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Chapter 1

Introduction

Contents
1.1 Background and motivation . . . . . . . . . . . . . . . 1

1.2 Overview of distributed coordination of MASs . . . . 3

1.2.1 Consensus problem . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Control strategies . . . . . . . . . . . . . . . . . . . . . 6

1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Graph theory . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Mathematical knowledge . . . . . . . . . . . . . . . . . 18

1.4 Contributions and outline of dissertation . . . . . . . 20

1.1 Background and motivation

In recent decades, much attention has been paid to the research of multi-agent

systems (MASs) (Li & Liu , 2018) from various disciplines, such as applied math-

ematics, physics, computer sciences and control theory. There is no doubt that it

is partly own to its broad applications, for example, searchand rescue missions

(Kantor et al., 2003), spacecraft formation �ying (Li et al., 2020; Ren, 2007),

cooperative surveillance (Olfati-Saber, 2006) (see Fig. 1.1). Di�erent from indi-

vidual agent which has limited sensing and computing ability, MASs are usually

composed of numerous interacting agents with several sensors/actuators and it

1



1. INTRODUCTION

can perform or solve complex tasks in a coordinated fashion with many advan-

tages, including improving scalability, increasing �exibility, reducing cost and

avoiding a single-point of failure.

(a) (b)

(c) (d)

Fig. 1.1. Examples of multi-agent systems in practical applications

In the research �eld of cooperative control of MASs, such as formation (Yang

et al., 2018b), consensus, rendezvous (Su, 2015) and so on, the consensus problem

is an important and critical issue, which aims at designing appropriate distributed

control protocols by negotiating with their neighbors to reach an agreement. Up

to now, numerous typical and profound results have been established in (Ab-

dessameud & Tayebi, 2011; Li et al., 2021a; Shi et al., 2020).

It should be noted that most of literature about the consensus problem of

MASs mainly relies on the assumption that the information istransmitted con-

tinuously among the neighbouring agents. However, in real applications, for

2



1.2 Overview of distributed coordination of MASs

example, mobile robots and sensor networks, due to the limitations of communi-

cation obstacles, physical equipment failures, and sensing capabilities, the agents

may interact with their neighbors with some communication constraints. On the

other hand, in system analysis, an important subject is to minimise the commu-

nication and calculation. Therefore, how to design optimized control technologies

is very crucial for reducing communication consumptions and saving resources.

Motivated by above discussions, this dissertation focus onthe discontinuous

control methods for the MASs with linear and nonlinear dynamics. The objective

is to design appropriate control technologies for each agent according to di�erent

control tasks and di�erent constraint conditions, such that all the agents can

achieve consensus and meanwhile economize the control costs.

1.2 Overview of distributed coordination of MASs

Over the past decades, numerous works about the cooperativecontrol problem

of MASs have been obtained. In the following subsections, wewill present an

overview of related works based on the consensus problem andcontrol technolo-

gies.

1.2.1 Consensus problem

As a fundamental topic in distributed coordination control, consensus problems

have received a great deal of attention and obtained a lot of interesting results

(Jadbabaieet al., 2003; Olfati-Saber & Murray, 2004; Ren & Beard, 2005; Vicsek

et al., 1995). In the early work (Vicsek et al., 1995), Vicsek et al. considered the

phase transition of a group of self-driven particles based on a simple discrete-time

model. (Jadbabaieet al., 2003) gave a theoretical explanation for the obtained

results in (Vicsek et al., 1995) by using algebraic graph theory. In (Olfati-Saber

& Murray , 2004), the authors discussed the consensus problem of MASs under

�xed and switching topologies. In (Ren & Beard, 2005), the authors investigated

consensus problem of MASs, where the information exchange is limited and un-

reliable because of dynamically changing interaction topologies. Note that the

above publications on consensus problems mainly focus on MASs with �rst-order

linear dynamics. Later, many researchers put their attention on second-order

dynamics (Ren & Atkins, 2007; Wen et al., 2012; Xie & Wang, 2007). In ( Xie

3



1. INTRODUCTION

& Wang, 2007), the authors considered the average-consensus problem for the

second-order MASs. In (Yu et al., 2010), necessary and su�cient conditions

were derived to guarantee the achievement of consensus for the the second-order

MASs. For the �xed directed topology, the second-order consensus with com-

munication constraints was investigated in (Wen et al., 2012). More recently,

the consensus problem of MASs with high-order or general linear dynamics has

been addressed. In (Wieland et al., 2008), the consensus problem of high-order

MASs was studied under a directed weighted graph. In addition, considering

the e�ect of time-delays in both the communication network and control inputs,

(Zhou & Lin, 2014) adopted a truncated predictor feedback approach to solve the

consensus problem of high-order MASs.

It is worth noting that most of obtained results about the consensus problem

of MASs focus oncomplete consensus , that is, the control inputs are designed

to ensure that the agents are in a consistent state. However,in many real situ-

ations, due to some unanticipated situations such as the changes of cooperative

tasks, external environment or event-time, all agents needto be split into sev-

eral groups, namely, the agents that belong to the same groupor cluster reach

a common state, while the agents that belong to other group orcluster reach

di�erent convergence states, which is termed asgroup consensus or cluster

consensus. As an extended concept about complete consensus, group/cluster

consensus has various applications in military and civilian, such as battle�eld as-

sessment, reconnaissance, and surveillance. In the large scale complex networks,

due to the speci�c requirements, it is easier to analysis anddesign by decom-

posing the large scale complex network into several smallerclusters; in nature,

the birds, �sh and bacteria colonies are often emerge several clusters; particu-

larly in human society, some opinion formation models reveal that agents in the

same cluster eventually form the same opinion (see Fig.1.2). A vivid example is

given in (Ge et al., 2018): multiple robots are required to keep di�erent capa-

bilities in order to search and rescue victims when a disaster occurs. Thus, it

is necessary to divided all agents into di�erent clusters according to the needs

in practice. Up to now, many constructive results for the cluster consensus of

MASs have been obtained from various aspects such as system dynamics, net-

work topologies, time-delays (Aeyels & Smet, 2011; Chen et al., 2019; Wen et al.,

2016a; Wenlian Lu, 2010). In ( Aeyels & Smet, 2011), the authors investigated
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1.2 Overview of distributed coordination of MASs

cluster formation behavior for a time-varying MASs. In (Wenlian Lu, 2010),

the authors studied cluster synchronization issues under the networks of coupled

nonidentical dynamical systems. In (Xia et al., 2016), the authors considered the

group consensus of MASs with communication delays under �xed and switching

topologies. Miao and Ma (Miao & Ma, 2015) proposed group consensus proto-

cols for discrete-time and continuous-time MASs with nonlinear input constrains.

In (Kang et al., 2018), the authors investigated the cluster synchronization ofa

network system with nonidentical nodes, where the dynamicsof agents are either

general linear or nonlinear. In (Qin et al., 2016), the authors addressed the cluster

consensus problem for a second-order MAS by pinning leader-follower approach,

where the communication topology is assumed to be weakly connected. In (Liu

et al., 2015), the authors investigated the adaptive group consensus ofnetworked

Euler-Lagrange systems. Meanwhile, some corresponding necessary and su�cient

conditions for solving group consensus problem are established.

(a) (b)

Fig. 1.2. Examples of group consensus of MASs

More recently, a more generalized counterpart of consensusis put forward

by some scholars, that isscaled consensus. Compared with group consensus,

scaled consensus means the states of all the agents reach assigned proportions

instead of some common state values. Thus, group consensus can be considered

as the special case of the scaled consensus. (Roy, 2015) referred to the concept

of scaled consensus �rstly. Scaled consensus has been paid more and more atten-

tion in recent years due to its broad applications, for example, water distribution

systems (Ostfeld & Salomons, 2004), space cooperative vehicles, closed queuing

5
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networks (Reiser, 1981). In ( Meng & Jia, 2015), the authors investigated the

scaled consensus problem of �rst-order MASs under switching networks, and in

order to guarantee the exponential convergence of agents, necessary and su�-

cient conditions were obtained. For high-order discrete-time MASs, the scaled

consensus problem was considered in (Chenget al., 2020), in which there exists

a time-varying delay in the progress of information transmission among agents.

Bipartite consensus , as a special case of scaled consensus, implies that the

states of all agents converge to a consensus value with the same magnitude but

opposite sign. In order to reach bipartite consensus, the sign graphs are often used

to represent competitive-cooperative MASs. In (Alta�ni , 2012), negative weights

were denoted to describe the antagonistic relationship among agents in MASs. In

(Zhang & Chen, 2017), state feedback and output feedback control technologies

were designed to achieve bipartite consensus. Assuming that the associated signed

digraph is strongly connected, (Guo et al., 2018) handled the bipartite consensus

problems over signed digraphs with arbitrary �nite communication delays. To

specify multiple bipartite consensus behavior, by combining the characteristics

of group consensus and bipartite consensus, (Liu et al., 2020) introduced group-

bipartite consensus of MASs over cooperative-competitivenetworks.

1.2.2 Control strategies

As far as we all know, the MASs can't reach consensus by itself. Thus, various

control strategies have been constructed to guarantee the system performance

and meanwhile save energy, such as pinning control, adaptive control, impulsive

control, intermittent control, sampled-data control, event-triggered control and

so on, which can be summarized as follows.

In practical application, especially for the large-scaledMASs, it is impossible

for the leader to pin every follower. To overcome this drawback, pinning control

can be used by controlling only a small fraction of agents rather than all the

agents. Thus, pinning control is more economical and more e�ective for the large-

scale leader-following MASs, which has been attracted muchattention. (Wang

& Wu , 2012) investigated two kinds of formation control problems for second-

order nonlinear MASs by pinning control under �xed and switching topologies. In

(Huanget al., 2019), the authors applied pinning control scheme to heterogeneous

MASs for solving the group consensus with reference. In (Wang & Li , 2017),
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the authors presented an distributed pinning controller for robotic networks to

realize cluster consensus, where the system dynamics are characterized by Euler

Lagrangian equations. Moreover, based on matrix theory, algebraic graph theory

and the stability theory of fractional system, (Yu et al., 2015) employed adaptive

pinning control to solve the consensus problem for fractional-order MASs.

As a matter of fact, pinning control is an inseparable companion to leader-

following consensus.The leader-following consensus , is also called astrack-

ing consensus , which implies in a system all followers can track a prescribed

state trajectory generated by a leader that is usually independent of all follow-

ers (see Fig.1.3). As it is referred in (Hummel, 1995), the leader-following con-

�guration was an energy saving mechanism. Besides, the communication and

orientation of the �ock can be enhanced by leader-followingmethod (Andersson

& Wallander, 2004). Existing literature can be roughly divided into two sorts,

i.e., leader-following consensus (Dai & Guo, 2018) and leaderless consensus. In

(Kim et al., 2014), the authors investigated the leaderless and leader-following

consensus for discrete-time heterogeneous MASs with random link failures. In

(Qiu et al., 2015), by the aid of the perturbation analysis of matrices and quanti-

zation technique, the authors solved the quantized leaderless and leader-following

consensus for a class of high-order MASs with limited data rate. Besides, for the

MASs with multiple leaders, (Wang et al., 2018) considered containment control

problem, where controllers were designed to make all the followers can converge

to a convex hull formed by the leaders.

It is worth noting that the control inputs of leaders are equal to zero in part of

results on tracking consensus. However, in many circumstances, in order to avoid

obstacles and achieve desirable objective states, the control inputs of leaders are

expected to be nonzero and controllable. (Li et al., 2012) handled the distributed

tracking consensus problem, where the control input of leader is continuous and

bounded, besides, it is not available to any follower. In (Ma et al., 2017), the

authors studied the tracking consensus problem by introducing a smart leader,

where the leader can adjust the interaction strength between itself and the target

point based on the tracking state errors.

Nevertheless, it is noted that the disadvantage for pinningcontrol in existing

literature is that the pinning strength is usually �xed and given in advance to

7
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The state of the leader 

Fig. 1.3. Leader-following consensus or tracking consensus problem.

avoid the appearance of the worst situation, which is unreasonable in real appli-

cations because the worst case rarely occurs. To overcome this drawback, many

researchers adoptadaptive control approach to prevent the appearance of larger

parameters than those required in practice and adjust the pinning weight during

the process of dynamics evolution. For example, (Xu et al., 2016) investigated

cluster consensus problem of second-order nonlinear MASs by employing an adap-

tive pinning control method. Recently, a vast number of works on adaptive control

strategy are derived. (Li et al., 2015a) considered the output regulation problem

of heterogeneous MASs via adaptive control under periodic switching topologies,

where the feedback gains in control input are independent ofthe global infor-

mation of underlying communication graph. (Jin & Haddad, 2019) proposed a

novel distributed adaptive control architecture to address the tracking problem

for MASs, where the adaptive control architecture can foil malicious sensor and

actuator attacks when there exist exogenous stochastic disturbances. For a class

of nonlinear MASs with unmodeled dynamics, (Shenet al., 2019) designed a fully

distributed neural-networks-based adaptive control technology to ensure that all

the followers can track the leader within a prescribed level.

Notice that the former literatures about the consensus of MASs were mainly

focused on the continuous control schemes with the assumption that all agents

can transmit the information with their neighbours all the time. However, in the

real engineering, due to the appearance of obstacles or the limitation of communi-

cation ability, the information communication may be discontinuous. Moreover,

continuous information transmission will cause a heavy burden for the MASs

with limited communication bandwidths. To mitigate these issues, many opti-

mized and e�cient control strategies are put foreword.

Impulsive control can be regarded as a special discontinuous control method,

where describes the state information of agents is just transmitted at some dis-
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1.2 Overview of distributed coordination of MASs

crete impulsive instants. Obviously, the frequency of state information transac-

tion is reduced greatly. Thus, impulsive control strategy has many advantages

including maintenance with low cost, more practicality andhigh e�ciency. On

the other hand, the impulsive dynamical systems describe continuous evolution

with instantaneous state jumps and consist of three elements. The �rst element

is continuous-time part, which is between system reset or impulsive, to control

the motion of systems. The second element is discrete jumps,it controls the way

that the system states are instantaneously changed when a resetting event occurs.

The third is the criterion to determine the time that system can be reset. It is

obvious that the impulsive control systems have a faster convergence speed than

other continuous control systems. In addition, impulsive dynamical systems can

capture properties of various complex systems like mechanical systems with im-

pacts, orbital transfer of satellite, nanodevices with electron tunneling e�ects and

so on. Up to date, impulsive control has gained considerableinterests of many

researchers. (Ning et al., 2018) investigated the input-to-state stability (ISS)

and integral ISS of impulsive systems by constructing a novel Lyapunov method

which is based on an inde�nite Lyapunov function instead of negative de�nite

Lyapunov function. (He et al., 2017) studied the tracking consensus problem

of nonlinear MASs with network-induced delays via distributed impulsive con-

trol. ( Tang et al., 2015) considered the tracking consensus problem of MASs

with multiple delays via impulsive control with several newcharacterizations,

and the obtained results are veri�ed in mechanical robotic systems. (Zhu et al.,

2017) analyzed the quantized consensus of second-order MASs viaimpulsive con-

trol. ( Jiang et al., 2011) introduced impulsive control strategy for linear dynamic

MASs. Based on the theory of impulsive di�erential system and Lyapunov sta-

bility, ( Ma et al., 2020) proposed an impulsive control strategy with odd impulse

sequences to address the consensus problem of MASs, which ismore e�ective and

�exible in real applications. Moreover, in the studies of synchronization analysis

for complex dynamical networks, many results were obtainedby using impulsive

control (Ding et al., 2020; Syed Ali et al., 2020; Xu et al., 2020).

Intermittent control strategy has been proposed and widely applied in

transportation, manufacturing and communication. In actual application, the in-

termittent control strategy has the control time (or work time) and uncontrolled

time (or rest time) alternately, that is, the controller will be activated within
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certain nonzero time intervals and be o� during other time intervals. Specially,

when the control time tends to a time point, intermittent control becomes im-

pulsive control. Compared with the impulsive control strategy that is activated

instantaneously, intermittent control strategy is easierto be executed because its

control width is nonzero. Therefore, the intermittent control can be viewed as

an excellent junction between continuous control strategyand impulsive control

method. Moreover, intermittent control can be divided into periodical inter-

mittent control and aperiodically intermittent control (s ee Fig.1.4). In Fig.1.4,

[tk ; tk + � 1] is called as control interval,(tk + � 1; tk+1 ) is called as rest interval,

T1 is called as a period, wheretk and tk + � 1 represent the start time and end

time of kth control interval, tk+1 is the end time ofkth rest interval, � 1 is the

control width. Especially, when the control width and control period are �xed

constants, the aperiodically intermittent control strategy become the periodically

one. Compared with periodical intermittent control, aperiodically intermittent

control is more reasonable and prevalent in practice because the conditions of

periodical intermittent control is restricted to some extent, for instance, the wind

power generation is obviously aperiodically intermittent. Numerous results have

been obtained by employing intermittent control strategy in MASs (Gawthrop &

Wang, 2009; Huanget al., 2009; Li et al., 2007; Zochowski, 2000). In ( Zochowski,

2000), the author described the method of synchronizing slave tothe master

trajectory by using intermittent coupling. In ( Huang et al., 2009), the authors

considered the exponential stabilization of delayed chaotic neural networks by

using periodically intermittent control. In (Saderet al., 2021), the authors inves-

tigated the H1 consensus problem for a class of nonlinear MASs with intermittent

communications and actuator faults under the switching communication graph.

Particularly, for the leader-following consensus of MASs by intermittent control,

many results are derived in (Huanget al., 2014; Wang & Wang, 2015; Zhanget al.,

2019b). In ( Huang et al., 2014), the authors considered the leader-following issue

for second-order nonlinear MASs assuming that the communication among all

agents is intermittent. By using aperiodically intermittent pinning control strat-

egy, the authors in (Zhang et al., 2019b) addressed partial component consensus

for a nonlinear leader-following MASs. Furthermore, considering the MASs with

general linear dynamics is more common and challenging, (Wang & Wang, 2015)
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1.2 Overview of distributed coordination of MASs

investigated the semi-global consensus of general linear MASs via intermittent

saturating actuator.

Periodically

Aperiodically

tk tk+1 tk+2tk +�© tk+1+�©

  rest time

 work time

T

T1 T2 T3

tk tk+1 tk+2 tk+3tk+�©1 tk+1+�©2 tk+2+�©3

t

t

T

Periodically

Aperiodically

tk tk+1 tk+2tk +�© tk+1+�©

  rest time

 work time

T

T1 T2 T3

tk tk+1 tk+2 tk+3tk+�©1 tk+1+�©2 tk+2+�©3

t

t

T

Fig. 1.4. Periodical and aperiodically intermittent control strategy.

The advantage of intermittent control is that it can shortenthe working time

of the controllers, while the de�ciency is that the information updating rates of

controllers cannot be reduced. For the sake of reducing the load of controllers up-

dating, (Xiong et al., 2016) employed intermittent sampled-data control to han-

dle the synchronization problem for hierarchical time-varying neural networks.

Sampled-data control scheme essentially adopts time-triggered mechanism, in

which sampled data transmission happens at pre-designed constant sampling pe-

riod or time-varying bounded sampling period (Gao et al., 2009; Tang et al.,

2011). Commonly sampled-data control system describes a control system in

which continuous-time plant is controlled with a digital device. In sampled-

data control systems, control signals are constants duringsampling intervals and

are allowed to change only at sampling instants. An application of this tech-

nique is in the radio broadcasts of the live musical program (Chen et al., 2016).

Recently, various results have been reported for investigating the sampled-data

synchronization/consensus problem of networked multi-agent systems. (Lee &

Park, 2017) introduced a novel time-dependent discontinuous Lyapunov function

to deal with stability problem of sampled-data systems. (Ozcan et al., 2018)

applied sampled-data control strategy to handle robust synchronization of un-

certain Markovian jump complex dynamical networks with time-varying delays

and reaction-di�usion terms. (Ali et al., 2020) established a novel non-fragile
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sampled data control framework for nonlinear MASs with additive time varying

delays and Markovian jump parameters. (Beikzadeh & Marquez, 2016) designed

input-to-stable observer for nonlinear sampled-data systems. Under the switching

topology, (Zhang & Zhang, 2017) addressed the consensus problem for general

linear MASs via sampled-data control strategy. Considering random and deter-

ministic packet losses, respectively, (Zhang et al., 2016) solved the sampled-data

consensus problem for linear MASs. (Du et al., 2016) investigated the consensus

problem for heterogeneous MASs composed of �rst-order MASsand second-order

MASs with communication failure based on sampled-data information. (Zhang

et al., 2017a) studied the tracking consensus problem for a class of heteroge-

neous MASs by designing distributed output-feedback controller with the aperi-

odic sampled-data measurement subject to external disturbance. (Zhang et al.,

2017b) developed a time-varying sampled-data strategy to solve the consensus

problem for Euler-Lagrange systems, where the controller can either work or rest

during each sampling interval, avoiding over provisioningof system hardware

compared with the traditional sampled-data strategies. (Yu et al., 2017b) gave

the necessary and su�cient criteria for leaderless consensus and leader-following

consensus of fractional-order MASs based on sampled-data control strategy.

In sampled-data control, in order to avoid packet dropouts and network con-

gestion as well as guarantee the performance, the date sampling or control action

update is more frequency than that it is actually required, which leads to a waste

of communication and computational resources. Di�erent from the sampled-data

control scheme, under theevent-triggered control (ETC) scheme (Nowzari

et al., 2019), agents depend on a prede�ned triggering function rather than a

�xed sampling period to determine when to sample data among the neighboring

agents and update their controllers. Thus, energy consumption can be cut down

greatly. Up to date, a vast amount of literature on MASs via ETC strategy has

been obtained (Li et al., 2021b; Luo & Ye, 2019; Wang et al., 2020) and a variety

of triggering functions have been designed. In (Garcia et al., 2014), the central-

ized and decentralized ETC techniques were adopted respectively to handle the

consensus problem for general linear MASs subject to undirected graph. So as to

further decrease the information communication and minimize the number of con-

troller updates, (Zhou et al., 2015) used the combinational measurements method

to design the event-triggered control mechanism for MASs. By using only local
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information instead of global information, (Cheng & Li, 2018) investigated the

fully distributed ETC strategy for the general linear MASs by designing the time-

varying weights in both triggering conditions and the control laws. The designed

adaptive ETC strategy was robust to some bounded external disturbances. By

introducing sampled-data method, event-triggered sampled-data control strategy

was presented in (Guo et al., 2014), where the triggering function only needs to

be detected at the sampling instants and the minimum inter-event time could be

guaranteed to be no less than one sampling period. For multi-vehicle systems with

nonholonomic constraints, (Chu et al., 2019) considered the distributed formation

tracking control problem via event-triggered sampled-data control strategy.

1.3 Preliminaries

Notations: Throughout this thesis,N = f 1; 2; � � � g represents the set of positive

integer. For the given positive integersp andq. Rq andRp� q denote q-dimensional

real column vectors andp� q real matrices, respectively.k � k not only stands for

Euclidean norm for vector, but also the induced matrix 2-norm. For a real matrix

P, � max (P), � min (P), P � 1 and PT , mean respectively, maximum eigenvalue,

minimum eigenvalue, the inverse, and transpose ofP. P > 0 indicates P is

positive de�nite. I N is the identity matrix. 
 denotes Kronecker product. The

diagf� � � g stands for a block-diagonal matrix.

1.3.1 Graph theory

In this thesis, it is assumed that the communication topology of MASs is char-

acterized by a triplet G=( V; E; A), in which V = f v1; v2; : : : ; vN g stands for the

set of nodes, andE � V � V denotes the set of edges. For a directed topology,

eij is an edge andeij = ( vi ; vj ) 2 E indicates that the information �ows can

be transformed from agentvj to agent vi (See Fig.1.5), while for the undirected

topology, eij = ( vi ; vj ) 2 E represents the information �ows that can be trans-

formed mutually between agentvi and agentvj .

A = [ aij ]N � N is used to represent the weightedadjacency matrix associated

with the communication topology and it is supposed to satisfy the following prop-

erties: aij > 0 implies ej i 2 E ; aij = 0 otherwise. It should be pointed out that

the topology has no self loops or parallel edges, that is,aii = 0. Besides, in this
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vivj vivj

Fig. 1.5. Information �ow from vj to vi

thesis, we assume that the adjacency matrices corresponding to the topologies

have 0-1 weight. The weighted adjacency matrix is represented as

A =

2

6
6
6
4

a11 a12 � � � a1N

a21 a22 � � � a2N
...

...
. . .

...
aN 1 aN 2 � � � aNN

3

7
7
7
5

2 RN� N :

Furthermore, the communication topology can be categorized in two classes ac-

cording to the information �ows, that is, undirected and directed topology. A

directed path corresponding to the directed topology is a �nite ordered nodes

sequencevi 1 ,. . . , vi k such that (vi l , vi l +1 ) 2 E, where l = 1; : : : ; k � 1. The def-

inition about a weak path is that there exists a �nite ordered nodes sequence

vi 1 ,. . . , vi k such that (vi l , vi l +1 ) or (vi l +1 , vi l ) 2 E. For a directed topologyG, if

it contains a directed spanning tree , which means there exists at least one

node that is called as root node having a directed path to any remaining nodes.

Furthermore, a directed topologyG is called weakly connected if there exists

at least one weak path for any two distinct agents, which means its correspond-

ing undirected graph is connected and each agent can either obtain information

from other agents or send information to other agents. Apparently, the weakly

connected topology is more universal than the topology witha directed spanning

tree. The Laplacian matrix L = [ l ij ]N � N of topology G satis�es

l ij =

8
<

:

� aij if i 6= j;
NP

j =1 ;j 6= i
aij if i = j;

which makes sure that the di�usion property holds good, thatis
NP

j =1
l ij = 0.

Divide the N followers into m clusters and suppose thei th cluster has mi

nodes, that isVi = f vm1+ m2+ :::+ m i � 1+1 ; : : : ; vm1+ m2+ :::+ m i � 1+ m i g. As a result, we
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have V = f v1; v2; : : : ; vN g= V1 [ V2 [ : : : [ Vm and Vp \ Vq = ? , where p 6= q.

Assume that each cluster has a virtual leader. If thei th agent is in the cluster

that can be denoted asVî , then i 2 Vî , where î is the subscript. In addition, the

subscript set of the virtual leaders and followers are denoted as
 = f 1; 2; : : : ; mg

and V = f 1; 2; : : : ; Ng respectively. For convenience of expression, there is no

di�erence for the following descriptionsi 2 V, i 2 V, and vi 2 V. Obviously, the

followers of thej th virtual leader are in Vj , j 2 
 . Refer to (Da et al., 2018)

for the de�nition of inter-act agents and intra-act agents . ~Vî represents the

subset ofVî and the agents in~Vî means that they can receive information from

the agents in other cluster, that is, for anyvi 2 ~Vî , there exists at least one

vj 2 Vî n ~Vî such that aij 6= 0. Furtherly, if vi 2 ~Vî , the nodevi is termed as the

inter-act agent, otherwise,vi is termed as the intra-act agent ifvi 2 Vî n ~Vî .

Moreover, the interaction topology composed ofN followers and m leaders

can be characterized by a digraph�G, where there is no information �ow from

followers to leaders. De�nepinning matrix D = diagf d1; d2; � � � dN g, where

di > 0, if leader can transmit information to follower i , and di = 0 otherwise.

Then, de�ne ~L = L + D for subsequent use.

In what follows, three examples are presented to specify the�xed undirected

graph, directed graph containing a spanning tree and weaklyconnected graph, re-

spectively. In addition, the adjacency matrixesA, pinning matrix D and Laplace

matrix L are obtained according to the de�nitions.

Example 1.1 Consider the �xed undirected communication topology as Fig. 1.6,

its adjacency matrixesA and Laplace matrixL can be given as follows:

A =

2

6
6
6
6
6
6
6
6
6
6
6
4

0 1 1 0 0 0 0

1 0 0 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 0 0 0

0 0 1 0 0 1 1

0 0 0 0 1 0 1

0 0 0 0 1 1 0

3

7
7
7
7
7
7
7
7
7
7
7
5

; L =

2

6
6
6
6
6
6
6
6
6
6
6
4

2 � 1 � 1 0 0 0 0

� 1 2 0 � 1 0 0 0

� 1 0 2 0 � 1 0 0

0 � 1 0 1 0 0 0

0 0 � 1 0 3 � 1 � 1

0 0 0 0 � 1 2 � 1

0 0 0 0 � 1 � 1 2

3

7
7
7
7
7
7
7
7
7
7
7
5

:

Example 1.2 Consider the �xed directed communication topology which contains

a directed spanning tree with agent1 as the root node (See Fig.1.7), its adjacency
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1

65

4

2 3

7

1

65

4

2 3

7

Fig. 1.6. A �xed undirected communication topology with seven agents.

matrixes A and Laplace matrixL can be given as follows:

A =

2

6
6
6
6
6
6
6
6
6
6
6
4

0 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0

3

7
7
7
7
7
7
7
7
7
7
7
5

; L =

2

6
6
6
6
6
6
6
6
6
6
6
4

0 0 0 0 0 0 0

� 1 1 0 0 0 0 0

� 1 0 1 0 0 0 0

0 � 1 0 1 0 0 0

0 0 � 1 0 2 � 1 0

0 0 0 0 0 1 � 1

0 0 0 0 � 1 0 1

3

7
7
7
7
7
7
7
7
7
7
7
5

:

1

65

4

2 3

7

1

65

4

2 3

7

Fig. 1.7. A �xed directed communication topology contains a spanningtree
with agent 1 as the root node.

Example 1.3 Consider the communication topology�G composed of followers1

to 7 and two leaderss1, s2 as Fig. 1.8. Its corresponding subgraphGcomposed of

followers1 to 7 is weakly connected. The adjacency matrixesA, pinning matrix
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D and Laplace matrixL of G can be given as follows:

A =

2

6
6
6
6
6
6
6
6
6
6
6
4

0 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 1 0 0

0 1 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0

3

7
7
7
7
7
7
7
7
7
7
7
5

; D =

2

6
6
6
6
6
6
6
6
6
6
6
4

2 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 3

3

7
7
7
7
7
7
7
7
7
7
7
5

;

L =

2

6
6
6
6
6
6
6
6
6
6
6
4

0 0 0 0 0 0 0

� 1 1 0 0 0 0 0

� 1 0 2 0 � 1 0 0

0 � 1 0 1 0 0 0

0 0 0 0 1 � 1 0

0 0 0 0 0 1 � 1

0 0 0 0 � 1 0 1

3

7
7
7
7
7
7
7
7
7
7
7
5

:

1

65

4

2 3

7

S1 S2

2
1

3
1

65

4

2 3

7

S1 S2

2

1

4

2 3

3

65

7

1

3

Fig. 1.8. A weakly connected communication topology composed of seven fol-
lowers from1 to 7 and two leaderss1 and s2.

Lemma 1.4 (Ren & Beard, 2008) Suppose the undirected communication topol-

ogy �G which containsN followers and one leader is connected, thenM = L + D

is symmetric and positive de�nite.
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Lemma 1.5 (Li et al., 2015b) Suppose the directed communication topology�G

composed of the followers and the leader has a directed spanning tree with the

leader as the root node (See Fig.1.9), then all the eigenvalues of matrix~L = L+ D

own positive real parts. In addition, there exists a positive de�nite diagonal matrix

E satisfying E ~L + ~LT E > 0, whereE = diagf � 1; � � � ; � N g > 0. Furthermore, the

equality E ~L + ~LT E > 
E exists with a positive constant
 . The matrix E can be

constructed as follows:

E = diagf � 1; � 2; � � � ; � N g;

� = [ � 1; � 2; � � � ; � N ]T = ~L � T 1N :

� �

� �

� �

� �

�

��� ���

Fig. 1.9. The directed topologies of the MASs: (a) without leader; (b)with a
leader

De�nition 1.6 (Signed graph ) The graph describing the communication topol-

ogy of MASs with antagonistic links is called as the signed graph (see Fig.1.10).

To describe the competitive-cooperative interaction, thepositive edge denotes the

cooperative interaction between nodesi and j , and in the same way, the negative

edge denotes the competitive interaction.

1.3.2 Mathematical knowledge

Lemma 1.7 ((Roger & Charles, 1994)). The de�nition of Kronecker product is:

if P1 = [ pij ] is an m � n matrix and P2 is a p � q matrix, then the Kronecker

product P1 
 P2 is an mp � nq block matrix as follows:

P1 
 P2 =

2

6
4

p11B � � � p1nB
...

. . .
...

pm1B � � � pmn B

3

7
5 :

18



1.3 Preliminaries

Fig. 1.10. The signed graph.

The properties of Kronecker product are: for the matricesP1; P2; P3, and P4 with

appropriate dimensions, the following equalities are established:

(P1 
 P2)T = PT
1 
 PT

2

(P1 + P2) 
 P3 = ( P1 
 P3) + ( P2 
 P3)

(P1 
 P2)(P3 
 P4) = ( P1P3) 
 (P2P4)

(P1 
 P2)� 1 = P � 1
1 
 P � 1

2

� max (P1 
 P2) = � max (P1)� max (P2):

Lemma 1.8 ((Boydet al., 1994)). The linear matrix inequality

 
Q(x) S(x)

S(x)T R(x)

!

<

0, where Q(x) = Q(x)T and R(x) = R(x)T , is equivalent to any one of the fol-

lowing conditions:

(1) Q(x) < 0; R(x) � S(x)T Q(x)� 1S(x) < 0,

(2) R(x) < 0; Q(x) � S(x)R(x)� 1S(x)T < 0.

Lemma 1.9 ((Qian et al., 2014)) For a given symmetric matrix G 2 RN � N

and a diagonal matrix D = diagf d1; : : : ; dl ; 0 : : : ; 0gN � N , where di > 0; i =

1; : : : ; l(1 � l � N ): Then G � D =

 
R � ~D S

ST Gl

!

, where ~D = diagf d1; : : : ; dlg,
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Gl satis�es the de�nition in notation that is obtained by removing the �rst l

row-column pairs. Matrices G, R and S have the appropriate dimensions. If

di > � max (R � SG� 1
l ST ), then G � D < 0 is equivalent toGl < 0.

Lemma 1.10 (Cao et al., 2005) For any real matrixes X; Y , � = � T > 0 and

scalar � > 0, it holds

X T Y + Y T X � �X T � X + � � 1Y T � � 1Y: (1.1)

Lemma 1.11 ((Boyd et al., 1994)) Suppose thatP1 2 Rn� n is a positive de�nite

matrix and P2 2 Rn� n is symmetric. Then, for any vectorx 2 Rn , the following

inequality holds:

� min (P � 1
1 P2)xT P1x � xT P2x � � max (P � 1

1 P2)xT P1x (1.2)

De�nition 1.12 (Signum Function): The notationsgn(x) represents the signum

function, and it is de�ned as follows:

sgn(x) =

8
><

>:

1; x > 0;

0; x = 0;

� 1; x < 0:

1.4 Contributions and outline of dissertation

This thesis focus on discontinuous control methods for multi-agent systems with

linear and nonlinear dynamics. The communication topologyis assumed to be

�xed undirected or directed. The main contributions are summarized as follows.

Chapter 2: Notice that the relevant works on consensus problem for MASs

mainly focus on complete consensus. However, in many physical applications,

due to some unanticipated situations such as the changes of cooperative tasks,

external environment or event-time, the agents are usuallyrequired to be divided

into several clusters. Therefore, an extended concept about complete consensus

is proposed to deal with such complex phenomena, that iscluster consensus ,

which means the agents in same cluster share a common state while there is

no consensus behavior among di�erent clusters. Secondly, in the most of prior

works, the controller for all the agents is commonly assumedto be continuous.

However, in real engineering, due to the presence of obstacles, the limitation of
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1.4 Contributions and outline of dissertation

computing and communication ability, or some other factors, the controller may

be discontinuous. To mitigate these issues, theintermittent control strategy

has been introduced and widely applied in transportation, manufacturing and

communication.

Motivated by all the above-mentioned discussions, this Chapter addresses the

cluster consensus problem via intermittent adaptive pinning control for MASs

with general linear or nonlinear dynamics, respectively, where each cluster has a

virtual leader whose state is available to only a small part of followers on some

disconnected time intervals because of communication constraints. To our best

knowledge, there are few works to investigate the problem. The main contribu-

tions of this chapter can be summarized as follows. In order to solve the cluster

consensus problem, the agents in each cluster are categorized into three types.

Speci�cally, the agents can only receive information from their own cluster, or

they can receive information from other clusters or cannot receive any informa-

tion from other agents. Hence, a class of intermittent adaptive pinning control

protocols is proposed for the di�erent type of agents. Correspondingly, some suf-

�cient consensus criteria are derived to guarantee that theagents in the same

cluster asymptotically can reach consensus while the agents in di�erent clusters

can reach di�erent consensus. Rigorous proofs are given by the aid of Lyapunov

stability theory and matrix theory. Finally, a numerical simulation example is

presented to validate the main results.

Compared with the existing literatures, the main advantages are given as fol-

lows: Firstly, in contrast to the dynamics of integrator MASs, the dynamics of

general linear MASs are much more complicated, and some integrator MASs such

as, single integral ones and double integral ones can be seenas the special case of

general linear MASs. Moreover, the dynamics of integrator MASs only depends

on the coupling of the agents, the dynamics of general linearMASs depends not

only on the coupling of the agents, but also the self-dynamics governing the evo-

lution of each isolated agent. This makes the cluster consensus of general linear

MASs technically more challenging than the case for integrator MASs. Secondly,

di�erent from continuous control protocols, the pinning gains in proposed con-

trol protocols are designed to be intermittent adaptive andwith an exponential

convergence rate, which can e�ectively reduce communication costs, avoid the
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1. INTRODUCTION

pinning gains being larger than those needed in practice. Meanwhile, it guaran-

tees the pinning gains quickly converge to steady value. Thirdly, in contrast to

the directed network topology required to be in-degree balanced, strongly con-

nected or contain a directed spanning tree, a weakly connected topology is taken

into account, which is more universal in practice.

Chapter 3: The results obtained in above Chapter 2 assume that the local

relative state information among all agents is available. However, in many actual

systems, due to the states of agents are not always availableor measured directly

in expensive cost, it is quite necessary to design anobserver to detect the agent's

real-time state. In addition, the time delays universally exist in many physical

systems and time delay can cause oscillations or in stabilities. For example, in

the consensus of migrating geese or locust population migration, all agents in the

same group almost reach the place at the same time, but the di�erent groups

arrive at the place in di�erent times. That is, not all agents arrive at the same

place simultaneously, but the arrival time of the agents maybe di�erent. Besides,

proper time delays between di�erent vehicles in the way can keep the road safe

and orderly. Otherwise, congestion often occurs.

Therefore, based on the above discussion and Chapter 2, in this Chapter, we

investigate the observer-based intra-cluster lag consensus problems of multi-agent

systems (MASs) with general linear dynamics and nonlinear dynamics via inter-

mittent adaptive pinning control. The so-calledintra-cluster lag consensus

means that the followers in the same cluster can achieve lag consensus asymptoti-

cally while the followers in di�erent clusters can achieve di�erent agreements. The

interaction network is still considered to be weakly connected, i.e., it is not neces-

sary to be strongly connected, in-degree balanced or contain a directed spanning

tree. To realise the intra-cluster lag consensus, a class ofobservers is designed

to estimate the states of followers. Then a class of observer-based intermittent

adaptive pinning control protocols is proposed according to the di�erence that

the agents receive information source. Correspondingly, some su�cient consen-

sus criteria are derived and rigorous proofs are given basedon matrix theory and

Lyapunov stability theory. Finally, the e�ectiveness for the proposed intermittent

adaptive pinning control strategy is validated by a numerical simulation.

The main contributions and comparisons of this Chapter are listed as fol-

lows. Firstly, since the relevant full state information ofeach follower is not
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1.4 Contributions and outline of dissertation

always available, the Luenberger observers are designed for general linear and

nonlinear MASs respectively. Hence, the control protocolsin this chapter only

use the observed states information of followers instead oftheir real-time states

information. Secondly, to realize the intra-cluster lag consensus, the followers

in each cluster are classi�ed into three types. Speci�cally: the followers which

can only receive information from the followers in their owncluster, the ones

receiving information from the followers in other clusters, and �nally, those who

cannot receive information from any followers. Then, the distributed intermittent

adaptive pinning control protocols are further designed according to the di�erent

categories of followers, which make sure that the followersin the same cluster

achieve intra-cluster lag consensus whereas the followersin the di�erent clusters

achieve di�erent consensus. Thirdly, compared with the most of existing results

about cluster consensus where each block unit in the weighted adjacency matrix

of network topology is assumed to be a zero-row-sum matrix oran equal-row-

sum matrix, which is relative conservative in actual applications, in this chapter

a weakly connected topology is considered and all the coupling weights of network

topology are positive, which is more universal in practice.

Chapter 4: Note that the intermittent controller in Chapter 3 still req uires

to be updated continuously when it is executed in the work time interval, which

is a waste of energy and resource. To mitigate this issue, theevent-triggered

control provides a novel strategy because it can avoid continuous update of

the controller, which not only enhances the utilization of the network resources

but also extends the lifetime of network components. Under an event-triggered

mechanism, each agent exchanges information or controllermakes corresponding

update only at data transmission instants, which are determined by a prede-

�ned triggering function. In this sense, unnecessary consumption of resources is

minimised as much as possible. Moreover, intermittent control can be divided

into periodical intermittent control and aperiodically intermittent control .

Compared with periodical intermittent control, aperiodically intermittent control

is more reasonable and prevalent in practice due to the conditions of periodical

intermittent control is restricted to some extent, for example, the generation of

wind power is obviously aperiodically intermittent.

Inspired by the above discussion, this Chapter investigates the leader-following

consensus of general linear MASs via aperiodically intermittent adaptive event-
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triggered control. The aperiodically intermittent adaptive event-triggered control

inherits the respective advantages of aperiodically intermittent control strategy,

event-triggered control strategy and adaptive control strategy, which improves

communication e�ciency, reduces control update frequencyand is closer to the

practical situations. The major advances of this Chapter lie in following aspects:

Firstly, to reach leader-following consensus and save morecontrol resources, a dis-

tributed aperiodically intermittent ETC protocol is devised, in which the trans-

mission channels among agents only open if the local event-trigger condition is

satis�ed in prede�ned time intervals. Secondly, in order toget rid of continu-

ous inter-agent communication for monitoring the triggering condition, a more

general triggering mechanism is presented, in which discrete-time combinational

measurement is adopted instead of using continuous-time tracking error directly.

Thirdly, to overcome the unexpected large feedback gains inreal applications

and appropriately tune the feedback gains, the aperiodically intermittent adap-

tive event-triggered controller is further devised. With aid of the matrix theory,

stability of switching systems and Lyapunov function, somesu�cient criteria are

deduced. Moreover, the analyses of excluding the Zeno behavior are included

by showing explicit positive lower bounds between any two consecutive triggered

events.

Compared with the existing literatures, there are the following main di�er-

ences. Firstly, several authors have integrated intermittent strategy and event-

triggered strategy together to address the consensus problem, however, the aperi-

odically intermittent adaptive event-triggered control method has not been con-

sidered. Secondly, some existing works on leader-following consensus of MASs by

intermittent event-triggered control, continuous communication among agents is

still required to check the triggering condition, this requirement is removed in this

Chapter. Thirdly, the dynamics of agents in this Chapter is general linear rather

than integral-order, therefore, some works about leader-following consensus can

be regarded as spacial cases of this Chapter.

Chapter 5: In Chapter 4, we introduce the adaptive event-triggered control

method into aperiodically intermittent control. It should be pointed out that

the thresholds in Chapter 4 were state-dependent. When the measurement error

equals or exceeds the threshold, the events are triggered, which can be regarded
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as the static triggering conditions. At the beginning, the static triggering condi-

tions will e�ectively reduce the communication cost, as they are not easy to be

satis�ed. However, as time goes, it will be triggered frequently since the thresh-

old becomes smaller and smaller, which causes unnecessary triggered instants.

Developing more �exible event-triggering conditions to further reduce the com-

munication cost and the number of the control updates is in great demand. By

introducing an internal dynamic variable, a new class of event-triggering mecha-

nisms is presented, that is,dynamic event-triggered control .

Therefore, motivated by the above-mentioned consideration, in this Chapter,

to further reduce the communication cost and the number of the control updates,

a hybrid aperiodically intermittent adaptive dynamic event-triggered control is

put forward. The main contributions can be summarized as follows: Firstly,

the dynamic adaptive event-triggered control is designed to further reduce the

communication cost and the number of the control updates. Compared with the

traditional static event-triggered control in Chapter 4, the time-varying threshold

ensures less triggering instants. Secondly, based on matrix theory and Lyapunov

function, the corresponding parameters are obtained. We modify the event trig-

gering mechanism that depends on combined measurement approach in Chapter

4, continuous monitoring of neighbors' states are avoided for the triggering mech-

anism in this Chapter. Finally, numerical simulations are provided to illustrate

the e�ectiveness of the theoretical results.

Conclusions and perspectives: In this chapter, the results are summarized

and several possible directions for our future research areshared.
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2.1 Introduction

There are two critical factors that in�uence the consensus of MASs. One is the

individual dynamics behavior. In (Liang-Hao & Xiao-Feng, 2013), MASs are
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mainly modeled by integral dynamics of each agent including�rst-order MASs

model (Fan et al., 2013), second-order MASs model (Liu et al., 2016) and high-

order MASs model (Tian et al., 2016), etc. More recently, many researchers in

(Dong & Hu, 2016) focus their attention on MASs with general linear dynamics

due to the fact that the MASs with integral dynamical model can be viewed as

a special situation of general linear MASs (Wen et al., 2015). The other factor is

the communication topology structures of systems, such as undirected topology

and directed topology, �xed topology and switching topology, etc. In order to

model di�erent practical systems better, the researchers considered the MASs

under di�erent kinds of topology structures (Liu & Huang, 2019; Zhang et al.,

2020). Note that the previous results (Movric & Lewis, 2013; Yu & Wang, 2009)

are based on the assumption that the communication topologies are undirected

connected, directed strong connected, or containing a directed spanning tree.

In fact, the assumptions are very conservative in practice,in other words, the

communication topology may be weakly connected. In addition, as mentioned

in Chapter 1, in many cases, agents may be divided into multiple subgroups

due to di�erent environments or tasks, and in each subgroup can reach di�erent

consistent state, this is so-called group consensus or cluster consensus. Although

numerous available results are aimed to consider group/cluster consensus, to the

best of authors knowledge, none of them investigate the cluster consensus of MASs

with linear and Lipschiz nonlinear dynamics under a weakly connected graph.

It is well known that the control techniques are especially important for MASs

to reach objective state. In the most of prior works, the communication among all

the agents is commonly assumed to be continuous. However, inreal engineering,

due to the presence of obstacles, the limitation of computing and communication

ability, or some other factors, the information communication may be discon-

tinuous. To mitigate these issues, the intermittent control strategy has been

introduced and widely applied in transportation, manufacturing and communi-

cation. Reference (Yang et al., 2018a) analysed the cluster lag synchronization

issue for heterogeneous complex networks by employing a intermittent control

to reduce control cost and information communication. In (Yu et al., 2017a),

an intermittent sampled data control mechanism was employed, which not only

shortens the working time, but also decreases the load of controllers' updating

rate.
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2.1 Introduction

Motivated by all the above-mentioned discussions, this chapter addresses the

cluster consensus problem via intermittent adaptive pinning control for MASs

with general linear or nonlinear dynamics, respectively. To our best knowledge,

there are few works to investigate the problem. The main contributions of this

chapter can be summarized as follows. In order to solve the cluster consensus

problem, the agents in each cluster are categorized into three types. Speci�-

cally, the agents can only receive information from their own cluster, or they can

receive information from other clusters or cannot receive any information from

other agents. Hence, a class of intermittent adaptive pinning control protocols

are proposed for the di�erent type of agents. Correspondingly, some su�cient

consensus criteria are derived to guarantee that the agentsin the same cluster

asymptotically can reach consensus while the agents in di�erent clusters can reach

di�erent consensus. Rigorous proofs are given by the aid of Lyapunov stability

theory and matrix theory. Finally, a numerical simulation example is presented

to validate the main results. Compared with the existing literatures, this chapter

has the following two main advantages. Firstly, in contrastto the dynamics of in-

tegrator MASs, the dynamics of general linear MASs are much more complicated,

and some integrator MASs such as, single integral ones and double integral ones

can be seen as the special case of general linear MASs. Moreover, the dynamics

of integrator MASs only depends on the coupling of the agents, the dynamics

of general linear MASs depends not only on the coupling of theagents, but also

the self-dynamics governing the evolution of each isolatedagent. This makes the

cluster consensus of general linear MASs technically more challenging than the

case for integrator MASs. Secondly, di�erent from continuous control protocols,

the pinning gains in proposed control protocols are designed to be intermittent

adaptive and with an exponential convergence rate, which can e�ectively reduce

communication costs, avoid the pinning gains being larger than those needed in

practice. Meanwhile, it guarantees the pinning gains quickly converge to steady

value. Thirdly, in contrast to the directed network topology required to be in-

degree balanced, strongly connected or contain a directed spanning tree, a weakly

connected topology is taken into account, which is more universal in practice.

The remainder of this chapter is organized as follows. The problem is formu-

lated in Section2.2. Main results on cluster consensus of MASs via intermittent
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adaptive pinning control are introduced in Section2.3. To demonstrate the the-

oretical results, a simulation example is presented in Section 2.4. Finally, a short

conclusion is drawn in Section2.5.

2.2 Problem formulation

To study the cluster consensus via intermittent adaptive pinning control for linear

MASs and a class of nonlinear MASs, in this section, the modeland problem

objective are brie�y introduced.

Case I (Linear Systems):

Consider a general linear MASs withN followers andm leaders (N > m � 2).

For each follower, the dynamic can be modeled as

_x i (t) = Ax i (t) + Bu i (t); i 2 f 1; 2; :::; Ng , V; (2.1)

wherex i 2 Rn and ui 2 Rp represent the state and control input, respectively.

The leaders' dynamics are assumed to be:

_sj (t) = Asj (t); j 2 f 1; 2; :::; mg , 
 ; (2.2)

wheresj (t) 2 Rn represents thej th leader's state.

Case II (Nonlinear Oscillators):

Next, consider a MASs with nonlinear dynamics, in which the dynamics of each

follower can be modeled as:

_x i (t) = Ax i (t) + Bu i (t) + f (x i (t)) ; i 2 V: (2.3)

where x i 2 Rn and ui 2 Rp represent the state and control input respectively,

and f (x i (t)) is nonlinear function.

The leaders' dynamics are described by:

_sj (t) = Asj (t) + f (sj (t)) ; j 2 
 : (2.4)

wheresj (t) 2 Rn represents thej th leader's position state.
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A necessary assumption of the nonlinear functionf (�) is introduced below,

which will be useful for the subsequent analysis.

Assumption 2.1 There exists a constant
 > 0, such that for any vectorsx; y 2

Rm , the nonlinear function f (�) satis�es kf (x) � f (y)k � 
 kx � yk.

Remark 2.2 Compared with the consistent continuous, Assumption2.1 is a

smoother condition, which is called the Lipschitz condition.

De�nition 2.3 Given the MASs (2.1) and (2.2), ( 2.3) and (2.4) the cluster con-

sensus is reached by designing an appropriate control inputsuch that lim
t !1

jjei (t)jj =

0 for any initial values,whereei (t) = x i (t) � ŝi (t), i 2 V, î is the subscript of the

the index set of the cluster which thei th follower belongs, that isv̂i 2 Vî . See

graph theory1.3.1.

Remark 2.4 Note that the trajectories of all leaders are determined by system

matrix A owing to sj (t) = sj (0)eAt . If A is a Hurwitz matrix, then the states

of all leaders will asymptotically reach zeros, which goes against our objective.

Therefore, in this chapter, we assume the matrixA is not Hurwitz. By giving

di�erent initial value for system (2.2) and (2.4) , the states of leaders will be

di�erent, that is, for any l 6= k, lim
t !1

jj sl (t) � sk(t)jj 6= 0, wherel; k 2 
 .

2.3 Main results

2.3.1 Cluster consensus of MASs with general linear dy-

namics via intermittent adaptive pinning control

In practical application, especially for the large-scaledMASs, it is impossible for

the leader to pin every follower. To overcome this drawback,pinning control can

be used by controlling only a small fraction of agents ratherthan all the agents.

Besides, to prevent the appearance of larger pinning gain than those required in

practice, adaptive control method can be introduced to pinning control. Further-

more, considering the appearance of obstacles or the limitations of sensing ranges

in some situations, the leaders may only pinning the followers over some discon-

nected time intervals, in other words, the pinning time may be intermittent, not

continuous. Motivated by the above discussion , in this chapter the following
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intermittent adaptive pinning control is proposed to solvethe cluster consensus

problem,

ui (t) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

K
NX

j =1

aij (x j (t) � x i (t)) � di (t)(x i (t) � ŝi (t)) + K
NX

j =1

l ij sĵ (t); if i 2 ~Vî ;

K
NX

j =1

aij (x j (t) � x i (t)) � di (t)(x i (t) � ŝi (t)) ; if i 2 Vî n ~Vî and deg(i ) in = 0 ;

K
NX

j =1

aij (x j (t) � x i (t)) ; otherwise;

(2.5)

_di (t) =

(
�e � 1 t (x i (t) � ŝi (t))

T �( x i (t) � ŝi (t)) ; if t 2 [mT; mT + � );

0; if t 2 [mT + �; (m + 1) T);
(2.6)

where � and � 1 are positive constants,m = 0; 1; 2; :::, K and � represent the

feedback control gain matrices which will be designed laterin Theorem 2.8. The

parameterdi (t) satis�es the following conditions:di (t) > 0 if the nodevi is pinned

and di (t) = 0 otherwise. In addition, the control period and the control width are

denoted asT > 0 and � 2 (0; T), respectively. Denote the control rate� = �=T ,

which will be designed later in Theorem2.8.

Remark 2.5 In order to solve the cluster consensus problem, the agents in each

cluster are categorized into three types. Speci�cally, theagents can only receive

information from their own cluster, or they can receive information from other

clusters or cannot receive any information from other agents. Hence, a class of

intermittent adaptive pinning control protocols are proposed for the di�erent type

of agents. Moreover, the cluster consensus is aimed at reaching consensus in the

same cluster and reaching di�erent consensus among di�erent clusters. The term

K
NP

j =1
aij (x j (t) � x i (t)) in the control protocol (2.5) re�ects the interaction between

agent i and its neighbours. The termdi (t)(x i (t) � ŝi (t)) re�ects that whether the

agent i will be pinned. In fact, if the agenti can receive information from other

clusters, or it can not receive information from any agents (that is to say, it is

with zero in-degree), then it should be pinned. The termK
NP

j =1
l ij sĵ (t) is used to

counteract the in�uence among clusters.

Remark 2.6 The design of (2:6) is enlightened as follows: in practice, the pin-

ning gains between leaders and followers are not always �xeddue to the existence
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of external disturbance and expensive control costs. Therefore, the pinning gains

in proposed control protocols are designed to be intermittent adaptive and with an

exponential convergence rate, which can e�ectively reducecommunication costs,

avoid the pinning gains being larger than those needed in practice. Meanwhile, it

guarantees the pinning gains quickly converge to steady value.

Lemma 2.7 If vi is the node that belongs toVî n ~Vî , then
NP

j =1
l ij sĵ (t) = 0 .

Proof: From the de�nition of ~Vî , if vi 2 Vî n ~Vî , one hasl ij = 0 for 8vj =2 Vî .

Note from the fact
NP

j =1
l ij = 0, it follows that

NX

j =1

l ij sĵ (t) =
X

vj 2 Vî

l ij sĵ (t) +
X

vj =2 Vî

l ij sĵ (t) =
X

vj 2 Vî

l ij ŝi (t)

=(
X

vj 2 Vî

l ij +
X

vj =2 Vî

l ij )ŝi (t) =
NX

j =1

l ij ŝi (t) = 0 :

(2.7)

For convenience, the agents in each cluster are categorizedinto three types and

de�ned as follows.Vi
1 is the set of the nodes that belong to~Vî ; Vi

2 is the set of the

nodes that belong toVî n ~Vî and deg(i ) in = 0; Vi
3 is the set of the rest of nodes.

Recalling the de�nition of ei (t), one has,

_ei (t) =

8
>>>>><

>>>>>:

Aei (t) � BK
NX

j =1

l ij ej (t) � di (t)BKe i (t); if i 2 Vi
1 [ Vi

2;

Aei (t) � BK
NX

j =1

l ij ej (t); if i 2 Vi
3:

(2.8)

Furthermore, without loss of generality, the followers canbe rearranged the order.

Let the �rst l (1� l � N ) agents be pinned in MASs. Thenei (t) can be rewritten

as:

_ei (t) = Aei (t) � BK
NX

j =1

l ij ej (t) � di (t)BKe i (t); if i 2 Vi
1 [ Vi

2 [ Vi
3; (2.9)

_di (t) =

(
�e � 1 tei

T (t)� ei (t); if t 2 [mT; mT + � );

0; if t 2 [mT + �; (m + 1) T):
(2.10)
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Theorem 2.8 The MASs (2.1) and (2.2) with the control input (2.5) can reach

cluster consensus, that is to say,lim
t !1

jjei (t)jj = 0 for i 2 V, if the following con-

ditions are satis�ed:

(i ) the pair (A; B ) is stabilizable,

(ii ) �L + D > 0,

(iii ) K = � 1B T P and � = 2 � 1P BB T P,

(iv ) � 1 = �=T > � 1
� 1+ � 1

,

whereD = diagf d1; : : : ; dl ; 0; : : : ; 0gN � N , � 1 = min f � � 1
� max (P ) ; � 1g, � 1 = � max (AT P+

P A � � 1P BB T P � min (2�L + 2D)), � 1 = maxf � 2
� min (P ) ; � 1g, � 2 = maxf � max (I N 


(AT P + P A) � 2� 1
�L 
 P BB T P); � g, � , � 1 and � are any positive constants,

P = PT > 0 and � 1 satis�es the following equations:

AT P + P A � � 1P BB T P � min (2�L + 2D) < 0; (2.11)

� 1 � � min (2�L + 2D) > 1 (2.12)

Proof: Choose the following Lyapunov function candidate:

V(t) =
NX

i =1

eT
i (t)P ei (t) +

1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
; (2.13)

where � is positive constant. Matrix P and the parametersdi , � 1 are de�ned in

the conditions of Theorem2.8.

(1) When t 2 [mT; mT + � ), take the time derivative of (5.15) as

_V(t) =2
NX

i =1

eT
i (t)P(Aei (t) � BK

NX

j =1

l ij ej (t) � di (t)BKe i (t))

+
1
2

(� � 1)
NX

i =1

e� � 1 t (di (t) � di )2

�
+ ( di (t) � di )

NX

i =1

eT
i (t)� ei (t):

(2.14)

Denotee(t) = ( eT
1 (t); eT

2 (t); : : : ; eT
N (t))T , D(t) = diagf d1(t); : : : ; dl (t); 0; : : : ; 0gN � N ,

K = � 1B T P, � = 2 � 1P BB T P, D = diagf d1; : : : ; dl ; 0 : : : ; 0gN � N , where di >
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0; i = 1; : : : ; l(1 � l � N ). The derivative of V(t) can be written as,

_V(t) = eT (t)( I N 
 AT P � LT 
 K T B T P � D(t) 
 K T B T P)e(t)

+ eT (t)( I N 
 P A � L 
 P BK � D(t) 
 P BK )e(t)

+ ( � � 1)
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
+ eT (t)(D(t) � D) 
 (2� 1P BB T P)e(t)

= eT (t)( I N 
 (AT P + P A) � 2� 1
�L 
 P BB T P � 2� 1D(t) 
 P BB T P)e(t)

+ ( � � 1)
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
+ eT (t)(D(t) � D) 
 (2� 1P BB T P)e(t)

= eT (t)( I N 
 (AT P + P A) � � 1(2�L + 2D) 
 P BB T P)e(t)

+ ( � � 1)
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
:

(2.15)

Next, we will show that the matrix I N 
 (AT P + P A) � � 1(2�L +2D) 
 P BB T P is

negative. Since the condition2�L + 2D > 0, it follows that there exists a constant

� 1 such that � 1 � � min (2�L +2D) > 1. Furtherly, on the basis of linear systems the-

ory, there exists a positive matrixP such that AT P + P A � � 1P BB T P � min (2�L +

2D) < 0, namely, matrix I N 
 (AT P + P A) � � 1(2�L + 2D) 
 P BB T P is negative.

Denote � 1 = � max (AT P + P A � � 1P BB T P � min (2�L + 2D)), one has

_V(t) � � 1eT (t)e(t) + ( � � 1) �
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

�
� 1

� max (P)
eT (t)( I N 
 P)e(t) + ( � � 1) �

1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

� � � 1V(t);

(2.16)
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where � 1 = min f � � 1
� max (P ) ; � 1g:

(2) When t 2 [mT + �; (m + 1) T), the time derivative of (5.15) is given as

_V(t) =2
NX

i =1

eT
i (t)P(Aei (t) � BK

NX

j =1

l ij ej (t)) +
1
2

(� � 1)
NX

i =1

e� � 1 t (di (t) � di )2

�

= eT (t)( I N 
 (AT P + PA) � � 1(2 �L ) 
 PBB T P)e(t) �
1
2

� 1

NX

i =1

e� � 1 t (di (t) � di )2

�

� � max (I N 
 (AT P + PA) � 2� 1 �L 
 PBB T P)eT (t)e(t) + � 1 �
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

(2.17)

Denote� 2 = maxf � max (I N 
 (AT P + P A) � 2� 1
�L 
 P BB T P); � g with � > 0, one

has,

_V(t) � � 2eT (t)e(t) + � 1 �
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

�
� 2

� min (P)
eT (t)( I N 
 P)e(t) + � 1 �

1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

� � 1V(t);

(2.18)

where � 1 = maxf � 2
� min (P ) ; � 1g: By induction, one obtains,

V((m + 1) T) � V(mT + � )e� 1 (T � � ) � V(mT)e� � 1 � � e� 1 (T � � )

= V(mT)e� � 1 � + � 1 (T � � ) � � � � � V (0)e(� � 1 � + � 1 (T � � ))( m+1) :
(2.19)

To ensure that V((m + 1) T) ! 0 as m ! 1 , let � � 1� + � 1(T � � ) < 0.

Then one has� 1 = �=T > � 1
� 1+ � 1

. Thus, lim
t !1

jjei (t)jj = 0. It means that cluster

consensus of general linear MASs via intermittent adaptivepinning control is

reached. This completes the proof.

Remark 2.9 The proof of Theorem2.8 is divided into two partst 2 [mT; mT + � )

and t 2 [mT + �; (m + 1) T). When t 2 [mT; mT + � ), the derivative ofV(t) is

negative due to the in�uence of leaders, which indicates thelim
t !1

jjei (t)jj = 0.

However, whent 2 [mT + �; (m + 1) T), the derivative ofV(t) cannot be deter-

mined to be negative, while it is only obtained that_V(t) � � 1V(t) by choosing the

appropriate positive constants� 2; � 1. Hence, it is critical to design the intermit-

tent control rate � 1 in ( 2.19) for ensuring V((m + 1) T) ! 0 as m ! 1 , that is,

cluster consensus is achieved.
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The general criterions are presented in Theorem2:8 to reach leader-following

cluster consensus of MASs. However, how to construct an appropriate gain matrix

D to satisfy the condition 2�L + 2D > 0 is not easy. Hence, the following theorem

will be given to solve this problem.

Theorem 2.10 The matrix �L + D is a positive if the following conditions hold:

� max (� �L l ) < 0; (2.20)

di > � max (R � S(� �L l )� 1ST ): (2.21)

Proof: In Lemma 1:9, let G = � �L, and � �L � D =
�

R � ~D S
ST � �L l

�
, where

� �L l is the minor matrix of � �L by removing its �rst l row-column pairs, ~D =

diagf d1; : : : ; dlg, R and S represent the matrices with appropriate dimensions.

Thanks to Lemma1:9, we have� �L � D < 0, that is, �L + D is a positive matrix.

This completes the proof.

Remark 4. It is worth noting that most literatures on cluster consensus

assume that adjacency matrix A satis�es
P

j 2 Vk
aij = 0, or

P
j 2 Vk

aij = � , 8k 6= î ,

where� is a constant. In fact, the assumption is conservative. In this chapter, we

take a weakly connected graph into consideration, in where the Laplace matrix

just needs to satisfy the general di�usion property, that is,
NP

j =1
l ij = 0. Moreover,

by choosing an appropriate low bound pinning gaindi , one can get�L + D > 0. For

an undirected connected graph,�L + D > 0 can hold naturally due to the Laplace

matrix is a real symmetric. Therefore, the MASs with undirected connected

graph can be considered as a special case only by choosing theinter-act followers

to be pinned.

2.3.2 Cluster consensus of MASs with a class of nonlinear

dynamics via intermittent adaptive pinning control

It well known that most of physical systems are inherent nonlinear in reality.

Particularly, for the MASs, the nonlinear dynamics play an important role in

determining the �nal consensus states (Cheng et al., 2019). To satisfy the re-

quirement for the application of cluster problem in the realphysical systems, this

chapter further presents an intermittent adaptive pinningapproach for a group
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of nonlinear MASs given by (2.3) and (2.4) subject to both plant uncertainties

and external disturbances.

Let us consider the system (2.3)-(2.4) and control input (2.5). Taking the

control input ( 2.5) for system (2.3) and combining with the de�nition of ei (t),

one has,

_ei (t) =

8
>>>>>>>><

>>>>>>>>:

Aei (t) � BK
NX

j =1

l ij ej (t) � di (t)BKe i (t) + f (x i (t)) � f (ŝi (t)) ;

if i 2 Vi
1 [ Vi

2;

Aei (t) � BK
NX

j =1

l ij ej (t) + f (x i (t)) � f (ŝi (t)) ; if i 2 Vi
3;

(2.22)

whereK is the feedback control matrix will be recalculated in Theorem2.11, di (t)

is de�ned in (2.6) and f (�) is the nonlinear function. Similarity, by rearranging

the order of pinned followers, that is, let the �rst l (1� l � N ) agents are pinned

in MASs. Combine the de�nition of di (t), ei (t) can be changed as:

_ei (t) = Aei (t) � BK
NX

j =1

l ij ej (t) � di (t)BKe i (t) + f (x i (t)) � f (ŝi (t)) ;

i 2 Vi
1 [ Vi

2 [ Vi
3;

(2.23)

_di (t) =

(
�e � 1 tei

T (t)� ei (t); if t 2 [mT; mT + � );

0; if t 2 [mT + �; (m + 1) T):
(2.24)

Theorem 2.11 The MASs (2.3) and (2.4) with the control protocol (2.5) reach

cluster consensus, that is to say,lim
t !1

jjei (t)jj = 0 for i 2 V, if the following

conditions are satis�ed:

(i ) (A,B) is stabilizable,

(ii ) �L + D > 0,

(iii ) K = � 2B T P and � = 2 � 2P BB T P,

(iv ) � 2 = �=T > � 2
� 2+ � 2

,

where D = diagf d1; : : : ; dl ; 0; : : : ; 0gN � N , � 2 = min f� � 3 � � min (P � 1 )2

� max (P ) ; � 1g, � 2 =

maxf � 4
� min (P ) ; � 1g, � 3 = � max (AQ + QAT + 
 2I + Q2 � �BB T ), � = AT P + P A +

I + 
 2P2, � 4 = maxf � max (I N 
 � � 2� 2
�L 
 P BB T P); � g, � , � 1 and � is any
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positive constants,� , P = PT = Q� 1 > 0 and � 2 satisfy the following equations:

 
AQ + QAT � �BB T + 
 2I Q

QT � I

!

< 0 (2.25)

� 2 � � min (2�L + 2D) > � (2.26)

Proof: Choose the following Lyapunov function candidate:

V(t) =
NX

i =1

eT
i (t)P ei (t) +

1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
: (2.27)

(1) When t 2 [mT; mT + � ), take the time derivative of (2.27) as,

_V(t) = 2
NX

i =1

eT
i (t)P(Aei (t) � BK

NX

j =1

l ij ej (t) � di (t)BKe i (t) + f (x i (t)) � f (ŝi (t)))

+
1
2

(� � 1)
NX

i =1

e� � 1 t (di (t) � di )2

�
+ ( di (t) � di )

NX

i =1

eT
i (t)� ei (t):

(2.28)

Denote the compact vector

F (t) = ( f T (x1(t)) � f T (s1̂(t)) ; f T (x2(t)) � f T (s2̂(t)) ; : : : ; f T (xN (t)) � f T (sN̂ (t))) T .

Based on the Assumption2.1, one has,

2eT
i (t)P(f (x i (t)) � f (ŝi (t)) � 2
 jjP ei (t)jj � jj ei (t)jj � eT

i (t)( I + 
 2P2)ei (t):

(2.29)

Combining (2.29), the derivative of V(t) can be written as,

_V(t) = eT (t)( I N 
 AT P � LT 
 K T B T P � D(t) 
 K T B T P)e(t)

+ eT (t)( I N 
 P A � L 
 P BK � D(t) 
 P BK )e(t) + 2 eT (t)( I N 
 P)F (t)

+ ( � � 1)
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
+ eT (t)(D(t) � D) 
 (2� 2P BB T P)e(t):

(2.30)
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Upon (2.29), we can get

_V(t) � eT (t)( I N 
 (AT P + P A + I + 
 2P2)

� � 2(LT + L) 
 P BB T P � 2� 2D(t) 
 P BB T P)e(t)

+ ( � � 1)
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
+ eT (t)(D(t) � D) 
 (2� 2P BB T P)e(t)

� eT (t)( I N 
 (AT P + P A + I + 
 2P2) � � 2(2�L + 2D) 
 P BB T P)e(t)

+ ( � � 1)
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
:

(2.31)

According to the condition(ii ) in Theorem2:11, there exists a constant� 2 satis�es

� 2 � � min (2�L + 2D) > � . Let Q = P � 1, � (t) = ( I N 
 P)e(t), one has,

_V(t) � � T (t)( I N 
 (AQ + QAT + 
 2I + Q2) � I N 
 �BB T )� (t)

+( � � 1)
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
:

(2.32)

Further, according to the Lemma1.8 and the conditions in Theorem2.11, the

matrix AQ + QAT + 
 2I + Q2 � �BB T < 0. Denote � 3 = � max (AQ + QAT +


 2I + Q2 � �BB T ), one has,

_V(t) � � 3� T (t)� (t) + ( � � 1) �
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

= � 3eT (t)( I N 
 P � T )( I N 
 P � 1)e(t) + ( � � 1) �
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

� � 3 �
� min (P � 1)2

� max (P)
eT (t)( I N 
 P)e(t) + ( � � 1) �

1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

� � � 2V(t);
(2.33)

where � 2 = min f� � 3 � � min (P � 1 )2

� max (P ) ; � 1g:
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(2) When t 2 [mT + �; (m + 1) T), take the time derivative of (2.27) as

_V(t) =2
NX

i =1

eT
i (t)P(Aei (t) � BK

NX

j =1

l ij ej (t)) + 2
NX

i =1

eT
i (t)P(f (x i (t)) � f (ŝi (t))

+
1
2

(� � 1)
NX

i =1

e� � 1 t (di (t) � di )2

�
:

(2.34)

Based on (2.29), we have

_V(t) � eT (t)( I N 
 (AT P + P A + I + 
 2P2) � � 2(LT + L) 
 P BB T P)e(t)

�
1
2

� 1

NX

i =1

e� � 1 t (di (t) � di )2

�

� � 4eT (t)e(t) + � 1 �
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

�
� 4

� min (P)
eT (t)( I N 
 P)e(t) + � 1 �

1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

� � 2V(t);
(2.35)

where � 2 = maxf � 4
� min (P ) ; � 1g;

� 4 = maxf � max I N 
 � � � 2(LT + L) 
 P BB T P ; �g, � = AT P + P A + I + 
 2P2.

Similarly, by induction, one obtains,

V((m + 1) T) � V (mT + � )e� 2(T � � ) � V (mT)e� � 2 � � e� 2(T � � )

= V(mT)e� � 2 � + � 2(T � � ) � � � � � V(0)e(� � 2 � + � 2 (T � � ))( m+1) :
(2.36)

To ensure that V((m + 1) T) ! 0 as m ! 1 , let � � 2� + � 2(T � � ) < 0.

Then one has� 2 = �=T > � 2
� 2+ � 2

. Thus, lim
t !1

jjei (t)jj = 0, it means that cluster

consensus of MASs with nonlinear dynamics via intermittentadaptive pinning

control can be reached. This completes the proof.

2.4 Simulation results

Two examples are given in this section to illustrate the e�ectiveness of obtained

results. Consider a MASs with three clusters, Fig.2.1 is the communication

topology. The leaders are labelled asS1, S2 and S3, and the followers are labelled
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as 1 to 10, where followers 1, 2, 3 are in the �rst cluster, followers 4,5, 6 are

in the second cluster, followers 7, 8, 9, 10 are in the third cluster. The dotted

line denotes the e�ects that the leaders impose on followers. From Fig.2.1, we

can see that followers 2, 3, 4, 7 and 8 should be pinned according to the control

strategy (2.5). Speci�cally, due to followers 3 and 4 can receive information

from other clusters, the �rst term of controller (2.5) should be applied to these

followers; followers 2, 7 and 8 cannot receive any information from other clusters,

the second term of controller (2.5) should be applied to these followers; the rest

of followers only can receive information from their own cluster, the third term

of controller (2.5) should be applied to these followers.

From the graph theory, the matricesA and L can be derived as follows:

A =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

and L =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 0 � 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 � 1 2 0 0 0 � 1 0 0 0
0 0 � 1 1 0 0 0 0 0 0
0 0 0 � 1 1 0 0 0 0 0
0 0 0 � 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 � 1 0 0 � 1 2 0 0
0 0 0 0 0 0 0 � 1 1 0
0 0 0 0 0 0 � 1 0 0 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:
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S1

1

2 3

S2

6 5

4

S3

7 8

10 9

Fig. 2.1. The communication topology of the MASs, wheresj denotes thej th
leader, andi denotes thei th follower, j = 1; 2; 3; i = 1; 2; : : : ; 10.

Example 1: (linear case) For the linear case, two kinds of system matrices

A and B are presented to show the in�uence of system matrix for system perfor-

mance.

Linear case (a): For the linear MASs (2.1) and (2.2), we chooseA =

0

@
0 0 0
0 0 1
0 � 1 0

1

A ;

B =

0

@
1
1
1

1

A ; respectively. Obviously,(A; B ) is stabilizable. And the positive

constants can be chosen as:� = 1, � 1 = 1, � = 0:1. Control period T is

given asT = 1s. By calculating the equations (2.11) and (2.12), we can ob-

tain P =

0

@
2:3483 � 0:0488 � 1:4134

� 0:0488 1:8000 � 0:4988
� 1:4134 � 0:4988 1:8689

1

A ; K =
�

1:7722 2:5048 � 0:0865
�
,

� 1 = 2, di = 1, i = 2; 3; 4; 7; 8, � = 0:98. Fig. 2.2 is the state trajectories of

leaders and followers with three dimensions. Fig.2.3 is the time evolution of

di (t) with i = 2; 3; 4; 7; 8 and state erroreij (t) for j = 1; 2; 3; i = 1; 2; : : : ; 10.

Linear case (b): ChooseA =

0

@
� 2 1 1
1 � 1 0
0 1 � 1

1

A ; B =

0

@
0
1
1

1

A as the sys-

tem matrices for linear MASs (2.1) and (2.2), respectively. Fig. 2.4 is the state

trajectories, Fig. 2.5 is the time evolution ofdi (t) and state erroreij (t).
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(c) State trajectories x i 3 and sj 3

Fig. 2.2. State trajectories of all agents for linear case (a).
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(a) The time evolution of di (t)
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(b) The state error eij (t)

Fig. 2.3. The time evolution of di (t) and state erroreij (t) for linear case (a).
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(c) State trajectories x i 3 and sj 3

Fig. 2.4. State trajectories of all agents for linear case (b).
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Fig. 2.5. The time evolution of di (t) and state erroreij (t) for linear case (b).
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Example 2: For the dynamics of nonlinear MASs (2.3) and (2.4), we choose

A =
�

0 1
� 1 0

�
; B =

�
0
1

�
; and f(x)=0.2sin(x) as system matrices and nonlin-

ear function, respectively. Obviously,(A; B ) is stabilizable and nonlinear function

f (�) satis�es the Assumption2.1. And the positive constants can be chosen as:


 = 0:2, � = 1, � = 1, � 1 = 0:1, � = 0:01. Control period T is given as

T = 1s. By calculating the equations (2.25), (2.26) and (2.21), we can obtain

P = Q� 1 =
�

20 10
10 10

�
; K =

�
20 20

�
, � 2 = 2, di = 1, i = 2; 3; 4; 7; 8,

� = 0:96. Fig. 2.6 and Fig. 2.7 are the �rst component and second component of

the state trajectories of the all agents respectively. Fig.2.8 is the time evolution

of di (t). Fig. 2.9 is the state errorei (t).

From the above �gures, we can conclude that the followers in the same cluster

achieve leader-following consensus and there is no consensus among the di�erent

clusters for both linear system and a class of nonlinear system, that is, the control

inputs are e�ective, the cluster consensus of MASs is realised via intermittent

adaptive pinning control.

Fig. 2.6. The �rst component x i 1 and sj 1 of the state trajectories of the all
agents, wherej = 1; 2; 3; i = 1; 2; : : : ; 10.
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Fig. 2.7. The second componentx i 2 and sj 2 of the state trajectories of the all
agents, wherej = 1; 2; 3; i = 1; 2; : : : ; 10.
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Fig. 2.8. The time evolution of di (t), where i = 2; 3; 4; 7; 8.

Fig. 2.9. The state error eij (t), where j = 1; 2; i = 1; 2; : : : ; 10.
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2.5 Conclusion

This chapter has investigated the cluster consensus of MASsvia intermittent

adaptive pinning control. Firstly, for the linear MASs and aclass of nonlinear

MASs, we have employed intermittent adaptive pinning control schemes respec-

tively to accomplish the cluster consensus. Secondly, for the network topology

of MASs, we take a weakly connected topology into consideration, which is more

universal in practice in contrast to the directed network topology required to be

balanced or contain a directed spanning tree. Thirdly, a rigorous proof have been

given for the intermittent adaptive pinning control input based on the Lyapunov

stability theory and the corresponding su�cient conditions have been derived.

Finally, simulation examples are presented to verify the e�ectiveness of the main

results. It is well known that there still exists numerous challenging problems to

be studied such as time-delay in�uence, state observer, which will be studied in

our next chapter.
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Chapter 3

Observer-based intra-cluster lag

consensus of multi-agent systems

via intermittent adaptive pinning

control

Contents
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3.3.2 Observer-based intra-cluster lag consensus for nonlinear

MASs . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Simulation results . . . . . . . . . . . . . . . . . . . . . 67

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1 Introduction

In real applications, it is often di�cult to avoid the occurr ence of time delays due

to the �nite chemical reaction times, �nite switching speedof ampli�ers, memory

e�ects, �nite signal propagation time in biological networks and so on. Thus, it is

extremely important and necessary to investigate cluster consensus of MASs with
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time delays. Recently, the topic of cluster consensus with time delays has been

extensively studied in many aspects. In (Ma et al., 2016), the authors proposed

the concept of cluster-delay consensus in �rst-order MASs with nonlinear dynam-

ics via pinning control. In (Da et al., 2018), the authors considered the cluster

lag consensus of nonlinear MASs with two types of time-delays. In addition, by

using frequency-domain analysis method and matrix theory,the dynamics group

consensus problem of heterogenous MASs with time delay was investigated in

(Wen et al., 2016b). To the best of our knowledge, the intra-cluster lag consensus

of multi-agent systems via intermittent adaptive pinning control has not been

addressed before.

Furthermore, due to the states of many actual systems are notalways available

or measured directly in expensive cost, it is quite necessary to design an observer

to estimate the agent's real-time state. Up to now, various issues are addressed by

observer-based method. (Rosaldo-Serranoet al., 2019) investigated the formation

tracking problem, where suitable Luenberger observers areused for the agents to

estimate linear and angular velocities. (Han et al., 2019) studied the containment

control issue of general linear MASs with exogenous disturbances, where the

disturbances are estimated by disturbance observer-basedcontrol scheme. In

order to estimate the state of leader and deal with �xed-timestability problem,

(Zuo et al., 2019) considered the consensus problem for MASs with high-order

integrator dynamics by designing a distributed consensus observer. To our best

knowledge, so far the observer-based intra-cluster lag consensus of MASs has

not been investigated. Moreover, compared with a single system or integrator

MASs, the observer-based intra-cluster lag consensus of MASs with general linear

dynamics and nonlinear dynamics is more challenging.

Inspired by the aforementioned these considerations, thischapter investigates

the observer-based intra-cluster lag consensus (OBICLC) of general linear MASs

and nonlinear MASs via intermittent adaptive pinning control (IAPC), where

each cluster has a virtual leader whose state is available toonly a small part

of followers, and the pinning gains are changeable because of communication

constraints. The so-called intra-cluster lag consensus (ICLC) means that the fol-

lowers in the same cluster can achieve lag consensus asymptotically while the

followers in di�erent clusters can achieve di�erent agreements. The main contri-

butions of this work are listed as follows.
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3.2 Problem formulation

ˆ Firstly, considering the relevant full state information of each follower is not

always available, the Luenberger observers are designed for general linear

and nonlinear MASs respectively to estimate the states of followers. Hence,

the control protocols in this chapter only use the observed states information

of followers instead of their real-time states information.

ˆ Secondly, similar with above chapter, to realize the intra-cluster lag consen-

sus, the followers in each cluster are classi�ed into three types. Speci�cally,

the followers can only receive information from the followers in their own

cluster, the ones receive information from the followers inother clusters,

and the others cannot receive information from any followers. Then, the

distributed intermittent adaptive pinning control protoc ols are further de-

signed according to the di�erent categories of followers, which make sure

that the followers in the same cluster achieve intra-cluster lag consensus

whereas the followers in the di�erent clusters achieve di�erent consensus.

ˆ Thirdly, compared with the most of existing results about cluster consensus

where each block unit in the weighted adjacency matrix of network topology

is assumed to be a zero-row-sum matrix or an equal-row-sum matrix, which

is relative conservative in actual applications, in this chapter a weakly con-

nected topology is still considered and all the coupling weights of network

topology are positive, which is more universal in practice.

ˆ Fourthly, di�erent from continuous control protocols in ( Qian et al., 2014)

and (Huanget al., 2019), the pinning gains in proposed control protocols are

designed to be intermittent adaptive and with an exponential convergence

rate, which can e�ectively reduce communication costs, avoid the pinning

gains being larger than those needed in practice. Meanwhile, it guarantees

the pinning gains quickly converge to steady value.

3.2 Problem formulation

To study the OBICLC problem via IAPC strategy for linear MASs and a class

of nonlinear MASs, in this section, the model and problem objective are brie�y

introduced.
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Case I (Generic Linear Systems):

Consider a general linear MASs containingN followers andm virtual leaders

(N > m � 2). The i th follower's dynamics is

(
_x i (t) = Ax i (t) + Bu i (t)

yi (t) = Cxi (t)
; i 2 f 1; 2; :::; Ng , V; (3.1)

where x i 2 Rn , ui 2 Rp, yi 2 Rq denote the state, control protocol and output

measurement ofi th follower, respectively. The constant matricesA 2 Rn� n ,

B 2 Rn� p and C 2 Rq� n have appropriate dimensions. Suppose that the matrix

triple (A; B; C ) is stabilizable and detectable.

The j th virtual leader's dynamics is modeled by

(
_sj (t) = Asj (t)

yj (t) = Csj (t)
; j 2 f 1; 2; :::; mg , 
 ; (3.2)

where sj (t) 2 Rn , yj 2 Rq denote the state and output measurement, respec-

tively.

Case II (Nonlinear Oscillators):

The dynamics of thei th follower is characterized by

(
_x i (t) = Ax i (t) + Bu i (t) + f (x i (t))

yi (t) = Cxi (t)
; i 2 V; (3.3)

and the virtual leader j 's dynamics is described by

(
_sj (t) = Asj (t) + f (sj (t))

yj (t) = Csj (t)
; j 2 
 ; (3.4)

where the nonlinear functionf (�) holds the following Assumption3.1.

Assumption 3.1 It is assumed that the nonlinear functionf (�) satis�es the Lip-

schiz condition, i.e., for any vectorsx; y 2 Rm , there exists a constant
 > 0 such

that kf (x) � f (y)k � 
 kx � yk.

Remark 3.2 The Lipschiz condition assumption is widely used in the analysis

of nonlinear systems. With the help of Lipschiz condition assumption, the exis-

tence and uniqueness of nonlinear systems' solutions can beguaranteed. Refer to

literatures (Wen et al., 2013) and (Ekramian, 2017) for more details.
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3.2 Problem formulation

De�nition 3.3 For arbitrary initial states, the MASs (3.1)-( 3.2) and (3.3)-( 3.4)

achieve the ICLC if lim
t !1

jj � i (t)jj = 0 and lim
t !1

jj sl (t) � sk(t)jj 6= 0, where l 6= k,

l; k 2 
 , � i (t) = x i (t) � ŝi (t � � î ), i 2 V, î 2 
 is the subscript of the leader that

the i th follower will track with, � î denotes the time delay in̂i cluster between the

i th follower and its own leader.

Remark 3.4 Note that the trajectories of all virtual leaders are determined by

system matrix A owing to sj (t) = sj (0)eAt . If A is a Hurwitz matrix, then

the states of all leaders will asymptotically reach zeros, which goes against our

objective. Therefore, in this chapter, we assume the matrixA is not Hurwitz.

By giving di�erent initial values for systems (3.2) and (3.4), the states of virtual

leaders will be di�erent, that is, for any l 6= k, lim
t !1

jj sl (t) � sk(t)jj 6= 0, where

l; k 2 
 .

�R�E�V�W�D�F�O�H �R�E�V�W�D�F�O�H

2

1

3

s1

4

5

6

s2

Fig. 3.1. An example of MASs with time delays.

Remark 3.5 Note that the existence of time-delays in many practical systems is

ubiquitous and inevitable due to communication, calculation, actuation. There-

fore, more and more researchers have focused their attention on the consensus

problem of MASs with time delays. Lag consensus, including consensus as a spe-

cial case, which means the followers' states are consistentwith the delayed states

of leaders. For example, proper time delays between di�erent vehicles in the way

can keep the road safe and orderly. Otherwise, congestion often occurs. Taking
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into account lag consensus can mitigate network or tra�c congestion problem,

in this paper, we consider the intra-cluster lag consensus of MASs, which means

that the followers in the same cluster can achieve lag consensus asymptotically

while the followers in di�erent clusters can achieve di�erent agreements. In order

to clarify the problem more clearly, For example, two isolated groups of vehicles

follow the leader and pass across the obstacle, obviously, they cannot pass across

the obstacle at the same time (see Fig.3.1), but we can design a suitable protocol

to make the vehicles pass across the obstacle orderly.

3.3 Main results

3.3.1 Observer-based intra-cluster lag consensus for line ar

MASs

Before proceeding, some explanations are presented for thereason why we propose

the following control protocol. In the former works about MASs (Zhang et al.,

2019a), the cluster lag consensus was achieved based on two commonassumptions.

Firstly, the local relative state information among all agents is available. Secondly,

information between the leaders and followers can be transmitted continuously.

However, in many circumstances, full state measurements and communication

information are not always available due to physical constrain. Therefore, in this

chapter, assuming that each follower can receive the relative output information

instead of its neighbors' state information, the followingobserver-based control

protocol for the follower i in (3.1) is proposed,

ui (t) =

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

K
NX

j =1

aij (x̂ j (t) � x̂ i (t)) � di (t)( x̂ i (t) � ŝi (t � � î )) + K
NX

j =1

l ij sĵ (t � � ĵ );

if i 2 ~Vî

K
NX

j =1

aij (x̂ j (t) � x̂ i (t)) � di (t)( x̂ i (t) � ŝi (t � � î )) ;

if i 2 Vî n ~Vî and deg(i ) in = 0

K
NX

j =1

aij (x̂ j (t) � x̂ i (t)) ; otherwise;

(3.5)
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wherex̂ i (t) 2 Rn is the observer state,̂i and ĵ are the subscripts of the leaders in

Theorem3.9, � î and � ĵ are the time delays,K represents the feedback control gain

matrix. The observer statex̂ i (t) and adaptive lawdi (t) are de�ned as follows:

(
_̂x i (t) = Ax̂ i (t) + Bu i (t) + F (ŷi (t) � yi (t))

ŷi (t) = Cx̂ i (t);
(3.6)

_di (t) =

(
�e � 1 t (x̂ i (t) � ŝi (t � � î ))

T �( x̂ i (t) � ŝi (t � � î )) ; if t 2 [mT; mT + � );

0; if t 2 [mT + �; (m + 1) T);
(3.7)

where matricesF and � will be determined later in Theorem3.9, � and � 1 are

positive constants,T > 0 and � 2 (0; T) represent the control period and control

width respectively, [mT; mT + � ) and [mT + �; (m + 1) T) are called as work time

interval and rest time interval.

Remark 3.6 Note that the followers in each cluster can be divided into three

types. Correspondingly, the controller (3.5) is designed according to the special

property of each follower. For all the followers, The termK
NP

j =1
aij (x̂ j (t) � x̂ i (t))

in the control protocol (3.5) is necessary, which re�ects the interaction between

agent i and its neighbours. For the followers which can receive information

from other clusters or can not receive information from any followers, the term

di (t)( x̂ i (t) � ŝi (t � � î )) is introduced to obtain the information of leaders and the

time delay� î can be di�erent among di�erent clusters. Besides, for the followers

that can receive information from other clusters, the termK
NP

j =1
l ij sĵ (t � � ĵ ) is

used to counteract the in�uence among clusters. The purposeof controller (3.5)

is to make sure that the followers in the same cluster achieveICLC whereas the

followers in the di�erent clusters achieve di�erent consensus.

Remark 3.7 The design of controller (3.5) is partly inspired by (Da et al., 2018;

Qian et al., 2014), where the pinning control gaindi (t) is a �xed constant all the

time or in every time interval. However, due to the change of external environ-

ment or in the consideration of reducing control cost, it is more reasonable and

e�ective to design the pinning control gain to be intermittent adaptive. Further-

more, in order to make the pinning control gain quickly converge to steady value,
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the pinning control gain di (t) possesses an exponential convergence rate. Based

on above analysis, the derivative ofdi (t) is designed to be the form of equation

(3.7) if i th follower is pinned;di (t) = 0 otherwise.

Lemma 3.8 If vi is the follower that belongs toVî n ~Vî , then
NP

j =1
l ij sĵ (t � � ĵ ) = 0 .

Proof: From the de�nition of ~Vî , if vi 2 Vî n ~Vî , one hasl ij = 0 for 8vj =2 Vî .

Besides, ifvj 2 Vî , one hassĵ (t � � ĵ ) = ŝi (t � � î ). Combining the fact
NP

j =1
l ij = 0,

it follows that,

NX

j =1

l ij sĵ (t � � ĵ ) =
X

vj 2 Vî

l ij sĵ (t � � ĵ ) +
X

vj =2 Vî

l ij sĵ (t � � ĵ ) =
X

vj 2 Vî

l ij ŝi (t � � î )

=(
X

vj 2 Vî

l ij +
X

vj =2 Vî

l ij )ŝi (t � � î ) =
NX

j =1

l ij ŝi (t � � î ) = 0 :

(3.8)

Combining the de�nition ei (t) = x̂ i (t) � ŝi (t � � î ) and the formulas (3.2) � (3.7),

one has,

_ei (t) =

8
>>>>>>>><

>>>>>>>>:

Aei (t) � BK
NX

j =1

l ij ej (t) � di (t)BKe i (t) + F (ŷi (t) � yi (t)) ;

if i 2 V1
î [ V2

î ;

Aei (t) � BK
NX

j =1

l ij ej (t) + F (ŷi (t) � yi (t)) ; if i 2 V3
î ;

(3.9)

whereV1
î
; V2

î
; V3

î
is de�ned in Chapter 2, see equation (2.8).

_di (t) =

(
�e � 1 tei (t)T � ei (t); if t 2 [mT; mT + � );

0; if t 2 [mT + �; (m + 1) T):
(3.10)

Let the �rst l(l = 1; 2; : : : ; N ) followers be pinned by rearranging the followers'

order. Due to the fact that the derivative ofdi (t) satis�es equation (3.10), that is,

for any time t, di (t) > 0 if the i -th follower is pinned;di (t) = 0 otherwise. When
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vi 2 V3
î
, that meansdi (t) = 0 , then the error system (3.9) can be reformulated as

_ei (t) = Aei (t) � BK
NX

j =1

l ij ej (t) � di (t)BKe i (t) + F (ŷi (t) � yi (t)) ;

i 2 V1
î [ V2

î [ V3
î :

(3.11)

Theorem 3.9 Suppose that the matrix triple(A; B; C ) is stabilizable and de-

tectable, there exists a diagonal matrixD, a positive constant� 1 and a positive

de�nite matrix P = PT > 0 such that the following equations:

�L + D > 0; (3.12)

� 1 � � min (2�L + 2D) > 1; (3.13)

AT P + P A � � 1P BB T P � min (2�L + 2D) < 0; (3.14)

where �L = L + L T

2 , D = diagf d1; : : : ; dl ; 0 : : : ; 0gN � N is a diagonal matrix with

d1; : : : ; dl > 0; 1 � l � N . Then letting K = � 1B T P, � = 2 � 1P BB T P, and

designing a matrixF such thatA + F C is Hurwitz matrix, the OBICLC of MASs

(3.1)-( 3.2) can be reached by control input (3.5) with the following condition:

� � 1� + � 1(T � � ) < 0; (3.15)

where� 1 = min f � � 1
� max (P ) ; � 1g, � 1 = � max (AT P + P A� � 1P BB T P � min (2�L +2D)),

� 1 = maxf � 2
� min (P ) ; � 1g, � 2 = maxf � max (I N 
 (AT P + P A) � 2� 1

�L 
 P BB T P); � g,

� 1 and � are positive constants.

Proof: Theorem3.9 can be proved by two steps: the �rst step is to show the

e�ectiveness of state observer, i.e.,lim
t !1

jj x i (t) � x̂ i (t)jj = 0, and the second step

is to prove the asymptotic stability of error system (3.11), that is, lim
t !1

jjei (t)jj = 0.

Step 1: Let � i (t) = x i (t) � x̂ i (t), one has,

_� i (t) = Ax i (t) + Bu i (t) � Ax̂ i (t) � Bu i (t) � F (ŷi (t) � yi (t))

= A(x i (t) � x̂ i (t)) + F C(x i (t) � x̂ i (t))

=( A + F C)� i (t):

(3.16)
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Based on the condition in Theorem3.9: A + F C is Hurwitz matrix, we have

lim
t !1

jj � i (t)jj = lim
t !1

jj x i (t) � x̂ i (t)jj = 0, which indicates the state observer is feasi-

ble. Furthermore, one hasF (ŷi (t) � yi (t)) = F C� i (t) = 0 as t ! 1 . In equation

(3.11), owing to � i (t) is decoupled from the errorei (t), the stability of ( 3.11) is

identical with that of the following system:

_ei (t) = Aei (t) � BK
NX

j =1

l ij ej (t) � di (t)BKe i (t); vi 2 V1
î [ V2

î [ V3
î : (3.17)

Step 2: Construct the Lyapunov function for equation (3.17):

V(t) =
NX

i =1

eT
i (t)P ei (t) +

1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
; (3.18)

where matrix P and the parameters� , di , � 1 are de�ned in Theorem3.9. Evi-

dently, V(t) � 0:

(1) When t 2 [mT; mT + � ), di�erentiating V(t) along (3.17) yields

_V(t) =2
NX

i =1

eT
i (t)P(Aei (t) � BK

NX

j =1

l ij ej (t) � di (t)BKe i (t))

+
1
2

(� � 1)
NX

i =1

e� � 1 t (di (t) � di )2

�
+ ( di (t) � di )

NX

i =1

eT
i (t)� ei (t):

(3.19)

Let D(t) = diagf d1(t); : : : ; dl (t); 0; : : : ; 0gN � N , e(t) = ( eT
1 (t); eT

2 (t); : : : ; eT
N (t))T .

With K = � 1B T P and � = 2 � 1P BB T P, the derivative of V(t) can be expressed
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as,

_V(t) = eT (t)( I N 
 AT P � LT 
 K T B T P � D(t) 
 K T B T P)e(t)

+ eT (t)( I N 
 P A � L 
 P BK � D(t) 
 P BK )e(t)

+ ( � � 1) �
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
+ eT (t)(D(t) � D) 
 (2� 1P BB T P)e(t)

= eT (t)( I N 
 (AT P + P A) � 2� 1
�L 
 P BB T P � 2� 1 � D(t) 
 P BB T P)e(t)

+ ( � � 1) �
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
+ eT (t)(D(t) � D) 
 (2� 1P BB T P)e(t)

= eT (t)( I N 
 (AT P + P A) � � 1(2�L + 2D) 
 P BB T P)e(t)

+ ( � � 1) �
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

� � 1eT (t)e(t) + ( � � 1) �
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

�
� 1

� max (P)
eT (t)( I N 
 P)e(t) + ( � � 1) �

1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

� � � 1V(t);
(3.20)

where� 1 = � max (AT P+ P A� � 1P BB T P � min (2�L+2D)), � 1 = min f � � 1
� max (P ) ; � 1g >

0:

(2) When t 2 [mT + �; (m + 1) T), the derivative of (3.18) can be obtained:

_V(t) =2
NX

i =1

eT
i (t)P(Aei (t) � BK

NX

j =1

l ij ej (t)) +
1
2

(� � 1)
NX

i =1

e� � 1 t (di (t) � di )2

�

= eT (t)( I N 
 (AT P + P A) � � 1(2�L) 
 P BB T P)e(t)

�
1
2

� 1

NX

i =1

e� � 1 t (di (t) � di )2

�
;

� � max (I N 
 (AT P + P A) � 2� 1
�L 
 P BB T P)eT (t)e(t)

+ � 1 �
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

� � 2eT (t)e(t) + � 1 �
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
(3.21)
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furtherly,

_V(t) �
� 2

� min (P)
eT (t)( I N 
 P)e(t) + � 1 �

1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

� � 1V(t);

(3.22)

where � 2 = maxf � max (I N 
 (AT P + P A) � 2� 1
�L 
 P BB T P); � g,

� 1 = maxf � 2
� min (P ) ; � 1g > 0:

Accordingly, whent 2 [0; � ), one has

V(t) � V(0)e� � 1 t ; (3.23)

when t 2 [�; T ), one has

V(t) � V (� )e� 1(t � � ) � V (0)e� � 1 � + � 1 (t � � ) : (3.24)

By induction, one obtains, whent 2 [mT; mT + � ),

V(t) � V (0)e� � 1(m� + t � mT )+ � 1 m(T � � ) � V (0)e� � 1m� + � 1m(T � � ) = V(0)em(� � 1 � + � 1 (T � � )) :

(3.25)

Similarly, when t 2 [mT + �; (m + 1) T),

V(t) � V(0)e� � 1 (m+1) � + � 1 (m(T � � )+ t � T2k +1 ) � V (0)e� � 1(m+1) � + � 1 (m(T � � )+( T � � ))

= V(0)e(m+1)( � � 1 � + � 1 (T � � )) :
(3.26)

According to the equation (3.15) in Theorem 3.9: � � 1� + � 1(T � � ) < 0, one

has V(t) ! 0 and lim
t !1

jjei (t)jj = 0 as m ! 1 . Combining the �rst step and the

second step, one haslim
t !1

jj � i (t)jj = lim
t !1

jj x i (t) � x̂ i (t) + x̂ i (t) � ŝi (t � � î )jj=0. It

means that ICLC of general linear MASs via IAPC can be reached. This proof

is completed.

Remark 3.10 The proof of Theorem3.9 is divided into two parts. The �rst step

is to show that state observer is valid by only using the relevant output information

of system (3.1). In the second step, whent 2 [mT; mT + � ), the derivative ofV(t)

is negative due to the e�ect of adaptive pinning gaindi (t), which indicates the

lim
t !1

jjei (t)jj = 0. However, whent 2 [mT + �; (m + 1) T), the derivative ofV(t)

cannot be determined to be negative, while it is only obtained that _V(t) � � 1V(t)
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by choosing the appropriate positive constants�; � 2; � 1. Hence, the equation (3.15)

is critical to ensure V((m + 1) T) ! 0 as m ! 1 . To make it more clear, de�ne

the control rate � = �
T � � , where� is the control width,T � � is the rest width, then

equation (3.15) can be rewritten as: � > � 1
� 1

. It can be seen that the control rate

� plays an essential role in realizing intra-cluster lag consensus. In consideration

of this fact, in real applications, we can select the controlperiod T according to

our request.

Remark 3.11 The condition (3.14) is equivalent to the following Riccati equa-

tion condition: AT P + P A � � 1P BB T P � min (2�L + 2D) + Q = 0 whereQ is any

positive de�nite matrix. The purpose for the form (3.14) is to make a comparison

with the following condition (3.34) in Theorem 3.14.

The general criteria are presented in Theorem3:9 to reach intra-cluster lag con-

sensus of MASs. However, how to construct an appropriate gain matrix D to

satisfy the condition (3.12): �L + D > 0 is not obvious. Hence, we give Theorem

3.12to solve this problem.

Theorem 3.12 The matrix �L + D is positive de�nite with the following prereq-

uisites

� max (� �L l ) < 0; (3.27)

di > � max (R � S(� �L l )� 1ST ): (3.28)

Proof: In Lemma 1:8, let G = � �L , one has� �L � D =
�

R � ~D S
ST � �L l

�
, where

~D = diagf d1; : : : ; dlg, � �L l is obtained by removing the �rst l row and column,

R and S represent the matrices with appropriate dimensions. Thanks to Lemma

1:8 and combine with (3.27), (3.28), we have� �L � D < 0, that is, �L + D is a

positive de�nite matrix. This completes the proof.

Remark 3.13 In ( Cai et al., 2015; Kang et al., 2018; Tan et al., 2011), in or-

der to achieve cluster synchronization or group consensus,the topology contains

negative weight couplingsaij < 0 and is required to satisfy the following assump-

tion:
P

j 2 Vk
aij = 0 , or

P
j 2 Vk

aij = � , 8k 6= î , which is too conservative in

practical applications. In order to remove the restrictions, (Qian et al., 2014)

and (Da et al., 2018) employ pinning leader-following control scheme to reach

cluster consensus of MASs under weakly connected graph. Inspired by the works,
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in this paper, the intermittent adaptive pinning control isdesigned for general lin-

ear MASs and Lipschitz nonlinear MASs under weakly connected graph, in which

the Laplace matrix is just supposed to satisfy the general di�usion property, that

is,
NP

j =1
l ij = 0. Moreover, by choosing an appropriate low bound pinning gain di ,

one can get�L + D > 0. For an undirected connected graph,�L + D > 0 can hold

naturally due to the Laplace matrix is a real symmetry. Therefore, the MASs with

undirected connected graph can be considered as a special case only by choosing

the inter-act followers to be pinned.

3.3.2 Observer-based intra-cluster lag consensus for non-

linear MASs

In this section, the OBICLC of MASs with nonlinear dynamics via intermittent

adaptive pinning control is further considered, which is more challenging due to

the complexity of the system structure. Before going on, thestate observer for

the i th nonlinear follower agent is designed as follows,

(
_̂x i (t) = Ax̂ i (t) + Bu i (t) + f (x̂ i (t)) + F (ŷi (t) � yi (t))

ŷi (t) = Cx̂ i (t)
; i 2 V: (3.29)

In this section, we still use the control protocol (3.5) with ( 3.7), taking the

control protocol (3.5) for system (3.3)-(3.4) and combining toei (t) = x̂ i (t) � ŝi (t �

� î ), one has,

_ei (t) =

8
>>>>>>>><

>>>>>>>>:

Aei (t) � BK
NX

j =1

l ij ej (t) � di (t)BKe i (t) + Fi (t) + F (ŷi (t) � yi (t)) ;

if i 2 V1
î [ V2

î ;

Aei (t) � BK
NX

j =1

l ij ej (t) + Fi (t) + F (ŷi (t) � yi (t)) ; if i 2 V3
î ;

(3.30)

_di (t) =

(
�e � 1 tei (t)T � ei (t); if t 2 [mT; mT + � );

0; if t 2 [mT + �; (m + 1) T);
(3.31)

whereFi (t) = f (x i (t)) � f (ŝi (t)) .
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Theorem 3.14 Suppose that the matrix triple(A; B; C ) is stabilizable and de-

tectable, there exists a diagonal matrixD, a positive constant� 2 and a positive

de�nite matrix P = PT = Q� 1 > 0 such that the following equations:

�L + D > 0; (3.32)

� 2 � � min (2�L + 2D) > �; (3.33)
 

AQ + QAT � �BB T + 
 2I Q

QT � I

!

< 0; (3.34)

where �L = L + L T

2 , D = diagf d1; : : : ; dl ; 0 : : : ; 0gN � N is a diagonal matrix with

d1; : : : ; dl > 0; 1 � l � N . Then letting K = � 2B T P, � = 2 � 2P BB T P, and

designing a matrixF such thatA + 
I + F C is Hurwitz matrix, the OBICLC of

MASs (3.3)-( 3.4) can be reached by control input (3.5) with the following condi-

tion:

� � 2� + � 2(T � � ) < 0; (3.35)

where � 2 = min f� � 3 � � min (P � 1)2

� max (P ) ; � 1g, � 3 = � max (AQ + QAT + 
 2I + Q2 �

�BB T ), � 4 = maxf � max (I N 
 (AT P + P A + I + 
 2P2) � 2� 2
�L 
 P BB T P); � g,

� 2 = maxf � 4
� min (P ) ; � 1g, � 1 and � are positive constants.

Proof: The proof is still divided into two parts, the �rst part is to s how the

e�ectiveness of state observer, i.e.,lim
t !1

jj x i (t) � x̂ i (t)jj = 0. And the second part

is to prove lim
t !1

jjei (t)jj = 0.

The �rst step: Let � i (t) = x i (t) � x̂ i (t), one has,

_� i (t) = Ax i (t) + Bu i (t) � Ax̂ i (t) � Bu i (t) + f (x i (t)) � f (x̂ i (t)) � F (ŷi (t) � yi (t))

= A(x i (t) � x̂ i (t)) + F C(x i (t) � x̂ i (t)) + f (x i (t)) � f (x̂ i (t))

=( A + F C)� i (t) + f (x i (t)) � f (x̂ i (t)) :
(3.36)

Construct the following Lyapunov function candidate:

V(t) =
1
2

NX

i =1

� T
i (t)� i (t): (3.37)
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Taking the time derivative of (3.37) yields

_V(t) =
NX

i =1

� T
i (t)(( A + F C)� i (t) + f (x i (t)) � f (x̂ i (t)))

�
NX

i =1

� T
i (t)(A + F C + 
I )� i (t):

(3.38)

Based on the conditionA + F C + 
I is Hurwitz matrix, one has _V(t) < 0.

Thus, lim
t !1

jj � i (t)jj = lim
t !1

jj x i (t) � x̂ i (t)jj = 0, as wellF (ŷi (t) � yi (t)) = F C� i (t) =

0. In equation (3.30), owing to � i (t) is decoupled from the errorei (t), the stability

of (3.30) is identical with the stability of the following system:

_ei (t) =

8
>>>>><

>>>>>:

Aei (t) � BK
NX

j =1

l ij ej (t) � di (t)BKe i (t) + Fi (t); if i 2 V1
î [ V2

î ;

Aei (t) � BK
NX

j =1

l ij ej (t) + Fi (t); if i 2 V3
î :

(3.39)

The second step: Construct the Lyapunov function candidate:

V(t) =
NX

i =1

eT
i (t)P ei (t) +

1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
: (3.40)

(1) When t 2 [mT; mT + � ), the derivative of (3.40) is

_V(t) =2
NX

i =1

eT
i (t)P(Aei (t) � BK

NX

j =1

l ij ej (t) � di (t)BKe i (t) + f (x̂ i (t)) � f (ŝi (t)))

+
1
2

(� � 1)
NX

i =1

e� � 1 t (di (t) � di )2

�
+ ( di (t) � di )

NX

i =1

eT
i (t)� ei (t):

(3.41)

DenoteF (t) = ( f T (x̂1(t)) � f T (s1̂(t)) ; f T (x̂2(t)) � f T (s2̂(t)) ; : : : ; f T (x̂N (t)) �

f T (sN̂ (t))) T . Based on the Assumption3.1, one has

2eT
i (t)P(f (x̂ i (t)) � f (ŝi (t)) � 2
 jjP ei (t)jj � jj ei (t)jj � eT

i (t)( I + 
 2P2)ei (t): (3.42)
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Combining (3.42) and the conditions in Theorem3.14, _V(t) can be written as

_V(t) = eT (t)( I N 
 AT P � LT 
 K T B T P � D(t) 
 K T B T P)e(t)

+ eT (t)( I N 
 P A � L 
 P BK � D(t) 
 P BK )e(t) + 2 eT (t)( I N 
 P)F (t)

+ ( � � 1)
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
+ eT (t)(D(t) � D) 
 (2� 2P BB T P)e(t);

(3.43)

furtherly,

_V(t) � eT (t)( I N 
 (AT P + P A + I + 
 2P2) � 2� 2( �L) 
 P BB T P

� 2� 2D(t) 
 P BB T P))e(t)

+ ( � � 1)
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
+ eT (t)(D(t) � D) 
 (2� 2P BB T P)e(t)

� eT (t)( I N 
 (AT P + P A + I + 
 2P2) � � 2(2�L + 2D) 
 P BB T P))e(t)

+ ( � � 1)
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
:

(3.44)

Based on the condition in Theorem3.14, the matrix 2�L + 2D > 0, there exist a

constant � 2 satis�es � 2� min (2�L + 2D) > � . Let Q = P � 1, � (t) = ( I N 
 P)e(t),

one has,

_V(t) � � T (t)( I N 
 (AQ + QAT + 
 2I + Q2) � I N 
 �BB T )� (t)

+ ( � � 1)
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�
:

(3.45)

Furthermore, since the conditions :
�

AQ + QAT � �BB T + 
 2I Q
QT � I

�
< 0 in

Theorem3.14, and with the help of Schur complement lemma (Boyd et al., 1994),

one hasAQ + QAT + 
 2I + Q2 � �BB T < 0. Denote � 3 = � max (AQ + QAT +
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 2I + Q2 � �BB T ), it follows

_V(t) � � 3� T (t)� (t) + ( � � 1) �
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

� � 3� min (P)eT (t)( I N 
 P)e(t) + ( � � 1) �
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

� � � 2V(t);

(3.46)

where � 2 = min f� � 3� min (P); � 1g > 0.

(2) When t 2 [mT + �; (m + 1) T), the derivative of (3.40) follows

_V(t) =2
NX

i =1

eT
i (t)P(Aei (t) � BK

NX

j =1

l ij ej (t)) + 2
NX

i =1

eT
i (t)P(f (x i (t)) � f (ŝi (t))

+
1
2

(� � 1)
NX

i =1

e� � 1 t (di (t) � di )2

�

� eT (t)( I N 
 (AT P + P A + I + 
 2P2) � � 2(LT + L) 
 P BB T P)e(t)

�
1
2

� 1

NX

i =1

e� � 1 t (di (t) � di )2

�

� � 4eT (t)e(t) + � 1 �
1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

�
� 4

� min (P)
eT (t)( I N 
 P)e(t) + � 1 �

1
2

NX

i =1

e� � 1 t (di (t) � di )2

�

� � 2V(t);
(3.47)

where� 4 = maxf � max I N 
 (AT P + P A + I + 
 2P2) � � 2(LT + L) 
 P BB T P; �g >

0, � 2 = maxf � 4
� min (P ) ; � 1g > 0.

Similarly, by induction, one obtains,

V((m + 1) T) � V((mT + � )e� 2 (T � � )

� V(mT)e� � 2 � � e� 2(T � � )

= V(mT)e� � 2 � + � 2 (T � � ) � � � �

� V(0)e(� � 2 � + � 2 (T � � ))( m+1) :

(3.48)

Next, by the same operations with (3.23)-(3.26) and combining to the condition
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