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1.1 Example of traffic congestion in Lyon, France. ¬ is a traffic map (Google
Map) [1] that shows the traffic situations (e.g., traffic congestion) in Lyon. ­

is a photograph taken from the selected road segment (Pont ferroviaire de la
Mulatière) showing the severe road traffic congestion [2]. . . . . . . . . . . . 2

1.2 Above is an illustration of the four challenges we address in this manuscript:
”how to categorize traffic flows?”¬ which we address as a univariate analysis
problem. ”how do taxis travel in a city?” ­ which we address as a spatial
analysis problem. ” how traffic flows change over time?” ® which we ad-
dress as a temporal analysis ”how to analyze the temporal and spatial traffic
information simultaneously?”¯ It refers to the deployment of different visu-
alization techniques in one dashboard of traffic control centers. Map credits:
Google Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Summary of the contributions in this manuscript. We designed three novel vi-
sualization techniques considering each user, task, and data type. We explored
the application beyond traffic data with three of them (FuzzyCut, Gridify, and
GroupSet). We also discuss deploying multiple visualization techniques in
traffic control centers (Figure 1.4) with ControlCenter. . . . . . . . . . . . 4

1.4 Our visual design challenges come from traffic control centers (pictures are
from the control center in Lyon). A control center consists of multiple wall-
display screens (¬) where a map (­) offers an overview of road segments and
webcams (®) monitor specific road intersections. . . . . . . . . . . . . . . . 5

2.1 Examples of non-intrusive and intrusive sensors. (1) Infrared, from a YouTube
video [3]. (2) Roadside radar, from Wikipedia [4]. (3) Roadside camera, from
Wikipedia [5]. (4) Traffic signal light, from Wikipedia [6]. (5) Ultrasonic
sensor, from Wikipedia [7]. (6) Induction loop. (7) Pneumatic road tube, from
Wikipedia [8]. (8) PieZoelectric sensor, from Wikipedia [9]. (9) Magnetic
sensor, from Wikipedia [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Off-roadway sensors reside on the moving objects. As shown above, pictures
are taken or generated ourselves. They can record the trajectories and status of
objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 A sample of movement data (the taxi taking passenger trajectories in Wuhan,
China) is a typical 2D data that we focus it in Chapter 4. Each blue segment
encodes OD data of taxis: O refers to the origin when a taxi picks up the
passengers; D refers to the destination when a taxi drops off the passengers. . 16
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2.4 The manuscript reviews four visualization types that focus on temporal, spa-
tial, spatio-temporal, and event data. (a) shows the temporal data visualization
with a line chart, from the paper [11]; (b) shows a 2D map to display the
spatial information, from the paper [12]; (c) shows the spatio-temporal data
visualization, from the paper [13]; (d) shows the event-based visualization,
from the paper [14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Three visualization layouts for temporal data: (a) is a linear layout (The-
meRiver) visualizing the traffic situations, from the paper [15]; (b) is a branch
layout to represent the subways’ schedules in Boston, from the website [16];
(c) refers to the circular layout of two-dimensional ringmaps to visualize the
timestamps in different levels, from the paper [17]. . . . . . . . . . . . . . . 26

2.6 Spatial visualization for displaying the spatial data, which inspires the tech-
nique design in Chapter 4. (a) Point-based visualization of taxi trajectories,
from the paper [11]; (b) Line-based visualization of vessels’ trajectories, from
the paper [18]; (c) Region-based visualization, from the paper [19]. . . . . . . 27

2.7 The density-based visualization that describes objects’ position information
and avoid visual clutter. (a) Boston’s Massachusetts Bay Transit Authority
(MBTA), from the website [16]; (b) Data-driven Transport Assessment, from
the paper [20]; (c) Visual Analysis of Route Diversity, from the paper [21]. . . 28

2.8 The line-based visualization that expresses objects’ movement information,
e.g., direction or speeds. (a) A multivariate flow map, from the paper [22]; (b)
Traffic trajectory at a road intersection, from the paper [15]. . . . . . . . . . . 29

2.9 The Region-based visualization helps users have a perspective of the traffic
based on the subdivision regions. (a) Voila, an overview of the anomalous
information in the form of a heatmap, extracted from the paper [23]; (b) Mo-
biSeg, a region segmentation visualization, is extracted from the paper [24]. . 30

2.10 Stacking-based visualization of trajectory attribute data. A 2D map serves as
the spatial context, and the stacked bands refer to the trajectories where the
colors encode the data attribute values, from the paper [13]. . . . . . . . . . . 31

2.11 Three examples of event-based visualizations where (a) uses pie chart to rep-
resent the urban heat island, from the paper [25], (b) uses compass as icon to
display the urban causality, from the paper [26], and (c) utilizes the size of
circles to display data attribute values, from the paper [27]. . . . . . . . . . . 32

3.1 The membership function categorizes the age into Young, Middle-aged, and
Old, extracted from the book [28]. We extend this function in this chapter to
analyze univariate traffic data. . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Categorization using a crisp mapping function, there are three crisp categories
generated from the function shown in (a) and the detailed information of cate-
gories in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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3.3 Parameters and categories of membership function. The parameters contain
Core, Support, and Boundary. Based on these parameters, there are four spe-
cific categories generated: Full Category with only one membership degree is
equal to 1, Partial Category with only one membership but the membership
degree is less than 1 and more than 0, Empty Category without any member-
ship, and Overlap Category with two memberships. . . . . . . . . . . . . . 41

3.4 The illustration of interaction on FuzzyCut. Users can adjust the shape of the
membership function by dragging the black points on the membership function
as illustrated with three arrows or dragging the parameter sliders (blue) shown
on the left in (a). Based on the membership function shapes, it can create
categories with different labels (LOW, PRETTY LOW, MIDDLE, HIGH). The data
format and the derived new attributes are in table (b). The raw data includes
the quantitative data speed and derived attributes, including Categories and the
membership degrees, such as the columns Membership Degree - LOW (Full
Category) and Membership Degree - HIGH (Full Category). . . . . . . . . . 42

3.5 FuzzyCut separates taxi speed values into five categories. There are two cat-
egories with membership degrees less than 1 (fuzzy categories), named Low-
Middle and Mid-High. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 The statistic of categories generated from eight participants with the age dataset.
The x-axis represents the type of categories, such as Overlap Category, Full
Category, and Partial Category, which are introduced in Figure 3.3; Total cat-
egories refers to all the generated categories; the y-axis represents the number
of each category type; the different colors refer to the categorization without
using FuzzyCut, the categorization using FuzzyCut but with subsets and the
categorization using FuzzyCut with the entire dataset. . . . . . . . . . . . . 44

3.7 The statistic of fuzzy categories generated from 8 participants with the tem-
perature dataset. The x-axis represents the type of categories, such as Overlap
Category, Full Category, and Partial Category, as shown in Figure 3.3; Total
categories refers to all the generated categories; the y-axis represents the num-
ber of each type of categories; the different colors refer to the categorization
without using our tool, the categorization using our tool but with subsets and
the categorization using our tool with the entire dataset. . . . . . . . . . . . 45

3.8 Usage frequencies of categories’ names. The bigger size of the text, the more
participants used such names. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 The results of the post-study questionnaire. The box plot represents a Likert
scale for eight participants answering six questions. The scores are from 1 to
5, with 5 representing the most positive feedback and 1 representing the most
negative feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 OD map (which stands for Origin-Destination map, a geospatial visualization
technique introduced in [29]) represents the US migration among countries.
This chapter is based on this technique that we generalize, to explore spatial
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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4.2 Example of visualizations built with Gridify. Gridify relies on the combina-
tion of simple data grouping, aggregation, and grid patterns, to reveal implicit
relationships in geo-data (e.g., speed of taxis) while keeping explicit ones (i.e.
positions of taxis) visible. ¬ shows the taxi trajectories (explicit relationships)
between pick-up points (the places where taxis pick up passengers) and drop-
off points (the places where taxis drop off passengers). ­ extends the same
encoding as ¬ to nest more dimensions, such as the distance of the trajectories
(implicit relationships). ® renders the trajectories based on the trajectories’
attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Data abstraction in Gridify. Dimension list consists of two implicit relations
(Weeks and Weather). Grouping the geo-coded entities (e.g., e1, e2, and e3)
based on the Weather dimension achieves two groups. One group contains e1

and e2 that only has Sunny value. In contrast, another group contains e3 that
only has Rainy value. Aggregation method estimates the statistic of grouped
groups (e.g., one group has two elements and another has one element). Di-
mension domain method shows the value scales from other dimensions (e.g.,
one group has a domain in [Monday, S aturday]). Nesting operations generate
another level nest (e.g., adding the Day dimension). . . . . . . . . . . . . . . 55

4.4 Cells become smaller and smaller when the number of implicit relations A and
A′ increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Query panel overview. ¬ shows the rectangular boxes view all the implicit
relations. Grid pattern selection generates different space divisions (e.g., grid,
horizontal, or vertical) in ­. The histogram displays the univariate distribution
of each quantitative implicit relations’ value in ®, and ¯ displays options of
quantitative implicit relations calculation. . . . . . . . . . . . . . . . . . . . 58

4.6 An overview of Gridify implementations and interactions to construct data
and visual abstraction (a) dimensions lists from which (b) a grouping method
such by domain (if category) or by binning (if quantity), (c) aggregation types
for each division such as counting or averaging, (d) grid patterns and (e) vi-
sual mapping for grids customization. The left part shows the gridded space
where each cell encodes dimensions domains and scales according to grid
types and visual mappings. Widgets can be vertically chained to create nest-
ing for both the data and visual abstractions: the widget will inherit from dy-
namic dimensions, and the new grids will be created in the placeholders
created by the parent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Taxi dataset of 7, 271 taxi drivers in a Chinese city during one week (145, 789)
records. We identify interesting patterns related to the asymmetry of trips. (0)
refers to the overview of the taxi trajectories while taking passengers and we
bin them based on hours in (1). Then, we display an interesting asymmetry
between pickups and drop-off for a region of interest (Wuhan railway station)
during a month in (2). Finally, we show pickups and drop-offs side by side, by
days and time slots reveal the asymmetry of pickups and drop-offs in (3). . . 61
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4.8 Comparing public transport accessibility for three locations throughout the
day. An overview of trips divides journeys into three grids based on origin
locations in (0) and (1). After that, grouping the origin locations as rows and
dividing hours as vertical grids create the location accessibility by hours in
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Abstract

This manuscript deals with the design of novel methods for the visual analysis of road traffic
data. As recent technological advances allow traffic analysis with a finer and more varied
spatial and temporal granularity, at several scales, both local and global, from the level of a
street to an agglomeration. Thus experts and operators of road checkpoints can explore these
large volumes of data in a non-technical way, identify interesting patterns and make better
decisions informed by the data (e.g.,to reduce traffic congestion).

The first part of the manuscript addresses the problem of univariate analysis (found in e.g.,
traffic density and traffic flow data) by proposing an interactive categorization method named
FuzzyCut. This method is based on the fuzzy logic theory by proposing an interactive version
of the category membership function. We introduce the interactions and the design of this
technique, as well as its implementation on different types of quantitative data (e.g., traffic
densities and taxi speeds). This technique has also undergone a user evaluation and its code
and evaluation data are available online.

The second part focuses on the analysis of the spatial component of road traffic which is
inherent in this data type. We propose the adaptation of an existing technique called Origin-
Destinations maps, that preserves both explicit relationships (spatial trajectories) and implicit
relationships (abstract attributes of those trajectories) of datasets, using spatial nesting: a first
level of the map encodes the origin (starting point of objects), and a second nested level en-
codes the destination (ending point of objects) in cells nested on the map. We generalize this
technique beyond origins and destinations relationships (2-attribute datasets) to explore multi-
dimensional datasets (N-attribute datasets). We present an abstraction framework, Gridify,
and its implementation as an interactive open-source tool with several levels of nested maps
to explore the relations of geo-coded entities (location or object) with multi-dimensional at-
tributes.

The third part focuses on the problem of temporal analysis which is also an important
component of traffic flows. We propose GroupSet, a technique to explore temporal changes
using a set-based approach. Such exploration reveals elements’ patterns and similarities, such
as increases or decreases in traffic flow values during a day. We demonstrate the technique’s
applicability to traffic flow and report on usability feedback of an interactive prototype imple-
menting the technique.

The last section discusses the three techniques introduced in the manuscript (FuzzyCut,
Gridify and GroupSet). First, how to deploy them in road traffic control centers, within a
unified prototype. Secondly, their application beyond road traffic data, as generic tools for the
analysis of univariate, spatial and time-varying data.

Keywords: Data visualization, Road traffic data.
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Résumé

Ce manuscrit porte sur la conception de nouvelles méthodes d’analyse visuelle de données de
trafic routier. En effet, les avancées technologiques récentes permettent une analyse du trafic
avec une granularité spatiale et temporelle plus fine et variée, au moyen de capteurs ou de
boitiers GPS. La visualisation permet de mieux explorer ces données, à plusieurs échelles,
aussi bien globales que locales, au niveau d’une agglomération jusqu’à un segment de rue.
Ainsi, experts et opérateurs de postes de contrôle routier peuvent explorer de manière non-
technique ces grands volumes de données, identifier des motifs intéressants et prendre une
décision informée par les données.

La première partie de la thèse aborde le problème de l’analyse univariée (que l’on trouve
dans les données de densité de trafic ou de flux de voiture) en proposant une méthode interac-
tive de catégorisation nommée FuzzyCut. Cette méthode est basée sur la théorie de la logique
floue en proposant une version interactive de la fonction d’appartenance à une catégorie. Nous
introduisons les interactions et le design de cette technique, ainsi que sa mise en œuvre sur
différents types de données quantitatives univariées. Cette technique a aussi fait l’objet d’une
évaluation utilisateur et son code et les données de l’évaluation sont disponibles en ligne.

La seconde partie porte sur l’analyse de la composante spatiale du trafic routier qui est
inhérante à ce type de données. Nous proposons l’adaptation d’une technique existante de visu-
alisation de segments de trajectoires sous formes d’origines et destinations. Cette méthode per-
met de visualiser à la fois des relations globales et locales des données, en utilisant l’imbrication
spatiale, où un premier niveau de la carte encode l’origine (point de départ des objets), et un
second niveau imbriqué encode la destination (points d’arrivée des objets). Nous généralisons
cette technique au-delà des relations d’origine et de destination (qui est un jeu de données
à 2 attributs) pour explorer les ensembles de données multidimensionnels (ex. données à N
attributs). Nous présentons un cadre d’abstraction, Gridify, et son implémentation en outil
open-source interactif avec plusieurs niveaux de cartes imbriquées pour explorer les relations
d’entités géocodées (lieu ou objet) avec des attributs multidimensionnels.

La troisième partie se concentre sur le problème d’analyse temporelle qui est aussi une
composante importante des flux de trafic. Nous proposons GroupSet, une technique pour ex-
plorer les changements au fil d’une journée ou d’une année en utilisant une approche basée
sur la théorie des ensembles. Une telle exploration révèle les similitudes de comportement
temporel des données, telles que les augmentations ou les diminutions du flux de trafic au
cours d’une journée. Cette technique a plusieurs applications, au-delà du trafic routier, pour
l’analyse des séries temporelles. Nous faisons un retour d’expérience d’utilisabilité d’un pro-
totype interactif mettant en œuvre la technique sous forme d’application web.

La dernière section discute la combinaison de trois techniques introduites dans le manuscrit
(FuzzyCut, Gridify et GroupSet) au sein d’un même environnement d’analyse. En particulier
afin de les déployer dans des centres de contrôle du trafic routier, pour réaliser des tâches
de suivi et d’analyse de flux de voitures. Nous discutons également leur application au-delà
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des données de trafic routier, comme outils génériques d’analyse de données univariées, de
données géo-codées et de séries temporelles.

Mots-clés: Visualisation de données, Données de trafic routier.
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Introduction
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Any use of ”we” in this chapter refers to Liqun Liu and Romain Vuillemot.

1.1 Context and Motivation
Road traffic1 has been in constant and rapid growth over the past decades, which helped eco-
nomic development at the local and global scale [32]. But since then, such traffic has reached
levels of density that generate traffic congestion, where vehicles are slowly moving or even
stuck on the road (e.g., Figure 1.1). Such road traffic congestion problem has become one of
the most severe urban-related issues worldwide. It generates many negative externalities that
impact social and economics life of cities. According to a report released by INRIX [33] (a
private company providing traffic-relevant data, such as real-time and historical traffic flows),
in 2019, traffic congestion has cost 17.1e billion in France because of the loss of work time or
increased wear and tear of vehicles. Besides, the extra travel time caused by traffic congestion
exacerbates another problem: air pollution, which results from the fossil fuel burned by car
engines. According to a study by Khreis [34], in 2015, traffic-related air pollution was a high
proportion of city pollution that were 24% in Toronto (Canada), 66% in Beijing (China), 67%
in Paris (France).

In the meantime, there is now a wealth of data sources to better understand road traffic
behaviors, such as traffic flow, taxi trajectories, traffic events, and webcam (video) data (more
data sources will be provided and detailed in Section 2.1.5). For instance, most taxis in cities
now require to install GPS to collect their status data every minute or seconds (e.g., taxis collect
status data 3 or 4 times every minute). Also, the increase of CCTV (Closed-Circuit Television
Camera) for road security purposes or public webcams for general traffic information, provide
new ways to automatically quantify and characterize what occurs on roads. The volume, tem-
porality, and multi-dimensionality of such datasets require a better presentation to experts who
do not have the technical skills to query those data in their raw format and enable automated
analysis.

1It represents travel and transportation in public ways (roads), including vehicles, trains, pedestrians, or other
conveyances.
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Figure 1.1: Example of traffic congestion in Lyon, France. ¬ is a traffic map (Google Map) [1] that
shows the traffic situations (e.g., traffic congestion) in Lyon. ­ is a photograph taken from the selected
road segment (Pont ferroviaire de la Mulatière) showing the severe road traffic congestion [2].

The field of Information Visualization (InfoVis) aims at providing such visual tools to help
humans interactively explore data. InfoVis is ”the use of computer-supported, interactive vi-
sual representations of numerical and non-numerical abstract datasets in order to amplify
human cognition” [35]. The formats of InfoVis generally involve multiple visual represen-
tations from basic ones (e.g., bar graph, histogram, line charts) to more advanced ones (e.g.,
networks, graphs). The application of InfoVis to road traffic visualization is already very rich,
mainly using maps to visualize the abstract data containing coordinates (e.g., traffic flows and
taxi trajectories as we will review in Section 2.1.5). InfoVis helps humans understand, explore
and analyze a large of useful information in intuitive and interactive ways enabling users to
compare different values, show the bigger picture, track trends in the data, and understand
different relationships between variables, among others.

InfoVis techniques serve not only as communication mediums, but also as Exploratory
Data Analysis (EDA) mediums—the approach of analyzing datasets by summarizing the data
characteristics with visualization methods [36]. During this stage, few assumptions in data dis-
tribution and quality can be made, so automatic methods (e.g., clustering, classification) may
not be applicable directly. Such issue is frequent when collecting real-world data, such as road
traffic data, which needs methods to not only analyze traffic patterns but assess the quality and
distribution before any analytical process. Once such exploratory steps have been conducted,
users can pick a model to facilitate or automate analysis in a more informed way [37].

Such need for exploratory traffic road data visualizations was raised while collaborating
with experts2 who provided us with road traffic datasets, lists of routine tasks to achieve and
access to traffic control centers in Lyon and Paris to observe their work in real settings. We
focused mainly on road traffic congestion data exploration and communication by developing
novel interactive techniques aimed at those experts (in opposition to a general audience). This
manuscript addresses four visual analysis questions related to road traffic data (summarized in
Figure 1.2):

2This work was conducted in conjunction with the MI2 (Mobilité Intégrée Île-de-France) project https:
//projet.liris.cnrs.fr/mi2/ which aimed at improving multimodal mobility in French large urban areas.

3https://www.google.com/maps/
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Univariate analysis

Spatial analysis

1
Origin

Destination?

Destination?

2

Temporal analysis3
Deployment in traffic 
control centers4

Figure 1.2: Above is an illustration of the four challenges we address in this manuscript: ”how to
categorize traffic flows?”¬ which we address as a univariate analysis problem. ”how do taxis travel in
a city?” ­ which we address as a spatial analysis problem. ” how traffic flows change over time?” ®

which we address as a temporal analysis ”how to analyze the temporal and spatial traffic information
simultaneously?”¯ It refers to the deployment of different visualization techniques in one dashboard
of traffic control centers. Map credits: Google Map 3.

• ”How to categorize traffic flows?” Traffic flow data can be regarded as univariate data,
i.e. observations over a single attribute. Dealing with univariate data is apparently a
simple form of data analysis, but it raises challenges such as categorization (i.e. sepa-
rating a continuous scale into intervals). This is one of the main topics in single variable
analysis [38], and is frequent for traffic flow understanding and communication (e.g., to
design color scales).

• ”How do taxis travel in a city?” The analysis of this question enables traffic experts to
better know humans’ behaviors to explore the real reason for traffic congestion (e.g., it
might be because humans have a particular commuting behavior). This is a spatial anal-
ysis that seeks to explain, mathematically and geometrically, patterns of human behavior
and their spatial representation [39].

• ”How do traffic flows change over time?” Analyzing how traffic flows change over time
enables traffic experts better know if roads have traffic congestion and when they occur.
This information helps them better guide the vehicles to reduce road traffic pressure.
Traffic flow data is the typically temporal data that changes along with a sequence of
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Figure 1.3: Summary of the contributions in this manuscript. We designed three novel visualization
techniques considering each user, task, and data type. We explored the application beyond traffic data
with three of them (FuzzyCut, Gridify, and GroupSet). We also discuss deploying multiple visualiza-
tion techniques in traffic control centers (Figure 1.4) with ControlCenter.

timestamps. Thus, our approach focuses on exploring the changing patterns of traffic
flows, addressing it as the temporal analysis problem.

• ”How to analyze temporal and spatial traffic information simultaneously?” We intro-
duce both temporal and spatial analysis problems separately so far. However, analysis of
road traffic datasets usually requires a simultaneous analysis using a single visualization
environment. In particular, in traffic control centers, traffic operators monitor situations
through heterogeneous road traffic data using wall-display dashboards. Thus, we focus
on how to deploy multiple visualization techniques in traffic control centers.

1.2 Contributions and Publications
The main contribution of the manuscript is developing novel road traffic interactive visualiza-
tions to assist traffic experts in discovering and communicating patterns hidden in road traffic
data. Figure 1.3 provides more details on the specific users, tasks, data sources, and data types
that each contribution addresses. The manuscript introduces three novel visualization tech-
niques (FuzzyCut, Gridify, and GroupSet), implemented as interactive prototypes available
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Figure 1.4: Our visual design challenges come from traffic control centers (pictures are from the control
center in Lyon). A control center consists of multiple wall-display screens (¬) where a map (­) offers
an overview of road segments and webcams (®) monitor specific road intersections.

as web applications. We also discuss how to deploy multiple visualization techniques using
ControlCenter in a dashboard in traffic control centers and how each visualization can be
applied beyond traffic data. We introduce now detail our contributions and publications as
follows (that match the four visual questions we introduced in the previous section):

Contribution ”FuzzyCut” (Chapter 3): We introduce a novel visualization technique to
categorize univariate data, such as traffic flow. It relies on fuzzy logic theory, particularly on
the membership function [40] that maps values to categories with a confidence degree. We
investigate how an interactive version of the membership function can be used to categorize
quantitative data. We report on implementing the interactive function for several case studies
with quantitative data (e.g., traffic densities and taxi speeds). After that, we report on a formal
user evaluation to investigate how users categorize quantities using the technique. We have
published a paper from this work as follows:

• Liqun Liu and Romain Vuillemot. ”Categorizing Quantities using an Interactive Fuzzy
Membership Function,” In The 12th International Conference on Information Visualisa-
tion Theory and Applications, P. 8, On-line, Feb 2021. (Link)

Contribution ”Gridify” (Chapter 4): We propose a novel visualization technique to ex-
plore spatial data relations, such as taxi trajectories datasets. It relies on an existing technique
called Origin-Destinations maps that uses spatial nesting, where a first level of the map en-
codes the origins (starting point of geographic objects) and a second nested level encodes the
destinations (ending point of geographic objects). We generalize this technique beyond ori-
gins and destinations relationships (2-attribute datasets) to explore multi-dimensional datasets
(N-attribute datasets). We present the underlying abstraction framework and its implementa-
tion as an interactive prototype to explore geo-coded entities (location or object) with multi-
dimensional attributes. We have submitted a paper from this work as follows:

• Liqun Liu, Romain Vuillemot, Philippe Rivière, Jeremy Boy and Aurélien Tabard. ”Gen-
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eralizing OD-Maps to Explore Multi-Dimensional Geo-Coded Datasets,” In The Carto-
graphic Journal, P. 26, 2022. (Under review, Link)

Contribution ”GroupSet” (Chapter 5): We introduce a novel visualization technique to
analyze the changing patterns in time-varying data, such as traffic flow data changing over time.
It relies on sets theory and existing set-based visualizations that explore sets intersections.
The technique can help users reveal temporal patterns and similarities, such as increases or
decreases in traffic flow values during a day. We demonstrate the technique’s applicability
to traffic flow and report on usability feedback of an interactive prototype implementing the
technique. We have published a paper from this work as follows:

• Liqun Liu and Romain Vuillemot. ”GROUPSET: A Set-Based Technique to Explore
Time-Varying Data,” In EuroVis 2022 - Short Papers, the Eurographics Association,
Roma, Italy, P. 5, June 2022. (Link)

In the final part of the manuscript, Chapter 6, we discuss the applications of three con-
tributions (FuzzyCut, Gridify, and GroupSet) beyond traffic-relevant data and how to deploy
them in traffic control centers (Figure 1.4) using ControlCenter, using wall-display screens,
close to a real workplace setting. We conclude with the open research challenges that remain
to address in the future.
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2.1 Traffic Flow Data Sources
Traffic flow is the study of the movement of individual drivers and vehicles between two points
and the interactions they make with one another [41]. It aims to develop optimal traffic net-
works with efficient movement and minimal traffic congestion problems. Traffic flow data can
be collected in many ways, and this section reviews the main ones:

• Non-intrusive sensors that reside on roadsides or above pavements;
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 2.1: Examples of non-intrusive and intrusive sensors. (1) Infrared, from a YouTube video [3].
(2) Roadside radar, from Wikipedia [4]. (3) Roadside camera, from Wikipedia [5]. (4) Traffic signal
light, from Wikipedia [6]. (5) Ultrasonic sensor, from Wikipedia [7]. (6) Induction loop. (7) Pneumatic
road tube, from Wikipedia [8]. (8) PieZoelectric sensor, from Wikipedia [9]. (9) Magnetic sensor, from
Wikipedia [10].

• Intrusive sensors that reside inside roads, such as grooves, tunnels under road surfaces,
or holes;

• Off-roadway sensors that reside on moving objects to collect moving information of
objects, such as taxi speed and cruising distance;

Simulations—mathematical modeling method to reproduce traffic and transportation sys-
tems using computer software—can also be used to produce traffic flow data [42].

2.1.1 Non-intrusive Sensors
This section introduces non-intrusive sensors. It includes infrared, roadside radar, roadside
camera, traffic signal light, and ultrasonic, as shown in Figure 2.1 (1-5). The advantage of
non-intrusive sensors is not to disrupt traffic; however most non-intrusive sensors can be eas-
ily disrupted by bad weather. For example, rainy days have an enormous impact on video
detection.
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Infrared can detect vehicles passing through a specific road segment once in the view
of the sensor. The infrared sensor leverages the infrared theory, which emits the light in the
infrared spectrum and measures how much light is reflected from the objects. Different tem-
peratures caused by engines or lights beam would reflect different light volumes to infrared
sensors. So the infrared sensor can detect the presence, speed, and type of vehicles. More-
over, the advantage of the infrared sensor is that it is easy to install and does not hinder traffic.
Nevertheless, it does not perform well in some cases, such as bad weather. It also has a high
initial cost, and its accuracy would be decreased if too many vehicles were on road segments.
Compared with the induction loop detector, it has lower accuracy, only 95.5% for highways
and 92% [43] for road intersections.

Roadside radar resides at a fixed location on the road to detect the speed of vehicles in
a concise period of time (a few seconds). Like the infrared sensor, the radar sensor emits
microwaves to the environment and then measures the reflected microwaves and their time. It
can determine vehicles’ presence and motion. Also, it determines the type of vehicles based
on their outline using unique algorithms. The advantages of the radar sensor are that it does
not disturb traffic during installation, measures the speed of vehicles with high accuracy, and is
stable even in bad weather. However, the detection accuracy may be affected by the occlusion
of vehicles. In addition, it is not sensitive to low-speed objects, so the accuracy decreases
sharply when the traffic volume is low.

Roadside camera detects vehicles entering road intersections based on pixel changes [44].
Initially, the camera was only used to detect the number of vehicles passing through specific
road segments. But with the development of computer vision research, the camera is now
also used to detect vehicle information, such as ID and speeds. The advantages of the camera
are quick installation and traffic not being affected during installation. However, video-based
surveillance also has disadvantages (e.g., privacy issues). Also, it has lower efficiency when it
rains or snows, affecting the pixels that the video can detect.

Traffic signal light is a piece of widely used equipment for regulating traffic around the
world. Proper traffic signal phasing can significantly reduce road pressure, especially during
morning and evening traffic peaks. The traffic control centers record the traffic light’s status,
including how often the traffic light is green, red, or yellow. This data is beneficial for the city
administration while planning the road networks.

Ultrasonic sensor emits high-frequency sound waves to the environment and receives the
sounds when they bounce back. The ultrasonic sensor can calculate the speed of vehicles based
on the duration of the sound wave between the time it is emitted and the time it bounces back.
The ultrasonic sensor is quick to install and does not interfere with traffic during installation.
It is also cheaper than many other sensors. However, it has the disadvantage of being easily
affected by obscured vehicles and weather (e.g., temperature changes and wind noise).

2.1.2 Intrusive Sensors
This section introduces the intrusive sensors. The advantages of intrusive sensors are their high
accuracy. However, these sensors are easily affected by poor road conditions. Also, the road
repairs greatly disturb the intrusive sensors such as induction loop detectors, magnetic sensors,
pneumatic tubes, and piezoelectric sensors, as shown in Figure 2.1 (6-9).
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Induction loop detector generates an electromagnetic field with two induction loops in-
stalled under each road section. It cannot only determine how many vehicles are passing a
section of road but also determine the speed of vehicles at intervals of a few minutes. Its ad-
vantages are lower cost and higher accuracy than other roadside sensors. The accuracy of this
sensor is 99.3% for highways and 97.9% [43] for road intersections. However, the induction
loop detector cannot detect the type of vehicle, and its performance is also greatly affected by
bad weather, especially temperature fluctuations.

Pneumatic road tube collects data through the changes in air pressure. It is an axle sensor
installed on the road. The air pressure changes when the wheels of the vehicle pass over the
hoses (a tube made of rubber and contains air inside to test the air pressure) since it disturbs
the air pressure. The disturbance is transmitted to the data center to count the vehicles on a
particular road. This sensor is typically used for short-term counts, which is cheap, very easy
to install, and consumes little power. However, heavy vehicles easily damage them and they
usually have a short useful life.

Piezoelectric sensor is an axle sensor cut into a groove on the road. The piezoelectric
sensor collects data by converting mechanical information into electrical information. The
sensor is compressed when a vehicle passes over it, which causes the deformation of sensors
that generate a voltage signal. The advantages of the sensor are low power consumption and
high accuracy. However, it is easily destroyed by damage to the road.

Magnetic sensor [45] determines the disturbance of the earth’s magnetism when metallic
vehicles are near the sensors. It consists of two devices, the sensor node (SN) and the access
point (AP). The sensor node is stuck on the road surface to detect the vehicles, and the access
point is installed on the roadside to collect the data from AP. Then the access point forwards
the data to the traffic control center. The advantages of magnetic sensors are that they are
inexpensive compared to inductive loop detectors, cameras, and radars. They also have a long
life and consume little power.

2.1.3 Off-roadway Sensors
This section introduces sensors attached to objects (e.g., vehicles and bicycles), as shown in
Figure 2.2. They usually record activities of objects over a long period, such as the trajectories
generated by vehicles. The data collected from off-roadway sensors reflect how objects move,
which helps analyze travel behaviors in a city. We introduce them as follows:

GPS (Global Positioning System) is a satellite-based navigation system developed by
the United States Space Force in 1978 [46]. GPS receivers are capable of computing a four-
dimensional space-time position of four satellites. In this case, each satellite calculates a posi-
tion and time. And then, they transmit the correctly recorded data to the GPS receiver. Every
vehicle must have a GPS installed, providing vehicle navigation service and recording much
space-time information about vehicles. However, it still has disadvantages because it is greatly
affected by obstacles such as tunnels, mountains, and trees.

Mobile phone is similar to GPS navigation systems. The difference is that the cell phone
replaces the GPS receiver, and the telephone antenna station replaces satellites [47]. The
position data of the cell phone is entirely accurate in the cities, but it is not very reliable in
the suburbs and some areas far from the cities. Another disadvantage of the cell phone is the
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Mobile phone GPS Automotive camera Automotive radar Smart card

Figure 2.2: Off-roadway sensors reside on the moving objects. As shown above, pictures are taken or
generated ourselves. They can record the trajectories and status of objects.

concern about privacy since more people are concerned that the information will be recorded
without authorization.

Automotive camera is similar to the roadside camera but installed in vehicles, aiming to
record the self-driving car’s environment. With the development of the self-driving car, the
camera has been used by many car manufacturers because the cameras are cheaper than most
other detection devices [48].

Automotive radar is similar to roadside radar, which also emits radio waves and receives
them when they bounce back. The difference is that automotive radar is to detect the surround-
ings of one’s vehicle, including objects’ speed, distance, and direction, which contains two
types: short-range radar and long-range radar. The short-range radar [49] is for close-range
applications, such as blind-spot detection and parking aids. Long-range radar is to measure the
distance and speed of objects.

Smart card is a physical, electronic authorization device used to control access to a re-
source. The transport domain uses it for the transit fare and park fee payment. It records
the travelers’ information, including their routes, time, and fees. The recorded data from the
smart card can extract trajectory information to help analyze the humans’ patterns and spatio-
temporal relations.

2.1.4 Traffic Simulation

This section introduces the simulated data source. It enables better planning, design, and op-
eration of the traffic systems. Traffic flow simulation is essential in traffic research because it
can develop complex models to estimate and predict traffic status. It also can be used in other
research, such as understanding travel patterns and producing intuitive visualization. Many
years ago, Hoogendoorn et al. [50] have summarized traffic flow modeling methods based on
the level-of-detail classification: microscopic (e.g., Car-following models), mesoscopic (e.g.,
Cellular automata model), and macroscopic (e.g., Monte Carlo method). Inspired by these
classifications of methods, this section introduces several typical traffic flow simulation meth-
ods and three popular simulation software.

2.1.4.1 Approaches

The traffic simulation approach is the mathematical theory of reproducing traffic data. It in-
cludes probability and statistics, differential equations, and numerical methods. This section
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introduces the three most common approaches.
Car-following model is the typical microscopic simulation method, which regards the ve-

hicle as the unit to construct the model considering the position and velocity of every vehicle.
As a result, the car-following model can predict the vehicle’s behavior by analyzing the rela-
tions between the single vehicle’s properties and the stream of traffic flows [51]. Besides, Liao
et al. [52] develop a car-following model considering the drivers’ habits to estimate the safety
rate.

Cellular automata model is a discrete model of computation based on automata theory,
which enables dynamical evaluation and description of the traffic states. It can be used in traffic
simulation since space is a discrete regular cell with a finite number of possible states. The
states depend on the model of traffic phenomena, and they update synchronously during the
discrete timestamps [53]. The advantage of the discrete space of the cellular automata model
is that it allows for faster computation than the continuous model.

Monte Carlo method repeatedly generates random samplings to obtain the numerical re-
sults [54]. In the context of traffic simulation, it can generate traffic data based on probability
distribution. For example, Jeon et al. combine the Monte Carlo method [55] with the time-
series forecasting method to predict traffic flows.

2.1.4.2 Software

Various simulation softwares can generate simulated traffic data. Traffic experts use softwares
to understand traffic patterns and predict traffic flows. Compared to the real data, the data
generated from simulation softwares are easily implemented in visualization techniques since
they do not have the data quality problem.

CarSim is a software for simulating the state of vehicles in a given environment (e.g.,
driving environment). This software was developed by an American company, Mechanical
Simulation Corporation. The original technology came from the Transportation Research In-
stitute at the University of Michigan. It simulates the distance to the vehicle ahead, the friction
on the road, and the state of the traffic lights. It can also simulate the corresponding driving be-
havior, including braking, shifting, and clutching [56]. By using it, traffic experts can improve
driving control, test the condition of vehicles, and estimate the mathematical model.

VISSIM is a microscopic traffic flow simulation software developed in 1992 by PTV Pla-
nung Transport Verkehr AG in Karlsruhe, Germany [57]. Today it becomes the world’s most
popular microscopic traffic flow simulation software. This software simulates the objects mov-
ing on the road individually thanks to microscopic simulation. This indicates that the data
collected by this software is quite detailed, so we know the exact speed of the vehicles in each
second.

Visum is a complex macroscopic traffic simulation software also developed by PTV Pla-
nung Transport Verkehr AG in Karlsruhe. Compared to VISSIM, Visum simulates traffic flows
in a macroscopic way. The most significant difference is that Visum estimates the movement of
objects on roads with the average traffic flow and density. It benefits transportation planning,
travel demand modeling, and network data management. Visum integrates all relevant modes
(e.g., vehicles, bicycles, pedestrians, buses, and trains) into a unified network.
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2.1.5 Data Availability and Examples of Traffic Datasets
There is a growing availability of open datasets in traffic domains coming from sensors in-
troduced in the previous section. However, this section only focuses on several typical road
traffic datasets used in this manuscript. Depending on the characters of these datasets, we will
design visualization techniques to expose valuable traffic information to help traffic experts
know traffic from multiple perspectives. These datasets are as follows:

• CRITER datasets (Traffic density and event datasets) in Lyon, France. We utilized
CRITER datasets from the government website of Lyon, which is a freely accessible
API 1 that can extract relevant traffic situation data in Lyon. We extracted the traffic
density datasets named ”Etat du trafic de la Métropole de Lyon - disponibilités temps
réel” and event datasets named ”Alertes trafic du réseau des Transports en Commun
Lyonnais”. The number of road segments is more than 1000, and the data collection
frequency of the traffic density information is once per minute. This API can also col-
lect the event log data, including warnings and roadwork. This manuscript extracted the
traffic density and event data in 2018. The amount of data size is more than 10 million.
We use the traffic density and event datasets in Chapter 4 (to explore the spatial rela-
tions of traffic density distribution in Lyon), Chapter 5 (to discover how traffic density
changes over time), and Chapter 6 (to discuss how to deploy the multiple visualization
techniques in traffic control centers to augment its monitoring ability).

• Taxi taking passengers trajectory datasets in Wuhan, China. Taxis are everywhere
in cities, and to a certain extent, taxi trajectories reflect human mobility [58]. This
manuscript used the taxi trajectory data from Wuhan, China, which includes more than
7271 taxis and the total number of records is more than 220 million during two months
(September and October) in 2013. The trajectory data was collected by the GPS equip-
ment installed in the taxis, and it records the taxis’ travel data 3 to 4 times per minute.
We use the taxi trajectory datasets in Chapter 3 (to categorize the taxi speeds) and
Chapter 4 (to explore the spatial relations of taxi trajectories).

• Webcam datasets (Video datasets). Webcam is a video camera that feeds or streams
an image or video in real-time and through a computer network [59]. It can monitor the
traffic situation (e.g., traffic accidents) and explore the vehicle’s behaviors by designing
a visual system. In this manuscript, we use the webcam data collected with open access,
presenting real-time traffic video in Lyon, France 2. These videos were captured by the
cameras installed on the roadside. We extracted 15 cameras 3 and their characteristics,
such as the coordinates, the road’s name, and the road’s ID. In this manuscript, we use the
webcam datasets in Chapter 6 as the views in the dashboards of traffic control centers.

• Simulated traffic density datasets. We generated a simple random traffic density datasets 4

using a bimodal normal distribution to simulate the morning and evening peaks. In this
1https://data.grandlyon.com/jeux-de-donnees?q=trafic
2https://worldcam.eu/webcams/europe/france/51-lyon-panoramic-view
3https://observablehq.com/d/07cbd1f56725f0cf
4https://observablehq.com/@pierreleripoll/simulate-trafic-data

13



Chapter 2. Background and Related Works

manuscript, we did not utilize the mathematical theory mentioned in the previous section
since we were only interested in generating realistic data rather than accurate ones. Sim-
ulated traffic density datasets play an important role in visualization design because the
real traffic density values include some extreme values and some items have null values,
affecting the test of the novel visualization techniques. In this manuscript, we use the
simulated traffic density datasets in Chapter 6 to test the availability of the traffic map.

• Transit datasets. We used a dataset including 45,520 trips of Paris every hour on a
given day. The trips start from three distinct locations (origins), and destinations are all
reachable areas surrounding the origin for a given period (e.g., five minutes) by different
commuting ways (walk or public transport). We also used various dimensional attributes,
such as CO2 emissions. This dataset comes from the Navitia API 5 and we use the transit
dataset in Chapter 4 to discover the accessibility of transport in urban.

• Road information (Road map). We utilized the road coordinate information data from
both Lyon and Wuhan. They offer road segment information, such as coordinate and
road ID. The road ID can be regarded as the connection between maps and other data
sources (e.g., traffic density data and taxi trajectory data), therefore, one can know where
the objects are on a map (e.g., where a webcam is located). We use the road map in
Chapter 6 to locate the objects in a geographical space.

2.2 Data Characterization

This section introduces the characterization of the typical road traffic data and derived data.
The data characterization is ”a summarization of the general characteristics or features of a
target class of data” [60]. It reflects the data abstraction in different features, such as the
coordinates of the vehicle trajectories.

2.2.1 Data Types

Generally, data types are strongly influential to visualization types. Shneiderman categorized
the data into seven taxonomy: 1-dimensional, 2-dimensional, 3-dimensional, temporal, multi-
dimensional, tree and network data [61]. However, we do not address all the data types in this
manuscript. We focus on 1-, 2-dimensional, and temporal data. They are as follows:

• 1-dimensional data (1D data) refers to the univariate data that only contains a single
characteristic or attribute, such as the taxis’ speed and traffic density values. Analysts
generally use 1-dimensional data classification when they want to divide the data into
segments, such as dividing data by year or quarter. In this manuscript, we address the 1-
dimensional data in Chapter 3 by creating a categorization technique for 1-dimensional
quantitative values (e.g.,to split traffic speed data into fast or slow categories).

5https://www.navitia.io/
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• 2-dimensional data (2D data) exists in a two-dimensional coordinate space represented
by X (longitude) and Y (latitude) coordinates. In the road traffic domain, a typical 2-
dimensional data is the movement data. It can describe how objects move and their
parameters, such as speed, direction, and acceleration, as shown in Figure 2.3, the taxi
taking passenger trajectories from Wuhan, China. We define movement data P contain-
ing multiple attributes where a trajectory p ∈ P is the ordered point containing temporal
and spatial information as p =< p1, ..., pl >. Each trajectory point pk : 1 <= k <= l can
be defined as pk = [sn, t, a1, ..., am] where s refers to the spatial coordinate of the point pk

(If the spatial information contains only latitude and longitude, n = 2. If it also contains
altitude information, n = 3). t ∈ T refers to the time window of the point pk, and ai ∈ A
refers to the attribute, where ai : 1 <= i <= m. This definition not only shows the
trajectories’ spatio-temporal relationships but also represents each point’s attributes that
can be used to explore implicit patterns (e.g., moving direction and speed). We address
the 2-dimensional data in Chapter 4 by creating a nested visualization technique, which
explores spatial patterns and information in cities.

• Temporal data refers to data that contains variables changing over time. The traffic
data collected by point-based sensors (including both intrusive sensors and non-intrusive
sensors that sit on the road or roadside, introduced in Section 2.1.1 and 2.1.2) can be
viewed as temporal data for each recording point. Generally, sensors collect position-
based data with a fixed frequency (e.g., every 1-4 minutes) and the timestamps are multi-
dimensional, such as Day, Time of the day, Hour, Minute, or Second. Traffic managers
utilize the temporal data to monitor what happened on specific road segments over time
and the monitored results help urban planners optimize the routes. We address the tem-
poral data in Chapter 5 with an interactive visualization technique to analyze how the
temporal data change over time (e.g., traffic density data).

These three data types provide temporal or spatial information. Nevertheless, combining
all the spatial and temporal information to synthetically analyze road traffic situations can bring
more valuable information to traffic experts. Thus, we also address the heterogeneous data in
Chapter 6 by deploying the multiple visualization techniques in traffic control centers using
different traffic data sources, such as the webcam, and road events data.

2.2.2 Derived Data
We have introduced position-based sensors (non-intrusive and intrusive sensors) in Section 2.1.
The position-based sensors collect raw road section data that describe the basic information in
a particular road segment. However, analysts usually need more attributes contained in the data
to explore more valuable and interesting patterns. This section introduces how to derive the
new attributes based on the single-vehicle information of road section raw data. Road section
raw data reveal 1) the number of vehicles passing through the specific road segments and 2) the
time when vehicles pass them. Although the road section raw data only tests the single-vehicle
data, it can still estimate the relevant traffic parameters by aggregating the microscopic single-
vehicle data with the average values in particular time intervals ∆t if the recorded number of
vehicles is ∆N.
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Figure 2.3: A sample of movement data (the taxi taking passenger trajectories in Wuhan, China) is a
typical 2D data that we focus it in Chapter 4. Each blue segment encodes OD data of taxis: O refers
to the origin when a taxi picks up the passengers; D refers to the destination when a taxi drops off the
passengers.

For single-vehicle detection, t0
α refers to the front of vehicle α passing through the detection

position, and the t1
α refers to the end of vehicle α passing through the detection position. Thus,

we define traffic flow as the number of vehicles ∆N passing through a fixed position with the
time interval ∆t, shown as Equation 2.1:

Q(x, t) =
∆N
∆t

(2.1)

where the x refers to sensor’s position. Thus microscopic flow (it presents the single vehicle-
driver unit’s properties, e.g., the position and the velocity, used to estimate the traffic density)
shows as Equation 2.2:

qα =
1

∆tα
(2.2)

Occupancy is the percentage of aggregation interval that the detection zone is occupied by
a vehicle, shown as Equation 2.3:

O(x, t) =
1
∆t

α0+∆N−1∑
α=α0

(t1
α − t0

α) (2.3)

Arithmetic mean speed refers to the average vehicle speed of ∆N vehicles passing through
the detection point during the aggregation time interval, shown as Equation 2.4:
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V(x, t) = 〈vα〉 =
1

∆N

α+∆N−1∑
α=α0

vα (2.4)

Speed variance represents the spread of speed values during the aggregation interval,
which is given by the standard deviation σ2, shown as Equation 2.5:

Var(v) = σ2
v(x, t) = 〈v2〉 − 〈v2

α〉 (2.5)

The previous quantities are measured directly by the single-vehicle parameter. However,
we have to estimate quantities with assumptions. Traffic density can be estimated if we know
the microscopic quantities flow Q and the arithmetic means speed V . In this case, the traffic
density ρ is the average value during the fixed time interval. Thus, we can calculate it as
Equation 2.6:

ρ(x, t) =
Q(x, t)
V(x, t)

(2.6)

Space mean speed 〈V(t)〉 represents the arithmetic mean speed of all vehicles in a given
time t on a specific road segment that is:

〈V(t)〉 =
1

n(t)

n(t)∑
α=1

vα(t) (2.7)

New attributes above describe the traffic from more perspectives, such as the average speed,
occupancy, or traffic density. We utilize the attributes in Chapter 4 that we design a nest-based
visualization technique to analyze the relations among these derived attributes, such as the
relation between traffic densities and the weather.

2.3 Users and Tasks
This section introduces the users who can benefit from our visualization techniques and their
tasks. Regarding users, we summarize four types: citizens, transport planners, urban planners,
and traffic control centers. We group tasks into three categories that are monitoring the traffic,
pattern discovery and clustering, and situation-aware exploration and prediction.

2.3.1 Users
This section introduces the relevant users in the road traffic domain based on our reviewed
literature and existing commercial tools (e.g., google maps). We classify users into two main
categories that are experts and non-experts defined as follows:

• Experts work in the traffic domain to improve the traffic service with prior knowledge
of human mobility and traffic density distribution, including traffic operators in traffic
control centers, transport planners, and city planners.
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• Non-experts are the people who travel on the road (e.g., drivers and pedestrians) but do
not have prior knowledge of traffic. Generally, what they need from the visualization
techniques are navigation and road planning, to avoid losing themselves in cities and
find optimal paths. In this manuscript, we refer to non-experts as citizens.

Transport planners play a crucial role in optimizing transit lines to reduce traffic conges-
tion. Public transport usually is not in the cost-benefit equilibrium (balance between the road
capacity and the number of vehicles on the road) since some lines of bus or metro are jam-
packed while others are taking fewer travelers. Chu et al. [62] help transport planners better
know the taxi traveling pattern by developing a semantic analytical system to explore the taxi
traveling patterns from the massive taxi trajectory data. In addition, Oliveira et al. [63] de-
sign Bike-sharing systems (BSSs), helping traffic planners understand the commuters through
biking travel. Also, Miranda et al. [64] contribute Urban Pulse, a visual system for capturing
spatio-temporal activities through public transport, enabling traffic planners to observe how
citizens commute during the different periods. By doing so, they can know places where peo-
ple have many activities during a particular time but some places with fewer activities. In
the manuscript, we introduce two visualization techniques dedicated to transport planners to
observe the spatial relations (Chapter 4) and temporal relations (Chapter 5) of traffic data.

Citizens (e.g., drivers and pedestrians) generally want to find a suitable route using maps.
The maps support citizen with route planning to avoid losing in the complex route networks.
Researchers have designed systems to assist users in route recommendations. Wang et al. [65]
design the TaxiRec, a route recommendation system that assists drivers in improving the abil-
ity to find passengers using a trajectory clustering method. Similarly, Lu et al. [66] design an
interactive visual system with a filtering trajectory feature to analyze the taxi trajectory selec-
tion behaviors, which is helpful for route recommendation. The manuscript does not design
visualization techniques for citizens since they need a more simple visual representation. We
will expand the visualization techniques to assist citizens in future work.

Urban planners aim to build and optimize the infrastructure of cities, such as selecting
the places to build gas stations. Good planning of city infrastructure can improve the experi-
ence of citizens and raise the efficiency in some services. For instance, a gas station having a
suitable place can provide drivers a good experience since they may not drive a long time and
long distance to find a gas station. In order to find suitable positions for the infrastructure of
cities, knowing the urban space is a critical skill for urban planners. For the purpose of helping
urban planners understand the urban spaces, researchers have designed interactive visualiza-
tion techniques based on the big massive road traffic data. Shen et al. [67] design StreetVizor,
a visual exploration system to assist users in urban planning and environmental auditing by
facilitating machine learning to detect the street view patterns. Ferreira et al. [68] propose a
visual system named Urbane to simulate the urban parameter, which enables urban planners
to interact with it by adding or removing buildings to see what happens if they do so. Apart
from understanding urban spaces, urban planners need to optimize the infrastructure, such as
selecting billboard places. In this issue, Liu et al. [69] design SmartAdP, a visual technique for
selecting the billboard locations based on the large-scale taxi trajectories. SmartAdP can help
planners find a suitable solution with the selection of billboard locations and assist them in
intuitively comparing the solutions. The manuscript helps urban planners explore how traffic
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Tasks Sub-tasks Related works Datasets

Traffic monitor
Monitor systems [72] [73] [74] [75] [76] [77]

[20] [23]
Taxi trajectory, traffic
event, traffic flow

Monitor Approaches [78] [79] [80] [81] [82] [83]
[84]

Video, taxi trajectory

Pattern
discovery

Clustering and aggregation [85] [86] [87] [88] [89]
[90]

Taxi trajectories, vehi-
cle trajectories

Topology visualization [91] [92] Taxi trajectories
Density map [93] [94] [18] [76] [95] Taxi trajectories
Space-time cube [13] [96] Vehicle trajectories

Situation-aware
exploration

Traveling purpose [97] [98] [99] [11] Taxi trajectories,
events

Correlations with events [100] [62] [69] Taxi trajectories,
events

Table 2.1: Summary of tasks in road traffic data visualization. It introduces three tasks and the corre-
sponding related works. The visualization techniques designed in the manuscript are based on the three
tasks.

densities change over time in Chapter 5, which is an essential factor while optimizing the city
infrastructure positions.

Traffic control centers serve as the controlling center of the urban area, including the
main street, road intersections, and traffic lights. Such centers are indoor physical facilities
with restricted access as they play a key role in managing traffic but also roadworks and road
message boards (i.e. to announce congestion or closed road segments). Each operator in
the room has a workstation composed of several regular screens on which they can access
useful information, including a detailed version of the traffic map and a specific CCTV camera
(which they can also control). The traffic control center is essential for the administration of
the information center, which generally gives traffic operators an overview of the roads using
the wall-displayed dashboard. One primary mission is to monitor traffic situations and road
incidents, such as traffic accidents. Traffic monitoring can improve road traffic by maximizing
road capacity, minimizing the impact of incidents, and assisting in emergency services. We
discuss how to improve the traffic control centers and deploy multiple visualization techniques
in dashboards of control centers in Chapter 6.

2.3.2 Tasks

Tasks are human activities that analyze the dataset regarding specific and similar questions.
Our approach is aligned with the task analysis process, which has been generally documented
in the visualization community [70]. As we work on a specific application domain, we rely
upon specific tasks in road traffic data composed of monitoring the traffic, pattern discovery
and clustering, and situation-aware exploration and prediction [71]. We list them, along with
related works in Table 2.1.
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2.3.2.1 Traffic Monitoring

Traffic monitoring helps traffic control centers improve their network operations and make
better decisions, thus improving the service for travelers and commuters (we introduce how to
improve traffic control centers and how to deploy multiple visualization techniques in control
centers in Chapter 6, thus improving the centers’ ability to monitor road traffic). This section
introduces the tasks related to traffic situation monitoring, such as monitoring travel time and
speed. And then, this section introduces monitoring systems combining algorithms to monitor
travel and driving behaviors. We introduce two aspects as follows:

1. Traffic situation monitoring
Most monitoring systems focus on traffic flows because they can directly reflect the traffic

situations (e.g., traffic congestion or free flow). However, developing a system for interactively
monitoring traffic flows is difficult since it requires dealing with real-time and large historical
data. Cao et al. [23] define three challenges in real-time monitoring of traffic situations, which
are adaptivity, interpretability and interactivity.

The anomaly detection with large data is not easy in the visual system. The adaptivity
challenge is that the calculating time must be considered while designing the detecting algo-
rithm to keep both the accuracy and calculating speed. In this research field, Wang et al. [72]
use a simple method to estimate the traffic jam by calculating the speed of vehicles. Hilton et
al. [73] introduce a heat map visual system to reduce the calculation time while detecting the
traffic safety situations.

Avoiding the clutter and overlap visualization while dealing with a large amount of data
enables improvements in the interpretability. The actual traffic situation might not be ob-
served, and experts have difficulty finding interesting patterns. Hence, designing an effective
visualization system is very helpful. In order to better monitor the traffic situations and ad-
dress the visual problems caused by a large amount of data, Andrienko et al. [75] investigate
the aggregation methods in movement data. Furthermore, to improve the visualization’s in-
terpretability, Scheepens et al. [76] introduce a particle system to help traffic experts explore
the interesting trajectories, combining the density map with moving particles to display the
additional trajectory information.

The interactivity challenge is the designing of interactive visual systems with online de-
tection. Researchers have been addressing this problem by developing a specific database to
avoid time-costuming data structures [77]. Wang et al. [20] create a road-based query model
constructed on TripHash. Based on this data structure, they design a dynamic spatial-temporal
query of trajectories system to help traffic experts evaluate and monitor the traffic situations.
Furthermore, researchers address the problem by designing suitable algorithms to make the
anomaly detection cost less time and improve its accuracy. Cao et al. [23] design an algorithm
for detecting the anomalies with streaming data and an interactive traffic monitoring system
emerging human guidance.

2. Travel and driving behaviors monitoring
A most useful equipment for monitoring road traffic is the video feed. It not only benefits

traffic experts for monitoring traffic flows but also for monitoring more complex and implicit
information, such as the travel and driving behaviors. To do this, current surveillance sys-
tem or traffic monitoring system introduced the computer vision approach. Computer vision
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surveillance system is an essential part of intelligent transportation systems (ITS). Tian et
al. [78] summarize the related surveillance systems for monitoring and managing traffic flows.
It shows that the computer vision surveillance systems first extract the attributes of vehicles
and then understand the behaviors. Hence, the extraction of vehicles’ attributes is the founda-
tion for understanding the travel and driving behaviors, which contains three aspects: vehicle
detection, vehicle tracking, and vehicle recognition.

Accurate and robust vehicle detection is vehicle tracking and recognition’s first step. In
computer vision, vehicles contain different pixel characteristics to detect vehicles. In gen-
eral, detection algorithms contain two methods: appearance-based and motion-based. The
appearance-based method detects the vehicle’s shape, color, and texture. Conversely, the
motion-based method determines the vehicle based on the moving characteristic, such as speed
and acceleration. The most interesting feature of detecting vehicles using the motion-based
method is to extract the dynamic vehicles from the static background. The detection algo-
rithm calculates the difference between the front object pixels and the background pixels [79].
Several basic methods used in vehicle detection contain wavelets [80], Kalman filter [81], and
Gaussian pixel distribution [82]. However, two general problems raised are vehicle shadow
and vehicle occlusion. The vehicle shadow affects the detecting results since it changes the
colors and texture of actual vehicles. The vehicle occlusion caused by the high traffic densities
is another common problem in detecting vehicles.

Besides computer vision, researchers also use the taxi trajectory data to monitor travel
behaviors. Taxis are the leading transport equipment in cities, and most taxis work 24 hours
daily. Hence, taxi trajectory offers vital information to estimate the traffic matrix or detect
trajectory anomalies. Wang et al. [83] use GPS data as the data source to detect anomalous
travel behaviors. They propose an algorithm to calculate the similarity of trajectories using
edit distance and cluster the trajectories into groups with the hierarchical method. Kuang et
al. [84] combine wavelet transform and PCA (principal component analysis) to detect the high
deviated traffic flows and propagate the sub-region where the anomaly behaviors happen.

The computer vision approach introduced in the surveillance system brings more efficient
traffic movement and reduces human supervision. We have such video datasets as introduced
in Section 2.1.5 — the webcam datasets. We utilize the datasets in Chapter 6 to discuss how to
deploy them and other visualization techniques in traffic control centers. However, it also raises
privacy concerns since the webcam records vehicle trajectories. Although there are methods
for addressing the problem, e.g., video blurring [101], they may not always be available.

2.3.2.2 Pattern Discovery and Clustering

The section introduces task pattern discovery and clustering, which allows users to know
how humans or other objects move in the network systems. Travel patterns reflect where peo-
ple prefer to travel and when they usually do activities. Travel patterns contain three compo-
nents: trip distance distribution, number of visited locations, and radius of gyration. Although
these components of individual human mobility is challenging to forecast, travelers’ overall
patterns are highly predictable [70]. The manuscript focuses on this task in Chapter 3 to ana-
lyze the categorization of traffic flows, and in Chapter 5 to discover the traffic density temporal
changing patterns.

21



Chapter 2. Background and Related Works

An important method for discovering human mobility is clustering the trajectory data. The
method can emphasize the traveling behaviors and discover implicit patterns from the mas-
sive random trajectories. Wu et al. [86] propose the TelCoVis by facilitating the bi-clustering
techniques that allow users to explore the co-occurrence behaviors in the two regions, such as
many humans traveling from one region to another at the same period. Andrienko et al. [87]
analyze the group movement behaviors by calculating the central trajectories of the group and
transforming the group members into the group space created by the group movement. Kala-
maras et al. [88] develop multiple functions traffic visual platform system, which contains road
clustering, anomaly detection, and traffic prediction by combining the relevant algorithms in
this system. Von et al. [89] propose a graph-based method using spatial and temporal sim-
plifications with the Twitter and mobile phone datasets. The visualization system introduces
a spatial graph clustering algorithm, allowing users to change the parameters to optimize the
graph. Yao et al. [90] propose the spatio-temporal clustering method to explore mobility by
creating a spatial and temporal similarity of measurements, which not only distinguishes the
movement distribution but also discovers significant spatio-temporal trends.

Topology network is another alternative for discovering group behavior. Luo et al. [91]
propose a new algorithm based on the local coherence of the sparse field (LCSF) algorithm to
calculate the separation behaviors in the irregular and sparse topology network. They design
an interactive visual system to dynamically divide the sub-regions to reveal human patterns
based on cell phone data. Otten et al. [92] expand the topology method to allow users to
discover human mobility with long-term traces. It can reflect the relationships of objects and
their relations with spatial information.

A density map is an aggregation method for visualizing geographic information based on
the kernel density estimation [93], which is an alternative for discovering human mobility.
The density map aggregates the subsets of trajectories to help users explore risk analysis and
anomaly events. Sheepens et al. [94] use density maps to visualize multiple attribute trajec-
tories, and it combines with a widget to allow users to interactively define subsets to explore
mobility. After that, they improve the computation [18] of the density field and add a varied ra-
dius to enforce the expression. Moreover, they combine a partial system with density maps [76]
to solve the trajectory cluttering problems. It emphasizes traffic flow behaviors by designing
a widget to help users dynamically select and filter directions and additional information on
traffic flow. Cristie et al. [95] create CityHeat using Unity3D and Cellular Automata(CA),
which helps users observe the traffic heat distribution and thus discover the human mobility
through the distribution of vehicles detected by the emission of engines.

Apart from the introduced methods in the previous paragraphs, there are still other visual-
ization techniques that can assist users in realizing the task pattern discovery and clustering,
such as the space-time cube [13] for visualizing the trajectories and traffic flow to describe how
they change over time and hence understanding the objects’ mobility.

2.3.2.3 Situation-Aware Exploration and Prediction

This section introduces the task situation-aware exploration and prediction and relevant vi-
sualization techniques. We address the task in Chapter 4, which aims at exploring the spatial
relations of geo-entities (e.g., moving taxis or humans). The task is essential for helping traf-
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fic planners and urban planners optimize the traffic and support a better convenient lifestyle
for citizens. It not only focuses on the exploration of mobility but also on the relations be-
tween traffic and other domains’ knowledge, such as the relations between traffic densities and
billboard locations.

Human movements usually relate to a specific purpose, such as working and shopping.
Studying the relationship between human movement and activities is the foundation of traffic
and transportation planning. Researchers in the traffic domain have studied this issue for many
years. In the visualization community, researchers utilize visualization techniques to help traf-
fic managers realize the task. Zeng et al. [97] explore the relation between human movement
and activities using human mobility data and the POI data (points-of-interest) in Singapore.
They design a visual system for traffic experts and conduct case studies to interview traffic
experts about the finds of mobility-interest relations. Al-dohuki et al. [98] propose Semantic-
Traj to help domain and public users understand what happened in massive taxi trajectories
by combining taxi trajectories with the street or POI (Point of interest) information. It offers
an intuitive and efficient visual presentation for both domain and public users to understand
human mobility and its relations with potential activities. Zhao et al. use public smart card
data to analyze how a passenger differs from or connects with other passengers. The analy-
sis explores the mobility correlations of passengers’ interest in group- and individual-based
ways [99]. Ferreira et al. [11] focus on the OD (Origin-Destination) data. They design a visual
system that allows users to manipulate the OD data to compare different regions over time. The
most contribution of the system is the comparing query characteristics, which allows users to
select the regions and hierarchical period to compare their temporal relations and understand
the OD mobility.

Apart from the relation between mobility and the interest of purpose, traffic experts have
also studied other topics related to relations between traffic events and trajectories. Sagl et
al. [100] utilize the mobile phone datasets to analyze human mobility and conduct a case study
to explore the relationship between mobility and soccer matches. Chu et al. [62] create a
semantic transformation visual system to help traffic planners, administration, and travelers
explore travel patterns. It makes the connection between the trajectories’ coordinates and
the road names. By doing so, a topic document related to trajectories is built to help users
understand the implicit domain knowledge. Liu et al. [69] design SmartAdP to help advertising
planners optimize the placements of billboards by combining the data mining method and
visual techniques. SmartAdP is an interactive system for finding the solutions for selecting
the placement of billboards and comparing these solutions with intuitive ways to help planners
make decisions.

The section introduced three tasks related to the road traffic domain. With the development
of visualization techniques, more tasks could be addressed, such as route planning and recom-
mendation. Also, tasks mentioned in the section not only concentrate on the traffic domain but
also on the other domains, such as exploring the moving pattern (task: pattern discovery and
clustering) of soccer players (we introduce it in Chapter 6).
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Visualization types Visualization meth-
ods Related works Datasets

Temporal
Visualization

Linear Layout [104] [15] [17] [87] Trajectory data, Pas-
senger journey data

Branching Layout [105] [106] [107] [108] [16]
Taxi trajectory, Metro
passenger data, Metro
schedule data

Circular Layout [109] [103] [11] [25] [110] [111] Taxis trajectory, Ur-
ban temperature data

Spatial Visualization

Point-based Design [16] [20] [21] [112] Metro schedule, Taxi
trajectory data

Line-based Design [22] [76] [15] [17] [87]

County-to-county
migration data, Mov-
ing object data,
Microscopic traf-
fic trajectory data,
Human movement
data

Region-based [25] [113] [23] [24] [114] [19]

Urban temperature
data, Taxi trajectory
data, metro passenger
RFID card data

Spatio-temporal
Visualization

Space-Time Cube [13] [96] [115] [116] Trajectory data, Hu-
man mobility data

Event Visualization
[26] [25] [27] [107] [117] [14]
[118]

Urban temperature
data, Road accidents
data, Traffic speed
data, Air pollution
data, Taxi trajectory
data, Traffic trajectory
data

Table 2.2: Summary of visualization types, methods, and corresponding datasets used in this
manuscript, as well as related work. Visualization types and their methods guide our visualization
techniques design in the manuscript.

2.4 Visualization Types

The section introduces data visualization techniques while exploring information from mas-
sive and complex road traffic data. Based on different needs and tasks [102] in traffic domain,
researchers in the visualization community classify visualization techniques and visual sys-
tems into four groups: temporal visualization [103], spatial visualization [25], spatio-temporal
visualization [27] and event visualization [71]. Figure 2.4 shows the basic visualization types
of road traffic data, and Table 2.2 shows the related works corresponding to visualization types.
Additionally, the manuscript involves deploying traffic control centers (multiple wall-display
visualizations for monitoring traffic situations). The deployment may employ multiple coordi-
nated views (MCV) that we review in this section to combine different views or visualizations
in a dashboard of traffic control centers.
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(a) (c) (b) (d)

Figure 2.4: The manuscript reviews four visualization types that focus on temporal, spatial, spatio-
temporal, and event data. (a) shows the temporal data visualization with a line chart, from the paper [11];
(b) shows a 2D map to display the spatial information, from the paper [12]; (c) shows the spatio-
temporal data visualization, from the paper [13]; (d) shows the event-based visualization, from the
paper [14].

2.4.1 Temporal Visualization

As introduced by Shneiderman, temporal data is one basic data type [61], representing states
changing over time, such as traffic flows in different timestamps. The visual representation
of temporal data in the traffic domain contains three types: linear layout, circular layout, and
branch layout. We introduce corresponding visualizations in this section.

2.4.1.1 Linear Layout

The basic visual representation of temporal data is the linear layout (e.g., line chart) that is
among the oldest representation and conveys the structure of raw data for visual inspection,
such as slop chart [119] displaying only the first and last element to compare. ThemeRiver
is another typical linear time method to visualize the changes over time, as shown in Fig-
ure 2.5 (a). The colors of ThemeRiver refer to the individual themes, which are used in many
visualization techniques by combining them with other visual representations. In the road traf-
fic data visualization domain, ThemeRiver is usually used to visualize how different traffic flow
categories or vehicle speeds change over time. Furthermore, Wang et al. [104] utilize the The-
meRiver to assist the users in exploring the trajectories distribution during a day by combining
it with other spatial and statistic visualization. However, the ThemeRiver cannot visualize the
directions of traffic flow and vehicle trajectories. For this problem, Guo et al. [15] improve
the ThemeRiver by combining it with a glyph (encoding additional attributes as a compact
visual element embedded in the streams) to present the vehicles at road intersections and the
directions.

2.4.1.2 Branch Layout

Branch layout acts as a dynamic point-in-time interface for user actions within the branch.
As shown in Figure 2.5 (b), the branch layout describes events or stories with nodes of the
tree-like branch. Zeng et al. [105] create a branch-time (isotime) representation to explore
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Figure 2.5: Three visualization layouts for temporal data: (a) is a linear layout (ThemeRiver) visualiz-
ing the traffic situations, from the paper [15]; (b) is a branch layout to represent the subways’ schedules
in Boston, from the website [16]; (c) refers to the circular layout of two-dimensional ringmaps to visu-
alize the timestamps in different levels, from the paper [17].

the mobility of humans in transport systems by displaying positions with nodes and timelines
with edges. Compared to isochrone, the advantage of isotime is that it can visualize more
mobility information by sacrificing spatial coordinates. Isotime also visualizes the timeline of
the mobility of the flow map to explore accurate spatio-temporal information.

Similarly, the storyline [106] is another stabilizing technique for expressing the temporal
changes and correlations, which presents the spatio-temporal changes through multiple lines
with one axis referring to time and another axis referring to spatial marks. The storyline has the
advantage of visualizing the timetable schedule for public transport. Doraiswamy et al. [107]
propose a group index with stabilization for querying the events along with the time steps.
Palomo et al. [108] create TR-EX to support the transport analysis of planned and accurate
service, facilitating the linear time representation and stabilization method. It represents each
transit with a polyline based on its station and stopping time, where its horizontal axes refers to
the time of a day, and the vertical axes refers to the stations. Besides, Boston’s Massachusetts
Bay Transit Authority (MBTA) introduces a storyline [16] to represent four subways’ sched-
ules in Boston, where it displays four subways with horizontal axes and time of the day with
vertical axes.

2.4.1.3 Circular Layout

Circular time refers to the repetition under a specific period (e.g., days, weeks or months). It
has cyclic properties that can be used for the visual representation using a cyclic layout, e.g., a
circle or calendar. Many recursive things happen within a specific period, such as the iterations
of the morning peak of traffic flows. Visualizing these recursive things with a circular layout
makes the recursive patterns more intuitive for users, as shown in Figure 2.5 (c).

The calendar view [109] is a time system for organizing circular periods, such as the
months and weeks. Xu et al. [103] study the sequential pattern mining method with visu-
alization techniques focusing on time series data. They mention that the calendar view could
be used for exploring the temporal information in the time series data and this technique creates
a whole life cycle data mining of time series data. Ferreira et al. [11] design a spatio-temporal
data visual exploration system to allow users to compare the temporal and spatial relations. In
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Figure 2.6: Spatial visualization for displaying the spatial data, which inspires the technique design
in Chapter 4. (a) Point-based visualization of taxi trajectories, from the paper [11]; (b) Line-based
visualization of vessels’ trajectories, from the paper [18]; (c) Region-based visualization, from the
paper [19].

their work, a calendar panel selects the specific days and hours, which means users can inter-
actively operate it to select the different time dimensions. Seebacher et al. [25] design a visual
system to analyze the urban heat island. In this work, they use a calendar view to visualize how
the heat islands change over time, and the colors in the calendar view represent the amounts of
hotspots.

Pu et al. [110] label the spatial information with a spiral view, which is also a typical
visualization layout for circular periods. The spiral view is a ring-map-based radial layout
design and is efficient at visualizing and analyzing the circular time, such as the 24 hours
per day and seven days per week. The spiral view usually has two axes: radial direction
and clockwise direction. In order to utilize the spiral view in traffic data exploration, Pu et
al. [111] introduce the spiral view to visualize how the road traffic flow changes over a week
with a hierarchical time level. This view contains two-time dimensions, which are days and
hours. It represents the hour dimension with radius direction and the day dimension with the
clockwise direction.

2.4.2 Spatial Visualization

This section introduces spatial visualization for spatial data, which generally contains the lon-
gitude and latitude coordinates representing the objects’ positions in a specific time step, as
shown in Figure 2.6. Spatial data analysis plays a vital role in the traffic domain to help traffic
experts better know travel patterns and movement behaviors. This is what the spatial visual-
ization techniques can do — displaying the key spatial information and critical components.

2.4.2.1 Density-based Visualization

Point-based visualization displays discrete traffic data samples with a point-relevant visual
presentation. Each point visually encodes a unit (e.g., a traveler or a vehicle) and their density
reveals spatial patterns either statically or dynamically. Boston’s Massachusetts Bay Transit
Authority (MBTA) [16] presents the metro with points, as shown in Figure 2.7 (a), where the
animation of moving dots offer an overview of the subway system.
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Figure 2.7: The density-based visualization that describes objects’ position information and avoid
visual clutter. (a) Boston’s Massachusetts Bay Transit Authority (MBTA), from the website [16]; (b)
Data-driven Transport Assessment, from the paper [20]; (c) Visual Analysis of Route Diversity, from
the paper [21].

The advantage of point-based visualization is encoding the individuals’ information, such
as the movement directions and speeds. It can describe the individuals’ characteristics as much
as possible, but it would be inefficient when too many data items are in a specific space. In
order to solve this problem, researchers use the cluttered method to present the movement
group, such as using the heatmap. Wang et al. [20] propose a visual system to estimate the
real traffic situations based on taxi trajectories, as shown in Figure 2.7 (b), where the heatmap
introduced in this visual system can visualize traffic jams. Also, Liu et al. [21] create a heatmap
view to present the road diversities of hotspots in a city, as shown in Figure 2.7 (c). The red
colors in this heatmap show the locations where many vehicles pass by. Similarly, Liu et
al. [112] create the road map overview with the heatmaps in an interactive real-time visual
system.

2.4.2.2 Line-based Visualization

Line-based visualization can present the dynamic status of objects, such as their moving di-
rections and speed, as shown in Figure 2.8. Compared with density-based visualization, the
advantage of line-based visualization is in visualizing the moving objects and their moving
process. Line-based visualization usually encodes the lines with different colors and widths
to present the data attributes. Additionally, there is a range of visualization techniques using
icons to display the directions of objects, as shown in Figure 2.8 (a), using the arrows to show
the flow’s direction. Traditional line-based visualization aims to visualize every single entity
(e.g., trajectories of every taxi) as much as possible. However, the amount of data is becoming
enormous since various sensors and data storage capabilities have been developed. As a result,
the line-based visualization tends to clutter because lines overlap. In order to overcome this
problem, researchers visualize the data with groups. Guo et al. [22] create the flow mapping
to visualize how the objects flow, such as the human migration among counties in the US,
as shown in Figure 2.8 (a). In order to avoid messiness while visualizing all the flows, they
aggregate the regions into different groups and then visualize the flows with arrows among
these aggregated regions. Scheepens et al. [76] develop a visual system based on the lines to
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Figure 2.8: The line-based visualization that expresses objects’ movement information, e.g., direction
or speeds. (a) A multivariate flow map, from the paper [22]; (b) Traffic trajectory at a road intersection,
from the paper [15].

help operators select, filter, and compare traffic information using a combination of a particle
system and a particular selection widget.

Moreover, line-based visualization efficiently represents the trajectory information (mul-
tiple individual points of the same objects connect based on time sequence) using different
colors and symbols. Guo et al. [15] define the different symbols to present the vehicles while
visualizing their trajectories, as shown in Figure 2.8 (b). It labels different vehicles with dif-
ferent shapes of rectangles and trajectories with different color lines. Zhao et al. [17] visualize
the human trajectories to explore the human behaviors (e.g., work, travel, and leisure) where
they represent the movement patterns with different colors.

Additionally, researchers introduce the calculation method to assign the lines with new
relative positions to reduce the clutter. Andrienko et al. [87] propose an approach to analyzing
the group movement by calculating the trajectories’ relative positions at each time point. The
new relative positions respect the movement direction and group center to help users analyze
the trajectories by reducing the clutter.

2.4.2.3 Region-based Visualization

Region-based visualization shows the traffic situations in every individual region, such as the
administrative areas of cities. It is a highly aggregated type of visualization compared with
line-based and point-based visualization, as shown in Figure 2.6 (c), where it visualizes the
traffic flows as summaries using spatial structure, e.g., administrative divisions and grids struc-
ture.

Generally, region-based visualization calculates the specific events (e.g., traffic jams) based
on the regions and then shows them with icons or other visual encodings on maps. Seebacher
et al. [25] label the urban heat islands with circles and charts to visualize the detailed infor-
mation in the specific regions having higher temperatures and describe the thematic changes
over time with an extensive collection of documents. Xu et al. [113] propose the Geo map
view to display the geographical distribution of user-specific topics based on the geographi-
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Figure 2.9: The Region-based visualization helps users have a perspective of the traffic based on the
subdivision regions. (a) Voila, an overview of the anomalous information in the form of a heatmap,
extracted from the paper [23]; (b) MobiSeg, a region segmentation visualization, is extracted from the
paper [24].

cal heatmap. After combining with the text topic view, this Geo map can help users analyze
the urban characteristics. Cao et al. [23] design the Voila visual system to display abnormal
events (e.g., traffic incidents) in specific regions. They create rectangles to split the urban re-
gion shown in Figure 2.9 (a). The rectangles are encoded with different colors and shapes
to visualize the events and the abnormal percentage. This system can meet two requirements
in real-world applications: online monitoring and interactivity. The results indicate that the
system is robust and points out the possible research direction in the traffic domain, such as
developing new algorithms with forecasting and prediction capability.

Moreover, another region-based visualization comes from particular region division meth-
ods, such as those with Voronoi-based methods. Wu et al. [24] create the Voronoi-based tex-
ture map to reflect region characteristics of the urban-based human movement activities. They
separate the city regions with similar activity patterns, as shown in Figure 2.9 (b). Other rele-
vant region-based visualizations in the traffic domain are the grids technique and the tree map
technique. Wood et al. [114] have worked a lot on the OD visualization based on the grid
technique. They introduce the treemaps into the spatio-temporal visualization for exploring
the large multivariate spatio-temporal dataset. Also, they use treemaps to explore the traffic
speed distribution in London and the relations of other attributes, such as the vehicle type, day
of the week, and hour of the day, concurrently.

2.4.3 Spatio-temporal Visualization

Spatio-temporal visualization focuses on how the objects move along with the timestamps in
a single space. A typical approach is the Space-time Cube, which is a framework for repre-
senting how phenomena change over time within geographic space. It contains the geometry
information as a plane and the time information using another dimension. In a space-time
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Figure 2.10: Stacking-based visualization of trajectory attribute data. A 2D map serves as the spatial
context, and the stacked bands refer to the trajectories where the colors encode the data attribute values,
from the paper [13].

cube, each cube represents a slice of time (e.g., top cubes have newer timestamps, and bot-
tom cubes have older timestamps) [115]. Tominski et al. [13] utilize the space-time cube to
visualize the trajectories and the traffic flow, to describe how they change over time and to un-
derstand the objects’ mobility, as shown in Figure 2.10. Furthermore, Kang et al. [96] use the
Space-time Cube to extract human mobility during the time of day and on different days from
the millions of mobile phone users. It categorizes the users into different groups and analyzes
their behaviors, classifying them based on age or gender.

2.4.4 Event-based Visualization
This section introduces event-based visualization. Event data usually contains the event lists
that happened on the roads, such as incidents, traffic accidents, and road works. Generally,
the event data involve the positions and time, which means it is spatio-temporal data. Thus,
event-based visualization is a visual type that presents events in the spatio-temporal space.

Visualization techniques tend to highlight the event information on the map by using icons
or specific shapes and colors. For instance, Deng et al. [26] design Compass to help users cap-
ture the dynamic urban causality in urban time series, as shown in Figure 2.11 (b). It uses the
compass as icon displayed on the map to present the flowing directions. Similarly, Seebacher
et al. [25] introduce the pie chart as an icon to present spatial and temporal information about
urban heat islands, as shown in Figure 2.11 (a). Liu et al. [27] encode events on the map with
circles, as shown in Figure 2.11 (c), where circles visualize quarter statistics for the normalized
deviation from 0% to 100%.

Events or incidents are not identified in the raw dataset. Therefore, there are algorithms or
methods aiming to detect events, e.g., Doraiswamy et al. [107] propose an event-guided ex-
ploration system, which creates a time-varying data structure to make it automatically identify
the events. It flattens the hotspot map in different time slices to compare how the event-based
information changes. Tang et al. [117] introduce the Latent Dirichlet Allocation (LDA) model
into the interactive visualization technique to extract the spatial and temporal information of
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Figure 2.11: Three examples of event-based visualizations where (a) uses pie chart to represent the
urban heat island, from the paper [25], (b) uses compass as icon to display the urban causality, from the
paper [26], and (c) utilizes the size of circles to display data attribute values, from the paper [27].

the traffic events containing semantic information. After combining the LDA model, the inter-
active tool can display the topic analysis results.

Event-based visualization also aims to analyze the events’ impact on traffic situations (e.g.,
traffic jams). For instance, in order to explore what impacts the incidents have on the road and
how the past events affect the traffic, Anwar et al. [14] design Traffic Origins to visualize the
traffic situations and the incident’s information, which employs an expanding circle to uncover
the underlying traffic flow map and their temporal information.

A map legend is a description, explanation, or table of symbols printed on a map or chart to
interpret traffic information and traffic events. The traffic events usually contain road situations,
such as road works or traffic accidents. Also, it involves information on the map scale, such as
the color scale reflecting traffic flows and traffic density (e.g., free flow or traffic congestion).
For the research of the legend in maps, Jason et al. [118] develop the guidelines for legend
design in a visualization context that is derived from cartographic literature and the application
from EDINA, which provides digital mapping services. We will introduce a quantitative value
categorization technique for creating a suitable scale (e.g., could be used as the legend in maps)
of traffic flows or traffic density in Chapter 3.

2.4.5 Multiple Coordinated Visualization (MCV)

Most visualization techniques introduced in the previous sections are single views. However,
they are limited when the data contain a large volume of information or many attributes, es-
pecially many visual representations that use different paradigms requiring their own space.
Thus, we review multiple coordinated visualization (MCV) [120] in this section as the foun-
dation of the research in Chapter 6. Initially, MCV focused on the model and the tech-
niques [121]. After several years, researchers applied the MCV to different domains (e.g.,
traffic control centers or business analysis). Multiple views have different meanings in differ-
ent sentences. A study done by Roberts et al. [122] related to terminology and phraseology
in the visualization community. The results of this study help users better understand MCV
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and use them in suitable ways to improve their writing. Besides, as introduced by Roberts
et al. [121], MCV has four types based on the tasks: Overview & detail views use one view
to visualize the whole dataset and another view to visualize the part of the dataset; focus and
context views are similar to overview & detail, but the context does not display the overview
of the whole dataset; difference views are achieved by merging several views; small multiples
are the high density of the views or matrix.

The design space of MCV affects the availability and efficiency of realizing tasks. Accord-
ing to a study done by Chen et al. [123], the design space of MCV can be described in two
aspects: composition and configuration. The composition defines how many views they use
and which presentation types are in each view. Configuration describes the spatial arrangement
of view layouts. Based on the two aspects, they summarize some guidelines for multiple view
designs. Besides, the MCV combines with other visualization to construct new design spaces
and improve visual presentation. For example, Roberts et al. [120] link the multiple views to
the 3D visualization to explore the deeper patterns since it is not easy to ’see inside’ in the 3D
visualization when dealing with too much data.

As introduced in the previous paragraph, a good design space can improve the availabil-
ity and efficiency of MCV. However, there is an issue — how to evaluate the design space of
MCV? For this issue, Shao et al. [124] create the model based on Bayesian probabilistic infer-
ence to evaluate the effect of design factors, including views, coordination, and designers. This
calculation introduces the maximum area and weighted average aspect ratios as the geometric
metric. The maximum area ratio reflects the ratio of different views’ areas. The weighted av-
erage aspect ratio can effectively clarify a presentation. Besides, Langner et al. [125] report on
the critical consideration for the multiple views designs for wall-sized displays. They develop
full-function interactive tools with 45 views based on criminal activities. The user study aims
to learn how people use multiple view wall-sized displays with closed and overview distances.
The results show that users would like to interact with the visual elements freely and would
also like to walk close to each other.

Apart from the theoretical method for improving the design space, there are also empirical
studies reviewing the MCV in the visualization community. Al-Maneea et al. [126] present
the analysis of layout patterns with multiple views by collecting 491 images from the visual-
ization community conferences and journals. They analyze the topology in juxtaposed views
and eventually provide guides in designing multiple views. Also, Lyi et al. [127] study the lay-
out effects from previous information visualization by reviewing three comparative layouts:
juxtaposition, superposition, and explicit encoding.

Designing multiple view systems requires specific design methods, which involves many
steps, e.g., brainstorm, the layout design and focus zone design [128]. Apart from the tradi-
tional design method, novel MCV design methods rise along with the development of visual-
ization techniques, such as automatic layout generation techniques. Cruz et al. [129] develop a
visual system to assist designers in automatically generating MCV. First, this system can pro-
cess the data component to create the relations among these different data sources, and then,
the heterogeneous data help users create the views with their preferences. Finally, they enable
users to construct integrated visualization with multiple views. Wu et al. [130] propose a deep
learning-based method to help users create a suitable dashboard for analyzing the data. Xu et
al. [131] provide automatic optimization of the layout for multiple views to make it beautiful
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when there are ambiguous layout problems. Al-maneea et al. [126] create a tool to help users
easily create juxtaposed view layouts. This tool can help users change the layout types and re-
place the views in the bounding box of the layout. Similarly, Boukhelifa et al. [132] propose a
model for creating the coordination of multiple views in the exploratory visualization. Eichner
et al. [133] report a display model in a multiple-view environment. It helps users automati-
cally generate the layout in the design space. This model considers three components: ”What”,
”When”, and ”Where”. ”What” refers to the contents that should be discussed, ”When” refers
to the sequence, and ”Where” refers to how we display the content in the display environment.

2.4.6 Conclusion
To summarize, we reviewed the visualization techniques for road traffic data, including tem-
poral, spatial, spatio-temporal, event-based, and multiple coordinated visualizations. Three
typical layouts of temporal visualization support us with the background knowledge to design
a temporal visualization technique in Chapter 5 by developing a set-based approach to avoid
overplot generated from line charts. Spatial visualization techniques generally highlight the
spatial data features through clustering, heatmap, and region-based visualization approaches.
We focus on spatial visualization in Chapter 4 by developing a nest-based visualization tech-
nique to explore both the explicit relations (e.g., the trajectory positions) and implicit relations
(e.g., travel distance and speed) of geo-coded entities. Event-based visualization aims to vi-
sualize the implicit traffic events (e.g., traffic congestion). Mostly, traffic events are hidden
in the raw data. In order to find an efficient way to define the traffic events in raw data, we
develop a quantitative value categorization technique in Chapter 3. Spatio-temporal and mul-
tiple coordinated visualizations describe two research directions (3D and multiple coordinated
visualizations) while visualizing both temporal and spatial information from heterogeneous
data. This manuscript utilizes multiple coordinated visualizations to deploy the traffic control
centers in Chapter 6.
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Any use of ”we” in this chapter refers to Liqun Liu and Romain Vuillemot. In this work,
we have a paper published as follow:

• Liqun Liu and Romain Vuillemot. ”Categorizing Quantities using an Interactive Fuzzy
Membership Function,” In The 12th International Conference on Information Visualisa-
tion Theory and Applications, P. 8, On-line, Feb 2021. (Link)

3.1 Context and Motivation
This chapter focuses on the problem of analyzing single attribute data, commonly called uni-
variate data (introduced in Section 1.2 and Section 2.2.1). Such problem is frequent with road
traffic data, such as when analysts seek to categorize traffic flows or vehicle speeds. This cat-
egorization can benefit traffic operators of traffic control centers (introduced in Section 2.3.1)
in monitoring the traffic task (introduced in Section 2.3.2) by providing a suitable traffic flow
categorization scheme. In this case, analysts tend to categorize, for instance, vehicles speeds
as LOW, MIDDLE, and HIGH. However, the HIGH speed could have different values from very
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Figure 3.1: The membership function categorizes the age into Young, Middle-aged, and Old, ex-
tracted from the book [28]. We extend this function in this chapter to analyze univariate traffic data.

Name Link
Online Prototype https://observablehq.com/d/0820d2ad9cfa734d

Website for user study https://observablehq.com/d/45001390e4f1b08f

User study results https://observablehq.com/d/9479ec50c448978d

Table 3.1: Supplementary materials. It includes an online prototype with a feature for users to upload
their data, a website for user study, and a website for the user study results.

HIGH to moderately HIGH. To capture such nuance, there is a need to mimic the logic of human
thoughts and reasoning that is often subjective using the domain or prior knowledge. Such a
process raises the following needs:

• An explicit mapping of those categories: the mapping function between quantities and
categories should be clearly defined.

• A customize-able mapping to categories that can vary across analysis sessions and an-
alysts: the mapping could be personalized and change based on the task to achieve.

• The transfer between analysts and a user should be possible: by some means of com-
munication like a legend or a visual encoding that explains the current categorization
scheme being used.

To meet those three needs, this chapter designs an interactive tool (FuzzyCut) to make the
univariate data categorization process explicit and flexible to obtain a better traffic flow cate-
gorization scheme. Our approach relies upon fuzzy logic [134] created in the 1960s by Zadeh
to model domains with imprecise information [135], which we argue provides the theoretical
framework to address the above issues. In particular, we rely upon a visual representation
from this theory called the membership function, as shown in Figure 3.1, which is a line chart
of the mapping function between the univariate data value intervals and fuzzy categories. Us-
ing FuzzyCut, users can adjust the shape of the membership function to generate the fuzzy
categories belonging to a specific set with confidence.
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We provide an implementation demonstrating how it supports the categorization of mul-
tiple datasets in Observable notebook, a reactive, web-based framework compliant with ES6
JavaScript modules, using library D3 [136]. Table 3.1 lists all the prototypes, code, and study
results presented in this chapter.

3.2 Related Works

This chapter focuses on categorizing quantities with fuzzy logic theory and quantifying these
generated categories with a membership degree. This section reviews papers in probabilistic
classification, fuzzy visualization, and uncertainty visualization.

3.2.1 Visualization of Probabilistic Classification

The general probabilistic classification visualizations focus on the quantitative and multiple
attribute data. A visual system proposed by Seifert et al. [137] allows users to understand
the process of classification and results, which handles multiple attributes data formats. For
the multiple attributes data classification, Rheingans et al. [138] develop a technique to visu-
alize high-dimensional predictive results with richer representation, e.g., confusion matrices
(a specific table layout that allows visualization of an algorithm performance) to help users
understand high-dimensional data space. Besides, there are studies on visualizing probabilis-
tic classifications generated from machine learning methods. A visual interactive analysis
technique proposed by Alsllakh et al. [139] evaluates the effectiveness of classifiers to help
machine learning experts discover the possible reasons for incorrect classification. This tool
emphasizes the classification probabilities of items and make relations with a false negative
and a false positive. Also, UnTangle Map proposed by Cao et al. [140, 141] using connected
triangles to represent the set of data items can make efficient relations between data items and
their probabilistic labels.

3.2.2 Fuzzy Visualization

There exist visualizations using fuzzy logic theory to capture the ambiguity categorization
(we call it fuzzy visualization), where fuzzy represents that the truth value may range between
completely false and completely true. For example, the Disk diagrams [142] proposed by
Yeseul Park et al. can visualize fuzzy set (a class of objects with a continuum of grades of
membership). It describes the complexity of fuzzy sets by showing the degree among sets
with the layout of star coordinates. Besides, Zhu et al. [143] extend the circular disk diagram
layouts to improve sets membership analysis by using color opacity and optimized layout. It
conveys fuzzy set membership and reveals the uncertain owner-member relationship (i.e. the
relationship between a value and a set).

There are several mixed methods for visualizing fuzzy sets and fuzzy clustering (each data
point can belong to more than one cluster). The typical one is the combination between ra-
dial coordinate and parallel coordinate plot, introduced by Zhou et al. [144, 145]. This method
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reflects real-world clustering scenarios and improves the understanding of fuzzy clusters. Sim-
ilarly, RadViz proposed by Sharko et al. [146] visualizes the fuzzy clustering of multiple di-
mensional datasets using radial visualization and the dimensional reduction method. Also,
Rose Diagram proposed by Buck et al. [147] uses vectors of fuzzy attributes to visualize a
fuzzy weighted graph. This method is an extension of the standard polar area diagram (a type
of pie chart) and is helpful for decision-makers to choose a better way between several options
while estimating the potential trade-offs.

With the development of visualization techniques, fuzzy visualization has become more
abundant. Hall et al. [148] introduce parallel coordinates to fuzzy visualization and trans-
form 3D or more than three-dimensional data into two dimensions without losing information.
Similarly, Pham et al. [149] introduce the 3D parallel coordinates to visualize fuzzy data. Its
advantage is that it is easier to distinguish the core and support in fuzzy sets. Furthermore,
visualization techniques use novel methods to render fuzzy relations. Berthold et al. [150]
propose a model to visualize the collection of fuzzy points in parallel coordinates. The paral-
lel coordinates visualize the degree of membership function with different degrees of shading.
Besides, Caha et al. [151] propose a hue saturation lightness (HSL) method to depict some
essential values of fuzzy surfaces. This approach can be utilized in visualizing information of
fuzzy numbers, vector data, and uncertainty data.

3.2.3 Uncertainty Visualization

Research on uncertainty visualization also offers efficient methods to convey ambiguity during
the categorization process. As introduced by Brodlie et al. [152], the uncertainty of visual-
ization exists in any data type, e.g., point data, scalar data, multi-field scalar data, and vector
data. Also, the visualization technique on uncertainty is challenging for various reasons, such
as the complex status of uncertainty and the uncertainty information appearing in different
ways. In order to address the challenges in uncertainty visualization, Skeels et al. [153] pro-
pose a classification of uncertainty for information visualization. It includes five categories:
disagreement uncertainty from the difference of multiple times measurements, completeness
uncertainty from the missing values, inference uncertainty from the model and prediction,
measurement precision uncertainty from imprecise measurements, and credibility uncertainty
from the conflict of the different data sources. Much effort has been devoted to designing vi-
sualization techniques, such as what Dong et al. [154] did, an interactive tool to help users
recognize the situations and comprehend the ambiguity.

In conclusion, these works have presented several probabilistic uncertainty classifications
with visual encoding methods. However, these works only support the communication of
already created categories and not their generation by users to capture uncertain information.

3.3 Defining Crisp and Fuzzy Membership Functions

The challenge we tackle is the explicit mapping between quantities and categories. While most
visualization techniques and tools usually address it during the data pre-processing steps (if not
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ID Time Lat Lon Speed (km/h) Speed Category
2618113 20130901000140 30.6199659 114.2990449 30 LOW

2618113 20130901000205 30.627190 114.2283287 57 MIDDLE

2618113 20130901000255 30.621745 114.2707959 65 MIDDLE

2618113 20130901000307 30.620711 114.260443 101 HIGH

Table 3.2: Dataset with quantities and categories. It introduces the data format of taxis trajectories,
including the quantities (Speed) and categories (Speed Category)

yet in the dataset), it remains internal—or at best using a legend—without providing a fully
explicit set of customization for this mapping.

To present our approach, we progressively introduce the definitions by first stating our
challenge in finding the relationship between Q (Quantitative) and C (Categories) as a mapping
function:

Quantity→ Category (3.1)

Quantities are the measures of counts or values expressed by numbers (e.g., 30km/h, as
shown in Table 3.2). On the contrary, categories are measures of type and can be expressed by
a symbol, name, or label (e.g., LOW or HIGH, as shown in Table 3.2). The mapping function con-
nects quantities (Q) and categories (C), e.g., the connection between quantity ”Speed” and cat-
egory ”Speed Category” (listed in Table 3.2), shown as [0, :] →< LOW,MIDDLE,HIGH >.
Thus, we define the mapping from quantities to categories as Equation (3.2):

x→


LOW i f speed(x) ≤ 30

MIDDLE i f 30 < speed(x) ≤ 80
HIGH i f 80 < speed(x).

(3.2)

In order to address this mapping problem, we design a visualization technique based on
the line chart, mapping quantitative scales to a domain of user-defined categories. Figure 3.2
illustrates the user interface that represents the mapping of each value to categories. The table
in Figure 3.2 indicates the categorization result for each category.

This mapping type relates to the classical sets theory, where categorization is a crisp pro-
cess that splits quantities into categories with a binary function: accepting or rejecting the
object belonging to a category [155]. As a result, an element x either belongs to a category
or not. If there is a set W that is not empty and a set S ⊂ W, the characteristic function of S
shows as follows:

fS (x) =

{
1 i f x ∈ S
0 i f x < S (3.3)

where fS (x) is the function and the domain of fS (x) is W. The value of fx(x) is in set {0, 1}. If
fS (x) = 1, it means element x belongs to set S ; if fS (x) = 0, it illustrates element x does not
belong to set S so that this mapping function fS (x) → {0, 1} are able to completely represent
the relationship between element x and set S .

However, the previous mapping function cannot capture ambiguous sets. For example,
it cannot represent the MIDDLE, RELATIVELY HIGH, and HIGH because RELATIVELY HIGH
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Figure 3.2: Categorization using a crisp mapping function, there are three crisp categories generated
from the function shown in (a) and the detailed information of categories in (b).

overlaps with HIGH and MIDDLE. Thus, it is not any more suitable for separating quantitative
values when there is ambiguity or when there is more than one quantitative scale.

In order to solve the problem that does not have sharp boundaries while categorizing, Zadeh
et al. propose the membership function. It is a line chart of the mapping function between the
univariate data value intervals and fuzzy categories, presenting the degree of truth (the mem-
bership degree) as an extension of valuation [40]. The membership function can be described
as fa(x) → [0, 1]. The value of fa(x) means the membership degree of the membership func-
tion. With fa(x) = 1, it represents the complete belongingness while fa(x) = 0 shows the
complete non-belongingness. The membership degree has the interval in [0, 1], where this
value represents how many possibilities element x belongs to set A. The membership degree
fa(x) can be calculated in multiple ways, e.g., triangular, trapezoidal, Gaussian, and sigmoidal
functions. In this chapter, we select the trapezoidal membership function (we will implement
other membership functions in further work), and it is given by:

f (x) =


0 i f x < a
(x − a)/(b − a) i f a ≤ x < b
1 i f b ≤ x < c
(d − x)/(d − c) i f c ≤ x < c
0 i f x > c

(3.4)

where, a, b, c, d are the parameters of the trapezoidal membership function. The membership
functions can be displayed over a line chart in which the x-axis is the quantitative value, and
the y-axis is the membership degree. Each line is a category whose membership degrees are
from 0 or 1.

To implement the membership function into interactive categorization, we design a visu-
alization technique named FuzzyCut. It can map quantities to categories with membership
degrees as an extension of categories, as shown in Figure 3.3. FuzzyCut involves three pa-
rameters: 1) Core: it refers to the elements completely or fully belonging to one membership,
and the membership degree is equal to 1; 2) Support: it refers to the elements that belong to
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Support

CoreBoundary

Overlap CategoryEmpty Category Partial Category Full Category

Speed

Figure 3.3: Parameters and categories of membership function. The parameters contain Core, Support,
and Boundary. Based on these parameters, there are four specific categories generated: Full Category
with only one membership degree is equal to 1, Partial Category with only one membership but the
membership degree is less than 1 and more than 0, Empty Category without any membership, and
Overlap Category with two memberships.

one membership with membership degrees more than 0; and 3) Boundary: the categories that
contain elements that have non-zero memberships and incomplete memberships.

FuzzyCut generates the categories based on the different combinations of parameters in the
membership function. Figure 3.3 includes the generated categories: Partial Category, Empty
Category, Full Category, and Overlap Category. Empty Category refers to the categories that
do not belong to any category, and their membership degrees are equal to 0. Overlap Category
refers to the categories that belong to two memberships simultaneously, with membership
degrees more than 0 and less than 1. Partial Category refers to the categories that only belong
to one membership but with membership degrees less than 1 and more than 0. Full Category
corresponds to parameter Core, with membership degree equal to 1.

3.4 Interactive Membership Function
We have implemented FuzzyCut as an interactive prototype (link) in Observable notebook [136]
(introduced in Section 3.1). Figure 3.4 shows the interface for users to adjust parameters,
thereby generating the categories they want. In (a), the x-axis represents quantitative values,
and the y-axis shows the membership degree (µ). In (b), the table shows the data and derived
attributes. Users can generate the categories they want in two steps:

• Change the shape of the membership function. Users can adjust the shape of the
membership function by dragging the blue sliders (on the left of Figure 3.4) to adjust the
parameters (e.g., core, support, and n). Moreover, users can adjust these parameters by
dragging small black circles (on the membership function).
• Define the name of generated categories. Users define the name of generated cate-

gories by inputting texts in the rectangles below the membership function. The generated
membership values and derived attributes are in Figure 3.4 (b).
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(a)

(b)

Change the shape of membership function

ID Speed Categories
Membership Degree - LOW
(Full Category)

Membership Degree - HIGH 
(Full Category)

2618113 85 HIGH 0 1
2618113 61.0500024 MIDDLE 0.29 0.42
2618113 52.5585024 MIDDLE 0.21 0.47
2618113 56.869002 MIDDLE 0.14 0.51
2618113 36.54 PRETTY LOW 0.64 0
2618113 23.40249948 LOW 1 0
2618113 0 LOW 1 0

Figure 3.4: The illustration of interaction on FuzzyCut. Users can adjust the shape of the membership
function by dragging the black points on the membership function as illustrated with three arrows or
dragging the parameter sliders (blue) shown on the left in (a). Based on the membership function shapes,
it can create categories with different labels (LOW, PRETTY LOW, MIDDLE, HIGH). The data format and
the derived new attributes are in table (b). The raw data includes the quantitative data speed and derived
attributes, including Categories and the membership degrees, such as the columns Membership Degree
- LOW (Full Category) and Membership Degree - HIGH (Full Category).

3.5 Illustrative Examples with Taxi Speed Dataset

We have implemented FuzzyCut with several data types, such as taxi speed, temperature,
and age datasets. This section introduces how users categorize the taxi speed values using
FuzzyCut to generate the categories (We introduce other dataset implementations in Sec-
tion 6.2.1). In this example, the speed data implemented are half-bounded intervals (speed
value x ∈ [0,+∞]) and continuous value types (numeric variables that have an infinite number
of values between any two values), which have been introduced as the taxi trajectory data in
Section 2.1.5. While analyzing the taxi data, traffic analysts usually are interested in character-
izing taxi driving behaviors (e.g., drunk driving or fatigued driving). In this analysis process,
speed is an essential parameter to reflect these driving behaviors.

Figure 3.5 shows FuzzyCut implemented with the taxi speed data. (a) shows the interface
of the interactive membership function, and (b) refers to the generated categories. In this
example, FuzzyCut separates the speed into five categories, three of which are main categories
named Low, Middle, and High. Also, there are two Overlap Categories with membership
degrees less than 1, named Low-Middle (overlap between Low and Middle) and Mid-High
(overlap between Middle and High). Other categories, more domain-specific, could have been
used, e.g., Slow, Fast, by editing the label input field in the prototype.
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Figure 3.5: FuzzyCut separates taxi speed values into five categories. There are two categories with
membership degrees less than 1 (fuzzy categories), named Low-Middle and Mid-High.

3.6 User Study
In order to verify the effectiveness and limitation of FuzzyCut, we conducted a user study. Our
main goal was to investigate how easily users could use the technique and how effectively users
could categorize quantities with different data types. We conducted this study with Age and
Temperature datasets, to have more participants with quasi homogeneous expertise in a domain
than road traffic. By interviewing these users who had the experience of categorizing quantities
and exploring the habits humans resonate on quantities, we investigated three hypotheses in
this user study:

H1 The interactive technique would help people categorize quantities and affect their cate-
gorization results.

H2 The data size would affect the categorization results, which means that the same user
will create different categorizations with different data sizes.

H3 Users would name the generated categories with comparative and descriptive words
(e.g., HIGH and RELATIVELY HIGH).

3.6.1 User Study Setup

In order to test if the hypotheses were Valid or Not, we designed the user study in three
steps. We first recruited participants in the computer science field or not, and then we invited
participants to categorize the quantities, i.e. age and temperature data. Finally, we measured
the categorizing quantities results.
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Figure 3.6: The statistic of categories generated from eight participants with the age dataset. The x-axis
represents the type of categories, such as Overlap Category, Full Category, and Partial Category, which
are introduced in Figure 3.3; Total categories refers to all the generated categories; the y-axis represents
the number of each category type; the different colors refer to the categorization without using Fuzzy-
Cut, the categorization using FuzzyCut but with subsets and the categorization using FuzzyCut with
the entire dataset.

Participants: We recruited eight participants (three females) to participate in this study.
Their ages ranged from 26 to 32 and the mean age was 28.6. Two of them had computer
science backgrounds and rich experience in reasoning on quantities. None had used our tech-
nique before. We invited all participants to fill in a pre-study questionnaire relating to basic
information (e.g., Whether they are similar to visualization and have a computer science back-
ground). In this pre-study questionnaire, participants were also required to categorize the age
and temperature data based on their background knowledge.

Tasks: We invited all participants to operate FuzzyCut at least once and collected the data
log, including their operating activities and the categorization results. We designed a web
page (link) where users could operate FuzzyCut following the introduction. On this web page,
we explained FuzzyCut with examples and then implemented two prototypes using age and
temperature dataset. Through users’ activities on this web page, we recorded the operating
results and saved these results to a remote server. This operation included three steps:

• In Step. 0, participants watched a brief introduction to FuzzyCut, which included some
basic information and workflow introduced by a video.

• In Step. 1, we invited participants to create a specific categorization configuration (we
pre-supplied) in aspects of name and range of categories. The configuration helped
participants understand how to manipulate FuzzyCut quickly.

• In Step. 2, we invited the participants to categorize age and temperature datasets with
different data sizes. Firstly, participants categorized the data with a small amount and
then with a greater amount if the participants thought the categories should be updated
when the amount increased.
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Figure 3.7: The statistic of fuzzy categories generated from 8 participants with the temperature dataset.
The x-axis represents the type of categories, such as Overlap Category, Full Category, and Partial
Category, as shown in Figure 3.3; Total categories refers to all the generated categories; the y-axis
represents the number of each type of categories; the different colors refer to the categorization without
using our tool, the categorization using our tool but with subsets and the categorization using our tool
with the entire dataset.

After this operation, participants needed to fill in another questionnaire with qualitative
feedback about FuzzyCut. During the study, we encouraged participants to think aloud about
what they were doing, how they thought, and why they operated the parameters. We took notes
about these questions and assisted if it is necessary.

Measures: We recorded the information to a remote server, which was related to partic-
ipants’ operating activities and the categories generated by users. Activities were how users
changed the shape of the membership function (introduced in Section 3.4). The categories in-
cluded maximum values, minimum values, names, and membership degrees. We utilized these
attributes to calculate the participants’ categorizing behaviors and reasoning. For example, the
first-time and second-time categorizations could reflect whether participants were disturbed by
the data size.

3.6.2 Results
We visualized the results of categories for age and temperature datasets in Figure 3.6 and Fig-
ure 3.7, respectively. The x-axis represents the category types (have illustrated the concepts of
these categories in Figure 3.3), which contains: Total Categories for all categories generated,
Overlap Category for the categories having two memberships, Partial Category for the cat-
egories only having one incomplete membership (the membership degree is more than 0 but
less than 1) and Full Category for the categories only having one complete membership (the
membership degree is equal to 1). The different colors of the boxes show the categorization in
different ways: categorization without using any tool, first-time categorization using FuzzyCut
with the sub dataset, and second-time categorization using FuzzyCut with the entire dataset.
The y-axis represents the number of each category type and the points in the boxes represent
the individual participants.
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Figure 3.8: Usage frequencies of categories’ names. The bigger size of the text, the more participants
used such names.

As shown in Figure 3.6 and Figure 3.7, the categorizations without using FuzzyCut do
not generate Overlap Category, Full Category, and Partial Category. Also, the two figures
show that compared with the categorization without using FuzzyCut, the categorizations us-
ing FuzzyCut with either the sub dataset or the entire dataset generate more Total Categories,
which indicates that FuzzyCut has a particular effect on participants while categorizing quan-
titative values because the number of categories increases significantly while using FuzzyCut,
which verifies H1. It also indicates that participants can understand the data deeply after us-
ing the technique. Besides, compared with the first-time categorizations using FuzzyCut, we
find that the second-time categorization generally has more counts in Total Category and Full
Categories, meaning that users create more categories in the second-time categorization while
using the entire datasets. Therefore, the data size affects the categorization results, which
verifies H2.

Now, we analyze the categories naming patterns. We count usage frequency of all the
words (e.g., very, old and hot) while operating FuzzyCut. Also, we code qualitative proper-
ties of words, e.g., Old and Children referring to common words; Very and Less referring to
comparison-descriptive words. Figure 3.8 shows statistical results where the words Hot, Chil-
dren, and Old show more frequently than other words, indicating that the participants usually
prefer to use common words as labels for new categories. Besides, the words Very, Large,
Small, and Middle also appear more frequently, from which we can conclude that the partic-
ipants usually prefer to use comparison-descriptive words combined with nouns to represent
the categories’ degree. These two findings verify H3.

The post-study questionnaire collected qualitative feedback from the participants, and the
results are shown in Figure 3.9. The x-axis represents the six questions related to the perfor-
mance of FuzzyCut, and the y-axis represents participants’ scores for each question. The score
is Likert scale from 1 to 5, which ranges from very negative to very positive. Most of the scores
are more than 2. The question related to Easy to interact has the most positive feedback from
the participants, reflecting that the participants can easily engage with the interactive functions.
However, the questions related to Creating categories and Parameters understanding have rel-
atively lower performances than other questions, which might be because these participants
are unfamiliar with the fuzzy theory, so it takes time to understand the membership function
parameters.
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Figure 3.9: The results of the post-study questionnaire. The box plot represents a Likert scale for eight
participants answering six questions. The scores are from 1 to 5, with 5 representing the most positive
feedback and 1 representing the most negative feedback.

3.6.3 Other Feedback
We have also collected all participants’ qualitative feedback while using FuzzyCut. In general,
the feedback is positive. All participants think FuzzyCut is easy to understand and manipulate.
Two of them think this technique is very useful in many domains, especially those that do not
have a clear mathematics relation. In that case, people make the decisions with their own
experience, so an interactive technique is highly necessary to help people understand the fuzzy
relations among data.

Moreover, there are issues with the current version. A participant thinks it would be better
if the membership degree could connect with the distribution of the dataset. In addition, there
are issues while adjusting the membership function shape, such as category names overlapping
when there are many categories. In terms of parameters, one participant says they cannot easily
check the values of core and support.

3.7 Conclusion and Perspectives
We proposed an interactive membership function (FuzzyCut), which allows users to com-
prehend the quantitative data by mapping them into categories. It creates fuzzy categories
combining membership degrees to convey how confident a quantity belongs to a set. We il-
lustrated its use with taxi speed data. The evaluation results show that it supports users with
understanding the quantities in an interactive way where they can observe how the categories
change when they create different membership function shapes. The data size also affects users
making decisions in the categorization process. This work opens research areas at the inter-
section of visualization and fuzzy logic, which is currently under-explored. The interactive
membership function can help traffic experts create a suitable scale of traffic flows or densities.

We expect this technique to be used as a categories-generation tool in traffic-relevant data
and other domains (e.g., the temperature and age data). In particular, as we have released
our prototype and code as an open-source project, it facilitates further application to more
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domains, improvement, and evaluation. We will discuss how to deploy FuzzyCut and other
visualization techniques (which will be introduced in the following chapters) in traffic control
centers. We will also discuss the applications in other domains in Section 6.2.1.
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Figure 4.1: OD map (which stands for Origin-Destination map, a geospatial visualization technique
introduced in [29]) represents the US migration among countries. This chapter is based on this technique
that we generalize, to explore spatial data.

4.1 Context and Motivation
Road traffic is inherently spatial, thus mobile entities produce massive amounts of geo-coded
data through GPS signals, mobile phones, or sensors (introduced in Section 2.1). Analysts
can use them to understand patterns of human mobility or road traffic. Such data usually
enable the analysis of both entities (e.g., taxis or public transport) and their relationships either
with themselves (if entities move over time) or across them (if entities communicate with
each other). Such relationship data is often called Origin-Destination (OD) data: it refers to
the movement of objects in a geographic space from one location to another, O refers to the
original position, and D refers to destination position, and is deeply geo-coded. In this chapter,
we explore OD data in both [156] explicit and implicit relations, where:

• explicit relations refer to the spatial trajectories of links between geo-coded entities (e.g.,
taxi trajectories);

• implicit relations refer to the abstract attributes of those trajectories (e.g., speed or mov-
ing direction of taxis).

Exploring OD data requires ways to rapidly navigate through implicit relations while pre-
serving references to explicit relations. OD Map (Figure 4.1) is a geospatial visualization
technique proposed by Wood et al. [29], to encode the explicit relation of origin and destina-
tion of entities. A first level of the map encodes the origin, and a second nested level encodes
the destination in cells nested on the map. Visually, this technique generates grids of maps that
preserve the original map at a lower scale. This technique has proven efficient in analyzing any
geo-coded data in many domains. Our goal in this chapter is to generalize it to encode implicit
relationships, i.e. showing relations between entities in the spatial dimension and eventually
help transport planners (introduced in Section 2.3.1) explore the OD patterns, which is one
typical task of situation-aware exploration and prediction (introduced in Section 2.3.2).
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To address this problem in an operational manner, we introduce a generalization of the
OD maps techniques called Gridify, as shown in Figure 4.2. We implement it as an interactive
Exploratory Data Analysis (EDA) tool for geo-coded data—the approach of analyzing datasets
by summarizing the data characteristics with visualization methods [36]. We demonstrate the
expressiveness and effectiveness of Gridify through several case studies, and we show how it
enables the discovery of structural properties of typical datasets — taxi and transit datasets,
which are introduced in Section 2.1.5 as taxi taking passengers trajectory dataset and transit
dataset. We then discuss the main limitations and challenges of the generalization framework
and the tool, primarily related to data pre-processing and scalability.

We have implemented Gridify using Observable Notebook (introduced in Section 3.1). We
used the D3 [136] version 5.9.2 library for data manipulation, and in particular the d3.group
function for calculating nesting. We also used the d3-gridding toolkit [157]–based on D3–
for grid partitions. All supplemental materials are in Table 4.1.

Name Link
Online prototype https://observablehq.com/d/10a0f8527c21dcd3

Datasets https://github.com/LyonDataViz/oddata

Table 4.1: Supplementary materials. It lists an online prototype of Gridify implemented with Observ-
able notebook and datasets description (data format and how to use one’s datasets).

4.2 Related Works
Our focus is primarily on developing an Exploratory Data Analysis tool that relies upon the
general concept of OD matrix. OD matrix is a description of movement in a certain area, with
rows referring to origins and columns referring to destinations, which has been investigated by
[158, 159, 160, 161]. As we aim to generalize OD matrix visually, we investigate grid-based
and faceted approaches to visualize the trajectories of different geo-coded entities and their
abstract attributes. We consequently review previous work on faceted visualizations and small
multiples, as well as work on constructive Exploratory Data Analysis tools developed by the
Infovis community.

4.2.1 Faceted Visualizations and Small Multiples
A recurring theme in Exploratory Data Analysis is the necessity for multiple perspectives on
faceted views of given datasets—something Tufte emphasizes in his praise of small multiples
as a very efficient exploration mechanism [119]. Munzner [162] outlines a design space for
multiple faceted views, which covers the use of small juxtaposed visualizations to compare
individual perspectives (e.g., abstract attributes) across many collections (e.g., small multi-
ple views of different entities) in the data, or multiple perspectives across few collections.
Beecham et al. [163] expands this design space by proposing a theoretical framework and an
implementation of faceted views with varying emphasis, which attempts to tackle the issue
of simultaneously visualizing multiple perspectives across many collections. Our work builds
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2

3

1

Figure 4.2: Example of visualizations built with Gridify. Gridify relies on the combination of simple
data grouping, aggregation, and grid patterns, to reveal implicit relationships in geo-data (e.g., speed
of taxis) while keeping explicit ones (i.e. positions of taxis) visible. ¬ shows the taxi trajectories
(explicit relationships) between pick-up points (the places where taxis pick up passengers) and drop-off

points (the places where taxis drop off passengers). ­ extends the same encoding as ¬ to nest more
dimensions, such as the distance of the trajectories (implicit relationships). ® renders the trajectories
based on the trajectories’ attributes.

on this idea. However, where Beecham et al.’s work explores superimposing perspectives on
each collection, ours breaks down the collection, e.g., the dense, spatially anchored trajectories
of a geo-entity, according to the different perspectives, using a variety of grid patterns [157].
As such, our work is also related to the use of small multiples as a navigation mechanism in
multivariate datasets [164] to separate subsets of the data using non-visual properties.

Google Facets1, or the Geofacets R module2, tie together facets and (shallow) hierarchical
layouts by organizing the different views of the data in a specific spatial layout, or grid. How-
ever, these techniques only allow the display of a limited number of abstract attributes since
they do not support deep hierarchical nesting within facets or cells of the grid. Matrix-based
layouts have shown many benefits to organizing entities into rows and columns [165]. Pivot-
Graph [166] builds on 1D or 2D matrix-like grids to group nodes of multivariate graphs and let
users analyze node’s properties. Pivot slices [156] demonstrate how a faceted approach with
multiple heterogeneous views could support the exploratory analysis process.

Finally, to better qualify the distinction we make between the inherent geo-coded attributes
of OD data and their more abstract attributes, we rely on Zhao et al.’s [156] distinction between
implicit and explicit relations in datasets. While the distinction they make is not necessarily
intended for primarily geo-coded data, we use the idea of explicit relations to qualify the
spatially anchored aspects of geo-coded entities, and implicit relations to qualify their more
abstract attributes.

1https://pair-code.github.io/facets/
2https://github.com/hafen/geofacet
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4.2.2 Constructive Exploratory Data Analysis Tools

While the underlying motivation for faceted views is well known—to enable rapid scanning
over items or attributes using descriptive visualizations–the various ways to achieve this is
grounded in different strategies. Interaction is key. However, analysis attention is often split
between data operations (i.e. section, queries) and visual mapping operations (e.g., graphical
encoding, choice of chart). While this offers much flexibility, the two operations are overloads
and distractions. As Tufte suggested, exploratory processes should bear on data variations,
rather than on design variations [119]. We subscribe to Tufte’s view and set graphical en-
codings to position—the most efficient encoding [167]. Our approach relies on a top-down,
gridded approach to create facets: the display space is first divided according to the values of
a first, specified implicit relation (e.g., time or any categorical values) into a gird of cells, each
showing a relevant subset of the explicit relation, and this procedure is then repeated (up to) as
many times as there are implicit relations in the data.

This progressive construction of the visual display alongside the Exploratory Data Anal-
ysis process has the potential to facilitate sensemaking activities [168]. Using a code-driven
approach, construction can build upon rich visualizations grammars, like Vega [169], Grammar
of Graphics [170], or ATOM [168]. These toolkits enable the creation of sophisticated visual-
izations, but they can be tedious to specify, and they provide limited feedback. However, these
code-driven specifications also lend themselves to constructive interfaces. Tableau, building
on Polaris [171], maybe the most prominent one. These tools enable analysts to rapidly create
and explore multi-dimensional data. More recently, Voyager [172], building on the Vega-lite
grammar [173], provides a demonstration of how construction mechanisms can be used to
create multiple views and can be augmented with automated design recommendations.

4.2.3 OD Visualization

OD (Origin-Destination) visualization is becoming a popular researching topic [31, 76]. Graph [174]
is widely used in visualizing the traffic flows, which represents the positions of the geo-coded
entities with nodes and relations between every two geo-coded entities with edges. However,
the graph limits visualizing a large number of data items since it could cause the serve clutter.
In order to avoid the overplot, Holten et al. [174] bundle the node-links if they have similar
patterns and the results showed significant clutter reduction and visible high-level edge pat-
terns. Similar to the graph visualization, the flow map [175] is another method for visualizing
the OD data by arrows or bands between places to present the from-to information. Given that
the data is rising fast, visualizing OD data with a flow map cannot avoid the clutter. There
are some improved flow maps created to reduce the clutter impact, such as Zhu et al. [176]
presents density-based flow map generalization method to extract similar OD patterns.
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4.3 Gridify Framework: Decoupling Data and Visual Ab-
stractions

The core of our generalization of OD maps is decoupling data transformation and visualization
construction operations to answer more flexibly Exploratory Data Analysis questions related to
spatial analysis problems (e.g., how do humans commute in a city?) The InfoVis pipeline gen-
erally implies following a data-to-display analytic approach [157]. We argue that exploratory
processes can benefit from going back-and-forth between display-to-data and data-to-display
approaches to refine and answer sophisticated questions [177]; and that ideas on how to best
transform the data to answer given questions can be formed at a purely visual level, by ma-
nipulating and progressively constructing the elements of the display. Essentially, this means
that analysts should be able to break down the explicit relations in OD data either by grouping
subsets of the explicit relations in data space according to specified implicit relations, or by
isolating aspects of the explicit relations directly in the visual space.

We consider the Infovis pipeline as the combination of two abstraction levels: a data ab-
straction level, and a visual abstraction level. We use data abstraction as an umbrella term for
all the manipulations and transformations an analyst can perform in the data space—typically
to transform large datasets into (often smaller) sets with derived attributes—before trying to
map them to the graphical space; and visual abstraction as an umbrella term for all the manip-
ulations and constructions an analyst can perform in the graphical space, before trying infer
the necessary transformations in the data space. In this section, we detail the specific data
and visual abstractions we propose in Gridify, and we discuss how they can be joined through
nesting operations.

4.3.1 Data Abstractions

We consider each geo-entity as the triplet E = 〈d, t, A〉 with di = (xi, yi) their explicit relation
(a position in a 2D space S ), ordered over time t1 < ti < tn, t ∈ T a time period, and a set
of implicit relations A (e.g., speed of taxi). Connections are two entities connected with each
others C = 〈(Eo, Ed), A′〉, in most case they represent the endpoints of a trajectory, which also
contain implicit relations A′ (e.g., distance between entities). Those two sets of implicit rela-
tion, A and A′, are our focus of attention as they are responsible for the main data abstractions
in Gridify, as shown in Figure 4.3. A and A′ are composed of:

• A dimensions list that consists of all the implicit relations available for entities and con-
nections D = {A1, A2, .., An}, Ai ∈ {A, A′}. Some dimensions are available permanently
(static dimensions like weather, time), while others are only available during, or after
given data transformations (dynamic dimensions like speed or acceleration).
• Grouping methods that group values, for a dimension, based on criteria (e.g., number

of expected groups) or a property of the dimension: Ex: grouped by values (categories),
bins or buckets (quantities).
• Aggregation methods that derive one or multiple values from the grouped group: Ex:

count, sum, mean, median, average, distinct, min/max, unique, and value.
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Figure 4.3: Data abstraction in Gridify. Dimension list consists of two implicit relations (Weeks
and Weather). Grouping the geo-coded entities (e.g., e1, e2, and e3) based on the Weather dimension
achieves two groups. One group contains e1 and e2 that only has Sunny value. In contrast, another group
contains e3 that only has Rainy value. Aggregation method estimates the statistic of grouped groups
(e.g., one group has two elements and another has one element). Dimension domain method shows the
value scales from other dimensions (e.g., one group has a domain in [Monday, S aturday]). Nesting
operations generate another level nest (e.g., adding the Day dimension).

• Dimensions domains and scales that return a list of all unique values for a given im-
plicit relation A: {a1, a2, ..., am}, ai ∈ Dom(Ai), i ∈ [1,m]} or the extent of a scale
[Min(ai),Max(ai)], i ∈ [1,m] for a quantitative dimension. Ex: Dom(Years) = 2011
or 2012.
• Nesting operations that consecutively pass down operations from one level to the next

one. Ex: Select a Country Z Divide by Year Z sum(Exports).

Grouping and aggregation methods provide an array of options [178, 179, 157] well docu-
mented in e.g., [180], and nesting operations are central, as they enable increasing the number
of implicit relations A and A′ in the visualization.

4.3.2 Visual Abstractions

The main visual abstractions in Gridify are space partitions we call cells, which are organized
according to grid patterns. Cells respect a 1:1 mapping with the underlying data abstractions:
there are as many cells in a grid as there are groups in a nested data partition. As such, cells
and grids also follow a nested, hierarchical structure, starting at the canvas (or root) level, and
progressively breaking down each cell into smaller partitions (or leaves). We use the following
notation (originally proposed in [157]) to describe grid properties:

55



Chapter 4. Spatial Visualization

Figure 4.4: Cells become smaller and smaller when the number of implicit relations A and A′ increases.

• Grid patterns are methods defines the space division method that will create cells which
are a space partition with coordinates and dimensions.
Parameters: grid , horizontal , vertical , coordinates , treemap , central ,
radial , brick .
• Visual mapping is the customization of cells using an attribute mapped to its properties,

based on the grid type.
Parameters: coordinates, height, width, order, color, filling with marks such as circles
and lines.
• Nesting represent all grids can be nested with each others and children inherit from the

parent’s placeholders positions and dimensions.
Ex: Z (scatterplot of matrices).

Cells are bound to become smaller and smaller, as the number of implicit relations A and
A′ increases, as shown in Figure 4.4. They will converge towards mark-like representations,
if represented as an empty rectangle, or glyphs [181], if elements are visible, or a special
encoding is being used.

We advocate for this decoupling of abstractions to be more widely supported by interactive
techniques. As far as we know, there are currently no tools that allow operating on both
directions of the Infovis pipeline at an abstract level, in particular by providing grid patterns
and advanced nesting capabilities for deep hierarchical layouts (a fundamental operation at
both the data and visual levels). The closest approach to generically unifying these abstractions
is graphical notations like [177, 173, 157].

4.4 Gridify Tool
Our Gridify framework is implemented available as an online web application (link) de-
signed to help analysts build abstract, multidimensional gridded generalization of OD maps. It
presents all the parameters for building the necessary data and visual abstractions on a compact
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query panel (Figure 4.6-left), which analysts can use to rapidly explore implicit relations in the
data, while preserving references to their explicit relations in a main view (Figure 4.6-right).
In this section, we describe the design principles we adopted for the query panel and the main
view. We describe their implementation, as well as the development of simple cues for nav-
igating between pre-set and historical configurations. Finally, we present a typical workflow
using Gridify.

4.4.1 Typical Workflow
Figure 4.6 shows a simple workflow for a user starting with an empty query sequence. One
can create the main view divisions and progressively refine them in a few steps, by:

À Browsing all the dimensions of a dataset and picking one which defines a grouping. For
each element of the domain cells are created on the main view;

Á Customizing grouping and grids patterns consists in defining the dimension domain,
unique values (if categorical dimension) or its bins (if quantitative dimension). The cell will
change position and dimensions based on this gridding pattern;

Â Nesting by repeating the sequence on another dimension. This enables the iterative
construction of complex queries and grids by leveraging dependencies that occur since they
are chained together.

In order to support fast exploration, all the elements can hover with an immediate update in
the visual space. The states are transient and only made persistent on click. This scrubbing-like
interaction is an instance of sequential feedforward, enabling instant preview and supporting
the reflective construction on complex queries. We use the widget’s color and position to
convey the query’s state. When scanning the complete list of widgets used for the nesting, one
can read the transformation and the resulting query sequentially.

4.4.2 Query Panel Design
The query panel (Figure 4.6-center) enables querying the implicit relations of the data, and
associates a grid pattern with each query. Its design builds on common EDA tool design
principles (see e.g., [172, 119, 177]), which derive and summarize as follows:

P1 Make nesting chainable, and show them in a compact way: the query panel should
facilitate building sequential queries that can be chained and viewed together, as well as
allow for their tweaking and reorganization, to help analysts better understand the state
of their query.

P2 Expose the data and visual abstractions: all data dimensions, grouping and aggregation
parameters as well as the visual abstraction parameters should be readily visible in the
query panel, and not hidden in menus or further folded panels, immediately exposing
the breadth of options offered to the analyst.

P3 Enable constructive selection and constant preview: the query panel should enable a
tight action–feedback loop, and the main mode of interaction should favor continuous
actions (e.g. hovering or brushing) over sequential ones (e.g. dropdown selection) pro-
viding instant feedback.
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First-level nest

Second-level nest

1

2

3
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Figure 4.5: Query panel overview. ¬ shows the rectangular boxes view all the implicit relations.
Grid pattern selection generates different space divisions (e.g., grid, horizontal, or vertical) in ­. The
histogram displays the univariate distribution of each quantitative implicit relations’ value in ®, and ¯

displays options of quantitative implicit relations calculation.

P4 Ensure generic and independent manipulation of the data and visual abstractions:
analysts should be able to query implicit relations of the data independently from their
visual abstraction, and reciprocally, they should be able to build visual mappings even if
the necessary data abstractions are not defined.

The query panel is composed of rows controlling each level of nesting (shown in Fig-
ure 4.5), both in the data and visual abstractions (P1), which display a list of all implicit rela-
tions (shown as small rectangular boxes in ¬) and of grid patterns that can be used to encode
them visually (shown as ­). This ensures that all data and visual attributes, operations, and
parameters are immediately exposed (P2). Selecting a grid pattern, and simply brushing across
the list of implicit relations will automatically update the main view (P3), breaking down the
base OD node-link diagram (i.e. the visualization of explicit relations) into a multitude of cells,
related to the selected implicit relation.

To enable Grouping methods in the data abstraction, we display a univariate distribution
of each quantitative implicit relations’ value (in the form of a histogram shown as ®), as well
as an option for changing bins values. Note however that the Aggregation operations can only
be applied to quantitative implicit relations (shown as ¯). This encoding is relatively compact
(P1), so many nested operations can be listed in the panel.

There is no pre-defined flow for query construction. The user can start with the visual ab-
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straction and then continue with the data abstraction (P4) or vice-versa. The operations done
at a nesting level (e.g., first-level nest and second-level nest) are chained with the levels pre-
ceding it (P1). As a result, the query panel plays an essential role in the EDA process (beyond
exposing data abstractions): it indicates all current implicit relation selections and their visual
mappings, and these can be dynamically updated, like in an (interactive) legend [182]. This
means there is no need for additional navigation elements in the interface.

4.4.3 Main View Design
The main view consists of a canvas on which the explicit relations, and all their consecutive
subdivisions are rendered. Its design follows one main principle, summarized as follows:

P5 Maintain consistent encoding: A consistent encoding should be preserved (e.g., using po-
sition) to allow a focus on attributes’ structure and generate interesting sub-sets. Also,
browsing should be informative on the attributes space and domains and provide flexi-
bility, especially when binning or clustering is needed.

The canvas initially displays the explicit relations. Once a query is added using the query
panel, the canvas turns into a hierarchical structure, in which the visualization of explicit rela-
tions is broken down into cells, each containing a subset of the explicit relations, relevant to the
selected implicit relation. Additional encodings can be set, such as a bivariate color scale [183]
to convey aggregation values (e.g., MEAN, or COUNT). Color encodings of the whole cell can
also be used as the level of nesting increases, for performance reasons to reduce the number of
elements to draw.

Analysts can then select cells for grouping purposes by clicking and dragging in the main
view. Selecting cells updates a SELECTED attribute in the dataset. This attribute can be used
to 1) show only the selected values, 2) hide them, or 3) group purposes in the query pipeline,
e.g., computing aggregate values on the selection or adding a level of nesting.

4.5 Case Studies
In this section, we demonstrate the use of Gridify using real-world, geo-coded datasets. It
has been tested with up to 14 datasets, and we report on two traffic-relevant datasets — taxi
trajectory datasets and public transport datasets (introduced in Section 2.1.5), to showcase the
expressiveness of Gridify, and to identify interesting exploration patterns and shortcomings
of our design and implementation. We focus on these specific case studies for the diversity
of their explicit and implicit connections and because authors and their collaborators have
expertise in the domains studied and have previous experience creating visualizations with the
data.

Taxi trajectory datasets. The first dataset contains large-scale taxi GPS records, which
are now publicly available such as the one collected by the city of Wuhan, China, which a
co-author of the work already pre-processed (introduced in Section 2.1.5). It contains 7271
entities over a month (Sep. 2013, 145, 789 trips). Trajectories for each taxi are available as
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Figure 4.6: An overview of Gridify implementations and interactions to construct data and visual
abstraction (a) dimensions lists from which (b) a grouping method such by domain (if category) or by
binning (if quantity), (c) aggregation types for each division such as counting or averaging, (d) grid
patterns and (e) visual mapping for grids customization. The left part shows the gridded space where
each cell encodes dimensions domains and scales according to grid types and visual mappings.
Widgets can be vertically chained to create nesting for both the data and visual abstractions: the widget
will inherit from dynamic dimensions, and the new grids will be created in the placeholders created
by the parent.

recorded at a frequency of 1 − 4 times per minute, with unique ids and a STATUS occupied/va-
cant/not working/invalid along with fare value when occupied.

Figure 4.7 (0) shows the overview of taxi trajectories while taking passengers. An interest-
ing region is highlighted — the airport, which displays long segments while most of the city
usually has short trips. An attribute in the dataset flagged the trajectories that corresponded
to going back to pick up point during a weekday and Figure 4.7 (1) displays them by hour,
showing that first there is a peak of trajectories at midnight, and second overall most going
back trajectories are short. Figure 4.7 (2) displays asymmetry between pickups and drop-off

for a region of interest during a month: Wuhan’s railway station. Visually, it is not possible
to spot significant asymmetry between those two, but showing pickups and drop-offs side by
side, by days and time slots reveals the asymmetry of pickups and dropoffs Figure 4.7 (3). The
trade-off here is that aggregation provides better comparison but without the trips’ origins or
destinations.

This exploration enables to better grasp the dataset dimensions distribution, a preliminary
step to then develop complex machine learning models to predict hotspot that maximize in-
comes, which is a research focus of one of the authors of the chapter.

Public transport accessibility. The second dataset contains transit data, which are heavily
used today for trip planning, but also by urbanists and decision-makers to understand how well
transit networks serve the population. We have collected a dataset of 45, 520 trips in Paris
(introduced in Section 2.1.5) at every hour of a given day Figure 4.8 (0). The trips start from 3
distinct locations (origins) and destinations are all reachable areas surrounding the origin for a
given time (e.g., 5min) by mode of transport (walk or public transport). We collected various
dimensions such as CO2 emissions.

The first step is to plot the data in a familiar way when analyzing locations accessibility:
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Figure 4.7: Taxi dataset of 7, 271 taxi drivers in a Chinese city during one week (145, 789) records.
We identify interesting patterns related to the asymmetry of trips. (0) refers to the overview of the
taxi trajectories while taking passengers and we bin them based on hours in (1). Then, we display an
interesting asymmetry between pickups and drop-off for a region of interest (Wuhan railway station)
during a month in (2). Finally, we show pickups and drop-offs side by side, by days and time slots
reveal the asymmetry of pickups and drop-offs in (3).

as an isochrone maps Figure 4.8 (0, 1). Isochrones enable to grasp areas reachable for a given
time budget, e.g.,with a 5 or 10min walk. However isochrones are complex to build as they
usually require an underlying graph data structures along with efficient breadth-first search
algorithms. Using Gridify, isochrones can be built by filtering segments originating from a
given location and by changing the radius of the destination mark (circle) to emphasize them,
which is close to how isochrones are built.

We then abstract space using several grids to understand the temporal patterns. Figure 4.8
(2) groups each of the locations as a row and a vertical grid divides by hour. The central
part of the grids shows a (small) isochrone for every hour. The background colors the SUM
of trips so we can quickly spot the time of the day the public transport network is most active
(during morning and afternoon rush hours), but also the lack of rapid transit mechanism during
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Figure 4.8: Comparing public transport accessibility for three locations throughout the day. An
overview of trips divides journeys into three grids based on origin locations in (0) and (1). After that,
grouping the origin locations as rows and dividing hours as vertical grids create the location accessibil-
ity by hours in (2). We divide again by distance to create the most consistent large reach in (3) and by
the time difference at the root to create the most asymmetry in (4). Finally, we divide the grids by length
of journeys and origin locations to receive easier-to-reach information in (5).

the night. We can refine the query by removing the walked journeys (another division), and
dividing again by distance, this leads to locations having the best and most consistent large
reach (something not conveyed by isochrone maps) Figure 4.8 (3). By modifying two steps of
the pipeline from Figure 4.8 (3), we compare the duration of outgoing and incoming journeys
(another division), and identify which location has the most asymmetry (we add division on
the time difference at the root using BINNING. It is a way of grouping method, and used when
the value is quantitative, as shown in Figure 4.6 (b)) in Figure 4.8 (4). Finally, starting from
scratch again, partitioning the trajectories by the length of journeys (distance) and origins, and
coloring the marks by journey duration, reveals the directions that are easier to reach than
others, and highlights the difference between distance and travel time Figure 4.8 (5).
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4.6 Discussion

Our case studies indicate that the current implementation of Gridify enables complex EDA
using a simple set of data and visual abstractions. We discuss here the implications of our
abstractions, their implementation in Gridify, and the challenges it raises.

4.6.1 Expressiveness and Applicability

Gridify is already a very expressive tool despite encoding simple grouping and aggregations
mechanisms and a consistent visual encoding (using circle/marks or color for leaves, and po-
sition otherwise as we follow P5).

Gridify could handle more data and visual abstractions, such as partitioning, aggregation,
and grid patterns. Data aggregation can be integrated on the fly during analysis in the Observ-
able Notebook by writing functions in an advanced mode. Grid partitions rely on an open-
source toolkit–d3-gridding [157]–that offers a modular approach to easily add new grid
patterns. However, in our current approach, grids should have a recursive construction mech-
anism. Hexagonal grids could be an improvement [184] as they sometimes provide a better
binning estimation, but Gridify only supports rectangular cells. Finally, Gridify is compliant
to include Vega [173] specifications at the leaves nodes to render aggregation charts (instead
of the marks or the colors). Design implications on the query panel are related to adding chart
templates either by the queries or as pre-set configurations.

So far, we only encoded leaves using color for aggregation or circles and rectangles for
explicit connections. Lines that have a rich design space [185] and curve design [186] could be
used, e.g., to encode local connections properties such as speed for finer-grain representations.
This would extend the visual mapping section of the query panel and would probably require
a specific legend. Those could be useful at an occupation stage, but for exploratory tasks, one
would recommend adding better dynamic opacity techniques [187].

Gridify can be applied to any type of geo-coded data beyond simple connections. For in-
stance, geo-trajectories can be re-constructed, grouped by TRAJECTORY ID and ordered over
time using the current version of Gridify (see taxi case studies in Section 4.5). New aggrega-
tions will be needed to calculate distances and other trajectories properties [188] dynamically.
Figure 4.7 already shows some cases where a grouping of trajectories can benefit from Gridify.
However, this approach limits the number of segments to display a full resolution trajectory.
Also, some metrics on trajectories are relative to the sequence of segments (e.g., sliding win-
dow speed) and cannot be derived using aggregation.

4.6.2 Scalability

Gridify’s scalability in the number of items is limited by the number of cells and marks it can
draw simultaneously. Our prototype handle up to 100k data points (marks) and thousands of
rectangles/placeholders. This limit is set by the Observable reactive framework we picked, as
it facilitates prototyping and re-use of visualization libraries. Switching to GPU rendering is a
classical step that would help but would be limited at some point.
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We argue most promising approaches to tackling scalability issues are related to strategies
(e.g., domain aggregations and marks aggregation.) to first display aggregation of cells for
immediate feedback, and then progressively render details such as nested cells and marks:
only the statistical properties of dimensions need to be known in advance (e.g., distribution)—
the data points can be loaded later. Regarding the scalability in the number of dimensions,
a first limit is on the display of implicit relation rectangles and nesting chaining: it has been
tested with up to 20 implicit relations, but beyond a more compact design should be used.
For datasets with thousands of implicit relations, adaptive exploration strategies should be
developed to suggest/re-order these relations according to the current view (similarly to what
is done in EvoGraphDice [189]. Dimensions reduction techniques could also be used as an
aggregation method.

4.6.3 Perspectives

Our future work is oriented toward matching modern exploratory analysis features available in
the community, introducing multiple views and animated transitions.

Multiple views. Instead of the single view, exploratory analysis often requires multiple
coordinated views (MCV). We have studied the MCV in Section 2.4.5, which could provide
the context of the exploratory analysis. Such context is helpful to provide a dataset overview
constantly available, e.g., all countries, while a specific country is selected (instead of filtering
out all other countries). At the moment, the exploration strategies match the small multiple,
large single [164] approach, where each view is followed by small multiples that provide
navigation options.

As Gridify technically and conceptually relies on [157], multiple static views can be de-
fined in a data-driven manner. So adding a 2-view, Focus+Context layout (introduced in Sec-
tion 2.4.5) would require two steps: first at some point to inject a data array with those views
properties (which are cells); the linking (shared selection between views) would be provided
by the SELECTED attribute. And then branching the abstractions based on those views (e.g.,
to assign particular abstractions to the static cells). The impact on the query view would be
important as it will not be linear anymore. Techniques like ElasticHierarchies [190], Vis-
Bricks [191], TPFlow [192] and Baobabview [193] are design candidates to improve the se-
quence with branching. Recently the use of Virtual Reality [194] has been proposed to explore
Origin-Destinations—but with explicit relations encoded as lines—offering brand new spaces
to further explore using a grid-based approach.

Animated transitions. Entities (and their connections) have a continuous representation in
Gridify. They can be animated when cells change positions. Similarly, the transition between
grid patterns [31] provides benefits to users, even though sometimes cells change shape. How-
ever, in most cases, many parameters change at once: attribute, grid pattern, and aggregation
method. Cells may then go through multiple states: appear, disappear, update (i.e. change po-
sition and shape). Communicating the change of the cell is an open challenge as similar grids
or cells (position and size) do not necessarily encode similar data. A simple approach could
be a tree-based animated transition that collapses/expands nodes based on a hierarchy [195].
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4.7 Conclusion
In this chapter, we have presented Gridify, a generalization of OD maps and its implementa-
tion as an exploratory data analysis (EDA) tool for primarily geo-coded data, which extends
previous work on grid-system approaches to visualization design ( [157]). The tool builds
on a core concept of decoupling data transformations and visualization construction mecha-
nisms. We have demonstrated its expressiveness and effectiveness through several case studies.
Its main advantages include 1) maintaining an explicit encoding of both data and visual pa-
rameters, which provides analysts with an overview of all their options; 2) chaining nesting
operations that are rendered in a grid view that provides constant feedback, allowing analysts
to select elements on which they want to zoom in; and 3) exporting and loading pre-set config-
urations, which provides a mechanism for transitioning between views in a step-by-step way,
for pre-defining the exploration charts and patterns, and potentially for recommending future
explorations steps. To finish, while our design and implementation of Gridify have focused
mainly on OD data, essentially because authors work a lot with this type of data, we strongly
believe the tool can handle a wider variety of data and visual abstractions and transitions. We
intend to explore these possibilities in the future.

Apart from the OD data in the traffic domain, we implement the prototype with other
spatial data in section 6.2.3, such as sports datasets (e.g., to explore soccer players position
during games) and trade datasets (e.g., to explore trade patterns across countries).
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Figure 5.1: The Upset [30] sets visualization technique is an efficient alternative to Venn diagrams,
where each sets intersections are encoded as rows of a sets combination matrix. In this chapter we build
on this technique to explore time-based road traffic data.

5.1 Context and Motivation

Temporal analysis problem refers to analyzing the time-varying data (e.g., traffic density chang-
ing over time). Analyzing such data is key to exploring the temporal aspects of traffic con-
gestion, which can help transport planners (introduced in Section 2.3) optimize public tran-
sit, hence releasing the pressure on specific roads. We have studied the related visualization
methods for analyzing temporal change patterns of traffic data in Section 2.4.1, such as a line
chart—is usually the main representation to explore temporal change in datasets [36]. How-
ever, such a chart usually generates an overplot and hides patterns as datasets get increasingly
large.

We introduce GroupSet, a temporal exploration technique to avoid the overplot, inspired
by Upset [30], a set-based technique. Figure 5.1 shows the Upset to visualize the set intersec-
tion of Simpsons characters (an American animated sitcom) using the combination matrix. In
the combination matrix, the column refers to the sets (e.g., working at Power plant or evil),
and the row refers to the set intersection (e.g., the characters working at Power Plant and evil).
Each row corresponds to an area in the Venn diagram. The highlighted row shows that two
characters are evil and work at the power plant, but are not School students.

By improving the combination matrix, we propose GroupSet, a set-based visualization
technique, to explore changes within large temporal datasets (task pattern discovery and
clustering, introduced in Section 2.3) using line charts. The technique relies on set-based
tasks [196] to understand the relationships between lines, using partial memberships (fractional
membership in multiple sets) and change-related metrics. This approach reveals temporal sim-
ilarities of elements by categories (sets) memberships, usually hidden by overplot. We demon-
strate the applicability of the technique to traffic density data (introduced in Section 2.1.5) and
report on usability feedback of an interactive prototype implementing the technique.

A prototype is available online, the datasets used to collect feedback from the tool, and
its code published as an open-source project. It uses JavaScript and D3.js. Datasets used in
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this chapter are pre-loaded and stored in a remote server deployed using Heroku platform.
GroupSet is the prototype as an Observable notebook to facilitate sharing early versions of the
design, but due to code complexity, performance, and the need to use more screen real estate,
it is re-implemented as an independent application. All the supplementary materials are listed
in the Table 5.1.

Name Link
Online prototype https://llqsee.github.io/groupset/

Description of prototype https://github.com/llqsee/groupset

First version prototype https://observablehq.com/d/9efe0f3d70a90a63

Table 5.1: Supplementary materials. It lists two online prototypes (one is a version implemented on
Observable notebook; another is a web-application) and a document to illustrate the prototype in detail
(e.g., how to implement one’s own datasets).

5.2 Related Work
Our work relates to temporal visualizations where an independent variable (time) is plotted
along with a dependant one (value over time). As we discretize the dependant value, we also
relate to categories-based visualizations and set-based visual analysis. In contrast, other do-
mains such as time series analysis and modelization–and recently machine and deep learning–
have been extensively investigated to automate detection such as frequent patterns or anoma-
lies detection. Our focus is on exploratory stages where few assumptions can be made about
data quality and distribution.

5.2.1 Time-based Visual Exploration
Time-oriented data visualization is an important domain in visualization and has been widely
investigated [197]. The standard visualizations to address this challenge use line chart designs
and their variations. The line chart is among the oldest representation and conveys the raw
data structure for visual inspection. Design variations such as the slop chart [119] provide a
simplification, for better comparison, by displaying only the first and last elements to compare.
The steepness of the slope indicates the trend, but it requires picking the right beginning and
end of the time interval to compare. Univariate charts such as spark-lines [119] or temporal
glyphs [198] are designed for a single object and variable at once. Changing graphical prop-
erties such as opacity [187] is an interesting approach for local identification of lines but does
not allow connecting all segments across the temporal interval efficiently. Using polar coordi-
nates, such as in radar charts or ChronoLenses [199], instead of Cartesian coordinate system,
enables more compact visualization but does not scale to a large number of elements.

Extensions of the layout such as with Stack Zooming [200] and ChronoLenses [201] en-
ables zooming on certain dense areas. A modulo-based approach like Horizon Charts [202]
provides repetitions of the line chart once it reaches a threshold, to analyze high values time
series. Further layouts are proposed to cluster similar episodes using a linear layout with Sto-
ryFlow [203] or self-organized ones like in Timecurves [204]. Again, scalability to a large
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number of elements is not addressed. The closest work to our approach using layouts is
LineUp [205], to compare Top-N elements using a horizontal, temporal layout compare rank
changes over time and multiple dimensions.

Beyond graphical properties, novel encoding or glyphs have addressed change detection,
such as RankExplorer [206] and RankEvo [207] but are specific to local tasks and not suited
to compare global trends. Candlestick patterns convey change within a trading day, with the
candle’s height and color encoding the price range and the stock’s performance during the day;
it is close to our approach by aggregating and grouping interval values to indicate a behavior.
However, this is designed for local behaviors as we are interested in global ones.

User interaction is also an approach to better identify trends and patterns. Early work has
investigated natural user queries that draw patterns [208] but local ones. Direct manipulation of
time series can enable quickly navigating time [209] of a single temporal object and identifying
peaks. Textual annotations [210] by users can also be an input modality to identify interesting
patterns and retrieve similar sequences. Again all those techniques are suited to manipulate a
handful of time series.

5.2.2 Categories and Set-based Exploration

Category exploration offers similar challenges to comparing time-varying data. The flagship
example is the parallel coordinates chart [211], where the X-axis displays the various dimen-
sions but also generates clutter and over-plot. Additionally, it needs to order the categories
carefully. Building on this approach, ParallelSets [212] displays groups of elements similar to
a Sankey diagram to reveal trends by cohorts of elements. Temporal categories [213] are pre-
sented using a flow chart that emphasizes changes across pairs of categories. Both approaches
aggregate elements and thus hide individual patterns within each group.

Sets are a natural way to analyze categories [196] using sets data models. Among the many
recent tools PowerSet [214] is a scalable technique that enumerates all the sets and represents
them as a treemap to identify sets intersections distributions. Techniques to characterize sets
intersections, such as UpSet [30], are also scalable but use a matrix approach. Radial Set [215]
organizes sets on a circular layout. However, none of those techniques support time-varying
sets or sets creations from time-varying data, assuming sets already are in the datasets and
for a single time point. AggreSet [216] uses aggregation of elements to show their global
membership to a category, but the aggregates are also based on a pre-defined category. Time-
Set [217] shows group changes over time using contours shapes but is not scalable to many
data elements.

The closest works to our approach using set-based analysis of changing categories is pri-
marily Set Streams [218]. It supports set-based tasks and displays the changes as a flow
chart. [219] is also very closely related to our work by displaying set changes over time using
layered set intersection graphs, which represent intersections between all sets. Our work also
relates to one of the earliest set visualization systems [220] that aimed at including set visu-
alizations within existing visualizations (e.g., bar charts) to explore additional data attributes
and relations.
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Figure 5.2: GroupSet technique overview. Sets are created from time-varying data (line chart) in
¬. The same sets are organized as columns to indicate partial membership as pie charts in ­ and set
intersections are listed as rows to represent groups of similar lines (along with their partial membership
representation) in ®.

5.2.3 Fuzzy Categories Creation

In Chapter 3, we have mentioned the categorization of quantities (e.g., taxi speeds), which is
important in general for road traffic data. However, set creation (quantity categorization) re-
mains an under-explored area in the visualization community [196]. In particular, sets capture
humans’ thoughts, which are not binary, thus making elements members of multiple categories.
The Fuzzy sets [134] community has introduced such data models to categorize into sets with
a confidence value ranging from 0 to 1. Visualizations have been dedicated to fuzzy member-
ship representations such as the Disk diagrams [142] to convey both categories and confidence
with a linear scale. However, it does not apply to multiple categories or instances. Set creation
tools inspired by fuzzy sets have been built to create categories from quantitative scales [221].
While they are not suited for visualization for the exploration of time-varying data, the under-
lying idea of splitting a quantitative interval into categories and partial membership is related
to our work.

5.3 Data Model

Our general goal is to group multiple road-traffic temporal elements based on temporal similar-
ities over a particular attribute (e.g.,speed). We operate as follows: we first discretize temporal
values into sets (e.g., LOW traffic, MEDIUM traffic, HIGH traffic) as in Figure 5.2;
then, we count every time an element reaches one of the sets (e.g., LOW x 2, MEDIUM x 5, HIGH x
3). Each element reaches as many sets as time steps (e.g., 4). We further use percentages (e.g.,
LOW x 20%, MEDIUM x 50%, HIGH x 30%) so memberships are normalized within a [0, 100]
range as we represent it as a pie chart . We now provide definitions of these data models and
the set-based metrics we derive.
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5.3.1 Elements, Categories and Membership

The elements E = {e1, .., en}, usually are the rows or items from a finite dataset of size n.
Each element has a quantitative value qt ∈ Q function of time, within a temporal interval we
consider uniformly sampled t ∈ T = {t1, .., tp}, with p = |T | time steps. The temporal axis is
usually represented as the X-axis of time series of rankings, and the qt value as Y-axis.

The categories creation can be achieved dynamically by the user (Figure 5.2), which ba-
sically is the split of the quantity range Q = [min(Q),max(Q)] into intervals or sets X =

{X1, .., Xi, .., Xn} ordered by i as xi < x j. Thus, each xi is associated to an interval dividing
Q. We now define explicit rules that define elements membership to each set as a function
fX(qt) : X → [min(Q),max(Q)] for every time steps t (sets are named to be more human
readable):

x→


LOW i f qt ≤ 20

MEDIUM i f 20 < qt ≤ 60
HIGH i f 60 < qt.

(5.1)

5.3.2 Membership Calculation

Membership is calculated for each element e over time, for each set. Thus e may be part of
multiple sets Xn, so the set degree D for an element e over t ∈ T is De = {dt, ..., dt}, t ∈ T and
all the values of degrees are equal to 1 as

∑
t∈T (dt) = 1. For a single set xi, the normalized

membership calculation is (e.g., for LOW):∑
t∈T

f{LOW}

|T |
= (5.2)

To facilitate the comprehension, we introduce a pie chart representing total membership to
a given set xi. The black wedge of the pie chart encodes the % of membership for a given set
xi. If a complete set membership would be the following . However, we usually represent all
the sets X to represent the distribution of membership across all sets, so for an element always
LOW [ , , ]. If the membership is evenly distributed across all the sets [ , , ]. Note at
this point the changes are aggregated across all the time steps. An important property is that
total membership is always 100%.

= [ + + ] (5.3)

5.3.3 Changes Patterns

We introduce a metric to calculate the magnitude of the change ∆v, which is the difference of
value between two snapshots [ti, t j] over both values of qi and q j. This magnitude usually is
the slope of the corresponding segment on the visual representation:

slope = ∆vqt j,qti =
qt j−qti
t j−ti
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Figure 5.3: Changes patterns with both their temporal representation and encoding using our set-based
approach the typical changes patterns. If the membership is always to the same group we denote it as
follows: , if it never belongs to a group it is defined: and finally partial membership like 24% is as
follows: .

We introduce categorical change, the set membership change between ti and t j. Indeed,
changes that generate a different set membership are considered more important for the analy-
sis and are represented as an additional category of change (Figure 5.3). Such change has been
implemented in [206, 213] using respectively glyphs and color scales. Figure 5.3 illustrates
the typical patterns types of changes related to increase and ∆v > 0, and decrease ∆v < 0 (but
not limited to) but accross dimensions:

• Stationary (∆v = 0) : where the set membership degree is |S | = 1, with 100% of
membership for this intersection, represented as horizontal an line. It is translated as an
intersection of degree 1.
E.g.: [ , , ]

• Up (down): a constant raise or fall trend. Generally, it passes through all the degree. So
the degree is 3.
E.g.: [ , , ]

• Peak: a single peak is observed, for a short period so degree is 2, but with not a lot of
membership to the non-majority sets.
E.g.: [ , , ]

5.3.4 Set Aggregation

We now introduce a general mechanism to aggregate sets based on their properties. Aggrega-
tion means that all the intersections share a categorical property such as the set membership,
change pattern, or degree. Using set definitions, this is translated as a union ∪ of, i.e. all
the intersections with a given membership degree. The second level of aggregation can be
achieved by repeating the aggregation to similar sets, and then a series of subsets ⊂ is created.
While aggregation operates on categories, it also can operate on quantitative values, such as
membership degree, which needs to be split into groups to create those categories. Figure 5.4
provides a compact representation of the elements after they have been aggregated. Each row
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Figure 5.4: A compact view of aggregates (where no details of their content is visible). It summarizes
all the groups of elements using the pie chart (¬) and changes sorted by cardinality (­), followed by
the statistic of group attributes (®).

encodes a group of elements and displays statistics related to the sets and the changes across
instances.

5.4 The GroupSet Technique
Our technique addresses the characterization of temporal elements (i.e.line variations along the
Y-axis) in large datasets, which categorize lines based on their time-varying values. The core
of the GroupSet technique is a partial membership metric that captures temporal changes.

5.4.1 Design Rationale and Tasks
The ultimate goal of GroupSet is to generate views of groups of elements that can be inspected
in detail, without clutter, using simple set creations, sorting, and aggregation. The technique
operates using the following workflow: 1) sets are created from the Y-axis of a line chart rep-
resenting elements, encoded as a line over a time interval T , 2) each set are represented using
an set matrix [196] inspired by UpSet [30] where each row is a set intersection of elements
sharing similar membership properties (e.g., [ , , ]), 3) details of each intersection is de-
tailed as a filtered view of the main line chart. GroupSet addresses the following set-based
tasks [196]:

• T1: Create new sets.

• T2: Find elements with their set memberships and specific time intervals.

• T3: Find intersections with specific time intervals.

• T4: Analyze intersection relations with time intervals.

• T5: Analyze elements distribution with time intervals.
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32

Figure 5.5: GroupSet explores the changes of traffic density in Lyon, France, during a day (24 hours).
In ¬ traffic densities are categorized by rank into 3 sets (Busy, Non-free flow, and Free flow).
Users can then explore the traffic densities based on their memberships to those sets over 24 hours and
identify temporal patterns by manipulating a combination matrix of set intersections ­. The final view
provided by GroupSet is a filtered line chart corresponding to each set intersection showing teams with
similar patterns ® along with other attributes (e.g., change).

• T6: Filter time intervals.

Temporal changes are represented using pie charts where the black wedge encodes the %
of membership (that we define it with set membership degree) to a category (that we now call
set) which is one of the value intervals of the dependant quantity domain. Sets usually are
an interval of values. For instance, if a temporal element is constant over time, and its value
interval is divided into three categories, its membership is the following: [ , , ] (black
circle indicating 100% membership to a single set, gray circles 0% membership to the two
others). If the membership is spread across multiple sets, the representation can be as follows
e.g., [ , , ]. An important property is that total membership across sets is always 100%.
The pie chart representation is key to characterize visually, order and filter groups of elements,
which is the ultimate goal of GroupSet.

5.4.2 Sets Manually Created
Sets are manually created by defining intervals over the Y-axis of the line chart (Figure 5.2,
¬). By default, 3 sets are included, but users can add or remove sets, customize their value
intervals, and name them. The interval customization uses direct manipulation of the Y-axis.
Every time set properties are changed, the interface updates so the user can immediately see the
result of those manipulations. We pre-loaded each dataset in the tool with sets, their frequent
names, and value intervals. We finally include a way to automatically create sets based on the
temporal value distributions using CKmeans [222] to automatically divide data into groups. If
we would like to cluster n data to a p cluster, the equation of CKmeans is as follows:

D =

n∑
i=1

p∑
j=1

µm
i jd(Xi; C j)2 (5.4)

75



Chapter 5. Temporal Visualization

where µm
i j refers to the membership degree of the i data sample belonging to j cluster and

d(Xi; C j) refers to the distance between the Xi and center value C j. The optimization goal is to
minimize the distance among all data samples and cluster centroids.

5.4.3 Aggregation Exploration
Aggregation exploration is achieved using the set permutation matrix and aggregates all ele-
ments in a similar way to the UpSet matrix [30]. Each column is a set, and each row encodes
a single type of intersection, where the pie chart shows the intersection’s partial membership
inspired by AggrSet [216]. It aggregates the elements if they have the same distribution among
sets. Such as shown in Figure 5.2, R1 and R3 both have 2/4 time points in High traffic,
1/4 time points in Medium traffic and 1/4 time points in Low traffic respectively. More-
over, GroupSet also allows users to sort and filter the aggregated groups to change the vertical
resolution. Finally, a horizontal bar chart encodes the intersection’s cardinality (i.e. number
of elements). Each set intersection embeds a stacked chart encoding a change across two sets
(Figure 5.5 ­), which presents the average change values of all elements in each set inter-
section, where green indicates ups, red downs, and orange stable slopes. The stack height
(horizontal) shows the most frequent changes for each category of change.

5.4.4 Elements Details, Change and Attributes
Each groups of elements is displayed as a filtered line chart on each row (Figure 5.5, ®). This
enables a less cluttered representation of an individual inspection of trends. A stacked chart
displays the changes for each time step ti (Figure 5.6). Each set intersection also embeds a
stacked chart encoding a change across two categories (Figure 5.5, ­) where green indicates
ups, red downs, and orange stable slopes. We opted for this chart instead of flow charts [213]
for simplicity and compactness. The height of the stack shows the most frequent changes for
each category of change.

A brushing feature of the line chart is provided to select a sub-set of the time range T for
the intersections visualizations (Figure 5.5, ¬). This brushing will be valuable to discard some
time steps that may not be relevant for the analyst (e.g., due to high variability).

5.5 Case Studies on Traffic Density Data
We load a traffic density dataset from a public open data repository in Lyon, FR (introduced
in Section 2.1.5), for a single day of observation (Figure 5.7). The datasets include 1334
road segments during a day (24h), monitored by sensors using inductive loops. The X-Axis
represents 24 hours and the Y-Axis represents the traffic densities collected by the sensors.
Generally, the traffic densities are low from 0:00 AM to 6:00 AM, and then start rising and
reaching the morning peak around 8:00 AM. After the afternoon, it descends again to a lower
traffic density. As [71] mentioned, one of the challenges in visualizing the traffic data is that it
has too many data items to track. A general line chart cannot handle too many road segments
without overplot. Thus, for the traffic dataset, we aim at achieving the followings:
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Figure 5.6: Stacked chart below the line chart encode the change between two adjacent time points
(color scale indicates the change patterns, e.g., Busy-Free flow hinting it changes from Busy category
to Free flow category). The legend of changing patterns is on the right.

Figure 5.7: Road segments that are always not busy. An aggregated group with two subgroups contains
64 and 50 road segments that only belong to Free flow during 24 hours.

Detecting roads with low traffic. Finding the roads that are not busy (free flow) is critical
work to help traffic planners optimize traffic load. These traffic flows can be re-planned from
the roads where the traffic congestion always happens. Thus, assisting traffic operators find
the roads that are always not busy (during 24h) is able to improve the traffic conditions. As
shown in Figure 5.7, we focus on the entire period (24h) and create two sets (Non-free flow
and Free flow) (T1), with a low density threshold to identify the free flows. By using the
filter panel, we keep only the Free flow roads which are characterized with a membership to
this set only (T3). The result is shown in Figure 5.7, and two groups exist (as we aggregated
by change pattern): one contains 64 road segments and another one contains 50 road segments
(T2). These road segments mostly have less traffic flow. Further investigations is needed for
their relevance to bear more traffic.

Analyzing the traffic flow patterns with a specific time interval. Managing the traffic
during peak time is very important for a traffic manager, usually during rush hours around 8:00
AM and 6:00 PM. To analyze this peak pattern of traffic density, we first brush the time interval

77



Chapter 5. Temporal Visualization

Figure 5.8: The traffic flow patterns during morning peak. An aggregated group with 5 subgroups
reaches the peak time in the morning, but some do not reach the peak in the evening.

to the period which we are interested in (7:00 AM to 9:00 AM) (T6). We then add Busy as
shown in Figure 5.8 to capture the busiest roads at peak time (T1). We observe there is an
aggregated group (containing 5 subgroups) only belonging to Busy (T4). A first insight is that
the largest group has roads with a clear increase and decrease change pattern (green and red
bars), which means these roads are not stable being either rising up or falling down. A second
insight is that a certain number of roads peak in the morning, but they do not have peak time in
the evening, as shown in the global line chart (T5). These two patterns are difficult to identify
in the full dataset, and the roads that match them can further be explored in the tool using the
attribute panel of GroupSet (e.g., road segments average length).

5.6 Feedback and Perspectives

We conduct a preliminary study to validate the usability of GroupSet with four researchers
that frequently use data visualization tools to validate the tool’s usability and detect any major
design issues. We present them with the tool loaded with the soccer dataset as it is the easiest
one to understand as all researchers are familiar with soccer. We then demonstrate the standard
workflow from categorization to detailed view exploration. We then ask them to use the tool
and follow a think-aloud protocol to capture their thoughts and understand their intentions.
We first ask them to reproduce the demonstrated workflow, then they conduct an open-ended
exploration with any dataset of their choice regarding the tasks. All participants find the tool
flow relevant to exploring such a dataset and logical, from the exploratory chart to the detailed
view. The main remark we collected is preserving the sequence of events we will discuss as a
tool’s limit. They also notice some performance issues we will discuss in the next section.
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Figure 5.9: The suggestions of combination matrix. We will validate them in further experiments to
compare which one is better by interviewing visualization designers.

Performance and scalability. The first feedback we collected during the usability study
is the performance, especially when there are many elements and sets. For some application
domains, it may be needed to include more than three sets either because it is semantically rel-
evant or because a finer grain of analysis of changes is needed. Currently, GroupSet supports
up to five sets which potentially generates an important number of intersections. However,
as we only focus on analyzing a subset of the data (due to sorting and aggregation), we argue
there is no need to calculate and visualize all the set intersections.

Applicability to other datasets and beyond line charts. Our tool is generic to support any
temporal dataset (e.g., University rankings) without any change in the design. Regarding the
type of chart it supports, it is applicable beyond line charts to all charts with a single dependent
variable (time points) plotted on the Y-axis to visualize the distribution of elements values in
each time point among different sets (Normal, Top 5, Bottom 5, etc), such as histograms,
density plots, or bar charts. 2D temporal charts, such as scatterplots or geo-map, will require
some significant change in the design, but GroupSet could be used as a marginal plot to filter
and group such charts over time.

Limits and perspectives. GroupSet currently does not capture intra-group variations and
temporal changes in the pie chart: thus, some temporal elements may be included in the same
set intersection, despite having different patterns (e.g., one is increasing, the other decreasing).
This issue could be addressed by adding a second level of aggregation to the intersections using
a global trend indicator to group elements by either globally increasing or decreasing value.
However, this may generate additional intersections and slow performances. Another perspec-
tive of our work is investigating alternative designs to the pie charts to encode intersections and
memberships. While circles and pie charts are already used in [30, 216] for such encoding,
there currently is no formal evidence that they are the best-suited representation. We plan to
implement and formally evaluate alternatives using other statistical charts (e.g., bar charts, box
plots), as shown in Figure 5.9. Finally, the traffic density case only helps us analyze how traffic
flows change over time. However, spatial information should be taken into account. In the
next step, we will consider connecting GroupSet with a map to analyze the spatio-temporal
information.
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5.7 Conclusion
We have introduced GroupSet, a set-based visualization technique to compare multiple items
across several instances. The technique relies on a data model that captures the set creation
and the change of memberships of time-varying items across those sets. We have described
a case study demonstrating the tool’s applicability to traffic density changing over time. We
have also reported on early usability feedback, and we plan to conduct a formal evaluation
of the tool with domain experts. We believe GroupSet is applicable beyond the presented
case studies as a generic tool to compare multiple elements over instances. As we provide an
interactive prototype and its code as an open-source project, we expect to foster more research
in the domain of set creation and time-varying analysis.

Apart from the traffic density data, we test the implementation in other areas such as the
Machine Learning classification and the ranking data. For example, we use GroupSet to ana-
lyze the classification results of the MNIST dataset (A handwritten digits datasets for training
imaging process system and algorithm [223]) and the ranking data of soccer teams. We intro-
duce the implementation of these two datasets in Section 6.2.3.
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Any use of ”we” in this chapter refers to Liqun Liu and Romain Vuillemot.

6.1 Deployment in Traffic Control Centers

This section discusses how to deploy our three novel visualization techniques (FuzzyCut,
Gridify and GroupSet) in real-world traffic control centers. We first introduce road traffic
control centers in Section 6.1.1, and then introduce the context and tasks in Section 6.1.2. Af-
ter that, we take two examples with Lyon dataset to explain the deployment in Section 6.1.3,
and eventually, we discuss the deployment challenges in Section 6.1.4.

6.1.1 Road Traffic Control Centers

We have introduced road traffic control centers in Section 2.3.2. Now, we explain them with
detailed information, including their goals, limits, and related studies. This information pro-
vides the necessary knowledge for the deployment.
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Figure 6.1: A picture we took in the traffic control center in Lyon, France, an indoor physical facility
where operators monitor traffic on a large display from remote workstations. It offers the visual envi-
ronment for merging multiple visualization techniques to analyze heterogeneous spatio-temporal traffic
data.

We have visited several control centers in France, and investigated the current visualiza-
tions and workflow practices. Such centers are indoor physical facilities (Figure 6.1) with re-
stricted access as they play a key role in managing traffic but also roadworks and road message
boards (i.e. to announce congestion or closed road segments). Their main goals include: (1)
maximize the available roadway capacity, (2) minimize the impact of incidents, and (3) assist
in emergency services [224]. To this end, like the ones in Paris described by Prouzeau [225],
they are composed of a large display that shows both a map of the monitored road network,
each road colored in the function of the traffic density, and a matrix of video stream com-
ing from CCTV cameras. Each operator in the room has a workstation composed of several
screens on which they can access useful information, including a detailed version of the traffic
map and a specific CCTV camera (which they can also control). Actions on the traffic are
mainly required when incidents happen (e.g., breakdowns, accidents) to warn the drivers on
the road and, if necessary, reroute traffic and assist first-responders. Incidents can be frequent.
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MapWebcam Webcam

Views

Figure 6.2: Dashboard and view examples. The left one shows the dashboard of the traffic control
center (the picture was taken from the Lyon traffic control center). The right one refers to the views
extracted from the dashboard.

For instance, around 22 of these daily incidents are in the peripheral ring in Paris, its busiest
road. Operators can spot these incidents directly on the CCTV cameras or by noticing unusual
traffic jams on the density map. They can also be warned by police onsite or by bystanders. In
the latter, information regarding the location of the incident can be vague, and operators need
to look for the precise location using CCTV cameras.

The management of these incidents significantly increases operators’ workload, up to 40%,
as suggested by Zeilstra et al. [226]. In their study in a road traffic control center in Grenoble,
Starke et al. [227] show that operators must go back and forth between screens, including the
traffic map and the CCTV videos, to solve the incident. They do not look at the video matrix
in the large display as it provides too much information. Instead, they focus on the video from
the CCTV camera that shows the incident and display it directly at their workstation. This
allows them to avoid information overload and focus only on the incident. However, it also
restricts their situation awareness to this specific part of the road at the expense of the rest of
the network that could also be impacted by this incident or another unrelated, a phenomenon
called intentional blindness [228].

To help with information overload but avoid unintentional blindness, Baber et al. [229]
propose a road traffic control dashboard in which the information needed to do a task is in
the same view. For instance, the traffic map also provides a temporal evolution of the traffic
density for each road segment. Anwar et al. [14] show the impact area of the incident directly
on the traffic using a lens that grows with time, and Prouzeau et al. [230] use a dragmag to
show future traffic prediction directly on the map. Finally, Schwarz et al. [231] use a lens on
the map to allow operators to access a detailed view of the traffic and CCTV cameras for a
specific area of the map, which helps them associate detailed information with its context.

In order to avoid information overload in traffic control centers, researchers have been
devoted to improving the traffic maps or enriching the interaction ways with maps. However,
less work is related to the flexible deployment of traffic control centers.
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Figure 6.3: The overview of basic tasks, traffic elements, and visualization techniques. Basic tasks in
the column and traffic elements in the row construct a matrix that consists of visualization techniques.
It illustrates that a visualization technique in each point achieves a task for a traffic element.

6.1.2 Context and Tasks

In previous chapters, we have introduced three visualization techniques that focus on univariate
data (FuzzyCut), spatial traffic data (Gridify) and temporal traffic data (GroupSet). As traffic
data analysis tasks are complex (e.g., traffic monitoring, pattern discovery and clustering, and
situation-aware exploration and prediction, introduced in Section 2.3.2), and as data sources
are heterogeneous (e.g., traffic density data, taxi trajectory data, event data, and webcam data,
introduced in Section 2.1.5), a visualization environment that can realize multiple tasks and
visualize heterogeneous data is needed.

Traffic control centers already provide such an integrated visualization environment by us-
ing a wall-display multiple views dashboard. It helps traffic operators know what is happening
at the city and road segment levels with webcam views and map views, as shown in Figure 6.2.
We argue that combining our different visualization techniques in a dashboard to achieve more
complex tasks is valuable. Results from this work were presented to the MI2 project (the re-
search project this manuscript is in conjunction with) and will help shape future control center
displays.

The basic tasks of visualization contain overview, zoom, filter, details-on-demand, relate,
history, and extract [121] (we have introduced in Section 2.4.5), as shown in the columns of
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Map (T1)

Transfer

Map (T1)

Webcam (T4)
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Figure 6.4: Transfer from a real-world traffic control center to a simulated dashboard visualization
environment. (a) refers to a picture taken from a traffic control center in Lyon, France; (b) refers to a
new dashboard including webcam, statistic, and map views.

Figure 6.3. Overview refers to the overview of the entire data. Zoom refers to the zoom on the
data that users are interested in. Filter refers to the dynamic queries for filtering uninteresting
data. Details-on-demand refers to selecting specific data or a group of data. Relate refers to the
view of relationships among data. Also, traffic elements are shown as the rows of Figure 6.3,
including road segments, traffic flow, and traffic events. Eventually, the basic tasks and traffic
elements construct a matrix (Figure 6.3) that consists of different visualization techniques at
each point of the matrix. In other words, visualization techniques can achieve one or several
control center-oriented tasks, e.g., GroupSet enables an overview of traffic flow in the temporal
dimension. We summarize control center-oriented tasks as follows (based on[61]):

• T1: Overview of the traffic flow and traffic events in spatial dimension;

• T2: Overview of the traffic flow and traffic events in temporal dimension;

• T3: Zoom in the map to observe the traffic flow and traffic events in specific spatial
dimension;

• T4: Details-on-demand of the specific road segments, traffic flow, and traffic events;

• T5: Relate the traffic events with the map;

• T6: Relate the specific traffic flows with the map;

• T7: Filter the specific road segments;

Multiple views or visualization techniques enable organizing a dashboard, shown as Fig-
ure 6.4 (a), a traffic control center in Lyon, France. The wall-display dashboard consists of a
traffic map and webcams. The map enables to tackle T1, and the webcams enable to tackle
T4. These two tasks are space-related and do not support time-related tasks. Thus, we have
to transfer this dashboard to another by replacing, removing, or adding views if we want to
achieve the temporal relevant tasks. Figure 6.4 (b) shows the solution by adding a statistic
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Figure 6.5: Interaction of ControlCenter. ¬ shows the webcam view to monitor the road intersec-
tions. Users can add a view by right-clicking and picking a view in point of view (­). A map view to
overview the road traffic locates at ®.

view (GroupSet) to achieve T2. To do so, an adjustable prototype that can change the views
in the dashboard is needed.

Designing such a scenario is supported using a rapid visualization prototyping method
named ControlCenter, to help traffic operators fast transfer from one dashboard to another by
adding, removing, and replacing the views (e.g., map, webcam, or statistic). ControlCenter
is implemented in JavaScript using D3 [136]. The implementation choice is to use Observable
notebooks as a coding and deployment environment. The code is released as an interactive
prototype (link), as shown in Figure 6.5.

6.1.3 Scenario in Lyon
We explain the ControlCenter workflow with two examples. Using ControlCenter, we gen-
erate two dashboards based on the road traffic data from Lyon (introduced in Section 2.1.5).
One of the two dashboards reorganizes the existing views, observing how traffic flows and traf-
fic events are distributed on a map. Another dashboard is implemented with existing views and
novel visualization techniques designed in this manuscript, aiming to explore how traffic flows
change over time. This section introduces how ControlCenter implements the dashboard and
achieves the control center-oriented tasks. Co-authors of this work are in charge of updating
the reorganization of dashboards.

Reorganizing a dashboard using existing views. Arriving at certain places on time is a
big concern for city commuters. Especially those who drive, they have to consider the traffic
density distribution and whether the road to be passed is under roadworks. ControlCenter
can combine multiple views as a dashboard to help traffic operators overview road networks
and the traffic flow situations over road networks. This information from traffic operators can
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Figure 6.6: Reorganize dashboard using existing views. A webcam matrix view shows the overview of
specific road intersections in ¬. A map view shows the overview of the traffic status, road events, and
webcam locations in ­. An event list view shows the detailed information of events in ®. A stacked
line chart shows the temporal changes in traffic flows in ¯.

be propagated to commuters, improving their traveling efficiency. First, we input the relevant
traffic data in Lyon (introduced in Section 2.1.5 as CRITER datasets) in ControlCenter, in-
cluding webcam data, traffic density data, and traffic event data. Four views are utilized in this
dashboard: a webcam view, a map view, an event list view, and a stacked line chart view, as
shown in Figure 6.6. A webcam (¬) visualizes the specific road status (T4). It helps drivers
avoid driving at these road segments where traffic congestion exists. Furthermore, the webcam
also helps traffic operators observe whether these roads have traffic accidents (T4). The map
view (­) can visualize the spatial information (the positions of objects) related to webcams
and traffic events (T5). In the map view, users can also observe Lyon’s traffic flow distribu-
tion on all road networks (T1). The traffic flow seems good because all the roads are green.
Moreover, there are still many warnings and roadworks on the map view. In order to know the
temporal information of these events, we use the event list view (®). As we can see from this
view, all the warnings are on 15 February (T2), so we should make concerned about it if we
travel on 15 February. It has roadworks on Rue du Dauphine at 09H31 as well. Thus, we
should not pass through this road at this time. Finally, we select a stacked line chart view (¯)
to visualize the traffic status in the temporal dimension. As we can see from the line chart,
there are both morning peaks from 7:00 to 9:00 and evening peaks from 16:00 to 18:00, which
indicates that if we drive on the road at that time, it is highly possible to suffer traffic jams in
Lyon.

Redesign map-oriented dashboard (Figure 6.2) by adding novel visualization tech-
niques. Given that the current existing views in traffic control centers are difficult to provide
detailed temporal changes information of traffic flows (e.g., display how traffic flows of every
road segment change over time), we merge the novel visualization techniques proposed in this
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Figure 6.7: Redesign of a map-oriented dashboard (Figure 6.2) by adding novel visualization tech-
niques. ¬, a webcam view shows the road status in specific road intersections. ­, Gridify shows
the traffic status by dividing road segments in cells. ®, a rectangle matrix view shows the traffic flow
changes over time for specific road segments. ¯, GroupSet shows how traffic flows change over time.

manuscript into a dashboard. To explore traffic flow temporal changing patterns, we utilize
four views: webcam view, Gridify (Chapter 4), rectangle matrix view, and GroupSet (Chap-
ter 5), as shown in Figure 6.7. In order to visualize the temporal changes in traffic flows, we
first select GroupSet (¯) to visualize the traffic flow (T1) changing over time during a day. It
shows that the traffic flows in Lyon have two peaks: morning peak around 7:00 and evening
peak around 17:00 (T2). Nevertheless, we still believe some roads only have morning peak or
evening peak so that we can guide the vehicles passing through the roads during their not busy
time to make the road network have a balanced load. Thus, we select the rectangle matrix as a
view (®) to visualize how traffic flows change during a day in specific road segments. In this
view, the X-axis represents the 24 hours of a day, and the Y-axis represents the different road
segments. Therefore, we can observe the major road status distribution over time. This view
shows the high traffic density in red and the low traffic density in green. We can observe that
some roads do not have morning peaks, and some do not have evening peaks (T4). It shows the
opportunity to rebalance road traffic with some intervention. For example, traffic operators can
guide more vehicles or public transport to these roads that do not have morning peaks from
6:00 to 8:00am. Finally, we choose Gridify (­) and webcam (¬) view. The webcam view
helps traffic operators observe the traffic status among specific road intersections (T2). Grid-
ify shows the different traffic situations in cells (On Figure N refers to server traffic congestion,
R to traffic congestion, O to not fluent, V to fluent, and G to unknown). The interesting thing

88



Chapter 6. Deployment in Traffic Control Centers and Other Applications

is that three long road segments in cell N refer to traffic congestion (T2). It is different from
our common sense since we usually think the city center easily happens traffic congestion.
However, these three road segments are not in the city center of Lyon.

6.1.4 Discussion on Traffic Control Centers Deployment
The previous section has introduced two cases explaining how ControlCenter implements
dashboards in traffic control centers to achieve specific monitoring goals. However, two chal-
lenges have not been addressed in these two cases: 1) how to coordinate the visualization
techniques in the dashboard and 2) how to make connections among these visualization tech-
niques. These two challenges could be our future research directions.

”How to guide traffic operators to create a helpful dashboard in traffic control centers?”
Previously, we have introduced the views (e.g., map and webcam) in the dashboard of traffic
control centers. However, we do not discuss where these views should be put in a dashboard.
This is a layout issue formulated as a problem — ”Which layout strategy is most beneficial to
achieve the tasks?”

In the InfoVis community, this problem is defined as the Multiple Coordinated Views
(MCV) problem we have studied in Section 2.4.5. MCV is a visualization environment that
consists of two or more distinct views to support exploring a single conceptual entity, which
is a specific visualization technique in that users can understand the heterogeneous data and
view them through different representations. The design space of MCV affects the availability
and efficiency of realizing tasks. Chen et al. study the design space of MCV in composition
and configuration [123]. The composition describes how many views they use and which
presentation type each view is. They summarize some guidelines for multiple view designs.
Besides, the MCV can merge other visualization to construct new design spaces to improve the
visual presentation. Roberts et al. link the multiple views to the 3D visualization to explore the
deeper patterns [120] since it is not easy to ’see inside’ in the 3D visualization when dealing
with too much data.

Thus, to address this challenge, we plan to conduct an empirical study to analyze the strat-
egy of the layout of the current traffic control centers. By doing this, we will first collect the
pictures of dashboards in traffic control centers on the internet or by taking pictures in the
control centers. Then, we will annotate the layout strategies and the views contained in these
dashboards. Eventually, we will analyze the layout strategies and design the guidelines for
recreating the dashboard in traffic control centers.

”How to connect each visualization technique in the dashboard of traffic control cen-
ters?” In this manuscript, we have discussed how to deploy visualization techniques in traffic
control centers. However, a challenge still exists while combining multiple visualization tech-
niques in a dashboard since we not only put them in the same design space but also make the
connection among them in a workflow. This means we should unify the data parameters to
allow visualization techniques to interact with each other (e.g., to share a highlighted element
or time interval). We argue that unifying the configuration format is the most important step
for aligning all visualizations states. Such configuration would also enable the rapid export
and sharing of the parameters, which makes it possible to interoperate among the multiple
visualization techniques in a dashboard.
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MapWebcam Webcam

Views
Layout

Figure 6.8: Dashboard, layout, and view examples. The up one is the dashboard of the traffic control
center, edited based on a picture taken from the traffic control center in Lyon. The control center belongs
to Basic3Columns layout type, containing two webcam views and one map view.

We explain how the visualization techniques can be connected by introducing the configu-
ration format of FuzzyCut, which are as follows:

{

"Title": "Taxi speed",

"Attribute": "0",

"Parameters": [{

"n": "3",

"Core": "13.6",

"Support": "27.2",

"Names": [

"Low",

"Middle",

"Hig"

]}]}

where a configuration file of FuzzyCut captures all the design and visual abstractions pa-
rameters (e.g., the title, n, core, support, and names). These parameters can adjust the
display of the visualization techniques. For example, changing the parameter of FuzzyCut’s
configuration file can adjust the shape of FuzzyCut (the membership function). Thus, the con-
figuration file is the key to communicating among different visualization techniques, which
can help the dashboard in traffic control centers connect all the views and interoperate among
these views.
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To summarize, deploying the traffic control centers are facing two challenges, and we will
address them as follows:

• Conducting an empirical study helps explore the layout strategies of traffic control cen-
ters, hence, concluding the guidelines for the control center design;

• Through the configuration, we will unify the input parameters of each visualization tech-
nique. Thus, the visualization techniques can communicate necessary information to
each other, allowing interoperability among these visualization techniques.

6.2 Applications Beyond Road Traffic Data and Context
This section discusses the applications of our three visualization techniques (FuzzyCut, Grid-
ify, and GroupSet) to other domains and contexts of use. We picked those domains based on

Visualization
techniques Datasets Data types Data characterization

FuzzyCut

Taxi speeds Quantitative values Half-bounded interval (x ∈ [0,+∞]),
continuous

Temperature Quantitative values Unbounded interval (x ∈ [−∞,+∞]),
continuous

Age Quantitative values Half-bounded interval (x ∈ [0,∞]), in-
teger

Displacement Quantitative values Unbounded interval (x ∈ [−∞,+∞]),
continuous

Computational time Quantitative values Half-bounded interval (x ∈ [0,∞]),
continuous

Gridify

Taxi Spatial data Geo-coded entities, geographic coordi-
nate system a

Transit accessibility Spatial data Geo-coded entities, geographic coordi-
nate system

Trade Spatial data Geo-coded entities, geographic coordi-
nate system

Soccer players Spatial data Geo-coded entities, Cartesian coordi-
nate system b

GroupSet

Traffic density Time-varying data Half-bounded interval (x ∈ [0,+∞]),
continuous

Soccer rankings Time-varying data Half-bounded (x ∈ [1,+∞]), integer

MNIST classification Category-varying data Bounded interval (x ∈ [0, 1]), continu-
ous

Table 6.1: Summary of datasets implemented in visualization techniques proposed in this manuscript.
The bold texts refer to the road traffic-relevant datasets. All the datasets implemented in FuzzyCut are
quantitative values, and all the datasets implemented in Gridify are spatial data. However, the datasets
implemented in GroupSet are either time-varying or category-varying data.

aA spherical or ellipsoidal coordinate system for measuring and communicating positions directly on the Earth
as latitude and longitude.

bA coordinate system that specifies the positions of objects with a pair of numerical coordinates.
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the similar challenges they offer (in terms of space, time and space-time visualizations), and
the availability of the datasets (listed in Table 6.1). The context of use has been picked to show
the techniques used beyond control centers and dashboards, e.g., as an interactive legend in a
visualization application.

6.2.1 Expanding the Applications of FuzzyCut
In Chapter 3, we have shown how FuzzyCut can be used to categorize taxi speed values. This
section discusses the expanding applications of FuzzyCut with four datasets: age, tempera-
ture, engineering datasets, and computational time datasets (detailed information introduced
in Table 6.1).

Age/ Temperature. This section introduces examples of how FuzzyCut categorizes the
quantitative values except for traffic-relevant data — age and temperature data. Table 6.1
shows the detailed information of the datasets. Compared to the taxi speed data (introduced in
Chapter 3), the age data type is discrete instead of continuous, and the temperature data has
unbounded intervals instead of half-bounded intervals. This section explores the usability of
FuzzyCut when the quantitative data differ from taxi speeds in data characterization.

We first implemented FuzzyCut with age data. As shown in Table 6.1, a typical age data
consists of a half-bounded interval (e.g., [0,+∞]) and rounded values (e.g., 3, 5, 7). There
exists a minimum value but no fixed maximum value. The data we used, in this case, is the
Simpsons, a popular U.S. TV Series. It includes 24 roles whose ages range from 0 to 90.
Figure 6.9 (a) shows FuzzyCut implemented with age data where the x-axis represents age
values. The y-axis shows the membership degree for every category. Table (b) in Figure 6.9
shows the categories and their properties (e.g., membership values and the range of categories),
which corresponds to the membership function. We can see that the membership degrees in
the Teenager and Less old category are equal to 0.5. However, all the other categories’
membership degrees equal 1.

We then implemented FuzzyCut with temperature data, as shown in (c) and (d) of Fig-
ure 6.9. As such temperature value does not have an exact maximum and minimum value,
the data is unbounded and continuous (as shown in Table 6.1). It consists of temperatures
from 357 divisions in the USA for 12 months. The temperature values range from −12.98 to
68.56. In (c), FuzzyCut categorizes the temperature values into three categories, shown with
the x-axis. The y-axis refers to membership degrees. Category names are Cold, Warm, and
Hot. Among them, a category named Warm is derived from Cold and Hot, with a membership
degree of 0.5, as shown in (d) in Figure 6.9.

Engineering dataset. In the vibration control field, control strategy greatly influences
performance. Compared with traditional control strategies, the fuzzy control strategy does
not need explicit mathematical modeling, making it more applicable in complex modeling,
in which assumptions and approximations are often made. An interactive visual technique to
observe the changes in vibration status is highly necessary. In this case, domain experts can
have an insight into fuzzy control strategy and reveal the influence of parameters, which is sig-
nificantly meaningful for vibration control engineering. The dataset includes 1, 024 items with
attributes acc (acceleration), vel (velocity), and dis (displacement). In this case, we use Fuzzy-
Cut to categorize attribute acceleration values. Compared to taxi speed values, acceleration
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(a)

(b)

(c)

(d)

Age data Temperature data

Figure 6.9: The expanding applications of FuzzyCut with age and temperature data. Age data are
from 0 to 90. There are three main categories named Children, Adult, and Old. Meanwhile, two fuzzy
categories were created, and their names are Teenager and Less old. In temperature data, there are two
main categories named Cold and Hot. There is an intermediate category named Warm between them.
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Figure 6.10: Categorize acceleration values. FuzzyCut creates 11 categories as shown in ¬, where the
x-axis refers to acceleration and the y-axis refers to membership degree. A scatterplot combines with
FuzzyCut by acceleration values in ­, where the x-axis refers to displacement, the y-axis refers to ve-
locity, and the colors refer to acceleration values. FuzzyCut derives new attributes such as Categories,
Membership Degree, and Color in ®.

values have unbounded intervals instead of half-bounded intervals (introduced in Table 6.1).
In order to help domain experts observe vibration status, we designed a prototype by com-

bining a scatterplot (Figure 6.10(­)) with FuzzyCut (Figure 6.10(¬)). As shown in ¬, we
created 4 trapezoids (Full Category) named ExV (Extremely Vibration), SlV (Slight Vibra-
tion), SlV (Slight Vibration), ExV (Extremely Vibration). Besides, there are also three
Overlap Category generated, named MV (Moderate Vibration),QS (Quasi Static), and MV
(Moderate Vibration). The x-axis in the scatterplot (­) represents displacement and the y-
axis refers to velocity, which is able to reflect the vibration status. The derived new attributes
include Categories, Membership Degree, and Color shown in 174. By using FuzzyCut, it is
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Figure 6.11: Categorize computational time values. FuzzyCut creates seven categories, as shown in ¬,
where the x-axis represents the time and the y-axis represents the membership degree. A 3D scatterplot
combines to FuzzyCut by the computational time values, where the x-axis, the y-axis, and the z-axis are
T (the number of tiers of a bay), S (the number of stacks of a bay), and computational time respectively.
The colors in the scatterplot correspond to the colors in ¬, which refer to computational time. FuzzyCut
derives new attributes shown in ­.

easy to categorize acceleration and monitor which parts are unstable. Also, membership de-
grees connect to the generated categories to help users understand the confidence, which is
also useful information for users to re-categorize acceleration values.

Computational time dataset. Computational time plays a very important role in the ef-
ficiency of an algorithm for solving combinatorial optimization problems. This case study
categorizes the computational time for solving the Stochastic Container Relocation Problem
(SCRP), which aims to retrieve all containers from a bay with the minimum number of reloca-
tions, a typical combinatorial optimization problem arising in container port operations. The
data is collected from [232], an optimization problem calculation for minimizing the number
of relocation of containers, which includes the computational times for solving the SCRP by an
exact algorithm on 288 instances over 24 problem sets. A problem set is characterized by two
parameters/attributes: S and T. S represents the number of stacks of a bay, and T represents the
number of tiers of a bay. The computational time increases dramatically with the scale of the
problem, and as a result, some problems cannot be solved to optimal within one hour. How-
ever, some problems can be solved in several milliseconds. Thus, evaluating the samples based
on categorized computational times (introduced in Table 6.1) allows researchers to choose the
correct way to solve this problem quickly.

As shown in Figure 6.11, ¬ illustrates that we create three main categories, which cor-
respond to small-scale problems, medium-scale problems, and large-scale problems, respec-
tively. Usually, the problems that can be solved optimally within five minutes are considered
small-scale problems, while those that cannot be solved optimally within one hour are re-
garded as large-scale problems. However, for the SCRP, we cannot simply differentiate the
problem scales by the computational time because it is observed that for the instances in the
same problem set, their computational times can vary significantly. Therefore, to better un-
derstand the computational complexities of these problem sets, we would like to make a more
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detailed classification of the instance scales. In this case study, we classify the instances into
seven categories with membership degrees based on their computational times. Making such
detailed classifications is because the researcher is also concerned with the extent to which the
instances can be solved fastly or slowly.

This technique is beneficial in several ways. Firstly, the researcher has a clear picture of
the distribution of the computational times of each problem set, as shown in Figure 6.11(®),
which enables her to have a more accurate understanding of the computational complexities
of different problem sets. Secondly, the researcher can easily identify the problem sets that are
very difficult to be solved and thus can turn to heuristic algorithms to obtain a near-optimal
solution in a reasonable time. Lastly, the 3D scatterplot in Figure 6.11(®) enables one to gain
a visual impression of the impacts of the width (S) and the height (T) of a bay on the compu-
tational efficiency of the SCRP, which is useful for the port operators to plan the dimension of
the bay in the storage yard of container ports.

The open-source code enables further use of the technique by simply uploading quantitative
data in our web app or by including the module in a Notebook using import {fuzzyCut}
from ’0820d2ad9cfa734d’ in a JavaScript-based environment.

6.2.2 Expanding the Applications of Gridify
This section discusses how Gridify can be applied to other application domains. In Chapter 4,
we have introduced the application of Gridify with two traffic-relevant data: taxi datasets
and public transport accessibility datasets (introduced in Section 2.1.5). However, Gridify is
designed to analyze any geo-coded dataset, such as trade data among countries and soccer
players moving on the playground (listed in Table 6.1).

Trade dataset. In economics, there is a wealth of geo-related datasets, e.g., countries bi-
lateral flows of goods and services (we further refer to as products, introduced in Table 6.1).
We explore a trade flows dataset using Gridify for 512 products (e.g., fuel, cars) traded be-
tween 250 countries, from 1965 to 2015. Such dataset shows heterogeneous data types, as
well as some derived and inconsistent values (e.g., some values are missing even though this
dataset has already been curated by the U.N. and economists [233]). Our process is to answer
similar questions available from [233] following the What, where, and when countries export?
scheme. Figure 6.12 (0) displays the overview of the dataset (As ∅), which is highly cluttered
(we introduced and other notations in Section 4.3.2). Separation by country as an OD map
using grid on Figure 6.12 (1) (As BIN) Z (As ) preserves geo-connections by countries,
but clutter is persistent: the reason is that countries have multiple connections over time (50
years), for each product (512), so potentially more than 2000 lines overlapping. So the next
transformation will be to aggregated those mark, e.g., using the COUNT to spot top exporters
(Figure 6.12 (2a, 2b), grouped by sub-region).

Where does country A export? Answering this question requires selecting a particular
country (e.g., France) by clicking on it, for instance, starting from the previous visualization
Figure 6.12 (2b, yellow square). One can filter by value (e.g., filter out non-selected countries)
using the query panel Figure 6.12 (3). Then the grid view focuses on the selected country
Figure 6.12 (4), which is again cluttered as we break down an aggregation. So one starts over
the abstraction process, similar to the first step, but using another strategy by using geo-grid
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Figure 6.12: Trade dataset of 250 countries: (0) overview of global trade flow, (1) grid by countries
while preserving the global map of exports (OD Map [31]), (2a) top exporters by sub-regions and (2b)
by countries, (3) selected country available as a dimension, (4) selected country (France) dimension
used to filter the dataset, (5) France trade partners as a geo-grid, (6) a trade partner (Germany is selected)
and (7,8,9) represent bilateral trade flows between France and Germany over times by products using
different visual strategies.

coordinates (Ageogrid ∅) to encode partner countries as cells which size reflects exports vol-
ume Figure 6.12 (5). Geo grids do not have clutter, so the user selects another country (e.g.,
Germany) to explore bilateral flows to this country over time. Figure 6.12 (6) shows that the
current query maintains two SELECTED values for different views on the dataset: one glob-
ally for the exporter country (France) and one at a level below for the importer (Germany).
Following steps explore bilateral trade flows over time Figure 6.12 (7) and by products Fig-
ure 6.12 (8). The use of would be better suited to convey temporal change, but placeholders
may be too small to convey aggregated values Figure 6.12 (9). The same exploration process
could apply to the series of questions Which country exports products C?, Where does country
A export products C? Which products are top exports?

Soccer dataset. Sports generate a growing source of spatio-temporal connections [234]. In
particular, a tool called SoccerStories [235] uses geo-coded data to visually present sequences
(e.g., consecutive series of passes for the same team) as a clustered graph on the soccer field.
SoccerStories already implements the multi-faceted visualization approach by dividing entities
and their explicit connection using a phase attribute. We use the same underlying dataset
provided by Opta–a sports data tracking company–where each pass has 12 values (shot, pass,
..). Each value may have up to 50 qualifiers, which are non-structured attributes, and specific
to each type of pass. We pre-processed the dataset to the most common passes and focused on
a La ligua game between FV Barcelona and Real Madrid (2-2) on Oct. 7th, 2012, for a total
of 1, 622 events. The coordinate plot of positions Figure 6.13 (0) first shows some data quality
issues: entities have missing positions (e.g., no destination entity for a pass, so it is set to (0, 0)).
However, as we are interested in connections, we will keep all of them and build aggregates,
e.g., by the number of events occurrence grouped by team Z role Z player Z time period
Figure 6.13 (1). This very simple construction provides a wealth of information not only
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Figure 6.13: Passes during a soccer game between two teams (total 22 players) reveal teams strategy
(Barcelona has a pass-oriented game) as well as players diversity of passes and their importance.

specific to the game (e.g., Alves only played the first half of the game for Barcelona), but also
the style of the teams (Barcelona ball possession is key, and they generate many passes), and
individual players (midfielders in Barcelona are heavily involved, contrary to Real Madrid).
Figure 6.13 (2) shows however a limit of using Gridify: the most interesting events are not
the frequent ones (e.g., goal shots). There only are a few of them compared to the other types
of passes. This is how SoccerStories built sequences: starting from those interesting events,
which usually are a handful (a dozen by games). However, by filtering out those interesting
events, Figure 6.13 (3) provides a game summary showing the 4 goals of the game (Ronaldo
and Messi) and key players who attempted to shoot.

To summarize, Gridify is designed for all geo-coded data, including geographic coordinate
system data (e.g., taxi data, trade data, and transit accessibility data) and Cartesian coordinate
system data (e.g., soccer player data), as shown in Table 6.1. We have implemented these
geo-coded datasets, and the code has been released in Observable notebook (Link), so one can
check the implementation of datasets and also upload their own datasets.

6.2.3 Expanding the Applications of GroupSet

This section discusses how GroupSet works in other domains except for the traffic density
changes over time. In Chapter 5, we have introduced how GroupSet helps analyze and iden-
tify the traffic density changing patterns over time, focusing on the time-varying data. How-
ever, GroupSet is designed not only for analyzing traffic density changes. In this section, we
explain how the GroupSet can be used in the soccer rankings datasets and MNIST classifi-
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11 38

Figure 6.14: Discarded time intervals in soccer data using the brush feature on the global line chart (to
keep time points between day 11 and day 38). As a result, compared to the global line chart on top, the
below group line charts do not include the time interval from day 0 to day 10. Groups are then ranked
by teams with fewer changes of sets (resulting in both the best and worst teams).

cation datasets (A handwritten digits dataset for training imaging process system and algo-
rithm [223]). Table 6.1 contains all the detailed information of these datasets implemented in
GroupSet. One special thing is that, compared with other datasets, the MNIST classification
datasets are category-varying data instead of time-varying data.

Applications of GroupSet in soccer rankings dataset. Soccer data analysis is becoming
increasingly important as data is now available to data scientists. We have already used a
soccer dataset in Gridify (introduced in Section 6.2.3), but over spatial attributes for a specific
game: we now explore temporal attributes over multiple games. In particular, game outcomes
are indicators of teams’ performance that can be aggregated and represented over a season.
The standard representation is a ranking of usually around 20 teams (for European leagues)
over time 19 × 2 games, i.e. 38 games. We create three sets {TOP5, NORMAL, BOTTOM3} which
rank corresponds to the teams qualified for European competitions, the non-qualified teams,
and teams relegated to the inferior division (T1). The NORMAL group usually is not the aim of
the top-performing teams, but it is for less-performing teams (which usually never get to the
TOP5 group).

Discarding early ranking variability. An essential property of permutations in soccer
championships is that at the beginning, teams may change rank with a higher probability than
later in the championship (when there are high points differences). So it is essential to discard
the first days as shown in Figure 6.14 by selecting the time interval from e.g., day 11 to the end
as an analyzed period (T6). Once the beginning period is discarded, we sort the soccer teams
by trend to find the most stable soccer teams. We notice that three sets are being more stable
than other sets, which contain four teams (Figure 6.14): Paris, Troyes, Toulouse, and Monaco
(T2). The most important thing is that these four teams are either stable at the top or bottom
levels. Especially for Paris and Troyes, they did not change their rank from 11 to 38, and they
are ranked first and last (T5).
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Figure 6.15: Understanding the less performing teams. They are the ones that had the worst rank for
most of the season, except for Toulouse whose rank increases during the last games.

Figure 6.16: Classification results of 1, 000 handwritten images. The x-axis refers to predicted classes,
and the y-axis refers to the predicted possibility. A line refers to the classification probability of a single
image among these predicted classes.

Identifying best and worst performing teams. The next step is to answer basic performance
questions such as which teams are the best or worst, which can immediately be seen on the
championship’s last day. However, we may dig into the analysis to check if this has been
the case for the whole season. The rank by set membership degree shows teams that do not
change groups, so they have always performed very well or very poorly (Figure 6.15). We
aggregate the soccer teams by Degree and then sort them by Degree-Bottom 3 so as to get the
soccer teams with the highest membership to the Bottom 3 on top (and the ones with partial
membership to this group below) (T5). The team Troyes is the only one always being in the
Bottom 3 from 11 to 38, even though its rank raises at the very beginning of the season (but
are discarded with our initial temporal selection).

Applications of GroupSet to category-varying data. This section discusses the applica-
tion of how GroupSet analyzes the categories-varying data instead of time-varying data. We
try to use GroupSet to analyze the classification results of MNIST datasets, a popular machine
learning dataset of handwritten digits.

Training models to classify handwritten images of digits is one of the classic machine
learning tasks. A frequent task is to check the result of the classification process, which is the
grouping of an input dataset of |E| = 1000 elements which are images into |T | = 10 classes
(digits ranging from 0 to 9) as in this case the instances are categories-varying data (and not
time-varying data). While they are independent, we order them by ascending order. The
sets here are X = {LOW,MEDIUM,HIGH} the thresholds we set to assess if a classification
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Figure 6.17: Overview of misclassification. Two aggregated groups are True set referring to correct
classification and False set referring to misclassification. There are 14 handwritten images in the
wrong classification, and 6 of them are digit 9, which is the most one.

Dataset |E|
elements

|T |
instances

[min(Q),max(Q)] S names

Road traffic 1,334 24 [0, 265] {FREE FLOW,NON-FREE
FLOW,BUSY}

Soccer rankings 20 38 [1, 38] {TOP5, MIDDLE, BOTTOM3}

MNIST Image
classification

1,000 10 [0, 81] {LOW,MIDDLE,HIGH}

Student grades 23 17 [0, 14] {GOOD,VERY GOOD,
EXCELLENT}

University rankings 100 3 [0, 15] {TOP10,TOP50,TOP100,OTHER}

Table 6.2: List of datasets (and their properties) implemented in GroupSet. We do not introduce the
Student grades datasets and University ranks datasets in this manuscript, but their implementations are
in GroupSet and one can check with the link.

probability assigns the image to the class. In this scenario, we uniformly split the interval to
create categories (e.g., split into three categories).

Frequent misclassification. Investigating misclassification and the reason is an important
topic in machine learning research. GroupSet can support machine learning experts in ob-
serving and testing the classification results of models interactively. Most classifiers predict
the results represented with possibility, such as the line chart shown in Figure 6.16 where the
x-axis refers to the classes, and the y-axis refers to the possibility. The line chart shows that
most possible values are around 1 or 0.

Using GroupSet, we can aggregate these samples based on specific attributes. As shown
in Figure 6.17, we aggregate samples by eval, which refers to the FALSE or TRUE results.
By hovering the FALSE group, we have an overview of these images of digits. There are
14 samples with misclassification, and 6 of them are digit 9. Thus, analyzing digit 9 is an
interesting point that can help machine learning experts refine the training model.

Now we analyze the misclassification of digit 9, as shown in Figure 6.18. First, we create
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Figure 6.18: The misclassification of handwritten digit 9. There are six samples of digit 9 with
misclassification displayed on the right side of each row. The rows (expanded first-level group of digit
9) represent prediction results (e.g., the first row represents 9 is predicted to be 9 and the second row
represents 9 is predicted to be 8). The last row shows a digit 9 is predicted to be 0. It might be because
the ’o’ of digit 9 is too big.

three categories named High, Middle, and Low. We then aggregate the samples with label,
which refers to the real values of digits, so we have the ten first-level groups. However, it
cannot display classified situations (e.g., true or false) with only one aggregation. Thus, we
aggregate the samples again with pred, which refers to classified results. Finally, we collapse
all the first-level groups except digit 9. There are several misclassification rows of digit 9,
as shown in Figure 6.18. Combined with the image visualization shown on the right side
of Figure 6.18, we can observe why the misclassification happened. For example, digit 9 is
classified as digit 0 because the ’circle’ of digit 9 is too large.

Expanding the application of GroupSet in the category-varying data is possible. Especially
for the classification data introduced in this section, users can highlight the groups they want
through aggregation in the combination matrix, as shown in Figure 6.18. Besides, we have
also implemented other datasets with GroupSet (Link). Table 6.2 lists all these datasets and
corresponding information. In the future, exploring GroupSet’s possibilities in other domains
and other data types would be exciting and challenging.

6.3 Open Challenges
To conclude this manuscript, we now list a series of open challenges that remain to be ad-
dressed.

Visualizations onboarding and interoperability. We have introduced several techniques to
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support visual analysis for road traffic data and other application domains. Each tech-
nique has a learning curve to decode the visualization to interpret and interact with the
data. Such a gap requires time and perseverance, which experts may not need, espe-
cially in critical, time-sensitive contexts. A solution is to design visualization as building
blocks [236] with basic features shared across techniques. Despite we implemented such
an approach (e.g., with the FuzzyCut intervals creation feature included in GroupSet),
most visual elements are specific to each design. Another path for interoperability is
to let users use similar preferences across visualizations (e.g., default dataset, grouping
methods, etc.) in a programming language agnostic way. We already used such an ap-
proach (i.e. for views specification in the Control Center Dashboard) now popular in the
visualization community using Domain Specific Language (DSL) [237], which is the
mini-language tailored for a specific domain that allows programs to be implemented at
the level of abstraction. Vega [173] specification is such a DSL, and in the future, we
will align our DSL with Vega’s for further visualization interoperability.

Data quality assessment and fixing. Real-world datasets usually suffer from data quality, as
some information may either be missing or erroneous (e.g., road sensor or malfunction-
ing), which may lead analysts to the wrong conclusion that a road may seem empty
while it can be congested without reliable data. Thus there is a need for a visualization
technique to convey such data quality issues in a visual way. In this manuscript, we
showed it could be used with Gridify when detecting missing coordinates. For temporal
techniques, however, it is challenging, especially if values are temporarily distorted due
to an external factor (e.g., humidity due to weather) that are not captured in the dataset.
Visualizations should be able to provide information for analysts either to understand
the level of reliability, for example, by informing on the data source reliability and con-
textual factors (e.g., weather). Mechanisms to fix such data based on corrections (e.g.,
temporal smoothing or distortion corrections) may be also be implemented as parts of
the interaction features to be used without any technical knowledge.

Scalability in number of items and dimensions. Finally, our techniques have been used to
explore either univariate data or geo-coded attributes with up to N dimensions (with N
that cannot exceed the dozens of attributes; otherwise, the grid would be too small).
Also, our techniques have been used for thousands of data elements. However, real-
world datasets could be used with a huge number of dimensions and elements. In terms
of representation, a solution would be to use larger screens such as multi-screen displays
to have more pixels to encode information. Another solution is to provide multi-level
aggregation methods that group data by data distributions and progressively load data
items for finer grain analysis. This has implications on both the design of the technique to
convey that data have been partially loaded, as well as a back-end (server) infrastructure
to implement progressive data structures [238].
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