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Chapter 1

Introduction

Contents

1.1 Background and motivation . . . . . . . . . . . . . . . 1

1.2 Overview of distributed coordination of MASs . . . . 3

1.2.1 Consensus problem . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Control strategies . . . . . . . . . . . . . . . . . . . . . 6

1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Graph theory . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Mathematical knowledge . . . . . . . . . . . . . . . . . 18

1.4 Contributions and outline of dissertation . . . . . . . 20

1.1 Background and motivation

In recent decades, much attention has been paid to the research of multi-agent

systems (MASs) (Li & Liu, 2018) from various disciplines, such as applied math-

ematics, physics, computer sciences and control theory. There is no doubt that it

is partly own to its broad applications, for example, search and rescue missions

(Kantor et al., 2003), spacecraft formation flying (Li et al., 2020; Ren, 2007),

cooperative surveillance (Olfati-Saber, 2006) (see Fig. 1.1). Different from indi-

vidual agent which has limited sensing and computing ability, MASs are usually

composed of numerous interacting agents with several sensors/actuators and it
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1. INTRODUCTION

can perform or solve complex tasks in a coordinated fashion with many advan-

tages, including improving scalability, increasing flexibility, reducing cost and

avoiding a single-point of failure.

(a) (b)

(c) (d)

Fig. 1.1. Examples of multi-agent systems in practical applications

In the research field of cooperative control of MASs, such as formation (Yang

et al., 2018b), consensus, rendezvous (Su, 2015) and so on, the consensus problem

is an important and critical issue, which aims at designing appropriate distributed

control protocols by negotiating with their neighbors to reach an agreement. Up

to now, numerous typical and profound results have been established in (Ab-

dessameud & Tayebi, 2011; Li et al., 2021a; Shi et al., 2020).

It should be noted that most of literature about the consensus problem of

MASs mainly relies on the assumption that the information is transmitted con-

tinuously among the neighbouring agents. However, in real applications, for

2
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1.2 Overview of distributed coordination of MASs

example, mobile robots and sensor networks, due to the limitations of communi-

cation obstacles, physical equipment failures, and sensing capabilities, the agents

may interact with their neighbors with some communication constraints. On the

other hand, in system analysis, an important subject is to minimise the commu-

nication and calculation. Therefore, how to design optimized control technologies

is very crucial for reducing communication consumptions and saving resources.

Motivated by above discussions, this dissertation focus on the discontinuous

control methods for the MASs with linear and nonlinear dynamics. The objective

is to design appropriate control technologies for each agent according to different

control tasks and different constraint conditions, such that all the agents can

achieve consensus and meanwhile economize the control costs.

1.2 Overview of distributed coordination of MASs

Over the past decades, numerous works about the cooperative control problem

of MASs have been obtained. In the following subsections, we will present an

overview of related works based on the consensus problem and control technolo-

gies.

1.2.1 Consensus problem

As a fundamental topic in distributed coordination control, consensus problems

have received a great deal of attention and obtained a lot of interesting results

(Jadbabaie et al., 2003; Olfati-Saber & Murray, 2004; Ren & Beard, 2005; Vicsek

et al., 1995). In the early work (Vicsek et al., 1995), Vicsek et al. considered the

phase transition of a group of self-driven particles based on a simple discrete-time

model. (Jadbabaie et al., 2003) gave a theoretical explanation for the obtained

results in (Vicsek et al., 1995) by using algebraic graph theory. In (Olfati-Saber

& Murray, 2004), the authors discussed the consensus problem of MASs under

fixed and switching topologies. In (Ren & Beard, 2005), the authors investigated

consensus problem of MASs, where the information exchange is limited and un-

reliable because of dynamically changing interaction topologies. Note that the

above publications on consensus problems mainly focus on MASs with first-order

linear dynamics. Later, many researchers put their attention on second-order

dynamics (Ren & Atkins, 2007; Wen et al., 2012; Xie & Wang, 2007). In (Xie

3



1. INTRODUCTION

& Wang, 2007), the authors considered the average-consensus problem for the

second-order MASs. In (Yu et al., 2010), necessary and sufficient conditions

were derived to guarantee the achievement of consensus for the the second-order

MASs. For the fixed directed topology, the second-order consensus with com-

munication constraints was investigated in (Wen et al., 2012). More recently,

the consensus problem of MASs with high-order or general linear dynamics has

been addressed. In (Wieland et al., 2008), the consensus problem of high-order

MASs was studied under a directed weighted graph. In addition, considering

the effect of time-delays in both the communication network and control inputs,

(Zhou & Lin, 2014) adopted a truncated predictor feedback approach to solve the

consensus problem of high-order MASs.

It is worth noting that most of obtained results about the consensus problem

of MASs focus on complete consensus, that is, the control inputs are designed

to ensure that the agents are in a consistent state. However, in many real situ-

ations, due to some unanticipated situations such as the changes of cooperative

tasks, external environment or event-time, all agents need to be split into sev-

eral groups, namely, the agents that belong to the same group or cluster reach

a common state, while the agents that belong to other group or cluster reach

different convergence states, which is termed as group consensus or cluster

consensus. As an extended concept about complete consensus, group/cluster

consensus has various applications in military and civilian, such as battlefield as-

sessment, reconnaissance, and surveillance. In the large scale complex networks,

due to the specific requirements, it is easier to analysis and design by decom-

posing the large scale complex network into several smaller clusters; in nature,

the birds, fish and bacteria colonies are often emerge several clusters; particu-

larly in human society, some opinion formation models reveal that agents in the

same cluster eventually form the same opinion (see Fig.1.2). A vivid example is

given in (Ge et al., 2018): multiple robots are required to keep different capa-

bilities in order to search and rescue victims when a disaster occurs. Thus, it

is necessary to divided all agents into different clusters according to the needs

in practice. Up to now, many constructive results for the cluster consensus of

MASs have been obtained from various aspects such as system dynamics, net-

work topologies, time-delays (Aeyels & Smet, 2011; Chen et al., 2019; Wen et al.,

2016a; Wenlian Lu, 2010). In (Aeyels & Smet, 2011), the authors investigated

4



1.2 Overview of distributed coordination of MASs

cluster formation behavior for a time-varying MASs. In (Wenlian Lu, 2010),

the authors studied cluster synchronization issues under the networks of coupled

nonidentical dynamical systems. In (Xia et al., 2016), the authors considered the

group consensus of MASs with communication delays under fixed and switching

topologies. Miao and Ma (Miao & Ma, 2015) proposed group consensus proto-

cols for discrete-time and continuous-time MASs with nonlinear input constrains.

In (Kang et al., 2018), the authors investigated the cluster synchronization of a

network system with nonidentical nodes, where the dynamics of agents are either

general linear or nonlinear. In (Qin et al., 2016), the authors addressed the cluster

consensus problem for a second-order MAS by pinning leader-follower approach,

where the communication topology is assumed to be weakly connected. In (Liu

et al., 2015), the authors investigated the adaptive group consensus of networked

Euler-Lagrange systems. Meanwhile, some corresponding necessary and sufficient

conditions for solving group consensus problem are established.

(a) (b)

Fig. 1.2. Examples of group consensus of MASs

More recently, a more generalized counterpart of consensus is put forward

by some scholars, that is scaled consensus. Compared with group consensus,

scaled consensus means the states of all the agents reach assigned proportions

instead of some common state values. Thus, group consensus can be considered

as the special case of the scaled consensus. (Roy, 2015) referred to the concept

of scaled consensus firstly. Scaled consensus has been paid more and more atten-

tion in recent years due to its broad applications, for example, water distribution

systems (Ostfeld & Salomons, 2004), space cooperative vehicles, closed queuing

5
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1. INTRODUCTION

networks (Reiser, 1981). In (Meng & Jia, 2015), the authors investigated the

scaled consensus problem of first-order MASs under switching networks, and in

order to guarantee the exponential convergence of agents, necessary and suffi-

cient conditions were obtained. For high-order discrete-time MASs, the scaled

consensus problem was considered in (Cheng et al., 2020), in which there exists

a time-varying delay in the progress of information transmission among agents.

Bipartite consensus, as a special case of scaled consensus, implies that the

states of all agents converge to a consensus value with the same magnitude but

opposite sign. In order to reach bipartite consensus, the sign graphs are often used

to represent competitive-cooperative MASs. In (Altafini, 2012), negative weights

were denoted to describe the antagonistic relationship among agents in MASs. In

(Zhang & Chen, 2017), state feedback and output feedback control technologies

were designed to achieve bipartite consensus. Assuming that the associated signed

digraph is strongly connected, (Guo et al., 2018) handled the bipartite consensus

problems over signed digraphs with arbitrary finite communication delays. To

specify multiple bipartite consensus behavior, by combining the characteristics

of group consensus and bipartite consensus, (Liu et al., 2020) introduced group-

bipartite consensus of MASs over cooperative-competitive networks.

1.2.2 Control strategies

As far as we all know, the MASs can’t reach consensus by itself. Thus, various

control strategies have been constructed to guarantee the system performance

and meanwhile save energy, such as pinning control, adaptive control, impulsive

control, intermittent control, sampled-data control, event-triggered control and

so on, which can be summarized as follows.

In practical application, especially for the large-scaled MASs, it is impossible

for the leader to pin every follower. To overcome this drawback, pinning control

can be used by controlling only a small fraction of agents rather than all the

agents. Thus, pinning control is more economical and more effective for the large-

scale leader-following MASs, which has been attracted much attention. (Wang

& Wu, 2012) investigated two kinds of formation control problems for second-

order nonlinear MASs by pinning control under fixed and switching topologies. In

(Huang et al., 2019), the authors applied pinning control scheme to heterogeneous

MASs for solving the group consensus with reference. In (Wang & Li, 2017),

6



1.2 Overview of distributed coordination of MASs

the authors presented an distributed pinning controller for robotic networks to

realize cluster consensus, where the system dynamics are characterized by Euler

Lagrangian equations. Moreover, based on matrix theory, algebraic graph theory

and the stability theory of fractional system, (Yu et al., 2015) employed adaptive

pinning control to solve the consensus problem for fractional-order MASs.

As a matter of fact, pinning control is an inseparable companion to leader-

following consensus. The leader-following consensus, is also called as track-

ing consensus, which implies in a system all followers can track a prescribed

state trajectory generated by a leader that is usually independent of all follow-

ers (see Fig.1.3). As it is referred in (Hummel, 1995), the leader-following con-

figuration was an energy saving mechanism. Besides, the communication and

orientation of the flock can be enhanced by leader-following method (Andersson

& Wallander, 2004). Existing literature can be roughly divided into two sorts,

i.e., leader-following consensus (Dai & Guo, 2018) and leaderless consensus. In

(Kim et al., 2014), the authors investigated the leaderless and leader-following

consensus for discrete-time heterogeneous MASs with random link failures. In

(Qiu et al., 2015), by the aid of the perturbation analysis of matrices and quanti-

zation technique, the authors solved the quantized leaderless and leader-following

consensus for a class of high-order MASs with limited data rate. Besides, for the

MASs with multiple leaders, (Wang et al., 2018) considered containment control

problem, where controllers were designed to make all the followers can converge

to a convex hull formed by the leaders.

It is worth noting that the control inputs of leaders are equal to zero in part of

results on tracking consensus. However, in many circumstances, in order to avoid

obstacles and achieve desirable objective states, the control inputs of leaders are

expected to be nonzero and controllable. (Li et al., 2012) handled the distributed

tracking consensus problem, where the control input of leader is continuous and

bounded, besides, it is not available to any follower. In (Ma et al., 2017), the

authors studied the tracking consensus problem by introducing a smart leader,

where the leader can adjust the interaction strength between itself and the target

point based on the tracking state errors.

Nevertheless, it is noted that the disadvantage for pinning control in existing

literature is that the pinning strength is usually fixed and given in advance to

7
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The state of the leader 

Fig. 1.3. Leader-following consensus or tracking consensus problem.

avoid the appearance of the worst situation, which is unreasonable in real appli-

cations because the worst case rarely occurs. To overcome this drawback, many

researchers adopt adaptive control approach to prevent the appearance of larger

parameters than those required in practice and adjust the pinning weight during

the process of dynamics evolution. For example, (Xu et al., 2016) investigated

cluster consensus problem of second-order nonlinear MASs by employing an adap-

tive pinning control method. Recently, a vast number of works on adaptive control

strategy are derived. (Li et al., 2015a) considered the output regulation problem

of heterogeneous MASs via adaptive control under periodic switching topologies,

where the feedback gains in control input are independent of the global infor-

mation of underlying communication graph. (Jin & Haddad, 2019) proposed a

novel distributed adaptive control architecture to address the tracking problem

for MASs, where the adaptive control architecture can foil malicious sensor and

actuator attacks when there exist exogenous stochastic disturbances. For a class

of nonlinear MASs with unmodeled dynamics, (Shen et al., 2019) designed a fully

distributed neural-networks-based adaptive control technology to ensure that all

the followers can track the leader within a prescribed level.

Notice that the former literatures about the consensus of MASs were mainly

focused on the continuous control schemes with the assumption that all agents

can transmit the information with their neighbours all the time. However, in the

real engineering, due to the appearance of obstacles or the limitation of communi-

cation ability, the information communication may be discontinuous. Moreover,

continuous information transmission will cause a heavy burden for the MASs

with limited communication bandwidths. To mitigate these issues, many opti-

mized and efficient control strategies are put foreword.

Impulsive control can be regarded as a special discontinuous control method,

where describes the state information of agents is just transmitted at some dis-

8
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1.2 Overview of distributed coordination of MASs

crete impulsive instants. Obviously, the frequency of state information transac-

tion is reduced greatly. Thus, impulsive control strategy has many advantages

including maintenance with low cost, more practicality and high efficiency. On

the other hand, the impulsive dynamical systems describe continuous evolution

with instantaneous state jumps and consist of three elements. The first element

is continuous-time part, which is between system reset or impulsive, to control

the motion of systems. The second element is discrete jumps, it controls the way

that the system states are instantaneously changed when a resetting event occurs.

The third is the criterion to determine the time that system can be reset. It is

obvious that the impulsive control systems have a faster convergence speed than

other continuous control systems. In addition, impulsive dynamical systems can

capture properties of various complex systems like mechanical systems with im-

pacts, orbital transfer of satellite, nanodevices with electron tunneling effects and

so on. Up to date, impulsive control has gained considerable interests of many

researchers. (Ning et al., 2018) investigated the input-to-state stability (ISS)

and integral ISS of impulsive systems by constructing a novel Lyapunov method

which is based on an indefinite Lyapunov function instead of negative definite

Lyapunov function. (He et al., 2017) studied the tracking consensus problem

of nonlinear MASs with network-induced delays via distributed impulsive con-

trol. (Tang et al., 2015) considered the tracking consensus problem of MASs

with multiple delays via impulsive control with several new characterizations,

and the obtained results are verified in mechanical robotic systems. (Zhu et al.,

2017) analyzed the quantized consensus of second-order MASs via impulsive con-

trol. (Jiang et al., 2011) introduced impulsive control strategy for linear dynamic

MASs. Based on the theory of impulsive differential system and Lyapunov sta-

bility, (Ma et al., 2020) proposed an impulsive control strategy with odd impulse

sequences to address the consensus problem of MASs, which is more effective and

flexible in real applications. Moreover, in the studies of synchronization analysis

for complex dynamical networks, many results were obtained by using impulsive

control (Ding et al., 2020; Syed Ali et al., 2020; Xu et al., 2020).

Intermittent control strategy has been proposed and widely applied in

transportation, manufacturing and communication. In actual application, the in-

termittent control strategy has the control time (or work time) and uncontrolled

time (or rest time) alternately, that is, the controller will be activated within

9
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certain nonzero time intervals and be off during other time intervals. Specially,

when the control time tends to a time point, intermittent control becomes im-

pulsive control. Compared with the impulsive control strategy that is activated

instantaneously, intermittent control strategy is easier to be executed because its

control width is nonzero. Therefore, the intermittent control can be viewed as

an excellent junction between continuous control strategy and impulsive control

method. Moreover, intermittent control can be divided into periodical inter-

mittent control and aperiodically intermittent control (see Fig.1.4). In Fig.1.4,

[tk, tk + θ1] is called as control interval, (tk + θ1, tk+1) is called as rest interval,

T1 is called as a period, where tk and tk + θ1 represent the start time and end

time of kth control interval, tk+1 is the end time of kth rest interval, θ1 is the

control width. Especially, when the control width and control period are fixed

constants, the aperiodically intermittent control strategy become the periodically

one. Compared with periodical intermittent control, aperiodically intermittent

control is more reasonable and prevalent in practice because the conditions of

periodical intermittent control is restricted to some extent, for instance, the wind

power generation is obviously aperiodically intermittent. Numerous results have

been obtained by employing intermittent control strategy in MASs (Gawthrop &

Wang, 2009; Huang et al., 2009; Li et al., 2007; Zochowski, 2000). In (Zochowski,

2000), the author described the method of synchronizing slave to the master

trajectory by using intermittent coupling. In (Huang et al., 2009), the authors

considered the exponential stabilization of delayed chaotic neural networks by

using periodically intermittent control. In (Sader et al., 2021), the authors inves-

tigated the H∞ consensus problem for a class of nonlinear MASs with intermittent

communications and actuator faults under the switching communication graph.

Particularly, for the leader-following consensus of MASs by intermittent control,

many results are derived in (Huang et al., 2014; Wang & Wang, 2015; Zhang et al.,

2019b). In (Huang et al., 2014), the authors considered the leader-following issue

for second-order nonlinear MASs assuming that the communication among all

agents is intermittent. By using aperiodically intermittent pinning control strat-

egy, the authors in (Zhang et al., 2019b) addressed partial component consensus

for a nonlinear leader-following MASs. Furthermore, considering the MASs with

general linear dynamics is more common and challenging, (Wang & Wang, 2015)

10



1.2 Overview of distributed coordination of MASs

investigated the semi-global consensus of general linear MASs via intermittent

saturating actuator.

Periodically

Aperiodically

tk tk+1
tk+2tk +  tk+1+

  rest time

 work time

T

T1 T2 T3

tk tk+1 tk+2 tk+3tk+ 1 tk+1+ 2 tk+2+ 3

t

t

T

Periodically

Aperiodically

tk tk+1
tk+2tk +  tk+1+

  rest time

 work time

T

T1 T2 T3

tk tk+1 tk+2 tk+3tk+ 1 tk+1+ 2 tk+2+ 3

t

t

T

Fig. 1.4. Periodical and aperiodically intermittent control strategy.

The advantage of intermittent control is that it can shorten the working time

of the controllers, while the deficiency is that the information updating rates of

controllers cannot be reduced. For the sake of reducing the load of controllers up-

dating, (Xiong et al., 2016) employed intermittent sampled-data control to han-

dle the synchronization problem for hierarchical time-varying neural networks.

Sampled-data control scheme essentially adopts time-triggered mechanism, in

which sampled data transmission happens at pre-designed constant sampling pe-

riod or time-varying bounded sampling period (Gao et al., 2009; Tang et al.,

2011). Commonly sampled-data control system describes a control system in

which continuous-time plant is controlled with a digital device. In sampled-

data control systems, control signals are constants during sampling intervals and

are allowed to change only at sampling instants. An application of this tech-

nique is in the radio broadcasts of the live musical program (Chen et al., 2016).

Recently, various results have been reported for investigating the sampled-data

synchronization/consensus problem of networked multi-agent systems. (Lee &

Park, 2017) introduced a novel time-dependent discontinuous Lyapunov function

to deal with stability problem of sampled-data systems. (Ozcan et al., 2018)

applied sampled-data control strategy to handle robust synchronization of un-

certain Markovian jump complex dynamical networks with time-varying delays

and reaction-diffusion terms. (Ali et al., 2020) established a novel non-fragile

11
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sampled data control framework for nonlinear MASs with additive time varying

delays and Markovian jump parameters. (Beikzadeh & Marquez, 2016) designed

input-to-stable observer for nonlinear sampled-data systems. Under the switching

topology, (Zhang & Zhang, 2017) addressed the consensus problem for general

linear MASs via sampled-data control strategy. Considering random and deter-

ministic packet losses, respectively, (Zhang et al., 2016) solved the sampled-data

consensus problem for linear MASs. (Du et al., 2016) investigated the consensus

problem for heterogeneous MASs composed of first-order MASs and second-order

MASs with communication failure based on sampled-data information. (Zhang

et al., 2017a) studied the tracking consensus problem for a class of heteroge-

neous MASs by designing distributed output-feedback controller with the aperi-

odic sampled-data measurement subject to external disturbance. (Zhang et al.,

2017b) developed a time-varying sampled-data strategy to solve the consensus

problem for Euler-Lagrange systems, where the controller can either work or rest

during each sampling interval, avoiding over provisioning of system hardware

compared with the traditional sampled-data strategies. (Yu et al., 2017b) gave

the necessary and sufficient criteria for leaderless consensus and leader-following

consensus of fractional-order MASs based on sampled-data control strategy.

In sampled-data control, in order to avoid packet dropouts and network con-

gestion as well as guarantee the performance, the date sampling or control action

update is more frequency than that it is actually required, which leads to a waste

of communication and computational resources. Different from the sampled-data

control scheme, under the event-triggered control (ETC) scheme (Nowzari

et al., 2019), agents depend on a predefined triggering function rather than a

fixed sampling period to determine when to sample data among the neighboring

agents and update their controllers. Thus, energy consumption can be cut down

greatly. Up to date, a vast amount of literature on MASs via ETC strategy has

been obtained (Li et al., 2021b; Luo & Ye, 2019; Wang et al., 2020) and a variety

of triggering functions have been designed. In (Garcia et al., 2014), the central-

ized and decentralized ETC techniques were adopted respectively to handle the

consensus problem for general linear MASs subject to undirected graph. So as to

further decrease the information communication and minimize the number of con-

troller updates, (Zhou et al., 2015) used the combinational measurements method

to design the event-triggered control mechanism for MASs. By using only local

12



1.3 Preliminaries

information instead of global information, (Cheng & Li, 2018) investigated the

fully distributed ETC strategy for the general linear MASs by designing the time-

varying weights in both triggering conditions and the control laws. The designed

adaptive ETC strategy was robust to some bounded external disturbances. By

introducing sampled-data method, event-triggered sampled-data control strategy

was presented in (Guo et al., 2014), where the triggering function only needs to

be detected at the sampling instants and the minimum inter-event time could be

guaranteed to be no less than one sampling period. For multi-vehicle systems with

nonholonomic constraints, (Chu et al., 2019) considered the distributed formation

tracking control problem via event-triggered sampled-data control strategy.

1.3 Preliminaries

Notations: Throughout this thesis, N = {1, 2, · · · } represents the set of positive

integer. For the given positive integers p and q. Rq and Rp×q denote q-dimensional

real column vectors and p× q real matrices, respectively. ‖ · ‖ not only stands for

Euclidean norm for vector, but also the induced matrix 2-norm. For a real matrix

P , λmax(P ), λmin(P ), P−1 and P T , mean respectively, maximum eigenvalue,

minimum eigenvalue, the inverse, and transpose of P . P > 0 indicates P is

positive definite. IN is the identity matrix. ⊗ denotes Kronecker product. The

diag{· · · } stands for a block-diagonal matrix.

1.3.1 Graph theory

In this thesis, it is assumed that the communication topology of MASs is char-

acterized by a triplet G=(V,E,A), in which V = {v1, v2, . . . , vN} stands for the

set of nodes, and E ⊆ V × V denotes the set of edges. For a directed topology,

eij is an edge and eij = (vi, vj) ∈ E indicates that the information flows can

be transformed from agent vj to agent vi (See Fig.1.5), while for the undirected

topology, eij = (vi, vj) ∈ E represents the information flows that can be trans-

formed mutually between agent vi and agent vj.

A = [aij ]N×N is used to represent the weighted adjacency matrix associated

with the communication topology and it is supposed to satisfy the following prop-

erties: aij > 0 implies eji ∈ E ; aij = 0 otherwise. It should be pointed out that

the topology has no self loops or parallel edges, that is, aii = 0. Besides, in this

13
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vivj vivj

Fig. 1.5. Information flow from vj to vi

thesis, we assume that the adjacency matrices corresponding to the topologies

have 0-1 weight. The weighted adjacency matrix is represented as

A =











a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN











∈ RN×N.

Furthermore, the communication topology can be categorized in two classes ac-

cording to the information flows, that is, undirected and directed topology. A

directed path corresponding to the directed topology is a finite ordered nodes

sequence vi1 ,. . . , vik such that (vil, vil+1
) ∈ E, where l = 1, . . . , k − 1. The def-

inition about a weak path is that there exists a finite ordered nodes sequence

vi1 ,. . . , vik such that (vil, vil+1
) or (vil+1

, vil) ∈ E. For a directed topology G, if

it contains a directed spanning tree, which means there exists at least one

node that is called as root node having a directed path to any remaining nodes.

Furthermore, a directed topology G is called weakly connected if there exists

at least one weak path for any two distinct agents, which means its correspond-

ing undirected graph is connected and each agent can either obtain information

from other agents or send information to other agents. Apparently, the weakly

connected topology is more universal than the topology with a directed spanning

tree. The Laplacian matrix L = [lij]N×N of topology G satisfies

lij =







−aij if i 6= j,
N
∑

j=1,j 6=i

aij if i = j,

which makes sure that the diffusion property holds good, that is
N
∑

j=1

lij = 0.

Divide the N followers into m clusters and suppose the ith cluster has mi

nodes, that is Vi = {vm1+m2+...+mi−1+1, . . . , vm1+m2+...+mi−1+mi
}. As a result, we
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have V = {v1, v2, . . . , vN}=V1 ∪ V2 ∪ . . . ∪ Vm and Vp ∩ Vq = ∅, where p 6= q.

Assume that each cluster has a virtual leader. If the ith agent is in the cluster

that can be denoted as Vî, then i ∈ Vî, where î is the subscript. In addition, the

subscript set of the virtual leaders and followers are denoted as Ω = {1, 2, . . . , m}
and V = {1, 2, . . . , N} respectively. For convenience of expression, there is no

difference for the following descriptions i ∈ V , i ∈ V, and vi ∈ V. Obviously, the

followers of the jth virtual leader are in Vj, j ∈ Ω. Refer to (Da et al., 2018)

for the definition of inter-act agents and intra-act agents. Ṽî represents the

subset of Vî and the agents in Ṽî means that they can receive information from

the agents in other cluster, that is, for any vi ∈ Ṽî, there exists at least one

vj ∈ Vî \ Ṽî such that aij 6= 0. Furtherly, if vi ∈ Ṽî, the node vi is termed as the

inter-act agent, otherwise, vi is termed as the intra-act agent if vi ∈ Vî \ Ṽî.

Moreover, the interaction topology composed of N followers and m leaders

can be characterized by a digraph Ḡ, where there is no information flow from

followers to leaders. Define pinning matrix D = diag{d1, d2, · · ·dN}, where

di > 0, if leader can transmit information to follower i, and di = 0 otherwise.

Then, define L̃ = L+D for subsequent use.

In what follows, three examples are presented to specify the fixed undirected

graph, directed graph containing a spanning tree and weakly connected graph, re-

spectively. In addition, the adjacency matrixes A, pinning matrix D and Laplace

matrix L are obtained according to the definitions.

Example 1.1 Consider the fixed undirected communication topology as Fig. 1.6,

its adjacency matrixes A and Laplace matrix L can be given as follows:

A =



























0 1 1 0 0 0 0

1 0 0 1 0 0 0

1 0 0 0 1 0 0

0 1 0 0 0 0 0

0 0 1 0 0 1 1

0 0 0 0 1 0 1

0 0 0 0 1 1 0



























, L =



























2 −1 −1 0 0 0 0

−1 2 0 −1 0 0 0

−1 0 2 0 −1 0 0

0 −1 0 1 0 0 0

0 0 −1 0 3 −1 −1

0 0 0 0 −1 2 −1

0 0 0 0 −1 −1 2



























.

Example 1.2 Consider the fixed directed communication topology which contains

a directed spanning tree with agent 1 as the root node (See Fig. 1.7), its adjacency

15



1. INTRODUCTION

1
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Fig. 1.6. A fixed undirected communication topology with seven agents.

matrixes A and Laplace matrix L can be given as follows:

A =



























0 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0



























, L =



























0 0 0 0 0 0 0

−1 1 0 0 0 0 0

−1 0 1 0 0 0 0

0 −1 0 1 0 0 0

0 0 −1 0 2 −1 0

0 0 0 0 0 1 −1

0 0 0 0 −1 0 1



























.

1

65

4

2 3

7

1

65

4

2 3

7

Fig. 1.7. A fixed directed communication topology contains a spanning tree
with agent 1 as the root node.

Example 1.3 Consider the communication topology Ḡ composed of followers 1

to 7 and two leaders s1, s2 as Fig. 1.8. Its corresponding subgraph G composed of

followers 1 to 7 is weakly connected. The adjacency matrixes A, pinning matrix
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D and Laplace matrix L of G can be given as follows:

A =



























0 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 1 0 0

0 1 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0



























, D =



























2 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 3



























,

L =



























0 0 0 0 0 0 0

−1 1 0 0 0 0 0

−1 0 2 0 −1 0 0

0 −1 0 1 0 0 0

0 0 0 0 1 −1 0

0 0 0 0 0 1 −1

0 0 0 0 −1 0 1



























.

1

65

4

2 3

7

S1 S2

2

1

3

1

65

4

2 3

7

S1 S2

2

1

4

2 3

3

65

7

1

3

Fig. 1.8. A weakly connected communication topology composed of seven fol-
lowers from 1 to 7 and two leaders s1 and s2.

Lemma 1.4 (Ren & Beard, 2008) Suppose the undirected communication topol-

ogy Ḡ which contains N followers and one leader is connected, then M = L+D

is symmetric and positive definite.

17

Introduction/IntroductionFigs/EPS/weaklyconnectedgraph.eps


1. INTRODUCTION

Lemma 1.5 (Li et al., 2015b) Suppose the directed communication topology Ḡ

composed of the followers and the leader has a directed spanning tree with the

leader as the root node (See Fig. 1.9), then all the eigenvalues of matrix L̃ = L+D

own positive real parts. In addition, there exists a positive definite diagonal matrix

E satisfying EL̃+ L̃TE > 0, where E = diag{ξ1, · · · , ξN} > 0. Furthermore, the

equality EL̃+ L̃TE > γE exists with a positive constant γ. The matrix E can be

constructed as follows:

E = diag{ξ1, ξ2, · · · , ξN},
ξ = [ξ1, ξ2, · · · , ξN ]T = L̃−T1N .

1 4

2 3

1 4

2 3

0

(a) (b)

Fig. 1.9. The directed topologies of the MASs: (a) without leader; (b) with a
leader

Definition 1.6 (Signed graph) The graph describing the communication topol-

ogy of MASs with antagonistic links is called as the signed graph (see Fig.1.10).

To describe the competitive-cooperative interaction, the positive edge denotes the

cooperative interaction between nodes i and j, and in the same way, the negative

edge denotes the competitive interaction.

1.3.2 Mathematical knowledge

Lemma 1.7 ((Roger & Charles, 1994)). The definition of Kronecker product is:

if P1 = [pij] is an m × n matrix and P2 is a p × q matrix, then the Kronecker

product P1 ⊗ P2 is an mp× nq block matrix as follows:

P1 ⊗ P2 =







p11B · · · p1nB
...

. . .
...

pm1B · · · pmnB






.
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Fig. 1.10. The signed graph.

The properties of Kronecker product are: for the matrices P1, P2, P3, and P4 with

appropriate dimensions, the following equalities are established:

(P1 ⊗ P2)
T = P T

1 ⊗ P T
2

(P1 + P2)⊗ P3 = (P1 ⊗ P3) + (P2 ⊗ P3)

(P1 ⊗ P2)(P3 ⊗ P4) = (P1P3)⊗ (P2P4)

(P1 ⊗ P2)
−1 = P−1

1 ⊗ P−1
2

λmax(P1 ⊗ P2) = λmax(P1)λmax(P2).

Lemma 1.8 ((Boyd et al., 1994)). The linear matrix inequality

(

Q(x) S(x)

S(x)T R(x)

)

<

0, where Q(x) = Q(x)T and R(x) = R(x)T , is equivalent to any one of the fol-

lowing conditions:

(1) Q(x) < 0, R(x)− S(x)TQ(x)−1S(x) < 0,

(2) R(x) < 0, Q(x)− S(x)R(x)−1S(x)T < 0.

Lemma 1.9 ((Qian et al., 2014)) For a given symmetric matrix G ∈ RN×N

and a diagonal matrix D = diag{d1, . . . , dl, 0 . . . , 0}N×N , where di > 0, i =

1, . . . , l(1 ≤ l ≤ N). Then G−D =

(

R− D̃ S

ST Gl

)

, where D̃ = diag{d1, . . . , dl},
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Gl satisfies the definition in notation that is obtained by removing the first l

row-column pairs. Matrices G, R and S have the appropriate dimensions. If

di > λmax(R− SG−1
l ST ), then G−D < 0 is equivalent to Gl < 0.

Lemma 1.10 (Cao et al., 2005) For any real matrixes X, Y , Ξ = ΞT > 0 and

scalar ξ > 0, it holds

XTY + Y TX ≤ ξXTΞX + ξ−1Y TΞ−1Y. (1.1)

Lemma 1.11 ((Boyd et al., 1994)) Suppose that P1 ∈ Rn×n is a positive definite

matrix and P2 ∈ Rn×n is symmetric. Then, for any vector x ∈ Rn, the following

inequality holds:

λmin(P
−1
1 P2)x

TP1x ≤ xTP2x ≤ λmax(P
−1
1 P2)x

TP1x (1.2)

Definition 1.12 (Signum Function): The notation sgn(x) represents the signum

function, and it is defined as follows:

sgn(x) =











1, x > 0,

0, x = 0,

−1, x < 0.

1.4 Contributions and outline of dissertation

This thesis focus on discontinuous control methods for multi-agent systems with

linear and nonlinear dynamics. The communication topology is assumed to be

fixed undirected or directed. The main contributions are summarized as follows.

Chapter 2: Notice that the relevant works on consensus problem for MASs

mainly focus on complete consensus. However, in many physical applications,

due to some unanticipated situations such as the changes of cooperative tasks,

external environment or event-time, the agents are usually required to be divided

into several clusters. Therefore, an extended concept about complete consensus

is proposed to deal with such complex phenomena, that is cluster consensus,

which means the agents in same cluster share a common state while there is

no consensus behavior among different clusters. Secondly, in the most of prior

works, the controller for all the agents is commonly assumed to be continuous.

However, in real engineering, due to the presence of obstacles, the limitation of
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computing and communication ability, or some other factors, the controller may

be discontinuous. To mitigate these issues, the intermittent control strategy

has been introduced and widely applied in transportation, manufacturing and

communication.

Motivated by all the above-mentioned discussions, this Chapter addresses the

cluster consensus problem via intermittent adaptive pinning control for MASs

with general linear or nonlinear dynamics, respectively, where each cluster has a

virtual leader whose state is available to only a small part of followers on some

disconnected time intervals because of communication constraints. To our best

knowledge, there are few works to investigate the problem. The main contribu-

tions of this chapter can be summarized as follows. In order to solve the cluster

consensus problem, the agents in each cluster are categorized into three types.

Specifically, the agents can only receive information from their own cluster, or

they can receive information from other clusters or cannot receive any informa-

tion from other agents. Hence, a class of intermittent adaptive pinning control

protocols is proposed for the different type of agents. Correspondingly, some suf-

ficient consensus criteria are derived to guarantee that the agents in the same

cluster asymptotically can reach consensus while the agents in different clusters

can reach different consensus. Rigorous proofs are given by the aid of Lyapunov

stability theory and matrix theory. Finally, a numerical simulation example is

presented to validate the main results.

Compared with the existing literatures, the main advantages are given as fol-

lows: Firstly, in contrast to the dynamics of integrator MASs, the dynamics of

general linear MASs are much more complicated, and some integrator MASs such

as, single integral ones and double integral ones can be seen as the special case of

general linear MASs. Moreover, the dynamics of integrator MASs only depends

on the coupling of the agents, the dynamics of general linear MASs depends not

only on the coupling of the agents, but also the self-dynamics governing the evo-

lution of each isolated agent. This makes the cluster consensus of general linear

MASs technically more challenging than the case for integrator MASs. Secondly,

different from continuous control protocols, the pinning gains in proposed con-

trol protocols are designed to be intermittent adaptive and with an exponential

convergence rate, which can effectively reduce communication costs, avoid the
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pinning gains being larger than those needed in practice. Meanwhile, it guaran-

tees the pinning gains quickly converge to steady value. Thirdly, in contrast to

the directed network topology required to be in-degree balanced, strongly con-

nected or contain a directed spanning tree, a weakly connected topology is taken

into account, which is more universal in practice.

Chapter 3: The results obtained in above Chapter 2 assume that the local

relative state information among all agents is available. However, in many actual

systems, due to the states of agents are not always available or measured directly

in expensive cost, it is quite necessary to design an observer to detect the agent’s

real-time state. In addition, the time delays universally exist in many physical

systems and time delay can cause oscillations or in stabilities. For example, in

the consensus of migrating geese or locust population migration, all agents in the

same group almost reach the place at the same time, but the different groups

arrive at the place in different times. That is, not all agents arrive at the same

place simultaneously, but the arrival time of the agents may be different. Besides,

proper time delays between different vehicles in the way can keep the road safe

and orderly. Otherwise, congestion often occurs.

Therefore, based on the above discussion and Chapter 2, in this Chapter, we

investigate the observer-based intra-cluster lag consensus problems of multi-agent

systems (MASs) with general linear dynamics and nonlinear dynamics via inter-

mittent adaptive pinning control. The so-called intra-cluster lag consensus

means that the followers in the same cluster can achieve lag consensus asymptoti-

cally while the followers in different clusters can achieve different agreements. The

interaction network is still considered to be weakly connected, i.e., it is not neces-

sary to be strongly connected, in-degree balanced or contain a directed spanning

tree. To realise the intra-cluster lag consensus, a class of observers is designed

to estimate the states of followers. Then a class of observer-based intermittent

adaptive pinning control protocols is proposed according to the difference that

the agents receive information source. Correspondingly, some sufficient consen-

sus criteria are derived and rigorous proofs are given based on matrix theory and

Lyapunov stability theory. Finally, the effectiveness for the proposed intermittent

adaptive pinning control strategy is validated by a numerical simulation.

The main contributions and comparisons of this Chapter are listed as fol-

lows. Firstly, since the relevant full state information of each follower is not
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1.4 Contributions and outline of dissertation

always available, the Luenberger observers are designed for general linear and

nonlinear MASs respectively. Hence, the control protocols in this chapter only

use the observed states information of followers instead of their real-time states

information. Secondly, to realize the intra-cluster lag consensus, the followers

in each cluster are classified into three types. Specifically: the followers which

can only receive information from the followers in their own cluster, the ones

receiving information from the followers in other clusters, and finally, those who

cannot receive information from any followers. Then, the distributed intermittent

adaptive pinning control protocols are further designed according to the different

categories of followers, which make sure that the followers in the same cluster

achieve intra-cluster lag consensus whereas the followers in the different clusters

achieve different consensus. Thirdly, compared with the most of existing results

about cluster consensus where each block unit in the weighted adjacency matrix

of network topology is assumed to be a zero-row-sum matrix or an equal-row-

sum matrix, which is relative conservative in actual applications, in this chapter

a weakly connected topology is considered and all the coupling weights of network

topology are positive, which is more universal in practice.

Chapter 4: Note that the intermittent controller in Chapter 3 still requires

to be updated continuously when it is executed in the work time interval, which

is a waste of energy and resource. To mitigate this issue, the event-triggered

control provides a novel strategy because it can avoid continuous update of

the controller, which not only enhances the utilization of the network resources

but also extends the lifetime of network components. Under an event-triggered

mechanism, each agent exchanges information or controller makes corresponding

update only at data transmission instants, which are determined by a prede-

fined triggering function. In this sense, unnecessary consumption of resources is

minimised as much as possible. Moreover, intermittent control can be divided

into periodical intermittent control and aperiodically intermittent control.

Compared with periodical intermittent control, aperiodically intermittent control

is more reasonable and prevalent in practice due to the conditions of periodical

intermittent control is restricted to some extent, for example, the generation of

wind power is obviously aperiodically intermittent.

Inspired by the above discussion, this Chapter investigates the leader-following

consensus of general linear MASs via aperiodically intermittent adaptive event-
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triggered control. The aperiodically intermittent adaptive event-triggered control

inherits the respective advantages of aperiodically intermittent control strategy,

event-triggered control strategy and adaptive control strategy, which improves

communication efficiency, reduces control update frequency and is closer to the

practical situations. The major advances of this Chapter lie in following aspects:

Firstly, to reach leader-following consensus and save more control resources, a dis-

tributed aperiodically intermittent ETC protocol is devised, in which the trans-

mission channels among agents only open if the local event-trigger condition is

satisfied in predefined time intervals. Secondly, in order to get rid of continu-

ous inter-agent communication for monitoring the triggering condition, a more

general triggering mechanism is presented, in which discrete-time combinational

measurement is adopted instead of using continuous-time tracking error directly.

Thirdly, to overcome the unexpected large feedback gains in real applications

and appropriately tune the feedback gains, the aperiodically intermittent adap-

tive event-triggered controller is further devised. With aid of the matrix theory,

stability of switching systems and Lyapunov function, some sufficient criteria are

deduced. Moreover, the analyses of excluding the Zeno behavior are included

by showing explicit positive lower bounds between any two consecutive triggered

events.

Compared with the existing literatures, there are the following main differ-

ences. Firstly, several authors have integrated intermittent strategy and event-

triggered strategy together to address the consensus problem, however, the aperi-

odically intermittent adaptive event-triggered control method has not been con-

sidered. Secondly, some existing works on leader-following consensus of MASs by

intermittent event-triggered control, continuous communication among agents is

still required to check the triggering condition, this requirement is removed in this

Chapter. Thirdly, the dynamics of agents in this Chapter is general linear rather

than integral-order, therefore, some works about leader-following consensus can

be regarded as spacial cases of this Chapter.

Chapter 5: In Chapter 4, we introduce the adaptive event-triggered control

method into aperiodically intermittent control. It should be pointed out that

the thresholds in Chapter 4 were state-dependent. When the measurement error

equals or exceeds the threshold, the events are triggered, which can be regarded
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as the static triggering conditions. At the beginning, the static triggering condi-

tions will effectively reduce the communication cost, as they are not easy to be

satisfied. However, as time goes, it will be triggered frequently since the thresh-

old becomes smaller and smaller, which causes unnecessary triggered instants.

Developing more flexible event-triggering conditions to further reduce the com-

munication cost and the number of the control updates is in great demand. By

introducing an internal dynamic variable, a new class of event-triggering mecha-

nisms is presented, that is, dynamic event-triggered control.

Therefore, motivated by the above-mentioned consideration, in this Chapter,

to further reduce the communication cost and the number of the control updates,

a hybrid aperiodically intermittent adaptive dynamic event-triggered control is

put forward. The main contributions can be summarized as follows: Firstly,

the dynamic adaptive event-triggered control is designed to further reduce the

communication cost and the number of the control updates. Compared with the

traditional static event-triggered control in Chapter 4, the time-varying threshold

ensures less triggering instants. Secondly, based on matrix theory and Lyapunov

function, the corresponding parameters are obtained. We modify the event trig-

gering mechanism that depends on combined measurement approach in Chapter

4, continuous monitoring of neighbors’ states are avoided for the triggering mech-

anism in this Chapter. Finally, numerical simulations are provided to illustrate

the effectiveness of the theoretical results.

Conclusions and perspectives: In this chapter, the results are summarized

and several possible directions for our future research are shared.
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2.1 Introduction

There are two critical factors that influence the consensus of MASs. One is the

individual dynamics behavior. In (Liang-Hao & Xiao-Feng, 2013), MASs are
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mainly modeled by integral dynamics of each agent including first-order MASs

model (Fan et al., 2013), second-order MASs model (Liu et al., 2016) and high-

order MASs model (Tian et al., 2016), etc. More recently, many researchers in

(Dong & Hu, 2016) focus their attention on MASs with general linear dynamics

due to the fact that the MASs with integral dynamical model can be viewed as

a special situation of general linear MASs (Wen et al., 2015). The other factor is

the communication topology structures of systems, such as undirected topology

and directed topology, fixed topology and switching topology, etc. In order to

model different practical systems better, the researchers considered the MASs

under different kinds of topology structures (Liu & Huang, 2019; Zhang et al.,

2020). Note that the previous results (Movric & Lewis, 2013; Yu & Wang, 2009)

are based on the assumption that the communication topologies are undirected

connected, directed strong connected, or containing a directed spanning tree.

In fact, the assumptions are very conservative in practice, in other words, the

communication topology may be weakly connected. In addition, as mentioned

in Chapter 1, in many cases, agents may be divided into multiple subgroups

due to different environments or tasks, and in each subgroup can reach different

consistent state, this is so-called group consensus or cluster consensus. Although

numerous available results are aimed to consider group/cluster consensus, to the

best of authors knowledge, none of them investigate the cluster consensus of MASs

with linear and Lipschiz nonlinear dynamics under a weakly connected graph.

It is well known that the control techniques are especially important for MASs

to reach objective state. In the most of prior works, the communication among all

the agents is commonly assumed to be continuous. However, in real engineering,

due to the presence of obstacles, the limitation of computing and communication

ability, or some other factors, the information communication may be discon-

tinuous. To mitigate these issues, the intermittent control strategy has been

introduced and widely applied in transportation, manufacturing and communi-

cation. Reference (Yang et al., 2018a) analysed the cluster lag synchronization

issue for heterogeneous complex networks by employing a intermittent control

to reduce control cost and information communication. In (Yu et al., 2017a),

an intermittent sampled data control mechanism was employed, which not only

shortens the working time, but also decreases the load of controllers’ updating

rate.
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2.1 Introduction

Motivated by all the above-mentioned discussions, this chapter addresses the

cluster consensus problem via intermittent adaptive pinning control for MASs

with general linear or nonlinear dynamics, respectively. To our best knowledge,

there are few works to investigate the problem. The main contributions of this

chapter can be summarized as follows. In order to solve the cluster consensus

problem, the agents in each cluster are categorized into three types. Specifi-

cally, the agents can only receive information from their own cluster, or they can

receive information from other clusters or cannot receive any information from

other agents. Hence, a class of intermittent adaptive pinning control protocols

are proposed for the different type of agents. Correspondingly, some sufficient

consensus criteria are derived to guarantee that the agents in the same cluster

asymptotically can reach consensus while the agents in different clusters can reach

different consensus. Rigorous proofs are given by the aid of Lyapunov stability

theory and matrix theory. Finally, a numerical simulation example is presented

to validate the main results. Compared with the existing literatures, this chapter

has the following two main advantages. Firstly, in contrast to the dynamics of in-

tegrator MASs, the dynamics of general linear MASs are much more complicated,

and some integrator MASs such as, single integral ones and double integral ones

can be seen as the special case of general linear MASs. Moreover, the dynamics

of integrator MASs only depends on the coupling of the agents, the dynamics

of general linear MASs depends not only on the coupling of the agents, but also

the self-dynamics governing the evolution of each isolated agent. This makes the

cluster consensus of general linear MASs technically more challenging than the

case for integrator MASs. Secondly, different from continuous control protocols,

the pinning gains in proposed control protocols are designed to be intermittent

adaptive and with an exponential convergence rate, which can effectively reduce

communication costs, avoid the pinning gains being larger than those needed in

practice. Meanwhile, it guarantees the pinning gains quickly converge to steady

value. Thirdly, in contrast to the directed network topology required to be in-

degree balanced, strongly connected or contain a directed spanning tree, a weakly

connected topology is taken into account, which is more universal in practice.

The remainder of this chapter is organized as follows. The problem is formu-

lated in Section 2.2. Main results on cluster consensus of MASs via intermittent
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adaptive pinning control are introduced in Section 2.3. To demonstrate the the-

oretical results, a simulation example is presented in Section 2.4. Finally, a short

conclusion is drawn in Section 2.5.

2.2 Problem formulation

To study the cluster consensus via intermittent adaptive pinning control for linear

MASs and a class of nonlinear MASs, in this section, the model and problem

objective are briefly introduced.

Case I (Linear Systems):

Consider a general linear MASs with N followers and m leaders (N > m ≥ 2).

For each follower, the dynamic can be modeled as

ẋi(t) = Axi(t) +Bui(t), i ∈ {1, 2, ..., N} , V, (2.1)

where xi ∈ Rn and ui ∈ Rp represent the state and control input, respectively.

The leaders’ dynamics are assumed to be:

ṡj(t) = Asj(t), j ∈ {1, 2, ..., m} , Ω, (2.2)

where sj(t) ∈ Rn represents the jth leader’s state.

Case II (Nonlinear Oscillators):

Next, consider a MASs with nonlinear dynamics, in which the dynamics of each

follower can be modeled as:

ẋi(t) = Axi(t) +Bui(t) + f(xi(t)), i ∈ V. (2.3)

where xi ∈ Rn and ui ∈ Rp represent the state and control input respectively,

and f(xi(t)) is nonlinear function.

The leaders’ dynamics are described by:

ṡj(t) = Asj(t) + f(sj(t)), j ∈ Ω. (2.4)

where sj(t) ∈ Rn represents the jth leader’s position state.
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A necessary assumption of the nonlinear function f(·) is introduced below,

which will be useful for the subsequent analysis.

Assumption 2.1 There exists a constant γ > 0, such that for any vectors x, y ∈
Rm, the nonlinear function f(·) satisfies ‖f(x)− f(y)‖ ≤γ‖x− y‖.

Remark 2.2 Compared with the consistent continuous, Assumption 2.1 is a

smoother condition, which is called the Lipschitz condition.

Definition 2.3 Given the MASs (2.1) and (2.2), (2.3) and (2.4) the cluster con-

sensus is reached by designing an appropriate control input such that lim
t→∞

||ei(t)|| =
0 for any initial values,where ei(t) = xi(t)− sî(t), i ∈ V, î is the subscript of the

the index set of the cluster which the ith follower belongs, that is vî ∈ Vî. See

graph theory 1.3.1.

Remark 2.4 Note that the trajectories of all leaders are determined by system

matrix A owing to sj(t) = sj(0)e
At. If A is a Hurwitz matrix, then the states

of all leaders will asymptotically reach zeros, which goes against our objective.

Therefore, in this chapter, we assume the matrix A is not Hurwitz. By giving

different initial value for system (2.2) and (2.4) , the states of leaders will be

different, that is, for any l 6= k, lim
t→∞

||sl(t)− sk(t)|| 6= 0, where l, k ∈ Ω.

2.3 Main results

2.3.1 Cluster consensus of MASs with general linear dy-

namics via intermittent adaptive pinning control

In practical application, especially for the large-scaled MASs, it is impossible for

the leader to pin every follower. To overcome this drawback, pinning control can

be used by controlling only a small fraction of agents rather than all the agents.

Besides, to prevent the appearance of larger pinning gain than those required in

practice, adaptive control method can be introduced to pinning control. Further-

more, considering the appearance of obstacles or the limitations of sensing ranges

in some situations, the leaders may only pinning the followers over some discon-

nected time intervals, in other words, the pinning time may be intermittent, not

continuous. Motivated by the above discussion , in this chapter the following
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intermittent adaptive pinning control is proposed to solve the cluster consensus

problem,

ui(t) =



















































K

N
∑

j=1

aij(xj(t)− xi(t))−di(t)(xi(t)− sî(t)) +K

N
∑

j=1

lijsĵ(t), if i ∈ Ṽî,

K

N
∑

j=1

aij(xj(t)− xi(t))− di(t)(xi(t)− sî(t)), if i ∈ Vî \ Ṽî and deg(i)in = 0,

K

N
∑

j=1

aij(xj(t)− xi(t)), otherwise,

(2.5)

ḋi(t) =

{

σeσ1t(xi(t)− sî(t))
TΓ(xi(t)− sî(t)), if t ∈ [mT,mT + δ),

0, if t ∈ [mT + δ, (m + 1)T ),
(2.6)

where σ and σ1 are positive constants, m = 0, 1, 2, ..., K and Γ represent the

feedback control gain matrices which will be designed later in Theorem 2.8. The

parameter di(t) satisfies the following conditions: di(t) > 0 if the node vi is pinned

and di(t) = 0 otherwise. In addition, the control period and the control width are

denoted as T > 0 and δ ∈ (0, T ), respectively. Denote the control rate θ = δ/T ,

which will be designed later in Theorem 2.8.

Remark 2.5 In order to solve the cluster consensus problem, the agents in each

cluster are categorized into three types. Specifically, the agents can only receive

information from their own cluster, or they can receive information from other

clusters or cannot receive any information from other agents. Hence, a class of

intermittent adaptive pinning control protocols are proposed for the different type

of agents. Moreover, the cluster consensus is aimed at reaching consensus in the

same cluster and reaching different consensus among different clusters. The term

K
N
∑

j=1

aij(xj(t)− xi(t)) in the control protocol (2.5) reflects the interaction between

agent i and its neighbours. The term di(t)(xi(t)− sî(t)) reflects that whether the

agent i will be pinned. In fact, if the agent i can receive information from other

clusters, or it can not receive information from any agents (that is to say, it is

with zero in-degree), then it should be pinned. The term K
N
∑

j=1

lijsĵ(t) is used to

counteract the influence among clusters.

Remark 2.6 The design of (2.6) is enlightened as follows: in practice, the pin-

ning gains between leaders and followers are not always fixed due to the existence
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of external disturbance and expensive control costs. Therefore, the pinning gains

in proposed control protocols are designed to be intermittent adaptive and with an

exponential convergence rate, which can effectively reduce communication costs,

avoid the pinning gains being larger than those needed in practice. Meanwhile, it

guarantees the pinning gains quickly converge to steady value.

Lemma 2.7 If vi is the node that belongs to Vî \ Ṽî, then
N
∑

j=1

lijsĵ(t) = 0.

Proof: From the definition of Ṽî, if vi ∈ Vî \ Ṽî, one has lij = 0 for ∀vj /∈ Vî.

Note from the fact
N
∑

j=1

lij = 0, it follows that

N
∑

j=1

lijsĵ(t) =
∑

vj∈Vî

lijsĵ(t) +
∑

vj /∈Vî

lijsĵ(t) =
∑

vj∈Vî

lijsî(t)

=(
∑

vj∈Vî

lij +
∑

vj /∈Vî

lij)sî(t) =

N
∑

j=1

lijsî(t) = 0.

(2.7)

For convenience, the agents in each cluster are categorized into three types and

defined as follows. Vi
1 is the set of the nodes that belong to Ṽî; V

i
2 is the set of the

nodes that belong to Vî \ Ṽî and deg(i)in = 0; Vi
3 is the set of the rest of nodes.

Recalling the definition of ei(t), one has,

ėi(t) =



























Aei(t)− BK

N
∑

j=1

lijej(t)− di(t)BKei(t), if i ∈ Vi
1 ∪ Vi

2,

Aei(t)− BK
N
∑

j=1

lijej(t), if i ∈ Vi
3.

(2.8)

Furthermore, without loss of generality, the followers can be rearranged the order.

Let the first l (1≤ l ≤ N) agents be pinned in MASs. Then ei(t) can be rewritten

as:

ėi(t) = Aei(t)−BK
N
∑

j=1

lijej(t)− di(t)BKei(t), if i ∈ Vi
1 ∪ Vi

2 ∪ Vi
3, (2.9)

ḋi(t) =

{

σeσ1tei
T (t)Γei(t), if t ∈ [mT,mT + δ),

0, if t ∈ [mT + δ, (m+ 1)T ).
(2.10)
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Theorem 2.8 The MASs (2.1) and (2.2) with the control input (2.5) can reach

cluster consensus, that is to say, lim
t→∞

||ei(t)|| = 0 for i ∈ V, if the following con-

ditions are satisfied:

(i) the pair (A,B) is stabilizable,

(ii) L̄+D > 0,

(iii) K = µ1B
TP and Γ = 2µ1PBBTP ,

(iv) θ1 = δ/T > β1

α1+β1
,

where D = diag{d1, . . . , dl, 0, . . . , 0}N×N , α1 = min{ −λ1

λmax(P )
, σ1}, λ1 = λmax(A

TP+

PA− µ1PBBTPλmin(2L̄+ 2D)), β1 = max{ λ2

λmin(P )
, σ1}, λ2 = max{λmax(IN ⊗

(ATP + PA) − 2µ1L̄ ⊗ PBBTP ), ǫ}, σ, σ1 and ǫ are any positive constants,

P = P T > 0 and µ1 satisfies the following equations:

ATP + PA− µ1PBBTPλmin(2L̄+ 2D) < 0, (2.11)

µ1 · λmin(2L̄+ 2D) > 1 (2.12)

Proof: Choose the following Lyapunov function candidate:

V (t) =

N
∑

i=1

eTi (t)Pei(t) +
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
, (2.13)

where σ is positive constant. Matrix P and the parameters di, σ1 are defined in

the conditions of Theorem 2.8.

(1) When t ∈ [mT,mT + δ), take the time derivative of (5.15) as

V̇ (t) =2
N
∑

i=1

eTi (t)P (Aei(t)−BK

N
∑

j=1

lijej(t)− di(t)BKei(t))

+
1

2
(−σ1)

N
∑

i=1

e−σ1t (di(t)− di)
2

σ
+ (di(t)− di)

N
∑

i=1

eTi (t)Γei(t).

(2.14)

Denote e(t) = (eT1 (t), e
T
2 (t), . . . , e

T
N (t))

T , D(t) = diag{d1(t), . . . , dl(t), 0, . . . , 0}N×N ,

K = µ1B
TP , Γ = 2µ1PBBTP , D = diag{d1, . . . , dl, 0 . . . , 0}N×N , where di >
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0, i = 1, . . . , l(1 ≤ l ≤ N). The derivative of V (t) can be written as,

V̇ (t) =eT (t)(IN ⊗ ATP − LT ⊗KTBTP −D(t)⊗KTBTP )e(t)

+ eT (t)(IN ⊗ PA− L⊗ PBK −D(t)⊗ PBK)e(t)

+ (−σ1)
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
+ eT (t)(D(t)−D)⊗ (2µ1PBBTP )e(t)

=eT (t)(IN ⊗ (ATP + PA)− 2µ1L̄⊗ PBBTP − 2µ1D(t)⊗ PBBTP )e(t)

+ (−σ1)
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
+ eT (t)(D(t)−D)⊗ (2µ1PBBTP )e(t)

=eT (t)(IN ⊗ (ATP + PA)− µ1(2L̄+ 2D)⊗ PBBTP )e(t)

+ (−σ1)
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
.

(2.15)

Next, we will show that the matrix IN ⊗ (ATP +PA)−µ1(2L̄+2D)⊗PBBTP is

negative. Since the condition 2L̄+2D > 0, it follows that there exists a constant

µ1 such that µ1 ·λmin(2L̄+2D) > 1. Furtherly, on the basis of linear systems the-

ory, there exists a positive matrix P such that ATP +PA−µ1PBBTPλmin(2L̄+

2D) < 0, namely, matrix IN ⊗ (ATP +PA)−µ1(2L̄+2D)⊗PBBTP is negative.

Denote λ1 = λmax(A
TP + PA− µ1PBBTPλmin(2L̄+ 2D)), one has

V̇ (t) ≤ λ1e
T (t)e(t) + (−σ1) ·

1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤ λ1

λmax(P )
eT (t)(IN ⊗ P )e(t) + (−σ1) ·

1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤ −α1V (t),

(2.16)
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where α1 = min{ −λ1

λmax(P )
, σ1}.

(2) When t ∈ [mT + δ, (m+ 1)T ), the time derivative of (5.15) is given as

V̇ (t) =2

N
∑

i=1

eTi (t)P (Aei(t)−BK

N
∑

j=1

lijej(t)) +
1

2
(−σ1)

N
∑

i=1

e−σ1t (di(t)− di)
2

σ

=eT (t)(IN ⊗ (ATP + PA)− µ1(2L̄)⊗ PBBTP )e(t) − 1

2
σ1

N
∑

i=1

e−σ1t (di(t)− di)
2

σ

≤λmax(IN ⊗ (ATP + PA)− 2µ1L̄⊗ PBBTP )eT (t)e(t) + σ1 ·
1

2

N
∑

i=1

e−σ1t (di(t)− di)
2

σ

(2.17)

Denote λ2 = max{λmax(IN ⊗ (ATP +PA)−2µ1L̄⊗PBBTP ), ǫ} with ǫ > 0, one

has,

V̇ (t) ≤λ2e
T (t)e(t) + σ1 ·

1

2

N
∑

i=1

e−σ1t (di(t)− di)
2

σ

≤ λ2

λmin(P )
eT (t)(IN ⊗ P )e(t) + σ1 ·

1

2

N
∑

i=1

e−σ1t (di(t)− di)
2

σ

≤β1V (t),

(2.18)

where β1 = max{ λ2

λmin(P )
, σ1}. By induction, one obtains,

V ((m+ 1)T ) ≤V (mT + δ)eβ1(T−δ) ≤ V (mT )e−α1δ · eβ1(T−δ)

=V (mT )e−α1δ+β1(T−δ) ≤ · · · ≤ V (0)e(−α1δ+β1(T−δ))(m+1).
(2.19)

To ensure that V ((m + 1)T ) → 0 as m → ∞, let −α1δ + β1(T − δ) < 0.

Then one has θ1 = δ/T > β1

α1+β1
. Thus, lim

t→∞
||ei(t)|| = 0. It means that cluster

consensus of general linear MASs via intermittent adaptive pinning control is

reached. This completes the proof.

Remark 2.9 The proof of Theorem 2.8 is divided into two parts t ∈ [mT,mT+δ)

and t ∈ [mT + δ, (m + 1)T ). When t ∈ [mT,mT + δ), the derivative of V (t) is

negative due to the influence of leaders, which indicates the lim
t→∞

||ei(t)|| = 0.

However, when t ∈ [mT + δ, (m + 1)T ), the derivative of V (t) cannot be deter-

mined to be negative, while it is only obtained that V̇ (t) ≤ β1V (t) by choosing the

appropriate positive constants λ2, β1. Hence, it is critical to design the intermit-

tent control rate θ1 in (2.19) for ensuring V ((m+ 1)T ) → 0 as m → ∞, that is,

cluster consensus is achieved.
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The general criterions are presented in Theorem 2.8 to reach leader-following

cluster consensus of MASs. However, how to construct an appropriate gain matrix

D to satisfy the condition 2L̄+2D > 0 is not easy. Hence, the following theorem

will be given to solve this problem.

Theorem 2.10 The matrix L̄+D is a positive if the following conditions hold:

λmax(−L̄l) < 0, (2.20)

di > λmax(R− S(−L̄l)
−1ST ). (2.21)

Proof: In Lemma 1.9, let G = −L̄, and −L̄−D =

(

R− D̃ S
ST −L̄l

)

, where

−L̄l is the minor matrix of −L̄ by removing its first l row-column pairs, D̃ =

diag{d1, . . . , dl}, R and S represent the matrices with appropriate dimensions.

Thanks to Lemma 1.9, we have −L̄−D < 0, that is, L̄+D is a positive matrix.

This completes the proof.

Remark 4. It is worth noting that most literatures on cluster consensus

assume that adjacency matrix A satisfies
∑

j∈Vk
aij = 0, or

∑

j∈Vk
aij = β, ∀k 6= î,

where β is a constant. In fact, the assumption is conservative. In this chapter, we

take a weakly connected graph into consideration, in where the Laplace matrix

just needs to satisfy the general diffusion property, that is,
N
∑

j=1

lij = 0. Moreover,

by choosing an appropriate low bound pinning gain di, one can get L̄+D > 0. For

an undirected connected graph, L̄+D > 0 can hold naturally due to the Laplace

matrix is a real symmetric. Therefore, the MASs with undirected connected

graph can be considered as a special case only by choosing the inter-act followers

to be pinned.

2.3.2 Cluster consensus of MASs with a class of nonlinear

dynamics via intermittent adaptive pinning control

It well known that most of physical systems are inherent nonlinear in reality.

Particularly, for the MASs, the nonlinear dynamics play an important role in

determining the final consensus states (Cheng et al., 2019). To satisfy the re-

quirement for the application of cluster problem in the real physical systems, this

chapter further presents an intermittent adaptive pinning approach for a group
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of nonlinear MASs given by (2.3) and (2.4) subject to both plant uncertainties

and external disturbances.

Let us consider the system (2.3)-(2.4) and control input (2.5). Taking the

control input (2.5) for system (2.3) and combining with the definition of ei(t),

one has,

ėi(t) =







































Aei(t)−BK

N
∑

j=1

lijej(t)− di(t)BKei(t) + f(xi(t))− f(sî(t)),

if i ∈ Vi
1 ∪ Vi

2,

Aei(t)−BK
N
∑

j=1

lijej(t) + f(xi(t))− f(sî(t)), if i ∈ Vi
3,

(2.22)

where K is the feedback control matrix will be recalculated in Theorem 2.11, di(t)

is defined in (2.6) and f(·) is the nonlinear function. Similarity, by rearranging

the order of pinned followers, that is, let the first l (1≤ l ≤ N) agents are pinned

in MASs. Combine the definition of di(t), ei(t) can be changed as:

ėi(t) =Aei(t)− BK
N
∑

j=1

lijej(t)− di(t)BKei(t) + f(xi(t))− f(sî(t)),

i ∈ Vi
1 ∪ Vi

2 ∪ Vi
3,

(2.23)

ḋi(t) =

{

σeσ1tei
T (t)Γei(t), if t ∈ [mT,mT + δ),

0, if t ∈ [mT + δ, (m+ 1)T ).
(2.24)

Theorem 2.11 The MASs (2.3) and (2.4) with the control protocol (2.5) reach

cluster consensus, that is to say, lim
t→∞

||ei(t)|| = 0 for i ∈ V, if the following

conditions are satisfied:

(i) (A,B) is stabilizable,

(ii) L̄+D > 0,

(iii) K = µ2B
TP and Γ = 2µ2PBBTP ,

(iv) θ2 = δ/T > β2

α2+β2
,

where D = diag{d1, . . . , dl, 0, . . . , 0}N×N , α2 = min{−λ3 · λmin(P−1)2

λmax(P )
, σ1}, β2 =

max{ λ4

λmin(P )
, σ1}, λ3 = λmax(AQ+QAT + γ2I +Q2− τBBT ), Λ = ATP +PA+

I + γ2P 2, λ4 = max{λmax(IN ⊗ Λ− 2µ2L̄⊗ PBBTP ), ǫ}, σ, σ1 and ǫ is any
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positive constants, τ , P = P T = Q−1 > 0 and µ2 satisfy the following equations:

(

AQ +QAT − τBBT + γ2I Q

QT −I

)

< 0 (2.25)

µ2 · λmin(2L̄+ 2D) > τ (2.26)

Proof: Choose the following Lyapunov function candidate:

V (t) =
N
∑

i=1

eTi (t)Pei(t) +
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
. (2.27)

(1) When t ∈ [mT,mT + δ), take the time derivative of (2.27) as,

V̇ (t) = 2

N
∑

i=1

eTi (t)P (Aei(t)− BK

N
∑

j=1

lijej(t)− di(t)BKei(t) + f(xi(t))− f(ŝi(t)))

+
1

2
(−σ1)

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
+ (di(t)− di)

N
∑

i=1

eTi (t)Γei(t).

(2.28)

Denote the compact vector

F (t) = (fT (x1(t))−fT (s1̂(t)), f
T (x2(t))−fT (s2̂(t)), . . . , f

T (xN (t))−fT (sN̂ (t)))
T .

Based on the Assumption 2.1, one has,

2eTi (t)P (f(xi(t))− f(ŝi(t)) ≤ 2γ||Pei(t)|| · ||ei(t)|| ≤ eTi (t)(I + γ2P 2)ei(t).

(2.29)

Combining (2.29), the derivative of V (t) can be written as,

V̇ (t) =eT (t)(IN ⊗ ATP − LT ⊗KTBTP −D(t)⊗KTBTP )e(t)

+ eT (t)(IN ⊗ PA− L⊗ PBK −D(t)⊗ PBK)e(t) + 2eT (t)(IN ⊗ P )F (t)

+ (−σ1)
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
+ eT (t)(D(t)−D)⊗ (2µ2PBBTP )e(t).

(2.30)
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Upon (2.29), we can get

V̇ (t) ≤eT (t)(IN ⊗ (ATP + PA+ I + γ2P 2)

− µ2(L
T + L)⊗ PBBTP − 2µ2D(t)⊗ PBBTP )e(t)

+ (−σ1)
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
+ eT (t)(D(t)−D)⊗ (2µ2PBBTP )e(t)

≤eT (t)(IN ⊗ (ATP + PA+ I + γ2P 2)− µ2(2L̄+ 2D)⊗ PBBTP )e(t)

+ (−σ1)
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
.

(2.31)

According to the condition (ii) in Theorem 2.11, there exists a constant µ2 satisfies

µ2 · λmin(2L̄+ 2D) > τ . Let Q = P−1, η(t) = (IN ⊗ P )e(t), one has,

V̇ (t) ≤ ηT (t)(IN ⊗ (AQ +QAT + γ2I +Q2)− IN ⊗ τBBT )η(t)

+(−σ1)
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
.

(2.32)

Further, according to the Lemma 1.8 and the conditions in Theorem 2.11, the

matrix AQ + QAT + γ2I + Q2 − τBBT < 0. Denote λ3 = λmax(AQ + QAT +

γ2I +Q2 − τBBT ), one has,

V̇ (t) ≤ λ3η
T (t)η(t) + (−σ1) ·

1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

= λ3e
T (t)(IN ⊗ P−T )(IN ⊗ P−1)e(t) + (−σ1) ·

1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤ λ3 ·
λmin(P

−1)2

λmax(P )
eT (t)(IN ⊗ P )e(t) + (−σ1) ·

1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤ −α2V (t),
(2.33)

where α2 = min{−λ3 · λmin(P
−1)2

λmax(P )
, σ1}.
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(2) When t ∈ [mT + δ, (m+ 1)T ), take the time derivative of (2.27) as

V̇ (t) =2

N
∑

i=1

eTi (t)P (Aei(t)− BK

N
∑

j=1

lijej(t)) + 2

N
∑

i=1

eTi (t)P (f(xi(t))− f(ŝi(t))

+
1

2
(−σ1)

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
.

(2.34)

Based on (2.29), we have

V̇ (t) ≤eT (t)(IN ⊗ (ATP + PA+ I + γ2P 2)− µ2(L
T + L)⊗ PBBTP )e(t)

− 1

2
σ1

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤λ4e
T (t)e(t) + σ1 ·

1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤ λ4

λmin(P )
eT (t)(IN ⊗ P )e(t) + σ1 ·

1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤β2V (t),
(2.35)

where β2 = max{ λ4

λmin(P )
, σ1},

λ4 = max{λmaxIN ⊗ Λ− µ2(L
T + L)⊗ PBBTP , ǫ}, Λ = ATP +PA+ I + γ2P 2.

Similarly, by induction, one obtains,

V ((m+ 1)T ) ≤V (mT + δ)eβ2(T−δ) ≤ V (mT )e−α2δ · eβ2(T−δ)

=V (mT )e−α2δ+β2(T−δ) ≤ · · · ≤ V (0)e(−α2δ+β2(T−δ))(m+1).
(2.36)

To ensure that V ((m + 1)T ) → 0 as m → ∞, let −α2δ + β2(T − δ) < 0.

Then one has θ2 = δ/T > β2

α2+β2
. Thus, lim

t→∞
||ei(t)|| = 0, it means that cluster

consensus of MASs with nonlinear dynamics via intermittent adaptive pinning

control can be reached. This completes the proof.

2.4 Simulation results

Two examples are given in this section to illustrate the effectiveness of obtained

results. Consider a MASs with three clusters, Fig. 2.1 is the communication

topology. The leaders are labelled as S1, S2 and S3, and the followers are labelled
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as 1 to 10, where followers 1, 2, 3 are in the first cluster, followers 4, 5, 6 are

in the second cluster, followers 7, 8, 9, 10 are in the third cluster. The dotted

line denotes the effects that the leaders impose on followers. From Fig.2.1, we

can see that followers 2, 3, 4, 7 and 8 should be pinned according to the control

strategy (2.5). Specifically, due to followers 3 and 4 can receive information

from other clusters, the first term of controller (2.5) should be applied to these

followers; followers 2, 7 and 8 cannot receive any information from other clusters,

the second term of controller (2.5) should be applied to these followers; the rest

of followers only can receive information from their own cluster, the third term

of controller (2.5) should be applied to these followers.

From the graph theory, the matrices A and L can be derived as follows:

A =

































0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0

































and L =

































1 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 −1 2 0 0 0 −1 0 0 0
0 0 −1 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 −1 2 0 0
0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 0 0 1

































.
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S1

1

2 3

S2

6 5

4

S3

7 8

10 9

Fig. 2.1. The communication topology of the MASs, where sj denotes the jth
leader, and i denotes the ith follower, j = 1, 2, 3; i = 1, 2, . . . , 10.

Example 1: (linear case) For the linear case, two kinds of system matrices

A and B are presented to show the influence of system matrix for system perfor-

mance.

Linear case (a): For the linear MASs (2.1) and (2.2), we choose A =





0 0 0
0 0 1
0 −1 0



 ,

B =





1
1
1



 , respectively. Obviously, (A,B) is stabilizable. And the positive

constants can be chosen as: σ = 1, σ1 = 1, ǫ = 0.1. Control period T is

given as T = 1s. By calculating the equations (2.11) and (2.12), we can ob-

tain P =





2.3483 −0.0488 −1.4134
−0.0488 1.8000 −0.4988
−1.4134 −0.4988 1.8689



 , K =
(

1.7722 2.5048 −0.0865
)

,

µ1 = 2, di = 1, i = 2, 3, 4, 7, 8, δ = 0.98. Fig. 2.2 is the state trajectories of

leaders and followers with three dimensions. Fig. 2.3 is the time evolution of

di(t) with i = 2, 3, 4, 7, 8 and state error eij(t) for j = 1, 2, 3, i = 1, 2, . . . , 10.

Linear case (b): Choose A =





−2 1 1
1 −1 0
0 1 −1



 , B =





0
1
1



 as the sys-

tem matrices for linear MASs (2.1) and (2.2), respectively. Fig. 2.4 is the state

trajectories, Fig. 2.5 is the time evolution of di(t) and state error eij(t).
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(a) State trajectories xi1 and sj1
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(b) State trajectories xi2 and sj2

0 1 2 3 4 5 6 7 8 9 10

t(s)

-8

-6

-4

-2

0

2

4

6

x i3
(t

) 
an

d 
s j3

(t
)

(c) State trajectories xi3 and sj3

Fig. 2.2. State trajectories of all agents for linear case (a).
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Fig. 2.3. The time evolution of di(t) and state error eij(t) for linear case (a).
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Fig. 2.4. State trajectories of all agents for linear case (b).
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Fig. 2.5. The time evolution of di(t) and state error eij(t) for linear case (b).
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Example 2: For the dynamics of nonlinear MASs (2.3) and (2.4), we choose

A =

(

0 1
−1 0

)

, B =

(

0
1

)

, and f(x)=0.2sin(x) as system matrices and nonlin-

ear function, respectively. Obviously, (A,B) is stabilizable and nonlinear function

f(·) satisfies the Assumption 2.1. And the positive constants can be chosen as:

γ = 0.2, τ = 1, σ = 1, σ1 = 0.1, ǫ = 0.01. Control period T is given as

T = 1s. By calculating the equations (2.25), (2.26) and (2.21), we can obtain

P = Q−1 =

(

20 10
10 10

)

, K =
(

20 20
)

, µ2 = 2, di = 1, i = 2, 3, 4, 7, 8,

δ = 0.96. Fig. 2.6 and Fig. 2.7 are the first component and second component of

the state trajectories of the all agents respectively. Fig. 2.8 is the time evolution

of di(t). Fig. 2.9 is the state error ei(t).

From the above figures, we can conclude that the followers in the same cluster

achieve leader-following consensus and there is no consensus among the different

clusters for both linear system and a class of nonlinear system, that is, the control

inputs are effective, the cluster consensus of MASs is realised via intermittent

adaptive pinning control.

Fig. 2.6. The first component xi1 and sj1 of the state trajectories of the all
agents, where j = 1, 2, 3; i = 1, 2, . . . , 10.

46

paper1/chapter1figs/EPS/2.eps


2.4 Simulation results

Fig. 2.7. The second component xi2 and sj2 of the state trajectories of the all
agents, where j = 1, 2, 3; i = 1, 2, . . . , 10.
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Fig. 2.8. The time evolution of di(t), where i = 2, 3, 4, 7, 8.

Fig. 2.9. The state error eij(t), where j = 1, 2; i = 1, 2, . . . , 10.
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2.5 Conclusion

This chapter has investigated the cluster consensus of MASs via intermittent

adaptive pinning control. Firstly, for the linear MASs and a class of nonlinear

MASs, we have employed intermittent adaptive pinning control schemes respec-

tively to accomplish the cluster consensus. Secondly, for the network topology

of MASs, we take a weakly connected topology into consideration, which is more

universal in practice in contrast to the directed network topology required to be

balanced or contain a directed spanning tree. Thirdly, a rigorous proof have been

given for the intermittent adaptive pinning control input based on the Lyapunov

stability theory and the corresponding sufficient conditions have been derived.

Finally, simulation examples are presented to verify the effectiveness of the main

results. It is well known that there still exists numerous challenging problems to

be studied such as time-delay influence, state observer, which will be studied in

our next chapter.
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3.1 Introduction

In real applications, it is often difficult to avoid the occurrence of time delays due

to the finite chemical reaction times, finite switching speed of amplifiers, memory

effects, finite signal propagation time in biological networks and so on. Thus, it is

extremely important and necessary to investigate cluster consensus of MASs with
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time delays. Recently, the topic of cluster consensus with time delays has been

extensively studied in many aspects. In (Ma et al., 2016), the authors proposed

the concept of cluster-delay consensus in first-order MASs with nonlinear dynam-

ics via pinning control. In (Da et al., 2018), the authors considered the cluster

lag consensus of nonlinear MASs with two types of time-delays. In addition, by

using frequency-domain analysis method and matrix theory, the dynamics group

consensus problem of heterogenous MASs with time delay was investigated in

(Wen et al., 2016b). To the best of our knowledge, the intra-cluster lag consensus

of multi-agent systems via intermittent adaptive pinning control has not been

addressed before.

Furthermore, due to the states of many actual systems are not always available

or measured directly in expensive cost, it is quite necessary to design an observer

to estimate the agent’s real-time state. Up to now, various issues are addressed by

observer-based method. (Rosaldo-Serrano et al., 2019) investigated the formation

tracking problem, where suitable Luenberger observers are used for the agents to

estimate linear and angular velocities. (Han et al., 2019) studied the containment

control issue of general linear MASs with exogenous disturbances, where the

disturbances are estimated by disturbance observer-based control scheme. In

order to estimate the state of leader and deal with fixed-time stability problem,

(Zuo et al., 2019) considered the consensus problem for MASs with high-order

integrator dynamics by designing a distributed consensus observer. To our best

knowledge, so far the observer-based intra-cluster lag consensus of MASs has

not been investigated. Moreover, compared with a single system or integrator

MASs, the observer-based intra-cluster lag consensus of MASs with general linear

dynamics and nonlinear dynamics is more challenging.

Inspired by the aforementioned these considerations, this chapter investigates

the observer-based intra-cluster lag consensus (OBICLC) of general linear MASs

and nonlinear MASs via intermittent adaptive pinning control (IAPC), where

each cluster has a virtual leader whose state is available to only a small part

of followers, and the pinning gains are changeable because of communication

constraints. The so-called intra-cluster lag consensus (ICLC) means that the fol-

lowers in the same cluster can achieve lag consensus asymptotically while the

followers in different clusters can achieve different agreements. The main contri-

butions of this work are listed as follows.
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3.2 Problem formulation

• Firstly, considering the relevant full state information of each follower is not

always available, the Luenberger observers are designed for general linear

and nonlinear MASs respectively to estimate the states of followers. Hence,

the control protocols in this chapter only use the observed states information

of followers instead of their real-time states information.

• Secondly, similar with above chapter, to realize the intra-cluster lag consen-

sus, the followers in each cluster are classified into three types. Specifically,

the followers can only receive information from the followers in their own

cluster, the ones receive information from the followers in other clusters,

and the others cannot receive information from any followers. Then, the

distributed intermittent adaptive pinning control protocols are further de-

signed according to the different categories of followers, which make sure

that the followers in the same cluster achieve intra-cluster lag consensus

whereas the followers in the different clusters achieve different consensus.

• Thirdly, compared with the most of existing results about cluster consensus

where each block unit in the weighted adjacency matrix of network topology

is assumed to be a zero-row-sum matrix or an equal-row-sum matrix, which

is relative conservative in actual applications, in this chapter a weakly con-

nected topology is still considered and all the coupling weights of network

topology are positive, which is more universal in practice.

• Fourthly, different from continuous control protocols in (Qian et al., 2014)

and (Huang et al., 2019), the pinning gains in proposed control protocols are

designed to be intermittent adaptive and with an exponential convergence

rate, which can effectively reduce communication costs, avoid the pinning

gains being larger than those needed in practice. Meanwhile, it guarantees

the pinning gains quickly converge to steady value.

3.2 Problem formulation

To study the OBICLC problem via IAPC strategy for linear MASs and a class

of nonlinear MASs, in this section, the model and problem objective are briefly

introduced.
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Case I (Generic Linear Systems):

Consider a general linear MASs containing N followers and m virtual leaders

(N > m ≥ 2). The ith follower’s dynamics is

{

ẋi(t) =Axi(t) +Bui(t)

yi(t) =Cxi(t)
, i ∈ {1, 2, ..., N} , V, (3.1)

where xi ∈ Rn , ui ∈ Rp, yi ∈ Rq denote the state, control protocol and output

measurement of ith follower, respectively. The constant matrices A ∈ Rn×n,

B ∈ Rn×p and C ∈ Rq×n have appropriate dimensions. Suppose that the matrix

triple (A,B,C) is stabilizable and detectable.

The jth virtual leader’s dynamics is modeled by

{

ṡj(t) = Asj(t)

yj(t) = Csj(t)
, j ∈ {1, 2, ..., m} , Ω, (3.2)

where sj(t) ∈ Rn , yj ∈ Rq denote the state and output measurement, respec-

tively.

Case II (Nonlinear Oscillators):

The dynamics of the ith follower is characterized by

{

ẋi(t) = Axi(t) +Bui(t) + f(xi(t))

yi(t) = Cxi(t)
, i ∈ V, (3.3)

and the virtual leader j’s dynamics is described by

{

ṡj(t) = Asj(t) + f(sj(t))

yj(t) = Csj(t)
, j ∈ Ω, (3.4)

where the nonlinear function f(·) holds the following Assumption 3.1.

Assumption 3.1 It is assumed that the nonlinear function f(·) satisfies the Lip-

schiz condition, i.e., for any vectors x, y ∈ Rm, there exists a constant γ > 0 such

that ‖f(x)− f(y)‖ ≤γ‖x− y‖.

Remark 3.2 The Lipschiz condition assumption is widely used in the analysis

of nonlinear systems. With the help of Lipschiz condition assumption, the exis-

tence and uniqueness of nonlinear systems’ solutions can be guaranteed. Refer to

literatures (Wen et al., 2013) and (Ekramian, 2017) for more details.
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3.2 Problem formulation

Definition 3.3 For arbitrary initial states, the MASs (3.1)-(3.2) and (3.3)-(3.4)

achieve the ICLC if lim
t→∞

||ηi(t)|| = 0 and lim
t→∞

||sl(t)− sk(t)|| 6= 0, where l 6= k,

l, k ∈ Ω, ηi(t) = xi(t)− sî(t− τî), i ∈ V, î ∈ Ω is the subscript of the leader that

the ith follower will track with, τî denotes the time delay in î cluster between the

ith follower and its own leader.

Remark 3.4 Note that the trajectories of all virtual leaders are determined by

system matrix A owing to sj(t) = sj(0)e
At. If A is a Hurwitz matrix, then

the states of all leaders will asymptotically reach zeros, which goes against our

objective. Therefore, in this chapter, we assume the matrix A is not Hurwitz.

By giving different initial values for systems (3.2) and (3.4), the states of virtual

leaders will be different, that is, for any l 6= k, lim
t→∞

||sl(t)− sk(t)|| 6= 0, where

l, k ∈ Ω.

2

1

3

s1

4

5

6

s2

Fig. 3.1. An example of MASs with time delays.

Remark 3.5 Note that the existence of time-delays in many practical systems is

ubiquitous and inevitable due to communication, calculation, actuation. There-

fore, more and more researchers have focused their attention on the consensus

problem of MASs with time delays. Lag consensus, including consensus as a spe-

cial case, which means the followers’ states are consistent with the delayed states

of leaders. For example, proper time delays between different vehicles in the way

can keep the road safe and orderly. Otherwise, congestion often occurs. Taking
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into account lag consensus can mitigate network or traffic congestion problem,

in this paper, we consider the intra-cluster lag consensus of MASs, which means

that the followers in the same cluster can achieve lag consensus asymptotically

while the followers in different clusters can achieve different agreements. In order

to clarify the problem more clearly, For example, two isolated groups of vehicles

follow the leader and pass across the obstacle, obviously, they cannot pass across

the obstacle at the same time (see Fig. 3.1), but we can design a suitable protocol

to make the vehicles pass across the obstacle orderly.

3.3 Main results

3.3.1 Observer-based intra-cluster lag consensus for linear

MASs

Before proceeding, some explanations are presented for the reason why we propose

the following control protocol. In the former works about MASs (Zhang et al.,

2019a), the cluster lag consensus was achieved based on two common assumptions.

Firstly, the local relative state information among all agents is available. Secondly,

information between the leaders and followers can be transmitted continuously.

However, in many circumstances, full state measurements and communication

information are not always available due to physical constrain. Therefore, in this

chapter, assuming that each follower can receive the relative output information

instead of its neighbors’ state information, the following observer-based control

protocol for the follower i in (3.1) is proposed,

ui(t) =







































































K

N
∑

j=1

aij(x̂j(t)− x̂i(t))− di(t)(x̂i(t)− sî(t− τî)) +K

N
∑

j=1

lijsĵ(t− τĵ),

if i ∈ Ṽî

K

N
∑

j=1

aij(x̂j(t)− x̂i(t))− di(t)(x̂i(t)− sî(t− τî)),

if i ∈ Vî \ Ṽî and deg(i)in = 0

K
N
∑

j=1

aij(x̂j(t)− x̂i(t)), otherwise,

(3.5)
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where x̂i(t) ∈ Rn is the observer state, î and ĵ are the subscripts of the leaders in

Theorem 3.9, τî and τĵ are the time delays, K represents the feedback control gain

matrix. The observer state x̂i(t) and adaptive law di(t) are defined as follows:

{

˙̂xi(t) = Ax̂i(t) +Bui(t) + F (ŷi(t)− yi(t))

ŷi(t) = Cx̂i(t),
(3.6)

ḋi(t) =

{

σeσ1t(x̂i(t)− sî(t− τî))
TΓ(x̂i(t)− sî(t− τî)), if t ∈ [mT,mT + δ),

0, if t ∈ [mT + δ, (m+ 1)T ),
(3.7)

where matrices F and Γ will be determined later in Theorem 3.9, σ and σ1 are

positive constants, T > 0 and δ ∈ (0, T ) represent the control period and control

width respectively, [mT,mT + δ) and [mT + δ, (m+1)T ) are called as work time

interval and rest time interval.

Remark 3.6 Note that the followers in each cluster can be divided into three

types. Correspondingly, the controller (3.5) is designed according to the special

property of each follower. For all the followers, The term K
N
∑

j=1

aij(x̂j(t)− x̂i(t))

in the control protocol (3.5) is necessary, which reflects the interaction between

agent i and its neighbours. For the followers which can receive information

from other clusters or can not receive information from any followers, the term

di(t)(x̂i(t)− sî(t− τî)) is introduced to obtain the information of leaders and the

time delay τî can be different among different clusters. Besides, for the followers

that can receive information from other clusters, the term K
N
∑

j=1

lijsĵ(t− τĵ) is

used to counteract the influence among clusters. The purpose of controller (3.5)

is to make sure that the followers in the same cluster achieve ICLC whereas the

followers in the different clusters achieve different consensus.

Remark 3.7 The design of controller (3.5) is partly inspired by (Da et al., 2018;

Qian et al., 2014), where the pinning control gain di(t) is a fixed constant all the

time or in every time interval. However, due to the change of external environ-

ment or in the consideration of reducing control cost, it is more reasonable and

effective to design the pinning control gain to be intermittent adaptive. Further-

more, in order to make the pinning control gain quickly converge to steady value,

55



3. OBSERVER-BASED INTRA-CLUSTER LAG CONSENSUS OF
MULTI-AGENT SYSTEMS VIA INTERMITTENT ADAPTIVE
PINNING CONTROL

the pinning control gain di(t) possesses an exponential convergence rate. Based

on above analysis, the derivative of di(t) is designed to be the form of equation

(3.7) if ith follower is pinned; di(t) = 0 otherwise.

Lemma 3.8 If vi is the follower that belongs to Vî \ Ṽî, then
N
∑

j=1

lijsĵ(t− τĵ) = 0.

Proof: From the definition of Ṽî, if vi ∈ Vî \ Ṽî, one has lij = 0 for ∀vj /∈ Vî.

Besides, if vj ∈ Vî, one has sĵ(t− τĵ) = sî(t− τî). Combining the fact
N
∑

j=1

lij = 0,

it follows that,

N
∑

j=1

lijsĵ(t− τĵ) =
∑

vj∈Vî

lijsĵ(t− τĵ) +
∑

vj /∈Vî

lijsĵ(t− τĵ) =
∑

vj∈Vî

lijsî(t− τî)

=(
∑

vj∈Vî

lij +
∑

vj /∈Vî

lij)sî(t− τî) =
N
∑

j=1

lijsî(t− τî) = 0.

(3.8)

Combining the definition ei(t) = x̂i(t)− sî(t− τî) and the formulas (3.2) ∼ (3.7),

one has,

ėi(t) =







































Aei(t)− BK

N
∑

j=1

lijej(t)− di(t)BKei(t) + F (ŷi(t)− yi(t)),

if i ∈ V1
î
∪ V2

î
,

Aei(t)− BK

N
∑

j=1

lijej(t) + F (ŷi(t)− yi(t)), if i ∈ V3
î
,

(3.9)

where V1
î
,V2

î
,V3

î
is defined in Chapter 2, see equation (2.8).

ḋi(t) =

{

σeσ1tei(t)
TΓei(t), if t ∈ [mT,mT + δ),

0, if t ∈ [mT + δ, (m+ 1)T ).
(3.10)

Let the first l(l = 1, 2, . . . , N) followers be pinned by rearranging the followers’

order. Due to the fact that the derivative of di(t) satisfies equation (3.10), that is,

for any time t, di(t) > 0 if the i-th follower is pinned; di(t) = 0 otherwise. When
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vi ∈ V3
î
, that means di(t) = 0, then the error system (3.9) can be reformulated as

ėi(t) =Aei(t)− BK
N
∑

j=1

lijej(t)− di(t)BKei(t) + F (ŷi(t)− yi(t)),

i ∈ V1
î
∪ V2

î
∪ V3

î
.

(3.11)

Theorem 3.9 Suppose that the matrix triple (A,B,C) is stabilizable and de-

tectable, there exists a diagonal matrix D, a positive constant µ1 and a positive

definite matrix P = P T > 0 such that the following equations:

L̄+D > 0, (3.12)

µ1 · λmin(2L̄+ 2D) > 1, (3.13)

ATP + PA− µ1PBBTPλmin(2L̄+ 2D) < 0, (3.14)

where L̄ = L+LT

2
, D = diag{d1, . . . , dl, 0 . . . , 0}N×N is a diagonal matrix with

d1, . . . , dl > 0, 1 ≤ l ≤ N . Then letting K = µ1B
TP , Γ = 2µ1PBBTP , and

designing a matrix F such that A+FC is Hurwitz matrix, the OBICLC of MASs

(3.1)-(3.2) can be reached by control input (3.5) with the following condition:

− α1δ + β1(T − δ) < 0, (3.15)

where α1 = min{ −λ1

λmax(P )
, σ1}, λ1 = λmax(A

TP +PA−µ1PBBTPλmin(2L̄+2D)),

β1 = max{ λ2

λmin(P )
, σ1}, λ2 = max{λmax(IN ⊗(ATP +PA)−2µ1L̄⊗PBBTP ), ǫ},

σ1 and ǫ are positive constants.

Proof: Theorem 3.9 can be proved by two steps: the first step is to show the

effectiveness of state observer, i.e., lim
t→∞

||xi(t)− x̂i(t)|| = 0, and the second step

is to prove the asymptotic stability of error system (3.11), that is, lim
t→∞

||ei(t)|| = 0.

Step 1: Let ξi(t) = xi(t)− x̂i(t), one has,

ξ̇i(t) =Axi(t) +Bui(t)− Ax̂i(t)−Bui(t)− F (ŷi(t)− yi(t))

=A(xi(t)− x̂i(t)) + FC(xi(t)− x̂i(t))

=(A+ FC)ξi(t).

(3.16)
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Based on the condition in Theorem 3.9: A + FC is Hurwitz matrix, we have

lim
t→∞

||ξi(t)|| = lim
t→∞

||xi(t)− x̂i(t)|| = 0, which indicates the state observer is feasi-

ble. Furthermore, one has F (ŷi(t)− yi(t)) = FCξi(t) = 0 as t → ∞. In equation

(3.11), owing to ξi(t) is decoupled from the error ei(t), the stability of (3.11) is

identical with that of the following system:

ėi(t) = Aei(t)− BK
N
∑

j=1

lijej(t)− di(t)BKei(t), vi ∈ V1
î
∪ V2

î
∪ V3

î
. (3.17)

Step 2: Construct the Lyapunov function for equation (3.17):

V (t) =
N
∑

i=1

eTi (t)Pei(t) +
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
, (3.18)

where matrix P and the parameters σ, di, σ1 are defined in Theorem 3.9. Evi-

dently, V (t) ≥ 0.

(1) When t ∈ [mT,mT + δ), differentiating V (t) along (3.17) yields

V̇ (t) =2

N
∑

i=1

eTi (t)P (Aei(t)− BK

N
∑

j=1

lijej(t)− di(t)BKei(t))

+
1

2
(−σ1)

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
+ (di(t)− di)

N
∑

i=1

eTi (t)Γei(t).

(3.19)

Let D(t) = diag{d1(t), . . . , dl(t), 0, . . . , 0}N×N , e(t) = (eT1 (t), e
T
2 (t), . . . , e

T
N (t))

T .

With K = µ1B
TP and Γ = 2µ1PBBTP , the derivative of V (t) can be expressed
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as,

V̇ (t) =eT (t)(IN ⊗ ATP − LT ⊗KTBTP −D(t)⊗KTBTP )e(t)

+ eT (t)(IN ⊗ PA− L⊗ PBK −D(t)⊗ PBK)e(t)

+ (−σ1) ·
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
+ eT (t)(D(t)−D)⊗ (2µ1PBBTP )e(t)

=eT (t)(IN ⊗ (ATP + PA)− 2µ1L̄⊗ PBBTP − 2µ1 ·D(t)⊗ PBBTP )e(t)

+ (−σ1) ·
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
+ eT (t)(D(t)−D)⊗ (2µ1PBBTP )e(t)

=eT (t)(IN ⊗ (ATP + PA)− µ1(2L̄+ 2D)⊗ PBBTP )e(t)

+ (−σ1) ·
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤λ1e
T (t)e(t) + (−σ1) ·

1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤ λ1

λmax(P )
eT (t)(IN ⊗ P )e(t) + (−σ1) ·

1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤− α1V (t),
(3.20)

where λ1 = λmax(A
TP+PA−µ1PBBTPλmin(2L̄+2D)), α1 = min{ −λ1

λmax(P )
, σ1} >

0.

(2) When t ∈ [mT + δ, (m+ 1)T ), the derivative of (3.18) can be obtained:

V̇ (t) =2

N
∑

i=1

eTi (t)P (Aei(t)− BK

N
∑

j=1

lijej(t)) +
1

2
(−σ1)

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

=eT (t)(IN ⊗ (ATP + PA)− µ1(2L̄)⊗ PBBTP )e(t)

− 1

2
σ1

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
,

≤λmax(IN ⊗ (ATP + PA)− 2µ1L̄⊗ PBBTP )eT (t)e(t)

+ σ1 ·
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤λ2e
T (t)e(t) + σ1 ·

1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

(3.21)
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furtherly,

V̇ (t) ≤ λ2

λmin(P )
eT (t)(IN ⊗ P )e(t) + σ1 ·

1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤β1V (t),

(3.22)

where λ2 = max{λmax(IN ⊗ (ATP + PA)− 2µ1L̄⊗ PBBTP ), ǫ},
β1 = max{ λ2

λmin(P )
, σ1} > 0.

Accordingly, when t ∈ [0, δ), one has

V (t) ≤ V (0)e−α1t, (3.23)

when t ∈ [δ, T ), one has

V (t) ≤ V (δ)eβ1(t−δ) ≤ V (0)e−α1δ+β1(t−δ). (3.24)

By induction, one obtains, when t ∈ [mT,mT + δ),

V (t) ≤ V (0)e−α1(mδ+t−mT )+β1m(T−δ) ≤V (0)e−α1mδ+β1m(T−δ) = V (0)em(−α1δ+β1(T−δ)).

(3.25)

Similarly, when t ∈ [mT + δ, (m+ 1)T ),

V (t) ≤V (0)e−α1(m+1)δ+β1(m(T−δ)+t−T2k+1) ≤ V (0)e−α1(m+1)δ+β1(m(T−δ)+(T−δ))

=V (0)e(m+1)(−α1δ+β1(T−δ)).
(3.26)

According to the equation (3.15) in Theorem 3.9: −α1δ + β1(T − δ) < 0, one

has V (t) → 0 and lim
t→∞

||ei(t)|| = 0 as m → ∞. Combining the first step and the

second step, one has lim
t→∞

||ηi(t)|| = lim
t→∞

||xi(t)− x̂i(t) + x̂i(t)− sî(t− τî)||=0. It

means that ICLC of general linear MASs via IAPC can be reached. This proof

is completed.

Remark 3.10 The proof of Theorem 3.9 is divided into two parts. The first step

is to show that state observer is valid by only using the relevant output information

of system (3.1). In the second step, when t ∈ [mT,mT +δ), the derivative of V (t)

is negative due to the effect of adaptive pinning gain di(t), which indicates the

lim
t→∞

||ei(t)|| = 0. However, when t ∈ [mT + δ, (m + 1)T ), the derivative of V (t)

cannot be determined to be negative, while it is only obtained that V̇ (t) ≤ β1V (t)
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by choosing the appropriate positive constants ǫ, λ2, β1. Hence, the equation (3.15)

is critical to ensure V ((m+ 1)T ) → 0 as m → ∞. To make it more clear, define

the control rate θ = δ
T−δ

, where δ is the control width, T −δ is the rest width, then

equation (3.15) can be rewritten as: θ > β1

α1
. It can be seen that the control rate

θ plays an essential role in realizing intra-cluster lag consensus. In consideration

of this fact, in real applications, we can select the control period T according to

our request.

Remark 3.11 The condition (3.14) is equivalent to the following Riccati equa-

tion condition: ATP + PA− µ1PBBTPλmin(2L̄+ 2D) +Q = 0 where Q is any

positive definite matrix. The purpose for the form (3.14) is to make a comparison

with the following condition (3.34) in Theorem 3.14.

The general criteria are presented in Theorem 3.9 to reach intra-cluster lag con-

sensus of MASs. However, how to construct an appropriate gain matrix D to

satisfy the condition (3.12): L̄+D > 0 is not obvious. Hence, we give Theorem

3.12 to solve this problem.

Theorem 3.12 The matrix L̄+D is positive definite with the following prereq-

uisites

λmax(−L̄l) < 0, (3.27)

di > λmax(R− S(−L̄l)
−1ST ). (3.28)

Proof: In Lemma 1.8, let G = −L̄, one has −L̄−D =

(

R− D̃ S
ST −L̄l

)

, where

D̃ = diag{d1, . . . , dl}, −L̄l is obtained by removing the first l row and column,

R and S represent the matrices with appropriate dimensions. Thanks to Lemma

1.8 and combine with (3.27), (3.28), we have −L̄ − D < 0, that is, L̄ + D is a

positive definite matrix. This completes the proof.

Remark 3.13 In (Cai et al., 2015; Kang et al., 2018; Tan et al., 2011), in or-

der to achieve cluster synchronization or group consensus, the topology contains

negative weight couplings aij < 0 and is required to satisfy the following assump-

tion:
∑

j∈Vk
aij = 0 , or

∑

j∈Vk
aij = β, ∀k 6= î, which is too conservative in

practical applications. In order to remove the restrictions, (Qian et al., 2014)

and (Da et al., 2018) employ pinning leader-following control scheme to reach

cluster consensus of MASs under weakly connected graph. Inspired by the works,
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in this paper, the intermittent adaptive pinning control is designed for general lin-

ear MASs and Lipschitz nonlinear MASs under weakly connected graph, in which

the Laplace matrix is just supposed to satisfy the general diffusion property, that

is,
N
∑

j=1

lij = 0. Moreover, by choosing an appropriate low bound pinning gain di,

one can get L̄+D > 0. For an undirected connected graph, L̄+D > 0 can hold

naturally due to the Laplace matrix is a real symmetry. Therefore, the MASs with

undirected connected graph can be considered as a special case only by choosing

the inter-act followers to be pinned.

3.3.2 Observer-based intra-cluster lag consensus for non-

linear MASs

In this section, the OBICLC of MASs with nonlinear dynamics via intermittent

adaptive pinning control is further considered, which is more challenging due to

the complexity of the system structure. Before going on, the state observer for

the ith nonlinear follower agent is designed as follows,

{

˙̂xi(t) = Ax̂i(t) +Bui(t) + f(x̂i(t)) + F (ŷi(t)− yi(t))

ŷi(t) = Cx̂i(t)
, i ∈ V. (3.29)

In this section, we still use the control protocol (3.5) with (3.7), taking the

control protocol (3.5) for system (3.3)-(3.4) and combining to ei(t) = x̂i(t)−sî(t−
τî), one has,

ėi(t) =







































Aei(t)− BK

N
∑

j=1

lijej(t)− di(t)BKei(t) + Fi(t) + F (ŷi(t)− yi(t)),

if i ∈ V
1
î
∪ V

2
î
,

Aei(t)− BK

N
∑

j=1

lijej(t) + Fi(t) + F (ŷi(t)− yi(t)), if i ∈ V3
î
,

(3.30)

ḋi(t) =

{

σeσ1tei(t)
TΓei(t), if t ∈ [mT,mT + δ),

0, if t ∈ [mT + δ, (m+ 1)T ),
(3.31)

where Fi(t) = f(xi(t))− f(sî(t)).
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Theorem 3.14 Suppose that the matrix triple (A,B,C) is stabilizable and de-

tectable, there exists a diagonal matrix D, a positive constant µ2 and a positive

definite matrix P = P T = Q−1 > 0 such that the following equations:

L̄+D > 0, (3.32)

µ2 · λmin(2L̄+ 2D) > τ, (3.33)
(

AQ+QAT − τBBT + γ2I Q

QT −I

)

< 0, (3.34)

where L̄ = L+LT

2
, D = diag{d1, . . . , dl, 0 . . . , 0}N×N is a diagonal matrix with

d1, . . . , dl > 0, 1 ≤ l ≤ N . Then letting K = µ2B
TP , Γ = 2µ2PBBTP , and

designing a matrix F such that A+ γI + FC is Hurwitz matrix, the OBICLC of

MASs (3.3)-(3.4) can be reached by control input (3.5) with the following condi-

tion:

− α2δ + β2(T − δ) < 0, (3.35)

where α2 = min{−λ3 · λmin(P
−1)2

λmax(P )
, σ1}, λ3 = λmax(AQ + QAT + γ2I + Q2 −

τBBT ), λ4 = max{λmax(IN ⊗ (ATP + PA+ I + γ2P 2)− 2µ2L̄⊗ PBBTP ), ǫ},
β2 = max{ λ4

λmin(P )
, σ1}, σ1 and ǫ are positive constants.

Proof: The proof is still divided into two parts, the first part is to show the

effectiveness of state observer, i.e., lim
t→∞

||xi(t)− x̂i(t)|| = 0. And the second part

is to prove lim
t→∞

||ei(t)|| = 0.

The first step: Let ξi(t) = xi(t)− x̂i(t), one has,

ξ̇i(t) =Axi(t) +Bui(t)− Ax̂i(t)− Bui(t) + f(xi(t))− f(x̂i(t))− F (ŷi(t)− yi(t))

=A(xi(t)− x̂i(t)) + FC(xi(t)− x̂i(t)) + f(xi(t))− f(x̂i(t))

=(A + FC)ξi(t) + f(xi(t))− f(x̂i(t)).
(3.36)

Construct the following Lyapunov function candidate:

V (t) =
1

2

N
∑

i=1

ξTi (t)ξi(t). (3.37)
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Taking the time derivative of (3.37) yields

V̇ (t) =

N
∑

i=1

ξTi (t)((A+ FC)ξi(t) + f(xi(t))− f(x̂i(t)))

≤
N
∑

i=1

ξTi (t)(A+ FC + γI)ξi(t).

(3.38)

Based on the condition A + FC + γI is Hurwitz matrix, one has V̇ (t) < 0.

Thus, lim
t→∞

||ξi(t)|| = lim
t→∞

||xi(t)− x̂i(t)|| = 0, as well F (ŷi(t)−yi(t)) = FCξi(t) =

0. In equation (3.30), owing to ξi(t) is decoupled from the error ei(t), the stability

of (3.30) is identical with the stability of the following system:

ėi(t) =



























Aei(t)−BK

N
∑

j=1

lijej(t)− di(t)BKei(t) + Fi(t), if i ∈ V1
î
∪ V2

î
,

Aei(t)−BK
N
∑

j=1

lijej(t) + Fi(t), if i ∈ V3
î
.

(3.39)

The second step: Construct the Lyapunov function candidate:

V (t) =
N
∑

i=1

eTi (t)Pei(t) +
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
. (3.40)

(1) When t ∈ [mT,mT + δ), the derivative of (3.40) is

V̇ (t) =2

N
∑

i=1

eTi (t)P (Aei(t)− BK

N
∑

j=1

lijej(t)− di(t)BKei(t) + f(x̂i(t))− f(ŝi(t)))

+
1

2
(−σ1)

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
+ (di(t)− di)

N
∑

i=1

eTi (t)Γei(t).

(3.41)

Denote F (t) = (fT (x̂1(t))− fT (s1̂(t)), f
T (x̂2(t))− fT (s2̂(t)), . . . , f

T (x̂N(t))−

fT (sN̂(t)))
T . Based on the Assumption 3.1, one has

2eTi (t)P (f(x̂i(t))−f(ŝi(t)) ≤ 2γ||Pei(t)|| · ||ei(t)|| ≤ eTi (t)(I+γ2P 2)ei(t). (3.42)
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Combining (3.42) and the conditions in Theorem 3.14, V̇ (t) can be written as

V̇ (t) =eT (t)(IN ⊗ ATP − LT ⊗KTBTP −D(t)⊗KTBTP )e(t)

+ eT (t)(IN ⊗ PA− L⊗ PBK −D(t)⊗ PBK)e(t) + 2eT (t)(IN ⊗ P )F (t)

+ (−σ1)
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
+ eT (t)(D(t)−D)⊗ (2µ2PBBTP )e(t),

(3.43)

furtherly,

V̇ (t) ≤eT (t)(IN ⊗ (ATP + PA+ I + γ2P 2)− 2µ2(L̄)⊗ PBBTP

− 2µ2D(t)⊗ PBBTP ))e(t)

+ (−σ1)
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
+ eT (t)(D(t)−D)⊗ (2µ2PBBTP )e(t)

≤eT (t)(IN ⊗ (ATP + PA+ I + γ2P 2)− µ2(2L̄+ 2D)⊗ PBBTP ))e(t)

+ (−σ1)
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
.

(3.44)

Based on the condition in Theorem 3.14 , the matrix 2L̄+ 2D > 0, there exist a

constant µ2 satisfies µ2λmin(2L̄ + 2D) > τ . Let Q = P−1, η(t) = (IN ⊗ P )e(t),

one has,

V̇ (t) ≤ηT (t)(IN ⊗ (AQ+QAT + γ2I +Q2)− IN ⊗ τBBT )η(t)

+ (−σ1)
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ
.

(3.45)

Furthermore, since the conditions :

(

AQ+QAT − τBBT + γ2I Q
QT −I

)

< 0 in

Theorem 3.14, and with the help of Schur complement lemma (Boyd et al., 1994),

one has AQ + QAT + γ2I + Q2 − τBBT < 0. Denote λ3 = λmax(AQ + QAT +
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γ2I +Q2 − τBBT ), it follows

V̇ (t) ≤ λ3η
T (t)η(t) + (−σ1) ·

1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤ λ3λmin(P )eT (t)(IN ⊗ P )e(t) + (−σ1) ·
1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤ −α2V (t),

(3.46)

where α2 = min{−λ3λmin(P ), σ1} > 0.

(2) When t ∈ [mT + δ, (m+ 1)T ), the derivative of (3.40) follows

V̇ (t) =2
N
∑

i=1

eTi (t)P (Aei(t)−BK
N
∑

j=1

lijej(t)) + 2
N
∑

i=1

eTi (t)P (f(xi(t))− f(ŝi(t))

+
1

2
(−σ1)

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤eT (t)(IN ⊗ (ATP + PA+ I + γ2P 2)− µ2(L
T + L)⊗ PBBTP )e(t)

− 1

2
σ1

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤λ4e
T (t)e(t) + σ1 ·

1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤ λ4

λmin(P )
eT (t)(IN ⊗ P )e(t) + σ1 ·

1

2

N
∑

i=1

e−σ1t
(di(t)− di)

2

σ

≤β2V (t),
(3.47)

where λ4 = max{λmaxIN ⊗ (ATP + PA+ I + γ2P 2)− µ2(L
T + L)⊗ PBBTP, ǫ} >

0, β2 = max{ λ4

λmin(P )
, σ1} > 0.

Similarly, by induction, one obtains,

V ((m+ 1)T ) ≤V ((mT + δ)eβ2(T−δ)

≤V (mT )e−α2δ · eβ2(T−δ)

=V (mT )e−α2δ+β2(T−δ) ≤ · · ·
≤V (0)e(−α2δ+β2(T−δ))(m+1).

(3.48)

Next, by the same operations with (3.23)-(3.26) and combining to the condition
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in Theorem 3.14: −α2δ + β2(T − δ) < 0, one has V (t) → 0 and lim
t→∞

||ei(t)|| = 0

as m → ∞. Combine the first step and the second step, one has lim
t→∞

||ηi(t)|| =

lim
t→∞

||xi(t)− x̂i(t) + x̂i(t)− sî(t− τi)||=0. It means that ICLC of MASs with

nonlinear dynamics via IAPC can be reached. This completes the proof.

3.4 Simulation results

For conveniently, we just present the simulation result of Theorem 3.14. Con-

sider a nonlinear MAS composed of three clusters, where the virtual leaders are

denoted as S1, S2 and S3, and the followers are denoted as 1 to 9. Fig.3.2 is

the communication topology. In Fig.3.2, followers 1 and 2 can receive informa-

tion from other clusters, followers 3 and 4 can not receive information from any

followers. Therefore, according to the control strategy (3.5), followers 1, 2, 3, 4

should be pinned. In addition, from the graph theory, the matrices A and L can

be derived as follows:

A =





























0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0





























and L =





























1 0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0
0 −1 0 0 0 1 0 0 0
0 0 0 0 0 −1 1 0 0
0 0 −1 0 0 0 0 1 0
0 0 0 −1 0 0 0 −1 2





























.
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Fig. 3.2. The interaction topology of MASs with s1, s2, s3 being leaders and 1
to 9 being followers.

Furthermore, for the dynamics of nonlinear MASs (3.3) and (3.4), we choose

A =

(

0 −2
1 0

)

, B =

(

0
1

)

, C =
(

1 1
)

, and f(x)=0.1cos(x). Meanwhile,

by calculating, the conditions in Theorem 3.14 are shown as follows: P = Q−1 =
(

3.9453 −3.2213
−3.2213 6.5765

)

, F =

(

−4
−2

)

, K = 2 ·
(

−3.2213 6.5765
)

, di = 4,

i = 1, 2, 3, 4, τ = 1.5521, µ2 = 2, σ = 1, σ1 = 0.1, ǫ = 0.01. T=1s, δ = 0.96.

Specially, the time delays are given as: τ1 = 0.1, τ2 = 0.15, τ3 = 0.12. Fig. 3.3,

Fig. 3.4 and Fig. 3.5 are state trajectories of leader and followers in each cluster

respectively. Fig. 3.6 is the time evolution of di(t). Fig. 3.7 is the observer error

ξi(t). From the above figures, we can conclude that the ICLC of MASs is realised

via IAPC.
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Fig. 3.3. The state trajectories of leader s1 and followers in first cluster, where
j = 1, 2; i = 1, 5.

68

paper2/chapter2figs/EPS/20.eps
paper2/chapter2figs/EPS/21.eps


3.4 Simulation results
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Fig. 3.4. The state trajectories of leader s2 and followers in second cluster, where
j = 1, 2; i = 2, 6, 7.
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Fig. 3.5. The state trajectories of leader s3 and followers in third cluster, where
j = 1, 2; i = 3, 4, 8, 9.
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Fig. 3.6. The time evolution of di(t), where i = 1, 2, 3, 4.
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Fig. 3.7. The observer error ξi(t), where i = 1, 2, . . . , 9.

3.5 Conclusion

In this chapter, the OBICLC problem for general linear MASs and nonlinear

MASs under a weakly connected graph via aperiodically IAPC has been inves-

tigated. Considering the relevant full state information of each follower is not

always available, a class of observers has been designed to estimate the states

of followers. Then a class of observer-based IAPC protocols is proposed accord-

ing to the difference that the agents receive information source. Moreover, the

pinning gains have been designed to be intermittent adaptive and with an ex-

ponential convergence rate, which will effectively reduce communication costs,
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3.5 Conclusion

avoid the pinning gains being larger than those needed in practice and guaran-

tees the pinning gains quickly converge to steady value. Finally, rigorous proofs

and numerical simulations have been provided to greentree the correctness of the

theoretical results. Future works will focus on furtherly reducing communication

among agents by employing intermittent event-triggered control mechanism.
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Chapter 4

Aperiodically intermittent adaptive

event-triggered control for linear

multi-agent systems
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4.1 Introduction

Note that the intermittent controller still requires to be updated continuously

when it is executed in the work time interval, which is a waste of energy and

resource. To mitigate this issue, the ETC scheme presents a flexible and efficient

strategy for the communication data transmission and control update. The com-

bination of intermittent ETC strategy has been designed in (Hu & Cao, 2017;

Lei et al., 2017; Liu et al., 2021; Yang et al., 2020). In (Liu et al., 2021), the
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authors designed intermittent event-triggered method to solve leader-following

mean square consensus for stochastic MASs, where the topology was assumed

to be directed. In (Hu & Cao, 2017), the authors considered tracking consensus

problem for a class of nonlinear MASs, where both centralised and decentralised

event-triggered strategies were introduced into intermittent control. Based on the

error state and three indices of threshold-value, check-period, and control-free in-

dex, (Yang et al., 2020) constructed event-triggered aperiodic intermittent control

to deal with synchronization problem for chaotic systems. In (Lei et al., 2017),

the authors studied leader-following output consensus problem for heterogeneous

MASs, and the result is further extended to the formation control problem. How-

ever, as far as the authors know, the tracking consensus of MASs by aperiodically

intermittent adaptive ETC has not been fully investigated yet.

Inspired by the above discussion, this chapter investigates the tracking consen-

sus of general linear MASs via aperiodically intermittent adaptive ETC approach.

The aperiodically intermittent adaptive event-triggered control inherits the re-

spective advantages of aperiodically intermittent control strategy, ETC strategy

and adaptive control strategy, which improves communication efficiency, reduces

control update frequency and is closer to the practical situations. The major

advances of this chapter lie in following aspects: Firstly, to reach tracking leader-

following consensus and save more control resources, a distributed aperiodically

intermittent ETC protocol is devised, in which the transmission channels among

agents only open if the local event-trigger condition is satisfied in predefined time

intervals. Secondly, in order to get rid of continuous inter-agent communication

for monitoring the triggering condition, a more general triggering mechanism is

presented, in which discrete-time combinational measurement is adopted instead

of using continuous-time tracking error directly. Thirdly, to overcome the un-

expected large feedback gains in real applications and appropriately tune the

feedback gains, the aperiodically intermittent adaptive event-triggered controller

is further devised. With the aid of the matrix theory, stability of switching sys-

tems and Lyapunov function, some sufficient criteria are deduced. Moreover, the

analyses of excluding the Zeno behavior are included by showing explicit positive

lower bounds between any two consecutive triggered events.
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4.2 Problem formulation

4.2 Problem formulation

For a general linear MASs consisting of N followers and one leader, the dynamics

of each follower is modeled as

ẋi(t) = Axi(t) +Bui(t), i ∈ V, (4.1)

in which xi ∈ Rn and ui ∈ Rm represent the state and controller, respectively.

A ∈ Rn×n, B ∈ Rn×m are constant matrices. The virtual leader’s dynamics is:

ṡ0(t) = As0(t), (4.2)

in which s0(t) ∈ Rn is the sate of virtual leader.

Assumption 4.1 The pair (A,B) is stabilizable.

Assumption 4.2 The topology Ḡ for the leader s0 and all followers is fixed,

undirected and there exists at least one follower can receive the information from

the leader s0.

Lemma 4.3 (Menard et al., 2020) If Assumption 4.2 holds , there exists a posi-

tive definite diagonal matrix E satisfying EL̃+L̃TE > 0 where E = diag{ξ1, · · · , ξN}.
Furthermore, the equality EL̃+ L̃TE > γE exists with a positive constant γ.

Definition 4.4 For given MASs (4.1)-(4.2), the tracking consensus is achieved

if for any initial values, there exists lim
t→∞

||δi(t)|| = 0, where δi(t) = xi(t)− s0(t),

i ∈ V.

4.3 Main results

4.3.1 Aperiodically intermittent ETC for linear MASs

To address tracking consensus, the controller for ith follower is proposed

ui(t) =

{

cKqi(t
k
i,s), t ∈ [tki,s, t

k
i,s+1) ∩ [T2k, T2k+1),

0, t ∈ [T2k+1, T2k+2),
(4.3)
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Fig. 4.1. (a) sketch map of time division; (b) event-triggered instants of ith
follower; (c) event-triggered instants of jth follower.

qi(t
k
i,s) =

N
∑

j=1

aij(x̂j(t)− x̂i(t)) + di(ŝ0(t)− x̂i(t)), (4.4)

in which K represents the feedback gain matrix, which will be determined there-

after in Theorem 4.5. Constant c is positive. tki,s is the sth triggering in-

stant of follower i in control time [T2k, T2k+1). x̂i(t) = eA(t−tki,s)xi(t
k
i,s), x̂j(t) =

e
A(t−tk

j,s
′
)
xj(t

k
j,s′

), ŝ0(t) = s0(t). In addition, the width of rest time and work time,

in the form, are denoted as ∆k = Tk+1−Tk, k = 0, 1, . . ., commonly (see Fig.4.1).

For the ith follower, the measurement error can be depicted by

ei(t) = x̂i(t)− xi(t). (4.5)

Substituting the control input (4.3) into (4.1), and combining the definition
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4.3 Main results

of measurement error ei(t), the tracking error system is addressed below:

δ̇i(t) =



























Aδi(t) + cBK

N
∑

j=1

aij(ej(t)− ei(t) + δj(t)− δi(t))− di(ei(t) + δi(t)),

t ∈ [tki,s, t
k
i,s+1) ∩ [T2k, T2k+1),

Aδi(t), t ∈ [T2k+1, T2k+2).
(4.6)

Further, let x(t) = (xT
1 (t), x

T
2 (t), . . . , x

T
N(t))

T , δ(t) = (δT1 (t), δ
T
2 (t), . . . , δ

T
N(t))

T ,

e(t) = (eT1 (t), e
T
2 (t), . . . , e

T
N(t))

T , then the tracking error can be reformulated in a

compact version, i.e.,

δ̇(t) =

{

(IN ⊗A)δ(t)− c(L̃⊗BK)(e(t) + δ(t)), t ∈ [tki,s, t
k
i,s+1) ∩ [T2k, T2k+1),

(IN ⊗A)δ(t), t ∈ [T2k+1, T2k+2).
(4.7)

Theorem 4.5 The proposed intermittent ETC strategy (4.3) can guarantee the

achievement of tracking consensus for linear MASs (4.1) and (4.2) with the con-

ditions below:

(i) Under Assumptions 4.1 and 4.2, the feedback matrix K is obtained by the

following two steps:

1) Find a solution P > 0 satisfying the algebraic Riccati equation below:

PA+ ATP − cγPBBTP + k1In = 0, (4.8)

where c > 0 is a parameter in (4.3), γ > 0 is denoted in Lemma 4.3, k1 is a

positive constant.

2) Compute the feedback matrix K as follows: K = BTP .

(ii) The triggering function for ith follower is devised as:

hi(t) = eTi (t)ei(t)− ηiδ
T
i (t)δi(t) (4.9)

where ηi <
2p
c
(λ1 − pc

2
λ2
2λ

2
3), λ1 = k1λmin(E) > 0, λ2 = λmax(EL̃ + L̃TE) > 0,

λ3 = λmax(PBBTP ) > 0, and p satisfies the following condition: λ2
2λ

2
3pc < 2λ1;

(iii) There exist positive scalars τ1 and τ2 such that

{

∆2k ≥ τ1

∆2k+1 ≤ τ2
and τ1

τ2
> β1

α1
,

where ∆2k is the the width of work time, ∆2k+1 is the width of rest time, α1 =
λ1− pc

2
λ2
2λ

2
3− c

2p
η̄

λmax(E⊗P )
> 0, η̄ = max{η1, η2, · · ·ηN}, β1 =

ς1
λmin(E⊗P )

, ς1 = max{λmax(PA+
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ATP ), ε0}, ε0 is a small positive constant.

Proof:

Choose the Lyapunov function candidate below:

V (t) = δT (t)(E ⊗ P )δ(t), (4.10)

in which matrices E and P are shown as mentioned above.

(1) When t ∈ [tki,s, t
k
i,s+1)∩ [T2k, T2k+1), for any given s, the derivative of (4.10)

obeys

V̇ (t) =δT (t)(E ⊗ P )[(IN ⊗ A)δ(t)− c(L̃⊗ BK)(δ(t) + e(t))]

+ [δT (t)(IN ⊗ AT )− c(δT (t) + eT (t))(L̃T ⊗KTBT )](E ⊗ P )δ(t)

=δT (t)(E ⊗ PA+ E ⊗ ATP )δ(t)− cδT (t)(EL̃⊗ PBK)δ(t)

− cδT (t)(L̃TE ⊗KTBTP )δ(t)− cδT (t)(EL̃⊗ PBK)e(t)

− ceT (t)(L̃TE ⊗KTBTP )δ(t)

=δT (t)(E ⊗ (PA+ ATP ))δ(t)− cδT (t)[(EL̃+ L̃TE)⊗ PBK]δ(t)

− cδT (t)[(EL̃+ L̃TE)⊗ PBK]e(t),

(4.11)

in which K = BTP . Upon Lemma 4.3, a positive constant γ is existent to satisfy:

EL̃+ L̃TE > γE, (4.12)

then, one gets

V̇ (t) ≤δT (t)(E ⊗ (PA+ ATP − cγPBBTP ))δ(t)

− cδT (t)((EL̃+ L̃TE)⊗ PBBTP )e(t)

≤− λ1δ
T (t)δ(t)−cδT (t)((EL̃+ L̃TE)⊗PBBTP )e(t),

(4.13)

where λ1 = k1λmin(E), k1 > 0. Furthermore, noting Young’s inequality xT y ≤
p
2
x2 + 1

2p
y2, the last term in (4.13) leads to

− δT (t)[(EL̃+ L̃TE)⊗ PBBTP ]e(t)

≤p

2
δT (t)[(EL̃+ L̃TE)2 ⊗ (PBBTP )2]δ(t) +

1

2p
eT (t)e(t)

≤p

2
λ2
2λ

2
3δ

T (t)δ(t) +
1

2p
eT (t)e(t),

(4.14)
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where λ2 = λmax(EL̃+ L̃TE) > 0, λ3 = λmax(PBBTP ) > 0. Substituting (4.14)

into (4.13), one arrives at

V̇ (t) ≤
N
∑

j=1

(−λ1 +
pc

2
λ2
2λ

2
3)δ

T
i (t)δi(t) +

N
∑

j=1

c

2p
eTi (t)ei(t), (4.15)

where p satisfies the following condition: λ2
2λ

2
3pc < 2λ1. In review of the triggering

condition: hi(t) = eTi (t)ei(t) − ηiδ
T
i (t)δi(t) ≤ 0. Consider the fact: λmin(E ⊗

P )
N
∑

j=1

δTi (t)δi(t) ≤ V (t) ≤ λmax(E⊗P )
N
∑

j=1

δTi (t)δi(t). Let η̄ = max{η1, η2, · · ·ηN},
one has

V̇ (t) ≤
N
∑

j=1

(−λ1 +
pc

2
λ2
2λ

2
3 +

c

2p
ηi)δ

T
i (t)δi(t)

≤ (−λ1 +
pc

2
λ2
2λ

2
3 +

c

2p
η̄)

N
∑

j=1

δTi (t)δi(t)

≤ (−λ1 +
pc

2
λ2
2λ

2
3 +

c

2p
η̄)

V (t)

λmax(E ⊗ P )

≤ −α1V (t),

(4.16)

where α1 =
λ1− pc

2
λ2
2
λ2
3
− c

2p
η̄

λmax(E⊗P )
> 0 and η̄ < 2p

c
(λ1 − pc

2
λ2
2λ

2
3).

(2) When t ∈ [T2k+1, T2k+2), the derivative of (4.10) follows

V̇ (t) =δT (t)(E ⊗ (PA+ ATP ))δ(t) ≤ λmax(E ⊗ (PA+ ATP ))δT (t)δ(t)

≤ ς1
λmin(E ⊗ P )

δT (t)(E ⊗ P )δ(t) ≤ β1V (t),
(4.17)

where β1 =
ς1

λmin(E⊗P )
, ς1 = max{λmax(E⊗(PA+ATP )), ε0}, ε0 is a small positive

constant.

Especially, when t ∈ [T0, T1), one has

V (t) ≤ V (T0)e
−α1(t−T0), (4.18)

when t ∈ [T1, T2), one has

V (t) ≤ V (T0)e
−α1∆0+β1(t−T1), (4.19)

where ∆0 = T1 − T0.

By induction and combining the conditions in Theorem 4.5, one obtains, when
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t ∈ [T2k, T2k+1),

V (t) ≤V (0)e−α1(∆0+∆2+...+∆2k−2+t−T2k)+β1(∆1+∆3+...+∆2k−1)

≤V (0)e−α1(kτ1+t−T2k)+β1kτ2

≤V (0)e−α1kτ1+β1kτ2

=V (0)ek(−α1τ1+β1τ2).

(4.20)

Similarly, when t ∈ [T2k+1, T2k+2),

V (t) ≤V (0)e−α1(∆0+∆2+...+∆2k)+β1(∆1+∆3+...+∆2k−1+t−T2k+1)

≤V (0)e−α1(k+1)τ1+β1(kτ2+t−T2k+1)

≤V (0)e−α1(k+1)τ1+β1(kτ2+τ2)

=V (0)e(k+1)(−α1τ1+β1τ2),

(4.21)

where ∆k = Tk+1 − Tk. Then when t ∈ [Tk, Tk+1], for the sake of guarantee-

ing V (t) → 0 when k → ∞, let −α1τ1 + β1τ2 < 0, one has τ1
τ2

> β1

α1
. Thus,

lim
t→∞

||δi(t)|| = 0. This indicates that the tracking consensus for linear MASs (4.1)

and (4.2) is reached under intermittent ETC strategy.

Next, we will show Zeno behavior is completely excluded, which means the

intermittent ETC is feasible. Let z(t) = ‖e(t)‖
‖δ(t)‖ , since the event will be triggered

only when t ∈ [T2k, T2k+1), the time derivative of z(t) in each t ∈ [tki,s, t
k
i,s+1) ∩

[T2k, T2k+1) is

ż(t) =
d

dt
(
‖ e(t) ‖
‖ δ(t) ‖) =

‖ ė(t) ‖‖ δ(t) ‖ − ‖ e(t) ‖‖ δ̇(t) ‖
‖ δ(t) ‖2 ≤ ‖ ė(t) ‖

‖ δ(t) ‖ + z(t)
‖ δ̇(t) ‖
‖ δ(t) ‖ .

(4.22)

According to the first equation of (4.7),

‖ δ̇(t) ‖= ‖ (IN ⊗ A)δ(t)− c(L̃⊗ BK)(e(t) + δ(t)) ‖
≤(‖ (IN ⊗A) ‖ + ‖ c(L̃⊗ BK) ‖) ‖ δ(t) ‖ + ‖ c(L̃⊗ BK) ‖‖ e(t) ‖
≤r1 ‖ δ(t) ‖ +r2 ‖‖ e(t) ‖,

(4.23)

where r1 =‖ (IN ⊗ A) ‖ + ‖ c(L̃ ⊗ BK) ‖, r2 =‖ c(L̃ ⊗ BK) ‖, obviously,
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r1 > r2 > 0. In addition, since ei(t) = x̂i(t)− xi(t), ei(t) can be rewritten as:

‖ ė(t) ‖= ‖ (IN ⊗ A)e(t) + c(L̃⊗BK)(e(t) + δ(t)) ‖
≤(‖ (IN ⊗ A) ‖ + ‖ c(L̃⊗BK) ‖) ‖ e(t) ‖ + ‖ c(L̃⊗ BK) ‖‖ δ(t) ‖
≤r1 ‖ e(t) ‖ +r2 ‖‖ δ(t) ‖ .

(4.24)

Combining (4.23) and (4.24), it yields that:

ż(t) ≤r1z(t) + r2 + z(t)(r1 + r2z(t)) = r2z
2(t) + 2r1z(t) + r2

≤r1z
2(t) + 2r1z(t) + r1 = r1(z(t) + 1)2.

(4.25)

Let s(t, s0) be the solution of

ṡ(t) = r1(1 + s(t))2, s(0, s0) = s0, (4.26)

then, z(t) satisfies the bound

z(t) ≤ s(t, s0), (4.27)

the solution of ṡ(t) = r1(1 + s(t))2 is given as

s(ε, 0) =
r1ε

1− r1ε
. (4.28)

Based on the event-triggered condition (4.9), one has s(ε, 0) =
√
ηi. Consequently,

√
ηi =

r1ε
1−r1ε

⇒ ε =
√
ηi

(1+ηi)r1
> 0. Thus, we obtain the lower bounded ε, which

means the Zeno behavior can be avoided. This finalizes the derivation.

Note that the triggering function (4.9) still needs to be detected continuously

for each agent and the leader, which cannot save energy and resource efficiently.

Besides, in reality, not whole followers can directly obtain the state information

of leader. In order to mitigate these disadvantages, in the following, we present

a more general triggering mechanism with combinational measurement (4.30),

which not only avoids the requirement for continuous monitoring but also de-

creases the amount of triggering instants (Zhou et al., 2015).

Theorem 4.6 The proposed intermittent ETC strategy (4.3) can guarantee the

achievement of tracking consensus for linear MASs (4.1) and (4.2) if the following

conditions hold:
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(i) Under Assumptions 4.1 and 4.2, the feedback matrix K is obtained by the

following two steps:

1) Find a solution P > 0 such that algebraic Riccati equation below:

PA+ ATP − 1

2
cγPBBTP + k2In = 0, (4.29)

where c > 0 is a parameter in (4.3), γ > 0 is defined in Lemma 4.3, constant k2
is positive.

2) Compute the feedback matrix K as follows: K = BTP .

(ii) The distributed triggering function for ith follower is devised as:

h̃i(t) = eTi (t)ei(t)− η̃iq
T
i (t

k
i,s)qi(t

k
i,s), (4.30)

where η̃i <
λ̃1−ω12

2p̃

λ̃2
p̃

2
+λ̃3−ω12

, ω1 = k2λmin(E). Let ω1 = ω11 + ω12, and ω11, ω12 > 0,

λ̃1 = ω12λmin((L̃
−T L̃−1) ⊗ In) > 0, λ̃2 = ω12λmax((L̃

−T + L̃−1)2 ⊗ In) > 0,

λ̃3 =
1
2
cλmax((EL̃T +L̃E)⊗PBBTP ) > 0, and p̃ satisfies the following condition:

λ̃1 − ω12

2p̃
> 0;

(iii) There exist positive constants τ̃1 and τ̃2 such that

{

∆2k ≥ τ̃1

∆2k+1 ≤ τ̃2
and τ̃1

τ̃2
> β1

α2
,

where ∆2k is still the the width of work time, ∆2k+1 is still the the width of rest

time, α2 = ω11

λmax(E⊗P )
> 0, β1 = ς1

λmin(E⊗P )
, ς1 = max{λmax(PA + ATP ), ε0}, ε0

is a small positive constant.

Proof:

Design the Lyapunov function for (4.7):

V (t) = δT (t)(E ⊗ P )δ(t), (4.31)

where matrix P is defined as mentioned above in Theorem 4.6.

(1) When t ∈ [tki,s, t
k
i,s+1) ∩ [T2k, T2k+1), the derivative of (4.31) obeys

V̇ (t) =δT (t)(E⊗ P )[(IN ⊗A)δ(t)− c(L̃⊗BK)(δ(t) + e(t))]

+ [δT (t)(IN ⊗ AT )− c(δT (t) + eT (t))(L̃T ⊗KTBT )](E ⊗ P )δ(t)

=δT (t)(E ⊗ (PA+ ATP ))δ(t)− cδT (t)[(EL̃+ L̃TE)⊗ PBK]δ(t)

− cδT (t)[(EL̃+ L̃TE)⊗ PBK]e(t),

(4.32)
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where K = BTP . Based on the Young’s inequality, it admits

− cδT (t)[(EL̃+ L̃TE)⊗ PBBTP ]e(t)

≤1

2
cδT (t)[(EL̃+ L̃TE)⊗ PBBTP ]δ(t) +

1

2
ceT (t)[(EL̃+ L̃TE)⊗ PBBTP ]e(t).

(4.33)

By the aid of Lemma 4.3 and (4.29), one obtains,

V̇ (t) ≤δT (t)[E ⊗ (PA+ ATP − 1

2
cγPBBTP )]δ(t)

+
1

2
ceT (t)[(EL̃+ L̃TE)⊗ PBBTP ]e(t)

=− ω1δ
T (t)δ(t) +

1

2
ceT (t)[(EL̃+ L̃TE)⊗ PBBTP ]e(t),

(4.34)

where ω1 = k2λmin(E). Let ω1 = ω11 + ω12, where ω11, ω12 > 0, H = L̃−1 ⊗ In,

q(tks) = (qT1 (t
k
1,s), q

T
2 (t

k
2,s), . . . , q

T
N(t

k
N,s)

T . Combining with the definition of ei(t),

δi(t) and qi(t
k
i,s), one obtains

q(tks) = −(L̃⊗ In)(δ(t) + e(t)), (4.35)

δ(t) = −Hq(tks)− e(t). (4.36)

Then, we have

δT (t)δ(t) =(Hq(tks) + e(t))T (Hq(tks) + e(t))

=qT (tks)(L̃
−T L̃−1 ⊗ In)q(t

k
s) + eT (t)[(L̃−T + L̃−1)⊗ In]q(t

k
s) + eT (t)e(t).

(4.37)

Furthermore, the derivative of V (t) obeys

V̇ (t) ≤− ω11δ
T (t)δ(t)− ω12q

T (tks)(L̃
−T L̃−1 ⊗ In)q(t

k
s)

− ω12e
T (t)[(L̃−T + L̃−1)⊗ In]q(t

k
s)− ω12e

T (t)e(t)

+
1

2
ceT (t)[(EL̃+ L̃TE)⊗ PBBTP ]e(t).

(4.38)

Based on the Young inequality, one has

− eT (t)[(L̃−T + L̃−1)⊗ In]q(t
k
s) ≤

p̃

2
eT (t)[(L̃−T + L̃−1)2 ⊗ In]e(t) +

1

2p̃
qT (tks)q(t

k
s).

(4.39)
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Let

λ̃1 = ω12λmin((L̃
−T L̃−1)⊗ In),

λ̃2 = ω12λmax((L̃
−T + L̃−1)2 ⊗ In),

λ̃3 =
1

2
cλmax((EL̃T + L̃E)⊗ PBBTP ),

one has

V̇ (t) ≤− ω11δ
T (t)δ(t)− λ̃1q

T (tks)q(t
k
s) + λ̃2

p̃

2
eT (t)e(t)

+
ω12

2p̃
qT (tks)q(t

k
s)− ω12e

T (t)e(t) + λ̃3e
T (t)e(t)

≤− ω11δ
T (t)δ(t) + (

ω12

2p̃
− λ̃1)q

T (tks)q(t
k
s) + (λ̃2

p̃

2
+ λ̃3 − ω12)e

T (t)e(t).

(4.40)

Enforcing the triggering mechanism h̃i(t) < 0, i.e., eTi (t)ei(t) ≤ η̃iq
T
i (t

k
i,s)qi(t

k
i,s).

Furthermore, since the condition λ̃1 − ω12

2p̃
− η̃i(λ̃2

p̃
2
+ λ̃3 − ω12) > 0, it follows

V̇ (t)≤− ω11δ
T (t)δ(t)−

N
∑

j=1

(λ̃1−
ω12

2p̃
−η̃i(λ̃2

p̃

2
+ λ̃3−ω12))q

T
i (t

k
i,s)qi(t

k
i,s)

≤− ω11
V (t)

λmax(E ⊗ P )
≤ −α2V (t),

(4.41)

where α2 =
ω11

λmax(E⊗P )
> 0.

(2) When t ∈ [T2k+1, T2k+2), the proof is same as (4.17), we omit it here.

In what follows, by the analogous operations as (4.18)-(4.21), under the trig-

gering function (4.30), the tracking consensus for MASs (4.1) and (4.2) is realized

via intermittent ETC protocol (4.3).

Next, we will show there is no agent will exhibit Zeno behavior, which means

the intermittent event-triggered control is feasible. Let z̃(t) = ‖e(t)‖
‖q(tks )‖

, ¯̃η =

max{η̃1, η̃2, · · · , η̃N}. Since the event will be triggered only when t ∈ [T2k, T2k+1),

the time derivative of z̃(t) in each t ∈ [tki,s, t
k
i,s+1) ∩ [T2k, T2k+1) satisfies

˙̃z(t) =
d

dt
(
‖ e(t) ‖
‖ q(tks) ‖

) =
‖ ė(t) ‖‖ q(tks) ‖ − ‖ e(t) ‖‖ q̇(tks) ‖

‖ q(tks) ‖2
≤ ‖ ė(t) ‖

‖ q(tks) ‖
+ z̃(t)

‖ q̇(tks) ‖
‖ q(tks) ‖

.

(4.42)

Since ė(t) = (IN ⊗A)e(t)− c(IN ⊗BK)q(tks) and q̇(tks) = (IN ⊗A)q(tks), it follows
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that:

˙̃z(t) ≤ ‖ IN ⊗ A ‖ z̃(t)− ‖ c(IN ⊗ BK ‖ +z̃(t) ‖ IN ⊗A ‖≤ r̃1z̃(t) + r̃2,

(4.43)

where r̃1 = 2 ‖ IN ⊗A ‖, r̃2 =‖ c(IN ⊗BK ‖. Thus, the evolution of z̃(t) satisfies

z̃(t) ≤ s̃(t, s̃0), in which s̃(t, s̃0) is the solution to

˙̃s(t) = r̃1s̃(t) + r̃2, s̃(0, s̃0) = s̃0. (4.44)

The solution of ˙̃s(t) = r̃1s̃(t) + r̃2 is given as

s̃(ε̃, 0) =
1

r̃1
ln(

r̃1
r̃2

¯̃η + 1). (4.45)

Based on the event-triggered condition (4.30), the evolution time of z̃(t) from 0

to ¯̃η is no less that ε̃ = 1
r̃1
ln( r1

¯̃η
r2

+ 1). Since r̃1, r̃2, ¯̃η > 0, one has ε̃ > 0, which

shows any two time intervals have explicit positive lower bounds. The proof is

completed.

4.3.2 Aperiodically intermittent adaptive ETC for linear

MASs

Note that the coupling weight c in control input (4.3) is fixed and needs to

be given in advance. In this section, we introduce the adaptive control into

intermittent event-triggered control to adjust the coupling strength. Compared

with the constant coupling strength, the time-varying one is more flexible and

practical. Based on the above discussions, the following aperiodically adaptive

intermittent ETC strategy is presented to handle the tracking consensus problem,

which is characterised by

ui(t) =

{

ci(t)Kq̃i(t
k
i,s), t ∈ [tki,s, t

k
i,s+1) ∩ [T2k, T2k+1),

0, t ∈ [T2k+1, T2k+2),
(4.46)

q̃i(t) =
N
∑

j=1

aij(xj(t)− xi(t)) + di(s0(t)− xi(t)), (4.47)
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ċi(t) = proj(ci(t)) =

{

0, if ci(t) ≥ c̄i,

σeσ1tqTi (t)Γqi(t), if ci(t) < c̄i,
(4.48)

where K, Γ still represent the gain matrices. c̄i is a positive constant. In addition,

the width of rest time and work time, in the form, are denoted as ∆k = Tk+1 −
Tk, k = 0, 1, . . ., commonly.

The combination measurement error for each follower i is represented as:

ẽi(t) = q̃i(t
k
i,s)− q̃i(t). (4.49)

Substituting the control input (4.46) into (4.1), and using the definition of com-

bination measurement error ei(t), the tracking error system for ith follower is

obtained as

δ̇i(t) =

{

Aδi(t)+ci(t)BKq̃i(t
k
i,s), t∈ [tki,s, t

k
i,s+1)∩[T2k, T2k+1),

Aδi(t), t ∈ [T2k+1, T2k+2).
(4.50)

Let C(t) = diag{c1(t), c2(t), . . . , cN(t)}, C = diag{c̄1, c̄2, . . . , c̄N}, x(t) =

(xT
1 (t), x

T
2 (t), . . . , x

T
N(t))

T , δ(t) = (δT1 (t), δ
T
2 (t), . . . , δ

T
N (t))

T ,

ẽ(t) = (ẽT1 (t), ẽ
T
2 (t), . . . , ẽ

T
N(t))

T , q̃(t) = (q̃T1 (t), q̃
T
2 (t), . . . , q̃

T
N(t))

T , then the track-

ing error can be reformulated in a compact version, i.e.,

δ̇(t) =

{

(IN ⊗ A)δ(t) + (C(t)⊗ BK)(ẽ(t) + q̃(t)), t ∈ [tki,s, t
k
i,s+1) ∩ [T2k, T2k+1),

(IN ⊗ A)δ(t), t ∈ [T2k+1, T2k+2).
(4.51)

Theorem 4.7 The proposed intermittent adaptive ETC strategy (4.46)∼(4.48)

can guarantee the achievement of tracking consensus for linear MASs (4.1) and

(4.2) with the conditions below:

(i) Suppose Assumption 4.1 holds and suppose there exists a diagonal matrix

E > 0 satisfying: EL̃−1 + (L̃−1)TE > IN , the feedback matrix K is obtained by

the following two steps:

1) Find a solution P > 0 satisfying the algebraic Riccati equation below:

PA+ ATP − c̃

λmax(Φ1)
PBBTP +

c̃

λmax(Φ1)
In = 0, (4.52)

where c̃ = min{c̄1, c̄2, . . . , c̄N}, Φ1 = (L̃−1)TEL̃−1, c̄i is defined in (4.48).
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2) Compute the feedback matrix K as follows: K = BTP .

(i) The distributed triggering mechanism for ith follower is devised as:

ĥi(t) = ‖ẽi(t)‖ − η̂i‖q̃i(t)‖, (4.53)

where η̂i <
√

2a(c̃− a
2
ĉλ̂), c̃ = min{c̄1, c̄2, . . . , c̄N}, ĉ = max{c̄1, c̄2, . . . , c̄N},

λ̂ = λmax{Φ2
2 ⊗ (PBBTP )2}, Φ2 = EL̃−1 + (L̃−1)TE, a is a positive constant

satisfying: c̃− a
2
ĉλ̂ > 0;

(ii) There exist positive constants τ̂1 and τ̂2 such that

{

∆2k ≥ τ̂1

∆2k+1 ≤ τ̂2
and τ̂1

τ̂2
>

β
α3

, where ∆2k is the the width of work time, ∆2k+1 is the the width of rest

time, α3 = −h1

h2
> 0, h1 = −c̃ + a

2
ĉ2λ̂ +

¯̂η2

2a
< 0, ¯̂η = max{η̂1, η̂2, · · · , η̂N},

h2 = λmax((L̃
−1)TEL̃−1 ⊗ P ) > 0, β = ς1

λmin(E⊗P )
, ς1 = max{λmax(E ⊗ (PA +

ATP )), ε0}, ε0 is a small positive constant.

Proof: Construct the Lyapunov function for (4.51):

V (t) = δT (t)(E ⊗ P )δ(t) +
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ
, (4.54)

where matrix E and P are defined as mentioned above.

(1) When t ∈ [tki,s, t
k
i,s+1) ∩ [T2k, T2k+1), take the derivative of (5.15) as

V̇ (t) =δT (t)(E ⊗ (PA+ ATP ))δ(t) + 2δT (t)[EC(t)⊗ PBK]ẽ(t)

+ 2δT (t)[EC(t)⊗ PBK]q̃(t) + (−σ1)
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ

+

N
∑

i=1

(ci(t)− c̄i)q̃
T
i (t)Γq̃i(t).

(4.55)

Based on (4.47), we arrive at

q̃(t) = −(L̃⊗ In)δ(t). (4.56)

Furtherly, one obtains δ(t) = −(L̃−1 ⊗ In)q̃(t). Combining K = BTP and Γ =
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PBBTP , then

V̇ (t) =q̃T (t)((L̃−1)TEL̃−1 ⊗ (PA+ ATP ))q̃(t)

− q̃T (t)[(EL̃−1 + (L̃−1)TE)C(t)⊗ PBBTP ]q̃(t)

− q̃T (t)[(EL̃−1 + (L̃−1)TE)C(t)⊗ PBBTP ]ẽ(t)

+ (−σ1)
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ
+

N
∑

i=1

(ci(t)− c̄i)q̃
T
i (t)Γq̃i(t).

(4.57)

Let Φ1 = (L̃−1)TEL̃−1, Φ2 = EL̃−1+(L̃−1)TE. Since the fact EL̃−1+(L̃−1)TE >

IN , the following equation holds

V̇ (t) =q̃T (t)(Φ1 ⊗ (PA+ ATP ))q̃(t)− q̃T (t)[Φ2C(t)⊗ PBBTP ]q̃(t)

− q̃T (t)[Φ2C(t)⊗ PBBTP ]ẽ(t) + q̃T (t)[(C(t)− C)⊗ PBBTP ]q̃(t)

+ (−σ1)
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ
.

(4.58)

Based on the conditions: λmin(Φ2) ≥ 1 and in light of (4.52), one has

V̇ (t) ≤λmax(Φ1)q̃
T (t)(IN ⊗ (PA+ ATP − c̃

λmax(Φ1)
PBBTP ))q̃(t)

− q̃T (t)[Φ2C(t)⊗ PBBTP ]ẽ(t) + (−σ1)
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ

≤− c̃q̃T (t)q̃(t)− q̃T (t)[Φ2C(t)⊗ PBBTP ]ẽ(t) + (−σ1)
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ
.

(4.59)

Further, by the inequality xT y ≤ a
2
xTx+ 1

2a
yTy, one has

− q̃T (t)[Φ2C(t)⊗ PBBTP ]ẽ(t)

≤a

2
qT (t)[(C(t))2Φ2

2 ⊗ (PBBTP )2]q̃(t) +
1

2a
ẽT (t)ẽ(t).

(4.60)

Since (C(t))2Φ2
2 ⊗ (PBBTP )2 ≤ ĉ2Φ2

2 ⊗ (PBBTP )2, one has

V̇ (t) ≤− c̃q̃T (t)q̃(t) +
a

2
ĉ2λ̂q̃T (t)q̃(t) +

1

2a
ẽT (t)ẽ(t) + (−σ1)

1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ
,

(4.61)

where ĉ = max{c̄1, c̄2, . . . , c̄N}, λ̂ = λmax{Φ2
2 ⊗ (PBBTP )2}. Considering the
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event-triggered function: ‖ẽi(t)‖ ≤ η̂i‖q̃i(t)‖, it admits

V̇ (t) ≤(−c̃+
a

2
ĉ2λ̂+

¯̂η2

2a
)q̃T (t)q̃(t) + (−σ1)

1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ

≤h1q̃
T (t)q̃(t) + (−σ1)

1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ
,

(4.62)

where h1 = −c̃ + a
2
ĉ2λ̂ +

¯̂η2

2a
< 0, ¯̂η = max{η̂1, η̂2, · · · , η̂N}. On the other hand,

note that

V (t) =q̃T (t)((L̃−1)T ⊗ In)(E ⊗ P )(L̃−1 ⊗ In)q̃(t) +
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ

=q̃T (t)((L̃−1)TEL̃−1 ⊗ P )q̃(t) +
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ

≤λmax((L̃
−1)TEL̃−1 ⊗ P )q̃T (t)q̃(t) +

1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ

≤h2q̃
T (t)q̃(t) +

1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ
,

(4.63)

where h2 = λmax((L̃
−1)TEL̃−1 ⊗ P ) > 0. Obviously, q̃T (t)q̃(t) ≥ 1

h2
(V (t) −

1
2

N
∑

i=1

e−σ1t (ci(t)−c̄i)
2

σ
). Thus,

V̇ (t) ≤h1

h2

(V (t)− 1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ
) + (−σ1)

1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ

≤h1

h2
V (t)− (

h1

2h2
+

σ1

2
)

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ
.

(4.64)

By the aid of the condition: σ1 > −h1

h2
, and let α3 = −h1

h2
, it leads to V̇ (t) ≤

−α3V (t).
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(2) When t ∈ [T2k+1, T2k+2), the derivative of (5.15) obeys

V̇ (t) =δT (t)(E ⊗ (PA+ ATP ))δ(t) + (−σ1)
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ

+
N
∑

i=1

(ci(t)− c̄i)q̃
T
i (t)Γq̃i(t)

≤λmax(E ⊗ (PA+ ATP ))δT (t)δ(t) + (−σ1)
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ

≤ ς1
λmin(E ⊗ P )

δT (t)(E ⊗ P )δ(t) + (−σ1)
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ
≤ βV (t),

(4.65)

where β = ς1
λmin(E⊗P )

, ς1 = max{λmax(E⊗(PA+ATP )), ε0}, ε0 is a small positive

constant.

In what follows, by the analogous operations as (4.18)-(4.21), under the trig-

gering function (4.53), the linear MASs (4.1) and (4.2) can reach tracking con-

sensus via intermittent adaptive ETC strategy (4.46).

Next, we will show there is no agent will exhibit Zeno behavior, which means

the intermittent event-triggered control is feasible. Let ẑ(t) = ‖ẽ(t)‖
‖q̃(t)‖ , since the

event will be triggered only when t ∈ [T2k, T2k+1), the time derivative of z(t) in

each t ∈ [tki,s, t
k
i,s+1) ∩ [T2k, T2k+1) satisfies ˙̂z(t) ≤ ‖ ˙̃e(t)‖

‖q̃(t)‖ + ẑ(t)‖
˙̃q(t)‖

‖q̃(t)‖ .

According to the equations of (4.49), (4.51) and (4.56), one obtains

‖ ˙̃e(t) ‖= ‖ − ˙̃q(t) ‖=‖ (L̃⊗ In)δ̇(t) ‖
= ‖ −(IN ⊗A− L̃C(t)⊗ BK)q̃(t) + (L̃C(t)⊗ BK)ẽ(t) ‖
≤(‖ IN ⊗A ‖ + ‖ L̃C(t)⊗ BK ‖) ‖ q̃(t) ‖ + ‖ L̃C(t)⊗ BK ‖‖ ẽ(t) ‖
≤(‖ IN ⊗A ‖ + ‖ ĉL̃⊗ BK ‖) ‖ q̃(t) ‖ + ‖ ĉL̃⊗ BK ‖‖ ẽ(t) ‖ .

(4.66)

Let r3 =‖ IN ⊗ A + ĉL̃ ⊗ BK ‖, r4 =‖ ĉL̃ ⊗ BK ‖. Obviously, r3 > r4 > 0. It

follows from (4.66) that

˙̂z(t) ≤ ‖ IN ⊗ A+ ĉL̃⊗ BK ‖ + ‖ ĉL̃⊗ BK ‖ ẑ(t)

+ ẑ(t)(‖ IN ⊗A + ĉL̃⊗ BK ‖ + ‖ ĉL̃⊗BK ‖ ẑ(t))

=r3 + r4ẑ(t) + ẑ(t)(r3 + r4ẑ(t)) ≤ r3(ẑ(t) + 1)2.

(4.67)
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4.4 Simulation results

Fig. 4.2. The interaction topology of MASs with s0 being the leader and 1 to 5
being followers.

By the similar analysis with Theorem 4.5, the lower bounded ε̂ =
√
η̂i

(1+η̂i)r3
> 0

can be obtained, which indicates the Zeno behavior is avoided. This finalizes the

derivation.

4.4 Simulation results

An example is introduced in this section to demonstrate the validity of given

theoretical results. Consider the following directed interaction topology of MASs

composed of 5 followers and one leader in Fig. 4.2. From the graph theory, the

matrix L̃ is:

A =













0 0 0 0 1
0 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0













and L =













1 0 0 0 −1
0 1 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2













. Furthermore,

we can obtain L̃ is:

L̃ =













2 0 0 0 −1
0 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2













. Furthermore, the dynamics of followers and

leader satisfy (4.1) and (4.2), where A =

(

−0.5 1
0 −1

)

, B =

(

1
1

)

. Obviously,

the pair (A,B) is stabilisable.

Case 1: The verification for Theorem 4.5.

Fig. 4.3 is the tracking errors of MASs. It is obvious that tracking consensus

is reached. Fig. 4.4 is the measurement errors of followers of MASs. It can

be concluded the measurement error ei(t) will converge to zero eventually when
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Fig. 4.3. The tracking errors of MASs for Case 1.

consensus is reached. Fig. 4.5 is the graphical representations of controllers. Fig.

4.6 is the event-triggered instants of followers. Fig. 4.7 is the intermittent control

progress of MASs. It can be clearly seen the intermittent control is aperiodic.

Case 2: The verification for Theorem 4.6.

Fig. 4.8 is the tracking errors of MASs, which indicates the leader-following

consensus is realized. Fig. 4.9 is the measurement errors of followers of MASs.

Fig. 4.10 is controllers. Fig. 4.11 is the event-triggered instants of followers. Fig.

4.12 is the intermittent control progress of MASs.

Case 3: The verification for Theorem 4.7.

Fig. 4.13 is the tracking errors of MASs. Fig. 4.14 is the measurement

errors of followers of MASs. Fig. 4.15 is intermittent adaptive event-triggered

controllers. Fig. 4.16 is the event-triggered instants of each follower under the

triggering function (4.53). Fig. 4.17 is the adaptive coupling weights. Fig. 4.18

is the intermittent control progress of MASs.

4.5 Conclusion

This Chapter has investigated the aperiodically intermittent adaptive ETC strat-

egy for general linear MASs. Firstly, a simple intermittent centralized ETC strat-

egy is presented to motivate the problem, where the transmission channels among

agents only open if the local event-trigger condition is satisfied in predefined time

intervals. Then, the focus is placed on designing a more general triggering mech-
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Fig. 4.4. The measurement errors of followers for Case 1.
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Fig. 4.5. The intermittent event-triggered controllers for Case 1.
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Fig. 4.6. The triggering instants of all followers under the triggering function
(4.9) for Case 1.
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Fig. 4.7. The intermittent control progress for Case 1.

Fig. 4.8. The tracking errors of MASs for Case 2.

Fig. 4.9. The measurement errors of followers for Case 2.
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Fig. 4.10. The intermittent event-triggered controllers for Case 2.

0 1 2 3 4 5 6 7 8 9 10

time(s)

0

1

2

3

4

5

6

ag
en

t

Fig. 4.11. The triggering instants of all followers under the triggering function
(4.30) for Case 2.
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Fig. 4.12. The intermittent control progress for Case 2.

95

paper3/chapter3figs/EPS/38ustate.eps
paper3/chapter3figs/EPS/38eventtrigeredtime.eps
paper3/chapter3figs/EPS/38intermittentprogress.eps


4. APERIODICALLY INTERMITTENT ADAPTIVE
EVENT-TRIGGERED CONTROL FOR LINEAR MULTI-AGENT
SYSTEMS

Fig. 4.13. The tracking errors of MASs for Case 3.

Fig. 4.14. The combinational measurement errors of followers for Case 3.
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Fig. 4.15. The intermittent adaptive event-triggered controllers for Case 3.
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Fig. 4.16. The triggering instants of all follower under the triggering function
(4.53) for Case 3.
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Fig. 4.17. The adaptive coupling weights in Case 3.
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Fig. 4.18. The intermittent control progress for Case 3.
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anism to get rid of continuous inter-agent communication for monitoring the

triggering condition. Next, to overcome the unexpected large feedback gains in

real applications and appropriately tune the feedback gains, the aperiodically in-

termittent adaptive event-triggered controller is further devised. For each case,

detailed analysis is provided to avoid Zeno behavior. Finally, the validity for the

devised control schemes is substantiated by simulations. Note that under the in-

termittent adaptive ETC strategy, continuous monitoring of triggering function

is still required and the frequency of triggering numbers will increase when con-

sensus is approaching, how to improve the control strategy is the mainly focus in

the future.
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Chapter 5

Aperiodically intermittent adaptive

dynamic event-triggered control for

linear multi-agent systems

Contents
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linear MASs . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Simulation results . . . . . . . . . . . . . . . . . . . . . 109

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1 Introduction

In Chapter 4, we introduced the adaptive event-triggered control method into

aperiodically intermittent control. According to the triggering mechanism, three

different types of control inputs have been designed. For example, in Theo-

rem 4.5, the triggering function related to controller (4.3) is designed as follows:

ĥi(t) = ‖ẽi(t)‖ − η̂i‖q̃i(t)‖, where ei(t) is the measurement error, qi(t) is combi-

national measurement error. It should be pointed out that this triggering condi-

tion is related to system states and a prescribed threshold parameter η̂i. When
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η̂i change, the time and frequency of data transmissions will change. There-

fore, threshold parameters play the key role in the event-triggered control (ETC)

strategy. Nevertheless, in some practical situations, it may be unreasonable to

permanently fix the threshold parameter. For instance, in order to maintain

an anticipated formation, inter-agent communication still needs to be kept even

when the formation is successfully achieved. This requires further transmissions

of agents’ states. Whereas, if η̂i is fixed all the time, some data packets which

contain useful information to preserve the formation may not be triggered (Ge

& Han, 2017). Besides, when the threshold parameter η̂i is fixed, the event will

be triggered as follows: At the beginning, the static triggering conditions will

effectively reduce the communication cost, as they are not easy to be satisfied.

However, as time goes, it will be triggered frequently since the triggering con-

ditions are easier to be satisfied, which causes unnecessary triggered instants.

Inspired by above considerations, the threshold parameter should dynamically

change over time to reflect such an engineering practice of time-varying data

transmission rates. Therefore, in this Chapter, we will develop dynamic event-

triggered conditions to further reduce the communication cost and the number

of the control updates.

Compared with traditional static ETC, the dynamic ETC strategy depends

on an auxiliary function to adjust the triggering mechanism. Owing to some

promising feature (e.g., non-negativeness) of the introduced auxiliary or internal

dynamic variable, an event-trigger under the dynamic ETC can felicitously extend

the average inter event time. Thus, the consumption of resources can be reduced

(Ge et al., 2020). In recent years, the dynamic ETC strategy has received in-

tensive interests. (Girard, 2014) constructed the dynamic triggering mechanisms

for the first time by introducing an internal dynamic variable into ETC. In (Ge

& Han, 2017), the authors employed the dynamic ETC strategy to handle a dis-

tributed resource-efficient formation control problem. In (Yi et al., 2018), the

authors investigated the average consensus problem for first-order MASs via two

novel distributed controllers, that is, dynamic ETC and self-triggered control. In

(Li et al., 2018), the authors considered synchronization problem for a class of dis-

crete time-delay complex dynamical networks by applying dynamic ETC strategy.

Further, (Yu et al., 2021) investigated intermittent dynamic event-based state es-

timation problem for a class of delayed complex dynamic networks, where the
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estimate is implemented based on the measurements from a fraction of network

nodes. In (Hu et al., 2021), the authors addressed the tracking consensus problem

for a class of nonlinear MASs by intermittent ETC strategy. To the best of our

knowledge, the tracking consensus for linear MASs via aperiodically intermittent

adaptive dynamic ETC has not investigated yet.

Motivated by the above-mentioned consideration, in this Chapter, a hybrid

aperiodically intermittent adaptive dynamic event-triggered control is put forward

to solve the tracking problem. The proposed control input inherits the respective

advantages of aperiodically intermittent control strategy, dynamic ETC strat-

egy and adaptive control strategy. Therefore, it is more general, practical and

economical. The main contributions can be summarized as follows: Firstly, the

aperiodically intermittent adaptive dynamic event-triggered control is designed

and the corresponding parameters are obtained. Compared with the controllers

in Chapter 4, the proposed control input in this Chapter ensures less triggering

instants. Thus, the communication cost and the number of the control updates

can be reduced furtherly. Secondly, in Chapter 4, the aperiodically intermittent

adaptive ETC was designed. However, continuous inter-agent communication for

monitoring the triggering condition is still required. To overcome this drawback,

discrete-time combinational measurement is constructed for the triggering mech-

anism in this Chapter. Therefore, continuous monitoring of neighbors’ states are

avoided. Finally, numerical simulations are provided to illustrate the effectiveness

of the theoretical results.

5.2 Problem formulation

Let us consider MASs composed of a group of followers and a virtual leader. The

dynamic of followers can be modelled as

ẋi(t) = Axi(t) +Bui(t), i ∈ V, (5.1)

where xi ∈ Rn and ui ∈ Rm represent the position state and control input,

respectively.

The virtual leader’s dynamics is assumed to be:

ṡ0(t) = As0(t), (5.2)
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where sj(t) ∈ Rn represents the jth virtual leader’s position state.

Assumption 5.1 The matrix pair (A, B) is stabilizable.

Assumption 5.2 The communication topology G composed of the all followers

is supposed fixed and its corresponding graph is undirected and connected.

Assumption 5.3 Assume there exists a positive definite diagonal matrix E sat-

isfying L̃−TE + EL̃−1 − a2E > IN where E = diag{ρ1, · · · , ρN} > 0, where

L̃ = L+D, D = diag{d1, d2, · · ·dN}, di > 0, if a leader can transmit information

to follower i, and di = 0 otherwise. ρi > 0.

Remark 5.4 Based on the graph theory, matrix theory and above assumptions,

we can obtain L = LT , L̃−1 = L̃−T . However, for giving the comparison with

directed graph, we still use the notation L̃−1 and L̃−T .

Definition 5.5 Given the leader-following MASs (5.1) and (5.2), the leader-

following consensus is reached by designing an appropriate control input such

that lim
t→∞

||δi(t)|| = 0 for any initial values, where δi(t) = xi(t)− s0(t), i ∈ V.

5.3 Main results

5.3.1 Aperiodically intermittent adaptive dynamic ETC for

linear MASs

The following control input is proposed to solve the leader-following consensus

problem, which is characterised by

ui(t) =

{

ci(t)Kqi(t
k
i,s), t ∈ [tki,s, t

k
i,s+1) ∩ [T2k, T2k+1),

0, t ∈ [T2k+1, T2k+2),
(5.3)

qi(t
k
i,s) =

N
∑

j=1

aij(x̂j(t)− x̂i(t)) + di(ŝ0(t)− x̂i(t)), (5.4)

ċi(t) = proj(ci(t)) =

{

0, if ci(t) ≥ c̄i,

σeσ1tqTi (t
k
i,s)Γqi(t

k
i,s), if ci(t) < c̄i,

(5.5)

where x̂i(t) = eA(t−tki,s)xi(t
k
i,s), K, Γ represent the feedback control gain matrices,

which will be designed in Theorem 5.6. c̄i, σ, σ1 are positive constants. In

102



5.3 Main results

addition, the width of work time and rest time, in the form, are denoted as

∆k = Tk+1 − Tk, k = 0, 1 . . ., commonly.

For each follower i, the combination measurement error can be represented

as:

ei(t) = x̂i(t)− xi(t), (5.6)

Substituting the control input (5.3) into (5.1), and combining the definition of

combination measurement error ei(t), one has the tracking error system

δ̇i(t) =

{

Aδi(t) + ci(t)BKqi(t
k
i,s), t ∈ [tki,s, t

k
i,s+1) ∩ [T2k, T2k+1),

Aδi(t), t ∈ [T2k+1, T2k+2).
(5.7)

Further, let x(t) = (xT
1 (t), x

T
2 (t), . . . , x

T
N(t))

T , δ(t) = (δT1 (t), δ
T
2 (t), . . . , δ

T
N(t))

T ,

e(t) = (eT1 (t), e
T
2 (t), . . . , e

T
N(t))

T , q(t) = (qT1 (t), q
T
2 (t), . . . , q

T
N (t))

T ,

q(tks) = (qT1 (t
k
1,s), q

T
2 (t

k
2,s), . . . , q

T
N(t

k
N,s))

T , C = diag{c1, c2, . . . , cN},
C(t) = diag{c̄1(t), c̄2(t), . . . , c̄N(t)}, then we can obtain the following equations:

q(tks) = −(L̃⊗ In)(δ(t) + e(t)), (5.8)

δ̇(t) =

{

(IN ⊗ A)δ(t) + (C(t)⊗ BK)q(tks), t ∈ [tki,s, t
k
i,s+1) ∩ [T2k, T2k+1),

(IN ⊗ A)δ(t), t ∈ [T2k+1, T2k+2).
(5.9)

Theorem 5.6 Combining with Assumption 5.1, 5.2 and 5.3, the proposed in-

termittent dynamic ETC strategy (5.3)-(5.5) can guarantee the achievement of

leader-following consensus for linear MASs (5.1) and (5.2) if the following con-

ditions hold:

(i)Find a solution P > 0 satisfying the algebraic Riccati equation below:

PA+ ATP − γPBBTP + In = 0, (5.10)

where γ > 0 is any positive constant. Then compute the feedback matrix K as

follows: K = BTP .

(ii) The triggering function for ith follower is devised as:

θi(λ1e
T
i (t)Γei(t)− (c̄i − λ2)q

T
i (t

k
i,s)Γqi(t

k
i,s)) ≥ ηi(t), (5.11)
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η̇i(t) =















− γiηi(t) + ξi((c̄i − λ2)q
T
i (t

k
i,s)Γqi(t

k
i,s)− λ1ei(t)Γei(t)),

t ∈ [tki,s, t
k
i,s+1) ∩ [T2k, T2k+1),

0, t ∈ [T2k+1, T2k+2).

(5.12)

where λ1 = λmax(Φ1), and Φ1 = γ(E+ 1
2a1

(L̃−TE+EL̃−1))+ c̄
a2
E, λ2 = λmax(Φ2),

Φ2 = γ(L̃−TEL̃−1 + a1
2
(L̃−TE + EL̃−1)), c̄ = max{c̄1, c̄2, · · · , c̄N} and a1, a2 are

positive constants, θi, γi, ξi and c̄i satisfy the following equations:

c̄i > λ2, (5.13)

γi −
1− ξi
θi

> 0. (5.14)

(iii) There exist positive constants τ1 and τ2 such that

{

∆2k ≥ τ1

∆2k+1 ≤ τ2
and τ1

τ2
>

β1

α1
, where ∆2k is the the width of work time, ∆2k+1 is the width of rest time,

α1 = min{ γ
λmax(P )

, σ1, γi− 1−ξi
θi

}, β1 =
ζ1

λmin(E⊗P )
, ζ1 = max{λmax(E) ·λmax(PA+

ATP ), ε0}. γ, σ1, ε0 are positive constants.

Proof:

Choose the following Lyapunov function candidate:

V (t) = δT (t)(E ⊗ P )δ(t) +
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ
+

N
∑

i=1

ηi(t), (5.15)

where matrix E and P are defined as mentioned above.

(1) When t ∈ [tki,s, t
k
i,s+1) ∩ [T2k, T2k+1), let V1(t) = δT (t)(E ⊗ P )δ(t), V2(t) =

1
2

N
∑

i=1

e−σ1t (ci(t)−c̄i)
2

σ
, V3(t) =

N
∑

i=1

ηi(t), take the time derivative of V1(t) along the

first equation of (5.9) yields

V̇1(t) =δT (t)(E ⊗ (PA+ ATP ))δ(t) + 2δT (t)[EC(t)⊗ PBK]q(tks)

=δT (t)(E ⊗ (PA+ ATP )− E ⊗ γΓ)δ(t) + γδT (t)(E ⊗ Γ)δ(t)

+ 2δT (t)(EC(t)⊗ PBK)q(tks).

(5.16)
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By the aid of (5.8), one obtains

γδT (t)(E ⊗ Γ)δ(t)

=γ(−1)[qT (tks)(L̃
−T ⊗ In) + eT (t)](E ⊗ Γ)(−1)[(L̃−1 ⊗ In)q(t

k
s) + e(t)]

=γqT (tks)(L̃
−TEL̃−1 ⊗ Γ)q(tks) + γeT (t)(E ⊗ Γ)e(t) + 2γqT (tks)(L̃

−TE ⊗ Γ)e(t).
(5.17)

By the Young’s inequality xT y ≤ a1
2
x2 + 1

2a1
y2, the last term of (5.17) can be

written as
2γqT (tks)(L̃

−TE ⊗ Γ)e(t)

=γqT (tks)[(L̃
−TE + EL̃−1)⊗ Γ]e(t)

≤γ

2
a1q

T (tks)[(L̃
−TE + EL̃−1)⊗ Γ]q(tks)

+
γ

2a1
eT (t)[(L̃−TE + EL̃−1)⊗ Γ]e(t).

(5.18)

Substituting (5.18) into (5.17), results in

γδT (t)(E ⊗ Γ)δ(t) ≤γqT (tks)[(L̃
−TEL̃−1 +

a1
2
(L̃−TE + EL̃−1))⊗ Γ]q(tks)

+ γeT (t)[(E +
1

2a1
(L̃−TE + EL̃−1))⊗ Γ]e(t).

(5.19)

Similar to the equation (5.18), via the Young’s inequality xT y ≤ a2
2
x2+ 1

2a2
y2,

one has

2δT (t)(EC(t)⊗ PBK)q(tks)

=− 2[qT (tks)(L̃
−T ⊗ In) + eT (t)](EC(t)⊗ Γ)q(tks)

=− 2qT (tks)(L̃
−TEC(t)⊗ Γ)q(tks)− 2eT (t)(EC(t)⊗ Γ)q(tks)

≤− 2qT (tks)(L̃
−TEC(t)⊗ Γ)q(tks) + a2q

T (tks)(EC(t)⊗ Γ)q(tks).

+
1

a2
eT (t)(EC(t)⊗ Γ)e(t)

≤ 1

a2
eT (t)(EC(t)⊗ Γ)e(t)− qT (tks)[(L̃

−TE + EL̃−1 − a2E)C(t)⊗ Γ]q(tks).

(5.20)
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Substituting (5.19) and (5.20) into (5.16), we have

V̇1(t) ≤− γδT (t)(E ⊗ In)δ(t) + γqT (tks)[(L̃
−TEL̃−1 +

a1
2
(L̃−TE + EL̃−1))⊗ Γ]q(tks)

+ eT (t)[(γ(E +
1

2a1
(L̃−TE + EL̃−1)) +

1

a2
EC(t))⊗ Γ]e(t)

− qT (tks)[(L̃
−TE + EL̃−1 − a2E)C(t)⊗ Γ]q(tks).

(5.21)

E and a2 satisfy the following condition:

L̃−TE + EL̃−1 − a2E > IN . (5.22)

Let Φ1 = γ(E + 1
2a1

(L̃−TE + EL̃−1)) + c̄
a2
E, and λ1 = λmax(Φ1),

Φ2 = γ(L̃−TEL̃−1 + a1
2
(L̃−TE + EL̃−1)), and λ2 = λmax(Φ2).

Hence, one has

V̇ (t) =V̇1(t) + V̇2(t) + V̇3(t)

≤− γδT (t)(E ⊗ In)δ(t) + λ1e
T (t)(IN ⊗ Γ)e(t) + λ2q

T (tks)(IN ⊗ Γ)q(tks)

− qT (tks)[(L̃
−TE + EL̃−1 − a2E)C(t)⊗ Γ]q(tks)

+ (−σ1)
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ
+ qT (tks)[(C(t)− C)⊗ Γ]q(tks) +

N
∑

i=1

η̇i(t)

≤− γδT (t)(E ⊗ In)δ(t) + λ1e
T (t)(IN ⊗ Γ)e(t)− qT (tks)[(C − λ2IN)⊗ Γ]q(tks)

+ (−σ1)
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ
+

N
∑

i=1

η̇i(t).

(5.23)

According to the derivative of ηi(t) and combining with the following equation:

λ1e
T (t)(IN ⊗ Γ)e(t)− qT (tks)[(C − λ2IN)⊗ Γ]q(tks)

=
N
∑

i=1

λ1e
T
i (t)Γei(t)− (ci − λ2)q

T
i (t

k
i,s)Γqi(t

k
i,s),

(5.24)
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one has

V̇ (t) =− γδT (t)(E ⊗ In)δ(t) +

N
∑

i=1

λ1e
T
i (t)Γei(t)− (ci − λ2)q

T
i (t

k
i,s)Γqi(t

k
i,s)

+
1

2
(−σ1)

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ

+

N
∑

i=1

−γiηi(t) + ξi((ci − λ2)q
T
i (t

k
i,s)Γqi(t

k
i,s)− λ1ei(t)Γei(t))

=− γδT (t)(E ⊗ In)δ(t) +
1

2
(−σ1)

N
∑

j=1

e−σ1t
(ci(t)− c̄i)

2

σ
+

N
∑

i=1

−γiηi(t)

+ (1− ξi)(
N
∑

i=1

λ1e
T
i (t)Γei(t)− (ci − λ2)q

T
i (t

k
i,s)Γqi(t

k
i,s))

≤− γδT (t)(E ⊗ In)δ(t) +
1

2
(−σ1)

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ

+ (−γi +
1− ξi
θi

)

N
∑

i=1

ηi(t),

(5.25)

With the help of Lemma 1.11, we can obtain

V̇ (t) ≤ −γ

λmax(P )
δT (t)(E ⊗ P )δ(t) +

1

2
(−σ1)

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ

+ (−γi +
1− ξi
θi

)

N
∑

i=1

ηi(t)

≤− α1V (t),

(5.26)

where α1 = min{ γ
λmax(P )

, σ1, γi − 1−ξi
θi

}.

(2) When t ∈ [T2k+1, T2k+2), the time derivative of (5.15) is given as

V̇ (t) =δT (t)(E ⊗ (PA+ ATP ))δ(t) + (−σ1)
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ

+
N
∑

i=1

(ci(t)− c̄i)q
T (tks)Γq(t

k
s).

(5.27)
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Since ci(t) < c̄i, one has

V̇ (t) ≤λmax(E ⊗ (PA+ ATP ))δT (t)δ(t) + (−σ1)
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ

≤ ζ1
λmin(E ⊗ P )

δT (t)(E ⊗ P )δ(t) + (−σ1)
1

2

N
∑

i=1

e−σ1t
(ci(t)− c̄i)

2

σ

+
ζ1

λmin(E ⊗ P )

N
∑

i=1

ηi(t)

≤β1V (t),

(5.28)

where ζ1 = max{λmax(E) · λmax(PA+ ATP ), ε0}, β1 =
ζ1

λmin(E⊗P )
.

Accordingly, when t ∈ [T0, T1), one has

V (t) ≤ V (T0)e
−α1(t−T0), (5.29)

when t ∈ [T1, T2), one has

V (t) ≤ V (T0)e
−α1∆0+β1(t−T1), (5.30)

where ∆0 = T1 − T0.

By induction and combining the conditions in Theorem 5.6, one obtains, when

t ∈ [T2k, T2k+1),

V (t) ≤V (0)e−α1(∆0+∆2+...+∆2k−2+t−T2k)+β1(∆1+∆3+...+∆2k−1)

≤V (0)e−α1(kτ1+t−T2k)+β1kτ2

≤V (0)e−α1kτ1+β1kτ2

=V (0)ek(−α1τ1+β1τ2).

(5.31)

Similarly, when t ∈ [T2k+1, T2k+2),

V (t) ≤V (0)e−α1(∆0+∆2+...+∆2k)+β1(∆1+∆3+...+∆2k−1+t−T2k+1)

≤V (0)e−α1(k+1)τ1+β1(kτ2+t−T2k+1)

≤V (0)e−α1(k+1)τ1+β1(kτ2+τ2)

=V (0)e(k+1)(−α1τ1+β1τ2),

(5.32)
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where ∆k = Tk+1−Tk. Then when t ∈ [Tk, Tk+1], in order to ensure that V (t) → 0

as k → ∞, let −α1τ1 + β1τ2 < 0, one has τ1
τ2

> β1

−α1
. Thus, lim

t→∞
||δi(t)|| = 0. It

means that leader-following consensus of MASs via intermittent adaptive dynamic

event-triggered control is reached. The proof to exclude Zeno behavior is similar

with the method in Chapter 4, we omit it here.

5.4 Simulation results

In this section, a numerical example is presented to illustrate the effectiveness of

obtained result in Theorem 5.6. Consider the linear MASs composed by a leader

(0) and four followers (1, 2, 3, 4). The fixed undirected communication topology

is given by the following graph Fig. 5.1.

1

3

2

4

0

Fig. 5.1. The communication topology of MASs.

From the graph theory, the matrices A and L can be derived as follows:

A =









0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0









and L =









2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2









. The system matrices of

the considered MAS is given by

A =





−3 4 2
−5 1 2.5
1.56 3.78 −8



 , B =





5 6
1 5
2 4



 .
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By solving the Ricatti equation (5.10), we can obtain

P =





0.2383 −0.1687 −0.0260
−0.1687 0.2851 0.0473
−0.0260 0.0473 0.0636



 .

According to the conditions in Theorem 5.6, by calculating equations (5.13) and

(5.14), we can choose the adaptive parameters c̄i = [200, 201, 202, 200.5, 200.8],

σ = 1, and σ1 = 1. θ = [300, 600, 900, 1200], ξ = [400, 600, 800, 1000], γi =

0.05, 0.08, 0.1, 0.2.

Fig. 5.2 is state errors between all followers and the leader along different

dimensions. Fig. 5.3 is the measurement errors of followers of MASs. Fig. 5.4 is

the state trajectories of all agents. Fig. 5.5 denotes the total number of triggered

instants for each follower. Fig. 5.6 shows the intermittent interval of MASs. It

can be concluded the measurement error ei(t) will converge to zero eventually

when consensus is reached. Fig. 5.7 is the adaptive coupling weights. From Fig.

5.2 , the MASs achieving consensus and the Theorem 5.6 is verified.

Fig. 5.2. The tracking errors δi(t) of MASs.
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Fig. 5.3. The measurement errors ei(t) of followers.

Fig. 5.4. The state trajectories of followers.
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0 1 2 3 4 5 6 7 8 9 10

time(s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ag
en

t

Fig. 5.5. Triggered instants for followers.

0 2 4 6 8 10

time(s)

rest

work

Intermittent control process

Fig. 5.6. The intermittent control progress.
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0 1 2 3 4 5 6 7 8 9 10

time(s)
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0.35
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0.45

0.5

0.55

0.6

0.65
c i(t

)

c
1
(t)

c
2
(t)

c
3
(t)

c
4
(t)

Fig. 5.7. The adaptive coupling weights ci(t).

5.5 Conclusion

In this chapter, the tracking consensus problem was investigated via aperiodically

intermittent adaptive dynamic ETC strategy. Firstly, the dynamic adaptive ETC

strategy was designed to further reduce the communication cost and the number

of the control updates. Secondly, the corresponding parameters were obtained

based on matrix theory and Lyapunov function. Compared with the traditional

static event-triggered control in Chapter 4, the time-varying threshold ensures

less triggering instants. Thirdly, we modified the event triggering mechanism that

depends on combined measurement approach in Chapter 4, continuous monitoring

of neighbors’ states were avoided. Finally, numerical simulations were provided

to illustrate the effectiveness of the theoretical results.
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Conclusions and Perspectives

Summary of main results

This dissertation handles the consensus problems of MASs via discontinuous con-

trol methods. According to different control tasks and different constraint condi-

tions, the appropriate control technologies are designed for each agent, such that

all the agents can track their own leader and meanwhile economize the control

costs.

In chapter 2, the cluster consensus of MASs via intermittent adaptive pinning

control has investigated. Firstly, for the linear MASs and a class of nonlinear

MASs, we have employed intermittent adaptive pinning control schemes respec-

tively to accomplish the cluster consensus. Secondly, for the network topology

of MASs, we take a weakly connected topology into consideration, which is more

universal in practice in contrast to the directed network topology required to be

balanced or contain a directed spanning tree. Thirdly, a rigorous proof have been

given for the intermittent adaptive pinning control input based on the Lyapunov

stability theory and the corresponding sufficient conditions have been derived.

Finally, simulation examples are presented to verify the effectiveness of the main

results.

In chapter 3, the observer-based intra cluster lag consensus problem for general

linear MASs and nonlinear MASs under a weakly connected graph via aperiodi-

cally intermittent adaptive pinning control has been investigated. Considering

the relevant full state information of each follower is not always available, a

class of observers has been designed to estimate the states of followers. Then

a class of observer-based intermittent adaptive pinning control protocols is pro-

posed according to the topological property of nodes. Moreover, the pinning gains

have been designed to be intermittent adaptive and with an exponential conver-
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gence rate, which will effectively reduce communication costs, avoid the pinning

gains being larger than those needed in practice and guarantees the pinning gains

quickly converge to steady value. Finally, rigorous proofs and numerical simula-

tions have been provided to guarantee the correctness of the theoretical results.

In chapter 4, the tracking consensus problem for general linear MASs has

investigated the aperiodically intermittent adaptive event-triggered control strat-

egy. Firstly, a simple intermittent centralized event-triggered control strategy

is presented to motivate the problem, where the transmission channels among

agents only open if the local event-triggered condition is satisfied in predefined

time intervals. Then, the focus is placed on designing a more general triggering

mechanism to get rid of continuous inter-agent communication for monitoring

the triggering condition. Next, to overcome the unexpected large feedback gains

in real applications and appropriately tune the feedback gains, the aperiodically

intermittent adaptive event-triggered controller is further devised. For each case,

detailed analysis is provided to avoid Zeno behavior. Finally, the validity for the

devised control schemes is substantiated by simulations.

In chapter 5, the tracking consensus problem was investigated via aperiodi-

cally intermittent adaptive dynamic event-triggered control strategy. Firstly, the

dynamic adaptive event-triggered control strategy was designed to further reduce

the communication cost and the number of the control updates. Secondly, the

corresponding parameters were obtained based on matrix theory and Lyapunov

function. Compared with the traditional static event-triggered control in Chapter

4, the time-varying threshold ensures less triggering instants. Thirdly, we mod-

ified the event triggering mechanism that depends on combined measurement

approach in Chapter 4, continuous monitoring of neighbors’ states were avoided.

Finally, numerical simulations were provided to illustrate the effectiveness of the

theoretical results.

Future works

The following directions will be explored in the future

• Note that the obtained results on consensus problem in this thesis focus

on the homogeneous MASs, namely, all agents share identical dynamical

behaviours. However, in reality, especially in engineering applications, due
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to the restriction of external impact, the dynamics of coupled agents are

expected to be different. Therefore, it is very meaningful to deal with the

consensus problem of heterogeneous MASs via intermittent event-triggered

control strategy.

• On the other hand, there is very few of the previous research results con-

cerns fractional-order dynamics via discontinuous control methods. In re-

cent years, many researchers try their best to extend the theory and ap-

plication of conventional integer-order differential systems to the situation

of fractional order in various fields, such as chemical processing systems

(Flores-Tlacuahuac & Biegler, 2014), physics and engineering (Sabatier

et al., 2007), fractional neural networks (Yu et al., 2014), to name a few.

What is noteworthy is that fractional-order models can describe the systems

more precise than the integer-order models do due to its advantage in the

description of memory and hereditary properties of various substance and

processes. Many practical behaviour, such as ground vehicles moving on

top of carpet, submarine underwater robots in the bottom of the sea with

a large number of microorganisms and unmanned aerial vehicles operating

in an environment where the influence of particles in air cannot be ignored

(e.g. high-speed light in dust storm, rain, or snow) will be better described

by fractional-order dynamics. Therefore, in the future, we will consider

the consensus problem and stability problem for fractional-order switched

MASs.

• In Chapter 2 and Chapter 3, the all weight couplings corresponding the

topology of MASs were assumed to be positive, that is, aij > 0 implies the

cooperative relationship among agents, which is unrealistic in many practi-

cal situation. For example, in biological, social and technological networks,

there actually exist both cooperative and competitive relationship. Inspired

by this fact, the scaled consensus problem for fractional-order MASs via

intermittent dynamic event-triggered control will be a topic for future re-

search.
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Résumé Etendu

Cette thèse porte sur le contrôle discontinu, basé sur le consensus, des systèmes

multi-agents, à dynamique linéaire et non linéaire. Dans un premier temps, nous

proposons des stratégies de contrôle d’épinglage adaptatif intermittent pour des

systèmes multi-agents, linéaires et pour une classe non linéaire. L’objectif de

ce control est d’atteindre un consensus de cluster et un consensus de décalage

intra-cluster basé sur des observateurs, sous contrainte de graphe faiblement con-

necté, respectivement. Ensuite, un contrôle adaptatif déclenché par événement

adaptatif de manière intermittente est construit pour les systèmes multi agents

linéaires afin d’obtenir un consensus de suivi. L’événement ne sera déclenché

que pendant l’intervalle de contrôle. En outre, afin de réduire la fréquence de

mise à jour de la commande, un protocole de commande plus efficace, c’est-à-

dire une commande dynamique adaptative déclenchée par événement adaptatif

intermittente apériodiquement, est concu pour gérer le problème de consensus de

suivi. En utilisant les théories, des matrices, des graphes algébriques et la stabil-

ité des systèmes de commutation, les conditions suffisantes correspondantes sont

proposées. Ces conditions garantissent les performances du système en termes

de robustesse élevée, de convergence rapide et de maîtrise de la complexité de

calcul. Tous nos résultats ont été démontrés avec et validés par de simulations

numériques.

Dans le premier chapitre, le contexte, la motivation et la vue d’ensemble de

la coordination distribuée des MASs, y compris le problème de consensus et les

stratégies de contrôle, sont présentés. Par la suite, quelques préliminaires, tels

que la théorie des graphes et des connaissances mathématiques sont fournis.

Dans le chapitre 2, le problème de consensus de cluster via un contrôle d’épinglage

adaptatif intermittent pour les MASs avec une dynamique générale linéaire ou

non linéaire est abordé, respectivement. Chaque cluster a un leader virtuel dont
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l’état n’est disponible que pour une petite partie des suiveurs sur certains inter-

valles de temps déconnectés en raison de contraintes de communication. Afin

de résoudre le problème du consensus de cluster, les agents de chaque cluster

sont classés en trois types. Par conséquent, une classe de protocoles de contrôle

d’épinglage adaptatif intermittent est proposée pour les différents types d’agents.

En conséquence, des critères de consensus suffisants sont dérivés pour garantir que

les agents d’un même cluster peuvent atteindre un consensus asymptotique tandis

que les agents de différents clusters peuvent atteindre un consensus différent.

Par rapport à la littérature existante, les principaux avantages sont donnés

comme suit: premièrement, contrairement à la dynamique des MASs intégra-

teurs, la dynamique des MASs linéaires généraux est beaucoup plus compliquée,

et certains MASs intégrateurs tels que les MASs intégraux simples et les MASs

doubles intégraux peut être considéré comme le cas particulier des MASs linéaires

généraux. De plus, la dynamique des MASs intégrateurs ne dépend que du cou-

plage des agents, la dynamique des MASs linéaires généraux dépend non seule-

ment du couplage des agents, mais aussi de l’auto-dynamique régissant l’évolution

de chaque agent isolé. Cela rend le consensus de cluster des MASs linéaires

généraux techniquement plus difficile que le cas des MASs intégrateurs. Deux-

ièmement, à la différence des protocoles de contrôle continu, les gains d’épinglage

dans les protocoles de contrôle proposés sont conçus pour être adaptatifs intermit-

tents et avec un taux de convergence exponentiel, ce qui peut réduire efficacement

les coûts de communication, éviter que les gains d’épinglage ne soient plus im-

portants que ceux nécessaires dans la pratique. Pendant ce temps, il garantit que

les gains d’épinglage convergent rapidement vers une valeur stable. Troisième-

ment, contrairement à la topologie de réseau dirigée qui doit être équilibrée en

degré, fortement connectée ou contenir un arbre couvrant dirigé, une topologie

faiblement connectée est prise en compte, ce qui est plus universel en pratique.

De plus, dans de nombreux systèmes réels, le retard est généralement in-

évitable en raison de la communication, du calcul et de l’actionnement. De plus,

en raison des contraintes physiques ou des coûts de mise en Ĳuvre, il est assez

difficile de détecter les états en temps réel des agents. Inspirés par ces discussions,

dans le chapitre 3, les problèmes de consensus de décalage intra-cluster basés sur

l’observateur sont étudiés plus en détail. Le soi-disant consensus de décalage

intra-cluster signifie que les suiveurs d’un même cluster peuvent parvenir à un
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consensus de décalage de manière asymptotique tandis que les suiveurs de dif-

férents clusters peuvent parvenir à des accords différents. Le réseau d’interaction

est considéré comme faiblement connecté, c’est-à-dire qu’il n’est pas nécessaire

d’être fortement connecté, équilibré en degré ou contenir un arbre couvrant dirigé.

Pour réaliser le consensus de décalage intra-cluster, une classe d’observateurs est

conçue pour les MASs linéaires et non linéaires généraux respectivement pour

estimer les états des suiveurs. Ensuite, une classe de protocoles de contrôle

d’épinglage adaptatif intermittent basés sur l’observateur est proposée. En con-

séquence, certains critères de consensus suffisants sont dérivés et des preuves

rigoureuses sont données sur la base de la théorie des matrices et de la théorie de

la stabilité de Lyapunov. Enfin, l’efficacité de la stratégie de contrôle d’épinglage

adaptatif intermittent proposée est validée par une simulation numérique.

Notez que le contrôleur intermittent du chapitre 3 nécessite toujours d’être

mis à jour en continu lorsqu’il est exécuté dans l’intervalle de temps de travail,

ce qui est un gaspillage d’énergie et de ressources. De plus, le contrôle intermit-

tent apériodique est plus raisonnable et répandu dans la pratique. Inspiré par la

discussion ci-dessus, le chapitre 4 étudie le consensus suivant le leader des MASs

linéaires généraux via un contrôle déclenché par événement adaptatif intermittent

apériodique. La commande déclenchée par événement adaptative intermittente

apériodique hérite des avantages respectifs de la commande intermittente apéri-

odique, de la commande déclenchée par événement et de la commande adaptative,

ce qui améliore l’efficacité de la communication, réduit la fréquence de mise à jour

de la commande et est plus proche des situations pratiques.

Par rapport aux littératures existantes, il existe les principales différences suiv-

antes. Premièrement, plusieurs auteurs ont intégré la stratégie intermittente et la

stratégie déclenchée par un événement pour résoudre le problème du consensus,

cependant, la méthode de contrôle déclenchée par un événement adaptatif apéri-

odiquement intermittent n’a pas été envisagée. Deuxièmement, certains travaux

existants sur le consensus de suivi du leader des MASs par un contrôle intermit-

tent déclenché par un événement, une communication continue entre les agents

est toujours nécessaire pour vérifier la condition de déclenchement, cette exigence

est supprimée dans ce chapitre. Troisièmement, la dynamique des agents dans ce

chapitre est linéaire plutôt que d’ordre intégral, par conséquent, certains travaux
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sur le consensus suivant le leader peuvent être considérés comme des cas spatiaux

de ce chapitre.

Enfin, il convient de souligner que les seuils de la fonction de déclenchement

du chapitre 4 étaient dépendants de l’état. Lorsque l’erreur de mesure est égale

ou supérieure au seuil, les événements sont déclenchés, ce qui peut être considéré

comme les conditions de déclenchement statiques. Au début, les conditions de

déclenchement statiques réduiront efficacement le coût de la communication, car

elles ne sont pas faciles à satisfaire. Cependant, au fil du temps, il se déclenchera

fréquemment puisque le seuil devient de plus en plus petit, ce qui provoque des in-

stants de déclenchement inutiles. Par conséquent, dans le chapitre 5, pour réduire

davantage le coût de communication et le nombre de mises à jour de contrôle, un

contrôle dynamique adaptatif déclenché par événement hybride apériodiquement

intermittent est proposé. Par rapport à la commande statique traditionnelle dé-

clenchée par un événement au chapitre 4, le seuil variable dans le temps dans

la fonction de déclenchement garantit moins d’instants de déclenchement. De

plus, nous modifions le mécanisme de déclenchement d’événement qui dépend de

l’approche de mesure combinée au chapitre 4, la surveillance continue des états

des voisins est évitée pour le mécanisme de déclenchement de ce chapitre.
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Multi-agents

Résumé: Cette thèse porte sur le contrôle discontinu, basé sur le consensus, des sys-

tèmes multi-agents, à dynamique linéaire et non linéaire. Dans un premier temps, nous

proposons des stratégies de contrôle d’épinglage adaptatif intermittent pour des sys-

tèmes multi-agents, linéaires et pour une classe non linéaire. L’objectif de ce control

est d’atteindre un consensus de cluster et un consensus de décalage intra-cluster basé

sur des observateurs, sous contrainte de graphe faiblement connecté, respectivement.

Ensuite, un contrôle adaptatif déclenché par événement adaptatif de manière intermit-

tente est construit pour les systèmes multi agents linéaires afin d’obtenir un consensus

de suivi. L’événement ne sera déclenché que pendant l’intervalle de contrôle. En outre,

afin de réduire la fréquence de mise à jour de la commande, un protocole de com-

mande plus efficace, c’est-à-dire une commande dynamique adaptative déclenchée par

événement adaptatif intermittente apériodiquement, est concu pour gérer le problème

de consensus de suivi. En utilisant les théories, des matrices, des graphes algébriques

et la stabilité des systèmes de commutation, les conditions suffisantes correspondantes

sont proposées. Ces conditions garantissent les performances du système en termes de

robustesse élevée, de convergence rapide et de maîtrise de la complexité de calcul. Tous

nos résultats ont été démontrés avec et validés par de simulations numériques.
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Title: Discontinuous cooperative and consensus-based control for multi-agent systems

Abstract: This thesis focus on discontinuous control methods for multi-agent sys-

tems with linear and nonlinear dynamics. Firstly, intermittent adaptive pinning control

strategies are designed for both the linear MASs and a class of nonlinear MASs to reach

cluster consensus and observer-based intra-cluster lag consensus under weakly connected

graph, respectively. Then, aperiodically intermittent adaptive event-triggered control is

constructed for linear MASs to achieve tracking consensus. The event only will be trig-

gered during the control interval. Furthermore, in order to reduce the control update

frequency, a more efficient control protocol, that is, aperiodically intermittent adaptive

dynamic event-triggered control is designed to handle the tracking consensus problem.

Finally, several numerical simulations are given to demonstrate the effectiveness of the

obtained results.
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