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Chapter 1

Introduction
Contents
1.1 Background and motivation . . .. ... ... ..... 1
1.2 Overview of distributed coordination of MASs . . . . 3
1.2.1 Consensus problem . . . .. ... ... ... ...... 3
1.2.2 Control strategies . . . . . . ... ... ... ... 6
1.3 Preliminaries . . ... .. ... ... 13
131 Graphtheory . ... .. ... ... . ... ... 13
1.3.2 Mathematical knowledge . . . . . ... ... ...... 18
1.4 Contributions and outline of dissertation . . ... .. 20

1.1 Background and motivation

In recent decades, much attention has been paid to the reselarof multi-agent
systems (MASS) (i & Liu, 2019 from various disciplines, such as applied math-
ematics, physics, computer sciences and control theory. &ite is no doubt that it
is partly own to its broad applications, for example, searcland rescue missions
(Kantor et al., 2003, spacecraft formation ying (Li et al., 202Q Ren, 2007,
cooperative surveillance Qlfati-Saber, 2009 (see Fig. 1.1). Di erent from indi-
vidual agent which has limited sensing and computing abiit MASs are usually
composed of numerous interacting agents with several sersgactuators and it
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can perform or solve complex tasks in a coordinated fashionttvmany advan-
tages, including improving scalability, increasing exillity, reducing cost and
avoiding a single-point of failure.

(a) (b)

(© (d)

Fig. 1.1. Examples of multi-agent systems in practical applications

In the research eld of cooperative control of MASs, such asrimation (Yang
et al., 20180, consensus, rendezvous$(, 2015 and so on, the consensus problem
is an important and critical issue, which aims at designing@propriate distributed
control protocols by negotiating with their neighbors to rach an agreement. Up
to now, numerous typical and profound results have been ebteshed in (Ab-
dessameud & Tayehi201Z Li et al., 2021a Shi et al., 2020.

It should be noted that most of literature about the consensa problem of
MASs mainly relies on the assumption that the information igransmitted con-
tinuously among the neighbouring agents. However, in realppglications, for
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example, mobile robots and sensor networks, due to the lirations of communi-
cation obstacles, physical equipment failures, and sengioapabilities, the agents
may interact with their neighbors with some communication enstraints. On the
other hand, in system analysis, an important subject is to mimise the commu-
nication and calculation. Therefore, how to design optimed control technologies
is very crucial for reducing communication consumptions @nsaving resources.

Motivated by above discussions, this dissertation focus dhe discontinuous
control methods for the MASs with linear and nonlinear dynarnes. The objective
is to design appropriate control technologies for each ageatcording to di erent
control tasks and di erent constraint conditions, such tha all the agents can
achieve consensus and meanwhile economize the control €ost

1.2 Overview of distributed coordination of MASS

Over the past decades, numerous works about the cooperatisentrol problem
of MASs have been obtained. In the following subsections, well present an
overview of related works based on the consensus problem awahtrol technolo-
gies.

1.2.1 Consensus problem

As a fundamental topic in distributed coordination contro] consensus problems
have received a great deal of attention and obtained a lot ofteresting results
(Jadbabaieet al., 2003 Olfati-Saber & Murray, 2004 Ren & Beard 2005 Vicsek
et al., 1999. In the early work (Vicseket al., 1995, Vicsek et al. considered the
phase transition of a group of self-driven particles basec @ simple discrete-time
model. Jadbabaieet al., 2003 gave a theoretical explanation for the obtained
results in (Vicseket al., 1999 by using algebraic graph theory. In Qlfati-Saber
& Murray, 2009, the authors discussed the consensus problem of MASs under
xed and switching topologies. In Ren & Beard, 2009, the authors investigated
consensus problem of MASs, where the information exchangelimited and un-
reliable because of dynamically changing interaction tojmgies. Note that the
above publications on consensus problems mainly focus on B#\with rst-order
linear dynamics. Later, many researchers put their attentin on second-order
dynamics Ren & Atkins, 2007 Wen et al., 2012 Xie & Wang, 200%. In (Xie
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& Wang, 2007, the authors considered the average-consensus problem tloe
second-order MASs. In Yu et al.,, 2010, necessary and su cient conditions
were derived to guarantee the achievement of consensus foe the second-order
MASs. For the xed directed topology, the second-order coegsus with com-
munication constraints was investigated in \(Ven et al., 2012. More recently,
the consensus problem of MASs with high-order or general éiar dynamics has
been addressed. InWieland et al., 2008, the consensus problem of high-order
MASs was studied under a directed weighted graph. In additg considering
the e ect of time-delays in both the communication network ad control inputs,
(Zhou & Lin, 2014 adopted a truncated predictor feedback approach to solvéé¢
consensus problem of high-order MASs.

It is worth noting that most of obtained results about the corsensus problem
of MASs focus oncomplete consensus , that is, the control inputs are designed
to ensure that the agents are in a consistent state. Howevan many real situ-
ations, due to some unanticipated situations such as the anges of cooperative
tasks, external environment or event-time, all agents neei be split into sev-
eral groups, namely, the agents that belong to the same growp cluster reach
a common state, while the agents that belong to other group arluster reach
di erent convergence states, which is termed agroup consensus or cluster
consensus. As an extended concept about complete consensus, groupAter
consensus has various applications in military and civilig such as battle eld as-
sessment, reconnaissance, and surveillance. In the largals complex networks,
due to the speci c requirements, it is easier to analysis andesign by decom-
posing the large scale complex network into several smalleusters; in nature,
the birds, sh and bacteria colonies are often emerge severdusters; particu-
larly in human society, some opinion formation models revethat agents in the
same cluster eventually form the same opinion (see Flg?). A vivid example is
given in (Ge et al., 2019: multiple robots are required to keep di erent capa-
bilities in order to search and rescue victims when a disasteccurs. Thus, it
is necessary to divided all agents into di erent clusters @ording to the needs
in practice. Up to now, many constructive results for the clster consensus of
MASs have been obtained from various aspects such as systeymammics, net-
work topologies, time-delays Aeyels & Smet 2011 Chenet al., 2019 Wen et al.,
2016a Wenlian Lu, 2010. In (Aeyels & Smet 201]), the authors investigated
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cluster formation behavior for a time-varying MASs. In (Wenlian Lu, 2010,
the authors studied cluster synchronization issues undené networks of coupled
nonidentical dynamical systems. InXia et al., 2016, the authors considered the
group consensus of MASs with communication delays under ateand switching
topologies. Miao and Ma Miao & Ma, 2015 proposed group consensus proto-
cols for discrete-time and continuous-time MASs with nonliear input constrains.
In (Kang et al., 2018, the authors investigated the cluster synchronization o&
network system with nonidentical nodes, where the dynamic¥ agents are either
general linear or nonlinear. In Qin et al., 2019, the authors addressed the cluster
consensus problem for a second-order MAS by pinning leadelfower approach,
where the communication topology is assumed to be weakly camtted. In (Liu
et al., 2015, the authors investigated the adaptive group consensus étworked
Euler-Lagrange systems. Meanwhile, some correspondingegsary and su cient
conditions for solving group consensus problem are estabied.

(a) (b)

Fig. 1.2. Examples of group consensus of MASs

More recently, a more generalized counterpart of consensissput forward
by some scholars, that isscaled consensus. Compared with group consensus,
scaled consensus means the states of all the agents reaclgasd proportions
instead of some common state values. Thus, group consensas be considered
as the special case of the scaled consensuRoy, 2019 referred to the concept
of scaled consensus rstly. Scaled consensus has been paienand more atten-
tion in recent years due to its broad applications, for exanie, water distribution
systems Qstfeld & Salomons 2004, space cooperative vehicles, closed queuing
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networks (Reiser 1981). In (Meng & Jia, 2019, the authors investigated the
scaled consensus problem of rst-order MASs under switclymetworks, and in
order to guarantee the exponential convergence of agentgcessary and su -
cient conditions were obtained. For high-order discretarhe MASSs, the scaled
consensus problem was considered i@H{enget al., 2020, in which there exists
a time-varying delay in the progress of information transnsision among agents.

Bipartite consensus , as a special case of scaled consensus, implies that the
states of all agents converge to a consensus value with theneamagnitude but
opposite sign. In order to reach bipartite consensus, thegsi graphs are often used
to represent competitive-cooperative MASs. InAlta ni , 2012, negative weights
were denoted to describe the antagonistic relationship amg agents in MASs. In
(Zzhang & Chen 2017, state feedback and output feedback control technologies
were designed to achieve bipartite consensus. Assumingtttiee associated signed
digraph is strongly connected, Guo et al., 2018 handled the bipartite consensus
problems over signed digraphs with arbitrary nite commungation delays. To
specify multiple bipartite consensus behavior, by combing the characteristics
of group consensus and bipartite consensug,i| et al., 2020 introduced group-
bipartite consensus of MASs over cooperative-competitiveetworks.

1.2.2 Control strategies

As far as we all know, the MASs can't reach consensus by itselfhus, various
control strategies have been constructed to guarantee thgstem performance
and meanwhile save energy, such as pinning control, adagicontrol, impulsive
control, intermittent control, sampled-data control, event-triggered control and
so on, which can be summarized as follows.

In practical application, especially for the large-scaletMASs, it is impossible
for the leader to pin every follower. To overcome this drawla#, pinning control
can be used by controlling only a small fraction of agents raér than all the
agents. Thus, pinning control is more economical and moreective for the large-
scale leader-following MASs, which has been attracted muetttention. (Wang
& Wu, 2012 investigated two kinds of formation control problems for scond-
order nonlinear MASs by pinning control under xed and swithing topologies. In
(Huanget al., 2019, the authors applied pinning control scheme to heterogeoes
MASSs for solving the group consensus with reference. IWang & Li, 20179,
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the authors presented an distributed pinning controller forobotic networks to
realize cluster consensus, where the system dynamics ararelterized by Euler
Lagrangian equations. Moreover, based on matrix theory, ggbraic graph theory
and the stability theory of fractional system, (Yu et al., 2019 employed adaptive
pinning control to solve the consensus problem for fractiahorder MASSs.

As a matter of fact, pinning control is an inseparable compaon to leader-
following consensusThe leader-following consensus , is also called adrack-
ing consensus, which implies in a system all followers can track a prescrol
state trajectory generated by a leader that is usually indegndent of all follow-
ers (see Fidl.3). As it is referred in (Hummel, 1995, the leader-following con-
guration was an energy saving mechanism. Besides, the comnication and
orientation of the ock can be enhanced by leader-followinghethod (Andersson
& Wallander, 2009. Existing literature can be roughly divided into two sorts
i.e., leader-following consensud@i & Guo, 2018 and leaderless consensus. In
(Kim et al., 20149, the authors investigated the leaderless and leader-foling
consensus for discrete-time heterogeneous MASs with randdink failures. In
(Qiu et al., 20159, by the aid of the perturbation analysis of matrices and quati-
zation technique, the authors solved the quantized leadeds and leader-following
consensus for a class of high-order MASs with limited datatea Besides, for the
MASs with multiple leaders, (Wang et al., 201§ considered containment control
problem, where controllers were designed to make all the ltslers can converge
to a convex hull formed by the leaders.

It is worth noting that the control inputs of leaders are equéto zero in part of
results on tracking consensus. However, in many circumstags, in order to avoid
obstacles and achieve desirable objective states, the aahtinputs of leaders are
expected to be nonzero and controllable L{ et al., 2012 handled the distributed
tracking consensus problem, where the control input of leadis continuous and
bounded, besides, it is not available to any follower. InMa et al., 2017, the
authors studied the tracking consensus problem by introdutgy a smart leader,
where the leader can adjust the interaction strength betwedtself and the target
point based on the tracking state errors.

Nevertheless, it is noted that the disadvantage for pinningontrol in existing
literature is that the pinning strength is usually xed and given in advance to
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The state of the leader \

Fig. 1.3. Leader-following consensus or tracking consensus problem

avoid the appearance of the worst situation, which is unreasable in real appli-
cations because the worst case rarely occurs. To overcomes ttirawback, many
researchers adopadaptive control approach to prevent the appearance of larger
parameters than those required in practice and adjust the pning weight during
the process of dynamics evolution. For exampleXq et al.,, 2019 investigated
cluster consensus problem of second-order nonlinear MA§semploying an adap-
tive pinning control method. Recently, a vast number of work on adaptive control
strategy are derived. [i et al., 20153 considered the output regulation problem
of heterogeneous MASSs via adaptive control under periodiwiching topologies,
where the feedback gains in control input are independent diie global infor-
mation of underlying communication graph. {Jin & Haddad, 2019 proposed a
novel distributed adaptive control architecture to addres the tracking problem
for MASs, where the adaptive control architecture can foil mlicious sensor and
actuator attacks when there exist exogenous stochastic tligbances. For a class
of nonlinear MASs with unmodeled dynamics,§henet al., 2019 designed a fully
distributed neural-networks-based adaptive control teatiology to ensure that all
the followers can track the leader within a prescribed level

Notice that the former literatures about the consensus of M8s were mainly
focused on the continuous control schemes with the assunpti that all agents
can transmit the information with their neighbours all the time. However, in the
real engineering, due to the appearance of obstacles or thmsitation of communi-
cation ability, the information communication may be discatinuous. Moreover,
continuous information transmission will cause a heavy bden for the MASs
with limited communication bandwidths. To mitigate these ssues, many opti-
mized and e cient control strategies are put foreword.

Impulsive control can be regarded as a special discontinuous control method,
where describes the state information of agents is just tramitted at some dis-
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crete impulsive instants. Obviously, the frequency of statinformation transac-
tion is reduced greatly. Thus, impulsive control strategy &s many advantages
including maintenance with low cost, more practicality andhigh e ciency. On
the other hand, the impulsive dynamical systems describe mouous evolution
with instantaneous state jumps and consist of three element The rst element
is continuous-time part, which is between system reset or pulsive, to control
the motion of systems. The second element is discrete jumtsgontrols the way
that the system states are instantaneously changed when a&etting event occurs.
The third is the criterion to determine the time that system @n be reset. It is
obvious that the impulsive control systems have a faster ceergence speed than
other continuous control systems. In addition, impulsive yhamical systems can
capture properties of various complex systems like mecheaal systems with im-
pacts, orbital transfer of satellite, nanodevices with et#¢ron tunneling e ects and
so on. Up to date, impulsive control has gained considerabileterests of many
researchers. Ning et al,, 2018 investigated the input-to-state stability (ISS)
and integral ISS of impulsive systems by constructing a ndveyapunov method
which is based on an inde nite Lyapunov function instead of egative de nite
Lyapunov function. (He et al.,, 2017 studied the tracking consensus problem
of nonlinear MASs with network-induced delays via distribted impulsive con-
trol. (Tang et al.,, 2019 considered the tracking consensus problem of MASs
with multiple delays via impulsive control with several newcharacterizations,
and the obtained results are veri ed in mechanical roboticystems. ¢hu et al.,
2017 analyzed the quantized consensus of second-order MASs inigoulsive con-
trol. (Jianget al., 201]) introduced impulsive control strategy for linear dynamic
MASs. Based on the theory of impulsive di erential system ash Lyapunov sta-
bility, ( Ma et al., 2020 proposed an impulsive control strategy with odd impulse
sequences to address the consensus problem of MASs, whichadse e ective and
exible in real applications. Moreover, in the studies of sychronization analysis
for complex dynamical networks, many results were obtaindaly using impulsive
control (Ding et al., 202Q Syed Ali et al., 202Q Xu et al., 2020.

Intermittent control strategy has been proposed and widely applied in
transportation, manufacturing and communication. In actal application, the in-
termittent control strategy has the control time (or work time) and uncontrolled
time (or rest time) alternately, that is, the controller will be activated within
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certain nonzero time intervals and be o during other time itervals. Specially,
when the control time tends to a time point, intermittent cortrol becomes im-
pulsive control. Compared with the impulsive control straggy that is activated
instantaneously, intermittent control strategy is easieto be executed because its
control width is nonzero. Therefore, the intermittent contol can be viewed as
an excellent junction between continuous control strateggnd impulsive control
method. Moreover, intermittent control can be divided into periodical inter-
mittent control and aperiodically intermittent control (see Figl.4). In Fig.1.4,
[tx;tk + 1] is called as control interval,(tx + 1;tc+1) IS called as rest interval,
T, is called as a period, wherg¢, and t, + ; represent the start time and end
time of kth control interval, t .1 is the end time ofkth rest interval, i is the
control width. Especially, when the control width and contol period are xed
constants, the aperiodically intermittent control strategy become the periodically
one. Compared with periodical intermittent control, aperodically intermittent
control is more reasonable and prevalent in practice becaushe conditions of
periodical intermittent control is restricted to some extat, for instance, the wind
power generation is obviously aperiodically intermittent Numerous results have
been obtained by employing intermittent control strategy m MASs (Gawthrop &
Wang, 2009 Huanget al., 2009 Li et al., 2007 Zochowskj 2000Q. In (Zochowskj
2000, the author described the method of synchronizing slave tthe master
trajectory by using intermittent coupling. In (Huang et al., 2009, the authors
considered the exponential stabilization of delayed chadotneural networks by
using periodically intermittent control. In (Saderet al., 2021, the authors inves-
tigated the H; consensus problem for a class of nonlinear MASs with interteint
communications and actuator faults under the switching comunication graph.
Particularly, for the leader-following consensus of MASsyhintermittent control,
many results are derived inuanget al., 2014 Wang & Wang, 2015 Zhanget al.,
2019h. In (Huanget al., 2019, the authors considered the leader-following issue
for second-order nonlinear MASs assuming that the commuation among all
agents is intermittent. By using aperiodically intermittent pinning control strat-
egy, the authors in ghanget al., 2019 addressed partial component consensus
for a nonlinear leader-following MASs. Furthermore, corsering the MASs with
general linear dynamics is more common and challengingyéng & Wang, 2015
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1.2 Overview of distributed coordination of MASs

investigated the semi-global consensus of general lineaABk via intermittent
saturating actuator.

T T, Ts
l—— !
t G+ Qe bt @ o ot @ tir3

Fig. 1.4. Periodical and aperiodically intermittent control strategy.

The advantage of intermittent control is that it can shortenthe working time
of the controllers, while the de ciency is that the informaton updating rates of
controllers cannot be reduced. For the sake of reducing theald of controllers up-
dating, (Xiong et al., 2019 employed intermittent sampled-data control to han-
dle the synchronization problem for hierarchical time-vafing neural networks.

Sampled-data control scheme essentially adopts time-triggered mechanism,
which sampled data transmission happens at pre-designechstant sampling pe-
riod or time-varying bounded sampling period Gao et al.,, 2009 Tang et al.,
201). Commonly sampled-data control system describes a conkrsystem in
which continuous-time plant is controlled with a digital device. In sampled-
data control systems, control signals are constants durirgpmpling intervals and
are allowed to change only at sampling instants. An applicatn of this tech-
nique is in the radio broadcasts of the live musical progranChen et al., 2019.
Recently, various results have been reported for investigyag the sampled-data
synchronization/consensus problem of networked multi-agit systems. [ee &
Park, 2017 introduced a novel time-dependent discontinuous Lyapurdunction
to deal with stability problem of sampled-data systems. @zcan et al.,, 2018
applied sampled-data control strategy to handle robust syhronization of un-
certain Markovian jump complex dynamical networks with time-varying delays
and reaction-di usion terms. (Ali et al., 2020 established a novel non-fragile

11
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sampled data control framework for nonlinear MASs with addive time varying
delays and Markovian jump parameters. Beikzadeh & Marquez 2016 designed
input-to-stable observer for nonlinear sampled-data sysins. Under the switching
topology, (Zhang & Zhang 2017 addressed the consensus problem for general
linear MASs via sampled-data control strategy. Considerghrrandom and deter-
ministic packet losses, respectivelyZhanget al., 2016 solved the sampled-data
consensus problem for linear MASs.Du et al., 2016 investigated the consensus
problem for heterogeneous MASs composed of rst-order MA&ad second-order
MASs with communication failure based on sampled-data infamation. (Zhang
et al., 20173 studied the tracking consensus problem for a class of hetge-
neous MASs by designing distributed output-feedback comiller with the aperi-
odic sampled-data measurement subject to external distualbce. ¢hang et al.,
20170 developed a time-varying sampled-data strategy to solvéhé consensus
problem for Euler-Lagrange systems, where the controlleaiw either work or rest
during each sampling interval, avoiding over provisioningpf system hardware
compared with the traditional sampled-data strategies. Yu et al., 20170 gave
the necessary and su cient criteria for leaderless conseaims and leader-following
consensus of fractional-order MASs based on sampled-datatrol strategy.

In sampled-data control, in order to avoid packet dropouts rad network con-
gestion as well as guarantee the performance, the date samglor control action
update is more frequency than that it is actually required, Wwich leads to a waste
of communication and computational resources. Di erent im the sampled-data
control scheme, under theevent-triggered control  (ETC) scheme (Nowzari
et al., 2019, agents depend on a prede ned triggering function ratherhtan a
xed sampling period to determine when to sample data amondié neighboring
agents and update their controllers. Thus, energy consuniph can be cut down
greatly. Up to date, a vast amount of literature on MASs via ETC strategy has
been obtained [i et al., 2021h Luo & Ye, 2019 Wang et al., 2020 and a variety
of triggering functions have been designed. IrGarcia et al., 2014, the central-
ized and decentralized ETC techniques were adopted respeety to handle the
consensus problem for general linear MASs subject to undited graph. So as to
further decrease the information communication and mininze the number of con-
troller updates, (Zhou et al., 2015 used the combinational measurements method
to design the event-triggered control mechanism for MASs. yBusing only local
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information instead of global information, Cheng & Li, 2019 investigated the

fully distributed ETC strategy for the general linear MASs ly designing the time-
varying weights in both triggering conditions and the contol laws. The designed
adaptive ETC strategy was robust to some bounded external sturbances. By
introducing sampled-data method, event-triggered sampledata control strategy

was presented in Guo et al., 2014, where the triggering function only needs to
be detected at the sampling instants and the minimum interaent time could be

guaranteed to be no less than one sampling period. For multehicle systems with
nonholonomic constraints, Chu et al., 2019 considered the distributed formation
tracking control problem via event-triggered sampled-dat control strategy.

1.3 Preliminaries

Notations: Throughout this thesis,N = f1;2; g represents the set of positive
integer. For the given positive integerpandg. RYandRP 9 denote g-dimensional
real column vectors andp g real matrices, respectivelyk k not only stands for
Euclidean norm for vector, but also the induced matrix 2-non. For a real matrix
P, max(P), mn(P), P 1 and PT, mean respectively, maximum eigenvalue,
minimum eigenvalue, the inverse, and transpose &. P > O indicates P is
positive de nite. |y is the identity matrix. denotes Kronecker product. The
diagf g stands for a block-diagonal matrix.

1.3.1 Graph theory

In this thesis, it is assumed that the communication topolog of MASs is char-

set of nodes, andE  V V denotes the set of edges. For a directed topology,
g; Is an edge ande; = (Vvi;vj) 2 E indicates that the information ows can
be transformed from agenty; to agentv; (See Figl.5), while for the undirected
topology, e; = (Vi;Vv;) 2 E represents the information ows that can be trans-
formed mutually between agent; and agenty; .

A =[a;j]n ~ is used to represent the weighteédjacency matrix associated
with the communication topology and it is supposed to satigfthe following prop-
erties: a; > Oimpliesg; 2 E; a; = 0 otherwise. It should be pointed out that
the topology has no self loops or parallel edges, that i& = 0. Besides, in this
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Fig. 1.5. Information ow from v; to v

thesis, we assume that the adjacency matrices corresporglito the topologies
have 0-1 weight. The weighted adjacency matrix is represent as

2 3
A;; A aiN
A:ga_ﬂ Gz o zzRN N
ani an2 anN

Furthermore, the communication topology can be categoriden two classes ac-
cording to the information ows, that is, undirected and directed topology. A
directed path corresponding to the directed topology is a nite ordered nies
sequencevi,,..., Vi, such that (v, vi,,) 2 E, wherel =1;:::;k 1. The def-
inition about a weak path is that there exists a nite ordered nodes sequence
such that (v;,, vi,,, ) or (vi.,, Vi) 2 E. For a directed topologyG, if

it contains a directed spanning tree , which means there exists at least one

Viyse oy Vip
node that is called as root node having a directed path to anyemaining nodes.
Furthermore, a directed topologyG is calledweakly connected if there exists
at least one weak path for any two distinct agents, which meanits correspond-
ing undirected graph is connected and each agent can eithdstain information

from other agents or send information to other agents. Appantly, the weakly
connected topology is more universal than the topology with directed spanning
tree. The Laplacian matrixL = [l; ]y ~ of topology G satis es

8 e i a
< aj if 16
Iij = m . s
g if 1=
j=1ij6i
: L )
which makes sure that the di usion property holds good, thais |; =0.

j=1
Divide the N followers into m clusters and suppose theth cluster has m;

nodes, that iSVi = fVim,+mo+em; 1415 2555 Vimg+mo+ e m; 1+m; 9. AS a result, we
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Assume that each cluster has a virtual leader. If théth agent is in the cluster
that can be denoted asv;, then i 2 V;, wheref' is the subscript. In addition, the
subscript set of the virtual leaders and followers are dered as = f1;2;:::;mg
andV = f1;2;:::;Ng respectively. For convenience of expression, there is no
di erence for the following descriptionsi 2 V, i 2 V, andv; 2 V. Obviously, the
followers of thejth virtual leader are in V;, j 2 . Refer to (Da et al,, 2018
for the de nition of inter-act agents and intra-act agents . Vi represents the
subset ofV, and the agents inVx means that they can receive information from
the agents in other cluster, that is, for anyv; 2 V., there exists at least one
v; 2 VanV, such thata; 6 0. Furtherly, if v; 2 V., the nodev; is termed as the
inter-act agent, otherwise,v; is termed as the intra-act agent ifv; 2 Vi n V..

Moreover, the interaction topology composed dfl followers and m leaders
can be characterized by a digrapts, where there is no information ow from
followers to leaders. De nepinning matrix D = diagfd;;d,; dyg, where
d, > 0O, if leader can transmit information to followeri, and d; = O otherwise.
Then, dene C = L + D for subsequent use.

In what follows, three examples are presented to specify theed undirected
graph, directed graph containing a spanning tree and weakfpnnected graph, re-
spectively. In addition, the adjacency matrixeA, pinning matrix D and Laplace
matrix L are obtained according to the de nitions.

Example 1.1 Consider the xed undirected communication topology as Fid..6,
its adjacency matrixesA and Laplace matrixL can be given as follows:
2 3 2 3

>

1
O O O O +» O
OO O O rr O O
O OFr OO0 O
O O O O o r O
R B O O Fr OO
P OFL,r OO OO
O P Pk O O O O

—

1
O 09 Fr O . ©
h Rk WO Q0o
= N L oo oo
R~ O © O o

Example 1.2 Consider the xed directed communication topology which etains
a directed spanning tree with ageri as the root node (See Figl.7), its adjacency
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Fig. 1.6. A xed undirected communication topology with seven agents

matrixes A and Laplace matrixL can be given as follows:

2 3 2 3

0O 00O0OO0O0O0OO0DO O 0 O o0 0O o0 o

1 000O0O0O 11 0 0 0O 0 O

1 000O0O0GO 10 1 0 0 O O

A=901 000 0 0z;L= 0 1 01 0 O O
0010010 0O O 10 2 1 0

0 0O0O0O0OO01 O 0 O o0 0 1 1
0000100 O 0 O 0O 1 0 1

Fig. 1.7. A xed directed communication topology contains a spanningree
with agent 1 as the root node.

Example 1.3 Consider the communication topologys composed of followerd
to 7 and two leaderss,, s, as Fig. 1.8. Its corresponding subgraplé composed of
followers1 to 7 is weakly connected. The adjacency matrixés, pinning matrix
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D and Laplace matrixL of G can be given as follows:

2 3 2 3
0O000O0OO0OO0OO0O 2 00000O00O0
1000O0O0CO 01 00O0O00O0
10001060 O000O0OO0OO0OO0O
A=§01000O0UO0;D=9g0 00 00 0 0z;
0O00O0O0OO0OO0O110O0 0O 00O0OO0O0O0OO0O
0 00O0O0©O01 0O 0O0O0OO0O0O0OO0DO
0O000O0OO0O1O00 O 0OO0OOOTO O3
2 3
O 0 00O O O O
11 00 O O O
1 0 20 1 0 O
L= O 101 0 0 O021z:
O 0 00O 1 1 O
O 0 00 O 1 1
0O 0 00 1 0 1

Fig. 1.8. A weakly connected communication topology composed of seviel-
lowers from1to 7 and two leaderss; and s,.

Lemma 1.4 (Ren & Beard, 2008 Suppose the undirected communication topol-
ogy G which containsN followers and one leader is connected, thavi = L + D
is symmetric and positive de nite.
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Lemma 1.5 (Li et al.,, 20158 Suppose the directed communication topolody
composed of the followers and the leader has a directed spagriree with the
leader as the root node (See FidlL.9), then all the eigenvalues of matri = L+D

own positive real parts. In addition, there exists a positevde nite diagonal matrix
E satisfyingEC + CTE > 0, whereE = diagf ;; ; ng> 0. Furthermore, the
equality EC+ CTE > E exists with a positive constant. The matrix E can be
constructed as follows:

E = diagf i; »; ;' NG

=[ 1 2 ;N]T:ETlN:
— —_— ——
_ _

Fig. 1.9. The directed topologies of the MASs: (a) without leader; (byith a
leader

De nition 1.6  (Signed graph ) The graph describing the communication topol-
ogy of MASs with antagonistic links is called as the signedagh (see Figl.10).
To describe the competitive-cooperative interaction, theositive edge denotes the
cooperative interaction between noddsand j, and in the same way, the negative
edge denotes the competitive interaction.

1.3.2 Mathematical knowledge

Lemma 1.7 ((Roger & Charles 1994). The de nition of Kronecker product is:
if P, =[pj]isanm n matrix and P, is ap q matrix, then the Kronecker
productP; P, is anmp nq block matrix as follows:

p1.B pin B
pm 1 B pmn B
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Fig. 1.10. The signed graph.

The properties of Kronecker product are: for the matriceB,; P,; P3, and P4 with
appropriate dimensions, the following equalities are eslsgshed:

(Pr P)T=P] P;
(Pi+ P2) Ps=(Pyr P3g)+(P2 Pj)
(P1 P2)(Ps  Ps)=(PiP3) (P2Ps)
(P, P =Pt PV
max (P1 P2) = max(P1) max (P2):
|
QX) S
S(X)" R(x)
0, where Q(x) = Q(x)T and R(x) = R(x)T, is equivalent to any one of the fol-
lowing conditions:
(1) Q(x) < GR(x)  S(X)"Q(x) *S(x) < 0,
(2) R(x) < 0;Q(x)  S(X)R(x) *S(x)" < 0.

Lemma 1.8 ((Boydetal., 1994). The linear matrix inequality

Lemma 1.9 ((Qian et al., 2014) For a given symmetric matrix G 2 RN N

and a diagonal matrixD = diagfdl;:::;dl;o::_;;OgN N, Whered, > 0;i =
R D S

L::;1( I N):ThenG D=

ST G
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G, satis es the de nition in notation that is obtained by remoing the rst |
row-column pairs. MatricesG, R and S have the appropriate dimensions. If
d> max(R SG 'ST),thenG D < 0is equivalent toG, < O.

Lemma 1.10 (Cao et al., 2005 For any real matrixes X;Y, = T > 0and
scalar > 0, it holds

XTY+Y™X XT X+ ' ly: (1.1)

Lemma 1.11 ((Boydet al., 1994) Suppose thatP; 2 R" " is a positive de nite
matrix and P, 2 R" " is symmetric. Then, for any vectorx 2 R", the following
inequality holds:

min (P 1P2)XTPix X" Pyx max (P1 1P2)x" P1x (1.2)

De nition 1.12  (Signum Function): The notationsgn(x) represents the signum
function, and it is de ned as follows:

8
2 1, x>0
sgn(x) = S 0, x=0;
1, x< O

1.4 Contributions and outline of dissertation

This thesis focus on discontinuous control methods for midagent systems with
linear and nonlinear dynamics. The communication topologis assumed to be
xed undirected or directed. The main contributions are surmarized as follows.
Chapter 2: Notice that the relevant works on consensus problem for MASs
mainly focus on complete consensus. However, in many phgsiapplications,
due to some unanticipated situations such as the changes afoperative tasks,
external environment or event-time, the agents are usualkequired to be divided
into several clusters. Therefore, an extended concept ali@omplete consensus
is proposed to deal with such complex phenomena, that duster consensus ,
which means the agents in same cluster share a common stateil/hhere is
no consensus behavior among di erent clusters. Secondly, the most of prior
works, the controller for all the agents is commonly assumed be continuous.
However, in real engineering, due to the presence of obsts;lthe limitation of
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computing and communication ability, or some other factorsthe controller may
be discontinuous. To mitigate these issues, thatermittent control strategy

has been introduced and widely applied in transportation, anufacturing and
communication.

Motivated by all the above-mentioned discussions, this Clpder addresses the
cluster consensus problem via intermittent adaptive pinmg control for MASs
with general linear or nonlinear dynamics, respectively, were each cluster has a
virtual leader whose state is available to only a small partfdollowers on some
disconnected time intervals because of communication ctrasnts. To our best
knowledge, there are few works to investigate the problem.h& main contribu-
tions of this chapter can be summarized as follows. In ordeo solve the cluster
consensus problem, the agents in each cluster are categautiznto three types.
Speci cally, the agents can only receive information fromheir own cluster, or
they can receive information from other clusters or cannoteceive any informa-
tion from other agents. Hence, a class of intermittent adapte pinning control
protocols is proposed for the di erent type of agents. Corgpondingly, some suf-
cient consensus criteria are derived to guarantee that theagents in the same
cluster asymptotically can reach consensus while the agenh di erent clusters
can reach di erent consensus. Rigorous proofs are given byetaid of Lyapunov
stability theory and matrix theory. Finally, a numerical simulation example is
presented to validate the main results.

Compared with the existing literatures, the main advantage are given as fol-
lows: Firstly, in contrast to the dynamics of integrator MASs, the dynamics of
general linear MASs are much more complicated, and some igtator MASs such
as, single integral ones and double integral ones can be sasrthe special case of
general linear MASs. Moreover, the dynamics of integrator MSs only depends
on the coupling of the agents, the dynamics of general line’ASs depends not
only on the coupling of the agents, but also the self-dynansgoverning the evo-
lution of each isolated agent. This makes the cluster consars of general linear
MASSs technically more challenging than the case for integi@ MASs. Secondly,
di erent from continuous control protocols, the pinning gans in proposed con-
trol protocols are designed to be intermittent adaptive andvith an exponential
convergence rate, which can e ectively reduce communicati costs, avoid the
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pinning gains being larger than those needed in practice. Miewhile, it guaran-
tees the pinning gains quickly converge to steady value. Ty, in contrast to

the directed network topology required to be in-degree baiaed, strongly con-
nected or contain a directed spanning tree, a weakly connedttopology is taken
into account, which is more universal in practice.

Chapter 3: The results obtained in above Chapter 2 assume that the local
relative state information among all agents is available. élvever, in many actual
systems, due to the states of agents are not always availablemeasured directly
in expensive cost, it is quite necessary to design abserver to detect the agent's
real-time state. In addition, the time delays universally exist in many physical
systems and time delay can cause oscillations or in stalbi#is. For example, in
the consensus of migrating geese or locust population migoa, all agents in the
same group almost reach the place at the same time, but the drent groups
arrive at the place in di erent times. That is, not all agentsarrive at the same
place simultaneously, but the arrival time of the agents mape di erent. Besides,
proper time delays between di erent vehicles in the way canelep the road safe
and orderly. Otherwise, congestion often occurs.

Therefore, based on the above discussion and Chapter 2, instiChapter, we
investigate the observer-based intra-cluster lag conseissproblems of multi-agent
systems (MASSs) with general linear dynamics and nonlinealydamics via inter-
mittent adaptive pinning control. The so-calledintra-cluster lag consensus
means that the followers in the same cluster can achieve lagnsensus asymptoti-
cally while the followers in di erent clusters can achieveiderent agreements. The
interaction network is still considered to be weakly connéed, i.e., it is not neces-
sary to be strongly connected, in-degree balanced or comta directed spanning
tree. To realise the intra-cluster lag consensus, a classaifservers is designed
to estimate the states of followers. Then a class of obsenlmsed intermittent
adaptive pinning control protocols is proposed accordingptthe di erence that
the agents receive information source. Correspondinglyprae su cient consen-
sus criteria are derived and rigorous proofs are given baseq matrix theory and
Lyapunov stability theory. Finally, the e ectiveness for the proposed intermittent
adaptive pinning control strategy is validated by a numerial simulation.

The main contributions and comparisons of this Chapter areidted as fol-
lows. Firstly, since the relevant full state information ofeach follower is not
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always available, the Luenberger observers are designed deneral linear and
nonlinear MASSs respectively. Hence, the control protocois this chapter only
use the observed states information of followers instead thieir real-time states
information. Secondly, to realize the intra-cluster lag awsensus, the followers
in each cluster are classi ed into three types. Speci callythe followers which
can only receive information from the followers in their owrcluster, the ones
receiving information from the followers in other clustersand nally, those who
cannot receive information from any followers. Then, the diributed intermittent
adaptive pinning control protocols are further designed aording to the di erent
categories of followers, which make sure that the followens the same cluster
achieve intra-cluster lag consensus whereas the followarghe di erent clusters
achieve di erent consensus. Thirdly, compared with the maoof existing results
about cluster consensus where each block unit in the weigtitadjacency matrix
of network topology is assumed to be a zero-row-sum matrix @n equal-row-
sum matrix, which is relative conservative in actual appliations, in this chapter
a weakly connected topology is considered and all the couggiweights of network
topology are positive, which is more universal in practice.

Chapter 4: Note that the intermittent controller in Chapter 3 still req uires
to be updated continuously when it is executed in the work tim interval, which
is a waste of energy and resource. To mitigate this issue, tlegent-triggered
control provides a novel strategy because it can avoid continuous dgge of
the controller, which not only enhances the utilization of lhe network resources
but also extends the lifetime of network components. Undemaevent-triggered
mechanism, each agent exchanges information or controll@akes corresponding
update only at data transmission instants, which are determed by a prede-
ned triggering function. In this sense, unnecessary consiption of resources is
minimised as much as possible. Moreover, intermittent cordl can be divided
into periodical intermittent control and aperiodically intermittent control
Compared with periodical intermittent control, aperiodially intermittent control
IS more reasonable and prevalent in practice due to the cotidns of periodical
intermittent control is restricted to some extent, for exanple, the generation of
wind power is obviously aperiodically intermittent.

Inspired by the above discussion, this Chapter investigatehe leader-following
consensus of general linear MASs via aperiodically intertt@nt adaptive event-
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triggered control. The aperiodically intermittent adaptive event-triggered control
inherits the respective advantages of aperiodically interittent control strategy,
event-triggered control strategy and adaptive control sategy, which improves
communication e ciency, reduces control update frequencynd is closer to the
practical situations. The major advances of this Chapter & in following aspects:
Firstly, to reach leader-following consensus and save mamentrol resources, a dis-
tributed aperiodically intermittent ETC protocol is devised, in which the trans-
mission channels among agents only open if the local evengger condition is
satis ed in prede ned time intervals. Secondly, in order toget rid of continu-
ous inter-agent communication for monitoring the triggeng condition, a more
general triggering mechanism is presented, in which distegime combinational
measurement is adopted instead of using continuous-timeatking error directly.
Thirdly, to overcome the unexpected large feedback gains neal applications
and appropriately tune the feedback gains, the aperiodidglintermittent adap-
tive event-triggered controller is further devised. With & of the matrix theory,
stability of switching systems and Lyapunov function, somsu cient criteria are
deduced. Moreover, the analyses of excluding the Zeno beioavare included
by showing explicit positive lower bounds between any two nsecutive triggered
events.

Compared with the existing literatures, there are the follwing main di er-
ences. Firstly, several authors have integrated intermignt strategy and event-
triggered strategy together to address the consensus prebi, however, the aperi-
odically intermittent adaptive event-triggered control method has not been con-
sidered. Secondly, some existing works on leader-follogiconsensus of MASs by
intermittent event-triggered control, continuous commuiication among agents is
still required to check the triggering condition, this reqirement is removed in this
Chapter. Thirdly, the dynamics of agents in this Chapter is gneral linear rather
than integral-order, therefore, some works about leadeoifowing consensus can
be regarded as spacial cases of this Chapter.

Chapter 5: In Chapter 4, we introduce the adaptive event-triggered carol
method into aperiodically intermittent control. It should be pointed out that
the thresholds in Chapter 4 were state-dependent. When theaasurement error
equals or exceeds the threshold, the events are triggeredieih can be regarded
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as the static triggering conditions. At the beginning, the tic triggering condi-
tions will e ectively reduce the communication cost, as thg are not easy to be
satis ed. However, as time goes, it will be triggered frequéy since the thresh-
old becomes smaller and smaller, which causes unnecessaiggéred instants.
Developing more exible event-triggering conditions to ftther reduce the com-
munication cost and the number of the control updates is in gat demand. By
introducing an internal dynamic variable, a new class of emetriggering mecha-
nisms is presented, that isgdynamic event-triggered control

Therefore, motivated by the above-mentioned consideratig in this Chapter,
to further reduce the communication cost and the number of # control updates,
a hybrid aperiodically intermittent adaptive dynamic ever-triggered control is
put forward. The main contributions can be summarized as flows: Firstly,
the dynamic adaptive event-triggered control is designedtfurther reduce the
communication cost and the number of the control updates. @gpared with the
traditional static event-triggered control in Chapter 4, the time-varying threshold
ensures less triggering instants. Secondly, based on mattiheory and Lyapunov
function, the corresponding parameters are obtained. We rdiby the event trig-
gering mechanism that depends on combined measurement agpgeh in Chapter
4, continuous monitoring of neighbors' states are avoidedrfthe triggering mech-
anism in this Chapter. Finally, numerical simulations are povided to illustrate
the e ectiveness of the theoretical results.

Conclusions and perspectives: In this chapter, the results are summarized
and several possible directions for our future research asbkared.
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2.1 Introduction

There are two critical factors that in uence the consensusfdVlASs. One is the
individual dynamics behavior. In (Liang-Hao & Xiao-Feng 2013, MASs are
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mainly modeled by integral dynamics of each agent includingst-order MASs
model (Fan et al., 2013, second-order MASs modell(u et al., 2019 and high-
order MASs model (ian et al., 2019, etc. More recently, many researchers in
(Dong & Hu, 2016 focus their attention on MASs with general linear dynamics
due to the fact that the MASs with integral dynamical model ca be viewed as
a special situation of general linear MASsSWen et al., 2019. The other factor is
the communication topology structures of systems, such asdirected topology
and directed topology, xed topology and switching topolog, etc. In order to
model di erent practical systems better, the researchersoasidered the MASs
under di erent kinds of topology structures (Liu & Huang, 2019 Zhang et al.,
2020. Note that the previous results (Movric & Lewis, 2013 Yu & Wang, 2009
are based on the assumption that the communication topolagg are undirected
connected, directed strong connected, or containing a dated spanning tree.
In fact, the assumptions are very conservative in practican other words, the
communication topology may be weakly connected. In additp as mentioned
in Chapter 1, in many cases, agents may be divided into multig subgroups
due to di erent environments or tasks, and in each subgroupan reach di erent
consistent state, this is so-called group consensus or ¢&rsconsensus. Although
numerous available results are aimed to consider group/dter consensus, to the
best of authors knowledge, none of them investigate the ctasconsensus of MASs
with linear and Lipschiz nonlinear dynamics under a weaklyannected graph.

It is well known that the control techniques are especiallymportant for MASs
to reach objective state. In the most of prior works, the comaomication among all
the agents is commonly assumed to be continuous. However ré&al engineering,
due to the presence of obstacles, the limitation of compugnand communication
ability, or some other factors, the information communicabn may be discon-
tinuous. To mitigate these issues, the intermittent contrb strategy has been
introduced and widely applied in transportation, manufactiring and communi-
cation. Reference Yang et al., 20183 analysed the cluster lag synchronization
issue for heterogeneous complex networks by employing aeimhittent control
to reduce control cost and information communication. InYu et al., 20173,
an intermittent sampled data control mechanism was emploge which not only
shortens the working time, but also decreases the load of ¢ailers’ updating
rate.
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2.1 Introduction

Motivated by all the above-mentioned discussions, this cp&er addresses the
cluster consensus problem via intermittent adaptive pinmig control for MASs
with general linear or nonlinear dynamics, respectively. d our best knowledge,
there are few works to investigate the problem. The main combutions of this
chapter can be summarized as follows. In order to solve theuster consensus
problem, the agents in each cluster are categorized into #® types. Speci-
cally, the agents can only receive information from their owcluster, or they can
receive information from other clusters or cannot receiveng information from
other agents. Hence, a class of intermittent adaptive pinng control protocols
are proposed for the di erent type of agents. Correspondig some su cient
consensus criteria are derived to guarantee that the agents the same cluster
asymptotically can reach consensus while the agents in drent clusters can reach
di erent consensus. Rigorous proofs are given by the aid ofyapunov stability
theory and matrix theory. Finally, a numerical simulation xkample is presented
to validate the main results. Compared with the existing lieratures, this chapter
has the following two main advantages. Firstly, in contrasto the dynamics of in-
tegrator MASSs, the dynamics of general linear MASs are muchare complicated,
and some integrator MASs such as, single integral ones andufdte integral ones
can be seen as the special case of general linear MASs. Maeahe dynamics
of integrator MASs only depends on the coupling of the agentshe dynamics
of general linear MASs depends not only on the coupling of ttagents, but also
the self-dynamics governing the evolution of each isolatedjent. This makes the
cluster consensus of general linear MASs technically moreaienging than the
case for integrator MASs. Secondly, di erent from continues control protocols,
the pinning gains in proposed control protocols are desigh@o be intermittent
adaptive and with an exponential convergence rate, which oae ectively reduce
communication costs, avoid the pinning gains being largeh&n those needed in
practice. Meanwhile, it guarantees the pinning gains quibtk converge to steady
value. Thirdly, in contrast to the directed network topolog/ required to be in-
degree balanced, strongly connected or contain a directgohsining tree, a weakly
connected topology is taken into account, which is more urevsal in practice.

The remainder of this chapter is organized as follows. The glslem is formu-
lated in Section2.2. Main results on cluster consensus of MASs via intermittent
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LINEAR AND NONLINEAR DYNAMICS VIA INTERMITTENT
ADAPTIVE PINNING CONTROL

adaptive pinning control are introduced in Sectior2.3. To demonstrate the the-
oretical results, a simulation example is presented in Semh 2.4. Finally, a short
conclusion is drawn in Sectior?.5.

2.2 Problem formulation

To study the cluster consensus via intermittent adaptive pining control for linear
MASs and a class of nonlinear MASSs, in this section, the modahd problem
objective are brie y introduced.

Case | (Linear Systems):
Consider a general linear MASs wittN followers andm leaders N >m  2).
For each follower, the dynamic can be modeled as

Xi(t) = Ax;(t) + Bui(t);i 2f1,2;::;;Ng, V; (2.1)

wherex; 2 R" and u; 2 RP represent the state and control input, respectively.

The leaders' dynamics are assumed to be:
si(t)=Asj(t);] 2f1,2,::;mg, (2.2)

wheres; (t) 2 R" represents thg th leader's state.

Case Il (Nonlinear Oscillators):
Next, consider a MASs with nonlinear dynamics, in which the yhamics of each
follower can be modeled as:

Xi(t) = Axi(t) + Bui(t) + f (xi(1);i 2 V: (2.3)

wherex; 2 R" and u; 2 RP represent the state and control input respectively,
and f (xj(t)) is nonlinear function.
The leaders' dynamics are described by:

si(t) = Asj(t) + f(s(1));] 2 - (2.4)
wheres; (t) 2 R" represents thej th leader's position state.
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A necessary assumption of the nonlinear functiof( ) is introduced below,
which will be useful for the subsequent analysis.

Assumption 2.1 There exists a constant > 0, such that for any vectorsc;y 2
R™, the nonlinear functionf () satises kf (x) f(y)k kx yk.

Remark 2.2 Compared with the consistent continuous, AssumptioB.1 is a
smoother condition, which is called the Lipschitz condito

De nition 2.3  Given the MASs @.1) and (2.2), (2.3) and (2.4) the cluster con-
sensus is reached by designing an appropriate control inguch thattllilm je)j =
0 for any initial values,wheree (t) = x;(t) s\(t),i 2V, 1 is the subscript of the
the index set of the cluster which thgh follower belongs, that isx 2 Vi. See
graph theoryl1.3.1

Remark 2.4 Note that the trajectories of all leaders are determined bystem

matrix A owing to s;(t) = s;(0)e™. If A is a Hurwitz matrix, then the states
of all leaders will asymptotically reach zeros, which goegainst our objective.

Therefore, in this chapter, we assume the matriA is not Hurwitz. By giving

di erent initial value for system (2.2) and (2.4) , the states of leaders will be
di erent, that is, for any | 6 k, tI!ilm jsi(t) sk(t)jj &0, wherel;k 2

2.3 Main results

2.3.1 Cluster consensus of MASs with general linear dy-
namics via intermittent adaptive pinning control

In practical application, especially for the large-scaletMASs, it is impossible for
the leader to pin every follower. To overcome this drawbackinning control can
be used by controlling only a small fraction of agents rathahan all the agents.
Besides, to prevent the appearance of larger pinning gainah those required in
practice, adaptive control method can be introduced to pinng control. Further-
more, considering the appearance of obstacles or the lintitms of sensing ranges
in some situations, the leaders may only pinning the followe over some discon-
nected time intervals, in other words, the pinning time may b intermittent, not
continuous. Motivated by the above discussion , in this chagr the following
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intermittent adaptive pinning control is proposed to solvethe cluster consensus
problem,

1 j=1

ui(t) = 2 (x () xi() d0a) sO):ifi 2 VynV, and degli)in =0;

1

8 2
% aj (i (1) xi(t) d®it) sO)+ K lyspt)ifi 2 Wy

a.ij (xj (1) x(t));otherwise;

(2.5)
G- © O SO0 Ot 2mTmT o
0; ift 2[mT+ ;(m+21)T);

where and ; are positive constants,m = 0;1;2;::;, K and represent the
feedback control gain matrices which will be designed latemn Theorem 2.8, The
parameterd;(t) satis es the following conditions:d;(t) > 0if the nodev; is pinned
and d;(t) = 0 otherwise. In addition, the control period and the control wdth are
denoted asT > Oand 2 (0;T), respectively. Denote the control rate = =T ,

which will be designed later in Theoren®.8.

Remark 2.5 In order to solve the cluster consensus problem, the agemtseach
cluster are categorized into three types. Speci cally, thegents can only receive
information from their own cluster, or they can receive infomation from other
clusters or cannot receive any information from other agest Hence, a class of
intermittent adaptive pinning control protocols are propsed for the di erent type
of agents. Moreover, the cluster consensus is aimed at remchconsensus in the
same cluster and reaching di erent consensus among di ereglusters. The term

w
K & (x;(t) x(t)) in the control protocol (2.5) re ects the interaction between
j=1
agenti and its neighbours. The ternd; (t)(x;(t) sy(t)) re ects that whether the
agenti will be pinned. In fact, if the agenti can receive information from other
clusters, or it can not receive information from any agentstat is to say, it is
w
with zero in-degree), then it should be pinned. The terid I sq(t) is used to
j=1
counteract the in uence among clusters.

Remark 2.6 The design of 2:6) is enlightened as follows: in practice, the pin-
ning gains between leaders and followers are not always >de to the existence
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of external disturbance and expensive control costs. Thine, the pinning gains
in proposed control protocols are designed to be intermitteadaptive and with an
exponential convergence rate, which can e ectively reducemmunication costs,
avoid the pinning gains being larger than those needed in giee. Meanwhile, it
guarantees the pinning gains quickly converge to steadyueal

w
Lemma 2.7 If v; is the node that belongs t&¥; nV;, then [ s(t) = 0.
i=1

Proof: From the de nition of Vs, if v 2 V,nV4, one hasl; =0 for 8y; 2 V;.

]
Note from the fact |; =0, it follows that
j=1
X X X X
lj sp(t) = lj sp(t) + lj sp(t) = lj sy(t)
2.7)
X X X
= I+ li)si(t) = ljs(t)=0:

For convenience, the agents in each cluster are categoridaetb three types and

de ned as follows. Vi is the set of the nodes that belong t&;; V, is the set of the

nodes that belong toV; nV: and ded(i)i, = 0; V4 is the set of the rest of nodes.
Recalling the de nition of g(t), one has,

8
XN
% Ae(t) BK  Iieg(t) di(t)BKe(t);ifi 2 Vi[ Vi
e(t) = - 2.8)
_E Ae(t) BK  Iig(t);ifi 2 Vi

=1

Furthermore, without loss of generality, the followers cabe rearranged the order.
Letthe rst 1 (1 | N) agents be pinned in MASs. Ther (t) can be rewritten
as:

X

e(t) = Ae(t) BK lie(t) di(t)BKe;(t);ifi 2Vi[ VL[ V5 (2.9)
j=1

- e g (t) g(t);ift 2 [mT;mT+ );
o= Oift 2[mT+ ; (m+1)T): (2.10)
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Theorem 2.8 The MASs (2.1) and (2.2) with the control input (2.5) can reach
cluster consensus, that is to sa){ll,ilm je(t)jj =0 for i 2 V, if the following con-
ditions are satis ed:

(i) the pair (A;B) is stabilizable,

(i) L+ D> 0,

(i)K = ;B"TPand =2 ,PBBTP,

(iv) 1= =T> ——,

1t 1

PA  PBBTP nn (2L +2D)), 1= maxf —25; 19, 2= maxf max(In
(ATP + PA) 2 4.L PBB'P); g , 1and are any positive constants,
P=PT>0and ; satis es the following equations:

ATP+PA PBB'P .in(2L+2D)< 0; (2.11)

1 mn(2L+2D)>1 (2.12)

Proof: Choose the following Lyapunov function candidate:

X 1
V)= e OPe+ 5

i=1 i=1

X : :
e 1t (dl (t) d|)2 : (213)

where is positive constant. Matrix P and the parametersd;, ; are de ned in

the conditions of Theorem?2.8.

(1) Whent 2 [ImT; mT + ), take the time derivative of (5.15 as

X X
\(t) =2 e (1)P(Aei(t) BK lij g (t) di(t)BKej(t))

=1 1=l (2.14)

PN A CTOI)

X
+§( 1) +(di(t) di)' g (1) e(t):

i=1 i=1

K= B™P, =2 PBBTP, D = diagfd,;:::;d;0:::;0gy n, Whered; >

34



2.3 Main results

O;i=1;:::;(L | N). The derivative of V(t) can be written as,

Vi) =e"(t)(Iyn AP LT K'B'P D(t) KT'BTP)el)
+e'()(In PA L PBK D(t) PBK)et)

X : :
RCICIN:)

#(5 + (O D) (2 PBBTP)E

=e'"()(In (ATP+PA) 2,L PBB'P 2 .D(t) PBB'P)gt)

X : .
N CICIN: )%

+(5 + (O D) (2 PBBTP)E

=e'(t)(In (ATP+PA) (2L +2D) PBBTP)et)
X ) )2
LI I S

i=1

(2.15)
Next, we will show that the matrix Iy, (ATP+PA) 1(2L+2D) PBBTP s
negative. Since the conditior2L +2D > 0, it follows that there exists a constant
1 suchthat ; nin(2L+2D) > 1. Furtherly, on the basis of linear systems the-
ory, there exists a positive matrixP such thatATP + PA  ;PBBTP i, (2L +
2D) < 0, namely, matrix Iy (ATP+PA) ;(2L+2D) PBBTP is negative.
Denote ;= qhax(ATP+PA  PBBTP .in (2L +2D)), one has

X _ _
V) e+ ) S e (@0 A

2

X i i 2.16

maXl(P)eT(t)(lN Ple()+( 1) %izle Ald(t) d)? (216)
1V (1);

35



2. CLUSTER CONSENSUS OF MULTI-AGENT SYSTEMS WITH
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where ;= minf Tfp); 10
(2) Whent 2 [mT + ; (m+1)T), the time derivative of (5.15 is given as
X X

X
vw=2" dOPMe) BK  lg)+ 5( 1)
i=1 j=1 i=1

A (D)) dp)?

X . .
=e"(t)(In (ATP+PA) 1(2L) PBBTP)e(t) %1 o u(di(® d)?

i=1

N | |
max (N (ATP+PA) 2 1L PBB'P)el ()e(t) + 1% (A d)?

i=1
(2.17)

Denote , = maxf na(In (ATP+PA) 2 .. PBBTP); gwith > 0, one
has,

N | |
V(1) oeT(De(t) + 1 % a(di(t)  di)?

i=1

2_eT()(In  Ple(t)+ 1 1 X e A (di()  di)? (2.18)
" (P) 2i:l
1V (1);
where 1 = maxf —2%55; 10: By induction, one obtains,
V((m+1)T) V(mT+ )e™ ) V(mT)e * e ) (2.19)
=V(mT)e t* 1T ) V(0)el t* T Nm+).

To ensure thatV((m+1)T)! Oasm!1 |, let 1+ T ) < 0.
Then one has ; = =T > —!—. Thus, tIlilm je () = 0. It means that cluster

1t

consensus of general linear MASs via intermittent adaptiveinning control is

reached. This completes the proof.

Remark 2.9 The proof of Theorem2.8 is divided into two partst 2 [MT; mT+ )
andt2 [mT + ; (m+1)T). Whent 2 [mT; mT + ), the derivative ofV (t) is
negative due to the inuence of leaders, which indicates trglgn je)j = 0.
However, whert 2 [mT + ; (m + 1) T), the derivative ofV(t) cannot be deter-
mined to be negative, while it is only obtained that(t) 1V (t) by choosing the
appropriate positive constants ,; ;. Hence, it is critical to design the intermit-
tent control rate ; in (2.19) for ensuringV((m+1)T)! Oasm!1l |, thatis,
cluster consensus is achieved.
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The general criterions are presented in Theorer®8 to reach leader-following
cluster consensus of MASs. However, how to construct an appriate gain matrix
D to satisfy the condition2L +2D > 0is not easy. Hence, the following theorem
will be given to solve this problem.

Theorem 2.10 The matrix L + D is a positive if the following conditions hold:

max( LI) < O; (2-20)
d > max(R S( Li) 'ST): (2.21)
Proof: In Lemma 19, letG= L,and L D= RsTD SL , Where
|
L, is the minor matrix of L by removing its rst | row-column pairs,D =
diagfd;;:::;dg, R and S represent the matrices with appropriate dimensions.

Thanks to Lemmal:9, we have L D < 0, thatis, L + D is a positive matrix.
This completes the proof.

Remark 4. It is worth noting that most Iiteraturespon cluster consenss
assume that adjacency matrix A satises ;,,, & =0,0r ;,, & = ,8k6 7,
where is a constant. In fact, the assumption is conservative. In B chapter, we
take a weakly connected graph into consideration, in wheréé Laplace matrix

)

just needs to satisfy the general di usion property, thatis |; =0. Moreover,
j=1

by choosing an appropriate low bound pinning gaid;, one can ge,.+ D > 0. For

an undirected connected graphl. + D > 0 can hold naturally due to the Laplace
matrix is a real symmetric. Therefore, the MASs with undireted connected
graph can be considered as a special case only by choosinginter-act followers
to be pinned.

2.3.2 Cluster consensus of MASs with a class of nonlinear
dynamics via intermittent adaptive pinning control

It well known that most of physical systems are inherent noimear in reality.
Particularly, for the MASs, the nonlinear dynamics play an mportant role in
determining the nal consensus statesGheng et al., 2019. To satisfy the re-
guirement for the application of cluster problem in the reaphysical systems, this
chapter further presents an intermittent adaptive pinningapproach for a group
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of nonlinear MASs given by 2.3) and (2.4) subject to both plant uncertainties
and external disturbances.

Let us consider the system 4.3)-(2.4) and control input (2.5. Taking the
control input (2.5 for system (2.3 and combining with the de nition of g(t),
one has,

j=1

ifi 2Vi[ V. (2.22)
X .

Ae(t) BK  lijg(t)+ f(x(t) f(s(b);ifi 2 Vi;

=1

8

N
%Aei(t) BK  ljg(t) di(t)BKe;(t)+ f(xi(t) f(si(t);
g(t)=§

whereK is the feedback control matrix will be recalculated in The@m2.11, di(t)

is de ned in (2.6) and f () is the nonlinear function. Similarity, by rearranging
the order of pinned followers, that is, let the rstl (1 | N) agents are pinned
in MASs. Combine the de nition of d;(t), e (t) can be changed as:

X
e (t) = Ae (t) BKj:l ljg (1) di()BKei(t)+ T (xi(t) T(si(t); (2.23)

FAVARVARVE

( .
- e g’ (t) gt);ift 2 [mT;mT+ );
M= Oift 2mMT+ ;(M+1)T): (2.24)

Theorem 2.11 The MASs (2.3) and (2.4) with the control protocol (2.5) reach
cluster consensus, that is to saytl!ilm je)j =0 fori 2 V, if the following
conditions are satis ed:

(1) (A,B) is stabilizable,

(i) L+ D> 0,

(i) K= ,B™ P and =2 ,PBB'P,

(iv) 2= =T > —2,

whereD = diagfd;;:::;d;0;:::;00y N, 2= minf 3 &(Pl))z; 19, 2=

max

maxf —4o5 10, 3= max(AQ+ QAT+ 21+ Q? BBT), = ATP+PA+
| + 2P2, 4, = maxf max(In 2,L. PBB'P); g , iand isany
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positive constants, , P = PT = Q !> 0and , satisfy the following equations:
I
AQ+ QAT BB T+ 2?1 Q

or I <0 (2.25)

2 mn (2L +2D) > (2.26)

Proof: Choose the following Lyapunov function candidate:

X X : )2
V(t) = e ()Pe(t) + % e ltM: (2.27)

i=1 i=1

(1) Whent 2 [mT; mT + ), take the time derivative of (2.27) as,

X X
V(t)=2 & (t)P(Ae(t) BK lj g (t) di(t)BKe;(t)+ f(xi(t)) f(&(1)))
i=1 =1
X . )2 X
e (A ) +(di(t) d) | e (1) e(t):

i=1 i=1

1
+ é( 1)
(2.28)

Denote the compact vector
FO=(fT(xa()) FT(sa(0)sf T(xa(t)) FT(so(t))szinsfT(xn (1) FT(se())T.

Based on the Assumptior2.1, one has,

26l (P (F(xi(t) f(&a(t) 2 jiPe®i iie®ii e @®1 + *PYeal(t):
(2.29)

Combining (2.29, the derivative of V (t) can be written as,

Vi) =e"(t)(Iyn AP LT K'B'P D(t) KT'BTP)el)
+e'()(In PA L PBK D(t) PBK)et)+2€e (t)(In P)F(t)

X : :
R CICIN:)S

£ 25 + OO D) (@ PBBTP)E):

i=1

(2.30)
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Upon (2.29, we can get

\Ut) e'(t)(In (ATP+PA+ 1+ 2P?
HLT+L) PBBTP 2 ,D(t) PBBTP)et)

X . .
r( 03 e @O A% aom by @ PBETRIY

e’ (t)(In (_ATP+PA+I+ P2y ,(2L +2D) PBBTP)e(t)
AR CTONN)E

i=1

+ ( 1)%

(2.31)
According to the condition(ii ) in Theorem2:11, there exists a constant , satis es

> mn(L+2D)> .LetQ=P 1 (t)=(Iny P)et), one has,

V() TN (AQ+ QAT+ 21+Q) Iy BBT) (1)
X ad)  d)? (2.32)

i=1

1

+( 1)5

Further, according to the Lemmal.8 and the conditions in Theorem2.11, the
matrix AQ + QAT+ 2l + Q> BB T < 0. Denote 3= nax(AQ + QAT +

2l + Q> BB T), one has,

X : 2
V() s () )+ 1) % o (@) )7

i=1

X | )2
= W0 P Iy P Het)r( q) 2 e (@M d)

2
_ 1)2 X . )2
N RGO CORT % e (@) d)
2V (1);

(2.33)

min (P 1)2
3

where 5, = minf o 19
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(2) Whent 2 [mT + ; (m+1)T), take the time derivative of (2.27) as

Xy Xy Xy
\L(t) =2 e (t)P(Aei(t) BK lj & (1) +2 e (P (f (xi(t)) f(&i(t)
i=1 j=1 i=1
X . .
IO R

i=1

(2.34)
Based on .29, we have

() e'W)(In (ATP+PA+ 1+ 2P%) L(LT+L) PBBTP)et)
X . .
% 1 e ,t (di(t) di)?

i=1

X . .
e (t)et)+ 1 % e 1tM

i=1

X o
~pye (00N P+ N Ald(t)  d)?

2V (1);

i=1

(2.35)
where ;= maxfﬁ; 19
4= maxf qaxln o(LT+L) PBBTP; g, = ATP+PA+I|+ 2P2
Similarly, by induction, one obtains,

V((m+1)T) vimT+ )e™ ) v(mT)e 2 e )

:V(mT)e 2+ 2T ) V(o)e( 2+ 2(T ))(m+1) . (2.36)

To ensure thatV(m+1)T) ! Oasm!1 ,let , + (T ) < O.
Then one has , = =T > —Z—. Thus, tI!ilm je(t)j = 0, it means that cluster
consensus of MASs with nonlinear dynamics via intermittenadaptive pinning
control can be reached. This completes the proof.

2.4 Simulation results

Two examples are given in this section to illustrate the e etveness of obtained
results. Consider a MASs with three clusters, Fig.2.1 is the communication
topology. The leaders are labelled &,, S, and S, and the followers are labelled
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as 1 to 10, where followers 1, 2, 3 are in the rst cluster, followers 45, 6 are
in the second cluster, followers 7, 8, 9, 10 are in the thirdudter. The dotted
line denotes the e ects that the leaders impose on followergrom Fig.2.1, we
can see that followers 2, 3, 4, 7 and 8 should be pinned accaglio the control
strategy (2.5. Specically, due to followers 3 and 4 can receive informiain
from other clusters, the rst term of controller (2.5 should be applied to these
followers; followers 2, 7 and 8 cannot receive any informati from other clusters,
the second term of controller 2.5) should be applied to these followers; the rest
of followers only can receive information from their own chiter, the third term

of controller (2.5 should be applied to these followers.

From the graph theory, the matricesA and L can be derived as follows:

0 1
00O100O0O0O0OO0ODO
0O000O0OO0OOOOODPO
01 00O0O01O00O0
00100O0O0O0ODO
A:000100000
000O100O0O0OO
0O00O0O0OO0OOOOODPO
000O10O01O00
0O00O0O0O0O0OO0OO0OT10O0
O0000001000 1
1 0 1 0 00 O O 00O
O 0 0 0 00O O 0 O
0 1.2 0 OO 1 0 0O
0 O 1 1 00 0 O O
and L = 0O 0 O 110 0 0 0O
0O 0 O 101 0 0 OO
O 0 0 0 00O O 0 O
0O 0 O 100 1 2 0O
0O 0 0 0 00O O 110
0O 0 0 0 00O 1 0 01

IN
N
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Fig. 2.1. The communication topology of the MASs, where; denotes thej th
leader, andi denotes theith follower, ] =1;2;3;i=1;2;:::;10.

Example 1: (linear case) For the linear case, two kinds of system matrices
A and B are presented to show the in uence of system matrix for systeperfor-
mance. 0 1
0O 0 O
Linear case (a): For the linear MASs (2.1) and (2.2), we chooséd = @0 0 1A;
0o 1 0O 10
1
B = @1 A; respectively. Obviously,(A;B) is stabilizable. And the positive
1
constants can be chosen as: =1, ; =1, = 0:1. Control period T is
given as'h = 1s. By calculating the eqgyations @.11) and (2.12, we can ob-
2:3483  0:0488 1:4134
tain P = @ 0:0488 18000 (0:4988A ;K = 17722 25048 0:0865 |,

1:4134 0:4988 18689
1=2,d =1,i=2;347,8 =0:98 Fig. 2.2is the state trajectories of

leaders and followers with three dimensions. Fig2.3 is the time evolution of
di(t) with i =2;3;4;7,8 and stategerrore; (t) for j & 1,2, 3;i5=1;2:::;10
0

2 1 1
Linear case (b): ChooseA = @ 1 1 0 A:B = @1A as the sys-
0 1 1 1

tem matrices for linear MASs 2.1) and (2.2), respectively. Fig. 2.4 is the state

trajectories, Fig. 2.5is the time evolution ofd;(t) and state errore; (t).
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©

o
T

Y

W
77—
o

IS

N

xil(t) and Jsl(t)

. xiz(t) and T<2(t)

)

A

o 1 2 3 4 5 6 71 8 5 1w
t(s)
(a) State trajectories x;1 and s;1

xi3(t) and J%(t)

5
t(s)

(c) State trajectories Xjz and sj3

Fig. 2.2. State trajectories of all agents for linear case (a).

&0

1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1
0 1 2 3 4 6 7 8 9 10 0 1 2 3 4 6 7 8 9 10

5
t(s)

t(s)
(&) The time evolution of d;(t) (b) The state error g; (t)

Fig. 2.3. The time evolution of di(t) and state errorg; (t) for linear case (a).
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xil(t) and Jsl(t)

Ixiz(t) and ]Q‘z(t)

t(s) 1(s)
(a) State trajectories x;1 and s;j1 (b) State trajectories xj» and s;»

xi3(t) and J%(t)

4 5 6 7 8 9 10
t(s)

(c) State trajectories ;3 and sj3

Fig. 2.4. State trajectories of all agents for linear case (b).

(]

4

3

2

lLr

0O 1 2 3 4 5 6 7 8 9 10 4 5 6 7 8 9 10

t(s) t(s)
(@) The time evolution of d;(t) (b) The state error g; (t)

Fig. 2.5. The time evolution of di(t) and state errorg; (t) for linear case (b).
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Example 2: For the dynamics of nonlinear MASs 2.3) and (2.4), we choose

_ o1 __ O
A= 10 "’ B= 1
ear function, respectively. Obviously(A;B) is stabilizable and nonlinear function

; and f(x)=0.2sin(x) as system matrices and nonlin-

f () satis es the Assumption2.1. And the positive constants can be chosen as:
=02 =1, =1, ;=01 = 0:0L Control period T is given as
T = 1s. By calculating the equations 2.25, (2.26 and (2.21), we can obtain

20 10 .
— 1 — . — — o — 9247
P=0Q1!= 0 10 K= 20 20, ,=2,d =1,i =2:3478,

=0:96. Fig. 2.6and Fig. 2.7 are the rst component and second component of
the state trajectories of the all agents respectively. Fig2.8is the time evolution

of di(t). Fig. 2.9is the state errorg(t).

From the above gures, we can conclude that the followers ihe same cluster
achieve leader-following consensus and there is no conseramong the di erent
clusters for both linear system and a class of nonlinear sgst, that is, the control
inputs are e ective, the cluster consensus of MASs is reais via intermittent

adaptive pinning control.

Fig. 2.6. The rst component x;; and s;; of the state trajectories of the all
agents, wherg =1;2;3;i =1;2;:::;10.
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Fig. 2.7. The second componenk;, and s;, of the state trajectories of the all
agents, wherg =1;2;3;i=1;2;:::;10.

60

50 |

40

40

20

10

0 1 2 3 4 6 7 8 9 10

5
t(s)

Fig. 2.8. The time evolution of di(t), wherei = 2;3; 4,7, 8.

Fig. 2.9. The state errorg; (t), wherej =1;2;i =1;2;:::,;10.
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2.5 Conclusion

This chapter has investigated the cluster consensus of MAS& intermittent
adaptive pinning control. Firstly, for the linear MASs and aclass of nonlinear
MASSs, we have employed intermittent adaptive pinning contsl schemes respec-
tively to accomplish the cluster consensus. Secondly, fdneg network topology
of MASSs, we take a weakly connected topology into considera, which is more
universal in practice in contrast to the directed network tpology required to be
balanced or contain a directed spanning tree. Thirdly, a rigrous proof have been
given for the intermittent adaptive pinning control input based on the Lyapunov
stability theory and the corresponding su cient conditions have been derived.
Finally, simulation examples are presented to verify the ectiveness of the main
results. It is well known that there still exists numerous chllenging problems to
be studied such as time-delay in uence, state observer, vehi will be studied in
our next chapter.
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Chapter 3

Observer-based intra-cluster lag
consensus of multi-agent systems
via intermittent adaptive pinning
control

Contents

3.1 Introduction . ... .. ... ... ... 49
3.2 Problem formulation . ... ............... 51
33 Mainresults. . . . ... ... 54
3.3.1 Observer-based intra-cluster lag consensus for liaeMASs 54

3.3.2 Observer-based intra-cluster lag consensus for namgar
MASS . . . . 62
3.4 Simulationresults . . ... ... ... ... ... 67
35 Conclusion. . . ... ... 70

3.1 Introduction

In real applications, it is often di cult to avoid the occurr ence of time delays due
to the nite chemical reaction times, nite switching speedof ampli ers, memory

e ects, nite signal propagation time in biological netwoiks and so on. Thus, it is
extremely important and necessary to investigate clusteloasensus of MASs with
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time delays. Recently, the topic of cluster consensus withimte delays has been
extensively studied in many aspects. InNla et al., 2016, the authors proposed
the concept of cluster-delay consensus in rst-order MASsitlr nonlinear dynam-
ics via pinning control. In (Da et al., 2019, the authors considered the cluster
lag consensus of nonlinear MASs with two types of time-dekay In addition, by
using frequency-domain analysis method and matrix theoryhe dynamics group
consensus problem of heterogenous MASs with time delay wasestigated in
(Wen et al., 20160. To the best of our knowledge, the intra-cluster lag consens
of multi-agent systems via intermittent adaptive pinning ©ntrol has not been
addressed before.

Furthermore, due to the states of many actual systems are natlways available
or measured directly in expensive cost, it is quite necesgdp design an observer
to estimate the agent's real-time state. Up to now, varioussues are addressed by
observer-based method.Rosaldo-Serranet al., 2019 investigated the formation
tracking problem, where suitable Luenberger observers ansed for the agents to
estimate linear and angular velocities. Han et al., 2019 studied the containment
control issue of general linear MASs with exogenous disturbces, where the
disturbances are estimated by disturbance observer-basedntrol scheme. In
order to estimate the state of leader and deal with xed-timestability problem,
(Zuo et al., 2019 considered the consensus problem for MASs with high-order
integrator dynamics by designing a distributed consensusserver. To our best
knowledge, so far the observer-based intra-cluster lag semsus of MASs has
not been investigated. Moreover, compared with a single $gm or integrator
MASS, the observer-based intra-cluster lag consensus of B&with general linear
dynamics and nonlinear dynamics is more challenging.

Inspired by the aforementioned these considerations, ththapter investigates
the observer-based intra-cluster lag consensus (OBICLC) general linear MASs
and nonlinear MASs via intermittent adaptive pinning contiol (IAPC), where
each cluster has a virtual leader whose state is available tmly a small part
of followers, and the pinning gains are changeable becausecommunication
constraints. The so-called intra-cluster lag consensuJILC) means that the fol-
lowers in the same cluster can achieve lag consensus asyrigadly while the
followers in di erent clusters can achieve di erent agreemnts. The main contri-
butions of this work are listed as follows.

50



3.2 Problem formulation

A

A

N

A

Firstly, considering the relevant full state information of each follower is not
always available, the Luenberger observers are designed dgeneral linear
and nonlinear MASs respectively to estimate the states oflfowers. Hence,
the control protocols in this chapter only use the observedaes information

of followers instead of their real-time states information

Secondly, similar with above chapter, to realize the intrecluster lag consen-
sus, the followers in each cluster are classi ed into thregpes. Speci cally,
the followers can only receive information from the follows in their own
cluster, the ones receive information from the followers iother clusters,
and the others cannot receive information from any followsr Then, the
distributed intermittent adaptive pinning control protocols are further de-
signed according to the di erent categories of followers, hich make sure
that the followers in the same cluster achieve intra-clustelag consensus
whereas the followers in the di erent clusters achieve dieent consensus.

Thirdly, compared with the most of existing results about ¢uster consensus
where each block unit in the weighted adjacency matrix of nebrk topology
is assumed to be a zero-row-sum matrix or an equal-row-sum tmeg which
is relative conservative in actual applications, in this capter a weakly con-
nected topology is still considered and all the coupling wegits of network
topology are positive, which is more universal in practice.

Fourthly, di erent from continuous control protocols in ( Qian et al., 2019
and (Huanget al., 2019, the pinning gains in proposed control protocols are
designed to be intermittent adaptive and with an exponentiaconvergence
rate, which can e ectively reduce communication costs, awb the pinning
gains being larger than those needed in practice. Meanwhileguarantees
the pinning gains quickly converge to steady value.

3.2 Problem formulation

To study the OBICLC problem via IAPC strategy for linear MASs and a class
of nonlinear MASSs, in this section, the model and problem oegtive are brie y
introduced.
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Case | (Generic Linear Systems):
Consider a general linear MASs containing\ followers andm virtual leaders
(N>m  2). The ith follower's dynamics is

( Xi(t) = Axi(t) + Bui(t)

yi(t) = Cx; (1) , 12fL2,:5Ng, V, (3.1)

wherex; 2 R" , u; 2 RP, y; 2 RY denote the state, control protocol and output
measurement ofith follower, respectively. The constant matricesA 2 R" ",
B 2 R" Pand C 2 RY " have appropriate dimensions. Suppose that the matrix
triple (A;B; C) is stabilizable and detectable.

The j th virtual leader's dynamics is modeled by

Cst= a5

, J 2152 mg, (3.2)
yi(t) = Csi(t)

wheres;j(t) 2 R" , y; 2 RY denote the state and output measurement, respec-
tively.

Case Il (Nonlinear Oscillators):
The dynamics of theith follower is characterized by

( — Ay _ .
u(0) = A+ Bui+ TOaW) o, (3.3)
yi(t) = Cxi(1)
and the virtual leader j 's dynamics is described by
(
si(t) = As;(t) + f (s;(1)) 2 (3.4)
Yi (t) = CSj (t)

where the nonlinear functionf () holds the following Assumption3.1

Assumption 3.1 It is assumed that the nonlinear functiorf ( ) satis es the Lip-
schiz condition, i.e., for any vectorsx;y 2 R™, there exists a constant > 0 such
that kf (x) f(y)k kx yk.

Remark 3.2 The Lipschiz condition assumption is widely used in the arwais
of nonlinear systems. With the help of Lipschiz condition asmption, the exis-
tence and uniqueness of nonlinear systems' solutions canguaranteed. Refer to
literatures (Wen et al., 2013 and (Ekramian, 2017 for more details.
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De nition 3.3  For arbitrary initial states, the MASs (3.1)-(3.2) and (3.3)-(3.4)
achieve the ICLC iftI!ilm j i(t)j =0 and tI!ilm jjsi(t) sk(t)jj & 0, wherel 6 Kk,
Lk2 , i(t)=x({) st »),12V, T2 s the subscript of the leader that
the ith follower will track with, , denotes the time delay if cluster between the
ith follower and its own leader.

Remark 3.4 Note that the trajectories of all virtual leaders are determed by
system matrix A owing to s;(t) = s;(0)e. If A is a Hurwitz matrix, then

the states of all leaders will asymptotically reach zeroshieh goes against our
objective. Therefore, in this chapter, we assume the matri is not Hurwitz.

By giving di erent initial values for systems 3.2) and (3.4), the states of virtual

leaders will be dierent, that is, for anyl 6 Kk, tI!ilm jsi(t) sk(t)jj & 0, where
Ik 2

Fig. 3.1. An example of MASs with time delays.

Remark 3.5 Note that the existence of time-delays in many practical $gms is
ubiquitous and inevitable due to communication, calculati, actuation. There-
fore, more and more researchers have focused their attemtion the consensus
problem of MASs with time delays. Lag consensus, includingnsensus as a spe-
cial case, which means the followers' states are consistevith the delayed states
of leaders. For example, proper time delays between di etevehicles in the way
can keep the road safe and orderly. Otherwise, congestiotenfoccurs. Taking
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into account lag consensus can mitigate network or tra ¢ cogestion problem,

in this paper, we consider the intra-cluster lag consensu$ MASs, which means

that the followers in the same cluster can achieve lag conses asymptotically

while the followers in di erent clusters can achieve di erat agreements. In order

to clarify the problem more clearly, For example, two isoleadl groups of vehicles
follow the leader and pass across the obstacle, obviousigytcannot pass across
the obstacle at the same time (see Fi§.1), but we can design a suitable protocol
to make the vehicles pass across the obstacle orderly.

3.3 Main results

3.3.1 Observer-based intra-cluster lag consensus for line ar
MASs

Before proceeding, some explanations are presented for tkason why we propose
the following control protocol. In the former works about MASs ¢Zhang et al.,
20199, the cluster lag consensus was achieved based on two commassumptions.
Firstly, the local relative state information among all agets is available. Secondly,
information between the leaders and followers can be trangted continuously.
However, in many circumstances, full state measurements datommunication
information are not always available due to physical constin. Therefore, in this
chapter, assuming that each follower can receive the rebai output information
instead of its neighbors' state information, the followingobserver-based control
protocol for the followeri in (3.1) is proposed,

i=1 j=1
if i 2 Vi
X
Kooa (&) i) d®&i(t) st 4);
j=1
if i 2VanV,and dedi)i, =0
X
K aj (& (t)  %i(1)); otherwise;
j=1

8 . "
gK a &M A1) OO sE NFK s )
ui(t) = %

(3.5)
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where®;(t) 2 R" is the observer state] and{ are the subscripts of the leaders in
Theorem3.9, ;and , are the time delaysK represents the feedback control gain
matrix. The observer state®;(t) and adaptive lawd;(t) are de ned as follows:

( 2 (t) = AR(t)+ Bui(t)+ F(9i(t) vi(t)

(3.6)
9i(t) = Ci(1);

e M) st )T () st g))ift 2 [mTimT + ),
Hn = Oift 2 [mT+ ;(m+1)T);

(3.7)
where matricesF and will be determined later in Theorem3.9, and ; are
positive constants,T > 0Oand 2 (0; T) represent the control period and control
width respectively, [nT;mT + ) and[mT + ; (m+1)T) are called as work time

interval and rest time interval.

Remark 3.6 Note that the followers in each cluster can be divided intor¢e
types. Correspondingly, the controller 3.5) is designed according to the special

w

property of each follower. For all the followers, The terrK aj (& (1)  Ri(1)
j=1

in the control protocol (3.5) is necessary, which re ects the interaction between

agenti and its neighbours. For the followers which can receive imfoation
from other clusters or can not receive information from anydilowers, the term
di(t)(%i(t) st ) is introduced to obtain the information of leaders and the
time delay 4 can be di erent among di erent clusters. Besides, for the ftowers

. . m .
that can receive information from other clusters, the ternK [ sp(t ) is
j=1
used to counteract the in uence among clusters. The purposé controller (3.5)
Is to make sure that the followers in the same cluster achid@.C whereas the

followers in the di erent clusters achieve di erent consesus.

Remark 3.7 The design of controller 8.5) is partly inspired by (Da et al., 2018
Qian et al., 2014, where the pinning control gaind;(t) is a xed constant all the
time or in every time interval. However, due to the change okternal environ-
ment or in the consideration of reducing control cost, it is mre reasonable and
e ective to design the pinning control gain to be intermittet adaptive. Further-
more, in order to make the pinning control gain quickly convge to steady value,

55



3. OBSERVER-BASED INTRA-CLUSTER LAG CONSENSUS OF
MULTI-AGENT SYSTEMS VIA INTERMITTENT ADAPTIVE
PINNING CONTROL

the pinning control gaind;(t) possesses an exponential convergence rate. Based
on above analysis, the derivative afi(t) is designed to be the form of equation
(3.7) if ith follower is pinned;d;(t) = 0 otherwise.

R
Lemma 3.8 If v is the follower that belongs &, nV;, then Iy s(t ) =0,
j=1

Proof: From the de nition of Vi, if vi 2 VanV,, one haslj =0 for 8v; Z V..

w
Besides, ifv; 2 V;, one hassi(t ) = si(t ;). Combining the fact | =0,
i=1
it follows that,

X X X X
Iu Sj"(t j‘) = llj Sj‘(t ]") + II] Sj"(t j‘) = II] S‘.‘(t 1‘)
] =1 Vj 2Vz|\ Vj 2Vx|\ VJ 2Vx|\
(3.8)
X X X
=( lj + li)st )= lys(t 4)=0:
Vj 2Vx|\ Vj 2V/I\ j =1

Combining the de nition e (t) = %k;(t) st ) and the formulas 3.2) (3.7),

one has,

8
X
%Aei(t) BK lj g (t) di(t)BKe;(t)+ F(9i(t) Vvi(t);

j=1

e(t) = if i 2 Vi[ V§ (3.9)

X
% Aei(t) BK  ljg(t)+ F(i(t) yi(t);ifi 2 V3

: i
whereVy; VZ; V2 is de ned in Chapter 2, see equation3.8).

e e(t)" e();ift 2 [mT;mT+ );
= (3.10)
Oift 2[mT+ ; (m+1)T):
Letthe rst I(l =1;2;:::;N) followers be pinned by rearranging the followers'
order. Due to the fact that the derivative ofd;(t) satis es equation 3.10), that is,

for any time t, d;(t) > O if the i-th follower is pinned; d;(t) = 0 otherwise. When
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Vv 2 V?3, that meansd;(t) = 0, then the error system 8.9) can be reformulated as

X
e®=Ae®) BK lia(® dOBKe®+FOO w: ),

i 2 Vi[ VE[ Vi

Theorem 3.9 Suppose that the matrix triple(A;B;C) is stabilizable and de-
tectable, there exists a diagonal matrifo, a positive constant ; and a positive
de nite matrix P = PT > 0 such that the following equations:

L+D> Q; (3.12)

1 min (2|— + 2D) > 1 (313)

AP+ PA PBBTP .in(2L +2D) < 0; (3.14)

whereL = L+2LT, D = diagfdy;:::;d;0:::;0gy n is a diagonal matrix with
di;:::;d > 0,1 | N. ThenlettingK = ;B™P, =2 ,PBBTP, and

designing a matrixF such thatA + FC is Hurwitz matrix, the OBICLC of MASs
(3.1)-(3.2) can be reached by control input3.5) with the following condition:

1+ (T )<0; (3.15)

where ;= minf —5 19, 1= max(ATP+PA  ;PBB'P mn (2L +2D)),

1= maxf —2550 10, 2= maxf ma(In (ATP+PA) 2,1 PBB'P); g,

1 and are positive constants.

Proof: Theorem3.9can be proved by two steps: the rst step is to show the
e ectiveness of state observer, i.eigilm jXi(t) Ri(Djj =0, and the second step

is to prove the asymptotic stability of error system 8.11), that is, tIlilm je(t)j =0.

Step 1: Let (t) = x;(t) Ri(t), one has,

Ht) =Ax;(t) + Bui(t) A(t) Bui(t) F@®i() vi(t)
=AXi(t)  Ri(t)+ FC(xi(t) Ri(t)) (3.16)
=(A+ FC)i(t):
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Based on the condition in Theorem3.9: A + FC is Hurwitz matrix, we have
tI!ilm i) = lllgn jiXi(t)  Ri(D)jj =0, which indicates the state observer is feasi-
ble. Furthermore, one had= (¥;(t) vyi(t))= FC i(t)=0 ast!1 . In equation
(3.11), owing to i(t) is decoupled from the errore (t), the stability of (3.11) is

identical with that of the following system:

X
g_(t) = Aei (t) BK Iij Q (t) di (t)BKei(t);vi 2 V;I%[ V;Ig[ Vz?: (317)

=1

Step 2: Construct the Lyapunov function for equation @.17):

X : :
o (GO d)?

X
V=" dmPe®« (3.19

i=1 i=1

where matrix P and the parameters , d;, ; are de ned in Theorem3.9. Evi-
dently, V(t) O:
(1) Whent 2 [mT; mT + ), dierentiating V(t) along (3.17) yields

X X
\L(t) =2 e (1)P(Ae(t) BK lig(t) di(t)BKei(t))

i=1 j=1

. 2 " (3.19)
e «@M &) 4 d) (1) a:

i=1 i=1

1
+§( 1)

With K = ;BTP and =2 PBBTP, the derivative of V(t) can be expressed
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as,

(i) =e"(t)(In AP LT KT'BTP D(t) KTBTP)et)
+e"(t)(In PA L PBK D(t) PBK)glt)

P . .
f( o 2 e OO amom ) 2 .pEETRMY
=e' ()(Iy (A_TP+PA) 2,L PBB'P 2, D(t) PBBTP)e)
AR CTONC)S

L) o +OD® D) (2 PBBTP)Y

i=1
=e'(t)(In (ATP+PA) (2L +2D) PBBTP)e(t)

X , ,
MCIGIN:S

i=1

+ ( 1)%

X _ _
€7 (D)e(t) +( 1)% o n(d(® d)?

i=1

X f )2
maxl(P)eT(t)(IN P)e(t)+( 1) % e ltM

V(1); _

(3.20)
where ;= o (ATP+PA  PBBTP pp (2L+2D)), 1= minf—1s; 19>

(2) Whent 2 [ImT + ; (m+1)T), the derivative of (3.18 can be obtained:

X X 1
(t)=2 g (P(Ae(t) BK  ljg(t)+ 50 1)

i=1 j=1 i=1

X : :
RRCICIN: )%

=e"(t)(In (ATP+PA) 1(2L) PBBTP)e(t)

1 X (d() d)?
51 € T
i=1
max(In  (ATP+PA) 2 ,L PBBTP)e (t)et)
X . .
, % o A (di(t)  d)?

i=1

X . .
T AL

i=1

(3.21)
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furtherly,
1 X (di(t) d)?
\/(t 2_g'(t)(I P)e(t) + — e 212l 7
0 ey O PREOT . 3.22)
1V (1);
where , = maxf o (n (ATP+PA) 2 .. PBBTP); g,
1= maxfﬁ; 19> 0
Accordingly, whent 2 [0; ), one has
V() V(e *; (3.23)
whent 2 [; T ), one has
V(i) V()e: ) wv(@)e ** ) (3.24)

By induction, one obtains, whent 2 [T; mT + ),

V() V(0)e i(m +t mT)+ m(T ) V(0)e m + am(T ) — V(O)em( 1+ (T ).

(3.25)
Similarly, whent 2 [mT + ; (m+1)T),
V(t) V(0)e 1(m+1) + o (m(T )+t Tokea) V(0)e i(m+1) + ((m(T T )
=V(O)e(m+1)( 1+ (T ).
(3.26)

According to the equation @.15 in Theorem 3.9: 1 + (T )< 0, one
hasV(t)! 0and tI!ilm je()j=0asm!1 . Combining the rst step and the
second step, one hati!a'lm jij = Hgn ixi(t)  Ri(t)+X((t) st )jj=0. It
means that ICLC of general linear MASs via IAPC can be reachedrhis proof
is completed.

Remark 3.10 The proof of Theorem3.9 is divided into two parts. The rst step
is to show that state observer is valid by only using the redavoutput information
of system @.1). In the second step, wheh 2 [mT; mT + ), the derivative ofV (t)
is negative due to the e ect of adaptive pinning gaid;(t), which indicates the
tI!ilm je(t)j = 0. However, whent 2 [mT + ; (m+1)T), the derivative ofV(t)

cannot be determined to be negative, while it is only obtaththat \/(t) 1V (1)
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by choosing the appropriate positive constants ,; ;. Hence, the equation3.15)
is critical to ensureV((m+1)T)! Oasm!1 . To make it more clear, de ne
the control rate = =—, where is the control width, T is the rest width, then
equation @.15) can be rewritten as: > -1. It can be seen that the control rate

plays an essential role in realizing intra-cluster lag coessus. In consideration
of this fact, in real applications, we can select the contrgderiod T according to
our request.

Remark 3.11 The condition (3.14) is equivalent to the following Riccati equa-
tion condition: ATP + PA 1PBBTP in (2L +2D)+ Q =0 whereQ is any
positive de nite matrix. The purpose for the form 38.14) is to make a comparison
with the following condition 3.34) in Theorem 3.14.

The general criteria are presented in Theorer®9 to reach intra-cluster lag con-
sensus of MASs. However, how to construct an appropriate gamatrix D to
satisfy the condition (3.12: L + D > 0 is not obvious. Hence, we give Theorem
3.12to solve this problem.

Theorem 3.12 The matrix L + D is positive de nite with the following prereq-
uisites

max( LI) < 0; (3.27)

d > max(R S( L) 'S"): (3.28)

Proof: InLemmal8,letG= L,onehas L D= RsTD SL , Where
|

D = diagfd;;:::;dg, L, is obtained by removing the rstl| row and column,

R and S represent the matrices with appropriate dimensions. Tharskto Lemma
1:8 and combine with 3.27), (3.28, we have L D < 0O, thatis, L+ D is a
positive de nite matrix. This completes the proof.

Remark 3.13 In (Cai et al., 2015 Kang et al., 2018 Tan et al., 2017J), in or-
der to achieve cluster synchronization or group consenstie topology contains
negati¥e weight couplingsﬁ < 0 and is required to satisfy the following assump-
tion:  ,,, & =0,0r ,,a = ,8k86 ¥, which is too conservative in
practical applications. In order to remove the restrictios, (Qian et al., 2014
and (Da et al., 2018 employ pinning leader-following control scheme to reach
cluster consensus of MASs under weakly connected graph.pired by the works,
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in this paper, the intermittent adaptive pinning control isdesigned for general lin-
ear MASs and Lipschitz nonlinear MASs under weakly connedtgraph, in which
the Laplace matrix is just supposed to satisfy the generalugion property, that

is, l; = 0. Moreover, by choosing an appropriate low bound pinning gadl;,
j=1

one can getL + D > 0. For an undirected connected graphl. + D > 0 can hold

naturally due to the Laplace matrix is a real symmetry. Thefere, the MASs with

undirected connected graph can be considered as a speciakcanly by choosing

the inter-act followers to be pinned.

3.3.2 Observer-based intra-cluster lag consensus for non-
linear MASs

In this section, the OBICLC of MASs with nonlinear dynamics ia intermittent
adaptive pinning control is further considered, which is nte challenging due to
the complexity of the system structure. Before going on, thstate observer for
the ith nonlinear follower agent is designed as follows,

( 2:(t) = ARi(t) + Bui(t) + f (Ri(t)) + F(9i(t)  yi(t))

i2V:  (3.29)
$i(t) = CRi(t)

In this section, we still use the control protocol 8.5 with (3.7), taking the
control protocol (3.5) for system (3.3)-(3.4) and combining tog (t) = X;(t) sy(t
+), one has,

j=1
if i 2 Vi[ VE;
X
Aei(t) BK lig (t)+ Fi(t)+ F(oi(t) yit):if i 2V

i=1

8

X
% Aei(t) BK ljg(t) di(t)BKe;(t)+ Fi(t)+ F(Hi(t) vi(t);
a(t) = %

(3.30)
e g(t)" g();ift 2 [mT;mT+ );

Hn = Oift 2[MT + ; (m+1)T); (3:31)

whereFi(t) = f (xi(t) f (s;(1)).
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Theorem 3.14 Suppose that the matrix triple(A; B; C) is stabilizable and de-
tectable, there exists a diagonal matrifo, a positive constant , and a positive
de nite matrix P = PT = Q !> 0 such that the following equations:

L+D> 0 (3.32)
2 mn(2L +2D) > ; (3.33)
!
AQ+ QAT BB T+ 7?2

Q+Q U Lo (3.34)

QT |
whereL = L+2LT, D = diagfdy;:::;d:0:::;0gy ~ iS a diagonal matrix with
di;:::;d > 0,1 | N. ThenlettingK = ,B™P, =2 ,PBBTP, and

designing a matrixF such thatA + | + FC is Hurwitz matrix, the OBICLC of
MASSs (3.3)-(3.4) can be reached by control input3.5) with the following condi-
tion:

2 + AT )<0; (3.35)
where , = minf 3 %(Pl))z; 19, 3= mx(AQ + QAT + 2| + Q2
BBT), 4= maxf mu(Iln (ATP+PA+1+ 2P?) 2,L PBBTP); g,

> = maxf ﬁ; 10, 1 and are positive constants.

Proof: The proof is still divided into two parts, the rst part is to s how the
e ectiveness of state observer, i.eill,ilm jxi(t)  Ri(t)jj =0. And the second part

is to prove tI'ilm je)j =0.

The rst step: Let i(t) = xi(t) %i(t), one has,

H1) = AXx;(t) + Bui(t) ARi(t) Bui(t)+ f(x(t)) f@i(t) FE@i®) (1)
=AXi(t) Ri()+ FC(xi(t) Ri()+ f(xi(t) f&i(t)
=(A+FC) i)+ f(xi(t) fRi(1):

(3.36)
Construct the following Lyapunov function candidate:
L X
(ZOE =N ORIGE (3.37)

i=1
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Taking the time derivative of (3.37) yields

X
V()= TOWA+FC) i+ f(xi(D) f&i(1)

i=1

(3.38)
TOA+FCH+ 1) (t):

i=1

Based on the conditionA + FC + | is Hurwitz matrix, one has\/(t) < 0.
Thus, lim jj () = lim jixi(t) (V) =0, aswellF(§i(t) yi(t)) = FC i(t) =
0. In equation (3.30, owing to i(t) is decoupled from the errog(t), the stability

of (3.30 is identical with the stability of the following system:
8
X
% Ag(t) BK lig(t) di()BKe;(t)+ Fi(t);if i 2 Vi [ V,f;
a(t) = "
E Aei(t) BK li g (t)+ Fi(t);if i 2 V&
j=1

(3.39)
The second step: Construct the Lyapunov function candidate:
X X : :
V(t) = e (1)Peg(t) + % e ltM: (3.40)
i=1 i=1
(1)) Whent 2 [mT; mT + ), the derivative of (3.40 is
X X
\U(t)=2 g (t)P(Ae(t) BK  ljeg(t) di(t)BKei(t)+ f(i(t) f(&(1)
i=1 j=1
X . )2 X
e300 e O W @) do ew
- - (3.41)

Denote F (1) = (f T(Ru(1))  FT(sa(t));FT(Ra(1))  FT(sa(1)); 00 f T (Ra (1))
f T(sg(t)))". Based on the AssumptiorB.1, one has

2] (P(F (&) (&) 2 jiPe®iiiie®i & ®01+ *P)ea(t): (3.42)
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Combining (3.42 and the conditions in Theorem3.14 \/(t) can be written as

Vi) =e"(t)(Iyn AP LT K'B'P D(t) KT'BTP)el)
+e'(t)(In PA L PBK D(t) PBK)e(t)+2e'(t)(In P)F(t)
AR CTONC)S

i=1

+( 25 + OO D) (2 PBBTP)E);

(3.43)

furtherly,

\Lt) e (t)(In (ATP+PA+ 1+ 2P2) 2 ,L) PBB'P
2 ,D(t) PBBTP))e(t)

X . .
R CICIN: )%

Ly + (MM D) (2 ,PBBTP)EY

e't)(In (ATP+PA+ 1+ 2P%) ,2L+2D) PBB'P))et)
X . 2
+( 1)% e (G d)” :

i=1

(3.44)
Based on the condition in TheorenB8.14, the matrix 2L + 2D > 0, there exist a
constant , satises » mn(2L+2D)> . LetQ=P 1, (t)=(In P)et),

one has,

V() TN (AQ+ QAT+ 21 +Q%) Iy BBT) (1)

X : :
N IO (3.45)

i=1
AQ+ QAT BBT+ 2 Q

Q' l
Theorem3.14 and with the help of Schur complement lemmaBoyd et al., 1999,

Furthermore, since the conditions : <0in

one hasAQ + QAT+ 21 + Q> BB T < 0. Denote 3= max(AQ + QAT +
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2l + Q2 BB ), it follows

X . 2
V() 3 T() )+ ) % e A di(t)  di)?

i=1

X . . 3.46
3 min(P)eT(t)(lN P)e(t) + ( 1) % e 1th|)2 ( )

2V (1);

i=1

where ,=minf 3 q,in(P); 19> 0.
(2) Whent 2 [ImT + ; (m+1)T), the derivative of (3.40 follows

X X X
\L(t) =2 e ()P (Ae(t) BK li & (1) +2 e (DP(F(xi(t) f(&(1)
i=1 j=1 i=1
X . .
R CRE

i=1

e'(t)(In (ATP+PA+1+ 2P%) LLT+L) PBBTP)et)

A . 2

% e Ldi(t) d)
i=1

X ) :
Ay o 1 e ald0 07

i=1

— 5 Oy Plev)+

2V (1);

X (d) )
2 & T

i=1

(3.47)
where ;= maxf naln  (ATP+ PA+ 1+ 2P2)  LLT+L) PBBTP; g>

0, » = maxf g> 0.

ﬁ(p); 1
Similarly, by induction, one obtains,
V(m+1T) V({(mT+ )ez )
V(imT)e z e2(T )
=V(mT)e 2* 0 )
V(0)el 2% 2T N(m+D) .

(3.48)

Next, by the same operations with 8.23-(3.26 and combining to the condition
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