane proteins, such as receptors and              

adhesion molecules (Jones et al., 2017).  

Similarly, we predicted 3’UTR-protein complexes formed with nascent protein HMMR/RHAMM, a           

moonlighting protein annotated as curated in MoonDB 2.0 (Ribeiro, Briere, Bely, Spinelli & Brun, in               

revision), also known to function in the plasma membrane but translocated by unknown mechanisms. We               

predict that HMMR/RHAMM forms a single complex, interacting with the Dynactin subunit 1 (DCTN1              

gene) protein intermediate, a protein known to be involved in endoplasmic reticulum (ER) to Golgi               

transport, providing a link between specific cargos, microtubules and dynein (Ayloo et al., 2014).  

Overall, we have found that the vast majority of EMF proteins in 3’UTR-protein complexes and associated                

to the plasma membrane lack conventional translocation signals. This leads us to believe that              

3’UTR-protein complexes could play a role in the translocation of these moonlighting candidates, perhaps              

through the UDPL mechanism or similar mechanisms involving PDZ domain-containing proteins or other             

proteins involved in macromolecule transport. 

Discussion 

The UDPL mechanism to translocate membrane proteins has been described for CD47 and proposed for               

several other proteins, but its prevalence is otherwise unknown. However, other cases of 3’UTRs              

co-translationally recruiting other sets of proteins have been described, such as the signal recognition              

particle (SRP) recruitment by 3’UTRs (Chartron, Hunt and Frydman, 2016). Moreover, a study in yeast               

showed that more than 12 out of the 31 sampled proteins copurified with mRNAs that encode for their                  

protein interactors, suggesting that the co-translational recruitment of proteins that interact with the             

protein encoded by the mRNA may be a widespread phenomenon (Duncan and Mata, 2011). 

Our study allows us to estimate and decipher the prevalence of an ill-known regulation mechanism and                

evaluate its role on protein multifunctionality. Indeed, with our large-scale approach, we predicted the              

formation of thousands of 3’UTR-protein complexes, suggesting this may be a common phenomenon in              

human cells. The lack of conventional signals for plasma membrane translocation in moonlighting             

proteins, and the high prevalence for these proteins to form 3’UTR-protein complexes, hint at a role of                 

such complexes in protein translocation, along the lines of the UDPL mechanism. The localisation of               

proteins in the plasma membrane often requires the influence of additional interacting proteins, including              

trafficking proteins, chaperones and transcription factors (Sharma et al., 2018). In this study, we have               

found several 3’UTR-protein complexes in which RBPs interacted with intermediate proteins that are             

motor proteins or associated to macromolecule transport, as well as transcription factors and proteins              

involved in other biological processes. Moreover, cases in which 3’UTRs are bound by RBPs that in turn                 
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associate with motor proteins have been previously described for the budding yeast ASH1 mRNA, leading               

to the transport of the mRNA-protein complex to the bud tip through actin microfilaments (Niedner,               

Edelmann and Niessing, 2014), as well as for the Drosophila oskar mRNA which is transported along                

microtubules (Marchand, Gaspar and Ephrussi, 2012; Jambor et al., 2014; Mayr, 2017).  

Moreover, the predicted complexes included hundreds of distinct RBPs and effector proteins with diverse              

functions. Theoretically, depending on the cell type and cellular conditions, each alternative 3’UTR isoform              

could have its own RBP composition, and since an RBP may interact with several other proteins, each                 

3’UTR could be processed differently and serve a different function. Indeed, it is predictable that besides                

affecting the cellular localisation of proteins, the formation of 3’UTR-protein complexes could function to              

regulate other cellular processes. For example, a recent study showed that co-translational protein             

complex assembly occurs frequently in eukaryotic cells (Shiber et al., 2018). By performing selective              

ribosome profiling on 12 hetero-oligomeric Saccharomyces cerevisiae protein complexes, Shiber et al.            

showed that, for 9 out of these 12 protein complexes, pairs of subunits of the same protein complex                  

interact and co-assemble during their translation. It has been proposed that this protein assembly              

mechanism may involve interactions with their mRNA molecules, and 3’UTR-protein complex formation,            

in a model involving RBP binding of 3’UTRs and the RBP recruitment of the partner protein subunit                 

(intermediate protein) to the nascent protein translation site (Mayr, 2018a). Indeed, an alternative 3’UTR              

of the human E3 ubiquitin ligase BIRC3 has been recently implicated in the assembly of a protein                 

complex involving its cognate nascent protein, IQGAP1 and the Ras-GTPase RALA, thus affecting the              

function of the nascent protein (Mayr, 2018b).  

Notably, as many as 4 out of the 9 S. cerevisiae protein complexes formed co-translationally may involve                 

known moonlighting proteins or proteins found to be multifunctional in yeast (Shiber et al., 2018). These                

include the 6-phosphofructokinase subunit alpha (PFK1) of the phosphofructokinase complex (manually           

curated in MoonDB 2.0) (Yuan et al., 1997; Gancedo and Flores, 2008), the EGD2 subunit of the nascent                  

chain associated chaperone (NAC) complex (Kogan and Gvozdev, 2014; Franco-Serrano et al., 2018)             

and the GluRS and MetRS subunits of the aminoacyl-tRNA synthetase complex (Guo and Schimmel,              

2013; Frechin et al., 2014; Shiber et al., 2018). Interestingly, as part of their alternative function as                 

ATP-synthase expression regulators, MetRS and GluRS possess nuclear and mitochondrial localisation           

signals, respectively, which are only revealed when these proteins are not in complex with each other                

(and ARC1) (Frechin et al., 2014). It is thus possible that their co-translation complex assembly (Shiber et                 

al., 2018) may regulate their moonlighting function.  

Our approach to predict 3’UTR-protein complexes involved the use of large-scale interaction networks.             

While experimental human protein-protein interaction networks are thought to cover most interacting            

proteins (Rolland et al., 2014), public interaction databases may not include all the interactions known in                
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the literature or interactions only discovered recently. Cellular 3’UTR-protein complexes that are formed             

by proteins and RNA interactions not yet present in experimental interaction datasets are thus missed.               

Indeed, the interaction between protein SET and CD47 is not present in the protein-protein interaction               

dataset used here, thus the CD47-HuR-SET protein complex identified in Berkovits & Mayr could not be                

retrieved (Berkovits and Mayr, 2015). Moreover, current RBP-3’UTR interaction datasets contain data for             

only a subset of an increasingly growing number of proteins thought to interact with RNAs (Dassi et al.,                  

2014; Hentze et al., 2018). Furthermore, cellular 3’UTR-protein complexes may involve an undefined             

amount of proteins or other components and indeed be more complex than the complexes predicted here.                

Particularly, certain 3’UTR-protein complexes may involve more than one intermediate protein in order for              

the action on the nascent protein to be effective (Berkovits and Mayr, 2015). Lastly, 3’UTR-protein               

complex mechanisms such as the UDPL use alternative 3’UTRs to regulate the nascent protein. Even               

though EMF proteins have shown to contain more 3’UTR isoforms than other groups of proteins, in our                 

analysis we considered 3’UTR-protein complex formation on all EMF nascent proteins, regardless of the              

presence of alternative 3’UTRs. 

Finally, in this work we have expanded the feature signature of EMF proteins, by finding that the mRNAs                  

of this group of moonlighting candidate proteins have longer 3’UTRs and more isoforms than those of                

other protein groups. EMF proteins were also found annotated to more GO term cellular locations and                

enriched in plasma membrane proteins. Moreover, the set of EMF proteins form more complexes than               

other protein groups, such as multi-clustered proteins. The number of EMF protein complexes may be               

related to some of these features, as well as previously identified features, such as higher number of                 

protein interactions. However, it is hard to distinguish technical bias from biological reality, as these               

proteins may indeed be involved in more interactions in order to be more tightly regulated by diverse                 

mechanisms, such as 3’UTR-protein complex formation. Increased knowledge on moonlighting proteins           

and their regulation is important because these proteins (i) are implicated in the regulation of the                

biological processes through their coordination and switch, (ii) contribute to the complexity of the              

genotype-phenotype relationship by diversifying phenotypes, and (iii) cause unexpected drug side-effects           

due to their multiple functions. In this study we have deepened our knowledge into how moonlighting                

proteins may be regulated. 
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2.4. Predicted protein-RNA interactions reveal distinct 

post-transcriptional regulatory patterns 

To respond efficiently to environmental signals, cells have evolved mechanisms that coordinate the             

expression of functionally-related proteins in space and time  (Keene, 2007) . Prokaryotes such as  E. coli               

often organize genes into DNA operons, in which genes that operate in the same pathway are physically                 

linked  (Jacob and Monod, 1961) . Since most eukaryotic genes are monocistronic, each having a promoter               

and transcription terminator, the coordination of expression is achieved and influenced by other processes,              

including the chromatin structure, RNA processing and protein synthesis  (Imig, Kanitz and Gerber, 2012) .              

In fact, in eukaryotes, post-transcriptional coordination can be mediated by RBPs that interact with certain               

groups of mRNAs coding for functionally-related proteins, affecting their splicing, localisation, stability            

and translation  (Keene, 2007) . These RBPs interact with regulatory elements within mRNAs, most lying              

in the non-coding regions, but some residing in the coding part. Such RNP assemblies are called ‘RNA                 

regulons’ and constitute a conserved feature of the post-transcriptional regulation in eukaryotes  (Scherrer             

et al. , 2011) . For example, in yeast, RNA regulons are found among five RBPs of the PUF family, such as                    

the PUF3 binding of mRNAs coding for mitochondrial proteins  (Gerber, Herschlag and Brown, 2004) . In               

mammals, groups of mRNAs coding for proteins involved in inflammation, cell cycle and other processes               

have been found to be regulated by RBPs such as ELAVL1, HNRNPL and PUM1  (Anderson, 2010;                

Blackinton and Keene, 2014) . Nevertheless, a deeper understanding of the extent of post-transcriptional             

regulation by RNA regulons is yet lacking, and their study has been mostly centered on specific RBPs or                  

biological processes. 

The work presented in this section aims at assessing the RNA regulon theory transcriptome-wide,              

determining which biological functions may be regulated in such a way, and through which factors. For                

this, Zanzoni  et al. applies novel methods to infer the post-transcriptional regulation of human biological               

pathways and protein complexes mediated by RBPs. Concretely, this work uses large-scale datasets of              

predicted (by catRAPID) and available experimental (eCLIP results) protein-mRNA interactions, to           

determine which sets of mRNAs coding for proteins of the same pathway/complex may be regulated by                

RBPs. This study shows that approximately 10% of the 2977 groups of mRNAs tested may take part in                  

RNA regulons. These comprise mRNAs encoding proteins involved in various biological functions such             

as chromatin organisation, signaling pathways and DNA transcription. Likewise, we predict that several             

hundred RBPs take part in a complex regulatory system, where the interaction to specific groups of                

functionally-related RNAs is either promoted or avoided. Overall, this work charts the functional             
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regulatory landscape of human RBPs, revealing particular patterns of post-transcriptional regulation of            

cellular functions. 
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reveal distinct post-transcriptional regulatory patterns. (in preparation) 
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Abstract 

Previous studies revealed that the coordinated synthesis of functionally-related proteins can be achieved             

at the post-transcriptional level by the action of common regulatory molecules, such as RNA-binding              

proteins (RBPs). Despite the advances in the genome-wide identification of RBPs and their binding              

transcripts, the protein-RNA interaction space is still largely unexplored, thus hindering a broader             

understanding of the extent of the post-transcriptional regulation of related coding RNAs. Here, we              

propose a computational approach that combines protein-mRNA interaction predictions and statistical           

analyses to generate an inferred regulatory landscape for more than 800 human RBPs and identify the                

cellular processes that can be regulated at the post-transcriptional level. We show that only 10% of the                 

tested sets of functionally-related mRNAs can be post-transcriptionally regulated. Moreover, we reveal            

that established and novel RBPs have distinct behaviors in the inferred functional landscape, which could               

be explained can by their different propensity to be regulated at the post-translational level. We also show                 

that the inferred functional landscape is a useful resource to make new hypotheses on the cellular role of                  

both well-characterized and novel RBPs in the context of human disease. 
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Introduction 

Genome-wide analysis tools have stimulated the study of eukaryotic gene expression programs. These             

revealed the presence of highly coordinated control mechanisms that guarantee proper spatial and             

temporal activity of cell's molecular components in response to external cues 1 .  While transcription is a               

significant contributor to this coordinated gene expression, several studies highlighted the discordance            

between mRNAs levels and protein production 2 . This indicates that the regulation of mRNA transcripts is               

key to achieve coordinated protein synthesis.  Indeed , it has been shown that sets of transcripts coding for                 

functionally related proteins are bound by common regulatory molecules, such as RNA-binding proteins             

(RBPs) and/or non-coding RNAs, thus forming the so-called RNA regulons 3,4 . 

Early protein-RNA interaction mapping studies in yeast demonstrated that many RBPs bind specific             

mRNAs coding for proteins involved in the same biological process (e.g., ribosome biogenesis, chromatin              

architecture, oxidative phosphorylation) or that are cytotopically related (e.g., cell wall, endoplasmic            

reticulum, mitochondrion) 5,6 . In mammalian cells, several sets of related mRNAs may be part of RNA               

regulons as well,  e.g. , histone mRNAs bound by the stem-loop binding protein (SLBP) 7 , transcripts              

involved in inflammation regulated by the RBPs ELAVL1, HNRNPL and TTP 8 , those implicated in DNA               

damage response and regulated by the RBPs BCLAF1, ELAVL1 and THRAP3 9,10 , and mRNAs coding for               

cell cycle and proliferation factors bound by Dead end protein homolog 1 (DND1) and Pumilio 1 (PUM1)                 

proteins 9 .  

As this regulatory phenomenon has been observed in different species, RNA regulons represent a              

conserved feature of the post-transcriptional regulation in eukaryotes 3,4,11 .  However, even though RNA            

regulon perturbations can lead to the onset of neurological diseases and cancers in human 12–14 , the               

combinatorial control of these regulatory circuits exerted by RBPs is rather sketchy 15,16 , therefore calling              

for further scrutiny.  

A deeper understanding of the extent of the post-transcriptional regulation of related coding transcripts is               

subordinate to the availability of experimentally verified protein-mRNA interaction data. Over the last             

years, studies based on high-throughput methods to detect RNA molecules bound by RBPs, such as               

RNA immunoprecipitation and CLIP-based techniques 17,18 allowed to identify thousands of protein-RNA           

interactions. However, these studies have focused on the binding ability of a reduced number of               

established RBPs in a few cell lines 18 , indicating that the protein-RNA interactions space is largely               

unexplored. Moreover, thanks to the recent development of RNA interactome capture technologies, the             

catalogue of RBPs has dramatically increased ( e.g. ,  19–24 ). Importantly, many of these RBPs lack a known                

RNA-binding domain and their role in RNA biology has not been characterized yet 22 . In this context,                
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large-scale computational prediction of protein-RNA interactions can provide a better coverage of the             

protein-RNA interaction space and  improve our understanding of post-transcriptional regulation. 

What is the extent of the regulon theory at the coding transcriptome scale? What are the cellular functions                  

regulated at the post-transcriptional level? Can RBPs be classified based on the regulation they exert? In                

order to answer these questions, we inferred the functional landscape of the post-transcriptional             

regulation mediated by the human RBPs, by assessing the RNA regulon theory at different levels of                

organization of the cellular processes, such as biological pathways and protein complexes. For this, we               

developed and applied an original large-scale approach to identify human cellular processes            

post-transcriptionally regulated by RBPs, using both predicted and experimentally identified protein-RNA           

interaction combined with protein-protein interaction network data and statistical analyses.  We showed            

that the post-transcriptional regulation of functionally-related mRNAs by common RBPs only concern 10%             

of the groups that we tested in the inferred regulatory landscape. Furthermore, we identified 3 groups of                 

RBPs possibly regulating these groups by using different molecular strategies.  

 

Results  

A predicted large-scale human RBP-mRNA interaction network 

In order to find the cellular processes potentially regulated through the binding of RBPs, we first computed                 

the interaction propensities of 877 experimentally identified human RBPs with a representative set of              

13,984 mRNA sequences, covering ~63% of the human protein-coding genes (see Methods), using the              

cat RAPID  omics algorithm 25 (Figure 1A). This algorithm predicts protein-RNA interactions by exploiting            

the physicochemical properties of both molecules 26 , and has extensively been used and tested on              

different RNA and protein datasets with good performances  27–30 . We generated more than 12 million               

protein-mRNA interaction predictions, of which 3.2 million show high interaction propensity score            

( cat RAPID score ≥ 50) (see Methods) between the tested RBPs and ~87% of the initial coding transcripts                 

(12,215 mRNAs). RBPs are predicted to interact with 3176 mRNAs on average (26% of the tested                

mRNAs) (Figure S1A), i.e. , twice as much as the average number of transcripts found to bind 112 RBPs                  

using the eCLIP technology 18 (see Methods) on the same set of coding transcripts (Figure S1C). Similarly,                

cat RAPID predicts that mRNAs interact with a higher average number of RBPs (256 RBPs/mRNA, ~30%               

of the whole set) (Figure S1B) compared to eCLIP detected interactions (8 RBPs/mRNA, 7.5% of the                

whole set) (Figure S2D). Such differences are expected as  cat RAPID predictions represent a set of               

biophysically possible interactions that are independent of the cellular localization of the interacting             

molecules and the experimental conditions in which  in vitro and  in vivo  studies are carried out.                

Nevertheless, for 49 out of 74 eCLIP RBPs with  cat RAPID predictions, we found an enrichment of                
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experimentally identified binding transcripts among predicted interactors at high interaction propensity           

score (two-sided Fisher’s Exact test, BH-corrected P-value < 0.05) (Table S1), thus strengthening the              

confidence of our predictions.  

Overall, to the best of our knowledge, we have predicted the largest human mRNA–RBP interaction               

network to date. 

 

Figure 1 . Workflows of our computational pipeline. (A) Prediction of protein-mRNA interactions (PRI)             
using the  cat RAPID  omics algorithm between experimentally identified human RBPs and a representative             
set of the human coding transcriptome. The resulting PRI network contains 3.2 million interactions. (B)               
Different functional units are tested for enrichment and depletions among RBP predicted targets in the               
PRI. This approach generated 5499 functional associations. 
 

An inferred post-transcriptional regulatory landscape  

We aimed at identifying the cellular functions that can be potentially regulated at the post-transcriptional               

level by RBPs. According to the regulon theory 3 , a RBP can regulate a given biological process by binding                  

a substantial fraction of mRNAs encoding its constituent proteins. We then expect to detect a statistically                

significant over-representation of mRNAs bound by the RBP among the functionally-related coding            

transcripts. We therefore investigated the predicted mRNA-RBP interaction network to characterize the            
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functional landscape of 877 RBPs (Figure 1B). We first gathered the transcripts encoding proteins              

involved in the same biological process or pathway, taken from four datasets representing different levels               

of organization of the cellular functions, and collectively named hereafter “functional units”:  (i) 1846              

manually curated protein macromolecular complexes from the CORUM database 31 ;  (ii) 873 functional            

modules detected in a human protein-protein interaction network using the OCG algorithm, which             

decomposes a network into overlapping modules based on modularity optimization 32 ;  (iii) 300 pathways             

described in the KEGG database 33 ; and  (iv) 1627 pathways from the Reactome knowledgebase 34 (see              

Methods).  

Next, for each functional unit, we have computed the ratio of interacting  vs. non-interacting transcripts               

with every RBP and assessed its significance to be higher or lower than expected by chance by                 

performing a two-sided Fisher’s Exact test (see Methods). We chose this strategy to gain a broader view                 

on the relationships between RBPs and their functional targets. Indeed, a statistically significant             

over-representation of predicted interactors hints a putative post-transcriptional regulatory event by a            

given RBP, whereas a statistically significant under-representation suggests that certain functional units            

may avoid the binding of a RBP and its possible regulatory action.  

Seven hundred thirteen RBPs out of 877 (81% of the tested RBPs) showed at least one statistically                 

significant result (5499 in total, BH-corrected P-value <0.05), namely 3185 significant enrichments (58%)             

and 2314 significant depletions (42%) involving 300 functional units out of the 2977 tested (see               

Methods). Because some RBPs are predicted to bind a large number of transcripts, we estimated the                

number of functional units expected to be found over- or under-represented by chance for each RBPs as                 

a control, by randomly shuffling the protein names within the functional units 1000 times (see Methods).                

All the 713 RBPs passed this test, as their targets were enriched or depleted in a significantly higher                  

number of functional units compared to random. Thus, they were kept for further study (Table S2). 

Overall, this two-step statistical analysis allowed us to define the potential post-transcriptional regulatory             

landscape of numerous cellular processes by identifying  (i) those functional units that can be regulated at                

the post-transcriptional level and  (ii)  the RBPs responsible for such regulation.  

 

Statistical enrichments and depletions of RBP binding as an indication of post-transcriptional            

regulation 

Our analysis reveals an interesting pattern of functional enrichments/depletions. Indeed, it allows            

grouping RBPs and functional units in three broad categories each (Figure 2A, Table S3 and S4).  
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On the one hand, a relatively small number of RBPs show only enrichments in predicted targets among                 

functional units (75 RBPs, ~10% of the RBPs with significant results, named hereafter RBP-1 set),               

indicating that these RBPs display an exclusive binding preference for a number of FUs. A second                

category accounting for 427 RBPs shows both significant enrichments and depletions of their predicted              

targets among functional units (~60%, RBP-2 set) suggesting that they bind the mRNAs of certain               

functional units and avoid those of others. Finally, the third category contains 211 RBPs that display only                 

significant depletions (~30%, RBP-3 set) within functional units, illustrating that some functional units             

avoid RBP binding (Figure 2B).  

On the other hand, from the perspective of the FUs, we observe a mirrored situation. Most functional units                  

(223 functional units, 74% of the units with significant results, named hereafter FU-1 set) are exclusively                

enriched in targets of at least one RBP, thus possibly regulated at the post-transcriptional level through                

the binding of those RBPs. Few functional units, namely 27 (9%, FU-2 set), are both enriched and                 

depleted in RBP predicted targets, indicating that they may be regulated by the binding of certain RBPs                 

and the avoidance of others. Finally, 50 functional units (~17%, FU-3 set) show only significant depletions                

thereby indicating that their post-transcriptional regulation consists uniquely in the avoidance of RBPs             

binding (Figure 2B).  
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Figure 2 . The predicted functional regulatory landscape. (A) Summary of the composition of the three               
RBP (shades of blue color) and functional unit (FU, shade of red color) groups. (B) Alluvial plot depicting                  
the functional relationships among RBP and FU groups in the predicted functional regulatory landscape.              
The thickness of each stream is proportional to the number of enrichment or depletions between two                
given groups. The size of the grey blocks is proportional to the number of enrichments/depletions in which                 
a given RBP or FU group is involved.  
 
To assess whether the observed enrichment/depletion patterns of the predicted landscape do not depend              

on the  cat RAPID interaction propensity threshold chosen, we carried out a threshold-free statistical             

analysis based on the GSEA method 35 (see Methods). Importantly, we also found the three distinct               

categories for both RBPs and functional units, with the RBP-2 set being involved in a similar fraction of                  

the significant functional enrichments and depletions (Figure S2A), therefore supporting the observed            

pattern in the threshold-based predicted functional landscape. However, the fraction of RBPs in the              

RBP-3 set is lower (9%) (Supplementary note, Table S5) when using the threshold-free method compared               

to the fraction detected by the threshold-based approach (30%), indicating the influence of the chosen               

cat RAPID interaction propensity threshold on this category. 
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To further corroborate our results on predicted RBP-mRNA interactions, we carried out the functional              

analysis based on Fisher's Exact test on experimentally identified mRNA interactors of 112 RBPs using               

eCLIP (Supplementary note, Table S6). As before, we detected the three groups of functional units ( i.e. ,                

exclusively enriched, both enriched and depleted and depleted only) as well as the RBP-1 and RBP-2                

sets, but none of the analyzed RBP had exclusively depleted functional units among its interactors ( i.e. ,                

RBP-3 set). This discrepancy between our predicted regulatory landscape and the results obtained on              

eCLIP data corroborates the influence of the chosen  cat RAPID interaction propensity threshold (i.e.,             

score >=50) already observed with the GSEA method on this latter category. Altogether, these              

assessments show that by using our strict parameters, we may have limited the occurrence of potential                

false positives cases by favoring sensitivity rather than specificity.  

Overall, the results obtained on both predicted and experimental RBP-mRNA interactions suggest that             

RBPs can adopt several possible regulation strategies and can be classified accordingly.  

 

The predicted regulatory landscape from the RBP perspective 

The classification of RBPs in distinct groups based on the functional analysis of their interactors motivate                

us to assess whether the RBPs have distinct functional and sequence features as well as system-level                

properties (Table S3).  

First, we observed that RBPs in the RBP-2 set have a statistically significant higher number of                

enrichments (average=6.7, median=4, P-value=7.6x10 -6 , Mann-Whitney  U test, one-sided) and depletions          

(average=3.9, median=4, P-value=7.4x10 -13 , Mann-Whitney  U test, one-sided) compared to those of the            

RBP-1 (average=3.8, median=2) and the RBP-3 (average=3, median=3) sets respectively. This suggests            

that the more numerous RBP group in our classification (RBP-2 set) can potentially regulate the larger                

number of FUs (Figure 2).  

Second, we checked whether RBPs of the three groups were characterized by an over-representation of               

different types of RBPs according to a previously proposed functional classification 22 (see Methods).             

Indeed, Beckmann and colleagues annotated RBPs into four classes: ( i ) established RBPs ( i.e. , proteins              

with a known role in RNA biology); ( ii ) RBPs carrying a characterized RNA-binding domain (RBD); ( iii )                

enigmRBPs, which are proteins found to bind RNA but lacking a canonical RBD and with no previous                 

evidence of involvement in RNA fate; ( iv ) RNA-binding enzymes, which have a RNA-independent             

metabolic activity. 

We found that RBPs with a defined role in RNA biology are depleted in the RBP-1 set (odds ratio = 0.53,                     

P-value = 0.009, Fisher's Exact test, one-sided), which is otherwise enriched in enigmRBPs (odds ratio =                
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2, P-value = 0.004, Fisher's Exact test, one-sided) (Figure 3A). In the RBP-2 set, we detected a significant                  

over-representation of RBPs with recognized RNA-binding domains (RBDs) (odds ratio = 1.27, P-value =              

0.04, Fisher's Exact test, one-sided) and a significant depletion of enigmRBP (odds ratio = 0.75, P-value =                 

0.04, Fisher's Exact test, one-sided). We did not observe any statistically significant over- or              

under-representation among the RBP-3 set. We also checked whether the RBPs in the three groups               

showed difference in the binding preference of other RNA biotypes based on previous knowledge              

{Gerstberger et al., 2014}. Interestingly, we observed that the RBPs binding predominantly mRNAs more              

frequently in the RBP-1 (82%) compared to the RBP-2 (66%) and RBP-3 (64%) sets, in which we                 

observed an higher fraction of ribosomal proteins and RBPs binding small RNAs (Table S8). Recent               

reports showed that many RNA-binding sites are found in intrinsically disordered regions 24 and that RBPs               

are enriched in low complexity sequence stretches 19 . Hence, we compared the disorder propensity and              

low complexity content of the RBP sequences belonging to the three different groups using              

state-of-the-art tools (see Methods). The RBP-1 set has a slightly higher disorder (Figure S3A and Figure                

S3B) and low complexity content (Figure S3C) compared to the other two groups. However, these               

differences are not statistically significant, meaning that these features cannot entirely explain the different              

enrichment/depletion patterns.  
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Figure 3 . RBPs belonging to the three sets have distinct features. (A) Enrichments (circles filled in green)                 
and depletions (circles filled in violet) of different types of RNA-binding proteins among the three groups of                 
RBPs were assessed using the Fisher's Exact test. Size of the circles is proportional to the fraction of                  
RBPs of a given type that are present in each of the RBP groups, and their frequency is reported as a                     
number within the circle. Significant enrichment and depletions are denoted by one (P-value <0.05) or two                
(P-value<0.01) asterisks. (B) Distribution of the overall post-translational modification (PTM) density in the             
sequences of the three RBP groups. Densities for every RBP are computed as the number of                
experimentally identified PTM sites divided by the RBP sequence length. Black diamonds represent             
density mean values. Boxplot colors correspond to the RBP group colors in Figure 2. 
 
RBPs are generally ubiquitously expressed given their central role in gene regulation 37 . In a compendium               

of 58 human tissues (see Methods), we did not observe any statistically significant difference among the                

three groups (Figure S3D), suggesting that the functional enrichment/depletion patterns are independent            

of the expression breath of the RBPs. 
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The function of regulatory proteins – such as protein kinases 38 , transcription 39 and chromatin remodeling              

factors 40,41 – is fine-tuned through post-translational modifications (PTMs). Increasing evidence indicates           

that the activity of RBPs can also be regulated by PTMs 24,42 . We collected the modification site data for                  

seven PTM types from the PhosphoSitePlus database 43 (see Methods) and mapped them onto the RBP               

sequences of the three groups. We found that RBPs of the RBP-1 set have a significantly lower PTM                  

density (Figure 3B) compared to RBP-2 (Kruskal-Wallis test followed by post-hoc Dunn’s test, corrected              

P-value = 0.016) and RBP-3 (Kruskal-Wallis test followed by post-hoc Dunn’s test, corrected P-value =               

0.029) (Table S9). When considering individual PTM types alone, a lower density is still observed for the                 

RBP-1 set (Figure S4), which is statistically significant for acetylation and phosphorylation (Table S9).              

These results indicate that the function of RBPs belonging to the RBP-2 and RBP-3 sets can be more                  

finely regulated at the post-translational level than the RBPs of the RBP-1 set. 

In conclusion, our analyses identified several features discriminating the RBPs belonging to the different              

groups that could explain the regulatory behaviour they may have on functional units.  

 

The predicted regulatory landscape from the functional unit perspective 

What are the cellular processes embodied by the 300 functional units present in the predicted regulatory                

landscape (Table S4). The FU-1 units are exclusively enriched among the predicted targets of 480 RBPs                

(average number of RBPs per unit: 13.8), whereas FU-3 units show significant depletions only among the                

interactors of 499 RBPs (average number of RBPs per unit: 21.5). The few functional units in the FU-2                  

groups are enriched among the targets of 74 RBPs (average number of RBPs per unit: 3.7) and depleted                  

among the interactors of 600 RBPs (average number of RBPs per unit: 45.8).  

FU-1 units are involved in processes related to gene expression, such as chromatin organization and               

regulation, transcription initiation, protein degradation, which are known to be coupled 1,44 . Among the FUs              

related to chromatin organization and transcription activation, we found SWI/SNF-containing complexes           

and distinct forms of the Mediator complex from CORUM, as well as several network modules and                

Reactome pathways involved in DNA methylation and RNA Polymerase I transcription initiation. Notably,             

both SWI/SNF and Mediator complexes have been implicated in RNA processing 45,46 and their subunit              

transcripts are regulated post-transcriptionally by miRNAs 47,48 . Moreover, many of these FUs contain            

histones, whose expression can be controlled at the post-transcriptional level 49 . Altogether, our results             

underline the role of protein-RNA interactions in coordinating the different steps of gene expression              

programs, as it has been shown for the regulation of chromatin structure and DNA transcription 50,51 .  
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Figure 4 . Tissue expression distributions of the proteins annotated in the three FU groups. The color of                 
each distribution correspond to the FU colors in Figure 2.  
 

Additional enriched FUs are related to cellular processes localized in the mitochondria. Indeed, we              

identified as frequently-enriched the large subunit of the mitochondrial ribosome from CORUM, four             

Reactome pathways related to mitochondrial translation as well as complexes ( e.g. , the respiratory chain              

complex I) and pathways ( e.g. , TCA cycle, oxidative phosphorylation) involved in energy production.             

Interestingly, these results corroborate the known post-transcriptional regulation of the mitochondrial           

components 52–54 . 

FU-2 units are involved in several signaling pathways. Indeed, we found that two pathways related to                

olfactory signaling (one from KEGG and the other from Reactome) are depleted in interactors of around                

two-thirds of the tested RBPs. However, they are exclusively enriched in those coded by the ERAL1,                

G3BP1, G3BP2, MKRN2 and TUFM genes, all expressed in brain tissues, according to Human Protein               

Atlas 55 , and their coding transcripts have been detected in olfactory sensory neurons (G3BP1, G3BP2,              

MKRN2, TUFM) or epithelium (ERAL1, TUFM) 56 . Our results indicate that these RBPs could potentially              

regulate the fate of olfactory signaling mRNAs. 
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Finally, the most frequently depleted units in FU-3 are related to glutamate receptor signalling, defensins               

and glycosylation of mucins, as well as some units related to cytoskeleton organization. Interestingly,              

proteins in FU-3 are expressed in a lower number of tissues compared to those in FU-1                

(Kolgomorov-Smirnov test, P-value<2.2x10 -16 ) and FU-2 (Kolgomorov-Smirnov test, P-value=1.7x10 -10 ),        

respectively. This suggests that RBP-binding avoidance may participate to the proper tissue-specific            

expression of some functional unit components. 

 

Disease pathways are targeted by common RBPs 

Among the 223 exclusively enriched functional units (FU-1) we found 20 disease-related pathways from              

the KEGG database. The majority of them ( i.e. , 13) are related to viral and bacterial infections, whereas                 

the other disease functional units are linked to immune-related, neurological and metabolic disorders             

(Figure 5). Notably, 17 disease FUs can be regulated by common RBPs, which can also target other                 

non-disease related FUs. For instance, 4 viral infection FUs and one immunological disorder unit are all                

enriched among the predicted targets of the BTB/POZ domain-containing protein KCTD12, an enigmRBP             

{Beckmann et al., 2015}. KCTD12 predicted interactors are also enriched among coding transcripts             

annotated in three FUs related to immune system pathways (Figure 5), suggesting that this novel and                

uncharacterized RBP may be involved in immunity and in infection-related processes.  
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Figure 5 . Network representation of disease-related units sharing common RBPs. The size of the edges               
is proportional to the number of shared RBPs by the two units. Disease units, depicted in cyan, share also                   
RBPs with non-disease related units, depicted in magenta. For sake of clarity, we included only               
non-disease FUs from the KEGG database. The network was generated using the Cytoscape app              
( www.cytoscape.org ). 
 

We also observed this commonality among FUs-related to bacterial infection as well ( i.e. , Shigellosis,              

Pertussis and Salmonella infection pathways). These units are enriched in interactors of the PRKC              

apoptosis WT1 regulator protein encoded by the PAWR gene (also known as PAR4), which it has been                 

implicated in mRNA splicing in cancer cells {Lu et al., 2013}. Furthermore, the pyrimidine metabolism               

pathway is also enriched among PAWR predicted interactions. Interestingly, it has been shown that              

intracellular pathogenic bacteria -- such as  Salmonella ,  Shigella and  Bordetella (the etiological agent of              

pertussis) -- can modulate several host cell metabolism pathways for their own benefit, including              
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nucleotide biosynthesis {Eisenreich et al., 2013}, indicating a potential role of PAWR in the              

post-transcriptional regulation of genes involved in bacterial infection response. 

Overall, these results show that our predicted functional landscape is an useful resource to formulate new                

hypotheses on the cellular role of both established and novel RBPs. 

Discussion 

In this work, we explored the post-transcriptional regulation of functionally-related mRNAs by RBPs to              

first, detect different behaviours, if present, among the hundreds of RBPs analysed, and second, estimate               

the prevalence of the regulon theory at the coding transcriptome scale. As experimentally determined              

mRNA–protein interactions are too scarce to allow a large-scale investigation of the post-transcriptional             

regulation, we computationally predicted an interaction network between representative sets of RBPs and             

mRNAs in order to better cover the interaction space. For this, we used  cat RAPID  omics , a large-scale                 

protein–RNA interaction predictor that exploits the physicochemical features of the interacting molecules            

{Bellucci et al., 2011; Agostini et al. 2013}, which has been initially validated on a large collection of                  

experimentally identified protein-RNA associations 26,30 . Noticeably, our computational analyses on the  in           

silico predicted network are also performed on available experimentally identified mRNA-protein           

interactions in order to support and validate all observations. 

By studying both types of data, we detected statistically significant over- and under-representations of the               

mRNAs bound by the RBPs among the functionally related coding transcripts. First of all, these results                

allow an estimation of the prevalence of the regulon theory. Among the 2977 functional units that we                 

tested, comprising protein complexes, network modules and pathways, only ~10% (300) have been found              

possibly regulated in the predicted functional landscape. These results are affected by two factors:  (i)               

some FUs may be partially overlapping ( e.g. , some protein complexes may play a role in some pathways)                 

or redundant, therefore leading to an overestimation;  (ii)  the choice of a strict  cat RAPID threshold may                

have led to an under-estimation of the number of potentially regulated FUs. Moreover, as by construction,                

our statistical approach detects regulation events by considering a pairwise combination of FU and RBP,               

ignoring possible combinatorial and/or dynamic regulation modulations that could involve several RBPs            

{Dassi et al., 2017}, the regulon prevalence could have been underestimated. Indeed, the analysis carried               

out on the eCLIP data provides an higher proportion of enriched/depleted FUs (40%, see Supplementary               

note), thus suggesting that the underestimation is the most plausible scenario. 

Second, the different patterns of enrichments and depletions for the RBP binding to functional unit               

transcripts revealed by our analysis, lead to a post-transcriptional landscape shaped the RBP-mRNA             

interactions. It reveals that 57,2% of the 877 tested RBPs regulate FUs by possibly binding to their                 

mRNAs whereas 72% do so by being avoided, therefore indicating the prevalence of this latter RBP                
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regulatory mode. On the other hand, the groups of functionally related mRNAs (the 2977 FUs) appear to                 

rather be regulated through the binding than through the avoidance of the RBPs (8% enriched, 2,6%                

depleted). Notwithstanding this, 90% of the FUs do not appear as being particularly regulated by RBPs.  

Indeed, promiscuous RBPs interacting with a vast majority of mRNA targets in the coding transcriptome               

and FUs interacting with those are not expected to be detected as significant by our approach since the                  

spread of the RBP targets precludes the detection of a statistically significant signal. This could be the                 

case for 18% of the RBPs (164 RBPs) and 90% of the FUs (2677 FUs) for which no statistical signal has                     

been detected.  

We observed 3 different patterns of enrichments and depletions for the RBP binding of functional unit                

transcripts. These patterns may reflect different possible FU molecular regulation strategies by the RBPs,              

involving  (i) the presence of RBP binding in the case of RBP targets enrichment,  (ii) its avoidance in the                   

case of depletions, or  (iii) presence or avoidance of binding, when both enrichments and depletions are                

observed for a given RBP. Indeed, whereas some RBPs (the RBP-1 set) appear to act exclusively through                 

their binding to the mRNAs of the FUs ( i.e. , presence of binding), some others (the RBP-3 set) are                  

excluded from binding by having less targets than expected by chance among the mRNAs of the FUs                 

( i.e. , avoidance of binding). Finally, for other RBPs (the RBP-2 set), both strategies, presence and               

avoidance of binding are observed.  

What do represent the ‘presence’ and the ‘avoidance’ of RBP binding? As  cat RAPID identifies              

RNA-protein interactions, the ‘presence’ is the physical ability for a RBP to regulate the FUs through its                 

binding, independently of the binding status itself, bound or unbound, which may change with conditions.               

Conversely, the ‘avoidance’ is the physical inability for the RBP to bind,  e.g. , because of the lack of                  

binding sites. As well as the ability, the inability to bind can lead to a regulation event. 

Interestingly, the observed depletion or avoidance of binding could reflect a molecular mechanism limiting              

inappropriate binding that could interfere with correct gene expression. Indeed, it has been proposed              

recently by Savisaar and Hurst 36 that coding sequences are evolutionarily constrained to avoid certain              

RBP binding motifs, in order to prevent inappropriate interactions with RBPs that could impair, for               

instance, their correct mRNA processing. Such avoidance of regulatory elements has also been observed              

for target sites of microRNAs within 3’UTRs {Stark et al., 2005} and to limit spurious transcription binding                 

sites. Our striking observation that some functional units could contain the information to not interact with                

certain RBPs could therefore represent a cellular regulatory mechanism  per se . However, further work is               

needed to investigate this hypothesis.  

We further studied the properties of the RBPs belonging to the three sets and found that are several                  

features that can distinguish them. For instance, the RBP-1 set is characterized by an enrichment in                
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enigmRBPs that lack canonical RBDs and for which a role in RNA biology has not been established so                  

far. Among the 29 enigmRBPs in the RBP-1 set, there are 8 metabolic enzymes, including the                

moonlighting protein Leukotriene A-4 hydrolase (LTA4H) {MoonProt, Chen et al., 2018}, and several             

signaling and structural proteins. In addition, RBP in this group have a significant low density in PTM                 

sites, which can regulate, for instance, RNA binding or dictate the subcellular localization of a given                

RBP 42 . Altogether, this suggests that these RBPs are putative multifunctional proteins whose RNA binding              

activity, which represents one of their possible molecular tasks, can be potentially modulated by a not yet                 

identified molecular signal.  

Conversely, the RBP-2 set is enriched in RBPs with canonical RBDs showing a significantly higher PTM                

density compared to the RBP in set 1, consistent with the current knowledge that the function of                 

established RBPs is modulated by post-translational modifications, as in case of SR splicing factors              

{Colwill et al., 1996}, ELAVL1 {Abdelmohsen et al., 2007; Yu et al., 2011} and FMR1 proteins                

{Dolzhanskay et al., 2006}. Moreover, RBPs in set 2, as well those in set 3, show a wider range of binding                     

preferences among RNA biotypes compared to the RBP-1 set, which comprises an high fraction of RBPs                

binding preferentially/exclusively mRNAs. Overall, our analysis indicates that RBPs in set 1 have distinct              

features that discriminate them from the two other groups. Consequently, further experimental studies are              

needed to identify the  in vivo RNA interactors of RBPs in set 1 (only 4 have been tested with the eCLIP                     

technology) and, in the case of the enigmRBPs, decipher their role in mRNA fate. 

Altogether, our analyses defined a post-transcriptional regulatory landscape occupied by functionally           

related mRNA differently regulated by RBPs, thereby allowing us to provide a novel classification of the                

RBPs. This classification may help understanding the regulatory of action of the continuously increasing              

number of newly discovered RBPs.  

Methods 

RNA-binding proteins and coding transcripts . We collected a list of 1217 human RBP protein-coding              

genes identified by mRNA interactome capture by Beckmann et al. 22 and their corresponding amino acid               

sequences from the UniprotKB human reference proteome 60 (May 2016). We downloaded the human             

coding transcriptome cDNA sequences (66,017 mRNAs) from Ensembl v82 61  (September 2015).  

RNA-binding protein annotations. For each RBP in our dataset, we gathered from the original article               

the following annotations: whether a role in RNA biology is known (based on Gene Ontology               

annotations), presence or absence of a recognized RNA-binding domain according to the classification             

proposed in Castello et al. 19 , whether it has been categorized as 'classic' metabolic enzyme (i.e.,               
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non-RNA-related enzymes). Those RBPs lacking a recognized RNA-binding and with no established role             

in RNA biology are labelled as enigmRBP 22 . 

Protein-RNA interaction predictions . We used the  cat RAPID  omics algorithm 25 , which allows           

large-scale predictions between transcript and protein sequences, to compute the interaction propensities            

between human RBPs and coding transcripts. Due to  cat RAPID computational constraints, we selected             

mRNA sequences between 50 and 1200 nucleotides of length, as well as protein sequences between 50                

and 750 amino acids. Around 72% of the RBPs (877 proteins) and 57% of the human coding                 

transcriptome (37,788 mRNAs) respected the length criterion. To avoid functional biases in subsequent             

analyses, we further reduced sequence redundancy among mRNAs (i.e., transcript isoforms) by            

selecting, for each protein-coding gene, the longest transcript as the representative sequence. Doing so,              

we retained 13,984 transcripts coded by ~63% of the annotated protein-coding genes in Ensembl v82               

(22,029 genes). We then predicted more than 12 million protein-RNA interactions between 877 RBPs and               

13,984 mRNAs.  

Dataset of experimentally identified protein-RNA interactions . We retrieved interaction information          

from the ENCODE enhanced CLIP (eCLIP) dataset 18 gathering 159 experiments for 112 RBPs. We              

mapped BED peak coordinates referencing the GRCh38 human assembly to Ensembl v82 coding             

transcripts models using BEDTools intersect v2.17 62 with flags  –w and  -a . Interactions from replicates and               

different cell lines were pooled. To have an interaction set comparable to  cat RAPID predictions,              

interactions involving transcript isoforms were mapped to the corresponding coding gene and counted as              

one. Doing so, we obtained a final list of 131,366 experimental interactions between 112 RBPs and at                 

least one transcript encoded by 11,647 genes. 

Compendium of functional units.  We built a wide compendium of 4646 functional units and processes               

by gathering annotations from different sources: 1846 manually annotated human protein complexes from             

the CORUM database 31 ; 873 functional network modules, defined as groups of proteins densely             

connected through their interactions and involved in the same biological process, detected by the OCG               

algorithm (Becker et al. 2012) on a human protein binary interactome built and annotated as previously                

described 63,64, zanzoni et al., 2017 ; 300 maps and 1627 biological pathways from KEGG and Reactome               

databases, respectively 33,34 (Kanehisa et al. 2012; Croft et al. 2014). The gene lists annotated in CORUM                

complexes and biological pathways from KEGG/Reactome were downloaded from the gProfiler           

webserver 65 (rev1477, October 2015, based on Ensembl v82), which provides Ensembl identifiers for             

annotated genes. The genes/proteins annotated in the OCG network modules were mapped to the              

corresponding Ensembl v82 gene identifiers through the Ensembl BioMart service. We restricted            
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subsequent analyses to complexes, modules and pathways having at least 5 and no more than 500                

genes/proteins ( i.e. , 2977 functional units).  

Functional unit enrichment analysis. To assess the over- and under-representation of the functional             

units among RBP predicted interactions, as done previously 30,66 , we considered as interacting all             

RBP-mRNA pairs with a  cat RAPID interaction propensity score of at least 50 and non-interacting all those                

with a score below 50. We next computed, for each functional unit in a given annotation dataset, the                  

log2-transformed ratio of annotated mRNAs among RBP interacting and non-interacting transcripts and            

assessed its significance by performing a two-sided Fisher’s Exact test. P-values were corrected for              

multiple testing using the Benjamini-Hochberg procedure and we considered as significant only those             

enrichments/depletions with a corrected P-value below 0.05. As RBPs are predicted to bind to many               

mRNAs, we further evaluated the number of enrichments/depletions expected by chance in each dataset              

by shuffling 1000 proteins labels among functional units. Only RBPs having a significantly higher number               

of enrichments/depletions (empirical P-value<0.05) were kept. 

In a second approach, we carried out a Gene Set Enrichment Analysis 35 (GSEA) using annotated mRNAs                

in a given functional unit as gene set. We selected as significant only those enrichments (normalized                

enrichment score > 0) or depletions (normalized enrichment score < 0) with a false discovery rate (FDR) <                  

0.05 based on 1000 gene set permutations. In both tests, we used annotated mRNAs in the  cat RAPID                 

interaction space as statistical background. 

The functional enrichment analysis of eCLIP interaction data was carried out using a Fisher's Exact test                

followed by a multiple testing correction (Benjamini-Hochberg procedure). 

Intrinsic disorder and sequence complexity . We computed protein residue disorder propensity using            

the stand-alone version of two state-of-the art disorder prediction algorithms: IUPred 67 (both long and              

short predictions) and DISOPRED3 68 . An amino acid was considered disordered if its probability score              

was greater than 0.4. We calculated the RBP sequence low complexity using the NCBI segmasker               

application, which is based on the SEG algorithm 69 , using default parameters. For each RBP, we               

computed the fraction of the number of predicted disordered and low complexity amino-acid residues              

divided by the sequence length. 

Post-translational modification sites. We collected post-translational modification (PTM) information for          

18,030 proteins from PhosphositePlus 43 , which stores data for seven different PTMs: acetylation (20’854             

sites in 6874 proteins), methylation (15’195 sites in 5347 proteins), O-GalnAc (2115 sites in 476 proteins),                

O-GlcnAc (420 sites in 166 proteins), phosphorylation (227’514 sites in 17’464 proteins), sumoylation             
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(7932 sites in 2500 proteins) and ubiquitination (62’256 sites in 10’325 proteins). We extracted PTM data                

for the RBPs and computed their PTM densities as the number of PTM sites over the sequence length.  

Protein expression profiles.  We downloaded protein expression data in human tissue based on             

immunohistochemistry from the Human Protein Atlas (version 18) 55 . We considered as expressed 10,579             

protein-coding genes with a qualitative expression level of at least 'low' a reliability score equal to                

'approved' or higher. For each protein-coding gene, we computed the expression breath as the fraction of                

tissues in which the given gene is considered as expressed over the total number of tissues present in the                   

Human Protein Atlas ( i.e. , 58). 

Statistical analyses. Distributions of disorder propensity and low complexity content fractions, PTM            

densities and tissue expression breath ratios were compared by using a two-sided Kruskal-Wallis test              

(significance level=0.05), a non-parametric analysis of variance method. In case of a null-hypothesis             

rejection, we applied a  post hoc Dunn Test, which performs multiple pairwise comparisons between the               

individual distributions (BH-corrected P-value significance level=0.05). 

Data availability . All data generated or analyzed during this study are included in this published article                

and its supplementary information files. The predicted protein-RNA interactions are available from the             

corresponding authors on reasonable request.  

Acknowledgements  

The authors would like to thank Davide Cirillo (CRG, Barcelona), Guillaume Charbonnier (TAGC), Denis              

Puthier (TAGC) and Thien-Phong Vu Manh (CIML, Marseille) for fruitful discussion and advice; and Elisa               

Micarelli (TAGC) for providing the list of the RNA biotype targets for the RBPs. The RAINET project                 

leading to this publication has received funding from Excellence Initiative of Aix-Marseille University -              

A*MIDEX, a French “Investissements d’Avenir” programme (to CB). GGT acknowledges the support of             

the European Research Council (RIBOMYLOME_309545) and the Spanish Ministry of Economy and            

Competitiveness (BFU2014-55054-P).  

Author's contributions  

AZ, GGT and CB conceived the study; AZ, LS and CB designed the experiments; AZ and DMR                 

performed the experiments; AZ, LS and CB analyzed the data; AZ and CB wrote the manuscript with                 

inputs from all the other authors. 

Competing interests 

109 



 

The author(s) declare no competing interests. 

References 

1. Komili, S. & Silver, P. A. Coupling and coordination in gene expression processes: a systems biology                
view.  Nat. Rev. Genet.   9,  38–48 (2008). 

2. Schwanhäusser, B.  et al. Global quantification of mammalian gene expression control.  Nature  473,             
337–342 (2011). 

3. Keene, J. D. RNA regulons: coordination of post-transcriptional events.  Nat. Rev. Genet.  8, 533–543              
(2007). 

4. Imig, J., Kanitz, A. & Gerber, A. P. RNA regulons and the RNA-protein interaction network.  Biomol                
Concepts   3,  403–414 (2012). 

5. Gerber, A. P., Herschlag, D. & Brown, P. O. Extensive association of functionally and cytotopically               
related mRNAs with Puf family RNA-binding proteins in yeast.  PLoS Biol.   2,  E79 (2004). 

6. Hogan, D. J., Riordan, D. P., Gerber, A. P., Herschlag, D. & Brown, P. O. Diverse RNA-binding                 
proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system.             
PLoS Biol.   6,  e255 (2008). 

7. Townley-Tilson, W. H. D., Pendergrass, S. A., Marzluff, W. F. & Whitfield, M. L. Genome-wide analysis                
of mRNAs bound to the histone stem-loop binding protein.  RNA   12,  1853–1867 (2006). 

8. Anderson, P. Post-transcriptional regulons coordinate the initiation and resolution of inflammation.           
Nat. Rev. Immunol.   10,  24–35 (2010). 

9. Blackinton, J. G. & Keene, J. D. Post-transcriptional RNA regulons affecting cell cycle and              
proliferation.  Semin. Cell Dev. Biol.   34,  44–54 (2014). 

10. Vohhodina, J.  et al. The RNA processing factors THRAP3 and BCLAF1 promote the DNA damage               
response through selective mRNA splicing and nuclear export.  Nucleic Acids Res.  45, 12816–12833             
(2017). 

11. Scherrer, T., Femmer, C., Schiess, R., Aebersold, R. & Gerber, A. P. Defining potentially conserved               
RNA regulons of homologous zinc-finger RNA-binding proteins.  Genome Biol.   12,  R3 (2011). 

12. Fernández, E., Rajan, N. & Bagni, C. The FMRP regulon: from targets to disease convergence.  Front                
Neurosci   7,  191 (2013). 

13. Galloway, A. & Turner, M. Cell cycle RNA regulons coordinating early lymphocyte development.  Wiley              
Interdiscip Rev RNA   8,  (2017). 

14. Bisogno, L. S. & Keene, J. D. RNA regulons in cancer and inflammation.  Curr. Opin. Genet. Dev.  48,                  
97–103 (2018). 

15. Iadevaia, V. & Gerber, A. P. Combinatorial Control of mRNA Fates by RNA-Binding Proteins and               
Non-Coding RNAs.  Biomolecules   5,  2207–2222 (2015). 

16. Dassi, E. Handshakes and Fights: The Regulatory Interplay of RNA-Binding Proteins.  Front Mol             
Biosci   4,  67 (2017). 

17. McHugh, C. A., Russell, P. & Guttman, M. Methods for comprehensive experimental identification of              
RNA-protein interactions.  Genome Biol.   15,  203 (2014). 

18. Van Nostrand, E. L.  et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites              
with enhanced CLIP (eCLIP).  Nat. Methods   13,  508–514 (2016). 

19. Castello, A.  et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins.  Cell                
149,  1393–1406 (2012). 

20. Baltz, A. G.  et al. The mRNA-bound proteome and its global occupancy profile on protein-coding               
transcripts.  Mol. Cell   46,  674–690 (2012). 

21. Matia-González, A. M., Laing, E. E. & Gerber, A. P. Conserved mRNA-binding proteomes in              
eukaryotic organisms.  Nat. Struct. Mol. Biol.   22,  1027–1033 (2015). 

110 



 

22. Beckmann, B. M.  et al. The RNA-binding proteomes from yeast to man harbour conserved              
enigmRBPs.  Nat Commun   6,  10127 (2015). 

23. Conrad, T.  et al.  Serial interactome capture of the human cell nucleus.  Nat Commun   7,  11212 (2016). 
24. Castello, A.  et al. Comprehensive Identification of RNA-Binding Domains in Human Cells.  Mol. Cell              

63,  696–710 (2016). 
25. Agostini, F.  et al. catRAPID omics: a web server for large-scale prediction of protein-RNA interactions.               

Bioinformatics (Oxford, England)   29,  2928–2930 (2013). 
26. Bellucci, M., Agostini, F., Masin, M. & Tartaglia, G. G. Predicting protein associations with long               

noncoding RNAs.  Nat. Methods   8,  444–445 (2011). 
27. Agostini, F., Cirillo, D., Bolognesi, B. & Tartaglia, G. G. X-inactivation: quantitative predictions of              

protein interactions in the Xist network.  Nucleic Acids Res.   41,  e31 (2013). 
28. Cirillo, D.  et al. Neurodegenerative diseases: Quantitative predictions of protein-RNA interactions.           

RNA   19,  129–140 (2013). 
29. Cirillo, D.  et al. Constitutive patterns of gene expression regulated by RNA-binding proteins.  Genome              

Biol.   15,  R13 (2014). 
30. Ribeiro, D. M.  et al. Protein complex scaffolding predicted as a prevalent function of long non-coding                

RNAs.  Nucleic Acids Res.   46,  917–928 (2018). 
31. Ruepp, A.  et al. CORUM: the comprehensive resource of mammalian protein complexes--2009.            

Nucleic Acids Res.   38,  D497-501 (2010). 
32. Becker, E., Robisson, B., Chapple, C. E., Guénoche, A. & Brun, C. Multifunctional proteins revealed               

by overlapping clustering in protein interaction network.  Bioinformatics   28,  84–90 (2012). 
33. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation                

of large-scale molecular data sets.  Nucleic acids research   40,  D109–114 (2012). 
34. Croft, D.  et al.  The Reactome pathway knowledgebase.  Nucleic Acids Res.   42,  D472-477 (2014). 
35. Subramanian, A.  et al. Gene set enrichment analysis: A knowledge-based approach for interpreting             

genome-wide expression profiles.  PNAS   102,  15545–15550 (2005). 
36. Savisaar, R. & Hurst, L. D. Both Maintenance and Avoidance of RNA-Binding Protein Interactions              

Constrain Coding Sequence Evolution.  Mol. Biol. Evol.   34,  1110–1126 (2017). 
37. Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins.  Nat. Rev. Genet.                

15,  829–845 (2014). 
38. Nolen, B., Taylor, S. & Ghosh, G. Regulation of protein kinases; controlling activity through activation               

segment conformation.  Mol. Cell   15,  661–675 (2004). 
39. Filtz, T. M., Vogel, W. K. & Leid, M. Regulation of transcription factor activity by interconnected                

post-translational modifications.  Trends Pharmacol. Sci.   35,  76–85 (2014). 
40. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications.  Cell Res.  21,               

381–395 (2011). 
41. Wotton, D., Pemberton, L. F. & Merrill-Schools, J. SUMO and Chromatin Remodeling.  Adv. Exp. Med.               

Biol.   963,  35–50 (2017). 
42. Lovci, M. T., Bengtson, M. H. & Massirer, K. B. Post-Translational Modifications and RNA-Binding              

Proteins.  Adv. Exp. Med. Biol.   907,  297–317 (2016). 
43. Hornbeck, P. V.  et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations.  Nucleic Acids             

Res.   43,  D512-520 (2015). 
44. Braunschweig, U., Gueroussov, S., Plocik, A. M., Graveley, B. R. & Blencowe, B. J. Dynamic               

integration of splicing within gene regulatory pathways.  Cell   152,  1252–1269 (2013). 
45. Tyagi, A., Ryme, J., Brodin, D., Ostlund Farrants, A. K. & Visa, N. SWI/SNF associates with nascent                 

pre-mRNPs and regulates alternative pre-mRNA processing.  PLoS Genet.   5,  e1000470 (2009). 
46. Huang, Y.  et al. Mediator complex regulates alternative mRNA processing via the MED23 subunit.              

Mol. Cell   45,  459–469 (2012). 

111 



 

47. Grueter, C. E.  et al. A cardiac microRNA governs systemic energy homeostasis by regulation of               
MED13.  Cell   149,  671–683 (2012). 

48. Wade, S. L., Langer, L. F., Ward, J. M. & Archer, T. K. MiRNA-Mediated Regulation of the SWI/SNF                  
Chromatin Remodeling Complex Controls Pluripotency and Endodermal Differentiation in Human          
ESCs.  Stem Cells   33,  2925–2935 (2015). 

49. Rattray, A. M. J. & Müller, B. The control of histone gene expression.  Biochem. Soc. Trans.  40,                 
880–885 (2012). 

50. G Hendrickson, D., Kelley, D. R., Tenen, D., Bernstein, B. & Rinn, J. L. Widespread RNA binding by                  
chromatin-associated proteins.  Genome Biol.   17,  28 (2016). 

51. He, C.  et al. High-Resolution Mapping of RNA-Binding Regions in the Nuclear Proteome of              
Embryonic Stem Cells.  Mol. Cell   64,  416–430 (2016). 

52. Antonicka, H. & Shoubridge, E. A. Mitochondrial RNA Granules Are Centers for Posttranscriptional             
RNA Processing and Ribosome Biogenesis.  Cell Rep  (2015). doi:10.1016/j.celrep.2015.01.030 

53. Sirey, T. M. & Ponting, C. P. Insights into the post-transcriptional regulation of the mitochondrial               
electron transport chain.  Biochem. Soc. Trans.   44,  1491–1498 (2016). 

54. Pearce, S. F.  et al. Regulation of Mammalian Mitochondrial Gene Expression: Recent Advances.             
Trends Biochem. Sci.   42,  625–639 (2017). 

55. Uhlén, M.  et al.  Tissue-based map of the human proteome.  Science   347,  1260419 (2015). 
56. Olender, T.  et al.  The human olfactory transcriptome.  BMC Genomics   17,  619 (2016). 
57. Pancaldi, V. & Bähler, J. In silico characterization and prediction of global protein-mRNA interactions              

in yeast.  Nucleic Acids Res.   39,  5826–5836 (2011). 
58. Brun, C.  et al. Functional classification of proteins for the prediction of cellular function from a                

protein-protein interaction network.  Genome biology   5,  R6 (2003). 
59. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B. & Singh, M. Whole-proteome prediction of protein               

function via graph-theoretic analysis of interaction maps.  Bioinformatics   21 Suppl 1,  i302-310 (2005). 
60. Breuza, L.  et al.  The UniProtKB guide to the human proteome.  Database (Oxford)   2016,  (2016). 
61. Cunningham, F.  et al.  Ensembl 2015.  Nucleic Acids Res.   43,  D662-669 (2015). 
62. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features.                 

Bioinformatics   26,  841–842 (2010). 
63. Chapple, C. E.  et al. Extreme multifunctional proteins identified from a human protein interaction              

network.  Nat Commun   6,  7412 (2015). 
64. Zanzoni, A. & Brun, C. Integration of quantitative proteomics data and interaction networks:             

Identification of dysregulated cellular functions during cancer progression.  Methods  93, 103–109           
(2016). 

65. Reimand, J., Arak, T. & Vilo, J. g:Profiler--a web server for functional interpretation of gene lists (2011                 
update).  Nucleic Acids Res.   39,  W307-315 (2011). 

66. Zanzoni, A.  et al. Principles of self-organization in biological pathways: a hypothesis on the              
autogenous association of alpha-synuclein.  Nucleic Acids Res.   41,  9987–9998 (2013). 

67. Dosztányi, Z., Csizmok, V., Tompa, P. & Simon, I. IUPred: web server for the prediction of intrinsically                 
unstructured regions of proteins based on estimated energy content.  Bioinformatics  21, 3433–3434            
(2005). 

68. Jones, D. T. & Cozzetto, D. DISOPRED3: precise disordered region predictions with annotated             
protein-binding activity.  Bioinformatics   31,  857–863 (2015). 

69. Wootton, J. C. & Federhen, S. Analysis of compositionally biased regions in sequence databases.              
Meth. Enzymol.   266,  554–571 (1996).  

112 



 

 

3. General discussion & perspectives 
 

3.1. Integration of protein-protein and protein-RNA interactions 

The complexity of higher organisms requires the existence of a concerted series of interactions between               

several types of macromolecules, such as those between proteins, DNA and RNA. Having a complete               

map of all the interactions in a cell would allow us to comprehend deeply the regulatory mechanisms                 

employed by the cell, and predict the outcome of a change in the system  (Vidal, 2001; Costanzo  et al. ,                   

2016) . However, this is an enormous challenge, akin to mapping all the connections between the human                

brain’s neurons in order to understand brain function and behavior  (Van Essen  et al. , 2013) .  

3.1.1. Choice of the interaction datasets used 

Current macromolecule interaction maps are relatively scarce for several types of molecules, as in the               

case of protein-RNA interactions. Thus, large-scale analysis of protein-RNA interaction networks have            

been hindered by the lack of experimental interactions. Indeed, these have only been applied to a subset of                  

molecules (e.g. a few hundred RBPs for protein-centric approaches, a few dozen RNAs for RNA-centric               

approaches), and have often excluded some types of molecules such as non-canonical RBPs and RNAs               

lacking poly(A) tails  (Van Nostrand  et al. , 2016; Huang  et al. , 2018) . In addition, considering the high                 

number of distinct transcripts in mammalian cells and that many RBPs have hundreds or even thousands                

of RNA targets  (Van Nostrand  et al. , 2016) , the protein-RNA interaction space appears to be much larger                 

than the protein-protein interaction space  (Ribeiro  et al. , 2018; See Figure 2) . Therefore, mapping all               

protein-RNA interactions would require a vast effort. Making this task more difficult, current             

high-throughput experimental methods to detect protein-RNA interactions (e.g. PAR-CLIP and eCLIP)           

have been shown to suffer from several biases (Introduction, section 1.1.4)  (Krakau, Richard and Marsico,               

2017) and experimental results differ between different method variants or even between technical             

replicates of the same method  (Van Nostrand  et al. , 2016) . When high-throughput methods to detect               

protein-protein interactions became available, one of the initial concerns was the apparent lack of              

robustness in the results (mostly due to false-positives), which varied in every replicate experiment.              
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However, efforts were made to produce high quality protein interaction maps, with the addition of several                

replicates and probability scores for interactions  (Braun  et al. , 2009; Venkatesan  et al. , 2009) . Due to                

these efforts, nowadays, protein-protein interaction methods such Y2H can be deemed reliable. For             

high-throughput protein-RNA interaction methods, robust protocols and frameworks are yet to be            

developed in order for their results to be consistent and reliable, but the development, improvement and                

standardisation of high-throughput protein-RNA interaction methods is a current challenge and a highly             

researched topic  (Lee and Ule, 2018) . Indeed, a recent review article discusses data science issues in                

analysing CLIP data, describing the impact of using different methods on the results and advocating the                

need of applying computational quality controls and standardising steps such as read alignment, peak              

calling and computational modeling of protein–RNA binding sites  (Chakrabarti  et al. , 2018) . It is thus               

predictable that the quality of results from such methods will improve over the next years. 

Currently, an alternative to using experimental protein-RNA interaction datasets is to computationally            

predict interactions. This was the prefered option when analysing protein-lncRNA interactions to research             

the scaffolding function of lncRNAs and also when predicting RNA regulons (Results, sections 2.1 and               

2.4, respectively), since the scope of these studies was proteome- and transcriptome-wide. In fact, most               

lncRNAs, as well as certain mRNAs, are expressed in a tissue- and condition-specific manner (e.g.               

cellular stress, DNA damage)  (Djebali  et al. , 2012; Su  et al. , 2018) . Therefore, by being able to predict all                   

possible interactions independently of the context, methods that computationally predict protein-RNA           

interactions have the advantage of finding interactions that may only occur in certain conditions and thus                

be difficult to find experimentally. However, computational methods such as catRAPID  omics also have              

limitations, namely the maximum length limit for RNAs (1200 nucleotides)  (Agostini  et al. , 2013) . Even               

though certain very long scaffolding lncRNAs such as XIST and NEAT1 are missed, the majority of                

lncRNAs (>80%) can be assessed with this method. Nevertheless, the size restriction often excludes long               

3’UTRs, which were found to be the drivers of mechanisms such as the UDPL, unlike short 3’UTRs                 

(Berkovits and Mayr, 2015) . This is one of the reasons why, for the project exploring the formation of                  

protein complexes promoted by 3’UTRs (Results, section 2.3), I decided to primarily use experimentally              

determined protein-RNA interactions. In addition, publicly available interactions for mRNAs (including           

3’UTRs) are more numerous than those for lncRNAs, and certain databases, like the AURA database,               

provide an extensive compendium of interactions focused on UTRs  (Dassi  et al. , 2014) .  
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3.1.2. Extensive protein-RNA complex prediction by integrating different types of          

interactions 

In this work, I integrate protein-protein interactions with protein-RNA interactions to predict a role of               

RNAs in assembling protein complexes. Several methods to detect protein-protein interactions and            

protein-RNA interactions exist (Introduction, sections 1.1.2 and 1.1.4, respectively), as well as            

comprehensive datasets of protein complexes  (Drew  et al. , 2017) , however, the detection of protein-RNA              

complexes has been largely overlooked. Protein-RNA complexes have been mostly identified through            

X-ray crystallography and cryo-electron microscopy, on a case by case basis  (Patel  et al. , 2017) .               

Large-scale approaches to study protein-RNA complexes, like the analysis of thousands of MS             

experiments to produce a compendium of protein complexes, are nonexistent  (Huttlin  et al. , 2017; Patel  et                

al. , 2017) . The results exposed in this thesis suggest that the formation of protein-RNA complexes is                

highly widespread, with lncRNAs predicted to scaffold hundreds of known protein complexes, and             

3’UTRs predicted to promote the formation of more than a thousand different protein complexes. While               

an unknown amount of these predictions may be false positives, both the computational and experimental               

interaction datasets used suggest that RNAs can often be associated to several proteins that are known to                 

act together. One consideration is that the protein-RNA complexes predicted here did not take into               

account that the binding of two interactors may affect the binding of a third component of the complex.                  

Indeed, catRAPID  omics does not detect the interaction sites between RNAs and RBPs, and even though                

several experimental protein-RNA interaction methods may be able identify RBP binding sites and             

protein-RNA complexes, the datasets used here (AURA database) provide interactions as binary            

interactions (i.e. one molecule interacting with another single molecule). However,  in vivo , it is possible               

that  (i) two proteins compete for the same RNA binding site,  (ii) the protein-protein interactions between                

two or more proteins would prevent an interaction with the RNA. The first issue does not affect the                  

3’UTR-protein complex predictions, since only the interaction between one RBP and a 3’UTR is              

required, but it could affect the predictions of lncRNAs scaffolding protein complexes. On the other hand,                

the second issue could occur for both types of predictions made here.  

In this work, expression filters were applied to improve the likelihood of the protein-RNA complex               

predictions, requiring that all components of a complex can be found in a same tissue. This thus excludes                  

computationally predicted protein-RNA interactions between molecules that had good propensity to           

interact but were unlikely to occur biologically. Moreover, expression filters retain only complexes with              

components that are found in the same tissue, excluding cases in which one pair of components interact in                  
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a tissue, but the other components of a complex interact only in a distinct tissue. This last point is relevant                    

for both protein-protein and protein-RNA experimentally identified interactions. However, the human           

datasets of RNA or protein tissue expression used, although large-scale as in the case of GTEx and HPA                  

(Consortium, 2015; Uhlén  et al. , 2015) , may be incomplete and lead us to miss certain interactions and                 

possible complexes. One such example is the lack of detected expression for the telomerase RNA               

component (TERC) in the GTEx v6 dataset, a well known scaffolding lncRNA, potentially due to the fact                 

that this RNA (and the Telomerase) is repressed in most normal adult tissues  (Cong, Wright and Shay,                 

2002) . Indeed, TERC may exemplify a group of functional transcripts that only act in certain conditions                

and respond to certain stimuli, such as the RNAs responsible for forming stress-dependent nuclear              

granules like the NEAT1-promoted paraspeckles (Introduction, section 1.2.3)  (Clemson  et al. , 2009; Fox             

et al. , 2018) .  

3.2. Prevalence of novel non-coding RNA functions 

The complexity of higher organisms is correlated with the amount of non-coding RNAs, such as UTRs                

and lncRNAs, rather than the number of protein-coding genes of an organism  (Mattick, Taft and Faulkner,                

2010; Barrett, Fletcher and Wilton, 2012) . Non-coding RNAs are found to play an active role in most                 

cellular processes, through interaction with other RNAs, DNA molecules or proteins  (Wilusz, Sunwoo             

and Spector, 2009; Geisler and Coller, 2013) . Given the demonstrated impact of non-coding RNAs in               

biological networks, RNAs are no longer perceived merely as carriers of information, but important parts               

of biological pathways and their control. Indeed, in light of this, Sidney Altman has proposed to label                 

today’s world as the “RNA–Protein World”, instead of the most commonly used “Protein World”              

(Altman, 2013) . Thus, the identification and functional characterisation of all new non-coding RNAs is              

vital to the understanding of cellular mechanisms. 

Protein-RNA interactions are key events in a large number of regulatory processes, such as gene               

imprinting, differentiation and development  (Geisler and Coller, 2013; Marchese, Raimondi and Huarte,            

2017) . Studying protein-RNA interactions can thus give us a broad perspective on lncRNA function.              

Moreover, I think that with the discovery that the RNA-binding proteome is larger than previously known                

(Introduction, section 1.1.3), RNAs may impact more biological processes than previously expected,            

perhaps through yet undisclosed mechanisms. In this thesis, I predict the prevalence of two distinct but                

mechanistically related RNA functions which are still largely undescribed. I have predicted that the              

formation of both lncRNA-protein complexes (lncRNA scaffolding; Results, section 2.1) and           
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3’UTR-protein complexes (Results, section 2.3) in human tissues occurs often, and more than expected by               

chance. Indeed, my results suggest that as much as half of the known human protein complexes have at                  

least two proteins that may be scaffolded by a certain lncRNA. Similarly, my results indicate that the                 

3’UTRs of mRNAs encoding EMF proteins can gather hundreds of different combinations of             

co-interacting proteins.  

3.2.1. Scaffolding function of lncRNAs 

Even though the definition of lncRNA serving as protein scaffolds (in this thesis termed simply ‘lncRNA                

scaffolding’) is progressively being established by the community, I consider that a minimum requirement              

should be the simultaneous, and functional, physical interaction of the lncRNA with two or more proteins.                

In this thesis, I  in silico  predicted lncRNAs acting as protein scaffolds, based on the interaction between a                  

lncRNA and at least two proteins of a same protein complex or functional protein network module,                

without information on simultaneous binding (as discussed above) or the functionality of the interactions.              

This exploratory approach rendered us with more than 800 lncRNAs that may act as scaffolding               

molecules to thousands of protein complexes and functional network modules, seen as scaffolding             

candidates whose exact function need to be further characterised. These results indicate that lncRNA              

scaffolding could be a rather common mechanism in human cells, and that scaffolding lncRNAs possess               

features that distinguish them from other lncRNAs, such as displaying a metabolic profile characteristic of               

functional transcripts and containing structurally conserved elements  (Ribeiro  et al. , 2018) .  

In vivo , RNA scaffolding has been found to be performed by several lncRNA molecules in a number of                  

different contexts. In my perspective, these include:  (i) lncRNAs that perform their functions as              

ribonucleoprotein particles (RNPs), such as the TERC RNA  (Cech and Steitz, 2014) ,  (ii) lncRNAs that               

interact with specific proteins to form cellular granules, including the NEAT1 lncRNA formation of              

nuclear paraspeckles  (Fox  et al. , 2018) ;  (iii) lncRNAs that gather several components of a pathway (i.e.                

acting in a similar way to protein scaffolders), such as the LINP1 lncRNA  (Zhang  et al. , 2016) ;  (iv)                  

lncRNAs that functionally assemble groups of proteins, like the XIST and HOTAIR lncRNAs  (Tsai  et al. ,                

2010; Creamer and Lawrence, 2017) . The extensive search for scaffolding lncRNAs made in this thesis               

should englobe all of these cases, and potentially others yet undiscovered. 

While the debate of whether most lncRNA molecules are functional or transcriptional noise is ongoing,               

novel examples of scaffolding lncRNAs are gradually being unveiled (Introduction, section 1.2.2)  (Kopp             

and Mendell, 2018; Uszczynska-Ratajczak  et al. , 2018) . For example, even though RNAs have been              
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found in the kinetochores in the 1970s, only recently it was revealed that several RNAs transcribed from                 

the centromeric region (albeit at low levels) are bound by kinetochore proteins and incorporated into               

centromeric chromatin, playing a role in protein colocalization and stabilisation  (Talbert and Henikoff,             

2018) . These include a 1.3kb centromeric lncRNA that associates with HJURP and CENP-A proteins,              

thus serving essential functions, such as the maintenance of centromere integrity  (Quénet and Dalal,              

2014) , by employing mechanisms that can be considered to be lncRNA scaffolding.  

A common known function of lncRNAs is to regulate gene expression, with several dozen nuclear               

lncRNAs having been implicated in transcription activation and repression, as well as post-transcriptional             

regulation events  (Sun, Hao and Prasanth, 2018) . Although for some lncRNAs this regulation seems to be                

associated to their transcriptional event, many lncRNA molecules have been found to act through the               

interaction with proteins or protein complexes, such as RNA polymerase II, DNA-binding proteins and              

chromatin-remodeling complexes, including the polycomb repressive complex 1 and 2 (PRC1 and PRC2)             

(Long  et al. , 2017) . In my work, I have predicted that the PRC2 complex, as well as other complexes, is                    

scaffolded by more than a hundred lncRNAs. Indeed, some proteins or protein-complexes have also been               

found to interact with thousands of RNAs in cells, including the PRC2, heterogeneous nuclear RNP               

(hnRNP) proteins and FUS proteins, although it is unclear if this represents functional binding or is                

simply the outcome of promiscuity of the interactors  (Hendrickson  et al. , 2016; Long  et al. , 2017) . In                 

such cases, further work needs to be performed to assess the functionality of the lncRNA association with                 

the proteins. In addition, my work predicts that hundreds of lncRNAs may have a scaffolding function.                

While this function can only be thoroughly verified using experimental methods, I have provided              

orthogonal evidence that this set of lncRNAs comprises transcripts known to be functional, associated to               

disease and possess other features of functionality  (Ribeiro  et al. , 2018) . Moreover, we validated some of                

the interactions of the lnc-405 lncRNA with a known protein complex. The mouse ortholog version of this                 

lncRNA (renamed as “Charme” lncRNA) has recently been found to cause myogenic defects and heart               

remodeling  (Ballarino  et al. , 2018) . 

Besides acting on gene expression regulation, an increasing amount of lncRNAs and other RNAs are               

being implicated in RNP granule formation, such as the germ granules, paraspeckles, Cajal bodies, stress               

granules and P-bodies  (Van Treeck and Parker, 2018) . Recent findings suggest that the formation of these                

granules initially stems from specific protein-protein and protein-RNA interactions, followed by           

promiscuous binding mostly through intrinsically disordered regions in RBPs  (Protter  et al. , 2018) .             

However, it was recently found that intermolecular and as well as self RNA-RNA interactions also               

contribute to RNP granule formation, particularly contributing to the recruitment of specific RNAs to              
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stress granules  (Van Treeck  et al. , 2018) . This means that protein-protein, protein-RNA and RNA-RNA              

interactions can work together in order to form RNP assemblies (Figure 3.1). RNA-centric experimental              

methods to detect protein-RNA interactions focus on single RNAs, whereas protein-centric methods may             

identify many protein-interacting RNAs  (Barra and Leucci, 2017) , but in neither case it is evident whether                

these RNAs may interact together. Novel methods to predict lncRNA scaffolding could integrate             

RNA-RNA interaction data in order to produce more detailed models and find cases in which groups of                 

proteins may be scaffolded by a group of lncRNAs, as observed in certain RNP granules.  

 

 

Figure 3.1  | Model of granule formation mediated by RNAs . (A) RNAs serve as              
scaffolds by interacting with RBPs, which may in turn interact with other proteins. (B)              
RNAs can also play a role in granule formation through interaction with RBPs but also               
with other RNAs. Figure adapted from  (Van Treeck  et al. , 2018) .  

It is now known that mRNAs can have functions unrelated to their coding-potential  (Auboeuf, 2018) .               

Indeed, mRNAs and other transcripts stemming from protein-coding genes have been found to participate              

in RNP granule formation, such as P-bodies and stress granules, where functionally-related mRNAs can              

be assembled and stored in the cytoplasm, allowing coordinated co-translation upon granule dissolution             

(Mitchell  et al. , 2013; Nielsen, Hansen and Christiansen, 2016; Hubstenberger  et al. , 2017) . Interestingly,              

the expression coordination through RNA regulons (Results, section 2.4) may involve RNA granule             

formation, as in the case of the  Drosophila SFPQ RBP regulating multiple mRNAs encoding proteins that                

promote axon survival  (Cosker  et al. , 2016) . Besides known mRNA transcripts, other sense-strand RNAs              

that overlap protein-coding regions have been found to interact with DNA methyltransferases such as              
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DNMT1 and DNMT3a  (Savell  et al. , 2016) . Furthermore, both pre-mRNA and intronic RNA sequences              

were found to functionally interact with the PRC2 complex, thus playing a role in regulating transcription                

and chromatin function through protein interactions  (Guil  et al. , 2012; Skalska  et al. , 2017) . Overall, it is                 

possible that, similarly to some non-coding genes, certain protein-coding genes could produce transcripts             

that act through mechanisms involving protein binding, such as RNA scaffolding. The novel methods              

developed during this thesis to predict lncRNA scaffolding could further be applied to discover the               

scaffolding potential of transcripts derived from protein-coding genes, something that has not been             

attempted before. 

3.2.2. 3’UTR-protein complex formation 

Alike non-coding RNAs, 3’UTR regions of mRNAs have been found to perform functions through              

protein interactions. 3’UTR protein binding occurs throughout the life cycle of the mRNA, being              

important for the mRNA processing, transport, stability and translation (Introduction, section 1.3.2)            

(Szostak and Gebauer, 2013; Tian and Manley, 2017) . Moreover, 3’UTRs have been found to mediate               

protein interactions in protein complexes formed during translation  (Duncan and Mata, 2011; Berkovits             

and Mayr, 2015; Chartron, Hunt and Frydman, 2016) . In particular, the UTR-dependent protein             

localisation (UDPL) mechanism was found to translocate CD47 to the plasma membrane, evidencing a              

case in which the interaction between a 3’UTR and an RBP promotes the recruitment to the translation                 

site of other proteins that interact with the 3’UTR/mRNA’s cognate protein  (Berkovits and Mayr, 2015) .               

So far, before the work in this thesis, the UDPL mechanism has not been searched systematically and has                  

only been found in a few cases. On the other hand, formation of mRNA-promoted protein complexes                

involving the mRNA’s cognate protein seem to be widespread in yeast. For example, the SET1 mRNA                

and nascent protein co-purify with several proteins of the SET1 histone methyltransferase complex during              

translation  (Halbach  et al. , 2009) . Moreover, in 2011, Duncan & Mata showed that cotranslational              

complexes involving the nascent protein and their cognate mRNA occured in 38% of the tested cases                

(Duncan and Mata, 2011) .  

The formation of 3’UTR-protein complexes can be particularly interesting because 3’UTRs are found to              

interact with hundreds of different RBPs and these binding events can be dynamic and dependent on the                 

local environment  (Freeberg  et al. , 2013; Dassi  et al. , 2014) . For example, post-transcriptional             

modifications in RBPs can alter their interaction with 3’UTRs  (Mayr, 2017) and alternatively processed              

pre-mRNAs can have alternative cellular functions, such as the p53 mRNA nuclear trafficking control of               

the MDM2 protein through its interaction  (Gajjar  et al. , 2012; Auboeuf, 2018) . Indeed, the 3’UTR               
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alternative polyadenylation of the CD47 mRNA was found to be responsible for the differential cellular               

localisation of its nascent protein  (Berkovits and Mayr, 2015) . Given the presence, absence and              

availability of binding motifs in 3’UTRs, RBPs may bind only one of the 3’UTR isoforms produced and                 

not others  (Mayr, 2017) . Besides CD47, this was also shown for differential HuR RBP binding of the                 

α-synuclein (SNCA) mRNA depending on the 3’UTR isoform expressed  (Marchese  et al. , 2017) .             

Moreover, the competition and binding of different RBPs to a same 3’UTR could change the ability to                 

recruit different RBP-interacting proteins, thus potentially forming 3’UTR-protein complexes with          

diverse compositions, possibly with different functions. It can also be speculated that the composition of               

3’UTR-protein complexes involving a certain mRNA can vary depending on the cell type and cellular               

conditions in which they are present, alike moonlighting proteins performing different functions in             

distinct conditions (Introduction, section 1.4.3)  (Jeffery, 2018) .  

It is predictable that, besides affecting the cellular localisation of proteins, the formation of 3’UTR-protein               

complexes could function to regulate other cellular processes. For example, the two heteromeric ion              

channel subunits (hERG 1a and 1b) assemble co-translationally in association with their cognate mRNAs              

(Liu  et al. , 2016) . In fact, co-translational protein complex assembly was recently suggested to occur for                

most cytoplasmic protein complexes of  Saccharomyces cerevisiae  (Shiber  et al. , 2018) . This was found              

by performing selective ribosome profiling, which isolates ribosomes synthesizing nascent proteins           

already interacting with another protein, such as another subunit of the same protein complex  (Shiber  et                

al. , 2018) . Considering this, two models in which the mRNAs encoding for the several protein complex                

subunits could play a role in the protein complex assembly have been proposed  (Mayr, 2018a) . In one                 

model, the two mRNAs may be brought to proximity through RBP binding, and possibly involving RNA                

granule formation (Figure 3.2a,b). Alternatively, an RBP may bind the 3’UTR of an mRNA and recruit a                 

protein that assembles with its cognate nascent protein (Figure 3.2c). Occurences of the latter model are                

prone to be identified by the approaches undertaken in this thesis (Results, section 2.3). Moreover, these                

models are also consistent with the RNA regulon theory, in which an RBP regulates functionally-related               

mRNAs (Results, section 2.4). 
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Figure 3.2  | mRNA binding in promoting protein complex assembly. (a) the mRNAs             
encoding two subunits of the same protein complex are bound by a same RBP, bringing               
the nascent proteins into proximity; (b) the mRNAs of the protein complex subunits are              
found in the same RNA granule; (c) the 3’UTR of the mRNA interacts with an RBP that                 
in its turn interacts with another subunit of the protein complex (i.e. the 3’UTR-protein              
complex formation described in this thesis). Figure adapted from  (Mayr, 2018a) . 

The results described in this thesis (Results, section 2.3) indicate that hundreds of different 3’UTR-protein               

complexes may be formed via the mRNAs of moonlighting protein candidates (EMF proteins),             

comprising more than a thousand different protein compositions. The effector proteins found in these              

predicted complexes include motor proteins and other proteins involved in macromolecule transport,            

which could be involved in plasma membrane translocation of the nascent protein, but most complexes               

involve other proteins participating in many diverse biological processes. It is possible that many of the                

3’UTR-protein complexes predicted play a role in protein complex assembly, as described above. In fact,               

Christine Mayr has recently reported that an alternative 3’UTR of the human E3 ubiquitin ligase BIRC3 is                 

implicated in the assembly of a protein complex involving its cognate nascent protein, evidencing the               

possibility of co-translational protein complex assembly to be mediated by 3’UTRs  (Mayr, 2018b) .             

However, a limitation of my work is that 3’UTR-protein complexes were predicted using protein-protein              

and protein-RNA interactions that have been determined in diverse cellular compartments, not            

specifically associated to ribosomes and co-translational interactions. Indeed, large-scale datasets of           

co-translational protein-protein or protein-RNA interactions, such as from selective ribosome profiling           

methods, are yet inexistant. Regardless, the full extent of 3’UTR-protein complex formation is yet              

unknown and the work presented in this thesis provides a preliminary estimation of the amount of                

3’UTR-protein complexes that could possibly be formed in human cells, based on interactions found              

experimentally. Even though this work focused on moonlighting protein candidates, whose characteristics            

make them more prone to form 3’UTR-protein complexes, thousands of complexes involving other             

proteins were also found. Further efforts will involve the analysis of 3’UTR-protein complexes liable to               

be formed throughout the human proteome, outside the context of protein multifunctionality, since the              
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formation of these complexes may be a general and prevalent cellular mechanism. Indeed, although there               

is evidence that certain biological processes, such as metabolic pathways  (Shiber  et al. , 2018) , can be                

coordinated cotranslationally, the function of many co-translational protein interactions is still unknown.  

3.2.3. Moonlighting proteins and their regulation by 3’UTRs 

How cells cope with proteins that can perform very different biological functions is an intriguing               

question. The mechanisms employed by the cell to regulate these activities, even though described for               

several proteins (Introduction, section 1.4.3), remain to be elucidated for many moonlighting proteins. In              

this thesis I suggest that the formation of 3’UTR-protein complexes may be one way in which cognate                 

mRNAs and their interactors regulate the multifunctionality of proteins. More particularly, these            

complexes could play a role in the switch between the several functions of moonlighting proteins by                

changing the subcellular localisation of the nascent protein, as with the UDPL mechanism  (Berkovits and               

Mayr, 2015) . Moreover, since 3’UTR-protein complexes can be formed by many different protein             

components, and thus associating the nascent protein with different effector (intermediate) proteins, I             

speculate that these complexes may regulate moonlighting protein function through other mechanisms.            

For example, 3’UTR-proteins complexes could affect the nascent protein folding (e.g. through a chaperon              

effector), the participation in different protein complexes, the PTMs of the nascent protein, or indeed any                

other property or state that involves interactions with proteins. Interestingly, several of the 9 protein               

complexes found to be assembled co-translation in Shiber  et al. include known yeast moonlighting or               

multifunctional proteins (PFK1, EGD2, GluRS, MetRS), suggesting that cotranslational protein complex           

formation may indeed be important in the regulation of moonlighting protein function  (Shiber  et al. ,               

2018) . 

Human extreme multifunctional (EMF) proteins were chosen as a model in which to study 3’UTR-protein               

complex formation due to their features, such as having long 3’UTRs (Results, section 2.3). The use of a                  

large and up-to-date dataset of EMF proteins, such as the one produced here and present in MoonDB 2.0                  

(Results, section 2.2), has been instrumental to perform large-scale analysis on the potential regulatory              

role of 3’UTR-protein complex formation in protein multifunctionality. Indeed, the prevalence of            

moonlighting proteins in model organisms is not fully established and their discovery, either through              

experimental or computational methods, is a continuous effort  (Chapple  et al. , 2015; Khan, Bhuiyan and               

Kihara, 2017; Espinosa-Cantú  et al. , 2018) . The computational prediction of EMF proteins employed here              

was found to be highly dependent on the amount of protein-protein interaction and GO term annotation                

data available for a species. Both types of data are expected to continuously grow over the years for                  
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model species, and thus the development of a semi-automated pipeline such as the one created for                

MoonDB 2.0 facilitates the keeping of an up-to-date dataset of EMF proteins  (del-Toro  et al. , 2013;                

The Gene Ontology Consortium, 2017) . Indeed, MoonDB will be updated every year with novel           

candidates and functional annotations, thus providing a reliable resource to the community.  
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4. Conclusion 
 

The work carried out during my Ph.D. studies at the TAGC, Inserm U1090 (Marseille, France), partly in                 

collaboration with the CRG (Barcelona, Spain), has been composed into a Ph.D. thesis entitled              

‘Discovery of the role of protein-RNA interactions in protein multifunctionality and cellular complexity’. 

This thesis presents my contributions to several lines of research which can be presently considered as                

‘hot topics’, receiving increasing attention from the community. Indeed, this thesis tackles several open              

uncharted questions, namely regarding the potential extent and importance of 3’UTR-protein complex            

formation in human cells and the prevalence and regulation of moonlighting proteins. Furthermore, the              

results presented here feed the debate concerning the importance of non-coding regions of the genome, by                

suggesting that a substantial fraction of human lncRNAs may function as scaffolding molecules.  

To the best of my knowledge, neither the prevalence of scaffolding lncRNAs, nor the extent of possible                 

3’UTR-protein complex formation had been previously revealed transcriptome-wide for any species. In            

fact, prior to my work, no methods to tackle these questions large-scale were available. Thus, this thesis                 

introduces very innovative and extensive methods to approach these subjects, giving a first general              

overview of the potential impact of these ill-known RNA functions. Partially due to the lack of knowledge                 

in the topics approached here, some of the conclusions described in this thesis can be viewed as                 

speculative. Indeed, this work is largely based upon predictive methods that yet require experimental              

validation. Effectively, this computational work leaves many questions open, namely the actual            

essentiality of lncRNA with scaffolding functions in cells, and the functionality of the 3’UTR-protein              

complexes predicted, which can only be verified experimentally. 

Due to its originality and large-scale scope, I believe that my work can have broad implications for future                  

research. Indeed, here I provide large predictive datasets of protein-RNA interaction networks, scaffolding             

lncRNAs, 3’UTR-protein complexes as well as moonlighting proteins, which can be further exploited by              

the community. Overall, the innovative approaches developed and applied in this thesis can help pave the                

way to a better understanding of the role of key molecular components, such as the non-coding parts of                  

our genomes, in the making of complex systems.  
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Abbreviations 
 

● 3’UTR: three prime untranslated region 

● 5’UTR: five prime untranslated region 

● AP/MS: affinity purification coupled to mass spectrometry 

● APA: alternative polyadenylation 

● CLIP: cross-linking and immunoprecipitation 

● DNA: deoxyribonucleic acid 

● EMF: extreme multifunctional 

● lncRNA: long non-coding RNA 

● miRNA: microRNA 

● mRNA: messenger ribonucleic acid 

● MS: mass spectrometry 

● ncRNA: non-coding RNA 

● ORF: open reading frame 

● P-bodies: processing bodies 

● PA site: polyadenylation site 

● PAS: polyadenylation signal 

● poly(A): polyadenylated / polyadenylation 

● PPI: protein-protein interaction 

● PTM: post-translational modification 

● RBD: RNA-binding domain 

● RBP: RNA-binding protein 

● RIP: RNA immunoprecipitation 

● RNA: ribonucleic acid 

● RNP: ribonucleoprotein 

● SLiM: short linear motif 

● UDPL: 3′UTR-dependent protein localisation 

● UTR : untranslated region 

● Y2H: yeast two-hybrid  
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SUPPLEMENTARY FIGURES S1-S6 

 

 

 

Figure S1. Distribution of 6 million protein-lncRNA interactions between 2799 lncRNAs and 12629 

proteins.  (A) distribution of the numbers of interacting proteins per lncRNA. (B) distribution of the 

numbers of interacting lncRNAs per protein. 
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Figure S2. Validation of  lnc-405  interaction with Purβ in myotubes via RIP assays.  (A)  lnc-405  RNA 

pull-down from nuclear extracts of differentiated myotubes RT-PCR quantification of  lnc-405  (left) and 

western blot analysis of Purβ interactors (right) in lacZ, odd, even and input (10%) samples are shown (B) 

Mouse RNA immunoprecipitation (RIP) of Purβ from nuclear extracts of differentiated myotubes. Western 

blot (WB) analysis of Purβ (left) and RT-PCR quantification of lnc-405 recovery (right) are shown. (C) 

Human RNA immunoprecipitation (RIP) of Purβ from total extracts of 5-days differentiated primary cells. 

Western blot (left) and qRT-PCR (right) show the recovery of Purβ and  lnc-405  from the indicated 

samples. Pre-GAPDH RNA, Actin protein (Act) and Fus protein serve as negative controls. 
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Figure S3. Proportion of gene ontology biological processes for Wan 2015 scaffolded complexes 

and network modules.  For each gene ontology (GO) term, all parents terms with depth level 1 (broad 

GO terms) were obtained and displayed. The proportion measure is weighted by the number of 

annotations in each protein group, so that the proportion represents the total number of protein groups in 

the dataset. (A) Proportion of GO biological processes for Wan 2015. GO term annotations for 525 

complexes interacting with at least one lncRNA were obtained from [1]. (B) Proportion of GO biological 

processes for network modules. GO term annotations for 579 modules interacting with at least one 

lncRNA were obtained from [2].  
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Figure S4. Comparison of proteome-wide and RBP-only approaches.  Overlap between the lncRNA 

scaffolding candidates identified by the proteome-wide interaction dataset and the RBP-only interaction 

dataset. Fisher exact test background included all lncRNAs (15230 transcripts) analysed in this study. 
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Figure S5. Distribution of the numbers of enrichments for the non-redundant CORUM dataset 

analysis.  (A) distribution of the numbers of enrichments per lncRNA. (B) distribution of the numbers of 

enrichments per protein complex. 
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Figure S6. Comparison of lncRNA scaffolding candidates independently identified with each 

dataset of protein groups.  (A) Summary of one-way Fisher’s exact test between a collection of 

functional or conserved lncRNA genes (2013 genes) and scaffolding gene candidates detected with 

different protein complex or module datasets. Fisher’s exact test background included all genes (12233 

lncRNA genes, 15230 transcripts) analysed in this study. All p-values are significant (p-value < 0.05, 

except for BioPlex where p-value = 0.07). (B) Overlap of lncRNAs identified with each dataset of protein 

groups, produced with Venny 2.1 [3]. 
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Figure S7. Percentage of proteins annotated as RBPs increases with the stringency of catRAPID 

score cutoffs.  The curves represent the percentage of RBPs among all proteins with at least 1, 2, 5 or 10 

interactions to lncRNAs above a certain catRAPID score cutoff (x axis). The increase of the percentage of 

RBPs with higher catRAPID score cutoffs is statistically significant for all ‘minimum interactions’ 

parameters (Spearman rank correlation test; p-values < 2.2e-16). 
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SUPPLEMENTARY TABLES S6-S7 

 

Table S6. Protein group dataset summary and protein overlap between protein groups of the same 

dataset.  For each protein group in a dataset and for each overlap cutoff (50%, 80%, 100%), we calculate 

the percentage of protein groups overlapping at least 1 other protein group (from the same dataset) 

equally or above the overlap cutoff. 

Dataset 

# protein 

groups 

# proteins 

in groups 

% protein groups >= 

50% overlap 

% protein groups >= 

80% overlap 

% protein groups = 

100% overlap 

Wan 2015 981 2151 12.44 1.12 0 

Non-redundant 

CORUM 324 2133 0 0 0 

BioPlex 354 2176 1.41 0.56 0 

Network 

Modules 874 12093 2.97 0.23 0 
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Table S7. Protein overlap between protein groups of different datasets.  For each protein group in 

dataset and for each overlap cutoff (50%, 80%), we calculate the % of protein groups overlapping at least 

1 other protein group (from the other dataset) equally or above the overlap cutoff. The comparison is 

made both ways (Dataset1 vs Dataset2, Dataset2 vs Dataset1). 

Dataset1 Dataset2 

% Dataset1 

protein groups 

>= 50% overlap 

% Dataset1 

protein groups 

>= 80% overlap 

% Dataset2 

protein groups >= 

50% overlap 

% Dataset2 protein 

groups >= 80% 

overlap 

Wan 2015 

Non-redund

ant CORUM 20.39 15.8 9.88 7.53 

Wan 2015 BioPlex 12.23 7.44 11.3 1.98 

Wan 2015 

Network 

Modules 12.03 6.63 0 0.11 

Non-redundan

t CORUM BioPlex 7.1 4.7 14.69 2.82 

Non-redundan

t CORUM 

Network 

Modules 26.23 3.09 0.23 0.11 

BioPlex 

Network 

Modules 14.12 1.69 0 0 
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SUPPLEMENTARY MATERIALS AND METHODS 

LncRNA-protein interaction predictions 

catRAPID is a protein-RNA interaction predictor trained with public Protein Data Bank 

protein-RNA structures and using physicochemical features of both molecule types, i.e., secondary 

structures, hydrogen bonding and van der Waals contributions (1). The catRAPID omics version of the 

algorithm allows predictions at a large-scale between the transcriptome and the proteome (2). The 

catRAPID algorithm has been largely benchmarked on different datasets of coding and non-coding RNAs 

(2–4) 

Here we used it to compute interaction propensities between (i) the Ensembl v82 transcripts 

annotated as GENCODE BASIC and having ‘lncRNA’ biotypes as defined by GENCODE v24 (5) and (ii) 

the human canonical proteome as defined by UniProt (6) on May 10, 2016.  

Due to computational limitations, catRAPID predictions are restricted to RNA sequences between 

50 and 1200 nucleotides of length, as well as to protein sequences between 50 and 750 amino acids. 

Therefore, we assess ~79% of the human canonical proteome (15974 proteins) and ~81% of the human 

long non-coding transcriptome (15230 transcripts), producing more than 243 million protein-RNA 

interactions (Fig. 1A). As applied in previous works (4), only predictions with interaction propensity score 

of at least 50 were determined as positive and kept for further analyses. 

Collection of network modules 

Protein network modules were extracted from a human interactome assembled as described in 

Chapple et al 2015 (9). Briefly, protein interaction data were gathered from several databases through the 

PSICQUIC query interface (10). Binary (i.e., likely direct) interactions (according to the experimental 

detection method) were kept. Sequence redundancy at 95% identity among the proteins of the 

interactome was reduced using the CD-HIT algorithm (11). A human binary interactome containing 61695 

interactions between 12318 proteins (February 2016) has been obtained. By applying the Overlapping 

Cluster Generator algorithm that identifies overlapping clusters based on modularity (12) to this network, 

874 network modules have been detected.  

Cell culture conditions and transfection 

C2C12 murine myoblasts were cultured as previously described (13). and differentiated in 0.5% 

Fetal Bovine Serum (FBS). Human control healthy myoblasts from the Telethon Neuromuscular Biobank 
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were cultured as previously described (14) and differentiated with human skeletal muscle differentiation 

medium (PromoCell). 

Endogenous lnc-405 RNA pull-down 

lnc-405 pull-down was performed on nuclear extract obtained with some modification of the 

Rinn’s protocol (15). Nuclear pellet was resuspended in 3ml NT2 Buffer (50mM TrisHCl, 150mM NaCl, 

10mM EDTA, 0,05%NP40, 1mM MgCl, 1mM DTT, PMSF, RNasin ribonuclease and protease inhibitors). 

Resuspended nuclei were dounced with 15-25 strokes. Nuclear membranes and debris were pelleted by 

centrifugation at 13000 rpm, 10 min at 4°C. 6mg of nuclear extract (2mg/sample) were pre-cleared with 

300µl of magnetic beads (Promega, ref#Z5481) for 30 min at room temperature (RT) and subsequently 

incubated 2 hours on rotator with 100nM of the biotinilated probes. For RNA precipitation, 200μl of the 

beads were added to the extract and incubated 30 min at RT. Co-precipitated proteins were isolated by 

resuspending 4/5 of the beads in 30µl of elution buffer (10 glycerol, 2% SDS, 60mM Tris-HCl, 1mM DTT 

and protease inhibitor cocktail (Roche)) and analysed by Mass-spec. 1/5 of the beads were resuspended 

in 1ml of Trizol for RNA analyses. 

Mass spectrometry analysis 

lnc-405 co-purified proteins were run on a stacking SDS-PAGE gel and digested in trypsin 

solution 12.5ng/ml (Trypsin porcine, Promega). Samples were analysed using an Orbitrap ELITE mass 

spectrometer (Thermo Scientific, San Jose California). Peptide mixtures were separated on C18 

Accucore nanoColumn (75μm ID x 50 cm, Thermo Fisher Scientific) with a 2 hours gradient long. For data 

analysis, proteins were identified by database searching using SequestHT (Thermo Fisher Scientific) with 

Proteome Discoverer 1.4 software (Thermo Fisher Scientific) against the spMouse_2015_02 database 

(24721 entries, canonical & isoforms). Peptides were filtered with a false discovery rate (FDR) at 1% and 

2 unique peptides minimum/proteins. Proteins annotated as ‘Keratin’ were excluded as known 

contaminants. Proteins where the score (sum of the ion scores of identified peptides) of either the ODD or 

EVEN samples is at least 1.5-times higher than the LacZ sample (control) are considered as lnc-405 

interactors (19 final interactors). 

RNA immunoprecipitation 

For each condition (IP, IgG and BO) 1.5mg of pre-cleared extract was immunoprecipitated (4°C, 

O.N.) with 100μl of protein G agarose beads (Millipore cat#16-201) and 10μg of immobilized antibody or 

IgG. Antibody treatments included anti-Purβ (Bethyl, cat#A303-650A) or rabbit IgG (Santacruz, 

cat#sc2027). Beads were washed 5 times in 500μl of NT2 buffer (50mM Tris pH 8, 150mM NaCl, 1mM 

MgCl2, 0.5% NP40, 20mM EDTA, 1mM DTT, PMSF, RNasin ribonuclease and protease inhibitors) and 
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resuspended in 200μl. Co-precipitated proteins were isolated by resuspending 4/5 of the beads in the 

elution buffer (10 glycerol, 2% SDS, 60mM Tris-HCl, 1mM DTT and protease inhibitors (Roche)) and 

analysed by Western Blot. Co-precipitated RNAs were isolated by resuspending 1/5 of the beads in 1ml of 

Trizol prior RT-PCR analyses. 

List and sequences of the oligonucleotides and probes used 

qRT-PCR 

mmu-lnc-405 FW 5'-gcaggaagcaaaagatcagc-3'  

mmu-lnc-405 RV 5'-aagtcagccgaggtctttca-3'  

mmu-GAPDH FW 5'-ggctcatggtatgtaggcagt-3'  

mmu-GAPDH RV 5'-gaaaacacgggggcaatgagt-3'  

hs-GADPH FW 5'ggaaggtgaaggtcggagtc3'  

hs-GADPH RV 5'ttaccagagttaaaagcagcc3'  

hs-lnc-405 RV 5'-gcagattcaggagcccact-3'  

hs-lnc-405 FW 5'-aggattccacgcactcagaa-3'  

Biotinilated probes (mouse) 

lnc-405_ODD_1 5'-ttcattgctgatgcctgaag-3'  

lnc-405_ODD_2 5'-tagcagctgcaggttttcag-3  

lnc-405_ODD_3 5'-ccaaacacacagatggcaga-3'  

lnc-405_ODD_4 5'-ctagtatagctgggttgcag-3'  

lnc-405_EVEN_1 5'-ctctccgagctgatcttttg-3'  

lnc-405_EVEN_2 5'-gcaggtgtacagatgttttc-3'  

lnc-405_EVEN_3 5'-ggcaggtgagtcctaagaag-3'  

lnc-405_EVEN_4 5'-tggtgacagagtcccattag-3'  

LACZ_1 5'-ccagtgaatccgtaatcatg-3'  
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LACZ_2 5'-tcacgacgttgtaaaacgac-3'  

LACZ_3 5'-agatgaaacgccgagttaac-3'  

LACZ_4 5'-tttctccggcgcgtaaaaa-3' 

Dataset of experimentally determined protein-RNA interactions 

For the creation of a compendium of known protein-lncRNA interactions, we collected information 

from (i) the NPInter v3.0 (16) human ncRNA-protein binding interaction dataset (on 01 April 2016), 

NONCODE IDs were converted into Ensembl transcript IDs using NONCODE 2016 (17); (ii) StarBase 

v2.0 (8) low-stringency RBP-LncRNA interaction dataset, with at least 100 reads mapped to hg19 (on 20 

April 2016); (iii) ENCODE enhanced CLIP (eCLIP) dataset (18), 159 experiments (from 112 RBPs). BED 

peak coordinates referencing the GRCh38 human assembly were mapped to Gencode v24 transcripts 

models using BEDTools intersect v2.17 (19) with flags -w and -a. Interactions from replicates and different 

cell lines were combined. 

Protein-lncRNA interactions from these three datasets were combined and intersected with the 

dataset of protein-lncRNA catRAPID predictions to form our “known protein-lncRNA interactions” dataset 

including 125384 interactions between 148 RBPs and 10965 lncRNAs. When required, transcript gene 

names were converted to Ensembl v82 transcript IDs using the Ensembl BioMart service (expanding 

interaction to all transcripts of the gene). 

Functional lncRNA datasets 

Datasets of lncRNA transcripts or genes identified to be functional or to possess functional 

features were retrieved from several databases and publications: (i) Hon et al. 2017 (20): list of 124 

Ensembl genes predicted to be functional with four functional evidences (Supplementary table 17); (ii) Liu 

et al. 2016 (21): list of 689 Ensembl genes that affect cell growth in CRISPRi experiments (Supplementary 

Table 1); (iii) Lnc2cancer (22): list of 381 Ensembl genes retrieved from Lnc2cancer database on January 

3, 2017; (iv) LncRNADisease (23): list of 215 Ensembl genes retrieved from LncRNADisease database on 

January 3, 2017; (v) LncRNADB (24): list of 118 Ensembl genes retrieved from LncRNADB v2.0 on 

December 30, 2016; (vi) Mukherjee et al. 2017 (25): list of 8580 Ensembl genes (coding and non-coding) 

which possess features of functionality (Clusters c1, c2 and c3, Supplementary table 3); (vii) Necsulea et 

al. 2014 (26): list of 457 Ensembl human genes predicted to be conserved in Therians or Eutherians 

(Supplementary Data 1); (viii) Smith et al. 2013 (27): list of 17704 Ensembl coding and non-coding genes 

with a conserved structural element in one of its exons. Briefly, we obtained human genome regions with 

conserved structural features (ECS congruous), converted GRCh37 coordinates to GRCh38 using UCSC 
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liftOver tool (28) and mapped to Gencode V24 exon annotations using BEDTools intersect with 

parameters -s -f 1.0 (ensure same strandedness and ensure the complete conserved structural region is 

inside the exon). 

For certain analysis, lncRNA genes from the above datasets were combined and intersected with 

our dataset of protein-lncRNA interaction predictions, resulting in 2013 functional genes.  

When required, transcript gene names were converted to Ensembl v82 transcript IDs using the 

Ensembl BioMart service (expanding interaction to all transcripts of the gene). 

Fitness consequence scores 

Mutation fitness consequence scores (fitCons) on human genome were obtained from Gulko et 

al. 2015 (29) (v1.01, integrated across cell types). Coordinates were converted to GRCh38 using UCSC 

liftOver tool (28), fitCons scores were mapped to Gencode v24 UTR and lincRNA exons and their 

distribution across different sets of transcripts and features was assessed. Protein-coding genes were 

randomly subsampled to the same number of lincRNA genes assessed in this study (7448 genes, 330 of 

them being scaffolding candidates), and their 3’UTRs and 5’UTRs were used as a control. This analysis 

was performed on lincRNA instead of all lncRNAs to avoid a potential mutational bias of lncRNAs 

overlapping protein-coding genes. 

Disease-associated lncRNAs and proteins 

Lists of lncRNAs associated to disease where collected from Lnc2cancer database (22) and 

LncRNADisease database (23) (see 'Functional lncRNA datasets'). Lists of proteins associated to disease 

where collected from Online Mendelian Inheritance in Man (OMIM) (30), downloaded through Ensembl 

v87 BioMart (on 04 Jan 2017). HGNC protein identifiers were used and converted to UniprotKB accession 

numbers (ACs). A total of 5397 protein-disease associations between 3499 proteins and 4387 diseases 

were collected. 

Compendium of RNA-binding proteins 

A total of 2129 human RNA-binding proteins were gathered from several sources: (i) Neelamraju 

et al. 2015 Supplementary Table 1 (31) (ii); Gerstberger et al. 2014 (32) Supplementary information S1; 

(iii) Beckmann et al. 2015 (33) Supplementary Data Set 2; (iv) Castello et al. 2016 (34) Supplementary 

Table 1, "RBDpep" sheet; (v) Conrad et al. 2016 (35) Supplementary Table 1 sheet "identified RBPs" 

found in either "chromatin" or "nuclei". When IDs were provided as gene or protein names, these were 

converted to UniprotKB ACs. In this study we produce and assess interaction predictions for 1459 of 

these 2129 RBPs (after filterings). 
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Figure S1 .  Overlap between the human EMFs predicted in MoonDB 1.0 and MoonDB 2.0.  Fisher’s               

Exact test (two-sided). Background included all proteins in the protein-protein interaction network (14074             

proteins) analysed in this study. 
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Figure S2 .  Radar plot comparing features of EMFs predicted in MoonDB 1.0 and MoonDB 2.0 . The                

features ‘ Degree ’, ‘ Shortest paths’ and  ‘Betweenness’ were calculated using the igraph (v0.7.1) Python             

(v2.7.6) library for each protein group with the updated human interactome used in this study.  ‘Clusters’                

represents the mean number of network modules where the proteins are present.  ‘Expression’ refers to               

the number of different tissues where a protein can be found, obtained from the Human Protein Atlas v18                  

(1), excluding entries with presence as ‘not detected’ or with ‘unsupported’ reliability.  ‘Disorder’             

represents the proportion of amino acids with a MobiDB v3.0 (2) predicted consensus disorder score of                

0.5 or more.  ‘ELMs’ (Eukaryotic Linear Motifs) were obtained from ELM DB (3) on February 2018 and                 

represent the number of ELMs per amino acid, considering only disordered amino acids (see above).               

‘Domains’ refer to number of domains present in the proteins and were obtained from UniProt on                

January 2018.  ‘OMIM’ represents the Fisher’s Exact test odds ratio for a protein group to have more                 

proteins with at least one OMIM (data retrieved on June 2016) (4) disease than expected by chance,                 

using 14074 human proteins with at least one interaction as the background (all cases are significantly                

different, FDR < 5% after applying Benjamini-Hochberg procedure). For  ‘Shortest paths’ , the outermost             
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data point is the most connected, that is, has the smallest shortest path value. For all others, the                  

outermost data point is the one with the highest value. The ‘ Network ’ protein group is composed of all the                   

protein interactome network nodes and the ‘ hubs ’ protein group is composed of those nodes which have                

a degree that is at least twice the network average. 

 

Table S1 .  Number of proteins in interactome, protein-protein interactions, GO term annotations            

and extreme multifunctional proteins predicted, per species . Only Biological Process (BP) GO terms             

annotating proteins in the interactome were considered. 

Data Human Mouse Fly Worm Yeast 

Proteins in interactome 14047 2247 9042 4921 4347 

Protein-protein interactions 92345 3329 33998 13158 10364 

BP GO terms annotated 105487 42663 35727 34850 30483 

EMF proteins predicted 238 14 2 6 32 

 

Table S2 .  List of protein-protein interaction experimental methods selected to build the 

interactome used in MoonDB.  PSI-MI IDs refer to the Molecular Interactions Controlled Vocabulary 

ontology. 

PSI-MI ID PSI-MI name 
MI:0009 bacterial display 
MI:0010 beta galactosidase complementation 
MI:0011 beta lactamase complementation 
MI:0012 bioluminescence resonance energy transfer 
MI:0014 adenylate cyclase complementation 
MI:0016 circular dichroism 
MI:0017 classical fluorescence spectroscopy 
MI:0018 two hybrid 
MI:0031 protein cross-linking with a bifunctional reagent 
MI:0034 display technology 
MI:0041 electron nuclear double resonance 
MI:0042 electron paramagnetic resonance 
MI:0043 electron resonance 
MI:0047 far western blotting 
MI:0048 filamentous phage display 
MI:0049 filter binding 
MI:0051 fluorescence technology 
MI:0052 fluorescence correlation spectroscopy 
MI:0053 fluorescence polarization spectroscopy 
MI:0055 fluorescent resonance energy transfer 
MI:0065 isothermal titration calorimetry 
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MI:0066 lambda phage display 
MI:0073 mrna display 
MI:0081 peptide array 
MI:0084 phage display 
MI:0089 protein array 
MI:0090 protein complementation assay 
MI:0092 protein in situ array 
MI:0095 proteinchip(r) on a surface-enhanced laser desorption/ionization 
MI:0097 reverse ras recruitment system 
MI:0098 ribosome display 
MI:0099 scintillation proximity assay 
MI:0107 surface plasmon resonance 
MI:0108 t7 phage display 
MI:0111 dihydrofolate reductase reconstruction 
MI:0112 ubiquitin reconstruction 
MI:0114 x-ray crystallography 
MI:0115 yeast display 
MI:0231 mammalian protein protein interaction trap 
MI:0232 transcriptional complementation assay 
MI:0369 lex-a dimerization assay 
MI:0370 tox-r dimerization assay 
MI:0397 two hybrid array 
MI:0398 two hybrid pooling approach 
MI:0399 two hybrid fragment pooling approach 
MI:0405 competition binding 
MI:0406 deacetylase assay 
MI:0411 enzyme linked immunosorbent assay 
MI:0420 kinase homogeneous time resolved fluorescence 
MI:0423 in-gel kinase assay 
MI:0424 protein kinase assay 
MI:0425 kinase scintillation proximity assay 
MI:0434 phosphatase assay 
MI:0435 protease assay 
MI:0437 protein three hybrid 
MI:0440 saturation binding 
MI:0508 deacetylase radiometric assay 
MI:0509 phosphatase homogeneous time resolved fluorescence 
MI:0510 homogeneous time resolved fluorescence 
MI:0511 protease homogeneous time resolved fluorescence 
MI:0512 zymography 
MI:0513 collagen film assay 
MI:0514 in gel phosphatase assay 
MI:0515 methyltransferase assay 
MI:0516 methyltransferase radiometric assay 
MI:0655 lambda repressor two hybrid 
MI:0678 antibody array 
MI:0695 sandwich immunoassay 
MI:0696 polymerase assay 
MI:0726 reverse two hybrid 
MI:0727 lexa b52 complementation 
MI:0728 gal4 vp16 complementation 
MI:0809 bimolecular fluorescence complementation 
MI:0813 proximity ligation assay 
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MI:0824 x-ray powder diffraction 
MI:0825 x-ray fiber diffraction 
MI:0827 x-ray tomography 
MI:0841 phosphotransferase assay 
MI:0870 demethylase assay 
MI:0872 atomic force microscopy 
MI:0887 histone acetylase assay 
MI:0889 acetylase assay 
MI:0892 solid phase assay 
MI:0894 electron diffraction 
MI:0895 protein kinase A complementation 
MI:0899 p3 filamentous phage display 
MI:0900 p8 filamentous phage display 
MI:0905 amplified luminescent proximity homogeneous assay 
MI:0916 lexa vp16 complementation 
MI:0921 surface plasmon resonance array 
MI:0946 ping 
MI:0947 bead aggregation assay 
MI:0949 gdp/gtp exchange assay 
MI:0953 polymerization 
MI:0968 biosensor 
MI:0969 bio-layer interferometry 
MI:0972 phosphopantetheinylase assay 
MI:0979 oxidoreductase assay 
MI:0984 deaminase assay 
MI:0989 amidase assay 
MI:0991 lipoproteine cleavage assay 
MI:0992 defarnesylase assay 
MI:0993 degeranylase assay 
MI:0994 demyristoylase assay 
MI:0995 depalmitoylase assay 
MI:0996 deformylase assay 
MI:0997 ubiquitinase assay 
MI:0998 deubiquitinase assay 
MI:0999 formylase assay 
MI:1000 hydroxylase assay 
MI:1001 lipidase assay 
MI:1002 myristoylase assay 
MI:1003 geranylgeranylase assay 
MI:1004 palmitoylase assay 
MI:1005 adp ribosylase assay 
MI:1006 deglycosylase assay 
MI:1007 glycosylase assay 
MI:1008 sumoylase assay 
MI:1009 desumoylase assay 
MI:1010 neddylase assay 
MI:1011 deneddylase assay 
MI:1016 fluorescence recovery after photobleaching 
MI:1019 protein phosphatase assay 
MI:1026 diphtamidase assay 
MI:1030 excimer fluorescence 
MI:1031 protein folding/unfolding 
MI:1036 nucleotide exchange assay 
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MI:1037 Split renilla luciferase complementation 
MI:1038 silicon nanowire field-effect transistor 
MI:1087 monoclonal antibody blockade 
MI:1088 phenotype-based detection assay 
MI:1089 nuclear translocation assay 
MI:1111 two hybrid bait or prey pooling approach 
MI:1112 two hybrid prey pooling approach 
MI:1113 two hybrid bait and prey pooling approach 
MI:1137 carboxylation assay 
MI:1138 decarboxylation assay 
MI:1142 aminoacylation assay 
MI:1145 phospholipase assay 
MI:1147 ampylation assay 
MI:0729 luminescence based mammalian interactome mapping 
MI:1356 validated two hybrid 
MI:0729 luminescence based mammalian interactome mapping 
MI:0946 miniaturized immunoprecipitation 
MI:2168 conditional site labelling 
MI:1314 proximity-dependent biotin identification 
MI:2189 avexis 
MI:2167 kinetic exclusion assay 
MI:0071 molecular sieving 
MI:1236 proteine isomerase assay 
MI:1325 sulfurtranferase assay 
MI:1229 uridylation assay 
MI:1342 qcmd 
MI:1311 differential scanning calorimetry 
MI:1219 enzyme-mediated activation of radical sources 
MI:1086 equilibrium dialysis 
MI:2171 complemented donor-acceptor resonante energy transfer 
MI:0859 intermolecular force 
MI:2170 bimolecular fluoresence complementation 
MI:2169 luminescence technology 
MI:1247 microscale thermophoresis 
MI:0077 nuclear magnetic resonance 
MI:1104 solid state nmr 
MI:1103 solution state nmr 
MI:0938 rheology measurement 
MI:1235 thermal shift binding 
MI:1203 split luciferase complementation 
MI:1204 split firefly luciferase complementation 
MI:1320 membrane yeast two hybrid 
MI:1321 ire1 reconstruction 
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Figure S1. Number of polyadenylation sites in EMF proteins is higher than in other protein groups.  (a)                 
Number of APADB database polyadenylation sites in 3’UTRs.  (b) Number of PolyASite database polyadenylation              
sites in terminal exons. ‘Mono-clustered’ represents the proteins in the interactome that belong to only one protein                 
cluster. ‘Multi-clustered’ proteins in the interactome that belong to several protein clusters but are not considered EMF                 
proteins. Mann-Whitney U tests were performed to test for statistical significance. The Benjamini-Hochberg procedure              
was applied for multiple test correction. Significance: ‘*’ indicates a FDR < 0.05; ‘**’ indicates a FDR < 0.01; ‘***’                    
indicates a FDR < 0.001. 
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Figure S2. Number of 3’UTR isoforms in EMF proteins is higher than in other protein groups. Number of                  
distinct 3’UTR isoforms among transcripts coding for the same protein. EMF proteins have on average 2.3 isoforms of                  
3’UTRs, ‘Mono-clustered’ proteins have 1.9, ‘Multi-clustered’ proteins have 2.0 and the ‘Proteome’ average is 1.8.               
Mann-Whitney U tests were performed to test for statistical significance. The Benjamini-Hochberg procedure was              
applied for multiple test correction. Significance: ‘*’ indicates a FDR < 0.05; ‘**’ indicates a FDR < 0.01; ‘***’ indicates                    
a FDR < 0.001. 

 

Table S1. List of top 20 intermediate proteins participating in 3'UTR-protein complexes. 

Protein ID Protein names Gene names # complexes 

P61978 Heterogeneous nuclear ribonucleoprotein K HNRNPK 43 

P78362 SRSF protein kinase 2 SRPK2 33 

P68400 Casein kinase II subunit alpha CSNK2A1 31 

P50222 Homeobox protein MOX-2 MEOX2 28 

P54253 Ataxin-1 ATXN1 28 

P04792 Heat shock protein beta-1 HSPB1 27 

P63279 SUMO-conjugating enzyme UBC9 UBE2I 21 

Q8TBB1 E3 ubiquitin-protein ligase LNX LNX1 21 

Q15637 Splicing factor 1 SF1 20 

P26368 Splicing factor U2AF 65 kDa subunit U2AF2 19 

P62993 Growth factor receptor-bound protein 2 GRB2 19 
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Q14103 Heterogeneous nuclear ribonucleoprotein D0 HNRNPD 18 

P08238 Heat shock protein HSP 90-beta HSP90AB1 17 

P14373 Zinc finger protein RFP TRIM27 17 

Q01081 Splicing factor U2AF 35 kDa subunit U2AF1 17 

Q15427 Splicing factor 3B subunit 4 SF3B4 17 

P38398 Breast cancer type 1 susceptibility protein BRCA1 16 

Q14847 LIM and SH3 domain protein 1 LASP1 16 

O00560 Syntenin-1 SDCBP 15 

Q9NRD5 PRKCA-binding protein PICK1 13 

 

Table S2. List of top 20 RBPs participating in 3'UTR-protein complexes. 

Protein ID Protein names Gene names # complexes 

Q93062 RNA-binding protein with multiple splicing RBPMS 214 

P51116 Fragile X mental retardation syndrome-related protein 2 FXR2 129 

Q14103 Heterogeneous nuclear ribonucleoprotein D0 HNRNPD 88 

P26196 Probable ATP-dependent RNA helicase DDX6 DDX6 64 

P61978 Heterogeneous nuclear ribonucleoprotein K HNRNPK 53 

P07910 Heterogeneous nuclear ribonucleoproteins C1/C2 HNRNPC 52 

Q01844 RNA-binding protein EWS EWSR1 47 

P38919 Eukaryotic initiation factor 4A-III EIF4A3 46 

P98175 RNA-binding protein 10 RBM10 44 

P52597 Heterogeneous nuclear ribonucleoprotein F HNRNPF 40 

Q07955 Serine/arginine-rich splicing factor 1 SRSF1 38 

P26368 Splicing factor U2AF 65 kDa subunit U2AF2 35 

Q01130 Serine/arginine-rich splicing factor 2 SRSF2 34 

Q9UKV8 Protein argonaute-2 AGO2 33 

P84103 Serine/arginine-rich splicing factor 3 SRSF3 32 

Q15717 ELAV-like protein 1 (also know as HuR) ELAVL1 31 

Q92900 Regulator of nonsense transcripts 1 UPF1 29 

Q15910 Histone-lysine N-methyltransferase EZH2 EZH2 28 

Q99700 Ataxin-2 ATXN2 26 

Q9UPQ9 Trinucleotide repeat-containing gene 6B protein TNRC6B 25 

 

Table S3. Numbers of 3’UTR-protein complexes expected by chance.  The total number of 3’UTR-protein              
complexes expected by chance was measured when using protein-protein interaction networks that had their protein               
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labels randomly shuffled without replacement (e.g. ‘protein 1’ becomes ‘protein 2’, ‘protein 2’ becomes ‘protein 55’                
etc). Empirical p-values for the number of 3’UTR-protein complexes formed using the real protein-protein interaction               
network to be higher than the null hypothesis distribution of 1000 randomisations was calculated. To discard a                 
potential bias of the degree of proteins (i.e. the number of interactions in the protein interactome), we accounted for                   
the protein degree by building another null hypothesis distribution (1000 randomisations) where all protein labels               
were substituted among proteins with the same degree (e.g. ‘protein 1 with degree 10’ substituted by ‘protein 123                  
with degree 10’, etc). This analysis was performed for the whole set of possible nascent proteins (7373 proteins). 

Experiment Total complexes Empirical p-value 

Real network 11119 NA 

Randomised networks 3926.5 (1087.5) 0.001 

Degree-controlled randomised networks 9877.8 (727.6) 0.047 

 

Table S4. Numbers of nascent proteins localised in the plasma membrane and without conventional              
translocation signals, using Human Protein Atlas annotations. Percentages denote the proteins retained            
compared to the previous column. Where indicated, Fisher’s exact tests were performed to test for statistical                
significance using as background the set of 7373 nascent proteins liable to be assessed for 3’UTR-protein complexes                 
(see Experimental Procedures). The Benjamini-Hochberg procedure was applied for multiple test correction.            
Significance: ‘*’ indicates a FDR < 0.05; ‘**’ indicates a FDR < 0.01; ‘***’ indicates a FDR < 0.001. 

Protein group Nascents in complex of which, localised in 
plasma membrane 

of which, contain no signal peptide 
or transmembrane domain 

EMF 140 (58.8%) 28 (20.0%) 26 (92.9%) *** 

Multi-clustered 1133 (33.9%) 136 (12.0%) 115 (84.6%) * 

Mono-clustered 1372 (13.1%) 144 (10.5%) 120 (83.3%) N.S. 
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Supplementary note 

An inferred post-transcriptional regulation landscape generated by GSEA.  The choice of interaction            
propensity threshold ( i.e. , catRAPID score >=50) used to define the positive and negative predicted              
interactions sets was based on our previous work ( e.g. ,  1,2 ). However, to exclude that the chosen score                 
threshold could affect our results based on the Fisher's Exact test, we also performed a threshold-free                
statistical assessment. For each RBP, we ranked predicted interactors according to their propensity score              
( i.e. , from high to low) and we tested the functional units for enrichment, or depletion, using the gene set                   
enrichment analysis (GSEA) algorithm 3 . We obtained 33’603 significant results (27’270 enrichments and            
6333 depletions) for 876 RBPs, being the hepatoma-derived growth factor protein, coded by the gene               
HDGF, the only with no significant enrichments nor depletions. The number of detected enriched and               
depleted functional units is twice as much as in the threshold-based test ( i.e. , 604 functional units                
compared to 300).  

As for the threshold-based predicted functional landscape, we observed a similar enrichment/depletion            
pattern for RBPs and functional units (Figure S2A). Twenty-four RBPs had exclusively enriched functional              
units among their predicted targets (RBP-1 set. The clear majority of RBPs ( i.e. , 775, RBP-2 set) had both                  
significant enrichments and depletions. Only 77 showed only significant depletions (RBP-3 set). 

We identified three groups of functional units: a predominant subset of exclusively enriched units ( i.e. ,               
358, FU-1) and two smaller groups of both enriched/depleted functional units ( i.e. , 130, FU-2) and               
exclusively depleted ( i.e. , 116, FU-3). Finally, around 90% of both functional enrichments (88.5%) and              
depletions (92.4%) in the threshold-based predicted functional landscape were detected as such by the              
threshold-free analysis.  

This comparison, on one hand, confirms the results obtained by the threshold-based approach and, on               
the other, complements it by expanding the RBP predicted functional landscapes. The GSEA results are               
provided in Table S5.  

Functional enrichments and depletions in the eCLIP dataset. We collected interaction for 112 RBPs              
from the ENCODE eCLIP dataset (see Methods) and applied the function unit enrichment analysis based               
on the Fisher’s Exact test as presented in the main text. We obtained 14’660 significant results (13’119                 
enrichments and 1541 depletions) for ninety-nine RBPs (88% of the total). The number of functional units                
with significant results is considerably higher (i.e., 1339 units, ~45% of the functional units tested)               
compared to the one obtained based on predicted interactions.  

We also observed different patterns of enrichments and depletions for both RBPs and functional units               
(Figure S2B). Indeed, 20 RBPs of them had exclusively enriched functional units among their targets               
(RBP-1 set), whereas 79 showed both functional enrichments and depletions (RBP-2 set). We did not               
detect any RBP with significant depletion only. We detected three groups of functional units with distinct                
enrichment/depletion patterns: 1074 exclusively enriched units, 207 depleted only and 58 functional units             
that were both enriched and depleted. The functional annotation of eCLIP interactions are provided in               
Table S6.  
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Supplementary Figures 
 

 

Figure S1. Distributions of protein-mRNA interactions in the PRI network and eCLIP interaction dataset.              
(A) Distribution of the numbers of interacting RBP per coding transcript in the PRI network. (B)                
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Distribution of the numbers of interacting mRNA per RBP in the PRI network. (C) Distribution of the                 
numbers of interacting RBPs per coding transcript in the eCLIP interaction dataset. (D) Distribution of the                
numbers of interacting mRNA per RBP in the eCLIP interaction dataset. 

 

 
 
Figure S2. Alluvial plot depicting the functional relationships among RBP (shades of blue color) and FU                
(FU, shade of red color) groups in (A) the GSEA-predicted functional regulatory landscape and (B) in the                 
eCLIP interaction dataset. The thickness of each stream is proportional to the number of enrichment or                
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depletions between two given groups. The size of the grey blocks is proportional to the number of                 
enrichments/depletions in which a given RBP or FU group is involved.  
 
 

 
 
Figure S3 – Sequence and functional properties of RBPs. (A) Disorder distributions of the sequences of                
the three RBP groups based on DISOPRED3 predictions. Disorder content is estimated as the number               
predicted disordered residues divided by the RBP sequence length. (B) Disorder distributions of the              
sequences of the three RBP groups based on IUPred ‘long’ predictions. (C) Low complexity distributions               
of the sequences of the three RBP groups predicted by the SEG algorithm. (D) Tissue expression                
distributions of the sequences of the three RBP groups based on Human Protein Atlas (HPA) data. Tissue                 
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expression is estimated as expression breath, that is the number of tissues in which a given RBP is                  
detected divided by the total number of tissues present in HPA (i.e., 58). 
 

 

 

 

 
 
Figure S4 – Distribution of the post-translational modification (PTM) density in the sequences of the three                
RBP groups. Densities for every RBP are computed as the number of experimentally identified PTM sites                
divided by the RBP sequence length. Black diamonds represent density mean values. Boxplot colors              
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correspond to the RBP group colors in Figure 2. (A) Acetylation. (B) Methylation, (C) Phosphorylation and                
(D) Ubiquitination. See Table S8 for the statistical results. 
 
 
Supplementary Tables 
 

Table S8.  Classification of the RBPs in the three sets based on their RNA biotype binding preference.                 
Predominant RNA target biotypes were defined based on the “consensus target” annotation from             
Gerstberger  et al. 4 . For those RBPs were assigned an “unknown” target or were not annotated, as they                 
were identified in mRNA-interactome capture experiments, we assign mRNA as their consensus target.             
For each RBP set the number and the fraction of RBP with a given predominant RNA biotype target is                   
reported.  

RNA biotype RBP-1 RBP-2 RBP-3 

mRNA 62 (82.6%) 283 (66.2%) 135 (64%) 

ncRNA 8 (10.6%) 15 (3.5%) 4 (1.8%) 

ribosome 2 (2.6%) 59 (14%) 27 (18.8%) 

rRNA 5 (6.6%) 25 (5.8%) 23 (11%) 

snoRNA 2 (2.6%) 11 (2.5%) 3 (1.4%) 

snRNA 0 (0.0%) 15 (3.5%) 6 (2.8%) 

diverse 1 (1.3%) 1 (<1%) 1 (2%) 

 

Table S9.  Results of the comparison of the distributions of the post-translational modification (PTM)              
densities in the sequences of the three RBP groups. The Dunn’s test was performed only for those PTM                  
for which the Kruskal-Wallis P-value was below 0.05. 

 

PTM types P-value 
(Krustal-Wallis)  BH-corrected P-values (Dunn’s Test) 

   RBP-1 RBP-2 RBP-3 
Acetylation 0.0252 RBP-1  0.0126 0.0089 
  RBP-2   0.4689 
Methylation 0.7871     
Phosphorylation 0.04718 RBP-1  0.0176 0.0248 
  RBP-2   0.3262 
Ubiquitination 0.0769     
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Appendix V: Scientific contributions outside the scope of this thesis 

Before the start of my thesis I worked as a bioinformatician for a few years at the Instituto Gulbenkian de                    

Ciência, Portugal (Dr. Alekos Athanasiadis’ lab) and the Wellcome Sanger Institute, UK (Dr. Matthew              

Berriman’s lab). My contributions were mostly centered on  (i)  studying the effect of A-to-I RNA editing                

on protein evolution,  (ii) genome assembly and quality control of large helminth genomes,  (iii) gene               

discovery and functional annotation,  (iv) analysis of single nucleotide polymorphisms (SNPs) across            

helminth strains,  (v) miRNA target site predictions,  (vi) comparative genomics analysis of more than 80               

helminth species (>1.4 million genes). My work contributed towards several peer-reviewed publications            

and a protocol, briefly described in this section. 

 
International Helminth Genomes Consortium (2018) “Comparative genomics of the major parasitic           

worms”  Nature Genetics  (in press). 

BioRxiv: https://www.biorxiv.org/content/early/2017/12/20/236539 

Abstract:   Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic 

infections of humans and animals, decimate crop production and are a major impediment to 

socioeconomic development. Here we report the broadest comparative study to date of the genomes of 

parasitic and non-parasitic worms, involving 81. We have identified gene family births and hundreds of 

expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include 

gene families that modulate host immune responses, enable parasite migration though host tissues or 

allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein 

families historically targeted for drug development. From an in silico screen, we have identified and 

prioritised new potential drug targets and compounds for testing. This comparative genomics resource 

provides a much needed boost for the research community to understand and combat parasitic worms. 

Ribeiro D ,  Coghlan A,  Harsha B  & Berriman M (2018) “Identification of lineage-specific gene 

family expansions in a database of gene families”  Protocol Exchange , doi:10.1038/protex.2018.057. 

Abstract: Gene families specific to, or with significantly changed membership in, particular lineages             

compared to outgroups may reflect important lineage-specific changes in biology. Here we describe a              

computational protocol to identify gene families that vary greatly in gene count across a species tree. This                 

protocol uses three different metrics to capture aspects of this variability, and calculates them for each                
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family in an in-house database of gene families (e.g. built using the Ensembl Compara pipeline). One                

metric (Cv) identifies families that vary a lot in gene count across the species tree, and the other two                   

(Emax, Zmax) identify families that have an elevated gene count in a certain clade of the species tree. Our                   

protocol controls for differences in gene counts due to fragmented assemblies. 

Protasio AV, Dongen S, Collins J, Quintais L,  Ribeiro DM , (...), Berriman M (2017) “MiR-277/4989 

regulate transcriptional landscape during juvenile to adult transition in the parasitic helminth 

Schistosoma mansoni ”  PLoS Neglected Tropical Diseases , 11(5), p. e0005559. 

Abstract: Schistosomes are parasitic helminths that cause schistosomiasis, a disease affecting circa 200             

million people, primarily in underprivileged regions of the world. Schistosoma mansoni is the most              

experimentally tractable schistosome species due to its ease of propagation in the laboratory and the high                

quality of its genome assembly and annotation. Although there is growing interest in microRNAs              

(miRNAs) in trematodes, little is known about the role these molecules play in the context of                

developmental processes. We use the completely unaware "miRNA-blind" bioinformatics tool Sylamer to            

analyse the 3'-UTRs of transcripts differentially expressed between the juvenile and adult stages. We              

show that the miR-277/4989 family target sequence is the only one significantly enriched in the transition                

from juvenile to adult worms. Further, we describe a novel miRNA, sma-miR-4989 showing that its               

proximal genomic location to sma-miR-277 suggests that they form a miRNA cluster, and we propose               

hairpin folds for both miRNAs compatible with the miRNA pathway. In addition, we found that               

expression of sma-miR-277/4989 miRNAs are up-regulated in adults while their predicted targets are             

characterised by significant down-regulation in paired adult worms but remain largely undisturbed in             

immature "virgin" females. Finally, we show that sma-miR-4989 is expressed in tegumental cells located              

proximal to the oesophagus gland and also distributed throughout the male worms' body. Our results               

indicate that sma-miR-277/4989 might play a dominant role in post-transcriptional regulation during            

development of juvenile worms and suggest an important role in the sexual development of female               

schistosomes. 

Hunt VL, Tsai IJ, Coghlan A, (…),  Ribeiro DM , (…), Berriman M (2016) “The genomic basis of 

parasitism in the Strongyloides clade of nematodes”  Nature Genetics , 48(3), pp. 299–307. 

Abstract:  Soil-transmitted nematodes, including the Strongyloides genus, cause one of the most prevalent 

neglected tropical diseases. Here we compare the genomes of four Strongyloides species, including the 

human pathogen Strongyloides stercoralis, and their close relatives that are facultatively parasitic 

(Parastrongyloides trichosuri) and free-living (Rhabditophanes sp. KR3021). A significant paralogous 
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expansion of key gene families--families encoding astacin-like and SCP/TAPS proteins--is associated 

with the evolution of parasitism in this clade. Exploiting the unique Strongyloides life cycle, we compare 

the transcriptomes of the parasitic and free-living stages and find that these same gene families are 

upregulated in the parasitic stages, underscoring their role in nematode parasitism. 

Bennett HM, Mok HP, Klotsas E, (...),  Ribeiro DM , (...), Berriman M (2014) “The genome of the 

sparganosis tapeworm Spirometra erinaceieuropaei isolated from the biopsy of a migrating brain 

lesion”  Genome Biology , 15(11). 

Abstract: BACKGROUND: Sparganosis is an infection with a larval Diphyllobothriidea tapeworm. From            

a rare cerebral case presented at a clinic in the UK, DNA was recovered from a biopsy sample and used to                     

determine the causative species as Spirometra erinaceieuropaei through sequencing of the cox1 gene.             

From the same DNA, we have produced a draft genome, the first of its kind for this species, and used it to                      

perform a comparative genomics analysis and to investigate known and potential tapeworm drug targets              

in this tapeworm. RESULTS: The 1.26 Gb draft genome of S. erinaceieuropaei is currently the largest                

reported for any flatworm. Through investigation of β-tubulin genes, we predict that S. erinaceieuropaei              

larvae are insensitive to the tapeworm drug albendazole. We find that many putative tapeworm drug               

targets are also present in S. erinaceieuropaei, allowing possible cross application of new drugs. In               

comparison to other sequenced tapeworm species we observe expansion of protease classes, and of              

Kuntiz-type protease inhibitors. Expanded gene families in this tapeworm also include those that are              

involved in processes that add post-translational diversity to the protein landscape, intracellular transport,             

transcriptional regulation and detoxification. CONCLUSIONS: The S. erinaceieuropaei genome begins to           

give us insight into an order of tapeworms previously uncharacterized at the genome-wide level. From a                

single clinical case we have begun to sketch a picture of the characteristics of these organisms. Finally,                 

our work represents a significant technological achievement as we present a draft genome sequence of a                

rare tapeworm, and from a small amount of starting material.  
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Résumé 

Au fil du temps, la vie a évolué pour produire des organismes remarquablement complexes. Pour faire face à cette                   
complexité, les organismes ont développé une pléthore de mécanismes régulateurs. Par exemple, pour chaque ARN messager                
(ARNm) codant une protéine, des régions non traduites (UTR;  untranslated regions en anglais) potentiellement régulatrices sont                
aussi présentes. De plus, les organismes supérieurs transcrivent des milliers d'ARN longs non codants (ARNlnc), accroissant                
ainsi la capacité régulatrice de leurs cellules. Cependant, la plupart des ARNlnc sont-ils fonctionnels? Le cas échéant, par quels                   
mécanismes peuvent-ils agir? Le rôle d’échafaudage des ARNlnc, formant des ribonucléoprotéines et rapprochant ainsi              
physiquement les protéines est un concept émergent. Toutefois, la prévalence de ce mécanisme reste encore à déterminer. 

De plus, au lieu d'ajouter de nouveaux composants pour augmenter la complexité, les cellules peuvent réutiliser                
certaines protéines pour exécuter plusieurs fonctions distinctes. C'est le cas des protéines  moonlighting . Ces protéines exercent                
souvent des fonctions distinctes dans des environnements différents et peuvent donc être régulées par un changement de                 
localisation cellulaire. Par la formation de complexes protéiques en cours de traduction, les régions 3' non traduites (3’UTRs)                  
peuvent réguler la localisation cellulaire et la fonction de la protéine synthétisée à partir des transcrits auxquels elles                  
appartiennent. Néanmoins, la fréquence ce mécanisme et son rôle dans la régulation des diverses fonctions des protéines                 
moonlighting  reste à aborder. 

Cette thèse a pour objectif de découvrir et comprendre systématiquement deux mécanismes de régulation méconnus               
impliquant la partie non codante du transcriptome humain. Concrètement, l'assemblage de complexes protéiques promus par les                
ARNlnc et les 3'UTRs est étudié avec des données d’interactions protéines-protéines et protéines-ARN prédites et               
expérimentales, à grande échelle. Ceci a permis  (i) de prédire le rôle de plusieurs centaines d'ARNlnc comme molécules                  
d'échafaudage pour plus de la moitié des complexes protéiques connus, ainsi que  (ii) d’inférer plus d’un millier de complexes                   
3'UTR-protéines, dont des cas permettant d’expliquer la localisation cellulaire de protéines  moonlighting . Ces résultats obtenus à                
l’échelle du protéome et du transcriptome indiquent qu'une proportion élevée d'ARNlnc et de 3'UTRs pourrait réguler la fonction                  
des protéines en augmentant ainsi la complexité du vivant. 

Abstract 

Over time, life has evolved to produce remarkably complex organisms. To cope with this complexity, organisms have                 
evolved a plethora of regulatory mechanisms. For instance, for every messenger RNA (mRNA) encoding a protein, regulatory                 
untranslated regions (UTRs) are also present. Additionally, higher organisms transcribe thousands of long non-coding RNAs               
(lncRNAs), presumably expanding the regulatory capacity of their cells. However, it is questionable whether most lncRNAs are                 
functional, and even though many lncRNAs interact with other cellular components, is yet unclear through which mechanisms                 
they may act. An emerging concept is that lncRNAs can serve as protein scaffolds, forming ribonucleoproteins and bringing                  
proteins in proximity, but the prevalence of this mechanism is yet to be determined. 

Besides adding new components to increase complexity, cells can reuse proteins to perform several unrelated functions.                
Such is the case of the moonlighting proteins. These proteins are often found to perform distinct functions under different                   
environments, and may thus be regulated by a change of cellular localisation. Interestingly, through the formation of                 
protein-complexes during translation, 3’UTRs have been found to regulate the cellular localisation and function of the protein                 
synthesized from their transcript. Yet, if this mechanism is common, and if used to regulate the several functions of moonlighting                    
proteins, remains to be addressed. 

This thesis aims to systematically discover and provide insights into two ill-known regulatory mechanisms involving               
the non-coding portion of the human transcriptome. Concretely, the assembly of protein complexes promoted by lncRNAs and                 
3’UTRs is investigated using computationally predicted, as well as experimentally determined, large-scale datasets of              
protein-protein and protein-RNA interactions. This enabled to  (i) predict hundreds of lncRNAs as possible scaffolding molecules                
for more than half of the known protein complexes, as well as  (ii) infer more than a thousand distinct 3’UTR-protein complexes,                     
including cases likely to regulate the cellular localisation of moonlighting proteins. These large-scale results indicate that a high                  
proportion of lncRNAs and 3’UTRs may be employed in regulating protein function, potentially playing a role both as regulators                   
and as components of complexity. 
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