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PREFACE

RNA-sequencing (RNA-seq), which is one of the first applications of the next generation
sequencing (NGS) technology, has become widely used and replaced the previous microarrays in
the analysis of transcriptome. Many statistical methods were developed and applied for the
statistical analysis of gene expression with both mentioned technologies. However, microarrays
and RNA-seq deserve separate methodological assessment, due to the fundamental difference:
array-based technology quantifies levels of expression by continuous distributions, whereas RNA-
seq datasets does it by counts of reads. There is currently a need for powerful advanced statistical
methods to extract the valuable information from fast developing sequencing technology and
limited works have been done into exploit the machine learning methods on expression analysis of
RNA-seq data.

Functional supervised and unsupervised methods are important methods for performing
sample classification based on their expression profile. In this dissertation, we assessed the
effectiveness of supervised and unsupervised approaches to classify biological samples based on
RNA-seq data, based on the analysis the seven carefully chosen study cases from genomic
experiments with human samples downloaded from recount2 repository.

Due to the complexity and size of genomic data, the choice of machine learning approach and
parameters that return optimal classification results with RNA-seq data is a real concern for current
biologists, we tested here several commonly used supervised classification approaches and assessed
the impact of pre-processing procedures.

Another common issue in the analysis of classification with high-throughput data is exploit
feature selection approaches, which requires to study their impact on the accuracy of classifiers in
order to improve the methodological choices. Whereas many feature selection methods have been
developed for various applications of machine learning, limited works has been done on RNA-seq
data. In the current work, we examine some feature selection methods to test their impact on the
classifiers and clustering of RNA-seq data.

We developed an R package called RN.AsegM17A, which is specifically designed to apply
various multivariate analysis (MVA) approaches on RNA-seq datasets, and to assess the
performance of classifiers with two various pre-processing and feature selection approaches.

RNAseqM17A is available as a GitHub repository.
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RESUME

Depuis une décennie, I'avenement des technologies de séquencage massivement paralléle (Next
Generation Sequencing, NGS) a révolutionné la facon de mener les études génomiques. Une
application particuliecrement importante et largement répandue du NGS est Iétude du
transcriptome par séquengage de PADNc obtenu a partir de PARN d’un échantillon (RNA-seq).

La technologie RNA-seq présente un grand nombre d’avantages par rapport aux précédentes
(notamment les biopuces) : élargissement de la plage dynamique de mesure, accroissement de la
précision, débit élevé, découverte de nouvelles formes d’épissage, etc. Conséquemment, le RNA-
seq a progressivement remplacé les approches de biopuces pour devenir la principale technologie
d’analyse du transcriptome. Les études NGS produisent d’énormes quantités de données, qui
appellent au développement de méthodes d’analyse multidimensionnelle efficients, qui prennent
en compte la nature particuliere des données (comptages discrets, étendue dynamique énorme,
présence de valeurs aberrantes, ...). Dans cette these, nous nous focalisons sur lutilisation de
méthodes d’apprentissage automatique pour assigner des échantillons a des classes sur base de leurs
profils d’expression RNA-seq.

Tout d’abord, nous dressons une revue de I’état de I'art pour la génomique, et des méthodes
statistiques qui ont été appliquées aux méthodes NGS, afin de tirer les lecons des derniers
développements méthodologiques et d’évaluer 'apport de notre recherche par rapport aux derniers
développements en analyse multidimensionnelle des données NGS.

Nous effectuons ensuite une évaluation comparative des méthodes de classification supervisées
sur base de données téléchargées de la base de données recount2, qui contient a peu pres 2000
expériences de RNA-seq. Dans cette base de données, nous avons sélectionné 7 cas d’étude
représentatifs d’études RNA-seq typiques, avec différents types de catégories (classes) : maladies
(types de cancers, leucémies, psoriasis), ou types cellulaires (cellules nerveuses). Nous avons évalue
I'impact du pré-traitement des données sur les méthodes de classification supervisée: procédures
de filtrage (mise a I’écart de génes et/ou échantillons non fiables), normalisation, transformation
en composantes principales (ACP). Nous avons également étudié I'impact de la sélection de
variables afin de réduire la sur-dimensionnalité de I'espace des variables, et d’identifier le sous-
ensemble de genes ou composantes qui optimisent la précision des classifications. Cette sélection
repose sur un tri préalable des variables basé soit sur I'analyse différentielle d’expression, soit sur

I'importance des variables calculée lors d’un premier cycle de classification avec Random Forest.
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Durant toute cette étude, nous avons prété une attention particuliére aux métadonnées, et nous
avons exploré la structure des jeux de données, afin d’interpréter le comportement de chaque
méthode (Support Vector Machines, Random Forest, K Nearest Neighbouts) a la lumiére des
spécificités de chaque cas d’étude : nombre d’échantillons, de classes, distribution des comptages

bruts, RNA-seq sur échantillons entiers (« bulk ») ou cellules isolées (« single-cell »).
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ABSTRACT

In recent years, the advent of next-generation sequencing (NGS) technology has been
revolutionizing the way genomic studies are processed. An important and widely used application
of NGS technology is the study of transcriptome through sequencing of cDNA obtained from
RNA (RNA-seq). Compared with previous technologies like microarrays, RNA-seq data have
many advantages, such as dynamic and wider ranges of measurements, increased precision, higher
throughput, discovery of novel RNA species and splice forms, etc. Thence, RNA-seq has been
became suitable alternative for the microarray approach as the main platform for transcriptome
studies. NGS technologies produce huge amounts of data, which urges the development of
effective multivariate analysis methods adapted to the particular nature of the data (discrete counts,
huge dynamic range, outliers, ...). In this dissertation, we focus on the use of machine learning
methods to perform supervised classification to assign samples to groups based on their RNA-seq
gene expression profiles.

First, we briefly revise the state-of-art for the genomics and the statistical methods to treat
NGS data, in order to draw lessons from the latest developments in analysis the NGS data and to
evaluate what our research will provide to the latest scientific developments in the scope of
multivariate analysis for the NGS data.

We perform a comparative assessment of three supervised classification methods (Support
Vector Machines, K nearest neighbors, Random Forests), based on published data downloaded
from the recount2 warehouse, which contains around 2000 RNA-seq experiments. From this
database, we selected seven study cases that are representative for typical RNA-seq studies with
different types of biological categories (classes), including diseases (cancer types, leukemia,
psoriasis) or cell types (nervous cells). We assessed the impact of pre-processing on classifiers:
filtering procedures (discarding unsuited genes and/or samples), normalization, PCA
transformation. We also studied the impact of feature selection to circumvent the problem of over-
dimensionality of the feature space by finding out a subset of genes or principal components that
optimizes the accuracy of classifiers. The feature selection relied on variable ordering based on
either differential expression analysis, or on variable importance returned by a Random Forest
classifier.

We pay a particular attention to the metadata and we explore the structure of the datasets, in

order to interpret the behavior of each tested classifier in light of the specificities of each study

13



case (number of samples, number of classes, distribution of the count values, bulk or single-cell

RNA-seq, ...).

Keywords

Bioinformatics, Biostatistics, Next Generation Sequencing, RN A-seq, Supervised classification
Bioinformatique, Biostatistique, Séquencage Massivement Parallele, RNA-seq, Classification

supervisée
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Short abstract for wide audience

Since a decade, Next Generation Sequencing (NGS) technologies enabled to characterize
genomic sequences at an unprecedented pace. Many studies focused of human genetic diversity
(inter-individual variations in genomic DNA sequences) and on transcriptome (the part of genome
transcribed into ribonucleic acid). Indeed, different tissues of our body express different genes at
different moments, enabling cell differentiation and functional response to environmental changes.
Since many diseases affect gene expression, transcriptome profiles can be used for medical
purposes (diagnostic and prognostic). A wide variety of advanced statistical and machine learning
methods have been proposed to address the general problem of classifying individuals according
to multiple variables (e.g. transcription level of thousands of genes in hundreds of samples). During
my thesis, I led a comparative assessment of machine learning methods and their parameters, to

optimize the accuracy of sample classification based on RNA-seq transcriptome profiles.

Résumé de thése vulgarisé pour le grand public en
francais

Les technologies « Next Generation Sequencing» (NGS), qui permettent de caractériser les
séquences génomiques a un rythme sans précédent, sont utilisées pour caractériser la diversité
génétique humaine et le transcriptome (partie du génome transcrite en acides ribonucléiques). Les
variations du niveau d’expression des genes selon les organes et circonstances, sous-tendent la
différentiation cellulaire et la réponse aux changements d’environnement. Comme les maladies
affectent souvent l'expression génique, les profils transcriptomiques peuvent servir des fins
médicales (diagnostic, pronostic). Différentes méthodes d’apprentissage artificiel ont été proposées
pour classer des individus sur base de données multidimensionnelles (par exemple, niveau
d’expression de tous les genes dans des d’échantillons). Pendant ma theése, j°ai évalué des méthodes
de « machine learning » afin d’optimiser la précision de la classification d’échantillons sur base de

profils transcriptomiques de type RNA-seq.
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ABBREVIATIONS

Acronyms Meaning

AUC Area under the ROC curve
bp Basepair

CAGE cap analysis gene expression
cDNA Complementary DNA

DE differential expressions

EST expressed sequence tag

GEO Gene Expression Omnibus
GWAS genome-wide association study
HGP Human Genome Project
indels Small insertions and deletions
Kbp kilo basepair

KNN k-near neighbor

IncRNAs long noncoding RNAs

LRT likelihood ratio test

Mbp megabase pair

Med Median

MER Misclassification error rate

miRNAs micro RNAs
mRNA messenger RNA

MSE Mean Square Error

NGS Next-generation sequencing
OOP Object-Oriented Programming
PCA Principal component analysis.
PS Prototype Selection

Q Quantile

qPCR quantitative polymerase chain reaction
RBF the redial basis function

RF Random Forest

RLE Relative Log Expression

ROC Receiver operating curve

RPKM Read per Kilobase per Million
SAGE serial analysis of gene expression
SMS Single Molecule Sequencing
snoRNAs  small nucleolar RNAs

SNPs single nucleotide polymorphisms
snRNAs small nuclear RNA

SNVs single nucleotide variants

SVM Support vector machine

TC Total Count

TMM Trimmed mean of M-Values
UML Unified Modeling Language

uQ Upper Quartile

VIMP variable importance
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CHAPTER 1: INTRODUCTION

Genomics and the next-generation sequencing revolution

The genomics era

Since the time DNA was revealed as the code to all biological life, man has sought to disclose
its secrets. If the genetic sequence could be sequenced or read, the basis of life itself may be
discovered. Although this idea might not be fully true, the recent progresses of sequencing
technologies have certainly revolutionized the scope of the biological research, and influenced the
way biologists try to address the complexity of life by analyzing biological phenomena at the scale
of whole genomes.

The original sequencing methodology, known as Sanger chemistry, uses specially labeled
nucleotides to read through a DNA mold during DNA synthesis. This sequencing technology
needs a certain primer to begin reading at a certain location through the DNA shape, and records
the different labels for each nucleotide within the sequence. After a series of technical inventions,
the Sanger method has reached the amplitude to read through 1,000-1,200 base pairs (bp);
however, it still cannot exceed 2 kilo base pairs (Kbp) behind a certain sequencing primer. To
sequence longer sections of DNA, a new method called shotgun sequencing was improved during
the international scientific research project that has been aimed determining the sequence of
nucleotide base pair that make up human DNA that is called the Human Genome Project (HGP).
In this approach, genomic DNA is enzymatically or mechanically cut into smaller fragments and
cloned into sequencing vectors in which the cloned DNA fragments can be sequenced individually.
The full sequence of along DNA segment can then be obtained through alignment and reassembly
of the sequence fragments based on partial sequence overlaps. Shotgun sequencing was of great
benefit to HGP, and it made the sequencing of the entire human genome possible.

In 2007, several companies proposed novel technologies that enable the main principle of
massive parallel sequencing to be used in what is called next-generation sequencing (NGS),
which is adapted from shotgun sequencing (Margulies et al., 2005a); (Venter et al., 2003). Modern
NGS methods read the DNA molds technically over the whole genome. This is done by cutting
the whole genome into small pieces and then linking these small pieces of DNA to designated

adapters for a random read during DNA synthesis (sequencing by synthesis). The DNA
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synthesis/reading process is done in parallel for millions of DNA fragments simultaneously;
therefore, NGS technology is also called wassively parallel sequencing.

In the first applications of NGS, the read length (the actual number of contiguous sequenced
bases) for NGS was much shorter than that achieved by Sanger sequencing. At the advent of NGS,
sequencing provides reads that were typically 26—25 bp, which is why the sequencing results are
identified as short reads. These short reads were a major limitation at the beginning of NGS
technology; however, developing NGS technologies, such as single-molecule sequencing (SMS),
may exceed Sanger methodology and have the potential to read several continuous Kbps (Zhang
et al., 2011). Table 1 shows a summary of the benefits of each method.

As next-generation technologies generate short reads, coverage is a very important issue.
Coverage is defined as the number of short reads that overlap one another within a certain genomic
area (Zhang et al., 2011). An adequate coverage is critical for the accurate assembly of the genomic
sequence; in addition, the coverage is crucial for applications other than genome sequencing. For
instance, in ChIP-seq, discriminating peaks from the background (noise) is important. For
transcriptomic RNA-seq, increasing the sensitivity (detection of poorly expressed genes) and
obtaining a reliable quantification of the RNA concentration for each gene are crucial, and so is
minimizing the impact of the fluctuations of small numbers. A sufficient coverage is also important
to compensate for the fact that many short read sequences cannot be interpreted or mapped to any
reference DNA or be carefully assembled.

Short-read sequences can be matched against a reference genome, a process called read
mapping (the results are commonly called mapped reads). We could define the sequence coverage
as the average number of reads that overlap each nucleotide in a given region (local coverage) or on
the entire genome (genome coverage). The possible ambiguities of read mapping because of repetitive
regions still need to be considered, through mapping short reads against a reference genome that

is classically the first step of many next-generation sequencing data analysis.

Table 1 Brief comparison between Sanger, NGS, and SMS

Technology Pros Cons
Saneer Sequencin. High precision error rate: 0.001%—1% Low throughput
g qu g Long reads High cost
Low cost . . .
Next-Generation Sequencing High throughput S}rl;ri;roeids}fzﬁnggrﬂlgeszﬁcl? low
INGS) Decent precision error rate: 0.46%— P W & sequ
2.4% assembly)
?Slrli/%lse)—Molecule Sequencing i?g}% :ﬁjc()llighput Low precision error rate: 11%0—14%
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NGS is a rapidly evolving technology that is changing on an almost daily basis.

Previously, DNA sequencing was performed almost exclusively with the Sanger method, which
has excellent precision and a sensible read length but has very low throughput. Sanger sequencing
was used to obtain the first draft sequence of the human genome in 2001 (Consortium, 2001) and
the first individual human diploid sequence (J. Craig Venter ) in 2007 (Levy et al, 2007).
Immediately thereafter, the second complete individual genome (James D. Watson) was sequenced
using next-generation technology, which marked the first human genome sequenced with new
NGS technology (Wheeler et al., 2008). Since then, several additional diploid human genomes have
been sequenced with NGS by utilizing a variety of related approaches to quickly sequence genomes
with varying degrees of coverage (Wang et al., 2008) and (Metzker, 2010). A common mechanism
for NGS is to use DNA synthesis or ligation process to read through many different DNA shapes
in parallel (Seo et al., 2017).

Genomics involves the systematic study at a whole genome scale of genetic contributions to
different aspects of an organism of interest (e.g., human, bacteria, yeast, drosophila, plants). The
progress in our understanding of many essential biological phenomena has accelerated dramatically
over the last two decades, driven by the evolution of genomic technologies. Under other
applications, these new genomic technologies have revolutionized our knowledge of many genes
or genomic areas involved in the pathogenesis of human diseases (Novelli et al., 2010).
Developments in high-throughput genomic technologies, such as microarray and NGS
technologies, have resulted in massive accomplishments on genetic linkage, association studies,
DNA copy number, and gene expression analysis. The progress of genomics will undoubtedly lead
to the birth of genetic medicine, which will, in turn, result in significant developments and
improvements in human health (Gonzalez-Angulo et al., 2010). Candidate gene methods were
initially used in genomic studies, with a focus on the genes known to be included in well-defined
molecular pathways for targeted human conditions through linkage and association studies.
Through nominate-gene studies, certain genetic variants among numerous genetic loci have been
successfully identified for their important contributions to specific human diseases. After the
completion of the HGP, a new approach, genome-wide association study (GWAS), has been
applied to genomics. GWAS is highly effective in specifying the genetics factors related to disease
or other human traits by allowing deduction over the entire length of the genome through
acquisition of direct information on a relatively small number of loci. But NGS relies on the direct
procuration of information from all adjustable loci (Alonso, 2015). The wider applicability of
GWAS over full genome sequencing is based on the equilibrium between the lower costs of GWAS

and main goal for the RNA sequencing experiments, allowing for the analyses of larger cohorts.
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Because many of the genetic variants that contribute to many human conditions are still unknown,
unbiased whole genome sequencing will help identify these genetic variants, involving single
nucleotide variants or single nucleotide polymorphisms, small insertions and deletions (indels, 1—
1,000 bp), and structural and genomic variants (> 1,000 bp) (Daly, 2010).

The quantity of short-read sequences produced by NGS is increasing at exponential rates as a
result of the many NGS approaches recently developed to allow DNA sequencing. In less than a
decade, current NGS platforms have increased the throughput of sequencing, and the massive
reduction in cost has transformed NGS into a vastly used genomic technology. Different NGS
instruments generate different base read lengths, error rates, and error profiles relative to Sanger
sequencing data and to one another. NGS technologies have increased the speed and throughput
capacities of DNA sequencing and, as a result, dramatically reduced overall sequencing costs
(Metzker, 2010)(Tucker et al., 2009); (Ng et al., 2009).

Since the release of the first available system (GS20 from 454 Life Sciences) with a throughput
of 20 megabase pairs (Mbp) per run (Margulies et al., 2005b), NGS technology has significantly
developed. The current Illumina HiSeq X system can produce 1.8 terabase pairs (Tbp) of
sequencing data per run, representing nearly a 100,00-fold increase within a 10-year period. During
this relatively brief period, several NGS systems, such as HeliScope from Helicos BioSciences
(Thompson and Steinmann, 2010) and 454 GS FLX from Roche, have been turned off. The new
NGS systems include single-molecule sequencers (Eid et al., 2009), which can provide high read
lengths and facilitate the resolution of DNA modifications. The shares occupied by the industry
are sequence-by-synthesis (Bentley et al., 2008) systems from Illumina, which boast a wide range
of applications, relative ease of use, multiple levels of throughput, a flexible configuration, and a

relatively low sequencing cost.

Application of NGS technologies in genomics

NGS has numerous advantages, such as its cost-effectiveness, unprecedented sequencing
speed, and high resolution and accuracy in genomic analysis, which have improved biological
biomedical research. The majority of these high-throughput sequencing technologies have been
fully implemented in different of ways, such as target sequencing, whole genome sequencing,
chromatin immunoprecipitation sequencing, gene expression profiling, and small RNA
sequencing. All these revolutions in high-throughput sequencing have led to the massive amount

of data generated by NGS, which represents a great challenge for bioinformatics.
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The available applications of NGS technologies include whole genome sequencing, de 7ovo
assembly sequencing, resequencing, and transcriptome sequencing at the DNA or RNA level. For
instance, de novo assembly sequencing assembles the genome of a particular organism without a
reference genome sequence (Li et al., 2010), resulting in a better understanding of the genomic
level and may help in predicting genes, protein coding regions, and pathways. Moreover,
resequencing the organism with a known genome can assist in understanding the relationship
between genotype and phenotype and specify the difference among reference sequences
(Vallender, 2011); (Voelkerding et al., 2010). Moreover, NGS technologies have been used to
analyze small RNAs (Friedlinder et al., 2008) and (Zywicki et al., 2012), including the identification
of differentially expressed micro RNAs (miRNAs), prediction of novel miRNAs, and annotation
of other small non-coding RNAs. Currently, many companies are implementing different NGS

technologies; some of these companies are Illumina (http://www.lllumina.com), Roche

(http://www.454.com), ABI Life Technologies (http://www.lifetechnologies.com), Helicons

BioSciences (http:/ /www.helicosbio.com), Pacific Bioscience

(http://www.pacificbiosciences.com), and Oxford Nanopore (http://www.nanoporetech)

Current technologies for NGS

Short-read coverage must enable the characterization of a complete sequence and assemble it with
precision to guarantee the correct specification of genetic variants. Currently, at least 30x coverage
is recommended in whole genome scans for rare genetic variants in human genomes, but this is
burdensome in terms of computer resources and cost management. Even if the cost of whole
genome sequencing has decreased, cost remains a major hurdle. By targeting certain regions of
interest, selective DNA enrichment techniques reduce the overall cost and increase the efficiency
of NGS by increasing the sequencing depth on the regions of interest (Rehman et al., 2010); (Tyler
et al., 2016). However, targeted enrichment must have uniform coverage, high reproducibility, and
no allele bias for any genomic area (Flowers et al., 2015). Targeted sequencing generally
concentrates on all protein-coding subsequences (the functional exome), only requiring ~5% as
much sequencing compared with that required for the whole human genome (Pussegoda, 2010);
(Teer and Mullikin, 2010). This strategy currently reduces the overall cost for sequencing a single
individual. An important consideration in the cost of such experiments is the depth of sequence
coverage required to achieve a desired sensitivity and specificity of at least 25-fold nominal

sequence coverage.
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The most common techniques for targeted sequence enrichment are either microarray based
(Igartua et al., 2010) or solution hybrid based (Bainbridge et al., 2010); (Tewhey et al., 2009). Many
targeted selection technologies have been successfully applied in different NGS projects with
variable success and may become the tools of choice to lower the burden of time and cost.
Clarifying selective DNA enrichment techniques will considerably reduce the overall cost and
speed up the discovery of genetic variants that cause rare genetic disorders. Other genetic loci for
rare diseases have also been successfully identified through exome sequencing (Walsh et al., 2010);
(Rios et al., 2010).

In comparison with the microarray, a recent approach to study gene expression, which was
developed at the end of the last century, is RNA-seq technology; it has become a ubiquitous tool
to measure a range of expression levels with less noise and high throughput, and it has an additional
capability of detecting allele-specific expressions, novel promoters, and isoforms (Wang et al.,
2010). For these reasons, RNA-seq is gradually substituting microarray-based approaches as the
major platform in gene expression analysis. Meantime, the massive amounts of discrete data

generated by NGS technology call for effective methods of statistical analysis.

RNA sequencing

RNA-seq enables digital gene expression measurement; it is a substitute of microarrays. The
pattern of gene expression in cells and tissues can largely mirror their functional state. NGS-based
expression profiling by RNA-seq (Marioni et al., 2008a); (Mortazavi et al., 2008) allows the
comprehensive qualitative and quantitative mapping of all transcripts (Garber et al., 2011). Prior
to NGS, transcriptome profiling techniques were limited in scope and accuracy, and they were not

quantitatively sensitive.

The principle of RN A-seq is based on high-throughput technology. In general, a population of
RNA is converted to a library of cDNA fragments with adaptors attached to one or both ends.
Each molecule is sequenced in a high-throughput manner to obtain the sequence of either a single
end or both ends per DNA fragment. The reads differ from 30 to 400 bp, which depends on the
sequencing technology used. Three sequencing systems have been designed by companies for
RNA-seq: Illumina IG, Applied Biosystems SOLiD, and Roche 454 Life Sciences. The results are
either aligned to a reference genome or transcripts, or they are assembled de novo without a
genomic sequence to produce a genome-scale transcription map that consists of both the

transcriptional structure and the level of expression for each gene.
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The transcriptome is defined as a complete set of RNA molecules produced by a given cell
under given conditions (cell type, developmental stage, environment). It is fundamental for
explaining the functional elements of the genome and for understanding the impact of a disease at
the cellular level. Indeed, the final expression of genetic information, which depends on the
interaction genetic and environmental factors, characterizes the phenotype of an organism. The
transcription of a subset of genes into complementary RNA molecules defines a cell’s identity and
organizes the biological activities within it.

The transcriptome has a high degree of complexity and reveals multiple types of coding and
non-coding RNA forms. Genetically, RNA molecules are mostly considered as simple
intermediates between genes and proteins. Therefore, messenger RNA (mRNA) molecules are the
typically studied RNA type because they encode proteins via the genetic code. Furthermore, in
addition to the protein-coding mRNAs, there are many types of noncoding RNA (ncRNA)
molecules that are functional. Most of the known ncRNAs achieved requisite cellular functions,
such as ribosomal RNAs (rRNA) and transfer RNAs involved in mRNA translation, small nuclear
RNAs (snRNAs) included in splicing, and small nucleolar RNAs (snoRNAs) included in the
adjustment of rRNAs (Mattick and Makunin, 2006). More recently, new classes of RNA have been
found, reinforcing the repertoire of ncRNAs. Another interesting class of ncRNAs is long
noncoding RNAs (IncRNAs). As a functional class, LncRNAs were first described in mice during
the large-scale sequencing of cDNA libraries (Team*, 2002). Many molecular functions have been
revealed for IncRNAs, including chromatin remodeling, transcriptional control, and post-
transcriptional processing. Despite these developments, however, most of them are not yet fully

characterized (Wilusz et al., 2009) and (Bainbridge et al., 2010).

Initial gene expression studies depended on low-throughput methods. Examples are northern
blots and quantitative polymerase chain reaction (qPCR), which are limited to scaling single
transcripts. Throughout the last two decades, methods have been developed to enable the genome-
wide quantification of gene expression, or best known as transcriptomics. The first transcriptomics
studies were done using hybridization-based microarray technologies, which provide a high-
throughput option at a relatively low cost (Schena et al., 1995). These methods have many
limitations, such as the requirement for a priori knowledge of the sequences being investigated, the
presence of problematic cross-hybridization artifacts in the analysis of highly similar sequences,
and the limited ability to accurately quantify lowly expressed and very highly expressed genes

(Shendure, 2008). Similar to hybridization-based methods, NGS-based methods have been
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improved to clarify the transcriptome by directly identifying the transcript sequence. At first, the
generation of expressed sequence tag libraries by Sanger sequencing of complementary DNA
(cDNA) was used in gene expression studies, but this method was relatively low in throughput and
not optimal for quantifying transcripts (Kouichi et al., 1994) and (Adams et al., 1995). To overcome
these technical restrictions, tag-based methods, such as serial analysis of gene expression (SAGE)
and cap analysis gene expression (CAGE), were developed for a higher throughput and a more
precise quantification of expression levels. By quantifying the number of tagged sequences, which
directly corresponded to the number of mRNA transcripts, these tag-based methods show a
distinct advantage over the measurement of analog-style severities, such as in array-based methods
(Shiraki et al., 2003). By contrast, these assays do not enable to measure the expression levels of
splice isoforms and cannot be used to discover new genes. Furthermore, the overwork resulting
from the cloning of sequence tags, the high cost of automated Sanger sequencing, and the
requirement for a large amount of input RNA have limited its use.

The evolution of high-throughput NGS has developed transcriptomics by enabling RNA
analysis through the sequencing of cDNA (Wang et al,, 2009). This method, called RNA
sequencing (RNA-Seq), has distinguishing traits over prior approaches and has revolutionized our
understanding of the complex and dynamic nature of the transcriptome. RNA-seq provides a more
detailed and quantitative view of gene expression (as is exemplified in Figure 1), substitutional
splicing, and allele-specific expression. The development of RNA-seq workflows, from sample
preparation to sequencing platforms to bioinformatic data analysis, has enabled deep profiling of
the transcriptome and the opportunity to clarify different physiological and pathological
conditions.

RNA-seq count data consist of tables indicating the number of sequenced fragments for each
transcript. These data are modeled as emerging from random sampling events for a large number
of sequences (the library size). Individual gene probabilities are small, as counts are measured for
tens of thousands of reads. However, the multi-nomial model is too simple to reflect biological
complexities. Indeed, it has been repeatedly shown that RNA-seq data are over-dispersed
(Robinson and Oshlack, 2010a). Any careful analysis of the data, especially for differential
expression analysis, should account for this over-dispersion. Additional factors, such as the length
of the transcript and potential sequencing bias, are important in making an inference on the

absolute expression levels.
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The limitations in the use of RNA-seq are as follows:

- Large number of genes: The huge dimensions of RNA-seq datasets also require heavy
computation in the analysis, which necessitates high computing power from both machine
hardware and algorithm design.

- Discreteness of the raw data: RNA-seq data use counts of reads to quantify gene
expressions. This is quite different from continuous data that are typically modeled by
Gaussian distributions. Computing log-transformed counts can be used to partly normalize
the measures of gene expressions, but methods that keep the discrete nature of count data
are still preferred for differential expression. Various discrete probabilities have been
proposed to model the counts, such as Poisson (Sultan et al., 2008), hypergeometric
(Marioni et al., 2008a), and negative binomial (NB) distributions (Robinson and Oshlack,
2010a); (Anders and Huber, 2010a). A fundamental difficulty for the analysis of count-
based data is to identify suitable theoretical distributions to model the data and take into

account the properties of their distribution (in particular the variance between samples).

Random Reverse
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Adapted from Li et al. (2011)

Figure 1 Pre-step of RINA sequencing
Source: Julie Aubert [Statistical Challenges in RNA-seq Data Analysis| [2012]
[https:/ /www.cnrs.ftr/inee/recherche/fichiers/ EPEGE/Communications/Julie_ AUBERT.pdf].
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Transcriptome sequencing

High-throughput NGS technologies were rapidly adopted for transcriptomics. This
development addressed the many difficulties posed by hybridization-based microarrays and Sanger
sequencing-based methods that were formerly utilized for scaling gene expression. An ideal RNA-
seq experiment depends on isolating RNA, transforming it to cDNA, and performing the
sequencing library, as shown in Figure 2. Prior to the conduct of any RNA-seq experiments, many
factors should be carefully taken into account in the design of the experiment in order to ensure a
balance between the quality of the results and the time and monetary investments made; some of
these factors are biological and technical replicates, the depth of sequencing, and a desirable

coverage across the transcriptome.

Isolation of RNA

The isolation of RNA from a biological sample is the initial procedure in transcriptome
sequencing. To ensure a successful RN A-seq experiment, the RNA material should have sufficient
quality in order to produce a library for sequencing. The Agilent Bioanalyzer enables the
measurement of the quality of RNA by producing an RNA integrity number (RIN) between 1 and
10, where a score of 10 indicates the highest quality of samples and shows the least degradation.
Notably, RIN measures are based on mammalian organisms, and certain samples with abnormal
ribosomal ratios may improperly generate degraded RIN numbers. Low-quality RNA (RIN < 6)
can essentially affect the sequencing results (e.g., uneven gene coverage, 3/-5 transcript bias). In
turn, this might lead to improper biological conclusions. Consequently, high-quality RINA is
fundamental for successful RNA-seq experiments. The effect of degraded RNA on the sequencing
results should be accurately determined (Rudloff et al., 2010) and (Thompson et al., 2007)

Methods for library preparation

The creation of the RNA-seq library is the subsequent step in transcriptome sequencing, which
occurs after RNA isolation; this process differs according to the chosen RNA species and among
NGS. The creation of sequencing libraries includes isolating the desirable RNA molecules, reverse-
transcribing the RNA to cDNA, fragmenting the cDNA, amplifying it by PCR, and linking
sequencing adaptors. Through these main processes, as shown in Figure 3, there are multiple

options in library preparation and experimental design that should be cautiously taken into
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consideration according to specific scientific needs. The precision of the detection for certain types

of RNAs is fully dependent on the quality of the library built.
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Figure 2 Sequencing steps
A sample of mRNA is transformed to a library of cDNA fragments and then sequenced with high-
throughput sequencing. Source: Lecture notes from Dr. Penge Liu’s Stat 416 class.
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Figure 3 Mapping steps
The reads are mapped to the reference genome, and the mapped reads are counted for each gene to measure
its expression level. Source: Lecture notes from Dr. Penge Liu’s Stat 416 class.
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Detecting Differentially Expressed Genes

Since the advent of NGS, the detection of differentially expressed genes (DEGs) has been a
very important motivation for characterizing the transcriptome with RNA-seq; different
specialized tools have also been developed to detect DEGs from RNA-seq counts.

Pepke et al. (Pepke et al., 2009) reported on the power of counting-based measurements (RN A-
seq and ChIP-seq), resulting in the treatment of tens to hundreds of millions of reads. Utilizing
deep DNA sequencing methods has led to the measurement of genome-wide protein-DNA
interactions and transcriptomes. A new generation of more sophisticated algorithms and software
programs emerged to assist in the analysis of the first RNA-seq and ChIP-seq datasets.

Trapnell et al. (Trapnell et al., 2012) illustrated in the first stages of development of high-
throughput mRNA sequencing that TopHat and Cufflinks are free, open-source software tools for
gene discovery and the comprehensive expression analysis of high-throughput mRNA sequencing
(RNA-seq) data. These allowed biologists to identify new genes and new splice variants of known
ones. They also facilitate the comparison of genes and transcript expression under two or more
conditions. Where Trapnell et al. (Trapnell et al., 2010) has tested Cufflinks to sequenced and
analyzed more than 430 million paired 75-bp RINA-seq reads from a mouse myoblast cell line over
a differentiation time series. They concluded that Cufflinks can illuminate the substantial regulatory
flexibility and complexity in even muscle development and that it can improve transcriptome-based
genome annotation.

Following this stage, Robinson et al. (Robinson et al., 2010) invented edgeR, a Bioconductor
software package for examining the differential expression of replicated count data. An over
dispersed Poisson model is used to account for both biological and technical variabilities. Empirical
Bayes methods are implemented in this package to moderate the degree of over dispersion across
transcripts, improving the reliability of inference. edgeR can be used even with the most minimal
levels of replication, provided that at least one phenotype or experimental condition is replicated.

Moreover, (Anders and Huber, 2010d) used the DESeq R/Bioconductor package, which
depends on negative binomial distribution, with the variance and mean linked by local regression.
They proposed methods to infer the differential signal in count data correctly and with good
statistical power, as well as to estimate data variability throughout the dynamic range and a suitable
representative model.

Basing on the sequence of the historical development of detecting differential expression genes,
in 2012, Dillies et al. (Dillies et al., 2013) reported that there has been no clear consensus on the

appropriate normalization methods to use nor the impact of a chosen method on downstream

30



analysis. Dillies (Dillies et al., 2013) therefore addressed a comprehensive comparison of seven
commonly used normalization methods (TC, UQ, Med, DESeq, TMM, Q, and RPKM) for the
differential analysis of RNA-seq data. She then provided her recommendations on RPKM and TC,
both of which were widely used (Liu et al., 2011); (Young et al., 2010); these were ineffective and
should be abandoned in the context of differential analysis. The reason is that scaling counts by
gene length with RPKM is not sufficient for removing bias (Bullard et al., 2010a); (Oshlack and
Wakefield, 2009). Dillies explained that only DESeq and TMM can maintain a reasonable false
positive rate without any loss of power. Consequently, Dillies said that these two methods
performed much better than others for data with differences in library composition.

Schurch et al. (Schurch et al., 2016) concluded from a large-scale analysis of the required
biological replicates in RNA-seq data that at least six replicates per condition are required for RNA-
seq experiments. In addition, there should be at least 12 replicates per condition for the
experiments, in which identifying the majority of all DE genes is important. Moreover, Schurch
explained when researchers can utilize edgeR or DESeq2. In case an experiment has less than 12
replicates per condition, Schurch encouraged the use of edgeR or DESeq2; otherwise, he
recommended the use of DESeq2.

In the evaluation of methods for differential expression analysis of multi-group RN A-seq count
data, Tang et al. (Tang et al., 2015) conducted two pipelines based on the TCC package, which
implemented a multi-step normalization strategy called DEGES; this approach uses the same
principle as edgeR, DESeq2, and so on to identify DEGs (18.5%—45.7% of all genes). Based on
the TCC package, which is best used for a three-group comparison, as well as a two-group
comparison, Tang et al. recommended using a DEGES-based pipeline that internally uses edgeR
for count data with replicates (especially for a small sample size). For data without replicates, Tang
et al. recommended the use of DESeq2.

Jaskowiak et al. (Jaskowiak et al., 2018) systematically evaluated different choices that emerge
naturally during the clustering process and their effects on quality. They provided an evaluation of
the computational steps relevant for clustering cancer samples via an empirical analysis of 15
mRNA-seq datasets; the authors assessed the performance of four clustering algorithms (K-
medoids and hierarchical clustering algorithms, namely, single-linkage, average-linkage, and
complete-linkage clustering) and 12 distance measures. The authors found that the data should be
log-transformed initially in cluster analysis. Regarding the choice of clustering algorithms, average-
linkage and K-medoids provided sound results. In general, Jaskowiak et al. recommended the
careful selection of a distance measure and then showed that symmetric rank-magnitude correction

provides consistent and sound results in different scenarios.
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The key idea in RNA-seq experiments is focused on the comparison of gene expression
levels over multiple conditions, tissues, disease types, and phenotypes, among others. Most RNA-
seq studies are designed to detect DEGs, which are genes whose expression levels differ between
two or more conditions. Detecting DEGs can be considered a critical step for some subsequent
objectives, such as clustering the gene expression profile and testing the functional enrichment of
DEG sets.

Many methods have been used to detect DE genes based on RNA-seq data. Examples are
Fisher’s exact test (Bloom et al., 2009), the x? goodness-of-fit test (Marioni et al., 2008b), and the
likelihood ratio test (Bullard et al., 2010b). Because the first technical evaluation of RNA-seq
technology relied on technical replicates, the use of Poisson models whose variance is equal to the
expected value E[Y] = var[Y] for count data was initially proposed. However, when count tables
contain biological replicates, RNA-seq data show more variability (the means for these RNA-seq
data would have variance that is greater than the expected value they represent in a simple equation
by var[Y] > E[Y]); NB distribution has been proposed as an alternative to Poisson to model
counts with biological replicates. Depending on the NB models, many tests have been developed
and implemented in R packages, such as edgeR (Robinson and Smyth, 2007), DESeq2 (Anders and
Huber, 2010b), and baySeq (Hardcastle and Kelly, 2010).

Despite the widespread use of the above-mentioned approaches for detecting DE genes, there
is no consensus nor theoretical justifications for which methods are optimal nor how the optimal
test can be identified. In addition, the principle of most of those methods relied on the mean
expression levels which are rigorously the same or not throughout all conditions, whereas
sometimes, biologists are interested in detecting genes with expression changes that are larger than
a certain threshold.

Another important issue with the above-mentioned methods is that supervised classification
methods have not been previously assessed for their reliability with RN A-seq count data.

We therefore utilize these methods to generate the p-values for each gene, and then we arrange
in ascending order all genes based on their p-values to test the impact of the number of variables
on the effectiveness of the classifier. In other words, we determine the most significant features

(variables) that affect the accuracy of the classifier.

32



Statistical methods for classification

Machine learning concepts

Supervised learning is considered when there are input variables (X) and an output variable (Y),
and there are requisites to use an algorithm in order to learn the mapping function from the input
to the output. ¥ = f(X), where the essential goal is to approximate the mapping function well,
and then when there are new input data (X) consequently someone can predict the output variables
(Y) for these data.

This is called supervised learning; the process of algorithm learning from the training dataset
can be envisaged as a teacher supervising the learning process because the correct answers are well
known. The algorithm iteratively makes predictions on the training data and is corrected by the
teacher. Learning stops when the algorithm achieves an acceptable level of performance.

But unsupervised learning is considered when there are only input data (X) and no
corresponding output variables. The main goal of unsupervised learning is to model the underlying
structure or distribution in the data in order to learn more about the data.

This is called unsupervised learning because unlike supervised learning, there are no correct
answers, and there is no teacher. Algorithms are left to their own devices to discover and present
the interesting structure in the data.

To train the learning algorithm, a set of labeled training individuals is used in supervised
learning. The main goal of a supervised learning approach is to predict an output variable for a set
of individuals (the test set) based on knowledge gained from another set of individuals for which
the output value is provided (the training set). Through the supervised learning family of methods,
we can further differentiate between classification methods, which focus on the prediction of
discrete (categorical) outputs, and regression methods, which predict continuous outputs.

Regression methods are beyond the scope of our study.

Motivation

Recent approaches, both biological and statistical, are increasingly needed to take advantage of
recent advances in machine learning and the HGP for disease diagnosis and prognosis. Supervised
and unsupervised classifications hold great promise for making classifications in the whole genome
massive datasets recently generated by biologists. Various machine learning algorithms have been

utilized to perform classification.
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Despite their popularity in many fields of application, supervised classification methods have
been seldom used for the analysis of NGS data, such as RNA-seq count data. Considering our
biological motivation, we strive to predict classes (multi-class) for new individuals based on their
transcriptome profile by using the supervised classification approach to train each supervised
classifier in assigning individuals to predefined classes based on their expression profile. A priori,
there is no obvious choice regarding the best method and parameters to classify NGS data. To
elucidate our methodological objectives, we are concerned with the evaluation of different classifier
methods according to various indicators, such as accuracy, generalization power (ability to correctly

classify new individuals), and robustness to sampling variations and the variables.

Supervised classification algorithms

This study focuses on supervised classification, which implies that we dispose of an outcome
variable; in this process, we train the classifier to recognize per-established classes and then use
them to predict the class for new individuals.

Among the numerous classification methods reported in the literature, in our study, we focused
on support vector machines (SVMs), random forests (RFs), and K-nearest neighbors (IKNN). In

the subsequent sections, we will briefly introduce these three supervised classification methods.

K-Nearest Neighbor (KNN)

KNN is a famous algorithm and the simplest one among all machine learning algorithms. It is
quite simple and easy to implement, in which Cover and hart (Cover and Hart, 1967) shows that
the error of the nearest neighbor rule is bounded above by twice the Bayes error under certain
reasonable assumptions. Also, the error of the general KNN method asymptotically approaches
that of the Bayes error and can be used to approximate it, and its idea is to memorize the training
set and then predict the label of any new instance on the basis of the labels of its closest neighbors
in the training set. The rationale behind this method is based on the assumption that the features
used to describe the domain points are relevant to their labelling in a way that makes close-by
points likely to have the same label. Furthermore, in some situations, even when the training set is
immense, finding a nearest neighbor can be done extremely fast (Shalev-Shwartz and Ben-David,
2014).

Mathematically, p: X * X — R, where ¥ is a function that returns the distance between the
two points of X (x; ,X;). The BEuclidean distance between two points can be calculated by the
following formula:
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where k in the KNN is the number of data points closest to the individual that has to be
assigned to a class. For example, if k = 1, then the algorithm will assign a new individual to the
class of the nearest one; if k = 4, then the algorithm will choose the closest four neighbor
individuals and will classify them accordingly. The idea can be better exemplified with Figure 4.
The KNN algorithm is implemented using the class package (R: a language and environment for

statistical computing) in R.
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Figure 4 Illustration of the principle of k-nearest neighbors

The color red indicates class B, and the color blue indicates class A. With k = 7 chosen, this means that the
majority vote will be favorable to the red class; the new sample will therefore be classified to the red class
based on the four votes for class B against the three votes for the blue class. Modified from the K nearest
neighbor and dynamic time wrapping (2016) (Time-Series Analysis: Wearable Devices using DTW and
KNN).

Our motivation for utilizing supervised classification to classify the samples based on their
respective classes is that we noticed the behavior of each classifier with RNA-seq count data that
are downloaded from recount2 repository. We conclude that after the training process, the classifier
can be used to assign an individual to existing classes. From our predictions, in the case of breast
cancer, the status “classes” of the cancer samples (e.g. with cancer class, prognostic of success for
a treatment) indicates the effectiveness of the supervised classification methods in performing the

classification of the sample based on their respective class labels.
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Some of KNN variations, such as weighted KNN and assigning weights to objects, are
relatively well known, some of the more advanced techniques for KNN are much less known, in
which it is typically possible to eliminate many of the stored data objects, but still retain the
classification accuracy of KINN classifier. This is known as “condensing” and can greatly speed up
the classification of new objects (Hart, 1968). In addition, data objects can be removed to improve
considerable amount of work on the application of proximity graphs (nearest neighbour graphs,
minimum spanning trees, relative neighborhood graphs, Delaunay triangulations, and Gabriel

graphs) to the KNN problem.

Decision Trees

Decision trees are powerful classifiers because of their high execution speed. The main
traditional methods for growing trees cannot extend to high-complexity data sets because they are
sensitive to over-fitting, and they loss their generalization power (the capability to correctly classify
unseen data). The essence of the method is to build multiple trees in randomly selected subspaces
of the features space. Trees in different subspaces generalize their classification in complementary
ways, and their combined classification can be monotonically improved.

One advantage of decision trees is balancing the error for instances in which the class
population is an unbalanced dataset; the generated forests can then be saved for future use on other
data.

The common weakness of decision trees is that they are extremely sensitive to small
perturbations in the data. A slight change can result in a drastically different tree. In addition, they
can easily overfit, and even though this can be addressed by validation methods and pruning, the

avoidance of overfitting is still non-trivial.

Random Forest (RF)

The RF algorithm (Breiman, 2001b) is a an ensemble approach that aggregates the results
of many randomly constructed classification trees. Two components of randomness are presented
into the building of individual trees. First, each tree is built using a random bootstrapped sample
of the training data. Second, a random subset of variables is tested at each split in each tree, rather
than all features being tested for the best split. The baseline principle from the concept of

randomness into the construction of trees and the averaging of the result over many tress is that
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the final outcome will be less subject to any random fluctuations in the training parts from datasets
and will have an increased capacity for generalizing patterns. The prediction is made for
unobserved data by taking the majority vote of individual trees. The samples that are not a part of
the bootstrapped sample for each tree, referred to as out-of-bag (OOB) samples, are used to create
a cross-validated prediction error for the forest. Furthermore, as a part of the construction of RF,
the OOB samples are used to mold a measure of feature importance. This is done by randomly
shuffling the values of each input feature in turn and observing how much the prediction error of
the OOB samples has grown. The randomForest package in R was used in our study; we tested
the majority of its parameters to produce the optimal results with RF in the task classification of

RNA-seq data.

Support Vector Machine (SVM)

SVM is the most widely used method of supervised machine learning. The technique was
introduced by Vapnik (Vapnik, 2000) and Giveki et al. (Giveki et al., 2012). SVM aims to identify
the ideal boundary separating classes in feature space. This decision boundary is called the ideal
separation hyper-plane. The classification of new samples from data is based on which side of the
decision boundary the sample point falls. The ideal hyper-plane is chosen based on the maximum
margin principle by choosing the boundary that maximizes the distance between classes. SVM can
be used for treating problems in which classes are not linearly segregated by transforming the
samples using a non-linear kernel function, such as the radial basis function (RBF) kernel. The RBF
kernel is a common choice for classification tasks (Meyer) (Luts et al., 2010). We tested with our
RNAseqM1”A the following kernels: linear, polynomial, and sigmoid for the main kernel value.
The SVM model tries to find the space in the matrix of data where different data classes can be

widely differentiated, and draws a hyper-plane, as illustrated in Figure 5.
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Figure 5 Schema illustrating the principle of the support vector machine
Source: Introduction to SVM (Introduction to Support Vector Machines — OpenCV 2.4.13.7
documentation)

In Figure 5, the colors red and blue depict the classes of labelled training data points. To
classify these linearly, a hyper-plane can be drawn, but the issue is that there is more than one way
to draw a hyper-plane, so which one is optimal? An optimal hyper-plane is chosen in a way that
maximizes the margin between classes. It does not necessarily need to be linear. A hyper-plane in
SVM can also work as a non-linear classifier by using the parameter kernel, as stated previously.
We tested most of these parameters to obtain the best results that lead to the ideal use of the SVM
with the optimal parameters for the classification of RNA-seq datasets. The SVM was implemented
using e1071 R package (Meyer). However, from a practical point of view, the weakness of SVM is
its high algorithm complexity and the extensive memory requirements of the required quadratic

programming in large-scale tasks (Suykens, 2009).

Unsupervised learning

Unsupervised learning does not rely on a prior definition of the class labels of individuals
(Aggarwal and Reddy, 2013). Clustering is an unsupervised technique that tries to group individuals
in order to optimize the criterion reporting that the distance among individuals in the same cluster
is minimized and the distance among individuals in different clusters is maximized (Tan et al.). A
main issue in clustering is the choice of a relevant measure of the distance between a pair of
individuals. Various similarity measures have been used for such a target, such as Euclidean, cosine,

and city block distances. In traditional clustering, all features are used to compute the distance
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between a pair of individuals. Alternatively, a subset of features can be selected prior to clustering
on the basis of different criteria (e.g., choose some features that have similar properties to either
discard redundant features or group them together).

A cluster is a group of individuals that are close to one another with respect to their mutual
distance. In another meaning, these individuals are similar in nature over the whole set of features.
However, in the case of a number of individuals available in a huge dataset, we aimed to find the
groups of samples (individuals) that are similar over a subset of the available individuals. This type
of clustering is called biclustering, in which each bicluster is associated with a subset of individuals.
Clustering and biclustering analyze 2D data, in which each feature corresponds to an attribute of

individuals. However, this is outside the scope of our study.

Clustering algorithms

A large number of clustering methods have been developed in the domain of machine learning.
These clustering methods are basically classified into partitional clustering, hierarchical clustering,
density-based clustering, graph theoretic clustering, soft computing-based clustering, and matrix
operation-based clustering (Aggarwal and Reddy, 2013).

Hierarchical clustering methods can be classified into agglomerative and divisive methods
(Berkhin, 2006). Agglomerative approaches operate in the bottom-up direction on the tree and
start with nodes with individuals. These nodes are iteratively merged to reach the root of the tree.
BIRCH (Zhang et al., 1990) is a popular agglomerative hierarchical clustering method that builds
the clustering feature (CF) tree first, which operates in a bottom-up way to extract the clusters. But
in the divisive technique, the root with all the nodes is iteratively split to finally reach the leaf nodes.
DIANA (Kaufman and Rousseeuw, 2009) is a divisive hierarchical clustering method that splits

the largest cluster iteratively to find splinter groups.

Evaluation of the performance of classifiers

Validation procedures

Validation procedures are commonly used to assess how well the classification algorithms can
build accurate models for the data. Usually its results are affected by three main factors: (1) the
accuracy of the underlying classification algorithm, (2) the correctness of the implementation of
the algorithm, and (3) the characteristic of the training dataset.

It is often implicitly assumed that the implementation of the algorithm is correct. As KINN,

RF, and SVM are extensively used classification algorithms, their predictive power is expected to
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be reliable. For instance, given a reasonable training set, they should perform well in cross-
validation. Therefore, in our experiments, we assumed that the implementation was correct for
these three classifiers, and cross-validation was used to assess the performances of the classifiers

on different datasets.

Resampling methods have become an integral tool in novel statistics; the essence of these
mechanisms is based on repeatedly drawing samples from a training set of individuals and refitting
a model on each sample in order to obtain additional envisages into that model. For instance, to
examine the misclassification error rate (MER) and variability of classifiers, the key idea is to fit the
classifier into each new sample and test the difference in the results. The underlying objective for
this process is to better estimate how the classifier will perform on out-of-sample, real-life data.

Two methods could be applied for resampling: cross-validation and Bootstrap.

Cross-validation

Cross-validation (CV) is primarily used to validate the appropriateness of the classification
algorithm to the given problem. It was proposed by Kurtz (1948 sample cross-validation) and
extended by Mosier (1951 double cross-validation) and by Krus and Fuller (1982 multi-cross-
validation). The main goal is to verify the replicability of results; similar to hypothesis testing, the
objective is to determine if the results are replicable or just random.

Subsets of the data are held out for use as validating sets; a model is fit to the remaining data
(a training set) and used to predict for the validation set. Averaging the quality of the predictions
across the validation sets yields an overall measure of prediction accuracy. Cross-validation is
employed repeatedly in building decision trees. The underplaying role of cross-validation for
assessing how the results of classification will generalize to an independent data set. It is mainly
used in settings where the goal is prediction, and to estimate how accurately a predictive model will
perform in practice.

Cross-validation is generally used to estimate the error associated with a given learning classifier
by splitting the individuals into two sets, one for training and the other for testing. The training
part is for fitting the classifier, and the testing part is for testing the computation of the prediction
error, which is known as cross-validation. The results from cross-validation are evaluated by
measuring testing and training errors. The testing error is the average error from the use of the
statistical learning method to predict the response on a new individual, one that was not used in
training the classifier. By contrast, the training error can be easily calculated by applying the

statistical learning method to the individuals used in its training.
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In our experiments, we conducted k-fold cross-validation, which is a typical cross-validation
method. In k-fold cross-validation, the original sample set is randomly partitioned into k subsets
(k > 1). Among k subsets, a single subset is retained as the validation data for testing the classifier
model. The remaining subsets are used as training data. The cross-validation process is then
repeated k times. The k results from k folds can then be averaged or summarized (or otherwise
combined) to produce a single estimation (MclLachlan et al., 2005). In cross-validation, a classifier
is simply evaluated in terms of its respective fraction of misclassified instances, noted as the error

rate. A lower error rate means better classifier performance.
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Figure 6. Curve illustrating the impact of model complexity on training and testing errors.
Source: “An Introduction to Statistical Learning, with Applications in R” (Springer, 2013), Model
Complexity.

In a prediction problem, a model is usually given a dataset of known data on which training is
run (training dataset), and a dataset of unknown data (first seen data) against which the model is
tested (called the validation set or testing set). The goal is to test the model’s ability to predict new
data that was not used in estimating it, in order to flag problems like overfitting or selection bias

and to give an insight on how the model will generalize to an independent dataset.
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Types of discriminator metrics to evaluate classifiers

After the testing phase, we dispose of two vectors of class labels: predicted and actual class
labels for each individual. The question, then, is as follows: how do we measure the correspondence
between them?

The first step is to build a confusion matrix and then derive some statistics from this matrix.
Shown in Figure 7 are the confusion matrix and the derived statistics for multi-class problems.

In our study cases, we have a typical “two-class problem” with the psoriasis dataset (lesional
psoriatic skin versus normal skin); this problem is easily handled, with one class being positive and
the other being negative (as in Table 2). For the other datasets, however, we have multi-group class
problems, (because the data sets contain more than two classes) or two classes without any reason
to qualify one of them as positive and the other one as negative.

Table 3 shows the different statistics that can be used to assess classifiers. Considering our
biological motivation, we aim at predicting classes (multi-class) for the new individuals based on
their transcriptome profile by using the supervised classification approaches. To this purpose, we
need to evaluate the accuracy of different classifier methods. We likewise seek to estimate the
generalization power of the classifier (ability to correctly classify new individuals) and determine
the robustness of each classifier to sampling variations and to variables.

The assessment metric for the classification problem has been utilized in two phases, which
are the training phase (learning process) and the testing phase. In the training phase, the assessment
metric was used to optimize the classification algorithm. This means that the assessment metric
was utilized as a discriminator to distinguish and select the optimal classifier, which can produce a
more accurate prediction of the future assessment of a particular classifier. By contrast, in the
testing phase, the assessment metric was used as the evaluator to scale the effectiveness of the
produced classifier when tested with the unseen data. Hossin and Suliman (2015) published an
excellent review on how to study and construct metrics that are particularly designed to

discriminate optimal classifiers during the training process.

Metrics for binary classification with one positive and one negative class

Some metrics are dedicated to binary classification. These can be defined based on the
confusion matrix, as shown in Table 2. The rows of the table represent the predicted class, whereas
the columns represent the actual class. From this confusion matrix, TP and TN denote the number
of positive and negative instances that are correctly classified. Meantime, FP and FN denote the
number of misclassified negative and positive instances, respectively. From Table 2, many

commonly used metrics can be summarized.
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Among them, we focus hereafter on the MER and its complement, accuracy (Acc). The MER

is defined as the proportion of misclassification errors among all individuals:

errors
MER =

errors + correct
Accuracy is then defined as the complement of the MER; it is the proportion of correct
classifications among all the cases:

correct
Acc =1 - MER =

errors + correct’

In binary classification, MER and accuracy are defined as follows:

VER — FP + FN
“ FP+FN+TP+TN’
TP + TN
Acc

~ totFP + FN + TP + TNal "

In multi-class problems, accuracy is the ratio between the diagonal element of the confusion

matrix and its total sum:

C
Acc = =izttt
— V¢ c ’
Y1 Xj=q Mig

C (o
. . ' n .
i# =11,j
MER = =&/ =J=1 4

i=1 Z§=1 n;; '

where ¢ is the number of classes and 7 is the number of elements from class 7 assigned to
class ;.

As shown in previous studies (Chawla et al., 2004), (Garcfa and Herrera, 2008), (Hossin and
Sulaiman, 2015),(Ranawana and Palade, 2006), and (Wilson, 2001), accuracy is the most commonly
used evaluation metric in practice either for binary or multi-class classification problems. Through
accuracy, the quality of the produced classifier is evaluated based on the percentage of correct
predictions over the total instances. The complement metric of accuracy is the MER, which
evaluates the produced classifier by its percentage of incorrect predictions. Both of these metrics
are commonly used by researchers to discriminate and select the optimal predicted classes.

The advantages of accuracy or error rate are that they are easy to compute with less complexity,
they are applicable for multi-class and multi-label problems (beyond the scope of this study), they
facilitate easy-to-use sorting, and they can be easily understood by humans. As pointed out in many
studies, the accuracy metric has limitations in evaluation and discrimination processes. One of the

main limitations of MER is that it produces less distinctive and less discriminable values (Goksuluk
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et al). Consequently, it leads to less discriminating power for accuracy when selecting and

determining the optimal classifier. In addition, accuracy is powerless in terms of informativeness.
Assessment of the performance of the classifier with different foci of evaluations. Because of

multi-class problems, few of the metrics listed in Table 3 have been used for multi-class

classification evaluations.

Table 2 Confusion Matrix for Binary and Multi-class Classification

Actual Positive Class Actual Negative Class
Predicted Positive Class True positive (TP) False negative (FN)
Predicted Negative Class False Positive (FP) True negative (TN)

As shown in previous studies (Chawla et al., 2004); (Hossin et al., 2011); (Ranawana and Palade,
2000), accuracy is the most commonly used evaluation metric in practice either for binary or multi-
class classification problems. Through accuracy, the quality of the produced classifier is evaluated
based on the percentage of correct predictions over the total instances. The complement metric of
accuracy is the error rate, which evaluates the produced classifier through its percentage of
incorrect predictions. Both of these metrics are used commonly by researchers to discriminate and

select the optimal predicted classes.
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Table 3 Threshold Metrics for Classifier Evaluations.
Adapted from: Hossin and Suliman (2015). The last column indicates whether each metric is suitable for
multi-class problems.

Metrics Formula Evaluation Focus Multi-

class?
Accuracy TP+TN In general, the accuracy metric No
(acc) TP + FP + TN + FN measutes the ratio of correct

predictions to the total number
of instances evaluated.
Error Rate FP+FN 'The misclassification error No
(err) TP+ FP + TN + FN measures the ratio of incorrect
predictions to the total number
of instances evaluated.

Sensitivity TP This metric is used to measure No
(sn) TP + FN the fraction of positive patterns

that are correctly classified.
Specificity TN This metric is used to measure No
(sp) TN + FP the fraction of negative patterns

that are correctly classified.
Precision TP Precision is used to measure the  No
) TP + FP positive patterns that ate

correctly predicted from the
total predicted patterns in a
positive class.

Recall (1) TP Recall is used to measure the No
TP + TN fraction of positive patterns that
are correctly classified.
F-Measure 2%xpx*r This metric represents the No
(FM) p+r harmonj(.: mean between recall
and precision values.
Geometric VTP * TN This metric is used to maximize ~ No
Mean the TP rate and the TN rate,
(GM) simultaneously keeping both
rates relatively balanced.
Average 3 TP +TN; No
A i=1TP; + FN; + FP; + The average effectiveness of all classes.
ccuracy i
Average T, FP, + FN; No
Error Rate TP; + FN; + FP; + the avirage erroe rate of all classes
Average i TP; The average of pet-class No
Precision i=1Tp, + FP; precision
l
Average i TP; The average of pre-class recall No
Recall i=1TP, + FN;
[
Average 2% 0p v +ry The average of the per-class F- No
F-measure - measure
M M

Note: C;; i class of data; TP;: true positive for C;; FP;: false positive for C;; FN;: false negative for C;;

TN;: true negative for C;; and M macro-averaging.
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We report here for the seven study cases tested in our study that the only dataset that had two
classes was the psoriasis dataset (SRP035988). Correspondingly, with the rest of the datasets, we
could not apply any metric from the above Table 3 because those metrics are related to two classes
of problem classifications. But in our case, most of our study cases belonged to the multi-class
classification problem.

Instead of accuracy, FM and GM were also reported as good discriminators; it performed better
than accuracy in optimizing the classifier for binary classification problems (Joshi, 2002).

For discriminating and selecting the optimal classifier during classification training, the
significance tradeoff between classes is essential to ensure that every class is represented by its
representative prototype. The tradeoff between classes becomes more crucial when imbalanced
class data are used. The selection of the best classifier is useless if none of the minority class
instances are correctly predicted by the chosen representative prototype or selected as the

representative.

Receiver Operating Curve (ROC)

Aside from the above-mentioned different types of metrics, which are used to assess the
accuracy of the classifier based on classification methods and to estimate the classifier, there are
graphical-based metrics, which are better than accuracy, and have been presumed to evaluate the
performance of classifiers. As stated by (Prati et al., 2011), these metrics can depict the tradeoffs
between different evaluation perspectives, therefore allowing a richer analysis of the results.
Although these metrics are better than accuracy or error rate, their graphical-based output limits
them; examples are the receiver operating curve (ROC) (Fawcett, 20006), Bayesian receiver
operating characteristics (Davis and Goadrich, 2006), the precision-recall curve (Davis and
Goadrich, 20006), the cost curve (Drummond and Holte, 20006), and the lift and chart calibration

plot (Vuk and Curk), which can be used as discriminators.

Area under the ROC curve (AUC)

AUC is one of the popular ranking-type metrics. In the works of (Hand and Till, 2001), (Huang
and Ling, 2005), and (Rosset, 2004), AUC was used to construct an optimized learning classifier
and compare learning algorithms (Provost and Domingos, 2003). Unlike the threshold and

probability metrics, the AUC value can be calculated as follows:

Sp—np(np+1)/2

AUC = (5.2)

npny
where S, is the sum of the all positive examples ranked, whereas n,, and n,, denote the number

of positive and negative examples, respectively. AUC was proven to be theoretically and empirically
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better than the accuracy metric (Huang and Ling, 2005) for evaluating classifier performance and
discriminating optimal predicted classes during the training classifier.

Although the performance of AUC was excellent for evaluation and discrimination processes,
its computational cost is high, especially for discriminating a volume of generated predicted classes
of multi-class problems. To calculate the AUC for multi-class problems, the time complexity is
O(CInlogn) for Provost and Domingos’ AUC model (Provost and Domingos, 2003) and
0(C|? nlogn) for Hand and Till’'s AUC model (Hand and Till, 2001).

Another weakness of ROC and AUC is that they are not relevant when strongly unbalanced
classes are dealt with. In this case, the best way to obtain a very high AUC is to assign all objects

to the majority class (but this is absolutely not interesting from the point of view of the user).
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Choice of the validation metric for our study

(A) Confusion table

(B) Opportunistic classifier "the majority takes it all"

Actual class Actual class
Predicted Predicted
A B C . A B c D .
class sizes class sizes
4 A 124 4 1 130 4 A 133 32 11 4 180
(] [}
= B 3 25 0 29 - B 0 0 0 0 (]
[ (3
- -
§ C 4 2 10 16 § ¢ 0 0 0 0 (1]
a D 2 1 0 5 a D 0 0 0 0 0
Actwal | 433 | 32 | 11 180 Actual | 433 | 33 | 11 | 4 180
class sizes class sizes
Derived statistics Derived statistics
Hits = sum(diagonal) 161 Hits = sum(diagonal) 133
Misclassified = total - hits 19 Misclassified = total - hits 47
Hit rate (accuracy) = hits / total 0.89 Hit rate (accuracy) = hits / total 0.74
Misclassification rate =1- hit rate 0.11 Misclassification rate =1- hit rate 0.26

(C) Confusion table - strongly unbalanced data

(D) Opportunistic classifier "the majority takes it all"

with strongly unbalanced data

Actual class Actual class
Predi Predi
A B c redlc‘ted A B c D redlc‘ted
class sizes class sizes
o A 1240 | 4 1 1246 9 A 1330 | 32 11 4 1377
© ©
- B 30 | 25 0 56 - B 0 0 0 0 0
[0 (7
- -
§ C 40 2 10 52 § ¢ 0 0 0 0 0
LS D 20 | 1 0 23 a D 0 0 0 0 0
Actual | 4330 | 32 | 11 1377 Actual | 4330 | 32 | 11 | 4 1377
class sizes class sizes
Derived statistics Derived statistics
Hits = sum(diagonal) 1277 Hits = sum(diagonal) 1330
Misclassified = total - hits 100 Misclassified = total - hits 47
Hit rate (accuracy) = hits / total 0.93 Hit rate (accuracy) = hits / total 0.97
Misclassification rate =1- hit rate 0.07 Misclassification rate =1- hit rate 0.03

Figure 7 Confusion matrix and the derived statistics for multi-class problems
Green: correct assignment (hits); red: incorrect assignment (misclassifications). (A) Confusion matrix and
the derived performance metrics: hit rate and misclassification error rate. (B) Performance of an opportunistic
classifier, which would assign all elements to the majority class. (C) Confusion matrix with strongly
imbalanced classes. Observe the strong weight of the majority class on the other class predictions (bold
red). (D) The opportunistic classifier with strongly imbalanced classes. Note that in this case, the
opportunistic classifier achieves better results than the bonest classifier (panel C).

48




Given our specific purposes for analyzing RNA-seq data, these metrics are unsuitable for
discriminating and identifying the optimal classifier (Hand and Till, 2001); in addition, our work
focuses on RNA-seq data, so it is related to other specificities of our study cases (multi-class
problems; some classifiers do not produce an output score). Our work exploited the confusion
matrices to discriminate between our targeted classifiers (SVM, KNN, and RF) during the classifier
training because some metrics are appropriate for some classifiers but are not for others; therefore,
we utilized the confusion matrix because it is the best one for performing a comparison between
some classifiers that do not rely on the same concept of wechanism in classifying. And then we
interpreted our results to take a decision about the choice of classifiers and their parameters. We
illustrated our comparisons for assessing each classifier and then compared the classifiers to

identify the optimal one for the analysis of RNA-seq data.

Goal of the thesis: evaluation of classifiers with RNA-seq
data

Despite the wide adoption of RNA-seq technology to monitor transcriptome, and the
innumerable publications relying on the detection of differentially expressed genes from RNA-seq,
very few studies have been dedicated to the use of this technology for classification purposes. This
contrasts with the important work that had been done in the beginning of the years 2000 on
supervised classification and on clustering with microarray data.

The goal of my thesis is to assess the accuracy of supervised classifiers to assign samples to
classes based on their RNA-seq transcriptome profiles. The evaluation covers three classifiers
(support vector machines, k nearest neighbors, and random forest) representative of different
families of algorithmic approaches to classification. I also evaluate the impact of standardization
of data preprocessing (library size scaling, logarithmic transformation of the counts, conversion to
principal components), and of the choice of classifier parameters (number of neighbors for KNN,
kernel for SVM), as well as feature selection based on gene ranking with three alternative criteria
(principal components, differential expression p-value, and variable importance after a first pass of

random forest) in order to identify the optimal conditions to use classifier for predictive purposes.
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CHAPTER 2: MATERIALS AND METHODS

Statistical analysis

The methodology used here compares three supervised machine learning methods: support

vector machine (SVM), random forest (RF) and K-nearest neighbour (IKNN). The evaluation relies

on seven RINA-seq datasets (studies) downloaded from recount2 repository (Collado-Torres et al.,

2017a),

We also studied the impact of normalisation methods on the performances of the classifiers by

comparing four normalisation techniques:

1.
2.
3.
4.

Third Quartile (Q3),

Trimmed mean of M-Values (TMM),

Relative Log Expression (RLE),

Median Ratio (MA) method implemented in DESeq2 (Anders and Huber, 2010c)

The general pipeline for this study is recapitulated in Figure 8.
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Figure 8 general flowchart for supervised classification methods to analysis RNA-Seq datasets.

We investigated RNA-seq data to assess the efficiency of supervised classification methods to
perform supervised classification for samples based on the information corresponding to class
descriptions that we could find in the phenotype table, in particular in the field “characterisation
of the samples”. This information was parsed to associate each sample with a class label, defined
on the basis of one or more fields of the phenotype. The class labels were then used to train the
classifiers and test their predictive accuracy. Our approach attempts to systematically evaluate the
classifiers that rely on class labels for the samples, with the goal of providing a comprehensive
analysis. We use the interesting features of RNA-seq to study the effectiveness of supervised
classification methods to make classifications for all samples in the RNA-Seq datasets, which are

stated in Table 4.
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Table 4 summary of the seven datasets downloaded from recount2 repository as studies

Study Description Nb. Classes Nb. Nb. genes
Samples
SRP042620 Breast cancer 6 167 58037
SRP057196 Adult and foetal human brain 15 461 58037
SRP056295 Human leukaemia 4 263 58037
SRP035988 Psoriasis 2 173 58037
SRP061240 Cancer disease types 4 192 58037
SRP062966 Lupus 3 117 58037
SRP066834 Cerebral organoids and foetal 3 729 58037
neocortex

Several difficulties should be expected when classifying RNA-seq data, due to some

particularities of this data type.

Huge range of counts varying from gene to gene have boosted the unprecedented progress
of multivariate statistical analysis of the RNA-seq data. Thereby, most trends go forward
to machine learning science to overcome such a huge range of RNA-seq count data.

In the presence of these raw count data, which contain a high resolution and broad dynamic
range, this leads to the presence of several outliers as one of the drawbacks of these raw
count data, i.e. a few genes associated with millions of reads, e.g. ribosomal RNAs.

The prior consequence led to biases in statistical estimations that are induced by many
undetected genes: zero or very low counts.

Over-dimensionality in the RNA-seq count data which have too many variables, for
example mean counts per gene for 2 tissue types is 0 to 2’ ~ 1M reads. Such issues stimulate
researchers in machine learning to find solutions for such features of the RNA-seq count

data.

Here we highlight the fact that most of the literature is focused on the classification of the two

groups, whereas we are interested in multi-group classification problems.
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Software environment and list of the most commonly used bioconductor

packages

All of the statistical analyses used the R, RStudio, and Bioconductor packages to perform the
differential expression analysis listed below:

- The DESeq2 package provides methods to test for the differential expression by using
negative binomial generalised linear models; the estimate of dispersion and logarithmic fold
changes incorporate data-driven prior distribution (Anders and Huber, 2010a) based on
the hypothesis that most genes are not DE. A DESeq scaling factor for a given lane is
computed as the median of the ratio, for each gene, of its read count over its geometric
mean across all lanes.

- The edgeR package also provides methods to test for differential expression by negative
binomial generalised linear models to estimate the dispersion and logarithmic fold changes
base on Trimmed mean M-Values (TMM). This normalisation method is based on the
hypothesis that most genes are nor differentially expressed (DE), while the TMM factor is
computed as the weighted mean of log ratios between that test and the reference after the
exclusion of the most commonly expressed genes and those with the largest log ratios.

- We developed the same environment using an R statistical package named RNAsegM17A

which has been available in the GitHub repository since the turn of this year.
The main target of this package is to employ machine learning methods to perform a
comparative assessment of supervised classification algorithm efficiency to assign samples
to classes based on the gene expression profile, and to identify the relevant procedures of
data pre-processing and the optimal parameters of the classifiers.

A full list of R packages and versions is available in Appendix C.

Availability of the RNAseqMVA package

The  RNAsegM1”A  package developed for this thesis is available at
(https://github.com/elqumsan/RNAseqMVA). Each function if documented using the roxygen2
format. RN.AsegM1”A can be downloaded and installed easily with the devtools package'.

" https://devtools.r-lib.org/
54



Machine learning methods

Machine learning is the field of computer science that includes efforts in the development of
various computational methods that learn from training data.

Figure 9 schematises the categorisation of machine learning. The field is divided into two
approaches: shallow learning and deep learning (Jabeen et al., 2018). Shallow learning consists of
neural networks with a single hidden layer or SVM. They are simply supervised and unsupervised
learning methods (Bhattacharyya et al., 2013). The supervised learning methods rely on classifiers
whereas unsupervised learning implements a clustering algorithm. A supervised learning model
learns from a set of predefined individuals with a class label (training set). The knowledge inferred
from this is used to classify the unknown individuals (test individuals) accordingly, whereas
unsupervised learning does not rely on the availability of prior knowledge (training data sets),

meaning that it is beyond the scope of our study.

Machine
Learning

Deep Shallow
Learning Learning

-
Generative Discriminative Hybrid Unsupervised Supervised
model model model Learning Learning
—

Figure 9 categorisation of machine learning technique.
Source: reference (Machine Learning-Based State-Of-The-Art Methods For The Classification Of RNA-
Seq Data | bioRxiv)

The main goal of applying MLLM into RNA-seq is the accurate prediction of the class labels of the
sample based on their expression profile. Thus, RNA-seq is an excellent field for applying machine
learning. In this section, we outline the support vector machine (SVM), random forest (RF), and

K-nearest neighbour (KNN) being tested in such a study.
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Misclassification error rate boxplots

To test the effectiveness of the supervised classification to handle the multi-class problem, we
started by splitting the data sets downloaded from recount? into two: a training set (2/3 of the
samples from the whole data set) and a testing set (1/3 of the samples).

The performances were measured by the misclassification errors, defined as observations for

which the class predicted by the trained classifier differed from the known class.

Parameters used for the classifiers

For the sake of traceability, all of the parameters are defined in a YAMI.-file included in the
RNAsegMVA package. For our analyses, we used the following parameter values.

KNN: we used the function knn () from the class package and tested the following values for
k (number of neighbours): 3, 5, 7, 10 , 15. Based on the results, we set the default value to k=10
for the main analyses.

SVM: we used the svm () function from the package e1071. We tested 4 kernels: linear,
polynomial, radial and sigmoid. Based on this analysis, we set a kernel parameter as linear for all of
the other analyses.

RF: we used the randomForest () function of the package randomForest with default

parameters.

Data sources

Recount2

Collado-Torres and co-workers (Collado-Torres et al., 2017a) downloaded raw data (unaligned
reads) for 2041 human RNA-seq publications available in GEO, and processed each of them with
a custom analysis workflow to ensure the homogeneous treatment of all these datasets (indeed, all
of the original studies were from thousands of publications where the authors had treated them in
different ways depending on their preferences. The results of this huge compilation are available
via Recount2, an online resource consisting of RNA-Seq count of reads per gene and exon wherein
the tables contain one row per feature (gene or exon) and one column per sequencing library (run
or sample). Recount?2 also provides coverage profiles (bigwig files) for 2041 different studies. It is

the second generation of the ReCount project. The raw sequencing data were processed with Rail-
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RNA which is a cloud-enabled spliced aligner that analyses many samples at once. It also eliminates
redundant work across samples, making it more efficient as samples are added (Nellore et al., 2017),
as described in the recount2 article (Collado-Torres et al., 2017b) and Nellore et al. (2016), which
created the coverage bigwig files. For ease of statistical analysis, each study contains count tables
at the gene and exon levels and extracted phenotype data, in raw formats as well as in the form of
RangedSummarizedExperiment R objects, whose structure can be loaded easily. These contain all
of the information about one experiment, in addition to the data matrix, sample descriptions
(pheno table) etc. (for details, see the SummarizedExperiment Bioconductor package)
(SummarizedExperiment-class function | R Documentation).

The ready to use count tables, RangedSummarizedExperiment objects, phenotype tables,
sample bigWigs, and file information tables are and freely available in the recount2 repository. The
R package also allows the user to search and download the data for a specific study. That makes
analysing RNA-seq data considerably more straightforward.

The  phenotype  information  (sample  metadata) is  also  included in
RangedSummarizedExperiment object to facilitate the download of pheno tables from the

recount2 repository.
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Object-Oriented programming

The main ideas of object-oriented programming (OOP) are also quite simple and intuitive for
the following reasons:
I.  Everything we compute is an object, and objects should be structured to suit the goals
of our computation.

II.  For this, the key programming tool is a class definition stating that objects belonging
to this class have a structure defined by the properties that they share, with the
properties eventually being the objects of a specified class.

ITI. A class can inherit from (contain) a simpler superclass, such that an object of this class

is also an object of the superclass.
IV.  In order to compute with objects, we define methods that are only used when objects
are of certain classes.

Many programming languages reflect these ideas, either from or by adding some or all of the ideas
to an existing language. R was not an OOP language from its inception, but it has incorporated
important software features reflecting the main ideas. In fact, it has done so in at least three separate
forms, giving rise to some confusion.
In R, the natural role of methods correspond to the intuitive meaning of “method” - a technique
for computing the desired results of a function call. In functional OOP, the particular
computational technique is chosen because one or more arguments are objects from recognised
classes.
Methods in this situation belong to functions, not to classes; the functions are generic. In the
simplest and most common case, referred to as a standard generic function in R, the function in R
language defines the formal arguments but otherwise consists of nothing but a table of the
corresponding methods plus a command to select the method in the table that matches the classes
of the arguments. The selected method is a function; the call to the generic is then evaluated as a
call to the selected method. For the implementation of the RNAsegM1”A package, we used this
form of object-oriented programming as a functional OOP, as it works with principles in a form
in which methods are part of the class definition.
We summarised hereafter the motivations for using OOP in the RN.AseqgM1”A package.

- All of the parameters, variables, and results that belong together are put together under one

title, i.e. the class name in the code.

- All of the functions that are used to manipulate the class are included.
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- Using the OOP also facilitates the inheritance process, wherein by defining any object as
belonging to a given class, it inherits all of the attributes of the ancestor classes, which
speeds up the development of methods to compute, store and retrieve results.

In Appendix C, we provide further detail about the OOP implementation of the RINAseqgM1”.A

package, as well as an UML diagram showing the architecture of its classes.
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CHAPTER 3: DESCRIPTION OF THE STUDIES

Recount2 is an online resource consisting of counts of reads per gene and exon, as well as
coverage profiles (bigWig files) for 2041 different RNA-seq studies in humans, each study has a
certain number of samples based on its experiment, but the overall number of the samples is more
than 70,000. The raw sequencing data were processed with Rail-RNA read mapper. For the ease
of statistical analysis, for each study, Collado-Torres et al. (Collado-Torres, 2017) created count
tables at the gene and exon levels and extracted the metadata associated with the publication
(description of the technical and biological characteristics of each sequencing run associated to
each sample).

Large-scale RN A-seq datasets have been produced by studies such as the GTEx (Genotype-
Tissue Expression) consortium (Lonsdale et al., 2013), which comprises 9,662 samples from 551
individuals and 54 body sites, and the Cancer Genome Atlas (TCGA) study (The Cancer Genome
Atlas Research Network et al., 2013), which comprises 11,350 samples from 10,340 individuals and
33 cancer types; furthermore, public data repositories such as the sequence Read Archive (SRA)
host tens of thousands of human RNA-seq samples (Leinonen et al., 2011). These data collectively
provide a rich resource which researchers can use for discovery validation, replication, or method
development.

We began our study by analysing the metadata of these datasets in order to identify suitable
studies to assess the performance of supervised classifications.

We considered relevant criteria to retain a recount2 dataset in a suitable study.

The most important criteria are:

- Number of classes: for most of them we attempted to have more than 2 classes. Note,
however, that after the filtering procedure (see below), some of our studies were
restricted to 2 classes.

- Number of samples: studies covering several tens of samples.

- Clear identification of relevant biological classes from the metadata fields (the so-called

"pheno table").

Table 5 provides a short description for each one of the selected datasets.
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Table 5 summary description of the seven datasets from recount2 that we selected as studies. Gene-
wise count tables cover 58,037 genes for each dataset. The last column indicates whether sequencing was
performed at the level of single-cells (SC) or whole samples (bulk).

ID Title Summary of the experiment Nb. Nb. Bulk
Classes | Samples | / sc
SRP042620 | Cancer This study aimed to determine fusion transcripts in 6 167 Bulk
type breast cancer, by performing paired-end RNA-seq of
168 breast samples, including 28 breast cancer cell
lines, 42 triple negative breast cancer primary tumours,
42 oestrogen receptor positive (ER+) breast cancer
primary tumours, and 56 non-malignant breast tissue
samples. PMID: 24929677
SRP057196 | Cellular This study used single cell RNA-seq sequencing on 15 461 SC
complexity | foetal human cortical neurons to identify genes that are
of the differentially expressed between foetal and adult
adult & neurons and those genes that display an expression
foetal gradient reflecting the transition between replicating
human and quiescent foetal neuronal populations. PMID:
brain 26060301
SRP056295 | Human Using next-generation sequencing of primary acute 4 263 Bulk
Leukaemia | myeloid leukaemia (AML) specimens to identify the
knowledge the first unifying genetic network common
to the two subgroups of KMT2A (MLL)-rearranged
leukaemia. PMID: 26237430
SRP035988 | Psoriasis Using high-throughput complementary DNA 2 173 Bulk
sequencing (RNA-seq) to assay the transcriptomes of
lesional psoriatic and normal skin. Polyadenylated
RNA-derived complementary DNAs from 92 psoriatic
and 82 normal punch biopsies were sequenced. PMID:
24441097
SRP061240 | Cancer In such experiments, RNA-seq analysis is performed 4 192 Bulk
disease on plasma extracellular vesicles derived from 50
types healthy individuals and 142 cancer patients, to identify
significant associations of these exRNAs with age, sex
and different types of cancers. PMID: 26786760
SRP062966 | Lupus Autoantibodies target the RNA binding protein Ro60 | 3 117 SC
in systemic lupus erythematosus (SLE) and Sjogren’s
syndrome. It is not clear whether Ro60 and its
associated RNAs contribute to disease pathogenesis.
The goal for this experiment was to catalogue the
Ro60-associated RN As in human cell lines among
other RNAs. PMID: 26382853
SRP066834 | Cerebral Utilising single-cell RNA sequencing (scRNA-seq) to 3 729 SC
organoids | dissect and compare cell composition and progenitor-
and foetal | to-neuron lineage relationships in human cerebral
neocortex | organoids and the foetal neocortex. PMID: 26644564
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CHAPTER 4. DATA PRE-PROCESSING

RNA sequencing (RNA-seq) is a great approach that exploits the advantages of next-generation

sequencing technologies for the gene-expression profiling of organisms, but required specific

methodological developments in order to fully exploit its potential. With the former data produced

by transcriptome microarrays, advanced interdisciplinary research led to the emergence of robust

methods for gene-expression-based classification of biological samples (Mooney et al., 2013) and

(Natsoulis et al., 2005). However, the vast majority of the statistical methods proposed for the

classification of gene-expression data are either based on a continuous scale (e.g. microarray data)

or rely on a normal distribution assumption. Thus, with these classical methods for differential

expression analysis, unsupervised or supervised classification cannot be directly applied to RNA-

seq data since these have a discrete nature and do not fulfil the distributional assumptions. It is

therefore recommended to perform pre-processing before applying these algorithms.

For our analysis, we applied the following pre-processing steps:

1.

Class filtering. Discard classes with an insufficient number of samples to be suitable
for classification. We set the minimum number of samples per class to 10.

Gene filtering. Discard genes that are not suitable, for different reasons (zero
values, zero variance, outliers with huge number of counts, etc...).

Library size scaling. Correct for differences in library sizes (library size correction,
scaling). methods are Trimmed mean of M-values (TMM) which is implemented by
edgeR Bioconductor package, quantile (QQ, many different methods have been
proposed, and this really affects the results as that have been of certain from A
comprehensive evaluation of normalization methods that are performed by (Dillies
et al., 2013).

Log2 transformation. Attenuate the huge differences in the dynamic range of the
counts (some genes have a few counts, others have hundreds of thousands counts
in each sample) methods: log2transformation.

Principal Component transformation. Reduce the number of dimensions (can be

useful for some purposes): Principal component analysis (PCA) methods.

In the next chapter we will study the impact of pre-processing on the performances of

supervised classifiers. In this chapter, we will describe some of the pre-processing steps and use

descriptive statistics to explore the structure of the data before and after pre-processing. We

summarise here the main results; detailed results are provided in Dillies et al. (2013).
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Filtering procedures

Filtering classes based on sample number

Along with the seven selected studies, we filtered out the classes that contain fewer than 15
samples, since the scarcity of individuals in this class would be misleading for classifiers.

That means that in cases with insufficient samples, the classifier is poorly trained and there is
a risk of overfitting to the particular individuals used for training, which would result in a poor
generalisation power.

Figure 10 shows the distribution of the number of samples per class, and highlights in white
those classes which were discarded because they did not reach the threshold of 15 samples. This is
the first step of the pre-processing of RNA-seq data, i.e. class filtering. In particular, for the brain
cell type dataset, almost all of the classes corresponding to hippocampal neurons are filtered out
(only one hippocampal class is kept), which means that the evaluation will be mainly based on
cortex cells. This is quite important, because it means that the evaluation will be based on only one

of the two main types of neurons included in the original study.
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Figure 10 Filtering classes based on the sample number.
The bar plots show the number of samples (abscissa) per class (ordinate) in the 7 studies. The vertical bars
indicate the lower threshold of samples per class. We retain only those classes containing at least 15 samples.

The classes discarded because they failed to pass this threshold are highlighted in white.
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Gene filtering

The second step of pre-processing process is feature filtering (gene filtering), which consists
of selecting a subset of genes that will be kept for use with the supervised classifier and — optionally
— to apply some transformation of the raw data. Gene filtering includes the following steps: discard
all genes that have zero variance and genes and NA values. Thereafter, we applied a so-called "near-
zero variance" filter to exclude all genes that have near-zero variance also from the raw table.

The necessity for these pre-processing steps comes from the fact that if these suppressed genes
are retained in the analyses, it will influence the reliability of the classifier in some cases, while, in
other cases, the classifier will simply crash with unfiltered features. Supplementary figures in
Appendix Al provide further illustrations of the necessity for pre-processing to tackle the RNA-
seq data.

Single-cell RNA-seq (scRNA-seq) is a powerful high-throughput technique enabling genome-
wide transcription levels to be measured at the resolution of a single cell. Given the low sequencing
depth per cell in single-cell RNA-seq (a few thousands reads per cell), some genes may fail to be
detected even though they are expressed. These missed genes are typically referred to as dropouts.
Risso et al. (2018) suggested using the general and flexible zero-inflated negative binomial model
(ZINB-WaVE) that accounts for zero inflation (dropouts), over-dispersion, and the count nature
of the data.

Risso et al. (2018) defined “Zero inflation” as a data set that includes an extreme number of
zeros. Indeed, zero inflation leads to the invalidation of the underlying distributional assumptions
of standard parametric analysis and thus undermines the validity of the scientific inference
(Lambert, 1992). The zeros could also strictly aggravate the numerical conditions of the data and
cause computational hardness (Tu and Zhou, 1999) and (Li et al., 1999). However, much of the
existing literature on zero inflation has highlighted count data (Gurmu et al., 1999; Cameron and
Trivedi, 1986). Data need follow a specific count data distribution to be zero inflated (Hall, 2000;

Vieira et al., 2000).

A breast cancer case study (SRP042620) is a simple example for a bulk RNA-seq (Figure 11)
where we can quickly notice that there is diversity in the variance of genes in such a dataset. The
grey histogram (top panel) indicates the distribution of log2 (variance) for all genes with a non-null
variance. The majority of the genes have variances varying from 0 to 33,554,432 (their log2 spans

range from -10 to 25 on the histogram, where genes with null variance are not represented); in such
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case studies, some genes have much higher vatiance of around 4.39¢10" (log2 ~42). The orange

histogram (second panel) shows those genes that are discarded by the near-zero variance filter.

Consistently, these genes are concentrated in the low ranges of variance. The green histogram (third

panel) shows the genes kept after filtering, i.e. all of the genes remaining after we subtract those

with zero or near-zero variance. The last panel (bottom) indicates the distribution of zero values

(abscissa) per gene (the ordinate shows the number of genes having a given number of zero values).

With the Breast cancer study, we observe that the vast majority of the genes are on the extreme left

of the histogram, indicating that they have a null value in zero samples (in other terms, they are

detected in all the samples, which reflects a very good genomic coverage).

Figure 11 Impact of
variance-based gene
filtering on the study
Breast Cancer
(SRP042620).

The histograms
indicate the
distribution of
variances for a Bulk
RNA-seq (abscissa)
per gene (ordinates) in
the raw data (top
panel, grey), in the
genes discarded by the
near-zero filter
(second histogram,
orange), and in the
genes kept after
filtering (third
histogram, green).
The bottom
histogram shows the
number of genes
(ordinate) as a
function of the
number of samples
(abscissa) with a zero
value for these genes.
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Figure 12 Impact of All non-zero var genes; SRP057196
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Figure 12 highlights a grey histogram for all of the non-zero variance genes, wherein that
histogram contains some genes that have very high variance ~ 10"6. The surprising thing is the
orange histogram, which indicates that near-zero variance also includes some genes that have a
very high variance (2720 = 1076, which is far from "near-zero"), which is very different from the
function of near-zero variancelll In our analysis, the near-zero variance filter is an optional

parameter in the pre-processing step, meaning that if the analyst requires that parameter to be
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activated, this will lead to some genes being discarded whose variance is very high, and which
actually affect the thematic accuracy of the whole result for the classifier.

The concept of “near-zero variance” (NZV), as defined in the R caret package, is to filter out
the genes that are likely to be poor predictors for classification for either of two reasons: (i) genes
that have a unique value across all samples (i.e. are zero variance predictors) or predictors that are
have both of the following characteristics: they have very few unique values relative to the number
of samples and the ratio of the frequency of the most common value to the frequency of the second
most common value is large. If we used this NZV that means we will suppress many of variables
from the analysis and then that will lead to an inaccurate evaluation for classifier that is because
many of variables are excluded from analysis.

The common value here is 2720, which is strongly represented because it has very high
variance; the second one also has unique high variance. From the NZV side, this means that it will
represent them as the genes have NZV. Consequently, to illustrate how these genes are dropped-
down in the case of NZV parameters, within the analysis, we implemented an option enabling to
discard then genes tagged as NZV, in order to feed the supervised classifier with supposedly better
predictor variables. We tested both approaches (with and without NZV filtering) and compared

the performances of the classifiers.

Distribution of counts per reads

From the distribution of counts per reads, we explored the behaviour of each dataset from the
seven selected raw datasets, as shown in Figure 11. On this figure, we display the log2-transformed
variances in order to better emphasize the distribution over its full range, from very low value (left)

to very high values (right). For a better explanation, see Appendix Al, Supplementary figures,

which provides the vision of the distribution for each one from the selected dataset.
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Zero-inflated distributions

RNA-seq has become an attractive alternative to microarrays for specific differentially-
expressed genes between several conditions or tissues, as it allows for the high coverage of the
genome and enables the detection of weakly expressed genes (Marguerat and Bahler, 2010). This
is based on the underlying characteristics of the Bulk RNA-seq, which are specialised to measure
genome-wide transcription levels in bulk RNA-seq. Because of the low amount of RNA sequencing
in cells, some genes may fail to be detected even though they are expressed. Risso et al. (2018)
coined the new term “dropouts” to denote those genes which are undetected due to the weak
sequencing depth of single-cell sequencing. According to that concept, they handled the
corresponding distributions of counts by using zero-inflated negative binomial model (ZINB-
WaVE), which leads to low-dimensional representations of the data that account for zero inflation
(dropouts), over-dispersion, and the count nature of the data. Here in this work, we relied on such
a study which confirms the necessity of the filtering process in order to make up the supervised
classification for these RNA-seq data. Our finding leads us to realise the necessity to filter raw data
before making any supervised classification, as we filtered the raw data from genes that have Na
values, zero variance, or near-zero variance; for the sake of fairer comparison, we also suppressed
duplicates in runs as there are some from the RNA-seq dataset which have two-fold levels. To
ensure a fair comparison, we got rid of all duplicate samples. After all pre-processing (filtering), the

raw datasets are ready for supervised classification to be applied.

Summary of the impact of zero-variance and near-zero variance filters

Figure 13 summarises the proportion of genes discarded by the zero-variance filter (red) or
near-zero variance filter (orange) or kept after filtering (green). Table 6 shows the corresponding
numbers of genes. We can conclude that the proportion of kept genes strongly differs between
datasets, depending on the type and kind of experiment (single-cell or bulk DNA) and the quality
of the raw data (sequencing depth, number of zero values). The most striking case is SRP061240

(Cancer disease type), where the level of retained genes was 12%.
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Filtering impact on study cases
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Figure 13 proportions of kept, near-zero variance, zero variance and NA values in each selected
dataset.

The bar plot shows the proportion of genes discarded by the zero-variance filter (red) or near-zero variance
filter (orange), and those kept after filtering, which have been used to feed the supervised classifier. Note
that the near-zero variance filter suppresses the large majority of the genes in single-cell RNA-seq
experiments (SRP057196: Adult and foetal human brain, SRPO62966: Lupus), but also in a bulk experiment that
contains an exceptionally high number of zero values (SRP066834: Cerebral organoids and foetal neocortex). For
the assessment of classifiers, we disabled the NZ filter in order to dispose of as many genes as possible for
the training, and let the classifiers evaluate whether they consider each gene to be relevant or not.
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Table 6. Number of classes, samples (individuals) and genes (features) for the 7 studies before and
after filtering.

Abbreviations: ZVF: zero variance filter; NZVF: near-zero variance filter; SC: single-cell RNA-seq
sequencing. Libraries are sorted by decreasing size of retained genes after NZVE.

Study description Before filtering After filtering

Genes kept | Genes kept

ID Name Type |Classes|Samples| Genes | Classes | Samples after ZVE after NZVE
SRP042620 Breast cancer Bulk 6 167 58,037 5 162 57,862 55,506
SRP035988 Psoriasis Bulk 2 173 | 58,037 2 173 55,915 47,270
SRP062966 Lupus SC 3 117 | 58,037 2 117 52,746 45,247
SRP056295 Human leukaemia Bulk 4 263 58,037 2 259 53,224 43,780

SRP057196 Adult and foetal sC 15 | 461 |58037 | 8 432 54,742 16,941
human brain cells

Cerebral organoids
SRP066834 and foetal SC 3 729 | 58,037 3 729 50,504 15,741
neocortex

SRP061240 Cancer disease Bulk 4 192 58037 3 186 42,736 7,056

types

For the case study Cellular complexity of the adult and foetal human brain (SRP057196), we note that
the proportion of kept genes is around 29%, and the fraction of genes discarded by the NZ variance
filter is large. This is consistent with the fact that this case study belongs to single-cell sequencing.
The same effect is observed for the two other studies based on single-cell sequencing (SRP062966
and SRP066834). We can conclude that when the study corresponds to a single cell, the proportion
of kept genes will be relatively low, because the near-zero variance filter suppresses a large fraction
of the whole set of genes. The proportion of genes with null variance is also generally larger in
single-cell experiment compared with the other datasets.

In contrast, with bulk RNA-sequencing, such as in the study Human lenkaemia (SRP056295),
the level of retained genes is larger (around 75%) and the near-zero variance and zero variance
filters remove a smaller fraction of genes. The same is observed with the study Lupus (SRP0629606),
where a high level of kept genes was observed (78%), as well as in the studies Psoriasis (SRP035988)
and Breast cancer (SRP042620).
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In brief we can conclude that, for 3 of the 7 case studies, the large majority of genes are
discarded by the near-zero variance filter. However, contrary to that suggested by the name of this
filter (“near-zero variance”), the discarded genes cover a very wide range of variances. Their
filtering out results in the presence of many zeros. This effect is not systematically associated with
the dropout effect of single-cell sequencing. Indeed, it is observed in one bulk dataset (cancer
disease types) (SRP061240), and in only two of the three single-cell studies.

Strikingly, genes with high variance but many zero observations might « priori be excellent
discriminators between classes, especially if their large variance is due to the fact that they are highly
expressed in some classes, and completely absent from others. The suppression of these genes
might thus affect the effectiveness of classifiers and in some cases will lead to an erroneous
estimation of their performances. We therefore chose to avoid the near-zero filter for the

evaluation of classifier performances (Chapter 5).

However, from the issue in the above, pertaining to visualising the retained genes and the
number of zero values, we have an open-ended question: what is the difference between the zero
variance genes and near-zero variance genes which is the key function the CARET packager? The
authors Jin X (Jin and Bie) have a main target from the nearZeroVar function which diagnoses not
only the predictors that have one unique value (namely that have zero variance), but also those
with both of the following characteristics:

1- They have very few unique values relative to the number of samples

2- The ratio of the frequency of the most common value to the frequency of the second most

common value is large.

PCA transformation

Principal component analysis (PCA) is an unsupervised approach which can be used to explore
multivariate datasets, and can provide some hints about their internal structure. Figure 14 to
Figure 20 show the results of the PC-transformation of read counts for the 7 selected case studies.

We first focus on the Breath cancer study (SRP042620) displayed in Figure 14. The variance bar
plot (top-left panel) shows the distribution of the variance over the 9 first components. The

variance is steadily decreasing from PC 1 to 5, and then shows a lower slope.
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Given the fact that PCA is unsupervised, depending on the datasets, the first components
sometimes reveal some clustering of objects according to their classes. This is partly true for the
breast cancer sample SRP042620, as shown in panels 2 and 3 of Figure 14.

We further analysed the informativeness of PCs 1 to 6 to decouple the classes of the RNA-seq
of 168 breast samples of this dataset, which included 28 breast cancer cell lines, 42 triple negative
breast cancer primary tumours, 42 oestrogen receptor-positive (ER+) breast cancer primary
tumours, and 56 non-malignant breast tissue samples.

The top-right panel shows that PC1 segregates very well with the samples belonging to the
class “Breast cancer cell lin¢” (red dots). Indeed, we could virtually draw a vertical line around position
-150 that would almost perfectly separate these cell line samples from all the other classes, which
come from primary tumours. In addition, a vertical line around position 100 on PC1 may segregate
the two classes of “uninvolved breast tissue” from the three other classes. However, the two classes of
uninvolved breast cancer tissue (resp. “adjacent to TNBC primary tumour” and “adjacent to ER+
primary Tumour”) are intermingled on the first component.

In contrast with PC1, the second component (PC2, vertical axis on top-right panel) fails to
segregate any of the 5 cancer types. For example, there is no single horizontal line that could clearly
separate the samples from cell lines (red dots) and those from primary tumours (all other colours).
However, the combination of PC1 and PC2 (top right panel of Figure 14) clearly improves the
segregation: we could easily draw a diagonal line that would completely decouple cell lines from
primary tumours.

The bottom-left panel shows that PC3 against PC4 is more effective than PC2 to segregate the
samples of different classes. PC3 is able to decouple the “T7iple negative breast cancer primary tumonr”
(green dots) from the two classes of “Uninvolved beast tissues” (pink and blue dots), Moreover,
PC4 perfectly separates the green dots from the yellow dots, although we could remark that these
dots were completely intermingled on the PC1-PC2 plot.

It is thus completely incoherent to claim that “the combination of PC3 and PC4 did not render
any improvement”.

For the sake of further exploration, we also plotted PC5 and PC6 (bottom-right). For this
study, the combination of these PCs would not enable us to segregate any of the five classes.

Interestingly in this study, a small number of first PCs (from 1 to 4) can capture a substantial
proportion of the NGS variance (top-left panel).

We could also probably catch the most relevant information by retaining only a few PCs as

features for a classifier, as will be evaluated in Chapter 6 (feature selection), consequently decreasing

73



the power of PCs in detecting variance associated with these data so that we can discard these

lower-variance PCs.
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Figure 14. PCs plots of the breast cancer study (SRP042620).
Top-left: variance of the 9 first components. Top-tight: first and second components. Bottom-left: third
and fourth components. Bottom-right: fifth and sixth components.
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PC plots of the Psoriasis study (Figure 15) clearly show that the variance of the first 9

components is mainly captured by the first 2 PCs. This suggests that these PCs from 1 to 6 are not

able to separate the classes of PCs. The top-right panels visibly confirm into the given fact PC1

alone or PC2 alone are unable to decouple and classes from two, but that the combination of both

PC1 and PC2 completely segregates between the /lesional psoriatic skin and normal skin samples. In

all of the subsequent PCs (PC3, PC4, PC5, and PC6) are unable to decouple the two

contrast,

classes.
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Figure 15. PC plots of the Psoriasis study.
Legend as in Figure 14.
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SRP066834 PC variance baplot
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Figure 16. PC plot of the cerebral organoids and foetal neocortex study (single-cell).

Panel legends: see Figure 14.

The single-cell RNA-seq for the Cerebral organoids and foetal neocortex study is shown in Figure

16. We observed a drop between PC1 and the other PCs, showing that it already captures an

important part of information. The PCs do not successfully segregate all of the cells, but some

separation is noted, in particular:

- PC1 + PC2 separate quite well — but imperfectly — the green, red and blue dots

- PC4 highlights a subset of green dots, which might represent an ignored subclass of

the foetal neocortex (interesting)
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- PC5 and PC6 do not segregate much; everything seems intermingled, although there

are more green dots on the right side (thus, PC5 partly distinguishes green dots).

None of the PCs from 1 to 6, nor the pairwise combinations (PC1+PC2; PC3+PC4;

PC5+PC0), succeed in perfectly segregating the classes. Some pairwise PC plots, however, do show

a pretty good separation of some particular classes from others.

10000 15000

Variances

5000

300

200

100

PC 4

-100

-200

SRP057196 PC variance baplot

___UDDDDDD

Components

SRP057196; PCs of log2norm counts

O cortex_astrocytes
cortex_endothelial

+ cortex_fetal_quiescent

X cortex_fetal_replicating

<© cortex_hybrid

v cortex_neurons
cortex_oligodendrocytes

* hippocampus_OPC

400

300

100

PC2

-100

-200

300

200

€ 100

-100

SRP057196; PCs of log2norm counts

O cortex_astrocytes
cortex_endothelial

+ cortex_fetal_quiescent

x cortex_fetal_replicating

< cortex_hybrid

v cortex_neurons
cortex_oligodendrocytes

* hippocampus_OPC

+ﬁ+}»§ iﬁ +

+ 5
et
+ +x¢ X
+ + K X
X
T T T T T
-300  -200  -100 0 100 200
PC 1

SRP057196; PCs of log2norm counts

O cortex_astrocytes
cortex_endothelial

+ cortex_fetal_quiescent

X cortex_fetal_replicating

<O cortex_hybrid

v cortex_neurons
cortex_oligodendrocytes

* hippocampus_OPC

-300

-200 -100 0



Figure 17. PC plots for cell types in the healthy human brain study.
Legend as in Figure 14.

Through Figure 17, we can easily note there is partial segregation of the 8 classes from the
healthy human brain, wherein:

- PC1-PC2 show clear colonies for each class, but it is not completely segregated; we can
easily notice aggregations for each class in the cellular human brain. Moreover, the
combination of PC1-PC2 may somewhat segregate for a number of classes; for
instance, decouple red balls from the remainder (green, black, purple, yellow, indigo,
turquoise).

- PC3-PC4 highlights a subset of hippocampus dots, which might represent an ignored
subclass of the human brain (interesting).

- PC5 and PC6 do not segregate much; everything seems intermingled, although there

are more yellow dots on the left side (thus, PC5 partly distinguishes yellow dots).
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Figure 18. PC plot for the Plasma extracellular vesicles for the Cancer disease types study
(SRP061240). Legend as in Figure 14.

Figure 18 is concerned with the three plasma extracellular vesicles classes.

It is clear that all classes are mixed up for PC1-PC2. Moreover, PC1-PC2 is not able
to segregate any classes; in addition, the combination also could be capable of
decoupling any class from 3.

PC3-PC4, and PC5-PC6 have the same behaviour as PC1-PC2; furthermore, their

respective combination does not have any ability to obviously separate any class. This
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led us to quickly notice that all samples may have the same properties, which made it

difficult to decouple any classes.
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Figure 19. PC plot for the Systemic lupus erythematosus (SRP062966) study.
See Figure 14 for the legend.

Figure 19 gives first impressions about the easy task of separating two classes.

PC1-PC2 partly segregates the healthy class from systemic lupus erythematosus cases.

PC3-PC4-PC5-PC6 has the same effect of decoupling the two classes.
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- Besides that, the combination was partially capable of segregating two classes.

SRP056295 PC variance baplot SRP056295; PCs of log2norm counts
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Figure 20. PC plot for the Human acute myeloid leukaemia (AML) study.
Legend is the same as for Figure 14.

Figure 20 presents the PCA to separate the two classes of human acute myeloid leukaemia.
Wherein:
- PC1-PC2 has the same effect as that of the PCs in Figure 19. The combination line is
important here.
- The PC3-PC4-PC5-PC6 combination has no ability to decouple any classes; moreover,

the combination does not have the capacity to segregate any classes.
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CHAPTER 5: ASSESSMENT OF CLASSIFIER PERFORMANCES ON

RNA-SEQ DATA

Data classification can be divided into binary (each sample belongs to one among two classes),
multiclass (each sample belongs to one among more than 2 classes) and multi-labelled classification
(each sample can belong to one or more classes) (Ranawana and Palade, 2006). This study focuses
on the multiclass problem and relies on the Misclassification error rate (MER) as a metric for evaluating
the effectiveness of the supervised classifiers.

We will perform a comparative assessment of 3 classification methods (IKNN, RF and SVM),

and study the impact of pre-processing and library size normalisation on their performances.

Principles of the evaluation procedure

Sampling procedure

For each analysis we ran a repeated sub-sampling validation with 10 iterations of the
training/testing procedure. We applied a stratified sub-sampling mechanism in order to ensure fair
training and testing (each class should be represented in similar proportions in the training and
testing sets).

The main idea here was to ensure that each class is composed of a sufficient number of samples
for each class category, leading to fairer evaluation for the development of an effective supervised
classifier with a selected dataset. The underlying idea for such sampling procedures is to ensure
that not all samples come from the same class. If that happened, the evaluation procedures would

not be fair; moreover, the assessment would be biased to the class with the majority of samples.

Evaluation metrics for classifier performances

Evaluation metrics play a critical role in achieving the optimal classifier during the classification
training. Thus, the selection of a suitable metric is an important key for discriminating and
obtaining the optimal classifier for the analysis of RNA-seq data.

From the literature, the evaluation metrics can be categorised into three types: threshold,

probability and ranking metrics (Caruana and Niculescu-Mizil, 2004). Each of these types of
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metrics evaluates a classifier with different aims. In practice, the threshold and ranking metrics
were the most common metrics used by scientists to measure the performance of classifiers.

In most cases, these types of metrics can be employed in three different evaluation applications
(Lavesson and Davidsson, 2008): first, the generalisation ability of the trained classifier, when tested
with the unseen data; second, using the evaluation metrics as an evaluator for model selection,
wherein the evaluation metric task is to determine the best classifier among different types of
trained classifiers which focus on the best future performance when tested with unseen data; and
third, using evaluation metrics to discriminate between and select the optimal classifier from all of
the generated classifiers during the classification training. In other words, only the best classifier
which is believed to indicate the optimal model will be tested with the unseen data.

For the first and second application of evaluation metrics, almost all types of threshold,
probability and ranking metrics could be implemented to evaluate the performance and
effectiveness of classifiers. It should be noted that most of the existing metrics are defined in the
context of 2-group classification, and are thus irrelevant to our problem, which is to evaluate
classifiers on multi-group datasets. Only a few types of metrics could be utilised to discriminate

and select optimal classifiers during the classification training.

Accuracy (or its complement named “misclassification error rate”, abbreviated MER, or
“error rate”) is one of the most common metrics used to evaluate the generalisation ability of a
classifier. Accuracy is defined as the proportion of cases that are correctly predicted by the trained
classifier when tested with unseen data. It is thus the complement of the misclassification error
rate, which is defined as the proportion of misclassified cases (see Materials and Methods for the
formulae).

It has to be noted that using the accuracy or MER as a benchmark measurement has a number
of limitations. The accuracy has a poor value to establish an informed decision in order to build an
appropriate classifier (Huang and Ling, 2005). Indeed, all misclassification errors are considered
equivalent, irrespective of the class on which they occur. In particular, for binary classification
problems, MER makes no distinction between false positive and false negatives.

Ranawana and Palade (2006) and Wilson (2001) demonstrated that the simplicity of accuracy
could lead to suboptimal decisions, especially when dealing with imbalanced class distribution. For
our evaluation of RNA-seq-based classification, most studies have a fair balance between class sizes
(Figure 10), but this is not the case for two of them: Cellular complexity of adult and foetal human brain
(SRP057196) and Lupus (SRP062966).
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Since MER is the most widely used metric in the domain, we adopted it for this study, but we
took care to systematically compare the observed MER with that expected at random, EMER),
which can be computed theoretically from class frequencies. We also compared the actual MER to
that obtained with permutated class labels, which corresponds to an untrained classifier, and can

be considered, to some extent, as an empirical estimation of the expected MER.

Library size normalisation
Given the strong variations in library sizes, as exemplified in Figure 20 (i.e. sequencing
depth), the simplest way to standardise this is to standardise raw read counts by multiplying them

using a scale reflecting library sizes.
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Figure 21. Variation of library sizes for the 7 studies.

On each plot, the ordinate indicates library sizes (in million reads) of the samples sorted by decreasing sizes
(abscissa). The horizontal bars show the maximal (green) and minimal (orange) library sizes. The percentage
indicates the ratio between maximal and minimal library sizes for the considered study.

We consider four different methods for calculating these scaling factors, as described below.
1) Filtered raw counts are non-standardised raw count after we have removed all the genes

that have a zero variance, as well as the NA-containing rows (genes).

85



2

3)

4)

5)

In the third quartile method, gene counts of each sample are divided by the third quartile
of the counts for all the genes in this sample and multiplied by third quartile of counts
different from 0 in the computation of the normalisation factors (Bullard et al., 2010b)
Trimmed mean of M-Values (TMM) is used by (Robinson and Oshlack, 2010b) and is
implemented in the edgeR Bioconductor package. It is based on the hypothesis that most
genes are not differentially expressed (DE). Wherein its value provides an estimate of the
correction factor that must be applied to the library size (and not the raw counts) in order
to bring to a comparable level all the counts that a given genes have in different samples
The calcNormFactors() function in the edgeR Bioconductor package implements these
scaling factors. To obtain normalised read counts, these normalisation factors are re-scaled
by mean of the normalised library sizes. Some normalised read counts are obtained by
dividing raw read counts by the above-mentioned re-scaled normalisation factors.
DESeq2 it is the normalisation method (Anders and Huber, 2010c) implicated in the
DESeq2 Bioconductor package (Anders and Huber, 2010c), which relies on the hypothesis
that most genes are not differentially expressed (DE). A DESeq2 scaling factor for a given
specimen is computed as the median of the ratio for each gene of its read count over its
geometric mean across all specimens. The key idea is that non-DE genes should have
similar read counts across samples, leading to a ratio of 1. Assuming that most genes are
not differential expressed (DE), the median of this ratio for the specimen provides an
estimate of the correction factor that should be applied to all read counts of such specimen
to fulfil the hypothesis. We applied DESeq2 normalisation utilising the
estimateSizeFactors() and sizelFactors() functions in the DESeq.

Relative Log Expression (RLE) implemented in the DESeq2 package (Anders et al.,
2013), (Anders and Huber, 2010c) and (Love et al., 2014). We actually computed RLE
normalisation Factors with edgeR, since their calcNormFactors() function supports this

method.

Feature types used to assess classifier performances

Our work concentrated on testing different normalisation methods which are third quartile,

TMM, RLE and DESeq2. Moreover, we tested log2 transformation and PC reduction to analyse
the effectiveness of the normalisation methods to refine the efficiency of the supervised classifiers.
We focused on the effect of different normalisation methods besides the log2 transformation and

PC reduction to refine the accuracy of the supervised classifier.

86



With the different combinations of normalisation options, we obtained 12 types of features:
Filtered_counts: raw counts remaining after class and gene filtering.

third quartile: library-size standardization based on the third quartile as scaling factor.
q_0.75_log2: log-2 transformation of the third-quartile (= quantile 0.75) scaled counts.
q_0.75_log2_pc: principal components derived from q_0.75_log2

TMM: library-size standardization based on trimmed mean values.

TMM_log2: log2-transformed TMM values

TMM_log2_pc: principal components of the TMM_log?2

RLE: relative log expression

N A B o A A e

RLE-pc: principal component transformation of RLE values

10. DESeq2: normalised counts computed by the DESeq2

11. DESeq2_log2: log2-transformation of DESeq2-normalised counts

12. DESeq_log2-pc: Principal components from DESeq2_log2

We also analysed these 12 feature types with the classifiers trained with the original class labels
or permutated class labels, respectively. We focused on studying the impact of each

normalisation method on classifier accuracy.

Evaluation of classifier performances

In this section, we separately analysed each classifier (KNN, SVM and Random Forest) to
identify the most suited pre-processing procedure. We chose SVM, KNN and Random Forest
because these three methods rely on very different principles and assumptions for their
classification: KNN relies on distances in Euclidean space, Random Forest on decision trees with
separate decisions on the different features, and SVM on hyper margins established with different
types of kernels.

We started with a detailed description of some representative studies. We then performed a

comparison of the performances between classifiers and generalised these to the 7 studies.

Breast cancer study (SRP042620)

We started by exploring whether or not the performance of targeted classifiers is affected by the
type of features resulting from our different data normalisation methods.
Figure 22 summarises the performances of the three targeted classifiers (SVM, KNN and RF)

with the 12 feature types defined above, with either correct or permutated class labels.
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SVM. The top-left panel of Figure 22 shows the boxplots of misclassification error rates
(MER) for 10 iterations of training/testing evaluation for the SVM classifier. The first observation
is that all standardization methods (q0.75, TMM, RLE and DESeq2) give more or less the same
results as the non-standardized raw counts (filtered_counts), with a MER near 12%. However,
after we performed log2 transformation, the MER drops to ~5%. A PCA transformation of the
log2-transformed counts does not bring any further improvement over the simple log2-
transformed data. For all the 12 feature types, the SVM trained with permutated class labels (grey
boxes) returns a very high MER (~80%) corresponding to the theoretical random expectation (blue
dotted line).

KINN. The top-right panel in Figure 22 summarizes the performance of the KNN with four
targeted normalisation methods. With this classifier, the performances are rather poor on the raw
and normalised counts (~45% MER). The log2 transformation brings some gain in accuracy (the
MER decreases to ~20%), and the PC transformation gives similar results as the log2 counts. The
training with permutated labels gives the same MER as for SVM, and it fits the random expectation.
The poor classification rate and the relative improvement brought by log2 transformation are
consistent with the fact that KNN relies on Euclidian distances computed in the feature space,
which are sensitive to outliers (whose effect is reduced by log2 transformation).

RF. In contrast with SVM and KNN, Random Forest classifier achieves rather good results
with raw and normalised counts, and the log2 transformation does not bring any improvement.
This is consistent with the fact that tree-based methods are insensitive to monotonic
transformations of the data. Interestingly, the PC transformation clearly decreases the
performances of RF classifiers. We interpret this as an effect of the interaction between the
concentration of the relevant information in the first components, and the random sampling of
features underlying the RF algorithm: at each RF iteration, a tree is trained with a random subset
of the features, and if those are PCs, the top-ranking (and supposedly most informative) features
may be included or not in the random selection, thereby leading to fluctuations in the efficiency of
the training.

In summary, we confirm here the key principle that some authors adopted it for analysis
microarray data (Anders and Huber, 2010a; Robinson and Oshlack, 2010a): they shown the ability
of the log2 transformation (and PCA) to improve the visualisation of the structure of RNA-seq
data. Our study further shows the influence of log2 transformation to improve from the efficiency
of classification process. It turns out there is a tangible effect to log2 transformation to improve

the efficiency of classifiers in classification the samples based on their RNA-seq transcription
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profile, that is main goal from the preliminary investigation about the optimal procedure of pre-

processing.

Where the optimal normalisation method depends on a principle classifier:

- For the Breast Cancer study, all classifiers performed well with the trained sets and were

much better than those of the training classifier with permutated class labels; among them, RF

performs better than SVM, which performs better than KINN, which performs rather poorly.

Misclassification rate

- We can briefly notice that the TMM standardisation method is better than the others.

- Italways better to log2-transform the data before utilising the supervised classification.

- Using the PC transformation and log2 data provide the same advantage of improving

the efficiency of classifiers.

- The performance of RF is different to that of other classifiers, as it relies on the

ensemble approach; with this classifier, log2 transformation does not bring any

improvement. Furthermore, with this classifier, PCA decrease the performance

(whereas for other ones the PC-log2 has the same performances as the simple log2

data).
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SRP042620; rf
all features; 10 iterations
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Figure 22 Performance of classifiers measured by misclassification error rate for the Breast cancer
study (SRP042620).

The ordinate indicates the misclassification error rates. Each boxplot corresponds to one testing-training
experiment (10 iterations) and one particular pre-processing method (from left to right: filtered counts, third
quartile(q0.75), q0.75_log2, q0.75_log2_PC, TMM, TMM_log2, TMM_log2_PC, RLE, RLE_PC, DEseq2,
DESeq2_log2, DESeq2_log2_PC). Blue boxes: results of the analysis of the actual datasets. Grey boxes:
random expectation estimated by permuting class labels during the training and testing. Dotted line:
theoretical value of the random expectation for the MER, based on class sizes. Top left: Support Vector
Machines (SVM); top right: K-nearest neighbours (KINN); bottom left: Random Forest (RF).
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Figure 23 confirms the behaviour of tested classifiers with the 12 previously defined feature
types from another study (Human lenkaemia): for KNN and SVM, there is no obvious impact of the
normalisation method (3rth quantile TMM, RLE, DESeq2), but log2-transformation strongly
improves the results, whilst further PC transformation neither improves nor reduces the accuracy.
Random forest shows a markedly different behaviour: their performances are similar irrespective
of the normalisation method and log2 transformation, but PC transformation strongly increases

the error rates (this effect is even stronger than for the Breast cancer study seen in Figure 22).

Cerebral organoids and foetal neocortex study (SRP066834)

Figure 24 shows the results from the analysis of the Cerebral organoids and foetal neocortex dataset
(SRP066834), which contains 3 classes (Dissociated whole cerebral organoid, Foetal neocortex, Microdissected
cortical-like ventricle from cerebral organoid), with an overall number of 729 “samples” (actually single
cells). With this cerebral organoids and foetal neocortex case, SVM behaviour clearly shows the
impact of the log2 transformation (and the derived PC), which returns 0% of the MER. The KINN
and RF give the same findings, as in the previously discussed Human leukaemia dataset Figure 24,
but their performances are clearly inferior to SVM. KNN achieves the best results (MER=11%)
with log2-transformation after DESeq2 normalisation, and RF returns ~7% MER with log2-
transformed data, irrespective of the normalisation method use, but shows a marked increase in

MER with PC-transformed data.
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Psoriasis study (SRP035988)

With the Psoriasis dataset (SRP035988) the situation is quite different: SVM returns 0% MER
with all 12 features types, and KNN achieves results that are as good, but only with log2-
transformed counts. RF gets the same perfect classification irrespective of log2 transformation, but
its MER increases with PC transformation. These remarkable performances suggest that the
transcriptome profiles of these 2 classes differ so much that it is easy for any classifier to
discriminate them perfectly, almost irrespective of the chosen pre-processing procedure.
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Lupus erythematosus study (SRP062966)

With the Lupus erythematosus study (Figure 26), an astonishing observation is that all of the
classifiers return better results with permutated class labels (grey boxplots) than the MER expected
at random (dotted line), thereby suggesting that the classifiers were able to learn something with
randomly permutated class labels. This improvement is observed for almost all of the classifiers,
and with all of the feature types (except for SVM with non-log2 transformed counts). Note that
the random expectation for this study is rather low (~27%), due to the strong imbalance between
the two classes. In such conditions, a trivial strategy to achieve good performances is to assign all
samples to the major class, which ensures better results than a random assignment balanced by the
prior class frequencies. However, there must be some other effect playing here, since we observe
the same effect of learning from the permutated labels in the next study, although the classes are
balanced. We still ought to investigate the reason for this surprising capability of the 3 classifiers
to learn from the permutated class labels.

Despite this, all of the classifiers achieve better results with the actual class labels (blue
boxplots) than with the permutated ones (grey boxplots), thereby showing that the training is
effective.

Figure 26 shows the following:

- The expected and observed MER are low in all cases.

- The MER achieve with permutated labels is inferior to the expectation, except for SVM
with non-log2 transformed data. (in this case, the permutated labels fit the random
expectation-

- In all cases, the actual class labels give better results than permutated labels, which
indicates that there is something to be learned from the permutated labels.

My hypothesis is that the apparent “learning” effect with permutated labels may result from a
trivial assighment of all of the samples to the major class. Since the dataset is strongly imbalanced,
this “strategy’” would achieve better results than a random assignment balanced on the prior class

frequencies
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Impact of Principal Component transformation on classifier performances

Principal Component analysis (PCA) is useful in linear feature extraction where it is considered
a multivariate data analysis (Jin and Bie).

PCA finds a linear transformation ¥ = WX such that the retained variance is maximised. It
can be also viewed as a linear transformation that minimises the reconstruction error (Diamantaras
and Kung, 1996). Each row vector of W corresponds to the normalised orthogonal eigenvector of
the data covariance matrix.

We use PCA can be used to reduce the large RNA-Seq feature space to lay a reasonable number
of dimensions with little information loss.

In most recount repositories, which contain around 2000 RNA-seq experiment project
datasets, each has a large RNA-Seq dataset, with different numbers of samples (individuals) in each
experiment; this depends on the published experiment and 58000 features (genes). Consequently,
the separation between training and testing sets enforces the over-dimensionality, since we have
taken 2/3 of the data for training and the remaining 1/3 is for testing.

The real problem resulting from the over-dimensionality of the feature space is that some
methods are sensitive to it, and their model is over-fit to particular cases used for the training stage.

An additional advantage of PCA transformations is that it strongly reduces the computing time,
since the number of components (and thus of features used afterwards) cannot exceed the number
of individuals (samples).

The important point here is that the number of feature dimensions is very large (close to 58000)
which will take too long to train and test. The aim of PCA-based multidimensional scaling is to
reduce the number of features to b dimensions, thereby preserving most of the variance (so that
we don't lose relevant vital information while doing so) of the actual data while b is still significantly
small.

A common way to grasp the impact of PC transformation is to draw a scatter graph where

individuals are plotted according to their values on the two principal components.

By applying PCA in the whole data set, that implicitly means that we are attempting to
project the data onto first two principal components - though orthogonal to each other. It should
be noted though that two Eigen vectors of these data will be the basis for a totally different two-

dimensional subspace.
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Although the number of dimensions we are projecting the data onto is the same, the data alone
is different and might end up being projected onto different dimensions.

The Random Forest (RF) method was developed by Breiman (2001) and relies on the
combination of multiple tree predictors, each of which was trained on values of a random subset
of individually sampled features and individuals. It assumes that distribution is the same for all trees
in the forest. The generalization error for forests converges and tends to a limit as the number of
trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on
the strength of the individual trees in the forest and the correlation between them.

The mechanism of random forests in classification accuracy is growing an ensemble of trees
and letting them vote for the most popular class, where the generated random vectors govern the
growth of each tree in the ensemble.

When a great number of trees is generated, they vote for most popular class, in a procedure
called random forests.

We could notice from Figure 23 that all classifiers (SVM, KNN, and RF) have been affected
more by log2 transformation than PCs transformations, such lead us to realize that the log2-
transformation is appropriate to analyse RN A-seq data, but that a further PC transformation does
not bring any further improvement. For RF, the PC transformation has even a deleterious effect,
since it increases the MER. Therefore the filter and normalization would not make it possible to
further improve the performance of the decision tree classification, especially with the RF classifier.
This is due to their nature to create groups of samples depending on certain ranges of values.

On the other hand, the PC transformation led to substantial reduction of the training and
testing time of classifiers, due to the strong reduction of dimensionality (the number of PCs cannot
exceed the number of samples, which is always much lower than the number of genes).

It has to be noted that in this section we keep all the PCs, we will see later that the result differ

when we select the first PCs as predictor features.

Generally, we can say that RF does not care about normalisation as it is an ensemble classifier
consisting of a large number of different tress. Each tree is trained in different samples and a fixed
number of randomly chosen features is used in each node. In RF, we should define the number of
trees that the algorithm will build and the number of randomly chosen features that will be used in
each node of the tree.

SVM and KNN are the opposite, as SVM uses the kernel trick to deal with nonlinearly

separated data. SVM maps the initial data to a higher dimensional space, using a proper kernel
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function, in which the data are linearly separable; the kernel function that we used in training svm
classifier is linear.

When SVM classification is applied to linearly separable data, the optimum separation
hyperplane (OSH) is the hyperplane with the maximum margin for a given finite set of learning
patterns. The OSH computation with a linear support vector machine is tested in our analysis to
improve from the efficiency of classification. To control in this margin that is used to refine from
the efficiency of SVM by controlling in the parameter “C-classification”. This corresponds to
KNN, which checked the k nearest samples of the test instance (nearest using Euclidean distance).

It decides in which class the instance belongs by using a majority voting schema.

Impact of the number of neighbours (k) on KNN performances

The main parameter for the KNN classifier is the number of neighbours (£) taken into
consideration to assign a class to new individuals. In this section, we evaluate the impact of this
parameter on the performances of KNN with the 7 studies. We tested the following values for £:
3,5,7,10, and 15.

Figure 28 clearly shows the influence of k, which depends on the type of dataset: the minimal
MER is obtained for & = 70 for breast cancer, k = 7 for Leukaemia, k = 15 for cancer types, and
# = 10 for Lupus. For the controls with permutated class labels, the value of k generally does not
affect the MER. However, for cancer disease type, the best classification is achieved with
permutated labels and &£ = 75, which performs even better than when KNN is trained with the
actual class labels. This seems to be a spurious effect for this dataset where the KINN is unable to
learn the training classes (the blue boxplots are at the same level as the average background of

permutated class labels). The other studies are provided in Appendix A4.
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Cancer disease types
(SRP061240)
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all variables; 10 iterations

Lupus erythematosus
(SRP062966)
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Figure 28 impact of K (nearest neighbour) of KNN into classifier accuracy measured by
misclassification error rate.

The ordinate indicates increasing values of the & parameter (3, 5, 7, 10, and 15), the abscissa shows the
misclassification error rates (MER). Each boxplot corresponds to one testing-training experiment (10
iterations). In all cases, we used the TMM-normalised log2-transformed counts. Blue boxes: result from the
analysis of the actual datasets. Grey boxes: random expectation estimated by permuting class labels during
the training and testing. Dotted line: mean MER value for the permutated class labels, indicating the
background level of misclassification without training.

Impact of the kernel on SVM performance

Figure 29 illustrates the impact of the kernel of SVM performance. For all of the studies, the
best performances are obtained with the linear kernel, immediately followed by the polynomial
kernel. The radial kernel generally gives much poorer performances with all the datasets except for

Psoriasis (which is a very easy-to-learn case) and for cancer disease, where anyway all the kernels
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fail to learn the classes. The worst performer is sigmoid, which always gives similar MER as the
classifiers trained with permutated label.

It should be noted that the radial kernel, which performs poorly with almost all our datasets, is
the default value for the svm() function of the R (implemented in the e1071 package), and was also
the kernel used by Johnson in their evaluation of classifiers with RNA-seq (Johnson et al., 2018).
This throws some doubt onto the relevance of their conclusions, since they did not consider the
SVM classifier with a linear filter, which provides the best results for all of the studies and with all

of the pre-processing options in our evaluation.
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Figure 29 impact of kernel of SVM into classifier accuracy measured by misclassification error rate.
The ordinate indicates the values of the kernel parameter used for SVM (linear, polynomial, radial, sigmoid,
respectively), the abscissa indicates the misclassification error rates (MER). Each boxplot corresponds to
one testing-training experiment (10 iterations) with TMM-normalised log2-transformed counts. Blue boxes:
result from the analysis of the actual datasets. Grey boxes: random expectation estimated by permuting class
labels during the training and testing. Dotted line: background level of MER estimated with permutated
class labels (untrained classifier).

Summary of the results

The assessment of the selected classifiers with the remaining studies are available in Appendix
A (Supplementary Figures), and the results are consistent with the examples from previous
sections.
Table 7. Summary of classifier petformances for the 7 studies.

For each classifier (SVM, RF, RF) we retain the MER obtained with the log2-transformed TMM-
standardised dataset. Numbers indicate the Misclassification Error Rate (MER) in percent.

Study Trained with actual class | Trained with permutated
labels class labels

ID Short name SVM | KNN | RF SVM KNN RF

SRP042620 | Breast cancer 10 20 10 80 75 75

SRP57196 | pault& foctal human 8 22 18 66 75 75

SRP056295 | Human Leukaemia 6 26 10 46 45 45

SRP035988 | Psoriasis 0 0 0 45 50 50

SRPOG1240 | Cancer disease 45 68 46 47 64 46
types

SRP062966 | Lupus erythematosus 5 13 10 15 15 15
Cerebral organoids

SRP066834 | and foetal 0 23 7 60 55 55
neocortex
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Table 7 summarises the assessment results for the 3 classifiers with the 7 studies. We only
considered the log2-transformed TMM data to achieve a fair comparison. Indeed, as discussed
above, log2 transformation strongly reduces the MER for SVM and KNN, without affecting RF
in any direction, whereas PC transformation of the log2-transformed data does not bring any
further improvement for KNN and SVM, but strongly deteriorates the accuracy of RF. The choice
of TMM is somewhat arbitrary, since classifier performances are globally similar irrespective of the
method (q0.75, TMM or DESeq?2) used to standardise library sizes.

Based on this comparison, we can draw some general conclusions from our comparative
assessment as follows.

SVM is an optimal classifier to separate RNA-seq samples based on their expression profiles;
the pre-processing procedures are also required to improve the efficiency of the SVM classifier.
Besides, SVM is also taken as the first grade in the time of execution in the training process.

RF takes the second place in the ranking, wherein it classifies samples of RNA-seq data as well
having additional advantages. It does not require pre-processing procedures, since it achieves the
same MER with or without pre-processing. This particularity deserves to be noted, and suggests
the need to recommend RF in cases of doubt about the choice of pre-processing options. However,
we notice here the high cost in execution for the training process.

KNN is the worst-performing classifier in our tests. It is somewhat faster than RF but slower
than SVM. Moreover, the findings of MER were also acceptable for initial evaluation and to give

the quickest test of the RN Aseq dataset.

Generally, supervised classifiers are trustworthy for classifying the RNA-seq data, where
reliable results are produced which are used with RNA-seq data. In particular, principal component
analysis was not able to classify such RNA-seq data, as shown in Chapter 4. Data pre-processing,
in particular with the Cerebral organoids and foetal neocortex study, as clarified in Figure 26 which
clearly show the inability of PC to segregate the samples according to their respective class.
Consequently, there is a need for investment of advanced supervised classification methods to
completely segregate the sample according to their respective classes.

The general outcome from this chapter can be summarised as follows.

- SVM and KNN both need the log2-transformation;
- PC transformation does not further improve the performances of log2-transformed
data for SVM and KNN, but it provokes an astonishing decrease of the execution time

in training the classifiers.
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- In contrast, with RF the PC transformation decreases the effectiveness of RNA-seq
data classification.

- With RF, the log2-transformation and PC does not show much improvement in the
classification process. This is unfortunate because a gain of processing time would have
been particularly significant for RF, as it takes a long time to execute classification
process, that is because its principle relies on the random splitting of the training set to
create trees; in turn, that requires a long time, but pre-processing stage does the
execution-time acceptable and worthwhile, as such shown by the MER ratio for RF
with PC doesn’t make any sense in improve the effectiveness of RF classifier.

Furthermore, there are no fixed expected ratios for MER within the analysis of RNA-seq data,
which really depends on the nature of the RNA-seq data, as the nature of such data varies from
one dataset to another. The underlying essence is that the RNA-seq data will play a primary role,

affecting the value of MER and consequently affecting the efficiency of the classifier.
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CHAPTER 6: IMPACT OF FEATURE SELECTION ON CLASSIFIER

ACCURACY

Feature selection is used to extract the relevant features to be fed into classifiers, and remove
the non-discriminant and/or redundant features to reduce the curse of dimensionality. This would
make the learning process for classification time-efficient and increase the performance of
classification algorithms by reducing the over-fitting (Hoi et al., 2012). For next-generation
sequencing (NGS) data feature selection process, such as RNA-seq data, both supervised and
unsupervised learning can be implemented to make decisions about the subset of features to be
retained. One of the simplest feature selection approaches is variable ordering, which consists of
sorting the features according to their relevance to the classification methods and retaining the top-
ranking ones to enhance the performance of classification methods (Tan et al.).

Expression level can be used as the basis for diagnosis by assigning samples to different classes
based on a prior analysis of the changes in expression level between classes. With microarrays,
many studies adopting this technique have been developed to determine the important features
(biomarkers) in order to predict the class of disease types, phenotypes, and tissues types
(Jayawardana et al., 2015; Strbenac et al., 2016; Marisa et al., 2013).

We have tested three alternative criteria to rank the features: Principal Components (PC),
Differential Expression (DE), and Variable Importance (VIMP), which are assigned during the

first pass of the random forest training/testing cycle.

Feature selection based on Principal Components

Principal Component Analysis can be used as a dimension reduction approach, by
decomposing the data into new variables (called components) that are linear combinations of the
original variables. The first components capture most of the variance, and supposedly explain most
of the differences between individuals. By contrasting of clustering methods that may classify
individuals in RN A-seq data as with classification methods, the PCA did not identify these clusters,
but instead focuses on those methods that extract the linear relationships that best explain the
correlated structure across data sets. Moreover, PCA has the ability to illustrate the variability both

within and between features (variables) and may highlight data issues such as batch effects or
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outliers. In our study, we applied PCA in order to generate new data sets comprised of a number
of first-ranking components which ranged from 2 (only keeping the two first components) to the
number of individuals in the considered dataset (which is the maximal number of components
produced by PC transformation). Thereby, a new resultant dataset will have at most the same
number of features as individuals. Figure 30 shows the impact of PC-based feature selection on
the performances of the different classifiers. The blue boxplots represent the distribution of the
MER generated from 10 iterations for each of the targeted classifiers:

SVM: from left to right, the boxplots show the results obtained when classifiers are fed with
increasing numbers of PCs (starting from PC2, PC3, etc.). We analyse the impact the number of
PCs on the efficiency of SVM (top panel of Figure 30), and observed that the MER progressively
decreases when the number of component increases, and that SVM will provide the best results
when it is fed with at least 40 components, which gives an MER of around 2%. Besides that, this
gives us the first impression which implicitly indicates that SVM can overcome the overfitting; we
noticed that MER decreases when the number of PCs increases, and it stabilizes around 2% when
number of PCs exceeds 40. But with the permutated labels for the classes of samples, we noticed
that there was no effect of increasing the number of PCs: whether the number of PCs is 3 or 162,
the MER will be more or less the same, with a value of around 78%, which corresponds to the
theoretical random expectation of 78%.

KINN: which such classifiers, the situation is drastically different from SVM; for 2 PCs, the
MER was almost 44% and then declined to reach 8% with the first 4 PCs. After that, when the
number of PCs increased, then the MER also increased, suggesting an effect of overfitting. When
the number of PCs was 140, the MER reached 50%. This shows that KNN has no intrinsic
capability to control overfitting; afterwards, with PCs (150, 160 and 162) the MER again declined
to arrive at 37%, in contrast with SVM. The permutated class labels show the same results as with
SVM: the MER corresponds to the random expectation, irrespective of the number of
components.

RF: has an essentially different behaviour, which confirms our conclusion that RF does not
care about the normalisation, and that the number of PCs has a slight effect on the efficiency of
RF. With PC2, the MER was very high, 43%, which confirms the inability of RF to extract the
information from PC2. Consequently, with PC3, the MER was almost 18%, but a visible decline
in MER was around 13% with PCs (3, to 30). Afterwards, there is fluctuation in the MER, first
increasing and then decreasing with the PCs (40 to 162), where the MER returned the following
values corresponding to 10%, 15%, 12%, 11%, 13%, 12%, 12%, 14%, 14%, 17%, 13%, 16%, 13%,

111



14%, and 18%. It turns out PCs have a modest effect on RF, as the situation with permutated class

labels does not differ from the prior, wherein it was the same as with SVM and KNN, 78%.

For further illustration of the impact of the number of PCs on the efficiency of the targeted

classifiers, Appendix A3. Supplementary figures clearly shows the overfitting issue: when the

number of PCs increase, it leads to a decrease in ratio of MER up to a given number of PCs, but

afterwards, when the number of PCs continues to increase, this leads to increase the MER, and a

further increase of PC leads again to decrease the MER. This unstable behaviour clearly indicates

to sensitivity to overfitting issue. More results are in Appendix A3. Supplementary figures.

SVM
Figure 30 Impact of the

feature selection approach
based on principal
components on the
misclassification error rate
of classifiers for the breast
cancer study (SRP042620).
The ordinate indicates the
misclassification error rates.
Each boxplot corresponds to
one testing-training
experiment (10 iterations) and
one particular feature
selection based on PCs
method. Blue boxes: results
from the analysis of the actual
datasets. The blue box plots
from left to right correspond
to one series of
training/testing sets with
increasing numbers of first
components, ranging from 2
(eft) to the maximal number
of components (162 for this
study). Number of
components: 2, 3,4, 5,6, 7,
10, and all values from 20 to
160 by steps of 10. Grey
boxes: random expectation
estimated by permuting class
labels during the training and
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In order to evaluate how each classifier tackles the problem of over-dimensionality of the data,
Figure 30 show the behaviour of each classifier when the number of principal components
progressively increases.

SVM.: is insensitive to over-fitting; this is notable when the number of PCs varies from 2 to
10, as the MER starts to improve. It starts at 21% with 2 PCs and declines to 4% with 150 PCs;
afterward, it stabilised with even with greater than 700 PCs. That is a good indicator of the ability
of SVM to overcome the overfitting issue.

KINN: is very sensitive to over-fitting; as can be seen when the number of features is greater
than 70, which clearly shows an inability for KNN to solve the overfitting issue. With the number
of PCs being 20, the MER was almost 5%; afterwards, it started to progressively increase, finally
reaching 56% when the number of features was 450. Then, it stabilised to 56% with 718 PCs. That
indicates that KNN is not able to overcome the overfitting.

RF: random forest actually gives better results with a selected subset of the PCs than when all
of them are used. This is especially true when the number of components is large, as shown in
Figure 32. When the classifier is fed with 20 PCs, the MER decreases to 4%, whereas it starts to
increase when the number of PCs increases. These results show that RF is somewhat sensitive to
over-fitting when it is fed with PCA-transformed data. In such cases, the selection of the first

components can bring improvements in accuracy.
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Figure 31. Impact
of the selection of
principal
components on
the performances
of classifiers for
the Cerebral
organoids  and
foetal neocortex
(SRP066834).
Legend: see
Figure 30.

SVM

KNN
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Feature selection based on Differential Expression analysis

The difference in expression level (differential expression analysis, DE) of genes has
proven to be helpful in classification problems, enabling individual characteristics to be identified
(Strbenac et al., 2016) and samples to be distinguished according to their group membership. For
RNA-seq data, we have been ranking the genes in ascending order according to the adjusted p-
values reported by two R packages for differential expression analysis: DESeq2 and edgeR,
respectively. We then generated a series of subset datasets that only contain the features with the
highest significance based on the adjusted p-values to retain relevant features and evaluate their
effectiveness for classification methods. The blue boxplots in Figure 32 indicate the evolution of
the misclassification error rate (MER) accordingly, when we select increasing numbers of top-
ranking features based on the DE adjusted p-values. Each figure shows the result with 3 series of
ordering criteria: DESeq2 adjusted p-value, edgeR adjusted p-value, and random ranking of the
genes. The latter are used as a control to evaluate the relevance of DEG-based ordering. The grey
boxplots show the MER obtained when the classifiers are trained with randomly permutated class

labels and provide an estimation of the expected error rate with untrained classifiers.
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Figure 32 Impact of feature selection on the misclassification error rate of classifiers for the Breast
cancer study (SRP042620).

The ordinate indicates the misclassification error rates. Each boxplot corresponds to one testing-training
experiment (10 iterations) and one particular feature selection method. Blue boxplots: From left to right,
the 3 series of feature selection respectively correspond to DESeq2, edgeR or random ordering of the
features. Within each series, the number of top-raking features progressively increases from left to right
(numbers of top-ranking genes: 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130,
140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 1000, 2000, 5000, and 10000). Grey boxes: random
expectation estimated by permuting class labels during the training and testing. Top: Support Vector
Machines (SVM); Middle: K-nearest neighbours (IKNN); Bottom: Random Forest (RF).
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Figure 32 shows the behaviour of SVM classifiers trained with subsets of increasing sizes of
top-ranking genes ordered by ascending p-values.

SVM (top panel): we tested the SVM with three groups of ranking features; the first series of
boxplots (which numbers of genes ranging from 3 to 10000) corresponds to DEseq2-based
ranking. The MER steadily decreases when the number of features increases, showing an increase
in the efficiency of SVM. When fed with the 3 top-raking differentially expressed genes, the MER
starts at 34%, and with 10,000 features it ends up with 17% MER. This decrease gives us evidence
of the role of DESeq2 to enhance the effectiveness of SVM. With the second series of blue
boxplots, which corresponds to features ranked based on edgeR, we notice the same effect: the
MER progressively decreases from 33% to 11% as the number of features increases from 3 to
10,000. In addition, we tested SVM with the same subset of 10,000 top-ranking features reported
by DESeq2, but we permutated their order randomly. With these randomly ordered features, SVM
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gave somewhat inferior results with the initial subsets of the series (from 3 to 120 genes kept) but
there was a rapid decline of MER afterwards. When the SVM is trained with 130 to 300 features,
we noticed a slight increase to 23% MER, followed by a decrease with 400 to 1000 to reach 14%,
and again increased with 2000 to 10000 features, to arrive at 18% MER. The lower effectiveness
of random features indeed shows the relevance of the ranking with DESeq2 and edgeR to improve
from effectiveness of SVM. The behaviour of such classifiers with the permutated class labels
reached 80%, which was around the theoretical random expectation.

KNN (middle panel): the case here is quite different from SVM. We notice that the MER for
KNN trained with DEG-based ordered genes (two first series of blue boxes) starts at 44% with
first 3 features, then decreases to 33% and afterwards increases to 45% with 150 features, then
drops down to 31% with 500 features, and reaches 34% with 10,000 features. With randomised
features (third series of blue boxes) we observe the influence of overfitting: when the number of
features varies from 4 to 30 the MER was high (around 58); afterwards, when the number of
features varies from 30 to 120 it falls to around 27%, but when the number of features increases
from 140 to 190, the MER rises to 43%. With 200 to 500 features, the MER decreases again to
33% but with 500 to 10,000 features it rises again to 43%. This suggests some overfitting effect;
indeed, KNN has no built-in ability to overcome it, in contrast with SVM. With the permutated
class labelled (grey boxes), the KNN returns the same error rate as SVM (~80%), which
corresponds to the random expectation for an untrained classifier.

RF (bottom panel). Random forest shows the same trends as SMV, with the first series of
blue boxes (DEseq2 ordering), but with 10,000 features, RF returns a smaller value for the MER
(5%). The second series of blue boxes (edgeR ordering) also shows the same effect as SVM, but
with a smaller value of MER (5%). With the third series (random ordering of the variables), RF
clearly shows greater stability than SVM, where MER steadily decreases without fluctuations, as
seen with SVM. That gives us clear evidence about the RF being more stable than SVM against
overfitting, especially in the case without ordering for the best feature in the tested dataset.

In summary, the feature selection-based DEG is more effective for RF than SVM or KINN.
Besides that, it provides evidence about the ability of each classifier to overcome the overfitting,
and shows that KINN is more prone to overfitting. With permutated class labels, all classifiers
return the same MER, corresponding with the random expectation.

We have targeted a simple comparison of two tested DEGs (DESeq2 and edgeR); we notice
that the top-ranked features perform a bit better by increasing adjusted p-values reported by
DESeq?2 than with edgeR, suggesting that the most significant features extracted from DESeq?2 are

more relevant than those that returned by edgeR.
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The behaviour of each ranked feature by DE (DEseq?2 and edgeR) with the different classifiers
for all seven datasets is provided in Appendix A3.2.

Feature selection based on variable importance returned
by a first pass of random forest

An interesting property of RF is that it provides a rapidly computable internal measure of
variable importance (VIMP), which can be used to rank features (variables) and use them for a
second round of supervised classification, based on any classifier method of our choice. This
feature is especially useful for high-dimensional genomic data. Two commonly evaluated
importance measures are node impurity indices (such as the Gini index) and permutation
importance. In classifications, the importance of the Gini index is based on the node impurity
measure for node splitting. The importance of a variable is defined as the Gini index reduction for
the variable summed over all nodes for each tree in the forest, normalised by the number of trees
(Genuer et al., 2010).

Figure 33 shows the behaviour of the three classifiers (SVM, KNN and RF) when fed with
increasing subsets of features selected according to their variable importance returned by a first
round of RF.

SVM (top panel): shows a good performance with increasing numbers of VIMP-ordered
features, where the MER starts from 42% with the 3 more top-ranking features, and then decreases
progressively to reach 13% with the 10,000 most important features, which is subset from whole
ranked dataset. This indicates once again the aptitude of SVM to solve the overfitting issues when
number of feature are much more from the number of the individuals.

KINN: shows a different behaviour with the features ordered according its VIMP, where it
shows non-monotonic changes: with a small number of features (from 3 to 7) the MER was almost
42%, and then declines to 25% with the top 80 to 160 features, and down to 21% with 170 to 400
features; beyond this, it gradually increases to 26% with 10,000 features. That drove us to observe
that KINN is not able to overcome the overfitting with the features ranked based on the VIMP.

Besides this, we could see the behaviour of KNN with these subsets of the best significant
features, it is obvious the sensitivity of KNN to overfitting phenomena. that mean when the KNN
be prone to overfitting, we can see the MER will firstly decrease with first of group from the most

significant variables and when the count of significant variable ascending increase then that will

120



lead the MER to increased that mean the behaviour of KNN will be a little worse, and continuing
to that the MER again will decrease with increasing the count of variable. the summary KNN is
high sensitive for overfitting issue.

RF: has a more much monotonic attitude than the two previous classifiers; RF visibly showed
great behaviour with ranked-features, which was the most significant according to VIMP. We
clearly showed that when then number of features increased, this led to the direct decrease in MER.
It started at 38% and kept falling to reach 5%. With the permutated class labelled, it showed the
same situation as the previous classifiers.

We can conclude the importance of ranking features to boost the effectiveness of RF.
Moreover, RF obviously has the power to tackle overfitting when the number of features becomes
much greater than the number of individuals.

The complete results of feature selection based on variable importance generated from RF for

the 7 studies are available in Appendix A.3.
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Figure 33 Impact of the SVM
features selection
approach based on the
misclassification error rate
of classifiers on the
Breast cancer
(SRP042620) relied on
VIMP which are
generated from RF.

The ordinate indicates the
misclassification error
rates. Each boxplot
corresponds to one
testing-training
experiment (10 iterations)
and one particular feature
selection method.
Abbreviations: top-3-var-
v.important: raw data
ordered according to
variable importance
outputs from RF and
number 3 indicate top
significant feature based
on the variable
importance generated
from RF; permLabels:
random permutation of
the sample labels, used to
estimate the random
expectation for the
misclassification error RF
rate. Blue boxes: result

from the analysis of the

actual datasets. Grey

boxes: random

expectation estimated by
permuting class labels

during the training and

testing. Top: Support
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Middle: K-nearest
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Bottom: Random Forest
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Summary: impact of feature selection on classifier accuracy

We could remark that the MER of each classifier relied on the feature selection criteria, number
of selected significant features and type of classifier, wherein:

SVM: was fulfilled with PC transformation the lowest possible percentage of MER, which
might guide us to the more convenient selection criteria of PC transformation, which returned the
lowest level of MER. Motreover, when the number of features is almost 10,000, the SVM have
achieved the best performance as its MER was almost 5%.

KINNN: has a somewhat dissimilar behaviour, especially with PC transformation; when the
number of PCs reached 4, the MER was around 8%, which is the lowest possible value achieved
for all of the features selected with KINN.

RF: has worked perfectly with ordering of variables by the VIMP selection criteria, wherein
RF with the first 90 features have achieved the lowest MER value (~4%), and remaining stable at
this level until the number of ordering variable reaches 10,000 feature. that This explicitly means
that with RF classifier the first subset of top-ordering variables based on VIMP, the optimal
number from the first ordering variable is 10,000 variable, and the rest of variables contains less
information and it may be unrequired in classification process.

Briefly, using a selected subset of features based on PC transformation achieved better results
with SVM and KINN than to handle all features. However, when we take into consideration the
number of PCs that optimises the performance of the classifiers. the ideal first subset from the
number of ordering variables shows strong variations depending on the type of classifier and the
nature of the RNA-seq data.

Whereas with SVM was the ideal first subset from the RF VIMP-ordered variables was 140
variables, but with KINN the ideal first subset from ordering variables was around 40 variables,
eventually with RF the ideal first subset was 80 variables. in brief, the count of the first from the
first subset from significant variables depend on the type of classifier, moreover the nature of the
RNA-seq data, thereby there are no ideal way to identify the count of the most significant variables
that will satisfy the inferior level from MER to the classifier.

However, with KNN, the number of PCs was 4. Interestingly, the selected subset of features
based on the RF achieved the best performance when the subset of significant features reached 90.
In the end, there were no ideal feature selection criteria that rely on the type of classifier, the type

of feature selection method and the number of subsets from the most significant features.
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CHAPTER 7: GENERAL DISCUSSION

RNA sequencing (RNA-seq) technology was developed in 2007 and rapidly emerged as a
replacement for microarrays for gene expression analyses. RNA-seq is preferred over microarrays
because it has a higher sensitivity and dynamic range, with lower technical fluctuations, and thus
higher precision than microarrays. Supervised and unsupervised approaches for analyzing
microarray data have been well developed, but they are not suitable for RNA-seq data because
microarrays measure gene expression in continuous intensities, whereas RNA-seq enables the
absolute quantification of RNA levels by using discrete counts of reads per feature (gene,
transcript). In recent literature, limited work has been done on supervised and unsupervised
classification methods from RNA-seq raw count data for the classification of samples. In particular,
problems might arise when data are over-dispersed, contain many zeros values, and have high
dimensionality properties. In this thesis, we assessed and evaluated some of the most popular
supervised and unsupervised classification approaches to classify samples based on their RNA-seq
expression profile.

Supervised and unsupervised classification methods are valuable for classifying samples to
improve diagnosis and prognostics for diseases, or to predict phenotypes and classify samples by
tissues, among other uses. When we started this work, no research had dealt with the evaluation of
the supervised classification analysis of RNA-seq data, with a focus on how to refine the
performance of classification methods through gene expression analysis and variable ordering.
Furthermore, no studies have focused on how optimal parameters that will help improve the
performance of classifiers can be identified.

At the end of my thesis, during the last weeks of the writing of this manuscript, Johnson and
co-authors published an article addressing the same question (Johnson et al., 2018) . However, their
work relied on different study cases (from Human and rat), normalization methods, and classifiers.
In contrast to our work, their study did not include a comparative assessment of the normalization
method. Moreover, he did not perform a study of the impact of classifier parameters on their
performances. In particular, for the SVM classifier, which outperforms KINN and RF in our study,
Johnson and co-workers used the default kernel (radial) of the R svm implementation, which prove
to be inefficient on almost all our study cases. We thus think that the conclusions of their study are
questionable, at least for human data. One advantage of their study is that they compared the

classifier performances with gene-based or transcript-based counts, and showed that transcripts
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and isoforms provide better results. Their conclusions might however be affected by the choice of
suboptimal parameters for the classifier.

We have seen that the results are variable: some datasets provided a very good basis for
learning, almost irrespective of the classifier (e.g., psoriasis), whereas others, such as that on human
leukemia, showed excellent learning with SVM and RF (SVM seems to outperform RF) but poor
results with KINN; this is essentially caused by the overfitting problem. Some other (cellular
complexity of adult and fetal human brain, lupus erythematosus, cerebral cancer type) datasets give
very deceiving results with all the classifiers tested here.

We strived here to valorize the interest of using a diversity of study cases, as this would prevent
us from drawing conclusions from a particular dataset that would not be applicable in general.

We concluded from our study that supervised classification methods are a powerful tool for
classifying RN A-seq raw data. Aside from the ability of supervised classifiers to assign samples to
their respective class, they facilitate novel findings on the role of genes based on the importance
of assigning samples to relevant classes, which is the main objective of machine learning methods.
In this work, we showed the capability of machine learning methods to meet the general goal of
classifying RN A-seq data.

The non-normality of features in RNA-seq raw data led us to evaluate the adequacy of
alternative pre-processing approaches on the performance of classifiers. There is a variety of pre-
processing approaches that can be applied as a prerequisite step, notably those that rely on the
nature of the targeted RINA-seq dataset, which is based on the type of sequencing used in the
experiment and the resulting output from the trial. In our work, we were confronted with the
common observation that RNA-seq data contain many zero values. Furthermore, datasets have
high dimensionality, with more genes than samples. Expression levels also span a wide dynamic
range of values, in which a few genes are expressed at a very high level (hundreds of thousands of
counts per gene), whereas many others are barely detectable (a few counts per sample) or
undetected. For this reason, we performed filtering at the gene, sample, and class levels for two
main goals: the first is to perform the pre-processing procedures, machine learning methods will
sometimes not work properly without this step, in addition that in some cases, the classifier will
not work at all (program crashes); and when it does work, it may give us strange and unreliable
results. The second goal is to make comparative assessment for effectiveness of pre-processing to
determine which pre-processing approach will lead to the optimum performance for the classifier

and for clustering,.
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Our finding is that SVM and KNN need log2-transformation but with PC-transformation (PC
reduction urged RF to return bad findings) to improve the effectiveness of classifying RNAseq
data.

This implicitly means that pre-processing is a required step for the analysis of RNA-seq raw
data with SVM and KINN. Furthermore, pre-processing results in significant improvements in the
reduction of the execution time, which is particularly useful here with the RF, as it may take a
lengthy execution time.

To optimize the effectiveness of classifiers, we sought to find the suitable method for feature
selection, which could lead to emphasis on the relevance of supervised classification methods to
employ multi-variate analysis to analyze RNA-seq data (for example, clustering the genes resulting
from supervised classification). Our role in the study is to find a suitable feature selection approach
that will be more appropriate for the RNA-seq raw data. We therefore tested the following
mechanisms. First, using differential expression analysis, we extracted and ranked the variables
based on their respective importance relative to the p-value adjusted, and then we monitor how
the feeding classifier with the important variables will improve with the performance of the
classifier. Second, we tested the relevance of the important variables returned by first passed of RF
method to enable us to rank these variables. We then fed the ordered variables to the classifier in
order to evaluate if classifiers fed with top-ranking variables would lead to improved performance.
In addition to mitigating the problems arising from high dimensionality, the feature selection
approach provides information on how feature selection enhances classifier performance.

By utilizing feature selection methods based on DE, we identified the best subset of features
(genes) of feature selection, and we sorted these features based on their differential expression
values (adjusted p-value) to improve the performance of the classifiers. in other side pertaining the
find optimal parameter for each classifier, we noticed that there are not unified parameters for each
classifier which may give rise to obtain best results, but for each data set we need to customize
certain value for the targeted parameter to each classifier, we accordingly that need identify certain
parameter for each classifier based on the study case to enhance from efficiency of classifier in
classification RNA-seq data, that in turn, leads to obtaining better results than using the default

parameter for each classifier.
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By using principal component analysis (PCA), we sought to overcome and find a suitable
solution for the issue of high dimensionality. We used PCA to transform the original dimension of
the PCs , and then fed each classifier with the subsets of the increasing ordered PC to test if
transformed data will give us more information instead of the original data in order to evaluate if
the PC will improve the performance of the classifier. Our results showed that the PC helped
enhance the accuracy of the classifier.

In the end, there are no ideal feature selection criteria; instead, that depend on the type of the
classifier, the kind of feature selection methods used, and the number of subsets from the most
significant features.

To improve the performance of the supervised algorithms on RNA-seq data, we proposed
some methods and assessed their performance in selecting the initial values to start the parameter
estimation.

For the RNA-seq data, there is no one commonly accepted supervised classification method
for choosing the optimal classifier that will always lead to classification with a minimal MER.
Therefore, we could typically determine the most favorable classifier that would enable powerful
classification with a bit error rate. Future work on this area can include identifying an ideal classifier
with optimal parameters for classifying RNA-seq data. Our methods were implemented in this way,
there is no monotonic behavior for each classifier. An extensive evaluation of other different
classifiers will be beneficial for the future development of supervised classifiers, and using deep
learning for this purpose may be worthy.

Another topic that was not investigated in this dissertation is unsupervised classification
(clustering). Examining the performance of clustering methods on RNA-seq data would be
interesting, particularly a comparison of the performance of supervised and unsupervised
classification methods. The purpose is to evaluate whether clustering methods can re-discover what
we already know about the biological classes of samples and whether they can potentially discover
new properties (e.g., identify subclasses of the main classes that are defined by biologists).

As a by product of this research, we created a package called RN.AsegM1’A, which is
specifically designed to study the impact of pre-processing, feature selection, and classifier

parameters on the accuracy of supervised classification methods with RNA-seq data.

The aims of this dissertation are to highlight the role of machine learning algorithms in these
advances and to motivate researchers on how to make supervised and unsupervised classifications
for technological accomplishments in DNA sequencing technologies, specifically those related to

genomics.
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APPENDICES

Appendix A. Supplementary Figures

For the sake of completeness, we provide hereafter the figures for each one of the 7 study

cases. A subset of these is used and discussed in the manuscript.

A1. Distribution for the raw count data in each dataset from selected datasets

Figure 34 Impact of variance-
based gene filtering on the

study case Psoriasis
(SRP035988).

The histograms indicate the
distribution of variances

(abscissa) per gene (ordinates) in
the raw data (top panel, grey),
in the genes discarded by the
near-zero filter (second
histogram, orange), and in the
genes kept after filtering (third
histogram, green). The bottom
histogram shows the number of
genes (ordinate) as a function of
the number of samples (abscissa)
having a zero value for these
genes.
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Figure 35 Impact of
variance-based gene
filtering on the study case
Human Leukemia
(SRP056295).

The histograms indicate the
distribution  of  variances
(abscissa) per gene (ordinates)
in the raw data (top panel,
grey), in the genes discarded
by the near-zero filter (second
histogram, orange), and in
the genes kept after filtering
(third histogram, green).
The bottom histogram shows
the number of genes (ordinate)
as a function of the number of
samples (abscissa) having a
zero value for these genes.
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Figure 36 Impact of
variance-based gene
filtering on the study case
Cellular Complexity of
the adult & fetal human
brain (SRP057196).

The histograms indicate the
distribution of variances
(abscissa) per gene
(ordinates) in the raw data
(top panel, grey), in the
genes discarded by the
near-zero filter (second
histogram, orange), and
in the genes kept after
filtering (third histogram,
green). The  bottom
histogram  shows  the
number of genes (ordinate)
as a function of the number
of  samples  (abscissa)
having a zero value for
these genes.
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Figure 37 Impact of variance-
based gene filtering on the study
case Cancer disease types
(SRP061240).

The histograms indicate the
distribution of variances (abscissa)
per gene (ordinates) in the raw data
(top panel, grey), in the genes
discarded by the near-zero filter
(second histogram, orange), and
in the genes kept after filtering
(third histogram, green). The
bottom histogram shows the
number of genes (ordinate) as a
function of the number of samples
(abscissa) having a zero value for
these genes.
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Figure 38 Impact of
variance-based gene
filtering on the study
case Lupus
erythematosus
(SRP062966).

The histograms indicate
the  distribution  of
variances (abscissa) per
gene (ordinates) in the
raw data (top panel,
grey), in the genes
discarded by the near-
zero  filter  (second
histogram, orange),
and in the genes kept
after filtering  (third
histogram, green). The
bottom histogram
shows the number of
genes (ordinate) as a
function of the number
of samples (abscissa)
having a zero value for
these genes.
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o f All non-zero var genes; SRP066834

Figure 39 Impact
variance-based gene
filtering on the study case
Cerebral organoids and
fetal neocortex
(SRP066834). °7 . . . .
The histograms indicate the o ° " 2° %
distribution ~ of  variances
(abscissa) per gene (ordinates)
in the raw data (top panel,
grey), in the genes discarded
by the near-zero filter (second
histogram, orange), and in
the genes kept after filtering
(third histogram, green). o . M . -
The bottom histogram shows

the number of  genes

(ordinate) as a function of the Kept genes

number of samples (abscissa)
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A2. Impact of Normalization processes for the 7 study cases

Figure 40. Impact of
Normalization. on the
misclassification error
rate of classifiers on
the Human breast
cancer study case
(SRP42620).

The ordinate indicates
the misclassification
error rates. Each
boxplot corresponds to
one testing-training
experiment (10
iterations) and one
particular preprocessing
method.
Abbreviations: q0.75:
third quantile
normalization; log2:
log2-transformed
normalized data; PC:
principal components
derived from log2-
transformed data; RLE:
Relative Log
Expression; DESeq2:
normalization method
from DESeq2;
permlabels: random
permutation of the
sample labels, usedto
estimate the random
expectation for the
misclassification error
rate. Blue boxes: result
from the analysis of the
actual datasets. Grey
boxes: random
expectation estimated
by permuting class
labels during the
training and testing.
Top: Support Vector
Machines (SVM);
Middle: K-nearest
neighbors (IKNN);
Bottom: Random
Forest (RF).
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A3. Impact of feature selection on classifier Accuracy

A3.1. Feature selection based on Principal Components

SVM
Figure 47 Impact of the selection

of principal components on the
accuracy

of classifiers for the Breast cancer
(SRP042620) study case.

The ordinate indicates the
misclassification error rates (MER).
Each boxplot corresponds to one
testing-training experiment (10
iterations) and one particular feature
selection based on PCs method.
Abbreviations: prccomp-
nb_of_PCs_3: log2-transformed
normalized counts are reduced
through R prcomp() function. The
suffix number 3 indicates the number
of retained top PCs. Blue boxes:
result from the analysis of the actual
datasets. Grey boxes: random
expectation estimated by permuting
class labels during the training. Top:
Support Vector Machines (SVM);
Middle: K-nearest neighbors (KNN);
Bottom: Random Forest (RF).
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RF
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SVM
Figure 51.

Impact of the
selection of
principal
components
on the
performances
of classifiers
for the
Cetebral KNN
organoids and
fetal neocortex
(SRP066834).
Legend: see
Figure 47.

RF

A3.2. Feature selection based on the DESeq 2and edgeR
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Figure 52 Impact of feature selection on the misclassification error rate of classifiers for the Breast
cancer study case (SRP042620).

The ordinate indicates the misclassification error rates. Each boxplot corresponds to one testing-training
experiment (10 iterations) and one particular feature selection method. Blue boxplots: From left to right,
the 3 series of feature selection respectively correspond to DESeq2, edgeR or random ordering of the
features. Within each series, the number of top-raking features progressively increases from left to right
(numbers of top-ranking genes: 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130,
140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 1000, 2000, 5000, 10000). Grey boxes: random expectation

estimated by permuting class labels during the training and testing. Top: Support Vector Machines (SVM);
Middle: K-nearest neighbors (KINN); Bottom: Random Forest (RF).
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Figure 53 Impact of feature selection on the misclassification error rate of classifiers on the Human
Leukemia (SRP056295).Legend: see Figure 52.
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Figure 54 Impact of feature selection on the misclassification error rate of classifiers on the Cancer
disease types (SRP061240). Legend: see Figure 52.
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Figure 55 Impact of feature selection on the misclassification error rate of classifiers on the Cerebral
organoids and fetal neocortex (SRP066834). Legend: see Figure 52.
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Figure 56 Impact of feature selection on the misclassification error rate of classifiers on the Bool
Disease (SRP062966). Legend: see Figure 52.
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The ordinate indicates the misclassification error rates. Each boxplot corresponds to one testing-training
experiment (10 iterations) and one particular feature selection method. Abbreviations: top-3-var-
v.important: raw data ordered according to variable importance outputs from REF and number 3 indicate
top significant feature based on the variable importance generated from RI; permlabels: random
permutation of the sample labels, used to estimate the random expectation for the misclassification error
rate. Blue boxes: result from the analysis of the actual datasets. Grey boxes: random expectation estimated
by permuting class labels during the training and testing. Top: Support Vector Machines (SVM); Middle: K-
nearest neighbors (KINN); Bottom: Random Forest (RF).
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of classifiers on the Breast Cancer (SRP042620) relied on VIMP which are generated from RF.
Legend: see Figure 57.
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A4. impact of K parameter into the KNN classifier

Figure 59 impact of K
(nearest neighbor) of KNN
into classifier accuracy for
Cerebral organoids and
fetal neocortex
(SRP0O66834) measured by
misclassification error rate.
The  ordinate indicate
increased value of k
parameter that are (3, 5, 7,
10, 15), abscissa indicates
the misclassification error
rates. Each boxplot
corresponds to one testing-
training  experiment (10
iterations) and one
particular  pre-processing
method is considered in
this analyze is TMM_ log2
(- Blue boxes: result from
the analysis of the actual

datasets.  Grey  boxes:
random expectation
estimated by permuting
class labels during the

training and testing. Dotted
line: theoretical value of the
random expectation for the
MER, based on class sizes.
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Figure 60 impact of K
(nearest neighbor) of KNN
into classifier accuracy for
Psoriasis (SRP035988).
Legend see Figure 59
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Figure61 impact of K
(nearest neighbor) of KNN
into classifier accuracy for
Cellular complexity of the
adult & fetal human brain
(SRP057196). Legend see
Figure 59
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Appendix B: the RNAsegMVA package

Motivation for the RNAsegMVA package

RNAseqMVA is a comprehensive package for application of machine-learning algorithms in
classification of next-generation RNA-Sequencing (RNA-seq) data. Researcher have invented
RNAsegMVA for the various purposes, which include prediction of class labels of samples of
cancer, disease, phenotype, tissues and etc. Preprocessing approaches include quartiles (Total count
TC, Upper quartile UQ, median Med and third quartile Q3, trimmed mean of M TMM, Relative
Log Expression RLE and Differential expression sequencing DEseq2 ) normalization methods can
be used to correct systematics variations, as well as filtering methods at different levels which are
genes, samples and classes to eliminate and mitigate the non-nature values NA, zeros and huge
range in read counts. Principal component transformation can be used to bring discrete RNA-seq
data hierarchically closer to microarrays to perform RNA-seq classification. Currently,
RNAsegMVA package contains 3 RNA-seq-based classifiers. Besides these classifiers,
RNAseqMVA package also include identification of best subset of features (genes) and sorting the
features based on their differential expression analysis in one side and their variable importance
generated from random forest. Researchers can build classification models, apply parameter
optimization on these models, assessment and evaluate the model performance and compare the
performances of different classification models. Moreover, the class labels of test samples can be
predicted with the built models. RNAseqMVA is a user friendly, simple and surrently are published
in GitHub repository as like the most comprehensive packages that are developed in the literature
for RNA-seq classification. To start using this package users need to downloaded which RNA-seq
dataset they are interesting based on the description of the experiment, by using such step the user
will be able to download count tables which contains the number of count reads mapped to each
transcript by pheno tables which contains whole description for each sample. This vignette is

presented to guide researchers how to use this package.
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UML Diagram of the RNAseqMVA package.

UML (Unified Modeling Language) was created as a result of the mess revolving around
software development and documentation. In the 1990s, there were several different ways to
represent and document software systems. The need arose for a more unified way to visually
represent those systems and a results. In 1994-1996, the UML was developed by three software
engineers working at rational software. It was later adopted as the standard in 1997 and has
remained the standard ever since, receiving only few updates.

Class diagram based on the UML with the purposes of visually representing our RNAseqMVA
package along with its main objects, attributes, classes, subclasses, and properties beside that what
is the relation between them that we have used it to give the researchers better understand, alter,
maintain, or document information about the RNAseqMVA package.

We simply used UML to perform a modern approach to modeling and documenting our
RNAseqMVA package. In fact, It’s one of the most popular schema for visualizing object-oriented
programming language. Notably, we used in our package S3 object-oriented in R programming
language.

In Figure 62. We elucidate the make up a classes diagram, Briefly expose composition our
analysis, it is requisite to have four classes which are studyCase, DataTableWithClasses,
DataTableWithTrainTestSets and TrainTestResult. The sequel to, the structure of each class has 3
fields: the class name at the top, the class attributes right below the name, and the class
operations/behaviors at the bottom. The relation between different classes (represented by a
connecting line).

The summary of workflow of the analysis is initially you should have studycase object which is
contain the recountID is the id is targeted in our analysis that mean the ID of the selected
experiment from the recount2 warehouse, parameters that is vector which contains all required
parameters in the analysis (e.g. directories, filtering, standardization, save.tables, save.image,
classifiers, etc. ), list of rawdata (countPerRuns, original Counts) and dataSetForTest is list contains
(filtered_count_table, Norm_count_table, log2_norm_count_table, log2_norm_PCs,
log2_norm_DESeq_sorted, log2norm_edgeR_sorted, and log2_norm_Random_forst_sorted) this
studyclase contains several operations and behaviors to name a few (load_count,
Load_recount_experiment, filter_Data_Table, normalize_Samples, etc.). with classe of
DataTableWithClasses it is inherited from the parent class Studycase which is have the same

attribute for the studycase in addition to it has the special attributes related to class to name a few
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(e.g. class_names, samples_per_class, class_Frequenceies, class_color, ect. ). And
DataTableWithClasses contains many operations / behaviors to name a few (build_attributes,
iterate_Training_Testing, export_tables, etc.).
The third class is DataTableWithTrainTestsets. Which have their respective attribute is
rain_test_properties, iteration, training properties. Train_size_per_class, etc.) with special
operations / behaviors to name a few (build_Attributes, iterate_Training Testing, print, etc.). the
last class named TrainTestResults which have their respective attribute are ( train_Index,

test_Index, train_predicted_classes, test_predicted_classes, etc. ).

studyCase DataTableWithClasses TrainTestResult
 parametars ) -1 o
_ rawData: list( - dataTable - classLabels
countsPerRuns, phenoTable - dataType
originalCounts ) - Rggaer’:repsles - parameters
- datasetsForTest: list( - samplesNames - classifier
filtered I iterati
‘ - geneNames - iteration
B - classLabels - trainindex
Lo s, O |- dassName: estindon
log2norm_DESeq2_sorted, N zlaangnge:Jenacsesies - trainPredictedClasses
toggnorm_a?:QER_tS(artEd. - randExpectedHitRate - testPredictedClasses
0g2norm_RF_sorted) - randExpectedMisclassficationRate
T tTabl. - classColors +heatmap()
exportTables() - classColors +print()
Missing methods: - classProperities
. - sampleColors Missing:
+print() +exportTables
+summary() +buildAttributes() P 0
+exportTables()
Methods that are currenty +IterateTrainingTesting()
generic and we should evaluate +plotFigures(
whether they should be +print()
redefined as class-specific: +summary()
+loadCounts()
+loadRecountExperiment()
+MergeRuns - -
+filterDataTa le({ DataTableWithTrainTestSets
+NormalizeSamples()
- trainTestProperties

- iteration

- trainingProperities
- stratified

- trainSizePerClass
- trainIndices

- testIndices

+buildAttributes()
+exportTables()
+IterateTrainingTesting()
+print()

+summary()

AN

OrderedDataTableWithTrainTestSets

+ featureScore: float
+ ascendingScore: Boolean

+ buildAttributes()

Figure 62 UML diagram to visuals our used objects and their classes and operations.
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Availability of RNAseqMVA

The RNAseqMVA is available on github: https://github.com/elqumsan/RNAsegMVA
Currently, the package can readily be downloaded, compiled and used to reproduce all the results
presented in this PhD thesis. We are in the process of writing a Vignette which will provide detailed

information about the use of the package, and enable its usage for analyses of custom datasets.
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Appendix C: full list of R packages used

— Session info
setting value
version R version 3.5.1 (2018-07-02)
os macOS 10.14.1
system x86_64, darwinl5.6.0
ui RStudio
language en_US.UTF-8
collate en_US.UTF-8
ctype en_US.UTF-8
tz Europe/Paris
date 2018-12-03

— Packages
package version date lib source
abind 1.4-5 2016-07-21 [1] CRAN (R 3.5.0)
acepack 1.4.1 2016-10-29 [1] CRAN (R 3.5.0)
affy 1.58.0 2018-05-01 [1] Bioconductor
affyio 1.50.0 2018-05-01 [1] Bioconductor
annotate 1.58.0 2018-05-01 [1] Bioconductor
AnnotationDbi 1.42.1 2018-05-08 [1] Bioconductor
assertthat 0.2.0 2017-04-11 [1] CRAN (R 3.5.0)
backports 1.1.2 2017-12-13 [1] CRAN (R 3.5.0)
base64enc 0.1-3 2015-07-28 [1] CRAN (R 3.5.0)
bibtex 0.4.2 2017-06-30 [1] CRAN (R 3.5.0)
bindr 0.1.1 2018-03-13 [1] CRAN (R 3.5.0)
bindrcpp 0.2.2 2018-03-29 [1] CRAN (R 3.5.0)
Biobase 2.40.0 2018-05-01 [1] Bioconductor
BiocGenerics 0.206.0 2018-05-01 [1] Bioconductor
BiocInstaller 1.30.0 2018-05-01 [1] Bioconductor
BiocParallel 1.14.2 2018-07-08 [1] Bioconductor
biomaRt 2.36.1 2018-05-24 [1] Bioconductor
Biostrings 2.48.0 2018-05-01 [1] Bioconductor
bit 1.1-14 2018-05-29 [1] CRAN (R 3.5.0)
bito4 0.9-7 2017-05-08 [1] CRAN (R 3.5.0)
bitops 1.0-6 2013-08-17 [1] CRAN (R 3.5.0)
blob 1.1.1 2018-03-25 [1] CRAN (R 3.5.0)
broom 0.5.0 2018-07-17 [1] CRAN (R 3.5.0)
BSgenome 1.48.0 2018-05-01 [1] Bioconductor
bumphunter 1.22.0 2018-05-01 [1] Bioconductor
callr 3.0.0 2018-08-24 [1] CRAN (R 3.5.0)
caret 6.0-80 2018-05-26 [1] CRAN (R 3.5.0)
checkmate 1.8.5 2017-10-24 [1] CRAN (R 3.5.0)
class 7.3-14 2015-08-30 [2] CRAN (R 3.5.1)
cli 1.0.1 2018-09-25 [1] CRAN (R 3.5.0)
cluster 2.0.7-1 2018-04-13 [2] CRAN (R 3.5.1)
codetools 0.2-15 2016-10-05 [2] CRAN (R 3.5.1)
colorspace 1.3-2 2016-12-14 [1] CRAN (R 3.5.0)
commonmark 1.6 2018-09-30 [1] CRAN (R 3.5.0)
crayon 1.3.4 2017-09-16 [1] CRAN (R 3.5.0)
CVST 0.2-2 2018-05-26 [1] CRAN (R 3.5.0)
data.table 1.11.8 2018-09-30 [1] CRAN (R 3.5.0)
DBI 1.0.0 2018-05-02 [1] CRAN (R 3.5.0)
ddalpha 1.3.4 2018-06-23 [1] CRAN (R 3.5.0)
DelayedArray 0.6.6 2018-09-11 [1] Bioconductor
DEoptimR 1.0-8 2016-11-19 [1] CRAN (R 3.5.0)
derfinder 1.14.0 2018-05-01 [1] Bioconductor
derfinderHelper 1.14.0 2018-05-01 [1] Bioconductor
desc 1.2.0 2018-05-01 [1] CRAN (R 3.5.0)
DESeq2 1.20.0 2018-05-01 [1] Bioconductor
devtools 2.0.1 2018-10-26 [1] CRAN (R 3.5.1D)
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digest 0.6.18 2018-10-10 [1] CRAN (R 3.5.0)
dimRed 0.2.2 2018-11-13 [1] CRAN (R 3.5.1)
doMC 1.3.5 2017-12-12 [1] CRAN (R 3.5.0)
doParallel 1.0.14 2018-09-24 [1] CRAN (R 3.5.0)
doRNG 1.7.1 2018-06-22 [1] CRAN (R 3.5.0)
downloader 0.4 2015-07-09 [1] CRAN (R 3.5.0)
dplyr *0.7.8 2018-11-10 [1] CRAN (R 3.5.0)
DRR 0.0.3 2018-01-06 [1] CRAN (R 3.5.0)
elo71 1.7-0 2018-07-28 [1] CRAN (R 3.5.0)
edgeR 3.22.5 2018-10-02 [1] Bioconductor

foreach 1.4.4 2017-12-12 [1] CRAN (R 3.5.0)
foreign 0.8-71 2018-07-20 [2] CRAN (R 3.5.0)
Formula 1.2-3 2018-05-03 [1] CRAN (R 3.5.0)
fs 1.2.6 2018-08-23 [1] CRAN (R 3.5.0)
genefilter 1.62.0 2018-05-01 [1] Bioconductor

geneplotter 1.58.0 2018-05-01 [1] Bioconductor

GenomeInfoDb *1.16.0 2018-05-01 [1] Bioconductor

GenomeInfoDbData 1.1.0 2018-10-29 [1] Bioconductor

GenomicAlignments 1.16.0 2018-05-01 [1] Bioconductor

GenomicFeatures 1.32.3 2018-10-04 [1] Bioconductor

GenomicFiles 1.16.0 2018-05-01 [1] Bioconductor

GenomicRanges * 1.32.7 2018-09-20 [1] Bioconductor

geometry 0.3-6 2015-09-09 [1] CRAN (R 3.5.0)
GEOquery 2.48.0 2018-05-01 [1] Bioconductor

ggplot2 * 3.1.0 2018-10-25 [1] CRAN (R 3.5.0)
glue 1.3.0 2018-07-17 [1] CRAN (R 3.5.0)
gower 0.1.2 2017-02-23 [1] CRAN (R 3.5.0)
gridExtra 2.3 2017-09-09 [1] CRAN (R 3.5.0)
gtable 0.2.0 2016-02-26 [1] CRAN (R 3.5.0)
Hmisc 4.1-1 2018-01-03 [1] CRAN (R 3.5.0)
hms 0.4.2 2018-03-10 [1] CRAN (R 3.5.0)
htmlTable 1.12 2018-05-26 [1] CRAN (R 3.5.0)
htmltools 0.3.6 2017-04-28 [1] CRAN (R 3.5.0)
htmlwidgets 1.3 2018-09-30 [1] CRAN (R 3.5.0)
httr 1.3.1 2017-08-20 [1] CRAN (R 3.5.0)
ipred 0.9-8 2018-11-05 [1] CRAN (R 3.5.0)
IRanges 2.14.12 2018-09-20 [1] Bioconductor

iterators 1.0.10 2018-07-13 [1] CRAN (R 3.5.0)
jsonlite 1.5 2017-06-01 [1] CRAN (R 3.5.0)
kernlab 0.9-27 2018-08-10 [1] CRAN (R 3.5.0)
knitr 1.20 2018-02-20 [1] CRAN (R 3.5.0)
lattice 0.20-38 2018-11-04 [2] CRAN (R 3.5.0)
latticeExtra 0.6-28 2016-02-09 [1] CRAN (R 3.5.0)
lava 1.6.3 2018-08-10 [1] CRAN (R 3.5.0)
lazyeval 0.2.1 2017-10-29 [1] CRAN (R 3.5.0)
limma * 3.36.5 2018-09-20 [1] Bioconductor

locfit 1.5-9.1 2013-04-20 [1] CRAN (R 3.5.0)
lubridate 1.7.4 2018-04-11 [1] CRAN (R 3.5.0)
magic 1.5-9 2018-09-17 [1] CRAN (R 3.5.0)
magrittr 1.5 2014-11-22 [1] CRAN (R 3.5.0)
MASS 7.3-51.1 2018-11-01 [2] CRAN (R 3.5.0)
Matrix 1.2-15 2018-11-01 [2] CRAN (R 3.5.0)
matrixStats * 0.54.0 2018-07-23 [1] CRAN (R 3.5.0)
memoise 1.1.0 2017-04-21 [1] CRAN (R 3.5.0)
ModelMetrics 1.2.2 2018-11-03 [1] CRAN (R 3.5.0)
munsell 0.5.0 2018-06-12 [1] CRAN (R 3.5.0)
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Appendix D: Glossary

Alpha (a) An a- level test statistic would reject Hoif p < « .

An alternative Is a contrasting assertion about the population that can be tested against
hypothesis (H1) the null hypothesis.

ANOVA Analysis of variance usually refers to an analysis of a contiuous

dependent variable where all the predictor variables are categorical.
One-way ANOVA, where there is only one predictor variable, is a
generalization of the 2-sample t-test. ANOVA with 2 group is identical
to the t-test. Two-way ANOVA refers to two predictors, and if the two
are allowed to interact in the model, two-way ANOVA involves cross-
classification of observations simultaneously by both factors.

Bootstrapping Is the process of dividing the dataset into multiple subsets, with
replacement. Each subset is of the same size of the dataset. These
samples are called bootstrap samples.

Box Plot It displays the full range of variation (from min to max), the likely
range of variation (the interquartile range), and a typical value (the
median). Below is a visualization of a box plot
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Some of the inferences that can be made from a box plot:
e Median: middle quartile marks the median.
e Middle box represents the 50% of the data.
e First quartile: 25% of data falls below these line.

e Third quartile: 75% of data falls below these line.
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Cross-validation This technique involves leaving out m individuals at time, fitting a model
on the remaining m —m individuals, and obtaining an unbiased
evaluation of predictive accuracy on the m individuals. The estimates
are averaged over = n/m repetition.

E-value Expected value is statistics the sum or integral of all possible values of a
random variable, or any given function of it, multiplied by the respective
probabilities of the values of the variable.

Estimate A statistical estimate of a parameter based on the data. See parameter,

Examples include the sample mean, sample median, etc.

FDR ~ g-value Control the proportion of false positive among rejected hypothesis.

FWER Control the probability to have at least one false positive among rejected
hypothesis.

Hypothesis testing Is a common method of drawing inferences about a population based

on statistical evidence from a sample.

Jack-knife A statistical method of numerical resampling based on n samples of
size n — 1 used to calculate the variance of an estimate from an original
of sizen

Multivariate model A model that simultaneously predicts more than one dependent variable.

Null hypothesis (HO)  Customarily but not necessarily a hypothesis of no effect, the null
hypothesis labeled Ho, is often used in the frequentist branch of
statistical inference; classical statistics often assumes what one hopes
doesn’t happen (no effect of a treatment) and attempts to gather
evidence against that assumption ( 1.e., tries to reject Hy).

P-value The probability of getting a result of a test statistic as or more extreme
than observed statistic had Hy been true.

Quartiles The 25" and 75" percentiles and the median. The three values divide a
variables distributions into four intervals containing equal numbers of
individuals.

False Negative Risk Itis probability to getting sum of the false negative among the accepted

(FNR) hypothesis.

False Positive Risk It is the probability to getting sum of the false positive among the

(FPR) rejected hypothesis
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Type I error rate It is False positive rate: the probability of rejecting Ho when the null
hypothesis is in fact true. The type I error is often called a.

Type II error rate Failing to detect an effect that is real. The type II error is referred to as
B, which is one minus the power of the test. That mean the power of

testis 1 — L
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